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Abstract

Development of electric vehicles is motivated by global concerns over the need

for environmental protection. In addition to its zero-emission characteristics, an

electric propulsion system enables high performance torque control that may be

used to maximize vehicle performance obtained from energy-efficient, low rolling

resistance tires typically associated with degraded road-holding ability.

A simultaneous plant/controller optimization is performed on an electric vehicle

traction control system with respect to conflicting energy use and performance

objectives. Due to system nonlinearities, an iterative simulation-based optimization

approach is proposed using a system model and a genetic algorithm (GA) to guide

search space exploration.

The system model consists of: a drive cycle with a constant driver torque request

and a step change in coefficient of friction, a single-wheel longitudinal vehicle model,

a tire model described using the Magic Formula and a constant rolling resistance,

and an adhesion gradient fuzzy logic traction controller.

Optimization is defined in terms of the all at once variable selection of: either

a performance oriented or low rolling resistance tire, the shape of a fuzzy logic

controller membership function, and a set of fuzzy logic controller rule base conclu-

sions. A mixed encoding, multi-chromosomal GA is implemented to represent the

variables, respectively, as a binary string, a real-valued number, and a novel rule

base encoding based on the definition of a partially ordered set (poset) by delta

inclusion.

Simultaneous optimization results indicate that, under straight-line acceleration

and unless energy concerns are completely neglected, low rolling resistance tires

should be incorporated in a traction control system design since the energy saving

benefits outweigh the associated degradation in road-holding ability. The results

also indicate that the proposed novel encoding enables the efficient representation

of a fix-sized fuzzy logic rule base within a GA.
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Chapter 1

Introduction

Global concerns over climate change have created the need for environmental pro-

tection and action in sustainable development. Temperature rises within the past

35-50 years are attributed to anthropogenic (human) activity causing an increase in

green house gas (GHG) concentration within the atmosphere with CO2 emissions

contributing to the majority (60%) of observed changes [1]. Measurements of world-

wide GHG emissions indicate that the transportation sector is responsible for 21%

of CO2 emissions [2]. Within the transportation sector, CO2 emissions can be ac-

counted for by a strong dependence (94.4%) on non-renewable petroleum products

[3] with primary energy use (73%) in land vehicles [4]. Combined with a projected

47% increase in world oil consumption from 2003 to 2030, with transportation ac-

counting for approximately half the total [5], it is clear that development of low

emission, energy efficient automotive technology is key to mitigating adverse effects

of global warming [1]. From this standpoint, the conventional petroleum-based in-

ternal combustion engine (ICE) is non-ideal due to the release of GHG trapped

within fossil fuels, and a narrow range of optimal operating efficiency [6]. Although

innovations in adapting ICE technology to alternative and renewable fuels [7] have

been partially successful in curbing emissions and attaining higher levels of fuel

economy, further reductions and efficiency improvements are possible in an electric

vehicle (EV) where an electric propulsion system is used either in conjunction with,

or in place of, an ICE [8].
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Figure 1.1: Major EV Subsystems [9]

As shown in Figure 1.1, the electric propulsion system is the core component

of an electric vehicle (EV). Regardless of the electrical energy source, which may

be provided by batteries, a fuel cell, or an ICE-powered generator, an EV relies

on electronic control of a power converter and electric motor to efficiently deliver

power to the wheels. Characteristics of an electric propulsion system include a

high operating efficiency over a wide range of speed and torque demands, energy

recovery during regenerative braking (assuming a power receptive energy source),

and quick, accurate, torque response [9] [10].

Though high efficiency operation and regenerative braking directly benefit fuel

economy, recent research has suggested that further energy savings may be obtained

by the use of high performance traction control and energy efficient, low rolling

resistance tires [11] [12]. Such a control system relies on the fast torque response of

an electric propulsion system to compensate for degraded road adhesion associated

with low rolling resistance tires [12]. Existing research has produced controllers

that enable tire operation near the limits of performance [11] [12] [13]. However, the

trade-offs between vehicle performance and energy economy resulting from the use

of low rolling resistance tires with appropriate control has yet to be addressed. Since

tire selection and controller tuning (plant and controller variables, respectively)

both influence system level objectives in performance and energy consumption, the

problem of balancing these high-level vehicle design requirements can be classified

2



as a multi-objective, simultaneous optimization problem of plant and controller

variables.

In automotive powertrain designs, a sequential plant then controller design pro-

cess is typically taken to manage the complexity associated with each process.

However, it has been recognized that the sequential powertrain design approach

may not allow full optimization of the overall plant/controller system [14]. Si-

multaneous consideration of a combined plant/controller design problem enables

further optimization with respect to system level design objectives. For example,

the optimization of powertrain components selection with respect to cost [15] may

be considered a separate problem from tuning a powertrain control strategy for op-

timal efficiency [16]. The final design may be non-optimal since the electric motor

may be over-sized with respect to utilization by the control strategy. Thus inde-

pendent optimization of component selection and control strategy may result in

higher cost associated with an oversized motor as well as an unnecessary increase

in vehicle mass.

Although simultaneous plant/controller optimization offers potential to improve

overall system design, its application to large scale problems is limited by the in-

creased complexity of the associated optimization problem and available solution

techniques. In general, a simultaneous optimization must consider a “coupling

loop” between plant and controller designs that is illustrated in Figure 1.2. As

shown, a change in plant design affects the operation and design of a control strat-

egy. This change, in turn, affects the physical requirements and design imposed on

the plant by the controller. In an optimal design, it is desirable that the coupling

loop be solved such that the capabilities of the plant are exactly fully utilized by

the control strategy. For example, plant controller coupling has been observed in

the simultaneous design of a motor and controller [17] where the power specifica-

tion of the motor design affects plant properties such as armature resistance and

inductance. Armature resistance and inductance, in turn, are parameters of the

controller design and influence the maximum power used by the control strategy.

For a feasible system, the minimum power specification should be greater than or

equal to the maximum power required by the control strategy. Intuitively, an opti-

3
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Variables

Figure 1.2: Plant/Controller Design Coupling

Table 1.1: Examples of Potential Vehicle Optimization Variables

Plant Discrete Selection among pre-manufactured parts

Gear ratios (available in rational numbers)

Battery voltage (integer number of cell voltage)

Continuous Geometry (i.e. suspension dimensions)

Suspension spring-damper stiffness

Control Discrete Control strategy selection (i.e. PID vs Fuzzy Logic)

Continuous Control gain settings

mal system is expected when the maximum power required by the control strategy

is equal to the maximum power available from the motor.

Additional complexity in a simultaneous optimization problem may also arise

due to problem formulation as a mixed-integer problem involving both continuous

and discrete optimization variables. Discrete variables create discontinuities in the

problem search space and require search techniques that are independent of gradient

information. Examples of continuous and discrete variables that may be considered

in a vehicle design are listed in Table 1.1.

Due to the complexity of solving simultaneous optimization problems, applica-

tion in automotive research is currently limited to individual subsystems such as an

active suspension design [18], and an automatic transmission [19]. Further, these

works, along with [17], omit application to discrete variables to focus on the opti-

mization of continuous variables. Although this work is limited to a traction control

subsystem, a mixed-integer simultaneous optimization problem is considered.
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1.1 Research Objectives and Contributions

The goal of this research is to propose a strategy to allow the simultaneous opti-

mization of continuous and discrete plant/controller design variables and to apply

it to the design of a simplified electric vehicle traction control system. Research

objectives include:

• Development of a vehicle model and traction controller to identify energy

use to performance trade-offs associated with plant/controller design variable

selection.

• Formulation of an optimization problem and design of a solution technique

to provide quantitative assessment of the trade-offs.

• Application of the proposed strategy to a case study of a vehicle drive cycle

and analysis of results.

The following contributions are made:

• Formulation of a traction control system as a simultaneous plant/controller

optimization problem (Section 4.2).

• Application of a mixed encoding, multi-chromosomal genetic algorithm to the

optimization of the resulting problem (Section 5.2).

• Definition of a partially ordered set by delta inclusion (Section 5.3.2) and

its application to the encoding of a fuzzy logic controller rule base within a

genetic algorithm (Section 5.3.3).

1.2 Overview

This work describes both the modeling of an electric vehicle traction control system

and its optimization with respect to system-level objectives in performance and

energy economy. Results are based on a simulation study using a mixed encoding
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genetic algorithm to perform a simultaneous optimization of plant and controller

variables.

Chapter 2 details the development of a vehicle (plant) model based on the selec-

tion of a case study drive cycle. Vehicle performance and energy use are described

using a single-wheel vehicle dynamics model with consideration of longitudinal tire

force generation and rolling resistance. Tire performance degradation associated

with selecting a low rolling resistance tire in vehicle design is identified.

Chapter 3 defines a fuzzy logic traction controller. First, the choice of controller

is supported by an overview of traction control systems. Background information on

fuzzy logic control is then presented and followed by application-specific details to

complete the definition of the controller. Controller design variables are identified

for optimization.

Chapter 4 formulates an simultaneous plant/controller optimization problem to

select tire and controller parameters based on system performance and energy use

objectives. A solution strategy based on a genetic algorithm and system simulation

is proposed in consideration of the coupling between plant and controller, the mix

of continuous and discrete optimization variables, and the presence of nonlinear

system dynamics.

Chapter 5 describes the application of a mixed encoding, multi-chromosomal

genetic algorithm to the optimization of the traction control system. Attention is

given to a novel chromosomal encoding of a fuzzy logic controller rule base. Benefits

of the encoding are described in terms of reductions in optimization search space

and variable constraints.

Chapter 6 presents numerical results obtained from both unoptimized and opti-

mizing simulation studies. Preliminary simulations of the unoptimized system allow

verification of the implementation of system dynamics, establish a benchmark in

system performance, and demonstrate the potential magnitude of performance to

energy economy trade-offs for changes in tire selection and controller parameters.

Simultaneous plant/controller optimization results are analyzed in terms the op-

timal design variable selection as well as on the evolutionary performance of the

genetic algorithm.

6



Chapter 7 provides conclusions and direction for future work based on the de-

velopment and results of the simultaneous plant/controller optimization.
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Chapter 2

Plant Modeling

This chapter presents a simplified vehicle model and case study drive cycle. After

a description of the drive cycle, modeling requirements are derived and compo-

nents are presented to describe: vehicle dynamics, tire force generation mechanism,

and energy loss due to rolling resistance. The final plant model is summarized in

Section 2.4 and will be used in the formulation of a simultaneous plant/controller

optimization problem in Chapter 4. Numeric values of parameters used in the

model are summarized in Appendix A.

2.1 Case Study Drive Cycle

A typical drive cycle used to evaluate the performance of a traction control system

is a step change in road characteristic under a constant driver torque request Tref

[11] [10] [13] [12]. The situation is illustrated in Figure 2.1 where a vehicle starting

at initial position SO (sx = 0) on a level road surface experiences straight-line

acceleration through a distance SF with a road surface transition occurring after

distance ST .

The road characteristic of prime concern in a traction control system is the

maximum coefficient of friction existing between tire and road. For a given tire,

the maximum coefficient of friction available µr at position sx in the drive cycle of

9



Dry Road Wet / Icy Road

SO (sx = 0) ST SF

µdry µwet

Figure 2.1: Case Study Drive Cycle

Figure 2.1 is:

µr =

{
µdry sx < ST

µwet sx ≥ ST

(2.1)

where µdry is the coefficient of friction on the dry road and µwet is the coefficient of

friction on the wet or icy road such that µdry > µwet.

This drive cycle is used in this thesis to evaluate the basic response of a traction

control system to changes in road surface. The drive cycle remains fixed throughout

simulation studies to provide a basis for comparing different vehicle and controller

configurations.

2.2 Vehicle Dynamics

Based on the case study drive cycle, assumptions are made to simplify vehicle

dynamics to enable the use of a single-wheel longitudinal vehicle model. The model

is further augmented to allow calculation of vehicle performance and energy use

during the drive cycle.

2.2.1 Assumptions

In general, overall vehicle (chassis) motion may be described in terms of six degrees

of freedom (DoF) that are defined relative to a coordinate system attached to the

vehicle’s center of gravity (CoG) [20]. As shown in Figure 2.2, these six DoF are:

• 3 DoF in rotation: roll, pitch, and yaw, and

• 3 DoF in translation: longitudinal, lateral, and vertical.
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Figure 2.2: Vehicle Six Primary Degrees of Freedom

These six DoF are tightly coupled through the interaction of vehicle subsystems

that introduce additional DoF. For example, to describe vehicle motion in a double

lane change maneuver, a 94 DoF model is required to consider nonlinear dynamics

produced by front and rear suspensions, steering system, and tire-road interaction

[21].

For the straight-line acceleration drive cycle considered in this thesis, the follow-

ing assumptions decouple and simplify the analysis of longitudinal vehicle dynamics

to the CoG x− z plane:

• Lateral forces, body yaw, and body roll are negligible and assumed to be zero.

• Body pitch and position of CoG relative to the wheels is not affected (assum-

ing a stiff suspension with negligible motion).

• Longitudinal force is due solely to tire forces with negligible aerodynamic

drag.

In general, a vertical dynamic weight transfer from the front to rear wheels is

associated with vehicle acceleration since longitudinal tire forces cause a moment

11



Ta

Ω

vx

Fx

Fzo

Ty

r Fg

Figure 2.3: Longitudinal Single-Wheel Model [12]

about the vehicle CoG. However, as justified in Appendix B using the longitudinal

bicycle model, vertical dynamics are neglected (vertical, or normal force is assumed

constant) since it is assumed that the weight transfer is minimized due to:

• vehicle design with low CoG, and long wheel base (as common in a sports

car), and

• case study drive cycle with low-to-moderate vehicle accelerations.

2.2.2 Single-Wheel Longitudinal Model

The preceding assumptions allow a vehicle to be represented by a longitudinal

single-wheel model (Figure 2.3) that is used to focus analysis on the influence

of tire-road interactions on longitudinal vehicle dynamics [12]. The vehicle is rep-

resented by a rigid body of mass m supported by a single wheel represented by a

rigid body disc of radius r and rotational inertia J . The wheel is driven by an ex-

ternally applied torque Ta. Wheel mass is unmodeled in the longitudinal dynamics

since it is assumed negligible compared to vehicle mass. The vehicle experiences

a gravitational force Fg = mg that is partially countered by the reaction normal

force Fzo at the tire-road contact point. The reaction force Fzo is constant due to

the assumption of minimal vertical weight transfer.
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Note. Special consideration is given in modeling the vehicle mass m as well as the

normal force Fzo to allow the single-wheel model to capture the longitudinal dy-

namics of a full vehicle model. Assuming that the vehicle is driven by a single axle

(either front wheel or rear wheel drive), half the physical vehicle mass is modeled in

m since only one of two driven tires is modeled. Since a static weight distribution

exists between front and rear wheels depending on the location of vehicle CoG rel-

ative to the wheels, the normal force Fzo acting on the modeled wheel is typically

such that Fzo < Fg. The normal force Fzo is derived from the static weight distri-

bution terms in either (B.7a) or (B.7b) depending on whether the front or rear tire

is modeled, respectively. Note that Fg is balanced by both Fzo and a tire reaction

force from the remaining undriven, unmodeled axle.

In general, the maximum longitudinal force Fx max is limited by the maximum

tire-road friction µr such that Fx ≤ µr Fzo = Fx max. However, the actual tire

force generated Fx is a nonlinear function of wheel rotation, vehicle speed, and

road condition as detailed in Section 2.3.1. In addition to providing longitudinal

propulsion force, Fx also exerts a moment on the wheel through wheel radius r.

The rolling resistance torque Ty opposes the rotation of the wheel and is further

explained in Section 2.3.2.

The dynamics of the longitudinal single-wheel model is described by summing

the forces and moments in Figure 2.3 to obtain the longitudinal acceleration v̇x of

the vehicle and the angular acceleration Ω̇ of the single wheel:

v̇x =
Fx

m
(2.2)

Ω̇ =
Ta − Ty − rFx

J
. (2.3)

where Fx = tire longitudinal force (derived in Section 2.3.1);

m = half the physical vehicle mass;

vx = vehicle speed;

Ta = externally applied torque on wheel;

Ty = tire rolling resistance torque (derived in Section 2.3.2);

r = radius of wheel;

J = rotational inertia of wheel (and effective motor inertia);
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Ω = rotational speed of wheel.

2.2.3 Measuring Energy Use and Performance

The plant model is augmented with two additional state variables OT and OE to al-

low measurement of drive cycle completion time (representing vehicle performance)

and energy use, respectively. These variables serve as optimization objectives in

the formulation of the simultaneous plant/controller optimization problem in Chap-

ter 4.

Drive cycle completion time is the time taken for the vehicle to traverse distance

SF (see Figure 2.1). Vehicle position sx within the drive cycle is obtained by

integrating vehicle speed:

ṡx = vx. (2.4)

The time OT for the vehicle to complete the drive cycle is determined by integrating

(with respect to time t):

OT =

∫
ȮT dt (2.5)

where

ȮT =

{
1 sx ≤ SF

0 sx > SF .
(2.6)

Hence, (2.5) has the effect of setting OT = t while sx ≤ SF .

In an EV, Ta is supplied by an electric propulsion system incorporating an

electric motor. Electric motors exhibit rapid torque response that may be accu-

rately controlled due to the proportional relationship between torque and motor

current [13]. In this thesis, it is assumed that the torque response of the electric

propulsion system is faster than other system dynamics and therefore may be in-

stantaneously generated according to controller demands. It is also assumed that

the electric propulsion system is 100% efficient in converting electrical energy into

mechanical energy such that:

Pin = Pelec = Pmech = Ta Ω (2.7)
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where Pin, Pelec, and Pmech represent instantaneous input, electrical, and mechan-

ical power, respectively. Therefore, overall energy use OE may be obtained by

integrating Pin while sx ≤ SF :

OE =

∫
ȮE dt (2.8)

where

ȮE =

{
Ta Ω sx ≤ SF

0 sx > SF .
(2.9)

2.3 Tire Model

The pneumatic tire, an essential vehicle component, affects handling, traction, ride

comfort, appearance, and fuel economy [22]. The pneumatic tire plays a major role

in vehicle dynamics since vehicle motion is derived from forces generated by tire

deformations as a result of interacting wheel motion and road conditions [23]. This

section presents models to describe the longitudinal force generation mechanism of

a tire as well as tire rolling resistance since the phenomena influence, respectively,

vehicle performance and energy loss under the straight-line acceleration considered

in this thesis. Extension of the tire model to situations involving maneuvers such

as cornering requires the consideration of the lateral tire force that is beyond the

current scope of study. The forces and moments associated with such a generalized

tire model are discussed in Appendix C for future modeling extensions.

2.3.1 Longitudinal Tire Force Generation

A variety of approaches are available to model the force generation mechanism of a

tire as shown in Table 2.1. The approaches range from purely empirical to purely

theoretical from left to right across the table. Approaches in the middle columns

trade accuracy and detail for reduced computational complexity. Proceeding from

the left across the table, tire models may be derived empirically by curve fitting

to a full set of tire tests including combined in-plane and out-of-plane operating
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Table 2.1: Approaches to Tire Modeling [23][24]

Complex

Empirical Semi-Empirical Simple Physical Physical

Curve fit to Extrapolate from Simple Finite-element

extensive basic nominal representation analysis to

experimental data experimental data & physical insight simulate details

conditions. The Magic Formula tire model is an example of a widely accepted

empirical tire model [23].

A semi-empirical approach applies simple physical understanding to distort and

rescale experimental data. This approach extrapolates operating characteristics

from a reduced experimental data set covering nominal operating conditions.

In specific applications, a simple physical model may provide sufficient accuracy

and insight into tire behavior. For example, the brush model describes force and

moment generation in terms of a row of elastic bristles in contact with the road

surface [23].

Theoretical finite-element models allow modeling of complex physical effects

such as pressure distribution within the contact patch [23] and large deformation

in tire abuse simulations [24]. Beyond vehicle simulation, finite-element models are

used to establish relationships between tire performance and construction [23] and

in the high-frequency modeling of tire noise emission [24].

This thesis adopts a semi-empirical approach to model longitudinal tire force

generation. Specifically, the similarity method [23] is used to distort a Magic For-

mula curve fit for tire data obtained under nominal loading Fzo and on a road with

(maximum) reference coefficient of friction µo. This approach yields a relatively

simple, yet accurate, model that is suitable for the simulation-based optimization

procedure developed in Chapter 4.

Model development is presented progressively and begins with a discussion of

tire slip which serves as a basis for defining the Magic Formula. Next, the similarity

method is defined along with its application to the Magic Formula tire model. The
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vx = re Ω
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Figure 2.4: Velocity of Slip Points S (Driven) and S’ (Free Rolling)

adhesion gradient is defined in terms of the derivative of the model to reveal tire

characteristics suitable for use in developing a traction control strategy in Chapter 3.

Tire Slip

Under conditions of straight-line acceleration, tire force generation can be described

using the planar tire model shown in Figure 2.4. The linear and rotational speeds

of the wheel, vx and Ω, are as defined by the single-wheel model in (2.2) and (2.3),

respectively.

The effective rolling radius re of the wheel is empirically defined under free

rolling conditions (with longitudinal force Fx = 0), such that the forward speed of

the wheel vx is related to the angular speed of rotation Ω by [23]:

vx = re Ω. (2.10)

As shown in Figure 2.4, the effective rolling radius re is typically greater than

the loaded radius r that describes the physical tire deformation [23]. Therefore

physical tire deformation may be neglected by assuming an equivalent circular tire

rolling on an imaginary surface that is parallel to the ground plane at radial distance

re from the wheel center.

The relative speed of wheel rotation Ω to forward speed vx is of particular

interest in modeling tire force generation and is considered by defining a slip point
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S at radius re on the tire that is instantaneously in contact with the imaginary

surface.

Under free rolling conditions, (2.10) implies a wheel that is rolling, without slip-

ping, over the imaginary surface. As shown by the dotted trajectory in Figure 2.4,

the instantaneous velocity of a slip point S’ on a free rolling wheel is zero due to

the point’s instantaneous reversal in vertical direction of travel.

In contrast, under driven conditions (with Fx 6= 0), the velocity of slip point S

is non-zero due to slip between the tire and the imaginary surface. The tangent to

the solid trajectory shown in Figure 2.4 shows that split point S on a driven tire

exhibits a non-zero longitudinal speed vsx relative to the road given by:

vsx = vx − re Ω. (2.11)

For convenience, vsx is normalized with re Ω [23] and the resulting ratio is termed

longitudinal slip κ:

κ = −
vsx

rΩ
= −

vx − rΩ

rΩ
, vx ≤ rΩ (2.12)

where tire deformation is neglected and it is assumed that r = re. In general, both

the effective radius and loaded radius are nonlinear functions of tire wear, vertical

loading, and speed [23]. The sign of κ is chosen such that κ ≥ 0 for acceleration.

Also, a maximum of κ = 1 occurs for spinning the wheels on a stationary vehicle

(Ω > 0, vx = 0).

Note. The longitudinal slip as defined in (2.12) is not suitable for describing a

situation involving starting from a standstill (Ω=0) since the denominator would

be zero. To handle such cases, the longitudinal slip may be defined by a differential

equation without singularities as done in [23]. To avoid the singularity in this

thesis, initial conditions are defined in Appendix A such that the wheel is free

rolling (κ = 0) with vxo > 0 and Ωo = vxo/r.

The Magic Formula

Full scale tire tests have shown that longitudinal force Fx is nonlinearly dependent

on longitudinal slip κ [23]. Typically, as illustrated in Figure 2.5, Fx increases
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Figure 2.5: Longitudinal Tire Force Characteristic [12]

with initial slope CFκ up to a maximum at κ∗ before decreasing to a fraction of its

maximum at 100% slip.

The Magic Formula is widely accepted in fitting the longitudinal force gener-

ation characteristics of a tire [23]. It is based on a sine wave distortion as follows:

Fxo = Dxo sin[Cx tan−1{Bxo κ− Ex(Bxo κ− tan−1(Bxo κ))}] (2.13)

where Fxo = nominal output longitudinal tire force

κ = input longitudinal tire slip

Bxo = nominal stiffness factor

Cx = shape factor

Dxo = nominal peak value

Ex = curvature factor.

Note. Subscript o indicates values that describe nominal characteristics and serve

to distinguish between rescaled values. This distinction will be clarified shortly

during discussion of the similarity method.

Coefficients of the Magic Formula are named sinceDxo determines the maximum

amplitude of the sine function, Cx controls the overall shape by limiting the range

of the sine function, and Ex determines the curvature and horizontal position of

the peak. Since Dxo describes the maximum longitudinal force Fx max, it may be

defined as:

Fx max = Dxo = µoFzo (2.14)
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where the tire loading force is equal to the constant normal force Fzo from the

single-wheel model (Section 2.2.2) and µo is the maximum coefficient of the road

surface associated with the fitted data.

The influence of Bxo is revealed by taking the derivative of the Magic Formula

(2.13) with respect to κ (recalling d
dx

tan−1 x = 1
1+x2 ):

dFxo

dκ
= Dxo cos[Cx tan−1{Bxo κ− E(Bxo κ− tan−1(Bxo κ))}]

Cx ×





Bxo − E

(
Bxo −

Bxo

1 +B2
xoκ

2

)

1 + {Bxo κ− E(Bxo κ− tan−1(Bxo κ))}
2



 . (2.15)

By setting κ = 0 in (2.15), the initial slope of the Magic Formula is CFκ =

BxoCxDxo. Therefore the remaining coefficient Bxo is free to control the initial

“stiffness” of the Magic Formula to fit the initial slope CFκ indicated in Figure 2.5.

The Similarity Method

Although the Magic Formula allows an accurate description of longitudinal force

in terms of tire slip, it is necessary to extend the tire model to account for the

transition in road surface coefficient of friction as described in the drive cycle of

Section 2.1. When the coefficient of friction of a road deviates from a nominal

(reference) value µo, the maximum longitudinal tire force changes while the initial

slope CFκ remains constant [23]. This observation enables the similarity method

to extrapolate (by scaling) tire force characteristics from an experimental data set

obtained at reference condition µo to the new condition µn [23].

Using the similarity method, the tire force generation characteristic Fx associ-

ated with the new µn is described by scaling the Magic Formula (2.13) by µn/µo in

both horizontal and vertical directions [23]:

Fx =
µn

µo

Fxo(κeq)

=
µn

µo

Dxo sin[Cx tan−1{Bxo κeq − Ex(Bxo κeq − tan−1(Bxo κeq))}]
(2.16)
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where the equivalent longitudinal slip κeq is given by:

κeq =
µo

µn

κ. (2.17)

The vertical scaling establishes a new maximum in tire force generation accord-

ing to the percentage change in road friction from nominal. The horizontal scaling

on κ is required to preserve the initial slope CFκ as seen by taking the derivative

of (2.16) with respect to κ and evaluating at zero [23]:

dFx

dκ

∣∣∣∣
0

=

(
µn

µo

dFxo

dκeq

dκeq

dκ

)∣∣∣∣
0

=
dFxo

dκeq

∣∣∣∣
0

= CFκ. (2.18)

In this thesis, it is assumed that tire data is obtained on a dry reference road

surface. It is also assumed that an 80% reduction in friction and peak force gen-

eration occurs when operating a tire on a wet road surface. Therefore, the road

friction µr defined in (2.1) is substituted for the ratio µn/µo in (2.16) and (2.17)

such that:

µr =
µn

µo

=

{
µdry(= 1) sx < ST

µwet(= 0.2) sx ≥ ST

. (2.19)

For convenience in future analysis of tire force generation, longitudinal tire

force Fx is normalized by the normal tire force Fzo to define the driving friction

coefficient µ(κ) (with implied dependence on road surface condition):

µ(κ) =
Fx

Fzo

. (2.20)

Analysis of Fx may be performed in terms of µ(κ) since Fzo is constant and µ(κ)

varies directly with Fx. The convenience in using µ(κ) is that it emphasizes that

actual friction between tire and road is dependent on wheel slip and is limited to a

maximum µn as determined by substituting Fzo = Dxo/µo, obtained by rearranging

(2.14), into (2.20).

Adhesion Gradient

Additional longitudinal tire force characteristics may be deduced from analysis of

the adhesion gradient A defined as the derivative of Fx (2.16) with respect to κ
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that is normalized by stiffness CFκ:

A =
Ḟx

CFκ

=
Ḟx

BxoCxDxo

≤ 1 (2.21)

where Ḟx is termed the force derivative:

Ḟx =
∂Fx

∂κ
= Dxo cos[Cx tan−1{Bxo κeq − E(Bxo κeq − tan−1(Bxo κeq))}]

Cx ×





Bxo − E

(
Bxo −

Bxo

1 +B2
xoκ

2
eq

)

1 + {Bxo κeq − E(Bxo κeq − tan−1(Bxo κeq))}
2




. (2.22)

The optimal slip κ∗ corresponding to peak Fx may be obtained by setting (2.21)

to zero. Further simplification to (2.21) is possible given that Ex = 0 in the tire

data obtained from [23] (as listed in Appendix A):

A = cos[Cx tan−1{Bxo κeq}] ×

[
1

1 + {Bxo κeq}
2

]
. (2.23)

The solution of κ∗ by setting A = 0 proceeds by first noting that as κ increases

from zero, the argument of the cosine in (2.23) increases and the value of the

cosine decreases from unity until it changes sign when the argument is π/2. Since

the cosine is decreasing at this point, solution of κ in Cx tan−1{Bxo κeq} = π/2

corresponds to a maximum in Fx at optimal slip:

κ∗ =
tan

π

2Cx

Bxo

µr. (2.24)

As κ continues to increase past κ∗, the cosine and A remain negative while the

argument of the cosine remains less than 3π/2:

Cx tan−1{Bxoκeq} <
3π

2
⇒ Cx < 3. (2.25)

Since the shape factor Cx = 1.6 given by the tire data from [23] (as listed in

Appendix A) is less than 3, the adhesion gradient remains negative (A < 0) for

κ > κ∗. Therefore, adhesion gradient A is positive for κ < κ∗, zero for κ = κ∗,

and negative for κ > κ∗. This characteristic is further examined in the traction

controller development of Chapter 3.3.
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2.3.2 Rolling Resistance

A review of the impact of rolling resistance on fuel economy is followed by a dis-

cussion on design factors influencing rolling resistance and selection of a rolling

resistance model.

Rolling Resistance and Fuel Economy

Rolling resistance is defined as the amount of energy expended by a tire per unit

distance traveled [25]. The definition allows rolling resistance to be interpreted as

a force Fr that opposes the direction of travel of a tire (with units [N]=[J]/[m]).

Alternatively, rolling resistance may be interpreted as a torque Ty that opposes the

rotation of a tire (with units [Nm]=[J]/[rad]).

As a tire rolls, portions of the tire entering and leaving the contact patch are

repeatedly subject to cycles of deformation and recovery. Some of the energy used

to deform the tire is not returned during the recovery period. Rather, this energy

is lost as heat and decreases the available energy to turn the tire. Hence, a rolling

tire incurs hysteresis loss characterized by its rolling resistance [22].

The biggest influence on a vehicle’s fuel economy remains its powertrain design.

The ICE powertrain of a midsize vehicle may account for 80% (in highway driving)

to 87% (in urban driving, due to idling engine) of the total power losses (Fig-

ure 2.6) [22]. However, once the powertrain has converted the vehicle’s primary

energy supply into mechanical energy and delivered it to the wheels, only three

other types of losses remain: braking, aerodynamic drag, and rolling resistance.

The pie charts in Figure 2.6 show the relative proportion of energy loss once the

remaining 13% - 20% of energy makes its way to the vehicle’s wheels. The propor-

tion of energy loss is different between urban and highway driving. In low-speed,

stop-and-go urban driving, braking consumes the most energy while aerodynamic

effects are minimal. In steady, high-speed highway driving, aerodynamic drag dom-

inates due to its increase with vehicle speed. In both urban and highway driving,

Figure 2.6 shows that rolling resistance accounts for at least 30% of the energy

losses among aerodynamic drag, braking, and rolling. The minimization of rolling

resistance is thus important to the realization of a fuel-efficient vehicle design.
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Figure 2.6: Energy Flow for a Typical ICE Midsize Passenger Car a) Urban Driving

b) Highway Driving [22]

Factors Affecting Rolling Resistance

Rolling resistance is influenced by both tire design and operating conditions. Tire

tread design is of particular interest since it contributes to the majority of energy

loss (65%-75%) associated with rolling resistance [26]. Advances in tread block

design and tread rubber compounds continue to be key in enabling cost-effective,

low rolling resistance tires with enhanced tread-wear resistance and wet traction

while maintaining standards in dry traction and noise, vibration and harshness

(NVH) [26]. A reduction in tire width is also an option for reducing rolling resis-

tance although it is typically associated with degraded road adhesion and handling

characteristics [26].

In operation, tire rolling resistance is influenced by vertical loading Fz, inflation

pressure P , speed of travel V , and temperature T . Under steady state conditions

(straight rolling with zero slip), a standard [27] semi-empirical model for rolling

resistance is:

Fr = PαF β
z (a+ bV + cV 2) (2.26)

where α, β, a, b, c are exponents and coefficients chosen by regression techniques to

fit experimental data. Generally, α ≈ −0.4 < 0 and β ≈ 1 [27] [28] since rolling

resistance decreases with increasing inflation pressure [29] and is proportional to

normal load [23], respectively. Rolling resistance increases approximately linearly

(a ≈ 0.05, b ≈ 1e − 4, c ≈ 1e − 6 [27]) with speed as shown in Figure 2.7 [30]. The

figure also shows that the model (2.26) exhibits the appropriate trends with respect
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Figure 2.7: Speed, Pressure, and Loading vs Rolling Resistance : Direct from [27]

to rolling resistance versus normal loading and inflation pressure.

Due to its strong linearity with normal loading, rolling resistance is readily

described as a rolling resistance coefficient Cr defined as the ratio of rolling

resistance force to normal loading [31]:

Cr = Fr/Fz. (2.27)

When measured at the same pressure and speed, Cr is a convenient way to compare

rolling resistance of tires [31]. In a recent study, Cr was found to range from 0.007

to 0.014 on new tire designs [22].

Furthermore, rolling resistance decreases with increasing temperature when

measured on road vehicles (Figure 2.8 [32]) due to a corresponding pressure in-

crease from heating [29]. Figure 2.8 therefore indicates a conflicting trend in rolling

resistance between a change in speed and temperature. For example, assume steady

state operation at 55 km/h and 45◦C (point A) in Figure 2.8. A quick transient

speed increase to 75 km/h (point B) causes an initial increase in rolling resistance

while prolonged operation at 75 km/h causes temperature to stabilize to 55◦C (point

C) with associated inflation pressure increase and rolling resistance decrease. The

dependence of rolling resistance on temperature and speed is further considered

in [29].
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Figure 2.8: Speed and Temperature vs Rolling Resistance : Direct from [32]

In this thesis, the normal load Fz is assumed to be a constant Fzo and the effect

of temperature and speed changes are assumed to cancel each other. Hence, rolling

resistance Fr and its coefficient Cr are constant as related by (2.27) and the rolling

resistance moment Ty is modeled as a constant [23]:

Ty = rCrFzo (2.28)

where r and Fzo are the wheel radius and normal force from the single-wheel model,

and Cr is the rolling resistance coefficient.

2.3.3 Performance versus Energy Efficient Tire

Previous discussion on tire force and rolling resistance modeling show that tires in-

fluence vehicle performance and fuel economy. In general, tire design considerations

beyond the current scope of study result in a trade-off between high performance

tires and energy efficient, low rolling resistance tires [12] [26].

In this thesis, it is assumed that vehicle design freedom is restricted to selecting

among pre-manufactured tires. Specifically, the impact of tire selection on vehicle

performance and energy economy is studied using models of a performance tire (Tire

0), and a low rolling resistance tire (Tire 1). The naming of the tires is chosen to
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facilitate the definition of the optimization variable TIRE associated with tire selec-

tion in the overall traction control system optimization defined in Chapter 4. Since

the impact of low rolling resistance tire design on dynamic performance remains an

open area of research [33], potential impact is deduced from the observation that

rolling resistance decreases as inflation pressure increases (2.26). Research on the

impact of tire inflation pressure changes on dynamic performance [34] shows that

the impact is highly tire dependent. However, simulation results within the work

predict a decrease in both stiffness CFκo and peak force Dxo since a higher inflation

pressure decreases the tire-road contact patch area responsible for generating tire

forces. Parameters describing Tire 0 and Tire 1 in Table A.3 have been selected in

accordance with predicted trends.

The longitudinal tire force characteristics and its derivative for both Tire 0

(T0) and Tire 1 (T1), on dry and wet surfaces, are plotted in Figure 2.9 using the

parameters presented in Table A.3. Corresponding normalized characteristics µ(κ)

and A are plotted in Figure 2.10. The peak of the Fx plot demonstrates that the

Tire 0 has higher force generation capability than Tire 1 and shows the trade-off

in tire performance associated with the selection of a low rolling resistance tire.

The force derivative plot shows that Tire 0 has a greater initial stiffness CFκ than

Tire 1 and that CFκ remains constant for each tire despite a change from dry to

wet road surface. The locations of optimal slip on dry κ∗dry and wet κ∗wet surfaces,

corresponding to the peaks of the Fx and µ(κ) plots, occur at the κ-intercept of

the force derivative and adhesion gradient plots (according to (2.24)) and differ

between tire types and road conditions. The adhesion gradient plot shows that,

regardless of tire type and road condition, zero tire slip corresponds with unity

adhesion gradient.
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2.4 Plant Model Summary

The traction control system model assumed throughout the remainder of this thesis

is summarized in equations (2.29) to (2.40). The model has been augmented with

state variables OT and OE to measure the duration of and energy usage during

the drive cycle. Reference is made to Section 3.3 for the definition of the fuzzy()

function in (2.40). Also, Ta is assigned Tref during open loop testing of the system.

State equations:

Ω̇ =
Ta − Ty − r Fx

J
(2.29)

v̇x =
Fx

m
(2.30)

ṡx = vx (2.31)

ȮT =

{
1 sx ≤ SF

0 sx > SF

(2.32)

ȮE =

{
Ta Ω sx ≤ SF

0 sx > SF

(2.33)

Constituent equations:

µr =

{
µdry sx < ST

µwet sx ≥ ST

(2.34)

κ = −
vx − rΩ

rΩ
(2.35)

κeq =
1

µr

κ (2.36)

Fx = µrDxo sin[Cx tan−1{Bxo κeq − Ex(Bxo κeq − tan−1(Bxo κeq))}] (2.37)

A =
Ḟx

CFκo

= cos[Cx tan−1{Bxo κeq − E(Bxo κeq − tan−1(Bxo κeq))}]

×





1 − E

(
1 −

1

1 +B2
xoκ

2
eq

)

1 + {Bxo κeq − E(Bxo κeq − tan−1(Bxo κeq))}
2





(2.38)

Ty = r Cr Fzo (2.39)

Ta =

{
fuzzy (Tref/Tmax, A) × Tmax Traction Control (Closed Loop)

Tref No Traction Control (Open Loop)
(2.40)
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Chapter 3

Control

A traction control strategy, taken from literature [12], is reviewed and analyzed

with the goal of identifying controller design variables that impact vehicle (plant)

performance and energy use. An overview of the operating principles and control

techniques of an electric vehicle traction control system provides justification for

selecting a fuzzy logic control strategy. After a review of the operation of a fuzzy

logic controller, application-specific details are presented to describe a fuzzy logic

traction controller.

3.1 Traction Control Systems

Traction control improves safety during bad weather driving and reduces wear on

tires by preventing excessive wheel slip. Compared to a conventional ICE vehicle,

the electric motor and drive circuitry of an EV allows quick and accurate torque

generation and measurement. Thus, the potential exists for high performance EV

motion control [11] with applications in antilock braking [13], traction control [12],

and electronic stability control [35]. An EV traction control system benefits from

the possibility of operating tires closer to limits of performance while rapidly re-

sponding to changes in road conditions. Thus, it has been suggested that such a

system may allow the use of energy efficient low rolling resistance tires that would

otherwise be impractical due to an associated trade-off in tire performance [12].
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Figure 3.1: General Structure of a Traction Control System

The general form of a traction control system is shown in Figure 3.1 where a

traction controller limits torque application to the wheels to satisfy driver torque

request without exceeding tire performance limitations (as determined through sen-

sor measurements and state estimation). The limit of tire performance is defined

as the maximum force that may be generated between tire and road. As discussed

in Section 2.3.1, tire performance may be described in terms of longitudinal slip

κ, driving friction coefficient µ(κ) (directly related to tire force), and adhesion

gradient A (directly related to the derivative of tire force). Typical performance

characteristics for a tire on a dry and wet road are illustrated in Figure 3.2. Ideally,

torque is controlled to limit wheel slip to an optimal and maximum value κ∗ that

corresponds to the peak in µ(κ). For κ < κ∗, the longitudinal force produced by

the tire exerts a moment about the wheel that serves to stabilize wheel rotational

speed (recall (2.29)). If the wheel is accelerated to higher values of slip, a decrease

in longitudinal force causes a decrease in the moment opposing tire rotation and

leads to further wheel acceleration and increase in slip. Thus, κ∗ defines regions

of stable and unstable tire operation as shown in Figure 3.2. Operation in the

unstable region leads to high wheel speeds and decrease in vehicle performance. To

return to the stable region, a traction control system reduces applied torque to the

affected wheel.

In practice, the position of the peak and optimal slip κ∗ are unknown since they

vary for different road conditions as illustrated in Figure 3.2. Available vehicle

measurements are typically limited to those provided by vehicle accelerometers,

wheel speed sensors, and motor current sensors. Therefore, the estimation of vehicle
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states and tire/road force generation characteristics including vehicle speed, wheel

slip, coefficient of friction, and adhesion gradient is an important aspect of traction

control systems. The following discussion provides a brief overview of estimation

techniques with references to further discussion:

• Determination of vehicle speed is important to enable the calculation of wheel

slip (2.12). Vehicle speed may be obtained by an average of non-driven wheel

speeds using (2.10). In the case of four-wheel drive vehicles, vehicle speed

may be derived by integrating accelerometer output [35].

• Estimation of the coefficient of friction requires knowledge of the driving force

between tire and road. In an EV, a driving-force observer [37] may be used to

obtain this information due to the ability to easily deduce motor torque from

measured current. With an ICE, in-vehicle torque measurement or estimation

is impractical [37] and contributes to difficulty in accurately controlling torque

output. As a result, commercially available traction control systems for ICE

vehicles limit slip to a suboptimal prefixed value that accommodates worst

case scenarios such as operation on ice [13].

• Adhesion gradient may be obtained by observing the changes in slip and
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coefficient of friction over time:

A =
dµ/dt

dκ/dt
=
dµ

dκ
.

An identification algorithm may be used to extract A from a set of µ - κ

samples [37] or an approximation may be obtained by considering the ratio

of changes in sequentially observed samples (with appropriate consideration

of the singularity at steady state conditions when 4κ = 0) [12]:

A ≈
4µ

4κ
.

Extensions have also been made to estimate the optimal κ∗ resulting in peak

µ [37].

Proposed traction control strategies include the control of wheel speed, wheel

slip, and adhesion gradient. The advantages and disadvantages of each are sum-

marized in Table 3.1. Fuzzy logic control of adhesion gradient offers potential as it

offers simplistic practical implementation with little modeling and computational

requirements. By tracking a small positive adhesion gradient, the traction control

problem becomes independent of location of optimal slip and does not require prior

knowledge of road conditions [12]. An adhesion gradient fuzzy logic controller is

defined in Section 3.3 after a review of fuzzy logic control in Section 3.2. Fuzzy

logic controllers typically require a tuning procedure based on designer intuition

and experimental results [12]. In this work, the fuzzy controller design forms a part

of the overall system optimization in Chapter 4.
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Table 3.1: Traction Control Strategies

Strategy Control

Technique

Advantage Disadvantage Ref.

Maintain wheel

speed in accordance

with predicted wheel

speed

Model-

Following

Effective. Requires

vehicle model

in control

design.

[11]

Limit high wheel

speeds using natural

torque-speed

characteristics of a

DC motor

Feed-Forward Fast acting.

No

computation.

Design must

include DC

motor. Speed

limitation not

enough to

regain stability.

[10]

Slip Control Proportional-

Integral

Effective. Requires

complex

estimation of

optimal slip.

[11]

Adhesion Gradient

Control

Sliding-Mode Robust

against

disturbances.

High (infinite)

switching

frequencies.

[12]

Adhesion Gradient

Control

Fuzzy Logic Model

independent.

Practical im-

plementation.

Tuning based

on experience

and

experimental

results.

[12]
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3.2 Fuzzy Logic Control

The development of fuzzy logic control has been inspired by the capacity of humans

to reason with uncertainty, yet reliably act and react in complex environments. By

mimicking the human capacity to reason approximately, fuzzy logic control has been

successful in controlling a broad range of nonlinear systems where classical control

has not been effective or efficient [38]. In particular, fuzzy logic control is being

considered in emerging automotive control systems to address the uncertainties and

nonlinearities present in active suspension [39], regenerative braking [40], traction

control [12], vehicle stability control [41], and hybrid powertrain control [6].

The structure of a fuzzy logic control system is shown in Figure 3.3. A fuzzy

logic controller is a nonlinear mapping between its inputs x and outputs y [42].

The mapping is accomplished by operations on fuzzy sets. Therefore, this section

begins with an overview of fuzzy sets and set membership. This is followed by a

detailed explanation of the components of the fuzzy logic controller divided into:

controller input, output, and (de)normalization; input fuzzification; rule base and

inferencing; and output defuzzification. Finally, active research areas in fuzzy logic

control are discussed.

3.2.1 Fuzzy Sets

Define the universe of discourse, or universe, as the collection of all available

information on a given problem [38]. This universe may be represented mathe-

matically as a set X containing information as elements x. The elements, x, may

therefore be grouped according to properties associated with the underlying infor-

mation. When these properties are distinct and readily perceived, the groupings

may be defined with “crisp” boundaries [38]. In such cases, a crisp boundary de-

fines a crisp set that is analogous to a classical set as described in Section 5.3.1.

For example, each element x ∈ X may therefore be mapped to a membership set

containing elements 1 or 0, depending, respectively, on whether or not it is a mem-

ber of A. The mapping, called χA(x) therefore expresses the “membership” of an
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Figure 3.3: Fuzzy Logic Control System [38]

element x in the crisp set A as [38]:

χA(x) =

{
1, x ∈ A

0, x /∈ A.
(3.1)

Example 3.2.1. Figure 3.4a shows an abstraction of the universe as a set X, along

with a crisp boundary defining a crisp set A. The solid line surrounding elements

of the crisp set A indicates a clear distinction between members of A and the rest

of the elements in X. Point a is a member of the crisp set A with χA(a) = 1 while

point b is not a member with χA(b) = 0.

Often, the properties of information in the universe are not easily distinguished

due to uncertainty, ambiguity, or vagueness. Information, again treated as elements

x, may still be grouped, but by an equally uncertain, ambiguous, or vague boundary

that defines a fuzzy set [38]. Like its crisp counterpart, a fuzzy set may include

or exclude an element x. However, fuzzy sets can be considered as an extension to
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crisp sets since they also allow an element to be partially included in their group. As

a result, there exists a gradual transition between membership and nonmembership

of elements in a fuzzy set.

The membership of an element in a particular fuzzy set is described by mapping

each element to a set of membership values on the interval 0 to 1, where 0

corresponds to nonmembership, 1 to complete membership, and values in between

to partial membership. To avoid confusion between crisp and fuzzy sets, a fuzzy

set is denoted in calligraphic type. The fuzzy set “A” is therefore denoted A.

The membership of an element x in a fuzzy set A is defined by the membership

function µA(x) as [38]:

µA(x) ∈ [0, 1]. (3.2)

Example 3.2.2. The fuzzy set A shown in Figure 3.4b lacks a clear boundary but

is defined by a shaded membership transition region. Point a is a full member of

A, with µA(a) = 1, as it resides in the central (unshaded) region. Point b is not a

member, with µA(b) = 0, since it is completely outside the transition region. Point

c has partial membership, 0 < µA(c) < 1, since it resides in the transition region.

3.2.2 Properties of Membership Functions

Although the example fuzzy set A in Figure 3.4b clearly shows that points a and

b are full members and nonmembers, respectively, the membership value of point
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c is not clear from the figure. The membership values can be shown explicitly for

elements x by directly plotting µA(x) as a “height” against x [38]. For the usual case

where x is one dimensional, the horizontal axis represents the elements x while the

membership values are indicated by the height along the vertical axis (Figure 3.5).

From here on, membership functions will be presented in this height-based manner.

For a membership function µA(x), three regions can be distinguished (Fig-

ure 3.5) depending on the membership of elements x [38]:

• The support of a membership function is the region of the universe that is

associated with nonzero membership in the fuzzy set: µA(x) > 0.

• The core of a membership function is the region of the universe that is asso-

ciated with complete membership in the fuzzy set: µA(x) = 1.

• The boundary of a membership function is the region of the universe that

is associated with partial (that is nonzero, but not complete), membership in

the fuzzy set: 0 < µA(x) < 1.

The regions of a membership function may be used to characterize a fuzzy set. A

normal fuzzy set is associated with a membership function whose core comprises

at least one element. When the core of a normal fuzzy set contains exactly one

element, the element is called the prototype of the set.

A convex fuzzy set is defined as having a membership function that is either:

a) monotonically increasing; b) monotonically decreasing; or c) monotonically in-
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creasing then monotonically decreasing. This is equivalently stated as [38]:

∀x, y, z ∈ A, x < y < z ⇒ µA(y) ≥ min[µA(x), µA(z)].

Examples of common membership functions, named according to their shape,

include: trapezoidal, gaussian, triangular, and single-point [38]. These membership

functions are all normal and convex. These characteristics are useful since the uni-

verse is simply divided between a core region of complete certainty and, optionally,

a surrounding fuzzy boundary of increasing uncertainty.

The triangular and single-point membership functions are used in this thesis

and are further defined [38]:

• A triangular fuzzy set, T (Figure 3.6a), is a normal and convex fuzzy set

with a prototype element t and, potentially asymmetric, spans σ− and σ+:

µ(x) =






max

{
0, 1 +

x− t

σ−

}
if x ≤ t

max

{
0, 1 +

t− x

σ+

}
otherwise.

(3.3)

• A single-point fuzzy set, P (Figure 3.6b), can be considered as a triangular

fuzzy set with span approaching zero and prototype element p. A single-point

fuzzy set is also called a fuzzy number.

Note. Although a single-point fuzzy set and a single-element crisp set may

both contain the same element, the two sets differ since the single-point fuzzy

set allows partial membership while the crisp set does not (recall (3.2) and

(3.1), respectively). Partial membership is possible when element x is un-

known. This is the case prior to defuzzification (Section 3.2.6).

Since an element x can have simultaneous membership in multiple fuzzy sets in

the same universe, it is convenient to visualize all membership functions at once by

plotting them on the same axis.

Example 3.2.3. In Figure 3.7, the element x = t has simultaneous memberships

in fuzzy sets A, B, and C of 0, 0.2, and 0.8, respectively.
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Given fuzzy sets A and B in a universe X, the following standard operations on

fuzzy sets are defined and illustrated in Figure 3.8 [38]:

Union µA∪B(x) = max[µA(x), µB(x)] (3.4)

Intersection µA∩B(x) = min[µA(x), µB(x)] (3.5)

Complement µ
A
(x) = 1 − µA(x). (3.6)

The intersection operation will be given further consideration in Section 3.2.5 for

its role in the inferencing process.

3.2.3 Controller Input and Output Space

As shown in Figure 3.3, the fuzzy logic control system under consideration consists

of a plant, sensors, and a fuzzy logic controller (delimited by a dashed boundary).

Although the fuzzy logic controller reasons using fuzzy sets, it communicates with

the outside world through crisp, or single-valued (real-valued), inputs and outputs.

Feedback signals (such as voltage) obtained from sensors are crisp since they do

not explicitly contain information about uncertainty, though uncertainty is implied

due to sensor performance limitations. The control action issued by the controller

is also crisp, and produces physical forcing signals that are unambiguous to the

plant. External reference signals are typically crisp as they specify numerical set-

points. Therefore, a fuzzy logic controller operates on crisp inputs and produces

crisp outputs.

Given a controller with n independent inputs and m outputs:
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• Each input xi is associated with a universe Xi, i = 1, . . . , n,

where Xi represents all possible crisp values for input xi.

• Each output yj is associated with a universe Yj, j = 1, . . . ,m,

where Yj represents all possible crisp values for output yj.

It is assumed that the elements of Xi and Yj are real numbers since they represent

possible physical quantities of crisp control signals.

Also, it is optional, but often convenient, to consider normalized control signals.

This, for example, allows the controller to work with percentages instead of awkward

full-scale values. Therefore, the elements of Xi are often normalized between [0, 1],

or some other convenient range. Correspondingly, elements of Yj are denormalized

to full-scale values suitable for application on the plant. The normalization and

denormalization operations are shown in Figure 3.3 and are optionally the first and

last stages, respectively, in a fuzzy logic controller.

3.2.4 Fuzzification

Fuzzification is defined as the process of making a crisp quantity fuzzy [38]. In

a fuzzy logic controller, inputs are crisp quantities that require fuzzification prior

to the inferencing stage. For each input xi, its universe Xi is divided into ki fuzzy

sets Al
i, for i = 1, . . . , n, and l = 1, . . . , ki. Fuzzification is then simply the process

of determining the membership of xi in each of the ki fuzzy sets of Xi.

It is common to take Al
i = T l

i to divide each universe Xi into ki triangular

fuzzy sets, T l
i , l = 1, . . . , ki. The triangular fuzzy sets are defined such that pro-

totype elements tli are distributed over the elements xi ∈ Xi with spans σ−, σ+ to

adjacent prototype elements. The resulting overlapping sets ensure that a continu-

ous, varying, control input gradually changes in membership from one fuzzy set to

another.

Example 3.2.4. An example of dividing a universe Xi into 4 triangular fuzzy

sets T k
i , k = 1, . . . , 4, over all values of input xi ∈ [0, 1] is shown in Figure 3.9.

The prototype elements tki are evenly spaced at 0, 1/3, 2/3, and 1 and all spans
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σk−
i = σk+

i = 1/3. Further, input xi = 0.6 has been fuzzified and the resulting

membership values, µT k
i
(xi), as calculated by (3.3) are 0, 0.2, 0.8, and 0, for k =

1, . . . , 4, respectively.

3.2.5 Inferencing

The inferencing block in a fuzzy logic controller, as shown in Figure 3.3, determines

appropriate control actions in response to controller inputs. The input-output

relationship is stored in a rule base, also shown in Figure 3.3, that is accessed by

the fuzzy inferencing system. The rule base represents human knowledge about

control procedures encoded as a series of IF-THEN rules. Each rule takes the form

of a natural language expression of the type [38]:

IF premise (antecedent), THEN conclusion (consequent).

The premise consists of a series of statements about the inputs xi in terms of

their membership in fuzzy sets Ai. The membership for a particular input i in a

fuzzy set Ai is described by an expression of the type:

xi is Ai

where the notation Ai is used to designate an arbitrary fuzzy set Al
i, l ∈ {1, . . . , ki},

in the universe Xi. The certainty, or truth, of the statement is determined by the

membership of xi in Ai.
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Using the method of multiple conjunctive antecedents [38], the complete

state of n inputs may be described in the premise as:

x1 is A1 and x2 is A2 . . . and xn is An

where the “and” connectives invoke the notion of fuzzy set intersections as de-

fined in (3.5). The entire premise is evaluated by means of the multidimensional

membership function of the fuzzy set AS = A1 ∩ A2 ∩ . . . ∩ An given by:

µAS
(x1, x2, . . . , xn) =

∏n

i=1
µAi

= min[µA1
(x1), µA2

(x2), . . . , µAn
(xn)]. (3.7)

Note. The
∏

operator, as applied to n membership functions, denotes taking the

minimum of the membership functions as defined in (3.7).

Note. The “or” connective is used in the method of multiple disjunctive an-

tecedents [38] to formulate a premise of the form:

x1 is A1 or x2 is A2 . . . or xn is An.

The “or” connectives invoke the notion of fuzzy set unions as defined in (3.4). The

entire premise is evaluated in this case by means of the membership function of the

fuzzy set AS = A1 ∪ A2 ∪ . . . ∪ An given by:

µAS
(x1, x2, . . . , xn) = max[µA1

(x1), µA2
(x2), . . . , µAn

(xn)].

The conclusion of an IF-THEN rule describes the outputs yj in terms of mem-

bership in output fuzzy sets. This may be done by dividing each output universe

Yj into kj fuzzy sets Cl
j, for j = 1, . . . ,m, and l = 1, ..., kj . The membership for

a particular output j in a fuzzy set Cj (denoting an arbitrary fuzzy set in Yj) is

described by an expression of the type:

yj is Cj.

The truth, or certainty of the conclusion is “inferred” from, and therefore identical

to, the truth of the premise. For a premise with multiple conjunctive antecedents,

the certainty of the conclusion is therefore given by (3.7).
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Hence, for a controller with n inputs and m outputs, the IF-THEN rules are of

the form:

IF x1 is A1 and x2 is A2 . . . and xn is An,

THEN y1 is C1, y2 is C2, . . . , ym is Cm.

Note that the inference process is individually applied to each output yj listed in

the rule. This allows a fuzzy logic controller with m outputs to be designed as m

single-output controllers. Therefore, multi-input single-output (MISO) fuzzy logic

controllers may be considered without loss of generality.

For a MISO fuzzy logic controller with n inputs where each universe Xi has

been divided into ki fuzzy sets, the rule base may contain a maximum number of

R rules [38]:

R = k1k2k3 . . . kn. (3.8)

For a controller with a small number of inputs (n = 1, . . . , 3), a fuzzy associa-

tive memory table, or FAM table, allows a compact graphical representation of

the rule base [38]. A controller with a small number of inputs and m outputs may

be described by m number of FAM tables.

Example 3.2.5. An example of a FAM table, for two inputs (n = 2), is shown in

Figure 3.10. The universe X1 of the first input x1 has been divided into 3 fuzzy

sets A1,A2, and A3. The universe X2 of the second input x2 has been divided into

2 fuzzy sets B1, and B2. The universe Y of the output y has been divided into 4

fuzzy sets Cj, for j = 1, . . . , 4. The FAM table represents the following rule base:

IF x1 is A1 and x2 is B1, THEN y is C1.

IF x1 is A1 and x2 is B2, THEN y is C2.

IF x1 is A2 and x2 is B1, THEN y is C2.

IF x1 is A2 and x2 is B2, THEN y is C3.

IF x1 is A3 and x2 is B1, THEN y is C3.

IF x1 is A3 and x2 is B2, THEN y is C4.
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Figure 3.10: Double-Input, Single-Output FAM Table

3.2.6 Defuzzification

Defuzzification is the process of making a fuzzy quantity crisp. In a fuzzy logic

controller, the output of the inferencing stage is a fuzzy quantity that is described

as an element with membership in various output fuzzy sets. These output fuzzy

sets are precisely the ones that appear in the conclusions of the IF-THEN rule

base. For an output universe Y divided into k fuzzy sets C l, l = 1, . . . , k, the

inferencing process assigns membership to the output y in C l by evaluating the

rule base. The result after the inferencing stage, in general, is that y is a member

of multiple output fuzzy sets. However, only the membership information of y is

known. The actual value of y is uncertain and requires a defuzzification stage (as

shown in Figure 3.3) to produce a crisp controller output.

Note. To avoid confusion, the uncertain value of the output prior to defuzzification

is denoted y. The resulting crisp output after defuzzification is denoted y∗.

Defuzzification occurs by weighting the membership information of y and many

weighting methods have been proposed due to the freedom in deriving weights from

the shapes and locations of membership functions [38]. In general, the choice of

defuzzification method is context or problem dependent. However, real-time oper-

ation requirements of control systems emphasize the importance of computational

simplicity for practical implementations. To this extent, the zero-order Takagi-

Sugeno method, or Sugeno method, makes use of single-point output fuzzy

sets and a weighted average method to avoid computational complexity.

The rules in a zero-order Sugeno method are of the form:

IF x1 is A1 and x2 is A2 . . . and xn is An THEN y = P l
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where P l is a constant representing the prototype element of the single-point fuzzy

set and l = 1, . . . , k for k divisions of Y [38].

Note. A single output controller is assumed without loss of generality as discussed

in Section 3.2.5.

Since single-point output fuzzy sets contain a single element, the output of each

rule is a crisp value instead of a range of possible values. The uncertainty in the

output of the inferencing process is therefore specified in terms of membership in k

possible crisp values. This allows the final crisp output y∗ to be determined using

the computationally efficient weighted average method [38]:

y∗ =

∑R

i=1 y
(i)w(i)

∑R

i=1w
(i)

(3.9)

where R = the number of rules in the rule base;

y(i) = the value of y assigned by the ith rule;

w(i) = the membership value assigned by the ith rule (as a result of evaluating

the premise).

The inferencing and defuzzification process in the zero-order Sugeno method

can be compactly represented by substituting w(i) in (3.9) for the computation by

method of multiple conjunctive antecedents [38]:

y∗ =

∑R

i=1 y
(i)
∏n

j=1 µj,i
∑R

i=1

∏n

j=1 µj,i

(3.10)

where µj,i = the membership value assigned to input j by rule number i;∏n

j=1
µj,i = the method of multiple conjunctive antecedents expressed as (3.7):

∏n

j=1
µj,i = min[µ1,i , µ2,i , . . . , µn,i] = wi.

Example 3.2.6. Consider a double-input single-output fuzzy logic controller using

the zero-order Sugeno method and a rule base as described by the FAM table of

Example 3.2.5. Assume that the first input universe X1 is divided into 3 triangular
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fuzzy sets A1, A2, and A3 with prototype elements at 0, 0.5, and 1, respectively.

Assume that the second input universe X2 is divided into 2 triangular fuzzy sets

B1, and B2 with prototype elements at 0 and 1, respectively. Further, assume that

the output universe is represented by 4 single-valued fuzzy sets Cl = P l, l = 1, . . . , 4

with prototype elements at 0, 1/3, 2/3, and 1, respectively.

The entire process from fuzzification, through inferencing, to defuzzification

can be graphically shown in a fuzzy inference diagram (Figure 3.11) [43]. Crisp

inputs arrive into the controller at the bottom left corner of the diagram and are

fuzzified according to the membership functions shown in the two left-most columns.

For x1 = 0.7, fuzzification gives µAl(x1) = 0, 0.6, 0.4 for l = 1, 2, 3, respectively. For

x2 = 0.2, fuzzification gives µBl(x2) = 0.8, 0.2 for l = 1, 2, respectively.

The right-most column shows the single-point fuzzy sets associated with the

output. Together, the three columns represent the rule base encoded in the FAM

table. For example, the third rule can be extracted from the figure as:

Rule 3) IF x1 is A2 and x2 is B1, THEN y = P2 = 2/3.

The premise of each rule is evaluated according to the method of multiple con-

junctive antecedents (3.7) and the resulting uncertainty is assigned to the conclusion

in the form of a membership value in the output fuzzy set. Evaluating Rule 3) using

the method of multiple conjunctive antecedents gives a certainty of w3 = 0.6 to the

conclusion y = 2/3:

∏2

j=1
µj,3 = min[µ1,3 , µ2,3] = min[0.6 , 0.8] = 0.6 = w3.

Finally, defuzzification takes place at the bottom right corner of the diagram

where the weighted average is calculated to produce a crisp output. In the example,

after all rules have been evaluated, the crisp output y∗ is determined by:

y∗ =

∑6
i=1 y

(i)
∏n

j=1 µj,i
∑R

i=1

∏n

j=1 µj,i

=
1
3
0.6 + 2

3
(0.2 + 0.4) + 1(0.2)

0.6 + (0.2 + 0.4) + 0.2
= 0.57.
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3.2.7 Research in Fuzzy Logic Control

As a result of on-going research [38], the following aspects of fuzzy logic controller

design are discussed separately in this section:

1. choosing the number, shape, and relative placement of membership functions

to divide the controller input and output space;

2. choosing appropriate IF-THEN rules for the rule base;

3. stability of fuzzy logic controllers;

4. optimality of fuzzy logic controllers.

The first two aspects, dealing with the choice of controller parameters, are often

addressed by engineering intuition where human understanding about the system

allows acceptable, but sub-optimal, decisions to be made [38]. For example, the

fuzzy logic controllers in [12], [40], and [41] were designed in this manner. In the

vehicle control system of [41], a simplified model of nonlinear vehicle dynamics was

derived “only to organize [their] imagination in order to extract the fuzzy rules

correctly.” In all three cases, additional parameter tuning occurred through trial

and error.

For even simple systems with few inputs, manual tuning can be time-consuming

due to the numerous parameters for describing the membership functions that di-

vide the input and output space. The manual tuning process becomes infeasible

for a large number of inputs where the large number of membership function pa-

rameters are compounded by an exponential increase in the number of rules (recall

equation (3.8)). This problem can be partly alleviated by using methods to au-

tomate the creation of membership functions and rule sets based on data sets of

input-output data points [38]. For example, instead of using an explicit formula,

such as (3.3), to calculate the membership of a data point in a fuzzy set, an artificial

neural network (ANN) may be trained to determine the membership of data points

in a fuzzy set [38]. This frees the designer from choosing membership function

parameters such as the location of prototype elements and the span of triangular
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membership functions. Other methods such as the “clustering method” and the

“modifed learning from example method” prescribe systematic algorithms for cal-

culating both membership functions and rules from input-output data [38]. In these

methods, data points from an input-output data set are considered in turn and an

algorithm calculates whether the existing rule base can infer the input-output re-

lationship, or, if a new rule is to be added to the rule base. The resulting rule base

tends to cluster the data points into fuzzy sets and hence the methods are effective

at deriving rules from numerical data, as opposed to human intuition.

Stability and optimality, the last two items from the list at the beginning of this

section, are mostly open problems in fuzzy logic controller design [38]. Stability,

a fundamental control performance criteria, is not addressed explicitly in fuzzy

logic control system design. Although stability criteria have been developed for

certain classes of fuzzy logic controllers (such as in [44]), human intuition combined

with extensive system simulation and testing is typically relied upon to determine

parameters for an acceptable range of stable operation.

The optimality of fuzzy logic controller design parameters is also difficult to

ascertain due to the nonlinear nature of both plant and controller in typical fuzzy

logic control systems. Fuzzy logic controller parameter optimization can there-

fore be considered to be a nonlinear optimization problem with a multidimensional

search space involving both discrete variables (in the number of rules and fuzzy

sets) and continuous variables (in the distribution of membership functions). Ge-

netic algorithms, with their ability to work with such an irregular search space, are

an effective and widely used means to optimize fuzzy logic controllers [38]. After ge-

netic algorithms are introduced in Section 5.1, their application to the optimization

of fuzzy logic controllers is considered separately in Section 5.1.5.
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3.3 Adhesion Gradient Traction Controller

Among proposed traction control strategies (Table 3.1) the fuzzy logic control of

adhesion gradient is chosen for further study as it allows simplistic implementa-

tion with minimal modeling and computational requirements (Section 3.1). The

adhesion gradient fuzzy logic controller is specified through discussion on traction

control-specific inputs and outputs, fuzzification and defuzzification membership

functions, and rule base.

When possible, numerical parameters involved in defining the fuzzy logic con-

troller are specified intuitively to minimize the number of controller design variables.

Otherwise, the discussion highlights the remaining parameters as variables for fur-

ther optimization in Chapter 4. The numerical values of all control parameters

(including nominal values assigned to identified optimization variables) are listed

in Table A.4 of Appendix A.

3.3.1 Controller Inputs and Output

The double-input, single-output adhesion gradient-based fuzzy logic controller as-

sumed in this thesis is of the same structure as presented in [12]. The inputs are

the driver torque request Tref , derived from accelerator pedal position, and the tire-

road adhesion gradient A as determined, in practice, by a vehicle state estimator.

Controller output is an applied torque Ta to the driven wheel.

Note. It is assumed that the adherence gradient A is directly measurable in this

thesis to reduce the number of design variables. In practice, additional variables

are associated with estimator design and it is noted that simultaneous optimization

of plant, controller, and estimator is an open area of research [45].

For convenience, the fuzzy logic controller is designed using normalized inputs

and outputs. The torque request input Tref is normalized with respect to a maxi-

mum motor torque Tmax such that Tref ≤ Tmax. Normalized adhesion gradient A

is calculated from the plant model by (2.38). A gain of Tmax is applied to the con-

troller to denormalize the output torque Ta. Hence, the nonlinear mapping between
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input and output can be denoted by a function fuzzy() such that:

Ta = fuzzy (Tref/Tmax, A) × Tmax. (3.11)

3.3.2 Membership Functions

The normalized torque request input is fuzzified using the membership functions of

Figure 3.12 which have been given linguistic labels: Small (S), Medium-Small (MS),

Medium-High (MH), and High (H). As indicated in the figure, the membership

functions are evenly spaced to represent a linear transition from zero to maximum

torque request.

The normalized adhesion gradient is fuzzified using the membership functions

of Figure 3.13 which have been given linguistic labels: Negative (N), Zero (Z),

Positive-Small (PS), and Positive-High (PH). As noted in [12] these membership

functions are not equally spaced and the work recommends a trial procedure for

tuning the location of membership functions. An automated tuning procedure is

also possible using the method of genetic-fuzzy control presented in Section 5.1.5

and is taken in this thesis. Although the location of all membership functions may

be subjected to the optimization procedure, the following intuition and assumptions

constrain all but the location of the Positive-Small membership function:

• Negative values of A indicate tire operation within the unstable region and

a reduction in output torque is required. This can be ensured by setting the

location of the negative membership function to 0. This choice allows the

fuzzy logic controller to identify all negative values of adhesion gradient with

100% certainty.

• Mainly Zero values of A indicate that the system is near the optimum and that

wheel speed should not be allowed to increase further. The location of the

Zero membership function can be interpreted as the optimal performance set-

point of the traction controller. Ideally, the traction controller should limit A

to zero, the point of marginal stability. However, to provide a factor of safety

against entering the unstable region, the location of the Zero membership

function is set to 0.1 to limit the adhesion gradient to 10% of its maximum.
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• Positive-Small values of A indicate that wheel acceleration is possible with-

out entering the unstable region. The location of the membership function,

A-PS ∈ [0.2, 0.8], is allowed to vary between the locations of adjacent Zero

and Positive High fuzzy sets. The range of variation is restricted to allow a

transition boundary of uncertainty between adjacent fuzzy sets.

• Positive-High values of A indicate that the wheel is free to accelerate. The

location of the positive high membership function is set to 0.9 to allow a linear

input-output torque response while adhesion gradient remains more than 90%

of the maximum. This effectively disables traction control for high adhesion

gradients corresponding to low values of slip.

The membership functions of the output torque (Figure 3.14) have been given

linguistic names: Small (S), Medium-Small (MS), Medium-High (MH), and High

(H). They are evenly spaced to allow a linear response to torque request input at

Positive-High adhesion gradients.

3.3.3 Rule Base

Inferencing and defuzzification is done with the Sugeno method of Section 3.2.6,

due to its computational simplicity, using the output torque membership functions

of Figure 3.14 and the rule base shown in Figure 3.15a. The rule base shown

in Figure 3.15a is as proposed in [12] and is based on a translation of the above

considerations where specifically:

• Small torque requests result in Small output torques regardless of adhesion

gradient.

• Negative adhesion gradients indicate system instability and result in Small

output torques regardless of torque request to regain stability.

• Positive-High adhesion gradients result in a linear response to torque request

ranging from Small to High with matching torque output.
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The remaining six rules, identified by C1 to C6 in Figure 3.15b, represent a gradual

reduction in output torque for decreasing torque request and adhesion gradient.

Alternative definition of rule conclusions C1 to C6 influence the “aggressiveness”

of the output torque reduction in response to decreasing adhesion gradient and

approach of tire performance limits. Selection of these rule conclusions is part of

the simultaneous plant/controller optimization in Chapter 4.

The nonlinear input to output mapping of the fuzzy logic traction controller,

as determined by the fuzzy() function of (3.11), is shown in Figure 3.16 for the

controller defined by Figures 3.12 - 3.14, 3.15a and assuming the location of Positive-

Small A at 0.5. These nominal controller parameters are obtained from [12] and

also listed in Table A.4. The surface plot is generated by fuzzification of the range

of inputs of Treq and A and applying the Sugeno method in (3.10) to obtain output

Ta. The figure shows that the traction controller exhibits a linear response in torque

request to output torque for large adhesion gradients (small values of slip) and that

a nonlinear torque reduction occurs as A approaches negative values.

Since the case study drive cycle adopts a constant input torque request Tref , only

a subset of the rule base is stimulated. Torque request Tref and maximum torque

Tmax parameters of Table A.2 have been chosen in the ratio 5/6 to equally stimulate

rules incorporating the Medium-High and High torque request input membership

functions of Figure 3.12. Thus it is expected that controller tuning efforts using the

case study drive cycle will only meaningfully affect rules with conclusions C3 to C6.

In addition to the performance and efficiency benefits produced by limiting ex-

cessive tire slip, a trade-off in performance and energy consumption exists depend-

ing on the amount of torque reduction exerted by the traction controller. Optimal

tuning of the controller is required in conjunction with tire selection to realize

overall system objectives in performance and fuel economy.
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Chapter 4

Optimization Problem

Formulation and Solution Strategy

The vehicle model and traction controller developed in Chapter 2 and Chapter 3,

respectively, are combined into a system model and a system-level optimization

problem is defined with respect to minimizing energy use and drive cycle comple-

tion time. A solution strategy based on a genetic algorithm is proposed since the

resulting problem includes a mix of continuous and discrete optimization variables

and requires simulation of system dynamics to evaluate optimization objectives.

A review of the general coupling between plant and controller design variables

and associated plant/controller optimization strategies is followed by development

of the traction control system model, the optimization problem formulation (sum-

marized in Section 4.2.4), and the proposed solution strategy.

Design details of the genetic algorithm are discussed separately in Chapter 5.

Optimization results using the proposed solution strategy and genetic algorithm

are presented in Section 6.4.

4.1 Simultaneous Plant/Controller Optimization

In the design of a system consisting of a plant and controller, it is natural to adopt a

sequential strategy where the plant is designed first, followed by the controller [17].
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However, potential coupling between plant and controller design requires a concur-

rent (or simultaneous) strategy to system-level optimization. This section provides

a review of the coupling between plant and controller, describes sequential and

concurrent strategies for plant/controller optimization, and concludes with a de-

scription of the optimization process involving a simulation model.

4.1.1 Plant/Controller Coupling

Plant/controller coupling can be observed by considering the formulation of a com-

bined plant/controller optimization problem as described in [45] and refined in [17].

The following definitions will facilitate further discussion [17]:

• In the notation for a function f(d; c), quantities before the semicolon are

variables and quantities after the semicolon are parameters of the function.

• In the optimization of a function f , parameters are quantities that are fixed

while variables are quantities that permit exploration of the search space.

Begin by assuming no coupling between plant and controller optimization. Plant

optimization is typically a static optimization problem of the form:

min
d
Op(d; c) subject to: h(d) = 0, g(d) ≤ 0 (4.1)

where d = plant design variables

c = plant parameters

Op = plant objective function

h, g = equality and inequality constraints, respectively, on plant design vari-

ables.

In contrast, the controller optimization problem is a dynamic optimization prob-

lem of the form:

min
x(t),z(t)

Oc(x(t), z(t);w) subject to: ẋ(t) = f(x(t), z(t), t), x(to) = xo (4.2)

where t = time
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f = system dynamic equations

x = system states as governed by f

z = variable control input (as determined by a control law)

w = control parameters

Oc = controller objective function

to, xo = initial time and conditions, respectively.

In general, a tight coupling may exist between plant and controller optimiza-

tion. In other words, variables and parameters chosen during plant design may

influence controller performance and vice versa. Accounting for such a coupling,

the individual plant and controller optimization problems (4.1) (4.2) are combined

into a system-level optimization problem (Figure 4.1) [17]:

min
d,x(t),z(t)

Os{Op(d; c), Oc(x(t), z(t);w)}

subject to: h(d; c) = 0, g(d; c) ≤ 0,

c = {a, b}, v = V (d; c),

ẋ(t) = f(x(t), z(t), t, d;w), x(to) = xo,

w = {u, v}, b = B(x(t), z(t), t;w)

(4.3)

where, additionally, Os = system-level optimization objective

c = {a, b} = set of plant parameters

a = simple plant parameters

b = plant parameters affected by control requirements

B = function to calculate control requirements

w = {u, v} = set of controller parameters

u = simple control parameters

v = control parameters affected by plant design

V = function to calculate plant design requirements.

Note. The system-level optimization problem stated in (4.3) may also be considered

as a multidisciplinary optimization (MDO) problem since the overall system may

involve mechanical, hydraulic, control, and other subsystem designs [18].
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In (4.3), the optimization is dependent upon plant and controller parameters b,

v in addition to variables d, z(t). This dependence is illustrated in Figure 4.1 and

the coupling is shown by dashed lines.

4.1.2 Optimization Strategies

A common approach to optimizing a plant and controller system is the sequential

single pass strategy where the plant is first optimized followed by optimizing

the controller [17]. In this strategy, as shown in Figure 4.2a, the coupling between

plant and controller is ignored. A fixed set of plant parameters b is assumed and the

plant design variables d are varied to optimize the plant. Parameters required for

controller design v are extracted from the plant design by V (such that v = V ) and

controller variables z are determined in the control optimization stage. As b and

v are constant with respect to the individual plant and controller optimizations,

this approach is equivalent to solving (4.1) followed by (4.2). Though simplistic,

this approach requires the verification that controller requirements B have been

satisfied by the assumed plant parameters b (such that b ≥ B) to ensure a feasible

system. System level optimality is not guaranteed when B and b differ [17]. A

similar argument holds for the converse controller-then-plant sequence.

Deficiencies of the single pass strategy are resolved by the introduction of a

system level objective function Os and by deriving plant parameters b from con-
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troller requirements B such that b = B. The result is the ideal concurrent

strategy shown in Figure 4.2b (a simplified diagram of Figure 4.1). The ideal

concurrent strategy seeks to directly solve the plant/controller optimization prob-

lem as described by (4.3) under the full coupling constraints v = V and b = B.

Unfortunately, determination of b and v involves the challenging solution of a set of

simultaneous, differential-algebraic equations presented by the coupling constraints.

Further, the full coupling constraint equations are often implicitly defined within

complex simulations [17] and not readily available for analysis.

The all at once strategy shown in Figure 4.2c is a practical approach to

system level optimization and is obtained by relaxing the coupling constraints.

Either plant or controller parameters b or v, respectively, are allowed to deviate

from system requirements as long as minimum requirements are satisfied. That

is, the search space is enlarged to include feasible but non-optimal systems by

replacing either the constraint b = B with b ≥ B or v = V with v ≥ V in (4.3).

The constraint relaxation simplifies determination of b and v since it removes the

requirement of simultaneous solution of plant/controller coupling constraints and
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allows b to deviate from B (assuming b ≥ B). Therefore, plant parameters b are

treated as plant variables and specified explicitly along with d in the optimization

process while controller parameters v are derived under the constraint that b ≥ B.

Note. The above strategies, and other optimization strategies, namely the sequen-

tial iterative strategy, the concurrent decoupled system strategy, and the concurrent

bilevel strategy are presented in [17]. The strategies were compared in [17] in an

optimal design of an electric DC motor and controller, with the conclusion that the

all at once strategy be recommended for solving system optimization problems.

4.2 Problem Formulation

The desire for a traction control system design that minimizes both energy use and

drive cycle completion time creates a multi-objective optimization problem whose

solution involves the selection of plant and controller design variables. First, the

plant and controller are combined to form a complete traction control system. For-

mulation of the optimization problem then requires the definition of: plant and

controller design variables (optimization decision variables), variable constraints,

and objective function. The complete optimization problem is summarized in Sec-

tion 4.2.4 and a solution strategy is proposed in Section 4.3.

4.2.1 Combined Plant and Controller System

The traction control system model to be optimized consists of the vehicle (plant)

model summarized in Section 2.4 and the adhesion gradient fuzzy logic traction

controller described in Section 3.3. The system model is illustrated in Figure 4.3

where the drive cycle energy use OE and completion time OT are plant outputs

of particular interest as minimization objectives in the optimization process. The

traction controller considers a driver torque input request Tref and the tire adhesion

gradient A obtained from the plant and outputs an applied torque Ta on the vehicle

tire.
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4.2.2 Decision Variables and Constraints

A minimal number of decision variables are considered to minimize optimization

search space and focus on a simultaneous plant/controller optimization with a mix-

ture of plant and controller variables as well as a mixture of continuous and discrete

variables. The chosen variables are defined as:

• Discrete selection of vehicle (plant) tire through variable TIRE:

TIRE =

{
0, Select Performance Tire 0

1, Select Low Rolling Resistance Tire 1
(4.4)

where TIRE is constrained to a binary selection TIRE ∈ {0, 1}.

The value of TIRE impacts the plant design by modifying parameters of the

tire model through the constraint:

(Bxo, Dxo, Cr) =

{
Tire 0 Parameters, TIRE = 0

Tire 1 Parameters, TIRE = 1
(4.5)

where Bxo, Dxo are, respectively, the stiffness factor and peak value of the tire

force generation model and Cr is the tire rolling resistance as discussed in

Section 2.3. The numerical tire parameters are listed in Table A.3.

• Continuous controller variable A-PS representing the location of the Positive-

Small membership function of the adhesion gradient. The lower and upper

limits of A-PS are intuitively defined based on previous discussion in Sec-

tion 3.3.2:

A-PS ∈ [0.2, 0.8]. (4.6)
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• Discrete selection of fuzzy logic controller rule base conclusions Ci for i =

1, . . . , 6 as defined in Section 3.3.3. For convenience, the rule base conclusions

Ci are written as a matrix RULE to facilitate interpretation of the rules in

tabular format in conjunction with Figure 3.15b:

RULE =




C1 C2

C3 C4

C5 C6



 . (4.7)

To facilitate numerical optimization of the rule base conclusions, the mapping

ΨRULE is used to assign a numerical value to represent the output membership

functions such that:

ΨRULE : S → 1, MS → 2, MH → 3, H → 4. (4.8)

The mapping ΨRULE therefore constrains the selection of rule base conclusions Ci

such that:

Ci ∈ {S, MS, MH, H} ⇔ Ci ∈ {1, 2, 3, 4}. (4.9)

However, additional constraints may be placed on Ci since it is intuitive that a

practical rule base design for the adhesion gradient traction controller will tend to

prescribe an increase in torque output Ta as input torque request Tref and adhesion

gradient A increase. In other words, with reference to Figure 3.15, rule base con-

clusions tend to increase from a minimum at the top-left of the rule base towards a

maximum at the bottom-right of the rule base. This intuition allows the following

constraints to be imposed on Ci:

C1 ≤ C2, C3 ≤ C4, C5 ≤ C6,

C1 ≤ C3, C3 ≤ C5, C2 ≤ C4, C4 ≤ C6,

C2 ≤ 2, C4 ≤ 3.

(4.10)

The last two constraints C2 ≤ 2, C4 ≤ 3 are a direct consequence of considering

the prefixed and immediately adjacent (to the right) rule base conclusions of Fig-

ure 3.15b associated with Positive-High (PH) inputs of adhesion gradient.
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Note. Although the inclusion of inequality constraints (4.10) in the optimization

problem enables a reduction in optimization search space, the requirement to sat-

isfy the group of constraints increases the complexity of the solution technique as

variables Ci may no longer be chosen independently. A novel fuzzy logic rule base

encoding is presented in Section 5.3 to simultaneously address constraint satisfac-

tion and search space reduction.

Example 4.2.1. The following variable assignments define a traction control sys-

tem configured with the performance tire (Tire 0), Positive-Small adhesion gradient

membership function located at 0.5 (Figure 3.13), and rule base corresponding to

Figure 3.15a:

TIRE = 0, A-PS = 0.5, RULE =




1 2

2 3

2 3



 . (4.11)

4.2.3 Objective Function

The minimization of both drive cycle energy use OE and completion time OT

presents a multi-objective optimization problem. In general, the optimal solution

of a multi-objective optimization problem is not unique. Rather, the solution is

represented by a Pareto set defined as a set of designs for which no individual

objective may be improved without compromising any other objective [45]. Var-

ious approaches to multi-objective optimization exist and can be broadly divided

into aggregating and non-aggregating approaches [46]. In aggregating approaches,

the individual objectives (i.e. OE and OT ) are combined into a single function.

Non-aggregating approaches seek to improve a vector of objective functions.

Among aggregating approaches, the weighted sum approach simply takes the

weighted sum of the individual objective functions [46]. Further, it is assumed that

the weighting coefficients add to 1. Due to its simplicity, the weighted sum approach

is assumed in the analysis of plant/controller optimization strategies found in [17]

[45], and as well as in this thesis. The system-level objective function Os of the

traction control system is therefore the weighted sum of the drive cycle energy use
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OE and completion time OT :

Os = wE OE + (1 − wE)OT (4.12)

where wE ∈ [0, 1] is the weighting coefficient on energy use. The choice of wE

controls the relative importance between the two objectives and its impact on op-

timization results is further considered in Section 6.4.2.
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4.2.4 Problem Summary

The simultaneous plant/controller optimization problem considered in this thesis is

summarized in (4.13). The weighted sum of energy use OE and completion time OT

for the drive cycle described in Section 2.1 is minimized by selection of vehicle tire

TIRE, the location of the Positive-Small adhesion gradient membership function A-

PS, and controller rule base RULE. Due to the inclusion of a controller optimization

problem, additional constraints exist on the dynamic state ẋ of the system.

min
A-PS, TIRE, RULE

wE OE + (1 − wE)OT

subject to:

(Bxo, Dxo, Cr) =

{
Tire 0 Parameters, TIRE = 0

Tire 1 Parameters, TIRE = 1

ẋ =





Ω̇

v̇x

ṡx

ȮT

ȮE




= f(x, Ta)

(Closed loop dynamics

See (2.29) to (2.40))

xo =
(vxo

r
, vxo, 0, 0, 0

)T

, vxo > 0
(Initial

Conditions)

RULE =




C1 C2

C3 C4

C5 C6





C1 ≤ C2, C3 ≤ C4, C5 ≤ C6,

C1 ≤ C3, C3 ≤ C5, C2 ≤ C4, C4 ≤ C6,

C2 ≤ 2, C4 ≤ 3

TIRE ∈ {0, 1}

Ci ∈ {1, 2, 3, 4}, i = 1, . . . , 6

A-PS ∈ [0.2, 0.8]

(4.13)

69



4.3 Solution Strategy

A solution strategy for the traction control optimization problem summarized in

Section 4.2.4 is proposed and consists of the application of the all at once opti-

mization variable selection strategy within a simulation-based optimization loop.

This section further considers the plant/controller coupling and the application of

the all at once strategy with respect to the traction control system under study.

The requirement for a simulation-based optimization is examined and the resulting

optimization loop is described.

4.3.1 All At Once Variable Selection

As previously discussed in Section 4.1.2, the all at once optimization variable selec-

tion strategy is a practical approach to simultaneous plant/controller optimization

and is therefore applied to the traction control optimization problem.

With respect to the plant/controller coupling loop shown in Figure 4.1, the cou-

pling within the traction control optimization problem can be described as follows:

• Tire selection represents the plant design variable d = TIRE.

• The applied torque is the control signal to be optimized z(t) = Ta. From

a design perspective, Ta is a function of the selection of controller design

variables A-PS and RULE: z = Ta(A-PS,RULE).

• Intuitively, control action is a function of tire selection since the tire adhesion

gradient characteristic A is an input to the traction controller. Thus tire

model parameters (Bxo, Dxo, Cr) impact control design and may be considered

as control design parameters v = (Bxo, Dxo, Cr) that are affected by plant

design variable TIRE.

• Coupling between plant and controller is described by function V that de-

termines controller parameters v depending on plant design variable TIRE.

Plant/controller coupling is present in the optimization problem due to in-

clusion of constraint (4.5) which may be rewritten to explicitly show the
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Figure 4.4: Traction Control Optimization Variables and Objective Function

dependence of control design parameters on plant design:

v = (Bxo, Dxo, Cr) = V (TIRE) =

{
Tire 0 Parameters, TIRE = 0

Tire 1 Parameters, TIRE = 1.
(4.14)

The traction control optimization problem under consideration does not include

plant parameters b that are affected by controller design. Hence the simultaneous

plant/controller optimization considered in this thesis is simplified since a full cou-

pling loop between plant and controller design does not exist. The complete (with

full coupling loop) all at once strategy shown in Figure 4.2c therefore simplifies to

a strategy incorporating the partial plant/controller coupling shown in Figure 4.4.

Although the resulting strategy in Figure 4.4 shows some graphical resemblance to

the sequential single pass strategy shown in Figure 4.2a, the two differ since the

former retains the simultaneous selection of plant and controller design variables

with the goal of optimizing a system objective Os while the latter seeks to optimize

plant and controller individually.

Note. A possible extension to the traction control optimization problem is to in-

clude the optimal design of the electric motor driving the vehicle. As described in

[17], armature resistance and inductance vary depending on motor power specifi-

cation and impact the maximum power used by a motor controller design. Such

an extension would therefore require consideration of the full plant/controller cou-

pling loop to ensure that the minimum motor power specification b is greater than

or equal to the power requirements of the control strategy B.
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Figure 4.5: Simulation Optimization Model [47]

4.3.2 Simulation Optimization

Although the all at once strategy prescribes a simultaneous selection of plant and

controller variables, it does not suggest a mechanism for search space exploration.

The diagrams in Figure 4.2 and Figure 4.4 do not show how optimization variables

should be altered during the optimization process to converge towards an optimal

solution. Ideally, for a given optimization objective, the optimization variables

would be determined through closed form solution. However, system complexity

often requires a simulation model to evaluate the system-level objective function

Os as well as plant requirements B. An iterative approach is therefore required to

converge towards an optimal solution. Further, high computational cost associated

with system simulation may prevent the exploration of the entire search space.

A simulation optimization is therefore desirable where the best (but perhaps

non-optimal) input variable values are obtained in a limited iterative exploration

of the search space [47]. A simulation optimization model applied to the all at

once strategy is shown in Figure 4.5 and consists of a system simulation model and

an optimization strategy within an optimization loop. The optimization strategy,

in this case the all at once strategy, determines the values of the variables d, z,

and b for the next simulation based on the previous simulation results Os, and B.

Among methods of implementing the optimization strategy, heuristic direct search

methods (requiring only function values) such as genetic algorithms are frequently

used for simulation optimization [47].

In the optimization of the traction control system, a simulation model is re-

quired to determine system dynamics due to nonlinearities in the tire model, road

surface transition, and fuzzy logic controller. The nonlinearities preclude closed

form evaluation of objectives OE and OT and therefore the all at once optimization
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Figure 4.6: Optimization Loop Using Traction Control Simulation Model

strategy is applied within a simulation optimization.

The proposed solution strategy of the traction control optimization problem

is summarized in Figure 4.6 where the traction control simulation model is as

previously described in Section 4.2.1 and the all at once variable selction strategy

is implemented using a genetic algorithm to be described in Chapter 5. The figure

shows that the genetic algorithm affects changes in the optimization variables A-

PS, RULE, and TIRE according to an evaluation of objectives OE and OT obtained

from the simulation model.
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Chapter 5

Genetic Algorithm Design

Design details of the genetic algorithm used in the simultaneous plant/controller

optimization of the traction control system are described. First, background on ge-

netic algorithms is presented, including mixed encoding of continuous and discrete

variables and application in fuzzy logic control optimization. Application-specific

design details regarding optimization variable encoding and definition of associated

genetic operations are then provided to define a mixed encoding, multi-chromosomal

genetic algorithm suitable for optimizing the traction control problem summarized

in Section 4.2.4. A novel fuzzy logic rule base encoding is presented to address chal-

lenges in rule base constraint satisfaction associated with search space reduction.

5.1 Genetic Algorithms

Genetic Algorithms (GA) are heuristic optimization methods that were inspired

by Charles Darwin’s principle of natural selection [48]. This principle stems from

the observation that, as a population of species evolves, individuals with beneficial

traits are more likely to survive to reproduce, and hence propagate their traits

to their offspring. GA numerically emulate this process to evolve good solutions

from a population of candidate solutions. As a numerical optimizer, with generally

problem-independent mathematical formulation, a GA possesses intrinsic flexibility

and can equally be applied to problems exhibiting a combination of nonlinear,
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Figure 5.1: Genetic Algorithm Structure [48]

constrained, discontinuous, and multi-modal characteristics [48].

The basic operation of a GA (as presented in Figure 5.1) entails refining a pop-

ulation of candidate solutions through repeated application of a series of genetic

operations consisting of solution selection, crossover, mutation, and fitness evalua-

tion. In the following subsections, the classical operation of a GA on binary strings

is discussed, followed by extensions allowing alternatives to binary encoding, mixed

encoding with multi-chromosomal representation, as well as constrained optimiza-

tion. Parallel implementation strategies that allow high-speed execution of a GA

are also reviewed. This section concludes with a discussion of the application of

genetic algorithms to fuzzy logic controller optimization in the field of genetic-fuzzy

control.

5.1.1 Unconstrained Binary GA

The following sub-sections detail the unconstrained optimization process of a binary

GA with reference to Figure 5.1.
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Representation

Prior to the application of a GA, it is assumed that the solution to a given problem

can be represented by a set of variables. Following biological inspiration, each

variable is referred to as a gene and the set of genes forms a chromosome. In

a binary GA, a single chromosome corresponds to a candidate solution to the

problem. A set of candidate solutions forms a population. The relationship

between gene, chromosome, and population is shown in Figure 5.2 where a single

chromosome has been enlarged to show the gene structure. For convenience, a

candidate solution may be referred to as a member of a population. A particular

population may be referred to as a generation to reflect the fact that a new

population is derived from a previous population after every iteration of the GA.

In general, the representation and encoding of variables is problem-dependent.

In a binary GA, it is assumed that all variables are encoded as a string of binary

numbers. For a problem with n variables encoded as genes xi, i = 1 . . . n, a chro-

mosome X is a binary string of length L(X) =
∑n

i=1 L(xi), where function L is the

number of bits required to represent its argument. The binary representation allows

the crossover and mutation genetic operators to derive new candidate solutions, or

offspring, from existing candidate solutions, or parents, in a problem-independent

manner.
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Initial Population

An initial population is instantiated at the beginning of a GA. The initial population

consists of randomly generated candidate solutions [48]. In the case of a binary GA,

a candidate solution is a random binary string of length L(X). The population’s size

is typically fixed during the application of GA. A larger population size increases

the number and diversity of solutions explored but incurs more processing time per

iteration of the GA.

Objective Function and Fitness Evaluation

Every member in the initial population, as well as in subsequent populations, is

subject to a fitness evaluation resulting in a fitness value F used to evaluate

the “goodness” or optimality of the candidate solution for the problem [48]. A

chromosome X with a higher fitness value than another chromosome Y means that

chromosome X represents a solution closer to the optimum than chromosome Y .

Fitness evaluation begins with the use of an objective function to evaluate

the optimality of a chromosome and produce an objective value O. The objective

function is problem-dependent and the variables encoded in the chromosome may

be evaluated by various means ranging from a simple algebraic expression to a large

numerical simulation. In the case of a simulation optimization (Section 4.3.2), and

in this thesis, a simulation model is assumed to evaluate the encoded variables.

Being problem-dependent, the objective value may assume a wide range of num-

bers requiring problem-specific knowledge to interpret. For example, smaller num-

bers represent desirable solutions in minimization problems whereas the converse is

true in maximization problems. Therefore, a mapping Ψ : O → F is introduced to

convert the problem-dependent objective value O to a problem-independent fitness

value F [48].

A common mapping is the ranking scheme used to assign fitness according

to the position ranks of the sorted objective values of a given population [48].

Population members are sorted according to their objective values and the fitness

value is taken as the rank of each member. Higher ranks correspond to higher

fitness and the ascending or descending sort order is chosen depending on whether
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the optimization is maximizing or minimizing, respectively. The ranking scheme is

affected only by the relative difference in ranking and not by difference in magnitude

of objective values. This mapping characteristic is desirable as discussed in the

following section on the selection process.

Selection

The population is evolved by selectively applying genetic operations that produce a

new generation from members of the current population. Following biological inspi-

ration, new members are preferably derived, or reproduced, from fit members with

the goal of improving the average population fitness towards an optimal solution.

Members are commonly chosen using roulette wheel selection [48] as follows:

1. Sum the fitness values of all population members: Fsum =
∑
F .

2. Generate a random number r between 0 and Fsum.

3. Return the first population member whose fitness value, when added to the

fitness value of all proceeding population members, is greater than or equal

to r.

This is equivalent to assigning each population member a segment of a roulette

wheel whose size is proportional to the member’s fitness value. Members are selected

for reproduction by uniformly selecting a random point along the circumference of

the roulette wheel and choosing the indicated member.

Example 5.1.1. Assuming a maximization problem and objective values O of 5,

10, 20, 60, 200 for a population of 5 members Xi, i = 1 . . . 5, respectively, the

probability of selecting a given member is shown in Figure 5.3 where Ψ is: a) a

direct mapping F = O (Fsum = 5 + 10 + 20 + 60 + 200), and b) according to the

ranking scheme (Fsum = 1+2+3+4+5). The figure shows that the ranking scheme

is insensitive to differences in magnitude of the objective function and ensures that

one very good solution X5 will not disproportionally dominate the selection process

by occupying a large portion of the roulette wheel [48].
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Figure 5.3: Roulette Wheel Selection a) Direct Mapping, b) Ranking Scheme [48]

As roulette wheel selection relies on strictly positive fitness values with higher

fitness values corresponding to fitter individuals, it is often paired with an applica-

tion of the ranking scheme during fitness evaluation. The combination allows the

consideration of minimization problems where a smaller objective value corresponds

to higher fitness.

Example 5.1.2. Assume a minimization problem and objective values O of 5, 20,

10, 200, 60 for a population of 5 members Xi, i = 1 . . . 5, respectively. As shown

in Table 5.1, application of a direct mapping F = O leads to an invalid fitness

assignment since the member with the highest objective value is incorrectly assigned

the highest fitness (highest selection probability). In contrast, a valid mapping for

the minimization problem results after sorting objective values in descending order

and applying the ranking scheme such that F = rank and the lowest objective

value is assigned the highest fitness.

Crossover

Members of a new population are derived from existing members using a crossover

process followed by a mutation process. Two parent members A, B are selected

from the current generation, which may include elite members, and a crossover
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Table 5.1: Example Roulette Wheel Selection on Minimization Problem

Fitness Value F

Rank Member Objective O Direct Map Ranking Scheme

1 X4 200 200 1

2 X5 60 60 2

3 X2 20 20 3

4 X3 10 10 4

5 X1 5 5 5

operation fcross is performed resulting in an offspring C containing genes from both

parents:

C = fcross(A,B). (5.1)

A common crossover operation for binary strings is the one-point crossover

shown in Figure 5.4 [48]. For parent chromosomes A = {a1, a2, . . . , aL} and B =

{b1, b2, . . . , bL} with L = L(A) = L(B) bits each, a random crossover point j

is chosen such that the resulting offspring is C = {a1, . . . , aj, bj+1, . . . , bL}. Al-

though two offspring are generated from each crossover (the other being C ′ =

{b1, . . . , bj, aj+1, . . . , aL}), only one is kept such that m crossover operations are

needed to produce a population of size m.

Note. Either offspring C or C ′ is discarded depending on the implementation of

the GA. Either offspring may be discarded since the two parents to the crossover

operation are randomly chosen in the selection process.

Mutation

A mutation operation fmutate is applied to each offspring C after crossover to

produce a randomly perturbed offspring D:

D = fmutate(C) (5.2)

Mutation randomly selects and alters a gene with small probability (pm), typically

less than 10% [48]. Bit mutation fmutate is applied to binary strings by randomly
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Figure 5.4: Example of One-Point Crossover [48]

1 1 10 1 0 1Original Chromosome

New Chromosome 1 0 10 1 0 1

Bit Mutation

Figure 5.5: Example of Bit Mutation [48]

changing a single bit (Figure 5.5).

Terminating Condition

The cycle of genetic operations is repeated until a terminating condition is reached.

Common choices of termination criteria are a specified number of generations, pre-

defined value of fitness, rate of change of fitness, or a combination of these fac-

tors [48]. Upon termination of a successful GA optimization, the average popu-

lation fitness should have improved with fit candidate solutions approximating an

optimal solution.

Hypothesis Of Operation

The building block hypothesis (BBH) has been proposed to describe the op-

timizing behavior of a GA [48]. The hypothesis assumes the existence of short

sequences of genetic information (or short bit strings in a binary GA) called build-
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ing blocks that, when present in the encoding of a candidate solution, increases the

fitness of the associated population member. Crossover, as it operates on long se-

quences of genetic material, tends to preserve short building blocks while shuffling

them between population members. Combined with selection, crossover creates

population members consisting of sequences of short building blocks. Crossover is

likely to destroy long building blocks, which negates its benefits. Mutation tends

to generate new building blocks as any portion of the genetic sequence is equally

affected by its action. Hence, BBH offers guidance for the problem-dependent rep-

resentation of optimization variables with encodings that lead to short building

blocks for a successful application of a GA. BBH also motivates modification of the

binary genetic algorithm to accommodate alternative representations as described

next in Section 5.1.2.

5.1.2 Mixed Encodings and Multi-Chromosomal GA

The binary GA of Section 5.1.1 can be classified as a homogeneous GA since

all optimization variables are encoded using the same data type, namely binary.

Further, the binary GA is considered a single-chromosome GA since a candi-

date solution is represented on one chromosome. This section reviews the use of

other data types for encoding, followed by the extension to a mixed-encoding, or

heterogeneous, GA as implemented in multi-chromosomal GA.

Alternative Encodings

The BBH provides motivation to adapt the GA to other data types such as integer,

and floating-point (real-valued) encodings [48]. A motivational example is presented

in Figure 5.6 that illustrates the advantage gained by using an alternative encoding

on the simple optimization problem:

min (x2
1 + x2

2) subject to: x1, x2 ∈ {0, 1, . . . , 15}. (5.3)

The two parameters x1, x2 of this integer optimization problem, with known min-

imum x1 = x2 = 0, can either be encoded as two 4-bit strings or as two integers.
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Figure 5.6: Effect of Crossover in a) Binary GA and b) Integer GA

The binary encoding results in longer building blocks corresponding to bit strings

b1b2b3b4 = 0000 and b5b6b7b8 = 0000 for x1 = 0 and x2 = 0, respectively. In con-

trast, integer encoding directly represents the building blocks i1 = 1 and i2 = 0.

For the encoding of two candidate solutions (15, 0) and (0, 15) shown in Figure 5.6,

BBH suggests that a single-point crossover operation in a binary GA is likely to

destroy either building blocks. In contrast, a single-point crossover operation in an

integer GA may lead directly to an optimal solution. In this case, problem-specific

knowledge has allowed a problem decomposition resulting in an integer encoding

leading to smaller building blocks which are not destroyed in crossover. A similar

case applies when comparing a binary GA to a real-valued GA in the continuous

version of (5.3).

In addition to chromosome encoding, it is also required to define appropriate

crossover and mutation operations to manipulate the underlying data type. For

example, the real-valued equivalent to binary crossover is commonly the arith-

metical crossover where a new offspring C is generated by taking the average of
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the real-valued genes of parents A and B such that [49]:

C =

{
a1 + b1

2
,
a2 + b2

2
, . . . ,

an + bn
2

}
. (5.4)

Further, Gaussian mutation may be applied to create a real-valued chromosome

D by the addition of a random distribution to a random gene ci of chromosome C

[48]:

D = {c1, . . . , ci + ψ(µ, σ), . . . , cn} (5.5)

where ci = randomly selected real-valued gene

ψ = Gaussian (normal) random function with mean µ and standard devia-

tion σ.

Mixed Encodings

In the solution of a large problem, a divide-and-conquer approach relies on the

solution of sub-problems leading to the solution of the entire problem. It is nat-

ural to solve each sub-problem using the most efficient technique. For example,

the optimization problem in (5.3) may be viewed as a linear combination of two

sub-problems: minx2
1 and min x2

2. Assuming the use of a GA, it was shown that

an integer encoding was preferable for both variables x1 and x2 (due to the iden-

tical nature of the sub-problems). In general, a problem may be decomposed into

sub-problems that are best represented by different encodings. Due to coupling be-

tween sub-problems, as demonstrated in Section 4.1, a simultaneous optimization

is required on all sub-problems to find a global optimum [50].

One methodology for breaking down a mixed-encoding problem is to divide

optimization variables into homogeneous groups consisting of the same type [50].

Each group of variables is considered as a separate chromosome Xi in a multi-

chromosomal representation X̂ = {X1, X2, . . . , Xm} where m is the number of

groups and i ∈ {1 . . .m}. In a multi-chromosomal GA, a single candidate solution,

or population member, X̂ is therefore represented by a collection of m homogeneous

chromosomes Xi as shown in Figure 5.7.
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Figure 5.7: Candidate Solution Representation in Multi-Chromosomal GA

The basic operation of a multi-chromosomal GA remains as shown in Figure 5.1.

Crossover and mutation operations defined for existing homogeneous GAs may be

reused in the matched chromosome mating process of a multi-chromosomal

GA [50]. Population members are considered as ordered sets of chromosomes with

chromosome Ai of Â encoding the same variables (with similar encoding type) as

chromosome Bi of B̂. Hence, the creation of Ĉ from Â and B̂ can be defined in

terms of (5.1) as:

Ci = fcross(Ai, Bi) (5.6)

where fcross is an appropriate crossover operator for the chromosome type of Ai

and Bi. Similarly, the mutation of a member Ĉ to a perturbed D̂ can be defined

in terms of (5.2) as:

Di = fmutate(Ci) (5.7)

where fmutate is an appropriate mutation operator for the chromosome type of Ci.

An extension to the crossover process is obtained by considering the individual

chromosomes of a multi-chromosomal GA as big building blocks, or equivalently,

as solutions to sub-problems. Thus, chromosome shuffling has been proposed in

order to directly exchange, and preserve, solution information at the chromosome

level [51]. Chromosome shuffling creates a new candidate solution C by selecting

chromosomes Ai or Bi from either parent Â and B̂, respectively, with a function
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fshuffle:

Ci = fshuffle(Ai, Bi). (5.8)

An example definition of fshuffle is to randomly assign Ai or Bi to Ci:

Ci =

{
Ai, rand( ) < 0.5

Bi, otherwise.
(5.9)

where rand( ) returns a uniform random number between 0 and 1. Since chromo-

some shuffling and crossover both operate on two parents, the two may be performed

simultaneously in a single step as shown in Figure 5.8. Two offspring Ĉ and Ĉ ′ are

generated by chromosome shuffling and crossover, but, as in the case of one-point

crossover, only one offspring Ĉ is kept.

5.1.3 Constraint Handling

A GA relies upon the generation of candidate solutions by combining existing so-

lutions through crossover and randomly perturbing existing solutions through mu-

tation. The inclusion of constraints in an optimization problem may lead to the

generation of infeasible solutions that require additional consideration as discussed

in this section.
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The Feasible Search Space

Consider a general optimization problem (to be solved by GA) of the form:

optimize O(X), (5.10)

where O is an objective function and X (or X̂ for multi-chromosomal GA) is a

candidate solution encoding n optimization variables xi, i = 1 . . . n. As currently

stated, (5.10) is an unconstrained optimization problem where the domain of the

variables defines the search space S of the problem. For example, if X is a

homogeneous encoding of n real-valued variables, then the search space of (5.10) is

the n-dimensional space of real numbers S = R
n.

Definition of genetic operations, thus far, has allowed the GA to generate can-

didate solutions within the entire search space. This is desired for unconstrained

optimization where it is assumed that all X ∈ S are feasible candidate solutions.

The addition of inequality and equality constraints, for example as present in (4.1)

to (4.3), may restrict the set of feasible solutions, or feasible search space F , to

a subset of the search space such that X ∈ F ⊂ S [52]. In Figure 5.9, candidate

solutions A and B are within the feasible search space with an optimum solution of

X. The figure illustrates that constraints may produce a disjoint, nonconvex fea-

sible search space. It is then possible that genetic operations may create infeasible

candidate solutions C within the infeasible search space U which is defined as

the complement of F . The remaining discussion is focused on proposed methods

[52] for dealing with infeasible candidate solutions generated by constraints. The

methods may be broadly classified as either rejecting, avoiding, or incorporating

infeasible solutions into the GA.

Rejection

Perhaps the simplest approach is to discard infeasible candidate solutions from the

population and reapply the selection process to generate an alternative candidate.

This method works but is disadvantageous when the feasible search space F is small

compared to the search space S. In addition to the computational overhead of gen-

erating alternatives to an infeasible solution, the infeasible candidate solutions may
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Figure 5.9: Search Space with Feasible and Infeasible Parts [52]

contain building block information that should be not be discarded. For example,

in Figure 5.9, infeasible candidate solution C may allow the feasible candidate A

to “cross” an infeasible region to reach the solution optimum X [52].

Searching Domain

The method of searching domain requires no modification to an unconstrained GA

as it involves restating the optimization itself such that the feasible search space

becomes equivalent to the search space F = S [48]. Careful selection, or novel

introduction, of variable encoding techniques may remove constraints required in

alternative representations.

Example 5.1.3. Suppose a variable x is constrained to the natural numbers

0, 1, . . . , 7. An integer encoding with the constraint that 0 ≤ x ≤ 7 satisfies

optimization requirements. However, the constraint can be eliminated from the

solution process if the variable is alternatively encoded as a 3-bit binary string

whose search space is equal to the feasible search space (binary numbers 000 to 111

map to integers 0 to 7).

Repair Mechanism

Repair algorithms are implemented when it is relatively easy to change an infea-

sible candidate solution C into a feasible candidate solution A [52]. The repaired
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candidate solution A may replace the original C in the population, or the repair

may be done only for fitness evaluation and leave C within the population. The re-

pair mechanism is typically inserted in-between the mutation and fitness evaluation

steps of Figure 5.1. Since fitness evaluation is typically the most computationally

intensive process of a GA [48], the computational overhead associated with repair

is acceptable as it allows the GA to focus on exploring the feasible search space.

Example 5.1.4. Assume a variable is constrained to the natural numbers 0, 1, . . . , 5

and represented by a 3-bit binary encoding. A 3-bit binary representation is nec-

essary to include the feasible search space F = {000, 001, 010, 011, 100, 101}. How-

ever, candidate solutions “110”, “111” violate the constraint and are therefore in-

feasible. A repair mechanism may be implemented to map the infeasible candidates

into the feasible search space by taking their complements such that 110 → 001

and 111 → 000.

Specialized Genetic Operations

Under the assumption that the initial population is within the feasible search space,

the crossover and mutation operations may be designed as a closed set of oper-

ations to maintain the feasibility of solutions. Such specialized genetic operations

have been demonstrated for convex feasible search space however the method is cur-

rently unable to deal with nonconvex search spaces (and hence nonlinear constraints

in general) [52].

Example 5.1.5. Assuming candidate solutions A and B, with real-valued encoding

and within a convex feasible search space, arithmetical crossover (5.4) A+B
2

always

produces feasible offspring C. A closed set definition of mutation on C is to ran-

domly choose a point on a line with random slope passing through C. The choice

of the point is restricted to within the segment defined by two points of intersection

of the line with the boundary of the convex search space [52].
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Penalty Scheme

Various penalty schemes have been proposed to allow the direct inclusion and eval-

uation of infeasible candidate solutions within a population [52]. Consideration in

penalty scheme design involve methods to compare two infeasible members as well

as an infeasible member to a feasible member. For a problem with m constraints,

a corresponding number of constraint violation measures fj, j = 1 . . .m are

introduced to allow such comparisons. Constraint violation measures are associ-

ated with penalties that decrease the fitness of a candidate solution depending on

a combination of how many or by how much constraints are violated.

The penalty scheme does not guarantee that the final solution found will be

within the feasible search space, although it is the intent of penalties to minimize

constraint violation through the selection process. This method may permit a

small violation of a constraint to allow a large gain towards an optimal solution.

However, the penalty scheme can incur much computational overhead in evaluating

infeasible candidates when the feasible search space is much smaller than the search

space [48].

Example 5.1.6. Assume a minimization problem with m constraints and objective

function O(X) that evaluates both feasible and infeasible candidate solutions X. A

simple penalty scheme is obtained through a weighted combination of the objective

function and the number of violated constraints to produce a modified objective

function O′ [48]:

O′(X) = O(X) + δ
m∑

i=1

fj(X)

where m = number of constraints

δ = penalty coefficient (positive for minimization problems)

fj =

{
1, constraint m violated by X

0, otherwise.
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5.1.4 Parallel Architecture

The structure of a GA (Figure 5.1) allows various methods of parallelization [48].

In general, a parallel implementation of a GA utilizes multiple computational nodes

connected by a communication network to perform the time consuming, yet inde-

pendent, crossover, mutation, and fitness evaluation operations.

The Global GA implementation is based on a farmer-worker architecture (Fig-

ure 5.10). The farmer node selects pairs of population members to send to worker

nodes for crossover, mutation and fitness evaluation, and collects the results as well

as the new offspring. This information allows the farmer to create the next gener-

ation and repeat the selection process. A disadvantage of the Global GA is that

workers are idle while the farmer is doing the selection process which may involve

sorting and ranking the results. A global GA implementation is implemented in

this thesis.

Other parallelization schemes require some modification to the basic operation of

the GA. In migration GA, also called coarse grained parallel GA, the population is

divided into sub-populations. Each sub-population is then evolved separately using

a conventional GA on a dedicated node. A migration operation is introduced

to allow fit candidate solutions to move between sub-populations and ultimately

spread within the whole population. Migration GA apply to small multi-processor

clusters (i.e. a small number of high performance nodes) since a small number of

sub-populations are evolved on dedicated nodes [48].

In contrast, on large clusters with many nodes, a diffusion GA, also called

a fine grained parallel GA, assigns each population member to a single dedicated

node [48]. The node performs a modified selection process in addition to regular

crossover, mutation, and fitness evaluation for a single member. Unlike a global

GA, selection is distributed within the cluster. Each node, however, is limited to

selecting between a restricted number of immediately adjacent nodes (or members)

on the cluster’s communication network. The limitation on adjacent nodes allows

the practical implementation of communication networks on massively parallel com-

puters. For example, nodes of a diffusion GA may be connected by a high-speed,

rectangular grid communication topology that limits adjacent nodes to four.
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Figure 5.10: Global GA [48]

5.1.5 Genetic-Fuzzy Control

Previous discussion of fuzzy logic control in Section 3.2 and the current discussion

of GA have established their individual flexibility and broad-applicability in control

and optimization problems, respectively. A fuzzy logic controller presents a general

control structure with many parameters required in the definition of membership

functions and rule base. Fuzzy logic controller parameters are typically chosen

by intuition derived from real-world experience and therefore not optimal. As

briefly mentioned in Section 3.2.7, the optimization of fuzzy logic controllers is

difficult due to the nonlinear control action of fuzzy logic, the large search spaces

involved (as a result of numerous parameters), and the mix of continuous and

discrete parameters. Researchers have therefore relied upon genetic algorithms as

a highly problem-independent, general framework for the nonlinear optimization of

fuzzy logic controllers termed genetic-fuzzy control [6].

Automotive applications of genetic-fuzzy control have focused on the use of a

single-chromosome binary GA (Section 5.1.1) to optimize the shape of membership

functions while assuming a fixed, potentially non-optimal rule base [6][39]. In both

works, continuous triangular membership function parameters, including prototype

location and span, are discretized and encoded as binary strings. The controller

parameters are treated as optimization variables in a simulation optimization in-

volving the system under consideration (being a hybrid electric vehicle powertrain

[6], and an active vehicle suspension [39]). Both works conclude that genetic-fuzzy
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control is effective at determining the shape of membership functions.

The flexibility of a GA design permits both membership functions and rule base

to be optimized simultaneously [48]. In this approach, traditional control objectives

are supplemented by objectives to minimize the number of membership functions

and rules in the optimized controller.

Continuous variables are required to define the shape of membership functions

in addition to the following discrete variables for the definition of the rule base:

• Number of membership functions associated with the universe of each input.

• Number of membership functions associated with the universe of each output.

• Conclusion associated with the premise in each rule.

These variables allow the optimization of a rule base to be decomposed into the

optimization of the conclusion of existing rules as well as the optimization of the

number of rules as clarified in Example 5.1.7.

Example 5.1.7. Assume a double-input, single-output fuzzy logic controller with a

rule base represented by a FAM table. Let nx1, nx2, ny be the number of membership

functions associated with the universe of inputs x1, x2 and output y, respectively.

For nx1 = 3, input x1 may be fuzzified using membership functions representing

various degree of “cold”, “warm”, and “hot”. For nx2 = 2, input x2 may be fuzzified

using membership functions representing various degree of “slow” and “fast”. For

ny = 4, output y may be defuzzified using membership functions representing

various degree of “tiny”, “small”, “med(ium)”, and “large”. An initial set of 6

(arbitrary) rules is given by the FAM table shown in Figure 5.11a.

The conclusions of existing rules may be modified by assigning new entries

within the FAM table as in Figure 5.11b. Note that the conclusion “huge” in

response to premise “x1 is hot and x2 is slow” is made possible by the addition of

membership function “huge” to the output universe such that ny = 5.

The number of rules is directly affected by the number of membership functions

associated with the universe of each input. In Figure 5.11c, the FAM table describes

9 rules since nx2 has been increased to 3 with the addition of membership function

“faster” to the input universe of x2.
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Figure 5.11: Rule Base Optimization Variables a) Initial Rule Base, b) Rule Con-

clusions, c) Number of Rules

Due to difficulties in encoding a rule base of varying size, the minimization of

the number of rules requires a non-standard extension to the GA as shown in Fig-

ure 5.12 [48]. The figure shows that the minimization of the number of rules used by

a genetic-fuzzy controller requires a separate population containing rule sets of all

possible sizes. For example, the rule base population of Figure 5.11a would contain

(nx1 − 1) × (nx2 − 1) × (ny − 1) = 6 members where each member corresponds to

a rule base with unique nx1, nx2, ny and assuming nx1, nx2, ny > 1 to ensure inputs

and outputs are associated with more than one membership function. A particular

rule base is selected according to rule base parameters encoded within members of

a population encoding the shape and number of membership functions. The GA

structure presented in Figure 5.12 ensures that, prior to fitness evaluation, a con-

troller is synthesized with a rule base sized in agreement with the encoded definition

of membership functions. Applications of the proposed optimization scheme to a

water pump system and a solar heating plant have demonstrated that desired sys-

tem performance can be maintained while the number of rules is minimized through

appropriate selection of rule conclusions and membership functions [48].

Although a worthwhile consideration, the minimization of rule base size is not

considered in this thesis since the proposed extension to the GA of Figure 5.11 is

problem-specific to the design of genetic-fuzzy controllers. This is in conflict with

the current desire to develop a generalized simultaneous plant/controller optimiza-

tion framework which may incorporate other forms of controllers. However, without

modification to the basic GA structure of Figure 5.1, this thesis does consider an

optimization over the numerous permutations of the possible conclusions associated
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Figure 5.12: GA for Membership Function & Rule Base Optimization [48]

with a given premise in a rule base of fixed size as detailed in Section 5.3.3.

5.2 GA in Traction Control System Optimization

A mixed encoding, multi-chromosomal GA is selected to optimize the traction con-

trol system since the problem includes a mixture of continuous and discrete vari-

ables. This section describes design details that adapt the general description of the

mixed encoding GA of Section 5.1.2 to the traction control optimization problem

summarized in Section 4.2.4. With reference to the structure of the mixed encoding,

multi-chromosomal GA shown in Figure 5.13, the following discussion describes: the

encoding of optimization decision variables within population members, the fitness

evaluation and selection process based on candidate solutions associated with low

drive cycle energy use OE and completion time OT , the combined chromosome shuf-

fling and crossover operation, and the multi-chromosomal mutation operation. To

simplify the GA implementation, the optimization process terminates after a fixed

number of generations are produced.
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Figure 5.13: Structure of Mixed Encoding, Multi-Chromosomal GA

5.2.1 Decision Variable Encoding

The multi-chromosomal representation X̂ of optimization decision variables RULE,

A-PS, and TIRE is shown in Figure 5.14. Since the variables are of different data

types, they are encoded in three single-gene chromosomes labeled XNODE, XA-PS,

and XTIRE, respectively.

The following discussion provides encoding details of TIRE and A-PS. As shown

in Figure 5.14, the fuzzy logic rule base RULE is indirectly encoded by a variable

NODE due to considerations in search space reduction and variable constraint re-

duction. Derivation of the alternative rule base encoding NODE from the RULE en-

coding is considered separately in Section 5.3 along with associated background in

set theory.

Note. The mixed encoding, multi-chromosomal GA operates in a data type indepen-

dent manner assuming that suitable crossover and mutation operations are defined

for each data type in use. This data type independence is established in definitions

of the combined chromosome shuffling and crossover operation (Section 5.2.3), and
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Figure 5.14: Encoding of Traction Control System Design Variables

the multi-chromosomal mutation operation (Section 5.2.4).

TIRE Encoding

Since TIRE is constrained between the selection of either a performance tire or a

low rolling resistance tire, it is encoded as a single bit binary gene in chromosome

XTIRE. Binary one-point crossover and bit mutation operations are defined on

XTIRE as described in Section 5.1.1 although they exhibit degenerate operation on

TIRE since XTIRE consists of a single bit.

Given single-gene binary chromosome parents ATIRE and BTIRE, the crossover

operation degenerates to the simple assignment CTIRE = ATIRE (assuming that the

implementation discards the alternative offspring C ′
TIRE = BTIRE). An implementa-

tion may consistently discard either offspring since the two parents to the crossover

operation are randomly chosen in the selection process.

Mutation of the single-gene binary chromosome CTIRE causes TIRE to invert

and therefore toggles tire selection between the performance tire and the low rolling

resistance tire.

A-PS Location Encoding

Since A-PS represents the location of the Positive-Small adhesion gradient mem-

bership function over a continuous range of values, it is real-coded as a floating
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point number.

Arithmetic crossover on two single-gene parents AA-PS and BA-PS is defined as

in (5.4) but degenerates to the average of A-PS stored in both parents such that

offspring CA-PS =
AA-PS +BA-PS

2
.

Gaussian mutation on offspring CA-PS is defined in Equation (5.5) and, in the

case of a single-gene chromosome, produces a perturbed chromosome DA-PS =

CA-PS + ψ(0, σ) such that a random number is added to A-PS with a distribution

defined by Gaussian function ψ with zero mean and standard deviation σ.

Due to the constraint A-PS ∈ [0.2, 0.8] and the fact that ψ has an unbounded

range and can return large values with small probability, a repair mechanism is

required to prevent an out-of-bounds assignment to A-PS. Simply saturating a

mutation to the lower and upper bounds allowed for A-PS would greatly increase the

occurrences of mutations resulting in A-PS being assigned a minimum or maximum

limit. To avoid this, a repair on an out-of-bounds mutation is done by “bouncing”

[53] the mutation back within the allowable range by first saturating the sum of

CA-PS +ψ(0, σ) to the bounds of A-PS while retaining the remainder exceeding the

violated bound. The negative of the remainder is then added back to the sum and

the process is repeated until the remainder is zero.

Example 5.2.1. Assume A-PS ∈ [0.2, 0.8]. If CA-PS = 0.3 and a Gaussian mutation

results in a change of ψ(0, σ) = −0.9, then the sum 0.3 + (−0.9) is saturated to

the lower bound of A-PS to produce the intermediate result C ′
A-PS = 0.2 and the

remainder exceeding the lower bound is -0.8. The negative of the remainder is then

added to C ′
A-PS. The sum (C ′

A-PS +0.8) is saturated to the upper bound to produce

the intermediate result C ′′
A-PS = 0.8 with a remainder of 0.2. The final addition

of the negative of the remainder to C ′′
A-PS produces the final mutation assignment

DA-PS = 0.8 − 0.2 = 0.6 that satisfies the constraint on A-PS.

5.2.2 Fitness Evaluation and Selection

The fitness of each member X̂ within the population is evaluated by first config-

uring the traction control system model according to the design variables encoded
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in X̂ and simulating system dynamics to evaluate the drive cycle energy use OE

and completion time OT objectives. The system-level objective value Os is then

evaluated using the weighted sum of OE and OT as defined in (4.12). After Os is

evaluated for all members within the population, the ranking scheme is applied by

sorting members in descending order according to Os such that members with lower

Os are assigned a higher rank and fitness. Therefore, members are assigned fitness

values appropriate for the minimization of Os. For each member to be generated

in the new population, roulette wheel selection is applied twice to select the parent

members for the subsequent combined shuffling and crossover operation.

5.2.3 Chromosome Shuffling and Crossover

Chromosome shuffling is implemented as a one-point shuffle that is analogous

to the one-point crossover operation. For two parent members with a multi-

chromosomal representation Â = {A1, A2, . . . , Am} and B̂ = {B1, B2, . . . , Bm} of

length m, a random crossover point j ∈ {1, . . . ,m} is chosen such that a one-point

shuffle about j results in child Ĉ = {A1, . . . , Aj, Bj+1, . . . , Bm}.

Although shuffling and crossover can be done simultaneously as illustrated in

Figure 5.8, in this thesis only one is randomly performed when generating an off-

spring from two parents Â and B̂. As shown in Figure 5.15, a chromosome j is

randomly selected and, with equal probability, either a one-point shuffle is per-

formed about chromosome j or a one-point crossover is performed on chromosome

j to produce offspring Ĉ. This definition of the shuffling and crossover operation

allows the GA to consider: sequences of chromosomes as building blocks when shuf-

fling is performed, or sequences of genes within a chromosome as building blocks

when crossover is performed.

Note. Recall from the building block hypothesis (Section 5.1.1) that building blocks

are short sequences of genetic information that, when present in an encoding, in-

crease the fitness of the associate population member.

As defined, the shuffling and crossover operation is independent from the under-

lying chromosome data types of the parent members. Either an entire chromosome
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Figure 5.15: Random Chromosome Shuffle or Crossover Operation

is exchanged in the shuffling operation, or the crossover operation of the chromo-

some is invoked by the shuffling and crossover operation of the mixed encoding,

multi-chromosomal GA. Hence, the shuffling and crossover operation can be ex-

tended to support new chromosome data types provided that a crossover operation

is defined on the data type.

5.2.4 Multi-Chromosomal Mutation

The mutation of a member consisting of a multi-chromosomal representation pro-

ceeds by choosing a random chromosome within the member and invoking the

appropriate mutation operation depending the chromosome’s data type. Unlike

the shuffling and crossover operation that must be performed to generate each off-

spring of a new population, the multi-chromosomal mutation operation is applied

to an offspring with a small mutation probability pm.

The mutation probability pm is chosen large enough such that new building

blocks may be produced through mutation. However, excessive mutation may also

destroy existing building blocks. For this reason, the multi-chromosomal mutation

is defined such that a change occurs in a single chromosome of a multi-chromosomal

representation. This is in contrast to the definition of the mutation process defined
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in (5.7) where each chromosome in the multi-chromosomal representation is mu-

tated.

Multi-chromosomal mutation is shown in Figure 5.16 where a single chromo-

some of member Ĉ is mutated to produce a perturbed member D̂. As defined, the

multi-chromosomal mutation operation is independent from the underlying chromo-

some data types of member Ĉ since the operation invokes the mutation operation

associated with the data type. The multi-chromosomal mutation operation can be

extended to support new chromosome data types provided that a mutation opera-

tion is defined on the data type.

Since the shuffling and crossover operation and the multi-chromosomal mutation

operation are responsible for generating new candidate solutions, their indepen-

dence from chromosome data types allows the mixed encoding, multi-chromosomal

GA to be extended to support a new data type provided that crossover and mu-

tation operations can be defined on the data type. This property is exploited in

Section 5.3 to define a novel encoding for the fuzzy logic rule base.

5.3 Novel Fuzzy Logic Rule Base Encoding

Motivation for a novel fuzzy logic controller rule base encoding is obtained by

considering a simple and direct encoding of rule base conclusions as independent

integers. The direct encoding leads to exponential growth of the search space with

the number of rule base entries. For example, encoding the 6 rule base conclusion
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variables Ci from RULE of the traction controller results in a search space with

4096 = 46 rule base configurations since each of the variables may assume any of 4

possible conclusions according to (4.9).

To reduce the search space, application-specific knowledge may be used to derive

constraints on allowable rule base configurations. For the traction control system,

the constraints in (4.10) are intuitively derived to admit only those that tend to

prescribe an increase in torque output Ta as input torque request Tref and adhe-

sion gradient A increase. However, such constraints may create a large difference

in size (large infeasible search space) between the search space that exists prior

to constraint application and the smaller feasible search space defined by the con-

straints. As described in Section 5.1.3, a constraint handling mechanism must then

be incorporated in the optimizing GA to deal with infeasible solutions that violate

constraints.

In the current optimization of the traction control system, the rule base is heav-

ily constrained by (4.10) (to be quantified in the encoding analysis of Section 5.3.3)

to produce a small feasible search space and, consequently, a large infeasible search

space. With the direct rule base encoding, constraint handling methods such as re-

jection and the penalty scheme are undesirable due to high computational overhead

associated with simulating infeasible solutions. It is also currently not obvious how

to repair an infeasible rule base definition. Thus the direct rule base encoding leads

to challenges in either exploring a large search space, or reducing computational

overhead associated with evaluating infeasible solutions.

An alternative and novel encoding of rule base conclusions is therefore proposed

to evolve an optimal rule base configuration within a constrained search space

while avoiding infeasible solutions. Minimal background in set theory is presented

to enable the definition of a partial ordering of “monotonic increasing” matrices.

The partial ordering, termed a partial ordering by delta inclusion, is then applied

to encode the rule base for use in the mixed-encoding, multi-chromosomal GA

previously described in Section 5.2.
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Table 5.2: Preliminary Set Theory Notation [54]

Notation Meaning

a = b “a” and “b” denote the same thing

a 6= b “a” and “b” denote different things

a ∈ S “a” is an element of set “S”

P ⇒ Q If “P” then “Q” (“P” implies “Q”)

∀ “for all”

∃ “there exists”

3 “such that”

P (x) A statement P in the variable x

⇔ “If and Only if”

A ⊆ B “set A is a subset of set B”

5.3.1 Set Theory

This section reviews the set theory required to define a lattice. All definitions in

this section are taken from [54] unless stated otherwise.

Definition 5.3.1. A set is a collection of objects. These objects may be physical

or abstract. Most mathematical objects can be defined in terms of sets including

points, numbers, and operations.

Set theory formalizes the expressive power of sets and, as such, is part of the

foundation for mathematics [54]. Table 5.2 reviews set theory notation used in this

section. Set theory notation is used to abbreviate statements in set theory. For

example, the subset statement A ⊆ B is an abbreviation for the statement:

∀x, x ∈ A⇒ x ∈ B.

Definition 5.3.2. Given a set S, the power set of S, denoted by X = [S], is a

set where:

∀x, x ∈ [S] ⇔ x ⊆ S.

104



The power set of S is therefore a set whose elements x ∈ X are all the possible

subsets of S. In other words, the elements x of a power set are themselves sets.

Therefore, in this case, x carries a double meaning of an element x ∈ X and of a

set x ⊆ [S].

Definition 5.3.3. Given two sets A and B, an ordered pair is denoted as (a, b)

where a ∈ A and b ∈ B. Ordered pairs have the property that:

(a, b) = (c, d) ⇔ a = c, b = d, a, c ∈ A, b, d ∈ B.

Definition 5.3.4. The cartesian product of two sets A and B is defined as:

A×B = {(a, b)| a ∈ A, b ∈ B}.

The cartesian product A × B is therefore a set containing all ordered pairs

formed from elements of sets A and B.

Definition 5.3.5. Given two sets A and B, and the subset f of A× B, then f is

a mapping of A onto B if:

1. For each a ∈ A, ∃ b ∈ B 3 (a, b) ∈ f .

2. (a, b) ∈ f and (a, c) ∈ f ⇒ b = c.

In the mapping of A onto B, each element of A is assigned to exactly one element

of B. The mapping f may also be called a function or transformation. Also,

the notation afb means (a, b) ∈ f .

Definition 5.3.6. A relation F from set A to set B is any subset of A×B.

If elements a ∈ A and b ∈ B are in a relation F , then (a, b) ∈ F . Also, (a, b) ∈ F

is abbreviated as aFb. A relation can be considered as a rule that assigns to each

a ∈ A to zero or more elements b ∈ B. A mapping can therefore be interpreted as

a special case of a relation since each element of A is assigned to one element of B.

The sets A and B can be different sets or refer to the same set X. When A and

B refer to the same set, the relation F from A to B is called a relation F on set X.
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Definition 5.3.7. A partial ordering defined on a set X is a relation F on X

satisfying the following three properties:

1. Relexivity: aFa, ∀ a ∈ X.

2. Antisymmetry: (aFb and bFa) ⇒ a = b, ∀ a, b ∈ X.

3. Transitivity: (aFb and bFc) ⇒ aFc, ∀ a, b, c ∈ X.

A set with a defined partial ordering is termed a partially ordered set or poset

[55]. In general, a ≤ b can be written for aFb when (a, b) is a member of a partial

ordering. If, additionally, a 6= b then a < b may be written [54]. Elements a, b ∈ X

are comparable if either a ≤ b or b ≤ a. In a partial ordering, it may be the case

that two arbitrary elements a, b are not comparable [55].

Note. In set theory, the symbol “≤” denotes any relation F that can be used to

partially order an abstract set X as defined above. Hence the use of “≤” in set

theory is not limited to the “usual” use in ordering sets of numbers. However, for

the particular case whereX represents a set of numbers (for exampleX = R, the set

of real numbers), the symbol “≤” in “a ≤ b” represents a particular partial ordering

where the statement a ≤ b can be writen when (a, b) ∈ “≤” ⇔ the numerical value

of a is less than or equal to the numerical value of b, a, b ∈ R. This leads to the usual

interpretation of a ≤ b when applied to numbers. In this thesis, the meaning of “≤”

is inferred by context and will denote either an abstract relation when applied to

general sets, or the usual numerical ordering operation when applied to numbers.

Similar consideration should be given to the use of the symbol “<”.

Example 5.3.1. Partial ordering by inclusion is a common example of partial

ordering and is defined as a relation F on the power set of S as follows: Given

the power set X = [S], the relation F on X is such that (A,B) ∈ F ⇔ A ⊆

B, A,B ∈ X. Therefore, if A ⊆ B, then (A,B) is a member of a partial ordering

by inclusion and A ≤ B may be written [54]. Intuitively, set A is smaller or equal

than set B since it contains fewer or equal elements and, in this way, the elements

of a power set can be partially ordered.
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The partial ordering between elements in a poset X can be visualized in a type

of directed graph called a Hasse diagram. In a Hasse diagram, nodes correspond

to elements x ∈ X and edges to pairs (x, y) with x < y, x, y ∈ X. Edges are

drawn as rising lines from a “lower” node x to a “higher” node y to indicate x < y.

To simplify the Hasse diagram, edges are only drawn for “neighboring” x, y [55].

Example 5.3.2. The partial ordering by inclusion of the power set of S = {a, b, c}

is shown in the Hasse diagram of Figure 5.17. The following steps were used to

derive the graph:

1. The power set of S is X=[S]={{a, b, c}, {a, b}, {a, c}, {b, c}, {a}, {b}, {c}, ∅}.

There are 8 elements in X and each corresponds to a node in Figure 5.17.

2. A partial ordering is defined as a relation F on X where F is a subset of

X × X. Since X is partially ordered by inclusion, the elements of F are

ordered pairs (A,B) where A ⊆ B and A,B ∈ X. Specifically:

F = {({a, b, c}, {a, b, c}), ({a, b}, {a, b, c}), ({a, c}, {a, b, c}), ({b, c}, {a, b, c}),

({a}, {a, b, c}), ({b}, {a, b, c}), ({c}, {a, b, c}), (∅, {a, b, c}),

({a, b}, {a, b}), ({a}, {a, b}), ({b}, {a, b}), (∅, {a, b}),

({a, c}, {a, c}), ({a}, {a, c}), ({c}, {a, c}), (∅, {a, c}),

({b, c}, {b, c}), ({b}, {b, c}), ({c}, {b, c}), (∅, {a, b}),

({a}, {a}), (∅, {a}), ({b}, {b}), (∅, {b}), ({c}, {c}), (∅, {c}), (∅, ∅)}.

3. Edges are drawn between nodes A and B to indicate A < B. Only edges

between “neighboring” A,B are drawn. For example, although node {a} is

a subset of each of nodes {a, b}, {a, c}, and {a, b, c}, edges are drawn only

between it and its neighbors {a, b} and {a, c}. The fact that {a} ⊆ {a, b, c}

is implied by the edges between {a, b} - {a, b, c} and {a, c} - {a, b, c}.

Definition 5.3.8. Given a poset X and elements x, y ∈ X, an element a ∈ X is

a lower bound for x and y if a ≤ x and a ≤ y. Multiple lower bounds may exist
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{a, b, c}

{a, b} {a, c} {b, c}

{a} {b} {c}

∅

Figure 5.17: Example Hasse Diagram of a Partially Ordered Set by Inclusion [55]

for x and y. However, a greatest lower bound, or meet, l ∈ X for x and y may

exist, and is unique if so. An element l ∈ X is defined as a meet when [55]:

l ≤ x and l ≤ y (l is a lower bound for x and y),

(∀ a ∈ X) a ≤ x and a ≤ y ⇒ a ≤ l

(l is greater than other lower bounds for x and y).

Definition 5.3.9. Similarly, an element b ∈ X is an upper bound for x and y

if x ≤ b and y ≤ b. Multiple upper bounds may also exist for x and y. A least

upper bound, or join, u ∈ X may exist, and is unique if so. An element u ∈ X

is defined as a join when [55]:

x ≤ u and y ≤ u (u is an upper bound for x and y),

(∀ b ∈ X)x ≤ b and y ≤ b⇒ u ≤ b

(u is less than other upper bounds for x and y).

Definition 5.3.10. A lattice is a special case of a poset and occurs when the

meet and join of any two elements of the poset always exist. Given a lattice L, the

meet of two elements x, y ∈ L is written as x ∧ y, and the join of the elements as

x ∨ y [55].
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Example 5.3.3. The partial ordering by inclusion of [S] is a lattice [55]. Intuitively,

this is because the meet and join operators, ∧ and ∨, are equivalent to the set union

and intersection operators, ∩ and ∪, respectively. The intersection of two sets is the

biggest set that contains elements common to both sets (meet). The union of two

sets is the smallest set that contains all elements of both sets (join). For example,

in Figure 5.17:

{a, b} ∧ {a, c} = {a} = {a, b} ∩ {a, c}

and

{a} ∨ {b, c} = {a, b, c} = {a} ∪ {b, c}.

5.3.2 Novel Partial Ordering by Delta Inclusion

This section builds on Section 5.3.1 to define a novel partial ordering on a set termed

“partial ordering by delta inclusion (poset by delta inclusion).” The mechanism of

delta inclusion is similar to that of subset inclusion in that both rely on the notion

that certain elements of X “contain” other elements of X. In contrast to subset

inclusion where sets “contain” other sets, delta inclusion relies on the idea that

matrices “contain” other matrices. The remainder of this section describes posets

by delta inclusion. First, a mechanism to compare particular matrices is defined.

Then the construction of X and the relation F on X are considered with respect

to posets by delta inclusion.

Consider an m × n matrix, Em×n, with entries ei,j for all 1 ≤ i ≤ m and

1 ≤ j ≤ n: 


e1,1 . . . e1,n

...
. . .

...

em,1 . . . em,n



 =
[
ei,j

]
, ∀ i = 1..m, j = 1..n.

Definition 5.3.11. Define a monotonic increasing matrix, Em×n, as a matrix
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with non-decreasing components from the set of natural numbers:

ei,j ∈ {1, 2, 3, ...}, i = 1..m, j = 1..n

ei,j ≤ ei,j+1, i = 1..m, j = 1..(n− 1)

ei,j ≤ ei+1,j, i = 1..(m− 1), j = 1..n.

That is, each entry of a monotonic increasing matrix is a natural number and

is less than or equal to entries immediately to the right, below, and diagonally to

the right and below.

Example 5.3.4. Examples of monotonic increasing matrices are:

[
2 2

3 3

]
,

[
1 2

3 3

]
, and

[
1 1

1 1

]
.

Definition 5.3.12. Given two monotonic increasing matrices, Am×n, Bm×n, define

the delta inclusion operator “b” as:

Am×n
b Bm×n ⇔ (ai,j ≤ bi,j, ∃ ai,j < bi,j) ∀ i = 1..m, j = 1..n.

Similar to the subset operator ⊆, the delta inclusion operator b invokes the

notion of “containment.”

Example 5.3.5. By delta inclusion, it can be said that:

[
1 2

3 3

]
b

[
2 2

3 3

]
and

[
1 1

1 1

]
b

[
1 2

3 3

]
.

Definition 5.3.13. Define the delta set of a monotonic increasing matrix Tm×n,

written 〈Tm×n〉, as a set that includes all monotonic increasing matrices Em×n

where:

∀Em×n, Em×n ∈ 〈Tm×n〉 ⇔ Em×n
b Tm×n.

Example 5.3.6. For example, given T 2×2 =

[
2 2

3 3

]
, then the delta set of T 2×2 is
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the set of 14 possible monotonic increasing matrices:

X = 〈T 2×2〉 =

〈[
2 2

3 3

]〉
=

{[
2 2

3 3

]
,

[
1 2

3 3

]
,

[
2 2

2 3

]
,

[
1 1

3 3

]
,

[
1 2

2 3

]
,

[
2 2

2 2

]
,

[
1 1

2 3

]
,

[
1 2

1 3

]
,

[
1 2

2 2

]
,

[
1 1

1 3

]
,

[
1 1

2 2

]
,

[
1 2

1 2

]
,

[
1 1

1 2

]
,

[
1 1

1 1

]}
.

Definition 5.3.14. Given a delta set X = 〈Tm×n〉, a partial ordering by delta

inclusion is defined as a relation F on X such that:

(Am×n, Bm×n) ∈ F ⇔ Am×n
b Bm×n, Am×n, Bm×n ∈ X.

Example 5.3.7. The Hasse diagram for the delta set X =

〈[
2 2

3 3

]〉
, as par-

tially ordered by delta inclusion, is shown in Figure 5.18 (ignoring for the moment

the “level” indications along the left margin). Each node of the Hasse diagram

corresponds to an element of X, where the elements of X are the 14 monotonic in-

creasing matrices described above. Note that “neighboring” matrices Am×n, Bm×n

in the Hasse diagram differ in one entry. That difference, or delta, is ±1. Specifi-

cally, given neighboring Am×n, Bm×n and Am×n
b Bm×n, exactly one entry of Am×n

is 1 less than the corresponding entry of Bm×n. Intuitively, Am×n is smaller or equal

than Bm×n since all entries of Am×n are less than or equal to corresponding entries

of Bm×n. In this way, the elements of a delta set X can be partially ordered.

Certain elements in a delta set X may not be comparable. This is a general

property of partial ordering (Definition 5.3.7).

Example 5.3.8. The elements A =

[
1 2

2 3

]
and B =

[
2 2

2 2

]
from Figure 5.18 are

not comparable since:

Neither A b B nor B b A.

Definition 5.3.15. Given a delta set X = 〈Tm×n〉, the meet (or greatest lower

bound) of Am×n, Bm×n ∈ X is a matrix whose entries are the minimums of corre-

sponding entries from Am×n and Bm×n:

An ∧Bn =
[
min(ai,j, bi,j)

]
, i = 1..m, j = 1.. n.
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2 3
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]

[
1 1
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] [
1 2
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] [
1 2
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]

[
1 1
1 3

] [
1 1
2 2

] [
1 2
1 2

]

[
1 1
1 2

]

[
1 1
1 1

]

Figure 5.18: Hasse Diagram of Poset by Delta Inclusion with Level Indications

Definition 5.3.16. Dually, the join (or lowest upper bound) of Am×n, Bm×n ∈ X

is a matrix whose entries are the maximums of corresponding entries from Am×n

and Bm×n:

An ∨Bn =
[
max(ai,j, bi,j)

]
, i = 1..m, j = 1.. n.

The existence and uniqueness of the above definitions of meet and join follow

from the existence and uniqueness of the minimum and maximum of two numbers.

Hence a poset by delta inclusion is also a lattice by Definition 5.3.10.

Example 5.3.9. In Figure 5.18:
[
1 2

3 3

]
∧

[
2 2

2 2

]
=

[
min(1, 2) min(2, 2)

min(3, 2) min(3, 2)

]
=

[
1 2

2 2

]

and
[
1 2

2 3

]
∨

[
2 2

2 2

]
=

[
max(1, 2) max(2, 2)

max(2, 2) max(3, 2)

]
=

[
2 2

2 3

]
.

112



As seen in the Hasse diagram of Figure 5.18, both elements

[
1 2

2 3

]
,

[
2 2

2 2

]
∈

〈[
2 2

3 3

]〉
appear in the same horizontal plane. This is not a coincidence since

both elements are the same “distance” away from T 2×2 =

[
2 2

3 3

]
. In other words,

both elements are the result of decrementing entries of T 2×2 a total of 2 times. For

example, the t1,1 entry of T 2×2 is first decremented to give

[
1 2

3 3

]
, followed by a

second decrement on entry t2,1 to give

[
1 2

2 3

]
.

To generalize, let
∑
A denote the sum of all elements in the matrix A:

∑
A =

m∑

i=1

n∑

j=1

ai,j.

Definition 5.3.17. Define the level of an element Em×n in delta set X = 〈Tm×n〉

as:

level(Em×n) =
∑

Tm×n −
∑

Em×n.

Intuitively, the level is the number of decrements necessary to produce Em×n

from Tm×n.

Note. Although some pairs of elements in a partial ordering are not comparable

(Example 5.3.8), their positions in a Hasse diagram may still be sepecified using

the level operator.

Note. Given elements Am×n, Bm×n ∈ X:

level(Am×n ∧Bm×n) ≥

{
level(Am×n)

level(Bm×n)
(5.11)

and

level(Am×n ∨Bm×n) ≤

{
level(Am×n)

level(Bm×n).
(5.12)
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Example 5.3.10. The level of each matrix is indicated along the left margin of the

Hasse diagram for the example in Figure 5.18. The following statements demon-

strate the use of the level operator:

Given A2×2 =

[
1 2

3 3

]
, B2×2 =

[
2 2

2 2

]
∈

〈[
2 2

3 3

]〉
, then

level
(
A2×2

)
= 1, and level

(
B2×2

)
= 2,

level
(
A2×2 ∧B2×2

)
= level

([
1 2

2 2

])
= 3 ≥

{
level (A2×2)

level (B2×2) ,

level
(
A2×2 ∨B2×2

)
= level

([
2 2

3 3

])
= 0 ≤

{
level (A2×2)

level (B2×2) .

5.3.3 Application to Rule Base Encoding

The encoding of the fuzzy logic controller rule base is defined in terms of a mono-

tonic increasing matrix to allow the definition of the delta set containing possible

rule base configurations. The delta set of rule base configurations is partially or-

dered by delta inclusion and specialized crossover and mutation operations are

defined based on the meet, join, and level of set members. Advantages and current

weaknesses requiring future work of the novel encoding are presented.

Delta Set of Rule Base Configurations

To define the rule base in terms of a monotonic increasing matrix, first recall the

definition of the rule base optimization variable RULE from (4.7) along with asso-

ciated constraints in (4.9) and (4.10) as re-stated in (5.13) to (5.15), respectively:

RULE =




C1 C2

C3 C4

C5 C6



 (5.13)

Ci ∈ {S, MS, MH, H} ⇔ Ci ∈ {1, 2, 3, 4} (5.14)
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C1 ≤ C2, C3 ≤ C4, C5 ≤ C6,

C1 ≤ C3, C3 ≤ C5, C2 ≤ C4, C4 ≤ C6,

C2 ≤ 2, C4 ≤ 3.

(5.15)

By Definition 5.3.11 and the first seven constraints in (5.15), RULE is a mono-

tonic increasing matrix and may be manipulated according to the definitions in

Section 5.3.2. Consideration of the last two constraints in (5.15), along with (5.14),

therefore allows the set of all possible rule base configurations that may be assigned

to RULE to be defined by the delta set X:

X =

〈


2 2

3 3

4 4





〉
. (5.16)

Thus it is possible to interpret RULE as encoding a member of delta set X:

RULE ∈ X (5.17)

where existing constraints (5.14) and (5.15) on RULE are incorporated in the defi-

nition of X. Further justification for encoding the rule base as a member of delta

set X is provided by considering associated properties of the delta inclusion oper-

ator and the poset by delta inclusion that enable an intuitive understanding of the

impact of changes in rule base selection on optimization objectives.

Given two rule base configurations A, B ∈ X such that A b B, rule base B

prescribes a higher output torque Ta then A in some rule base entries and equal rule

base definition in the remaining entries by Definition 5.3.12 of the delta inclusion

operator b. A comparison of the aggressiveness between rule base configurations

A and B is therefore defined where the higher torque output of aggressive rule base

configuration B leads to lower drive cycle completion time OT and higher associated

energy use OE. Thus, the delta inclusion operator provides an effective mechanism

to compare the aggressiveness of rule base configurations and to assess the impact

of a change in rule base selection in RULE on optimization objectives OE and OT

where:

A b B ⇒ (A is less aggressive than B). (5.18)
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Unfortunately, the delta inclusion operator may not be exclusively used to guide

the selection of rule base configuration since “sorting” delta set X according to

delta inclusion results in a poset by delta inclusion (Definition 5.3.14). As a partial

ordering, there exists rule base configurations in X that are not comparable by

delta inclusion. Thus, the concept of comparing rule base configurations based on

aggressiveness is extended by considering the level (Definition 5.3.17) of rule base

configurations in X.

The Hasse diagram in Figure 5.19 shows the poset by delta inclusion of all

possible rule base configurations in X. The level of each rule base configuration

is indicated along the left margin of the diagram. Additionally, a unique node

number is assigned to each member of X as indicated in bold to the top-left side

of each node of the Hasse diagram. The node number serves as a compact reference

of the associated rule base configuration and provides convenience in discussion as

well as encoding implementation.

As shown in Figure 5.19, delta inclusion between two rule base configurations

A, B ∈ X implies the following relationship in their levels:

A b B ⇒ level(A) > level(B). (5.19)

Although (5.19) implies a unidirectional if-then relationship on comparable set

members, it is assumed that the relationship on the level of A and B and their

aggressiveness can be extended to rule base configurations that are not comparable

using delta inclusion such that:

(A is less aggressive than B) ⇔ level(A) > level(B) (5.20a)

(A, B are of equal aggressiveness) ⇔ level(A) = level(B). (5.20b)

Therefore it is assumed that a change in RULE to a rule base configuration with a

lower level results in lower drive cycle completion time OT and higher energy use

OE. A change in RULE to a rule base configuration with identical level is assumed

to produce unknown, but relatively small, changes in OE and OT .

Example 5.3.11. With reference to Figure 5.19, the following statements can be

made about node numbers 1, 11, 12, 20, and 84. Node numbers 1, 11, 12, 20, and
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84 correspond, respectively, to rule base configurations:



2 2

3 3

4 4



 ,




1 1

2 3

4 4



 ,




1 1

3 3

3 4



 ,




1 1

1 3

4 4



 ,




1 1

1 1

1 1



 .

Node number 1 (with lowest level 0) represents the most aggressive rule base config-

uration and contains all others by delta inclusion. Node number 84 (with highest

level 12) represents the least aggressive rule base configuration and is contained

by all others by delta inclusion. Node number 11 is a more aggressive rule base

than node number 20 since node number 11 contains node number 20 by delta

inclusion. Although node number 11 and node number 12 are not comparable by

delta inclusion, it is assumed that they represent rule base configurations of equal

aggressiveness since they are of equal level.

Consideration of the level of a rule base and its impact on optimization objec-

tives motivates the definition of crossover and mutation operations that operate on

the level of a rule base. Since the level of a rule base constrains the possible entries

of Ci in variable RULE, the approach is taken to encode the rule base conclusions

by a variable NODE that references a member of delta set X rather than by six

independent integers. As shown in Figure 5.14, the variable NODE is represented

by the single-gene chromosome XNODE and constrained to poset node numbers that

reference the 84 possible rule base configurations shown in the Hasse diagram of

Figure 5.19 such that:

NODE ∈ {1, . . . , 84}. (5.21)

Although the node number reference in NODE is implemented using an integer,

the actual data type of NODE is the delta set X and specialized crossover and

mutation operations must be defined to affect changes on NODE based on rule

base level.

Since a direct mapping between node numbers and members of delta set X ex-

ists, the definitions of the meet, join, and level operations over members of delta

set X are extended, for convenience, to include node number references with the

implicit understanding that node numbers are dereferenced prior to operator ap-

plication.
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Crossover

According to the building block hypothesis described in Section 5.1.1, an impor-

tant consideration in the definition of a crossover operation is the preservation of

building block information encoded within parent members of the operation. The

presence of building blocks in a candidate solution increases candidate fitness and

the influence confirms that building blocks have a fundamental impact on optimiza-

tion objectives. Consequently, the level of the traction control rule base encoded in

XNODE can be considered as a building block because (5.20) establishes a relation-

ship between the level of the rule base and its impact on optimization objectives OE

and OT . Therefore, definition of the crossover operation focuses on the preservation

of the level information encoded in parent rule base configurations.

Given two parent rule base configurations referenced by ANODE and BNODE, the

crossover operation produces an offspring CNODE using a two step process. First, it

is randomly decided (with equal probability) to take either the meet (A∧B) or join

(A ∨ B) of the parents to produce an intermediate rule base configuration TNODE.

Additional processing on TNODE is then performed to compensate for bias changes

in level due to the application of the meet or join to produce CNODE.

Taking the meet of the parents ANODE and BNODE tends to increase the level of

the resulting rule base TNODE by (5.11). This bias towards an increase in level is un-

desirable since repeated application of a rule base crossover operation will cause the

average level of rule base configurations within the population to increase. To avoid

this, additional processing is applied to restore the level of TNODE to the minimum

level of ANODE and BNODE to produce CNODE. The additional processing involves

traversing the Hasse diagram such that both (5.22a) and (5.22b) are satisfied by

CNODE as demonstrated in Example 5.3.12.

Similarly, taking the join of two rule base configurations causes an undesirable

decrease in the average level of rule base definitions within the population by (5.12).

Similar processing is applied to restore the level of TNODE to the maximum level

of ARULE and BRULE. The generated offspring CNODE, as derived from a join op-

eration, satisfies both (5.23a) and (5.23b). An example of a crossover operation

derived from the join of parents is provided in Example 5.3.13. The meet and join
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crossover operations maintain the feasibility of generated rule base configurations

since generated offspring are members of delta set X.

(ANODE ∧BNODE) b CNODE (5.22a)

level(CNODE) = min[level(ANODE, level(BNODE)] (5.22b)

CNODE b (ANODE ∨BNODE) (5.23a)

level(CNODE) = max[level(ANODE), level(BNODE)] (5.23b)

Example 5.3.12. Consider the crossover operation shown in the rule base poset

fragment of Figure 5.20 with parent chromosomes ANODE = 6 and BNODE = 7. It

is assumed that the random decision is made to perform a crossover operation by

taking the meet of the parents. The meet of the parent rule base configurations

results in an intermediate rule base configuration TNODE = 15 = ANODE ∧ BNODE.

Additional processing is applied on TNODE to return an offspring CNODE of level

2 since level(TNODE) = 3 is greater than the minimum of level(ANODE) = 2 and

level(BNODE) = 2. The bold lines in Figure 5.20 indicate that possible rule base

configurations of level 2 that contain TNODE consist of node number 9 in addition to

parent node numbers 6 and 7. It is assumed in this example that random selection

among possible rule base configurations of level 2 that contain TNODE results in

CNODE = 9.

Example 5.3.13. Consider the crossover operation shown in Figure 5.21 that is

based on taking the join of parents ANODE = 6 and BNODE = 12. The join of the

parents results in an intermediate rule base configuration TNODE = 2 = ANODE ∨

BNODE. Since level(TNODE) = 1, additional processing is applied on TNODE to return

an offspring CNODE of level 3 corresponding to the maximum of level(ANODE) = 2

and level(BNODE) = 3. The level of TNODE is increased iteratively by first randomly

selecting a rule base configuration T ′
NODE of level 2 that is contained by TNODE and

then by randomly selecting CNODE of level 3 that is contained by T ′
NODE. The bold
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Figure 5.20: Example of Traction Control Rule Base Crossover by Meet

lines in Figure 5.21 indicate possible paths that may be taken from TNODE to a

rule base configuration of level 3. Possible assignments to CNODE consist of node

numbers 11 to 16. The example assumes that T ′
NODE is assigned either node number

6 or 7 leading to CNODE = 15.

Mutation

For a given chromosome CNODE, mutation is defined to create a new chromosome

DNODE that is randomly chosen from a subset of the delta set X consisting of rule

base configurations m with immediately higher or lower level than CNODE:

DNODE ∈ {level(m) = level(CNODE) + 1, level(m) = level(CNODE) − 1,m ∈ X}.

(5.24)

Mutation allows the level (and aggressiveness) of the candidate solution to be al-

tered and permits diversity in exploring rule base configurations that are not derived

from the meet or join of the parents of the crossover operation.

Example 5.3.14. Consider the mutation of chromosome CNODE = 10 in the rule

base poset fragment of Figure 5.22. Since level(CNODE) = 2, mutation is restricted

to rule base configurations with a level of 1 or 3. The mutated chromosome DNODE

is therefore assigned a random node number within the subset of node numbers {2,
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Figure 5.21: Example of Traction Control Rule Base Crossover by Join

3, 4, 11, 12, 13, 14, 15, 16, 17, 18, 19}. In Figure 5.22, mutation of CNODE results

in the random assignment DNODE = 11.

The definition of the mutation operation maintains the feasibility of a perturbed

rule base since all mutations results in rule base configurations within delta set X.

Together, the definitions of the crossover and the mutation operations on the novel

rule base encoding enables the use of the XNODE chromosome within the mixed

encoding, multi-chromosomal GA of Section 5.2.

Encoding Analysis

A discussion is provided on the search space reduction and optimization constraint

elimination associated with the use of the novel encoding. The dependence of the

specialized crossover and mutation operations on a precomputed Hasse diagram is

examined and presents a potential weaknesses in the encoding.

The direct rule base encoding of the six rule base conclusions Ci from RULE as

independent integers produces an unconstrained search space consisting of 4096

possible rule base configurations. The application of rule base constraints (5.14) and

(5.15) reduces the feasible search space by approximately 98% to include 84 possible

rule base configurations (as enumerated by the node numbers in Figure 5.19). The
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Figure 5.22: Example of Traction Control Rule Base Mutation

constraints introduce a large infeasible search space consisting of the remaining

4012 possible rule base configurations.

Under a direct encoding, the independent modification of the integer-based rep-

resentation is likely to produce constraint violations resulting in infeasible solutions.

A GA design that incorporates a direct rule base encoding must therefore consider

the handling of infeasible rule base configurations. By incorporating the rule base

constraints within the definition of delta set X and defining specialized crossover

and mutation operations that ensure feasible candidate solutions, the novel encod-

ing of the rule base effectively restates the constrained optimization of the rule base

in terms of an unconstrained optimization over an identical feasible search space.

Compared to the direct encoding, the use of the novel encoding avoids the compu-

tational overhead associated with handling infeasible rule base configurations while

exploring an otherwise highly constrained feasible search space.

Although the numerical results in Section 6.4 demonstrate successful applica-

tion of the novel rule base encoding to the current traction control optimization

problem, the dependence of the crossover and mutation operations on a precom-

puted Hasse diagram may limit application of the encoding to larger problems. To

improve computational efficiency, the crossover and mutation operations rely on

a precomputed Hasse diagram (i.e. Figure 5.19) to determine the level of a rule

base configuration as well as the relationship by delta inclusion between two given
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rule base configurations. Specifically, the crossover operation uses an iterative al-

gorithm to traverse the precomputed Hasse diagram to compensate for changes in

level associate with taking the meet and join of operation parents. The mutation

operation also uses an iterative algorithm to search the precomputed Hasse diagram

for a subset of rule base configurations with immediately higher or lower level than

its input argument.

Dependence on a precomputed Hasse diagram creates a potential problem in

computing and storing the diagram if the novel encoding is applied to larger op-

timization problems. Consider, for example, application of the encoding to the

moderately sized, complete traction controller rule base (Figure 3.15a) consisting

of 16 rule base entries with each rule base conclusion assuming any of 4 possible

values. Exponential growth with respect to the number of rule base conclusions

produces an unconstrained search space with approximately 4.2 billion (= 416) en-

tries. Assuming that a similar 98% reduction in search space can be obtained by

application of the encoding, the delta set of the full rule base may also exhibit

exponential growth and contain 85 million possible rule base configurations.

Rather than relying on the extrapolation of results obtained through enumera-

tion, an analytic expression should be derived to accurately calculate the number of

members in a delta set. In the optimization of large problems, such an expression

may also support the decision to redesign the crossover and mutation operations to

dynamically compute required portions of the Hasse diagram. The analytic calcu-

lation of the size of a delta set and the design of crossover and mutation operations

that do not rely on a precomputed Hasse diagram are open for future research.
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Chapter 6

Numerical Results

Numerical results are presented and analyzed for both unoptimized and optimizing

simulation studies of the traction control system. The numerical precision of all

simulation results is discussed using a simulation convergence study to establish

numerical solver settings. A set of preliminary open and closed loop simulations is

performed to demonstrate: the performance limitations associated with open loop

control of the vehicle model summarized in Section 2.4, and the benefits gained

in vehicle performance and energy economy objectives made possible by the fuzzy

logic traction controller defined in Section 3.3. Both plant and controller are then

optimized with respect to these system-level objectives according to the optimiza-

tion problem summarized in Section 4.2.4 by application of the genetic algorithm

developed in Chapter 5. The numerical values of system parameters given in Ap-

pendix A are assumed in all simulations.

6.1 Numerical Solver Settings

The system model is implemented as a set of software m-files written for compati-

bility between the Matlab [56] and Octave [57] numerical simulation environments.

Individual trial simulations such as those discussed in Section 6.2 and Section 6.3

are executed in the Matlab environment due to its powerful graphical user interface

allowing interactive data analysis. The large scale simulations of Section 6.4 are
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executed non-interactively in Octave over the high performance distributed Shared

Hierarchical Academic Research Computing Network (SHARCNET) [58] with data

post analysis in Matlab.

Due to emphasis on results of the simulation study in this thesis and the dual

computational platforms used to execute the source code, a simulation convergence

study involving the analysis of the effect of solver parameters on numerical output

was conducted and summarized in Appendix D. The closed loop traction control

system configured with the performance tire (Tire 0) and nominal controller pa-

rameters from Table A.4 was simulated with a series of solver settings and the

numerical outputs of the energy objective OE and time objective OT state vari-

ables were recorded. Solver settings, used throughout this thesis, were chosen for

convergence to 5 significant figures of accuracy with numerical agreement between

the Matlab and Octave solvers (Table D.1).

Additional information such as Matlab and Octave software revision numbers

and detailed numerical results are provided in Appendix D.

6.2 Open Loop System Evaluation

Performance characteristics of the uncontrolled vehicle system with the performance

tire (Tire 0) are investigated in open loop simulations where Ta = Tref (replacing the

fuzzy logic controller according to (2.40)). Two open loop system configurations, as

described in Table 6.1, are considered with different Tref to demonstrate open loop

system instability (system no-traction-control-system-unstable nTCSu) as well as

marginal stability (system nTCS-stable nTCSs).

The following analysis of the drive cycle response of nTCSu and nTCSs demon-

strate, respectively: the nature of the open loop instability that occurs when tire

performance limits are exceeded, and the degradation in system performance as-

sociated with designing a prefixed open loop torque limitation to ensure stability

during worst-case driving conditions (wet/icy road).

126



Table 6.1: Open Loop System Configurations

Config. Ta = Tref ( N m)

nTCSu 600

nTCSs 196.015

6.2.1 Open Loop Instability of nTCSu

The drive cycle response of nTCSu is shown in Figure 6.1 where the applied torque

Ta (Figure 6.1a) has been selected such that system performance is torque limited

on the dry road surface and friction limited on the wet road surface. The evolution

of the vehicle speed vx and wheel speed Ω is plotted in Figure 6.1b where Ω is

represented by the linear wheel speed vT = rΩ. The onset of instability occurs

at the point of the road transition and can be observed by the rapid increase in

wheel speed with respect to vehicle speed.

The block diagram of the tire and vehicle dynamics in Figure 6.2 shows that

the state variables vx and Ω are nonlinearly dependent on the feedback of tire

force generation Fx. Hence an analysis of wheel slip κ is key to understanding the

nature of the open loop system dynamics. Although system nonlinearity precludes

a closed form description of state variable dynamics of vx and Ω, their variation

may be indirectly described by observing that κ attains a steady-state value on the

dry road and approaches a limit of 1 due to rapid increase of Ω on the wet road

after the onset of instability caused by the road surface transition.

The following analytical derivation of the resulting steady-state and limit con-

ditions provides insight into open loop system dynamics and allows verification of

a correct implementation of the dynamic equations within the simulation. Prior to

the road transition, application of torque causes the wheel to accelerate with associ-

ated generation of wheel slip κ. The wheel slip in turn produces force Fx within the

tire-road contact patch to accelerate the vehicle. Assuming stable operation, vehi-

cle acceleration tends to reduce slip and for a constant Ta, a steady-state operating

point is reached with proportional changes in wheel and vehicle speed producing
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Figure 6.1: Unstable Open Loop System Response of nTCSu, with Comparison to

Analytical Steady-State Solutions from Table 6.2
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constant κss and Fxss. For a constant Ta, steady-state operation is reached when:

dκ

dt
=

d

dt

(
1 −

vx

rΩ

)
=

−v̇xΩ + vxΩ̇

rΩ2
= 0. (6.1)

Assuming Ω 6= 0, steady-state operation implies:

vxΩ̇ = v̇xΩ. (6.2)

where vx may by written in terms of κss by rearranging (2.35):

vx = rΩ(1 − κss). (6.3)

Substitution of (6.3), (2.29), and (2.30) into (6.2) results in elimination of vx and

cancellation of Ω:

r(1 − κss)
Ta − Ty − rFxss

J
=
Fxss

m
. (6.4)

Since Fx is a nonlinear function of κ, the steady-state κdry,ss of nTCSu was

solved by numerical root finding using the fsolve function in the Maple [59] script

in Appendix E. Having obtained κdry,ss, steady-state Adry,ss and µ(κdry,ss) are

available by application of (2.38) and (2.20) with known road condition µr = µdry.

After the road transition, the rapid increase in Ω with respect to vx causes κ

to approach unity. Substitution of κwet,lim = 1 into (2.38) and (2.20) with known

road condition µr = µwet gives Awet,lim and µ(κwet,lim), respectively.

The results of the steady-state and limit analysis are summarized in Table 6.2

and plotted for comparison with simulation results in Figure 6.1d and Figure 6.1f.

The agreement between results obtained through numerical integration (simulation)
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Table 6.2: Steady State and Limit Conditions of nTCSu

Dry Road Steady States Wet Road Limits

κdry,ss = 0.0371114 * κwet,lim = 1

Adry,ss = 0.632064 * Awet,lim = −0.203137e− 3 *

µ(κdry,ss) = 0.640351 * µ(κwet,lim) = 0.121659 *

* Calculation Details in Appendix E

and algebraic steady-state analysis using independent software packages provides

some confidence in the correctness of the implementation of tire and vehicle models.

In Figure 6.1c and Figure 6.1f, the time variation in κ and driving friction

coefficient µ(κ) are compared, respectively, with the limits of tire performance

determined by the road surface consisting of optimal slip κ∗ producing peak driving

friction coefficient µpeak. The optimal slip κ∗ is given by (2.24) and Figure 6.1c shows

that the available torque limits tire performance on the dry road since κdry,ss < κ∗.

On the wet road, a reduction in κ∗ below κdry,ss triggers entry into the region

of unstable tire operation with κ > κ∗ and κ → 1 (see Figure 3.2). With the

assumption derived in (2.25), the onset of instability can be associated with a sign

change from positive to negative adhesion gradient A as shown in Figure 6.1d. After

the onset of instability, A decreases to a minimum negative value before increasing

towards zero as κ→ 1 according to the adhesion characteristic shown in Figure 2.10.

The simulated driving friction coefficient µ(κ) is compared with its theoretical

maximum µpeak = µn in Figure 6.1f. The maximization of driving friction coefficient

across road surfaces is desirable since it is directly related to longitudinal tire force

Fx and therefore affects vehicle performance. The peak driving friction coefficient

µpeak corresponding with optimal κ∗ is defined as the amplitude of the sine function

of (2.20):

µpeak =
µrDxo

Fzo

= µrµo = µn (6.5)

where identity with the coefficient of friction µn is shown by recalling Dxo = µoFzo

(2.14) and µr = µn/µo (2.19). As µpeak represents a maximum, the identity therefore
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shows that tire-road force generation is limited by road conditions and

µ(κ) ≤ µn. (6.6)

The comparison of µ(κ) with µn in Figure 6.1f shows that (6.6) is satisfied. In con-

junction with knowledge of wheel slip, Figure 6.1f indicates that the sub-maximal

µ(κdry,ss) on the dry road is due to a limitation in applied torque causing suboptimal

wheel slip.

Upon transition to the wet road, a general reduction of µ(κ) and system per-

formance is expected due to the physical limitations imposed by reduction in µr.

However, in nTCSu, performance is further degraded due to excessive wheel slip

beyond κ∗ causing a reduction in µ(κ) towards µ(κwet,lim). Both effects contribute

to the reduction in vehicle acceleration observed in Figure 6.1b.

The κ − µ plot of Figure 6.1e summarizes the impact of a road transition on

tire performance resulting in loss of traction and open loop instability. The nor-

malized tire characteristics of Figure 2.10 for Tire 0 used by nTCSu have been

overlaid and emphasize the impact of tire characteristics on performance. Initial

application of torque on the dry road causes an increase in κ and µ(κ) follow-

ing the dry road characteristics of the tire. Steady-state operation is attained at

(κ, µ) = (κdry,ss, µ(κdry,ss) ). The road transition causes a change from dry to

wet tire characteristics with associated reduction in µ(κ) and vehicle performance.

The reduction in µ(κ) corresponds to a proportional reduction in Fx which, for a

constant Ta, causes an increase in Ω̇ and hence κ according to (2.29) and (2.35),

respectively. Unstable tire operation results since the wet tire characteristics dic-

tate that an increase in κ from κdry,ss on the wet road causes further decrease of

Fx. Therefore, the open loop system tends to unity wheel slip with corresponding

performance decrease towards µ(κwet,lim = 1).

6.2.2 Limited-Torque Open Loop Control of nTCSs

In an open loop system without traction control, stability may be guaranteed by

designing a prefixed torque limitation in anticipation of operation in worst case
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situations (wet/icy roads). In nTCSs, the design problem is to find the maximum

torque permissible for stable operation on the wet road where system nTCSu failed.

As previously shown, constant torque application results in a steady-state con-

dition given by (6.4). For marginal stability on the wet surface, it is desired that

the steady-state conditions are set such that κwet,ss = κ∗ where κ∗ is given by (2.24)

with µr = µwet. Operation at κ∗ implies that Fxss,wet is equal to the peak of the

tire force characteristics of (2.37):

Fxss,wet = µwetDxo. (6.7)

The maximum torque limit is calculated by substituting (2.24) and (6.7) into (6.4)

and solving for Ta. The resulting torque limit is listed for nTCSs in Table 6.1.

The simulated drive cycle response of nTCSs is shown in Figure 6.3. The value

of the applied torque in Figure 6.3a is set smaller than the calculated maximum

by truncation after the third decimal point to ensure marginal stability. System

stability throughout the drive cycle is shown in Figure 6.3b by the close tracking

of vehicle and wheel speeds. After the road transition, the figure shows that wheel

speed exhibits a small but important offset from vehicle speed which translates into

an increase in wheel slip.

The increase in slip when transitioning to the wet road is shown in Figure 6.3c.

As designed, the prefixed torque limit allows κ to approach κ∗ on the wet road. The

marginal stability of the system on the wet road is further demonstrated by the

vanishing adhesion gradient shown in Figure 6.3d. Any increase in Ta will trigger

an unstable response similar to nTCSu. While on the dry road, the near unity

adhesion gradient is due to small wheel slip resulting in tire operation near a region

characterized by the initial stiffness CFκo of the tire from which A is derived (2.38).

The impact on vehicle acceleration, due to limiting applied torque to worst

case scenarios, is shown in Figure 6.3f where µ(κ) is restricted to µ(κwet,ss) even

on the dry road. Thus open loop torque limitation obtains maximum tire force

generation on the wet road by incurring a large sacrifice in force generation on the

dry road. The momentary decrease in µ(κ) at the road transition can be explained

by considering the κ−µ trajectory shown in Figure 6.3e. Initial application of torque

on the dry road causes an increase in wheel slip and force generation according to
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dry road characteristics of the tire until steady-state conditions are reached. A

change in road condition causes an initial decrease in µ(κ) and an increase in

slip. However, unlike nTCSu, κdry,ss remains less that κ∗ during the transition and

therefore an increase in driving force and µ(κ) occurs for an increase in slip. The

driving force causes vehicle acceleration which tends to reduce slip until the system

reaches a new steady-state condition on the wet road. In nTCSs, the applied torque

has been designed such that the steady-state condition on wet road occurs at the

limits of tire performance where the system is marginally stable.

6.3 Closed Loop System Evaluation

To maximize vehicle performance, a traction control system actively monitors road

conditions and dynamically adjusts torque application to maintain system stabil-

ity despite changes in road conditions. Analysis of the drive cycle response of the

adhesion gradient-based traction controller provides additional insight into the op-

erating principles of traction control. Comparison of closed and open loop drive

cycle response demonstrates the overall benefits of traction control in performance

and energy economy. A parametric study is used to assess the impact of variations

in traction control system design on performance and energy economy.

Closed loop systems considered in this section are named and described in Ta-

ble 6.3 where, in particular, TCSo corresponds to a nominal traction control system

with the performance tire (Tire 0) and nominal controller parameters from [12] as

listed in Appendix A. The column A-PS indicates the location of the Positive-Small

membership function of the adhesion gradient input to the fuzzy logic traction con-

troller. Columns C1 through C6 describe alternative controller rule bases. The

TIRE column indicates the use of either a high performance tire (Tire 0) or a low

rolling resistance tire (Tire 1). Systems TCSA-TCSE are variations of TCSo used

in the parametric study of Section 6.3.3.
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Table 6.3: Closed Loop Traction Control System Configurations

Fuzzy Logic Controller Plant

Config. A-PS C1 C2 C3 C4 C5 C6 TIRE

TCSo 0.5 S MS MS MH MS MH 0

TCSA - - - - - - - 1

TCSB 0.2 - - - - - - -

TCSC 0.8 - - - - - - -

TCSD - MS MS MH MH H H -

TCSE - S S S S S S -

‘-’ Indicates same as nominal configuration TCSo

Vehicle

Dynamics

Tire

Model

Wheel

Slip

1

S

1

S

Road

Model

Traction

Controller

Tref

A

κ

µr

Fx

Ta

v̇x, Ω̇

vx,Ω
sx

Figure 6.4: Closed Loop Traction Control System Dynamics

6.3.1 Closed Loop Response of TCSo

Of particular interest in the analysis of closed loop response is the behavior of Ta.

As shown in Figure 6.4, Ta is generated by an adhesion gradient-based fuzzy logic

traction controller that is capable of affecting tire and vehicle dynamics indepen-

dently of driver torque request Tref . Control action taken is key to maintaining

system stability when direct application of the requested torque would produce

instability.

The stabilizing effects of control are demonstrated in the drive cycle response

of TCSo (Figure 6.5). Figure 6.5a shows that controller action causes Ta to vary

despite a constant Tref . The variation allows stability to be maintained on the wet
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road as indicated by the close tracking of vehicle and linear wheel speeds shown in

Figure 6.5b. In contrast, the direct application of the same amount of torque in

the open loop system nTCSu causes instability.

The wheel slip limiting effect of traction control is observed in Figure 6.5c where

the road transition causes κ∗ to drop below κ to produce an unstable situation

similar to unstable nTCSu in Figure 6.1c. Reduction in Ta at this point allows

Ω to decrease, and slip to decrease below κ∗ to re-enter the stable region of tire

operation. Once stability is regained, torque is reapplied in consideration of the

new limits of performance.

In an adhesion gradient-based traction controller, tire-road performance limits

are determined indirectly through observation of a vanishing adhesion gradient and

the controller acts to avoid negative adhesion gradients. In Figure 6.5d, the ad-

hesion gradient A remains negative while κ > κ∗. The plot of the trajectory of

Ta against the surface defined by the nonlinear mapping of the fuzzy logic trac-

tion controller in Figure 6.6 provides additional understanding of controller action.

Initial conditions of the system (Location 1 in the figure) are such that wheel slip

is zero, A = 1, and therefore Ta = Tref . Application of torque causes an increase

in wheel slip and a decrease of adhesion gradient according to (2.38). This causes

a reduction in Ta on the dry road, as dictated by the surface plot of the fuzzy

logic controller, that tends to decrease wheel slip resulting in steady-state torque

application on the dry road Ta,dry,ss (Location 2). The torque reduction in response

to wheel slip causes Ta < Tref while on the dry road as shown in Figure 6.5a. The

road transition causes a jump to negative adhesion gradient (Location 3) where

κ > κ∗ and the surface plot dictates an application of zero torque causing wheel

deceleration. As the wheel decelerates, κ decreases towards κ∗ and A increases to-

wards zero. Stability is regained once A > 0 and the surface plot dictates a gradual

increase in torque. The torque increase counters the deceleration of the wheel and

results in steady-state torque application on the wet road Ta,wet,ss (Location 4).

The surface plot trajectory in Figure 6.6 also emphasizes that for the selected drive

cycle, controller action is limited to a line defined by the intersection of the surface

with the plane given by constant Tref/Tmax.

136



2.31 2.315 2.32

0

200

400

600

M
ot

or
 T

or
qu

e 
T a (

N
−

m
)

Time (s)

 

 

T
a

T
ref

(a) Applied Torque vs Time

0 1 2 3 4
0

5

10

Li
ne

ar
 S

pe
ed

 (
m

/s
)

Time (s)

 

 

Wheel v
T

Vehicle v
x

(b) Linear Velocity vs Time

2.31 2.315 2.32
0

0.05

0.1

W
he

el
 S

lip
 κ

Time (s)

 

 
κ
κ*

(c) Wheel Slip vs Time

2.31 2.315 2.32

0

0.5

1
A

dh
es

io
n 

G
ra

di
en

t A

Time (s)

(d) Adhesion Gradient vs Time

0 0.01 0.02 0.03 0.04
0

0.2

0.4

0.6

0.8

D
riv

in
g 

F
ric

tio
n 

C
oe

ff.
  µ

(κ
)

Wheel Slip κ

 

 
Trajectory
Dry
Wet

(e) µ − κ Trajectory

2.31 2.315 2.32
0.2

0.3

0.4

0.5

0.6

D
riv

in
g 

F
ric

tio
n 

C
oe

ff.
  µ

(κ
)

Time (s)

 

 
µ(κ)
µ

n

(f) Driving Friction Coefficient vs Time

Figure 6.5: Closed Loop Fuzzy Logic Traction Control (Nominal Parameters)

137



0

0.5

1

0

0.5

1
0

0.5

1

Torque Request (T
ref

 / T
max

)Adhesion Gradient ( A )

A
pp

lie
d 

T
or

qu
e 

( 
T a / 

T m
ax

 )

(2)

(4)

(1)

(3)

Figure 6.6: Surface Plot Trajectory of TCSo

Ideally, maximum tire performance is obtained if steady-state torque applica-

tion occurs at A = 0 with corresponding operation at optimal slip κ = κ∗. This

state is not achievable on the currently defined surface plot and hence the asso-

ciated controller is non-optimal with respect to tire performance. In general, the

class of adhesion gradient traction controllers considered in this thesis do not permit

optimal tire performance at κ = κ∗ since the definition of the adhesion gradient con-

troller assumes no knowledge of tire characteristics other than the current adhesion

gradient operating point. Thus an adhesion gradient controller cannot be defined

to apply a steady-state torque at A = 0 since this would require the steady-state

calculation involving a tire force generation model as described in Section 6.2.2.

For future work, it is proposed to investigate the use of an integral controller in

conjunction with an adhesion gradient controller to attain optimal tire performance

by allowing increases in Ta, while A > 0, beyond those prescribed by the adhesion

gradient surface plot and up to the amount Tref requested by the driver.

Note. The fuzzification process of the controller interprets any Negative adhesion

gradient as Zero with 100% certainty according to the membership functions as-
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sumed in Figure 3.13. Therefore the domain of the nonlinear mapping of the fuzzy

logic controller does not need to be explicitly extended to negative adhesion gradi-

ents.

Figure 6.5f shows that traction control enables near optimal performance in the

friction limited situation presented on the wet road while allowing high levels of

performance in the torque limited situation on the dry road. The κ−µ trajectory in

Figure 6.5e demonstrates that traction control fundamentally benefits µ(κ) on the

wet road by reducing excessive wheel slip that would otherwise lead to instability

with residual force generation.

6.3.2 Comparison with Open Loop Systems

A comparison of the previous open loop and closed loop simulation results confirm

the overall benefits of traction control in performance and energy economy over

a variety of road surfaces. Drive cycle energy consumption OE and completion

time OT , obtained by integration of (2.33) and (2.32), respectively, serve as univer-

sal benchmarks for system comparison across plant and controller configurations.

The impact of system dynamics on these benchmarks is discussed followed by a

comparison of numerical results.

The closed loop drive cycle response of TCSo and the open loop responses of

nTCSu and nTCSs from Section 6.2 are compared in Figure 6.7. With the exception

of Figure 6.7a, the plots of the remaining sub-figures are made with respect to sx

rather than time in order to allow a consistent analysis of system response to the

road transition.

The progression in position sx of each system through the drive cycle leads

to different completion times OT as shown in Figure 6.7a. Although the figure

indicates that open loop application of torque leads to quickest OT , the driving

friction coefficients µ(κ) attained by each system (Figure 6.7b) indicate drive cycle

choice affects the relative performance of open loop and closed loop systems. Since

µ(κ) is directly proportional to force Fx (2.20), it dictates vehicle acceleration.

Open loop application of torque results in the highest acceleration on dry road but

offers the lowest on wet road due to loss of traction. In contrast, a prefixed open
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loop torque limit, by design, restricts acceleration to worst case conditions on the

dry road to obtain optimal acceleration on the wet road. Thus if the length of

wet road in the drive cycle was to be moderately increased, the higher acceleration

attained by TCSo on a wet road would allow quickest completion of the drive cycle.

For a long stretch of wet road, the optimal application of torque by nTCSs would

allow it to complete the drive cycle first. Thus, the selected drive cycle favors high

performance on the dry road. Although dry road acceleration of TCSo is affected

by control action as described in the discussion of Figure 6.6, it is able to achieve

relatively high accelerations on both surfaces where either wet road acceleration is

negatively affected by instability in nTCSu or dry road acceleration is limited for

nTCSs.

The energy consumption of each system is compared in Figure 6.7c. Since energy

use E is determined by the integration of instantaneous power to drive the wheel

E =
∫

ΩTadt, it is explained by considering the torque application in Figures 6.1a,

6.3a, and 6.5a. with the aid of the linear wheel speed (vT = rΩ) comparison in

Figure 6.7d. On the dry road, energy use of nTCSu is slightly larger than TCSo

due to higher Ta and Ω. On the wet road, energy use of nTCSu increases quickly

due to high Ω resulting from instability. In contrast, energy use of nTCSs remains

smaller than TCSo on both roads due to small Ta and Ω. The figure shows that

traction control avoids the high energy use resulting from instability and that a low

torque application reduces energy use.

Note. With the exception of the rapid energy increase observed for nTCSu after

the road transition, energy use in Figure 6.7c exhibits an approximate piecewise

linear increase with distance traveled. For a constant torque Ta, energy E is linear

with respect to angular wheel rotation Θ since:

E =

∫
ΩTadt =

∫
dΘ

dt
Tadt = ΘTa. (6.8)

Although E versus sx is plotted in Figure 6.7c, it is noted that the linear wheel

speed vT closely tracks vehicle speed vx while the system is stable as indicated in

Figures 6.1b, 6.3b, and 6.5b. Hence vT = rΩ ≈ vx or equivalently Ω ≈ vx/r.
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Table 6.4: Closed Loop vs Open Loop Performance and Energy Use

Config. OE (J) % OE Diff. OT (s) % OT Diff

TCSo 25134.2 0 3.52446 0

nTCSu 241572 861.1 3.39271 -3.7

nTCSs 13292.1 -47.1 5.40307 53.3

Substitution into (6.8) reveals the approximate linear relationship:

E ≈

∫
vx

r
Tadt =

∫
1

r

dsx

dt
Tadt =

sx

r
Ta. (6.9)

Numerical results of OE and OT are compared in Table 6.4 for the open loop

nTCSu and nTCSs systems of Section 6.2 and the closed loop TCSo system. Per-

centage difference is also listed with respect to TCSo. Ideally, low energy consump-

tion and low (fast) completion times are desired. The table shows that direct open

loop torque application of a torque request by nTCSu results in marginally quicker

(-3.7%) performance over TCSo while incurring a large (861.1%) increase in energy

consumption due to high wheel slip. In contrast, the prefixed open loop limitation

of torque application to worst case road conditions results in lower (-47.1%) energy

consumption than TCSo with a slower (53.3%) completion time. Hence the table

summarizes that traction control enables a balance between high performance and

low energy consumption.

6.3.3 Parametric Study on Performance and Energy Use

A power flow analysis is conducted to identify system components affecting energy

use and performance. The impact of traction control system design on drive cycle

energy use and performance is assessed using a parametric study.

Power Flow Analysis

The electric propulsion system provides a source of power input Pin = ΩTa to the

system. Input power is primarily used to accelerate the wheel Pwh and vehicle Pveh
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and therefore the output power is Pout = Pwh +Pveh. Power losses Ploss are incurred

due to rolling resistance Proll and tire slip Pslip such that Ploss = Proll +Pslip. Power

flow within the traction control system is summarized in Figure 6.8 and obeys:

Pout = Pin − Ploss. (6.10)

Expressions to calculate the components of power flow in (6.10) are derived by

rearranging (2.29) to find the net torque on the driven vehicle wheel Tnet,wh (6.11)

and multiplying by Ω to obtain the power output to the wheel Pwh (6.12). Without

loss of generality, the output power to accelerate the vehicle Pveh = vx Fx is added

to both sides of the equation in (6.13) to derive the final expression in (6.14) which

is equivalent to (6.10).

Tnet,wh = Ta − Ty − r Fx (6.11)

Pwh = ΩTa − ΩTy − rΩFx (6.12)

Pwh + vx Fx = ΩTa − ΩTy − (rΩ − vx)Fx (6.13)

Pwh + Pveh = Pin − Proll − Pslip (6.14)

where Proll = ΩTy is the power loss due to rolling resistance and Pslip = (rΩ−vx)Fx

is the power loss due to wheel slip.

An energy balance is obtained by integrating (6.14). The input energy is equiv-

alent to the total drive cycle energy usage OE. The change in kinetic energy in

both the vehicle ∆Eveh and wheel ∆Ewh can be calculated directly by:

∆Eveh =
1

2
m(v2

xF − v2
xo), ∆Ewh =

1

2
J(Ω2

F − Ω2
o) (6.15)
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where vxF and ΩF are the final linear and rotation speeds of the vehicle and wheel,

respectively, at the end of the drive cycle, and vxo and Ωo are the initial linear and

rotation speeds of the vehicle and wheel, respectively, at the beginning of the drive

cycle. Therefore energy loss due to rolling resistance and wheel slip is deduced by:

Eloss = OE − ∆Eveh − ∆Ewh. (6.16)

Note. In this thesis, energy loss due to rolling and wheel slip are lumped together

since they are not directly calculated during simulations. Augmenting the system

model in Section 2.4 with Ėroll = ΩTy would allow energy loss associated with

rolling resistance to be calculated. Losses due to slip may then be determined by

Eslip = Eloss − Eroll.

Overall energy use OE of the drive cycle can be minimized by both an increase in

system efficiency and a reduction in input energy. To maximize system efficiency, it

is desirable to minimize losses Proll and Pslip. Rolling resistance can be reduced by

the use of low rolling resistance tires and therefore consists of a change in vehicle

(plant) design. Losses due to wheel slip can be reduced by the use of a control

strategy that operates a tire at low values of slip. Input energy can be reduced by

a reduction in applied torque Ta.

Thus, trade-offs in energy use and performance are present depending on plant

and controller design since: low rolling resistance tires are associated with degraded

force generation characteristics, operation at low values of tire slip corresponds to

low tire force generation and low vehicle acceleration, and a reduction in input

energy limits the energy available to accelerate the vehicle and limits the final

speed of the vehicle vxF by (6.15).

Parametric Study

A parametric study is performed to demonstrate energy use and performance trade-

offs with variation in plant and controller design of the traction control system. The

design parameters under study correspond to the optimization decision variables

selected in Section 4.2.2 and are varied from the nominal system TCSo according

to Table 6.3 to produce systems TCSA-TCSE. The following analysis shows that a
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Table 6.5: Impact of System Design on Performance and Energy Use

Param. Config. OE (J) % OE Diff. OT (s) % OT Diff

Nominal TCSo 25134.2 0 3.52446 0

Tire TCSA 23202.0 -7.7 3.60793 2.4

A-PS TCSB 25641.0 2.0 3.48454 -1.1

TCSC 22526.2 -10.4 3.75711 6.6

Rule TCSD 27423.2 9.1 3.36382 -4.6

Base TCSE 19277.0 -23.3 3.94327 11.9

change in either plant or controller design impacts drive cycle energy use OE and

completion time OT .

TCSA is a system using a low rolling resistance tire (Tire 1) as defined in Ap-

pendix A and whose characteristics are illustrated in comparison with the nominal

performance oriented tire (Tire 0) in Figure 2.10. TCSB and TCSC are systems

where the location of the Positive-Small membership function of the adhesion gradi-

ent A is set to a minimum of 0.2 and a maximum of 0.8, respectively, as described in

Section 3.3.2. TCSD and TCSE are systems with an aggressive and non-aggressive

fuzzy logic rule base, respectively, as obtained by changing rule conclusions C1 - C6

as defined in Section 3.3.3. Simulated drive cycle energy use OE and completion

time OT for these systems are listed in Table 6.5 and compared to the nominal

system TCSo. The results show that changes in plant and controller parameters

lead to trade-offs in energy use and drive cycle completion time.

System response to the drive cycle road transition are compared in Figures 6.9a -

6.9c. The figures compare the response of the systems relative to the road surface

transition time occuring at Rel. to Trans. Time = 0 s because the absolute transi-

tion times between systems vary due to differing plant and controller configurations.

The following discussion details observed changes in system response to road tran-

sition for systems TCSA to TCSE.

A change in tire from a performance oriented tire to a low rolling resistance tire

in TCSA changes the force generation characteristics of the tire and therefore affects
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the operation of the traction controller (whose parameters remain unchanged from

TCSo). Torque application Ta in Figure 6.9a is reduced compared to TCSo on both

dry and wet surfaces while the plot of adhesion gradient in Figure 6.9b shows that

Tire 1 is operated closer to its performance limit. This is a result of Tire 1 having

degraded performance compared to Tire 0 and the two figures indicate that Tire 1

operates closer to its limit even when less torque is applied as compared to TCSo.

The performance on wet surface of TCSA is near optimal since adhesion gradient is

small A < 0.1. Therefore the low µ(κ) observed on the wet surface in Figure 6.9c is

due to a limitation in tire force generation characteristics. In contrast, the decrease

in µ(κ) on the dry surface compared to TCSo can be countered by a change in

controller to allow a higher Ta and a decrease in A to improve performance on the

dry surface.

Torque re-application for TCSA is delayed relatively longer than TCSo since,

as shown in Figure 6.9b, the adhesion gradient requires a longer amount of time to

become positive. The delay is further explained by considering the differences of the

adhesion gradient characteristics of the performance tire (Tire 0) and the low rolling

resistance tire (Tire 1) shown in Figure 2.10. On the dry surface, Figure 6.9b shows

that TSCo operates Tire 0 at A ≈ 0.7 while TCSA operates Tire 1 at A ≈ 0.6.

Figure 2.10 therefore shows that, on the dry surface, TCSo operates Tire 0 at a

lower tire slip κ than TCSA with Tire 1. The figure also shows that, on the wet

surface, the optimal slip corresponding to A = 0 is similar for both tire. Therefore,

after the road transition, more time is required for the tire slip of TCSA and Tire

1 to decrease such that A = 0.

Setting the location of A-PS to its lower limit in TCSB results in a system

that considers smaller values of adhesion gradient as Positive-Small in comparison

to TCSo. The impact on the shape of the fuzzy logic control surface is shown

in Figure 6.10a where Ta decreases less in response to initial decreases in A as

compared to the controller of TCSo as shown in Figure 3.16. The control surfaces

differ mostly between adhesion gradients of 0.1 and 0.5. Therefore TCSB results

in marginally less torque reduction on the dry surface compared to TCSo as shown

in Figure 6.9a. The marginally higher Ta leads to marginally higher wheel slip and
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Figure 6.10: Parametric Variation in Fuzzy Logic Controller

a marginally more negative adhesion gradient is caused by the road transition. As

a result, torque re-application is marginally delayed compared to TCSo after the

road transition since the adhesion gradient only requires marginally more time to

re-stabilize (regain positive A) as shown in Figure 6.9b.

Setting the location of A-PS to its upper limit in TCSC results in a system

that considers higher values of adhesion gradient as Positive-Small in comparison

to TCSo. The impact on the shape of the fuzzy logic control surface is shown in

Figure 6.10b where Ta decreases more rapidly for initial decreases in A compared

to TCSo. The reduced Ta on the dry road results in less wheel slip and less time for
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the wheel to regain stable operation after the road transition. Thus re-application

of Ta occurs sooner than in TCSo and TCSB.

Note. Higher Ta in TCSB translates to higher µ(κ) on the dry road as shown in

Figure 6.9c while the converse is true for lower Ta in TCSC. However, steady-state

performance on the wet road is similar for TCSo, TCSB, and TCSC as shown in

Figure 6.9b and Figure 6.9c. This is due to the choice of the location of the Zero

membership function of the adhesion gradient Z=0.1 and the fact that steady-state

operation of the systems on the wet road occur at A < 0.1. Since membership

in A-PS is zero at adhesion gradients less than Zero, the variation of A-PS does

not affect fuzzy logic controller output on the wet surface. In future research, to

affect steady-state performance on the wet road surface through A-PS, the location

of the Zero membership function could be changed to less than the steady-state

condition to allow non-zero membership in the Positive-Small membership function

of the adhesion gradient. The remaining discussion shows that controller design still

affects operation on both road surfaces through changes in the fuzzy logic rule base.

The aggressive rule base of TCSD results in the least amount of torque reduc-

tion as shown in Figure 6.9a and operates the tire near its limit of performance on

the wet road surface as shown by the low adhesion gradient attained in Figure 6.9b.

Performance on the dry surface is at a maximum since Ta = Tref . Although TCSD

operates the tire at a lower adhesion gradient than TCSo, only a marginal perfor-

mance gain in µ(κ) is obtained on the wet surface as shown in Figure 6.9c. The

definition of C1 - C6 and resulting fuzzy logic control surface of TCSD shown in Fig-

ure 6.10c effectively disable traction control until the adhesion gradient becomes

less than the location of the Zero membership function of the adhesion gradient.

The non-aggressive rule base of TCSE results in the most amount of torque

reduction as shown in Figure 6.9a and does not operate the tire near its limit of

performance as shown by the high adhesion gradient (A > 0.5) on both road surfaces

in Figure 6.9b. As a result, µ(κ) is the lowest in Figure 6.9c. The definition of C1 -

C6 and resulting fuzzy logic control surface of TCSE shown in Figure 6.10d limit

Ta to zero for adhesion gradients less than the location of A-PS = 0.5. Therefore,

the torque re-application after the road transition is delayed in Figure 6.9a until
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Table 6.6: Percentage of Energy Stored in Vehicle Kinetic Energy

OE vxF ∆Eveh (∆Eveh/OE) × 100

Config. (J) (m/s) (J) (%)

TCSo 25134 8.8396 23142 92.07

TCSA 23202 8.4785 21265 91.65

TCSB 25641 8.9262 23603 92.05

TCSC 22526 8.3760 20747 92.10

TCSD 27423 9.2187 25196 91.88

TCSE 19277 7.7502 17720 91.92

A > 0.5.

The observed trade-offs between energy use and performance listed in Table 6.5

are graphically summarized in Figure 6.9d by plotting OE against OT . The para-

metric study therefore demonstrates that OE and OT are dependent on both plant

and controller design decisions. Further, these system level objectives are depen-

dent on one another and cannot be optimized independently. A necessary trade-off

between OE and OT occurs for variations in system design. As indicated in the

figure, an ideal system would have both low energy use and drive cycle comple-

tion time. Hence an optimization procedure is required to balance energy use and

performance requirements.

Note. As shown in Table 6.6, a significant amount (91-92 %) of drive cycle energy

use OE is stored as kinetic energy ∆Eveh in the moving vehicle. Therefore, the

trade-off between OE and OT is strongly influenced by the final vehicle speed vxF

as obtained by recording vx at time OT such that vxF = vx(OT ). Also, Figure 6.9a

indicates that controller transients persists for less then 10 ms for a drive cycle with

a duration between 3 and 4 seconds (Table 6.5). Therefore, the trade-off between

OE and OT is weakly affected by transient action taken by the controller.
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Table 6.7: GA Parameters

Parameter Value

Mutation Probability pm 2%

Real-Coded Mutation Standard Deviation σ 0.1

Population Size 200

Terminating Condition After 50 Generations

Number of Parallel CPUs 50

Members per CPU 4

6.4 Simultaneous Optimization Results

The traction control system is optimized with respect to the weighted sum of the

drive cycle energy use OE and completion time OT using the mixed encoding, multi-

chromosomal GA. Problem-independent parameters that impact the execution of

the GA are first described. Results from the simultaneous plant/controller opti-

mization of the traction control system are then analyzed with focus on the impact

of the relative energy to performance weighting on system design. The evolutionary

performance of the GA is examined to further describe its optimization process.

6.4.1 GA Parameters

The numerical values of parameters that affect the operation of the GA are sum-

marized in Table 6.7. The selection of a GA’s parameters is used to balance search

space exploration with running time and influences the quality (optimality) of opti-

mization results. In general, the selection of a GA’s parameters is problem depen-

dent and remains an active area of research with recent advances, for example, in

on-line adaptive tuning of the mutation probability [60]. The following discussion

outlines the parameter selection process applied in this thesis.

The mutation probability is set at pm = 2% in accordance with the general rec-

ommendation that pm < 10% [48] to balance its benefit in generating new building

blocks with its tendency to destroy long building blocks.
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The standard deviation associated with the Gaussian mutation of the real-coded

variable A-PS is set at σ = 0.1. This allows 99.7% of mutations to produce changes

within 3 standard deviations (±0.3) of A-PS [61]. Therefore, assuming that A-

PS is assigned a nominal value of 0.5, σ = 0.1 generates mutations mostly within

the constrained range of A-PS ∈ [0.2, 0.8] and reduces the probability of repairing

an out-of-bounds mutation.

The population size of 200 and terminating condition of the GA after 50 genera-

tions were chosen based on a trial procedure that results in satisfactory convergence

of the population to a single optimized candidate solution. The evolutionary per-

formance of the GA is further considered in Section 6.4.3.

To achieve a higher fitness evaluation throughput rate, the GA is implemented

using the parallel farmer-worker architecture described in Section 5.1.4. For each

generation, the farmer node selects and distributes 4 sets of parent genetic informa-

tion to 50 worker nodes. For each set of parents received, the worker nodes perform

the crossover and mutation operations to generate a new candidate solution in ad-

dition to objective evaluation through system simulation. The resulting offspring’s

genetic information and simulation results are then sent back to the farmer node

for fitness evaluation and selection for the next generation.

6.4.2 Impact of Energy Use to Performance Weighting

Simultaneous plant/controller optimization results of the traction control system

are summarized in Table 6.8. Six optimization runs, labeled as TCS1 to TCS6, were

performed under different energy weights wE. For each optimization run, the table

lists the individual drive cycle energy use OE and completion time OT objectives

used in the calculation of the system-level objective Os. In addition, the table shows

the resulting optimized assignment of system design variables TIRE, A-PS, and

NODE that specify the selection of vehicle tire, the location of the Positive-Small

adhesion gradient membership function, and the fuzzy logic rule base configuration,

respectively. Finally, the table indicates the level of the selected rule base (from

Figure 5.19). The following discussion describes the selection of the energy weight

wE coefficient and its impact on optimization results. The optimized results are
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Table 6.8: Optimization Results for Various Energy Weights wE

Config. wE OE OT Os TIRE A-PS NODE level

TCS1 0 27423 3.3638 3.3638 0 0.38005 2 1

TCS2 1e-6 26748 3.3640 3.3908 1 0.26404 1 0

TCS3 8e-6 26718 3.3643 3.5780 1 0.37270 15 3

TCS4 10e-6 26654 3.3648 3.6314 1 0.36856 33 5

TCS5 12e-6 26474 3.3667 3.6844 1 0.40093 53 6

TCS6 100e-6 16621 4.1552 5.8168 1 0.60768 83 11

then compared with the unoptimized nominal system TCSo from Section 6.3.1.

The energy weight coefficient wE controls the relative importance of the energy

objective OE and the time objective OT in the minimization of their weighted sum

Os (4.12). To avoid having one objective dominate the other, a knowledge of the

scalar range of the individual objectives is required to select an appropriate numeri-

cal value for wE. Although Table 6.8 lists the optimization runs by ascending values

of energy weight, the optimizations were performed in a different order beginning

with an initial selection of wE derived from the results of the parametric study sum-

marized in Table 6.5. Consideration of Table 6.5 indicates that OE changes on the

order of 1e2 to 1e4 while OT changes on the order of 1e-1. Hence, an initial energy

weighting of wE = 1e-5 (corresponding to optimized system TCS4) was selected to

approximately balance the optimization of OE and OT . To determine the impact of

objective weight selection on the optimized system, simulation runs were performed

where wE is an order magnitude smaller (TCS2) and larger (TCS6) then used in

TCS4. In comparing the resulting optimized selection of NODE in Table 6.8, it was

noted that a change in an order of magnitude in wE resulted either in the selection

of a very aggressive rule base configuration in TCS2 (level(NODE = 1) = 0) or

a very non-aggressive rule base configuration in TCS6 (level(NODE = 83) = 11).

Therefore, additional optimization runs were performed with wE deviating from

TCS4 by -2e-6 in TCS3 and +2e-6 in TCS5. Since the tire selection TIRE, did not

change in TCS2 to TCS6, an optimization run with wE = 0 in TCS1 was performed
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to verify the operation of the GA.

Overall, the simulation results in Table 6.8 show the following trends:

• Energy use OE decreases while drive cycle completion time OT increases as the

weighting on energy use is increased. These trends are expected and confirm

the trade-off between energy economy and vehicle performance. Thus, the

selection of wE determines how the optimization process balances conflicting

objectives in the minimization of OE and OT .

• The system-level objective Os increases with wE since OE is four orders of

magnitude larger than OT and therefore increases in wE tend to cause a net

increase in Os. The trend is purely a consequence of the scalar range of

the individual objective functions OE and OT . In general, Os is only used

internally to determine an optimized solution within an optimization run and

does not have significance when compared across optimization runs.

• Optimization runs TCS2 to TCS6 indicate that the use of a low rolling re-

sistance tire (TIRE=1) leads to an optimal system configuration whenever

energy use is considered. In other words, unless performance is the only cri-

teria in the vehicle design with wE = 0 in TCS1, the energy saving benefit

resulting from the use of a low rolling resistance tire outweighs the incurred

degradation in longitudinal tire performance.

• The location of the Positive-Small adhesion gradient membership function A-

PS tends to be greater for larger weightings of energy use (TCS4 to TCS6).

This is expected since a larger value of A-PS causes a quicker decrease in Ta

for initial decrease in A as shown in the comparison of Figure 6.10a and Fig-

ure 6.10b. Therefore, systems with higher values of A-PS tend to output less

torque Ta when operating the tire over similar ranges of A and are associated

with lower OE and higher OT .

The contrary trend observed between TCS3 and TCS4 may indicate that

system objectives may be less sensitive to changes in A-PS than in NODE.

This is partially supported by the results of the parametric study summarized
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Table 6.9: Impact of A-PS Variation in TCS1 on Objectives

Config. A-PS OE OT

TCS1a 0.2 27423.24 3.363832

TCS1b 0.8 27423.26 3.363834

in Table 6.5 where it is seen that the selection of rule base may exhibit a

greater impact (-23.3%, 11.9%) on the objectives OE and OT , respectively,

than the selection of A-PS (-10%, 6.6%).

The values of A-PS for TCS1 and TCS2 cannot be included in the trend anal-

ysis since their rule base configurations make the optimization insensitive to

changes in A-PS. This is numerically demonstrated for TCS1 in Table 6.9 by

taking the system variable selection of TCS1 (TIRE=0 and NODE=2) and

running two additional individual simulations TCS1a, TCS1b with variation

in A-PS. The table shows that the resulting objective values differ in the sev-

enth significant digit. The numerical difference is insignificant since numerical

solver settings were chosen for convergence to 5 significant figures of accuracy

(Section 6.1). Therefore, for the rule base selection of TCS1, the optimization

is insensitive to changes in A-PS and the TCS1 results in Table 6.8 can be

considered identical to those of TCS1a and TCS1b in Table 6.9.

Detailed examination of the rule base selection in TCS1 and TCS2 reveal

the reason for the insensitivity to variation in A-PS. For TCS1 and TCS2,

the respective rule base selection of NODE = 2 and NODE = 1 is such

that C3 = C4 = 3 = MH and C5 = C6 = 4 = H by mapping ΨRULE (4.8).

In conjunction with Figure 3.15b, a traction controller is therefore defined

that prescribes the same output conclusion over a range of Z to PH adhesion

gradient for a given torque request input in the range MH to H. This is

illustrated by a comparison of the fuzzy logic controller surface plot of TCS1a

(Figure 6.11a) against TCS1b (Figure 6.11b). For torque request inputs above

0.5, the plots are nearly identical due to the definition of C3 to C6. For torque

request inputs less than 0.5, the plots show the impact of changes in A-PS on
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(a) TCS1a: Small A-PS=0.2
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(b) TCS1b: Large A-PS=0.8

Figure 6.11: A-PS Variation in Traction Controller Rule Base of TCS1

the fuzzy logic controller since in this region, the location of A-PS determines

the transition of torque output Ta from Medium-Small (C2 = 2) to Small

(C1 = 1). To emphasize the independence of A-PS in the optimization of

TCS1, the trajectory of Ta along the surface plot is shown in Figure 6.11

for both TCS1a and TCS1b. The two trajectories are nearly identical and

result in similar objective values OE and OT as listed in Table 6.9. Since

the trajectories taken are only influenced by the definitions of C3 to C6 as

described in Section 3.3.3, the preceding analysis applies equally to explain

the independence of A-PS in the optimization of TCS2.

• The level of the optimized rule base increases as wE is increased from TCS2

to TCS6. Since an increase in level is observed along with a decrease in OE

and an increase in OT , the optimization results support the assumption that

a higher level corresponds to a less aggressive rule base as stated in (5.20).

The observation also supports the assumption that the level of a fuzzy logic

rule base is a building block in the encoding of the rule base. The novel

encoding of a fuzzy logic rule base as a member of a poset by delta inclusion

(Section 5.3.3) is therefore shown to be efficient since it manipulates the level

of a rule base directly and acts to preserve level information encoded within
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Table 6.10: Improvement in Optimized Systems over Benchmark TCSo

Config. wE Os Os,TCSo % Improvement

TCS1 0 3.3638 3.5245 4.56

TCS2 1e-06 3.3908 3.5496 4.47

TCS3 8e-06 3.5780 3.7255 3.96

TCS4 10e-06 3.6314 3.7758 3.82

TCS5 12e-06 3.6844 3.8260 3.70

TCS6 100e-06 5.8168 6.0375 3.66

building blocks.

The observed trend can be extended to include the cursory discrepancy ob-

served in TCS1 by noting that NODE=2 for TCS1 and NODE=1 for TCS2

represent rule base conclusions that differ only in C1. Since the choice of

constant Tref only stimulates rule base conclusions C3 to C6 as described in

Section 3.3.3, the selection of either NODE=2 or NODE=1 produces equiv-

alent simulation results for the chosen drive cycle and do not preferentially

impact the optimization process.

A comparison between the optimization results TCS1 to TCS6 and the bench-

mark nominal system TCSo can be made by calculating the unoptimized system-

level objective Os,TCSo consisting of the weighted average of the unoptimized ob-

jective values OE and OT for TCSo obtained from Table 6.5. In Table 6.10, the

comparison of optimized objective values Os for TCS1 to TCS6 against the un-

optimized objective value Os,TCSo of TCSo indicates that the optimization process

allows an objective value improvement of approximately 4% over the various choices

of energy weights wE.

As stated in Section 4.2.3, the solution to a multi-objective optimization problem

is not unique but is instead represented by a Pareto set of designs for which no

individual objective may be improved without compromising any other objective.

In the current traction control system design, the Pareto set is defined as the set

of all globally-optimal designs over the allowable continuous range of the energy
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weight wE ∈ [0, 1]. Systems TCS1 through TCS6 represent approximate members

of the Pareto set since a GA optimization does not guarantee a global optimization.

An approximation of the Pareto set is plotted in Figure 6.12a using the optimized

objective values of TCS1 to TCS6. The figure also indicates an approximation of

the Pareto front [62] that is defined by interpolating between members of a Pareto

set. Since it is defined in terms of a Pareto set, the Pareto front in Figure 6.12a

defines a boundary that indicates the limits in the simultaneous minimization of

OE and OT over the variation of weight wE. For example, the unoptimized nominal

system TCSo is plotted in Figure 6.12a and is behind the Pareto front.

Further consideration of Figure 6.12a shows that the optimization results in Ta-

ble 6.8 are not evenly distributed along the Pareto front. More optimization runs

are necessary with energy weights wE ∈ [20e-6, 100e-6] to provide an accurate ap-

proximation of the overall Pareto front. The current simulation results do, however,

allow a relatively accurate approximation of the Pareto front with wE ∈ [0, 12e-6]

as shown by plotting TCS1 to TCS5 in Figure 6.12b.

As a member of a Pareto set, a specific optimized traction control system design

cannot be prescribed without further criteria for specifying the relative weighting

of OE and OT . Such criteria is application specific and needs to be developed in

a greater context, for example, as determined by a study on driver preferences.

Without further guidance on the selection of wE, systems TCS1 to TCS6 can be

considered equally optimal in balancing the energy use to performance trade-off.

6.4.3 Evolutionary Performance of the GA

As a heuristic optimization method, a GA does not guarantee global optimality

although it may be effective at finding near optimal solutions. In general, the fitness

evaluation and selection process of a GA causes diversity in an initial population

to converge towards a fit candidate solution that has been created by the use of

genetic operations. As discussed in Section 6.4.1, the optimality of the final solution

is affected by the selection of a GA’s parameters. The following analysis of the

evolutionary performance of the mixed encoding, multi-chromosomal GA provides

further insight into the influence of the GA’s parameter selection on its optimization
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Figure 6.13: Evolutionary Performance of the GA for TCS4

process.

For the GA’s parameters listed in Table 6.7, Figure 6.13 provides a graphical

representation of the GA performance for the TCS4 optimization run. Overall

performance is summarized in Figure 6.13a where the best (minimum) system-

level objective value Os within each generation is plotted over the evolution of the

population (Gen. #). The plot indicates that the GA finds a near optimal solution

within the initial population (Gen. 0) with numerically insignificant improvement

(Figure 6.13b) during the course of the optimization process. The average Os over

all members of each generation is plotted in Figure 6.13a and shows that population

members tend to converge towards the fit candidate solution.

The presence of a near optimal solution within the initial population of a GA

is generally not expected since population size typically limits initial search space

coverage. However, consideration of the discrete portion of the search space spe-

cific to the current traction control system optimization problem reveals that 168

discrete combinations exists as a result of the limited selection from among 84 rule
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base possibilities and 2 tire selections. Due to the use of a constant Tref that only

stimulates a portion of the rule base as explained in Section 3.3.3, some of the 84

rule base configuration possibilities are equivalent (specifically those with identical

C3 to C6). Since the population size is 200 (from Table 6.7), it is large enough to

more than doubly cover the discrete search space and thus increases the possibility

of a near optimal solution being present in the initial population. It is expected

that a near optimal candidate solution would be absent from the initial population

if the population size is decreased.

Further insight into the operation of the GA is provided by plotting a histogram

(frequency count) of values assumed by optimization variables per generation over

the evolution of the population. Such plots are shown, for the optimization of

TCS4, in Figures 6.14a to 6.14c and depict the distribution of values assumed by

optimization variables TIRE, NODE, and A-PS, respectively. To simplify graphical

interpretation, consecutive nodes numbers are binned in groups of 7 in the distri-

bution of NODE shown Figure 6.14b. Similarly, the distribution of the values of

A-PS in Figure 6.14c is also binned such that each bin represents a range of 0.05.

All three plots show an approximately uniform distribution in the values of the

optimization variables at the initial generation (Gen. 0) caused by random popu-

lation initialization. As new generations are created, the plots show convergence

towards the optimized solution for TCS4 listed in Table 6.8 before the termination

of the optimization process at Gen. 50. For example, Figure 6.14a indicates that

approximately half (100) of the candidate solutions in Gen. 0 select the perfor-

mance tire TIRE=0 while by Gen. 50, all 200 candidate solutions select the low

rolling resistance tire TIRE=1.

Although, Figure 6.13a indicates the presence of the near optimal solution of

TCS4 within the initial population, the plots of the evolution of TIRE and A-

PS show an initial increase, and hence preference, in candidate solutions containing

non-optimal TIRE=0 (up to Gen. 4) as well as A-PS ∈ [0.25, 0.3] (up to Gen.

10). Intuitively, this indicates that a number of good solutions exist with these

characteristics and initially results in a higher combined probability of selection than

the final solution of TCS4. However, the high fitness characteristics associated with
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the variable selections in TCS4 allow them to spread through the entire population.

Therefore, the reversal of the frequency trends of TIRE and A-PS demonstrate the

expected survival of fit building blocks and supports the general building block

hypothesis of the GA operation stated in Section 5.1.1.
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Chapter 7

Conclusions and Future Work

A simultaneous plant/controller optimization is performed on an electric vehicle

traction control system with respect to conflicting energy use and performance ob-

jectives. Compared to a typical sequential plant then controller design process, the

formulation of a combined plant/controller design problem enables overall improve-

ment of a system design. Although a highly simplified traction control system is

considered, the resulting optimization problem exhibits characteristics in common

with larger problems including: a coupling between plant and controller design

variables that precludes their independent optimization, a mixture of both contin-

uous and discrete design variables, and the presence of nonlinear system dynamics

requiring simulation to evaluate optimization objectives. The optimization of the

traction control system requires development of a system model, formulation of

the optimization problem, and the proposal, implementation, and execution of a

solution strategy.

The system model consists of a vehicle drive cycle, vehicle model, and traction

controller. A simple drive cycle is used to evaluate the dynamic response, energy

use OE, and completion time OT (representing performance) of a vehicle under a

straight-line acceleration over 20 m. A road transition is located midway in the

drive cycle and is represented by a step change from a dry road to a wet road

with an 80% reduction in coefficient of friction. Vehicle dynamics are described

using a single-wheel longitudinal model to focus analysis on longitudinal tire force
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generation and rolling resistance.

Longitudinal tire force Fx is a strong function of the tire slip κ ∈ [0, 1] that is

caused by differences in vehicle speed and linear wheel speed. Under free rolling

conditions Fx = 0 and κ = 0. For increasing κ, Fx exhibits an initial increase to a

peak force at an optimal κ∗ before decreasing to a fraction of its maximum at κ = 1.

In general, the position of the peak force, κ∗, and hence the tire performance limit,

change with road conditions. Therefore, the Magic Formula is used to model Fx

generation on the dry road, and the similarity method is used to extrapolate tire

force characteristics on the wet road. Further, tire adhesion gradient A provides an

alternative method of locating optimal κ∗ since it is defined proportionally to the

derivative of Fx and therefore exhibits a positive to negative sign change at κ∗.

Tire rolling resistance is caused by energy loss associated with the cyclic de-

formation experienced by portions of a rolling tire as they contact the ground.

Rolling resistance is modeled as a constant moment opposing wheel rotation. The

observation that rolling resistance decreases as inflation pressure increases allows

the tire force generation characteristics of a low rolling resistance tire to be derived

from those of a highly inflated tire. Compared to the tire force characteristics of

a performance tire (Tire 0), a low rolling resistance tire (Tire 1) exhibits a lower

peak force and its use incurs a trade-off in tire performance to energy economy.

The selection of either Tire 0 or Tire 1 for use in a vehicle design is represented by

the variable TIRE in the overall traction control system optimization.

The quick and accurate torque generation and measurement capabilities in-

herent in an electric vehicle propulsion enables the design of a high performance

traction control system such as the adhesion gradient fuzzy logic controller pro-

posed in [12]. The adhesion gradient traction controller monitors driver torque

request Tref and tire adhesion gradient A and decreases output torque application

Ta to a vehicle wheel when adhesion gradient decreases towards zero. The torque

reduction enables recovery from unstable tire operation where κ → 1 causes ex-

cessive wheel speed, high energy consumption, and decreasing Fx. The adhesion

gradient controller in [12] is adopted in this work. However, in place of a manual

parameter tuning procedure, the non-intuitive specification of the location (shape)
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of the Positive-Small adhesion gradient membership function A-PS and a portion of

the fuzzy logic rule base RULE is considered in the overall traction control system

optimization.

A traction control system optimization problem is defined in terms of the min-

imization of the weighted sum of OE and OT over the selection of variables TIRE,

A-PS, and RULE. The system model is incorporated within an optimization loop

and the all at once variable selection strategy is implemented using a GA to it-

eratively explore the search space. A mixed-encoding, multi-chromosomal GA is

designed to encode the mixture of continuous and discrete optimization variables

within three single-gene chromosomes of different data types. The variables TIRE,

and A-PS are represented, respectively, using standard encodings for a single bit

binary string, and a real-valued number while a novel fuzzy logic rule base encoding

is developed and applied to indirectly represent RULE.

Attention to rule base encoding is required since the direct encoding of rule base

conclusions as independent integers results in exponential growth of the search

space with the number of rule base entries. A 98% reduction in feasible search

space may be obtained by imposing constraints on rule base entries derived from the

intuitive observation that a rule base should prescribe an increase in Ta as controller

inputs Tref and A increase. Under a direct encoding, the constraints create a

large infeasible search space and introduce computational overhead in handling

infeasible candidate solutions. A novel rule base encoding is therefore proposed

to simultaneously address the challenges in rule base constraint satisfaction and

search space reduction. Possible rule base configurations are defined as nodes and

assigned a level within the novel definition of a partially ordered set (poset) by delta

inclusion. A relationship is assumed between the level of a rule base configuration

and its impact on optimization objectives OE and OT where a high node level is

associated with a low OE and a high OT . The relationship allows the level of a

rule base to be considered as a building block of genetic information that influences

the overall fitness of a candidate solution in a GA. Hence, the rule base RULE is

indirectly represented by a variable NODE that references a corresponding rule base

configuration within a poset by delta inclusion. Specialized crossover and mutation
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operations are defined on NODE to directly manipulate the level of the referenced

rule base configuration.

Both unoptimized (open loop and closed loop) and optimizing (closed loop)

simulation studies are performed, using the previously described drive cycle, to

allow analysis of the traction control system design. A simulation convergence

study is done to determine numerical solver settings and establish the numerical

accuracy of results to 5 significant figures.

Open loop simulation of the uncontrolled vehicle model shows that constant

torque application leads to unstable tire operation when the road surface transition

causes a reduction in the road surface coefficient of friction. Imposing a prefixed

open loop torque limitation to ensure stability under worst case wet road conditions

enables optimal tire operation on the wet road but unnecessarily limits performance

on the dry road. The simulations show the performance limitations of an open

loop system. Further, analytical derivation of the steady-state and limit conditions

attained during operation of the dry and wet road surfaces, respectively, enables the

verification of a correct implementation of the vehicle and tire dynamic equations.

A benchmark drive cycle response of an unoptimized closed loop system is ob-

tained using the adhesion gradient traction controller with nominal parameter def-

initions from [12]. Comparison of the open loop and closed loop simulation results

show that traction control enables a high (but non-optimal) performance across

both dry and wet road surfaces while avoiding the high energy use associated with

unstable tire operation on the wet surface. A parametric study on the nominal

closed loop system shows that changes in any of the system design variables TIRE,

A-PS, and RULE (or NODE) produce conflicting changes in drive cycle energy use

OE and completion time OT . The parametric study establishes the need for an

optimization procedure to balance the trade-off in OE and OT .

In the simultaneous plant/controller optimization of the traction control system,

the specification of the energy weight coefficient wE controls the relative weighting

of OE and OT . A range of optimized designs are obtained through the variation

of wE across multiple optimization runs. Optimization results indicate that, un-

der straight-line acceleration and unless energy concerns are completely neglected

168



(wE = 0), low rolling resistance tires should be incorporated in a traction control

system design since the energy saving benefits outweigh the associated degradation

in longitudinal tire performance. A weak relationship between an increase in A-

PS and an increase in wE exists since the sensitivity of OE and OT to changes in

A-PS is dependent on rule base configuration. Finally, the level of a selected rule

base configuration is observed to increase with wE. Since wE controls the relative

weighting between OE and OT , an increase in wE causes a decrease in OE and an

increase in OT . Therefore, optimization results support the assumption that a rule

base of high level results in low OE and high OT . Consequently, the novel encoding

of a fuzzy logic rule base as a member of a poset by delta inclusion is shown to be

efficient since its crossover and mutation operators manipulate the level of a rule

base directly.

7.1 Future Work

To facilitate the consideration of the simultaneous plant/controller optimization of

the traction control system, various assumptions are made to simplify both the

system model as well as the optimization process itself. Future work to be consid-

ered can be classified as improvements and extensions to either the traction control

system model, or the optimization process.

The following improvments and extensions relating to the drive cycle, vehicle

and tire model, and adhesion gradient controller should be considered in future

studies of the high performance traction control of low rolling resistance tires:

• Although the simple drive cycle considered in this work enables analysis of

the basic system response to a step change in road friction with constant

driver torque resquest Tref , it restricts controller operation to a single dimen-

sion along a two dimensional surface defined by controller inputs Tref and

adhesion gradient A. Also, the basic system response is dominated by steady

state operation before and after the road transition with a relatively quick

transient behavior at the road transition. A longer drive cycle design incor-

porating varying Tref and more transients in the road surface coefficient of
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friction should be considered to approximate realistic driving conditions in

the development of a practical traction controller.

• Although an ideal traction control system exhibits both low energy useOE and

completion time OT , it may be more intuitive to formulate an optimization

problem in terms of maximizing energy efficiency and minimizing completion

time. Analysis of the simulation results from the parametric study shows

that 91-92% of energy use is associated with the kinetic energy ∆Eveh used

to accelerate a vehicle. Thus, the use of OE as a minimization objective

implicitly penalizes systems with a high final speed at the end of the drive

cycle. The maximization of system efficiency, defined as ∆Eveh/OE would

allow the optimization of final vehicle speed to be defined separately if desired.

• The use of the single-wheel longitudinal model in the current work neglects

the vertical dynamic weight transfer from front to rear wheels associated with

vehicle acceleration. Since tire force generation and rolling resistance are influ-

enced by normal loading, a longitudinal bicycle model should be implemented

to consider dynamic weight transfer when significant amounts of acceleration

are modeled. Aerodynamic resistance should also be modeled since the as-

sociated vehicle speed-dependent drag force contributes to dynamic weight

transfer.

• The longitudinal tire force generation model may be refined by modeling the

impact of normal loading on tire deformation and distinguishing between the

effective rolling radius re and loaded tire radius r. In general, the two radii are

nonlinear functions of tire wear, vertical loading, and speed [23]. The effective

rolling radius is used in the calculation of wheel slip κ while the loaded radius

determines the moment countering wheel rotation caused by tire force Fx.

Also, a singularity exists in the definition of tire slip that prevents describing

tire operation from a standstill. This may be remedied by defining tire slip

using a differential equation as proposed in [23]; however, the definition in-

troduces new tire dynamics without consideration of their impact on rolling

resistance.
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• The modeling of tire rolling resistance as a constant neglects its dependence

on tire vertical loading, speed of travel, inflation pressure, and temperature.

Rolling resistance increases proportionally with vertical loading while rela-

tively recent work in [29] describes the dynamic changes in rolling resistance

associated with wheel speed, temperature, and pressure. Studies should be

conducted to determine the relevance of rolling resistance transients in the

design of an energy efficient traction control system.

• The adhesion gradient of a tire cannot be directly measured as assumed in

this work. Therefore, the design of a practical adhesion gradient controller

should include the design of an adhesion gradient observer as proposed in [12].

• Since an adhesion gradient controller does not rely on a tire specific model,

it cannot operate a tire at optimal κ∗ where A = 0. The application of a

corresponding torque Ta at A = 0 would require a calculation involving a tire

force generation model. Future work may investigate the use of an integral

controller in conjunction with an adhesion gradient controller to gradually

increase Ta beyond those prescribed by the adhesion gradient controller and

up to the amount Tref requested by the driver while A > 0.

• The vehicle and tire models may be extended to allow system optimization

with respect to cornering maneuvers. It is an open area of research to consider

the modeling of tire rolling resistance during cornering maneuvers.

• Ultimately, experimental results should be used to validate simulations of the

traction control system model. Initial experiments may involve the use of an

external, rotational-loading motor to emulate tire force generation character-

istics as proposed in [12] and [13]. Experiments may then progress towards

in-vehicle testing similar to those in [10].

The following consideration of future work related to rule base encoding, Pareto

front optimization, automated GA parameter control, and plant/controller design

coupling pertain to the improvement and extension of the proposed simultaneous

plant/controller optimization process:
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• Currently, the specialized crossover and mutation operations of the novel

encoding of the fuzzy logic rule base depend on a precomputed Hasse diagram

that indicates the relationship of members within a poset by delta inclusion.

A potential weakness exists in the storage requirements for the Hasse digram

since the unconstrained search space size increases exponentially with the

number of rule base entries. It is proposed to investigate the derivation of

an analytical expression to calculate the number of members within a poset

by delta inclusion to determine its space complexity. Such an expression may

also support the decision to redesign the crossover and mutation operations

to dynamically compute required portions of the Hasse diagram to minimize

memory requirements.

• An open research problem exists in the encoding and definition of genetic

operations that permit the minimization of the number of rules in a rule

base. The challenge lies in determining suitable building blocks that may be

preserved during the crossover between, and mutation to, matrices of different

sizes.

• Multiple simulation runs are used in the current work to produce a variety

of optimized traction control systems corresponding to different weightings in

energy use and performance objectives. These systems approximate a Pareto

set and their analysis reveals limitations in system design. Thus, determina-

tion of a Pareto set of a multi-objective optimization problem provides valu-

able design guidance. Rather than generating a Pareto set through repeated

execution of the GA by manually choosing different weightings between ob-

jectives, it is proposed to consider a non-aggregating approach that directly

considers the optimization of multiple objectives. This may be achieved, for

example, by modifying the selection routine to create a Niched Pareto GA to

spread population members along the Pareto frontier in a single optimization

run as described in [63].

• Due to the relatively small size of the optimization problem considered in

this work, the GA parameters including mutation rate, population size, and
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number of generation before termination are chosen using a trial procedure

to allow a satisfactory exploration of the search space. In general, the com-

putational requirements required to optimize a larger problem may preclude

the convenience of executing trial optimization runs for the purpose of man-

ually tuning the GA parameters. For such problems, the incorporation of

automated, dynamic control of the GA parameters during the GA execution

is recommended. An overview of parameter control mechanisms is provided

in [64].

• Only a partial coupling between plant and controller design variables exists

in this work since the traction controller design does not impose constraints

on the vehicle design. In general, a full coupling loop exhibiting mutual

dependence between plant and controller variables is expected in a simulta-

neous design problem. In contrast to the ideal concurrent variable selection

strategy, the all at once strategy allows a relaxation in either the plant to con-

troller constraints or the controller to plant constraints to facilitate system

optimization. Implementation of a penalty scheme within the GA is rec-

ommended to minimize deviation from the optimal condition with coupling

constraint equality. The traction control system optimization problem may

be extended to introduce a full coupling loop by incorporating a motor design

as demonstrated in [17] where the specification of minimum motor power is

derived from dynamic controller performance and controller performance is

in turn dependent on the armature resistance and inductance derived from a

motor design.
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Appendix A

Traction Control System

Parameters

Tables A.1 to A.4 list the numerical values used in the model of the traction control

system.

Table A.1: Single-Wheel Vehicle Parameters

Component Parameter Value Source(1)

Vehicle Mass m = 600 kg [23]

Wheel Inertia Jw = 1 kg m2 [23]

Wheel Radius r = 0.3 m [23]

Initial Velocity vxo = 1 m/s -

Initial Wheel Speed Ωo = vxo/r -
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Table A.2: Drive Cycle Parameters

Component Parameter Value Source(1)

Road Transition Distance ST = 10 m -

Final Distance SF = 20 m -

Torque Reference Tref = 600 N m -

Maximum Torque Tmax = 720 N m -

Dry Friction µdry = 1.0 -

Wet Friction µwet = 0.2 -

Table A.3: Tire Parameters

Component Parameter Value Source(1)

Tire Shape Factor Cx = 1.6 [23]

(Common) Curvature Factor Ex = 0 [23]

Nominal Load Fzo = 3000 N -

Tire 0 Stiffness Factor Bxo = 12.5 [23]

(Performance) Peak Factor Dxo = 3000 N [23]

Rolling Resistance Coefficient Cr = 0.014 [22]

Tire 1 Stiffness Factor Bxo = 9.375 -

(Low Rolling Peak Factor Dxo = 2400 N -

Resistance) Rolling Resistance Coefficient Cr = 0.007 [22]
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Table A.4: Fuzzy Logic Controller Parameters

Component Parameter Value Source

Torque Request Small S = 0 [12]

Fuzzy Set Medium-Small MS = 1/3 [12]

Medium-High MH = 2/3 [12]

High H = 1 [12]

Adhesion Gradient Negative N = 0 -

Fuzzy Set Zero Z = 0.1 -

Positive-Small PS = 0.5,A-PS ∈ [0.2, 0.8] * -

Positive-High PH = 0.9 -

Torque Output Small S = 0 [12]

Fuzzy Set Medium-Small MS = 1/3 [12]

Medium-High MH = 2/3 [12]

High H = 1 [12]

Fuzzy Rule Base (S, N) S [12]

(S, Z) S [12]

IF (Tref , A) is (S, PS) S [12]

(Parameter) (S, PH) S [12]

THEN Ta is (MS, N) S [12]

(Value) (MS, Z) C1 =S * [12]

(MS, PS) C2 =MS * [12]

(MS, PH) MS [12]

(MH, N) S [12]

(MH, Z) C3 =MS * [12]

(MH, PS) C4 =MH * [12]

(MH, PH) MH [12]

(H, N) S [12]

(H, Z) C5 =MS * [12]

(H, PS) C6 =MH * [12]

(H, PH) H [12]

* Nominal value for testing. Parameter is a variable during optimization.
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Appendix B

Longitudinal Bicycle Model

Analysis of a longitudinal bicycle model provides insight into the dynamic weight

transfer between front and rear tires associated with vehicle acceleration. The

analysis is used to derive conditions on vehicle design parameters and operation

that enable the assumption of negligible weight transfer between tires.

Longitudinal and vertical vehicle forces are considered in a planar longitudinal

bicycle model (Figure B.1) to determine the impact of vehicle acceleration on

vertical weight distribution between tires. The vehicle is modeled as a rigid body

with mass m, center of gravity located a distance h above a horizontal road, front

and rear tire-road contact points located at distances l1 and l2, respectively, from

the center of gravity, and wheelbase l = l1 + l2. Half of the physical vehicle mass is

h

Fx1Fx2
Fz1Fz2

Fg

FL

l1l2

l

Figure B.1: Longitudinal Bicycle Model During Braking [23]
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modeled in m to account for the fact that half of the wheels are modeled.

Front and rear normal forces Fz1 and Fz2, respectively, are present at the tire-

road contact points in reaction to gravitational force:

Fg = mg = Fz1 + Fz2 (B.1)

where g ≈ 9.81 m/s2 is the gravitational constant. Front and rear longitudinal tire

forces Fx1 and Fx2, respectively, arise due to longitudinal reaction forces produced

by the road on the tires as a result of propulsion or braking action. The direction

of the longitudinal forces is positive (points forward) during propulsion and nega-

tive (points backwards) during braking. In Figure B.1, the longitudinal forces have

been indicated for braking. Though tire force generation mechanics (such as wheel

rotation and tire deformation) are not explicitly modeled, the maximum longitu-

dinal force available from each tire can still be determined if it is assumed that it

is friction-limited by the amount of normal force exerted on the tire (as is the case

with powerful propulsion and braking systems). For a road with uniform coefficient

of friction µ, the longitudinal and normal tire forces are related as follows:

|Fx1| ≤ |Fx1max| = µFz1 |Fx2| ≤ |Fx2max| = µFz2 (B.2)

Analysis of the longitudinal bicycle model provides the following insight on the

limits of vehicle and tire longitudinal performance:

• Vehicle longitudinal acceleration is limited by surface friction. The vehicle

acceleration a is determined by Newton’s second law:

a =
Fx

m
(B.3)

where Fx = Fx1 + Fx2 is the net external longitudinal force applied by road

on the front and rear tires.

However, the longitudinal force Fx acting on the vehicle is limited by (B.2)

since it is the sum of friction-limited longitudinal tire forces:

|Fx| ≤ |Fx1max| + |Fx2max| = µ(Fz1 + Fz2) = µFg. (B.4)
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Therefore, by substitution of (B.1) and (B.3) into (B.4), vehicle acceleration

is limited to:

|a| ≤ µ g. (B.5)

Hence, assuming negligible aerodynamic drag and downforce [65], maximum

vehicle acceleration is limited by the gravitational constant and the coefficient

of friction µ between tire and road.

• Longitudinal tire forces Fx1 and Fx2 are limited by dynamic variation of nor-

mal forces as a function of vehicle longitudinal acceleration. Tire normal

forces may be analyzed by applying d’Alembert’s Principle [66] to convert

the vehicle longitudinal dynamics in (B.3) into a static system by reformulat-

ing Newton’s second law:

Fx = ma ↔ Fx + FL = 0 (B.6)

where FL = −ma is a fictitious inertial force acting longitudinally on the

vehicle center of gravity in the opposite direction of vehicle acceleration as

indicated in Figure B.1.

Tire normal forces are calculated by considering the sum of moments produced

by gravitational, inertial, and normal forces about the rear and front tire-road

contact points for the front and rear tires, respectively:

Fz1 = Fg

l − l1
l

+
FL × h

l
(B.7a)

Fz2 = Fg

l1
l︸ ︷︷ ︸

static

−
FL × h

l︸ ︷︷ ︸
dynamic

. (B.7b)

The first terms of both (B.7a) and (B.7b) represent the contribution to normal

force as a result of static weight distribution determined by the longitudinal

location of the vehicle center of gravity. The second terms represent the

contribution to normal force caused by dynamic weight transfer resulting

from vehicle acceleration and deceleration. Although the individual front and

rear tire normal forces vary, the total normal force remains in balance with
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gravitational force (as seen by substituting (B.7) into (B.1)). Therefore the

limits of longitudinal tire performance in (B.2) are dynamic and vary with

vehicle acceleration as described by (B.7).

By assuming a low center of gravity (small h), long wheel base (large l), and low-

to-moderate accelerations (small FL), the dynamic weight transfer terms in (B.7)

can be neglected. Therefore, the normal forces acting on a tire are determined

solely by the static weight distribution terms in (B.7) and the assumptions allow

longitudinal tire performance to be considered independently of vehicle acceleration.
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Appendix C

Tire Operating Conditions

Additional background on general tire operating conditions and associated forces

and moments is provided to establish a basis for future consideration of a vehicle

model incorporating dynamics due to vehicle acceleration and cornering maneuvers.

In general, the operating conditions, forces, and moments of a tire may be

described using the coordinate system and parameters shown in Figure C.1. The

road surface is defined relative to a fixed inertial reference coordinate system at

point O. The position of the center of the wheel is defined by point A relative to

point O. At a radial distance r from A, the tire is in contact with an area of the

road surface called the contact patch. All forces and moments required to move a

vehicle are generated within the contact patch and assumed to act on the contact

center at point C [23]. The road surface near the contact patch is approximated

by a flat ground plane with normal vector n pointing upwards. The wheel rotates

about a wheel axle s with angular speed Ω. The wheel rotation occurs within a

wheel center plane passing through the wheel center A and the contact center C

and perpendicular to the wheel axle s.

The orientation of the wheel is defined relative to a local coordinate system at

point C on the road surface. The x-axis points forward along the line of intersection

between the ground plane and the wheel center plane. The y-axis points right along

the ground plane perpendicular to the x-axis. The z-axis points downwards normal

to the ground plane (−n). The wheel velocity, and hence the velocity vC of the
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Figure C.1: Position, Motion, Forces, and Moments for Road and Tire [23]

contact center may differ from the direction in which the tire is pointed by a slip

angle α from the x-axis. The wheel center plane may exhibit a camber angle

γ, relative to the ground plane normal n. Longitudinal, lateral, and normal forces

(Fx, Fy, Fz), and overturning, rolling resistance, and aligning moments (Tx, Ty, Tz)

are defined relative the x, y, and z axes, respectively. The positive direction of

the forces and moments are defined according to right hand convention with the

exception of the vertical force Fz that acts in the same direction as the ground

plane normal n.

Note. Sign conventions in the literature are not uniform and may be chosen, for

example, to minimize the number of negative quantities in a specific application

[23]. The sign convention presented in Figure C.1 is an adapted form of the Society

of Automotive Engineers (SAE) convention and differs in the definition of positive

side slip angle α. Other conventions, such as taken by the International Standards

Organization (ISO), orient the wheel coordinate system such that the (x, y, z) axes
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Table C.1: Tire Operating Modes [23]

In-Plane Mode Out-of-Plane Mode

(Negligible α, γ, (Constant Ω, vx,

Variable Ω, vx) Variable α, γ)

Primary function Braking/Driving (Fx) Cornering Side Force (Fy)

Load Carrying (Fz)

Secondary effect Rolling Resistance (Ty) Overturning Moment (Tx)

Aligning Moment (Tz)

point forward, left, and upwards, respectively [23].

The definition of the wheel center plane allows a distinction between in-plane,

out-of-plane operating modes of a tire [23]. The two modes of operation are sum-

marized in Table C.1. In the case of straight-line driving or braking, tire camber γ

and slip angle α are assumed negligible and analysis may focus on the generation

of in-plane longitudinal force Fx, normal force Fz, and rolling resistance moment

Ty. In the case of simple cornering maneuvers, the wheel rotational speed Ω and

the forward speed vx (the x-component of the contact center velocity vC) are as-

sumed constant and analysis may focus on the generation of out-of-plane lateral

force Fy, overturning moment Tx, and aligning moment Tz. For complex, and gen-

eral, situations such as braking in a turn, a nonlinear combination of in-plane and

out-of-plane tire operating modes results [23].

Table C.1 also shows that a distinction can be made between the primary func-

tions and secondary (but often important) effects in the operation of a tire [23].

The primary functions of a tire are to transmit forces from the road to a vehicle in

the three perpendicular directions (Fx, Fy, Fz) to affect vehicle speed and direction

while absorbing road irregularities, respectively. Secondary moments (Tx, Ty, Tz)

arise due to large slip angles inducing vehicle roll-over, energy lost in tire deforma-

tion, and uneven lateral force distribution within the contact patch area creating a

moment about the contact center, respectively [23].
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Appendix D

Simulation Convergence Data

Table D.1 lists the results of simulation convergence tests to determine solver set-

tings in Matlab and Octave using a closed loop traction control system configured

with a performance oriented tire and nominal traction controller parameters.

Solver settings are listed in the maximum step, relative tolerance, and absolute

tolerance columns. Wall clock time is the actual time taken to run a 10 second

simulation of the system on an AMD Sempron 1.60 GHz (Matlab) and on an AMD

Opteron 2.20 GHz node available on SHARCNET (Octave). Data in the energy and

time objective columns represent state variables of the system under consideration

and are affected by solver settings.
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Table D.1: Numerical Solver Convergence Data

Solver Max. Rel. Abs. Wall Energy Time

Step Tol. Tol. Clock (s) Objective (J) Objective (s)

Matlab R2006a Stiff Solver

ode15s 1e-1 1e-4 1e-4 0.56 25139.86 3.525445

ode15s 1e-1 1e-5 1e-5 0.69 25134.68 3.524545

ode15s* 1e-1 1e-6 1e-6 0.84 25134.17 3.524456

ode15s 1e-1 1e-7 1e-7 1.02 25134.08 3.524441

ode15s 1e-1 1e-8 1e-8 1.26 25134.09 3.524441

Octave 2.1.73 Stiff Solver

lsode 1e-1 1e-4 1e-4 1.23 25135.63 3.524222

lsode 1e-1 1e-5 1e-5 1.67 25133.90 3.524351

lsode* 1e-1 1e-6 1e-6 2.17 25134.08 3.524431

lsode 1e-1 1e-7 1e-7 2.45 25134.09 3.524441

lsode 1e-1 1e-8 1e-8 3.24 25134.09 3.524441

*Selected solver settings
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Appendix E

Steady State and Limit Condition

Calculations

The following Maple 9.5 code listing is used to calculate steady-state and limit op-

erating conditions of the open loop control of tire and vehicle dynamics. Numerical

results are discussed in Section 6.2.

> restart;
> Common:=Cx=1.6, Fzo=3000, r=0.3, m=600, J=1;

> TireA:= Bxo = 12.5, Cx = 1.6, Dxo = 3000, Cr=0.014, Common;
> ur_uo_dry:=1; ur_uo_wet:=0.2;
> Fx := ur_uo * Dxo * sin(Cx*arctan(Bxo*k/ur_uo));
> muk := Fx/Fzo;
> Ty := r*Cr*Fzo;

> A := diff(Fx,k) / (Bxo*Cx*Dxo);
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Common := Cx = 1.6, Fzo = 3000, r = 0.3, m = 600, J = 1

TireA := Bxo = 12.5, Cx = 1.6, Dxo = 3000, Cr = 0.014,

Cx = 1.6, Fzo = 3000, r = 0.3, m = 600, J = 1

ur uo dry := 1

ur uo wet := 0.2

Fx := ur uo Dxo sin
(
Cx arctan

(
Bxo k
ur uo

))

muk := ur uo Dxo sin
(
Cx arctan

(
Bxo k
ur uo

))
Fzo−1

Ty := rCr Fzo

A := cos
(
Cx arctan

(
Bxo k
ur uo

)) (
1 + Bxo

2k2

ur uo2

)−1

> ss := r*(1-k)*(Ta-Ty-r*Fx)/J = Fx/m;

ss := r (1 − k)
(
Ta − rCr Fzo − rur uo Dxo sin

(
Cx arctan

(
Bxo k
ur uo

)))
J−1

= ur uo Dxo sin
(
Cx arctan

(
Bxo k
ur uo

))
m−1

> Ta_nTCSu:=600;

> k_dryss:=fsolve(subs(Ta=Ta_nTCSu, ur_uo=ur_uo_dry, TireA, ss),k);

Ta nTCSu := 600

k dryss := 0.03711144962
> Fx_dryss:=evalf(subs(k=k_dryss, ur_uo=ur_uo_dry, TireA, Fx));

> muk_dryss:=evalf(subs(k=k_dryss, ur_uo=ur_uo_dry, TireA, muk));
> A_dryss:=evalf(subs(k=k_dryss, ur_uo=ur_uo_dry, TireA, A));

Fx dryss := 1921.053802

muk dryss := 0.6403512675

A dryss := 0.6320640207
> muk_wetlim:=evalf(subs(k=1, ur_uo=ur_uo_wet, TireA, muk));
> A_wetss:=evalf(subs(k=1, ur_uo=ur_uo_wet, TireA, A));

muk wetlim := 0.1216598993

A wetss := −0.0002031371373
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