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Abstract

This thesis provides an introduction to and analysis of the problem of determin-

ing nuclear magnetic resonance (NMR) relaxation times of porous media by using

the so-called Carr-Purcell-Meiboom-Gill (CPMG) technique. We introduce the prin-

ciples of NMR, the CPMG technique and the signals produced, porous effects on the

NMR relaxation times and discuss various numerical methods for the inverse prob-

lem of extracting the relaxation times from CPMG signals. The numerical methods

for solving Fredholm integral equations of the first kind are sketched from a series

expansion perspective. A method of using arbitrary constituent functions for improv-

ing the performance of non-negative least squares (NNLS) is developed and applied

to several synthesized data sets and real experimental data sets of saturated porous

glass gels. The data sets were obtained by the author of this thesis and the experi-

mental procedure will be presented. We discuss the imperfections in the assumptions

on the physical and numerical models, the numerical schemes, and the experimental

results, which may lead to new research possibilities.
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Chapter 1

Introduction

1.1 Outline of thesis

This thesis is concerned with the inverse problem of structure determination us-

ing nuclear magnetic resonance (NMR). Specifically, we consider the so-called Carr-

Purcell-Meiboom-Gill (CPMG) method as applied to the problem of determining

the pore structure of porous media. The CPMG method measures the transverse

relaxation time T2 (defined in the next chapter) of the target of interest.

CPMG is one of the most often employed methods in NMR since it uses a sim-

ple configuration that evens out local fluctuations of magnetic fields. Having been

invented in 1950s, there has been a long history of study of its applications in differ-

ent areas of science and the analysis of its results, including the effects of molecular

diffusion in the measurements. However, it has also been known for a long time that

the associated inverse problem for determination of T2 from its data, which is the

so-called problem of “separation of exponentials”, is ill-posed and involves nonlinear

fitting. Different methods for solving this problem have been developed and tested

over the years. However, each of these methods has its own problems which include

one or more of the following: resolving fitted parameters, treating noisy data and
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large computing time requirements. Also, the limitations of solving this problem

implied by its ill-posedness and numerical instability are seldom discussed in the

literature.

In this thesis, we shall discuss the validity of the separation of exponentials model

for CPMG experimental data, summarize the existing computational methods for

analyzing CPMG data, illustrate the ill-posedness and the source of numerical in-

stability of the inverse problem, and improve one of the computational methods.

In particular, we focus on a nonlinear iteration scheme and a linear least-squares

method modified by our analysis to solve the problem. Examples of these methods

applied to real experimental data will be given.

Section 1.2 provides a brief introduction to the study of porous media and appli-

cations of nuclear magnetic resonance used in this study.

Chapter 2 provides a detailed introduction of the physical problem. Section 2.1

presents the quantum mechanical derivation of the governing equations of nuclear

magnetization in a magnetic field. Section 2.2 introduces the relaxation behaviors

of the nuclear magnetization for a macroscopic body. In Section 2.3, by solving the

governing equations of magnetic resonance, we show that the data provided by the

CPMG method are in the form of an exponential decay. Section 2.4 summarizes the

models discussing porous effects on the relaxation times, which are the parameters to

be measured. In Section 2.5 we formulate the data analysis model based on Section

2.3 and 2.4. In Section 2.6 we discuss the possible systematic errors that could in-

validate the sum-of-exponentials model. In Section 2.7 we describe the experimental

procedure employed by the author that produced the experimental data used in this

thesis. Most sections in this chapter are useful when discussing sources of systematic

errors that do not belong to the machine, and when discussing the applications of

the CPMG and similar techniques. Readers who are particularly interested in the

inverse problem may consult Section 2.5 only.

Chapter 3 and 4 deals with numerical aspects of this study. All discussions

will assume the validity of the separation of exponentials model. Section 3.1 lists
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five categories of methods that solve the problem, and summarizes the advantages

and disadvantages of each of these methods. Section 3.2 discusses the numerical

instability of the inverse problem. Section 3.3 shows how solving the problem in one

domain can be extended to another domain.

Chapter 4 introduces the use of continuous constituent functions for the inverse

problem. This is based on an expansion of the solution, and can be used to reduce

the number of unknowns (Section 4.1) and improve on one of the numerical schemes

(Section 4.2). This approach is suitable for any Fredholm integral equation of the

first kind. And in Section 4.3, we present some conclusions that are practical for

experimental data analysis.

In Chapter 5, the numerical methods are applied to real experimental data sets

obtained by the author.

Chapter 6 summarizes all the assumptions and conclusions in the previous chap-

ters for a clear view of the problem, and gives suggestions on future research possi-

bilities on this topic.

1.2 Porous media

Many constituents in the earth’s lithosphere, i.e., the sphere of soils and rocks, con-

tain pores, although the pores may be difficult to observe directly. Man-made mate-

rials also usually contain pores. Some pores are formed unintentionally, for example

those in concretes and rubbers. And some are made intentionally, for example those

in filtering materials and insulation materials, which can be designed to have pores

with certain pore sizes. Almost all biological tissues (e.g. lungs, cell walls, blood

vessels) and some food products (e.g. bread, cake) are also porous.

To qualify as a “porous medium”, a material, in addition to containing pores or

“voids”, has to be permeable to fluids (e.g. liquid, gas, etc.) [11]. As such, studies

of solid structures that do not involve fluids do not belong to this field. The study
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of porous media first arose in soil science. The main topics of concern are how fluids

permeate these materials and how the fluids affect the properties of the material.

Fluids in a porous medium can affect all kinds of physical properties of the material,

such as the durability, permeability, thermal properties and electrical conductivity.

As a practical application in oil and gas mining, the desired products move through

the earth, including rock and sand. The study of how the products are transported

and how they affect the mine base may help in improving the mining technologies.

In studies of porous media, one normally needs to set up models in terms of

basic parameters that characterize the porous media. According to [11], a classical

text in the field, the macroscopic parameters include porosity, specific surface area,

permeability, etc., and the microscopic parameters include pore topology, definition

of pore sizes for irregularly shaped voids, pore size distribution, etc.. The flow in

a porous medium is treated by a capillary model. Also, flows can be viewed in a

macroscopic sense.

Nuclear magnetic resonance is a non-invasive method (i.e., the material is not

physically dissected) used to detect the pore structures and hydration level (usually

defined as the ratio of pore water volume to pore volume) of a material. As will be

introduced in Section 2.3, the parameters measured by NMR are different in different

geometric confinements. The effects of this geometric confinement will be discussed

in detail in Section 2.4. If the material is fully saturated in normal conditions, the

NMR signal solely depends on the pore structures, the type of material, and the type

of fluid. The Carr-Purcell-Meiboom-Gill (CPMG) technique has been applied to the

measurements of materials with complex microstructures [10]. If the material is not

fully saturated, the signal is weakened and the measured parameters will be relevant

to the hydration level, as the fluids tend to be attached to the surface and behave

differently from those in the center of a pore (Figure 1.1). Sequential measurements

can observe the hydration ([29] for cements and [43] for glass gels) or dehydration

processes, or the evolution of solid structures due to hydration [4].

The target of study can also be the actual substances in the pores. For example,
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Figure 1.1: An image of a real concrete with pores (left), and a hypothetical picture
of a partially saturated porous media (right).
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we can study diffusion, random fast-exchange phenomena, and surface interactions

of water molecules in pores [39].

As mentioned in the Section 1.1, the CPMG technique is very frequently used in

NMR experiments. And it is also of paramount importance in the study of porous

media using NMR. There are many papers regarding the data analysis procedure of

CPMG data for porous samples, such as Glasel [13], Kroeker et al. [22], Stewart

[40] and Williams et al. [47]. The data analysis procedure is what we will focus on

starting in Chapter 3. Very basic NMR experiments such as CPMG yields single

temporal signals for the entire sample. In contrast, 1D, 2D or 3D NMR imaging, or

magnetic resonance imaging (MRI), can produce signals corresponding to particular

regions in a medium. As such, the medium, in particular its pore structures can be

imaged. These images can be compared with those obtained by other means, like CT

and ultraviolet imaging. With NMR techniques for flow imaging, the flow of liquids

in porous medium can be visualized [5].
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Chapter 2

Some Basics of Nuclear Magnetic

Resonance and the CPMG Method

2.1 Molecular spin under a magnetic field

Nuclear magnetic resonance (NMR) is a technique that detects the inner properties

of an object while the object is intact. The principles of NMR were proposed in the

1940s by Bloch [7] following the discovery of nuclear spin. In 1950s the spin echo

scheme was devised by Hahn, Carr and Purcell [17]. The basics of NMR imaging

was developed in the 1970s by Lauterbur [26] and Mansfield [30], who received Nobel

Prizes for their respective work in this area.

The basic exerimental setup for NMR is illustrated schematically in Figure 2.1.

A large coil is responsible for the production of a strong stationary field, most often

homogeneous and directed vertically (z-axis). This field produces the longitudinal

alignment of molecular spins. An rf (radio frequency) coil generates a magnetic field

that rotates about the z-axis. This field produces transverse (i.e., towards the x-y

plane) excitation of the molecular spins. 1D, 2D and 3D measurements (imaging)

are accomplished by imposing 1D, 2D or 3D gradient fields and selective pulses other
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Figure 2.1: The basic step of an NMR experiment.

than the basic setup. NMR imaging is of great importance in modern medicine. Also

the experiments can be configured to measure proton density, the degree of diffusion

in magnetic field gradients, or flow of particles. Hinshaw et al. [18] provides an

excellent introduction for beginners on these different measurements. In medicine

and engineering, hydrogen, specifically, its nucleus, the proton, is usually the target

of measurement. The hydrogen nucleus is the easiest to measure because of its small

excitation energy and small strength of chemical bonds. It is easy to rotate in the

magnetic field and so require less power in the experiments. In chemistry and biology,

larger particles like nitrogen or phosphorus are measured.

The physical basis of NMR is the interaction of a nuclear spin with magnetic

fields. The discussion below is brief. For more details, the reader may consult [15].

Many quantum mechanical particles (e.g. electrons, protons, neutrons, nuclei)

possess an intrinsic angular momentum or spin. Let ~S denote the spin angular
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momentum of such a particle. A particle having non-zero spin ~S also has a magnetic

moment ~µ proportional to its spin, i.e., ~µ = γ~S, where γ is the so-called gyromagnetic

ratio. (For protons, it is γ = 2.79e
Mpc

where e is the electrostatic unit, Mp is the mass

of proton, and c is the speed of light.)

The interaction of a magnetic moment ~µ with an applied magnetic field ~B is

defined by the quantum mechanical Hamiltonian operator

Ĥ = −~µ · ~B = −γ ~B · ~S. (2.1)

The simplest case, a particle of spin-1
2
, will actually be most relevant since it

includes the case of a proton, the nucleus of a hydrogen atom. The quantum me-

chanical operator of a spin-1
2

particle can be written in terms of the so-called 2 × 2

Pauli matrix operators as follows

~S =
1

2
~~σ or (Sx, Sy, Sz) =

1

2
~(σx, σy, σz), (2.2)

where ~ = h
2π

and h is Planck’s constant (6.63× 10−34m2kg/s). The Pauli matrices

are given by

σx =

(
0 1

1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0

0 −1

)
. (2.3)

In order to solve for the spin angular momentum in only a static field pointing

to the “z” direction, we consider σz. Note that σz has eigenvalues Sz = +1 and −1

with corresponding “spin up” (Sz = +1) and “spin down” (Sz = −1) eigenstates,

respectively,

~u1 =

(
1

0

)
, ~u2 =

(
0

1

)
. (2.4)

Also note that these eigenstates may be represented by two-component vectors. Such

vectors are also known as “spinors”.

Now let us assume that the spin-1
2

particle is in the presence of a constant mag-
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netic field ~B, pointing in the z direction with magnitude B0, i.e., ~B = ~B0 = (0, 0, B0).

Then from (2.1) the interaction Hamiltonian is given by

Ĥ = −1

2
γ~B0σz. (2.5)

The eigenstates of σz are thus seen to be eigenstates of the Hamiltonian Ĥ, i.e.,

Ĥ~u1 = −1

2
γ~B0~u1 = E1~u1, (2.6)

Ĥ~u2 =
1

2
γ~B0~u2 = E2~u2. (2.7)

Note that E1 < E2, i.e., the “spin up” eigenstate ~u1, which is the state for which

the spin ~S or magnetic moment ~µ is parallel to ~B0, has lower energy than the “spin

down” eigenstate ~u2. The negative sign for E1 means that the nuclear magnetization

is antiparrelell to the external field.

The difference in energies of the “spin up” and “spin down” eigenstates induced

by the presence of the magnetic field ~B0 is known as the Zeeman effect in a field that

is not too high. The frequency ω0 of electromagnetic radiation that corresponds to

this difference in energy is determined by the relation

~ω0 = E2 − E1 = γ~B0. (2.8)

Therefore,

ω0 = γB0 (2.9)

is the “resonant frequency” of excitation. We shall return to this result below.

According to quantum mechanics, the time evolution of a two-component state

vector ψ(t) or wavefunction of a spin-1
2

particle in the magnetic field ~B0 will be given

by the time-dependent Schrödinger equation

i~
dψ

dt
= Ĥψ = −1

2
γ~B0σzψ. (2.10)
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It is convenient to express ψ(t) in terms of the basis set ~u1 and ~u2, i.e.,

ψ(t) = c1(t)~u1 + c2(t)~u2, (2.11)

where c1(t) and c2(t) are complex-valued coefficients that must satisfy the normal-

ization condition

|c1(t)|2 + |c2(t)|2 = 1. (2.12)

The solution to Eq. (2.10) is

ψ(t) = c10e
−iE1t/~~u1 + c20e

−iE2t/~~u2, (2.13)

where c10 = c1(0), c20 = c2(0) such that |c10|2 + |c20|2 = 1.

In particular, we are interested in the expectation values of the components µi of

the magnetic moment vector ~µ, which may be computed as follows,

〈µi〉 = γ〈Si〉 = 〈ψ(t)|1
2
γ~σi|ψ(t)〉, i = x, y, z, (2.14)

where

〈Si〉 = 〈ψ(t)|Si|ψ(t)〉.

Here, we have employed the so-called Dirac “bra-ket” notation (“bra” yields complex-

conjugate transpose).

For example, in the calculation of 〈µx〉,

σx|ψ(t)〉 =

(
0 1

1 0

)[
c10e

−iE1t/~

(
1

0

)
+ c20e

−E2t/~

(
0

−1

)]
(2.15)

= c10e
−iE1t/~

(
0

1

)
+ c20e

−iE2t/~

(
−1

0

)
, (2.16)
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so that

〈µx〉 =
1

2
γ~

c∗10eiE1t/~

(
1

0

)T

+ c∗20e
iE2t/~

(
0

−1

)T


·

[
c10e

−iE1t/~

(
0

1

)
+ c20e

−iE2t/~

(
−1

0

)]
(2.17)

= −1

2
γ~
[
c∗10c20e

i(E1−E2)t/~ + c10c
∗
20e

−i(E1−E2)t/~] (2.18)

= −γ~Re
[
c10c

∗
20e

iω0t
]
. (2.19)

Similarly, we find that

〈µy〉 = −1

2
γ~
[
ic∗10c20e

i(E1−E2)t/~ − ic10c
∗
20e

−i(E1−E2)t/~] (2.20)

= −γ~Re
[
−ic10c∗20eiω0t

]
, (2.21)

and

〈µz〉 =
1

2
γ~
[
|c10|2 − |c20|2

]
. (2.22)

In all cases, the expectation value 〈µz〉 is constant, depending only on the initial

values c1(0) and c2(0). Moreover, 〈µx〉 and 〈µy〉 are real-valued since they involve

the multiplication of complex quantities to their conjugates.

Here are three special cases:

1. c1(0) = 1, c2(0) = 0. Then ψ(0) = ~u1 so that ψ(t) = e−iE1t/~~u1. In this case

〈µx〉 = 〈µy〉 = 0 and 〈µz〉 = 1
2
γ~.

2. c1(0) = 0, c2(0) = 1. Then ψ(0) = ~u2 so that ψ(t) = e−iE2t/~~u2. Thus

〈µx〉 = 〈µy〉 = 0 and 〈µz〉 = −1
2
γ~.
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3. c1(0) = c2(0) = 1√
2
. After some calculations,

〈µx〉 = −1

2
γ~ cosω0t

〈µy〉 = −1

2
γ~ sinω0t

〈µz〉 = 0.

In general, we may view the expectation values 〈µx〉, 〈µy〉 and 〈µz〉 as components

of a vector ~µav ∈ R3. A straightforward calculation shows that

||~µav|| = [〈µx〉2 + 〈µy〉2 + 〈µz〉2]1/2 (2.23)

=
1

2
γ~. (2.24)

Furthermore, this “average magnetic moment vector” ~µav precesses about the z-axis,

the axis of the static magnetic field ~B0. The angular frequency of the precession is

ω0, the resonant frequency defined in Eq. (2.9). Note that ω0 is determined by the

energy level spacing ∆E = E2−E1 which, in turn, is proportional to the magnitude

B0 of the applied magnetic field ~B0.

The reader will note the similarity of the above results, derived from quantum

mechanics, to those obtained from classical electromagnetic theory. Here, the motion

of a magnetic moment ~µ in an external field ~B0 is described by the equation

d~µ

dt
= γ~µ× ~B0. (2.25)

In the case that ~B0 = (0, 0, B0) and ~µ(0) = (µx(0), µy(0), µz(0)), it is easily shown

[24] that the solution to this equation is given by

µx(t) = µx(0) cosω0t+ µy(0) sinω0t,

µy(t) = µy(0) cosω0t− µx(0) sinω0t,

13



Figure 2.2: Precession of the nuclear magnetic moment ~µ about the static field ~B0.

µz(t) = µz(0),

where ω0 = γB0. The classical magnetic moment vector ~µ(t), therefore, precesses

about ~B0 with angular frequency ω0. This precession of a magnetic moment about

a static magnetic field is known as Larmor precession. The frequency ω0 is known

as the Larmor frequency.

We shall now exploit the similarity of quantum and classical descriptions and

use the latter to explain another fundamental feature of NMR, namely, the use of

an applied radio frequency magnetic field ~B1(t), directed perpendicularly to ~B0, to

induce transitions from one Zeeman energy level to another. This phenomenon was

originally studied by Purcell, Torrey and Pound [36] in paraffin containing hydrogen

nuclei.

We now suppose that in addition to the static magnetic field ~B0 = (0, 0, B0) there

now exists a radio frequency magnetic field ~B1(t) with the frequency of rotation ω.

The motion of the magnetic moment ~µ(t) in the laboratory coordinate system is then

14



given by the equation
d~µ

dt
= ~µ× γ( ~B0 + ~B1(t)). (2.26)

One procedure in the literature (e.g. see [24]) is to consider the following form

for ~B1,

~B1(t) = (B1 cosωt, 0, 0). (2.27)

~B1(t) is said to be “linearly polarized” along the x-axis. Obviously, it is perpendicular

to the static field ~B0. Substitution of ~B1(t) into Eq. (2.26) leads to a first order linear

time-dependent system of DEs in the components µi which is not exactly solvable.

We shall follow the literature (see again [24]) and provide a very good approximation

to the exact solution ~µ(t) in terms of some geometrical arguments.

Firstly, the linearly polarized field ~B(t) may be considered as a sum of two vectors,

~B+(t) and ~B−(t), that rotate about the z-axis with frequency ω but in opposite

directions, i.e.,

~B(t) = ~B+(t) + ~B−(t),

where

~B±(t) =
1

2
(B1 cosωt,±B1 sinωt, 0).

We shall consider only the component ~B−(t) which rotates in the same direction

as the classical Larmor precessing magnetic moment ~µ(t) in the laboratory system

discussed earlier (clockwise in x-y plane). The argument is that the counter-rotating

component ~B+(t) perturbs the motion of ~µ(t) only very slightly and therefore may

be neglected [18].

We now consider a coordinate system (x′, y′, z′) that rotates about the laboratory

z-axis in the direction of the Larmor precession but with angular frequency ω. Note

that in the rotating system, the vector ~B−(t) is stationary.

Let ~µ′ denote the magnetic moment vector expressed in terms of the rotating set

of basis vectors {̂i′, ĵ′, k̂′}. The equation of motion of ~µ′ in this system will then be
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Figure 2.3: Precession of ~µ about ~Beff in rotating coordinate system.

given by

d~µ′

dt
= ~µ′ × γ(B0k̂

′ +
1

2
B̂1î

′)− ~µ′ × ωk̂′ (2.28)

= ~µ′ × γ[(B0 −
ω

γ
)k̂′ +Brf î

′], (2.29)

where Brf = 1
2
B1. The term −~µ′ × ωk̂′ accounts for the rotating coordinate system.

From Eq. (2.29), we see that in the rotating reference frame, the vector ~µ′

precesses about an effective static magnetic field

~Beff = Brf î
′ + (B0 −

ω

γ
)k̂′. (2.30)

The angular frequency of precession of ~µ′ about ~Beff in this rotating frame is

given by

ω′ = γ|| ~Beff || = γ[(B0 −
ω

γ
)2 +B2

rf ]
1/2. (2.31)

(Note: In many books, the radio frequency field ~B1 is simply assumed to be “circu-
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larly polarized”, i.e., rotating clockwise with frequency ω, i.e.,

~B(t) = (B1 cosωt,−B1 sinωt, 0).

In this case, Brf = B1.)

The condition of “resonance” for this system is ω = γB0, that is, ω = ω0, the

Larmor frequency, In this case, from Eq. (2.29), the effective magnetic field in the

rorating frame is ~Beff = Brf î
′. From Eq. (2.9), the frequency of precession of ~µ

about ~Beff is ω1 = γBrf .

Let us now examine the effects of the rf field ~B(t) on the magnetic moment vector

~µ at resonance. First, we assume that ~µ is parallel to the static field ~B0 = B0k̂. (In

the quantum case, this would correspond to the “spin up” state ψ = ~u1.) During the

application of ~B(t), the magnetic moment vector ~µ will precess about ~Beff = Brf î
′ in

the rotating frame, specifically, in the y′-z′ plane with angular frequency ω1 = γBrf .

If the field ~B(t) is applied over a quarter of the period of the precession, i.e., over the

time t = π/(2ω1) = π/(2γBrf ), then the vector ~µ will have rotated by an angle π/2

(a “90◦ rotation”), so that it will lie on the y′-axis. If the field ~B(t) is then turned

off, the magnetic moment vector ~µ will remain in the y′-axis, therefore precessing

about ~B0 in the xy laboratory frame. This is known as a “π/2 pulse” or “90 degree

pulse”.

On the other hand, if the field ~B(t) is applied over one-half of the period of

precession, i.e., over the time t = π/(γBrf ), then ~µ will have presessed about ~Brf

from the direction of ~B0 to that of − ~B0. This “π-pulse” or “180 degree pulse”

has essentially “flipped” the direction of the magnetic moment vector ~µ. In the

quantum case, this would correspond to the “excitation” of the magnetic moment

from the lower E1, “spin-up”, energy state to the higher E2, “spin-down”, energy

state. Of course, if the magnetic moment vector ~µ were originally pointing in the

− ~B0 direction, it would be “flipped” to the ~B0 direction by a “π/2 pulse”.

In summary, we have just shown how a radio frequency magnetic field ~B(t) applied
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in the xy-plane can rotate the magnetic moment vector ~µ about the x’-axis in the

case of resonance. Similarly, the magnetic moment vector can be rotated about other

directions in the xy-plane if B1 is pointing to other directions in the xy-plane in the

rotating frame.

NMR experiments are normally performed in macroscopic systems of spins/magnetic

moments, for example, the spin-1
2

hydrogen nuclei in a container of water at room

temperature or the hydrogen nuclei of water contained in a biological tissue specimen.

Moreover, the atoms or molecules containing these nuclei are constantly colliding,

hence interacting, due to thermal motion. As a result, it is not the case that all

nuclei in the presence of a static magnetic field ~B0 will be in the lowest energy state.

The behaviors of such macroscopic collections of quantum systems is the subject of

statistical mechanics. We state here, only very briefly, that at “thermal equilibrium”

the fraction of nuclei in a sample that are in a particular state with energy Em is

given by

Pm =
e−Em/kT

Z
, (2.32)

where T is the temperature, k is the Boltzman constant, and

Z =
∑
m

e−Em/kT , (2.33)

is the so-called “partition function”.

For spin-1
2

particles, in the presence of a static ~B0 field, recall that E1 < E2 so

that the equilibrium population of the spin-up (parallel alignment) nuclei will be

greater than that of the spin-down (antiparallel alignment). In the “π/2-pulse or

π-pulse” experiments described earlier, there are more transitions induced from the

lower energy state to the higher energy state than the reverse.
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2.2 Macroscopic magnetization, relaxation and the

Bloch equations

The following section is based primarily upon the discussion in [15]. Consider, for

simplicity, a macroscopic body that is composed of protons, i.e., hydrogen nuclei,

the spin/magnetic moments of which will contribute to an NMR signal. The mag-

netization, ~M(~r, t), is defined as the local magnetic moment per unit volume at a

point ~r in the body and at time t, as follows. We consider a volume V (~t) centered

at ~r that is sufficiently small so that external fields are, to a good approximation,

homogeneous over V (~r) yet sufficiently large to contain a large number of protons.

The magnetization is then

~M(~r, t) =
1

V (~r)

∑
i

~µi, (2.34)

where the sum is over all protons in V (~r). The interaction of each magnetic moment

in V (~r) with an external magnetic field ~Bext is given by

d~µi

dt
= γ~µi × ~Bext(~r). (2.35)

If we sum over all protons in V (~r) and divide by V (~r), we arrive at the following

equation for the magnetization at ~r:

d ~M

dt
= γ ~M × ~Bext. (2.36)

Here we emphasize that no other interactions involving the magnetic moments ~µi

are being considered at this time. In other words, we are ignoring any interactions

between the protons.

The reader will note the similarity in structure between Eq. (2.36) for the mag-

netization ~M and Eq. (2.35) for the magnetic moment of a single spin particle. This
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essentially implies that we may consider the net magnetization of a macroscopic as-

sembly of spin magnetic moments as a single magnetic moment obtained from the

vector sum of magnetic moments in the assembly, if no inter-molecular interactions

are considered.

In the case of a main static field ~Bext = ~B0 = B0k̂ it is convenient to consider

two components of the magnetization,

1) ~M|| = Mzk̂, the parallel or “longitudinal” component,

2) ~M⊥ = Mxî+My ĵ, the “transverse” components.

From Eq. (2.36), it follows that

dMz

dt
= 0, (2.37)

and
d ~M⊥

dt
= γ ~M⊥ × ~B0. (2.38)

The 3×3 system in (2.36) has decomposed into parallel and transverse (2×2) systems.

Given the similarity between Eq. (2.36) for ~M and Eq. (2.35) for the magnetic

moment of a single spin, the solutions for Mx(t), My(t) and Mz(t) will have the same

form as µx(t), µy(t) and µz(t) in Eq. (2.35).

Eqs. (2.36) and (2.35), however, are inadequate for the modelling of real assem-

blages of protons in macroscopic materials, since the protons interact with each other

in their neighbourhoods. A more realistic description of real systems will require ad-

ditional terms in these equations which depend upon relaxation parameters that are

different for the two equations. The components Mz and ~M⊥ relax in different ways

toward their final values.
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Mz and T1 relaxation

In a macroscopic system of interacting protons immersed in a static external magnetic

field ~Bext = B0k̂, the magnetic moments of these protons try to align with the

external field through the exchange of energy with the surroundings. This exchange

is accomplished through thermal motion of the atoms that contain these protons and

their subsequent collisions with other atoms in the system. An argument considering

the potential energy of the nuclear magnetization ([15], p. 53) shows that there is

an equilibrium value M0 for the parallel magnetization Mz of the system, with

M0 =
1

4
ρ0
γ2~2

kT
B0, (2.39)

where ρ0 is the proton density, k is Boltzman’s constant and T is the absolute

temperature. The rate of change of Mz is proportional to the difference M0 −Mz.

The proportionality constant, determined experimentally, is inversely related to the

time scale of the growth/decay rate. As such, Eq. (2.37) is replaced by the equation

dMz

dt
=

1

T1

(M0 −Mz), (2.40)

where T1 is the “spin-lattice relaxaion time”. The value of T1 for pure water is 3.6 s

at a termperature of 25 ◦C. Some typical values for various human tissues are given

in Table 2.1 ([15], p. 54) below.

The solution of Eq. (2.40) is

Mz(t) = Mz(0)e−t/T1 +M0(1− e−t/T1). (2.41)

After an r.f. pulse ~B1(t), discussed earlier, the parallel magnetization displays an

exponential grow from the initial value Mz(0) to the equilibrium value M0.
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~M⊥ and T2 relaxation

In our macroscopic system of interacting protons, the transverse magnetization ~M⊥(t)

decays to zero, but due to a different process, in which spins experience not only

the external applied field but also static local fields of their due to spins in their

neighbourhood. The variations in the local fields cause different local precessional

frequencies. As a result, individual spins that may have been aligned initially in the

xy plane will “fan out” in time, thus reducing the net transverse magnetization –

the sum of all individual transverse components – in the xy plane. Thus fanning out

is also known as “dephasing”.

This decay of the transverse magnetization leads to the introduction of another

experimental parameter, the “spin-spin” relaxation time T2. If we assume that the

decay is exponentially, Eq. (2.38) is then modified by the addition of a decay term,

i.e.,
d ~M⊥

dt
= γ ~M⊥ × ~B0 −

1

T2

~M⊥. (2.42)

The solution to this system will be given below.

The relaxation rates for spin-spin interactions, where no energy is lost, are higher

than those for spin-lattice couplings. As a result T2 < T1. The value of T2 for pure

water is 3.6 s at a temperature of 25 ◦C. The T2 values for some human tissues are

given in Table 2.1 ([15] p. 54). The values of T2 are very short for solids (generally

in the order of microseconds) and much longer for liquids (on the order of seconds).

T ∗2 and T ′2 relaxation rates

In practical situations, external field homogeneities can result in additional dephasing

of the transverse magnetization. Sometimes, the resulting change in the relaxation

times can be characterized by a separate decay time T ′2. The total relaxation rate,
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Tissue T1(ms) T2(ms)
gray matter (GM) 950 100

white matter (WM) 600 80
muscle 900 50

cerebrospinal fluid (CSF) 4500 2200
fat 250 60

blood 1200 100-200

Table 2.1: Representative values of relaxation parameters T1 and T2 in milliseconds,
for hydrogen components of different human body tissues at B0 = 1.5 T and 37 ◦C
(from [15])
.

defined as R∗2, is the sum of internal and external relaxation rates, i.e.,

R∗2 = R2 +R′2. (2.43)

Since relaxation rates are defined as the inverses of their respective relaxation times,

we can define an overall relaxation time T ∗2 = 1/R∗2 as follows,

1

T ∗2
=

1

T2

+
1

T ′2
. (2.44)

The loss of transverse magnetization due to T ′2 is recoverable by “spin echo”

methods, including the CPMG method to be discussed below. On the other hand,

the intrinsic T2 decay is not recoverable, being due to static randome variations of

local fields in a solid and local, random, time-dependent field fluctuations in a liquid.

Eqs. (2.40) and (2.42) comprise the so-called Bloch system of differential equa-

tions for the magnetization of a sample in the presence of an external magnetic field

~Bext. These equations were first postulated by F. Bloch in 1946 [7]. This system

may be written compactly as follows:

d ~M

dt
= γ ~M × ~Bext +

1

T1

(M0 −Mz)k̂ −
1

T2

~M⊥. (2.45)
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In the special case of a static homogeneous field aligned along the z-axis, i.e.,

~Bext = B0k̂, this system may be written in matrix form as

d

dt


Mx

My

Mz

 =


− 1

T2
γB0 0

−γB0 − 1
T2

0

0 0 − 1
T1



Mx

My

Mz

+


0

0
M0

T1

 . (2.46)

The solution for this system may be easily found:

Mx(t) = e−t/T2 [Mx(0) cosω0t+My(0) sinω0t],

My(t) = e−t/T2 [My(0) sinω0t−Mx(0) sinω0t],

Mz(t) = Mz(0)e−t/T1 +M0[1− e−t/T1 ].

In the limit t→ +∞, these three components approach the following equilibrium

values:

Mx(t) → 0, My(t) → 0, Mz(t) →M0.

In what follows, it will be useful to consider the Bloch equations for more general

magnetic fields ~Bext = (Bx, By, Bz). The matrix form of these equations is

d ~M

dt
= P ~M + ~v, (2.47)

where

P =


− 1

T2
γBz −γBx

−γBz − 1
T2

γBx

γBy −γBx − 1
T1

 , (2.48)

~v =


0

0
M0

T1

 .
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This is again a first order (in time) linear system of differential equations in the

components Mi. If we assume that ~M is spatially homogeneous in the unit volume,

then the solution is

~M = ePt ~C + P−1~v, (2.49)

where C is a constant given by the initial condition:

~C = ~M(0)− P−1~v.

In the above discussion, ~B was assumed to be constant in time, yielding the solution

in (2.49). In NMR experiments, however, ~B is usually configured to change with

time, and in our experiment it will be piecewise constant in time. Therefore, the

signal, which is proportional to ~M(t), will depend on the particular configuration of

~B used. An NMR “sequence” is specified by how ~B changes with time.

2.3 Configuring the magnetization field

In our experiments we use the so-called “CPMG” sequence [15] which has three com-

ponents: (i) a “π pulse”, (ii) a “π/2 pulse” and (iii) “a dephasing period”, described

below, each of which spans a short period of time and over each of which ~B is con-

stant. The particular order in which these components are applied in the sequence

will be introduced in a later section. The parameters for the three components are:

1. The “π/2 pulse”

γ ~B = (a, 0, 0), for ts ≤ t ≤ ts + tπ
2
,

where ts is the time when the pulse starts, and

tπ
2

=
π

2a
. (2.50)
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Because of the typical values of a (see below), this time length is short, which

explains why it is called a “pulse”. Then P in (2.48) becomes

P1 =


− 1

T2
0 0

0 − 1
T2

a

0 −a − 1
T1

 . (2.51)

Let

X1 = e
P1t π

2 =


e
−

t π
2

T2 0 0

0 0 e
−

t π
2

T2

0 −e−
t π
2

T1 0

 , (2.52)

~l1 = (I −X1)P
−1
1 ~v.

Then the behavior of ~M given by (2.49) is

~Mend = X1
~Mstart + ~l1. (2.53)

With Eq. (2.50) met, all terms containing a in X1 have either cos(atπ
2
)=0 or

sin(atπ
2
) = 1.

The parameter a is typically greater than 1000 Hz in value. The relaxation time

T1 is typically greater than 50 ms [19]. With these assumptions the absolute

value of every element in ~l1 is less than 0.00005M0. So one usually neglects ~l1

to give

~Mend = X1
~Mstart. (2.54)

This component of the sequence is called a “π/2 pulse” because ~M is rotated

about the x-axis by π/2 radians (90 degrees) disregarding the exponential de-

cays (see Figure 2.4).

2. The “π pulse”

γ ~B = (0, a, 0), for ts ≤ t ≤ ts + tπ,
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Figure 2.4: Rotation about x-axis for π/2.

where

tπ =
π

a
. (2.55)

Then P in (2.48) becomes

P2 =


− 1

T2
0 −a

0 − 1
T2

0

a 0 − 1
T1

 . (2.56)

Let

X2 = eP2tπ =


−e−

tπ
T2 0 0

0 e
− tπ

T2 0

0 0 −e−
tπ
T1

 , (2.57)

~l2 = (I −X2)P
−1
2 ~v,

then

~Mend = X2
~Mstart + ~l2 (2.58)

Once again a has to meet the duration requirement so that the cosine and sine
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Figure 2.5: Rotation about y-axis for π.

terms in X2 are 0 or 1. The same argument as for the π/2 pulse will show

that ~l2 is very small. This component is called a π pulse because ~M is rotated

about y-axis for π radians (180 degrees) disregarding the exponential decays

(see Figure 2.5).

3. “Dephasing”

γ ~B = (0, 0, 0), for ts ≤ t ≤ ts + tE,

where tE is arbitrary but usually much greater than tπ.

P in (2.48) becomes

P3 =


− 1

T2
0 0

0 − 1
T2

0

0 0 − 1
T1

 . (2.59)

Let

X3 = eP3tE =


e
− tE

T2 0 0

0 e
− tE

T2 0

0 0 e
− tE

T1

 , (2.60)
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Figure 2.6: A CPMG sequence.

~l3 = (I −X3)P
−1
3 ~v

~Mend = X3
~Mstart + ~l3 (2.61)

Here the magnetization field terms (a) does not appear in the P3. As a result

~l3 is not negligible.

This portion of the sequence is called dephasing because the x and y com-

ponents of the nuclear magnetization simply decay exponentially. Over this

period z component evolves towards M0:

Mz,end = Mz,start +M0(1− e−tE/T1). (2.62)

The CPMG sequence is composed of the π/2 pulse, π pulses, and dephasing

periods that were described in the previous section. The order of these components

is as follows: we begin with a “π/2 pulse” followed by n applications of the sequence

“dephasing-π-dephasing”.

The initial condition is ~M(−tπ
2
) = M0(0, 0, 1) so that after the application of the

first π/2 pulse, ~M(0) = M0(0, 1, 0), by Eq. (2.54). Then after n (dephasing - π pulse
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- dephasing) subsequences,

~M = Xn( ~M(0)− ~r) + ~r, (2.63)

where

X = X3X2X3, (2.64)

~r = (I −X)−1(X2X3
~l2 +X2

~l3 + ~l2). (2.65)

In our experiments, we shall be measuring the y component of ~M . From the definition

of X2 and X3 we see that ~ry=0, so

My(n(2tπ + tE)) = M0e
(−n(2tπ+tE)/T2), (2.66)

By setting tn = n(2tπ + tE), Eq. (2.66) may be written as

My(tn) = M0e
−tn/T2 . (2.67)

Note that the signal decays exponentially with time constant T2. The goal will be

to extract the value of T2 from the experimental data.

2.4 Porous media relaxation time model

The relaxation times of water in pores varies because of a variety of factors, includ-

ing the geometric confinement and water-surface interactions. Surface interactions

describe the interactions between water and the solid surface. In most cases we are

only concerned about the hydrogen bonds. With significant surface interactions, the

CPMG signal may undergo the stretched relaxation [39]:

My(tn) = My(0)e−(tn/T2)β

(2.68)
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In this thesis we re not concerned about the strethed exponentials. The Zimmerman-

Brittin two-site model [51] models the proton relaxation of water molecules in the

pores by assuming there are a number of phases that are characterized by the

relaxation times (T1,2i for the ith phase) and the molecules in these phases un-

dergo stochastic exchanges. Some details of the physics of “fast-exchanges” of water

molecules can be found in [6]. In case of very fast exchange, which is usually as-

sumed in porous models, the observed relaxation behavior is equivalent to a single

relaxation time system, with relaxation time T1,2effect as given by

1

T1,2effect

=
∑

i

P1,2i

T1,2i

, (2.69)

where the P1,2i are constants specific to the system. This was obtained by using a

matrix system that characterizes the fast-exchanges. As was the case for Eqs. (2.43)

and (2.44), Eq. (2.69) is obtained by a consideration of various relaxation rates Ri.

Generally the water in pores can be modeled approximately by a surface water layer

and a bulk water, which results in a two-site model. Therefore, one may consider

1

T1,2

=
a

T1,2bulk

+
b

T1,2surface

, (2.70)

where a and b represent the populations of the bulk and surface phases, respectively,

and are functions of pore volume, pore surface area and surface layer thickness. This

expression is also obtained by Brownstein and Tarr [8] by a model using equations

in continuum mechanics. Because that the water molecules adjacent to the surface

do not undergo as much as inter-molecular interactions as those in the center, the

molecules in the surface layer would decay slower than those in the bulk water layer.

So one expects

T1,2surf < T1,2bulk

Some discussions on this model and other models can be found in Holly [19]. In

fact we are only interested in whether or not the pore water in a porous medium
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Figure 2.7: The two-site model.

sample yields signals that have a single relaxation time. Judging from the research

literature, there is, to date, no way to determine whether (2.70) is valid. This model

is only served as an attempt to show what is happening in the pores. And hopefully

if we can fit the parameters in the two side model from measurements of porous

media with known structures, as done in [19], we may find a relation between these

parameters to some variables describing the pore structure. We may then be able to

predict the relaxation time value by the pore structure.

Another important fact people have learned from experiments is that T2 depends

linearly on the volume-to-surface ratio [10], that is, linearly on the pore diameter for

spherical or cylindrical pores.

2.5 Statement of our problem

It was shown in Eq. (2.67), Section 2.1, that the solution to a CPMG sequence for

one (spatially homogeneous) unit volume is

My(n(2tE + tπ)) = M0e
−n(2tE+tπ)/T2 = M0e

−tn/T2 , n ∈ N,

for each unit volume. By definition, M0 is proportional to the proton density of the

unit volume, and so both M0 and T2 are functions of the location (x, y, z) of the unit

volume.

The magnitude of the NMR signal is proportional to the sum of the magnitudes
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of y-component magnetizations of all protons. From Section 2.4, the T2 relaxation

may vary with the pore size. And the pore sizes in a sample may not be all the

same. We may formulate the relaxation time distribution in either a discrete or a

continuous way. In either case, the signal f(t) produced by a sample will be given

by

My(t) =

∫
D
M0(x, y, z)e

−t/T2(x,y,z)dV,

where the integration is performed over the sample volume, D ⊂ R3.

The discrete case applies to samples that have homogeneous pore sizes. Let

us now mix M different species of these samples so that the T2 = T
(1)
2 in volume

V1, T2 = T
(2)
2 in volume V2, etc.. Then, for this mixed sample, the y-component

magnetization will be given by

My(n(2tE + tπ)) =
M∑
i=1

∫
Vi

M0(x, y, z)e
−n(2tE+tπ)/T

(i)
2 dV (2.71)

=
M∑
i=1

Aie
−n(2tE+tπ)/T

(i)
2 , (2.72)

where Ai =
∫

Vi
M0(x, y, z)dV . Since we are not concerned about the T1 relaxation

time, we shall simply rewrite Eq. (2.72) as

My(t) =
M∑
i

Aie
−t/Ti , (2.73)

where t assumes the discrete values of tn = n(2tE + tπ), n = 0, 1, ...

In the continuous formulation, we assume the existence of a continuous distribu-

tion of T2 values with associated volume elements ∆V (T2). This formulation can be

produced by a calculus-type construction. We suppose that Ta and Tb are respec-

tively the lower and upper bounds on the T2 relaxation time. Now form a partition

33



of the interval [Ta, Tb] into M subintervals Ta = T
(0)
2 < T

(1)
2 < ... < T

(M)
2 = Tb. (The

partition need not be an equipartition.) Let ∆T
(i)
2 = T

(i+1)
2 − T

(i)
2 , i = 0, 1, ...M − 1.

Now let ∆Vi denote the set of (x, y, z) values in one sample for which the T2 value

T2(x, y, z) lies within the interval [T
(i)
2 , T

(i+1)
2 ), i = 0, 1, 2, ...M − 1. Then the total

signal may be approximated by the finite sum

My(n(2tE + tπ)) = My(tn) ≈
M∑
i=1

∫
Vi

M0(x, y, z)e
−tn/T

(i)
2 dV. (2.74)

Note that we are approximating T2(x, y, z) as a piecewise constant function over

the sets Vi. In other words, the expression on the right hand side of (2.74) may

be considered as a kind of Riemann sum approximation. We now consider the limit

M →∞ such that max0≤i≤M−1 ∆T (i) → 0. With suitable assumptions on T2(x, y, z),

e.g. piecewise continuous over D ⊂ R3, the domain of the sample, we expect that

the M →∞ limit of the Riemann sum exists and may be written as

My(tn) =

∫ Tb

Ta

g(T2)e
−n(2tE+tπ)/T2dT2. (2.75)

for some non-negative g(T2), where

g(T2) = lim
∆T

(i)
2 →0,T2∈[T

(i)
2 ,T

(i+1)
2 )

∫
Vi

M0(x, y, z)dV

exists. Once again, for simplicity, we shall write this as

My(t) =

∫ Tb

Ta

g(T )e−t/TdT. (2.76)

The signal f(t) is proportional to the y-component magnetization of the sample,

i.e. f(t) = kMy(t). So by letting Ai and g(T ) absorb the constant k, f(t) has the

expression in Eq. (2.73) or Eq. (2.75).

In experiments, however, one always encounters noise coming from the electronics
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system. A standard approach is to assume that the noise as a function of time,

n(t), is Gaussian white noise. And sometimes there is a vertical shift, or “baseline

offset”, which means that the numerical values of the data acquired has the property

f(t) → C 6= 0 as t→∞. Then the signal will be expressed by

f(t) =
M∑
i

Aie
−t/Ti + n(t) + C. (2.77)

or

f(t) =

∫ Tb

Ta

g(T )e−t/TdT + n(t) + C, (2.78)

Our goal is to extract g(T ) or Ai and Ti from f(t). To find these, we will also

need to find the C. In the discrete form, M is sometimes unknown, in which case

we have to determine a suitable value of M from data. And regarding the presence

of the noise term n(t) in Eqs. (2.77) and (2.78), we adopt an additional condition

in our approximation procedure: A solution to this inverse problem will make the

residual noise term n(t) as “white” as possible. We shall explain the motivation for

this condition, which is borrowed from signal processing studies, below.

In other words, we shall separate the signal into two components, one of which

is a sum or integral of exponentials, and the other, n(t), is as close to a Gaussian

white noise as possible. Furthermore, we will try to minimize the “energy” or L2

norm of n(t), which is the principle of least squares [41]. If there are multiple “good”

solutions, we shall choose the simplest one, or the one that is closest to what we

desire, based on previous knowledge. A “good” solution means that the residual n(t)

given by this solution demonstrates the characteristics of Gaussian white noise. Thus

we will need a way to justify whether a discrete signal is a “good” Gaussian white

noise. A white noise means that its Fourier spectrum is constant and the signal values

are independent. A Gaussian noise means that the distribution density function of

the signal is Gaussian. Such a condition is often used in signal processing [21]. To

be strict in justifying these properties, statistical variables should be computed and
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we should determine the ranges for these variables that are admitted by a “good”

Gaussian white noise. But in our experiment, we shall only use our visual inspection

for a crucial judgement.

Then the inverse problem for T2 relaxation times can be stated in one of the

following ways:

1. Problem P1

Find Ai, Ti, i = 1..N and C so that

||f(t)−
∑
i=1

iNAie
−t/Ti − C||2 = [

Nt∑
n=0

(f(tn)−
N∑

i=1

Aie
−tn/Ti − C)2]1/2 (2.79)

is minimized, where M is given.

2. Problem P2

Find N , Ai, Ti, i = 1..N and C so that N is the minimum positive integer such

that when

||f(t)−
N∑

i=1

Aie
−t/Ti − C||2 = [

Nt∑
n=0

(f(tn)−
N∑

i=1

Aie
−tn/Ti − C)2]1/2 (2.80)

is minimized, f(t)−
∑N

i=1Aie
−t/Ti − C is a “good” Gaussian white noise.

3. Problem -

Find g(T ) on [Ta, Tb] and C so that

||f(t)−
∫ Tb

Ta

g(T )et/TdT + C||2 = [
Nt∑

n=0

(f(tn)−
∫ Tb

Ta

g(T )e−tn/TdT − C)2]1/2

(2.81)

is minimized.
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When g(T ) is comprised of a finite number of distinct Dirac delta functions, P3

becomes P1.

In this case, the continuous problem is most often solved in a discrete way, i.e.,

g(T ) is a discrete function on a sequence of equi-partitioned T values, and the inte-

gral is approximated by a numerical integration. By a linear approximation of the

integration, the third case may be stated alternatively as

4. Problem P4

Find gi and C so that

||f(t)−
N∑
i

gie
−t/Ti − C||2 = [

Nt∑
n=0

(f(tn)−
N∑
i

gie
−tn/Ti − C)2]1/2 (2.82)

is minimized, for given Ti, i..N . ∆T = Ti+1 − Ti is usually constant and N

is usually large. We would still call this the continuous problem, which is

equivalent to P3, as opposed to the truely discrete problems.

We also demand g(T ) to be non-negative in order to be physically meaningful

as a density function. Also in the case of measuring T2 values that are distributed

about some central values, we would like to know the peak locations in g(T ) and

the total amplitude belonging to each peak. If this information cannot be obtained,

then the solution is meaningless.

The extraction of discrete relaxation times Ti and associated coefficients Ai from

Eq. (2.77) or continuous distribution g(T ) from Eq. (2.78) are examples of the

classical “separation of exponentials” problem that is encountered in a number of

scientific areas. The inverse problem and various numerical methods devised to solve

it are discussed in more detail in Chapter 3.

In our experiments, we have 2tE + tπ ≈ 0.2ms, tmax < 1000 ms. The noise level

is about 400<var[n(t)] <900 for experiments on a 30 MHz machine, and the signal

amplitude is about 8000 < f(0) < 20000. The unit of these amplitudes depends
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on the machine giving the signal, and is proportional to the total magnetization

of the sample. We will use the millisecond as the unit of time for both t and T ,

unless otherwise noted. The T2 times of the samples used in this study lie in the

interval [10, 100]. The above values of parameters are assumed specifically for our

experiments. However the analyses in this thesis are valid for all t ≥ 0, and the

results for T ∈ [10, 100] can be extended to other intervals of T . In fact T2 in

any measurement has an upper limit of 3600 ms which is the T2 of pure water at a

temperature of 25 ◦C. And a T2 less than 10 ms is not expected in the present system

under study.

In this thesis we will present and analyze the experimental data sets obtained

from the following six experiments:

1. Water. Paramagnetic copper sulphate (CuSO4) has been added in order to

decrease the T2 time from that of pure water. The solution is assumed to be

homogeneous in the tube, so that there should be a single relaxation time. The

30 MHz frequency identifying the machine refers to ω0

2π
, which depends on the

magnetic field strength B0 of this machine. The signal for this experiment is

plotted in Figure 2.8.

2. The above sample measured in a 500 MHz machine. (This signal is plotted in

Figure 2.9 as another example.)

3. Porous glass beads with pores of a fixed cylindrical diameter – 237 Å. The pores

are saturated with clean water (the procedure is described in a later section).

This measurement was made with the 30 MHz machine. Based on the two-site

model in Section 2.4, there should be a single relaxation time. In fact, the pore

diameter may not be homogeneous and should have a distribution around the

mean value. If the distribution is wide, the the curve will not be well-fitted

by a single-component exponential decay and should be fitted to a continuous

distribution.
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Figure 2.8: The first data set.
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Figure 2.9: The second data set.
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4. Saturated porous glass beads with controlled pore diameter being 491 Å, mea-

sured by the 30 MHz machine.

5. Saturated mixture of the 237 Å sample and the 491 Å sample with the propor-

tion of their total pore volumes in the mixture being about 6:5, measured by

the 30 MHz machine. Based on the formulation of the problem in the begin-

ning of this section, this curve should be fitted to a two-component exponential

decay. If the pore diameters have distributions, the data should be fitted to a

continuous distribution.

6. Another saturated mixture of the above two species with the proportion in the

pore volumes being about 1:3, measured by the 30 MHz machine.

The experimental procedure employed to obtain these data sets will be explained in

Section 2.7.

2.6 Possible sources of systematic errors

In our statement of the problems in the previous section, we assumed the existence

of only Gaussian white noise. In fact there is a large possibility that systematic

errors can also be present. The systematic errors can be due to diffusion, stretched

exponentials (Eq. (2.68)), off-resonance, pulse length error, or problems that are

accidental or specific to the machine. Strictly speaking, if the factor is from the

physical system, or the problem is detectable and possible to be corrected, it is not

a systematic error. In this way only the problems specific to the machine can be

called a factor of systematic errors. However here by systematic errors we mean the

factors that could invalidate the sum-of-exponentials model.

Problems specific to the machine are generally non-predictable, but may possibly

be identified when different machines give different data for the same sample, and

quantified through caliberation procedures. We had some mearurements from the 30
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MHz machine, with no sample in it, hoping to have a look at the systematic errors

due to the coils only. We found that the systematic errors due to the coils only is

not the same all the time. But by adding these errors to clean phony signals and

fitting this data curve, the results do not differ from those by fitting the clean signals

by a significant amount. So we assume that the systematic errors coming from the

electronic system is negligible. The shape of these systematic errors is sometimes

like a straight line with a small slope, sometimes a small tilt at the beginning of the

signal, and sometimes both.

The possibility of stretched exponentials is ignored in this thesis.

Diffusion effects can be modeled by the Bloch-Torrey equations [15]. The solution

with diffusion for the CPMG case is discussed by several authors, specifically,

My(tn) = Ae−tn/T2−kt3n , (2.83)

by Carr and Purcell [9] and Kaiser[20], and

M(tn) = Ae−tn/T2−ktn , (2.84)

by Kaiser for very fast diffusion, by Torrey [42] assuming the x and z component

magnetization at t = 0 is very small and by Haacke [15]. In the above expressions, k

is linear in the molecular self diffusion constant D for water, and quadratic in all of

the field gradient G, the gyromagnetic ratio γ for proton in water, and the dephasing

length TE.

CPMG is designed for circumventing the effects of diffusion, through magnetic

field gradients caused by local fluctuations [15]. Other than this, the only possibility

that causes diffusion is the density gradient of protons. But the diffusion caused by

the density gradients is so fast, that the system must finally go to an equilibrium

in which either no density gradient exists or the density gradient does not cause

diffusion because of strong chemical forces [10]. In such an equilibrium, G is zero
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and so is k. As a result, we are not concerned about diffusions.

Off-resonance and pulse length error can easily occur. It has been mentioned

that the Bloch equations are written in a frame rotating about z-axis in a required

frequency. For resonance, there is a required relation among the stationary field

strength, the rotating frequency and the nuclear gyromagnetic ratio, given in Eq.

(2.9). If this relation is not met, then the values of ~B in Section 2.3 will be nonzero

in the z-direction. This is called off-resonance. If the time length requirements for

the pulses in Section 2.3 are not met, then the cos(atπ/2,π) and sin(atπ/2,π) terms in

the matrices X1,2 will not become 0 or 1. This produces the pulse length error. In

either cases, the solution to the CPMG sequence can be simulated by solving the

Bloch equations with these “off-resonance” and “pulse length error” parameters.

Vold et al.. [44] have shown that the CPMG measurement due to off-resonance

and pulse length error will be

My(tn) = Ae−tn/Ra +B cos(mtn)e−tn/Rb + C. (2.85)

The parameters in this expression have very complicated dependence on the experi-

ment configuration parameters and the relaxation times. Here is a simulation of the

signals by directly computing the Xi matrices in Section 2.3. The parameter a is

assume to be 30 MHz and T2 is assumed to be 36 ms. The values of other parameters

are listed in Table 2.2.

By Section 2.3 the solution to CPMG is

~M(tn) = Xn( ~M(0)− ~r) + ~r, (2.86)

where

~r = (I −X)−1(X2X3
~l2 +X2

~l3 + ~l2),

X = X3X2X3.
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% error in tπ T1=0.1s,b=1k T1=0.1s,b=10k T1=1s,b=10k
0 36.0001ms

+2 36.0003ms
+4 36.0094ms 36.0671ms 36.1018ms

Table 2.2: Fitted T2 for different combinations of errors.

For My, only the second row of Xn is relevant. For each combination of param-

eters, we calculate My(tn), fit the curve with one component using LSQCURVEFIT

in MATLAB (Table 2.2) and plot the residuals (Figure 2.10). We assumed that the

x and z components of ~M(0) are zeros. In fact, a calculation would show that the

contribution of an error ε at t = 0, which is Xn~ε, is negligible if the amplitudes in

the error vector are less than 0.0001M0.

The results show that with only off-resonance condition, the data has negligible

oscillations (beats). The presence of pulse length error dilates the amplitudes of

the oscillation. The amplitudes of the oscillation also increase with the level of off-

resonance. The difference in T1 does not affect the results very much. In all of the

experiments, the fitted relaxation times do not have significant differences, and the

maximum amplitude of the oscillation is about 0.002M0. This amount of oscillation is

not even observable in the presence of Gaussian white noise n with σ[n] = 0.0025M0

(Figure 3.4 in Section 3.1), which can represent the noise level encountered in our

physical experiments. However, it can be detected by doing a Fourier transform on

the residual. If off-resonance or pulse length error is larger than the simulated values,

the errors in the data would become larger and may cause errors in fitted parameters

or produce weird residual shapes. For example when the error in the π pulse is

+25%, the magnitude of oscillation in the residual can be as large as 0.1f(0). We

will assume that the off-resonance and pulse length errors in our physical experiments

are much smaller than our simulated values.
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Figure 2.10: Residuals in fitting the curves with different combinations of errors in
the experiment configurations.
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Figure 2.11: Scanning electron micrographs of controlled porous glass (CPG) with a
pore diameter about 55 nm. (From J. M. Ha, J. H. Wolf, M. A. Hillmyer and M. D.
Ward, J. Am. Chem. Soc., 126, 3382 (2004).)

2.7 Experimental

In this section we introduce the experimental procedure through which the data

sets are obtained. The procedure includes sample preparation, measurement and

sampling of the signal. For the data sets 1 and 2 listed in Section 2.5, the samples

were just prepared by simply adding chemicals into water. The procedure described

below was applied for porous glass gel samples.

Sample preparation

In our experiments we used two species of porous silica glass gel with controlled

pore diameters of 237 Å and 491 Å (Figure 2.12). These materials are glass grains

that have many cylindrical pores (which may be interconnected) inside. The pore

diameter refers to the diameter of the cylinder. The diameters of pores for each

species may have a distribution within 10% of its mean diameter. Figure 2.11 is a

picture of such a porous glass with pore diameter of 55 nm.

In our experiments we saturate the samples with water in an effort to ensure

that all pores in the sample are filled with water. To make sure that the sample

is saturated, we put the samples in a beaker of water and placed the beaker into
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Figure 2.12: Glass gel sample.

a container that is connected to vacuum pump (Figure 2.13) via a valve. We then

opened and closed the two valves for three times. When the valve is open, air is

being removed from the container. As a result, the air in the pores, originally at

atmospheric pressure, expands and we see air bubbles rising to the surface of the

water. After the valve is closed, a connection to the container is opened, allowing air

to enter the system. As a result, water enters the pores. The procedure is repeated.

After the sample is saturated with water, it is taken out of the beaker and put

on filter paper to be dried. At this time the glass beads stick together because of

surface water on the beads. The sample is sufficiently dried once the glass beads are

fully separated as dry sand. They should then be immediately transported to a tube

and the tube is sealed with parafilm (a kind of plastic material) so that the pore

water does not evaporate (Figure 2.14). A schematic illustration is showed in Figure

2.15 for the prepared sample.

When mixing the two species, the saturation procedure is the same. But before

saturation the samples must be weighed according to the proportion of pore volume

we desire. The pore-volume-to-mass ratios for each sample are different. The infor-

mation of this ratio is provided by the manufacturer of the glass gels. This ratio
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Figure 2.13: The pump system that saturates the sample. The beaker containing
the sample is placed in the glass container on the picture.

Figure 2.14: The completed sample which is contained in a small tube.
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Figure 2.15: A schematic illustration of the completed sample.

is 0.95 (cm3/g) for the 237 Å sample and 0.85 for the 491 Å sample. Assuming

saturation of the sample, the proportion of water volume can be calculated by these

ratios and the weights of the samples (Figure 2.16). After they are weighed, the two

species are put together into the beaker for saturation.

Measurements

Most of the measurements were done in a 30 MHz machine, which means that the

machine has a magnetic field for which the parameter ω0 in Section 2.1 is 2π30 MHz.

The tube containing the sample is inserted into the central coil (Figure 2.17). The

frequency can be adjusted to the accuracy of 1 Hz (Figure 2.18). The values of Tπ,

Tπ/2, TE, number of measurements, repeating time between measurements and the

length of the signal are set up on the computer by an in-house program. In our

experiments, Tπ is 3.4 µs, Tπ/2 is 1.7 µs, and TE is 100 µs. From signal processing,

we know that the signal-to-noise ratio of noisy signals (assuming additional Gaussian

white noise) may be increased by averaging over repeated measurements. In fact,

we know that for measurements with random Gaussian white noise, with such av-

eraging of repeated measurements the expectation value of the signal to noise ratio

is proportional to the number of measurements. In our experiment the signals are
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Figure 2.16: The two species are weighed to make a desired proportion in their pore
volumes for the mixture.

obtained by averaging 410 measurements, and the repeating time between measure-

ments is 15 s. The time interval of the signals are typically 1 s. But there are always

large systematic errors in the second half of the signal (which is a problem of our

machine), so in our data analysis we use only the portion of the signal for t ∈ [0, 500]

(ms). The signals are acquired by a GAGE CompuScope 1012 board.

Sampling of signals

The raw signals (Figure 2.19) obtained from the signal acquisition board are sampled

with a spacing of 50 µs. The time spacing between spin-echoes, i.e., (TE + 2Tπ) is

about 200 µs. So we need to pick the spin-echo points from the raw signal. This is

done also by an in-house program, in which we set the spacing of the time points

for our signal (Figure 2.20 and 2.21), and then the program outputs suitable points

picked out from the raw signal. If the input spacing is not set up properly, the output

signal will have a beat pattern.

50



Figure 2.17: The 30 MHz NMR machine, housed in the UW Department of Physics
building.
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Figure 2.18: The equipment for configuration and signal acquisition.
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Figure 2.19: A small portion of the raw signal given by the signal acquisition system.
This signal is for data set 5 in Section 2.5.

Figure 2.20: A small portion of the signal to be analyzed after selecting suitable time
points from the raw signal.
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Figure 2.21: The full signal to be analyzed.
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Chapter 3

A Review of the Problem of

“Separation of Exponentials”

3.1 Numerical methods

The classical problem of “separation of exponentials” [25] can be stated as follows:

Given a function f(t) (or data points), and an N > 0, find the best approximant of

f(t) as a linear combination of the exponentially decaying terms, i.e.,

f(t) ≈
N∑

i=1

Aie
−λit. (3.1)

By setting one of the λi’s to be zero, say λ1 = 0, the sum in (3.1) may accomodate

a constant term, A1, which is also known as the “baseline offset”. In this case, the

sum in (3.1) approaches A1 as t→ +∞. The problem of extracting the parameters

Ai and λi is encountered not only in NMR data analysis, but also encountered in

many other problems, for example, radioactive decay, fitting statistical data to a

Poisson distribution, blood tracer activity, transient signal from sensors [14], and

fluorescence decay.
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The problem of inverting a Laplace transform from real and discrete data is a more

general form of this problem. A discrete distribution may be viewed as a continuous

distribution that consists only of δ-functions. Recall that the basic inverse Laplace

transform requires the analytical form of the function so that the inversion integral

can be performed in the complex plane. The inversion of the Laplace transform from

real discrete data is normally done to find a solution on an array of disretized λ. By

the change of variable λ = 1/T , the separation of relaxation times problem

f(t) =

∫ ∞

0

g(T )e−t/TdT, g(T ) = 0 for T ∈ [0, Ta] ∪ [Tb,∞) (3.2)

becomes the Laplace transform of a localized function p(λ) = g(1/λ)/λ2. We denote

the integral equation (3.2) to be

f(t) = S[g], (3.3)

as opposed to the Laplace transform f(t) = L [p].

Below is a review of five methods that have been devised to solve this problem:

Prony’s method, Padé-Laplace, iteration on the unknown parameters, direct matrix

inversion, and integral transforms. The first three consider the discrete form of the

problem, and the latter two consider the continuous problem. However, if the true

distribution is discrete, the latter two are able to give approximate solutions. There is

no method that is designed particularly for determining the number N of components

in (3.1). It is claimed that some methods have the ability to tell whether an assumed

value for N is sufficiently good, and guarantee some level of accuracy for the solved

components. Considering the nature of the problem, it is, in some cases, meaningless

to discuss the accuracy and how many components there actually are. Direct matrix

inversion can be accompanied by regularization to find certain types of solutions.
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3.1.1 Prony’s method

To introduce Prony’s method and, later, the direct matrix inversion method, we

denote ξi = e−∆t/Ti , supposing that tn = n∆t, for n = 0...Nt.

Then the sum of exponentials in (3.1) will become

f̃(tn) =
M∑
i=0

Aiξ
n
i . (3.4)

Prony’s method was invented in 1795 [12], and was discussed by Lanczos in his

textbook [25]. The method is based on the fact that a function in the form (3.4) is

the solution of a recursion equation f̃n+M+1 =
∑M

i=0 cif̃n+i for some ci’s. If we could

determine the ci’s from data, then the ξi’s are the roots of the equation

1 + cMx+ cM−1x
2 + ...+ c1x

M−1 + c0x
M = 0. (3.5)

One method of finding ci’s is to minimize the norm of the vector

~ε =


f0 ... fM

f1 ... fM+1

:

fk−M ... fk

~c− ~f, (3.6)

where ~f = (f(t0), f(t1), f(t2)...f(tNt)) is the signal. Similar with a λi being 0 in

(3.1), the baseline in (3.4) is equivalent to a ξi = 1. In Prony’s method, this means

that one of the ξi should have the value 1 in the final solution. System (3.6) can be

solved by singular value decomposition [23].

Alternatively, we could assume f̃n =
∑M

i=0 cif̃n+i+1, and the expressions for (3.5)

and (3.6) should change accordingly. Fitting (3.4) with the two directions of recursion

are called forward prediction and backward prediction, respectively, in the linear
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prediction problem considered in signal processing [31]. In the forward case, the

roots to (3.5) will fall inside the unit circle on the complex plane [31], and so can

be found by searching. In the backward case, the roots can be solved with better

accuracy though solving for them is harder. Because of the difficulty in finding the

roots when the order is higher, this method is used only for small M .

The disadvantages with the iteration method are that: (1) It is sensitive to noise.

(2) A small change in ci can produce large changes in the roots to (3.5). (3) It is

difficult to find good ci’s that make (3.6) a small vector as well as the roots to (3.5)

real.

For a detailed introduction to the iteration method, as well as linear prediction

in speech, see [31].

3.1.2 Padé-Laplace method

The Padé-Laplace method is designed for the discrete problem (P1 in Section 2.5),

and involves the identification of poles of a function. Taking the Laplace transform

of a sum of exponentials gives

h(p) = L [
N∑

j=1

Aje
−t/Tj ](p) =

N∑
j=1

Aj

p− 1/Tj

. (3.7)

Thus we are done if we can fit h(p) instead of f(t). To fit h(p), we notice that

the last expression in Eq. (3.7) is a rational function in p, i.e.,

h(p) =

∑N−1
s=0 asp

s∑N
v=0 bvp

v
. (3.8)

Choosing a p0 and performing a Taylor expansion of h(p) to order L + N by

taking numerical derivatives of h(p), we can produce a polynomial approximation of

h(p) around p0. And then as and bs can be computed by the recursive algorithm
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of Longman [28]. The baseline of the signal corresponds to one of the Ti being at

infinity, i.e., a pole of h(p) at 0.

This method is found to be very robust with respect to noise [50], and able to

determine N in the sense that when N is larger than necessary, the extra as’s and

bv’s will be zeros [50]. In [50], the method was tested with noise but only for sums

whose exponential terms were very different. As a result, the author of this thesis

does not know how it works with a sum of similar exponentials. The difficulty is

the choice of a suitable p0, which can be done at least by search, and a number of

people have derived better ways for determining p0 [14]. The main algorithm for

Padé-Laplace is provided in [3].

3.1.3 Iteration of parameters

In this method, the iterated parameters include the relaxation times as well as the

amplitudes, and so it solves a nonlinear fitting problem. MATLAB has a built-in

function LSQCURVEFIT that solves any least square fitting for a small number of

parameters. By default, it uses an interior-reflexive Newton method and a subspace

trust region method. The gradient computed for iteration is the preconditioned

conjugate gradient. In some other software such as Origin [52], the least squares

fitting algorithm uses a Marquart-Levenberg scheme.

The advantages of this method are that it works well with noise, and that it is

accurate in solving for a small number of components. The disadvantage is that it is

not accurate for solving a large number of components, for example, more than four

components in MATLAB.

There is another advantage of this method in the presence of systematic errors.

This method converges to different results by using different initial values. Without

systematic errors, of course, we would like to determine the optimal solution. With

systematic errors, however, a non-optimal solution may be closer to the true solution

than an optimal one. In such cases, we may find more possibilities for the true
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solution by examining non-optimal solutions, as the true solution may not be the

optimal solution.

3.1.4 Direct matrix inversion

Using Eq. (3.4), we could minimize the norm of f̃(tn) − f(tn) assuming a large

number of Ti’s, i.e., solve the system
1 1 ... 1

ξ1 ξ2 ... ξM

: :

ξk
1 ξk

2 ... ξk
M

~g ≈ ~f. (3.9)

This is mostly suitable for determining g(T ) in the continuous problem. Solving the

system in Eq. (3.9) requires a large amount of work. In this process, a singular value

decomposition or iteration may be used. The non-negative least squares (NNLS)

or linear programming (LP) [48] schemes mentioned in the literature falls into this

category, both of which can be regularized, that is constrain on the first/or second

derivatives, to find certain type of solutions. In this way the solution can be made

as smooth as desired [48].

The non-negative least squares method solves for ~g vectors with non-negative

elements in (3.9). Therefore it is particularly suitable for our physical problem, as

other methods solving the continuous problem may fail to constrain the solutions to

be non-negative. The algorithms of NNLS usually follow the work of Lawson and

Hanson [27]. This algorithm tends to give separated delta functions even for smooth

distributions if no regularization is used. MATLAB now has a built-in NNLS function

called LSQNONNEG. This author performed a few experiments in MATLAB and

found that the function does not treat the baseline term well when it is included in

the matrix, and so a baseline has to be determined beforehand.

Some disadvantages of this method are: (1) It is not as accurate in solving the
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discrete problem as a search or iteration procedure over all the unknowns, because it

usually gives more components than there actually are, with some components split

and some components merged, especially when the fixed T points skip over the true

locations (Example 1 below). (2) For the same reason, it is not able to determine the

minimum number of components, since the number of delta functions in the solutions

given by this method cannot be constrained. In comparison, other methods allow

us to prescribe the number of components and increase it until the solution is good

enough. (3) For the continuous problem, if the distributions are not as simple as a

couple of thin peaks, the algorithm may require a long time when a suitable level

of regularization (that avoids the solution to be separated delta functions) is used

(say one minute for 100 relaxation time points, and more than six minutes for 200

relaxation time points), and sometimes the algorithm would fail.

Example 1. NNLS solving a discrete distribution when the discretized

T ’s jump over the locations of the true relaxation times

Let the data curve be given by

f(t) = 2000e−t/40.5 + 2000e−t/50.5 + 2000e−t/70.5.

We sample from this curve to produce data points, where t is equi-partitioned with ∆t

being 0.2 ms and the number of time points is 2500. Then we solve the continuous

problem P3 by assuming T = (10, 11, 12...100) (ms). Let B be the matrix of ξ’s in

3.9. Thus B is a 2500 by 91 matrix.

The MATLAB command is

[A, p1, p2, p3, p4] = lsqnonneg(B, f);

where A is the solution vector, p2 is the residual, and p4.iterations is the number

of iteration steps (p4 is a structured variable and p4.iterations is a member of p4).

The result is a residual to be of order 10−3 and the number of iteration steps is 17.
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Figure 3.1: The solution solved by NNLS for the three component distribution of
Example 1.

Figure 3.1 shows that the result solved by NNLS gives six components. Given

such a solution, we cannot tell whether any of the adjacent components should be

combined, or whether there should be a component around T =60.

Example 2. A failure of the NNLS algorithm in MATLAB

Consider the following distribution of T ,

g(T ) = A(sin((T − 40)/40× 2π) + 1) (3.10)

for T ∈ [10, 100], and a signal f(t) = S[g]. This distribution is plotted in Figure 3.2.

A is a scaling factor so that f(0) = 10000. The result obtained by LSQNONNEG from

f(t) in MATLAB is plotted in Figure 3.3. The algorithm fails to give a nonnegative

solution.
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Figure 3.2: An example that NNLS fails. This the true distribution.

Figure 3.3: The solution solved by NNLS for the distribution plotted in Figure 3.2.
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3.1.5 Integral transforms

As the name suggests, these methods are based upon the computation of integral

transforms of the data. Being different from the Padé-Laplace method, the solutions

for these methods result directly from some global transformation. Without matrix

inversions, they allow more data points for the T values than the matrix inversion

method. However, they still lack accuracy for the discrete problem in which case the

solution will be composed of continuous peaks centered at discrete relaxation rates.

All of the integral transform methods are ways of performing the inverse Laplace

transform from the real axis as adapted to the relaxation time problem. The inver-

sion may use the Mellin transform [2] or the Gardner transform [38], both of which

make use of Fourier transforms. Inversion may also be performed by other suitable

techniques, for example Ramm [37] gave a closed expression for inverting the Laplace

transform from the real axis.

For the relaxation time problem, the integral methods are generally not suitable,

because they usually use nonlinear changes of variables. As a result, the accuracy

of the solutions will be biased to only a part of the domain of g, and sometimes the

data sets need to be interpolated to generate non-equipartitioned time axis. The

other disadvantages include: (1) They are not as robust as Padé-Laplace in dealing

with noise [14], and (2) the solutions cannot be regularized.

3.1.6 Our choice of methods to be applied to the experiem-

ntal data

For the discrete problem, the best method this author has found so far is the iter-

ation of all parameters. When dealing with a small number of components it does

not exhibit any obvious disadvantages. Moreover, various software packages, e.g.

MATLAB, Origin and SAS, have this functionality implemented. Finally, in real

experiments we shall encounter systematic errors and therefore have need of the
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non-optimal solutions.

For the continuous problem, NNLS has obvious advantages for our physical prob-

lem, since it yields non-negative solutions and allows regularization. As a result, it

guarantees that the solutions are meaningful to some extent. We shall introduce some

general theorems on the numerical instability on inverting the Laplace transform due

to its eigenvalue spectrum.

From the expansion in this eigensystem, an exponential sampling method for

inverting the Laplace transform was developed by McWhirter and Pike [33] in 1980,

but was seldom mentioned in NMR literatures. Since it comes from the Sampling

Theorem, it can be seen as an interpolation using sinc functions. We shall introduce

it in Chapter 4. And we shall show a similar method in Chapter 4 that comes from an

expansion in the eigenfunctions of the Laplace transform but solves the problem using

arbitrary constituent functions. Although these two methods are for inverting the

Laplace transform, they are different from the integral transform methods in Section

3.1.5, but are more similar to NNLS, in that all of them minimize an expression in

the form

||f(t)−
N∑

n=1

cnzn(t)||2, (3.11)

where zn(t)’s are known. Without any constraint on cn’s, this problem can be solved

by differentiating this minimizer with respect to cn’s, and setting the derivatives to

zero. Then cn’s can be solved in the following way. Let A be an N by N matrix, ~b

be an N -vector, Nt denote the number of time points, and the elements of A and b

are defined to be

Amn =
Nt∑
i=1

zm(ti)zn(ti)−
1

Nt

Nt∑
i=1

zm(ti)
Nt−1∑
n=0

zn(ti), (3.12)

bm =
Nt∑
i=1

f(ti)zm(ti)−
1

Nt

Nt∑
i=0

f(ti)
Nt∑
i=1

zm(ti). (3.13)
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The solution is

~c = A−1~b, (3.14)

C =
1

Nt

Nt∑
i=1

f(ti)−
Nt∑
i=1

N∑
n=1

cnzn(ti), (3.15)

provided that A−1 exists. Since N is small, (3.14) can be done without any special

algorithm.

MATLAB algorithm 1

function [co,C,res]=lsqsum(B,f);
% Finding the solution minimizing 3.11
% B is matrix containing z(t)’s.
% The size of B is the number of time points by N.
% f is the signal. co is the array of coefficients.
% C is the baseline offset. res is the residual.
BB=B’;
[M,N]=size(BB);
A=zeros(M,M);
k=length(f);
for i=1:M;

for j=1:M;
A(i,j)=sum(BB(i,:).*BB(j,:))-1/k*sum(BB(i,:))*sum(BB(j,:));

end;
end;
b=zeros(M,1);
for i=1:M;

b(i)=sum(f.*BB(i,:))-1/k*sum(f)*sum(BB(i,:));
end;
co=A\b;
f1=BB*co;
C=1/k*(sum(f)-sum(f1));
res=y-f1’;
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With NNLS, let B be an Nt by N matrix, and

Bij = zj(ti), (3.16)

then the problem is inverting the system

~f ≈ B~c. (3.17)

NNLS will give nonnegative ~c to this problem. And as the number of unknowns

is decreased, the problems of computing time and the possibility of failure can be

resolved.

3.2 Numerical instability

3.2.1 The meaning of numerical instability in NMR data

analysis

Consider the Fredholm integral equation of the first kind

f(t) =

∫ Tb

Ta

g(T )e−t/TdT. (3.18)

Solving such an inverse problem, i.e., finding g(T ) given f(t), suffers from numerical

instability. To be consistent with our physical problem, we will call f(t) the signal,

or the data, that is given by the solution, or the distribution g(T ).

Numerical instability means that a small change in the signal may cause a large

change in the solution. The instability may come from the ill-posedness (Section

3.2.2) of the inverse problem. It may also come from the ill-conditioning in the

subsets (of the set of all possible data) in which the solution is well-posed. The

former source, i.e., the ill-posedness, makes larger differences in the solutions whose
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signals are similar, and makes it generally impossible to charaterize the solutions

that give similar signals. However, since the instability is what we can observe

directly from data analysis, and it does not necessarily imply ill-posedness, we will

only be concerned about numerical instability in general in this thesis. It is shown

in Lanczos [25] that a sum of two exponentials may very well approximate a sum

of three exponentials. Whittal and MacKay [48] also gave some examples of getting

different solutions for a same data curve.

What is worse is that in NMR experiments for porous media, there is always

noise, which one normally assumes, for simplicity, to be Gaussian white noise. This

will be the assumption made in this thesis. As such, we also adopt the approach

that “good” solutions to our inverse problem are those for which the residual, i.e.,

errors with respect to the signal data, exhibit the characteristics of Gaussian white

noise. With a certain noise level, for example the noise level we encountered in our

experiments, good solutions for a same data set can be very different from each other

as a result of the numerical instability.

For example, in our experiments with the 30 MHz machine, the signal strength

is about f(0) ≈ 10000 (this is the magnitude shown by our computer, which has an

arbitrary unit and is proportional to the total nuclear magnetization of the sample),

and the noise level is about σ[n(t)] ≈ 25 (Figure 3.4) in the same unit. Then if a

distribution gives a signal that differs from the noiseless signal (the signal could have

been given by the real distribution of the relaxation time if there is no noise) by less

than 1 at every point, an intuitive judgment would tell us that it is a good solution,

because this small difference plus the Gaussian white noise component still looks like

a Gaussian white noise.

We now give an example in order to be strict in this argument. During data

analysis, we will minimize the L2 norm of the signal residual. In fact, because of

the random nature of white noise, a deviation from the Gaussian white noise can

have a smaller L2 norm than the L2 norm of the original noise. This means the true

solution may not be the optimal solution.
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Figure 3.4: A Gaussian white noise with σ[n(t)] = 25 generated in MATLAB.

Example 3. The optimal solution not being the true distribution with

presence of Gaussian white noise

In MATLAB we generated a phony data set with t=0,0.2,0.4...400, using the formula

y = 5000e−t/30 + 5000e−t/50 + 5000e−t/90.

A Gaussian white noise was made by the command

>> n = randn([1 2001]) ∗ 25;

and n(t) is shown in Figure 3.4. We then construct the noisy data set f(t) = y(t) +

n(t). The clean signal y(t) and the noisy signal f(t) are plotted in Figure 3.5. The

L2 norm of n(t), which is the residual between the data f(t) and the noiseless signal,

is 1126.8.

However, for this data, the parameter set in y(t) is not the optimal solution.
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Figure 3.5: The clean signal y = 5000e−t/30 + 5000e−t/50 + 5000e−t/90 (left) and the
noisy signal y + n (right) where σ[n] = 25.
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Figure 3.6: ỹ(t)− y(t)

Another solution

ỹ(t) = 4183.7e−t/89.98 + 4120.2e−t/62.11 + 6692.1e−t/31.99 + 8.1645; (3.19)

results in a residual, that is, f(t) − ỹ(t), with L2 norm 1126.7. ỹ(t) is a “better”

solution in terms of the L2 norm of the residual, but its error in the second relaxation

time is large.

Figure 3.6 plots the difference between y(t) and ỹ(t). The maximal difference of

these two functions is about 7. This gives us an example of how different signals are

allowed to be when they are not distinguishable in the presence of noise.

The above example shows that the optimal solution may not be the true param-

eters in term of L2 norm of residual. Thus it is not so meaningful to demand the

solution to be optimal, and getting “good” or “possible” solutions may be the best

thing that we can do.
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3.2.2 Ill-posedness of separation of exponentials

The problem of separation of exponentials is ill-posed, which means that it violates

at least one of the following properties:

(1) A solution exists,

(2) The solution is unique,

(3) The solution depends continuously on the data, in some reasonable topology.

This follows the classic definition of “well-posedness” by the mathematician Hadamard

[16]. For our problem, the violation of (2) and (3) occur at the same time. If the so-

lution is unique for any possible data, then the solution will depend continuously on

the data. But in fact, there can be several combinations of parameters that achieve

the same level of approximation for one data set. And as the data changes, the

optimal solution may jump from one region to another region in the solution space.

Example 4. Solution not depending continuously on the data

Consider a data set f(t) changing continuously from

f1(t) = 2e−t + e−5t

to

f2(t) = 2e−4t + e−t

by setting

f(t) = βf1(t) + (1− β)f2(t),

where β is varied from 1 to 0 continuously.

We fit f(t) to a two-component exponential decay by fixing A1 = 2 and A2=1:

f(t) ≈ 2e−λ1t + e−λ2t.

In the figures, we have plotted the the L2 norm of the residual f(t)−(2e−λ1t+e−λ2t)
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Figure 3.7: Gray level plots of the L2 norm of the residual versus the two relaxation
times. β=1.

over the parameter region (λ1, λ2) ∈ [0.5, 8]2. (This approach follows that of Greg

Mayer in the Department of Applied Mathematics of the University of Waterloo, who

used such figures to show the existence of multiple minima when minimizing the L2

norm for an exponential decay fitting.)

We divide the domain of parameters (λ1, λ2) into two regions, where Region 1 is

defined by λ1 < λ2 and Region 2 is by λ2 < λ1. When β = 1, the global minimum of

the norm of the residual is at (1,5), which is the true parameter set for the data. But

there is another local minimum at about (2.2,0.8) (Figure 3.7). As β decreases, the

local minimum value of Region 1 increases while that of Region 2 decreases. When

β = 0.4, the norms of the residuals at the two disconnected minima have about the

same local minimum value (Figure 3.8). For β > 0.4, the local minimum in Region

2 becomes the global minimum (Figure 3.9). As a result, there is a discontinuous

“jump” in the location of the global minimum from Region 1 to Region 2. A schematic

illustration is shown in Figure 3.10.

The ill-posedness is actually due to the fact that the data is allowed to be not

in the form that is assumed for the solution. In the above example, we wanted
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Figure 3.8: Gray level plots of the L2 norm of the residual versus the two relaxation
times. β=0.4.

Figure 3.9: Gray level plots of the L2 norm of the residual versus the two relaxation
times. β=0.
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Figure 3.10: Schematic illustration for the ill-posedness shown in Example 4.

a solution being a sum of two exponentials. But as f(t) changes from f1(t) to

f2(t), f(t) is never a sum of two exponentials except at the two ends. Figure 3.11

illustrates this procedure. On the figure, D is the data set, Y is the set of sums of two

exponentials, and X is the set of parameter sets. fβ on the figure represents the data

corresponding to β = 0.4 in the example. At this point, there are two different sums

of two exponentials that best approximate the data, and each of them corresponds

to a unique solution of the parameters. The continuous problem P4 suffers from the

ill-posedness in the same way.

When there is noise, the data is never in Y . Every noisy data may be best

approximated by many clean signals in Y , and each of them corresponds to a unique

solution in X. Thus ill-posedness happens in the similar way as that in Figure 3.11.

3.2.3 Ill-conditioning and the eigensystem of the Laplace

transform

In exactly solving f(t) = S[g], i.e., when f is only allowed to be in Y , the inverse

problem on the positive axis, but still ill-conditioned. That is, a small change in f

(in some norm) can still cause a big change in g, although the change in g can be
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Figure 3.11: Another illustration for Example 4. fβ represents the data when β = 0.4,
and f1 and f2 are as defined in Example 4.

.

made arbitrarily small by restricting the change in f . This can be best illustrated

by the eigensystem of Laplace transform.

By a change of variable λ = 1
T
, the integral equation (3.18) can be stated as a

Laplace transform:

f(t) =

∫ 1
Ta

1
Tb

g( 1
λ
)

λ2
e−λtdλ. (3.20)

It is shown in McWhirter and Pike [33] that the eigenfunctions of the Laplace

transform are given by

ψ+
ω (v) =

<(
√

Γ(1
2

+ iω)v−1/2−iω)√
π|Γ(1

2
+ iω)|

, (3.21)

ψ−ω (v) =
=(
√

Γ(1
2

+ iω)v−1/2−iω)√
π|Γ(1

2
+ iω)|

, (3.22)

where v ∈ (0,+∞) and ω ∈ R. Some of the eigenfunctions are plotted in Figure
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3.12. These functions have the symmetry relationship

ψ±ω = ±ψ±−ω. (3.23)

In terms of real quantities, the eigenfunctions have the expressions

ψ+
ω (v) =

1√
π

[cos(θ/2)v−1/2 cos(ω ln(v)) + sin(θ/2)v−1/2 sin(ω ln(v))], (3.24)

ψ−ω (v) =
1√
π

[sin(θ/2)v−1/2 cos(ω ln(v))− cos(θ/2)v−1/2 sin(ω ln(v))], (3.25)

where

θ = arctan

(<(Γ(1
2

+ iω)

=(Γ(1
2

+ iω)

)
. (3.26)

Note that ψ−ω (v) = 0.

The corresponding eigenvalues are given by

λ±ω = ±
√
|Γ(

1

2
+ iω)| = ±

√
π/ cosh(πω), (3.27)

which are plotted in Figure 3.13, so that

L [ψ±ω (v)](t) = λ±ωψ
±
ω (t). (3.28)

The eigenfunctions are singular at v = 0 but are integrable. They are orthogonal

so that ∫ +∞

0

ψ+
ω (v)ψ+

ω′(v)dv =
{δ(ω − ω′) ω 6= 0,

2δ(ω) ω = 0,
(3.29)

∫ +∞

0

ψ−ω (v)ψ−ω′(v)dv =
{δ(ω − ω′) ω 6= 0,

0 ω = 0,
(3.30)

∫ +∞

0

ψ+
ω (v)ψ−ω′(v)dv = 0, (3.31)
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Figure 3.12: Some eigenfunctions of the Laplace transform for different values of ω.

Figure 3.13: Eigenvalues decaying with |ω| increasing.
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where δ is the Dirac delta function.

The set of eigenfunctions is also complete so such that for any p(v) ∈ L1(0,+∞),

p(v) =

∫ +∞

−∞
c+ωψ

+
ω (v)dω +

∫ +∞

−∞
c−ωψ

−
ω (v)dω. (3.32)

Given p(v), the coefficients cω can be found by

c+ω =

∫ +∞

0

p(v)ψ+
ω (v)dv, for ω 6= 0, (3.33)

c+0 =
1

2

∫ +∞

0

p(v)ψ0(v)dv. (3.34)

c−ω =

∫ +∞

0

p(v)ψ−ω (v)dv, for ω 6= 0, (3.35)

c−0 = 0. (3.36)

And so inverting the Laplace transform has a unique solution, provided that the

integrals in calculating the coefficients converge.

Define

Ψω(v) = ψ+
ω (v) + iψ−ω (v) (3.37)

=

√
Γ(1

2
+ iω)v−1/2−iω√
π|Γ(1

2
+ iω)|

(3.38)

=
v−1/2eiθ/2−iω ln v

√
π

(3.39)

=
v−1/2eiθ/2e−iω ln v

√
π

, (3.40)

where θ is as defined in (3.26).

By a change of variable x = ln v, v1/2p(v) can be expanded in terms of e−iω ln v,
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that is,

v1/2p(v) =

∫ +∞

−∞
αωe

−iω ln vdω (3.41)

=

∫ +∞

−∞
βω
e−iω ln veiθ/2

√
π

dω (3.42)

p(v) =

∫ +∞

−∞
βωΨω(v)dω, (3.43)

where βω = e−iθ/2αω

√
π and θ is defined in (3.26).

Comparing (3.43) to the expression

p(v) =

∫ +∞

−∞
c+ω<(Ψω)dω +

∫ +∞

−∞
c−ω=(Ψω)dω, (3.44)

which is equivalent to (3.32), we have

βω = c+ω − ic−ω (3.45)

and then c±ω can be obtained from aω:

c+ω =
√
π<(e−iθ/2αω), (3.46)

c−ω = −
√
π=(e−iθ/2αω). (3.47)

If p(v) is defined on [vmin, vmax], then p(v)v1/2 can be expanded in the Fourier

series (??) with discretized ω

∆ω = ωn+1 − ωn =
2π

ln vmax − ln vmin

. (3.48)

And so ψ±ω with the same discretization form a complete basis for C[vmin, vmax]. The
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coefficients for the eigenfunctions after this discretization are

c̃±n = c±ωn
/∆ω. (3.49)

Now let us see how this eigensystem accounts for the ill-conditioning of inverting

the Laplace transform. The eigenvalues λω are almost zero when ω is greater than

2. If a function cannot be approximately represented by its small-ω components

only, its large-ω components cannot be ignored. However, in this case, the ampli-

tudes of the large-ω components cannot be accurately solved if these components

of the true distribution are not extremely large, because these components are too

much diminished by the integral operator. This also means that the correct small-ω

components plus an incorrect combination of the large-ω components may make a

very good solution. This is the cause of the ill-conditioning in inverting the Laplace

transform. Note that the ill-conditioning is intrinsic to the transform and thus not

only encountered in the eigenfunction decomposition.

Functions that can be approximated by using only the small-ω components can

be recovered by the eigenfunction method. In both [33] and our own numerical

experiments, the function λe−λ is recovered with a small error (compared to the

recovered portion) from its Laplace transform. Unfortunately, in our problem the

distributions are often thinner peaks. By “thin” we mean that the distribution has a

small variance. For example it can be a peak on T ∈ [50, 100], and then the domain

of the preimage function in the corresponding Laplace transform is in [0.01, 0.02].

The large-ω components for such a preimage function are nonnegligible.

In the extreme case of a delta function, the Fourier spectrum has constant mag-

nitude for all ω. From (3.45), the magnitudes of the coefficients in the expansion

using the eigenfunctions are also constant. The contribution of each component in

the Laplace transform decays as the coefficients in the expansion of p(v) times λ,

which is, after all, λω. By numerically integrating |λω| over ω, we can see that the

finite integral for |ω| ≤ 4.5 contributes to more than 99.9% of the whole infinite
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integral. If we employ the cutoff

|ω| ≤ ωmax = 4.5, (3.50)

the time domain signal would have little difference but the distribution would cer-

tainly be very different from a delta function.

3.3 Time-scaling property

The integral equation (3.18) has a nice time-scaling property. By a change of variable

T̃ = kT and t̃ = kt, and let f̃(t̃) = f(t̃/k), (3.18) becomes

f(t) = f̃(t̃) =

∫ kTb

kTa

g(T̃ /k)

k
e−t̃/T̃dT̃ , (3.51)

∫ kTb

kTa

g(T̃ /k)

k
dT̃ =

∫ Tb

Ta

g(T )dT.

Suppose we are looking for a solution for the data f̃(t̃) and T̃ ∈ [kTa, kTb], solving

the equivalent problem for this data with the scaled time t = t̃/k and T ∈ [Ta, Tb]

will give the solution for T̃ ∈ [kTa, kTb] with the original t axis. Then any property

of the problem for [Ta, Tb] can be adopted to the interval [kTa, kTb].

This implies that the resolution of the problem worsens logarithmically with T ,

which in fact can be seen from the eigenfunctions of the Laplace transform. In many

papers (for example [48]), the distribution is represented on a log(T ) scale instead

of T scale.

82



Chapter 4

Using Continuous Constituent

Functions for the Approximate

Inversion of Laplace Transforms

and Solving Similar Integral

Equations

In Section 3.1.4, we introduced the method that solves the integral equation (3.18)

by solving a linear system. The number of columns of the matrix is the number of

unknowns, i.e., the number of discrete Tk points. If we can reduce the number of

unknowns, then the solution should require less time. In addition, failures of the

algorithm would not easy to happen. Such a reduction may be achieved by assuming

a set of continuous constituent functions, and solving for their associated expansion

coefficients instead of the coefficients at all Tk points.

The reduction of the number of unknowns essentially relies on the ill-conditioning

of the integral transform. Introducing constituent functions is like grouping preimage
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functions of the integral transform that yield similar images.

The constituent functions can be sinc functions as a result of a series expansion

of the solution and the Sampling Theorem. This way of solving a Fredholm integral

equation of the first kind was shown in [34] for one specific kernel and the expansion

in the eigenfunctions of this kernel. In the next section, following their procedure,

we will formulate the general procedure of solving an arbitrary Fredholm integral

equation of the first kind by an Fourier-like expansion and by means of the Sampling

Theorem. And then we will develop a new method of using arbitrary constituent

functions which also results from the series expansion of the solution.

4.1 Reducing the number of unknowns by expan-

sion

4.1.1 General formulation of expanding the preimage func-

tion

Consider the Fredholm integral equation of the first kind

f(t) =

∫ +∞

0

p(v)K(v, t)dv, (4.1)

which we solve for p(v) from f(t).

We suppose that p(v) can be expanded in terms of a continuously-indexed family

of functions φω as follows,

p(v) =

∫ +∞

−∞
cωφωdω, (4.2)

so that

f(t) =

∫ +∞

−∞
cω

∫ +∞

0

φω(v)K(v, t)dvdω. (4.3)

For example this expansion can be the Fourier transform.
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If for this set of φω, there exists an ωmax such that the quantity∫ −ωmax

−∞
cω

∫ +∞

0

φω(v)K(v, t)dvdω +

∫ +∞

ωmax

cω

∫ +∞

0

φω(v)K(v, t)dvdω (4.4)

is negligible, then

p̃(v) =

∫ +ωmax

−ωmax

cωφω(v)dω (4.5)

is an approximate solution to (4.1).

Use of the Sampling Theorem assuming continuous spectrum

With the assumption of the cutoff in ω, let us assume that the φω are of the form

φω(v) = q(v)rωe
ih(v)ω, (4.6)

where rω is any function of ω, and h(v) is absolutely monotone, as is the case for the

set of eigenfunctions of the Laplace transform. Then, make the change of variable

x = h(v) and define

P (x) =
p̃(v)

h′(v)
(4.7)

(this latter change of variable is to make the integration of a sinc function easier

later), so that

P (x)dx = p̃(v)dv. (4.8)

From Eq. (4.5) it follows that

p̃(v)

q(v)
=
h′(h−1(x))P (x)

q(h−1(x))
=

∫ +ωmax

−ωmax

cωrωe
ixωdω. (4.9)

The integral on the right hand side may be viewed as the inverse Fourier transform

over a finite frequency interval, implying that the function p̃(v)/q(v) is “band lim-

ited”. By the Sampling Theorem [32], p̃(v)/q(v) can be recovered from its sampled
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points at vn where xn+1 − xn = h(vn+1)− h(vn) = π/ωmax on the positive half axis.

This, in turn, implies that P (x) can be reconstructed from these sampled values by

P (x) =
q(h−1(x))

h′(h−1(x))

∞∑
n=1

P (xn)

q(vn)
sinc(ωmax(x− xn)). (4.10)

We may now use (4.10) and (4.3) to produce the following approximation f̃(t) to

f(t) in Eq. (4.1):

f̃(t) =

∫ ∞

0

p̃(v)K(v, t)dv (4.11)

=

∫ h−1(∞)

h−1(0)

K(v(x), t)P (x)dx (by (4.8)) (4.12)

=
∞∑

n=1

p̃(vn)

q(vn)
h′(vn)

∫ ∞

−∞
K(v(x), t)

q(v(x))

h′(v(x))
sinc(ωmax(x− xn))dx (4.13)

=
∞∑

n=1

P (xn)

∫ ∞

−∞
K(v, t)

q(v(x))h′(v(xn))

q(v(xn))h′(v(x))
sinc(ωmax(x− xn))dx. (4.14)

Now define

Wn(t) =

∫ ∞

0

K(v, t)
q(v(x))h′(v(xn))

q(v(xn))h′(v(x))
sinc(ωmax(x− xn))dx. (4.15)

Since

lim
ωmax→∞

sinc(ωmax(x− xn)) =
π

ωmax

δ(xn), (4.16)

it follows that

lim
ωmax→∞

Wn(t) =
π

ωmax

K(xn, t). (4.17)

Therefore, we can solve the integral equation (3.1) by minimizing

||f(t)− f̃(t)||2 = ||f(t)−
N∑

n=1

P (xn)Wn(t)||2. (4.18)
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With noise n(t) and baseline offset C, the minimizer is

||f(t)− f̃(t)||2 = ||f(t)−
N∑

n=1

P (xn)Wn(t)− C||2. (4.19)

N is chosen so that the function is sampled on a suitably large interval. Minimizing

(4.19) is accomplished by solving an N by N linear system after differentiating the

minimizer with respect to P (xn) and setting the derivatives equal to zero, as done

in (3.12)-(3.15). And then P (x) is found using (4.10) and p̃(v) is found using (4.7).

Discrete spectrum

If the ω index is discretized, and a suitable cutoff value still exists, then a solution

can be found by minimizing the residual

||f(t)−
nmax∑

n=−nmax

cωn

∫ +∞

0

φωn(v)K(v, t)dv − C||2. (4.20)

Recall that a finite interval can be spanned by Fourier series with discrete ω

values. If φω is of form (4.6), then discrete ω implies that the solutions are defined on

finite intervals. The smaller the interval of v, the larger is the minimum ∆ω required.

However for the inverse problem, if we know that the solution is supported on a

small interval, we cannot just discretize ω over this interval for the following reason.

Although the expansion with continuous spectrum sums to the solution exactly,

which is zero outside a small interval, the expansion with the discrete spectrum may

not sum to zero outside the assumed interval. Therefore, the transformed expansion

with discrete spectrum by infinite integral is not the same as the transformed solution,

who is zero outside a small interval.

If, however, the integral in Eq. (3.1) is over a finite interval, and the cutoff
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frequency is found according to the error∫ −ωmax

−∞
cω

∫ vmax

vmin

φω(v)K(v, t)dvdω +

∫ +∞

ωmax

cω

∫ vmax

vmin

φω(v)K(v, t)dvdω, (4.21)

which assumes the small interval, then we could discretize ω according to the small

interval as well.

But to find a suitable cutoff using a finite integral in (3.1) may not be as easy as to

find this cutoff value using the infinite integral. So we do not find the frequency cutoff

value according to the finite integral. If (4.21) is almost the same as (4.4) (which does

the infinite integrals), then the discretization of ω according to [vmin, vmax] the ωmax

assuming the infinite integral are both valid. For example, for the eigenfunctions of

the Laplace transform, following the approach in [?], if vmin = 10−6 and vmax = 100,∫ vmin

0

e−vtψ±ω (v)dv ≤ 1√
π

∫ vmin

0

v−1/2dv ∼ vmin
1/2 = 10−3, (4.22)

In our experimental data, the spacing of t points is about 0.2, and the first point

(t = 0) can be ignored when the fitting error at the first point is much greater than

the rest. With the inequality e−0.2v < v−3 for v > 100, we have∫ ∞

vmax

e−vtψ±ω (v)dv ≤ 1√
π

∫ ∞

vmax

v−7/2dv ∼ vmax
−5/2 = 10−5. (4.23)

Then we can say that when p(v) is expanded in the eigenfunctions which are set to

be zero outside [vmin, vmax], the contributions from each component still decay as

before, and the cutoff error (4.21) is almost the same with (4.4). Therefore, ω can

be discretized as follows

∆ω =
2π

ln 100− ln 10−6
≈ 0.34, (4.24)

and the ωmax that we found before discretizing the spectrum is still valid.

Theoretically, the solution can then be found by solving the coefficients in (4.20)
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directly. But when we really want a solution localized on a small solution for the

separation of relaxation times problem, this method will not work, because the p(v) is

assumed to be on [10−6, 100], and the solution can be much wider than the physically

allowed interval of v. We would like to find solutions on intervals smaller than

[10−6, 100] if possible.

Finding solutions using arbitrary constituent functions

Now assume a Fourier-like series φn in the form (4.6). Also assume that a true

distribution p(v) and a set of arbitrary nonzero integrable functions {ηi(v)}N
i=1 are

all feasible for the frequency cutoff at ωmax. Finally, let [vmin, vmax] be a sufficiently

large interval [vmin, vmax], so that the ωmax is still valid after discretization of ω.

Then

∆ω =
2π

h(vmax)− h(vmin)
, (4.25)

and the number of functions that we need for the expansions, denoted by N , can be

found accordingly. By the frequency property of p(v) and ηi,

p̃(v) =
N∑

n=1

cnφn(v) (4.26)

and

η̃i(v) =
N∑

n=1

binφn(v). (4.27)

Let

q(v) =
N∑

i=1

aiηi(v) (4.28)

=
N∑

n=1

N∑
i=1

aibinφn(v), (4.29)
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then
∫ vmax

vmin
p(v)K(v, t)dv ≈

∫ vmax

vmin
q(v)K(v, t)dv if

N∑
n,i=1

aibinφn(v) =
N∑

n=1

cnφn(v), (4.30)

which is obviously true when
N∑

i=1

aibin = cn (4.31)

for every n. Let Q be an N by N matrix such that

Qni = bin, (4.32)

then ~a is uniquely determined from ~c by

~a = Q−1~c, (4.33)

provided that Q−1 exists.

The existence of Q−1 generally requires that the ~bi vectors are linearly indepen-

dent. With the φn(v) linearly independent, it means that η̃i(v) are linearly indepen-

dent, or the integral transforms of η̃i(v) are linearly independent, which is likely to

be satisfied when ηi(v) are linearly independent.

Then we can conclude that when we have a suitableN for the frequency cutoff and

discretization, we can assume N arbitrary linearly independent constituent functions

that are feasible to this frequency cutoff and discretization on our assumed interval,

and there is very likely to exist a linearly combination of these functions that is an

approximate solution to the integral equation.

The solution is found by minimizing

||f(t)−
N∑

n=1

cn

∫ vmax

vmin

ηn(v)K(v, t)dv − C||2, (4.34)
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where C is a baseline offset, and will result in solving an N by N linear system as

done in (3.12)-(3.15).

The use of arbitrary constituent functions can also be formulated by expanding

the kernel. For the same integral equation (4.1), if the kernel can be expanded as

K(v, t) =
+∞∑
n=1

rn(v)φn(t), (4.35)

then

f(t) =
+∞∑
n=1

φn(t)

∫ +∞

0

g(v)cn(v)dv. (4.36)

If there exists an N such that for any p(v), the error in the cutoff in n, which is

+∞∑
n=N+1

φn(t)

∫ +∞

0

p(v)rn(v)dv, (4.37)

is negligible, then q(v) is an approximate solution to (4.1), if

N∑
n=1

φn(t)

∫ +∞

0

rn(v)p(v)dv =
N∑

n=1

φn(t)

∫ +∞

0

rn(v)q(v)dv. (4.38)

This is obviously true if∫ +∞

0

rn(v)p(v)dv =

∫ +∞

0

rn(v)q(v)dv (4.39)

for all n = 1, 2..N . Let

p̃(v) =
N∑

n=1

cnηn(v), (4.40)

an =

∫ +∞

0

rn(v)p(v)dv, (4.41)
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and Q be an N by N matrix with

Qij =

∫ +∞

0

ri(v)ηj(v)dv. (4.42)

Then cn in (4.40) is uniquely determined from an in (4.41) by

~c = Q−1~a (4.43)

provided that Q−1 exists. The existence of Q−1 generally requires that ηn(v)’s are

linearly independent and that none of them are orthogonal to any one of the rn(v).

As an example, the kernel can be expanded in its Taylor series about some v0,

and then φn(t) are e−v0t multiplied by polynomials of t. Compared to the formulation

of expanding the preimage function, expanding the kernel does not require that p(v)

satisfies the frequency cutoff. But to find N from (4.37) without expanding p(v)

will need to take φn(v) out of the integral in (4.37) by relaxing it to its maximum

absolute value on [vmin, vamx]. This will result in a much larger N than required for

an expansion of p(v).

4.1.2 Inverting the Laplace transform by exponential sam-

pling

We now invert the Laplace transform from discrete data by expanding the preimage

function and using sampling theorem based on the formulations in Section 4.2.1.

The minimizer will be

||f(t)−
N∑

n=1

P (xn)Wn(t)||2, (4.44)

where

P (x) = exp̃(ex) = vp̃(v) (4.45)
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and

Wn(t) =

∫ ∞

0

e−exte(x−xn)/2sinc(ωmax(x− xn))dx, (4.46)

which approaches π/ωmaxe
−exn t as ωmax → ∞. So if ωmax is large, we can instead

solve for the optimal vnp̃ in

||f(t)−
N∑

n=1

π/ωmaxvnp̃(vn)e−vnt||2, (4.47)

and p̃(v) will be a sum of N delta functions. With use of Wn, p̃(v) is recovered by

p̃(v) = v−1/2

N∑
n=1

v1/2
n p̃(vn)sinc(ωmax(ln v − ln vn)). (4.48)

The solution is the optimal solution assuming the cutoff of frequency and interval

for v.

In our practical problem of separation of relaxation times, the interval of v is

extremely small, i.e., [0.01, 0.1]. If ωmax = 2π, we assume that the re-constructed

solution will still be zero outside this interval, so that N = 6 ≈ 2(ln 0.1− ln 0.01)+1.

For the relaxation times problem, g(T ) = p(1/T )/T 2, and so g can be recon-

structed directly by

g(T ) = T−5/2

N∑
n=1

v−1/2
n P (xn)sinc(ωmax(− lnT − ln vn)). (4.49)

Although the change of variable is not linear, g can still be recovered on equipar-

titioned T values.

MATLAB algorithm 2

function [g,C,res]=gsampling(x,xx,t,T,f);
% the sampling method
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% x is as defined in Section 4.1.2 and xx is the sampling points of x
% t is the time axis
% T is the array of relaxation time points
% f is the signal
% g is the reconstructed solution on T
% C is the baseline offset
% res is the residal.
% omega cutoff is 2pi.
n=length(x);
W=zeros(length(t),n);
v=exp(x);
for i=1:n;

W(:,i)=transpose(laptr((xx),sinc(2*(xx-x(i))).*exp(1/2*(xx-x(i))),t));
end;
[co,C,res]=lsqsum(W,f);
% lsqsum is the function in Algorithm 1 in Section 3.1.6
g=T*0;
for i=1:n;

g=g+co(i)/power(v(i),0.5).*sinc(2*(-log(T)-log(v(i))));
end;
g=g.*power(T,-2.5);

function y=laptr(x,p,t);
% finding the laplace transform of p by simpson’s rule
% x is the axis as defined in Section 4.1.2
% t is the time axis
y=t*0;
dx=x(2)-x(1);
odd=(3:2:length(x)-1);
even=(2:2:length(x)-1);
for i=1:length(t);

es=p.*exp(-exp(x)*t(i)).*exp(x);
y(i)=(sum(es(even))*4+sum(es(odd))*2+es(1)+es(length(x)))*dx/3;

end;
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Example 5. Using the sampling method to find an arbitrary distribution

of relaxation times

Consider the following distribution of T used in Example 1 of Section 3.1.4,

g(T ) = A(e−(T−30)2/100 + e−(T−50)2/100 + e−(T−80)2/100)(452 − (T − 55)2), (4.50)

for T ∈ [10, 100] (ms) and A is a scaling factor so that S[g](0) = 10000. In addition,

we add a white Gaussian noise n(t) generated by Matlab with standard deviation

25 and a baseline offset C = −2000. We then construct the data according to the

formula f(t) = S[g] + n(t) + C for t = 0, 0.2, 0.4...400 (ms).

We use ωmax = 2π, 4π and x ∈ [−4.6254,−2.1254] where x is equipartitioned

with spacing 0.0005. And then v ∈ [−0.0098, 0.1069] and T ∈ [8.38, 102.04]. When

ωmax = 2π, there are 6 sampled points and xn+1 − xn = 0.5. When ωmax = 4π, there

are 11 sampled points. We find P (xn) from (4.44) and reconstruct g from (4.49).

Figure 4.1 shows the true g and the two solutions using the two ωmax. Figure 4.2

plots the residuals between the fitted data and the clean data S[g] + C.

The data points are very well fitted despite the large noise component, however

the solutions oscillate and assume negative values which is physically inadmissable.

When ωmax is large, the oscillation is too severe.

Example 6. Use of sampling method when the true solution is composed

of a few delta functions

Consider the distribution

g(T ) = 3000δ(T − 20) + 3000δ(T − 50) + 3000δ(T − 90), (4.51)

for T ∈ [10, 100] (ms). Here, n(t) is a Gaussian white noise with standard deviation

25 and C = −2000. The data is then assumed to be given by f(t) = S[g] + n(t) +

C. The solution with ωmax = 2π and the true distribution are plotted in Figure

4.3. For this example, we use the interval x ∈ [−4.6254,−2.6254] instead of x ∈
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Figure 4.1: Solution by the sampling method. The left figure plots the true g (solid
line) and the solution with ωmax = 2π (dashed line). The right figure plots the
solution with ωmax = 4π.

Figure 4.2: The fitting residuals with ωmax = 2π and ωmax = 4π.
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Figure 4.3: Solution found by the sampling method (line) when the true distribution
is composed of three delta functions (bars). The bars are scaled by being divided by
10.

[−4.6254,−2.1254] as in the last example. When we use the latter interval, the

sampled value at −2.1254 has a large negative value. As a result, we simply dropped

that point, since the remained interval is still large enough to support the true g(T ).

It is seen in the figure that the solution given by the sampling method has a

peak at 20, but the latter two delta functions are represented by one wide peak of

low magnitude. This is understandable since the resolution of the sampling method

decreases logarithmically and the resolving capacity on [10, 40] is the same with that

on [30, 120].
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4.1.3 Inverting the Laplace transform using arbitrary con-

stituent functions

Now we apply the method of arbitrary constituent functions in Section 4.1.1 to invert

the Laplace transform. All expansions are performed in terms of the eigenfunctions

of the Laplace transform.

We use the discretization (4.24) and the frequency cutoff (3.50) so that ∆ω = 0.34

and ωmax = 4.5. Then N = 14.

This method is very flexible not only because that the constituent functions

are arbitrary, but also because that it is not affected by change of variables. If

N constituent functions of v can invert the Laplace transform, then N constituent

functions of T can solve the relaxation time distribution, and any variable can be

equipartitioned.

N = 14 is for any p(v) for v ∈ [10−6, 100]. Even if for our problem v ∈ [0.01, 0.1],

theoretically we still need this many constituent functions. However, this number is

an upper bound. It does not mean that a smaller N will not give a good solution.

In MATLAB, the NNLS scheme does not have regularization options. We will

use an approximation for regularizing the first derivative: extend the matrix B in

3.16 to B̃ such that

B̃ =

(
B

kI

)
, (4.52)

where I is the N by N identity matrix and k is a weighting constant, and then

concatenate N zeros to the f vector. In this way the minimizer becomes

||f(t)−
N∑

n=1

cnzn(t)||2 + k||~c||2. (4.53)

In fact the way to extend B can be made to realize the ordinary definition of regu-

larizing the first derivative, which is to replace the c2n term by a (cn − cn+1)
2 term
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for every n in the minimizer, by adding a “−1” at positions (n, n+1) in the identity

matrix in (4.52). But in our experiments in MATLAB, LSQNONNEG gives SVD

error for this extension. So we will use the above approximation.

MATLAB algorithm 3

function [co,C,res]=lsqconsti(funcs,T,t,f);
% solving the coefficients of constituent functions
% for relaxation time distribution
% funcs contains the constituent functions. The number of rows
% of funcs is the number of constituent functions. And the number
% of columns of funcs is the number of T points
% T is the relaxation time axis
% f is the signal f(t)
% co is the vector of the coefficients of the constituent functions
% C is the baseline offset
% res is the residual
[M N]=size(funcs);
k=length(f);
yy=zeros(M,k);
for i=1:M;

for j=1:length(t);
yy(i,:)=yy(i,:)+funcs(i,:)*exp(-x/T(i));

end;
end;
[co,C,res]=lsqsum(yy,f);
% lsqsum is the function in Algorithm 1 in Section 3.1.6

Example 7. Constructing approximate solutions from arbitrary constituent

functions without regularization

Consider the same data set as in Example 5. We now attempt to solve for g(T ) in

Eq. (4.52) by the procedure in Eqs. (3.12)-(3.15). Three sets of constituent functions

will be considered for illustration.
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Figure 4.4: The three sets of constituent functions used in Example 7 as examples
of using arbitrary constituent functions.

(a) Five wide Gaussian functions:

φi(T ) = e−(T−10−15i)2/200, T = 10, 11, ...100, i = 1..5.

(b) Eight thinner Gaussian functions:

φi(T ) = e−(T−10−10i)2/50, T = 10..100, i = 1..8.

(c) Ten delta functions:

φi(T ) = δ(T + 10 + 8i), T = 10..100, i = 1..10.

These constituent functions are plotted in Figure 4.4. The solutions are plotted in

Figure 4.5 and the residuals are plotted in Figure 4.6. From the latter, we note

that the data points are well fitted but the solutions cannot be constrained to be non-

negative.
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Figure 4.5: Results of Example 7. The solid line is the true g(T ) as defined in (4.50),
the dotted line is the solution using the constituent functions set (a), the dashed line
is the solution using (b), and the bars are solved using (c). The results of the bars
were divided by 50 for the purpose of scaling.

Figure 4.6: The residuals, that is, f − S[g], for the three solved g(T ).
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Figure 4.7: The solution solved by 10 delta functions.
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Because the solutions cannot be constrained to be non-negative in this method,

it is not ideally suited to the determination of physical density functions. But it can

be used to detect baseline offsets and to denoise exponential decay data.

4.2 Modifying NNLS to solve the coefficients of

the constituent functions

In the last two subsections, we showed that by the sampling method and the use

of arbitrary constituent functions, the solutions cannot be constrained to be non-

negative. For the physical problem, this is not acceptable. Non-negative least squares

fitting (NNLS) gives non-negative vector solutions to the system (3.17). It can be

modified to accomodate the sampling method and the use of arbitrary constituent

functions, that is, to minimize

||f(t)−
N∑

n=1

cnzn(t)||2, (4.54)

where zn(t) = Wn(t) in the samping method, and zn(t) = S[ηn(T )] by use of arbitrary

ηn(T )’s.

The algorithm of using NNLS in these methods is simply to add the matlab

command used in Section 3.1.4, where f in this command is the signal subtracting

the baseline offset, after calling function “lsqsum” in MATLAB algorithms 1 and 2

in the previous sections which finds a baseline offset.

Example 8. Sampling together with NNLS

If the true distribution is non-negative, then its sampled points are also non-

negative. So it is not reasonable to obtain negative numbers when solving for sampled

values.

We use LSQNONNEG to solve for the sampled values in Example 5. Since NNLS
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Figure 4.8: The true distribution (solid line) and the solved distribution (dashed
line) by sampling together with NNLS, for the data set used in Example 5.

alone does not solve the baseline well, we first solve C by (3.12)-(3.15), subtract this

baseline from the data, and then invert the system. The previous sampled values and

the new sampled values are listed in Table 4.1. The new reconstructed solution is

plotted in Figure 4.8. Note that the new solution is still not non-negative. This is

because that the interpolation functions, i.e., the sinc functions, are not non-negative.

vn P (xn) without NNLS P (xn) with NNLS
0.0098 29073 27366
0.0162 57241 58382
0.0266 26292 25862
0.0439 42292 40827
0.0724 -1828.5 0
0.1194 10931 14320

Table 4.1: Lists of sampling points and the sampled values without and with using
NNLS.

Example 9. NNLS finding the coefficients of arbitrary constituent func-
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Figure 4.9: Use of arbitrary constituent functions together with NNLS. The solid line
is the true g(T ). The dotted line is the solution by using the first set of constituent
functions. The dashed line is from the second.

tions

Using the same data set and the first two sets of constituent functions in Example

8, we use LSQNONNEG in MATLAB to find a positive ~c for each set. We found

C first, as done in Example 8 and subtract it from the data before inversion. The

solutions are plotted in Figure 4.9. For all these plotted solutions, the magnitudes of

the fitting residuals are less than 0.001f(0).

The number of iterations required in these two problems are 5 and 9, respectively.

For the third set of constituent functions in Example 7, 39 steps are required to

produce a final result. However this result is unreasonable since it is not non-negative

which means that the algorithm fails (Figure 4.7). One might suspect that the failure

is due to an insuffcient number of delta functions (The next example will show that

this is not the real reason.) If we attempt to use more delta functions, the algorithm

still does not give non-negative solutions for 22 and 91 delta functions, requiring 76

and 283 steps.
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Figure 4.10: Use of a set of delta functions as constituent functions, together with
NNLS and regularization. The solid line is the true g(T ). The bars is the solution
for the third set of constituent functions in Example 5, divided by 10.

Example 10. Regularization for NNLS

1. Regularization increasing the chance of success of the algorithm

We use the same data set as in Example 7, and the third set of constituent

functions in Example 7. The regularization is done by (4.52) with k = 0.1, so that

B̃ is now a 2511 by 10 matrix.

The solution is plotted in Figure 4.10, and the residual is plotted in Figure 4.11.

The result shows that this set of constituent functions is able to produce a reason-

able solution. The number of iteration steps is 10. In the last example, this set of

constituent functions did not yield a non-negative solution. The fact that now the

algorithm is successful means that the previous failure was not due to the insuffi-

ciency of the number of delta functions, but rather to the way the iteration is carried

out. When the algorithm fails, the solutions are like the one given in Figure 3.2.

Regularization prevents such solutions from being given.

2. Effect of changing k
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Figure 4.11: The residual for the solution using the delta functions defined in Ex-
ample 7 as constituent functions by regularized NNLS.

k is the weight of regularization. For this example another set of constituent func-

tions is used, which are seventeen very thin Gaussian functions, so that the effect of

changing k is more clear:

φi(T ) = e−(T−10−5i)2/10, T = 10..100, i = 1..17.

Figure 4.12 and 4.13 show the solutions and corresponding residuals for k = 0.1, 0.001

and 0.0001. The numbers of iteration steps required are 18,19 and 14, respectively.

Besides saving computing time and increasing the chance of success of the al-

gorithm, another advantage of using constituent functions is that the spacing of T

points can be made arbitrarily small, since decreasing the spacing of T points while

leaving the number of constituent functions and t points unchanged will not increase

the time that iteration takes.
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Figure 4.12: The solid line is the true g(T ). The dashdotted line is for k = 0.1. The
dotted line is for k = 0.001. The dashed line is for k = 0.0001.

Figure 4.13: Residuals for k = 0.1, 0.001, 0.0001 sequentially.
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4.3 Conclusions from the numerical instability and

the reduction on number of unknowns

It has been shown in Examples 5-10 that solutions can be reasonable but very differ-

ent from the true solution. In the physical problem, the solution is meaningful only

if we can have the peak locations and the signal amplitudes belonging to each peak.

If this information is incorrect, the solution is meaningless. This gives us the first

conclusion:

Conclusion 1. Requirements on data

During data analysis we shall require that the center of the peaks for different

species are far apart relative to the width of the peaks.

If a discrete distribution model cannot make the residual look like a Gaussian

white noise, one possibility is that there are wide peaks, the other possibility is that

the assumption for the data analysis model is incorrect. For example there may be

systematic errors. The fact that there is an upper bound of the number of constituent

functions from which a solution can be constructed is sometimes an indicator of the

second possiblity being true.

Conclusion 2. Detection of systematic errors

For a suitable N , if using N constituent functions, the optimal solution will not

make the residual look like a Gaussian white noise, then we would say that there are

systematic errors.

If the use of a few constituent functions may produce a good Gaussian white

noise residual, then we should try to resolve the peaks by solving for the continuous

distribution.

Example 11. Detection of systematic errors for a set of experimental

data
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Figure 4.14: The residual using 20 constituent functions on [10,100].

In one of our experiments using the 500 MHz machine on a water sample (Data

Set 2 in Section 2.5), a single delta function model does not make the residual look

like a Gaussian white noise. We know that this species should have a relaxation time

within [10,100] ms. By assuming 20 linearly independent functions, which corre-

sponds to ωmax = 6.5 where∫ +∞

ωmax

|λω|dω ≈ 0.00004

∫ +∞

0

|λω|dω,

we solve for the optimal solution by (3.12)-(3.15), which is not necessarily positive.

The residual is plotted in Figure 4.14. The signal strength is about f(0) = 13000 and

|C| < 5. The residual has too much time correlation. So we conclude that there are

unknown systematic errors coming from the experimental environment.

Note that if the best residual obtained through this method is a “good Gaussian

white noise”, there is still no guarantee that there is a non-negative g(T ) for whom

the residual is a “good Gaussian white noise”.
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Chapter 5

Analyzing the Experimental Data

Now we apply the methods described in the previous section to real experimen-

tal data. For each set of data, we first employ the discrete data fitting algorithm

LSQCURVEFIT function in MATLAB. If the residual is not “good Gaussian white

noise”, i.e., if it appears to exhibit some time correlations, then the method in Sec-

tion 3.2.3 will be applied. If the best possible residual of this method is better than

the residual in the discrete fitting, either the ordinary NNLS or the modified NNLS

using constituent functions will be used to fit the data to a continuous distribution.

In general, for our samples, the ordinary nonnegative least squares (NNLS) method

described in Section 3.1.4 performs as well as the modified version by employing con-

stituent functions. The continuous distributions consist mostly of narrow peaks and

the ordinary NNLS algorithm does not consume too much time. As for the baselines

that are passed into the NNLS algorithm, we use either the value determined by

the iteration scheme assuming one or two components, or the value determined by

finding the best possible residual from the constituent functions method.

We finally mention that the ORIGIN [52] software package and the CracSpin

program [46] have been commonly employed by researchers in the NMR laboratory,

Department of Physics,University of Waterloo, to extract relaxation times. Recall

that ORIGIN also employs the iteration of parameters method but with a different
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implementation than that used in MATLAB, as mentioned in Section 3.1.3. CracSpin

uses a similar iteration scheme as that used in ORIGIN. In addition, a non-negative

least-squares technique developed by Whittall [49] is used by a number of researchers

in the medical physics area.

There are six data sets as were listed in Section 2.5. For these data sets, the best

discrete fitting results by MATLAB had approximately the same values with those

obtained by Origin.

1. Data Set 1: Water (paramagnetic copper sulphate is added to shorten

the T2 relaxation time of the sample from that of pure water).

The solution is entirely liquid, and therefore is assumed to be homogeneous.

Because of the equivalence of the two protons in the water molecule, we assume

only one component in the sum of exponentials. We ran LSQCURVEFIT

assuming one component with five randomly selected initial conditions. In all

five runs the relaxation time converges to 32.87 ms, and the amplitudes all

converge to 9293.8. The residual of the fit is plotted in Figure 5.1. Since

there are some quite noticeable correlations near the start of the signal, we

judge that this one component model does not fit the data set well. By the

method in Section 4.1.3, the best possible residual is obtained by assuming

20 Gaussian functions as constituent functions on [10, 100] ms. This residual,

plotted in Figure 5.2, has the appearance of “good Gaussian white noise”.

Unfortunately, this solution, which did not involve NNLS, is not non-negative

as seen in Figure 5.3. Therefore, we fitted the data again using the NNLS.

However, for this data set, none of the continuous fitting method gives a better

residual than the one-component iteration scheme does in terms of the L2 norm

and time correlation of the residual. After a few more experiments, we find

that by the iteration scheme assuming up to four components, the residual

cannot be made better unless negative amplitudes are allowed. Therefore, we

judge the one-component result, for which the residual is pictured in Figure
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Figure 5.1: One-component fitting residual of Data Set 1.

Figure 5.2: Best possible fitting residual of Data Set 1.

5.1, to be the best result. We also conclude that there are systematic errors in

this data.

2. Data Set 2: the same sample as in Data Set 1, but measured in a

500 MHz machine.

By using a different machine, we could test whether the relaxation time ob-

tained by using the previous machine was affected by systematic errors. Once

again, we ran the iteration scheme for five times with randomly selected initial

values. In all five runs the relaxation time converged to 36.18 ms. Although

this value is somewhat different from the 36.87 ms value obtained from the 30
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Figure 5.3: The solution for Data Set 1, solved by using 20 Gaussian constituent
functions without using NNLS.

MHz machine data – about 2 % discrepancy – it is considered by NMR ex-

perimentalists to be reasonably close. Such differences are usually attributed

to systematic errors and the presense of white noise. The residual is plotted

in Firgure 5.4. This residual has about the same magnitude as that plotted

in Figure 4.14 in Section 4.3, which is the best possible residual for this data,

so fitting this data set to a continuous distribution will not improve the result

much. As we can see, the two residuals for the Data Set 1 and 2 are very

different, but the fitting results are about the same. We conclude that the

systematic errors in these two data sets do not affect the fitting result.

3. Data Set 3: A sample consisting of a single species of porous glass

beads with pore diameter 273 Å, measured in the 30 MHz machine.

This sample was prepared to have only one species of porous material with

controlled pore diameter. So theoretically there should be only one component

in the sum of exponentials.
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Figure 5.4: One-component fitting residual of Data Set 2.

In all five runs of LSQCURVEFIT assuming one component with randomly

selected initial values, the relaxation time converged to 36.44 ms. Therefore

we conclude that this porous medium has a relaxation time of around 36.44

ms when saturated. The relaxation times of the samples may vary slightly in

each experiment because of slightly different levels of saturation.

The fitting residual for the best one-component fitting is plotted in Figure 5.5.

And the best residual tested by the method in Section 4.2.3 is plotted in Figure

5.6. The latter residual is much better in terms of L2 norm and time correlation

of the residual. So we shall fit this data set to a continuous distribution.

The continuous distribution obtained by NNLS using 20 Gaussian functions on

[10, 100] as constituent functions is plotted in Figure 5.7, and its fitting residual

is plotted in Figure 5.8.

In the solution shown in Figure 5.7, the mean value of the large peak is about

36.9, which is consistent with the one-component iteration result. There is a

very small peak over T ∈ [10, 20]. The total amplitude belonging to this peak
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Figure 5.5: Residual from fitting Data Set 3 by one component.

Figure 5.6: The best possible residual for Data Set 3.
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Figure 5.7: The continuous solution solved by NNLS using 20 constituent functions
for Data Set 3.

Figure 5.8: The fitting residual of the solution plotted in Figure 5.7.
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(the integral of the solution over this peak) is about 250. Because of the large

resolution of the problem when T is small, this small peak can have a significant

effect to the fitting residual, and is therefore not negligible numerically. This

small peak can be due to the water molecules that really have relaxation times

within [10, 20], for example, the water molecules in undesired small tunnels in

the glass bead. Or this peak can be due to systematic errors. From the analyses

of Data Set 1 and this data set, we see that the systematic errors for the same

machine may be quite different at different times. To verify which possibility

is true, the experiment should be repeated. However, since here it does not

affect the main fitting result, we did not proceed with such a verification.

Our fitting result differs from the result for a material with the same pore

diameter in [19]. But in [19], the data sets are fitted to stretched exponentials

as in (2.68). If our material were the same as what were used in [19], this sample

is about half-saturated, and should have a stretching parameter β = 0.9. But

after an attempt to fit our data to a stretched exponential, we found that

introducing a β < 1 only made the residual worse. And so our sample is

not the identical material as they used. In such a case, the parameters in

the two-site model for these materials are different, and so they could have

different relaxation times when saturated. But since we are only concerned

with the numerical schemes that solve the relaxation times assuming a sum of

exponentials, we will not explore any disagreements between our fitting results

and those of others.

4. Data Set 4: A single species of porous media with pore diameter 491

Å measured in the 30 MHz machine

In all five runs of LSQCURVEFIT assuming one component with randomly

selected intial conditions, the relaxation time converges to 63.81 ms. The

residual obtained from one-component fitting is plotted in Figure 5.9. And the

best possible residual is plotted in Figure 5.10. Again, the L2 norm and time

correlation of the residual from one-component fitting is worse than those of
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Figure 5.9: residual from fitting the data set for Data Set 4 by one component.

Figure 5.10: The best possible residual for Data Set 4.

the best possible residue, we shall fit this data set to a continuous distribution.

The solution obtained by NNLS using 20 Gaussian functions as constituent

functions is plotted in Figure 5.11, and the fitting residual for this solution is

plotted in Figure 5.12. This residual is a little better than that of the one-

component fitting, in terms of the L2 norm.

In the solution plotted in Figure 5.11, the mean value of the large peak is 63.

There is a small peak for T ∈ [90, 100]. Again we will ignore it but whether

or not it is the result of systematic errors might be verified by repeating the

experiment.
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Figure 5.11: Solution obtained by NNLS using 20 constituent functions for Data Set
4.

Figure 5.12: The fitting residual of the solution plotted in Figure 5.11.
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A1 T1 A2 T2 C norm of residual
15740.95 43.91 4794.16 76.69 -4540.49 1468.56
15031.67 43.34 5505.54 72.04 -4538.39 1477.82
14765.55 43.14 5771.57 71.18 -4537.71 1481.46
11215.29 40.29 9324.22 63.49 -4530.27 1537.09
10134.09 39.30 10410.11 61.94 -4528.82 1556.80

Table 5.1: Iteration results for Data Set 5.

5. Data Set 5: A mixture of the two species of porous glass beads that

were used for the last two data sets with proportion 6:5 in pore vol-

ume.

The numerical experiments performed on this data set are similar to those of

the previous samples, except that for LSQCURVEFIT we assumed two com-

ponents.

Table 5.1 contains the fitting results in five runs of the algorithm with randomly

selected initial conditions. The results are sorted in their L2 norms of residuals.

In Figure 5.13 the residual for the parameters in the first row of Table 5.1

is plotted. If we assume that the saturation level for the two kinds of pores

are about the same, which is very likely to be true as the two samples were

saturated together in the same beaker, then the proportion in the amplitudes

of the signal given by the two species should be about 6:5. In the best result

shown in the table, the proportion of the amplitudes is quite different from the

way in which the sample was prepared, and the relaxation times are much larger

than the results from the measurements of individual species. As a comparison,

the fourth row of the table is closer to what we could have predicted by the

previous measurements and the way this sample is prepared. However, its norm

of residual is much higher than that of the first result.

Figure 5.14 plots the best possible residual. Again we should fit this data set

to a continuous distribution. Figure 5.15 plots the solution obtained by NNLS

using 20 constituent functions. And its residual is plotted in Figure 5.16. This
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Figure 5.13: The residual from fitting Data Set 5 by assuming two components.

Figure 5.14: The best possible residual for Data Set 5.

solution is consistent with the iteration fitting result. The two peaks have

mean values of about 47 and 82. Its residual is a little better than that for the

two-component iteration fitting in terms of the L2 norm.

6. Data Set 6: A mixture of the two species with proportion 1:3 in pore volume.

The same numerical experiments as those for Data Set 5 were done. In Ta-

ble 5.2 are listed the fitting results of five runs with randomly selected initial

conditions, sorted in their L2 norm of residual. In Figure 5.17 is plotted the

residual for the result in the first row in the table. Figure 5.18 plots the best

possible residual solved by constituent functions. The best possible residual

seems like a “good Gaussian white noise”. We will fit this data set to a con-
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Figure 5.15: NNLS solution for Data Set 5 using 20 constituent functions.

Figure 5.16: The residual for the solution plotted in Figure 5.15.

A1 T1 A2 T2 C norm of residual
3809.12 44.572 6466.71 76.61 -3107.9 613.95
3473.32 43.33 6804.08 75.554 -3106.8 614.61
3472.04 43.329 6805.30 75.55 -3106.8 614.61
4787.98 47.64 5484.38 79.988 -3110.9 617.54
2576.4 39.306 7705.1 72.876 -3103.5 640.64

Table 5.2: Iteration results for Data Set 6.
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tinuous distribution. The solution by NNLS using 20 constituent functions on

[10, 100] is plotted in Figure 5.19, and the corresponding residual is plotted in

Figure 5.20. This solution is quite different from a two-component exponential

decay. Consider the problem found in the two-component fitting for this data

set, and the numerical instability of solving the continuous problem, we cannot

obtain much information from this continuous fitting result.

The situation here is similar to the results for Data Set 5. The last row is cloest

to what would have been predicted from the experimental preparation, yet

yields the highest residual error. The “best” result, i.e., the one with the lowest

residual norm, has an incorrect proportion in amplitudes and the relaxation

times are larger than what they are for individual species. There are two

possibilities for this phenomenon: (1) The fourth row represents approximately

the true parameters. The fact that the first row yields the best fitting is due

to systematic errors, or is because that the samples either the single species

samples or the mixtures were prepared improperly. (2) The mixture of two

species of porous media cannot simply be considered as a union of the two

independent components. There may be other unknown physical processes

at play. First of all, we believe that these samples are mixed well at the

microscopic level. As such there are no significant one-species regions in the

mixture. There can be unknown physical processes as a result of the species

being mixed. For example, it has been suggested [35] that “fast exchange” of

water molecules between small pores and large pores may make the relaxation

times different from what they are for individual species. However, it was also

suggested in [35] that although the fast-exchanges can explain the relaxation

time distribution of the mixtures, these fast-exchanges are unlikely to occur, as

we believe that the surfaces of beads are totally dry before the measurements.

The effect of mixing can be tested by performing an experiment with the two

species separated in the tube. Indeed, we performed such an experiment in

which the two species were separated by a piece of parafilm in the tube. The
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Figure 5.17: residual from fitting the data set for Data Set 6 by assuming two
components.

Figure 5.18: The best possible residual for Data Set 6.

proportion of the two amplitudes was very close to what it could be predicted

from the sample preparation. Unfortunately, this experiment was not well

controlled, in that the sample was not fully saturated and there is a much

greater off-resonance occuring than what was analyzed in Section 2.6. As a

result, we shall not present the data or the results of the experiment.

It is unlikely that the unreasonable fitting results are due to numerical insta-

bility only, since when we tried to fit the addition of Data Set 3 and Data Set

4, the fitted relaxation times by a two-component iteration are still around 36

ms and 63 ms.
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Figure 5.19: The solution solved by NNLS using 20 constituent functions for Data
Set 6.

Figure 5.20: The residual for the solution plotted in Figure 5.19.
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Summary of results

In summary, our water solution sample has the spin-spin relaxation time T2 of about

36 ms. This result agrees with previous measurements by Jianzhen Liang from the

Department of Physics, University of Waterloo. Systematic errors do not seem to

produce large deviations of the fitted relaxation times.

The glass gel with smaller pores has a T2 value of about 36 ms, and the other

species with larger pores has a T2 value of about 63 ms. The pore inhomogeneity

in terms of the variance of the pore diameter is comparable for these two kinds of

glass gel. By fitting the single-species data sets to continuous distributions, the mean

of the relaxation times we obtain are about the same as what we obtain from the

one-component fitting.

When the two species are mixed, the fitting results are undesirable, which may

be due to fast-exchange phenomenon and/or systematic errors. It may also be pos-

sible that some of the samples were not prepared properly, for examples, some were

possibly not fully saturated, or not fully try outside the beads. The reliablility of

the data sets can be tested by repeating the sample preparation procedure and the

measurements. Based on what we have concluded from the experiments on the water

solution sample, it is very likely that the systematic errors do not change the fitting

result very much. Also by virtually mixing the two species, through the addition of

Data Set 1 and Data Set 2 and fitting the curve assuming two components, we found

that the undesirable results are not due to numerical instability or systematic errors

that are no larger than those in our one-species experiments. Therefore we conclude

that there is a large possibility that unknown physical processes occur during mixing.

This, of course, should be tested by more experiments.
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Chapter 6

Conclusions and Discussions

This thesis presents an exploration of CPMG data analysis in the study of NMR

applied to porous media. Here we summarize the key points made in the previous

chapters. For the numerical analysis of the inverse problem involving the CPMG

data, we have made the following assumptions:

1. The relaxation time for a porous material obeys the two-site model.

2. There is no slow diffusion (as opposed to fast-exchanges) in a saturated porous

material.

3. The stretched exponential model is not considered.

4. The noise component in the signal is additive Gaussian white noise. The L2

norm is used for comparing the “goodness” of a Gaussian white noise with the

same variance.

5. The off-resonance of the 30 MHz machine is less than 10 kHz, and the pulse

length error is less than 4%.

With the above assumptions, we have the following results for CPMG data anal-

ysis:
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1. Off-resonance and pulse length errors within above assumed values do not affect

the fitting results to a noticable degree. The existence of off-resonance or

off-resonance together with pulse length error can be detected by a Fourier

transform of the fitting residual as this residual will have a beat pattern.

2. Iteration schemes are the best for solving the discrete problem. They work well

with noise. The results found by this method are very accurate. With presence

of systematic errors, by looking at non-optimal solutions we could find more

possibilities for the parameters. If the number of components is not given, it

can be found by checking when an increase of the number of components does

not improve on the fitting residual.

3. Non-negative least squares (NNLS), which involves the solution of a large ma-

trix system, is the best method for the continuous problem, because it yields

non-negative solutions which are particularly suitable for our physical problem.

In addition, NNLS can be accompanied with regularization methods in order

to guarantee that the solution is meaningful to some extent. There are disad-

vantages, however. When a suitable level of regularization is used, NNLS can

takes a long time (one minute for 100 relaxation time points and more than six

minutes for 200 relaxation time points). NNLS is not suitable for the discrete

problem, because that the number of the components cannot be constrained

and the true components can be split or merged.

4. Regularization can constrain on the smoothness of an NNLS solution. And

regularization sometimes increases the chance of success of the NNLS algorithm

(Example 10).

5. The ill-posedness of the separation of exponentials is due to the fact that the

data may not always be expressible in the form to which it is fitted, because

of the presense of noise. The ill-conditioning of the problem can be illustrated

very well by the eigensystem of the Laplace transform. The eigenfunctions

of the Laplace transform are Fourier-like, and the eigenvalues are very small
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when the frequency is large, if we say that the transform is taken from time

domain to frequency domain. Both the ill-posedness and the ill-conditioning

are sources of numerical instability of the problem.

6. Numerical instability of the separation of exponentials problem makes it dif-

ficult to guarantee the accuracy of the solution in the presence of noise. One

example showed that in the presense of Gaussian white noise, the “best” so-

lution, i.e., the one that minimizes the L2 norm of the residual may differ

significantly in some components from the true solution. In fact, we have not

found a way to, or a class of situations under which, the accuracy of the solution

can be guaranteed.

7. The resolution of the problem of separation of exponentials worsens logarith-

mically with increasing T .

8. For any Fredholm integral equation of the first kind, the numerical solution can

be found by solving a (possibly very big) linear system resulted from using a

numerical quadrature rule for the integral (such as NNLS does). If the solution

can be expressed as a sum of several constituent functions, then the coefficients

for these constituent functions become the unknowns in the problem. In this

way the number of unknowns is much smaller than that in the ordinary NNLS

algorithm.

9. For the separation of exponentials problem, an expansion in terms of the eigen-

functions of the Laplace transform gives a small cut-off in the frequency. When

the frequency is discretized and the integral in the integral equation is infinite,

we need to assume a large interval for the variable in the time domain so that

the differences between transforming the eigenfunctions on this interval and

transforming the eigenfunctions on the whole positive half axis are negligible.

10. Inverting the Laplace transform by assuming a sum of the eigenfunctions for

our physical problem is not practical, because the domain of the solution cannot

130



be assumed small (see the last result), which is not consistent with our physical

problem. Since the eigenfunctions are Fourier-like, the solution can be obtained

by means of the Sampling Theorem, for which the constituent functions are

sinc functions, and the solution can be sampled on a small interval. It is

not possible to contrain the sampling method for the purpose of yielding non-

negative solutions, since the sinc functions are not non-negative.

11. By an expansion of the solution in the eigenfunctions of the Laplace transform,

it was also shown that the constituent functions can be arbitrary. By assuming

positive arbitrary constituent functions, NNLS can be used to find non-negative

coefficients thereby yielding a non-negative solution. With the reduced number

of unknowns, the NNLS algorithm is faster and is not likely to fail. NNLS using

constituent functions can also be accompanied by regularization.

12. By using constituent functions, the spacing of T in the solution can be made

arbitrarily small. Without NNLS, the solution by using constituent functions

can be found by programming which requires an inversion of a small matrix

(of size up to 20 in our examples) and no other special routines. This can

be used to find the baseline offset and perform denoising on the data when

solving an Fredholm integral equation of the first kind. When sufficiently many

constituent functions are used, if the residual cannot be made a Gaussian white

noise, then we conclude that systematic errors are present.

Besides the numerical results, we have analyzed six real experimental data sets.

We found in our experiments that there usually are systematic errors, and that these

errors are not the same all the time. However, we have also found that these system-

atic errors may not affect the fitting results very much. An interesting phenomenon

was observed in the case of the mixture data sets. The two fitted relaxation times

for these data sets are greater than those fitted from single-species data sets, and

the amplitudes of the relaxation time distributions are biased to the small relaxation

time component.
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6.1 Future possibilities

Although we have performed a good deal of data analysis, there are still many topics

in this context that can be explored further. Physically, if the pores in the material

are not clean, i.e., there are so called paramagnetic impurities, then the data may

need to be fitted to a stretched exponential (2.68). It would be worth seeing what

happens if we fit a stretched exponential curve to a non-stretched exponential decay,

so that the paramagnetic impurities can be detected without fitting the data to

stretched exponentials. And if there are many species, or there is a distribution

of the relaxation values, then suitable algorithms may be developed for stretched

exponentials. In fact by the change of variable T = 1/λ, the integral equation

corresponding to the stretched exponentials still has a symmetric kernel, and the

algorithms can be similar to those described in this thesis.

More physical experiments for mixtures should be performed in order to test

whether or not there are fast-exchanges of water molecules between pores or whether

there are other microscopic physical phenomena that could give a dominating com-

ponent in between the two relaxation times for the two species. If by separating the

two species in the tube, for example by a piece of parafilm, for the mixture sam-

ples, the fitting results are still inconsistent with how the samples were prepared and

what are the fitting results for the single-species samples, then the unknown physical

processes are not the cause of our fitting results, and the inconsistency between the

single-species data sets and the mixture data sets should be due to noises, systematic

errors, or problems during sample prepatation.

We have assumed that off-resonance and pulse length errors smaller than the cer-

tain values. However, our experiment involving the two separate and unmixed porous

media, which was designed to check for the existence of fast-exchanges, yield greater

off-resonance and/or pulse length error than assumed. As a result, we concluded

that the data set was too difficult to analyze. Some more numerical experiments

could have been done to see what are the effects to the fitted values if these errors
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are larger.

And numerically, the method of detecting systematic errors we have developed is

limited. Although we have a method to see what could be the best residual for a data

curve, comparably good residuals may not be achievable by a non-negative distribu-

tion. Therefore with continuous fitting, if the residual resulting from a non-negative

distribution is worse than the best possible residual obtained by using arbitrary

constituent functions without NNLS, we still do not know whether there can be a

better non-negative solution. We can only say that systematic errors exist if the best

possible residual is not a “good” Gaussian white noise.

Finally, we have simply employed the L2 norm to compare the residuals. By

further testing time correlations and the probability distributions of the residuals,

we may have a more robust criterion on the “goodness” of the residuals. Also the

noise component in real experiments could be coloured noise. It is possible to assume

other noise models for data anlyses.
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Appendix A

Representative Values for

Variables

γ gyromagnetic ratio of a water molecule 2.68× 108rad/s/T(esla)

Brf pulse field strength 4 mT

B0 static field strength 1 T

ω0 Larmor frequency γB0 2π30 MHz

b γBz,off-resonance 1 kHz

M0 equilibrium longitudinal magnetization, for water 1.7× 10−9 T/cm3

T1 longitudinal relaxation time, for bulk water 3.6 s

in fully saturated pores with diameter 237 Å[19] 2 s

in fully saturated pores with diameter 491 Å 2 s

T2 transverse relaxation time, for bulk water 3.6 s

in fully saturated pores with diameter 237 Å 80 ms

in pores with diameter 491 Å 130 ms

tπ π pulse length 3× 10−6 s

tπ/2 π/2 pulse length 1.5× 10−6 s

tE dephasing length 0.1 ms

D diffusion constant of bulk water 2.1× 10−5 cm2/s
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