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Abstract

Internal waves in the deep ocean play a deciding role in processes such as climate change

and nutrient cycles. Winds and tidal currents over topography feed energy into internal waves

at large scales; through nonlinear interaction the energy then cascades to turbulence scales and

contributes to deep-ocean mixing. The connection of internal waves to deep-ocean mixing is

what makes them important. In this thesis we address the problem of energy transfer in inter-

nal waves by modelling a two-dimensional flow over idealized topography and analysing the

spectra of the generated wave fields. The main tool used is the nonparametric spectral anal-

ysis, some aspects of which are reviewed in one of the chapters. The numerical experiments

were performed for a number of latitudes, topographies and background flows. The wave field

generated by tide-topography interaction includes both progressive and trapped internal waves.

The wave spectrum was found to exhibit a self-similar structure with prominent peaks at tidal

harmonics and interharmonics, whose magnitudes decay exponentially as a function of the fre-

quency. Subharmonics are generated by an instability of tidal beams, which is particularly strong

for near-critical latitudes, where the Coriolis frequency is half the tidal frequency; other inter-

harmonics are produced through resonant and non-resonant triad wave-wave interaction. As

the triad interaction can be either resonant or non-resonant, some harmonics and interharmonics

correspond to progressive waves, if the frequency is within the free internal wave range, while

the others are trapped waves if the frequency is outside the range. Spatial scales of harmonics

and interharmonics were investigated. In particular, it was shown that interharmonics typically

have smaller vertical scales. Through the use of spatial analysis it was shown that there is a

discrete number of wave-wave interactions responsible for the total energy transfer. The results

of the thesis provide insight into the complex nature of internal wave interactions and may be

helpful for interpreting recent observational results.
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Chapter 1

Introduction

1.1 History

An internal wave is a periodic oscillation in a density stratified fluid that arises due to restoring

buoyancy forces. The first recorded observation of internal waves, according to Lamb (1932),

was by Benjamin Franklin. In a letter dated December 1, 1762, he describes oscillations of the

interface between oil and water in a sea lantern:

. . . the surface of the oil was perfectly tranquil, and duly preserved its position

with regard to the brim of the glass, the water under the oil was in great commotion,

rising and falling in irregular waves. . .

The earliest theoretical study of internal waves took place almost a century later. Stokes (1847)

developed the first theory of waves occurring at an interface of a light fluid overlaying a heavy

fluid. Stokes’ theory was extended to waves in a continuously stratified fluid by Rayleigh (1883).

Present everywhere in the ocean and atmosphere, internal waves are not readily visible.

However, there are some manifestations of the phenomenon in our everyday life: for example,

the rippled cloud pattern occurring when the vapour gathers along the wavefronts of internal

waves; or the pattern of parallel slicks on the ocean surface, caused by tidally generated internal

waves.

The most striking manifestation of internal waves, which was not originally associated with

internal waves, is the phenomenon called ”dead water”. A ship travelling in “dead water”

appears to be held back and becomes difficult to manoeuvre. The strange circumstance was well

known to seafarers since antiquity, and the measures against it, according to the old mariners’
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lore, included the most unpredictable antics, such as firing guns into the water, pouring oil on

the water ahead of the vessel, slashing and beating the water beside the ship with oars, banishing

monks from the ship, etc.

Explanations of the phenomenon were of comparable imagination. Lucan (AD 39–65), accord-

ing to his epic poem “Pharsalia” (book 6, verses 797–799), Pliny the Elder (AD 23–79), according

to his “Natural History” (volumes IX and XXXII), and many others later, believed that the cause

of “dead water” was a small fish, called echeneis remora, capable of checking a ship’s motion by

attaching itself to the rudder of the vessel. Plutarch, AD 46, suggested an alternative mechanical

explanation, algae accumulated at the bottom of the ship. Other explanations included magnetic

rocks attracting iron parts of the ship, minuscule invisible strings and hooks attached to the ship

and occult powers of various sorts (see Copenhaver, 1991). An explanation, closest to the truth,

was, perhaps, by a French natural philosopher Gassendi (1654), who guessed that a ship may be

checked in motion due to adverse undercurrents.

The tale of the magic fish survived the Middle Ages and the Renaissance. In the literature of

those periods we can find a great number of allusions to echeneis remora, as in “Pantagruel” by

François Rabelais (1532):

The sucking-fish, with secret chains

Clung to the keel, the swiftest ship detains...

The legendary fish-shipholder was also reflected in various paintings of the early time (see

Gudger, 1930). Figure 1.1 shows an illustration from a 14th-century copy of “Der Naturen

Bloeme” by Jacob van Maerlant (1225–1300), a Flemish poet of the Middle Ages, and another

more recent depiction of remora from the book “Emblemata” by an Italian Renaissance writer

Andrea Alciato (1492–1550).

If the magic fish can indeed be identified with the “dead water” phenomenon, then it is

possible that the undesirable effect might have changed the course of history more than once. For

example, internal waves might have been the cause of Mark Antony’s defeat in September 2, 31

BC. The battle of Actium took place in the Adriatic Sea near the shore where there is a constant

runoff of fresh river water. If we refer to the “Natural History” of Pliny the Elder, book XXXII (E.

H. Warmington’s translation), we find the following interpretation of the historical event:

It is said that at the battle of Actium the fish stopped the flagship of Antonius, who

was hastening to go round and encourage his men, until he changed his ship for

another one, and so the fleet of Cæsar at once made a more violent attack.

In a similar fashion, internal waves appear in the histories of Caligula and Periander.
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Der Naturen Bloeme (1350) Emblemata (1621)

F 1.1: Two depictions of the magic fish echeneis remora.

The puzzle of “dead water” was solved only at the beginning of the 20th century after one

of the North Polar expeditions by a famous Norwegian explorer Fridtjof Nansen (see Walker,

1991; Parker, 1999). On August 1893 he recorded that the expedition ship Fram travelling off

the Taymyr Peninsula encountered what Norwegian mariners called dödvand: the ship did not

answer the helm properly and was greatly slowed. Five years later, in November 1898, Nansen

wrote a letter to his former fellow student, the eminent physicist and meteorologist of that time

Vilhelm Bjerknes, inquiring on what could be the cause of the phenomenon. Bjerknes replied that

the ship must generate internal waves at the boundary between the fresh and salty water typical

for the geographical location and that “the great resistance experienced by the ship was due to the

work done in generating these invisible waves”. Then, he assigned a talented student, a famous

oceanographer in the years to come, Walfrid Ekman, to study Nansen’s observations and perform

laboratory experiments in order to resolve the problem. Figure 1.2 shows the portraits of the

three famous Scandinavian scientists. Ekman (1904) used a model boat in a tank of stratified fluid

and showed that the explanation of Bjerknes was correct: unless the boat exceeds the maximum

speed of internal waves, i.e. about 6.4 km h−1, it will lose most of its energy to the generation of

internal waves.

According to Ekman (1931) and Munk (1980), Nansen, on his North Polar Expedition during

1893–1896, was also the first to observe internal oscillations in the deep ocean (Nansen, 1902).

The discovery was followed by a number of similar observations during 1900–1904 made by him

and by Helland-Hansen (for the overview, see Helland-Hansen and Nansen, 1909). After that

time internal waves became a special object of investigation studied by various mathematicians

and oceanographers including such historical figures as Geoffrey Taylor, Walfrid Ekman, Horace

Lamb, etc. Due to the complexity of the phenomenon, the understanding of internal waves in

the deep ocean developed very slowly. It was not clear what the main sources of internal waves
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Fridtjof Nansen Vilhelm Bjerknes Walfrid Ekman

F 1.2: Famous Scandinavian scientists who started the study of internal waves in the ocean.

were, how internal wave properties depended on geographical location and season, where and

how the waves dissipate or break. Bigelow (1931) summarizes the problems in oceanography of

that time:

Our present knowledge of submarine boundary (or internal) waves in the open

oceans has hardly advanced beyond the realization that such things exist and that

they may be set up by a variety of forces. We need to learn what conditions give rise

to progressive boundary waves, what conditions to standing waves; their periods;

their relation to the free tidal wave; and their rôle in general in the sea, including

such points as their frequency in different regions at different seasons, their vertical

amplitudes, their lengths from crest to crest, and so forth.

Among the questions concerning internal waves in the ocean, one of the most pressing

questions, since the discovery of internal waves in the ocean, was about main sources. The

question has had a history of controversy from the beginning of internal wave research. In

particular, much difficulty was met when trying to understand tides as sources of internal waves.

Not much later after Nansen’s discovery, Pettersson (1908) observed vertical internal move-

ments in Danish sounds and found that they seemed to exhibit tidal periodicity. Internal waves

of tidal frequency are now called internal tides (for a modern overview of internal tides, see, for

example, Garrett and Kunze, 2007). Although Pettersson followed his discovery with admirable

energy and repeatedly carried out observations showing a connection between tides and inter-

nal waves, Pettersson’s mathematical explanation of the observations was quite far-fetched and

unconvincing (see Ekman, 1931).

We can now identify two misconceptions that lingered in the minds of the pioneers of internal

wave research. The first one was the misleading belief that tide-generating forces give rise to

internal waves directly, i.e. astronomical bodies such as the moon and sun directly attract layers

of fluid causing internal waves. The second misconception was that internal waves’ kinematics
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are similar in nature to those of surface waves (that is why internal waves were often referred

to as “boundary waves”). The theory developed in the framework of a two-phase fluid did not

give adequate results.

Discrepancies arising from these incorrect assumptions puzzled early observers and pre-

vented scientists from finding the correct causal connection between internal waves and tides

(see Hendershott, 1980). Thus, there were doubts whether tides are sources of internal waves. For

example, in the paper “On Internal Waves”, Ekman (1931) concludes that “the tide-generating

force has little or no tendency to raise or maintain internal waves”. In his paper, he also mentions

two possible, but “unlikely” explanations of how tides might generate internal waves: first, small

waves generated by tides directly can attain large values through a resonance, and, second, inter-

nal waves of tidal periods may be, in fact, the so-called “secondary boundary waves”, generated

“by ordinary tidal currents running over an uneven sea-bottom”. Ekman’s second guess was in

fact correct: it is now known that tidal currents flowing over rough topography represent one

of the most important mechanisms for internal wave generation. In his second guess, Ekman

was alluding to the work of Zeilon (1912, 1913) who, through his mathematical and experimental

study, had come up with the following result:

If the bulk of water (deep-water and top layer) is performing an alternating motion

like e.g. a tidal or seiche-current, and if it has to pass a bottom ridge or a hump or

the like, the disturbing effect of the latter will reach the top layer and will give rise

in the common boundary to an internal wave-motion, emerging from the place of

disturbance and having the same period as the original alternating current.

However, Ekman believed that this effect was too weak to explain the observed internal waves of

10 or 20 metres in height. According to LaFond (1962), the issue was resolved after Zeilon (1934)

showed experimentally that strong internal waves do occur when a tidal current flows over a

coastal bank. Around the same time, as if to help to overcome difficulties with the mathematical

explanation of such internal waves, Fjeldstad (1933) developed a theory for internal waves in a

heterogeneous fluid.

Half a century later, the possible sources of the internal waves in the ocean were well known,

but their relative importance was not clear at all. In a review by Müller et al. (1986), we find:

”The major energy source or sources of the deep ocean internal wave field have . . . not yet been

identified.” The present answer to the question under debate is that there are two major sources

of internal waves, both of approximately equal strengths: winds and tides (see, for example,

Munk and Wunsch, 1998).
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1.2 Importance

Internal waves in the ocean are important for a number of reasons, some of which are listed

below: they affect long-term global processes such as the Earth’s climate and abyssal circulation;

play a role in biological and chemical cycles in the ocean; represent a hazard for oil drilling

operations and submarines; distort sound transmission; have an impact on life of cetaceans, i.e.

whales, dolphins and porpoises.

The reason why internal waves affect such seemingly remote processes as the Earth’s climate

and abyssal circulation, is due to the connection of internal waves to deep-ocean mixing (Garrett,

2003). Mixing in the deep ocean conveys heat from the upper layer of the ocean to the abyssal cold

waters, and, thus, helps sustain the meridional overturning circulation, in which the water masses

from the abyss slowly upwell to the surface. Internal waves play a crucial role in transferring

energy from the primary sources of oceanic mechanical energy, i.e. from tides and winds, to

mixing (Dewar et al. (2006) suggests that the marine biosphere is another important source of

energy for mixing). This role makes internal waves much more than a background noise in

the medium: internal waves are an important dynamical part of global processes in the ocean,

including climate change and nutrient cycles.

Internal waves affect biological and chemical cycles. Vertically mixed regions of the ocean

are usually characterized by high concentrations of zooplankton and plants (see Sverdrup, 1955;

Kamykowski, 1974; McGowan and Hayward, 1978). By inducing mixing, internal waves enhance

marine productivity, as is the case, for example, in the Bay of Biscay (New, 1988) and Monterey

Bay, California (Shea and Broenkow, 1982). Apart from enhancing marine productivity through

mixing, internal waves can transport significant amounts of nutrients and chemicals directly.

The oceanic slicks, for example, can have a high concentration of plankton; the concentration

is actually higher throughout the water column near the internal wave troughs, not just at the

surface (Parker, 1999).

Internal waves, especially large solitary waves, are a hazard for deepwater offshore con-

structions and submarine vessels. The first observation of this was in late 1975 and early 1976,

when Osborne and Burch noticed strong internal solitary waves, with velocities reaching up to

1.8 m s−1, battering an oil drilling vessel off the coast of Sumatra in the Andaman Sea (Osborne

and Burch, 1980). Internal waves are capable of imposing large stresses on vertical elements

of constructions such as risers and tethers. For the self-propelled drillships that use dynamic

positioning, the hazard is even more obvious (Parker, 1999).

The hazardous effects of internal waves are also linked to a few submarine losses, the most

famous one is the loss of the US submarine Thresher on April 10, 1963, in the Gulf of Maine.

According to the Navy, at some point the submarine plunged below its crush depth and, then,

sank. Two days before the tragedy, a large storm traversed the Gulf of Maine, which may have
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generated a large internal wave. It was speculated that it could have been the large internal wave

that carried the submarine below its crush depth (Parker, 1999).

Internal waves affect the acoustic transmission in the ocean. Internal waves change the sound

speed by disturbing the density field and, thus, distort response functions used in tomography.

For example, DeFerrari and Nguyen (1986), during acoustic tomography experiments in the

Straits of Florida, observed anomalous transmission losses, or “acoustic scintillations”. Almost

ten years later, the unexplained result was shown to be due to internal waves (Tang and Tappert,

1997). The appreciation of internal waves as the dominant cause of the “acoustic scintillations”

starts with the work by Flatté et al. (1979). The effects of internal waves on sound transmission

have some important implications, e.g. submarine detection.

Internal waves play a role in the life of cetaceans. For example, in the South China Sea, short-

finned pilot whales have been observed to follow the internal solitary waves and, presumably,

feed on fish and squid entrained in the cores of solitary waves (Moore and Lien, 2007). Tidally

generated internal waves are also known to attract the animals. The large ocean mammals can

also utilize internal waves by riding on the wave fronts, as a surfer rides surface waves. Porpoises

tilt their body so that they are aligned with the front of internal waves, and that allows them to

create the effect of constant sliding down the hill (Silber and Smultea, 1990).

It is likely that some of the effects of internal waves are yet to be discovered or readdressed.

In such a complex process as climate, where “everything is connected and nothing separate” and

where the relative importance of each interconnection is uncertain, the role of internal waves

may be reconsidered in future. Apart from connections that are currently regarded influential,

there are other connections that may complicate the overall picture: for example, the connection

between internal waves and life of cetaceans, where both are contributors to deep-ocean mixing.

1.3 Primary question: energy cascade

The primary question of modern internal wave research is how and where energy cascades

through the internal wave spectrum (LeBlond, 2002). This is important to understanding how

much energy from the main sources of internal waves, such as tides and winds, is transferred

at a given time to scales where mixing occurs. The energy cascade process can be compared to

a black box: it is known how the energy enters the system (from tide-topography interaction

and winds) and it is known how the energy is released (through mixing and dissipation). The

modern research is focused on understanding what is inside this black box.

In this thesis we restrict ourselves to an investigation of the laws governing nonlinear energy

transfers in internal waves generated by tidal flow over topography. We use a numerical model
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to simulate internal wave dynamics over an idealized topography, and, further, we use spectral

analysis techniques to study nonlinear energy transfers.

The thesis is organized as follows. This chapter will be continued by section 1.4 where we

describe the framework that we used: physical assumptions and governing equations. Important

concepts from the internal wave theory that are used throughout the thesis are presented in section

1.5. The consideration of the spectral analysis concepts is given in Chapter 2. Chapter 3 starts

with an overview of the current understanding of the spectrum of internal waves. The overview

is followed by the detailed description of the set-up of numerical experiments, including the

description of the geometry of the domain, boundary conditions, the numerical model solving

the governing equations and the data that we analyzed. The main part of Chapter 3 is dedicated

to the main results obtained using temporal spectral analysis along with the explanation of the

underlying internal wave dynamics. Chapter 4 answers some additional questions that arise

based on the material given in Chapter 3. Chapter 4 is concluded with a discussion of two

alternative techniques that are sometimes used for the internal wave analysis: bispectral and

wavelet analysis. The results of spatial spectral analysis are presented in Chapter 5.

1.4 Framework

1.4.1 Assumptions

In order to model internal wave dynamics, we have made several assumptions, which fall into

three categories: (1) assumptions concerning the domain under study; (2) assumptions on fluid

properties; (3) approximations concerning the Earth’s rotation.

The most restrictive assumption is the two-dimensionality of the flow. It does, however, have

the advantage that use of a two-dimensional model allows much higher resolution than could

be achieved with a three-dimensional one. Another restriction on the domain is the rigid lid

approximation where we assume that the movement of the surface is negligibly small. As the

depth of the domain is 5 km and oscillations of the surface associated with internal waves are

typically on the order of a few centimetres, the dynamics of the flow is not significantly modified

by use of the rigid lid approximation.

For simplicity of interpretation of the results, we assume that the fluid is incompressible,

inviscid and linearly stratified. These assumptions also enable us to compare our study to some

previous analytic studies.

In this study the traditional f -plane approximation is used, i.e. the Coriolis frequency is

assumed constant throughout the domain.
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The last approximation that we use is the Boussinesq approximation, i.e. the density variations

are assumed negligible in every term of the governing equations except for the gravity term. The

Boussinesq approximation is very good for the ocean (see, for example, Kundu and Cohen, 2002),

and it also facilitates solving the governing equations.

1.4.2 Governing equations

Under the assumptions described in the previous section, the equations governing internal

wave dynamics are the two-dimensional incompressible Euler equations under the Boussinesq

approximation (Lamb, 1994):

ut + u · ∇u + f k × u = −∇p − ρgk, (1.1a)

ρt + u · ∇ρ = 0, (1.1b)

∇ · u = 0. (1.1c)

Here, ∇ = (∂/∂x, 0, ∂/∂z) and the unit vector in the z direction is k = (0, 0, 1). The coordinate z is

measured upward with the origin at the water surface.

In (1.1) there are three unknowns depending on time t and spatial coordinates x and z: the

velocity vector u = (u, v,w); the normalized density perturbation ρ, such that physical density

ρph is given by ρph = ρ0(1 + ρ), where ρ0 is the reference density; and the normalized pressure

p related to the physical pressure pph by the formula pph = patm + ρ0(p − gz), where patm is the

atmospheric pressure. Equations (1.1) have two parameters: the Coriolis frequency f related to

the latitude θ by f = 2Ω sin(θ), where Ω ≈ 0.73 × 10−4 s−1 is the angular velocity of the Earth,

and the gravitational acceleration g = 9.81 m s−1.

The Euler equations, whose modified version we use in this thesis, were derived more than

250 years ago, in 1755, in Euler’s famous work “General Principles of the Motion of Fluids”.

Essentially, they provide a mathematical formulation of the three fundamental conservation

laws applied to the physics of an incompressible fluid: conservation of momentum (equation

1.1a), conservation of energy (equation 1.1b), and conservation of mass (equation 1.1c) (for an

explanation, see Kundu and Cohen, 2002). The conservation of matter, momentum and energy

was stated as the universal law of nature by Mikhail Lomonosov in his “Reflections on the Solidity

and Fluidity of Bodies” in 1760. Interestingly, using the same expressions, Lomonosov clearly

expressed his ideas on universal conservation laws earlier in a letter to Leonhard Euler, dated

July 5, 1748, before Euler derived his equations.
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1.5 Important concepts from internal wave theory

1.5.1 Linearized equations of motion

Let us define the perturbation density ρ′ and perturbation pressure p′ such that ρph = ρ̄(z) + ρ′

and pph = p̄(z) + p′, where ρ̄(z) and p̄(z) are the background density and pressure, respectively.

The background density is related to the buoyancy frequency Nb(z):

N2
b(z) = −g

dρ̄

dz
. (1.2)

When the buoyancy frequency Nb = const, the fluid is linearly stratified. Using the perturbation

density ρ′, we can rewrite the density equation (1.1b) as follows:

ρ′t + u · ∇ρ′ −
N2

b
(z)

g
w = 0 (1.3)

Removing the nonlinear terms from the momentum equation (1.1a) and density equation (1.3)

leads to the following linearized equations of motion:

ut + f k × u = −∇p′ − ρ′gk, (1.4a)

ρ′t −
N2

b
(z)

g
w = 0, (1.4b)

∇ · u = 0. (1.4c)

The set of equations (1.4) can be reduced to a single equation for w (Kundu and Cohen, 2002):

∇
2wtt +N2

b(z)∇2
Hw + f 2wzz = 0, (1.5)

where

∇
2
H =

∂2

∂x2
+
∂2

∂y2
. (1.6)

1.5.2 Dispersion relation

Let us consider a wave propagating in a linearly stratified fluid, when the buoyancy frequency

Nb = const. The coefficients in (1.5) are then all constant, so we can look for plane wave solutions

of the form

w = w0ei(kx+ly+mz−ωt), (1.7)
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where w0 is the amplitude of the wave, ω is the frequency, and (k, l,m) are the wavenumbers in

the three Cartesian directions.

In order to obtain the dispersion relation, we substitute (1.7) into (1.5) and obtain the following:

−[(k2 + l2 +m2)ω2]w0 + [N2
b(k2 + l2)]w0 + f 2m2w0 = 0. (1.8)

The expression (1.8) leads to the dispersion relation of internal waves:

ω2 =
N2

b
(k2 + l2) + f 2m2

k2 + l2 +m2
. (1.9)

In the case of two-dimensional flow, independent of the coordinate y, the wavenumber l in the

dispersion relation (1.9) is set to zero.

1.5.3 Group and phase velocity

Definition 1 (Group velocity). The group velocity of an internal wave is defined as

cg =
dω

dK
= i

∂ω

∂k
+ j
∂ω

∂l
+ k

∂ω

∂m
, (1.10)

where K = (k, l,m) is the wave vector and {i, j,k} are the unit vectors in the three Cartesian

directions.

When the wave is propagating on the xz-plane, so that l = 0, the group velocity, according to

(1.9), is given by

cg =
k

m

N2
b
− f 2

(

1 +
[

k
m

]2
)3/2 (

N2
b
+ f 2

[

m
k

]2
)1/2

(

i
1

k
− k

1

m

)

. (1.11)

Definition 2 (Phase velocity). The phase velocity of an internal wave of frequency ω is defined

as

c =
ω

|K|
K

|K| , (1.12)

where |K| =
√

k2 + l2 +m2. The vector K/|K| is the unit vector in the direction of K.

Definition 3 (Phase speed in the x-direction). The phase speed of an internal wave in the x-

direction is defined as

cH =
ω

KH
, (1.13)

where KH =
√

k2 + l2.
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c

cg

x

z
Lines of constant phase

F 1.3: Group and phase velocities of an internal wave.

On the xz-plane, the phase velocity is given by

c =

(

N2k2 + f 2m2
)1/2

(k2 +m2)
3/2

(ik + km) . (1.14)

It follows from (1.11) and (1.14) that the group and phase velocities are perpendicular:

cg · c = 0. (1.15)

An illustration of the group and phase velocities of an internal wave is given in figure 1.3.

1.5.4 Vertical modes

Let us consider another solution of (1.5). If the fluid is bounded by solid horizontal boundaries

at z = 0 (surface) and −H (bottom), we can look for solutions of the form

w = ψ(z)ei(kx+ly−ωt), (1.16)
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satisfying the boundary conditions w = 0 at z = 0 and −H. Once the function ψ(z) is found, all

the unknowns {u, v,w, ρ, p} can be constructed by substituting (1.16) into (1.4).

To find the function ψ(z), we substitute (1.16) into (1.5), and obtain the following equation:

ψzz +













N2
b
(z) − ω2

ω2 − f 2













K2
Hψ = 0, (1.17)

where KH =
√

k2 + l2. For the xz-plane, when l = 0, we notice that, according to the dispersion

relation (1.9), the coefficient in front of ψ in (1.17) is the square of the vertical wavenumber m2(z):













N2
b
(z) − ω2

ω2 − f 2













K2
H = m2(z) (1.18)

Thus, the equation (1.17) along with the boundary conditions leads to an eigenvalue problem for

the vertical wavenumber m(z):














ψzz +m2(z)ψ = 0,

ψ(z) = 0 at z = 0,−H.
(1.19)

The solution of the eigenvalue problem (1.19) is given by the eigenfunctions ψn(z), called

vertical modes. In the case Nb(z) is constant, ψn(z) are given by

ψn(z) = sin(mnz), (1.20)

corresponding to the eigenvalues

mn =
πn

H
, (1.21)

where n ∈ {1, 2, . . . , } is the mode number.

Vertical modes are characterized by their horizontal group velocity cg and phase speed in the

x-direction cH. According to (1.11), (1.13) and the dispersion relation (1.9), both cg and cH are

inversely proportional to the mode number n:

cg =
AH

nπ
∝ 1

n
,

cH =
BH

nπ
∝ 1

n
,

(1.22)
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where

A =
N2

b
− f 2

(

1 +
[

k
m

]2
)3/2 (

N2
b
+ f 2

[

m
k

]2
)1/2
,

B =



















N2
b
+ f 2

[

m
k

]2

1 +
[

k
m

]2



















1/2

,

(1.23)

which depend solely on the three frequencies f , ω and Nb.

1.5.5 Parametric Subharmonic Instability (PSI)

In the linear approximation, internal waves do not interact amongst themselves. However, in

the more realistic nonlinear case, internal waves do interact and, as a consequence, exchange

energy. The interaction is especially strong when the participant waves form a resonant triad.

Three waves that have wave vectors K1, K2, K3 and frequencies ω1, ω2 and ω3 form a resonant

triad if two conditions are satisfied:

I. K3 = K1 ±K2, ω3 = ω1 ± ω2,

II. each wave vector K1, K2 and K3 is related to the frequency ω1, ω2 and ω3, respectively,

through the dispersion relation (1.9).

The resonant triad interaction can be interpreted as follows. For any two progressive waves with

wavenumbers K1 and K2 and frequenciesω1 and ω2, the nonlinear term u ·∇u in the momentum

equation (1.1a) works as a forcing term at the combination frequencies ω1 +ω2 or ω1 −ω2 and at

combination wavenumbers K1 +K2 or K1 −K2. If the combination frequency and wavenumber

satisfy the dispersion relation, then the forcing given by the nonlinear term and the linear part of

the solution are in resonance.

Parametric Subharmonic Instability (PSI) is an important class of resonant triad interactions

characterized by a low vertical wavenumber m2 decaying into two high vertical wavenumber

modes m1 and −m3 of about half the frequency.
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Chapter 2

Spectral Analysis Concepts

An internal wave field in a stratified fluid depends on three spatial variables and time. In order

to obtain the spectrum of the field, one needs a spectral representation of the process defined

by three wavenumbers and frequency. The four-dimensional spectral representation can be

evaluated by developing spectral representations for each dimension successively. This can be

done by applying, one after another, appropriate spectral transforms, such as Fourier transforms,

to each dimension. The problem, thus, can be reduced to estimation of the spectrum in one

dimension.

The spectrum of a one-dimensional process defines energetics across the entire range of

frequencies involved in the process. Depending on the type of process and the domain where

the process is defined, the spectrum can be of various types: discrete or continuous, periodic or

non-periodic, symmetric with respect to the origin or non-symmetric.

As there may be different spectral representations for the same process, and, consequently,

more than one way to assign energy to frequencies, some ambiguity arises. For example, there is

a large number of Fourier-related transforms that can be used for spectral representation: cosine

transform, sine transform, Hartley transform, etc. For a brief comparative review, refer to the

paper by Ersoy (1994). Each of the Fourier-related transforms uses specific basis functions to

decompose a signal. Different transforms may correspond to different domains in the spectral

space. For example, the discrete cosine transform uses cosines on a different set of frequencies

than used by the discrete Fourier transform. As a result, the spectrum defined through the

discrete cosine transform and discrete Fourier transform may be different.

In this chapter, we present the methodology that is later used for the spectral analysis of

internal wave fields arising in the numerical simulations. The main goal of this chapter is to

define the term spectrum and compare the available nonparametric techniques for its estimation.
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The presented methods, as we show with an example of actual observational data, can be

efficiently employed in other works where an estimation of internal wave spectra is needed.

2.1 Historical development of spectral analysis

The ideas preceding the modern theory of spectral analysis, were, for the most part, developed

during the nineteenth century and the beginning of the twentieth century. The early history

of spectral analysis can be associated with the following four topics: (a) interpolation using

trigonometric series; (b) tabular Fourier analysis; (c) periodogram; and (d) statistical approaches.

Figure 2.1 provides a schematic view of the early development of spectral analysis and highlights

some important works discussed below.

In the 18th century it was realized that trigonometric series provide an important tool for

interpolation. Several distinguished mathematicians contributed to this early stage of the de-

velopment of spectral analysis. Leonhard Euler studied infinite cosine series as early as in 1748

(Euler, 1748). One of his contemporaries, Alexis-Claude Clairaut (1754) was concerned with

formulas analogous to what is currently known as the discrete cosine transform. At about the

same time Daniel Bernoulli (1753) calculated the form of a vibrating string in terms of infinite sine

and cosine series. A little later, another historical figure in mathematics, Joseph Louis Lagrange

(1762), provided the earliest formula for an analogue of the modern discrete sine transform.

The earliest general formulas for the discrete Fourier transform were found by Carl Friedrich

Gauss (1866) in his treatise on interpolation theory, written, according to Heideman et al. (1985),

in October–November 1805 and published posthumously in 1866. Gauss is also the author of

the fast Fourier transform (see Goldsteine, 1977), the famous computationally efficient method

for the calculation of the discrete Fourier transform rediscovered almost a hundred years later

by Cooley and Tukey (1965). The discovery of Cooley and Tukey was a turning point in digital

signal processing, and their paper became the most frequently cited mathematics paper by the

end of the twentieth century (see Kammler, 2000). The reason why Gauss’ work was neglected

and forgotten was the fact that he wrote in neo-Latin and used non-traditional notation, which

made it difficult for a regular mathematician to refer to Gauss’ work directly.

There were many independent researchers apart from Cooley and Tukey who were studying

efficient techniques for harmonic analysis and unaware of Gauss’ work. For example, one of the

other early FFT-type methods was suggested by Francesco Carlini in 1828.

Historically, spectral analysis and Fourier transforms are associated with the name of Jean

Baptiste Joseph Fourier and his work “Representation of functions with infinite harmonic series”

(Fourier, 1822). In 1807, when Fourier was presenting the work to the Academy of Science in

Paris, it was not well received. As a result, it was not published until 1822. If the dates for the
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Euler, 1748
Bernoulli, 1753

Clairaut, 1754

Lagrange, 1762

Gauss, 1805

Fourier, 1807

Carlini, 1828

Ballot, 1847

Thomson, 1876

Stewart, 1879

Schuster, 1906

Einstein, 1914

Cramer, 1942

Interpolation

Tabular Fourier analysis

Periodogram

Statistical approaches

F 2.1: Historical development of spectral analysis.
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completion of Gauss’ work are correct, it seems probable that Fourier shared the luck of Cooley

and Tukey as his work on harmonic analysis was also predated by that of Gauss (for details, see

Heideman et al., 1985).

The second half of the nineteenth century is marked with numerous works on tabular methods

for harmonic analysis. Methods were generally aimed at detecting and extracting components

from data with known period, e.g. from tidal, meteorological and astronomical time series. The

early methods include a widely used method by Buys-Ballot described in Whittaker and Robinson

(1944), and its more sophisticated version by Stewart and Dodgson (1879). The mechanical

harmonic analyser described and built by Thomson (1878) was claimed to increase the speed of

a typical calculation by a factor of 10. According to Stokes (1879), it was also able to determine

some unknown periods in a time series .

Arthur Schuster was the first who introduced the concept of periodogram and applied the pe-

riodogram analysis to a problem of sunspot series (Schuster, 1906). Another major application of

the peridogram analysis for a real-world problem of that time was by Beveridge (1921) who used

the same techniques as Schuster to analyse wheat prices in connection with weather periodicities.

The concept of the spectrum as it is used in the modern statistical theory of time series, was,

for the first time, addressed by Einstein (1914). There, he also suggested the smoothing technique

for reducing a periodogram’s variance. This technique was reconsidered by Daniell (1946).

The spectral theory of stochastic processes was developed in the 20s and 30s of the twentieth

century. A remarkable work from this period is by Cramér (1942) where he proved the spectral

representation theorem for a stationary process.

2.2 Spectra of regular functions

In applications, we usually deal with signals that are given by a truncated and/or discretized

realization of a continuous process. Formally, the spectrum of each physical representation is

given by the absolute square of the spectral representation. However, the spectral representations

are different for different physical representations, e.g. continuous vs. discrete. In most cases,

we can evaluate the exact spectral representation of a signal at hand. For example, an exact

spectral representation of a time series is given by the discrete Fourier transform. However, it

is not the spectral representation of the discrete time series that we are interested in, but the

spectral representation of the continuous process that the time series represents. In this section,

we discuss the relations and properties of different physical and spectral representations. In the

next section, we provide methods for the estimation of spectra based on spectral representations

of discrete time series.
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2.2.1 Fourier transforms of regular functions

For a certain class of functions, called regular functions, the spectrum can be evaluated exactly as

the squared Fourier representation. Let us introduce formally four classes of regular functions:

I. f (t) — an absolutely integrable piecewise smooth function defined on R = (−∞,+∞);

II. g(t) — a piecewise smooth p-periodic function defined by its values on Tp = [0, p);

III. φ[n] — an absolutely summable function defined on Z = {. . . ,−2,−1, 0, 1, 2, . . .};

IV. γ[n] — an N-periodic function defined by its values on PN = {0, 1, . . . ,N − 1}.

Figure 2.2 shows a visual interpretation of a function f on the continuum line R, g on the circle

Tp with circumference p, φ on the integer numbers Z and γ on the polygon PN with N nodes.

t 00

−p p t

(a)

00

(b)

(c)
f(t) on R

n

n

(d)

N−N

g(t) on Tp

φ[n] on Z

γ[n] on PN

F 2.2: Visual interpretation of the classes I–IV of regular functions.

The motivation for introducing the classes I-IV is as follows. Suppose, a continuous process

is described by the regular function f (t). The function f (t) can be either truncated to a function

g(t) with t ∈ [0, p) or discretized to a function φ[n] with n ∈ Z. Then, the function g(t), in

its turn, can be discretized or the function φ[n] can be truncated producing a function γ[n]

with n ∈ {0, 1, . . . ,N − 1}. Associating the function f , g, φ and γ with the domain R, Tp, Z

and PN, respectively, results in the classification I–IV. This argument relating different physical

representations of a process is visually presented in figure 2.3. In an application, the ultimate
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F 2.3: Relation among different physical representations of the function f through truncation
and discretization.

goal would be to evaluate the spectral representation of the function f based on the spectral

representation of the function γ.

Each physical representation of the function f , i.e. functions f , g,φ andγ, has a unique spectral

representation given by the following Fourier transforms (synthesis and analysis equations):

Functions on R (F : R −→ R):

f (t) =

∫ ∞

s=−∞
F(s)e2πistds; (2.1)

F(s) =

∫ ∞

t=−∞
f (t)e−2πistdt. (2.2)

Functions on Tp (G : Tp −→ Z):

g(t) =

∞
∑

k=−∞
G[k]e2πikt/p; (2.3)

G[k] =
1

p

∫ p

t=0

g(t)e−2πikt/pdt. (2.4)

Functions on Z (Φ : Z −→ Tp):

φ[n] =

∫ p

s=0

Φ(s)e2πisn/pds; (2.5)

Φ(s) =
1

p

∞
∑

n=−∞
φ[n]e−2πisn/p. (2.6)

Functions on PN (Γ : PN −→ PN):

γ[n] =

N−1
∑

k=0

Γ[k]e2πikn/N; (2.7)

Γ[k] =
1

N

N−1
∑

n=0

γ[n]e−2πikn/N. (2.8)

Basic properties of Fourier transforms for real functions include linearity and symmetry. The

linearity property states that the Fourier transform of a linear combination of signals is the linear

combination of the Fourier transforms of the constituents. The symmetry property states that the
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transform has symmetric parts; only one part of the transform, which is symmetric to the other

one, is sufficient to describe the signal completely. The mathematical description of linearity and

symmetry is given in table 2.1 for regular functions on different domains.

Property Function Transform

Linearity α1 f1(t) + α2 f2(t), t ∈ R α1F1(s) + α2F2(s), s ∈ R

(α1, α2 ∈ R) α1g1(t) + α2g2(t), t ∈ Tp α1G1[k] + α2G2[k], k ∈ Z

α1φ1[n] + α2φ2[n], t ∈ Z α1Φ1(s) + α2Φ2(s), s ∈ Tp

α1γ1[n] + α2γ2[n], t ∈ PN α1Γ1[n] + α2Γ2[n], n ∈ PN

Symmetry f (t), t ∈ R F(s) = F(−s), s ∈ R

g(t), t ∈ Tp G[k] = G[−k], k ∈ Z

φ[n], n ∈ Z Φ(s) = Φ(−s), s ∈ Tp

γ[n], n ∈ PN Γ[k] = Γ[−k], k ∈ PN

T 2.1: Fourier transform properties: linearity and symmetry.

Suppose a given signal is translated or dilated. Table 2.2 gives the rules defining the Fourier

transform after translation and dilation of a signal. Two other typical manipulations of a signal

are convolution and multiplication, i.e. when the signal is convolved or multiplied with some

other function. The product of two functions transforms into a convolution of their respective

Fourier transforms. Due to the similarity of the synthesis and analysis equations for the Fourier

transforms (or similarity between the forward and inverse Fourier transforms), the product of

two functions transforms into a convolution of the corresponding Fourier transforms. The rules

of convolution and multiplication for different domains are described in table 2.3.

2.2.2 Connecting representations

When the functions g, φ and γ are constructed in the physical domain from the function f by

truncation and discretization as shown in figure 2.3, there is no definite relation among the Fourier

transforms F, G,Φ and Γ. However, if we construct the functions in the physical space in a slightly

different manner by using p-summation and h-sampling described below, it is possible to get an

exact relation among the Fourier transforms. When a function produced through the successive
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Rule Function Transform

Translation f (t − t0), t ∈ R e−2πist0 F(s), s ∈ R

(t0 ∈ R) g(t − t0), t ∈ Tp e−2πikt0/pG[k], k ∈ Z

(n0 ∈ Z) φ[n − n0], n ∈ Z e−2πisn0/pF(s), s ∈ Tp

γ[n − n0], n ∈ PN e−2πikn0/NF[k], k ∈ PN

Dilation f (at), t ∈ R |a|−1F(s/a), s ∈ R
(a , 0 is real)

f (mt), t ∈ Tp

{

F(k/m), if m|k;

0, otherwise.

f [mn], m ∈N, n ∈ Z 1

m

m−1
∑

l=0

F(s/m − lp/m), s ∈ Tp

f [mn], n ∈ PN, m|N



























m−1
∑

l=0

F[k/m − lN/m], if m|k;

0, otherwise.

f [mn], n ∈ PN; m and F[m′k], m ∈ PN; mm′ = 1
n are relatively prime

T 2.2: Fourier transform rules for a manipulated signal: translation and dilation.
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Rule Function Transform

Convolution ( f1 ∗ f2)(t) =

∫ ∞

t′=−∞
f1(t′) f2(t − t′)dt′ F1(s) · F2(s)

( f1, f2 on R) (F1, F2 on R)

(g1 ∗ g2)(t) =

∫ p

t′=0

g1(t′)g2(t − t′)dt′ pG1[k] · G2[k]

(g1, g2 on Tp) (G1,G2 on Z)

(φ1 ∗ φ2)[n] =

∞
∑

m=−∞
φ1(m)φ2(n −m) pΦ1(s) ·Φ2(s)

(φ1, φ2 on Z) (Φ1,Φ2 on Tp)

(γ1 ∗ γ2)[n] =

N
∑

m=0

γ1(m)γ2(n −m) NΓ1[k] · Γ2[k]

(γ1, γ2 on PN) (Γ1, Γ2 on PN)

Multiplication f1(t) · f2(t) (F1 ∗ F2)(s)
( f1, f2 on R) (F1, F2 on R)

g1(t) · g2(t) (G1 ∗ G2)[k]
(g1, g2 on Tp) (G1,G2 on Z)

φ1[n] · φ2[n] (Φ1 ∗ Φ2)(s)
(φ1, φ2 on Z) (Φ1,Φ2 on Tp)

γ1[n] · γ2[n] (Γ1 ∗ Γ2)[k]
(γ1, γ2 on PN) (Γ1, Γ2 on PN)

T 2.3: Fourier transform rules for a manipulated signal: convolution and multiplication.
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application of truncation and discretization is close to the function produced through h-sampling

and p-summation, the spectral representations of the two functions can be approximated through

each other. In this section, we will see that the operation of h-sampling applied in the physical

space is mirrored by the operation of p-summation in the spectral space and vice versa. This

important concept has far-reaching implications in the spectral analysis known as leakage and

aliasing, which will be described in the end of the section.

Definition 4 (h-sampling). Let f be a regular function defined on the continuum R. We can

construct a discrete function φ on Z such that

φ[n] = f (nh), n ∈ Z, (2.9)

where h is a discretization parameter. This operation is called h-sampling. For a function g defined

on the domain Tp the definition of h-sampling is analogous. The discretization parameter is set

to h = p/N, and the corresponding discrete function γ is:

γ[n] = g
(np

N

)

, n ∈ PN. (2.10)

Definition 5 (p-summation). Let f be a regular function defined on the continuum R. We can

construct a p-periodic function g on Tp such that

g(t) =

+∞
∑

m=−∞
f (t −mp), t ∈ R. (2.11)

This operation is called p-summation. We can also use p-summation for a regular discrete function

φ defined on the domain Z. The corresponding constructed function γ on Z is N-periodic and

defined by

γ[n] =

+∞
∑

m=−∞
φ[n −mN], n ∈ Z. (2.12)

Changing truncation to p-summation and formalizing the operation of discretization with

h-sampling, we can construct the functions g, φ and γ from the function f as shown in figure 2.4.

Under the assumption that the tails of the function f are small, for example, when f is a localized

impulse, the operation of truncation can be replaced by p-summation without significant loss of

information. In the special case when the function f is identically zero outside the interval [0, p),

the p-summation will be equivalent to truncation.

Using the Fourier transforms (2.1)–(2.8) for the functions constructed with p-summation and
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F 2.4: Relation among different physical representations of the function f through h-
sampling and p-summation.

h-sampling we have the following relations:

g(t) =

+∞
∑

m=−∞
f (t −mp), G[k] =

1

p
F

(

k

p

)

, (2.13)

γ[n] =

+∞
∑

m=−∞
φ[n −mN], Γ[k] =

p

N
Φ

(

kp

N

)

, (2.14)

φ[n] = f
(np

N

)

, Φ(s) =

+∞
∑

m=−∞
F

(

s − mN

p

)

, (2.15)

γ[n] = g
(np

N

)

, Γ[k] =

+∞
∑

m=−∞
G[k −mN]. (2.16)

The relations (2.13)–(2.16) suggest that all the representations of a function, both in spectral

and physical space, are connected by the operations of summation and sampling. The diagram

called the Fourier-Poisson cube illustrating these relations is shown in figure 2.5. The diagram is

adapted from Kammler (2000).

As can be seen in figure 2.5, sampling in physical space is compensated by summation in the

spectral space and summation is compensated by sampling. This idea underlies two important

concepts of aliasing and leakage, which arise from the discretization and truncation of a signal,

respectively. Suppose a regular function f on R has the spectral representation F on R. Let us

illustrate the concept of aliasing and leakage by considering the transformation that the spectral

representation F undergoes as we truncate or discretize the function f . Note that the spectral

representations of g and φ undergo similar transformations when g and φ are discretize and

truncated, respectively. When a function is both discretized and truncated, both effects, i.e.

leakage and aliasing, take place.
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analysissynthesis

analysissynthesis

analysissynthesis

analysissynthesis

F on Rf on R

Γ on PNγ on PN

g on Tp

G on Z

Φ on TN/p

φ on Z

1/p-sample &

1/p-scale

1/p-sample &

1/p-scale

N/p-sum

N -sum

N -sum

p/N -sample

p/N -sample

p-sum

F 2.5: Fourier-Poisson cube (Kammler, 2000).

If the function f is discretized using h-sampling, then its spectral representation will be

truncated to frequencies less than the Nyquist frequency: |s| < sNyq = 1/(2h), and, in addition,

all the energy contained in the frequencies larger than sNyq will be aliased to the range [0, 1/(2h))

through p-summation. This effect is known as aliasing. By decreasing the sampling interval h,

we increase the Nyquist frequency and, consequently, reduce aliasing. In practical situations,

the function f is not bandlimited, i.e. its spectral representation F does not have a finite support

(Press et al., 1992), so discretization always introduces some degree of aliasing. However, if the

Fourier representation F rapidly decays as s→∞, then the effect of aliasing can be reduced to an

acceptable level by choosing a sufficiently small sampling interval h.

If the function f is truncated to g on an interval [0, p), the spectral representation undergoes

the following transformation. If the truncation was preceded by p-summation, then the spectral

representation of g would simply become a 1/p-sampling of F. However, the operation of

truncation is different from the operation of p-summation. Thus, there is additional bias to
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the discrete version of F: the spectral rerpresentation of g is, in fact, the discretized spectral

representation of the discontinuous function f̃ equal to f on the interval [0, p) and equal to zero

outside the interval. The discontinuities of the function f̃ lead to the following: in the spectral

representation, energy from the energetic frequencies “leaks” to the surrounding frequencies.

This effect is called leakage.

To summarize, when a function is truncated, its spectral representation is discretized; the

larger the domain of truncation, the finer the sampling interval. In addition, the discontinuities

arising in the physical representation at the boundaries of the domain lead to leakage in the

spectral representation. The successive discretization of the truncated function leads to truncation

of the spectral representation; the finer the sampling in physical space, the larger the domain of

truncation in spectral space. Energy in the spectral representation is aliased into the truncated

range of frequencies from outside through p-summation.

2.2.3 Spectrum through Fourier representations

Let us consider the functions f , g, φ and γ constructed as in figure 2.4. The aggregate squared

sizes of the functions are related to the sizes of the Fourier transforms F, G, Φ and Γ through the

Plancherel identities (see table 2.4).

Aggregate size type Function Plancherel identity

Energy f on R

∫ +∞

−∞

∣

∣

∣ f (t)
∣

∣

∣

2
dt =

∫ +∞

s=−∞
|F(s)|2 ds

Power g on Tp
1

p

∫ p

0

∣

∣

∣g(t)
∣

∣

∣

2
dt =

+∞
∑

k=−∞
|G[k]|2

Discrete energy φ on Z

+∞
∑

n=−∞

∣

∣

∣φ[n]
∣

∣

∣

2 p

N
=

∫ N/p

0

|Φ(s)|2 ds

Discrete power γ on PN
1

N

N−1
∑

n=0

∣

∣

∣γ[n]
∣

∣

∣

2
=

N−1
∑

k=0

|Γ[k]|2

T 2.4: Plancherel identities.

Using these identities, we can define the deterministic spectra through the absolute squared

values of the Fourier transforms:
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|F(s)|2 — energy spectral density function for a continuous function f on R;

the integral
∫ b

a
|F(s)|2ds is the contribution to the energy of the signal

from the sinusoids with frequencies from the interval [a, b];

|G[n]|2 — discrete power spectrum of a p-periodic function g on Tp; |G[n]|2 is

the contribution to the power from the sinusoid with frequency n/p;

|Φ(s)|2 — N/p-periodic energy spectral density function of a discrete function

φ on Z;

|Γ[n]|2 — N-periodic discrete power spectrum of a discrete function γ on PN.

From the symmetry property of the Fourier transform F(s) for real functions follows the

symmetry of the spectrum |F(s)|2 with respect to s = 0: |F(s)|2 = |F(−s)|2. Thus, one side of the

spectrum provides all the information about the spectrum, and the other side contains redundant

information. According with the symmetry property, we can define the one-sided spectrum

|Fone(s)|2 (as opposed to the two-sided spectrum |F(s)|2) as follows:

|Fone(s)|2 =



























2|F(s)|2, s > 0;

|F(s)|2, s = 0;

0, s < 0.

(2.17)

Then, the total energy of the function f (t) is given by

∫ ∞

−∞
f 2(t)dt =

∫ ∞

0

|Fone(s)|2ds. (2.18)

The spectrum |G[n]|2 with corresponding discrete frequencies s[n] = n/p for n = −∞, . . . , -1, 0,

1, . . . , +∞ is also symmetric with respect to the frequency s = 0. Similarly, the spectra |Φ(s)|2
and |Γ[n]|2 have symmetric parts. Recall that the spectrum |Φ(s)|2 has frequencies in the interval

[0,N/p) and |Γ[n]|2 has frequencies s[n] = n/p for n = 0, 1, . . . ,N− 1. The spectra |Φ(s)|2 and |Γ[n]|2
are symmetric with respect to the Nyquist frequency sNyq = N/(2p).

An important point to be emphasized is that for the regular functions the spectrum is defined

exactly as the absolute square spectral representation. It is not an approximation. In particular,

that means that the spectrum of a discrete time series γ is given by |Γ[n]|2 that can be evaluated

exactly. However, once again, we are usually interested in approximation of the spectra that

can not be evaluated exactly. In this regard let us consider two typical situations that will be

faced in this thesis. One is when the domain of the function is finite; for example, when we

analyse vertical profiles of the horizontal velocity. Another is when we analyse time series on an

unbounded domain.

In the case when the function g is defined on a bounded domain [0, p), its spectrum |G[n]|2 for

n ∈ Z can be approximated through |Γ[n]|2 evaluated for the function γ constructed by h-sampling
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the function g. The approximation |Γ[n]|2 is a truncated version of the real spectrum |G[n]|2 and is

subject to aliasing. The aliasing can be reduced to a sufficiently low level by choosing an appro-

priately small sampling interval h. Although in this case the effect of aliasing can be efficiently

removed from the approximation, there is one problem that makes the definition of the spectrum

ambiguous. The problem is that the spectral representation |G[n]|2 given through the Fourier

transform of the function g is not the only possible spectral representation: there are other spec-

tral representations, such as the cosine transform, Hilbert transform and so on. Sometimes, other

representations are more advantageous than the Fourier transform. For example, in our simu-

lations, the vertical profiles of the horizontal velocity away from the topography may be better

represented by a discrete cosine transform by analogy with the vertical mode decomposition.

Let us consider the case when the domain of a regular function f is unbounded. The dis-

crete spectrum |pΓ[n]|2 evaluated for a truncated and discretized signal is a crude estimate of

the continuous spectrum |F(s)|2 at the Fourier frequencies sn = n/p. We know that the rough

approximation |pΓ[n]|2 is a truncated and discretized version of |F(s)|2 and is subject to aliasing

and leakage. This approximation can be found in some works on digital signal processing (see,

for example, Cameron, 1995) and in the analysis of meteorological two-dimensional fields (e.g. ,

Errico, 1985). Although this approximation is seldom used, it serves as a good illustration of the

problems that we must confront when performing a spectral estimation.

2.2.4 Example: crude approximation

Let us construct the functions f , g, φ and γ shown in figure 2.6(a) as follows. We make up

the function f (t) so that it would have a continuous spectrum with two dominant frequencies

s = 1/π ≈ 0.32 and 3/(2π) ≈ 0.48:

f (t) = [cos(2t) + sin(3t)] exp

[

− (t − 4)2

72

]

. (2.19)

The corresponding p-periodic function g is constructed by p-summation for p = 10 on the interval

[0, 10]. The discrete function φ is constructed by h-sampling with h = 0.5 at the discrete points

tn = hn with n = 0,±1,±2, . . . ,±∞. The function γ discretizes the function g on the discrete points

tn for n = 0, 1, . . . ,N, where N = 20.

The spectra of the functions f (t), g(t), φ[n] and γ[n] are given by |F(s)|2, |G[n]|2, |Φ(s)|2 and

|Γ[n]|2, respectively. The Fourier transform F(s) of the function f (t) has an exact analytical form:

F(s) = −7

2

√
π

[

i exp(294πs − 441/4+ 24i) − exp(294πs − 441/4+ 24i)
]

. (2.20)

Thus, the spectrum |F(s)|2 is defined by an explicit formula. Using (2.13)–(2.16), we can also obtain
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explicit analytical forms for the spectra |G[n]|2, |Φ(s)|2 and |Γ[n]|2. In particular, at frequencies

sn = n/p, we have |F(sn)|2 = |pG[n]|2 for n ∈ Z.

Now, let us construct the function γ̂[n] on PN by truncation and discretization of the function

f , so that γ̂[n] = φ[n] for n = 0, 1, . . . ,N − 1. The function γ̂ is an example of a function that

we would be given in a real application. The spectrum |F(s)|2 at frequencies sn can be roughly

approximated with |pΓ̂[n]|2. Figures 2.6(b,c) illustrate the difference between |F(sn)|2 and |pΓ̂[n]|2
in our example on linear and logarithmic scale, respectively. The estimation |pΓ̂[n]|2 has several

important problems. One problem is that the relatively low spectral resolution prevents the

approximation |pΓ̂[n]|2 from reflecting adequately the continuous shape of the spectrum. Another

problem is that |pΓ̂[n]|2 underestimates values of |F(sn)|2 near the peaks: the values of the spectrum

approximation at s = ±0.5 are smaller than the values of the actual spectrum. Lastly, there is bias

in the slope of the spectrum on the logarithmic scale due to both aliasing and leakage.

2.2.5 Discontinuity

As was shown in the example, there are several factors that separate the spectrum |F(s)|2 from

its approximation defined through the discrete Fourier transform. One of the factors, coming

from the truncation of a signal, is that the spectral approximation is discrete whereas the actual

spectrum is continuous. There are two methods to decrease the sampling interval in the spectral

space. One obvious way to do this is to increase the domain where the discretized and truncated

version of f is defined, as the sampling interval is proportional to 1/p. However, if the time series

γ is already given, it is impossible to increase its domain.

Another convenient way to approximate the spectrum on a finer set of frequencies, is to

interpolate the spectral representation Γ[n]. This can be efficiently done by zero-padding of the

function γ (for details, see Kammler, 2000).

2.2.6 Slope of the spectrum

Another factor that separates the spectrum |F(s)|2 from its discrete approximation |pΓ[n]|2 is the

bias in the slope of the spectrum. It is due to both leakage and aliasing. In this section we first

discuss what the actual slope in the spectrum should be, then we discuss how the slope is altered

when the spectrum is approximated and, finally, we show how the bias can be controlled.

In most typical situations the spectrum of a function decays as s → ∞. More specifically, if

f (t), f ′(t), . . ., f (n)(t) are regular functions on R, then the absolute value of the Fourier transform

|F(s)| decays at least as fast as 1/sn in the limit s→∞. If, in addition, f (n)(t) is piecewise constant,

the rate of decay is at least 1/sn+1 (Kammler, 2000).
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As an example, let us consider the Fourier transform of a rectangular window, for which

the exact analytic expression can be calculated. The rectangular window is a piecewise constant

function given by

Π(t) =















1, −1/2 < t < 1/2;

0, elsewhere.

The Fourier transform of the function Π(t) is known as the sinc-function:

sinc(s) =



















sin(πs)

πs
, s , 0;

1, s = 0.
(2.21)

The function |sinc(s)| < 1/s as s→ ±∞, so it decays as fast as 1/s, as expected.

When the spectrum |F(s)|2 is approximated with |pΓ[n]|2, the slope of the spectrum is altered:

the leakage and aliasing introduce bias to the estimation. In order to explain bias, let us trace

once again what happens to the spectral representation of the function f when f is truncated on

an interval (−1/2, 1/2) and discretized.

The operation of truncation on (−1/2, 1/2) is equivalent to multiplying the function f by the

rectangular window Π. According to the convolution rule (see table 2.3), the Fourier transform

of the function f (t) ·Π(t) is F(s) ∗ sinc(s). Thus, the spectral representation of the function f after

truncation is the discretized function F(s) ∗ sinc(s). Thus, the bias due to leakage is introduced

through the convolution of the function f with the rectangular window. If the Fourier transform

F(s) has a decay rate higher than 1/s at s→ ∞, the biased slope will decay as 1/s. The operation

of discretization will, in addition to bias due to leakage, introduce bias due to aliasing.

If the function f (t) is multiplied by a function other than the rectangular window or its dilate,

one can control the bias due to leakage. For example, let us construct a window giving a bias

less than that of the rectangular window. Convolving the rectangular window with itself, for

example, produces a triangular window Λ(t):

Λ(t) =















1 − |t|, −1 < t < 1;

0, elsewhere.

The Fourier transform of the triangular window is sinc2(s). Provided the slope of the Fourier

transform F(s) is less than 1/s2, the slope of the convolution F(s) ∗ sinc2(s) is 1/s2. Changing

the slope of the spectral representation with the use of different windows underlies the main

technique in spectral estimation for reducing bias.
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F 2.7: The function γ on TN for α = 2.7 and N = 64: real part (dots), imaginary part (circles).

2.3 Example: single sinusoid

Let us consider an example of how bias due to leakage is reduced when a single frequency signal

is multiplied by different windows. Let the function γ onPN be a continuous sinusoidal function

with a single frequency α ∈ R:

γ[n, α] = e2πiαn/N, n = 0, 1, . . . ,N − 1. (2.22)

The function γ for α = 2.7 and N = 64 is shown in figure 2.7.

The Fourier transform of the function γ[n, α] is

F[k, α] = e−πi(N−1)(k−α)/N sinc(k − α)

sinc[(k − α)/N]
. (2.23)

When α , 0,±1,±2, . . ., the spectrum |F[k, α]|2 has a peak at k = ⌊α⌋ or k = ⌈α⌉ and away from the

peak it will decay as |k−α|−2. The spectrum |F[k, α]|2 for α = 2.7 and N = 64 is shown in figure 2.8.

In practical situations the |k − α|−2 decay can make other features of the spectrum invisi-

ble. For example, if the signal γ[n, 2.7] shown in figure 2.7 contained another weaker sinusoid

10−4 exp 2πiαn/N for α = 10, then the Fourier transform F of the combined signal would not

reflect that. Nor would it be possible to see the small amplitude oscillation in the signal itself. In

this situation a window may be helpful.

Let f̂ [n, α] = w[n] · f [n, α] so that F̂[k, α] = (W ∗ F)[k, α]. The Hann window is given by

w[n] = 1
2 {1 − cos[π(2n + 1)/N]}. The Fourier transform of the Hann window can be evaluated

explicitly:

W[k] = −1

4
eiπ/Nδ[k − 1] +

1

2
δ[k] − 1

4
e−iπ/Nδ[k + 1]. (2.24)
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Then, the Fourier transform of the function f [n, α] multiplied by the Hann window is

F̂[k, α] = −1

4
eiπ/NF[k − 1, α] +

1

2
F[k, α] − 1

4
e−iπ/NF[k + 1, α]. (2.25)

The spectrum |F̂[k, α]|2 for α = 2.7 and N = 64 is shown in figure 2.9. For the Hann window,

the spectrum |F̂[k, α]|2 decays as |k − α|−6 and, thus, it can expose more spectral features than the

spectrum |F[k, α]|2 with the default rectangular window.

2.4 Spectra of stochastic processes

In practical applications, we usually deal with processes that are not of finite energy and, at

the same time, not strictly periodic. Such processes are not described by regular functions.

Moreover, signals from observations or numerical experiments are often contaminated by noise.

The spectral representation of such processes is different from the Fourier representation. Such

processes are better dealt with in the framework of stochastic processes. Oceanic waves and, in

particular, internal waves are typical stochastic processes.

Although the spectral representations of stochastic and deterministic processes are different ,

the spectral estimation techniques are quite similar. The problems of leakage and aliasing have

similar nature. And the measures against leakage and aliasing are also similar. In this section

we define the spectral representation and spectrum of a stochastic process and classify available

non-parametric spectral estimation techniques that were used in the research.

2.4.1 Stochastic processes

Definition 6 (Stochastic process). A stochastic process { f (t) : t ∈ T} is a set of random functions

indexed by t, where T is some given index set, e.g. the set of all real numbers R, the set of all

integers Z, an interval [0, p], etc.

To distinguish between processes defined on a discrete and continuous sets, we will follow

notation similar to the one introduced in the previous section:

• { f [n]}— discrete stochastic process defined on Z;

• { f (t)}— continuous stochastic process defined on R.

We will indicate when the process is defined on a domain different fromZ or R.

By stationarity of a stochastic process we mean the covariance stationarity described in the

following definition.
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Definition 7 (Covariance stationary stochastic process). A stochastic process { f (t)} is covariance

stationary if its average value E{ f (t)} = µ is independent of time and the autocovariance υ(τ) =

cov{ f (t), f (t + τ)} ≡ E{ f (t) · f (t + τ)} − µ2 is a function of τ only.

Stochastic processes represent a broader class of processes in comparison with the regular

functions. Examples of the processes include:

• Not strictly periodic wave processes;

• Noise;

• Waves contaminated by noise.

2.4.2 Spectral representation

For regular functions, the spectral representation is given by a Fourier transform. For a stochastic

process, there exists an analogous spectral representation. However its definition is somewhat

more complicated.

Theorem 1 (Spectral representation theorem for a discrete stationary process). Let { f [n]} be a

real-valued discrete stationary process with the mean µ. There exists an orthogonal stochastic process

{Z(s)}defined for |s| ≤ sNyq ≡ 1/(2∆t), such that

f [n] = µ +

∫ sNyq

−sNyq

e2πisn∆tdZ(s), (2.26)

Theorem 2 (Spectral representation theorem for a continuous stationary process). Let { f (t)} be a

real-valued continuous stationary process with the mean µ. There exists an orthogonal stochastic process

{Z(s)} defined for s ∈ R, such that

f (t) = µ +

∫ ∞

−∞
e2πistdZ(s). (2.27)

For a more detailed description of stochastic processes in the context of spectral analysis, refer

to the work by Percival and Walden (1993). Here we only note that:

1. The process {Z(s)} is orthogonal if cov{dZ(ω + dω),dZ(ω)} = 0.

2. The stochastic Stieltjes integral in (2.26) and (2.27) is defined as the limit in mean square of

appropriate stochastic sums.

The spectral representation of a stochastic process for the discrete and continuous cases differ

essentially only in the limits of the integrals in Eq. (2.26) and (2.27), or, alternatively in the domains
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of the process {Z(s)}. For a discrete process, the spectrum is continuous and only frequencies up

to some maximum frequency, namely sNyq, can be resolved.

Definition 8 (Spectral density function (SDF)). The spectral density function Υ(s) of a discrete or

continuous stationary stochastic process is defined through the spectral representation {Z(s)} as

follows:

Υ(s)ds = E{|dZ(s)|2} (2.28)

It can be formally shown (Percival and Walden, 1993) that the spectral density function

makes a Fourier pair with the autocovariance function υ(τ). For a discrete stochastic process, the

autocovariance function and SDF are related by the following:

υ[n] =

∫ sNyq

−sNyq

Υ(s)e2πisn∆tds; (2.29)

Υ(s) = ∆t

∞
∑

n=−∞
υ[n]e−2πisn∆t. (2.30)

For a continuous stochastic process, the relations are

υ(τ) =

∫ ∞

−∞
Υ(s)e2πisτds; (2.31)

Υ(s) =

∫ ∞

−∞
υ(τ)e−2πisτdτ. (2.32)

As the spectral density function can be related to the autocovariance function by the Fourier

transforms, an alternative way to introduce the SDF is through the relations Eq. (2.30) or (2.32).

The typical problem of spectral estimation can be formulated as follows: given a realization

f [n] for n = 0, 1, . . . ,N−1 of a discrete stationary stochastic process { f [n]}, estimate the continuous

spectral density function Υ(s).

2.4.3 Periodogram

The spectral density function Υ(s) is defined through the autocovariance function v[n], see (2.30).

The latter must be estimated in order to evaluate the spectral density function. The autocovariance

for a discrete stationary process with the mean µ (either known or unknown) is, by definition,

υ[k] = E{( f [n] − µ)( f [n + k] − µ)}. (2.33)

For a time series f [n] of length N there are two most commonly used methods to estimate the

autocovariance function defined by Eq. (2.33):
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• ’Unbiased’ autocovariance estimator υ̃[k] for k = 0,±1, . . . ,±(N − 2):

υ̃[k] =
1

N − |k|

N−|k|−1
∑

n=0

( f [n] − µ)( f [n + |k|] − µ). (2.34)

• ’Biased’ autocovariance estimator υ̂(p)[k] for k = 0,±1, . . . ,±(N − 2):

υ̂(p)[k] =
1

N

N−|k|−1
∑

n=0

( f [n] − µ)( f [n + |k|] − µ) =

(

1 − |k|
N

)

υ̃[k]. (2.35)

The labels ’biased’ and ’unbiased’ have historical origin. Strictly speaking, estimators of the

autocovariance υ̃[k] and υ̂(p)[k] are unbiased and biased, respectively, only if the mean value µ is

known. If the mean µ is unknown (as is often the case), then, both estimators are biased. In some

cases the ’unbiased’ estimator happens to be even more biased than the ’biased’ one (Percival,

1993).

Let us simplify the analysis by considering processes with zero mean. Any other process

can be reduced to that with zero mean by the subtraction of the mean value µ (either known or

estimated) from each realization.

Substituting the ’biased’ estimator υ̂(p)[k] into Eq. (2.30), truncating appropriately the sum

over the lag k, and manipulating the resulting double sum, we obtain the periodogram estimation

of the SDF Υ(s):

Υ̂(p)(s) = ∆t

∞
∑

n=−∞
υ̂(p)[n]e−2πisn∆t

=
∆t

N

N−2
∑

k=−(N−2)

N−|k|−1
∑

n=0

f [n] f [n + |k|]e−2πisk∆t

=
∆t

N

∣

∣

∣

∣

∣

∣

∣

N−1
∑

n=0

f [n]e−2πisn∆t

∣

∣

∣

∣

∣

∣

∣

2

.

(2.36)

The periodogram evaluated at the Fourier frequencies, i.e. s = n/(N∆t) for n = 0, 1, . . . ,N − 1

coincides with p|Γ[n]|2, where Γ is the discrete Fourier transform of f and p = N∆t. As the domain

grows and N →∞, the periodogram approaches the spectrum Υ(s) (Percival and Walden, 1993),

just like p|Γ[n]|2 approaches the continuous Fourier transform divided by the length of the domain.

The periodogram estimator suffers from two artifacts: (1) bias, given by |Υ(s)−E{Υp(s)}|, due

to leakage and aliasing, and (2) variance, given by var(Υp(s)) . To understand both parts of the

error, let us consider the mathematical expectation of the periodogram E{Υ̂(p)(s)} and the variance

var{Υ̂(p)(s)}.
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It can be shown that the mathematical expectation of the periodogram E{Υ̂(p)(s)} is the convo-

lution of the true SDF Υ(s) and the Fourier transform of the rectangular window given by Fejér’s

kernel F (s):

E{Υ̂(p)(s)} =
∫ sNyq

−sNyq

F (s − s′)Υ(s′)ds′, (2.37)

where

F (s) =
∆t sin2(Nπs∆t)

N sin2(πs∆t)
. (2.38)

The variance of the periodogram can be estimated with the following asymptotic relation:

var{Υ̂(p)(s)} = Υ2(s), 0 < |s| < sNyq, as N →∞. (2.39)

The bias and variance of the periodogram can be efficiently reduced. Bias can be reduced by

the use of windows, and variance can be reduced by the use of either smoothing or some sort of

averaging. We consider these techniques below.

2.4.4 Windowing

In order to reduce bias in the periodogram, i.e. in order to minimize |Υ(s) − E{Υp(s)}|, let us

introduce the Direct Spectral Estimator (DSE), which is a modification of the periodogram:

Υ̂(d)(s) = ∆t

∣

∣

∣

∣

∣

∣

∣

N−1
∑

n=0

h[n] f [n]e−2πisn∆t

∣

∣

∣

∣

∣

∣

∣

2

, (2.40)

where h[n] is a window applied to the original time series f [n] with the aim of reducing bias in

the estimation. The mathematical expectation of the DSE is

E{Υ̂(d)(s)} =
∫ sNyq

−sNyq

H (s − s′)Υ(s′)ds′, (2.41)

whereH (s) is the spectral window playing similar role as the Fejér’s kernel in the periodogram.

The spectral windowH (s) is related to the Fourier transform H(s) of the window h[n]:

H (s) =
1

∆t
|H(s)|2 = ∆t

∣

∣

∣

∣

∣

∣

∣

N−1
∑

n=0

h[n]e−2πisn∆t

∣

∣

∣

∣

∣

∣

∣

2

. (2.42)

In the special case when h[n] = 1/
√

N for n = 0, 1, . . . ,N − 1 the DSE coincides with the peri-

odogram and the spectral window is equal to the Fejér’s kernel: H (s) = F (s).

39



Convolving Υ(s) with H (s) introduces bias to the actual spectrum Υ(s). The main idea of

windowing is to choose the window h[n] such that the sidelobes of the spectral window H (s)

would be smaller than the sidelobes of the kernel F (s) and, at the same time, the mainlobe width

of the spectral windowH (s) would allow capture of all separate peaks in the spectrum.

The variance of the DSE can be actually larger or smaller than that of the periodogram.

For processes with absolutely summable autocovariance function, it can be shown that in the

asymptotic case the variance is the same as for the periodogram:

var{Υ̂(d)(s)} = Υ2(s), 0 < |s| < sNyq, as N →∞. (2.43)

2.4.5 Optimal windows

There is a great deal of literature comparing and analyzing different windows (for example,

Harris, 1978; Gade and Herlufsen, 1987). The choice of a window for each particular case is

non-obvious and hard to justify. Quite often, when the circumstances are favourable, there is

effectively no difference between typical window functions, such as Bartlett, Hann, Welch or

other similar windows (Press et al., 1992). Moreover, according to Broersen (2000), “it is fiction

that objective choices between windowed periodograms can be made”. Yet, different windows

can be characterized with definite properties that can help to decide whether a window is ap-

propriate or inappropriate for a given situation. One such property is the spectral concentration

measure. Using this property, one can select a window whose corresponding kernel has the

highest concentration of energy in a given bandwidth, called the spectral resolution bandwidth.

Consequently, outside the spectral resolution bandwidth, such a window has the lowest possible

amount of energy, and, thus, the lowest possible bias due to leakage. One of the first optimal dis-

crete windows for the spectral estimation, based on such principle, was constructed by Eberhard

(1973).

Suppose the window h[n] has the Fourier transform H(s) defined on s ∈ [−sNyq, sNyq]. Let us

define the spectral concentration measure β2(W) in the interval [−W,W] through the following:

β2(W) =

∫ W

−W

|H(s)|2ds

/∫ sNyq

−sNyq

|H(s)|2ds , (2.44)

where |W| < sNyq. The length of the interval [−W,W] equal to 2W defines the spectral resolution

bandwidth. Large values of β2(W) signify high concentration of energy in the interval [−W,W].

Following Slepian (1978), the concentration β2(W) can be rewritten as:

β2(W) =

N−1
∑

n=0

N−1
∑

m=0

h[n]h[m]
sin[2πW(n −m)]

π(n −m)

/N−1
∑

n=0

h2[n] . (2.45)
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Let h be a vector of N values of the window h[n]:

h =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

h[0]

h[1]
...

h[N − 1]

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (2.46)

Let S be the N ×N matrix with the elements

Snm =
sin[2πW(n −m)]

π(n −m)
, (2.47)

where n = 0, 1, . . . ,N − 1 and m = 0, 1, . . . ,N − 1.

The concentration C can be expressed in terms of h and S:

C =
hTSh

hTh
, (2.48)

where (·)T denotes the transpose of a matrix. From the Eq. (2.48), we have the following

eigenvalue problem:

Sh = Ch. (2.49)

This problem has N distinct eigenvaluesλk(N,W), k = 0, 1, . . . ,N−1. We can order the eigenvalues

so that λ0(N,W) > λ1(N,W) > . . . > λN−1(N,W). Then, the maximum eigenvalue λ0(N,W)

is the maximum possible concentration for given parameters N and W. The corresponding

eigenfunctions νk,n(N,W) form a set of orthogonal windows. To obtain the final set of orthonormal

windows h
Slep

k
[n] maximizing the spectral energy concentration C, called Slepian windows or

discrete prolate spheroidal sequences (DPSS), we need to standardize νk,n(N,W) so that

N−1
∑

n=0

ν j,n(N,W) · νk,n(N,W) = δ j,k, (2.50)

where j = 0, 1, . . . , (N− 1), k = 0, 1, . . . , (N− 1) and δ j,k is the Kronecker delta function. An efficient

algorithm for constructing Slepian windows is given by Bell et al. (1993).

The parameter W defines the order of a discrete prolate spheroidal sequence. When W is

equal to the first Fourier sampling frequency 1/(N∆t), the sequence is said to be of the first order;

when W = 2/(N∆t), the sequence is of the second order, and so on. However, the parameter W

characterizing the spectral resolution bandwidth does not have to be a Fourier frequency, it can

be any real number less than sNyq, for example, 1.3/(N∆t).

41



2.4.6 Smoothing

Using windowing reduces bias associated with the sidelobe leakage. However, the DSE still lacks

in terms of variance, which is not reduced by windowing.

In order to reduce variance, we can smooth the DSE by convolving it with a 2sNyq-periodic

smoothing window W(s):

Υ̂(lw)(s) =

∫ sNyq

−sNyq

W(s − s′)Υ̂(d)(s)ds′. (2.51)

Υ̂(lw)(s) is the lag window spectral estimator.

The mathematical expectation of the lag window spectral estimator is

E{Υ̂(lw)(s)} =
∫ sNyq

−sNyq

U(s − s′)Υ(s′)ds′, (2.52)

where

U(s) =

∫ sNyq

−sNyq

W(s − s′)H (s′)ds′. (2.53)

In practice the smoothing of the DSE is done by the discrete convolution rather than by the

continuous one. The resulting estimator is defined for the discrete set of frequencies s[k] =

k/(N′∆t) where N′ ≥ N. The discretely smoothed direct spectral estimator Υ̂(ds)(s) is given by

Υ̂(ds)(s[k]) =

M
∑

j=−M

η[ j]Υ̂(d)(s′[k − j]), (2.54)

where η[ j] are the smoothing coefficients defined for integers j ∈ [−M,M]. The lag window

spectral estimator can be expressed through the discretely smoothed direct spectral estimator at

the discrete frequencies s[k] by choosing an appropriate set of smoothing coefficients η[ j].

To get an idea of how much the variance of the DSE decreases after smoothing, let us consider

a special case of the smoothed direct spectral estimator:

Ῡ(s[k]) =
1

2M + 1

M
∑

j=−M

Υ̂(d)(s[k − j]). (2.55)

The estimator Ῡ(s[k]) averages neighboring values of the DSE. Let us assume that the DSE Υ̂(d)(s)

is an unbiased estimator of the SDF Υ(s), that the values of the DSE at the discrete frequencies

s[k] are uncorrelated and that the SDF Υ(s) is a slowly varying function such that

Υ(s[k −M]) ≈ . . . ≈ Υ(s[k]) ≈ . . . ≈ Υ(s[k +M]). (2.56)
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Then the variance of the estimator Ῡ(s[k]) is reduced by a factor (2M+ 1) in comparison with the

DSE as follows:

var{Ῡ(s[k])} ≈ var{Υ̂(d)}
2M + 1

. (2.57)

2.4.7 Multitapering

A multitaper estimator is a linear combination of several direct spectral estimators utilizing a set

orthonormal windows (also called tapers, hence, the term ‘multitapering’). The simplest version

of the multitaper estimator is the average of K spectral estimators:

Υ̂(mt)(s) =
1

K

K−1
∑

k=0

Υ̂
(d)

k
(s), (2.58)

where Υ̂
(d)

k
(s) is a DSE using the Slepian window h

Slep

k
[n]. For each DSE there is a corresponding

spectral window

Hk(s) = ∆t

∣

∣

∣

∣

∣

∣

∣

N−1
∑

n=1

hk[n]e−2πisn∆t

∣

∣

∣

∣

∣

∣

∣

2

. (2.59)

The mathematical expectation of the estimator Υ̂(mt)(s) is

E{Υ̂(mt)(s)} =
∫ sNyq

−sNyq

H(s − s′)Υ(s′)ds′, (2.60)

where

H(s) =
1

K

K−1
∑

k=0

Hk(s). (2.61)

The protection of the multitaper estimator against sidelobe leakage is equal to the average protec-

tion of the DSE estimators Υ̂
(mt)

k
(s). The averaging of spectral windows, at the same time, assures

that the variance of the estimator Υ̂(mt)(s) is reduced by a factor of 1/K, provided that the direct

spectral estimators Υ̂
(mt)

k
(s) are uncorrelated. Approximate uncorrelatedness of the direct spectral

estimators follows from the orthogonality of the corresponding windows.

The algorithm for the multitaper estimation is the following:

I. Set the resolution bandwidth 2W;

II. Compute K ’unbiased’ spectral estimators Υ̂
(mt)

k
(s) for k = 0, . . .K − 1 with K ≤ 2NW∆t;

III. Average the spectra Υ̂
(mt)

k
(s).
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Instead of simple averaging, more complicated methods of combining the spectra Υ̂
(mt)

k
(s)

exist, e.g. methods using weighted averages.

2.4.8 Segment averaging (Welch’s method)

The basic idea of Welch’s method is to reduce variance by estimating spectra for several blocks of

a given time series and then averaging them. The idea was suggested before Welch in the article

by Bartlett (1950). The main steps of the estimation were the following:

I. Split the original time series f [n] into N/M consecutive blocks assuming that M is the

number of blocks and N/M is an integer.

II. Calculate the periodogram for each block;

III. Average all the periodograms.

Welch (1967) improved the method by making the blocks overlapping and changing the

periodogram on each block into a direct spectral estimator. The algorithm for calculating Welch’s

estimator is described below.

Let Nblock be the length of each block and let h[n] for n = 0, 1, . . . ,Nblock − 1 define a window

applied to each block. The direct spectral estimators computed for each block starting at the

index l are given by

Υ̂
(d)

l
(s) = ∆t

∣

∣

∣

∣

∣

∣

∣

Nblock−1
∑

n=0

h[n] · f [n + l]e−2πisn∆t

∣

∣

∣

∣

∣

∣

∣

2

, 0 ≤ l ≤ N −Nblock. (2.62)

We define Welch’s spectral estimator as

Υ̂(w)(s) =
1

M

M−1
∑

j=0

Υ̂
(d)
j·ns

(s), (2.63)

where M = N − Nblock + 1 is the total number of blocks and ns is the shift value such that

0 < n ≤ Nblock and ns(M − 1) = N −Nblock.

The mathematical expectation of Welch’s estimator coincides with the mathematical expecta-

tion of each direct spectral estimator Υ̂
(d)

l
(s):

E{Υ̂(w)(s)} =
∫ sNyq

−sNyq

H (s − s′)Υ(s′)ds′. (2.64)
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The improvement in variance can be readily seen for the special case when the blocks are

non-overlapping (ns = Nblock):

var{Υ̂(w)(s)} ≈ 1

M

M−1
∑

j=0

Υ2(s). (2.65)

2.4.9 Averaging realizations

If several realizations of the same process are available, then, to reduce variance, one can av-

erage estimators calculated for each realization. Suppose there are Nr realizations fl[n] for

l = 0, 1, . . . , (Nr− 1). Let Υ̂l(s) define a spectral estimation for each realization, obtained using any

of the estimators described above. Then, the average estimator is

Υ̂(ave)(s) =
1

Nr

Nr−1
∑

l=0

Υ̂l(s). (2.66)

The mathematical expectation of the estimator Υ̂(ave)(s) is the same as for each estimator Υ̂l(s).

The variance, on the other hand, is reduced by a factor 1/Nr.

2.5 Example: observations of van Haren et al. (2002)

Let us consider how the described techniques work for a time series from observations described

in the paper by van Haren et al. (2002). We analyse the flow speed u(t) measured at a mooring

near the Bay of Biscay at the depth of 4.81 km. The analysed time series is given by

un = u(tn), tn = n∆t, n = 0, 1, . . . ,N,

where ∆t = 20 min, N = 22100. The total length of the time domain is T = 306.94 days. The time

series un is pre-processed by subtracting the arithmetic average. A fragment of the time series un

is shown in figure 2.10.

All the spectral estimations for this example, are evaluated at the Fourier sampling frequencies,

i.e. at the frequencies ωn = 2πn/T, where n = 0, 1, . . . ,N/2. As the domain length is large, the

Fourier frequencies provide a sufficiently dense distribution of frequencies. The estimations will

be shown for the frequenciesω ∈ [0, 6× 10−4] s−1. The Nyquist frequency isωNyq = 2.6× 10−3 s−1.

Figure 2.11 shows the periodogram. The naive estimation is characterized by high variance,

so it is hard to make out the peaks corresponding to tidal harmonics and the inertial frequency.

Figure 2.12 shows the direct spectral estimation Υd(ω) evaluated using a Hann window and

the corresponding smoothed estimation Ῡ(s). The fragment of the direct spectral estimation is
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F 2.10: Observation example: a fragment of the time series un corresponding to the speed
u(t), t ∈ [280, 290] days.

Υ
(ω

)
(m

2
s−

1
)

ω/ω0

10−2

10−1

100

10+1

0 1 2 3 4

f

F 2.11: Observation example: the periodogram.
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Υ
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F 2.12: Observation example: the direct spectral estimationΥd(ω) evaluated using the Hann
window (gray line) and the corresponding smoothed version Ῡ(s) evaluated with M = 12 (thick
black line).

similar to the periodogram in figure 2.11. As the structure of the spectrum does not change

after applying the Hann window, leakage is not an issue for the frequency interval shown.

Smoothing the direct spectral estimation effectively reduces the variance, approximately by a

factor of 2M + 1 = 25. The prominent peaks at frequencies ω0, 2ω0, 3ω0, etc. are clearly seen.

There is a peak at the Coriolis frequency f and its multiples. In addition, there are weaker peaks

at the combinations of the frequencies ω0 and f , e.g. ω0 − f , ω0 + f , 2ω0 − f , etc. Our estimations

of the flow speed spectrum show the same energetic frequencies as the kinetic energy spectra

estimated by van Haren et al. (2002). The weak peaks in our estimation are more distinguishable

than they are in the estimation of van Haren et al.

Figures 2.13 and 2.14 demonstrate two other techniques: the multitaper and Welch estimators.

Both techniques adequately capture the energetic frequencies. The Welch method is very smooth

in comparison with other methods.

2.6 Conclusion

In this chapter we defined the concept of spectrum for regular functions and stochastic processes.

We also presented some efficient methods for dealing with bias and variance in the estimations

of the spectrum: windowing, smoothing, multitapering, segment averaging and averaging over

realizations. All of the concepts presented in this chapter were used during the research. In

particular, when seeking an optimal spectral estimation, different estimation techniques were

compared. Presented spectra, however, will be shown only for the simplest techniques providing

satisfying results. For example, whenever the multitaper spectral estimator provided similar
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F 2.13: Observation example: the multitaper estimation of the twelfth order Υmtm(ω).
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F 2.14: Observation example: the Welch estimation Υw(ω) evaluated using the Hann win-
dow on 49 segments with 50% overlapping.
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results as the smoothed or averaged direct spectral estimator, the preference was given to the

direct spectral estimation, as its internal structure is simpler and easier to interpret.
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Chapter 3

Temporal Spectral Analysis: Part I

3.1 Spectral content of internal waves

A periodic disturbance in a stably, continuously stratified fluid generates a spectrum of internal

waves. Depending on their frequency, they may propagate away from the disturbance or they

may be trapped near the generation site. In the case of finite-amplitude disturbances, the gen-

eration process and the resulting fluid motion are usually too complex to be described directly

in terms of particle displacements or velocities. However, there is evidence that the spectrum of

the wavefield has a much simpler structure which allows insight into the nature of the flow. The

deep ocean, for example, abounds with internal waves, generated primarily by two sources, tides

and winds (Munk and Wunsch, 1998); the variety and multitude of factors that affect the internal

wave field make a direct description of the waves impossible. Yet, the energy spectrum of the

waves has a simple algebraic representation, known as the Garrett-Munk spectrum (Garrett and

Munk, 1975), which is universal throughout the deep ocean, away from the strong generation

sites. With this in mind, in order to understand the essential physics of a flow generated by a

periodic disturbance, be it an oscillating body in a stratified fluid or a tidal flow over topogra-

phy, one may seek to study the fluid dynamics in association with the energy transfers within

the spectrum (see, for example, Winters and D’Asaro, 1997; Hibiya, Niwa, and Fujiwara, 1998;

Furue, 2003; Furuchi, Hibiya, and Niwa, 2005; Gerkema, Staquet, and Bouruet-Aubertot, 2006;

Legg and Huijts, 2006; MacKinnon and Winters, 2007).

Many facts about the energy cascade in internal waves are known. The first one is rather

obvious: if the oscillating source has the fundamental frequency ω0, most of the internal waves

generated directly by the source are of the same frequency, and, consequently, a considerable

amount of energy may be put into progressive waves of frequency ω0. Historically, the presence
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of a dominant frequency was the first property of internal waves to be noticed. For example,

in 1907, not long after the discovery of the internal waves in the ocean by Nansen (1902), Otto

Pettersson discovered the tidal periodicity of vertical internal movements in Danish sounds,

which was a discovery of great importance, considering that tides were not known as a source

of internal waves at that time. Internal waves of the fundamental frequency were also the

target of the earliest experimental studies. For example, Görtler (1943); Mowbray and Rarity

(1967); Thorpe (1968) and many others later, observed internal wave beams of the fundamental

frequency generated by a body oscillating in a linearly stratified fluid. In the special case of linear

stratification, when the buoyancy frequency Nb and Coriolis frequency f are constant, the beam

of frequency ω ∈ ( f ,Nb) has constant slope r given by

r2 =
ω2 − f 2

N2
b
− ω2

, (3.1)

and internal waves are manifested in the famous St Andrew’s Cross pattern. The consideration

of the oceanic analogues, topographically-generated beams of tidal frequency, can be found in

numerical studies (for example, Holloway and Merrifield, 1999), and in several field observations

(for example, Pingree and New, 1991). However, the best confirmation of the fact that waves of

the fundamental frequency represent the first candidate to drain energy from the source comes

from the spectra of internal waves. In the deep ocean, for example, the spectra of internal waves

near rough topography and near the surface are often characterized by prominent peaks at the

tidal and Coriolis frequencies (Olbers, 1983), both being the fundamental frequencies of the two

sources.

Waves of the fundamental frequencyω0 generated by an oscillating source are usually accom-

panied by weaker waves of higher harmonics nω0, where n ∈ {2, 3, . . .}. Although the harmonics

have been observed in most experiments on internal waves (e.g., Mowbray and Rarity, 1967),

their nature and energetics were obscure until the work by Bell (1975). He considered a linearly

stratified tidal flow over isolated topography in a non-rotating fluid of infinite depth, and used

the first-order approximation of the nonlinear operator in the governing equations. The solution

that Bell obtained is a linear superposition of tidal harmonics emanating from the ridge. It was

realized later that harmonics may also be produced by higher-order nonlinear interactions at

locations where waves of harmonic frequencies cross. The generation of the higher harmonics

through the collision or reflection of internal wave beams can be found in the numerical experi-

ments by Lamb (2004) and Gerkema et al. (2006). Recent laboratory experiments confirmed the

existence of higher-harmonic beams generated through reflection of a single beam (Peacock and

Tabaei, 2005). There are also field observations where internal waves are generated by nonlinear

superposition of tidal harmonics (Stashchuk and Vlasenko, 2005). The fact that the interaction of

internal wave beams can generate harmonics inspired a theoretical investigation of the nonlinear
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interactions by seeking a weakly nonlinear solution (Tabaei, Akylas, and Lamb, 2005). On the

whole, there is plenty of evidence that the harmonics represent a family of frequencies that can

efficiently receive energy from the source and later transfer it to other waves.

As internal waves are both strongly nonlinear (Holloway, 1980) and intrinsically unstable

(Koudella and Staquet, 2006), the set of possible frequencies is not limited to harmonics only.

When a single internal wave of frequency ω0 is subject to a small perturbation, an instability of

the parametric subharmonic type (PSI) will inevitably set in (Hasselmann, 1967), i.e. there may be

generated two other waves of frequencies ω1 and ω2, such that |ω1| + |ω2| = |ω0|. The maximum

growth rate occurs for the frequencies |ω1| = |ω2| = |ω0/2| (Staquet and Sommeria, 2002). The

earliest laboratory studies confirming the destabilization of a single standing wave by PSI include

the works by Thorpe (1968) and McEwan (1971). There was also a number of numerical works

on PSI within an oceanic context during 1970–1980 reviewed by Orlanski (1981). However, it

was shown that PSI (along with other resonant triad interactions), occurring in a random internal

wave field, is too slow to be the dominant mechanism for energy transfers in the deep ocean

(Olbers and Pomphrey, 1981).

Instabilities occurring in the vicinity of highly nonlinear regions where a subharmonic wave

is generated can be much stronger, sometimes leading to wave breaking on time-scales much

shorter than those of PSI for a single wave (de Silva, Imberger, and Ivey, 1997). The regions where

the forced nonlinear instabilities may occur include regions of reflection of an internal wave beam

from the boundary (Javam, Imberger, and Armfield, 1999) and regions where two strong beams

intersect (McEwan, 1973; Teoh, Ivey, and Imberger, 1997; Javam, Imberger, and Armfield, 2000).

The strong subharmonics observed in numerical simulations of internal tides by MacKinnon

and Winters (2003); Lamb (2004); Gerkema et al. (2006) are also generated by forced nonlinear

instabilities. It is likely that the strong subharmonics seen in field observations (e.g., Carter and

Gregg, 2006) are also the result of strong nonlinear instabilities. In a paper by MacKinnon and

Winters (2007), the authors refer to the instability occurring to the internal wave beam of tidal

frequency as “rapid parametric subharmonic instability”. However, it should be noticed, that

although the forced instabilities and PSI are kindred phenomena, the former do not have to be

resonant triad interactions (Teoh et al., 1997; Javam et al., 1999, 2000). The frequencies of strong

subharmonics generated through the forced instability may be different from ω0/2 predicted for

PSI (Lamb, 2004). Moreover, the overturning that may follow the instability is more likely to occur

in cases when energy is accumulated in trapped waves, not in progressive ones. In other words,

the impact of non-resonant triad interaction on the flow may change the dynamics completely,

before any resonant triad interaction comes into play. In this sense, the forced instabilities, or

non-resonant triad interactions, may be more important than PSI and resonant triad interactions.

If there are several sources of internal waves with fundamental frequencies ω1, ω2 and so on,

then, strong waves can be generated at the combination frequencies, such as |ω1 −ω2|, |2ω1 −ω2|,
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|2ω2−ω1|, etc. This was studied experimentally by Teoh et al. (1997); Chashechkin and Nekludov

(1990), theoretically by Kistovich and Chashechkin (1991), and numerically by Javam et al. (2000).

Strong waves at combination frequencies have been observed in the ocean. For example, van

Haren, Maas, and van Aken (2002) show that the spectra of internal waves have strong peaks at

combination frequencies of the two fundamental frequencies, the tidal and Coriolis frequency.

In this chapter, we consider the spectral content of the internal wave fields in our simulations

and show that apart from the harmonics and subharmonics, waves of interharmonic frequencies

greater than the fundamental frequency are generated. Interharmonics are defined as frequencies

lying between the multiples of the fundamental frequency; subharmonics are a subclass of inter-

harmonics corresponding to frequencies less than the fundamental frequency. In our numerical

experiments, subharmonics are generated by the instability of the tidal beam near strongly non-

linear regions. Through wave-wave interactions energy transfers from subharmonics to higher

interharmonics, so that the interharmonic frequencies observed in the flow spectra happen to be

the combination frequencies of the strongest subharmonics and harmonics. The magnitude of

waves produced by resonant and non-resonant triad interaction is comparable, i.e. the flow has

no preference for one or the other type of interaction.

3.2 Numerical experiments set-up

3.2.1 Domain

Equations (1.1) are solved in a symmetric two-dimensional domain representing a vertical cross-

section of the ocean with a flat-topped ridge at the bottom:

R = {(x, z) ‖ −L/2 ≤ x ≤ L/2,−H + h(x) ≤ z ≤ 0},

where L is the horizontal length of the domain, H is the water depth away from the ridge, and

h(x) defines the topography of the ocean bottom. The shape of the topography was adapted from

the work by Shore (1996):

h(x) = A exp

[

−
(

x

d

)4
]

, (3.2)

with A = 1800 m being the amplitude and d = 12500 m defining the width of the ridge. The hill

h(x) is supercritical, i.e. its maximum slope is steeper than the slope r0 of the radiated internal

tide. The criticality parameter corresponding to the topography is defined as α = max [h′(x)]/r0

and is within the range [1.54, 2.07] for the considered cases. With respect to the second harmonic,

the topography is subcritical in all cases, i.e. max [h′(x)]/r2 ∈ [0.75, 0.79], where r2 is the slope

corresponding to the second harmonic at one of the five latitudes. Typical parameters associated
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with the domain description are summarized in table 3.1 along with other parameters. The

development of the fluid flow is considered on the time domain [0,Ttot], where Ttot = 30 days.

The governing equations (1.1) are subject to boundary conditions at each side of the domain

and an initial condition. At the left boundary the flow is forced with a periodic tidal current

U(t) = U0 cos(ω0t). The following typical values for the amplitude U0 and the semidiurnal tidal

frequency ω0 were used: U0 = 0.025 m s−1 and ω0 = 1.4075 × 10−4 s−1. At the bottom of the

domain an impermeability condition is imposed: u · n = 0, where n is a vector normal to the

boundary. At the top of the domain we also use an impermeability condition w = 0. At the

right boundary an outflow boundary condition is applied allowing long waves to propagate

away freely without reflection. The model is initialized with the peak rightward barotropic

flow: u(x, z, t = 0) = Q/[H − h(x)], and v(x, z, t = 0) = 0, where Q is the maximum barotropic

volume flux given by Q = U0H. Incompressibility then dictates the vertical velocity component:

w(x, z, t = 0) = −Qh′(x)z/(H − h(x))2. The fluid density at time t = 0 is linearly stratified, so that

the buoyancy frequency

Nb ≡
(

− g

ρ0

dρph

dz

) 1
2

= 10−3 s−1 (3.3)

is constant.

3.2.2 Model

The numerical scheme used to solve equations (1.1) is a Finite Volume Method based on the

second-order projection technique developed by Bell, Collela, and Glaz (1989) and extended

to stratified flows by Bell and Marcus (1992) and to quadrilateral grids by Bell, Solomon, and

Szymczak (1989). The description of the model can be found in the paper by Lamb (1994).

The model uses a terrain-following grid. The total domain R is discretized with two staggered

grids for the evaluation of scalar and vector unknowns: vector grid points are located at the

centers of finite volumes and scalar grid points are located at the nodes of the finite volumes.

Each grid can be split into three parts with respect to the horizontal resolution: the central region

of length Lcent = 819.2 km with a relatively high horizontal resolution of ∆x = 100 m and two

side regions of length Lside ≈ 2887 km with lower horizontal resolution of ∆x = 1500 m. The grid

spacing varies smoothly from one region to another. The purpose of the side regions is to allow

the fast large-scale waves generated at the centre to propagate away from the source without

reflection. The length of the domain is chosen so that the waves have just enough time to reach

the boundaries, but not enough time to affect the middle part after reflection.

The vector grid discretizing the central part of the domain is given by the physical coordinates
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Category: Parameter Value

Physical: Coriolis frequency f (θ = 0◦) = 0 s−1

f (θ = 10◦) = 0.2535× 10−4 s−1

f (θ = 20◦) = 0.4993× 10−4 s−1

f (θ = 30◦) = 0.7300× 10−4 s−1

f (θ = 40◦) = 0.9385× 10−4 s−1

maximum tidal speed (deep water) U0 = 0.025 m s−1

tidal frequency ω0 = 1.4075× 10−4 s−1

tidal excursion distance (deep water) Ltid = 355.2398 m
gravitational acceleration g = 9.81 m s−2

Domain: total length L = 6000 km
water depth H = 5 km
ridge amplitude A = 1.8 km
ridge width parameter d = 12.5 km
total time Ttot = 30 days

Discretization: central region length Lcent = 819.2 km
# of horizontal points in the centre Icent = 8192
# of horizontal points on sides Iside = 2000
# of vertical points J = 192
cell width (central domain) ∆x = 100 m
cell height (deep water) ∆z = 26.042 m
cell height (shallow water) ∆z = 16.667 m
maximum time-step dt = 30 s

Nondimensional: criticality parameter α(θ = 0◦) = 1.5424
α(θ = 10◦) = 1.5681
α(θ = 20◦) = 1.6497
α(θ = 30◦) = 1.8040
α(θ = 40◦) = 2.0696

tide intensity Ltid/d = 0.0284
ridge aspect ratio d/A = 6.9444
ratio of elevation and depth A/H = 0.36

T 3.1: Problem parameters.
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{xi j, zi j}:


























xi j = −Lcent/2 +
(

i +
1

2

)

∆x, ∆x =
Lcent

I
,

zi j = −H + h(x)+ ( j +
1

2
)∆zi j, ∆zi j =

H − h(xi j)

J
,

(3.4)

where I = 8192 and J = 192 are the number of points in the vertical and horizontal direction,

respectively.

The time-stepping procedure allows a variable time-step based on the Courant–Friedrichs–

Lewy (CFL) condition for the upwind method. However, the maximum time-step was set to

a relatively small value dt = 30 s, so the time-step did not actually change throughout the

computation, except for some small intervals of time.

3.2.3 Reference frame

In order to choose an appropriate sampling time step ∆t and an appropriate reference frame, we

compared spectra of the baroclinic horizontal velocity in the Lagrangian, Eulerian and barotropic-

Lagrangian reference frame. Both the sampling time interval and reference frame affect the

spectrum of the velocity. The sampling rate defines the amount of aliasing in the spectral

estimation. The reference frame may lead to the appearance of Doppler shifted frequencies

in the spectral estimation. Ideally, working in the Lagrangian reference frame eliminates all

Doppler shifted frequencies. However, it is expensive to calculate all data sets in the Lagrangian

reference frame. We found that the barotropic-Lagrangian reference frame with the sampling

time interval of 30 min is an acceptable compromise for our purposes. In order to illustrate why

the barotropic-Lagragian reference frame suits us best, let us consider a concrete example of the

spectral estimation performed for different reference frames.

The first set of time series, representing the baroclinic velocity in the Eulerian reference frame,

is given by uEul(x, z, t) = u(x, z, t) − U(t)H/[H − h(x)] sampled in time with the sampling interval

∆t = 5 min at the locations shown in figure 3.1.

The second set of time series, representing the baroclinic velocity in the Lagrangian reference

frame, is given by uLag(ξ̃, η̃, t) = u(ξ̃, η̃, t) − U(t)H/[H − h(ξ̃)] corresponding to the fluid particles

whose trajectories are given by (ξ̃(t), η̃(t)) and whose initial locations are shown in figure 3.1; the

time series are sampled in time with the sampling interval ∆t = 5 min.

The third set of time series, representing the baroclinic velocity in the barotropic-Lagrangian

reference frame, is given by ubar(ξ, η, t) = ũ(ξ, η, t)−U(t)H/[H−h(ξ)]such that at the initial moment

(ξ, η) coincide with the coordinates (x, z) at the locations shown in figure 3.1; the time series are

sampled in time with the sampling interval ∆t = 30 min.
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solid line), barotropic-Lagrangian reference frame (dashed line).

Figure 3.2 compares the time series corresponding to the three reference frames for one of

the locations. The time series start deviating after the time period of about one day; however,

the difference does not grow significantly in time. The spectra ΥEul(ω), ΥLag(ω) and Υbar(ω),

corresponding to the time series uEul(x, z, t), uLag(ξ̃, η̃, t), and ubar(ξ, η, t) at different locations,

were evaluated using the direct spectral estimator. For the estimator we used a window given

by the prolate spheroidal sequence of the third order. The Nyquist frequency for the sampling

time interval ∆t = 30 min is ωNyq ≈ 12.4ω0, six times smaller than the Nyquist frequency for the

sampling interval∆t = 5 min. Figure 3.3 compares the spectra
〈

ΥEul(ω)
〉

,
〈

ΥLag(ω)
〉

and
〈

Υbar(ω)
〉

for the three reference frames, where 〈·〉 denotes averaging over different locations.

All the spectra are fairly close and capture the peaks at the same frequencies, consisting of

harmonics and interharmonics. Thus, to define the spectral content of the flow, we could use any

of the three reference frames. The decay rate of the three spectral estimations is approximately

the same, indicating that the level of aliasing, which should be more pronounced for the spectrum

Υbar(ω), is insignificant.

Although all of the spectra show similar energetic frequencies, the spectrum
〈

Υbar(ω)
〉

is closer

to the spectrum
〈

ΥLag(ω)
〉

than is the spectrum
〈

ΥEul(ω)
〉

. For the frequency rangeω ∈ [5ω0, 10ω0],

the spectrum
〈

ΥEul(ω)
〉

is larger than the other two. Thus, for the frequencies ω ∈ [0, 10ω0], the

spectrum
〈

Υbar(ω)
〉

represents a better approximation of the spectrum
〈

ΥLag(ω)
〉

.

Figure 3.4 demonstrates an analogous comparison of the spectra
〈

ΥEul(ω)
〉

,
〈

ΥLag(ω)
〉

and
〈

Υbar(ω)
〉

for the case θ = 20◦ N. The spectra are similar and capture the same frequencies.

The main differences are observed outside the free internal wave range. For the frequencies

ω > Nb, the spectrum
〈

ΥEul(ω)
〉

is again larger than the other two. Also, the spectrum
〈

ΥLag(ω)
〉
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F 3.4: One-dimensional spectra of the horizontal velocity at latitude 20◦ for the locations
shown in figure 3.1: Lagrangian reference frame (thick solid line), Eulerian reference frame (thin
solid line), barotropic-Lagrangian reference frame (dashed line).

corresponding to the Lagrangian reference frame has a weaker peak at the subinertial range.

In the rest of the work we will analyse the spectrum of the horizontal velocity in the barotropic-

Lagrangian reference frame.

3.2.4 Data

Five main numerical experiments that we discuss in this work are defined by the Coriolis fre-

quencies listed in Table 3.1, corresponding to latitudes θ = 0◦, 10◦, 20◦, 30◦ and 40◦ North. For

each experiment the model was set up to store a data set composed of time-series at 30 minute

intervals of the horizontal velocity u at each grid point in the central domain. Values of u are

denoted by {un
ij
}, where i = 0, 1, . . . , I−1, j = 0, 1, . . . , J−1 are the indices of the corresponding grid

coordinates {xi j, zi j}; the superscript n = 0, 1, . . . ,N − 1 corresponds to the temporal equipartition

tn = (n + 1)∆t covering the time period of 30 days, where the sampling interval is ∆t = 30 min

and the number of samples N = 1440. Even if the time-step dt is not always 30 s, the model guar-

antees that the data are stored at the equidistributed sampling times by changing appropriately

the time-step just before storing the data.

Additional numerical experiments with similar setups are discussed separately. In particular

we consider latitudes 25◦, 26◦, . . ., 35◦ N. Also, latitude 20◦ N is considered with different

strengths of background flow: 0.8U0 and 1.2U0. Further, we consider the case 20◦ N for different

amplitudes of topography: 0.8A0 and 1.2A0. Lastly, we consider the case 0◦ with corrugated

topography constructed using the spectrum based primarily on topographic data from the eastern

central North Pacific.
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Apart from the horizontal velocity in the Eulerian reference frame given by {un
ij
}, we also calcu-

lated the baroclinic velocity in the barotropic-Lagrangian reference frame, i.e. in a reference frame

moving with the barotropic tide of horizontal velocity Ub(x, t) = U0 cos(ω0t)H/[H − h(x)]. This

yielded the matrix {ũn
ij
} = {u(ξn

ij
, ηn

ij
, tn) − Ub(ξn

ij
, tn)} corresponding to the discretized coordinates

{ξn
ij
, ηn

ij
} in the barotropic-Lagrangian reference frame. We set {ξ0

i j
, η0

i j
} = {xi j, zi j}.

3.2.5 Spectral analysis

To analyze energy transfers within the modeled flow, we estimate two functions: the average

spectrum Υ(ω) characterizing the distribution of energy in the flow with respect to different

frequencies; and the spectrogram S(ω, t) representing the evolution of the spectrum with respect

to time.

Spectrum

Let r be a generic function representing the horizontal baroclinic velocity ũ in our simulations.

We let r be the set of N values of the function r at the time moments tn = n∆t:

r =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

r0

r1

...

rN−1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

with rn = r(tn), n = 0, 1, . . . ,N − 1.

Let S(ω) with ω ∈ [0,∞) be the continuous one-sided power spectrum of the process r(t), such

that S(ω)dω is the average contribution to the power from components with frequencies from the

interval [ω,ω + dω]. The power of the process r(t) on the time interval [0,Ttot] is, then,

P ≡ 1

Ttot

∫ Ttot

0

r2(t)dt =

∫ +∞

0

S(ω)dω ≈ 1

Ttot

N−1
∑

n=0

r2
n∆t. (3.5)

We estimate the spectrum S(ω) using the direct spectral estimator:

Ŝ(ω) =
∆t

π

∣

∣

∣

∣

∣

∣

∣

N−1
∑

n=0

gnrn exp(−iωtn)

∣

∣

∣

∣

∣

∣

∣

2

, ω ∈ [0, ωNyq) (3.6)

where ωNyq = π/∆t ≈ 1.75× 10−3 s−1 is the Nyquist frequency and gn is a data window satisfying
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the condition
N−1
∑

n=0

g2
n = 1. (3.7)

The spectral estimator Ŝ(ω) in (3.6) is defined on a continuous interval [0, ωNyq). We use (3.6)

directly when we need to calculate the spectrum at a single given frequency. The evaluation of

the spectral estimation Ŝ(ω) at a large number of frequencies can be efficiently done with the use

of zero-padding and the Fast Fourier Transform (FFT) described by Cooley and Tukey (1965). In

this chapter, we use 213 frequencies to discretize the interval [0, ωNyq).

The spectral estimator Ŝ(ω) suffers from bias and variance. As the spectral estimation is

essentially the convolution of the real spectrum and the squared Fourier transform of the window,

the bias can be efficiently reduced by the use of an appropriate data window. The optimal window

for approximation of the spectrum with a certain spectral resolution is given by a discrete prolate

spheroidal sequence (Slepian, 1978). Spectral resolution is associated with the smallest frequency

scale of the estimation. As there is a trade-off between high spectral resolution and leakage, an

optimal window is the one with the highest resolution for which the leakage is negligible.

We chose the spectral resolution to be 12π/Ttot ≈ 1.4544 × 10−5 s−1, so that each energetic

frequency in the spectrum is represented by a peak with the bandwidth 12π/Ttot. We compared

several spectral estimations with different resolution and found that with a resolution of 12π/Ttot

the spectral estimation has no appreciable leakage in the high-frequency range of the spectrum,

and, also, most of the observed energetic frequencies in the spectral estimation are well-resolved.

Figure 3.5 illustrates the shape of the window given by a discrete prolate spheroidal sequence

that we used in this work for N = 64.

The variance of the spectral estimator Ŝ(ω) can be reduced by averaging spectra for different

realizations of the process r. For example, let us consider the procedure of calculating the

average spectrum of the flow within 40 km of the hill. For each coordinate (ξn
ij
, ηn

ij
) in the
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barotropic-Lagrangian reference frame, such that |ξ0
i j
| < 40 km, we calculate the spectrum Ŝi j(ω)

of the corresponding time-series ũn
ij

. Next, we average the spectra Ŝi j(ω) over i and j and obtain

the average spectrum Υ(ω):

Υ(ω) =
〈

Ŝi j(ω)
〉

,

where the triangular brackets stand for averaging over indices i and j.

Spectrogram

When the time-series r is part of a non-stationary signal, it is useful to estimate the spectrum

on consecutive intervals of time in order to see how the spectrum evolves in time. In order to

calculate the spectrogram, we split the sequence r into N −M + 1 subsequences of length M:

r0 = { r0, r1, . . . , rM−1 },
r1 = { r1, r2, . . . , rM },
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

rN−M = { rN−M, rN−M+1, . . . , rN−1 },

(3.8)

where each subsequence rk corresponds to a time-interval [tk, tk+M−1]. For each subsequence rk we

calculate the spectral estimation Ŝk(ω) using the estimator (3.6) with the same window. We define

the spectrogram Ŝ(ω, t) at the discrete times corresponding to the centers of the time-intervals

[tk, tk+M−1] as follows:

Ŝ
(

ω,
tk + tk+M−1

2

)

= Ŝk(ω). (3.9)

The choice of the subsequence length is arbitrary; however, it should be short enough to capture

the evolution appropriately while long enough to ensure that the significant features of the

spectrum are resolved. Taking into account this trade-off, we found that the length of subsequence

M = N/3 = 480 is a reasonable value, it gives the evolution of spectrum over the time period of

20 days with a spectral resolution of 12π/T, where T = 10 days.

3.3 Results

For the purpose of systematic analysis, our results may be considered under the following

headings: (1) underlying dynamics; (2) the average spectra; (3) spatial distribution of harmonics

and interharmonics; and (4) evolution of the spectra in time based on spectrograms.
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3.3.1 Underlying dynamics

The solution to (1.1) consists of progressive and trapped internal waves, whose dominant fre-

quencies, according to the spectrum of the flow, form a discrete set of tidal harmonics and

interharmonics. Both progressive and trapped waves can be seen in figures 3.6 and 3.7 that show

snapshots of the horizontal velocity field within 40 km of the ridge at time t = 30 days for the

latitudes 0◦, 10◦, 20◦, 30◦, 40◦ N (figure 3.6) and 25◦, 27◦, 28◦, 28.82◦, 29◦ N (figure 3.7). The

progressive and trapped waves are generated where the flow is highly nonlinear: the region

near the ridge and regions where strong progressive internal waves collide or reflect from the

boundary. Only the strongest waves are seen in the velocity snapshots.

Progressive waves have frequencies within the range ( f ,Nb). Since Nb is constant, waves of a

single frequency ω can form a straight beam. The slope r of a beam, given by (3.1), is determined

by the three frequencies ω, Nb and f . As the topography is supercritical, strong waves of tidal

frequency generated at the edges of the ridge, where the slope is critical, propagate both upward

and downward, so that pronounced tidal beams are seen above the top and along the side of the

ridge. The second harmonic 2ω0 and other higher harmonics have slopes steeper than any part

of the ridge, so their corresponding beams emanating from the generation sites at the edges of

the ridge, are directed upward only. For most cases, progressive waves dominate the flow, which

is manifested in the pronounced beam structure (figures 3.6a,b,c,e and 3.7a,b,c). As the latitude

approaches the critical latitude, the beam structure disappears and gradually transforms into

patches of trapped waves (see figure 3.7).

Trapped waves have frequencies outside ( f ,Nb) and some of them are seen as horizontally

elongated patches near the generation sites. For example, when θ = 30◦N the strong waves of a

subtidal frequency close to ω = 0.5ω0 do not propagate away but are trapped near the ridge and

near the regions where the tidal beams hit the surface (see figure 3.6d).

The spectra of the internal waves (figures 3.10 and 3.11) that will be explained in the next

section, have a discrete set of dominant frequencies, either tidal harmonics or interharmonics;

here, we consider how tidal harmonics and interharmonics appear in the velocity field. The

major part of the energy in the flow is concentrated in tidal harmonics, i.e. waves corresponding

to the multiples of the tidal frequency: ω = nω0 where n ∈N, except at 20◦ and 30◦ N where the

strong subharmonic spectral peak is greater in magnitude than the peak at frequency 2ω0. Some

of the beams corresponding to the strongest harmonics are seen in figure 3.6, e.g. the first and

second harmonics are seen to be the dominant features of the velocity field for the cases θ = 0 and

10◦ N. Tidal harmonics with n < Nb/ω0 are progressive waves that contribute to the far field away

from the generation site, while tidal harmonics with n ≥ Nb/ω0 are trapped near the generation

site. During the early stages of the flow development, tidal harmonics are generated through

tide-topography interaction near the edges of the ridge. At this stage the solution is similar to the
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analytical one obtained by Bell (1975). Bell considered a similar problem in a non-rotating fluid

of infinite depth, and approximated the operator u ·∇ in the governing equations with U(t)∂/∂x,

i.e., only advection by the horizontal component of the barotropic tide plays a role. Bell’s solution

was later extended to the case of finite depth by Khatiwala (2003). The solutions obtained by Bell

and Khatiwala are given by linear superpositions of tidal harmonics emanating from near the

ridge; as in our simulations, the energy in harmonics nω0 decays rapidly with n.

The progressive tidal beam harmonics produced by tide-topography interaction propagate

away from the ridge and eventually either intersect with other waves or reflect from a boundary.

For either of these events, the incident wave interacts nonlinearly with the encountered or the

reflected wave, and, as a result, may produce waves at the combination frequencies, which are also

from the set of tidal harmonics nω0 with n ∈N. For example, if a wave of frequency 2ω0 interacts

with itself after reflection, it produces a wave of frequency 4ω0, then the generated wave interacts

with the initial wave producing a wave of frequency 6ω0, and so on. The interaction and the

energetics of colliding and reflecting internal wave beams in a non-rotating fluid was described

analytically by Tabaei et al. (2005). They assumed that the flow away from the generation sites

was weakly nonlinear and sought the solution as a composition of tidal harmonics. If the flow

was indeed weakly nonlinear, the internal wave field within a finite distance of the ridge would

eventually resolve into a quasi-steady beam structure.

The flow consisting of tidal harmonics is far from reaching an equilibrium: the strong beams of

tidal frequency are perturbed periodically by the topography and other beams, and soon become

unstable. Figures 3.8 and 3.9 show how the patterns of destabilization change with latitude for

the tidal beam on top of the ridge. For latitudes 0–25◦ N the pattern of destabilization has a

characteristic slope decreasing as the latitude increases (figure 3.8). As the latitude approaches

the critical latitude, the pattern of destabilization becomes predominantly horizontal (figure 3.9).

As the tidal beams become unstable, waves of interharmonic frequencies are generated.

Among all interharmonics generated in the flow and seen in the spectra (figures 3.10 and 3.11),

the most evident are subharmonics, i.e. interharmonics of subtidal frequency ω < ω0 (e.g., figure

3.6a–c). Beams of subharmonic frequencies are less steep than any of the beams with frequency

nω0, so subharmonics are easily detected in a velocity field. For example, in case of θ = 20◦

and 25◦ N, four strong beams of subtidal frequencies (determined by the slope) emanate from

the two destabilized beams of tidal frequency above the top of the ridge (figure 3.6c). Similar

beams of subharmonic frequencies, although less pronounced, can be seen for the cases θ = 0◦

and 10◦ N (figure 3.6a and b). For the latitudes approaching θcr, in particular, case 28◦ N, the

frequency of the beams directed downward falls below the Coriolis frequency and the beams

become patches of trapped waves; at the same time, the other beam of subharmonic frequency

remains a progressive wave. The subharmonics are generated not only above the ridge, but

everywhere where the tidal beam becomes unstable, i.e. on the sides of the ridge and where the
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tidal beams are reflected from the top and the bottom of the domain. The locations where the

subharmonics are generated are especially well seen when the subharmonics are trapped.

Apart from subharmonics, the flow has other interharmonics whose frequencies are larger

than the tidal frequency. Their presence can be explained from the following simple reasoning:

any subharmonic ωα interacting with harmonics nω0, can produce waves of frequency nω0 +ωα,

n ∈ N. If the energy of a subharmonic is comparable to that of the dominant harmonic ω0, then

the energetics of higher interharmonics should be comparable to those of higher harmonics nω0

with n ≥ 2. In general, the generation of a wave at frequency ωα ∈ [0, ω0) should be accompanied

by the generation of waves at frequencies ωα + nω0 with n ∈ N. The higher interharmonics

are harder to detect directly in a velocity field, not only because they are weaker, but, also,

because their slopes can be easily mistaken for those of tidal harmonics. Their presence becomes

obvious after considering the average spectra of the flow and spatial distributions of waves with

interharmonic frequencies.

3.3.2 Spectrum of the flow

In order to quantify the distribution of energy among different harmonics and interharmonics

we estimated the average spectra of the flow in different regions for the different latitudes. The

spectra reveal the most important spectral components of the flow and quantify their energetics.

Figure 3.10 shows the average spectra of the flow within 40 km of the ridge for the cases

θ = 0◦, 10◦, 20◦, 30◦ and 40◦ N. Figure 3.11 shows the near-critical latitudes θ = 25◦, 26◦, 27◦,

28◦ and 28.82◦ N. Finally, figure 3.12 shows the spectra for the latitudes above the critical one,

namely θ = 31◦, 32◦, 33◦, 34◦ and 35◦ N, characterized by strong peaks in the subinertial range.

To get an idea of how spectra behave on higher frequencies, the spectra in figure 3.12 are shown

on a larger range of frequencies, up to the Nyquist frequency of about 12.4ω0. The spectra are

calculated from the horizontal velocity time-series in the barotropic-Lagrangian reference frame.

The spectra have self-similar structure with prominent peaks at a discrete set of tidal harmonics

and interharmonics. The spectra are self-similar in the following sense: the shape of each

spectrum in the low frequency range (0, ω0] nearly copies itself in the further frequency ranges

(nω0, (n+1)ω0] for n ∈N. As there are only a few dominant frequencies in the interval (0, ω0], the

spectrum is comprised of peaks at the tidal harmonics {nω0} and the interharmonics {ωα + nω0},
where n ∈ N and ωα can be any of the subharmonics. For the spectra shown in figure 3.10, both

harmonics {nω0} and interharmonics {ωα + nω0} decay with n at a similar exponential rate.

One of the consequences of the observed self-similarity and exponential rate of decay is that

if a subharmonic ωα has less energy than the tidal frequency ω0, then the higher interharmonics

{ωα + nω0} are also weaker than the corresponding harmonics {(n + 1)ω0}, where n ∈ N. If, on
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−5 ≤ x ≤ 5 km (dashed line), 30 ≤ x ≤ 40 km (solid line).
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the other hand, the subharmonics are stronger than the tidal frequency, as in the case of tidal-to-

subtidal conversion of motion happening, for example, in certain locations near the ridge for the

case θ = 30◦ N (not shown), then the higher interharmonics can also dominate higher harmonics.

The spectral peaks at frequencies within the range ( f ,Nb) correspond to progressive waves;

the peaks outside the range ( f ,Nb), to trapped waves. As the trapped waves have amplitudes

comparable to those of progressive waves, the shapes of the average spectra do not allow us to

distinguish trapped waves from progressive. To see which waves are trapped near the ridge (the

strongest generation site) and do not propagate away, we compare the average spectra in the

region −5 ≤ x ≤ 5 km on top of the ridge and the average spectra in the region 30 ≤ x ≤ 40 km

away from the ridge. Figure 3.13 demonstrates the comparison for the latitudes 0◦, 10◦, 20◦, 30◦

and 40◦. For the case θ = 20◦ N, it is seen that the peaks at frequencies less than the Coriolis

frequency are virtually absent in the spectrum for the region away from the ridge, indicating that

waves of subinertial frequency are trapped and do not reach the far field region. For the higher

frequencies ω > Nb, the spectrum of the flow away from the ridge has a significantly higher

drop-off rate than that of the spectrum near the ridge, which is seen for all latitudes.

Figure 3.14 provides the comparison of the spectra calculated for −5 ≤ x ≤ 5 km and 30 ≤
x ≤ 40 km for the near-critical latitudes θ = 25◦, 26◦, 27◦, 28◦ N and θcr. For these cases, the

spectra of the flow on top of the ridge exhibit strong peaks at subharmonic frequencies less than

the Coriolis frequency. In particular, one strong peak in the subinertial range corresponds to the

difference of the two other subharmonics close to ω0/2 whose peaks are blending into one at

ω0/2. In the spectra of the flow away from the topography the peaks in the subinertial range are

either absent or much weaker. The decay of the spectra is more gradual for the flow on top of the

ridge in comparison with the spectra corresponding to the flow away from the topography. The

spectrum of the flow on top of the ridge also shows more prominent interharmonic peaks. For

example, the spectrum at 26◦ N is much spikier on top of the ridge than it is far from the ridge.

The explanation is that for the region near the ridge more energy flows into subharmonics and,

consequently, into other interharmonics.

Similar spectra are shown for the latitudes θ = 31◦, 32◦, 33◦, 34◦ and 35◦ N in figure 3.15. The

spectra are shown for the frequency range ω ∈ [0, ωNyq].

The cause of another effect for the near-critical latitudes is not clear. As the frequency increases

the peaks corresponding to interharmonics attain magnitudes comparable with the magnitudes

of the peaks corresponding to harmonics. For the frequenciesω > Nb the peaks corresponding to

harmonics and interharmonics visibly merge into a smooth gradually-decaying spectrum. This

effect is especially pronounced for the spectra of the flow within 5 km of the ridge (for example,

cases 25◦, 26◦ and 27◦ N). Similar smoothing happens for the spectra of the flow away from the

topography, but to a smaller degree. Although it is not clear why the smoothing happens to a

larger degree in the high-frequency range, the fact that interharmonics alone can lead to a smooth
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spectrum, like the spectrum observed in the deep ocean, is quite remarkable.

Note that the effect of smoothing is not due to leakage. Figure 3.16 compares spectral esti-

mations for the case 27◦ N using different windows. The decay rate of the spectral estimation

using the window given by the discrete prolate spheroidal sequence (DPSS) of the first order, is

slightly less than those of the spectral estimations with windows given by DPSS of the third and

sixth order. The estimations using DPSS of the third and sixth order, on the other hand, exhibit

similar structure of the spectrum and have similar rate of decay. This suggests that the spectral

estimator using DPSS of the third order does not suffer appreciably from leakage. Moreover, if

the ragged structure of the spectral estimations for the high-frequency range were due to leak-

age, i.e. if the peaks for ω > Nb were side-lobes of the strongest peak in the spectrum, then the

structure of the spectrum would be much finer: side-lobes corresponding to the window given

by DPSS of the third window alternate every 0.016ω0, approximately four times faster than the

peaks in the corresponding spectral estimation. In the spectral estimations, in the high-frequency

range, the peaks alternate every 0.065ω0. Interestingly enough, the value 0.065ω0 coincides with

the frequency of the first visible peak (at 0.65ω0) in the estimation of the flow within 5 km of

the ridge (see figure 3.14, case 27◦ N). In the same spectral estimation, the value 0.65ω0 is also

approximately equal to the difference between frequencies 0.532ω0 and 0.468ω0 corresponding

to the two strongest subharmonic peaks in the estimation. The above arguments suggest that the

“smooth” spectrum in the high-frequency range is indeed composed of interharmonics which

were generated through triad interactions.

The important result that can be extracted from the spectra is the existence of strong interhar-

monics for the near-critical latitudes. For the case θ = 40◦ N, the interharmonics are very weak,

but are present. From our estimates, it follows that subharmonics, which have been observed

before in spectra of internal waves (MacKinnon and Winters, 2007; Gerkema et al., 2006), happen

to be just the strongest among other interharmonics. Consistent with the aforementioned studies,

the interharmonics are particularly intense at near-critical latitudes, where the critical latitude

is θcr = 28.82◦ N where the Coriolis frequency is half the tidal frequency. For example, at the

latitude 20◦N we see that the frequencies ω ≈ 0.4269ω0 and ω ≈ 0.5752ω0 are the second and

third strongest frequency in the spectrum after the tidal frequency ω0.

Our results disagree with some statements made by MacKinnon and Winters (2007), who

claim: “For the internal tide, energy can be drained through PSI only when the half-frequency

recipient waves are within the internal wave bandω0/2 ≥ f , a criterion only satisfied equatorward

of 28.9◦”. In our simulations, subharmonics are generated for the cases when θ ≤ θcr and both

recipient subharmonic waves are within the internal wave band, for the cases when θ ≤ θcr

and only one recipient subharmonic wave is within the internal wave band, e.g. case θ = 28◦

and 28.82◦ N, and, finally, for the cases when θ > θcr and both recipient subharmonic waves

are outside the internal wave band. As will be shown later, in the case θ = 34◦ > θcr, both
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F 3.16: One-dimensional spectrum of the flow for the cases θ = 27◦ N within 5 km of the
ridge: DPSS of the first order (dashed line), DPSS of the third order (thin solid line), DPSS of the
sixth order (thick solid line).

subharmonics are subinertial, but the magnitude of their corresponding peaks is larger than that

of subharmonics in the case θ = 0◦ N. Thus, the generated subharmonics can not always be a

result of a resonant triad interaction. To explain the discrepancy we may refer to Phillips (1967)

discussing the non-resonant triad interaction: “There is no prior reason why forced components,

whose wavenumbers and frequencies do not obey the wave-dispersion relation, should not be

generated with amplitudes comparable with those of the primary waves.”

3.3.3 Spatial distribution of harmonics and interharmonics

Generated in various regions, propagating at numerous angles and exchanging energy, harmonics

and interharmonics have a complex spatial distribution. The power spectra calculated for each

spatial point indicate where a wave of a certain frequency is more or less energetic; thus, we can

construct their spatial distribution. After examining spatial distributions of tidal harmonics and

interharmonics at different latitudes, we found that:

I. The wave of a harmonic or an interharmonic frequency within the range ( f ,Nb) forms a

beam whose slope is consistent with the linear dispersion relation (3.1).
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II. The wave of a harmonic or an interharmonic frequency outside the range ( f ,Nb) forms a

patch near the source.

III. The generation sites of a tidal harmonic include: the region near the edge of the ridge;

a region where two harmonics collide; and a region where a harmonic reflects from the

boundary.

IV. The generation sites of an interharmonic include: the regions where the beam of tidal

frequency becomes unstable, i.e. above the ridge, on the side of the ridge, or where the tidal

beam is reflected from the boundary; the regions where an interharmonic collides with

another wave.

Figures 3.17, 3.18, 3.19, 3.20, 3.21 and 3.22 and 3.22 illustrate the points made above for a

subset of tidal harmonics and interharmonics at latitudes θ = 0◦, 10◦, 20◦, 25◦, 28.82◦, and 30◦ N.

For a particular frequency ωα, we calculate the spectral matrix Ŝi j(ωα) for the time-series {un
ij
}.

After sorting the matrix Ŝi j(ωα), we choose approximately 32% of Ŝi j(ωα) with the largest values

and visualize those at the corresponding coordinates (xi j, zi j). The 5% of the matrix Ŝi j(ωα) with

the largest values are emphasized with a cross-hatched pattern. Below, we discuss latitudes 0◦,

20◦ and 30◦ N.

For the case θ = 0◦, figure 3.17 demonstrates the distribution of the following frequencies:

ω = 0.4ω0, 0.6ω0, ω0, 1.4ω0, 1.6ω0, 2ω0. The subharmonic ω = 0.4ω0 corresponds to the strongest

subharmonic peak in figure 3.10(a). The tidal harmonic has most of its energy in the tidal beams

generated near the edges of the ridge. The second harmonic is manifested in several beams, some

of which are generated near the edges of the ridge, some, where a tidal beam hits the boundary,

and some, where tidal beams intersect. The subharmonic 0.4ω0 is dominated by two beams, one

of which originates from the unstable tidal beam above the ridge, and another, from the unstable

tidal beam on the side of the ridge. The beams corresponding to the subharmonics are wider

than those of harmonics. This is because the development of instability starts from the base of

the beam and with time spreads further and further along the beam; accordingly, the sources of

the subharmonics stretch out. For the same reason, the beams of the interharmonic 1.4ω0 are also

wide. All the beams corresponding to interharmonics are also seen to be generated in the regions

of instability of the tidal beam.

For the case θ = 20◦ N, figure 3.19 demonstrates the two strong subharmonics 0.4269ω0

and 0.5752ω0 that appear in the velocity field (figure 3.6c) and in the spectra (figure 3.10c);

also, the figure shows the spatial distribution of the corresponding interharmonics 1.4269ω0 and

1.5752ω0 and two harmonics ω0 and 2ω0. (All the approximate values of interharmonics are

calculated according to the average spectra Υ(ω) shown in figures 3.10–3.12.) The subharmonics

are generated at three common generation sites, where the strong tidal beam becomes unstable:

above the ridge, on the side of the ridge and where the tidal beam reflects from the bottom. The
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beam of subharmonic frequency formed where the tidal beam reflects from the bottom is more

clearly seen in the velocity field snapshot (figure 3.6c). All the shown interharmonics form beams.

In particular, it is seen that the familiar “fan” of beams emanating from the edge of the ridge

consists not only of harmonics, as in Bell’s solution, but, also, of interharmonics in between. The

weaker interharmonics, e.g. 0.1544ω0 and 0.8504ω0, are not shown here because they are more

susceptible to error and have a noisy spatial distribution, which is hard to interpret. It is certain,

however, that they exist at the regions of instability.

For the case θ = 30◦ N, figure 3.22 demonstrates the distribution of energy corresponding

to the frequency 0.5ω0, ω0, 1.5ω0 and 2ω0. The peak at the frequency 0.5ω0 seen in figure

3.10, as will be shown later, corresponds to two subharmonics close to the Coriolis frequency

f . The spectral resolution renders the two subharmonics almost indistinguishable. One of the

subharmonics is progressive and the other is trapped. This can be deduced, in part, from figure

3.13, θ = 30◦ N. The subharmonic peak corresponding to −5 ≤ x ≤ 5 km has its maximum

at a frequency slightly less than the Coriolis frequency, while the weaker subharmonic peak

corresponding to 30 ≤ x ≤ 40 N has its maximum at a frequency slightly larger than the Coriolis

frequency. Accordingly, figure 3.22(a) shows that the distribution of energy at frequency 0.5ω0

has some non-zero slopes that can be attributed to the progressive wave; however, mostly, energy

is concentrated near the ridge, which is the manifestation of the trapped wave. The energetic

patches corresponding to the trapped subharmonic are gathered around the regions of instability

of the tidal beam: above and on the side of the ridge; where the tidal beam is reflected from the

boundary. The energetic interharmonic close to 1.5ω0, generated at the same generation sites as

the trapped subharmonic, forms a beam whose slope is given by the linear dispersion relation.

The harmonics behave similarly to the case θ = 0◦ N.

The beam structure of the flow emerges here even more clearly than in the velocity snapshots.

It is seen that the waves with subharmonic frequencies also form internal wave beams if the

frequency is within the range ( f ,Nb), (see, for example, figure 3.17a). The slopes of the interhar-

monic beams agree with the linear dispersion relation (3.1). If the interharmonic is outside the

range of freely propagating waves, the wave is trapped, as in the case of the trapped subharmonic

at θ = 30◦ N.
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F 3.17: Spatial distribution of waves with different frequencies within 40 km of the ridge for
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log(Ŝ(ω)) (m2 s−1)log(Ŝ(ω)) (m2 s−1)
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F 3.18: Spatial distribution of waves with different frequencies within 40 km of the ridge
for the case θ = 10◦ N: (a) ω = 0.4087ω0, (b) ω = 0.5913ω0, (c) ω = ω0, (d) ω = 1.4087ω0, (e)
ω = 1.5913ω0, (f) ω = 2ω0.
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3.3.4 Spectrum evolution

Further insight into the nature of harmonics and interharmonics can be gained by quantifying

the time evolution of their energetics. To do this, we calculate the spectrograms that provide

the evolution of the short-term spectra. The spectrograms lack intricate details of the spectrum

variation, but they show the overall trends. In this section, we consider spectrograms calculated

for the time periods [t0, t0 + 10 days], where t0 ∈ [0, 20] days.

As a frequency is gaining or losing energy, the corresponding peak of the spectrum is either

growing or decaying. Figure 3.23 illustrates the spectra for several cases calculated at an earlier

time interval [0, 10] days and at a later time interval [10, 20] days. It is seen that with time the

interharmonics gain energy, whereas the harmonics either stay unchanged or lose energy. In a

similar fashion, we can analyze the energetics of each harmonic and interharmonic.

The time variation of a given harmonic or interharmonic changes smoothly with latitude.

For example, figure 3.24 compares the evolution of the energy in the first tidal harmonic at the

different latitudes. The same evolution for the latitudes approaching θcr is shown in figure

3.25. The critical latitude is the case where the most efficient harmonic-to-interharmonic energy

transfers take place: according to the spectrogram for the critical latitude, the energy at the tidal

frequency decreases by about 25% and then seems to stabilise.

The energy variation at several first harmonics and interharmonics is shown for latitudes 0◦,

10◦, 20◦, 25◦, 28.82◦ and 30◦ N in figures 3.26, 3.27, 3.28, 3.29, 3.30 and 3.31. Let us consider

in more detail several first harmonics and interharmonics for the two representative latitudes,

0◦ N and 30◦ N (figures 3.26 and 3.31). At θ = 0◦, the energy in the first and second harmonics

grow by a small amount for about five days (note that the spectrogram begins at t = 5 days so

initial growth is lost), and then they behave in a manner similar to what could be the beginning

of relaxation to a stable state. The supposition that the energy in harmonics approaches a stable

state is supported by the more obvious stabilization observed in the case θ = 30◦ N and the fact

that spectrograms vary smoothly from latitude to latitude. The interharmonics seem to have

similar pattern of relaxation but on longer time-scales.

For the latitude θ = 30◦N, the energy at the tidal harmonic decreases significantly (by ≈20%)

to a stable state within approximately ten days. During the same ten days, the interharmonics

efficiently gain energy. It is not seen that the interharmonics have stabilized by the end of the

run to a particular level, but we can speculate that they are going to do so shortly, from the

comparison with other latitudes.

Similar evolution of energy in the tidal and subtidal frequency was calculated by MacKinnon

and Winters (2003). However, on average, they observed much stronger transfers of energy from

tidal to subtidal motion. The reason is that they had a periodic domain, and the subharmonic
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F 3.19: Spatial distribution of waves with different frequencies within 40 km of the ridge
for the case θ = 20◦ N: (a) ω = 0.4269ω0, (b) ω = 0.5752ω0, (c) ω = ω0, (d) ω = 1.4269ω0, (e)
ω = 1.5752ω0, (f) ω = 2ω0.
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F 3.20: Spatial distribution of waves with different frequencies within 40 km of the ridge
for the case θ = 25◦ N: (a) ω = 0.4590ω0, (b) ω = 0.5430ω0, (c) ω = ω0, (d) ω = 1.4630ω0, (e)
ω = 1.5370ω0, (f) ω = 2ω0.
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(dashed), (d) ω = 2.0ω0.

instability occured throughout the domain. In our case, the instabilities are local; the actual

tidal-to-subtidal conversion happens only in the vicinity of the strongly nonlinear regions.

3.3.5 Instability description

To illustrate how instability generates a wave with a subharmonic frequency, we consider an

example of a local flow conversion from tidal frequency to a subharmonic one.

We choose the case of θ = 30◦ N as the instability processes are especially distinctive there and

the energy transfers from the tidal frequency to the subharmonics are strong. From the spatial

distribution of waves with different frequencies in figure 3.22 we see that the flow has particularly

strong waves of the subharmonic frequency near the top of the ridge and on the side. Let us

consider the particular location (x, z) = (15.7,−4.321) km. There, according to the local velocity

spectrum, the subharmonic frequency is particularly strong. Figure 3.32(a) demonstrates the

velocity time-series in the barotropic-Lagrangian reference frame corresponding to this location.

The tidal frequency dominates the time-series at the beginning, but after about 15 days the subtidal

frequency dominates. From the spectrum in figure 3.32(b) obtained by averaging spectra at the

location and the surrounding eight grid points, we infer that the subharmonic frequency that
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θ = 30◦N: (a) ω = 0.5ω0, (b) ω = 1.0ω0, (c) ω = 1.5ω0, (d) ω = 2.0ω0.

gains energy is approximately 0.5ω0. The subharmonic frequency in this case is, in fact, slightly

stronger than the tidal frequency. Figure 3.32(c) quantifies the transfer of energy from the tidal

frequency to the subtidal one, and shows how the spectrogram captures the conversion from

tidal to subtidal motion and, then, back to tidal near the end of time-series.

The instabilities occuring at a certain region form patches that spread spatially in a manner

similar to that described by Teoh et al. (1997). Figure 3.33 demonstrates the development of the

instability as in figure 3.32, but shows the contour plot of the velocity ũn
ij

in the lower 800 m

of the water column, i.e. index i corresponding to x = 15.7 km is fixed, j = 1, 2, . . . , 40 and

n = 1, 2, . . . , 1440. It is seen that after about one day a strong core with large horizontal velocities

starts forming in the center of the vertical cross-section. The core, alternating with frequency

ω0 becomes larger and after approximately ten days the core splits into two pieces, then, into

three and so on. As the energy is injected into the region through the instability the patch

dominated by waves of subharmonic frequency is constantly expanding. Similar expansion of

the instability patch is observed in other regions: for example, at a vertical cross-section near the

point (x, z) = (15.7,−4.321) km. This expansion is another factor that makes forced instabilities

important: although the waves are not propagating from the vicinity of the instability, the region

of instability is constantly growing and, thus, an overturning, which may eventually occur in the

region, may affect regions as far as several kilometers from the center of the instability.
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3.4 Discussion

In this chapter, we investigated the dynamics and spectra of internal wave field generated by

tidal flow over topography. As a final remark, we would like to discuss two papers where similar

questions were addressed.

Gerkema et al. (2006) investigated internal-tide generation at a continental shelf-break. They

solved the nonhydrostatic equations for a time period of about 15 tidal periods, which is approx-

imately one quarter of the time period that we use in our simulations. The spatial resolution in

the work by Gerkema et al. is close to ours: in the deep part of the domain (waterdepth 4 km),

they use cells 100 m in the horizontal by 25 m in the vertical, whereas we use cells 100 m by

26.042 m. They also used strong damping in the form of a sponge layer to absorb baroclinic

waves away from the source. Their kinetic energy spectra estimations are similar to ours but

have larger amount of leakage (mainly due to the short total model time); consequently, their

estimations do not capture most of the interharmonics except for the strongest ones. For example,

in the case of θ = 27.5◦ N, their spectra have the interharmonic of the frequency ω = 0.5ω0 and

ω ≈ 1.5ω0. They suspected that the interharmonic frequency was the result of the Doppler shift

due to advection of the subharmonic waves by the tidal frequency waves. Our results suggest

that the interharmonic frequencies observed in the spectrum are not Doppler shifted.

First, our results show that the Eulerian, barotropic-Lagrangian and Lagrangian spectra are

similar implying that advection does not play a crucial role. Moreover, comparing their spectra

for the case θ = 27.5◦ N with ours for the case θ = 30◦ N, we see that the waves of frequency

ω ≈ 0.5ω0 and 1.5ω0 have different natures: waves of frequency close to 0.5ω0 are mostly trapped

waves, whereas for the frequency 1.5ω0 we see beams with the slope given by the dispersion

relation (see figure 3.22a,c). If it was true that the waves of frequency 1.5ω0 are the result of

the Doppler shift, then they would only be seen in the regions where the waves of frequency

ω ≈ 0.5ω0 are present.

In a certain sense, our results are also similar to the ones obtained by MacKinnon and Winters

(2003). They used a three-dimensional spectral model to solve the non-hydrostatic equations

of motion with hyperviscosity terms. Their model was initialized at rest and forced with a

bottom-localized, narrow-band field of upward-propagating internal waves of tidal frequency.

The forcing was realized by adding a forcing term to the vertical momentum equation designed

to represent idealized topographically generated waves. According to their simulations, energy

at tidal frequency is growing until it reaches its peak after about 5–10 days; then energy decays

at approximately the same rate to a stable level. In contrast to our estimations, MacKinnon

and Winters observe a much stronger exchange of energy between the tidal and subharmonic

frequencies. In particular, for the case of θ = 21◦ N, they observe a transition of the flow from

dominantly tidal to lower frequency motion: after about 10 days the strongest frequency of the
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flow is the subharmonic frequency ω ≈ 5.6 × 10−5 s−1. Our results, although suggesting that on

average the tidal frequency stays dominant for all latitudes including latitude θ = 20◦ N, exhibit

the tidal-to-subharmonic conversion locally near the ridge for the case θ = 30◦ N. The observed

difference is to be expected: their periodic domain 50× 50× 5 km3 is quickly filled with energetic

progressive internal waves, whereas in our simulation waves freely propagate away and, thus,

are less susceptible to instabilities.

3.5 Summary

In this chapter, we considered numerical simulations of internal waves generated by tidal flow

over an isolated supercritical ridge at several different latitudes. The emerging flow is dominated

by waves of harmonic and interharmonic frequencies, some of which, according to the dispersion

relation, are progressive and some, trapped. The strongest interharmonics are the subharmonics,

which are produced as a result of the tidal beam destabilization near the strongly nonlinear

regions. The interharmonic frequencies are the combination frequencies of the tidal harmonics

and the subharmonics. Both harmonics {nω0} and interharmonics {ωα + nω0}, where n ∈ N and

ωα ∈ (0, ω0], decay with n at a similar, nearly exponential rate. As a result, the spectrum has a self-

similar structure, which decays in magnitude at an exponential rate. The instabilities are stronger

for the near-critical latitudes; there, we observe strong waves of interharmonic frequencies. For

the latitude θ = 30◦ N, which is supercritical, the strongest waves of subharmonic frequency are

trapped. This suggests that the observed instabilities are of a forced non-resonant type.
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Chapter 4

Temporal Spectral Analysis: Part II

4.1 Important factors

4.1.1 Latitude

An important question regarding waves of interharmonic frequencies is how their frequencies

depend on latitude.

So far, we know that the strongest subharmonic frequencies appearing in the average spectrum

deviate symmetrically from the frequency ω0/2. As will be shown in the next section, where

we consider the wavenumbers of interharmonics, for latitudes θ ≤ θcr, the subharmonics are

generated through a resonant triad interaction occurring when the tidal beam becomes unstable.

The two strongest subharmonic frequencies gradually approachω0/2 as the latitude approaches

the critical latitude θcr. How the values of the strongest subharmonics change with latitude is

the subject of this section.

A series of figures 4.1–4.6 demonstrates fragments of the average spectra for the latitudes

in question. Here, we are primarily interested in accurate values of the strong subharmonics,

thus, we only consider the subharmonic range of frequencies ω ∈ [0, ω0]. Two direct spectral

estimations averaged over the region ξ ∈ [0, 40] km are shown. One estimation uses the discrete

prolate spheroidal sequence of the first order and provides high spectral resolution. It allows

us to see fine features of the spectrum when two peaks get close. However, it suffers from bias

due to leakage. The other estimation, which uses the discrete prolate spheroidal sequence of the

third order, has lower spectral resolution, but suffers from less leakage. Thus, it allows us to see

weaker statistically significant peaks in the spectrum.
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The cases 0◦–20◦N were discussed earlier. The magnified fragments of the two spectral

estimations shown in figure 4.1 confirm what was noticed before. The two subharmonic peaks

at 0.4ω0 and 0.6ω0 observed in case 0◦ move closer together as the latitude increases. There are

a number of smaller peaks, which are presumably generated through the secondary interaction

between the two strongest subharmonics, e.g. in the case 0◦, the difference interaction between

subharmonics 0.4ω0 and 0.6ω0 gives rise to the subharmonic 0.2ω0 seen in the spectrum. The

secondary peaks move as the latitude changes, so that the triad relations among all subharmonics

are preserved. For example, the subharmonic 0.2ω0 in case 0◦ decreases as the latitude increases.

As the latitude reaches 25◦ N, the two peaks corresponding to the strongest subharmonics get

so close that it may seem that there is only one subharmonic frequency, namely ω0/2 (see figure

4.2, case 25◦ N). Yet, both spectral estimations suggest that there are two strong subharmonics.

In case 26◦ only the spectral estimation with higher resolution managed to capture the two peaks

(see figure 4.2, case 26◦ N). For the cases 27◦–34◦ close to the critical latitude, the two peaks in

both spectral estimations are blended into one.

In spite of the blending of the peaks, we have some information about the two dominant

subharmonic frequencies. This information is based on two features of the observed peak em-

bedding the two frequencies: the width of the peak and its regularity. As the latitude approaches

θcr, the width of the peak decreases (see cases 25◦–28.82 N). Beyond the critical latitude, the

opposite takes place: the peak widens until it splits into two peaks (see figure 4.5, case 35◦ N

and figure 4.6, case 40◦ N). Another feature betraying the two subharmonics embedded in the

single peak is the regularity of the peak. If there was really only one energetic frequency, the

peak would be symmetric and regular as the main lobe of a spectral estimation should be. The

observed irregularity signifies more complicated spectral content, not just a single frequency.

When the two peaks have blended into one, we can observe other secondary peaks, e.g. a peak
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at 0.1ω0 in case 25◦ N. These peaks are not an artifact solely due to leakage for two reasons. First,

if those peaks were due to leakage their structure would be different for different estimations.

Second, the structure of the leakage, present for example in case 25◦ N for ω ∈ [0.7ω0, 0.9ω0] is

much finer than the typical distances between the secondary peaks.

The secondary peaks, in particular, the one close to the origin, can be used for an estimation

of the two strongest subharmonic frequencies when their peaks are very close or blended. For

example, let us consider the case 25◦ N when the two peaks of dominant subharmonics are on the

verge of blending into one. The strongest secondary subharmonic has a value of 0.09233ω0. Thus,

the two dominant subharmonics can be estimated to have the following values: 0.5ω±0.0923ω0/2,

that is 0.4538ω0 and 0.5462ω0. The actually observed peaks of the dominant subharmonics have

values 0.4586ω0 and 0.5449ω0. The dominant subharmonics predicted by the peaks in the two

spectral estimations are slightly biased toward the frequency 0.5ω0, which is what should happen

when two peaks are superimposed. Thus, the technique provides an accurate alternative method

to predict the dominant subharmonic frequencies even for the cases when the spectral resolution

of the estimations is insufficient.

Taking into account the above considerations, we arrive at the following conclusion. The

dominant subharmonic frequencies approachω0/2 as the latitude approaches the critical latitude

(or latitude very close to it). Above the critical latitude, subharmonics either “overshoot” and

continue changing in the same direction or they start moving in reverse. Before the critical lat-

itude, the magnitude of the dominant subharmonic frequency less than ω0/2 is larger than the

magnitude of its counterpart. For the case θ = θcr, the subharmonics are different from ω0/2.

Their values are approximately 0.4753ω0 and 0.5207ω0 and can be estimated by measuring the

spectrum in different parts of the domain. Above the critical latitude, the situation is reversed:

the dominant subharmonic larger than 0.5ω0 has the largest magnitude. The dominant subhar-

monics are accompanied by a number of secondary subharmonics generated through secondary

interactions of the dominant subharmonics and tidal harmonics. There is no reason to assume

that other subharmonics, not visible in the spectrum, can not be generated through interaction

of secondary subharmonics and so on. A cascade of such type in most cases would suggest

energetic frequencies filling the frequency space densely.

Figure 4.7 demonstrates the variation of the subharmonics with latitude. Both the two dom-

inant and secondary subharmonics are shown. The variation of one of the dominant subhar-

monics, except in the neighbourhood of the critical latitude where the separation of the two

subharmonics was problematic, was approximated using spline interpolation. The resulting

curve ω1(θ)/ω0 was used (solid curve in figure 4.7) in order to predict the variation of the other

subharmonics. The curve 1 − ω1(θ)/ω0 approximated the second dominant subharmonic. The

variation of secondary subharmonics, which should be at combination frequencies, follow the

curves 1 − 2ω1(θ)/ω0, 2ω1(θ)/ω0, 3ω1(θ)/ω0 − 1, etc.

105



ω/ω0

θ
(◦

N
)

0
0

10

20

30

40

0.2 0.4 0.6 0.8 1

f (θ)

F 4.7: Variation of subharmonic frequencies with latitude: subharmonics observed in the
spectra (rectangles), smoothed variation (dashed line) based on the spline interpolation of the
variation of the dominant subharmonic frequency (thin solid line).

4.1.2 Amplitude of topography

Latitude is an important parameter affecting the flow. As we have seen in the previous sections,

latitude defines interharmonics present in the spectrum and their strength. In this section, we

consider another imporant factor affecting the flow, the topography.

First, let us consider how the amplitude of the topography affects the spectrum of the flow.

For the case 20◦ N, we perform two additional runs. In one of the runs we use the amplitude of

the topography 0.8A = 1440 m instead of A = 1800 m, and in another run we use the amplitude

1.2A = 2160 m. Figure 4.8 shows snapshots of the baroclinic velocity in the Eulerian reference

frame, i.e. u(x, z, t)−HU(t)/[H− h(x)], for the three comparison cases at t = 55T0, where T0 = 12.4

is the tidal period. As we can see the structure of the flow adjusts to the changing topography,

but, does not undergo any major changes. All of the cases are supercritical and, essentially, the

structure of the flow is given by the same beams, of comparable strength and width, emanating

from the edges of the ridge. As the edges of the ridge, where internal waves are originally

generated, move, the beam-pattern of internal waves changes, but the spectral content stays

essentially the same.

Figure 4.9 compares the spectra Υ(ω) for the three cases with amplitudes of topography 0.8A,

A and 1.2A. As the amplitude of the ridge increases, the internal wave field becomes more
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topography: 0.8A (thick solid line), A (thin solid line), 1.2A (dashed line).

energetic. Let us compare the average power of the time series in each case. If P0 is the average

power for the case when amplitude is A, then we have:

• Case 0.8A:
∫ ωNyq

ω

Υ(ω)dω ≈ 0.70P0,

• Case A:
∫ ωNyq

ω

Υ(ω)dω = P0,

• Case 1.2A:
∫ ωNyq

ω

Υ(ω)dω ≈ 1.37P0.

This suggests that the average power in a time series on the domain x ∈ [0, 40] km grows slightly

more slowly than a quadratic function of amplitude. If the power was a quadratic function of

amplitude a of the topography, then P(a) = ca2 and c could be evaluated as c = P(A)/A2 = P0/A2.

This would imply P(0.8A) = 0.64P0 and P(1.2A) = 1.44P0 instead of 0.7P0 and 1.37P0 observed in

the simulation. Note, however, that the energy flux into the region is not exactly proportional to

the average power in time series due to the change of the domain.

Although the power of signals in the three cases is different, the spectral content is practically

identical. As the amplitude of the topography increases, the values of interharmonics do not

appreciably change. The slight shifts of the peak centres can be attributed to the change of the

peak strengths. Any peak in the spectrum is affected by the leakage of a neighbouring peak.

Because of leakage, the values of two close peaks are biased toward each other. As one peak

grows, the centre of another one seems to be moving toward the growing peak (in the limiting
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case the smaller peak becomes absorbed in the larger one). The strength of the interharmonic

peaks increases as the amplitude of the topography increases. Some of the peaks grow faster than

the other. For example, when the amplitude is 0.8A, the peak at frequency just before the Coriolis

frequency is weaker than the neighbouring peak on the left. When the amplitude is A, both peaks

have comparable magnitude. And, finally, when the amplitude is 1.2A, the previously stronger

peak becomes the weaker.

4.1.3 Background flow

Here, we compare the spectra of the flow at θ = 20◦ N for the three cases with maximum

tidal speed 0.8U0 = 0.02 m s−1, U0 = 0.025 m s−1 and 1.2U0 = 0.03 m s−1. The three cases

compare similarly as the cases with different amplitudes of topography. Figure 4.10 shows the

corresponding spectra. As the background flow strengthens, the baroclinic velocities increase.

The average power in the signal for each case is described by the following:

• Case 0.8U0:
∫ ωNyq

ω

Υ(ω)dω ≈ 0.65P0,

• Case U0:
∫ ωNyq

ω

Υ(ω)dω = P0,

• Case 1.2U0:
∫ ωNyq

ω

Υ(ω)dω ≈ 1.76P0.

This suggests that the average power grows with the tidal amplitude U0 at a rate higher than

that of a quadratic function.

4.1.4 Roughness of topography

Here, we consider the case 0◦ with a more realistic topography constructed using the spectrum

based primarily on topographic data from the eastern central North Pacific.

The topography is constructed as follows. The “roughness” of two-dimensional topography

at the bottom of the ocean is given by the power spectrum of sea-floor elevation (Bell, 1975):

F(k) =
F0

k2 + k2
0

, k ∈ [0, kc], (4.1)
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F 4.10: Comparison of the spectra Υ(ω) for the case 20◦ N with different amplitudes of the
background flow: 0.8U0 (thick solid line), U0 (thin solid line), 1.2U0 (dashed line).

where k0 = 1.5708× 10−4 m−1, F0 = 3.9789× 10−2 m and kc = 2π/400 m−1 is the cut-offwavenum-

ber corresponding to the wavelength 400 m. We truncate the domain of the spectrum F(k) to

wavenumbers up to kr = 2π/1000 m−1 corresponding to the scales of 1 km that can be appropri-

ately resolved using horizontal resolution of 100 m. The significant features of the spectrum are

the approximate k−2 falloff at high wavenumbers and a flattening at low wavenumbers. Figure

4.11 demonstrates the shape of the spectrum.

For our purposes we use a discrete version of the spectrum F(k):

Fi = F(ki), ki = i∆k, i = 1, 2, . . . , 80, (4.2)

where ∆k = 2π/80000 m−1. Then, the model topography corresponding to the spectrum F(k) can

be constructed as follows:

ǫ(x) =

80
∑

i=0

ai sin(kix + φi), (4.3)

where ai =
√

2Fi∆k is the amplitude corresponding to each wavenumber ki, and φi is a random

phase between 0 and 2π generated for each i using a uniform distribution.

In the model, we use the corrugation ǫ(x) superimposed on the topographic ridge similar to

that used in most simulations. Let us define two auxiliary functions h1(x) and h2(x):

h1(x) = exp

[

−
(

x

30000

)4
]

; (4.4)

h2(x) = exp

[

−
(

x

12500

)4
]

. (4.5)
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Then the final corrugated topography is given by

h(x) = 1500h2(x) + 300h1(x) + ǫ(x). (4.6)

Figure 4.12 demonstrates the velocity field for the corrugated topography at t = 50T0. The

beams of tidal frequency are now scattered throughout the domain, as opposed to the case with

smooth topography when there were only two pronounced beams of tidal frequency emanating

from the edges of the ridge. Beams of subharmonic frequencies are not seen. Thus, adding the

realistic corrugation to the topographic ridge changes both the beam pattern and the spectral

content of the flow.

Figures 4.13 show the spectrum of the flow within 40 km of the ridge. The interharmonics

are much weaker than in the case of smooth topography. This is because the tidal beams subject

to instabilities are now much weaker: instead of two strong pronounced tidal beams at the

two edges of the ridge, there are many tidal beams of lower amplitude emanating from every

hump on the ridge. The dominant subharmonic peaks are no longer at frequencies 0.4ω0 and

0.6ω0 but at frequencies close to 0.3ω0 and 0.7ω0. Although it is not clear why the dominant

subharmonic frequencies change so much when the topography is corrugated, the fact that

they do change is important. The consequence is that in the ocean, at any given latitude, the

subharmonic instabilities give rise to a continuum of subharmonics spanning (0, ω0), solely due

to the variability of topography.
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4.2 Alternative techniques

In this section we discuss two alternative techniques for the analysis of internal wave velocities

in our runs. Although the assortment of techniques for general signal analysis is large, some

methods are more appropriate when dealing with internal waves. Among them, the most

important are bispectral and wavelet analysis.

Bispectra can be employed to search for nonlinear triad interactions within realizations of a

stochastic process. By using the bispectrum, one can also estimate energy transfers associated

with each nonlinear interaction. In our runs where we have a coherent flow, the use of statistical

bispectrum analysis is problematic.

Wavelets provide a flexible approach for the analysis of different scales involved in a process.

Wavelet analysis for an oscillatory process is akin to the short-time Fourier transform (or spec-

trogram). There is a variety of different wavelet shapes, and each one leads to different analysis

diagrams. It is important to choose an appropriate shape of the wavelet to obtain meaningful

results. In our numerical experiments the wavelet analysis can be used as an alternative to

the spectrogram. However, used this way, it does not provide any important new information.

Besides, the quantitative evaluation of energetics based on wavelet analysis is problematic.

4.2.1 Bispectrum

Hasselman, Munk, and MacDonald (1963) suggested the bispectrum as a statistical tool to analyse

nonlinear interaction of internal waves in the deep ocean. Since then, bispectra were found useful

to detect and quantify nonlinear interactions in other applications: for example, Godfrey (1965)

analysed economic time series; Lii et al. (1976) investigated energy transfers in fluid turbulence;

Kim and Powers (1979) applied the bispectral analysis to plasma fluctuations.

Let q(t) be a realization of a stochastic process,where time is defined on the domain [0,T0] days.

The function q(t) has the following Fourier representation:

q(t) =

+∞
∑

n=−∞
Qn exp(−iωnt), (4.7)

where ωn = 2πn/T0, and Qn is the corresponding Fourier transform given by

Qn =
1

T0

∫ T0

t=0

q(t) exp(−iωnt)dt, n ∈ Z. (4.8)

Given a large number of statistically independent realizations q(t), the discrete power spec-

trum of the stochastic process can be defined as P(ωn) = E{|Qn|2} = E{QnQn}. The discrete
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bispectrum is another spectral function, dependent on two frequncies, defined through the fol-

lowing:

B(ωn, ωm) = E{QnQmQn+m}, where n,m ∈ Z. (4.9)

If the power spectrum selects energetic frequencies in the signal, the bispectrum selects pairs of

energetic frequencies ωn and ωm whose sum is also an energetic frequency. If the frequencies ω1

and ω2 according to the power spectrum are energetic, but their combination frequency ω1 + ω2

is not energetic, then the bispectrum will not have a large value at (ω1, ω2). Evaluated for one

realization of a process, the bispectrum selects all energetic triads in the signal; this, however,

does not necessarily mean that they are nonlinearly interacting. The averaging over different

realizations serves as a means to select nonlinearly interacting triads among random ones.

To see how the averaging selects nonlinearly interacting frequencies, let us consider the

product QnQmQn+m for one realization in more detail. The product QnQmQn+m can be rewritten

as
QnQmQn+m = |Qn|eiφn |Qm|eiφm |Qn+m|e−iφn+m

= |Qn||Qm||Qn+m|ei(φn+φm−φn+m),
(4.10)

where φn, φm and φn+m are the phases corresponding to frequencies ωn, ωm and ωn+m. If the

three waves are not interacting, then their phases in different realizations are independent, and

the average of the product QnQmQn+m will be small. However, if the three waves do interact and

are coupled nonlinearly, then their phases are dependent so that the phase sum φn + φm − φn+m

is constant (Kim and Powers, 1979), and the average of the product QnQmQn+m has a non-zero

magnitude |Qn||Qm||Qn+m|.

The symmetry of the Fourier transform (Qn = Q−n for n ∈N) defines the following symmetry

of the bispectrum B(ωn, ωm):

B(ωn, ωm) = B(ωm, ωn) = B(ω−n, ω−m) = B(ω−n−m, ωm) = B(ωn, ω−n−m), for n ∈N. (4.11)

Note that for a finite number of realizations, the error in the estimation of the average

E{QnQmQn+m} is proportional to the magnitude |Qn||Qm||Qn+m|, which may result in large val-

ues of the bispectrum even in those frequencies where the degree of phase-locking is low. A

normalization is needed.

The bicoherence b(ωn, ωm) between three waves with frequencies ωn, ωm and ωn+m in a signal

measures the degree of nonlinear coupling and is given by by the following normalization of the

bispectrum:

b2(ωn, ωm) =
|B(n,m)|2

E{|QnQm|2}E{|Qn+m|2}
, b(ωn, ωm) ∈ [0, 1]. (4.12)

The bicoherence b(ωn, ωm) takes values close to unity when the wave of frequencyωn+m is a result
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of nonlinear interaction between waves of frequencyωn andωm, and, oppositely, the bicoherence

b(ωn, ωm) takes values close to zero when the corresponding waves are not nonlinearly interacting.

In addition, the squared bicoherence b2(ωn, ωm) quantifies the fraction of energy in frequencyωn+m

due to nonlinear interaction of the three waves; the fraction is given by b2(ωn, ωm)P(ωn+m).

Application of the bispectral analysis for identification of nonlinearly interacting triads re-

quires a large number of independent realizations of a stochastic process in order to identify

for which frequencies the waves are phase-locked. Consequently, for our deterministic wave

dynamics, the bispectral analysis, relying on statistical averaging, does not prove to be a use-

ful technique. Suppose, we chose time-series of velocity at different spatial coordinates to be

different realizations of the same process. The fluid motion is coherent everywhere, and the

argument with the elimination of non-interacting triads through the use of random phases falls

apart. There are no random phases. (As a matter of fact, some people viewed the coherence as

the essence of a fluid motion generated by a periodic forcing, e.g. Görtler, 1943). It should be

noted that in our application, there is no need to search what waves were generated through a

nonlinear interaction, as we already know that all waves having frequencies different from ω0

were generated through nonlinear interaction.

4.2.2 Wavelet analysis

Wavelet analysis has become one of the most popular tools in signal analysis. The applications

are too numerous to list them all. The applications in the oceanic context include studies on the

dispersion of ocean waves (Meyers et al., 1993), wave breaking (Liu, 1994) and turbulence (Farge,

1992).

The continuous wavelet transform can be constructed by analogy with the continuous Fourier

transform. Using the continuous Fourier transform F(ω), the function f (t) can be written as

f (t) =

∫ +∞

−∞
F(ω)w(ω, t) dt, (4.13)

where w(ω, t) = exp(iωt). Essentially the decomposition (4.13) means that the function f (t) is

constructed by dilates of the complex wave function exp(it). More generally, the function f (t)

can be synthesized using translated dilates of a given shape, a function ψ(t, τ, s) depending on

the scale s, translation τ and time t. This idea is realized in the continuous wavelet transform

defined by

γ(τ, s) =

∫ +∞

−∞
f (t)

1√
|s|
ψ

(

t − τ
s

)

dt. (4.14)
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The synthesis equation for the continuous wavelet transform takes the following form:

f (t) =
1

Cψ

∫ +∞

−∞

∫ +∞

−∞
γ(τ, s)

1√
|s|
ψ

(

t − τ
s

)

dτ
ds

s2
, (4.15)

where

Cψ =

∫ +∞

−∞

|ψ̂(ζ)|2
|ζ| dζ, Cψ ∈ (0,+∞) (4.16)

is the admissibility constant and ψ̂ is the Fourier transform of ψ. The continuous wavelet

transform γ(τ, s) provides a way to separate scales in a signal and show where they are localized

and what their energetics are.

When the function f (t) is given by a discrete vector fn, corresponding to the set of time

moments tn = n∆t for n = 0, 1, . . . ,N − 1, the continuous wavelet transform is evaluated using a

piecewise constant interpolation of the function f (t). For our purposes, we calculate the wavelet

transform γ(τ, s) using a discrete set τn = n∆t and s = 1, 2, . . . ,N.

Let us consider a time-series of the horizontal velocity near the location of instability in the

case 30◦ N. A wavelet diagram for the time-series is shown in figure 4.14. The diagram was

evaluated with the Gauss wavelet of the 24th order (for the shape of the Gauss wavelet see figure

4.15). Two main scales are shown with the contour lines: the scale corresponding to the tidal

frequency and the scale corresponding to a frequency close to 0.5ω0. Figure 4.16 shows two cross-

sections of the diagram at s = 28 and 56. The evolution of the two spectral components closely

resembles the spectrogram shown in figure 3.32(c). Performing a power spectral estimation with

respect to t for each scale s, we arrive at a frequency-scale diagram (figure 4.17) highlighting the

energetic frequencies, which coincide with those provided by the power spectrum. By using

different wavelets we can improve the resolution of the frequency-scale diagram. For example,

figure 4.18 shows the same diagram as in figure 4.17 but for the Gauss wavelet of the 64th order

(for the shape of the Gauss wavelet see figure 4.15).

Using wavelet diagrams as a primary tool for analysis of a signal is complicated by the fact

that different wavelet shapes provide significantly different diagrams. In our runs, where the

motion is primarily periodic the contribution from wavelet analysis is questionable.

By separating scales explicitly, wavelets provide an alternative way to extract spectral compo-

nents in a signal. Let us use the frequency-scale diagram in order to check whether there are one

or two strong subharmonic frequencies nearω0/2 in caseθ = θcr. Using direct spectral estimation

of the baroclinic velocity u(x, z, t) at the vicinity of instability on top of the ridge, we obtained

spectra suggesting two peaks at frequencies 0.472ω0 and 0.5207ω0 (figure 4.19, left panel). How-

ever, as the peaks are very close and the peak at 0.472ω0 is much weaker, it is not clear whether the

weaker peak is indeed there, or it is just a sidelobe corresponding to a single energetic frequency.

In addition to this doubt, the spectra averaged over the total domain (0 ≤ x ≤ 40 km) show a
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in case 30◦ N.
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F 4.17: Frequency-scale diagram for the Gauss wavelet of 24th order.
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F 4.18: Frequency-scale diagram for the Gauss wavelet of 64th order.
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F 4.19: Close spectral peaks for the case θ = θcr: power spectral density (left panel),
frequency-scale diagram (right panel).

single peak. Figure 4.19 shows a frequency-scale diagram evaluated with the Gauss wavelet of

the 64th order, which clearly captures two peaks as well at nearly identical frequencies. If the

smaller peak was a result of leakage only, the two peaks on the frequency-scale diagram would

appear at the same scale s, which is clearly not the case.

4.3 Summary

In this chapter, we considered the dependence of the one-dimensional flow spectra on several

important factors: latitude, the amplitude of topography and the strength of the background

flow. The values of interharmonics change continuously with latitude. Changing the amplitude

of topography or the strength of the flow by 20% (either increasing of decreasing) does not

change the interharmonic frequencies significantly. As latitude becomes larger than the critical

latitude, the strong subharmonics become subinertial and, thus, represent forced waves; they

can no longer be generated by resonant triad interactions. We also considered the influence of

roughness of topography on the subharmonics and interharmonics. Apart from reducing the

magnitude of interharmonics, adding realistic roughness to the topography changes the values

of the strongest interharmonic peaks. We speculated that, in the case of real topography in the

deep ocean, the subharmonic instabilities of the same type as in our simulations can give rise to

the waves of all subharmonic frequencies covering the frequency interval (0, ω0).

In addition to considering various factors affecting the values of interharmonics, we consid-

ered two alternative techniques, which often appear in studies of internal waves: bispectral and

wavelet analysis. We found that the use of bispectral analysis is questionable as in our runs the
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flow is coherent: firstly, there is no need to filter “random” waves from the nonlinearly generated

waves (as all waves are nonlinearly generated), and, secondly, the estimation of the energy trans-

fers based on an inherently statistical approach would be poorly justified (as statistical averaging

of non-random values would lead to a large bias). If the bispectral analysis was found to be an

inappropriate tool for our purposes, the wavelet analysis was found to be a possible substitute for

the spectrogram used in the previous chapter. However, wavelet analysis did not really provide

any new information. At the same time, the use of wavelet analysis for quantitative evaluation of

energetics is much more complicated than simple spectrograms. Based on these considerations,

both of the alternative techniques were not used in the further research.
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Chapter 5

Spatial Spectral Analysis

In the previous two chapters, we considered temporal spectral analysis of the internal wave field

in our simulations. In this chapter we analyse the energy distribution with respect to spatial

coordinates and spatial scales.

Given a series of snapshots of horizontal velocity, one can characterize how internal wave

energy is distributed with respect to spatial/temporal coordinates, and, also, one can characterize

the energetics of spatial/temporal scales involved. In this chapter we present the evolution of the

following energy dependencies:

• Vertically integrated energy E(x);

• Horizontally integrated energy E(z);

• Depth-averaged spectrum E(k);

• Horizontally averaged spectrum E(m);

• Two-dimensional spectrum E(k,m);

All of the dependencies above were previously used for analysis in the papers listed in table 5.1.

Whenever possible we compare their results with ours. We also extended the list of the functions

above by including the following dependencies:

• Spectrum E(ω) derived from the spectrum E(k,m);

• Spectra E(k,m), E(k), E(ω) corresponding to Bell’s linear solution.
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T 5.1: Spectral dependencies in some related works.

Paper Function

Hibiya et al. (1998) E(m), E(k,m)
Furue (2003) E(m)
MacKinnon and Winters (2003) E(z), E(k), E(m), E(ω,m)
Lamb (2006) E(x)
Legg and Huijts (2006) E(m)

T 5.2: Units of spectral dependencies.

Function Type Units

E(x) energy m3 s−2

E(z) energy m3 s−2

E(k) power density m2 s−2 per m−1

E(m) discrete power spectrum m2 s−2 per mode
E(k,m) power spectrum m2 s−2 per m−1 per mode
E(ω,m) power spectrum m2 s−2 per s−1 per mode
E(ω) power spectrum m2 s−2 per s−1
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F 5.1: Ratio of the vertical and horizontal kinetic energy.
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Table 5.2 classifies types of dependencies and shows their units.

In order to calculate the energy dependencies listed in table 5.2, we use only the horizontal ve-

locity ũ(ξ, η, t) in the barotropic-Lagrangian reference frame. The use of the horizontal component

of velocity only is a common practice when energetics of an internal wave field are investigated

(see, for example, papers listed in table 5.1). Energetics of the function ũ(ξ, η, t) can be associated

with the energetics of the internal wave field because the contribution to the kinetic energy from

the vertical velocity is relatively small: in our runs, vertical kinetic energy constitutes less than

3% of the horizontal kinetic energy. For example, let us consider the following ratio:

Evert(t)/Ehor(t) =

=

∫ 0

z=−H

∫ 330 km

x=30 km

[w̃(x, z, t)]2 dx dz

/∫ 0

z=−H

∫ 330 km

x=30 km

[ũ(x, z, t)]2dx dz,
(5.1)

where ũ(x, z, t) and w̃(x, z, t) are the horizontal and vertical velocity in the barotropic-Lagrangian

reference frame with x and z defining the initial position (ξ, η). Evert(t) is the contribution to the

kinetic energy of the baroclinic velocity field from the vertical velocity component, and Ehor(t),

from the horizontal component. As an example, figure 5.1 demonstrates the ratio Evert(t)/Ehor(t)

for the caseθ = 25◦ N. It is seen that, except for the early times when the horizontal kinetic energy

Ehor is close to zero, the fraction of energy contributed to the baroclinic internal wave field by the

vertical velocity is small. Similar values of the ratio (5.1), not exceeding 3%, were also observed

for the latitudes 27◦ and 29◦ N.

5.1 Horizontal distribution of energy E(x)

The distribution of energy with respect to the horizontal coordinate at different periods of time

signifies how energy spreads away from the main source. At earlier times the pattern of the energy

spreading in the x-direction is as follows: energy is initially injected into the wave field near the

ridge; as time passes, energy spreads horizontally, carried by progressive internal waves, mostly

of tidal frequency; nonlinear interactions transfer energy from waves of tidal frequency to higher

harmonics. There are two main factors affecting the shape of the function E(x): linear dynamics of

vertical modes and nonlinear dynamics of strong internal waves, occurring predominantly near

sources. A vertical mode travels with the group velocity proportional to 1/l, where l is the mode

number. Thus, the low mode energy arrives first. Hence the gradually decaying shape of the

function E(x) during the earlier stages of the flow development. As the energy in higher modes

arrives to remote locations further away from the ridge, the shape of the function E(x) becomes

less steep. In the cases 0◦, 10◦, 20◦ and 40◦, where the nonlinear interactions are comparatively

weak, the vertical mode dynamics predefines the shape of the function E(x).
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F 5.2: Vertically integrated kinetic energy as a function of x averaged over the following
time intervals: (i) [10T0, 15T0], (ii) [20T0, 25T0], (iii) [30T0, 35T0], (iv) [40T0, 45T0].
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F 5.3: Vertically integrated kinetic energy as a function of x averaged over the following
time intervals: (i) [10T0, 15T0], (ii) [20T0, 25T0], (iii) [30T0, 35T0], (iv) [40T0, 45T0].
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For the near-critical latitudes at later times, when the highly nonlinear regions of the flow

become dominated by trapped waves of subinertial frequencies, another pattern of horizontal

distribution of energy emerges: progressive waves of tidal frequency already generated, prop-

agate away, and energy accumulates in the vicinity of the strongly nonlinear regions. In other

words, after the instabilities set in, the energy flux into the region 30 / x / 150 km is less than

the energy flux out of that region. Most of the energy is, thus, trapped in the vicinity of the ridge

(−20 / x / 20 km), and the function E(x) starts rapidly decaying in the region 30 / x / 150 km.

However, at the coordinates x corresponding to the highly nonlinear regions, e.g. where the tidal

beam hits the surface or bottom, the energy is accumulated in the forced waves and the peaks

in the profile E(x) emerge. For example, in case 30◦ N, the tidal beams are reflected from the

boundaries at x ≈ 60, 100, 140 km; at these coordinates the function E(x) has pronounced peaks

(see figure 5.3, θ = 30◦ N).

To quantify the evolution of horizontal distribution of energy, we consider the vertically

integrated kinetic energy (based on the horizontal baroclinic velocity ũ(x, z, t)) averaged over

different time intervals:

E(x) = 〈E(x, t)〉t∈[T1,T1+5T0] =

〈∫ 0

−H

|ũ(x, z, t)|2 dz

〉

t∈[T1,T1+5T0]

=
1

5T0

∫ T1+5T0

t=T1

∫ 0

z=−H

|ũ(x, z, t)|2 dz dt,

(5.2)

where T1 was chosen to be 10, 20, 30 and 40 tidal periods, to illustrate the evolution. Averaging was

used in order to eliminate high-amplitude variation in the function E(x) dependent on the phase

of the tidal flow. The function 〈E(x, t)〉t∈[T1,T1+5T0] was calculated on the interval x ∈ [30, 330] km

using the following numerical approximation:

E(xi) = 〈E(xi, t)〉t∈[T1,T1+5T0] ≈
∆t

5T0

(T1+5T0)/∆t−1
∑

n=T1/∆t

J−1
∑

j=0

|ũn
ij|2∆z, (5.3)

xi = −Lcent/2 + (i + 1/2)∆x, (5.4)

where ∆z = 26.042 m, ∆x = 100 m and the index i corresponds to horizontal coordinates

xi ∈ [30, 330] km.

Figures 5.2–5.3 show the horizontal energy distribution E(x) for the latitudes θ = 0◦, 10◦, 20◦,

30◦ and 40◦ N. For the latitudes other than 30◦ N, the following statements are true:

(i) Energy distribution E(x) is gradually decaying with x;

(ii) Energy tends to a quasi-stable level, which is only reached for the regions close to the ridge;

(iii) The shape of the function E(x) is close to linear.
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As the waves generated near the ridge can freely propagate to the left and right, we should

expect the energy distribution to be uniform with respect to x at large times. However, due to

the numerical dissipation, the distribution E(x) does not converge to a uniform distribution, but

to a quasi-linear slowly decaying function.

The case 30◦ N differs from others as none of the statements (i)–(iii) above is true. In the case

of the tidal-to-subtidal conversion, happening at the latitude θ = 30◦ N, most of the waves of

subtidal frequency are trapped near their generation sites. Hypothetically, after a long time these

sites could become mixing spots as the energy would grow there to a very large extent. A similar

phenomenon was, in fact, observed experimentally by Teoh et al. (1997).

5.2 Vertical distribution of energy E(z)

The vertical distribution of energy E(z) characterizes the vertical structure of the horizontal

current in the internal wave field. In the linearly stratified fluid away from the topography, the

vertical structure is dominated by normal modes, which correspond to the exact solutions of the

linear hydrostatic equations of motion. Under the rigid lid approximation, the vertical modes

are given by the following cosine distribution (Kundu and Cohen, 2002):

ψl = cos
πlz

H
, l = 0, 1, . . . (5.5)

and the correspondings representation of horizontal velocity u(x, z, t) is given by

u(x, z, t) =
+∞
∑

l=0

alψl(z). (5.6)

In our case, the predominance of vertical modes in the profile of ũ(x, z, t) results in a symmetrical

profile of energy E(z).

To quantify the evolution of vertical distribution of energy, we consider the horizontally

integrated kinetic energy (based on the horizontal baroclinic velocity ũ(x, z, t)) averaged over

different time intervals:

E(z) = 〈E(z, t)〉t∈[T1,T1+5T0] =

〈∫ 330 km

30 km

|ũ(x, z, t)|2dx

〉

t∈[T1,T1+5T0]

=
1

5T0

∫ T1+5T0

t=T1

∫ 330 km

x=30 km

|ũ(x, z, t)|2dx dt,

(5.7)

where the initial time of each time interval T1 was chosen to be ten and forty tidal periods, to

illustrate the evolution. The curves evaluated for the intermediate time intervals lie between
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F 5.4: Kinetic energy integrated over x ∈ [30, 330] km as a function of z averaged over the
time intervals [5T0, 10T0] (dashed line) and [40T0, 45T0] (solid line).
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the shown curves. The function 〈E(z)〉t∈[T1,T1+5T0] was calculated using the following numerical

approximation:

E(z j) =
〈

E(z j, t)
〉

t∈[T1,T1+5T0]
≈ ∆t

5T0

(T1+5T0)/∆t−1
∑

n=T1/∆t

∑

i

|ũn
ij|2∆x, (5.8)

z j = −H +
(

j +
1

2

)

∆z, j = 0, 1, . . . , J − 1. (5.9)

Here ∆z = 26.042 m, ∆x = 100 m, and the summation over the index i is performed for all i such

that xi ∈ [30, 330] km.

Figure 5.4 demonstrates the horizontally integrated kinetic energy E(z). The shape of the

function E(z) follows from the vertical mode structure. The modal decomposition will be dis-

cussed in more detail in one of the following sections dedicated to investigation of typical vertical

scales. Here, we consider the consequences of the modal structure on the function E(z). Mode

n = 1 is the dominant mode for all cases, so energy is concentrated near the bottom and top

of the domain, as the first mode of the horizontal velocity u(x, z, t) is proportional to cos(πz/H).

Note, that the first mode of the vertical velocity w(x, z, t) and density ρ(x, z, t) is proportional to

sin(πz/H), and, thus, the shape of the vertical kinetic energy and potential energy would have

maxima at mid-depth z = −H/2.

For θ < θcr, odd modes seem to dominate the flow, which results in a sharp, narrow minimum

of E(z) at z = −H/2. For θ ≈ θcr, the profile E(z) becomes smooth without a sharp minimum,

which may suggest a smooth gradual decay of energy with respect to modes. Lastly, for θ > θcr,

even modes come into play; E(z) at z = −H/2 now has a peak.

5.3 Typical horizontal scales

To identify typical horizontal scales, we calculate the power spectrum E(k, t) by applying the

following operations to the baroclinic velocity ũ(x, z, t) with x ∈ [30, 330] km, z = [−H, 0] and

t ∈ [0, 30] days:

I. Spectral estimation in the horizontal: ũ(x, z, t)→ E(k, z, t);

II. Averaging in the vertical: E(k, z, t)→ E(k, t).

The resulting spectrum E(k, t) is a depth-averaged spectrum of horizontal kinetic energy. The

function E(k, t) is calculated using the following numerical approximation, which involves direct
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F 5.5: Development of the depth-averaged spectrum of horizontal kinetic energy as a
function of horizontal wavenumber k (k0 is the wavenumber corresponding to the tidal beam
bouncing up and down once in the deep water). The spectra were for the times 5T0, 25T0 and
45T0, where T0 = 12.4 hrs, and latitudes 0◦, 10◦ and 20◦ N. The arrow shows the direction of
development.
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F 5.6: Same as figure 5.5 but for latitudes 30◦ and 40◦ N.
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spectral estimation in the horizontal:

E(k, tn) ≈ ∆z

H

J
∑

j=1

∆x

π

∣

∣

∣

∣

∣

∣

∣

∑

i

giũ
n
ij exp(−ikxi)

∣

∣

∣

∣

∣

∣

∣

2

, (5.10)

where n = 0, 1, . . . ,N − 1 and the summation over the index i is performed for all i such that

xi ∈ [30, 300] km. The window {gi} was chosen to be a discrete prolate spheroidal sequence

of the second order, i.e. corresponding to the bandwidth of four Fourier sampling frequencies:

8π/(300, 000 m) ≈ 8.3776× 10−5 m−1. The performance of the chosen window was found optimal

in terms of visible leakage in comparison with discrete prolate spheroidal sequences of the first

and third order.

Figures 5.5 and 5.6 demonstrate the spectrum E(k, t) for different times.

MacKinnon and Winters (2003), whose numerical simulations we described earlier, compare

early and late depth-averaged spectra of horizontal kinetic energy as a function of horizontal

wavenumber. At the beginning this spectrum shows the dominant horizontal wavenumber

with which they force their simulations and, also, peaks at what could be the multiples of that

wavenumber. At a later stage (after 82 tidal periods), their spectrum becomes mostly smooth

without pronounced peaks at characteristic wavenumbers. In contrast to their observations,

our estimations of the same spectrum (covering a significantly larger range of wavenumbers)

demonstrate clearly that energy tends to occupy multiples of the horizontal wavenumber k0

corresponding to mode-one tidal frequency waves (or the internal tidal beam bouncing up and

down in the deep water). The wavenumber k0 in our simulation ranges from 6.6 × 10−5 m−1 at

θ = 40◦ N to 8.9 × 10−5 m−1 at θ = 0◦, which means that it is from 7 to 9 times smaller than the

forcing wavenumber kx0
of MacKinnon and Winters. Starting with the wavenumber k0, energy

tends to fill higher and higher multiples of k0. It approaches a certain “steady” spectrum, which

does not change in time much. The discrete nature of our spectrum vs. the continuous nature

of the estimation by MacKinnon and Winters can be explained by the fact that they have explicit

dissipation terms in their governing equations. According to MacKinnon and Winters, most

of the transition between the narrow and broad spectral shapes occurs when the dissipation

becomes significant.

5.4 Typical vertical scales

To identify typical vertical scales, we calculate the power spectrum E(m, t) by applying the

following operations to the baroclinic velocity ũ(x, z, t) with x ∈ [30, 330] km, z = [−H, 0] and

t ∈ [0, 30] days:
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{ũ
}(m

l)
|(

m
s−

1
)

ml (m−1)

10−3.0 10−2.5 10−2.0 10−1.5
10−6

10−5

10−4

10−3

10−2

10−1

θ = 40◦ N

|D
C

T
{ũ
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F 5.7: Evolution of the horizontally averaged discrete cosine transform of the horizontal
velocity. The spectra were calculated for the following times: 5T0, 25T0 and 45T0. The arrow
shows the direction of evolution.
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I. Spectral estimation in the vertical: ũ(x, z, t)→ E(x,ml, t);

II. Averaging in the horizontal: E(x,ml, t)→ E(ml, t).

The resulting spectrum E(ml, t) is a horizontally averaged power spectrum of horizontal kinetic

energy with respect to the discrete wavenumbers ml = πl/H, where l = 0, 1, . . . , J − 1. The function

E(ml, t) is calculated using the following numerical approximation, which involves a discrete

cosine transform in the vertical:

E(ml, tn) =
〈

1

N

∣

∣

∣

∣

DCT{ũn
ij}(xi,ml, tn)

∣

∣

∣

∣

2〉

xi∈[30,330] km
, (5.11)

where the discrete cosine transform is defined by the following:

DCT{ũn
ij}(xi,ml, tn) = β(l)

J−1
∑

j=0

ũn
ij cos

[

(z j +H)ml

]

, l = 0, 1, . . . , J − 1, (5.12)

and

β(l) =















√

1/J, l = 0;
√

2/J, l = 1, 2, . . . , J − 1.
(5.13)

The discrete cosine transform in the vertical has a simple interpretation: it is proportional

to the amplitudes of the normal modes al. Figure 5.7 shows absolute values of the horizontally

averaged discrete cosine transform of the matrix ũn
ij

, at the following time moments: 5T0, 25T0,

45T0. As the velocity is defined on a vertically bounded domain, the DCT transform is an accurate

way to define the spectrum, as no assumptions about the function outside the boundaries have

to be made. The DCT provides the typical leakage decay rate of n−2 (compared to the DFT

decay rate of n−1). In some situations this decay rate is sufficient to observe the most important

spectrum features (see, for example, Bertrand and Laprise, 2002). In most cases, however, when

the amount of energy in small-scale features is small, the power law decay n−2 would render

those features invisible in the spectrum.

The DCTs shown in figure 5.7 have a typical zigzag shape confirming that for cases θ < θcr

odd modes dominate the vertical structure of the velocity field, and for cases θ > θcr, even

modes do. For example, let us consider the fifth mode that has the vertical wavenumber of

5π/H ≈ 10−2.5 m−1 that coincides with one of the grid lines in the axes of figure 5.7. For cases

θ < θcr the fifth mode is larger than the surrounding modes four and six and for cases θ < θcr it

is smaller.

The vertical structure of the velocity field, just like the horizontal structure, tends to a quasi-

stable state: the averaged DCT transforms taken at time moments separated by equal time

intervals reveal the convergence.
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Typical vertical scales at different stages of an internal wave fluid motion were previously

analyzed in papers by Hibiya et al. (1998); Furue (2003); MacKinnon and Winters (2003, 2005).

Different authors used different approaches in order to characterize vertical scales of internal

wave fields. Hibiya et al., for example, considers the time variations of the horizontally averaged

Froude spectrum. In the paper, the Froude spectrum has the following somewhat obscure

definition: “the vertical wavenumber spectrum of the vertical shear of horizontal current velocity

normalized by the square of background buoyancy frequency”. As it is not clear what exactly is

meant by “the wavenumber spectrum” (energy spectrum, power spectrum, amplitude spectrum,

etc. ), we can only assume, judging by the discrete appearance, that the spectrum was given by

the squared amplitudes of a Fourier series. In our simulations, the vertical shear of horizontal

velocity at any fixed x and t can be written using the normal mode decomposition:

∂u(z)

∂z
= −

+∞
∑

l=0

alml sin(mlz). (5.14)

Thus, the Froude spectrum is given by |alml|2/N2
b
; the Froude spectrum is proportional to the

spectrum E(ml, tn) and the squared discrete cosine transform (both multiplied by m2
l
). Essentially,

all the important information comes from the discrete cosine transform. Hibiya et al. (1998)

considers the Froude spectrum in a quasi-equilibrium state and in most of their numerical

experiments the spectrum is nearly uniform in time. Our spectrum seems to be approaching a

shape that is qualitatively similar to the one observed by Hibiya et al.: energy at wavenumbers

within the range [10−2.5, 10−1.5] m−1 grows to a quasi-steady level.

In the papers by MacKinnon and Winters (2003, 2005) the vertical wavenumber spectrum has a

similar evolution as that of the horizontal wavenumber spectrum: initially, energy is concentrated

around the forcing wavenumber, and after eighty tidal periods it has spread out to a wide range

of scales.

5.5 Two-dimensional spectra E(ω,ml)

The time variation of the distribution of energy with respect to the frequency and vertical

wavenumber helps to understand energy transfers within the spectrum. In particular, it helps to

clarify at what vertical scales the interharmonics are generated, and what frequencies (harmonics

or interharmonics) are more susceptible to mixing, due to their small vertical scales.

Figures 5.8, 5.9 show two-dimensional spectra of horizontal velocity as a function of frequency

and vertical wavenumber. The spectrum E(ω,ml) is obtained by

• applying the DCT in the vertical;
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F 5.8: Two-dimensional spectra E(ω,ml) (m2 s−2 per s−1 per mode) on the logarithmic scale
calculated for x ∈ [20, 40] km. Latitudes shown: 0◦–20◦ N.
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F 5.9: Same as in figure 5.8 but for latitudes 30◦–40◦ N.

• estimating the power spectral density for each time series corresponding to a particular

vertical wave number and a horizontal coordinate;

• averaging in the horizontal.

The expression for E(ω,ml):

E(ω,ml) =

〈

∆t

π

∣

∣

∣

∣

∣

∣

∣

N−1
∑

n=0

gn

[

DCT{un
ij}(xi,ml, n)

]

exp(−iωtn)

∣

∣

∣

∣

∣

∣

∣

2
〉

xi∈[20,40] km

, (5.15)

where gn is a prolate spheroidal sequence of the third order. Essentially, E(ω,ml) is an extended

version of the power spectral density E(ω). The power spectral density E(ω) and E(ω,ml) obtained

on the same region are related as follows:

E(ω) =
1

J

J−1
∑

l=0

E(ω,ml). (5.16)

Total energy of the baroclinic horizontal velocity is related to the spectrum E(ω,ml) as follows:

〈

1

Ttot

∫ Ttot

0

|ũ(ξ, η, t)|2 dt

〉

(ξ,η)

=
1

J

J−1
∑

l=0

∫ ωNyq

0

E(ω,ml) dω, (5.17)
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where the averaging on the left side is performed over (ξ, η) such that ξ(0) ∈ [20, 40] km.

From figures 5.8, 5.9 it is seen that the vertical scales of the interharmonics are consistently

smaller than the vertical scales of the surrounding harmonics. This feature is especially pro-

nounced for the case θ = 30◦ N, where the energetic peaks of the spectrum change from higher

vertical wavenumbers to lower ones. This feature was observed for subharmonics in similar

spectra by MacKinnon and Winters (2003, 2005).

For the cases 10◦, 20◦ and 40◦ , the subinertial regions ω < f in the spectra E(ω,ml) are much

less energetic in comparison with other regions. However, for the case θ = 30◦ there is clearly a

subinertial peak at ω0/2.

5.6 Two-dimensional spectra E(k,ml)

A comprehensive view of the spatial scales involved is given by the two-dimensional spectrum

E(k,ml) that changes in time. In order to reduce the noise level in the estimations, we average the

two dimensional spectra in time over five tidal periods. Thus, the spectrum E(k,ml) is estimated

on time intervals [T1,T1 + 5T0] for different T1. The expression for E(k,ml) evaluated for the time

interval [T1,T1 + 5T0] is given by

E(k,ml) =

〈

∆x

π

∣

∣

∣

∣

∣

∣

∣

∑

i

gi

[

DCT{un
ij}(xi,ml, n)

]

exp(−ikxi)

∣

∣

∣

∣

∣

∣

∣

2
〉

t∈[T1,T1+5T0]

, (5.18)

Total energy of the spectrum E(k,ml) evaluated for the time interval [T1,T1 + 5T0] is related to

the total baroclinic energy as follows:

〈

1

XH

∫ 0

z=−H

∫ 330 km

x=30 km

|ũ(x, z, t)|2 dx dz

〉

t∈[T1,T1+5T0]

=

J−1
∑

l=0

∫ kNyq

0

E(k,ml) dk. (5.19)

Figures 5.10–5.14 show two-dimensional spectra of horizontal velocity as a function of the

horizontal and vertical wavenumber. The spectrum E(k,ml) is obtained by first applying the DCT

in the vertical and then estimating the power spectral density with respect to the wavenumber k.

The baroclinic velocity used to calculate this spectrum corresponded to coordinates {xi j, zi j}with

xi j ∈ [30, 330] km.

The development of the spectrum shows that energy spreads along the rays corresponding to

different frequencies away from the origin (k,m) = (0, 0). The frequencies include harmonics

and interharmonics. First, the rays corresponding to harmonics appear, and then the rays
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F 5.11: Same as in figure 5.10 but for latitude θ = 10◦ N.
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corresponding to interharmonics. The leakage due to the DCT transform is manifested in the

checkered pattern appearing near energetic rays.

5.7 Spectrum E(ω) derived from E(k,m)

Changing variables from k to ω according to the dispersion relation, we can define the spectrum

E(ω,ml). The function E(ω,ml) was evaluated numerically at the discrete set of frequencies ωi =

f + (i+1/2)∆ω, where i = 0, 1, . . . , 299 and ∆ω = (Nb− f )/300, using the following approximation:

E(ωi,ml) =
1

∆ω

∫ kright(ωi ,ml)

kleft(ωi ,ml)

E(k,ml) dk, (5.20)

where

kleft(ωi,ml) = ml

√

(ωi − ∆ω/2)2 − f 2

N2
b
− (ωi − ∆ω/2)2

,

kright(ωi,ml) = ml

√

(ωi + ∆ω/2)2 − f 2

N2
b
− (ωi + ∆ω/2)2

.

(5.21)

The integration in (5.20) was performed using the adaptive Simpson quadrature (Gander and

Gautschi, 2000). Then, the time frequency spectrum can be estimated as follows:

E(ωi) =

60
∑

l=0

E(ωi,ml), (5.22)

where summation was truncated to 60 vertical wavenumbers. Units of the function E(ω) are

m2 s−2 per s−1. The total energy of the two-dimensional spectrum E(k,m) is related to the total

energy of the spectrum E(ω) as follows:

∫ Nb

ω= f

E(ω) dω =

J−1
∑

l=0

∫ kNyq

0

E(k,ml) dk. (5.23)

As the spectrum E(k,ml) is calculated for different time intervals, we can evaluate the evolution

of the derived spectrum E(ω).

Figures 5.15–5.17 demonstrate the development of the spectrum E(ω) for latitudes 0◦, 10◦, 20◦,

30◦ and 40◦ N. The spectra E(ω) are shown for the three time intervals: [5T0, 10T0], [25T0, 30T0]

and [45T0, 50T0]. The structure of the spectrum E(ω) derived from the two-dimensional spectrum

E(k,m), based on the internal wave field for x ∈ [30, 330] km, is qualitatively similar to the

spectrum Υ(ω) calculated for the time series within 40 km of the ridge. Both harmonics and

interharmonics are apparent in the spectrum structure. The values of interharmonics observed
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in the spectra E(ω) are similar to those observed in the spectra Υ(ω). For example, in case θ = 0◦,

two distinguished peaks at subharmonic frequencies 0.4ω0 and 0.6ω0 are seen.

5.8 Interharmonics are resonant triads

There is evidence that the strong subharmonics observed in the spectra within the frequency

range [ f ,Nb], are generated through resonant triad interactions. There is a discrete number of

resonant triad interactions occuring in the highly nonlinear regions that generate the two strongest

subharmonics. For example, in the case θ = 20◦ N, there is one resonant triad corresponding to

the destabilization of the tidal beam on top of the ridge and there is another corresponding to the

instability on the side of the ridge. The instability of the internal tidal beam occurring on top of the

ridge generates two subharmonic waves with frequencies ω1 and ω2 such that ω1 +ω2 = ω0. The

two subharmonics are characterized by two distinct wavevectors: K1 = (k1,m1) and K2 = (k2,m2).

The tidal beam, on the other hand, does not have any dominant wavenumbers: the energy is

distributed over a continuum of wavenumbers. The linear dispersion relation indicates that the

sum combination of the wavevectors corresponding to the subharmonics on top of the ridge,

i.e. K1 + K2, corresponds to the wave of the tidal frequency. Similarly, the two subharmonics

generated on the side of the ridge are in resonance with the tidal beam.

Let us consider the example caseθ = 20◦ in more detail and estimate the dominant wavenum-

bers corresponding to the energetic subharmonic frequencies ω1 = 0.4269ω0 and ω2 = 0.5752ω0.

The values of the subharmonic frequencies are obtained from the one-dimensional spectrum

Υ(ω). Apart from the wavenumbers corresponding to the subharmonics, we will also need to

estimate the energetic wavenumbers characterizing the tidal beam.

The spatial distribution of the waves with a given frequency ωα can be analyzed using the

following Fourier transform of the baroclinic velocities ũn
ij

:

χi j(ωα) =

N−1
∑

n=0

gnũn
ij exp(−iωαtn), (5.24)

where gn is the same as for the spectral estimator Si j(ωα). We consider the distribution χi j(ωα)

over the domain ξi j ∈ [0, 40] km and restrict our attention to the three frequencies ω1, ω2 and

ω0. Note, that the transform χi j(ωα) is the essential part of the direct spectral estimator Si j(ωα);

the two are related as follows: Si j(ωα) = (∆t/π)|χi j(ωα)|2. As opposed to the spatial distribution

Si j(ωα), the transform χi j(ωα) allows us to obtain the information about the relative phase of a

wave at each coordinate (ξi j, ηi j). Using that information we can estimate the wavenumbers of a

wave.
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F 5.16: Same as in figure 5.15 but for latitudes θ = 20◦ and 30◦ N.
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F 5.17: Same as in figure 5.15 but for latitude θ = 40◦ N.

The phase field corresponding to frequency ωα can be defined as follows:

φi j(ωα) = ℑ{log(χi j(ωα)}, φi j(ωα) ∈ [−π, π], (5.25)

where ℑ stands for the imaginary part. As the phase field ϕi j is discontinous and the phase itself

is ambiguously defined, a better way to visualize the local phase of a wave is to consider either

the real or imaginary part of the matrix χi j(ωα) normalized by the absolute value of χi j(ωα) at

each point, e.g.

ϕi j(ωα) =ℜ{χi j(ωα)}/|χi j(ωα)|, ϕ ∈ [−1, 1], (5.26)

whereℜ stands for the real part. Figures 5.18, 5.19 and 5.20 demonstrate the phase fields ϕi j(ωα)

for ωα = ω1, ω2 and ω0. Lines of constant phase have the typical slope corresponding to the

frequency of the wave. The actual distribution of each wave is much less regular than the phase

field. To emphasize where the wave is most energetic, a contour of the field |χi j(ωα)| is shown as

a shaded patch on top of each of the phase fields.

The structure of the phase fields ϕi j(ω1) and ϕi j(ω2) shows that there are dominant wavenum-

bers for each subharmonic. However, as is seen in the fieldϕi j(ω1) the wavenumbers correspond-

ing to the beams of subharmonic frequency emanating from the top of the ridge and from the

side, are quite different. Accordingly, the distribution χi j(ωα) has different wavenumbers: see,

for example, the profileℜ{χi j(ω1)} at ξi j = 11 km and 30 km, shown in figure 5.21. On the other

hand, the structure of the phase field corresponding to the wave of tidal frequency, i.e. ϕi j(ω0),

does not suggest any dominant wavenumbers.
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F 5.19: The phase field ϕi j(ω2) at latitude θ = 20◦ N. The patch on top indicates the energetic
region.
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F 5.20: The phase field ϕi j(ω0) at latitude θ = 20◦ N. The patch on top indicates the energetic
region.
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F 5.21: The profile χi j(ω1) for ξi j = 11 km (dashed line) and 30 km (solid line).
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To define the dominant vertical wavenumbers of the distribution χi j(ωα) we apply a zero-

padded discrete Fourier transform in the vertical for each index i. Thus, for each frequency we

obtain a distribution χ̂(x,m) that shows the dominant wavenumbers. Figures 5.22 and 5.23 show

the two fragments of the distribution χ̂(x,m) with the two dominant vertical wavenumbers. One

vertical wavenumber (m
top

1
) corresponds to the instability on the top and another, to the instability

on the side (mside
1

). Figures 5.24 and 5.25 show the energetic wavenumbers for the frequency ω2.

Figures 5.26–5.27 show the distribution of the energetic wavenumbers of the waves of tidal

frequency. The important difference in comparison with the case of subharmonics is that there are

no localized peaks signifying dominant wavenumbers. Rather, the distribution of the energetic

wavenumbers for the tidal frequency is decaying with the the vertical wavenumber. The pattern

of the distribution reflects the fact that the upward propagating beam has more energy in high

vertical wavenumbers in the region 0 / x / 10 km, i.e. on top of the ridge. The downward

propagating beam has more energy in higher vertical wavenumbers in the region 10 / x / 20 km,

i.e. on the side of the ridge. The alternating black ’ribbons’ in the distribution are the manifestation

of what the vertical mode structure turns into over topography.

Once the dominant vertical wavenumber is found, the corresponding horizontal wavenumber

can be constructed using the dispersion relation:

k = m

√

ω2 − f 2

N2
b
− ω2

. (5.27)

Table 5.3 lists the resulting wavenumbers for the two subharmonics. Note that the sign of the

actual wavenumbers in the internal wave field can be different from what is shown in the table

due to our method of the wavenumber detection. The waves characterized by (ω1, k
top

1
,m

top

1
) and

(ω2, k
top

2
,m

top

2
) form a resonant triad with the wave (ω
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0
, k
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0
) = (ω1+ω2, k
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1
+m
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2
),

where ω
top

0
≈ ω0 and the wavenumbers of the sum wave satisfy the dispersion relation:




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
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
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2

≈
N2

b
− ω2

0

ω2
0
− f 2

. (5.28)

Thus, the waves of frequenciesω1 andω2 on top of the ridge form a resonant triad with the wave

of tidal frequency. Similarly, it can be shown that the subharmonic waves on the side of the ridge

also form a triad with the wave of tidal frequency.

151



T 5.3: Dominant wavenumbers of the resonant triads for the case 20◦ N

ω Top Side

ω1 (k
top

1
,m
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1
) = (−9.2765× 10−4,−0.0277) m−1 (kside

1
,mside

1
) = (4.4205× 10−4, 0.0132) m−1

ω2 (k
top

2
,m
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2
) = (2.4937× 10−3, 0.039) m−1 (kside

2
,mside

2
) = (−2.174× 10−3,−0.034) m−1
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F 5.22: The distribution χ̂i j(x,m) for the frequency ω1 shown for the positive wavenumbers.
The maximum (black patch) corresponds to a resonant triad interaction on the side of the ridge.
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F 5.23: The distribution χ̂i j(x,m) for the frequencyω1 shown for the negative wavenumbers.
The maximum (black patch) corresponds to a resonant triad interaction on top of the ridge.
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F 5.24: The distribution χ̂i j(x,m) for the frequency ω2 shown for the positive wavenumbers.
The maximum (black patch) corresponds to a resonant triad interaction on top of the ridge.
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F 5.25: The distribution χ̂i j(x,m) for the frequencyω2 shown for the negative wavenumbers.
The maximum (black patch) corresponds to a resonant triad interaction on the side of the ridge.
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F 5.26: Vertical transform of the field χi j(ω0). Positive wavenumbers corresponding to the
upward propagating beam.
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F 5.27: Vertical transform of the field χi j(ω0). Negative wavenumbers corresponding to the
downward propagating beam.

5.9 Linear spectra based on Bell’s solution

The wavelike part of the linear solution of the flow over an idealized topography h(x), which

contains the majority of the energy in the linear case, can be written for the vertical displacement

as in Bell (1975):

η(x, z, t) =
1

π

n0
∑

n=1

ℜ
{∫ +∞

−∞
ĥ(k)Jn

(

kU0

ω0

)

exp[i(kξ + µnz + nω0t)]dk

}

, (5.29)

where the following notation in agreement with Bell was used:

• symbolℜ stands for the “real part of”;

• ξ is the horizontal coordinate moving with the barotropic flow:

ξ = x −
∫ t

0

U(t)dt;

• ĥ(k) is the non-unitary Fourier transform of the topography h(x):

ĥ(k) =

∫ +∞

−∞
h(x) exp(ikx)dx;
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• n0 = ⌊Nb/ω0⌋ is the number of freely propagating harmonics;

• µn is the vertical wavenumber associated with the frequency and horizontal wavenumber

as follows:

µn =
|k|

nω0
(n2ω2

0 −N2
b)1/2, n = 1, 2, . . . , n0.

For each value of the harmonic number n, the spectrum with respect to the horizontal

wavenumber k is represented by

EBell
n (k) =

∣
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∣

∣
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∣

∣

∣

2

.

For our particular choice of topography, i.e. h(x) = A exp(−x4/d4), the Fourier transform ĥ(k)

can be evaluated explicitly using symbolic computation in M:
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(5.30)

The transform is expressed in terms of Bessel functions of the first kind Jn(·), gamma functions

Γ(·) and hypergeometric functions 0F2(·). The latter are power series defined as follows:

0F2([]; [d1, d2]; z) =

+∞
∑

k=0

zk
/(

k! dk̄
1 dk̄

2

)

, (5.31)

where ak̄ denotes the rising factorial (notation adapted from Knuth, 1992):

ak̄ = a(a + 1) . . . (a + k − 1).

The shape of the function ĥ(k) is shown in figure 5.28.

Figure 5.29 shows spectra EBell
n (k) for different harmonics. The structure of the spectrum

EBell
n (k) for each harmonic is composed of peaks at a discrete set of horizontal wavenumbers k.

In this sense, the spectrum EBell
n (k) is similar to the nonlinear spectrum E(k) for the case θ = 0◦.

However, the peaks in the two spectra are quite different. In the nonlinear spectrum, the peaks

correspond to the periodicity in the pattern of beams on the domain [30, 330] km, whereas the

peaks in the spectrum EBell
n (k) characterizes the scales of the beams themselves (the pattern of

beams corresponding to Bell’s solution is not periodic at all, as he assumes the ocean depth to

be infinite). Thus, the peaks in the two spectra are at different wavenumbers. For example, the

strongest peak in the spectrum E(k) shown in figure 5.5 is at k = k0 ≈ 8.9 × 10−5, whereas the
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F 5.28: The Fourier transform of the topography, ĥ(k).

strongest peak of EBell
n (k) shown in figure 5.29 is at k = 1.3× 10−4. Moreover, the wavenumbers of

peaks in the spectrum EBell
n (k) vary with the number of harmonic n.

In order to draw an analogy between the two-dimensional spectrum E(k,ml), evaluated for the

nonlinear solution, and the spectrum corresponding to Bell’s solution, we construct the following

function based on Bell’s solution in the wavenumber space. Using the dispersion relation (3.1)

we can transform the spectrum EBell
n (k) for each harmonics into a function EBell

n (k,m) defined for

the wavenumbers (m, k) such that

m

k
=

√

N2
b
− (nω0)2

(nω0)2 − f 2
, n = 0, 1, . . . , 7.

In order to visualize the structure of the solution in the wavenumber space we perform the

following: (1) smooth the functions EBell
n (k,m) for each n by convolving them with the Gaussian

two-dimensional function whose standard deviation is 5 × 10−5 m−1; (2) normalize the resulting

functions so that each harmonic would have equal maximum; (3) superimpose the smoothed

and normalized functions. The resulting pseudo-spectrum is shown in figure 5.30. The pseudo-

spectrum, in contrast to the spectrum of the nonlinear flow E(k,ml), is continuous with respect to

the vertical wavenumber. The peaks occur at unique vertical and horizontal wavenumbers, and,

thus, do not suggest a discrete nature of the spectrum with respect to the horizontal or vertical

wavenumber. The main difference, however, between the linear and nonlinear case is the absence

of energy in the wavenumbers corresponding to interharmonics.
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5.10 Summary

In this chapter, we considered the dependence of energy on spatial coordinates and wavenumbers.

One of the important results is that the vertical scales of the inteharmonics are typically smaller

than those of harmonics, with the vertical scales of subharmonics being the smallest. The

conjecture is that, in the real world, the subharmonics generated in a similar fashion as in our

runs are the most susceptible to the vertical mixing. Using the two-dimensional spectra E(k,ml),

we showed that, with time, internal wave energy spreads from small wavenumbers toward larger

wavenumbers (both horizontal and vertical) until the spectrum reaches semi-steady state.

Another important result of this chapter is the following: when the two strong subharmonics

are within the free internal wave range, they are generated from the tidal beam through the

parametric subharmonic instability. This was shown by investigating the wavenumbers of each

of the three waves. A similar instability mechanism may generate subharmonics out of the free

internal wave range (for supercritical latitudes); in this case the waves are forced.
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Chapter 6

Conclusions

6.1 Summary of the results

In this research we investigated two-dimensional stratified tidal flow over topography. We

looked at how the resulting internal wave field depends on latitude, topography and background

flow. Using temporal spectral analysis, we showed that the inviscid flow in our numerical

experiments consists of harmonics and interharmonics. Previously, the attention was centered

around harmonics and strong subharmonics only. Interharmonics, ignited by instabilities in the

highly nonlinear regions, and multiplied through triad interactions, represent the next logical step

in understanding the process of energy cascade in internal waves. Using spatial spectral analysis,

we studied the typical horizontal and vertical scales of the internal wave field. In particular,

we showed that, according to vertical and horizontal wavenumbers, waves of interharmonic

frequencies within the free internal wave range are generated through resonant triad interaction.

6.2 Misleading stereotypes

There seem to be several stereotypes in the current literature on internal wave energy transfers

that must be discredited or, at least, reconsidered. All of these stereotypes, described below, are

interconnected and, arguably, stem from the older linear and weakly-nonlinear theories: trying

to use the old terms when the old assumptions do not hold leads to misunderstanding and

confusion.

Using the old term Parametric Subharmonic Instability for the description of the main cause

of the subharmonics leads to confusion. First of all, PSI was originally thought of as an instability
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acting on a single wave not perturbed by topography or coherent surrounding waves. Clearly, the

old term fails to describe the fact that the development of an instability in a violently perturbed

wave is much faster than in the classical PSI. Secondly, the term PSI works only if the generated

subharmonics are within the free internal wave frequency range (then PSI falls into the category

of resonant-triad interactions). Identifying the main cause of subharmonics with PSI (what seems

to be the case in the work by MacKinnon and Winters, 2003, 2007), then, leads to a false conclusion

that, once we go beyond the critical latitude where both subharmonics are forced, then there is

no instability altogether. In our work, however, we observe a smooth transition of the instability

while passing the critical latitude; moreover, the forced subharmonics for the case 35◦ N are

stronger than in cases 0◦ and 10◦ N. This signifies that the term PSI should be either replaced or

generalized.

Forced internal waves seem to be underestimated or overlooked in comparison with pro-

gressive ones. The dispersion relation (3.1) from linear theory suggests that progressive internal

waves are characterized by frequencies in the range ( f ,Nb), thus overlooking other internal

waves. However, as we have shown, internal waves of comparable energies are observed in the

ranges [0, f ) and (Nb,+∞). The impact of forced waves on mixing, however, as was suggested

in the work by Teoh et al. (1997), can be even greater than that of progressive waves. Trapped

waves accumulate energy more quickly and hence are more susceptible to overturning.

The critical latitude is not the limit beyond which subharmonics are not generated. This

misconception was discussed above in relation with PSI. In addition, we should add that, as

the frequencies of subharmonics generated by PSI are not exactly ω0/2, the forced waves of

subharmonic frequencies outside the range ( f ,Nb) are generated before the critical latitude θcr

and, thus, formally, PSI ceases to exist even earlier than latitude reaches θcr. The subharmonic

instability is rather insensitive to whether the participating waves are forced or progressive: it

exists when both generated subharmonics are progressive, when only one of them is progressive

and, lastly, when none of them is progressive.

Interharmonics are not Doppler shifted frequencies. This follows from the comparison of

spectra in the Eulerian, Lagrangian and barotropic-Lagrangian reference frames. Moreover, and

here we return once again to the forced vs. progressive waves concept, the waves of subharmonic

frequencies in the subinertial range are trapped waves localized in patches near the generation

sites, whereas their counterparts, interharmonics separated from them by multiples of tidal

frequency, are progressive internal waves manifested in internal wave beams.

The last idea concerns resonant versus non-resonant triad interaction. Both types are present

in the simulations. We showed that the subharmonics generated by an instability of the internal

wave beam of tidal frequency are generated through a discrete set of resonant triad interactions.

In the example shown in this thesis, one dominant resonant triad interaction occurred in the

vicinity of the tidal beam on top of the ridge and another resonant triad interaction occurred on
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the side of the ridge. The fact that the two subharmonics and the tidal frequency waves form

a resonant triad was not obvious. Even less obvious is the fact that in several cases a similar

mechanism, which, however, cannot be classified as a resonant triad interaction, generates forced

subharmonics of comparable energies. This mechanism can not be explained in terms of resonant

triad interaction, as the term no longer applies.

Moreover, if two waves of different frequencies already exist (for example, two strong sub-

harmonics are already generated) they will generate other waves at the combination frequencies,

regardless of whether those waves fall into the free internal wave range or not. The wave of a

combination frequency at a given location is generated by the forcing coming from the nonlinear

term u · ∇u. One could think of this forcing as of a small oscillating cylinder put at the location.

An oscillating cylinder produces St Andrew’s Cross pattern corresponding to internal waves

satisfying the dispersion relation. The particular direction of motion is irrelevant to the pattern

of emerging waves: the cylinder can oscillate in the vertical, in the horizontal or in a diagonal

direction. Similarly, in the vicinity of the oscillation, the wave at a combination frequency can

have arbitrary wavenumbers, but the progressive internal waves emanating from the region will

have wavenumbers consistent with the dispersion relation. Thus, once two waves of different

frequencies intersect, the waves at all the combination frequencies must be generated. If their

frequencies fall within the free internal wave range, they will be progressive internal waves with

appropriate wavenumbers. If their frequencies fall out of the range, they will be forced waves.

6.3 Energy cascade scenario

As the final point of the thesis, let us project some of the obtained results and generalizations onto

the internal wave interaction in the deep ocean. This can be done in the form of a hypothetical

energy cascade scenario. Think of the ocean as a hypothetical tank with stratified fluid; the ocean

has limited energy capacity.

I. Tidal flows over topography and wind feed energy into internal waves at two main fre-

quencies ω0 and f .

II. Energy distributes in the continuum of frequencies through nonlinear interactions:

• Energy flows into combination frequencies ofω0 and f (in particular, into tidal harmon-

ics nω0, n ∈ N). As the Coriolis frequency f changes with latitude, the combination

frequencies cover the continuum of frequencies.

• Internal waves are intrinsically unstable and the instabilities, like the ones considered

in this thesis, lead to further flow of energy from the strong frequencies to a continuum
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of frequencies consisting of harmonics and interharmonics. Values of interharmonics

depend on both topography and latitude, so the set of interharmonic and harmonic

frequencies fills the frequency space densely.

III. The spectrum relaxes to the smooth quasi-stable spectrum without pronounced peaks

(reminiscent of Kolmogoroff’s spectrum) due to the following mechanisms:

• Dissipation plays a role in broadening the strong peaks in the spectrum.

• Stronger waves are more nonlinear, weaker waves are less so. Thus, the stronger peaks

in the spectrum will continually lose energy toward the weaker ones through nonlinear

interactions, whereas the weaker peaks (such as interharmonics) will continually grow,

until they merge with the rest.

IV. Energy from tides and winds is fed into internal wave field at an almost constant rate. As

the energy of internal wave field in the ocean rises, so does the dissipation and mixing rate.

Eventually, a balance is achieved when the dissipation rate equals the rate at which energy

is injected.

V. Forced waves are the first candidates to break. At any given location, the strong progressive

waves, like the tidal harmonics for n ≤ ⌊Nb/ω0⌋, can release their energy to the background

spectrum through nonlinear interactions and instabilities, thus generating other progressive

waves that carry energy away from the energetic spot. The forced waves, on the other hand,

do not have this luxury: they accumulate energy locally until they break.

Behind the complexity of internal wave dynamics in the deep ocean stands a relatively

simple mathematical function representing the stable Garrett-Munk spectrum. In this thesis, we

discerned some rules that may play a role in governing the existence of this function.
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Fourier, J. (1822). Théorie Analytique de la Chaleur. Paris: F. Didot.

Furuchi, N., T. Hibiya, and Y. Niwa (2005). Bispectral analysis of energy transfer within the

two-dimensional oceanic internal wave field. Journal of Physical Oceanography 35, 2104–2109.

Furue, R. (2003). Energy transfer within the small-scale oceanic internal wave spectrum. Journal

of Physical Oceanography 33, 267–282.

Gade, S. and H. Herlufsen (1987). Use of weighted functions in dft/fft analysis (part 1). Brüel &
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