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Abstract

Let N be a positive integer and let A and B be subsets of {1, 2, ..., N}. What
can be deduced about the arithmetical character of the integers of the form ab + 1
with a in A and b in B from just information about the cardinalities of A and B?
In 2000, Sárközy and Stewart conjectured,

For each positive number ε there are positive real numbers N0(ε) and C(ε) such
that if N exceeds N0(ε) and |A| > εN and |B| > εN. where ε is a real number with
0 < ε < 1 then there are a in A and b in B with

P (ab + 1) > C(ε)N2.

In this thesis we shall discuss progress towards this conjecture. We have im-
proved or extended the work of Sárközy and Stewart in this context in some special
cases. For example we proved

Let N be a positive integer and put S = {1, 2, · · ·, N}. Let α be a real number
with α > 10. When N is large enough, then there are integers a, b ∈ S , such that

P (ab + 1) >
1

2

N2

(log N)α
.

We also considered the following problem,

Let N and k be positive integers and let ε be a real number with 0 < ε < 1.

When N is large enough, for each prime p with p < N2 k+1
k+2

−ε there exist integers ai,
i = 1, 2, · · · , k + 1 with 1 ≤ ai ≤ N such that

p | a1a2 · · · ak+1 + 1.
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Notation

Let f be any real or complex-valued function, and let g be a positive function.
We write

f = O(g)

if there exists a constant C > 0 such that

|f(x)| ≤ Cg(x)

for all sufficiently large x in the domain of f.

For any real number α, we write e(α) = e2πiα. Furthermore, we write ‖α‖ to
denote the distance of α to the nearest integer, and [α] for the greatest integer less
or equal to α.

We write (a, b) to denote the greatest common divisor of a and b.

Let S be a subset of {1, 2, · · · , N}. Let |S| denote the cardinality of S. If there
exist a real number ε with 0 < ε < 1 such that

|S| ≥ εN

Then we say S is a dense subset of {1, 2, · · · , N}.
Further notations will be introduced as needed.
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Chapter 1

Introduction

Let N be a positive integer and let A and B be subsets of {1, 2, ..., N}. A basic
question of combinatorial number theory is the following. What can be deduced
about the arithmetical character of the integers of the form a+b with a in A and b
in B from information about the cardinalities of A and B? There is an extensive
literature addressing this problem. For example, in 1986, by means of the Hardy-
Littlewood method, A. Sárközy and C. Stewart [24] proved the following:

For any set X let |X| denote the cardinality of X and for any integer n, larger
than one, let P (n) denote the greatest prime factor of n. Let ε be a positive real
number and suppose that

|A| > εN and |B| > εN. (1.1)

Then there is a positive number C(ε), which is effectively computable in terms
of ε, such that if (1.1) holds then there exist integers a in A and b in B with

P (a + b) > C(ε)N. (1.2)

This result is best possible up to a determination of C(ε) since a + b is at most
2N . In 1992 Ruzsa [20] gave a different proof of (1.2).

One might like to study the multiplicative analogues of sum set results. One
way of doing this, proposed by Sárközy [26], is to replace the sums a + b by the
numbers ab + 1(see also [13, 27]). However, it should be noted that the first result
on the arithmetic properties of numbers ab+1 is due, probably , to Vinogradov(see
Chapter V of [31]). Let p be a prime number and n be an integer coprime with
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p. Let (n
p
) denote the Legendre symbol of n over p. Vinogradov established the

estimate ∣∣∣∣∣
∑
a∈A

∑

b∈B

(
ab + k

p

)∣∣∣∣∣ ≤ (2|A||B|p)
1
2 . (1.3)

This result can be considered as the multiplicative analogue of a result of Fried-
lander and Iwaniec [11] on sums of the form

∑
a∈A

∑
b∈B χ(a + b) where χ is a

non-principal character modulo a prime p.

Put
Z = min(|A|, |B|). (1.4)

In 2000, Sárközy and Stewart [25] proved the following,

Theorem A( A. Sárközy, C. Stewart) For each positive real number ε there are
numbers N1(ε) and C(ε) which are effectively computable in terms of ε such that if
N exceeds N1(ε) and

Z > C(ε)
N

log N
, (1.5)

then there are a in A and b in B such that

P (ab + 1) > (1− ε)Z log N. (1.6)

In 2001, C. Stewart [30] sharpened the lower bound. By making use of estimates
for Kloosterman sums and Selberg’s upper bound sieve, he proved the following
theorem,

Theorem B(C. Stewart) There are effectively computable positive numbers c1, c2

and c3 such that if N exceeds c1 and

Z > c2
N√

(log N)/ log log N
, (1.7)

then there are a in A and b in B such that

P (ab + 1) > N1+c3(Z/N)2 . (1.8)

This is the best result so far on this problem.

We want to know what the best possible lower bound is for P (ab + 1). In their
joint work in 2000, Sárközy and Stewart [25] made the following conjecture,
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Conjecture 1. (A. Sárközy, C. Stewart) For each positive number ε there are
positive real numbers N0(ε) and C(ε) such that if N exceeds N0(ε) and (1.1) holds,
then there are a in A and b in B with

P (ab + 1) > C(ε)N2.

Conjecture 2. (A. Sárközy, C. Stewart) For each positive real number ε and each
integer k with k > 2, there are positive real numbers N0(ε, k) and c(ε, k) such that
if N exceeds N0(ε, k) and (1.1) holds, then there are a in A and b in B and a prime
p with

pk|ab + 1 and pk > c(ε, k)N2.

We will give an explicit c3 for Theorem B of Stewart. We shall prove that one
may take c3 = 0.055.

Theorem 1. Let N be a positive integer, let A and B be two subsets of {1, 2, ···, N}
and put Z = min(|A|, |B|). There are effectively computable positive numbers c1 and
c2 such that if N exceeds c1 and (1.7) holds, then there are a in A and b in B such
that

P (ab + 1) > N1+0.055(Z/N)2 . (1.9)

We are unable to improve Stewart’s result about the lower bound of P (ab + 1)
for dense subsets A and B of the set {1, 2, · · ·, N}. However we are able to give
a much better lower bound in some special cases. Instead of looking at the dense
subsets A and B, we consider a and b both from {1, 2, · · ·, N}. In this case we may
consider the primes in the arithmetic progression

mq + 1

with m varying from 1 up to N .

Define
ψ(x; q, a) =

∑
n≤x

n≡a(mod q)

Λ(n),

where Λ(n) is the von Mangoldt Function. I.e.

Λ(n) =

{
log n if n is a power of a prime number,
0 otherwise.
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We quote one version of the prime number theorem for arithmetic progressions in
the following.

Theorem C (The prime number theorem for arithmetic progressions) Let x be a
positive real number, q and a be positive integers and suppose

q ≤ (log x)1−δ, (1.10)

where δ is a fixed real number such that 0 < δ < 1. Then

ψ(x; q, a) =
x

φ(q)
+ O

(
xe−c(log x)

1
2

)
, (1.11)

where c is an absolute constant.

This is a weak result but it is effective, in the sense that, if δ is given a numerical
value, both c and the constant implied by the symbol O can be given numerical
values. Applying this result, we deduced the following,

Let N be a positive integer and let ε be a real number such that 0 < ε < 1. There
exists a positive integer N1 such that when N > N1, there exists a prime number p
and integers a and b with 1 ≤ a, b ≤ N such that p = ab + 1 and

p >
1

2
N(log N)1−ε. (1.12)

To have a better estimate for the size of p in (1.12), we need better estimates for
the number of primes in an arithmetic progression. Let χ be a Dirichlet character
(mod q). The Dirichlet L-function is defined by

L(χ, s) =
∞∑

n=1

χ(n)

ns
(1.13)

for every complex number s with real part bigger than 1. By analytic continuation,
this function can be extended to a meromorphic function defined on the whole
complex plane. Here we quote the following result which was probably formulated
for the first time by Piltz in 1884:

The Generalized Riemann Hypothesis (GRH) asserts that for every Dirichlet
character χ and every complex number s with L(χ, s) = 0: if the real part of s is
between 0 and 1, then it is actually 1/2.
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The case χ(n) = 1 for all n gives the ordinary Riemann Hypothesis.

Theorem D If GRH is true, then for q ≤ x,

π(x; q, a) =
Li(x)

φ(q)
+ O

(
x

1
2 log x

)
(1.14)

where

Li(x) =

∫ x

2

1

log u
du,

and
π(x; q, a) = | { p | p ≤ x, p ≡ a (mod q) } |.

By Theorem D, that is, with the assumption of GRH, we can prove the following
result.

Theorem 2. Let N be a positive integer, let α be a real number with α > 4, and
let q = [ N

(log N)α ]. Put x1 = Nq + 1 and x2 = N
2
q + 1. If GRH is true, we have

π(x1; q, 1)− π(x2; q, 1)

≥ 1

4

N

log N
+ O

(
N log log N

(log N)2
+

N

(log N)
α
2
−1

)
.

We have the following corollary,

Corollary 1. Let N be an integer and put S = {1, 2, · · ·, N}. Let α be a real number
with α > 4. Assume GRH. When N is large enough there are integers a, b ∈ S such
that

P (ab + 1) >
1

2

N2

(log N)α
.

Note upon choosing suitable α, the factor 1
2

may be removed.

Furthermore, we may appeal to the Bombieri-Vinogradov theorem on the aver-
age of primes in arithmetic progressions. We have unconditionally proved a slightly
weaker result than Theorem 2. It is proved without GRH. We put

E(x; q, a) = ψ(x; q, a)− x

φ(q)

5



for (a, q) = 1, we let
E(x; q) = max

a
(a, q)=1

|E(x; q, a)|,

and
E∗(x, q) = max

y≤x
E(y, q).

Theorem E (Bombieri-Vinogradov) Let α > 0 be fixed. Then

∑
q≤Q

E∗(x, q) ¿ x
1
2 Q(log x)5

provided that x
1
2 (log x)−α ≤ Q ≤ x

1
2 .

Proof. See Davenport’s Multiplicative Number Theory [10]. p161.

Theorem 3. Let α and β be two positive real numbers with α < β. Put

x1 =
N2

(log N)β
+ 1

and

x2 =
N2

2(log N)β
+ 1.

Then we have

∑
N

(log N)β
<q≤ N

(log N)α

(ψ(x1; q, 1)− ψ(x2; q, 1))

≥ β − α

2

N2

logβ N
(log log N) + O

(
N2

log
β
2
+α−5

)
, (1.15)

If β
2

+ 5 < α, then the main term in (1.15) dominates. That is, there is a prime
number p with p > x2 in an arithmetic progression mq + 1 with m between 1 and
N and q in the range

N

(log N)β
< q ≤ N

(log N)α
.
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If N is large enough, then since p > x2 we have

p >
1

2

N2

logβ N
.

Note β
2

+ 5 < α < β so β > 10 so this is a weaker result than Corollary 1 which
we proved under the assumption of GRH.

Corollary 2. Let N be an integer and put S = {1, 2, · · ·, N}. Let β be a real number
with β > 10. When N is large enough there are integers a, b ∈ S such that

P (ab + 1) >
1

2

N2

(log N)β
.

Equivalently if β is a real number larger than 10 then for N sufficiently large

P

(
N∏
1

N∏
1

(ab + 1)

)
>

1

2

N2

(log N)β
.

Note again the factor 1
2

may be removed.

On the other hand, we also discuss an interesting implication from Stewart’s
proof [30]. To prove Lemma 2 in his paper, Stewart introduced the following set:

Ut(N) = { (m,n) ∈ Z× Z | 1 ≤ m ≤ N, 1 ≤ n ≤ N, t |mn + 1 } (1.16)

where Z denotes the set of integers.

If t divides N then we may decompose {(m,n)| 1 ≤ m, n ≤ N} into (N/t)2

blocks consisting of the Cartesian product of two complete sets of residues modulo
t. Thus if t divides N , |Ut(N)| = φ(t)(N/t)2. In general we deduce that

|Ut(N)| = φ(t)

(
N

t
+ O(1)

)2

=
φ(t)

t2
N2 + O(N). (1.17)

By a simple calculation we find that the above estimate (1.17) is dominated by
the main term for t up to N , which is trivial. To get a sharper estimate Stewart
appealed to Weil’s estimates for Kloosterman sums [33]. For any positive integer n
let d(n) denote the number of divisors of n. He proved,

Theorem F(C. Stewart)

|Ut(N)| = φ(t)

t2
N2 + O

(
t

1
2 d(t)3/2(log t)2 +

Nd(t) log t

t

)
. (1.18)
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Proof. See [30].

This estimate is dominated by the main term for t up to N ( 4
3
−ε). In other words,

for all the integers t up to N ( 4
3
−ε), we can find integers m and n with 1 ≤ m,n ≤ N

such that t | mn+1. This assures us that for all the prime numbers p up to N ( 4
3
−ε),

we can find integers m and n with 1 ≤ m, n ≤ N such that p|mn+1. In particular,

P (mn + 1) ≥ N4/3−ε.

The proof of Theorem F involves the estimate of a special sum called a Kloost-
erman sum.

For each integer a coprime with t let ā denote the integer from {1, · · · , t} for
which aā ≡ 1(mod t). For integers g, h and t, the Kloosterman sum S(g, h; t) is
defined by

S(g, h; t) =
t∑

a=1
aā≡1(mod t)

e

(
ga + hā

t

)
. (1.19)

They are named for the Dutch mathematician Hendrik Kloosterman, who in-
troduced them in 1926 [18] when he adapted the Hardy-Littlewood circle method
to solve a problem of Ramanujan of representing sufficiently large numbers in the
form ax2 + by2 + cz2 + dt2. In his paper he proved that

S(g, h; t) = O(t
3
4
+ε(g, t)

1
4 ). (1.20)

These sums turn out to have close connections with modular forms, and various
analytic number theory techniques are used to provide estimates for the coefficients
of modular forms starting with estimates for Kloosterman sums.

In 1931, H. Salié [23] proved that if m ≥ 2 then

|S(g, h; pm)| ≤ Cp
1
2
m, (1.21)

where C is an absolute constant. But his argument gave no information for m = 1.

In 1933, Davenport [7] proved that for any prime p with (gh, p) = 1,

S(g, h; p) = O(p
2
3 ). (1.22)
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In 1934, Hasse [15] showed that if the Riemann Hypothesis for algebraic function
fields in one variable over finite fields is true, then

|S(g, h; p)| ≤ 2
√

p. (1.23)

In 1941,Weil [34] established the truth of this hypothesis and thereby established
(1.23) and he published the proof [33] in 1948.

Using the Hasse-Weil result in (1.23) and Salié’s result in (1.21), in 1961, T.
Estermann [9] ( see also Hooley [16]) proved that

|S(g, h; t)| ≤ d(t) t
1
2 (g, t)

1
2 (1.24)

for all g, h and t.

In a paper in 1958, Mordell [19] introduced a generalization of the Kloosterman
sum and conjectured that it satisfies an upper bound analogous to (1.23). In 1977,
Deligne [4] established such a bound for the Mordell generalized Kloosterman sum.
Indeed, Deligne’s proof appeals to his 1974 work [5] in which he established the
last portion of the Weil Conjectures [32], i.e., the Riemann Hypothesis for algebraic
varieties over finite fields.

Let li, i = 1, · · · , k + 1 be integers such that (li, p) = 1. The k-dimensional
Kloosterman sum is defined as follows:

K(l1, · · · , lk+1; p) =

p∑
a1,··· ,ak+1=1

a1···ak+1≡1(mod p)

e

(
l1a1 + · · ·+ lk+1ak+1

p

)
,

where ai, i = 1, · · · , k + 1 are integers.

When k = 1, we have

S(l1, l2; p) =

p∑
a1,a2=1

a1a2≡1(mod p)

e

(
l1a1 + l2a2

p

)
=

p∑
a=1

(a,p)=1

e

(
l1a + l2ā

p

)
,

where ā is such that 1 ≤ ā < p and aā ≡ 1(mod p). This is the standard Klooster-
man sum. It is 1-dimensional.

For the 2-dimensional Kloosterman sum, Mordell [19] conjectured that for all
primes p,

9



|K(l1, l2, l3; p)| ≤ cp if p - l1l2l3,

where c is an absolute constant.

This may be considered the analogue of the 1-dimensional upper bound in (1.23).
Using (1.23), Carlitz [3] proved that there is an absolute constant c such that

K(l1, l2, l3; p) ≤ cp
5
4 if p - l1l2l3.

And finally, Deligne proved [4](see also Bombieri [2] and Serre [28]) that if
p - l1 · · · lk+1 then

|K(l1, · · · , lk+1; p)| ≤ (k + 1)p
k
2 (1.25)

holds for all k, p.

A result analogous to Estermann’s result in (1.24) was given by Smith [29] in
1979 and we shall state it below. Smith deduced his result from Deligne’s Theorem.

For each prime p, and any (a1, a2, · · · , an+1) ∈ Zn+1, there exists a unique
integer γ ≥ 0 such that

(a1, · · · , an+1) = pγ(b1, · · · , bn+1)

for some (b1, · · · , bn+1) ∈ Zn+1 − pZn+1. Let s denote the number of bi, i =
1, · · · , n + 1 which are divisible by p so that 0 ≤ s ≤ n. For each α ≥ 0, define

(a1, · · · , an+1; p
α+1)n = pσn(a1,··· ,an+1;pα),

where

σn(a1, · · · , an+1; p
α) =





α ifγ ≥ α
γ ifγ < α− 1
γ ifγ = α− 1 and s = 0

γ − 1 + 2(s−1)
n

if γ = α− 1 and 1 ≤ s ≤ n.

(Note that σn(a1, · · · , an+1; p
α) ≤ α for all (a1, · · · , an+1)).

For any q ≥ 1 we now define

(a1, · · · , an+1; q)n =
∏

pα‖q
(a1, · · · , an+1; pα)n.

We have

10



Lemma 1. (a1, · · · , an+1; p
α)

n
2
n ≤ (a1, p

α)
1
2 · · · (an+1, pα)

1
2 .

Proof. Let
(a1, · · · , an+1) = pγ(b1, · · · , bn+1)

where
(b1, · · · , bn+1) ∈ Zn+1 − pZn+1.

If γ ≥ α, then according to the definition of σn(a1, · · · , an+1; pα)n,

(a1, · · · , an+1; p
α)

n
2
n = (pα)

n
2 ≤ (a1, p

α)
1
2 · · · (an+1, p

α)
1
2 = (pα)

n+1
2

.

If γ < α− 1 then

(a1, · · · , an+1; p
α)

n
2
n = (pγ)

n
2 ,

but (ai, p
α)

1
2 ≥ (pγ)

1
2 for i = 1, · · · , n + 1. Hence

(a1, · · · , an+1; p
α)

n
2
n ≤ (a1, p

α)
1
2 · · · (an+1, p

α)
1
2 .

Similarly we have if γ = α − 1 and s = 0 (s is the number of bi, i = 1, · · · , n + 1,
such that p|bi)

(a1, · · · , an+1; p
α)

n
2
n < (a1, p

α)
1
2 · · · (an+1, p

α)
1
2 .

If γ = α− 1 and 1 ≤ s ≤ n

(a1, · · · , an+1; p
α)

n
2
n = (pγ−1+

2(s−1)
n )

n
2 = p

nγ−n+2s−2
2 .

But since
(a1, p

α)
1
2 · · · (an+1, p

α)
1
2 ≥ (pγ)

n+1
2 (ps)

1
2 = p

nγ+γ
2

+ s
2 ,

We once again have

(a1, · · · , an+1; p
α)

n
2
n < (a1, p

α)
1
2 · · · (an+1, p

α)
1
2

This finishes the proof of Lemma 1.
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Let n and q be positive integers and define

dn+1(q) = |{(d1, d2, · · · , dn+1) : 1 ≤ di ≤ q, di|q, 1 ≤ i ≤ n + 1}|.

That is, dn+1(q) denotes the number of representations of q as a product of n + 1
ordered positive factors.

Theorem G(R. Smith) For all n, q ≥ 1, and all (a1, · · · , an+1) ∈ Zn+1, we have

|K(a1, · · · , an+1; q)| ≤ q
n
2 (a1, · · · , an+1; q)

n
2
n dn+1(q).

Proof. See [29].

Although the result of Deligne (1.25) is deep, we have not been able to find
many applications of it. In the following, we looked at a “higher dimensional” case
of the set Ut(N) in (1.16). By making use of Deligne’s and Smith’s results, we are
able to give multi-dimensional analogues of Stewart’s result (1.18).

Let N and k be two integers and let t be a positive integer. Define

Ut(N, k) = {(a1, · · · , ak+1)|1 ≤ a1, · · · , ak+1 ≤ N, t|a1 · · · ak+1 + 1},

where ai, i = 1, · · · , k + 1 are integers.

Let
(

n
l

)
be the binomial coefficient. By making use of Deligne’s result (1.25) we

have proved the following:

Theorem 4. Let N and k be positive integers and let p be a prime. We have

|Up(N, k)| = 1

p− 1

(
N −

[
N

p

])k+1

+ O(kp
k
2 logk+1 p).

Further, if p | N then

|Up(N, k)| =
(

N

p
φ(p)

)k
N

p
=

Nk+1

pk+1
φk(p) =

Nk+1

p− 1
(1− 1

p
)k+1.

12



It follows from a paper of Fouvry and Katz [10] that if p ≥ N one has

|Up(N, k)| = Nk+1

pk+1
(p− 1)k + O

(
kp

k
2 logk+1 p +

Nk

√
p
(log p)−k

)
.

So our result is an improvement of theirs. We have a more explicit main term and
as a consequence we have a more precise result.

We shall get asymptotic estimates for |Ut(N, k)| by using Smith’s result on
higher-dimensional Kloosterman sums. However, we shall first look at the case
when t is a prime power.

Theorem 5. Let N, k and m be positive integers and let p be a prime. Then we have

|Upm(N, k)| = 1

φ(pm)

(
N −

[
N

p

])k+1

+ O
(
dk+1(p

m)(pm)
k
2 logk+1 pm

)
.

The main term dominates for pm < N
2(k+1)

k+2
−ε.

Secondly we have the general result. It is weaker than Theorem 4 and Theorem
5. We shall discuss this later in the proof.

Theorem 6. Let N, k and t be positive integers, then

|Ut(N, k)| = Nk+1

tk+1
φk(t) + O

(
Nk

t
d(t) log t + t

k
2 2k+1d

k+1
2 (t)dk+1(t) logk+1 t

)
.

Here once again, the main term dominates for t < N2 k+1
k+2

−ε. We have the follow-
ing corollary,

Corollary 3. Let N, k be integers. Let ε be a real number with 0 < ε < 1. For

each positive integer t with t < N2 k+1
k+2

−ε, we can find integers a1, · · · , ak+1 with
1 ≤ ai ≤ N , i = 1, 2, · · · , k + 1 such that

t | a1 · · · ak+1 + 1.

13



Chapter 2

An Explicit Constant

As mentioned above, our first goal is to find an explicit c3 in Stewart’s theorem.
For comparison, we repeat Stewart’s theorem here again.

Theorem B (C. Stewart ) There are effectively computable positive numbers c1, c2

and c3 such that if N exceeds c1 and

Z > c2
N√

(log N)/ log log N
,

then there are a in A and b in B such that

P (ab + 1) > N1+c3(Z/N)2 .

Stewart’s proof employed a strategy first introduced by C. Hooley [17] for his proof

that P (n2 + 1) exceeds n
11
10 for infinitely many integers n. More exactly, he used

estimates of Kloosterman sums and Selberg’s upper bound sieve. The application
of the sieve method is similar to that of Greaves [12] in that they sieve a subset of
Z× Z not a set of integers.

I shall repeat most of his proof. However we need to expand the proof to get
an explicit result. We have

Theorem 1 Let N be a positive integer, let A and B be two subsets of {1, 2, · · ·, N}
and put Z = min(|A|, |B|). There are effectively computable positive numbers c1

and c2 such that if N exceeds c1 and (1.7) holds, then there are a in A and b in B
such that

P (ab + 1) > N1+0.055(Z/N)2 . (2.1)

14



Define E by

E =
∏

a∈A,b∈B

(ab + 1) (2.2)

and put

E1 =
∏
p≤N

pordpE, (2.3)

where the product is taken over all primes p up to N and ordpE denotes the highest
power of p that divides E.

Lemma 2. Let ε > 0, there exists a positive number N0(ε), which is effectively
computable in terms of ε, such that for N > N0,

log E1 < (1 + ε)Z2 log N. (2.4)

Proof. See lemma 1 in [25].

Let t and N be positive integers and let z be an integer with 1 ≤ z ≤ N. We
put Ut(N, z) to be the following set

{
(m,n)|1 ≤ m,n ≤ N, t|mn + 1, all prime factors of

mn + 1

t
exceed z

}

In [30], Stewart gave an estimate of |Ut(N, z)| by means of Selberg’s upper
bound sieve. Before we state his result, we need the following:

Let t > 0 be an integer. We define ft(d) for each integer d by

ft(d) =
d∏

p|d
p-t

(1− 1
p
).

(2.5)

Observe that ft(d) is multiplicative and, for each positive integer n, put

gt(n) = ft(n)
∏

p|n
(1− 1

ft(p)
). (2.6)

Since

ft(p) =

{
p if p|t
p2

p−1
if p - t,

15



we see that

gt(n) = n
∏

p|n
p|t

(1− 1

p
)
∏

p|n
p-t

(1 +
1

p(p− 1)
). (2.7)

So

gt(n) ≤ n
∏

p|n
p-t

(1 +
1

p(p− 1)
)

≤ n
∏

p|n
(1 +

1

p(p− 1)
)

≤ n
∏

p|n
p≤41

(1 +
1

p(p− 1)
)

∏

p|n
p>41

(
1 +

1 + 1
p−1

p2

)

≤ n
∏

p|n
p≤41

(1 +
1

p(p− 1)
)

∏

p|n
p>41

(1 +
1

p2
)2

< n
∏

p|n
p≤41

(1 +
1

p(p− 1)
)

∏
p>41

(1 +
1

p2
)2

< n
∏

p|n
p≤41

(1 +
1

p(p− 1)
)
∏

p

(1 +
1

p2
)2

∏
p≤41

(1 +
1

p2
)−2

= n
∏

p|n
p≤41

(1 +
1

p(p− 1)
)(

π2

6
)2

∏
p≤41

(1 +
1

p2
)−2

≤ 2.287743n. (2.8)

Lemma 3. For each integer z ≥ 2 and each integer t > 0, we put

Vt(z) =
∑
n≤z

µ2(n)

gt(n)
. (2.9)

We have

Vt(z) >
2.6226

π2
log z (2.10)

provided that z is large enough.

16



Proof. From (2.8) and (2.9) we get

Vt(z) =
∑
n≤z

µ2(n)

gt(n)
≥

∑
n≤z

µ2(n)

2.287743n
, (2.11)

By Abel’s summation formula, we further have

Vt(z) ≥ 1

2.287743

∑
n≤z

µ2(n)

n

=
1

2.287743

(
1

z

∑
n≤z

µ2(n) +

∫ z

1

∑
n≤u µ2(n)

u2

)

=
1

2.287743

(
1

z

(
6

π2
z + O(

√
z)

))
+

1

2.287743

∫ z

1

6
π2 u + O(

√
u)

u2

=
1

2.287743

6

π2
log z +

1

2.287743

6

π2
+ O(

1√
z
)

>
2.6226

π2
log z, (2.12)

provided that z is large enough. Here we have used the known result that

∑
n≤x

µ2(n) =
6

π2
x + O(

√
x).

(See theorem 334 in [14])

We can now state Stewart’s upper bound for Ut(N, z).

Lemma 4. Let ε > 0 and let N, t and z be positive integers with t > N
2
3 and z ≥ 2.

Then

|Ut(N, z)| ≤ N2φ(t)

Vt(z)t2
+ Oε

(
(t

1
2 z3)1+ε

)
. (2.13)

Proof. See lemma 2 in [30].

Now we are ready to prove Theorem 1.

Let ε > 0 and let N0, N1, N2, · · ·, denote positive numbers which are effectively
computable in terms of ε. Define E by (2.2) and E1 by (2.3) and put E2 = E/E1.
The proof proceeds by a comparison of estimates for E.

17



Proof. Note that

E ≥
∏
a∈A

a≥ εZ
10

∏

b∈B
b≥ εZ

10

(
(
εZ

10
)2 + 1

)

≥ (
εZ

10
)2(|A|− εZ

10
)(|B|− εZ

10
)

≥ (
εZ

10
)2(1− ε

10
)2Z2

,

Thus by (1.7),
log E > (2− ε)Z2 log N,

for N > N0. By Lemma 2,

log E1 < (1 + ε)Z2 log N

for N > N1. Hence, for N > N2,

log E2 > (1− 2ε)Z2 log N. (2.14)

Let P denote the greatest prime factor of E, then

E2 ≤
∏

N≤p≤P

pordpG (2.15)

where

G =
∏

1≤m,n≤N

(mn + 1). (2.16)

Put P = NY and note that
∑

N<p≤NY

ordpG log p =
∑

N<p≤NY

∑
1≤m,n≤N
p|mn+1

log p. (2.17)

Observe that
∑

N<p≤NY

∑
1≤m,n≤N
p|mn+1

mn+1≤ N2

(log N)2

log p

≤ 2
∑

1≤m,n≤N

mn+1≤ N2

(log N)2

log N

= O(N2) = o(Z2 log N) (2.18)

18



and so, by (2.14), (2.15), (2.16) ,(2.17) and (2.18) , for N > N2,

∑
N<p≤NY

∑
1≤m,n≤N
p|mn+1

mn+1> N2

(log N)2

log p > (1− 3ε)Z2 log N. (2.19)

Put
St(N) =

∑
1≤m,n≤N
mn+1=tp
N<p≤NY

mn+1> N2

(log N)2

1.

If Y > N
1
20 then P = NY = N21/20 then the result holds and so we may suppose

that Y ≤ N
1
20 . Then by (2.19)

∑
N

Y (log N)2
<t≤N

log(
N2 + 1

t
)St(N) > (1− 3ε)Z2 log N, (2.20)

and so, for N > N3

∑
N

Y (log N)2
<t≤N

St(N) >
19.5

21
Z2. (2.21)

For each real number z with 2 ≤ z ≤ N

St(N) ≤ Ut(N,N) ≤ Ut(N, z). (2.22)

Let c4, c5, · · · denote effectively computable positive numbers. By Lemma 3, we
have

Vt(z) >
2.6226

π2
log z. (2.23)

We now apply Lemma 4 with z = N
1
7 and ε = 1

20
to conclude from (2.22) and

(2.23), that for N > N3 and N
Y (log N)2

< t ≤ N,

19



St(N) ≤ N2φ(t)

Vt(z)t2
+ Oε

(
(t

1
2 z3)1+ε

)

<
N2

2.6226
π2 log z

· φ(t)

t2
+ Oε

(
(t

1
2 z3)1+ε

)

<
N2

1
7

2.6225
π2 log N

· φ(t)

t2

=
7π2N2

2.6225 log N
· φ(t)

t2

and so

∑
N

Y (log N)2
<t≤N

St(N) <
7π2N2

2.6225 log N

∑
N

Y (log N)2
<t≤N

φ(t)

t2

(2.24)

Note that (See [1])

∑
t≤x

φ(t)

t2
=

6

π2
log x + A + O

(
log x

x

)

where A is a constant. Therefore we have

∑
N

Y (log N)2
<t≤N

St(N) <
7π2N2

2.6225 log N

(
6

π2
(log Y + 2 log log N) + O(

Y (log N)3

N
)

)

<
42N2

2.6225 log N
(log Y + 2.1 log log N) (2.25)

provided that N is large enough.

We now can choose suitable c2 in (1.7) such that

2.1 · 42N2

2.6225 log N
log log N <

0.5

21
Z2. (2.26)

Hence the first term in (2.24), from (2.21), (2.24) and (2.25), satisfies

42N2

2.6225 log N
log Y >

19

21
Z2

20



and this gives us

Y > N
19·2.6225

21·42 (Z/N)2 ,

where 19
21
· 2.6225

42
> 0.055

This finishes the proof of Theorem 1.
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Chapter 3

Primes in Arithmetical
Progressions

3.1 Our plan

As we mentioned before, we are unable to improve the lower bound for the greatest
prime factor of ab + 1 with a and b from two dense subsets of {1, 2, · · ·, N} apart
from the constant in the exponent. It may be worthwhile to mention here that C.
Hooley [17] proved that P (n2 + 1) exceeds n

11
10 infinitely many times. Later, it was

refined to n
12
10 by J. Deshouillers and H. Iwaniec [6]. However, even if the conjecture

that there are infinitely many primes of the form n2 + 1 is true, it does not imply
the conjecture of Sárközy and Stewart. The conjecture will be difficult to prove.

This leads us to look at the case when A = B = {1, 2, · · ·, N}. In other words,
we want to know what kind of lower bound we could have for P (ab + 1) when a
and b are both from the set {1, 2, · · ·, N}. We then can immediately look at the
primes in the arithmetical progression

mq + 1

where q is fixed such that 1 ≤ q ≤ N and m = 1, 2, · · ·, N.

Let ε be a fixed real number such that 0 < ε < 1 and q = [(log N)1−ε]. Let
x = Nq + 1, then

q < (log x)1−ε,

By (1.11), the prime number theorem for arithmetic progressions, we have
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ψ(x; q, 1)− ψ(
x

2
; q, 1)

=
x

φ(q)
−

x
2

φ(q)
+ O

(
xe−c(log x)

1
2

)

=
x
2

φ(q)
+ O

(
xe−c(log x)

1
2

)

where c is an absolute constant. Note that the main term dominates the error term,
so we deduce that there exists at least one prime of the form aq + 1 between x

2
and

x.

To improve the lower bound for the size of the prime of the form ab + 1, we
need a better estimate for ψ(x; q, a). One way of doing this is with the assumption
of the GRH. The other substitute is by using the Bombieri-Vinogradov theorem.

3.2 Proof of Theorem 2 and its corollary

Theorem 2 Let N and q be positive integers and let α be a real number with α > 4
and q = [ N

(log N)α ]. Put x1 = Nq + 1 and x2 = N
2
q + 1. If GRH is true, we have

π(x1; q, 1)− π(x2; q, 1)

≥ 1

4

N

log N
+ O

(
N log log N

(log N)2
+

N

(log N)
α
2
−1

)

Proof. Under GRH, if q ≤ x, by theorem D, we have,

π(x; q, a) =
Lix

φ(q)
+ O(x

1
2 log x) (3.1)

We shall now estimate the number of primes in the arithmetic progression mq + 1
where N

2
< m ≤ N. By (3.1) we have

π(Nq + 1; q, 1) =
Li(Nq + 1)

φ(q)
+ O((Nq)

1
2 log(Nq)) (3.2)
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and

π(
N

2
q + 1; q, 1) =

Li(N
2
q + 1)

φ(q)
+ O((Nq)

1
2 log(Nq)). (3.3)

Hence from (3.2) and (3.3),

π(Nq + 1; q, 1)− π(
N

2
q + 1; q, 1)

=
Li(Nq + 1)− Li(N

2
q + 1)

φ(q)
+ O((Nq)

1
2 log(Nq))

=

∫ Nq+1
N
2

q+1
1

log u
du

φ(q)
+ O((Nq)

1
2 log(Nq))

=

u
log u

|Nq+1
N
2

q+1
+

∫ Nq+1
N
2

q+1
1

(log u)2

φ(q)
+ O((Nq)

1
2 log(Nq))

=

Nq+1
log(Nq+1)

− N
2

q+1

log(N
2

q+1)
+ O( Nq

(log Nq)2
)

φ(q)
+ O((Nq)

1
2 log(Nq))

=

Nq
log Nq

− N
2

q

log Nq
+ O( Nq

(log Nq)2
)

φ(q)
+ O((Nq)

1
2 log(Nq))

=

1
2

Nq
log Nq

+ O( Nq
(log Nq)2

)

φ(q)
+ O((Nq)

1
2 log(Nq))

=
1

2

Nq

φ(q) log Nq
+ O

(
Nq

φ(q)(log Nq)2

)
+ O((Nq)

1
2 log(Nq))

≥ 1

2

N

log Nq
+ O

(
Nq

φ(q)(log Nq)2

)
+ O((Nq)

1
2 log(Nq)). (3.4)

For any positive integer q, there exists an absolute constant C such that φ(q) ≥
C q

log log q
. Note that since q = [ N

(log N)α ], we may deduce that

π(x1; q, 1)− π(x2; q, 1)

≥ 1

4

N

log N
+ O

(
N log log N

(log N)2
+

N

(log N)
α
2
−1

)
.

This completes the proof.
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This implies that there is a prime lying between [N
2
]q +1 and Nq +1. i.e. when

N is large, there is a prime number p such that

p ≥ 1

2
Nq + 1.

We have the following corollary:

Corollary 1 Let N be an integer and put S = {1, 2, · · ·, N}. Let α be a real number
with α > 4. Assume GRH. When N is large enough, there are integers a, b ∈ S
such that

P (ab + 1) >
1

2

N2

(log N)α
.

By choosing a suitable α, we may remove the factor 1
2
.

3.3 Proof of Theorem 3 and its corollary

Theorem 3 Let α and β be two positive numbers with α < β. Put

x1 =
N

(log N)β
N + 1,

and

x2 =
N

(log N)β

N

2
+ 1.

Then we have

∑
N

(log N)β
<q≤ N

(log N)α

(ψ(x1; q, 1)− ψ(x2; q, 1))

≥ β − α

2

N2

logβ N
(log log N) + O

(
N2

(log N)
β
2
+α−5

)
. (3.5)

Proof. Let x1 and x2 be as in the statement of the theorem. We have

ψ(x1; q, 1) −ψ(x2; q, 1)

= ψ(x1; q, 1) − x1

φ(q)
+

x1

φ(q)
− ψ(x2; q, 1)

= x1−x2

φ(q)
+ ψ(x1; q, 1)− x1

φ(q)
+

x2

φ(q)
− ψ(x2; q, 1)
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Therefore for N
(log N)β < q ≤ N

(log N)α ,

∑
N

(log N)β
<q≤ N

(log N)α

(ψ(x1; q, 1)− ψ(x2; q, 1))

=
∑

N

(log N)β
<q≤ N

(log N)α

x1 − x2

φ(q)

+
∑

N

(log N)β
<q≤ N

(log N)α

(ψ(x1; q, 1)− x1

φ(q)
)

+
∑

N

(log N)β
<q≤ N

(log N)α

(
x2

φ(q)
− ψ(x2; q, 1)), (3.6)

where

∑
N

(log N)β
<q≤ N

(log N)α

x1 − x2

φ(q)
> (x1 − x2)

∑
N

(log N)β
<q≤ N

(log N)α

1

q

= (β − α)(x1 − x2)(log log N) + O(
(log N)β

N
). (3.7)

By the Bombieri-Vinogradov theorem, Theorem E, we have

|
∑

N

(log N)β
<q≤ N

(log N)α

(ψ(x1; q, 1)− x1

φ(q)
)|

≤
∑

N

(log N)β
<q≤ N

(log N)α

|ψ(x1; q, 1)− x1

φ(q)
|

= O

(
x

1
2
1

N

(log N)α
(log x1)

5

)
(3.8)
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and

|
∑

N

(log N)β
<q≤ N

(log N)α

(ψ(x2; q, 1)− x2

φ(q)
)|

≤
∑

N

(log N)β
<q≤ N

(log N)α

|ψ(x2; q, 1)− x2

φ(q)
|

= O

(
x

1
2
1

N

(log N)α
(log x1)

5

)
. (3.9)

Thus by (3.6), (3.7) (3.8)and (3.9),

∑
N

(log N)β
<q≤ N

(log N)α

(ψ(x1; q, 1)− ψ(x2; q, 1))

> (β − α)(x1 − x2)(log log N) + O

(
x

1
2
1

N

(log N)α
(log x1)

5

)

=
β − α

2

N2

logβ N
(log log N) + O

(
N2

(log N)
β
2
+α−5

)
. (3.10)

This finishes the proof.

Note that by (3.10) the main term is of the size

β − α

2

N2

(log N)β
(log log N)

and the error term is of the size

N2

(log N)
β
2
+α−5

.

So long as we choose α, β with α < β and

α +
β

2
− 5 > β,

i.e.

α >
β

2
+ 5,
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we have that (3.10) is dominated by the main term. If we then also choose β so
that β

2
+ 5 < β,i.e., β > 10, We obtain the following corollary.

Corollary 2 Let N be a positive integer and put S = {1, 2, · · ·, N}. Let β be a real
number with β > 10, when N is large enough, then there are integers a, b ∈ S ,
such that

P (ab + 1) >
1

2

N2

(log N)β
.

Equivalently if β is a real number larger than 10 then for N sufficiently large

P

(
N∏
1

N∏
1

(ab + 1)

)
>

1

2

N2

(log N)β
.
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Chapter 4

All the Primes and Higher
Dimensional Kloosterman Sums

4.1 An Observation

To prove Lemma 3, Stewart introduced the following set:

Ut(N) = { (m,n) ∈ Z × Z | 1 ≤ m ≤ N, 1 ≤ n ≤ N, t |mn + 1 }, (4.1)

If t divides N then we may decompose {(m,n)| 1 ≤ m, n ≤ N} into (N/t)2 blocks
consisting of the Cartesian product of two complete sets of residues modulo t. Thus
if t divides N , |Ut(N)| = φ(t)(N/t)2. In general we deduce that

|Ut(N)| = φ(t)

(
N

t
+ O(1)

)2

=
φ(t)

t2
N2 + O(N).

By a simple calculation we find that the above estimate is dominated by the
main term for t up to N , which is trivial. To get sharper estimates Stewart appealed
to Weil’s estimates for Kloosterman sums [33]. For any positive integer n let d(n)
denote the number of divisors of n. He proved,

Theorem F(C. Stewart)

|Ut(N)| = φ(t)

t2
N2 + O

(
t

1
2 d(t)3/2(log t)2 +

Nd(t) log t

t

)
.
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Proof. See [30].

This estimate is dominated by the main term for t up to N ( 4
3
−ε). In other words,

for all the integers t up to N ( 4
3
−ε), we can find integers m and n with 1 ≤ m,n ≤ N

such that t | mn + 1. In particular, if t is a prime number p, we immediately get
the following from Theorem F.

|Up(N)| = p− 1

p2
N2 + O

(
p

1
2 (log p)2 +

N log p

p

)
.

This assures us that for all the prime numbers p up to N ( 4
3
−ε), we can find

integers m and n with 1 ≤ m,n ≤ N such that p | mn+1. In other words, we have

P (mn + 1) ≥ N4/3−ε.

for some integers m and n with 1 ≤ m,n ≤ N.

We shall prove the ”higher-dimensional” analogue of this result in the following
sections.

4.2 Proof of Theorem 4

Let N and k be two integers and let t be a positive integer. Recall that

Ut(N, k) = {(a1, · · · , ak+1)|1 ≤ a1, · · · , ak+1 ≤ N, t | a1 · · · ak+1 + 1},

where ai, i = 1, · · · , k + 1 are integers.

Theorem 4 Let N and k be positive integers and let p be a prime. We have

|Up(N, k)| = 1

p− 1

(
N −

[
N

p

])k+1

+ O(kp
k
2 logk+1 p).

Further, if p | N then

|Up(N, k)| =
(

N

p
φ(p)

)k
N

p
=

Nk+1

pk+1
φk(p) =

Nk+1

p− 1
(1− 1

p
)k+1.
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Actually Theorem 4 can be deduced from our next result Theorem 5. But
Theorem 4 can be proved by using Deligne’s result directly whereas for the proof
of Theorem 5 Smith’s result is needed. Also, the result is much simpler in the case
p > N and the argument is easier. Notice in particular that if p > N then

|Up(N, k)| = Nk+1

p− 1
+ O(kp

k
2 logk+1 p).

Proof. The simplest case is when p | N, for each k-tuple (a1, a2, · · · , ak) with 1 ≤
a1, · · · , ak+1 ≤ N and p - a1a2 · · · ak. Then there exists exactly one choice of ak+1

modulo p. Hence there exist N
p

choices of ak+1 such that

a1a2 · · · ak+1 ≡ −1 (mod p).

Thus for p | N,

|Up(N, k)| =
(

N

p
φ(p)

)k
N

p
=

Nk+1

pk+1
φk(p).

In the following, we shall consider the remaining cases, p > N and p < N but
p - N.
Recall that

m∑
g=1

e(
gn

m
) =

{
m m|n
0 m - n.

(4.2)

We have

|Up(N, k)| = 1

pk+1

p∑

l1,··· ,lk+1=1

p∑
a1,··· ,ak+1=1

a1···ak+1≡−1(mod p)

N∑

b1,··· ,bk+1=1

e

(
l1(a1 − b1) + · · ·+ lk+1(ak+1 − bk+1)

p

)
.

This is because for each (k+1)-tuple (a1, a2, . . . , ak+1) such that

a1a2 · · · ak+1 ≡ −1 (mod p),

if there is a (k+1)-tuple (b1, b2, · · · , bk+1) such that

ai ≡ bi, i = 1, 2, · · · , k + 1, (4.3)
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then the sums involving this (k+1)-tuple (b1, b2, · · · , bk+1) contribute pk+1 to |Up(N, k)|
and the (k+1)-tuples not satisfying (4.3) contribute 0 to |Up(N, k)|.

The terms with l1 = l2 = · · · = lk+1 = p contribute

Nk+1

pk+1
(p− 1)k

to |Up(N, k)|. Thus we have

|Up(N, k)| = Nk+1

pk+1
(p− 1)k + R, (4.4)

where R denotes the sum over those li’s such that not all li’s are equal to p.

Let Ri be the subsums of R such that i of the lj’s equal p. Then we have

R = R0 + · · ·+ Rk

We now will give an estimate for each Ri, i = 0, 1, · · · , k. If no li equals p, we have

R0 =
1

pk+1

p−1∑

l1,··· ,lk+1=1

p∑
a1,··· ,ak+1=1

a1···ak+1≡−1 (mod p)

N∑

b1, ··· , bk+1=1

e

(
l1(a1 − b1) + · · ·+ lk+1(ak+1 − bk+1)

p

)

=
1

pk+1

p−1∑

l1,··· ,lk+1=1

p∑
a1,··· ,ak+1=1

a1···ak+1≡−1 (mod p)

e

(
l1a1 + · · ·+ lk+1ak+1

p

)

N∑

b1,··· ,bk+1=1

e

(−l1b1 − · · · − lk+1bk+1

p

)

=
1

pk+1

p−1∑

l1,··· ,lk+1=1

p∑
a1,··· ,ak+1=1

a1···ak+1≡1 (mod p)

e

(
l1a1 + · · · − lk+1ak+1

p

)

N∑

b1,··· ,bk+1=1

e

(−l1b1 − · · · − lk+1bk+1

p

)
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=
1

pk+1

p−1∑

l1,··· ,lk+1=1

K(l1, · · · ,−lk+1; p)

N∑

b1,··· ,bk+1=1

e

(
− l1b1 + · · ·+ lk+1bk+1

p

)
.

By Deligne’s theorem (1.25), we have

|R0| = O


 1

pk+1
kp

k
2

p−1∑

l1,··· ,lk+1=1

∣∣∣∣∣∣

N∑

b1,··· ,bk+1=1

e

(
− l1b1 + · · ·+ lk+1bk+1

p

)∣∣∣∣∣∣




= O




1

pk+1
kp

k
2

p−1
2∑

l1,··· ,lk+1=− p−1
2

l1···lk+1 6=0

∣∣∣∣∣∣

N∑

b1,··· ,bk+1=1

e

(
− l1b1 + · · ·+ lk+1bk+1

p

)∣∣∣∣∣∣




= O




1

pk+1
kp

k
2

p−1
2∑

l1,··· ,lk+1=− p−1
2

l1···lk+1 6=0

p

|l1| · · ·
p

|lk+1|




= O
(
kp

k
2 logk+1 p

)
, (4.5)

where we have used the well known inequality

∑
1≤s≤M

e(
gs

t
) = O(

t

|g|), for 1 ≤ |g| ≤ t

2
.

Let R1,i denote the subsum in R1 such that only li = p, then

R1 = R1,1 + R1,2 + ·+ R1,k+1. (4.6)

33



Now assume that only l1 = p . We have

R1,1 =
1

pk+1

p−1∑

l2,··· ,lk+1=1
l1=p

p∑
a1,··· ,ak+1=1

a1···ak+1≡−1(mod p)

N∑

b1,··· ,bk+1=1

e

(
l2(a2 − b2) + · · ·+ lk+1(ak+1 − bk+1)

p

)

=
1

pk+1

p−1∑

l2,··· ,lk+1=1

p∑
a1,··· ,ak+1=1

a1···ak+1≡−1(mod p)

e

(
l2a2 + · · ·+ lk+1ak+1

p

)

N∑

b1,··· ,bk+1=1

e

(−l2b2 − · · · − lk+1bk+1

p

)
.

Note that for fixed a2, · · · , ak+1, the solution for

xa2 · · · ak+1 ≡ −1(mod p),

with 1 ≤ x < p, is unique if the ai, i = 2, · · · , k + 1 are coprime to p. Hence
assuming that p > N , we have

R1,1 =
1

pk+1

p−1∑

l2,··· ,lk+1=1

p∑
a1,··· ,ak+1=1

a1···ak+1≡−1(mod p)

e

(
l2a2 + · · ·+ lk+1ak+1

p

)

N∑

b1,··· ,bk+1=1

e

(−l2b2 − · · · − lk+1bk+1

p

)

=
1

pk+1

p−1∑

l2,··· ,lk+1=1

p−1∑
a2=1

e

(
l2a2

p

) p−1∑
a3=1

e

(
l3a3

p

)
· · ·

p−1∑
ak+1=1

e

(
− lk+1ak+1

p

) N∑

b1,··· ,bk+1=1

e

(−l2b2 − · · · − lk+1bk+1

p

)
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=
1

pk+1

p−1∑

l2,··· ,lk+1=1

(−1)k

N∑

b1,··· ,bk+1=1

e

(−l2b2 − · · · − lk+1bk+1

p

)

=
1

pk+1
(−1)k

N∑

b1,··· ,bk+1=1

p−1∑

l2,··· ,lk+1=1

e

(−l2b2 − · · · − lk+1bk+1

p

)

=
1

pk+1
(−1)k

N∑

b1,··· ,bk+1=1

p−1∑

l2=1

e

(−l2b2

p

)
· · ·

p−1∑

lk+1=1

e

(−lk+1bk+1

p

)

=
1

pk+1
(−1)k

N∑

b1,··· ,bk+1=1

(−1)k

=
Nk+1

pk+1
.

Similarly we have

R1,2 = R1,3 = · · · = R1,k+1 =
Nk+1

pk+1
.

Thus by (4.6) we get

R1 =

(
k + 1

1

)
Nk+1

pk+1
. (4.7)

If two of the li’s are equal to p then, since the sum is symmetric, we may assume
that l1 = l2 = p. Thus,

R2 =

(
k+1
2

)

pk+1

p−1∑

l3,··· ,lk+1=1

p∑
a1,··· ,ak+1=1

a1···ak+1≡−1(mod p)

N∑

b1,··· ,bk+1=1

e

(
l3(a3 − b3) + · · ·+ lk+1(ak+1 − bk+1)

p

)

=

(
k+1
2

)

pk+1

p−1∑

l3,··· ,lk+1=1

p∑
a1,··· ,ak+1=1

a1···ak+1≡−1(mod p)

e

(
l3a3 + · · ·+ lk+1ak+1

p

)

N∑

b1,··· ,bk+1=1

e

(
− l3b3 + · · ·+ lk+1bk+1

p

)
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=

(
k+1
2

)

pk+1
(p− 1)

p−1∑
a3=1

e

(
l3a3

p

)
· · ·

p−1∑
ak+1=1

e

(
− lk+1ak+1

p

)

N∑

b1,··· ,bk+1=1

p−1∑

l3,··· ,lk+1=1

e

(
− l3b3 + · · ·+ lk+1bk+1

p

)

=
Nk+1

pk+1

(
k + 1

2

)
(p− 1). (4.8)

In general, if j of these li’s are equal to p, we have

Rj =
Nk+1

pk+1

(
k + 1

j

)
(p− 1)j−1. (4.9)

Combining all the results for the Ri, by (4.5), (4.7), (4.8) and (4.9) we have

R =
Nk+1

pk+1

k∑
j=1

(
k + 1

j

)
(p− 1)j−1 + O(kp

k−1
2 logk p). (4.10)

Thus, by (4.4) and (4.10), if p > N,

|Up(N, k)| =
Nk+1

pk+1
(p− 1)k +

k∑
j=1

Nk+1

pk+1

(
k + 1

j

)
(p− 1)j−1 + O(kp

k
2 logk+1 p)

=
k+1∑
j=1

Nk+1

pk+1

(
k + 1

j

)
(p− 1)j−1 + O(kp

k
2 logk+1 p)

=
Nk+1

pk+1

k+1∑
j=1

(
k + 1

j

)
(p− 1)j−1 + O(kp

k
2 logk+1 p)

=
Nk+1

pk+1

(
k+1∑
j=0

(
k + 1

j

)
(p− 1)j−1 − 1

p− 1

)
+ O(kp

k
2 logk+1 p)

=
Nk+1

pk+1

(
(1 + p− 1)k+1

p− 1
− 1

p− 1

)
+ O(kp

k
2 logk+1 p)

=
Nk+1

pk+1

(
pk+1 − 1

p− 1

)
+ O(kp

k
2 logk+1 p).
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If p < N and p - N then

R1 =

(
k + 1

1

)
1

pk+1

p−1∑

l2,··· ,lk+1=1
l1=p

p∑
a1,··· ,ak+1=1

a1···ak+1≡−1(mod p)

N∑

b1,··· ,bk+1=1

e

(
l2(a2 − b2) + · · ·+ lk+1(ak+1 − bk+1)

p

)

=

(
k + 1

1

)
1

pk+1

p−1∑

l2,··· ,lk+1=1

p∑
a1,··· ,ak+1=1

a1···ak+1≡−1(mod p)

e

(
l2a2 + · · ·+ lk+1ak+1

p

)

N∑

b1,··· ,bk+1=1

e

(−l2b2 − · · · − lk+1bk+1

p

)

=

(
k + 1

1

)
1

pk+1

p−1∑

l2,··· ,lk+1=1

p−1∑
a2=1

e

(
l2a2

p

) p−1∑
a3=1

e

(
l3a3

p

)
· · ·

p−1∑
ak+1=1

e

(
− lk+1ak+1

p

) N∑

b1,··· ,bk+1=1

e

(−l2b2 − · · · − lk+1bk+1

p

)

=

(
k + 1

1

)
1

pk+1

p−1∑

l2,··· ,lk+1=1

(−1)k

N∑

b1,··· ,bk+1=1

e

(−l2b2 − · · · − lk+1bk+1

p

)

=

(
k + 1

1

)
(−1)k

pk+1

N∑

b1,··· ,bk+1=1

p−1∑

l2,··· ,lk+1=1

e

(−l2b2 − · · · − lk+1bk+1

p

)

=

(
k + 1

1

)
N(−1)k

pk+1

(
N∑

b=1

p−1∑

l=1

e

(
− lb

p

))k

=

(
k + 1

1

)
N(−1)k

pk+1




N∑

b=1
p|b

(p− 1) +
N∑

b=1
p-b

(−1)




k

=

(
k + 1

1

)
N(−1)k

pk+1

(
(p− 1)

[
N

p

]
− (N −

[
N

p

]
)

)k

=
N

pk+1

(
k + 1

1

)(
N − p

[
N

p

])k

. (4.11)
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Similarly, we have

R2 =
N2

pk+1
φ(p)

(
k + 1

2

)(
N − p

[
N

p

])k−1

(4.12)

...

Rk =
Nk

pk+1
φk−1(p)

(
k + 1

k

)(
N − p

[
N

p

])
. (4.13)

Thus, by(4,4), (4.5), (4.11),(4.12) and (4.13) we have that if p < N and p - N,
then

|Up(N, k)|

=
φ−1(p)

pk+1

k+1∑
j=1

(
k + 1

j

)
N jφj(p)

(
N − p

[
N

p

])k+1−j

+ O(kp
k
2 logk+1 p)

=
φ−1(p)

pk+1

((
Nφ(p) + N − p

[
N

p

])k+1

−
(

N − p

[
N

p

])k+1
)

+O(kp
k
2 logk+1 p)

=
1

p− 1

(
N −

[
N

p

])k+1

+ O(kp
k
2 logk+1 p).

This finishes the proof of theorem 4.

4.3 Proof of Theorem 5

Let N and k be two integers and let t be a positive integer. Again recall

Ut(N, k) = {(a1, · · · , ak+1)|1 ≤ a1, · · · , ak+1 ≤ N, t | a1 · · · ak+1 + 1},
where ai, i = 1, · · · , k + 1 are integers. We have

Theorem 5 Let N, k and m be positive integers and let p be a prime, then we have

|Upm(N, k)| = 1

φ(pm)

(
N −

[
N

p

])k+1

+ O
(
dk+1(p

m)(pm)
k
2 logk+1 pm

)
.

We remark that when n = 1 we recover the first part of Theorem 4 since
dk+1(p) = k + 1.
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Proof. By (4.2) we have

|Upm(N, k)|

=
1

(pm)k+1

pm∑

l1,··· ,lk+1=1

pm∑
a1,··· ,ak+1=1

a1···ak+1≡−1 (mod pm)

N∑

b1,··· ,bk+1=1

e

(
l1(a1 − b1) + · · ·+ lk+1(ak+1 − bk+1)

pm

)
.

(4.14)

This is because for each (k+1)-tuple (a1, a2, . . . , ak+1) such that

a1a2 · · · ak+1 ≡ −1 (mod pm),

if there is a (k+1)-tuple (b1, b2, · · · , bk+1) such that

ai ≡ bi (mod pm), i = 1, 2, · · · , k + 1, (4.15)

then the sums involving this (k+1)-tuple (b1, b2, · · · , bk+1) contribute (pm)k+1 to
|Upm(N, k)|, and the (k+1)-tuples that do not satisfy (4.15) contribute 0.

The terms with l1 = l2 = · · · = lk+1 = pm contribute

1

(pm)k+1
φk(pm)Nk+1 (4.16)

to the right hand side of the (4.14). Thus we have

|Upm(N, k)| = 1

(pm)k+1
φk(pm)Nk+1 + R, (4.17)

where
R = R0 + R1 + · · ·+ Rk (4.18)

and Ri denotes the sum over those terms in |Upm(N, k)| such that i of lj’s are equal
to pm, the others sum over 1 to pm − 1.

It is easier to compute R1, R2, · · · , and Rk than to compute R0 since in the
former cases we do not have to deal with the conditions

a1 · · · ak+1 ≡ −1 (mod pm).
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We first compute R1. Note that it is symmetric over li, i = 1, · · · , k + 1. We
get

R1 =

(
k+1
1

)

(pm)k+1

pm−1∑

l2,··· ,lk+1=1

pm∑
a1,··· ,ak+1=1

a1···ak+1≡−1 (mod pm)

N∑

b1,··· ,bk+1=1

e

(
l2(a2 − b2) + · · ·+ lk+1(ak+1 − bk+1)

pm

)

=

(
k+1
1

)

(pm)k+1

pm−1∑

l2,··· ,lk+1=1

pm∑
a1,··· ,ak+1=1

a1···ak+1≡−1 (mod pm)

e

(
l2a2 + · · ·+ lk+1ak+1

pm

)

N∑

b1,··· ,bk+1=1

e

(
− l2b2 + · · ·+ lk+1bk+1

pm

)

Note that (a1 · · · ak+1, p
m) = 1, once a2, · · · , ak+1 are given, we then have a

unique choice for 1 ≤ a1 ≤ pm and since R1 is symmetric over li and also symmetric
over bj we may compute R1 in the following way. We have

R1 =

(
k+1
1

)

(pm)k+1

pm−1∑

l2,··· ,lk+1=1

pm∑
a2=1

(a2,pm)=1

e(
l2a2

pm
) · · ·

pm∑
ak+1=1

(ak+1,pm)=1

e(
lk+1ak+1

pm
)

N∑

b1,··· ,bk+1=1

e(− l2b2 + · · ·+ lk+1bk+1

p
)

=

(
k+1
1

)

(pm)k+1

pm−1∑

l2=1

(l2, p
m)µ(

pm

(l2, pm)
) · · ·

pm−1∑

lk+1=1

(lk+1, p
m)µ(

pm

(lk+1, pm)
)

N∑

b1,··· ,bk+1=1

e(− l2b2 + · · ·+ lk+1bk+1

pm
),

where
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pm∑
a=1

(a,pm)=1

e(
la

pm
) =

pm∑
a=1

(a,pm)=1

e

(
l

(l,pm)
a

pm

(l,pm)

)

= (l, pm)

pm

(l,pm)∑
a=1

(a,pm)=1

e

(
l

(l,pm)
a

pm

(l,pm)

)

= (l, pm)µ(
pm

(l, pm)
).

Here we have used the well known fact that the sum of the n-th primitive roots of
unity equals µ(n). (See [14], Theorem 272.)

If 1 ≤ l ≤ pm − 1, then

µ

(
pm

(l, pm)

)
=

{ −1, pm−1|l
0, pm−1 - l.

Thus,

R1 =

(
k+1
1

)

(pm)k+1

pm−1∑

l2=1
pm−1|l2

pm−1(−1) · · ·
pm−1∑

lk+1=1

pm−1|lk+1

pm−1(−1)

N∑

b1,··· ,bk+1=1

e(− l2b2 + · · ·+ lk+1bk+1

p
)

=

(
k+1
1

)

(pm)k+1
(−1)k(pm−1)k

p−1∑

l2=1

· · ·
p−1∑

lk+1=1

N∑

b1,··· ,bk+1=1

e(− l2b2 + · · ·+ lk+1bk+1

p
)

=
N

(
k+1
1

)

(pm)k+1
(−1)k(pm−1)k

(
p−1∑

l2=1

N∑

b2=1

e

(
− l2b2

p

))k

.
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Note that

p−1∑

l2=1

N∑

b=1

e

(
− l2b

p

)
=

N∑

b=1
p|b

(p− 1) +
N∑

b=1
p-b

(−1)

= (p− 1)

[
N

p

]
− (N −

[
N

p

]
)

= p[
N

p
]−N. (4.19)

By (4.19) and the above result for R1 we further have,

R1 =
N

(
k+1
1

)

(pm)k+1
(−1)k(pm−1)k

(
p

[
N

p

]
−N

)k

=
N

(
k+1
1

)

(pm)k+1
(pm−1)k

(
N − p

[
N

p

])k

. (4.20)

To compute Ri, i = 2, · · · , k + 1. We first choose l1 = · · · = li = pm. Denote the
sum by Ri1. We have

Ri1 =
N iφi−1(pm)

(pm)k+1

pm−1∑

li+1,··· ,lk+1=1

pm∑
ai+1,··· ,ak+1=1

(ai+1···ak+1, p)=1

e

(
li+1ai+1 + · · ·+ lk+1ak+1

pm

)
· · ·

· · ·
N∑

bi+1,··· ,bk+1=1

e

(
− li+1bi+1 + · · ·+ lk+1bk+1

pm

)

=
φi−1(pm)N i

(pm)k+1

N∑

bi+1,··· ,bk+1=1

pm−1∑

li+1=1

(li+1, p
m)µ

(
pm

(li+1, pm)

)
e

(
− li+1bi+1

pm

)
· · ·

· · ·
pm−1∑

lk+1=1

(lk+1, p
m)µ

(
pm

(lk+1, pm)

)
e

(
− lk+1bk+1

pm

)

=
N i

(pm)k+1
φi−1(pm)

(
p−1∑

l=1

(−pm−1)
N∑

b=1

e(− lb

p
)

)k+1−i

.

By (4.19), we have

42



Ri1 =
N i

(pm)k+1
φi−1(pm)(pm−1)k+1−i

(
N − p

[
N

p

])k+1−i

. (4.21)

Combining all the cases of different choices of i of the lj’s that are equal to pm, by
(4.21) we have

Ri =

(
k + 1

i

)
N i

(pm)k+1
φi−1(pm)(pm−1)k+1−i

(
N − p

[
N

p

])k+1−i

. (4.22)

It remains to compute R0, where no li equals pm. We shall apply Smith’s theo-
rem on estimates of the higher-dimensional Kloosterman sums and Lemma 1. We
have

R0 =
1

(pm)k+1

pm−1∑

l1,··· ,lk+1=1

pm∑
a1,··· ,ak+1=1

a1···ak+1≡−1 (mod pm)

e

(
l1a1 + · · ·+ lk+1ak+1

pm

)

N∑

b1,··· ,bk+1=1

e

(
− l1a1 + · · ·+ lk+1bk+1

pm

)

=
1

(pm)k+1

pm−1∑

l1,··· ,lk+1=1

K(l1, l2, · · · ,−lk+1; p
m)

pm∑

b1,··· ,bk+1=1

e

(
− l1b1 + · · ·+ lk+1bk+1

pm

)

By Theorem G and Lemma 1 we get

|K(l1, · · · , lk,−lk+1; p
m)|

≤ (pm)
k
2 (l1, · · · , lk,−lk+1; p

m)
k
2
k dk+1(p

m)

≤ (pm)
k
2 (l1, p

m)
1
2 · · · (lk+1, p

m)
1
2 dk+1(p

m). (4.23)
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Thus, by R0 from the above and (4.23), we have

|R0| ≤ (pm)
k
2

(pm)k+1

pm−1∑

l1,··· ,lk+1=1

(l1, · · · , lk, −lk+1; pm)
k
2
k dk+1(p

m)

∣∣∣∣∣∣

N∑

b1,··· ,bk+1=1

e

(
− l1b1 + · · ·+ lk+1bk+1

pm

)∣∣∣∣∣∣

≤ dk+1(p
m)

(pm)
k
2

(pm)k+1

pm−1∑

l1=1

(l1, pm)
1
2

∣∣∣∣∣
N∑

b1=1

e

(
− l1b1

pm

)∣∣∣∣∣ · · ·

· · ·
pm−1∑

lk+1=1

(lk+1, pm)
1
2

∣∣∣∣∣∣

N∑

bk+1=1

e

(
− lk+1bk+1

pm

)∣∣∣∣∣∣

= dk+1(p
m)

(pm)
k
2

(pm)k+1

(
pm−1∑

l=1

(l, pm)
1
2

∣∣∣∣∣
N∑

b=1

e

(
− lb

pm

)∣∣∣∣∣

)k+1

(4.24)

Note that if α does not equal an integer, then

∣∣∣∣∣
N∑

b=1

e(αb)

∣∣∣∣∣ ≤
1

‖α‖ .

Thus,

pm−1∑

l=1

(l, pm)
1
2

∣∣∣∣∣
N∑

b=1

e

(
− lb

pm

)∣∣∣∣∣

≤
pm−1∑

l=1

(l, pm)
1
2

1∥∥∥− l
pm

∥∥∥
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≤ 2

pm−1
2∑

l=1

pm

l
(l, pm)

1
2

≤ 2pm

pm−1
2∑

l=1

(l, pm)
1
2

l

≤ 2pm
∑

d|pm

pm−1
2∑

l=1

(l,pm)=d

d
1
2

l

≤ 2pm
∑

d|pm

[ pm−1
2d

]∑
l=1

(l, pm

d
)=1

1

ld
1
2

= O


pm log pm

∑

d|pm

1

d
1
2




= O


pm log pm

d(pm)∑
n=1

1

n
1
2




= O(pm log pm).

Thus, by (4.24) we get

R0 = O
(
dk+1(p

m)(pm)
k
2 logk+1 pm

)
. (4.25)

Combining all the estimates for R0, R1, · · · , and Rk, by (4.17), (4.18),(4.20), (4.22)
and (4.25), we have
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|Upm(N, k)|

=
φk(pm)

(pm)k+1
Nk+1 +

1

(pm)k+1

k∑
i=1

(
k + 1

i

)
N i(pm−1)k+1−i

φi−1(pm)

(
N − p

[
N

p

])k+1−i

+ O
(
dk+1(p

m)(pm)
k
2 logk+1 pm

)

=
1

(pm)k+1

k+1∑
i=0

(
k + 1

i

)
N i(pm−1)k+1−iφi−1(pm)

(N − p

[
N

p

]
)k+1−i + O

(
dk+1(p

m)(pm)
k
2 logk+1 pm

)

=
1

(pm)k+1

k+1∑
i=0

(
k + 1

i

)
N i(pm−1)k+1−iφi−1(pm)(N − p

[
N

p

]
)k+1−i

− 1

φ(pm)

(
N

p
−

[
N

p

])k+1

+ O
(
dk+1(p

m)(pm)
k
2 logk+1 pm

)

=
1

φ(pm)

((
N −

[
N

p

])k+1

−
(

N

p
−

[
N

p

])k+1
)

+O
(
dk+1(p

m)(pm)
k
2 logk+1 pm

)
.

This finishes the proof of theorem 5.

4.4 Proof of Theorem 6 and its corollary

Theorem 6 Let N, k and t be positive integers, then we have

|Ut(N, k)| = Nk+1

tk+1
φk(t) + O

(
Nk

t
d(t) log t + t

k
2 2k+1d

k+1
2 (t)dk+1(t) logk+1 t

)
.

(4.26)

This estimate of |Ut(N, k)| is dominated by the main term for k comparatively

much smaller than N and for t of the size less than N
2(k+1)

k+2
−ε. But in comparing

to Theorem 4 and Theorem 5, the main term in Theorem 6 is less explicit. This
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is due to the difficulties involved in estimating the sums in |Ut(N, k)| when t has
more than one prime factor. More importantly, the first term in the error term of
(4.26), which very likely can be calculated explicitly, would dominate the second
error term of (4.26) for small t. So we indeed have a weaker result here for the
general case.

Proof. Recall that

m∑
g=1

e(
gn

m
) =

{
m m|n
0 m - n.

We have

|Ut(N, k)|

=
1

tk+1

t∑

l1,··· ,lk+1=1

t∑
a1,··· ,ak+1=1

a1···ak+1≡−1(mod t)

N∑

b1,··· ,bk+1=1

e

(
l1(a1 − b1) + · · ·+ lk+1(ak+1 − bk+1)

t

)
(4.27)

This is again because for each (k+1)-tuple (a1, a2, . . . , ak+1) such that

a1a2 · · · ak+1 ≡ −1(mod t),

if there is a (k+1)-tuple (b1, b2, · · · , bk+1) such that

ai ≡ bi, i = 1, 2, · · · , k + 1, (4.28)

then the sums involving this (k+1)-tuple (b1, b2, · · · , bk+1) contribute tk to |Ut(N, k)|,
and the k-tuples not satisfying (4.26) contribute 0.

Taking l1 = · · · = lk+1 = t, we get the main term for |Ut(N, k)|, which is

Nk+1

tk+1
φk(t).

Thus we have by (4.25),

|Ut(N, k)| = Nk+1

tk+1
φk(t) + R, (4.29)
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where R denotes sum of those terms such that not all of the li’s are equal to t.

Letting Ri be the sum of those terms in R such that i of the lj’s are equal to t,
then we have

R = R0 + R1 + · · ·+ Rk. (4.30)

We will compute R1 first, where there is only one li equal to t. For the case that
li = t we denote it by R1i. Hence

R1 = R11 + · · ·+ R1(k+1) (4.31)

and

R11 =
1

tk+1

t−1∑

l2,··· ,lk+1=1

t∑
a1,··· ,ak+1=1

a1···ak+1≡−1(mod t)

N∑

b1,··· ,bk+1=1

e

(
l2(a2 − b2) + · · ·+ lk+1(ak+1 − bk+1)

t

)

=
N

tk+1

t−1∑

l2,··· ,lk+1=1

t∑
a2,··· ,ak+1=1

(a2···ak+1, t)=1

e

(
l2a2 + · · ·+ lk+1ak+1

t

)

N∑

b2,··· ,bk+1=1

e

(
− l2b2 + · · ·+ lk+1bk+1

t

)

=
N

tk+1

t−1∑

l2,··· ,lk+1=1

t∑
a2=1

(a2,t)=1

e

(
l2a2

t

)
· · ·

t∑
ak+1=1

(ak+1,t)=1

e

(
lk+1ak+1

t

)

N∑

b2,··· ,bk+1=1

e

(
− l2b2 + · · ·+ lk+1bk+1

t

)
.

Note that Ramanujan’s sum equals(See [14])

t∑
a=1

(a,t)=1

e

(
la

t

)
=

t∑
a=1

(a,t)=1

e

(
l

(l,t)
a

t
(l,t)

)
= (l, t)

t
(l,t)∑
a=1

(a,t)=1

e

(
l

(l,t)
a

t
(l,t)

)
= (l, t)µ

(
t

(l, t)

)
,
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and if α does not equal an integer, then
∣∣∣∣∣

N∑

b=1

e(αb)

∣∣∣∣∣ ≤
1

‖α‖ ,

where ‖α‖ denotes the distance between α and the nearest integer.
We get

|R11| =
N

tk+1

∣∣∣∣∣∣

t−1∑

l2,··· ,lk+1=1

(l2, t)µ

(
t

(l2, t)

)
(l3, t)µ

(
t

(l3, t)

)
· · ·

(lk+1, t) µ

(
t

(lk+1, t)

) N∑

b2,··· ,bk+1=1

e

(
− l2b2 + · · ·+ lk+1bk+1

t

)∣∣∣∣∣∣

≤ N

tk+1

t−1∑

l2=1

(l2, t)

∣∣∣∣∣
N∑

b2=1

e

(
− l2b2

t

)∣∣∣∣∣
t−1∑

l3=1

(l3, t)

∣∣∣∣∣
N∑

b3=1

e

(
− l3b3

t

)∣∣∣∣∣ · · ·

t−1∑

lk+1=1

(lk+1, t)

∣∣∣∣∣∣

N∑

bk+1=1

e

(
− lk+1bk+1

t

)∣∣∣∣∣∣

≤ N

tk+1

∣∣∣∣∣
t−1∑

l2=1

(l2, t)
1

‖ − l2
t
‖

∣∣∣∣∣

k

Note that ‖ − l
t
‖ = ‖ l

t
‖ and if 1 ≤ l ≤ t, then (l, t) = (t− l, t). We further have

|R11| ≤ N

tk+1
tk

∣∣∣∣∣∣∣

∑

d|t

t−1∑
l=1

(l,t)=d

(l, t)

l

∣∣∣∣∣∣∣

k

=
N

t

∣∣∣∣∣∣∣∣

∑

d|t

t
d
−1∑

l=1

(l, t
d
)=1

1

l

∣∣∣∣∣∣∣∣

k

= O

(
N

t
dk(t) logk t

)
.

Similarly we compute R1,2, · · · , R1,k+1. Thus

R1 = O

((
k + 1

1

)
N

t
(d(t))klogkt

)
.
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To compute Ri, i = 2, · · · , k. We first choose l1 = · · · = li = t. Denote the sum by
Ri1. We have

|Ri1| =
φi−1(t)N i

tk+1

t−1∑

li+1,··· ,lk+1=1

t∑
ai+1,··· ,ak+1=1

(li+1k+1,t)=1

e

(
li+1ai+1 + · · ·+ lk+1ak+1

t

)
· · ·

· · ·
N∑

bi+1,··· ,bk+1=1

e

(
− li+1bi+1 + · · ·+ lk+1bk+1

t

)

≤ φi−1(t)N i

tk+1

t−1∑

li+1=1

(li+1, t)µ

(
t

(li+1, t)

)
e

(
− li+1bi+1

t

)
· · ·

· · ·
t−1∑

lk+1=1

(lk+1, t)µ

(
t

(lk+1, t)

)
e

(
− lk+1bk+1

t

)

= O

(
N i

tk+1
φi−1(t)tk+1−i(d(t))k+1−i logk+1−i t

)

= O

(
N i

t
d(t)k+1−i logk+1−i t

)
.

Combining all the cases of different choices of i of the lj’s that are equal to t, we
have

Ri = O

((
k + 1

i

)
N i

t
(d(t))k+1−i logk t

)
.

It remains to compute R0,
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Recall that

R0 =
1

tk+1

t−1∑

l1,··· ,lk+1=1

t∑
a1,··· ,ak+1=1

a1···ak+1≡−1(mod t)

e

(
l1a1 + · · ·+ lk+1ak+1

t

)

N∑

b1,··· ,bk+1

e

(
− l1b1 + · · ·+ lk+1bk+1

t

)

=
1

tk+1

t−1∑

l1,··· ,lk+1=1

K(l1, · · · , lk+1,−lk+1; t)

N∑

b1,··· , bk+1=1

e

(
− l1b1 + · · ·+ lk+1bk+1

t

)
.

Thus by Theorem G, we get

|R0| ≤ 1

tk+1

t−1∑

l1,··· ,lk+1=1

t
k
2 (l1, · · · , lk,−lk+1; t)

k
2
k dk+1(t)

1

‖ l1
t
‖ · · ·

1

‖ lk
t
‖

1

‖ − lk+1

t
‖
.

Note that by Lemma 1

(l1, · · · , lk,−lk+1; t)
k
2
k ≤ (l1, t)

1
2 · · · (lk+1, t)

1
2

We further have

|R0|

≤ 1

tk+1

t−1∑

l1,··· ,lk+1=1

t
k
2 (l1, t)

1
2 · · · (lk+1, t)

1
2 dk+1(t)

1

‖ l1
t
‖ · · ·

1

‖ lk
t
‖

1

‖ − lk+1

t
‖

≤ dk+1(t)

tk+1
2k+1

t
2∑

l1=1

t

l1
(l1, t)

1
2 · · ·

t
2∑

lk+1=1

t

lk+1

(lk+1, t)
1
2 .
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Note also that

t
2∑

l=1

(l, t)
1
2

l
=

∑

d|t

t
2∑

l=1

(l,t)=d

d
1
2

l

=
∑

d|t

t
2d∑

l=1

(l, t
d
)=1

1

ld
1
2

= O


log t

∑

d|t

1

d
1
2




= O


log t

d(t)∑
n=1

1

n
1
2




= O(d
1
2 (t) log t).

Thus we have

|R0| = O(t
k
2 2k+1 logk+1 td

k+1
2 (t)dk+1(t)).

Combining the estimate for R0, R1, · · · , Rk, we have

|Ut(N, k)| =
Nk+1

tk+1
φk(t) + O

((
k + 1

1

)
N

t
(d(t))k logk t

+ · · ·+
(

k + 1

i

)
N i

t
(d(t))k+1−i logk+1−i t

+ · · ·+
(

k + 1

k

)
Nk

t
d(t) log t + t

k
2 2k+1 logk+1(d(t))

k+1
2 dk+1(t)

)

=
Nk+1

tk+1
φk(t) + O

(
Nk

t
d(t) log t + t

k
2 2k+1d

k+1
2 (t)dk+1(t) logk+1 t

)
.

This finishes the proof of Theorem 6.

Corollary 3 Let N, k be integers. Let ε be a real number with 0 < ε < 1. For each

integer t with t < N2 k+1
k+2

−ε, we can find integers a1, · · · , ak+1 with 1 ≤ ai ≤ N ,
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i = 1, 2, · · · , k + 1, such that

t | a1 · · · ak+1 + 1.

Proof. Note that d(t) = O(tε), dk+1(t) = O((d(t))k+1) = O(t(k+1)ε), 2k = O(tε) and
logk+1(t) = O(tε). The result then follows by comparing the main term and the
error term of Theorem 6.

Note that t could be either a prime or power of a prime number.
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