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Abstract 

Steam generators in nuclear power plants experienced varying degrees of under-deposit 

pitting corrosion. A probabilistic model to accurately predict pitting corrosion is necessary 

for effective life-cycle management of steam generators. 

This thesis presents an advanced probabilistic model of pitting corrosion characterizing 

the inherent randomness of the pitting process and measurement uncertainties of the in-

service inspection (ISI) data obtained from eddy current (EC) inspections. A Bayesian 

method is developed for estimating the model parameters. The proposed model is able to 

estimate the number of actual pits, the actual pit depth as well as the maximum pit depth, 

which is the main interest of the pitting corrosion model. 

A MATLAB program of the Markov chain Monte Carlo technique is developed to 

perform the Bayesian estimations. Simulation experiments are performed to check the 

behavior of the Bayesian method. Results show that the MCMC algorithm is an effective 

way to estimate the model parameters. Also, the effectiveness and efficiency of Bayesian 

modeling are validated. 

A comprehensive case study is also presented on the in-service inspection data of pitting 

corrosion in a steam generator unit. The Weibull distribution is found to be an appropriate 

probability distribution for modeling the actual pit depth in steam generators.  
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Chapter 1 

Introduction 

1.1 Steam Generators in Nuclear Power Plants 

Canadian Deuterium Uranium (CANDUTM) reactors, designed by and a trademark of 

Atomic Energy of Canada Limited (AECL), are used in commercial nuclear power plants 

in Canada and many other countries. The initial choice of natural uranium (0.7% U-235) 

as fuel and heavy water (deuterium) as both a moderator and a coolant made the CANDU 

design unique from other types of reactors in the world (Tapping et al., 2000).  

 

  

Figure 1.1: Schematic layout of the CANDU nuclear power plant system 



 

Figure 1.1 shows a schematic layout of a typical CANDU nuclear power plant 

(NPP). Among the many systems, structures and components in the NPP, the steam 

generator is the subject of the thesis. 

Currently operating CANDU steam generators are vertical re-circulating steam 

generators manufactured. A typical CANDU steam generator is shown in Figure 1.2. The 

primary side of the steam generator mainly consists of the primary side of the tubesheet 

and several thousand small diameter alloy tubes that are bent into an inverted U-shape. 

The alloy U-tubes are welded to the primary side of the alloy clad carbon steel tubesheet 

and rolled into the tubesheet. The secondary side of the steam generator consists of a 

steam separating equipment, a tube bundle shroud, the secondary side of the tubesheet, 

the secondary side of the tube bundle, pre-heater baffles and tube support plates. 

Appendix A lists major design specifications of CANDU steam generator in the current 

five Canada’s nuclear power generation stations (Tapping et al., 2000). 

Steam generator is one of the critical components in CANDU NPP. It has two main 

functions: safety barrier between the radioactive primary coolant loop to the non-

radioactive secondary coolant loop, and heat exchange or production of steam for the 

turbine generator (Nickerson and Maruska, 1998).  

In the primary coolant loop, the heavy water inside the fuel channel (Figure 1.1) is 

heated by the energy released from the nuclear fission and kept under high pressure to 

raise its boiling point and avoid significant steam formation in the reactor core.  The hot 

pressurized heavy water then enters the steam generators through the inlet. It passes 

through the “hot leg” of the tube bundle, in the shape of an inverted U, giving up heat to 

the feedwater outside the tube bundle. After the heat exchange, the heavy water goes 
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down along the cold leg of the tube bundle and return via the outlet back to the reactor 

core.   

 

Figure 1.2: The schematic diagram of a CANDU steam generator (from Snook, 2001) 

 3



 

In the secondary side, the less-pressurized feedwater enters the pre-heater section and 

is forced to flow over the heavy water outlet and the U-bend bundle. The feedwater turns 

to the steam-water mixture with the re-circulating saturated water and rise to the top of 

the U-tube bundle. The steam-water mixture eventually turns to steam leaving the steam 

separators at a high speed through the steam separating equipment to a conventional 

turbine, with a generator attached to it to generate electricity. In addition, the saturated 

water from the steam separating equipment re-circulates to the bottom of the tube bundle. 

After acquiring enough heat of vaporization, the saturated water leaves the boiler as 

saturated steam.  

Since the primary heavy water contains radioactive particles and is isolated from the 

feedwater only by the U-tube walls, the alloy U-tubes form part of the primary boundary 

for isolating these radioactive particles. It is, therefore, important that the U-tubes be 

maintained defect-free so that no breaks will occur in the U-tubes to contaminate the 

feedwater. However, to date steam generators in nuclear power plants have experienced 

varying degrees of under-deposit pitting corrosion (Millett, 1998) which is a highly 

undesirable event. Therefore, pitting corrosion is our main concern in this thesis and will 

be discussed next. 

 

1.2 Motivation 

Pitting corrosion is a form of localized corrosion and typified by formation of cavities 

resulting from local metal dissolution within a passivated surface area (Galvele, 1983). 

Once initiated, the pitting corrosion can lead to rapid penetration at small discrete areas 
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and cause failure due to perforation, although the total corrosion, measured by weight 

loss, might be very negligible.  

Eddy current tests of the tubes have indicated that the pitting corrosion occurs on 

tubes near the tubesheet at levels corresponding to the levels of sludge that accumulates 

on the tubesheet (Maruska, 2002). The sludge is mainly from oxides and copper 

compounds along with traces of other metals that have settled out of the feedwater onto 

the tubesheet. The correlation between sludge levels and the pit location strongly suggests 

that the sludge deposits provide a site for concentration of a phosphate solution or other 

corrosive agents at the tube wall that result in pitting corrosion (Jones, 1996).  

Therefore, an effective life-cycle management of steam generators, including both 

effective intervention methods and accurate prediction of pitting damages, is in great 

necessity for nuclear power plants to manage the pitting corrosion problems. Current 

intervention methods include water lancing and chemical cleaning, i.e., removal of the 

deposits in the steam generators (Maruska, 2002). 

To predict the pitting damages, we need either a mechanistic model or an empirical 

model. Unfortunately, the under-deposit pitting corrosion is a complex process of which 

the physical-chemical mechanism has not yet been well understood. No mechanistic 

model is available. Instead, empirical models may be built based on on-site observational 

data (the number of pits and their sizes) during different inspection outages. But this is 

also a very challenging problem. First of all, both the generation and growth of pits are of 

random nature. Moreover, as a localized damage, the pits are usually very difficult to 

detect. Therefore, the probability of detection (POD) should be considered. When a pit is 

detected, the measurement of its size suffers from measurement errors. The measurement 
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uncertainties become even worse for in-service inspections, due to the limited access, 

tight time budget and the existence of sludge deposit. 

To accurately quantify risks associated with the pitting corrosion and facilitate a 

successful risk-based life cycle management of steam generators, the need for an 

advanced probabilistic model that takes into account the various uncertainties of the 

pitting corrosion from in-service inspection is therefore compelling. 

 

1.3 Objectives and Scope 

The thesis mainly focuses on pitting corrosion and is aimed at developing a probabilistic 

model of pitting corrosion for life-cycle management of steam generators. The inherent 

randomness of pitting corrosion and POD and measurement errors of the in-service 

inspection tools are to be integrated in the proposed model. In the thesis a statistical 

approach is developed to estimate the parameters of the proposed model. The approach 

deals with the pit generation and pit growth in a systematic way and its parameters are 

estimated using a Bayesian methodology. In particular, a Markov chain Monte Carlo 

simulation technique is developed to estimate the model parameters. The model is used to 

estimate the number and size of pits for steam generators. It is also used to estimate the 

distribution of maximum pit depth, which is one of the major decision-making parameters 

in life-cycle management program of steam generators. 
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1.4 Organization 

This thesis is divided into six chapters including this introductory one. In Chapter 2, 

background information of the physical-chemical mechanism of corrosion and pitting 

corrosion is introduced. Existing probabilistic models and statistical methodologies of 

pitting corrosion are also reviewed. In Chapter 3 a probabilistic model of pitting 

corrosion that integrates all ingredients of associated uncertainties is formulated. Then the 

necessity of the Bayesian methodology is discussed.  Chapter 4 introduces basic concepts 

and algorithms of the Markov Chain Monte Carlo simulation. Simulation experiments are 

performed to verify the behavior of the method and to validate the MATLAB code 

developed by the author. In Chapter 5, a case study of in-service inspection data from a 

steam generator is undertaken. Major findings of the thesis are concluded in Chapter 6, 

with future research topics recommended.  

 

.  
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Chapter 2 

Literature Review 

This chapter reviews basic concepts of pitting corrosion and existing literature on 

probabilistic modeling of pitting corrosion. Since most pitting corrosion processes are 

electrochemical reactions that involve transfer of electronic charges (Jones, 1996), it is 

necessary to begin with a brief discussion on the electrochemical basis of corrosion. 

 

2.1 Principle of Pitting Corrosion 

2.1.1 Corrosion as an Electrochemical Process 

Consider an example of a metal, denoted by M, corroding in hydrochloric acid solution 

(Figure 2.1). In ionic form the reaction is expressed as 

M + nH+ + nCl- → Mn+ + nCl- + (n/2)H2 (2.1) 

Eliminating Cl- from both sides, (2.1) gives 

M + nH+ → Mn+ + (n/2) H2 (2.2) 

This reaction can be further separated as two electrode, or half-cell reactions as 

Anodic reaction:               M → Mn+  + ne- (2.3a) 

Cathodic reaction:             nH+ + ne- → (n/2) H2 (2.3b) 

Reaction (2.3a), known as the anodic reaction, is an oxidation in which the valence of the 

metal M increases from 0 to +n by liberating electrons. The other reaction (2.3b), known 
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as the cathodic reaction, is a reduction in which the oxidation state of hydrogen decreases 

from +1 to 0, consuming electrons. 

 

H+

H+

H2

Mn+

e-

Anodic Reaction

Cathodic Reaction

Metal Electrolyte (HCl Solution)

Anode

Cathode H+

H+

H+

M          Mn+ + ne-

2H+ + 2e-          H2

Mn+

e-

ne-

H+

Mass Transport
(diffusion, etc.)

Charge Transfer

 

Figure 2.1: Corrosion of metal M in hydrochloric acid solution 

 

Thermodynamics and electrochemical kinetics are the foundations of corrosion 

study. While the former gives an understanding of the energy changes involved in an 

electrochemical reaction and hence determines the spontaneous direction for the reaction, 

the latter provides basis of predicting the corrosion rate, which is often our major 

concern.  

 9



 

According to thermodynamics, for any electrochemical reaction such as equation 

(2.1), there is always a change of free energy associated with it. The fundamental 

relationship between the free-energy change, GΔ , and the electrochemical potential, E , 

is expressed as (Jones, 1996): 

  (2.4) nFEG −=Δ

where  is the number of electrons that is exchanged in the reaction, and  is Faraday’s 

constant, 96,500 coulombs per mole. The potential E is the summation of the two half-

cell potentials, ea and ec, for the corresponding anodic and cathodic reactions. The half-

cell potentials can be determined only by experiments with a common reference electrode 

(e.g., the standard hydrogen electrode) in a solution of standard concentration. These 

potentials are called standard electrode potentials, which should be adjusted for actual 

concentration through the so-called Nernst equation (Jones 1996). The negative sign in 

equation (2.4) is used to conform to the convention that a positive potential results in a 

negative free-energy change for a spontaneous reaction. The spontaneous reaction 

direction is the direction of which the ΔG is negative. The more negative the value of 

, the greater the tendency for the reaction to go.  

n F

GΔ

A large negative  does not necessarily mean a high corrosion rate, however. To 

estimate the corrosion rate, we need to study the reaction kinetics. Similar to the standard 

half-cell potentials in thermodynamics, a fundamental quantity for reaction kinetics is the 

exchange current density, the rate of oxidation or reduction at an equilibrium electrode 

expressed in terms of current per unit of area. The exchange current density can also be 

determined only by experiments. Note when the electrodes are in equilibrium state, no 

appreciable corrosion will occur. When a metal is corroding in an aqueous environment, 

GΔ
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the potential of the metal will no longer be at an equilibrium value. This deviation from 

equilibrium half-cell electrode potential ea or ec is called polarization. It is the 

polarization that causes a net surface reaction rate.  

There are two types of electrochemical polarization, activation and concentration, in 

any electrochemical cell. The effect of the activation polarization is expressed by the 

Butler-Volmer equation as 

( 0log /act i iη β= )  (2.5) 

where ηact is the polarization or potential change, i0 the exchange current density in 

equilibrium, i the actual current density, and β known as the Tafel constant. The 

activation polarization can occur at both the anode and cathode. 
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Figure 2.2: Potential-current density relationship in electrochemical kinetics 
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When the cathodic reagent at the corroding surface is in short supply, a concentration 

polarization will appear according to the Nernst equation. As shown in Figure 2.1, the 

hydrogen ions are depleted at the surface, causing a decrease of cathodic potential. The 

concentration polarization is a function of current density as 

(log 1 /conc Lk iη = − )i  (2.5) 

where ηconc is the concentration polarization, k a constant, and iL the limiting current 

density, depending upon the diffusivity of the reacting species.  

Corrosion rates can be determined by plotting the polarization curves of the two half-

cell electrodes, as shown in Figure 2.2. The cross point of the anodic and cathodic curves 

correspond to the corrosion potential Ecor and corrosion current density icor. Figure 2.2 

also shows the effect of the concentration polarization. Without the concentration 

polarization in the cathode, the cross point would be the grey one, giving higher corrosion 

potential E’cor and current density i’cor. 
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Figure 2.3: Passivity of metal corrosion 
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It seems from Figure 2.2 that the corrosion rate could increase as long as the 

corrosion potential and anodic polarization increase. But this is not true. As a matter of 

fact, in many metals including iron, nickel, chromium and titanium, the corrosion rate 

decreases above some critical potential as shown in Figure 2.3. This critical potential is 

called passivity potential, Epass, while the corrosion resistance above Epass despite a high 

anodic polarization is defined as passivity. Passivity is caused by formation of a thin, 

protective, corrosion-product surface film that acts as a barrier to the anodic dissolution 

reaction. At higher potential, the passive film breaks down and some localized corrosion 

may occur, one type of which is the pitting corrosion that is to be discussed next. 

 

2.1.2  Stages of Pitting Corrosion 

Pitting corrosion as a localized attack of metal surface is a complex process with a 

sequence of stages that includes: (1) pitting initiation or nucleation, (2) meta-stable 

pitting, (3) stable pitting and (4) repassivation or stable pit death (Strehblow, 2002).  

The different stages of pitting corrosion can be best explained in connection with its 

potential dependence, as shown in Figure 2.4. This potential current curve is measured by 

electrochemical methods which are conducted by applying potentials stepwise 

(potentiostatically) and recording the resulting current. Starting with a protective passive 

film on the metal surface, with the electrochemical potential increasing, the passive film 

breaks down and pitting corrosion is initiated. At lower potentials, pit initiation is 

followed by rapid repassivation. This stage is usually referred to as metastable pitting. 

The resulting current transients differ widely with respect to the peak current height as 

well as the lifetime. Increasing the potential generally leads to larger current transients 
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with higher peak currents and longer lifetimes, indicating an extended pit growth period, 

as shown in the right panels of Figure 2.4. Above a certain potential or potential range, a 

transition to stable pit growth occurs. Even above the pitting potential, repassivation may 

still occur, showing the stochastic character of localized corrosion processes. 

 

 

 

Figure 2.4: Typical potential curve showing the different stages of pitting corrosion (from Bohni, 

2000) 
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2.1.3 Under-deposit Pitting in Steam Generators 

To date the mechanism of pitting initiation is not well understood. Despite this, some 

reasonable explanations can still be made for the pitting corrosion in steam generators 

tubed with different alloys. This pitting is more accurately described as outside surface 

under-deposit corrosion (Jones, 1996), because most of the pits have been found at the 

tubesheet and alloy tubes under sludge pile accumulated at the secondary side of the 

steam generators.  

 

pit

M

M2+

H+

M(OH)2 MS
Cu

Cl-

O
H

-

S2+

O2

e-

Cu2+

Deposit

Feedwater

Tubesheet or Tubes

 

Figure 2.5: Schematic mechanism of the occluded cell in under-deposit pitting  

 

The mechanism of under-deposit pitting initiation is schematically shown in Figure 

2.5 (Jones, 1996). The deposits on the outside surface include oxide, hydroxide, and 

sulfide compounds of several metals such as copper, nickel, chromium and iron. An 
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important common feature of these deposits is the electrical conductivity. Because of this, 

the outside surface of the deposits can serve as the cathode for reduction of dissolved 

oxygen and other dissolved oxidizers from the bulk solutions. The cathodic reactions in 

the steam generator units include a deferential aeration cell, defined by 

O2 + 2H2O + 4e- → 4OH- (2.6)  

as well as the reduction of copper ions  from leakage of the condenser tubes: 

Cu2+ + 2e- →  Cu (2.7) 

Moreover, local boiling on the tubesheet or tube surfaces concentrates aggressive species, 

such as chlorides and sulphides due to condenser leakage and water treatment programs, 

at sludge pile.  The cell electrolyte within the pit is acidified by hydrolysis of chloride or 

sulfide as 

M2+ + 2H2O + 2Cl- → M(OH)2 + 2HCl (2.8) 

which produce local pH reductions in favor of pit initiation (Bardal, 2004).  

So far, we have qualitatively described the physical process of pitting corrosion 

based mainly on the electrochemical theory. But to quantify the pitting process, we need 

to consider its stochastic nature. For example, the pitting potential pitE  of a metal is not a 

fixed value --- actually large scatter in data has been found common even under well-

control laboratory conditions (Shibata, 2000). Because of the existence of metastable 

stage as well as the repassivation in both metastable and stable stages, the initiation and 

growth of pits are of stochastic nature. Therefore, stochastic models are preferred in 

modeling the process of pitting corrosion. Next we are to review the existing literature on 

probabilistic modeling of pitting corrosion. 
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2.2 Probabilistic Modeling of Pitting Corrosion 

Statistical and stochastic aspects of pitting corrosion were first studied in the late 1970s 

(Shibata, 1976; Shibata and Takeyama, 1977). In large-scale engineering structures, the 

measurement of pit depth and frequency is time consuming and expensive and hence, 

only the deepest pits is studied since they cause the failure of the system. Thus, the 

extreme value statistics developed by Gumbel (1958) are widely used in the application 

of maximum pit depth distribution. Shibata (1991, 1996) reviewed the historical 

background of the extreme value statistics and the development in the theory and 

application to corrosion.  

Extreme value distributions include three types of asymptotic distributions for an 

infinite number of samples: 

Type I:   Gumbel distribution  [ ]( )( ) ~ exp expF x x− −  

Type II:  Cauchy distribution   ( )( ) ~ exp kF x x−−  

Type III: Weibull distribution  [ ]( )( ) ~ exp exp kF x xω− −  

where x  is a random variable representing the maximum pit depth, and  and k ω  are 

constants. 

When corrosion data for the maximum value are collected, one must decide which 

type of extreme value distribution should be fitted to the observed data. For this purpose, 

several methods for a goodness-of-fit (GOF) test, including chi-square test, 

Komologorov-Simirnov test, correlation coefficient test, and others, can be used. A more 

systematic way for the GOF test, proposed by Shibata (1996), is to use the shape 

parameter of a generalized extreme value (GEV) distribution defined by: 
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1/

( ) exp 1
kxF x k μ

σ
−⎛= − −⎜

⎝ ⎠
⎞
⎟ ,       for   kx kσ μ≤ +  and 0k ≠  (2.9) 

where μ  and σ  are the location and scale parameters, respectively, and  is the shape 

parameter. The shape parameter is an indicator of the distribution type by the sign and the 

absolute value: when , Type I; 

k

0k = 0k < , Type II and , Type III. 0k >

However, the extreme value statistical theory suffers from some limitations. It is 

static as the time variable is not involved. Furthermore, the assumption for extreme value 

theory is that the maximum pit depth is independent, which may not be realistic. 

Recently, Melchers (2004) studied the pitting corrosion of mild steel in marine 

immersion environment and presented new field data. A multiphase phenomenological 

model was proposed for general pit depth as a function of period of exposure. Later he 

found a bi-modal probability distribution may fit the data better. This finding casts doubts 

on the conventional use of extreme value theory in representing the uncertainty 

associated with maximum pit depth (Melchers, 2005). He suggested high dependence of 

maximum pit depth should be the major reason for such a contradiction.  

Shibata (1996) also reviewed the model for pitting generation, for which a 

homogeneous Poisson process was discussed. Associated with the Poisson distribution of 

the pit number, an exponential distribution was derived for induction time between two 

successive occurrences of new pits. Further experimental data on the distribution of the 

induction time for pit generation revealed that more complicated stochastic models 

should be presented to fit the data. Thus, Shibata proposed another two types of models 

as follows: 

 Pure birth stochastic models, only considering pit generation events; 
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 Birth and death stochastic models, assuming stochastic pit generation and 

subsequent pit repassivation processes.  

The latter models seem to be fitted more satisfactorily to the various cases studied 

experimentally. 

Provan and Rodriguez (1989) applied a nonhomogeneous, continuous-time Markov 

chain to describe the growth of the maximum pit depth in pitting corrosion systems. They 

also incorporated this Markov model into a failure control system designed to enhance 

the reliability of structures where pitting corrosion occurs (Rodriguez and Provan, 1989).  

Let  denote the maximum pit depth at time t . Suppose that when , the 

component fails due to the pitting corrosion. Assume that the range [  is divided into 

(usually equal-distance) intervals, and each interval is labeled as a discrete state of the 

pit depth. Then the growth of pitting corrosion follows a Markov Chain if the following 

equation holds: 

( )H t ( )H t h≥

0, ]h

n

( ) ( )1 1 0 0 1Pr , , , Prt t t t tH j H i H k H i H j H+ − += = = = = = = i

i

 (2.11) 

That is, given the present state tH = , the future 1tH + j=  is conditionally independent  of 

the past . A continuous-time Markov chain is fully characterized by 

its transition intensity matrix 

1 0, ,tH k H− = 0= i

⎥

( ) ( ) ( ) ( )
11 12 13 1

( ) ( ) ( )
22 23 2

( )

( ) ( )
1 1 1

( )

0
0 0
0 0
0 0 0 0

t t t t
n

t t t
n

t

t t
n n n n

t
nn

q q q q
q q q

Q
q q

q
− − −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢=
⎢ ⎥
⎢ ⎥
⎢ ⎥=⎣ ⎦

 (2.12) 
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where ( )( )
1Prt

ij t tq H j H i+= = = j for i <  and ( ) ( )

1

n
t t

ii ij
j i

q q
= +

= − ∑ , 1, , 1i n= − . Note that 

 as state  is the absorbing state, i.e. once the pitting depth reaches the state “ n ”, 

the component fails and it can never revert to the early states automatically. According to 

Kolmogorov-Chapman equation of Markov chains, the conditional probability 

distribution satisfies the following differential equations: 

( ) 0t
nnq = n

( ) (,
( ) ,

P t
Q t P t

t
τ )τ

∂
= −

∂
 (2.13) 

Sheikh et al. (1990) treated pitting corrosion as a time-dependent damage process 

characterized by an exponential or logarithmic pit growth and demonstrated that the time-

to-first-leak for the pipeline is distributed according to a Weibull extreme value reliability 

model. 

Mola et al. (1990) proposed a stochastic model applied to a process where pits 

initiate at reacting inclusions in the metal yielding the development of quasi-

hemispherical pits. The predictions of the model were compared to experimental data 

obtained from 361SS specimens in a borate-phosphate buffer containing sodium chloride. 

 

2.3 Summary 

Corrosion is an electrochemical reaction in nature. Pitting corrosion is a localized form of 

corrosion and consists of two major steps: pitting generation processes and pitting growth 

processes. Both steps are stochastic in nature due to the existence of meta-stable pitting, 

uncertain pitting potential and varying repassivation of stable pits. Several probabilistic 
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and statistical models have been proposed in the literature for modeling the pitting 

corrosion. However, a model validated by field data is still lacking. 
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Chapter 3 

Bayesian Modeling of Pitting Corrosion 

In this chapter a probabilistic model of pitting corrosion is presented to characterize the 

inherent randomness of the pitting process and measurement uncertainties of the in-

service inspection (ISI) data. A Bayesian method is proposed for estimating the model 

parameters. When the data is limited and contaminated by measurement uncertainties, 

Bayesian methodology is a good alternative for calibrating and updating the model. The 

proposed model is used to estimate the distribution of maximum pit depth, which is the 

main interest of the pitting corrosion model.  

The formulation of the problem and model specifications are discussed in Section 3.1 

and 3.2. Likelihood function of model parameters for the ISI data is derived in Section 

3.3, which is followed by discussions of the Bayesian method and prior distributions in 

Section 3.4. The chapter is concluded with a few remarks on Bayesian computation, 

which is the major topic of Chapter 4. 

 

3.1 Formulation of Problem 

For the alloy tubes suffering from pitting corrosion, actual pits occur randomly on the 

tube surface with a finite number and different sizes. In this thesis, a pit is treated as a 

one-dimensional damage, i.e., the pit depth. The modeling of the pits includes both the pit 

number and the pit size. An ideal model would relate the two quantities to the dynamics 

of pitting generation and pitting growth. But such a model needs more, reliable ISI data to 

calibrate, which is lacking in our study. Rather, we pragmatically take a static viewpoint. 
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That is, the number of new pits between two successive inspection campaigns is assumed 

to be a random variable, and once the pits occur, they do not grow so that they can be 

modeled by a random variable. Once these two random variables are well characterized, 

the distribution of the maximum pit size can be easily derived. 

But the problem is confounded by the measurement uncertainties of the ISI tools for 

steam generators. The measurement uncertainties consist of the uncertainty of detection 

and measurement errors of pit sizes when detected (Figure 3.1). Because of limited 

detection capability of the inspection tools, some pits especially those with small size 

may not be detected. For those having been detected, the actual readings of their depth 

from the tool suffer from measurement errors.  

The uncertainty of detection is often characterized probability of detection (POD). 

Let H denote the pit depth and use a binary random variable  to indicate whether or not 

a pit is detected, i.e., 

D

1,   if the pit is detected;
0,  otherwise.

D
⎧

= ⎨
⎩

 (3.1) 

The POD is then defined as a conditional probability depending on the pit depth:  

POD( ) ( 1 )h P D H h= = =  (3.2) 

Note that the POD function is not a cumulative distribution function, although for most 

modern ISI tools, POD(h) is 0 when h is 0 and it is 1 when h is big enough. In Figure 3.1 

a step function is plotted for illustration purpose only. It is shown that the pits cannot be 

detected when the size is less than a certain threshold value; greater than that, the pits can 

be 100% detected. More discussions of the POD function have been presented in Section 

3.2.4. 
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Figure 3.1: Measurement Uncertainties of ISI Data 

 

After the detection with uncertainty, the actual pits are divided into two groups: the 

detected pits, denoted by ( )1 2 ,, , ,
dd d d nh h h=dh

)

,

,

 and the undetected pits, denoted 

by  where nd and nu denote the number of detected and undetected 

pits, respectively. The actual total number of pits is denoted by n and clearly n = nd + nu. 

( 1 2 ,, , ,
uu u u nh h h=uh

For the detected pits, the measured pit depth, denoted by ( )1 2 ,, , ,
dm m m nh h h=m ,h  

differs from their actual depth by an additive random measurement error e, i.e., 

m dh = h + e  (3.3) 

hd
hm

Measurement Error

POD
h

P(D=1|h)

hd

hu

hd

hm

Actual Pits Measured Pits
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where e = (e1, e2, … end). In Figure 3.1, the measurement error with a normal distribution 

is illustrated as an example.  

To summarize the problem, from the ISI, we obtain the number and depth 

measurements of detected pits nd and hm. Based on these data, we want to estimate the 

actual number of pits n and the actual pit depth h. The POD and measurement errors may 

be available as background information from the inspection tools. Our final goal is to use 

these estimations to estimate the maximum pit depth while eliminating the effects of POD 

and measurement errors. 

 

3.2 Model Specifications 

3.2.1 Assumptions 

Several assumptions are made as the following: 

(i) The actual pit numbers N for an inspection campaign is a random variable and 

follows a Poisson distributions with mean λ, i.e.,  

           ( )Pr
!

n

N n e
n

λλ −= =  (3.4) 

            for n = 0, 1, 2, …. 

(ii) The actual sizes of pits  are independent random variables and 

they follow a Weibull distribution.  

1 2, , , NH H H

(iii) The pit number Ni and pit size Hi are independent. 

(iv) A logistic function with threshold is assumed for the POD. 
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(v) The measurement errors, e1, e2, …, are assumed to be independent and 

identically Gaussian distributed with zero mean and known variance. 

Next we discuss the assumed distributions and functions in detail. 

 

3.2.2 Weibull Distribution 

A Weibull distribution is defined with the probability density function (PDF) as follows: 

1( ) exp( )f h h hβ βγβ γ−= − ,      (3.5) 0h >

in which 0γ >  is the scale parameter and 0β >  is the shape parameter that controls the 

shape of the PDF. 
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Figure 3.2: PDF of the Weibull distribution with different shape parameters 
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The reason for the Weibull distribution as the distribution of pit depth is because of 

its flexibility. It can mimic the behaviour of other statistical distributions such as the 

normal and exponential distributions. Figure 3.2 shows the effect of the shape parameter 

on the shape of the Weibull PDF, where 4γ =  fixed. Depending on the value of β, the 

shape of the PDF takes a variety of forms. When 1β = , the Weibull distribution reduces 

to an exponential distribution whereas for 1β > , the Weibull distribution is of bell shape 

and approximates normal and log-normal distributions. 

 

3.2.3 Probability of Detection 

A logistic function with threshold is used for POD: 

*

*

1 exp( )1 ,    if 
1 exp ( )POD( )  

0,                                       otherwise

qh h s
q h s hh

⎧ + −
− >⎪ ⎡ ⎤+ − −= ⎨ ⎣ ⎦

⎪
⎩

 (3.6) 

where  is the threshold of detection, introduced previously. s

Figure 3.3 displays the POD curves with different values of h* where  and 

. It is shown that when h = h*, the POD at three cases are all about 0.2. Hence,  

can be considered as a location parameter indicating the starting point of “good” 

detection.  

0.05s =

20q = *h

Figure 3.4 displays the POD curves with different values of  where  and 

. Clearly, q  is an index measuring the quality of detection. Bigger q implies 

better detectability. 

q 0.05s =

* 0.2h =
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Figure 3.3: POD curves with different values of h* 
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Figure 3.4: POD curves with different values of q 
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3.2.4 Model of Measurement Errors 

A normal distribution of the measure error  is presented as following: E

2

2

1( ) exp
22E

EE

ef e
σσ π

⎛ ⎞
= −⎜

⎝ ⎠
⎟  (3.7) 

where mean is zero and variance is 2
Eσ . 
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Figure 3.5: Measurement error curves with different values of σE 

 

Figure 3.5: displays the measurement error curves with different values of Eσ . The 

standard deviation Eσ  describes the width of the bell shape of the normal distribution. 

There is no doubt that a smaller standard deviation means more accurate measurement. 
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3.2.5 Distribution of Maximum Pit Depth 

Let us denote the maximum pit depth by Hmax. Based on the assumptions made above, its 

cumulative distribution function can be derived as 

( ) ( ) ( ) (

[ ]

)

[ ]{ } ( ){ }

max max
01

0

( ) Pr Pr Pr Pr

( ) exp 1 ( ) exp exp
!

N n
H i i

ni

n
n

H H
n

F h H h H h H h N n

F h e F h h
n

λ βλ λ λ

+∞

==

+∞
−

=

⎡ ⎤
⎡ ⎤= ≤ = ≤ = ≤ =⎢ ⎥ ⎣ ⎦

⎣ ⎦

= = − − = −

∑

∑

∩

γ−

 (3.8) 

Equation (3.8) shows that the CDF of the maximum pit depth is a function of the three 

parameters λ, γ and β.  

 

3.3 Likelihood function 

Maximum likelihood method is considered to be a classic way to estimate the unknown 

model parameters based on the observed or measured data. In our case, the parameters 

include: the scale parameter γ and shape parameter β of fH(h), the intensity parameter λ of 

the Poisson distribution for the number of pits. Although we are not going to explore the 

possibility of ML method, we derive the likelihood function in this section as it is one of 

the two components of the Bayesian inference, which will be discussed in the next 

section.  

Let us denote the model parameters by a vector ( ), ,γ β λ⎡ ⎤=⎣ ⎦ξ= θ

d dN n

. Given a sample 

of data , of the measured pits from an inspection campaign, the 

likelihood function of the model parameters is defined as the joint probability density 

function of Hm at the value of hm and the probability of  

1 2 ,, , ,
dm m m m nh h h=h

= , i.e., 
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( ) (1 2 ,( , ) , , , Pr
m dm d m m m n d dL n f h h h N n= ×Hξ h )=

)
m

 (3.9) 

The product of the two terms results from assumption (iii) in Section 3.2.1. Since the 

actual pit sizes Hi (i = 1, …, nd) are independent and so are the measurement errors, the 

measured pit sizes Hmi are also independent. Therefore, we have 

( ) (1 2 ,
1

, , ,
d

m d

n

m m m n H mi
i

f h h h f h
=

= ∏H  (3.10) 

Next we derive the PDF of measured pit size ( )
mHf h  and probability of observed number 

of pits .  ( )Pr d dN n=

According to (3.3), Hm = Hd + e, the PDF of Hm is the convolution of the PDF of Hd 

and the measurement error e, i.e., 

0
( ) ( ) ( )

m dH m H E mf h f y f h y
∞

= ∫ dy−  (3.11) 

in which fE(.) can be found in (3.7). But the PDF of the detected pit depth  is a 

conditional probability, which is expressed as 

dH

( )
( )

D=1 ( )
( ) ( 1)

Pr D=1d

H
H H

f H h f h
f h f h D

=
= = =  (3.12) 

The first term of the numerator is just the POD; c.f. (3.2). The denominator is the 

unconditional pit detection probability, which depends on the chosen actual pit depth 

density ( )Hf h  and is the function of θ  as 

0
( ) Pr( 1) POD( ) ( )df Hp D h f

∞
= = = ∫θ h h  (3.13) 

Then the Equation (3.12) turns to  
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( )
1( ) POD( ) ( )

dH
f

Hf h h
p

=
θ

f h  (3.14) 

in which fH (h) and POD(h) can be found in (3.5) and (3.6), respectively. Substituting 

Equation (3.14) into Equation (3.11), we have 

( )
0

0

0

( ) ( ) ( )1( ) ( ) ( ) ( )
( ) ( )

m

H E m
H m H E m

f H

POD y f y f h y y
f h POD y f y f h y y

p POD y f y y

∞

∞

∞

−
= − = ∫

∫
∫

d d
θ d

(3.15) 

For the probability of the number of detected pits, we first notice that the number of 

total pits follows a Poisson distribution. Given the number of total pits N = n, the number 

of detected pits is just a Binomial distribution with “success probability” (here it is the 

detection probability) , denoted by ( )fp θ ( )( ). , θfBi n p . Therefore, we have 

( ) ( ) ( )( )

( ) ( )

0

0

Pr Pr ,

1
!

d d

d d d f
n

n n n

f f
n d

N n N n Bi n n p

n
e p p

nn
λλ

∞

=

∞ −−

=

= = =

⎛ ⎞
⎡ ⎤ ⎡ ⎤= −⎜ ⎟ ⎣ ⎦ ⎣ ⎦

⎝ ⎠

∑

∑

θ

θ θ
n

 (3.16) 

Substituting both (3.15) and (3.16) into (3.9), we could finally get the likelihood function 

of the parameters γ, β and λ.  

Now the difficulty of using the maximum likelihood method is clear. First of all, the 

likelihood function is very complicated. Although the pit number and pit sizes are 

assumed independent, the parameters for these two random quantities are intertwined by 

the POD in terms of  and hence λ cannot be separately estimated from the 

estimation of γ and β. Secondly, the evaluation of the likelihood function involves two 

integrations and infinite summations. Although numerical quadrature and truncated 

summations can be used for approximation, the maximization procedure could be easily 

( )fp θ
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ruined by the round-off errors and hung up without convergence. Thirdly, the ISI data is 

often limited. Even in the case that a maximum likelihood estimate of the parameters can 

be obtained, their confidence intervals could be so wide that a point estimate is of very 

little practical significance.  

In contrast, Bayesian method is a good alternative for this situation. As we can see 

next, the integration can be avoided in Bayesian method by a data augmentation 

technique. Furthermore, the information from the limited data is enhanced by prior 

information expressed by prior distributions of the parameters. Also the presentation of 

the estimation as a posterior distribution seems more reasonable for decision-making in 

the life-cycle management.  

 

3.4 Bayesian Choices 

3.4.1 Basic Concepts 

From the Bayesian perspective, the estimation of unknown model parameters 

( 1 2, , , q )ξ ξ ξ=ξ …  is an update of its prior distribution based on information inferred 

from the given data through the assumed probabilistic model (Robert 2001). The prior 

distribution of the parameters is denoted by ( )π ξ  and the information acquired from the 

data D is often expressed by the likelihood function ( )L ξ D . The Bayes rule yields a new 

distribution for the parameters as 

( )
( )

( )
( )

( )

L
p

L d

π

π
=

∫
ξ ξ D

ξ D
ξ ξ D ξ

 (3.17) 
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 And the new distribution is called the posterior distribution of the parameters. Note the 

denominator in (3.17) does not depend on ξ  and, with fixed data, is a normalization 

constant. Hence quite often, it is sufficient to express the posterior as the following non-

normalized form: 

(( ) ( )p Lπ∝ )ξ D ξ ξ D  (3.18) 

Once we have the posterior distribution, the inference about the parameters can be 

made from it. For example, the posterior mean of a function of ξ , ( )g ξ , is 

( ) ( )
( )

( ) ( )
( )

( )

g L
E g

L d

π

π
= ∫

∫
dξ ξ ξ D ξ

ξ D
ξ ξ D ξ

 (3.19) 

Also the marginal distribution of a component of the parameter vector, say 1ξ , can be 

evaluated as 

( ) ( )
( )

1 1 2
1

1 1 1 2

( )

( )
q

q

L d d
p

L d d d

π ξ ξ ξ ξ
ξ

π ξ ξ ξ ξ ξ
= ∫

∫
D

D
D

 (3.20) 

For the pitting corrosion problem, we have already derived the likelihood function 

for the parameters in the proposed model. In order to use the Bayesian method, we need 

to specify the prior distributions, which are to be discussed next. 

 

3.4.2 Prior Distributions 

There are many ways to specify the prior distributions, including elicitation of expert 

opinion, non-informative priors, conjugate priors, etc. Among them, conjugate prior 

distributions are often preferred for both conceptual and computational reasons. We shall 
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not discuss the choice of priors in detail; rather, we simply list the prior distributions we 

choose for the analysis. For more discussions of this issue, refer to, for example, Aven 

(2003), Robert (2001), Gelman et al. (2004).  

For the intensity parameter λ for the number of pits, a Gamma distribution with 

parameters a and b is selected, i.e., 

1

( )
( )

a a
bb e

a
λλπ λ

−
−=

Γ
 (3.21) 

This prior is considered conjugate with the data, which are assumed a Poisson 

distribution. If the actual number of pits were observed as n, then the posterior 

distribution of λ would be 

( ) ( ) ( ) 1 ( 1)Pr a n bp N n e λλ π λ λ + − − +∝ = ∝  (3.22) 

which is another Gamma distribution with parameters (a + n) and (b + 1). 

The parameters of the Weibull distribution for the actual pit depth include the scale 

parameter γ and shape parameter β. For γ, the following Gamma distribution with 

parameters A and B is used as the prior distribution: 

1

( )
( )

A A
BB e

A
γγπ γ

−
−=

Γ
 (3.23) 

For β, we consider a Beta distribution as the prior distribution with the parameters , , r t

lβ  and rβ :  

( )

1 1
( )( )

( ) ( )

r t

l r

r l r l r l

r t
r r

β β β βπ β
β β β β β β

− −
⎛ ⎞ ⎛ ⎞− −Γ +

= ⎜ ⎟ ⎜Γ Γ − − −⎝ ⎠ ⎝ ⎠
⎟  (3.24) 
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for l rβ β β< < . It can be shown that the posterior distribution of γ given β is again a 

gamma distribution and thus the gamma prior is conjugate, whereas the prior of β is not 

conjugate.  

 

3.5 Remarks 

Equations (3.19) and (3.20) involve high-dimensional integrations. Although conjugate 

priors lead to analytical solutions for the posterior distribution, this is only for rare 

applications. More often than not, analytic evaluations of the integrations in Equation 

(3.19) and (3.20) are just impossible, which may be the major disadvantage of a Bayesian 

method. Take the proposed pitting corrosion model for example, even we intentionally 

choose conjugate prior distributions as many as possible, the complicated likelihood 

function makes the posteriors no more conjugate. Fortunately, a newly developed 

simulation technique, named Markov Chain Monte Carlo, can effectively address the 

problems of Bayesian computation. This technique will be presented in Chapter 4. 
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Chapter 4 

Markov Chain Monte Carlo Method 

This chapter briefly reviews basic concepts of Markov chain Monte Carlo (MCMC) 

method at first. Then the iterative sampling procedure for the proposed model, presented 

in Chapter 3, is described. Simulation experiments are performed to illustrate the 

behavior of the Bayesian method. 

 

4.1 Introduction to MCMC 

In Bayesian statistics, high-dimensional integration is a challenging task, as discussed in 

Chapter 3. Monte Carlo (MC) simulation is an effective technique for such a task 

(Rubinstein, 1981). By drawing random samples from prescribed distributions, the 

integral can be estimated from sample statistics. More specifically, Monte Carlo 

simulation evaluates the following integration 

[ ]( ) ( ) ( )E g x g x p x dx= ∫  (4.1) 

by drawing Nsim samples { }, 1, ,tX t N= sim  from the distribution ( )p x  and then 

approximating it by 

1

1ˆ ( )
simN

t
tsim

g g
N =

≈ ∑ X  (4.2) 

Laws of large numbers ensure that the approximation can be made as accurate as desired 

by increasing the simulated sample size simN . When the samples { }tX  are independent, 

the variance of the estimate is  
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1ˆ( ) [ ( )]
sim

Var g Var g X
N

≈  (4.3) 

The square root of the variance is just the standard error of the estimate and is used for 

assessing the accuracy of the estimation. 

In general, drawing samples { }tX  independently from the distribution p(.) is not 

feasible, since p(.) can be quite non-standard. For example, the posterior distribution in 

equation (3.18) is only partially known. To completely portray the distribution, its 

normalization constant, which itself is an integral, needs to be evaluated.  In such cases, 

the conventional sampling methods such as inverse function methods are not applicable.  

However, to evaluate [ ]tE X  the { }tX  need not be independent. A stationary dependent 

sequence is as good as the independent one as long as the marginal distribution follows 

the prescribed distribution. One way of doing this is through a Markov chain having the 

distribution p(.)  as its stationary distribution. This method is called MCMC.  

MCMC is a general simulation technique based on drawing samples iteratively from 

proposed distributions and then correcting those draws in each step of the process to 

better approximate the target posterior distribution when this target distribution cannot be 

directly sampled (Gilks, 1996; Robert, 2001). The key to MCMC is to construct a 

Markov chain of which the stationary distribution is the specified posterior distribution 

and to run the simulation long enough so that the distribution of the current draws is close 

enough to this stationary distribution.  

A random sequence, { }0 1 2, , ,X X X , is Markovian when given tX , the next state 

1tX +  is conditionally independent of the history of the chain { }0 1 1, , tX X X −2 ,X , i.e., 
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( ) ( )1 1 1 0 1Pr , , , , Prt t t t tX X X X X X X+ − +=  (4.4) 

The probability ( 1Pr t t )X X+  is called transition probability and is abbreviated as  for ijP

( 1Pr t t )X j X i+ = = . To generate a sample sequence, we only need to specify the initial 

state and its transition probability. An important distribution of the Markov chain is its 

stationary distribution. A stationary distribution π satisfies 

( ) ( )ij
i

i P jπ π=∑  (4.5) 

in which the summation takes for all the state space i. There is a strict mathematical 

theory for the conditions of the transition probability for existence and uniqueness of the 

stationary distribution. For details, refer to Roberts (1996). 

The key reason that MCMC works is that, after some simulation steps, the Markov 

chain will gradually forget its initial state and eventually converge to its stationary 

distribution, which is the target distribution we want to sample. The proof of this 

convergence was presented by Gelman (2004) and will not be discussed here.  

Thus, after a sufficiently long burn-in of say  iterations, points bN

{ }; 1, ,t b simX t N N= +  will be stationary with the marginal distribution being 

approximately the target distribution. Discarding the Burn-in samples, we have 

1

1ˆ ( )
sim

b

N

t
t Nsim b

g
N N = +

≈
− ∑ g X  (4.6) 

We have to pay some price for the easier sampling, however. In addition to the 

discarded burn-in samples, the estimate (4.6) is less efficient than that in the independent 

case. Indeed, the variance of the estimate is  
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N N

tVar g X
N N N N

ρ

= + = +

= +

≈
−

⎧ ⎫⎛ ⎞⎪ ⎪⎡ ⎤= + −⎨ ⎬⎜ ⎟⎣ ⎦− −⎪ ⎪⎝ ⎠⎩ ⎭

∑ ∑

∑
 (4.7) 

where tρ  is the coefficient of correlation between ( )sg X  and ( )s tg X + . Hence, when 

0tρ >

0t

 the variance of the estimate is larger than that in the independence case in which 

ρ = .  

It is now clear that MCMC should be an effective simulation technique. Next we 

discuss how to construct the transition probability so that its stationary distribution is the 

target distribution. Two algorithms --- Gibbs Sampler and Metropolis-Hasting algorithm -

-- are discussed mainly through examples. Theoretical discussions of the algorithms are 

beyond the scope of the thesis and can be referred to, for example, Gilks et al. (1996), 

Roberts (2001) and Gelman (2004). 

 

4.2 Gibbs Sampler 

4.2.1 Description of Algorithm 

Gibbs sampler is also called alternating conditional sampling and it is suitable for cases 

where the conditional distribution can be easily sampled. Suppose the parameter vector θ  

includes d components or can be grouped into d sub-vectors, i.e., 1( , )dθ θ θ= . At each 

iteration t, rather than taking samples once for all components, the Gibbs sampler draws 

samples of each t
jθ  in turn from the conditional distribution given all the other 

components of θ , 1( t )j jp θ θ −
− , where 1t

jθ −
−  represents all the components of θ , except for 

 40



 

jθ , at their current values, i.e., 1 1
1 1 1( , , , , , )t t t t t

j j jθ θ θ θ θ 1
d

− −
− − += − . This algorithm is very 

effective when the parameters or some of the parameters are conditionally conjugate. For 

a simple example, suppose the prior distributions for the mean and variance of a Normal 

random variable are Normal and inverse Gamma, respectively. Then given the mean, the 

conditional posterior distribution for the variance is an inverse Gamma, whereas given 

the variance, the conditional posterior of the mean is a Normal distribution. Since the two 

conditional posterior distributions are both known, we could, if we want, draw samples 

using the Gibbs sampler. 

For many practical problems, however, not all but only a part of the conditional 

posterior distributions of the parameters are known and easy to sample directly from 

them. In those cases the Gibbs sampler is often combined with the Metropolis-Hastings 

algorithm, which will be discussed in the next section. 

4.2.2 Example: A Bivariate Normal Distribution 

Consider a bivariate normal random vector 

1

2

0 1
~ ,

0 1
X

N
X

ρ
ρ

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎡ ⎤
⎜⎜ ⎟ ⎜ ⎟ ⎢
⎝ ⎠ ⎣ ⎦⎝ ⎠ ⎝ ⎠

⎟⎥  (4.8) 

To take a sample of it, we can draw two independent random variates from the standard 

normal distribution and then take a linear transformation of the two variates. Instead of 

doing so, we here use a Gibbs sampler to take samples of the bivariate normal 

distribution. 

Given one component of the random vector, the other component is again a normal 

distribution. That is, 
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( )
( )

2
1 2 2 2

2
2 1 1 1

( ) ~ ,1

( ) ~ ,1

X X x N x

X X x N x

ρ ρ

ρ ρ

= −

= −
 (4.9) 

Using the Gibbs sampler, we start with a given points (x1
0, x2

0) and then use the above 

univariate, conditional normal distributions to take samples for x1 and x2 alternately. The 

effects of starting points will be eliminated along the increase of iteration steps, as 

illustrated in Figure 4.1 where the first 10 iterations of four different sample paths are 

plotted. Although they start at much dispersed points, the trend of convergence to the 

center area is common. 
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Figure 4.1: First 10 steps of the Gibbs sampler with four starting points 
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The first 500 steps of the four sample paths are plotted in Figure 4.2. It is clear that 

the sequences reach approximate convergence. Figure 4.3 shows the samples after 500 

steps and the contour of the bivariate normal PDF. The samples match the contour very 

well, meaning the stationary distribution obtained by the Gibbs sampler is the target 

distribution---bivariate normal. 
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Figure 4.2: First 500 steps of the Gibbs sampler with the four starting points 
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Figure 4.3: Samples from Gibbs sampler after 500 iterations 

4.3 Metropolis-Hastings Algorithm 

4.3.1 Description of Algorithm 

The Metropolis-Hastings (M-H) algorithm is a general method for constructing a Markov 

chain that draws samples from transition distributions for arbitrary posterior distributions.  

Consider generating a random draw θ  from the target posterior distribution ( )p θ . 

The M-H algorithm proceeds as follows: 

(i) Draw a starting point 0θ , for which . 0( ) 0p θ >

(ii) Given 1tθ − , sample a proposal *θ  from a jumping distribution (or proposal 

distribution) at time t , * 1( )t
tJ θ θ − .  

(iii) Calculate the ratio of the densities as 
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* *

1 1

( ) / ( )

( ) / (

t
t

t t
t

p J
r

p J

θ θ θ 1

*)θ θ θ

−

− −
=  (4.10) 

(iv) Generate a uniform random draw  from the interval between 0 and 1. u

(v) Set 

*

1

,        if min( ,1) 
,      otherwise

t
t

u rθ
θ

θ −

⎧ ≤⎪= ⎨
⎪⎩

. 

(vi) Repeat (ii) to (v) for . 1, 2,t =

Unlike the Gibbs sampler, the M-H algorithm take a new value of θ with probability 

. Another essential feature of the M-H algorithm is that the p(.)  is not necessarily a 

proper probability density function. Furthermore, the proposal distribution has to satisfy 

the following conditions: (1) we can quickly and easily generate random draws from the 

proposal distribution and (2) the proposal distribution should be distributed with the same 

range as the target distribution.  

1r ≤

This is very important as we have already seen that in Bayesian inferences the 

posterior distribution is known only up to a normalized constant. The unknown constant 

is cancelled out in equation (4.10). Because of this feature, the M-H algorithm becomes 

very attractive in Bayesian inference. 

 

4.3.2 A Gaussian Example 

To illustrate the effectiveness of the M-H algorithm, a simple Gaussian example is 

presented. Let θ  be a standard Normal random variable, i.e., θ ∼ Ν(0, 1). Instead of using 

the traditional independent sampling technique, here we use the M-H algorithm for 
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sampling. For illustration purpose, we choose the jumping distribution as 

.   ( )* 2
1~ ,0.5tNθ θ −

The sample sequence from the M-H algorithm is shown in Figure 4.4. After 500 

steps, the sequence can be considered stationary as neither the mean nor variance changes 

with the increase of the number of iterations.  
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Figure 4.4: Sample sequence of standard normal distribution from M-H algorithm 

 

Figure 4.5 compares the stationary sequence from the M-H sampling with the 

independent sequence sampled directly from the normal distribution. Although the 

sequence from the Markov chain looks very different from the independent sequence, the 

fitted PDF from the M-H sequence is as close as the independent sampling fits to the 

theoretical PDF. 
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Figure 4.5: Comparison of the M-H sequence with an independent sequence 

 

4.3.3 A Weibull Example: Hybrid Algorithm 

In this section we attempt to illustrate the idea of combining the Gibbs sampler with the 

M-H algorithm to sample a multi-dimensional posterior distribution through an example 

of a Weibull distribution. We call it a hybrid algorithm. 

Suppose we have a sample of data with size n, ( )1 2, , , nx x x… , from a Weibull 

distribution. Let the prior distribution of the scale parameter γ  be a Gamma distribution 

with the hyperparameters A = 2 and B = 0.1, as defined in Equation (3.23). Also let the 

prior distribution of the shape parameter β  be a Beta distribution with the 
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hyperparameters  and defined on the interval [2, 3r s= = 0, 5]l rβ β= = , as shown in 

Equation (3.24). Then it can be shown that the conditional posterior distribution of γ  

given β  is still a gamma distribution, i.e.  

( )
1

, ~
n

i

,i iGa A n B⎛ + +⎜x xβγ β
=⎝ ⎠
∑ ⎞

⎟  (4.11) 

 Similarly, the conditional posterior distribution of β  given γ  is found to be as 

( ) ( ), n
i l ( )1 1

1
e

n
r s

r
i i

1

1

xp
n

i ix xββ γ β β γ− − x ββ β β −

=

⎛
− −⎜

⎝ ⎠
∑

=

⎞
⎟∏∝ −p  (4.12) 

which is not a fully specified PDF. Clearly the beta distribution is not a conjugate prior.  

Now that the conditional posterior of γ  can be easily sampled but that of β  cannot. 

We can thus combine the Gibbs sampler with the M-H algorithm to draw samples from 

the posterior distributions. That is, given a sample of vector ( )1 1,t tγ β− −  at the (t-1)st step, 

tγ  is sampled from (4.11) with 1tβ β −= , following the fashion of a Gibbs sampler, 

whereas tβ  should be sampled from (4.12) using a M-H algorithm. The iteration is 

initialized at an arbitrary starting point ( )00 ,γ β . Since the prior distribution of the shape 

parameter β  is a bounded distribution at [ ,l ]rβ β , a simple uniform distribution over the 

same interval can be used as the proposal distribution for the M-H algorithm. 

20To illustrate, a random sample of size 20 from the Weibull distribution with γ =  

and 2β =  is simulated. Figure 4.6 plots the sequences of the Markov chain for β  andγ  

using the hybrid algorithm, respectively.  Unlike like the Gibbs sampler by which the 

chain of γ  moves at each step, the chain of β  simulated by the M-H algorithm is more 

like stepwise random paths. The sample draws are not jumping even for more than 30 
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successive iterations in some cases. Thus, the number of possible implementations of the 

M-H algorithm is larger than the Gibbs sampler.   
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Figure 4.6: Sample sequences from the Hybrid algorithm for the Weibull distribution 

 

We use a burn-in period 5000bN =  iterations and total number of 

iterations . 20000simN = Figure 4.8 and 4.8 show the prior and posterior distributions of γ  

and β , respectively. The posterior PDF is plotted using the kernel smoothing estimation 

from the simulated data (Mathworks, 2007). The posterior mean values of γ  and β  are 

19.612 and 1.8856, respectively, which are very close to their true values, 20 and 2. 
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Figure 4.7: Prior and posterior distributions of γ  
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Figure 4.8: Prior and posterior distributions of β  
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4.4 MCMC for the Proposed Pitting Corrosion Model 

4.4.1 Simplification of the Likelihood Function 

In Section 3.3 the likelihood function for the proposed pitting corrosion model is derived, 

which involves in an infinite summation and several multi-dimensional integrations. 

When the likelihood is multiplied by the proposed prior distributions in Section 3.4, the 

posterior distribution will become extremely complicated. In such a case, the M-H 

algorithm might be the only applicable sampling method but it should be definitely 

inefficient. 

To avoid the difficulty of evaluating the likelihood function, a data augmentation 

technique is used. As shown in Figure 4.9, there are several missing intermediate data 

between the parameters and the observations. If the missing data were known, the 

likelihood of the parameters would be much more simplified. For example, when the 

actual pit sizes (hd or hu) and the pit number (n) known, the likelihoods for β and γ and 

for λ are separable, the former being the product of the Weibull PDF as follow 

( ) ( ) 1 1
, , , ,

1 11 1

, expd uθ h h
d u d u

d u
n n n n

n n
d i u i d i u i

i ii i

L h h hβ β β βγβ γ+ − −

= == =

h
⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪= × − +⎨ ⎬⎜ ⎟ ⎜ ⎟
⎪ ⎪⎝ ⎠⎝ ⎠ ⎩ ⎭

∑ ∑∏ ∏  

and the latter a Poisson distribution function, ( )
!

n

L n e
n

λλλ −= . Of course, we are not able 

to directly obtain the missing data. But in the framework of MCMC simulation, at each 

sampling step, the simulated parameters can be used for generating the missing data by 

using the assumed probabilistic model. For example, once λ is obtained, we can generate 

a sample of n from the assumed Poisson distribution. After the actual pit numbers 
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obtained, the parameters can be updated using the Bayesian rule. The detail of the 

iteration algorithm is described in the next subsection. 
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Figure 4.9: Structure of the Bayesian pitting corrosion model 

 

4.4.2 Algorithm 

For this complicated high-dimensional model, the combined algorithm discussed in 4.3.3 

should be used. The detailed derivations of the posterior distributions for all the 

parameters are listed in Appendix C. 

Now, we describe the (j+1)st iteration of the sampling iteration where j  denotes the 

iteration index. Also, the implementation consists of two iterated steps: a) computation of 
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the conditional distribution of λ  knowing θ  and b) computation of the conditional 

distribution of θ  knowing λ . Assume that after jth iterations we have λj, γ j and β j.  We 

will detail these two steps next. 

Step a 

1jλ +  from . ( ), 1jGa na b+ +1) Sample 

2) Calculate ( )j
fp θ . Here, according to Equation (3.13), ( )j

fp θ  is approximated 

through an inner simulation 

1000

1

1
1000

( ) POD( )j j
f i

i
p yθ

=

= ∑  (4.13) 

where 1 2 1000, , ,j j jy y y  are independent selections form the current pit depth distribution 

( )jf . θ . 

( )1 (j j
fPoi pλ θ−1+ )⎡ ⎤

⎣ ⎦

1
u d

s3) Sample 1j
un +  from a . 

4) Calculate the actual pit number 1j jn n+ + n= . +

Step b 

1j
u

+5) Simulated a number n  of “undetected” flaw size 1j
u

+h  from the current flaw size 

distribution ( )jf h θ . Those simulations are performed as follows. Let  be a random 

drawing from 

z

( )jf h θ . If where s is the detection threshold, accept this value; 

otherwise accept it with the probability 1

z < s

POD( )z− . This process is continued until 1j
un +  

pit depths are simulated. 
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6) Generate , a vector of  independent errors from the distribution 1 1
1( , ,

d

j j j
ne e+ + +=e 1) dn

( )Ef e . 

7) Calculate a vector of the detected pit depth 1 1j j
d m

+ += −h h e . 

8) Sample 1jγ +  from  ( ) ( )
1

1 1
, ,

1 1
,

j
d un n

j j j
d i u i

i i
Ga A n B h h 1β β

+

+ +

= =

⎛ ⎞
+ + +⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∑ +  

9) Since there is no conjugate prior distribution for the parameter β  of the Weibull 

distribution, the simulation of 1jβ +  from its conditional posterior distribution is expressed 

as 

( ) ( ) ( ) ( ) ( )

( ) ( )

1

1

1 11 11 1 1 1 1
, ,

1 1

1 1
, ,

1 1

, ,

exp

j
d u

j
d u

n n
r sj j j n j j

d u l r d i u i
i i

n n
j j

u i u i
i i

p h

h h

β β

β β

β γ β β β β β

γ

+

+

− −− −+ + + + +

= =

+ +

= =

⎛ ⎞
∝ − − ⎜ ⎟⎜ ⎟

⎝ ⎠
h ×

⎧ ⎫⎛ ⎞⎪ ⎪− +⎜ ⎟⎨ ⎬⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

∏ ∏

∑ ∑

h h

 (4.14) 

We make use of the Hasting-Metropolis algorithm in Section 4.3.3 to get a sample of β.  

 

4.4.3 Simulation Results 

A MATLAB program was coded to implement the MCMC simulation described in the 

previous section. To validate the codes as well as illustrate the behavior of the Bayesian 

method, a numerical experiment is performed using this MATLAB program.  

A random sample of 20 pits from the Weibull distribution with 20γ =  and 2β =  is 

simulated. The Weibull distribution has a theoretical mean of 0.1982, or 19.82 per cent of 

the through-wall depth. The maximum likelihood estimates for the data is ˆ 16.5654γ =  
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and . The 20 pits are then filtered with a logistic POD function defined by 

Equation (3.6) where  and 

ˆ 1.7774β =

* 0.2h = 0.05s = . The parameter  is computed by solving the 

equation  which gives 

q

(0POD .5) = 0.85 8q = . The 5 pits left after the filtering, or the 

detected pits are then contaminated with independent normal random errors with 

0.05Eσ = .  Finally we obtain the “measured” pit depth hm = [0.2490, 0.4172, 0.4416, 

0.1961, 0.1621].  Next, we are going to use these measured data to make statistical 

inferences about the parameters by the MCMC algorithm presented in the previous 

subsection. For the inference, we use the same random error distribution and the same 

logistic POD function when implementing the MCMC algorithm. 

Recall that the prior distribution of the Poisson parameter λ  is a Gamma distribution 

with hyperparameters  and b . Here we choose a = 20 and b = 1. The prior distributions 

of 

a

β  andγ  are the same as in Section 4.3.3. 

To monitor the convergence of the sample sequences, the procedure proposed by 

Celux et al. (1999) is used. At each iteration j, we compute the mean value of the 

simulated pit depth including both detected and undetected ones by ( ) /j j jh n= +
d u

h h j . 

We also compute the empirical mean value (EMV) as 

1

1 simN
j

j mb

h
N N = +− ∑

sim

EMV =  (4.15) 

We compare this value with the theoretical mean value (TMV) of the Weibull distribution 

with the estimated parameters γ̂  and β̂ , i.e.,  

(1 1/ )1/TMV βγ β= Γ +−  (4.16) 

where  is a gamma function. ( )Γ ⋅
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Figure 4.10: MCMC chains of model parameters 
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When simN  is large enough to ensure a reasonable approximation of the posterior 

distribution ( , m )p nmhθ , the values EMV and TMV are expected to be close. Thus, if 

EMV and TMV are notably different, it can be guessed that simN  is too small to ensure 

the MCMC convergence for the chosen prior distributions.  

Figure 4.10 display the chains simulated by MCMC for the model parameters. All 

the chains reach their stationary state after 2000 iterations. Therefore a burn-in period 

 and a total number of iterations 2000bN = 20000simN =  are used. 

Figure 4.11 to 4.13 plots the prior and posterior distributions for the parameters γ  

and β  of the Weibull distribution and for the parameter λ of the Poisson distribution. 

Table 4.1 lists the posterior means of the , n̂ λ̂ , γ̂  and β̂  as well as the EMV and 

TMV for two different values of hyperparameter a, which represents the prior mean of 

the number of pits. The estimated EMV and TMV values are very close at both cases, 

meaning the numbers of burn-in and total simulations are adequate. The Bayesian 

estimates are quite reasonable when 20a =  compared with 50a =  according to the small 

sample size . Thus, the prior assumption concerning the actual pit number seems to 

be significant on the Bayesian inference. Moreover, we notice that the mean pit depth, 

EMV or TMV, decreases with increasing prior mean number of pits. The reason may be 

that during the MCMC sampling process the number of the simulated smaller 

‘unobserved’ pits will increase, to correspond to the assumed large prior mean number 

of pits with fixed number of detected pits. 

5dn =

hu
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Table 4.1: Bayesian estimates of the Weibull distribution 

a EMV ETMV n̂  λ̂  γ̂  β̂  

20 0.2041 0.2042 18 19 19.3729 2.0192 

50 0.1373 0.1349 44 47 18.8478 1.5474 

 

The theoretical and estimated Weibull distributions by the Bayesian method are 

graphically compared in Figure 4.14. Also plotted in this figure is the result of the 

maximum likelihood method based on the 20 uncontaminated data. The two results are 

both close to the theoretical curve. Note for the Bayesian analysis, only 5 contaminated 

measurements were used. Clearly, the influence of measurement uncertainties due to 

measurement error and POD has been successfully eliminated through the extra prior 

information.  
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Figure 4.11: Prior and posterior distributions of γ 
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Figure 4.12: Prior and posterior distributions of β  
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Figure 4.13: Prior and posterior distributions of λ 
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Figure 4.14: Comparison of posterior Weibull PDF with the MLE result 

4.5 Summary 

The basic concepts and procedures of MCMC methods for Bayesian inference of the 

proposed pitting corrosion model are discussed in this chapter.  In order to simplify the 

likelihood function, a data augmentation method for missing intermediate data is 

proposed. A hybrid sampling technique based upon Gibbs sampler and the Metropolis-

Hastings algorithm is used. Both simple examples and a simulation experiment are used 

to verify the proposed methods and to illustrate the good performance of the Bayesian 

method. 
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Chapter 5 Case Study 

5.1 Overview of the ISI Data 

A case study is presented in this chapter on pitting corrosion data collected during nine 

in-service inspection (ISI) outages of a steam generator. The pitting data of the unit was 

obtained using eddy current probes.  

The detected numbers of new pits are plotted in Figure 5.1. Over the years, two 

maintenance campaigns, including the water lancing (WL) and chemical cleaning (CC), 

were performed right after the 2nd and 8th inspection outages. The effects of the 

maintenance campaigns are obvious: after the two maintenance campaigns, the number of 

new pit has decreased substantially. 
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Figure 5.1: Numbers of new measured pits at each inspection outage 
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Figure 5.2: Histograms of pit depth for new pits at each ISI outages
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The histograms of the new measured pit depth are shown in Figure 5.2, in which the 

pit depth is expressed at percentages of through-wall depth (TWD). So the measured pit 

depth should be in the range of 0 to 100%. The pit depth data from the first four 

inspection campaigns are more spread than the remaining ones. In contrast, the 

measurements of pit depth at the 6th ISI locate almost exclusively at 30% TWD. 

Similarly, the data from the 7th and 8th campaigns concentrate at 20% TWD, although a 

relatively large number of new pits have been observed.  

An important component in Bayesian modeling is the prior distributions of the 

parameters. As we have seen in Section 4.4.3, the prior mean of λ has significant impact 

on the posterior distributions. Hence, in this case study the Jeffrey’s non-informative 

prior distribution (Robert, 2001) is used for 

5.2.1 Prior Distributions, POD and Measurement Errors 

5.2 Bayesian Modeling 

λ . It turns out to be proportional to , 

which is equivalent to the Gamma prior in equation (3.21) when a

Due to the design characteristics of inspection tools as well as operational conditions, 

we use the same POD function and measurement errors as in chapter 4 for this case study.  

  

1/ 2λ −

1/ 2=  and b .  0=

2 20

For choosing the hyperparameters concerning the actual pit depth, we use guessed 

values of the mean value and variance of the actual pit depth. Here, based on the 

histogram shown in Figure 5.2, we roughly assume the actual pit depth distribution with 

the mean 0.2 (20%) and variance 0.1 , which correspond to γ =  and 2β =

20A

 for a 

Weibull model. Thus, we choose = , 1B = , [ , ] [0,5]l rβ β = , 2r =  and t . 3=



 

5.2.2 Results 

For the sake of clarity of presentation, we show in Figure 5.3 to 5.5 the sample chains of 

the model parameters and the corresponding marginal posterior distributions for the 1st, 

6th and 9th ISI data only. The three cases correspond respectively to the three 

representative situations shown in Figure 5.2: spread data (1st to 4th), concentrated data 

(6th to 8th) and limited data (9th).  For all the cases 100,000 iterations are run and the first 

half of them are taken as burn-ins.  Table 5.1 lists the values of EMV and TMV, which 

are very close for all the 9 cases, indicating adequate numbers of burn-in and total 

iterations.  

Also listed in the table are the posterior estimates of the model parameters. The 

estimated posterior mean of the shape parameter β  for the Weibull distribution varies 

from 1.2 to 2.6, whereas the posterior mean of γ  varies with a wider range from 10 to 33. 

Figure 5.6 compares the numbers of measured pits with the estimated actual pit 

numbers for each set of inspection data. The estimated actual pit numbers do not depends 

only on the measured pit numbers but also on the measured pit depth. For instance, the 

measured pit numbers at the 1st and 3rd outages are 133 and 134 respectively. But the 

estimated actual pit numbers are 304 and 768. The former is much less than the latter 

even though their measured numbers are almost the same. Recall that the average of the 

measured pit depth at the 1st inspection is 36.7%, which is greater than the average of 

24.2% at the 3rd inspection. This implies that the number of undetected pits (which are 

usually small in size) is less at the 1st inspection than at the 3rd inspection.  

For most cases, estimated pit numbers are reasonably greater than the measured pit 

numbers, except the 8th outage, for which the actual pit number is estimated as 7748, very 
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far from the fact that only 238 new pits were observed. This result should be understood 

as artificial. As a matter of fact, the sample sequences do not converge for the 8th ISI data 

when βL is set less than 1. In order to make them convergent, βL was arbitrarily set greater 

than 1, which means the Weibull distribution is forced to be of a bell shape. This may be 

against the reality, as the 8th ISI has the least average value among all the ISI data. 

Table 5.1: Posterior mean of the model parameters 

Campaigns EMV TMV n̂  λ̂  γ̂  β̂  

1st 0.2789 0.2768 304 304 10.7849 2.0441 

2nd  0.1798 0.1788 1016 1017 11.4888 1.5474 

3rd  0.1416 0.1411 768 769 16.3508 1.5058 

4th  0.1208 0.1213 637 637 19.9271 1.4898 

5th  0.1265 0.1275 183 183 25.6416 1.6665 

6th  0.246 0.2453 127 128 28.4364 2.6014 

7th  0.1166 0.1164 991 992 31.3599 1.6916 

8th †
 

0.0546 0.0546 7748 7749 33.3929 1.2356 

9th  0.1455 0.1458 101 101 16.1863 1.5292 

                                                 

† The sample sequences for this case do not converge when the lower limit βL of the prior distribution 

of β is set less than 1. The results shown here are based on lower limit set greater than 1. More explanation 

can be found in the text. 
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Figure 5.3: MCMC chains and marginal distributions of the model parameters for the 1st ISI data 



 

0 1 2 3 4 5 6 7 8 9 10

x 104

0

20

40

60

80

Number of iterations

γ

  0 20 40 60
0

0.02

0.04

0.06

0.08

0.1

γ
 

 
Prior
Posterior

 

0 1 2 3 4 5 6 7 8 9 10

x 104

1

1.5

2

2.5

3

3.5

4

Number of iterations

β

 
0 2 4 6

0

0.5

1

1.5

2

2.5

β

 

 
Prior
Posterior

 

0 1 2 3 4 5 6 7 8 9 10

x 104

0

50

100

150

200

250

300

Number of iterations

λ

 
0 100 200 300

0

0.005

0.01

0.015

0.02

λ  

Figure 5.4: MCMC chains and marginal distributions of the model parameters for the 6th ISI Data 
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Figure 5.5: MCMC chains and marginal distributions of the model parameters for the 9th ISI data 
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Figure 5.6: Comparison of actual pit numbers with measured pit numbers 

 

5.2.3 Distributions of Maximum Pit Depth 

Once the parameters β, γ and λ are estimated, the distribution of maximum pit depth for 

each inspection campaign can be evaluated using equation (3.8). Figure 5.7 shows the 

estimated maximum pit depth distribution with comparison of the estimated actual pit 

depth as well as the measured pit depth for the 1st ISI data. Graphs for the remaining data 

are shown in Figure 5.8. Among the 9 inspections, the first two predict maximum pit 

depth greater than 100%, or through-wall corrosion might have been expected. Although 

there is no data to validate this observation, the fact that water lancing and chemical 

cleaning was done right after the 2nd inspection suggests that actual through-wall leakage 

might have been found in reality at that time. 
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Figure 5.7:  Distribution of maximum pit depth for the 1st ISI data 

 

5.3 Summary 

This chapter presents a comprehensive case study of pitting corrosion data collected 

during nine in-service inspection (ISI) outages over years at a steam generator of a 

nuclear power station. The proposed Bayesian pitting model is fitted separately for each 

set of data by using the MCMC simulation technique described in Chapter 4. The 

posterior means of the parameters are estimated and the distributions of maximum pit 

depth are predicted. The results are considered to agree to the reality. 
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Figure 5.8: Distributions of maximum pit depth 
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Figure 5.8 (Cont’d): Distribution of maximum pit depth 
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Chapter 6 

Conclusions and Recommendations 

6.1 Conclusions 

This thesis presents an advanced probabilistic model of pitting corrosion for in-service 

inspection data to aid life-cycle management of steam generators. This model considers 

the uncertainties of pitting corrosion data and it is able to capture the influence of 

measurement errors and POD of inspection tools and predict the actual pit number, the 

actual pit depth and the maximum pit depth. Because of the lack of in-service data, we 

propose a Bayesian approach to estimating the model parameters.  

The MCMC technique is shown to be effective for Bayesian computation and 

inference. Simulation experiments are performed to check the behavior of the Bayesian 

method. The effectiveness and efficiency of Bayesian modeling are verified. Simulation 

results also shows that choosing appropriate hyper-parameters of the prior distribution is 

important to get the reliable estimates. 

A comprehensive case study is also presented by applying this Bayesian method to 

the analysis of pitting data obtained in a steam generator unit. The results are thought to 

agree to the reality indicating that the versatile Weibull distribution is appropriate for 

modeling the actual pit depth in steam generators.  

 



 

6.2 Recommendations 

This Bayesian model can be extended to a more advanced model. The actual pit number 

could follow a non-homogeneous Poisson process assuming the pit generation rate is 

    (6.1) 1( ) ( )b
ct ab t tλ −= −

where tc is the time when cleaning is performed most recently. Then the maximum pit 

depth distribution turns to a time-dependent variable as follow: 

[ ]{ } { }max ( ; ) exp ( ) 1 ( ) exp ( )b
cF h t a t t F h a t t hb

c
βγ= − − − = − −  (6.2) 

In this case, the parameters involved in this advanced model include: the scale parameter 

γ and shape parameter β of fH(h), a and b  of the Poisson process for the number of pits. 

Therefore, this advanced Bayesian model is able to predict the new pit number over the 

time. 

The choice of the prior distributions is based on conjugate prior strategies in this 

thesis. Model checking, such as goodness-of-fit tests, is needed to be performed. Also, an 

efficient rule for the tuning of the prior hyper-parameters should be also developed. 

In-service pitting data is suffering from a variety of uncertainty. Each inspection data 

may be obtained by several inspection tools. Thus, unlike in Chapter 5 that we use the 

same POD and measurement errors for all the inspection cases, data should be grouped 

under the same inspection conditions to minimize the random effects of measurement 

uncertainty. Moreover, measurement errors may also depend on the pit size indicating 

that random errors will be reduced with larger pit sizes. Size-dependent measurement 

errors should be considered. 
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Based on the proposed Bayesian model, optimal maintenance and inspection 

strategies is needed to be developed for the life-cycle management of steam generators to 

manage the risk due to pitting corrosion. 
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Appendix A 

Summaries of Design Parameters for CANDU Steam Generators 

Station Pickering A Pickering B Bruce A Bruce B Darlington Point Leprea Gentilly-2 

Commercial 
operation 1971-73 1983-86 1977-79 1984-87 1990-93 1983 1983 

Reactor Rating 
(MWe) 4×540 4×540 4×904 4×915 4×935 1×680 1×685 

Number of 
Steam Generators 4×12 4×12 4×8 4×8 4×4 1×4 1×4 

Number of Tubes 4×2600 4×2600 4×4200 4×4200 4×4663 4×3550 4×3550 

Tube Size (OD) 
(mm) 12.7 12.7 12.7 12.7 15.9 15.9 15.9 

Tube thickness 
(mm) 1.13~1.2 1.13~1.2 1.13~1.2 1.13~1.2 1.13~1.2 1.13~1.2 1.13~1.2 

Tube Material Monel-400 Monel-400 
Inconel-600 

HTMA  
Stress relieved 

Inconel-600 
HTMA  

Stress relieved 
Inconel-800 Inconel-800 Inconel-800 

Thot / Tcold (ºC) 293/249 293/249 304/265 304/265 309/265 310/266 310/266 

Tube Supports C-steel lattice 
bars 

C-steel trefoil 
broached TSP 

C-steel trefoil 
broached TSP 

C-steel trefoil 
broached TSP 

401S SS 
lattice bars 

401S SS trefoil 
broached TSP 

401S SS trefoil 
broached TSP 

U-bend Supports C-steel lattice 
bars 

Staggered C-steel 
scallop bars 

Stacked C-steel 
scallop bars 

Staggered C-steel 
scallop bars 

Flat 410S 
AVBs 

410S SS staggered 
scallop bars 

410S SS staggered 
scallop bars 

Tube Expansion Hard roll, near secondary face 
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Appendix B 

MATLAB Codes of MCMC 

%%%Case study for actual pit depth distribution and actual pit number 
%%%Weibull distribution as the actual pit depth distribution 
  
clc; 
clear all; 
close all; 
  
load 'pitdata.mat'; 
 
%%%POD&MEs%%%%%%%%%%%%%%%%%% 
sigma=5/100; 
q=8;             %%measure the quality of detection 
s=0.05;          %%threshold of detection 
hstar=0.2; 
  
%%% parameters for prior distributions 
A = 20; 
B = 1; 
  
a=1/2; 
b=0; 
BL = 0; 
BR = 5; 
r = 2; 
t = 3; 
  
Nsim = 40000; 
Npod=1000; 
n0=length(hm); 
  
n = zeros(Nsim,1); 
lambda = n; 
gam = n; 
bet = n; 
meanh = n; 
 
%%%set initial values 
n(1)=200; 
lambda(1)=200; 
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gam(1) = 1; 
bet(1) = 4; 
  
for i = 2:Nsim 
    lambda(i)=gamrnd(a+n(i-1),1/(b+1)); 
  
    %%%Pf%%%%%%%%%%%%%%%%% 
    hpod=weibrnd(gam(i-1),bet(i-1),Npod,1);          
    pod = 1-min((1+exp(-q*hstar))./(1+exp(q*(hpod-s-hstar))),1); 
    pf=sum(pod)/Npod; 
  
    %%%n%%%%%%%%%%%%%%%%%%% 
    nu = poissrnd((1-pf)*lambda(i)); 
    n(i) = nu+n0; 
  
    %%%undetected pit depth%%%%%%%%%%%%%% 
    hu=zeros(nu,1); 
    k = 0; 
    while k<nu 
        htemp=weibrnd(gam(i-1),bet(i-1));  
        %%%htemp = wblrnd(gam(i-1)^(-1/bet(i-1)),bet(i-1)); 
        u = rand; 
        upod = min((1+exp(-q*hstar))/(1+exp(q*(htemp-s-hstar))),1); 
        if u <= upod 
            k = k+1; 
            hu(k) = htemp; 
        end 
    end 
  
    %%%detected Pit Depth%%%%%%%%%%%% 
    k = 1; 
    while k<=n0 
        e = sigma*randn; 
        if e < hm(k) & e > hm(k)-1 
            hd(k) = hm(k)-e; 
            k = k+1; 
        end 
    end 
     
    x = [hd';hu]; 
    meanh(i) = sum(x)/n(i); 
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    %%%Gibbs Sampler%%%% 
    bet(i) = bet(i-1); 
    gam(i) = gamrnd(A+n(i),1/(B+sum(x.^bet(i-1)))); 
    bt = rand*(BR-BL)+BL; 
    w1 = MH_wt(bt,BL,BR,r,t,x,gam(i)); 
    w0 = MH_wt(bet(i-1),BL,BR,r,t,x,gam(i)); 
    u = rand; 
    if u < min(1,exp(w1-w0)) 
       bet(i) = bt; 
    end 
end 
  
  
%%%Bayesian estimates%%%%%%%%%% 
mn_bay = mean(n(Nsim/2:Nsim)) 
ml_bay = mean(lambda(Nsim/2:Nsim)) 
mg_bay = mean(gam(Nsim/2:Nsim)) 
mb_bay = mean(bet(Nsim/2:Nsim)) 
ETMV=mg_bay^(-1/mb_bay)*gamma(1+1/mb_bay) 
EMV=mean(meanh(Nsim/2:Nsim)) 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%% 
function w = MH_wt(u,BL,BR,r,t,x,g) 
n = length(x); 
w = n*log(u)+(r-1)*log(u-BL)+(t-1)*log(BR-u)+(u-1)*sum(log(x))-g*sum(x.^u); 
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Appendix C 

Derivations of Posterior Distributions  

Step a 

1) The posterior distribution of the parameter λ , given the actual pit number , is: n
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which is the kernel of Gamma density function with shape (a+n+1) and scale (b+1). 

Therefore, ( ) ( ), 1p n Gamma a n bλ = + + . 

 

2)  The posterior distribution of the actual pit number , given the observed pit number 

 and the model parameter vector

n

dn θ , is 
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which means ( )( , , ) 1 ( )u m fp n n Poisson pλ γ λ θ⎡ ⎤∝ −⎣ ⎦  and we have the actual pit number 

. 1 1j j
u mn n n+ += +

 

Step b 

3) Weibull Distribution:  

The conditional posterior distribution ofγ , given β , h  and h , is d u
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So, we have ( , ,h hd up γ β )  is a gamma distribution 
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Similarly, we can derived the conditional posterior distribution of β , given γ ,  and 

, as 

hd

hu
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which is not a density function of any known distribution and therefore a Metropolis-

Hastings algorithm shall be used for sampling. 
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