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Abstract

In this thesis, we consider computational methods of finding exit probabilities for

a class of multivariate stochastic processes. While there is an abundance of results

for one-dimensional processes, for multivariate processes one has to rely on approx-

imations or simulation methods. We adopt a Large Deviations approach in order

to estimate barrier crossing probabilities of a multivariate Brownian Bridge. We

use this approach in conjunction with numerical techniques to propose an efficient

method of obtaining barrier crossing probabilities of a multivariate Brownian mo-

tion. Using numerical examples, we demonstrate that our method works better

than other existing methods. We present applications of the proposed method in

addressing problems in finance such as estimating default probabilities of several

credit risky entities and pricing credit default swaps. We also extend our compu-

tational method to efficiently estimate a barrier crossing probability of a sum of

Geometric Brownian motions. This allows us to perform a portfolio selection by

maximizing a path-dependent utility function.

iv



Contents

1 Preliminaries 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Overview of Large Deviations Theory . . . . . . . . . . . . . . . . . 6

1.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.2 Large Deviations Principle . . . . . . . . . . . . . . . . . . . 8

1.2.3 Large Deviations Principle for Diffusion Processes . . . . . 9

1.2.4 Large Deviations Principle for Uncorrelated Brownian Motion 12

1.3 Application of Large Deviations Theory in Finance and Insurance . 15

1.3.1 Pricing Double and Single Barrier Options . . . . . . . . . . 16

1.3.2 Portfolio Management . . . . . . . . . . . . . . . . . . . . . 18

1.3.3 Ruin Probabilities . . . . . . . . . . . . . . . . . . . . . . . . 20

1.3.4 Credit Risk . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.3.5 Other Relevant Literatures on Computation of Barrier Cross-

ing Probability . . . . . . . . . . . . . . . . . . . . . . . . . 24

v



2 Exit Probabilities for a Brownian Bridge 27

2.1 Exit Probability of a Two-Dimensional Process . . . . . . . . . . . 28

2.1.1 Discussions on Modelling in the Two-Dimensional Case . . . 29

2.1.2 Approximation of P (E1 ∪ E2) . . . . . . . . . . . . . . . . . 30

2.1.3 Approximation of P (E1 ∩ E2) . . . . . . . . . . . . . . . . . 41

2.2 Exit Probabilities of Multidimensional Processes . . . . . . . . . . . 49

2.2.1 Generalization to a Multidimensional Process . . . . . . . . 49

2.2.2 Generalizations to Other Situations . . . . . . . . . . . . . . 55

2.3 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.3.1 Calculations Using Extended Baldi’s Approach . . . . . . . . 60

2.3.2 Calculations Using the New Approach . . . . . . . . . . . . 63

2.3.3 Our Approach for the 3-Dimensional Case . . . . . . . . . . 72

3 Simulation Methods of Exit Probabilities of a Multivariate Brown-

ian Motion 77

3.1 Effective Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.1.1 General Simulation Framework . . . . . . . . . . . . . . . . 79

3.1.2 Description of Simulation Methods . . . . . . . . . . . . . . 81

3.1.3 Approaches for Solving the Optimization Problem in Our

Proposed Method . . . . . . . . . . . . . . . . . . . . . . . . 83

3.1.4 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . 85

3.1.5 Credit Risk Example . . . . . . . . . . . . . . . . . . . . . . 95

vi



3.2 Improved Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 99

3.2.1 Description of Algorithm . . . . . . . . . . . . . . . . . . . . 99

3.2.2 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . 102

3.3 Existing Works on Multivariate Barrier Crossing Probability . . . . 105

3.3.1 Relationship between Shevchenko’s Method and Large Devi-

ations Based Methods . . . . . . . . . . . . . . . . . . . . . 106

3.3.2 Comparison of Computational Efficiency . . . . . . . . . . . 108

3.3.3 Other Shortcomings of Shevchenko’s Method . . . . . . . . . 111

3.4 Distribution of the Number of Barrier Crossings . . . . . . . . . . . 111

3.4.1 Description of Algorithm . . . . . . . . . . . . . . . . . . . . 112

3.4.2 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . 115

3.5 Application: Pricing a Credit Basket Derivative . . . . . . . . . . . 120

3.5.1 Determination of Swap Rate . . . . . . . . . . . . . . . . . . 121

3.5.2 How Our Proposed Approach Differs from the Existing Ap-

proaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

3.5.3 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . 125

4 Exit Probabilities of a Multivariate Brownian Motion with Curved

Boundaries 129

4.1 Barrier Crossing Probability of a Sum of Geometric Brownian Mo-

tions with Fixed Initial and Terminal Values . . . . . . . . . . . . . 132

4.1.1 Transformation . . . . . . . . . . . . . . . . . . . . . . . . . 134

4.1.2 Sum of Two Geometric Brownian Motions . . . . . . . . . . 135

vii



4.1.3 Extension to a Sum of d Geometric Brownian Motions . . . 139

4.1.4 Linear Approximation of the Boundary . . . . . . . . . . . . 143

4.1.5 Large Deviations Approach to Computing the Exit Probabil-

ity of One Time Interval . . . . . . . . . . . . . . . . . . . . 153

4.2 Simulation Method of Exit Probabilities . . . . . . . . . . . . . . . 158

4.3 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . 161

4.3.1 Sum of Geometric Brownian Motions . . . . . . . . . . . . . 162

4.3.2 Sum of Jump-Diffusions . . . . . . . . . . . . . . . . . . . . 166

4.4 Application: Path-Dependent Utility Function . . . . . . . . . . . . 168

4.4.1 Path-Dependent Utility Function and Risk Criterion . . . . 170

4.4.2 Evaluation of Utility Function . . . . . . . . . . . . . . . . . 174

4.4.3 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . 176

5 Directions for Future Research 181

A Proofs of Lemmas 191

A.1 Proof of Lemma 2.1.3 . . . . . . . . . . . . . . . . . . . . . . . . . . 191

A.2 Proof of Lemma 2.1.4 . . . . . . . . . . . . . . . . . . . . . . . . . . 192

A.3 Solution to Optimization Problem from Section 2.1.3 . . . . . . . . 193

B Conditioned Brownian Motion 197

B.1 µ∗(x) and σ∗(x) with Zero Drift Assumption . . . . . . . . . . . . . 198

B.2 µ∗(x) and σ∗(x) with Non-Zero Drift Assumption . . . . . . . . . . 200

viii



C Proof of Expressions (2.66) and (2.67) 203

D Results of Numerical Study 207

E Barrier Crossing Probability 215

F Sharp Large Deviations Estimate 219

ix





Chapter 1

Preliminaries

1.1 Introduction

Suppose that the variables {X(t) ∈ Rd, 0 ≤ t ≤ T} follow a d-dimensional continuous-

time stochastic process for 0 ≤ t ≤ T . In this thesis, we investigate procedures to

compute the probability that components of this continuous time processes X(t)

cross or touch pre-specified barriers at some time between 0 and T .

This type of problem is very relevant in finance, especially in pricing barrier-style

options and credit risk derivatives. In an up-and-in barrier option, as soon as the

underlying asset value hits a pre-specified barrier, the barrier option starts behaving

like an European option. Also, in pricing credit risk derivatives using a structural

type approach, computation of probability that the credit worthiness index of a

firm reaches a default threshold is a crucial element.
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We typically assume that the underlying variable follows a d-dimensional Brownian

Motion process,

dX(t) = µdt + ΣdW(t), (1.1)

where X(t) is a d-dimensional vector, W(t) represents a d-dimensional vector of

standard Brownian Motions, and Σ is a d × d definite matrix of constants corre-

sponding to a square root of an instantaneous variance-covariance matrix. Also, µ

is a d-dimensional vector of constants. Let us denote by x the initial value of X. We

consider the probability that any of the components of X breaches its respective

corresponding barrier or all the components breach their corresponding barriers

within a given time horizon.

Simulation methods designed to determine an exit probability of a continuous-

time stochastic process typically use some form of a discrete-time approximation.

In particular, if {X(t), t ∈ [0, T ]} is a diffusion process, such a discretization

may be based on the Euler’s scheme with a time step of size ε. Suppose that

τ denotes the first time the process {X(t), t ∈ [0, T ]} crosses a pre-specified,

possibly time-dependent, deterministic barrier {b(t) ∈ Rd, t ∈ [0, T ]}. Let X(t) =

[X1(t), . . . Xd(t)] and b(t) = [b1(t), . . . , bd(t)]. We assume Xi(0) > bi(0) for all

i = 1, . . . , d. We can represent the barrier crossing time τ as

τ = min(τ 1, . . . , τ d)

where τ i = inf{t | Xi(t) ≤ bi(t)} for i = 1, . . . , d. In a naive simulation approach,

the barrier crossing time τ can be approximated by the first time the discretized
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process reaches the barrier

τ̂ = min(τ̂ 1, . . . , τ̂ d)

where

τ̂ 1 = min{iε : X1(iε) ≤ b1(iε), i = 1, 2, . . . , M},
...

τ̂ d = min{iε : Xd(iε) ≤ bd(iε), i = 1, 2, . . . , M},

and M = T/ε. However, in this method the estimate τ̂ will be biased in a sense

that E(τ̂) < τ . This is due to the fact that even if we know that the values of all

the components of X(iε) and X((i + 1)ε) are greater than the respective barriers,

there is still possibility that the process X may breach the barrier at some time

between iε and (i + 1)ε. Ignoring this possibility leads to a slow convergence of τ̂

to τ as the number of time steps goes to infinity. In practice, this is manifested by

a non-negligible approximation error for finite values of M .

In order to refine the discrete-time approximation of the exit probability, we need to

determine the probability that the process X crosses the barrier between discrete

simulation times. This problem involves computation of the exit probability of

a Brownian Bridge process, which describes the dynamics of a Brownian Motion

when its end values are known. Currently analytical representations of the exit

probability for a Brownian Bridge exist only if the dimension of the process does

not exceed two. For higher dimensions we have to rely on approximations. In this

context, asymptotic results based on the theory of Large Deviations have proven
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to be particularly useful (for example, Baldi (1995), Baldi et al. (1999), Baldi and

Caramellino (2002)). The existing results, however, are not sufficient for the general

application in finance, as they usually deal with a standard Brownian Motion. In

the thesis we demonstrate that a direct extension of the result obtained by Baldi to

a general multivariate Brownian Motion does not capture the covariance structure

of the process. This finding was the motivation for the new method that we present

in the thesis. Our approach still uses the Large Deviations Theory to approximate

exit probabilities but is more accurate than the existing methods, and it captures

the correlation structure of the process.

In conjunction with the proposed method for a multivariate Brownian Bridge, we

suggest an accurate and time-efficient simulation algorithm for computing exit prob-

abilities of a multivariate correlated Brownian Motion process. In typical applica-

tions in finance, the method requires only a small number of subintervals. The

algorithm allows us to compute directly the probability that in a portfolio of de-

faultable instruments at least one obligor defaults. It can also be extended to deal

with the problem of finding the complete distribution of number of defaults for a

portfolio. Such information is required to price instruments such as first or nth to

default.

This thesis presents five related contributions to the domain of computation of a

multivariate barrier crossing probability. Firstly, we extend Baldi’s framework to a

correlated multidimensional Brownian Motion process and show that the approxi-

mation based on Baldi’s approach does not take account into the effect of covariance

of underlying processes. Secondly, we propose a new procedure based on the Large
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Deviations Theory and demonstrate that our method gives us a quite reasonable

approximation of the true barrier crossing probability. The main strengths of our

method is the reasonable accuracy and that it provides a framework which is ex-

tendible beyond dimensionality of two. Also, it reflects correlation of the underlying

processes. Thirdly, we provide various applications of this procedure in valuations

of financial instruments and risk managements. Fourthly, we further develop the

ideas from Baldi (1995) and Baldi and Caramellino (2002) to address a related

issue of computing a barrier crossing probability of a sum of correlated Geometric

Brownian Motions. Fifthly, we introduce a path-dependent utility function which

depends on a probability that a wealth level falls below a certain threshold level

during a given time horizon.

This thesis is organized in the following way. In Chapter 1, we provide an overview

of the Large Deviations Theory and outline Baldi’s framework for computing exit

probabilities for a d-dimensional uncorrelated Brownian Motion process. We also

summarize recent work that shows how the Large Deviations are used to solve

problems in portfolio management, ruin theory, and credit risk. In Chapter 2, we

present approximations of exit probabilities of a Brownian Bridge for one interval.

We discuss the method proposed by Baldi and show shortcomings of this method.

Then we propose a method and demonstrate that it gives more accurate estimates.

In Chapter 3, we extend the idea from Chapter 2 to propose an algorithm for

computing an exit probability of a multivariate Brownian Motion process, and

show various extensions and applications. In Chapter 4, we consider a problem of

computing exit probabilities with curved boundaries. In particular, we develop a
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method of computing an exit probability of a sum of several Geometric Brownian

Motions. As an application, we introduce a path-dependent utility function and

find an optimal portfolio that maximizes this utility function. Finally, we conclude

in Chapter 5 with some directions of possible future research extensions.

1.2 Overview of Large Deviations Theory

In this section, we outline fundamental concepts of the Large Deviations Theory

and some applications to stochastic processes, finance, and insurance problems.

1.2.1 Introduction

The Law of Large Numbers says that, as the sample size increases to infinity, the

sample mean approaches the true mean. Suppose that X1, X2, . . . is a sequence of

i.i.d. random variables with a finite mean E[X] = µ. Let Sn = 1
n

∑n
j=1 Xj, n ≥ 1.

Then the Strong Law of Large Numbers says that

P [ lim
n→∞

Sn = µ] = 1. (1.2)

Hence, it states that the sample mean, Sn, converges to the true mean µ as n goes to

∞. In the Large Deviations Theory, we are interested in how fast the sample mean

converges to the true mean. Let us state this more precisely. Suppose that we fix

a number a > µ. From the Law of Large Numbers, we know that P (Sn ≥ a) → 0,

as n goes to ∞, because of (1.2). In the Large Deviations Theory, we would like to

investigate the rate at which this probability P (Sn ≥ a) decays to zero.
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To illustrate this concept, we consider the case where X1, X2, . . . are i.i.d. random

variables. Let us define the following functions:

M(θ) = E(eθX1) (1.3)

`(a) = − log(inf
θ

e−θaM(θ)) = sup
θ

(θa− log M(θ)). (1.4)

M(θ) is the moment generating function of the random variable X1. We have

assumed that M(θ) exists in a neighbourhood of 0. The function `(a) is often

referred as a Legendre-Fenchel transform. Note that `(a) is always non-negative,

and this is evident by setting θ = 0 in (1.4). Suppose that the supremum in (1.4)

is attained at a point θ∗ in the interior of the interval where M(θ) is finite. Then

M(θ) is differentiable at θ∗, and we obtain

`(a) = − log E(eθ∗(X1−a)). (1.5)

Now we can state Cramér’s theorem (Shwartz and Weiss (1995)).

Theorem 1.2.1 (Cramér’s) Consider a sequence X1, X2, . . . of i.i.d. random

variables. For every a > E(X1) and positive integer n, we have

P (
X1 + X2 + . . . + Xn

n
≥ a) ≤ e−n`(a) (1.6)

where `(a) is defined in (1.4). Assume that M(θ) < ∞ for θ in some neighbourhood

of 0, and that (1.5) holds for some θ∗ in the interior of that neighbourhood. Then,

for every ε > 0 there exists an integer n0 such that whenever n > n0,

P (
X1 + X2 + . . . + Xn

n
≥ a) ≥ e−n(`(a)+ε). (1.7)
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In addition, (1.6) and (1.7) together imply that

P (
X1 + X2 + . . . + Xn

n
≥ a) = e−n`(a)+o(n). (1.8)

Proof of this theorem can be found, for example in Section 1.2 of Shwartz and Weiss

(1995).

1.2.2 Large Deviations Principle

The Large Deviations Principle (LDP) characterizes the limiting behavior, as ε → 0,

of a family of probability measures {µε} on {X ,B}, where X is a topological space

and B is a Borel σ-algebra. For any set Γ, we use the notations Γ◦ and Γ to denote

the interior and closure of Γ, respectively. We now state the definition of Large

Deviations Principle (Dembo and Zeitouni (1993)).

Definition 1.2.1 {µε} satisfies the Large Deviations Principle with a rate function

I if for all Γ ∈ B,

− inf
x∈Γ◦

I(x) ≤ lim inf
ε→0

ε log µε(Γ) (1.9)

− inf
x∈Γ

I(x) ≥ lim sup
ε→0

ε log µε(Γ). (1.10)

The following lemma is trivial but useful later in this thesis.

Lemma 1.2.1 Suppose that {µε} satisfies the Large Deviations Principle with a

rate function I. Let Γ3 = Γ1 ∩ Γ2, where Γ1, Γ2 ⊆ B. Then, the following inequality
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holds for Γ3.

− inf
x∈Γ◦3

I(x) ≤ lim inf
ε→0

ε log µε(Γ3) (1.11)

− inf
x∈Γ3

I(x) ≥ lim sup
ε→0

ε log µε(Γ3) (1.12)

This lemma is trivially proved by noting that Γ3 ⊆ B, because B is a σ-algebra.

¤

1.2.3 Large Deviations Principle for Diffusion Processes

In this section, we provide a concise review of Large Deviations Theory that is

relevant in computation of an exit probability of a diffusion process. Suppose that

we have a d-dimensional stochastic process X(t) that satisfies

dX(t) = b(X(t), t)dt +
√

εΣ(X(t), t)dW(t), (1.13)

where b(X(t), t) is Lipschitz continuous in X(t) and uniformly in t. Also, {W(t), t ≥
s} is a d-dimensional standard Brownian Motion and s is the initial time, and ε is

a real number.

Suppose that X(s) = x and that the barriers are represented by (d−1) dimensional

hyperplanes, denoted by Bi(t, x1, . . . , xd) = 0 for i = 1, . . . , n, where n is the

number of barriers and (x1, . . . , xd) ∈ Rd. In the case d = 2, the barriers consist

of a set of lines. When d = 1, a barrier is equivalent to a point in R1. In the Rd

space, we denote by D an open set defined by the (d− 1) dimensional hyperplanes
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Bi(t, x1, . . . , xd) = 0 for i = 1, . . . , n. Assuming that the barriers are constant

functions of time t, we can write

D = {(x1, . . . , xd) ∈ Rd | Bi(x1, . . . , xd) > 0 for i = 1, . . . , n}.

This set can be either bounded or unbounded depending on the barriers. Without

loss of generality, we assume that X(s) = x where x ∈ D. Also we have τ =

inf{t : X(t) 6∈ D}, the first time the process X(t) goes outside of the region D.

For the given diffusion process (1.13), we are interested in finding P ε
X,s{τ ≤ T} =

Prob{X(t) 6∈ D for some t ∈ (s, T ) | X(s) = x}. Here we have the notation

P ε
X,s{τ ≤ T} with a superscript ε to signify that the diffusion process of X(t)

involves a parameter ε, and the asymptotic result from the Large Deviations Theory

holds as ε → 0.

Theorem 2.1 and Theorem 4.4 in Baldi (1995) provide a general asymptotic formula

for approximating this probability using the Large Deviation Theory as ε approaches

0.

Theorem 1.2.2 We have

P ε
X,s(τ ≤ T ) = exp(−u(x, s)

ε
exp(−ω(x, s))

× (1 + ψ1(x, s)ε + . . . + ψm(x, s)εm + o(εm)).

with

exp(−ω(x, s)) = (1− s)(n−1)/2 det((1− s)I − (t(x, s)− s)A−1B)−1/2

where A, B, and ψ’s are defined in Baldi(1995).
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With the assumption that the boundary is a hyperplane, the formula reduces to

the following one

P ε
X,s{τ ≤ T} = exp(−u(x, s)

ε
)(1 + o(εm)) (1.14)

for every m > 0, where

u(x, s) = inf
γ∈Γx,s

Js,T (γ), (1.15)

Γx,s = {absolutely continuous functions γ ∈ Rd on [s, T ] such that γ(s) = x and

γ(r) ∈ DC for some r ∈ (s, T )}, (1.16)

and DC is the complement of D. Here Γx,s represents a set of all absolutely con-

tinuous paths γ(t), s < t < T , such that γ(s) = x and γ goes outside of the open

set D between s and T . Js,T (γ) in equation (1.15) is often referred as an action

functional and is defined as follows:

Js,T (γ) =
1

2

∫ T

s

< A−1(γt, t)(γ
′
t − b(γt, t)), γ

′
t − b(γt, t)) > dt (1.17)

A = Σ(γt, t)Σ(γt, t)
T . (1.18)

The symbol <, > denotes a dot product operation; If v and z are n × 1 vectors,

then < v, z >= vTz. The variables b(γt, t) and Σ are as defined in equation (1.13).

If γ(t), s < t < T , is not absolutely continuous, then we have Js,T (γ) = ∞ as shown

in Baldi (1997). This is the reason that the infimum in (1.15) is taken over a set of

absolutely continuous paths.

Moreover, if the minimizing path γ of Js,T is unique, then P ε
X,s{τ ≤ T} is asymp-

totically the same as P ε
X,s{τ ≤ T, X(t) ∈ Bδ(γ(t)) for s ≤ t ≤ T} as ε → 0, where
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Bδ(γ(t)) denotes the neighbourhood (a tube) of radius δ of γ(t). This implies that

the barrier hitting probability is asymptotically determined only by the portion of

the barrier that this minimizing path goes through.

1.2.4 Large Deviations Principle for Uncorrelated Brown-

ian Motion

In this section, we consider a d-dimensional pinned Brownian Motion process be-

tween times s and T = s + ε, with fixed initial and terminal values to be X(s) =

x ∈ D and X(s + ε) = y ∈ D. D, as described in the previous section, is an open

set defined by the barriers, which are represented by a number of hyperplanes in

the Rd space. All results in this section are attributed to Baldi (1995).

First of all, we assume that the drift term of the process is 0. We will consider

the case where the drift term is non-zero in Section 2.2.2. However, as we will see,

the value of the drift term does not have any effect when we consider a Brownian

Motion process with fixed values at times s and T = s+ε. Hence, the corresponding

stochastic process is

dX(t) = ΣdW(t), for t ∈ [s, s + ε]. (1.19)

We should consider the case with s = 0, where X(0) = x ∈ D and X(ε) = y. Now,

by an appropriate scaling of the time variable t by t → t/ε, we obtain

dX(t) = ΣdW(εt) for t ∈ [0, 1] (1.20)

with X(0) = x and X(1) = y. By using basic properties of a Brownian Motion, we

notice (W(εt) −W(0)) ∼ N (0, εt) and
√

ε(W(t) −W(0)) ∼ N (0, εt). Hence, we
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obtain the following equivalent process

dX(t) =
√

εΣdW(t) for t ∈ [0, 1], (1.21)

with X(0) = x and X(1) = y.

The Brownian Motion process with fixed values at time 0 and 1 can be equivalently

represented as the following Brownian Bridge process (Karlin and Taylor (1981))

dX(t) = −X(t)− y

1− t
dt +

√
εΣdW(t), for t ∈ [0, 1), (1.22)

with X(0) = x. We present a derivation of this result in Appendix B.1.

We can clearly see that the equation (1.22) is in the form of the equation (1.13),

and hence the Large Deviations Theory is readily applicable to this setting. We

now summarize Baldi (1995)’s approach to the problem of finding the probability

that {X(t), t ≥ 0} exits D during the time interval [0, 1].

Baldi (1995) assumes that drift term µ is zero and the instantaneous variance-

covariance matrix Σ is an identity matrix. Hence, the underlying stochastic process

is defined as in the equation (1.22) with Σ = I, I being a d × d identity matrix.

The open set D and the set Γx,s are defined as in the earlier section with s = 0 and

T = 1.

By applying the general equations (1.15) and (1.17) to the specific diffusion process

given by equation (1.22), we obtain the following formulae for u(x, 0) and the action

functional J0,1(γ), where the subscript of J denotes the interval over which we find
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γ(t) such that the action functional J is minimized:

u(x, 0) = inf
γ∈Γx,0

J0,1(γ), (1.23)

where

J0,1 =
1

2

∫ 1

0

‖γ′(t) +
γ(t)− y

1− t
‖2dt (1.24)

and ‖.‖ is an Euclidean norm of a vector. i.e. if z = [z1, z2, . . . , zd], ‖z‖ =
√

z2
1 + z2

2 + . . . + z2
d. As defined in (1.16), Γx,s denotes the set of all absolutely

continuous paths γ(t) such that γ(s) = x and γ(t) ∈ DC for some 0 < t < 1.

Now we introduce lemmas that enable us to simplify the representation of u(x, 0)

in (1.23).

Lemma 1.2.2 Let us consider the following optimization problem

u(x, s) = inf
γ∈Γx,s

Js,1(γ) (1.25)

= inf
γ∈Γx,s

1

2

∫ 1

s

‖γ′(r) +
γ(r)− y

1− r
‖2dr. (1.26)

Then, the above problem is equivalent to the following problem:

u(x, s) = inf
s<t<1,φ∈δD

1

2
{‖x− φ‖2

t− s
+
‖y − φ‖2

1− t
− ‖x− y‖2

1− s
}, (1.27)

where δD denotes the boundary of D.

Lemma 1.2.3 If we focus on computing the infimum with respect to t in the fol-

lowing expression,

u(x, s) = inf
φ∈δD

inf
s<t<1

1

2
{‖x− φ‖2

t− s
+
‖y − φ‖2

1− t
− ‖x− y‖2

1− s
}, (1.28)
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then the optimal value of t can be represented as

t∗ = s + (1− s)
‖x− φ‖

‖x− φ‖+ ‖y − φ‖ , (1.29)

which gives

u(x, s) = inf
φ∈∂D

1

2(1− s)
{(‖x− φ‖+ ‖y − φ‖)2 − ‖x− y‖2}. (1.30)

Now, by applying Lemma 1.2.2 and Lemma 1.2.3, we obtain the following theorem

to which we will refer frequently throughout the thesis.

Theorem 1.2.3 The solution of the following optimization problem

u(x, 0) = inf
γ∈Γx,0

J0,1(γ) (1.31)

= inf
γ∈Γx,0

1

2

∫ 1

0

‖γ′(r) +
γ(r)− y

1− r
‖2dr (1.32)

can be obtained by solving the equivalent optimization problem:

u(x, 0) = inf
φ∈∂D

1

2
{(‖x− φ‖+ ‖y − φ‖)2 − ‖x− y‖2}. (1.33)

In order to obtain u(x, 0) in (1.33), we obtain a point φ on the boundary of D such

that ‖x− φ‖+ ‖y− φ‖ is minimized. Since we apply the Large Deviations Theory

to the process given by (1.22), we can obtain the exit probability by approximating

P ε
X,0(τ ≤ 1) using Theorem 1.2.2.

1.3 Application of Large Deviations Theory in

Finance and Insurance

In this section, we discuss some examples of applications of Large Deviations theory

in the fields of finance and actuarial science. Specifically, we look at the pricing of
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general barrier options, portfolio management, computation of ruin probabilities in

actuarial science, and credit risk modelling. Comprehensive overviews are provided

in Pham (2007) and Boyle et al. (2005).

1.3.1 Pricing Double and Single Barrier Options

A barrier option is an option whose payoff depends on whether the path of the

underlying asset has reached a barrier (i.e. a certain pre-determined level) during

its lifetime.

In the standard Black-Scholes model, we assume that the underlying asset S follows:

dS(t) = αS(t)dt + σS(t)dW (t). (1.34)

Suppose that a barrier level is given by B1 = b. Using Ito’s lemma, we apply

log-transformation to (1.34) to obtain

d ln S(t) =

(
α− σ2

2

)
dt + σdW (t), (1.35)

with a new barrier level B = ln b. Hence, by setting X(t) = ln S(t), t ≥ 0, µ =

α− σ2

2
, c = ln b, we get a stochastic process X(t) that follows a Brownian Motion

dX(t) = µdt + σdW (t) (1.36)

with a barrier level B = c. In a single barrier option, we have one barrier either

above or below the initial value of the underlying, S(0). In the case of a double

barrier option, we have two barriers with one above and the other below S(0).

These barrier options can also be classified as either knock-out options or knock-in
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options. A knock-out option ceases to exist when the underlying asset price hits

the specified barrier level. A knock-in option comes into existence only when the

underlying asset price reaches a barrier.

If we price barrier options by simulation, we simulate trajectories of the underlying

and determine whether each simulated point breaches the barrier. However, to ob-

tain the true probability of barriers crossing, we also have to consider the possibility

that the barrier may be breached between the simulated times. Large Deviations

Theory can be used to approximate the barrier crossing probability between the

discrete simulation intervals as follows.

Suppose t1, t2, . . . , tn is a sequence of discrete time points at which we evaluate the

process. Hence, we want to compute the probability that the underlying process

X breaches either upper or lower barrier between ti and ti+1, given that X(ti) = ζ

and X(ti+1) = y and that ζ and y are between barriers. Let us denote the length

of time interval ti+1 − ti by ε. We assume that the underlying process follows a

Brownian Motion process and the upper barrier and lower barrier are equal to U

and L, respectively. By pε
U,L(Ti, ζ, y) we denote the probability that the underlying

process X breaches either upper or lower barrier between time ti and ti+1, given

that X(ti) = ζ and X(ti+1) = y. The Large Deviations estimate of pε
U,L(Ti, ζ, y) is

shown to be of the form

pε
U,L(Ti, ζ, y) ≈ exp{−QU,L(Ti, ζ, y)

ε
}

as ε → 0 where

QU,L(Ti, ζ, y) =





2
σ2 (U − ζ)(U − y) , if ζ + y > U + L

2
σ2 (ζ − L)(y − L) , if ζ + y < U + L.
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Now, if we choose L = 0 or U = ∞, we can obtain the probabilities of crossing the

upper or lower barrier, respectively:

pε
U(Ti, ζ, y) ≈ exp{−2(U−ζ)(U−y)

σ2ε
} (1.37)

pε
L(Ti, ζ, y) ≈ exp{−2(ζ−L)(y−L)

σ2ε
}.

Baldi et al. (1999) obtains this result using the Large Deviations Theory. This

result is identical to the exact analytic solution of the barrier-crossing probability

in a single barrier case, as will be shown in (2.2).

1.3.2 Portfolio Management

Decay Rate Maximization

Large Deviations Theory has also applications in portfolio management. We assume

that a portfolio consists of one risk-free asset and one risky asset, and by p we denote

the proportion of the risk-free asset in the portfolio. Suppose that an investor has a

target log growth rate, log r, and that the objective of the investor is to maximize the

probability that the portfolio’s growth exceeds this target rate in his/her portfolio

selection.

Suppose WT = W0

∏T
t=1 Rpt, where W0 and WT are the amount of wealth at time

0 and T, respectively, and Rpt’s are the returns on the portfolio from time t− 1 to

t which are independently and identically distributed. Furthermore, let log Rp =

1
T

∑T
t=1 log Rpt, i.e. log Rp is the average log return on portfolio from time 0 to T .
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If we assume log Rpt ∼ N(E[log Rp], V ar[log Rp]) and the return on each period is

identical and independent from other periods, we have log Rp ∼ N(E[log Rp],
V ar[log Rp]

T
).

Hence, the probability that the portfolio return does not exceed the target rate is

represented as follows,

P [log Rp ≤ log r] = P [Z ≤ log r − E[log Rp]√
V ar[Rp]/T

], (1.38)

where Z is a standard normal random variable. We consider only portfolios such

that E[log Rp] > log r. Recall that log Rp = 1
T

∑T
t=1 log Rpt, and P [log Rp ≤

log r] → 0 as T → ∞. Hence, this is the context in which we can apply Large

Deviations Theory in order to obtain the rate at which P [log Rp ≤ log r] → 0. If

we assume Rpt, t = 1, 2, . . . , T , are i.i.d, then we can use Cramér’s theorem.

In the case when Rpt, t = 1, 2, . . . , T , are i.i.d, Stutzer (2003) shows that the rate

function of convergence, or decay rate, is given by

Dp(log r) =
1

2

(
log r − E[log Rp]√

V ar[Rp]

)2

. (1.39)

This is the decay rate at which P [log Rp ≤ log r] → 0. Hence, the proportion p of a

risk-free asset in a portfolio can be chosen so that we maximize this decay rate. This

decay rate is the same as `() in Theorem 1.2.1. Maximizing the decay rate means

minimizing the probability that we do not meet the target rate. Stutzer (2003) also

shows that this maximization problem is equivalent to the utility maximization

problem where the utility function is a power utility.

The dynamic continuous-time version of the portfolio management using decay rate

is described in Pham (2003).
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Utility Maximization

Gardiol et al. (2000) shows that the expected utility can be approximated to any

degree of accuracy by a finite sum of tail probabilities. We assume that the utility

function UT () is a differentiable strictly increasing and concave function.

∃K ∈ N, (ak, bk) ∈ R2, k = 1, . . . , K

E[UT (W0RT )] '
K∑

k=1

akP (RT > bk)

=
K∑

k=1

ak(1[bk≥med]
P (RT ≥ bk) + 1

[bk<med]
(1− P (RT < bk))) (1.40)

where med is the median of the distribution of RT . Because of the presence of in-

dicator functions, E[UT (W0RT )] is indeed a linear combination of tail probabilities.

Here RT is the return of the portfolio at time horizon T and RT =
∏T

t=1 Rt. The

tail probabilities P (RT < bk) and P (RT > bk) in (1.40) can be evaluated using the

Large Deviations Theory, namely Cramér’s Theorem.

1.3.3 Ruin Probabilities

In actuarial science, we model the process in which an insurance company’s reserve

changes over time. In a traditional risk model, an insurance company’s wealth

process is modelled by the following risk process,

X(t) = u + pt− S(t). (1.41)

where p is a continuous rate of premium received, u is an initial reserve, and S(t)

is a compound Poisson process with a rate parameter λ > 0. S(t) represents the
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aggregate loss due to the claim payments and can also be expressed as

S(t) =
∑
j≥0

YjI{Tj≤t} (1.42)

where 0 < T1 < T2 < . . . are Poisson jump times and Y1, Y2, . . . , are positive inde-

pendent and identically distributed random variables with a distribution function

F . They represent successive jump sizes. In this section, we consider a more general

process in which the amount of premium received varies over time. Hence, we have

X(t) = u +

∫ t

0

b(X(r))dr − S(t). (1.43)

The event of “ruin” is said to occur when X(t) falls below 0. This is the situation

where the insurance company does not have sufficient funds to meet its contractual

obligations. We define the time of ruin of X by

τ = inf{t; X(t) < 0}. (1.44)

Now we introduce the following notation to represent the finite time ruin probability

with the initial wealth of u:

Ψ(u, T ) = Pu(τ < T ) (1.45)

We also let Ω be a set of absolutely continuous functions on [0, T ]. Let `(.) be

the Legendre-Fenchel transform of a compound Poisson variable. Let JT (x) =
∫ T

0
`(ẋ(t) + b(x(t)))dt if x ∈ Ω and JT (x) = −∞ if x 6∈ Ω. Moreover, let Λu = {x ∈

Ω; x(T ) ≥ u}. Then we have the following result from Djehiche (1993).

Theorem 1.3.1 Assume that the premium function b is differentiable and non

increasing. Then, Ψ(u, T ) ≤ exp supΛu
JT (x).
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This theorem provides the upper bound for the finite time ruin probability. Here

the Large Deviations Theory is applied to a compound Poisson process. As an

extension, we can further research how the Large Deviations Theory can be applied

to a multivariate compound Poisson process or more generally to a multivariate

point process.

1.3.4 Credit Risk

Credit risk is the possibility of a financial loss due to a default event of a counter-

party or migration of counterparty’s credit rating. Hence, in credit risk, modelling

the probability of occurrence of a default event either in a real or risk-neutral

measure is crucially important. Credit risk models are classified into two major

methodological groups: structural models and reduced-form models. In structural

models, a default event is triggered by a firm’s capital structure when the value

of the firm falls below its financial obligation. Hence, the default event in the

structural model is somewhat predictable. On the other hand, in the reduced-form

models (also known as intensity-based models) default events are modelled with a

point process that counts frequency of default events. Hence, for such models, a

default event is not predictable at all. In this section, we explore how the Large

Deviations Theory can be used in the context of the structural approach.

Initiated by the paper by Merton (1974), structural models use the evolution of

firms’ structural variables, such as asset and debt values, to determine the time

of default. In Merton’s model, a firm defaults if at the time of servicing the debt

its assets are below the debt. The paper by Black and Cox (1976) provides an
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essential extension of this approach by allowing the default to occur at any time

between the inception of the contract and its maturity. It can be described as a first

passage model, as it specifies the default time as the first time the firm’s asset value

hits a lower barrier. The barrier can be determined exogenously, as in Black and

Cox (1976) and Longstaff and Schwartz (1995). Alternatively it can be determined

endogenously, and then it corresponds to the level as the stockholders attempt to

maximize the value of the firm (Leland (1994) and Leland and Toft (1996)).

In this approach, we model the value of the firm as a stochastic process, typically

a Geometric Brownian Motion,

dV (t)

V (t)
= µdt + σdW (t), (1.46)

where V (t) is a value of the firm at time t, µ is a growth rate, and W (t) is a Wiener

process. We also have a certain default threshold level, D. We normally deter-

mine the threshold level by examining the firm’s capital structure and accounting

information. This level can be determined from the credit rating of the firm, which

is provided by rating agencies such as Moody’s or Standard & Poors. If the un-

derlying process falls below this threshold, then a default event is triggered. The

commercial products such as CreditMetrics and KMV are implemented based on

this structural approach.

The problem of characterizing the default events is very similar to the one we had

when pricing single and double barrier options, which was discussed in Section

1.3.1. When we compute the probability of default by the method of simulation,

we generate many trajectories of values of V (t) at the discrete times t = t1, t2, . . ..
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We also need to consider the probability that the trajectory may have breached the

threshold between the discrete time intervals. Hence, a similar application of Large

Deviations technique, as discussed in Section 1.3.1, can be potentially used.

Practitioners of credit risk management would be interested in understanding de-

fault behaviour of their credit risky portfolio. Under this circumstance, the value

process in (1.46) will be represented by a correlated multivariate Brownian Motion

process. The objective is to compute the probability of a default by each compo-

nent as well as the probability of the joint default. This is the issue to be addressed

in this thesis.

The existing literature provide variations of the structural model in credit risk. For

instance, Zhou (1997) and Zhou (2001) add a jump term to the the value of the

firm process, and Giesecke (2006) allows for incomplete information by letting the

default threshold level to be uncertain. Further research is necessary to determine

how the Large Deviations Theory can be utilized in these variations.

1.3.5 Other Relevant Literatures on Computation of Bar-

rier Crossing Probability

We present some existing relevant results on the issue of computing a barrier cross-

ing probability. Giraudo et al. (2001) propose a fully-simulation based algorithm

for computing the barrier crossing probability of a pinned process. However, this

method does not improve the computational time much more than the method

where we take a very fine partition in the standard simulation technique. For each
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interval [ti, ti+1] of a simulation run, the authors suggest to perform a nested simu-

lation of R runs over 8 subintervals within the given interval, in order to determine

the barrier crossing probability between time ti and ti+1. This probability is then

approximated by the proportion of R runs that breach the barrier.

The amount of research on the barrier crossing probability for two or higher di-

mensional processes is limited. He et al. (1998) provide a semi-closed form formula

for the barrier crossing probability of a two-dimensional pinned Brownian Motion

process. In Section 2.3, we use results of He et al. (1998) as a benchmark in evalu-

ating accuracy of our approximation methods in two-dimensions. The drawback is

that this formula involves an infinite sum of Bessel functions and that this result

cannot readily be extended beyond two dimensions.

Broadie et al. (1997) provide a relationship between the price of a continuously

monitored barrier option and the price of a discretely monitored barrier option

when the underlying component follows a Geometric Brownian Motion. Their main

result is given in the following theorem.

Theorem 1.3.2 Let Vm(H) be the price of a discretely monitored knock-in or

knock-out down call or up put with barrier H, where m is the size of discretiza-

tion. Let V (H) be the price of the corresponding continuously monitored barrier

option. Then,

Vm(H) = V (He±βσ
√

T/m) + o

(
1√
m

)
(1.47)

where the sign + applies if the barrier is above the initial value of an underlying

and the sign - applies otherwise. In addition, it is known that β ≈ 0.5826.
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According to this theorem, if we know the price of a continuously monitored barrier

option, we can get a price of discretely monitored one, by shifting the barrier

level, and vice versa. Therefore, the error due to discretizations is compensated

by adjusting the barrier level. This result is derived for a one-dimension Brownian

Motion. Future research may focus on extending this result to a higher dimensional

process.
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Chapter 2

Exit Probabilities for a Brownian

Bridge Process

Suppose that the underlying process {W (t), t ≥ 0} follows a standard Brownian

Motion process between time t0 and t1, with fixed values of W (t0) = 0 and W (t1) =

y. This process is also referred as a Brownian Bridge process. Karatzas and Shreve

(1991) show that the distribution of the maximum value of this Brownian Bridge

is given by

P ( max
t0≤t≤t1

W (t) ≥ β|W (t1) = y) = e−2β(β−y)/h, (2.1)

where h = t1 − t0 > 0, β > 0, and y ≤ β. The expression given in (2.1) is the

probability that the Brownian Motion process with fixed values of 0 at time t0 and

y at time t1 crosses the barrier β between the time t0 and t1.

We consider a slightly more general process {Xt, t ≥ 0} given by X(t) = σW (t)

with fixed values X(t0) = ζ and X(t1) = y. We also have h = t1 − t0 > 0. Let
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ph
a(ζ, y) denote the probability that the process X breaches the barrier β between

time t0 and t1. As a generalization of (2.1), ph
a(ζ, y) is given by

ph
a(ζ, y) = exp{−2(β − ζ)(β − y)

σ2h
}. (2.2)

This expression is consistent with the Large Deviations representations in (1.37).

The same expression is also derived using the first type Volterra integral equation

by Giraudo and Sacerdote (1999).

The analytic representation of an exit probability for a multidimensional Brownian

Bridge is not available. In this chapter, we develop an approximation method

based on the Large Deviations Theory. In Section 2.1, we focus on computing an

exit probability of a two-dimensional Brownian Bridge. In Section 2.2, we extend

our method to a multidimensional Brownian Bridge and more general processes.

Then we provide numerical examples in Section 2.3

2.1 Exit Probability of a Two-Dimensional Process

This section focuses on developing asymptotic approximation methods for comput-

ing an exit probability of a 2-dimensional Brownian Bridge process. This section is

organized as follows. Section 2.1.1 shows relationship between marginal exit prob-

abilities and joint exit probabilities using set theory. In Section 2.1.2, we propose

an approximation method by extending Baldi (1995) and show some of its short-

comings. Then, in Section 2.1.3, we propose an alternative method based on the

Large Deviations Theory that approximates the exit probability more accurately.
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2.1.1 Discussions on Modelling in the Two-Dimensional Case

We use basic set theory in order to establish relationship between marginal bar-

rier crossing probabilities and joint barrier crossing probabilities in the case of

a 2-dimensional stochastic process. In particular, suppose that we have X(t) =

(X1(t), X2(t)) that follows a 2-dimensional correlated Brownian Bridge process. As

shown in Section 1.2.4 and Appendix B.1, the Brownian Bridge process between

[s, s + ε) can be equivalently written in the following way:

dX(t) = −X(t)− y

1− t
dt +

√
εΣdW(t) for t ∈ [0, 1), (2.3)

where Σ is a 2 × 2 positive definite matrix, y is a 2 × 1 vector of terminal values,

ε is length of the given interval. By c = (c1, c2), we denote a vector of the barrier

levels for each component. We assume, without loss of generality, that X1(0) < c1,

X2(0) < c2, X1(1) < c1 and X2(1) < c2.

We define two events E1 and E2 as follows:

E1 = {X1(t) ≥ c1 for some t, 0 ≤ t ≤ 1} (2.4)

E2 = {X2(t) ≥ c2 for some t, 0 ≤ t ≤ 1}. (2.5)

E1 and E2 are the events in which the first and the second component of the process

cross their respective barriers. From the inclusion-exclusion principle of set theory,

we have

P (E1 ∪ E2) = P (E1) + P (E2)− P (E1 ∩ E2). (2.6)

Note that we can easily compute P (E1) and P (E2), as the exact analytic formula

is given in (2.2). Hence, if we can approximate either P (E1 ∪ E2) or P (E1 ∩ E2),

we can obtain an estimate of the other.
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Baldi (1995)’s work provides a framework within which Large Deviations Theory

can be applied to estimate the probability P (E1 ∪ E2), which is the probability

that at least one of the two components cross its respective barrier. However, as we

will show in the subsequent section, when we apply Baldi’s approach to estimate

P (E1∪E2), the result does not depend on the correlation between two components.

Moreover, we have P (E1 ∪ E2) = max(P (E1), P (E2)). In order to remedy this

situation, in Section 2.1.3 we estimate P (E1 ∩ E2) directly and demonstrate that

this estimate takes account of the correlation between components.

2.1.2 Approximation of P (E1 ∪ E2)

In Section 1.2.4, we have described the recent work of Baldi (1995), where the

author uses Large Deviations Theory to approximate a barrier-crossing probabil-

ity for a standard multivariate Brownian Motion. In this section, we extend this

methodology to the case with a general variance-covariance structure. We adopt

the same line of reasoning as Baldi (1995) and extend his methodology to handle a

two-dimensional correlated Brownian motion with zero drift.

First we consider the following lemma.

Lemma 2.1.1 Suppose that P is a symmetric d×d matrix and m is a d×1 vector.

Then < Pm,Pm >=< PPTm,m > where <,> is a dot product defined in Section

1.2.3.
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Proof.

< Pm,Pm > = (Pm)T (Pm) = mTPTPm

= mTPPTm = (PPTm)Tm

= < PPTm,m >

Therefore, < Pm,Pm > = < PPTm,m > ¤

Recall that A = ΣΣT from (1.18), and let K be a d × d matrix such that A−1 =

KKT . In fact, K = ((ΣΣT )−1)1/2 and existence of K can be shown using a singular

value decomposition, because the matrix A is symmetric and positive definite.

For the diffusion process of (1.13), we have an expression for the action functional

given by (1.17). By applying these formulas to the Brownian Bridge process (2.3),

we obtain the following action functional:

J0,1(γ) =
1

2

∫ 1

0

< A(γt, t)
−1(γ

′
t − b(γt, t)), γ

′
t − b(γt, t)) > dt (2.7)

=
1

2

∫ 1

0

< KKT (γ
′
t − b(γt, t)), γ

′
t − b(γt, t)) > dt (2.8)

=
1

2

∫ 1

0

< K(γ
′
t − b(γt, t)), K(γ

′
t − b(γt, t))) > dt (2.9)

=
1

2

∫ 1

0

‖K(γ
′
(t) +

γ(t)− y

1− t
)‖2dt (2.10)

=
1

2

∫ 1

0

‖Kγ
′
(t) +

Kγ(t)−Ky

1− t
‖2dt (2.11)

=
1

2

∫ 1

0

‖η′(t) +
η(t)− w

1− t
‖2dt (2.12)
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where η(t) = Kγ(t) and w = Ky.

We have obtained the first equality (2.7) from the equation (1.17), the second

equality (2.8) using K = ((ΣΣT )−1)1/2, the third equality (2.9) from Lemma 2.1.1,

and the last equality (2.12) by introducing new vector variables η(t) and w.

We use the same notations as in Section 1.2.3. We define a new open set F as

F = {Kx|all x ∈ D}, (2.13)

and a set HKx,0 to be of the following form:

HKx,0 = {absolutely continuous η(t) ∈ Rd, 0 < t < 1|η(0) = Kx, η(t) ∈ FC

for some t, 0 < t < 1}. (2.14)

In other words, F is an open set that is transformed from the open set D by

the transformation matrix K, and H is a set of all absolutely continuous paths

{η(t), 0 < t < 1} such that η(0) = Kx and η(t) ∈ FC for some 0 < t < 1. With

the newly defined variables, we can reformulate the problem of computing u(x, 0)

as follows:

u(x, 0) = inf
η∈HKx,0

J0,1(η) (2.15)

where

J0,1(η) =
1

2

∫ 1

0

‖η′(t) +
η(t)− w

1− t
‖2dt. (2.16)

The formulae in equations (2.15) and (2.16) are in the same form as in equations

(1.23) and (1.24), except that the above equations make use of variables and sets
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transformed by matrix K. Hence, the representations in (1.23) and (1.24) can

indeed be viewed as a special case of (2.15) and (2.16) where we take Σ = I.

Since the computation of the exit probability under correlated multivariate Brown-

ian Motion can be reduced to the setting with a standard multivariate Brownian

Motion by an appropriate transformation, we now focus on solving the problem

formulated in (2.15) and (2.16). Suppose that we are in the Rd space whose co-

ordinates are denoted by z1, z2, . . . , zd. In expressions (1.23) and (1.24) in Section

1.2.4, the hyperplanes defining the barriers are in the form of zi = constant. On the

other hand, due to the transformation by the matrix K, in expressions (2.15) and

(2.16), the barriers are expressed in the form of a1z1 +a2z2 + . . .+adzd = constant.

We need to find u in (2.15), which involves optimization. This problem is one of

the standard problems in the domain of calculus of variations. It can be solved

using Hamilton’s principle in which we set up a corresponding Lagrange equation.

See Arthurs (1975).

With some abuse of notations, from here on we will represent Kx by x, and w by

y for the simplicity of representation of the formulae to follow.

By applying Lemma 1.2.2 and 1.2.3, the equation (2.15) can be expressed as

u(x, 0) = inf
φ∈∂F

{1

2
{(‖x− φ‖+ ‖y − φ‖)2 − ‖x− y‖2}}, (2.17)

where ∂F is the boundary of the open set F defined in (2.13). Furthermore, in

order to obtain u(x, 0), we need to determine φ∗ such that

φ∗ = arg min
φ∈∂F

[‖x− φ‖+ ‖y − φ‖], (2.18)

33



since the term ‖x− y‖2 does not depend on φ. Hence, in order to find φ∗, we need

to find the length-minimizing path that starts from the coordinate x, touches a

point along the boundary of the set F , and then ends at the coordinate y.

In the remainder of this section, we discuss our approach to the optimization

problem (2.18), thus obtaining the value of u(x, 0) in (2.17). We focus on a two-

dimensional process. Similar calculations can be performed for a higher dimensional

process, and they will be discussed in Section 2.2.1.

In the two-dimensional case, x and y are 2 × 1 vectors, and the open set F is

specified in the R2 space. The vectors x and y are represented as [x1, x2]
T and

[y1, y2]
T , respectively. The boundary of the set F can be represented by a collection

of hyperplanes in R2. We shall denote them as Bi, i = 1, . . . , n, where n is the

number of linear boundaries and Bi is the ith boundary represented {(z1, z2) ∈
R2 | ai1z1 + ai2z2 = ci}. In R2, we will normally have two barriers, one for each

component of the process. Hence, n = 2. We also assume that the points x and y

belong to the interior of F . We now formulate a number of lemmas that will help

us solve the optimization problem in (2.18).

Lemma 2.1.2 Suppose that B is a straight line represented by a1z1 +a2z2 = c and

that the points x = [x1, x2]
T and y = [y1, y2]

T are located on one side of this line.

Then the point b∗ such that

b∗ = arg min
ε∈B

[‖x− ε‖+ ‖y − ε‖] (2.19)

can be obtained by the following procedure. We draw a straight line from x to y
′
,
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which is a mirrored point of y reflected around the line B. Then, the intersecting

point of this straight line and the line B is b∗.

Proof.

By the definition of y
′
, we have

b∗ = arg min
ε∈B

[‖x− ε‖+ ‖y − ε‖] (2.20)

= arg min
ε∈B

[‖x− ε‖+ ‖y′ − ε‖]. (2.21)

The points x and y
′
are on different sides of the line B, and ‖x− ε‖+‖y′− ε‖ is the

distance of the path from x to y
′
that goes through a point ε ∈ B. The distance-

minimizing path from x to y
′

is a straight line between x and y
′
. Therefore, b∗

is given by the intersection between the line B and the straight line from x to y
′
.

¤

We are now ready to prove the main theorem of this section.

Theorem 2.1.1 Suppose that W is an open set in R2 whose boundary can be rep-

resented by n lines, Bi, i = 1, . . . , n. Each Bi is represented by a linear equation,

ai1z1 + ai2z2 = ci. Suppose that we have two points x,y ∈ W so that x and y

are located on one side of each Bi, i = 1, . . . , n. For each line Bi, we define y
′
i by

mirroring the point y on the line Bi. Then the following equivalence holds:

inf
φ∈∂W

{‖x− φ‖+ ‖y − φ‖} = min
i∈[1,2,...,n]

{‖x− y
′
i‖} (2.22)
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Proof.

This is a straightforward application of Lemma 2.1.2. For each line Bi, we obtain

b∗i such that b∗i = arg minε∈Bi
[|x−ε|+ |y−ε|]. Also, note that ∂W =

n⋃
i=1

Bi. Hence,

inf
φ∈∂W

{‖x− φ‖+ ‖y − φ‖} (2.23)

= min
i∈{1,2,...,n}

{‖x− b∗i ‖+ ‖y − b∗i ‖} (2.24)

= min
i∈{1,2,...,n}

{‖x− b∗i ‖+ ‖y′i − b∗i ‖} (2.25)

= min
i∈{1,2,...,n}

{‖x− y
′
i‖}. (2.26)

The last equality follows from Lemma 2.1.2, because b∗i is the intersecting point

between the straight line from x to y
′
i and the line Bi. ¤

Property of Large Deviation Estimate of P (E1 ∪ E2)

By using results described in this section, we can obtain an estimate of P (E1 ∪E2)

where P (E1 ∪ E2) is the probability that at least one of two components cross

its respective barrier. In this section, we show that this estimate based on Large

Deviations Theory may not be an appropriate estimate to use, because it does

not take into account the correlation structure of the Brownian Motion process.

Moreover, the estimate of P (E1 ∪ E2) turns out to be the maximum of the barrier

crossing probabilities of the first component of the stochastic process and that of

the second component, i.e. P (E1 ∪ E2) = max(P (E1), P (E2)).

Suppose that we have a two-dimensional Brownian Bridge process with zero drift,

as specified in (1.22). Without a loss of generality, we assume that this process has
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Σ such that

ΣΣT =


 1 r

r 1


 . (2.27)

For the Brownian Bridge process with the value of variance to be other than 1, we

can scale the variance to be 1 and also scale the corresponding barrier level and

the terminal value of the corresponding component. Under the structural form of

(2.27), the covariance, r, is the same as the correlation of the two components.

Suppose that the barrier levels for the first and the second component of the two

dimensional process are constant and given by c1 and c2, respectively. In R2, these

barriers are represented by a vertical and a horizontal line. Mathematically, these

barriers can be expressed as z1 = c1 and z2 = c2. Also, without loss of generality,

we further assume x1 < c1, x2 < c2, y1 < c1, and y2 < c2.

In order to reduce the problem with a correlated process into an uncorrelated one,

we need to perform a transformation of the variables. The transformation matrix

K is given as

K = ((ΣΣT )−1)1/2 (2.28)

=


 1

1− r2


 1 −r

−r 1







1/2

(2.29)

=
1√

1− r2


 1 −r

−r 1




1/2

(2.30)

=
1√

1− r2




√
1−r
2

+
√

1+r
2

√
1−r
2

−
√

1+r
2√

1−r
2

−
√

1+r
2

√
1−r
2

+
√

1+r
2


 . (2.31)

37



Note that K is a symmetric matrix and can be expressed as K =


 k1 k2

k2 k3


. K

is a function of r.

Lemma 2.1.3 If we transform the line a1z1 + a2z2 = c by the symmetric trans-

formation matrix K, then we obtain a new equation a
′
1z1 + a

′
2z2 = c

′
, where a

′
1 =

a1k3 − a2k2, a
′
2 = a2k1 − a1k2, and c

′
= c(k1k3 − k2

2).

Proof: Shown in Appendix A.1.

In the original space, the barriers are expressed as z1 = c1 and z2 = c2, and we can

use Lemma 2.1.3 to get the equations of barriers in the transformed space. These

transformed equations correspond to the boundaries of the set F , and are given by

k3z1 − k2z2 = c1(k1k3 − k2
2) (2.32)

−k2z1 + k1z2 = c2(k1k3 − k2
2). (2.33)

Now we are ready to solve the optimization problem that is formulated in (2.15)

and (2.16). The set of equations representing the boundaries of F are given by

(2.32)-(2.33). We denote

v = Kx (2.34)

w = Ky, (2.35)

which are initial and terminal values of the transformed variables. Hence, by The-

orem 1.2.3, we need to consider the problem of finding u given by

u(x, 0) = inf
φ∈∂F

1

2
{(‖v − φ‖+ ‖w − φ‖)2 − ‖v −w‖2}. (2.36)
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Since φ∗ that minimizes ‖v − φ‖ − ‖w − φ‖ is equivalent to φ∗ that minimizes

1
2
{(‖v− φ‖ − ‖w− φ‖)2 − ‖v−w‖2}, we can obtain, by Theorem 2.1.1, the value

of u(v, 0) by the following procedure. For each line i, i = 1, 2, that constitute the

boundary of F , we compute

ui(v, 0) =
1

2
(‖v −w

′
i‖2 − ‖v −w‖2), (2.37)

where w
′
i is a mirrored point of w around the ith boundary equation. Then we

obtain u(v, 0) to be the minimum of all ui(v, 0)’s. The relationship between the

value of u(v, 0) and the exit probability P ε
X,0{τ ≤ 1} is given in (1.14). In order to

compute w
′
i, we make use of the following lemma.

Lemma 2.1.4 The coordinates of w
′

= [w
′
1, w

′
2]

T , which is a mirrored point of

w = [w1, w2]
T around the line B, a1z1 + a2z2 = c, is given as follows:

w
′
1 = −a2

1w1 − a2
2w1 + 2a1a2w2 − 2a1c

a2
1 + a2

2

(2.38)

w
′
2 = −−a2

1w2 + a2
2w2 + 2a1a2w1 − 2a2c

a2
1 + a2

2

. (2.39)

Proof: Shown in Appendix A.2.

Lemma 2.1.4 gives us, in particular, the following coordinates of w
′
2 = [w

′
1, w

′
2] with

respect to the second boundary given by (2.33),

w
′
1 = −k2

2w1 − k2
1w1 − 2k2k1w2 + 2k2c2(k1k3 − k2

2)

k2
2 + k2

1

(2.40)

w
′
2 = −−k2

2w2 + k2
1w2 − 2k2k1w1 − 2k1c2(k1k3 − k2

2)

k2
2 + k2

1

. (2.41)
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We need to evaluate ui(v, 0)’s for each respective barrier. In the case when i = 2,

we can substitute (2.40)-(2.41) and (2.34)-(2.35) into (2.37), and express (2.37) in

terms of original variables, x1, x2, y1, and y2. The expression for u2(x, 0) can be

simplified using the symbolic computation module of MATLABTM , and we obtain

u2(v, 0) = 2(−c2y2 + c2
2 + x2y2 − c2x2). (2.42)

We can obtain a similar result for u1(v, 0). We note that the expressions of u2(v, 0)

and u1(v, 0) do not contain the covariance value of r. Hence, since u(v, 0) is the

minimum of u1(v, 0) and u2(v, 0), it also does not depend on r. Consequently, the

barrier crossing probability P (E1 ∪ E2) is not affected by covariance of the under-

lying process. Moreover, the expression we obtained for u2(v, 0) in (2.42) is in fact

the same as u(x, 0), which we obtain when we only look at the second component

of the Brownian Motion with a barrier level at c2. u(x, 0) for a one-dimensional

process can be identified from (2.2) by using the relationship between u(.) and the

barrier crossing probability shown in (1.14). Hence, the marginal probability that

one component of 2-dimensional Brownian Motion crosses its barrier level is the

same as the barrier crossing probability of an one-dimensional Brownian Motion of

the component.

Therefore, we have shown that the Large Deviations estimate of P (E1 ∪E2) in the

extension of Baldi’s framework is just a maximum of P (E1) and P (E2). This finding

is consistent with the asymptotic nature of Large Deviations Theory. However,

a better estimate needs to be sought, because this method totally neglects the

covariance of a 2- or higher-dimensional process. In the next section, we compute
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P (E1∩E2) directly rather than P (E1∪E2) and show that this method incorporates

the effect of the covariance r.

The method that we have discussed in this section will be referred to as “Baldi’s

Method” throughout the thesis. This approach is extendible to higher dimensions,

where we want to compute P (E1 ∪ E2 ∪ . . . ∪ En). In this case, the estimate of

P (E1 ∪ E2 ∪ . . . ∪ En) will be the maximum of P (E1), P (E2), . . ., P (En). In

this section, we have computed the probability that the process exits the region D

defined by a set of linear boundaries. In Appendix F, we illustrate that the estimate

is indeed a sharp Large Deviations estimate, so that we can express

P ε
X,0{τ ≤ 1} = exp(−u(x, 0)

ε
)(1 + o(εm)) (2.43)

for every m > 0. Here we provide intuitive justification that the estimate is a sharp

Large Deviations estimate. In the Large Deviations Theory, when the process exits

a region, it goes through the most likely path. Hence, the exit probability of the

process is asymptotically the same as the probability that the process goes through

the hyperplane that is most likely to be breached. Since the exit probability when

a boundary is a hyperplane is given by a form of (2.43), we know that our estimate

for P (E1 ∪ E2 ∪ . . . ∪ En) is indeed a sharp Large Deviations estimate.

2.1.3 Approximation of P (E1 ∩ E2)

In Section 2.1.2, we showed that the estimate for P (E1 ∪ E2) based on Baldi’s

method does not have desirable properties. In this section, we approximate P (E1∩
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E2) directly. From P (E1 ∩ E2), we can easily obtain P (E1 ∪ E2) using (2.6), and

we can completely characterize joint behavior of a two-dimensional process.

Whether we look at P (E1∩E2) or P (E1∪E2), the underlying process still remains a

two-dimensional Brownian Bridge process with fixed values at times 0 and 1. Hence,

regardless of which probability we want to estimate, by Lemma 1.2.1, the underlying

process satisfies the Large Deviations Principle with the same rate function, or

action functional. As previously shown in equation (2.10) of Section 2.1.2, the rate

function for the correlated Brownian Motion process with fixed values at times 0

and 1 is given as follows:

J0,1(γ) =
1

2

∫ 1

0

‖K(γ
′
(t) +

γ(t)− y

1− t
)‖2dt, (2.44)

where γ(t) = [γ1(t), γ2(t)]
T and γ(t) ∈ R2. Also note that, when we compute P (E1),

we take the infimum of the above function (2.44) over the set

Γ1 = {absolutely continuous γ(t) ∈ R2, 0 < t < 1|γ(0) = x, γ(1) = y,

γ1(t) = c1 for some t, 0 ≤ t ≤ 1}.

Similarly, for computing P (E2), we take the infimum of the above function over the

set

Γ2 = {absolutely continuous γ(t) ∈ R2, 0 < t < 1|γ(0) = x, γ(1) = y,

γ2(t) = c2 for some t, 0 ≤ t ≤ 1}.

Moreover, we define

Γ1,2 = {absolutely continuous γ(t) ∈ R2, 0 < t < 1 | γ(0) = x, γ(1) = y,

γ1(t1) = c1 for some t1, 0 ≤ t1 ≤ 1, γ2(t2) = c2 for some t2, 0 ≤ t2 ≤ 1}.
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In other words, Γ1,2 is the set of paths γ(t), 0 ≤ t ≤ 1, where both the first com-

ponent γ1 and the second component γ2 of the process breach their corresponding

barriers between time 0 and 1. Because Γ1,2 = Γ1 ∩ Γ2, we know that Γ1,2 ⊆ B,

since B is a σ-algebra in our space.

Hence, by Lemma 1.2.1, P (E1 ∩ E2) satisfies the Large Deviations Principle with

the rate function J0,1(γ) in (2.44), and u(x, 0) can be computed by taking infimum

over the set Γ1,2 as shown in the following expression:

u(x, 0) = inf
γ∈Γ1,2

J0,1(γ). (2.45)

To account for variance and covariance of the process, we apply a similar change

of variables and transformation by the matrix K as in (2.10) - (2.12). Then, the

expression (2.45) can be equivalently written as follows:

u(x, 0) = inf
η∈H1,2

J0,1(η) (2.46)

J0,1(η) =
1

2

∫ 1

0

‖η′(t) +
η(t)− w

1− t
‖2dt, (2.47)

where ηt = Kγt, and w = Ky. Let B1 be the line obtained from transforming the

line z1 = c1 by the matrix K. Similarly, B2 is obtained from transforming z2 = c2

by the matrix K. These transformations of the lines can be done using Lemma

2.1.3. Let F1 be an open set defined by B1, and F2 is similarly defined. Then we

have

H1,2 = {absolutely continuous η(t) ∈ R2, 0 < t < 1 | γ(0) = Kx, γ(1) = Ky,

η(t1) ∈ FC
1 for some t1, 0 ≤ t1 ≤ 1 and η(t2) ∈ FC

2 for some t2, 0 ≤ t2 ≤ 1}.
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We now solve the optimization problem in (2.46) and (2.47). For notational con-

venience, and with some abuse of notations, from here on we represent Kx as x,

and w as y. Denoting that t1 and t2 are the time that boundary B1 and B2 are

breached respectively, we need to consider the following three cases:

(1) t1 < t2

(2) t1 > t2

(3) t1 = t2.

We first consider the case where t1 < t2, and we have the following proposition.

Proposition 2.1.2 Let φ1 ∈ B1 and φ2 ∈ B2. Assuming that t1 < t2, u(x, 0) in

(2.46) can be written as

u(x, 0) = inf
φ1∈B1,φ2∈B2

1

2
{(‖x− φ1‖+ ‖φ1 − φ2‖+ ‖y − φ2‖)2 − ‖x− y‖2}. (2.48)

Proof.

We want to minimize J0,1(η) from (2.47) with respect to η(t). Hence, by selecting

η(t) on the interval (t2, 1] in such a way that

η
′
(t) = −η(t)− y

1− t
(2.49)

η(t2) = φ2, (2.50)

we obtain the integrand ‖η′(t) + η(t)−y
1−t

‖2 to be zero on the interval (t2, 1], and the

integral vanishes. The conditions (2.49) and (2.50) are satisfied by setting

η(t) = φ2 +
t− t2
1− t2

(y − φ2). (2.51)
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Hence, we need to minimize the action functional on [0, t2], and the integral can be

broken into two pieces

J0,1(η) =
1

2

∫ t1

0

‖η′(t) +
η(t)− y

1− t
‖2dt +

1

2

∫ t2

t1

‖η′(t) +
η(t)− y

1− t
‖2dt. (2.52)

We simplify the optimization problem in (2.46) in the following way:

u(x, 0) = inf
η∈H1,2

J0,1(η) (2.53)

= inf
η∈H1,2

{
1

2

∫ t1

0

‖η′(t) +
η(t)− y

1− t
‖2dt

+
1

2

∫ t2

t1

‖η′(t) +
η(t)− y

1− t
‖2dt

}
(2.54)

= inf
t1,t2,φ1∈B1,φ2∈B2

{
1

2
{‖x− φ1‖2

t1
+
‖y − φ1‖2

1− t1
− ‖x− y‖2}

+
1

2
{‖φ1 − φ2‖2

t2 − t1
+
‖y − φ2‖2

1− t2
− ‖φ1 − y‖2

1− t1
}
}

(2.55)

= inf
t1,t2,φ1∈B1,φ2∈B2

1

2

{‖x− φ1‖2

t1
+
‖φ1 − φ2‖2

t2 − t1

+
‖y − φ2‖2

1− t2
+ ‖x− y‖2

}
. (2.56)

The expression (2.54) is obtained from (2.52). We evaluate each of the two integrals

in (2.54) using Lemma 1.2.2 and obtain results in (2.55). We minimize (2.56) with

respect to t1 and t2 by using Lagrange multipliers for given φ1 and φ2. As shown

in Appendix A.3, the solutions, t∗1 and t∗2, are given by

t∗1 =
‖x− φ1‖

‖x− φ1‖+ ‖φ1 − φ2‖+ ‖y − φ2‖ (2.57)

t∗2 =
‖φ1 − φ2‖+ ‖x− φ1‖

‖x− φ1‖+ ‖φ1 − φ2‖+ ‖y − φ2‖ . (2.58)

By substituting t∗1 and t∗2 into (2.56), we obtain the following minimization problem

u(x, 0) = inf
φ1∈B1,φ2∈B2

1

2
{(‖x− φ1‖+ ‖φ1− φ2‖+ ‖y− φ2‖)2−‖x− y‖2}. ¤
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By Proposition 2.1.2, we can evaluate u(x, 0) by finding φ1 and φ2 such that the

sum of Euclidean distances between x and φ1, φ1 and φ2, and φ2 and y is minimized.

In the second case where t1 > t2, a similar result can be derived

u(x, 0) = inf
φ1∈B1,φ2∈B2

1

2
{(‖x− φ2‖+ ‖φ2 − φ1‖+ ‖y − φ1‖)2 − ‖x− y‖2}. (2.59)

In the last case where t1 = t2, let φ12 be the point where the first barrier and the

second barrier intersect. In this case, the first barrier and the second barrier are

touched simultaneously. Then, we have

u(x, 0) =
1

2
{(‖x− φ12‖+ ‖y − φ12‖)2 − ‖x− y‖2}. (2.60)

We obtain u(x, 0) by taking the minimum of (2.48), (2.59), and (2.60).

Now we address the optimization problem, (2.48) which corresponds to the first

case where t1 < t2. Since the last term of the objective function in (2.48) does not

depend on parameters φ1 and φ2, and square is a monotonic function on positive

numbers, we instead focus on the following corresponding problem:

inf
φ1∈B1,φ2∈B2

(‖x− φ1‖+ ‖φ1 − φ2‖+ ‖y − φ2‖). (2.61)

Now we look at how we can evaluate (2.61) in a two-dimensional case. Suppose

that in R2 there are two barriers, B1 and B2, represented by a11z1 + a12z2 = c1

and a21z1 + a22z2 = c2, respectively. The points x = [x1, x2]
T and y = [y1, y2]

T are

located on the same side of these lines. Also, let p = [p1, p2]
T be the intersection

point of the lines B1 and B2, assuming that it exists. Moreover, we define x
′
B1

to
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be a mirrored point of x around the line B1, and y
′
B2

to be a mirrored point of y

around the line B2. The coordinates of these mirrored points can be obtained by

Lemma 2.1.4. The equation of a line connecting x
′
B1

= [x
′
1, x

′
2]

T and y
′
B2

= [y
′
1, y

′
2]

T

is expressed by ar1z1 + ar2z2 = 1, where ar1 =
[(

x
′
2−y

′
2

y
′
1−x

′
1

)
x
′
1 + x

′
2

]−1 (
x
′
2−y

′
2

y
′
1−x

′
1

)
and

ar2 =
[(

x
′
2−y

′
2

y
′
1−x

′
1

)
x
′
1 + x

′
2

]−1

.

x

x'
B1

y

y'
B2

p

B2B1

e
1

e
2

Figure 2.1: Illustration of the Shortest Path

Now in the case that ar1p1 + ar2p2 ≥ 1, the line connecting x
′
B1

and y
′
B2

cross both

barriers B1 and B2. In this case, we have

min
φ1∈B1,φ2∈B2

[‖x− φ1‖+ ‖φ2 − φ1‖+ ‖y − φ2‖] (2.62)

= min
φ1∈B1,φ2∈B2

[‖x′B1
− φ1‖+ ‖φ2 − φ1‖+ ‖y′B2

− φ2‖] (2.63)

= ‖x′B1
− y

′
B2
‖, (2.64)

and the path is graphically shown in Figure 2.1.

47



On the other hand, the case where ar1p1 + ar2p2 < 1 is the situation where the line

connecting x
′
B1

and y
′
B2

does not cross both barriers B1 and B2. Then we have,

min
φ1∈B1,φ2∈B2

[‖x− φ1‖+ ‖φ2 − φ1‖+ ‖y − φ2‖] (2.65)

=





minφ∈B1 [‖x− φ‖+ ‖y − φ‖] , if path x-φ∗-y crosses line B2

minφ∈B2 [‖x− φ‖+ ‖y − φ‖] , if path x-φ∗-y crosses line B1

‖x− p‖+ ‖y − p‖ , otherwise

(2.66)

=





‖x′B1
− y‖ , if path x-φ∗-y crosses line B2

‖x− y
′
B2
‖ , if path x-φ∗-y crosses line B1

‖x− p‖+ ‖y − p‖ , otherwise

(2.67)

In the above equation, if the shortest path from x to y that touches one barrier

happens to cross the other barrier in the process, that particular path would be

the shortest path from x and y such that touches both lines. This can be in-

tuitively explained by graphical arguments. Otherwise, the shortest path is the

path that touches the point p, the intersection of the two lines. The complete

proof of the results in (2.66) and (2.67) is given in Appendix C. Once we obtain

minφ1∈B1,φ2∈B2 [‖x− φ1‖+ ‖φ2 − φ1‖+ ‖y− φ2‖], we can obtain u(x, 0) easily from

the equation (2.48).

Now we can perform a similar calculation for the second case where t1 > t2. In this

case, we use x
′
B2

which is a reflection of x along the line B2, and y
′
B1

which is a

reflection of y along the line B1, because the second barrier is assumed to be hit

first.
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Also, in the third case where t1 = t2, we trivially see that

min
φ1∈B1,φ2∈B2

[‖x− φ1‖+ ‖φ2 − φ1‖+ ‖y − φ2‖]

= ‖x− p‖+ ‖y − p‖.

2.2 Exit Probabilities of Multidimensional Processes

2.2.1 Generalization to a Multidimensional Process

Let us assume that (b1, . . . , bd) are numbers such that X1(0) > b1, . . . , Xd(0) > bd

for a d-dimensional process. Then, we can define the following events:

E1 = {X1(t) ≤ b1 for some t, 0 ≤ t ≤ 1} (2.68)

E2 = {X2(t) ≤ b2 for some t, 0 ≤ t ≤ 1} (2.69)

... (2.70)

Ed = {Xd(t) ≤ bd for some t, 0 ≤ t ≤ 1}. (2.71)

Hence, Ei is the event where the ith component of the process breaches its corre-

sponding barrier, bi.

The set relation from (2.6) in Section 2.1.1 can be generalized in the standard way:

P (E1 ∪ E2 ∪ E3 ∪ . . . ∪ Ed)

=
∑

i

P (Ei)−
∑

i6=j

P (Ei ∩ Ej) +
∑

i6=j 6=k

P (Ei ∩ Ej ∩ Ek)

−
∑

i6=j 6=k 6=l

P (Ei ∩ Ej ∩ Ek ∩ El) + · · · , (2.72)

where the subscripts are all different.
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Hence, in order to characterize the joint barrier crossing probability P (E1∪E2∪E3∪
. . .∪Ed), we need to estimate joint probabilities of P (Ei∩Ej), P (Ei∩Ej∩Ek), · · · .
In case where the underlying process follows the Brownian Bridge process with the

interval size of ε, by Lemma 1.2.1 these probabilities satisfy the Large Deviations

Principle with the same rate function as in (1.24).

In this section, we focus on the three-way joint probability, but our discussion can

be generalized to arbitrarily high dimensions. We discuss two approaches. The first

approach involves higher-order approximations, which require more computation.

The second approach involves terms up to the second order. This approach has less

computational burden but is also less accurate.

Higher-Order Approximations

When d = 3, we consider the following inclusion-exclusion principle,

P (E1 ∪ E2 ∪ E3) = P (E1) + P (E2) + P (E3)− P (E1 ∪ E2)

− P (E2 ∪ E3)− P (E1 ∪ E3)

+ P (E1 ∩ E2 ∩ E3). (2.73)

Below we show how we can obtain an approximation of P (E1∩E2∩E3) by extending

the concept presented in Section 2.1.3. We define Γi, i = 1, 2, 3, as in the Section
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2.1.3, and we denote Γ1,2,3 = Γ1 ∩ Γ2 ∩ Γ3. In other words,

Γ1,2,3 = {absolutely continuous γ(t) ∈ R2, 0 < t < 1|γ(0) = x, γ(1) = y,

γ1(t1) = c1 for some t1, 0 ≤ t1 ≤ 1,

γ2(t2) = c2 for some t2, 0 ≤ t2 ≤ 1,

γ3(t3) = c3 for some t3, 0 ≤ t3 ≤ 1}.

Γ1,2,3 is the event where each component of the process breaches their corresponding

barriers between time 0 and 1. Since Γ1,2,3 ⊆ B, we can minimize the same action

functional over the set Γ1,2,3 as follows,

u(x, 0) = inf
η∈Γ1,2,3

J0,1(η).

Suppose that t1 ≤ t2 ≤ t3. By a similar transformation as in Section 2.1.3, we need

to evaluate the following equivalent problem:

u(x, 0) = inf
η∈H1,2,3

J0,1(η) (2.74)

J0,1 =
1

2

∫ 1

0

‖η′(t) +
η(t)− w

1− t
‖2dt, (2.75)

where all the variables are defined in similar manner as in Section 2.1.3. We also

define Bi’s in the same way. Now, with some abuse of notations, from here on we

represent Kx with x, and w with y. Then the above optimization problem can be

reduced to the following problem:

u(x, 0) = inf
φ1∈B1,φ2∈B2,φ3∈B3

1

2
{(‖x− φ1‖+ ‖φ1 − φ2‖+ ‖φ2 − φ3‖+ ‖y − φ3‖)2

−‖x− y‖2}, (2.76)
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where φ1 is the coordinate where the path η(t) hits the first barrier B1, and φ2 and

φ3 are similarly defined for the second and the third barrier. This result implies

that we can focus on solving the following optimization problem,

inf
φ1∈B1,φ2∈B2,φ3∈B3

‖x− φ1‖+ ‖φ1 − φ2‖+ ‖φ2 − φ3‖+ ‖y − φ3‖. (2.77)

For higher-order joint probabilities involving four or more components, this method

can be extended in a straight forward manner. For a general d-way interaction, the

optimization problem that we need to address is

inf
φ1∈B1,φ2∈B2,...,φd∈Bd

‖x− φ1‖+ ‖φ1 − φ2‖+ ‖φ2 − φ3‖+ . . . + ‖y − φd‖, (2.78)

where φ1, φ2, . . . , φd are points on the hyperplanes B1, B2, . . . , Bd, respectively. The

only complication is that the optimization problem in (2.78) will involve more terms,

and hence it will become more complicated.

We have assumed one particular sequence of ordering of t1, t2, . . . , td, where t1 ≤
t2 ≤ . . . ≤ td. We also need to consider different sequences of t1, t2, . . . , td, and

there are d! different sequences to consider. In order to obtain the true infimum

of the action functional in (2.74), we compute the infimum under all the possible

sequences of t1, t2, . . . , td and take the smallest number.

Solution to the Optimization Problem

Suppose that for i = 1, . . . , d, φi is a vector of the form [φi1, φi2, . . . , φid]
T . Also, the

hyperplanes B1, B2, . . . , Bd are represented by the linear equations ai1z1 + ai2z2 +
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. . .+aidzd = ci. The problem in (2.78) can be formulated as a standard constrained

minimization problem:

inf
φ1,φ2,...,φd

‖x− φ1‖+ ‖φ1 − φ2‖+ ‖φ2 − φ3‖+ . . . + ‖y − φd‖ (2.79)

with constraints

a11φ11 + a12φ12 + . . . + a1dφ1d = c1

a21φ21 + a22z22 + . . . + a2dz2d = c2

...

ad1zd1 + ad2zd2 + . . . + addzdd = cd. (2.80)

Since φi’s are d-dimensional vectors, the number of decision variables is d2. We

demonstrate that the objective function in (2.79) is indeed convex.

Lemma 2.2.1 The objective function specified in (2.79) is convex.

Proof. Let s be any point in Rd. Let f(s) be the Euclidean norm of s. First,

we show that f() is convex. Let s1, s2 ∈ Rd. By definition, we need to show that

αf(s1) + (1− α)f(s2) ≥ f(αs1 + (1− α)s2), for 0 ≤ α ≤ 1.

f(αs1 + (1− α)s2) = ‖αs1 + (1− α)s2‖

≤ α‖s1‖+ (1− α)‖s2‖

= αf(s1) + (1− α)f(s2)

The objective function in (2.79) is expressed as a sum of many Euclidean norms.

Since the sum of convex functions is also convex, the objective function in (2.79) is
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a convex function of (x− φ1), (φ1− φ2), . . . , (y− φd). By Theorem 5.7 of Rockafel-

lar (1970), (2.79) is a convex function of φ1, . . . , φd, because φ1, . . . , φd are linear

transformations of (x− φ1), (φ1 − φ2), . . . , (y − φd). ¤

From Lemma 2.2.1, we see that the optimization problem formulated in (2.79)-

(2.80) is a convex optimization problem, which is a standard problem in the field

of optimization. Convexity of the objective function guarantees convergence to the

solution using an iterative numerical approach. In other words, the local minimum

of this function is always a global minimum as well. Hence, in this thesis, we use a

MATLAB optimization function “fmincon”.

Using only Second Order Approximations

We have discussed how we can obtain approximations for P (E1∩E2∩E3), and more

generally P (E1∩E2∩ . . .∩Ed). Alternatively, we can simply assume that for higher

order terms P (E1∩E2∩E3) = 0 or P (E1∩E2∩ . . .∩Ed) = 0. This approximation

is reasonable, because for a sufficiently short period of time the probability that all

three or four barriers are breached will be small. This assumption may be violated,

if all the components are highly correlated with one another and all the barriers

are located very close to the initial or ending value of the underlying process.

If we assume for higher order interaction terms that P (E1 ∩ E2 ∩ E3) = 0 and

P (E1∩E2∩ . . .∩Ed) = 0, then the computation of P (E1∪E2∪E3) or P (E1∪E2∪
. . . ∪Ed) is simplified, because then we need to compute only the marginal barrier

crossing probabilities and the two-way joint probabilities.
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2.2.2 Generalizations to Other Situations

In Section 2.1, we focused on the situation where the underlying process was a two-

dimensional Brownian Motion with zero drift and the barrier was constant over

time. In this section, we relax some of these assumptions. First, we consider a

Brownian Motion process with a non-zero drift. Then, we consider the situation

where the barrier is changing linearly as a function of time.

Correlated Multivariate Brownian Motion with a non-zero Drift

In Section 2.1, we assumed that the drift term µ is zero. Here we investigate

the situation where the underlying stochastic process follows a Brownian Motion

process with a nonzero drift µ between the time s and s+ ε. Assuming fixed initial

and terminal values of the interval to be x and y, we demonstrate in Appendix B.2

that regardless of the value of µ the corresponding Brownian Bridge process is as

follows:

dX(t) = −X(t)− y

1− t
dt +

√
εΣdW(t) for t ∈ [0, 1) (2.81)

with X(0) = x.

This process is exactly in the same form as the equation (2.3) in Section 2.1.1.

Hence, the nonzero drift µ does not add any more complexity to the problem.
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Time-Varying Barriers

In this section, we assume that the barrier level b is changing linearly as a function

of time as follows,

b(t) = q · (t− s) + b(s), t ∈ [s, s + ε], (2.82)

where q is a constant. Since in equations (1.19) and (1.21) we re-scale the time

parameter t for the underlying process, we need to re-scale the time parameter in

the representation (2.82). Hence, by changing the variable t → t/ε and setting

s = 0, we obtain the following representation of the barrier

b(t) = εqt + b(0), t ∈ [0, 1], (2.83)

where the initial value b(0) after re-scaling should be the same as the value of

the variable b(s). In order to present this idea clearly, we first focus on the 1-

dimensional process with one barrier, then we discuss the correlated d-dimensional

stochastic process with several barriers.

From (1.22), the drift term of the Brownian Bridge is y−x
1−t

. where x and y are the

fixed values of the Brownian Motion process at time 0 and time 1, respectively.

Suppose that there is one barrier whose value changes over time according to a de-

terministic function b(t) = εqt+b(0), for 0 ≤ t ≤ 1. Computation of the probability

that this Brownian Bridge hits the barrier under this setting is equivalent to that

under the following setting:

• The Brownian Bridge has the drift term (y−εq)−x
1−t

, which implies that the

corresponding Brownian Motion process has fixed values of x and (y− εq) at

time 0 and 1, respectively.
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• There is a time constant barrier b = b(0).

This result is evident by using a geometric and graphical argument. The latter

setting is obtained by rotating the former so that the linear barrier becomes a

horizontal line. Also, the barrier and the expected value of the process X(t) at

time 0, E[X(t)|X(0) = x], are εqt + b(0) and x + t(y − x), in the former setting,

and b(0) and x + t((y − εq) − x), in the latter. Hence, the expected distances

between the barrier and the value of the stochastic process at any time t are the

same under these two settings, and the volatility remains the same as well. Hence,

computations of the barrier crossing probability under these two settings yield the

same result.

We can reformulate this problem by defining a new variable v = y − εq. Then

the drift term of the Brownian Bridge can be written as v−x
1−t

, with a time-constant

barrier b(0). After this change of a variable, the underlying stochastic process is

a Brownian Bridge and the barrier is constant at b(0), which is the formulation

considered in Section 2.1.

We now consider a d-dimensional process with their corresponding barriers repre-

sented by bi, i = 1, . . . , d. We assume that bi, i = 1, . . . , d are changing on [0, 1]

according to linear functions of time, represented by bi(t) = εqit+ bi(0). Originally,

y is a d × 1 vector of the terminal values of X at time 1. For the ith component

of this vector, yi, we define a new variable vi = yi − εqi. In a vector form, we have

v = y−εq, where v = [v1, . . . , vd]
T and q = [q1, . . . , qd]

T . Hence, in order to remove

the time variability of the ith barrier, we replace yi with vi. We modify the drift

57



term of ith component to be vi−x
1−t

in the place of yi−x
1−t

. With this modification, we

can consider a problem where the barriers are constant at the level of bi(0), and

the underlying process is in the form of (2.3) in Section 2.1.1.

2.3 Numerical Examples of One-Interval Exit Prob-

abilities

In this section, we provide some numerical examples of applications of the theoret-

ical concepts introduced in Sections 2.1 and 2.2. For a two-dimensional Brownian

Motion process, we approximate a barrier crossing probability for a small interval

with fixed initial and terminal values.

For a two-dimensional Brownian Bridge process, we have a semi-analytic solution

of the barrier-crossing probability given by He et al. (1998). We use this result as

a benchmark to evaluate accuracy of our approximations.

In this numerical study, we use a variance-covariance matrix of the following form,

with varying degrees of covariance represented by the number r:

V CV =


 0.1 r

r 0.08


 . (2.84)

Note that V CV corresponds to ΣΣT using the earlier notations.

Table 2.1 shows the list of the covariance values, r, that will be used throughout this

numerical study. It also gives the corresponding correlation ρ, which is computed

from the usual formula, ρ = r√
0.1
√

0.08
.
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Table 2.1: Values of Covariance and Corresponding Correlation

Variance-Covariance r ρ

VCV1 0.075 0.83853

VCV2 0.05 0.55902

VCV3 0.035 0.39131

VCV4 0.025 0.27951

VCV5 0.005 0.055902

VCV6 0.001 0.01118

VCV7 -0.001 -0.01118

VCV8 -0.005 -0.055902

VCV9 -0.025 -0.27951

VCV10 -0.035 -0.39131

VCV11 -0.05 -0.55902

VCV12 -0.075 -0.83853

VCV13 0 0

We compute P (E1 ∪ E2), the probability that the underlying process hits one or

both of the barriers in a 2-dimensional case. Firstly, in Section 2.3.1 we perform

numerical calculations using the extension of Baldi’s method as described in Section

2.1.2. Then, in Section 2.3.2 we do the calculations in the same setting using our

proposed method as described in Section 2.1.3. We also explore additional numer-

ical examples in order to gain better understanding of accuracy of our proposed

method. In Section 2.3.3, we compute barrier crossing probabilities when the un-

derlying process follows a 3-dimensional Brownian Motion. We let x and y be 2×1

vectors corresponding to the initial and terminal values of the Brownian Bridge.

In addition, B is a 2× 1 vector of corresponding barrier levels, and T denotes the

length of the interval.
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2.3.1 Calculations Using Extended Baldi’s Approach

Table 2.2: Results of Baldi’s approach

Variance-Covariance Baldi’s Approximation True Value

VCV2 0.278 0.2861

VCV11 0.278 0.3072

VCV13 0.278 0.3002

x = [0.984, 0.978]T , y = [0.988, 0.981]T , T = 0.003, B = [1, 1]T ,

In Table 2.2, we present “Baldi’s approximation” obtained from Baldi’s method

discussed in Section 2.1.2, and “True Value”, obtained from the closed-form solution

given in He et al. (1998). As we vary the covariance between two components, we

notice that Baldi’s estimates remain the same. Moreover, Baldi’s estimates are

equal to the one-dimensional barrier crossing probability of the first component.

These observations are consistent with our findings in Section 2.1.2. The true

values are different under the three different covariance structures. The difference

exists because the barrier crossing can occur when the underlying process goes

through paths other than the most likely path for the event of the barrier crossing.

Hence, we see in this example that Baldi’s approach is not adequate.

Table 2.3: Results of Baldi’s approach

Variance-Covariance Baldi’s Approximation True Value

VCV2 0.1601 0.2066

VCV11 0.1601 0.2455

VCV13 0.1601 0.2340

x = [0.784, 0.778]T , y = [0.788, 0.781]T , T = 0.5, B = [1, 1]T
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In Table 2.3, we use the same variance-covariance structures as in the Table 2.2.

However, we increased the interval size to be much larger, from 0.003 to 0.5. We also

moved x and y further from the barriers. As expected, Baldi’s approximations are

the same under different variance-covariance structure. However, these estimates

differ more from the true probability, illustrating the inadequacy of these estimates.

Table 2.4: Results of Baldi’s approach

Barriers Variance-Covariance Baldi’s Approximation True Value

[1, 1.3]T VCV2 0.278 0.278

VCV11 0.278 0.278

VCV13 0.278 0.278

[1.01, 1.01]T VCV2 0.0221 0.022318

VCV11 0.0221 0.022512

VCV13 0.0221 0.022503

[0.99, 0.99]T VCV2 0.9231 0.93237

VCV11 0.9231 0.97716

VCV13 0.9231 0.95438

x = [0.984, 0.978]T , y = [0.988, 0.981]T , T = 0.003

In Table 2.4, we consider different locations of the barriers. We note that if one of

the barriers is located far from the initial and terminal values of the process, then

Baldi’s estimates is similar to the true values. This is consistent with the nature of

the Large Deviations approximations.

In Table 2.5, in the first trial, we set the starting point and the terminal point of the

first component to be similar to those of the second component. In the subsequent

trials, we make the starting point and the terminal point of the first component to

be more different than those of the second dimension. As the relative location of
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Table 2.5: Results of Baldi’s approach

x y Var-Cov Baldi’s Approx. True Value

[0.984, 0.981]T [0.988, 0.985]T VCV2 0.278 0.31134

VCV11 0.278 0.36411

VCV13 0.278 0.34519

[0.984, 0.971]T [0.988, 0.969]T VCV2 0.278 0.27808

VCV11 0.278 0.27858

VCV13 0.278 0.27844

[0.984, 0.964]T [0.988, 0.961]T VCV2 0.278 0.278037

VCV11 0.278 0.278046

VCV13 0.278 0.278043

T = 0.003, B = [1, 1]T

the second component is further away from the barrier, the true probability is less

dependent on the covariance, because the effect of the second component becomes

negligible. Hence, only in this situation, Baldi’s approach may be appropriate to

use.

Table 2.6: Results of Baldi’s approach

Variance-Covariance Baldi’s Approximation True Value

VCV2 0.6188 0.61891

VCV11 0.6188 0.62231

VCV13 0.6188 0.620505

x = [0.984, 0.978]T , y = [0.988, 0.981]T , T = 0.0005, B = [0.99, 0.99]T

In Table 2.6, we reduce the interval size to be 0.0005. Here we do not see much im-

provement of accuracy compared to the situation where the interval size was 0.003.

We still observe that Baldi’s approximation does not depend on the covariance.
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Overall we see that there are many explanations for the discrepancy between Baldi’s

estimates and the true values. First of all, Baldi’s method is a first-order approxi-

mation. Secondly, the probability of the barrier crossing via the length-minimizing

path γ does not completely dominate the barrier crossing probability via other

routes. To address the shortcoming of Baldi’s method, we proposed a new method

in Section 2.1.3, and numerical results based on this approach are given in the next

section.

2.3.2 Calculations Using the New Approach

The basic idea in this method is that we compute P (E1), P (E2), and P (E1 ∩ E2)

separately, and from these values, we obtain the estimate of P (E1∪E2). We obtain

P (E1) and P (E2) from the analytic solution in (2.2). We obtain P (E1 ∩E2) using

the method described in Section 2.1.3, and P (E1∪E2) from the inclusion-exclusion

principle.

We use the same examples as in Section 2.3.1, so the proposed approach can be as-

sessed in comparison to the Baldi’s approach. Then we provide some more detailed

numerical study in order to understand the characteristics of results based on our

proposed approach.

Using the Same Example as in Section 2.3.1

In Table 2.7, P (E1∪E2) are compared to the true value. We note that our estimates

for P (E1 ∪ E2) vary, as we use different variance-covariance matrices. Hence, our
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Table 2.7: Results of our approach

Variance-Covariance P (E1) P (E2) P (E1 ∩ E2) P (E1 ∪ E2) True Value

VCV2 0.278 0.0307 0.0303 0.2784 0.2861

VCV11 0.278 0.0307 0.0010 0.3078 0.3072

VCV13 0.278 0.0307 0.0085 0.3002 0.3002

x = [0.984, 0.978]T , y = [0.988, 0.981]T , T = 0.003 B = [1, 1]T

estimates depend on correlations of underlying processes. Consequently, the accu-

racy of our estimates seems to be significantly better than that of Baldi’s approach.

When the correlation is 0, our estimate coincides with the true value.

Table 2.8: Results of our approach

Variance-Covariance P (E1) P (E2) P (E1 ∩ E2) P (E1 ∪ E2) True Value

VCV2 0.1601 0.08795 0.06275 0.1854 0.2066

VCV11 0.1601 0.08795 0.00134 0.2468 0.2455

VCV13 0.1601 0.08795 0.01409 0.2340 0.2340

x = [0.784, 0.778]T , y = [0.788, 0.781]T , T = 0.5, B = [1, 1]T

Similarly, the accuracy of our proposed method is better under a different setting

as shown in Table 2.8.

In Table 2.9, we consider different barrier levels. In the case with the barrier at

[1, 1.3], the barrier of the second component is far away from the initial value and

the ending value of the second component. In this case, the probability of barrier

crossing by the second component is almost negligible and consequently P (E1∩E2)

is zero as well. For the barrier [0.99, 0.99] and the variance-covariance matrix given

by VCV2 (positively correlated), we note that P (E2) is the same as P (E1 ∩ E2).
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Table 2.9: Results of our approach

Barriers Var-Cov P (E1) P (E2) P (E1 ∩ E2) P (E1 ∪ E2) True Value

[1, 1.3]T VCV2 0.278 0 0 0.278 0.278

VCV11 0.278 0 0 0.278 0.278

VCV13 0.278 0 0 0.278 0.278

[1.01, 1.01]T VCV2 0.022074 0.000438 0.0003474 0.022165 0.022318

VCV11 0.022074 0.000438 2.7383E-08 0.022512 0.022512

VCV13 0.022074 0.000438 0.000009668 0.022503 0.022503

(0.99, 0.99)T VCV2 0.92312 0.40657 0.40657 0.92312 0.93237

VCV11 0.92312 0.40657 0.30728 1 0.97716

VCV13 0.92312 0.40657 0.37531 0.95438 0.95438

x = [0.984, 0.978]T , y = [0.988, 0.981]T , T = 0.003

In this case, the probability of barrier hitting of the first component completely

dominates that of the second component. The event that the second barrier is

breached is a subset of the event that the first barrier is breached.

In Table 2.10, we fix the initial value and the end value of the first component as

we vary those of the second component. We can see that our estimates change with

covariance values.

In Table 2.11, we see that our proposed method estimates the barrier crossing

probability reasonably well.

Detailed Numerical Study 1

Now we provide more in-depth numerical study in order to evaluate properties of

our estimates. We examine four cases, and the results are shown in Tables D.1 -

D.7 in Appendix D. We consider the following four cases of the initial point x and
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Table 2.10: Results of our approach

Table 5

x y Var-Cov P (E1) P (E2) P (E1 ∩ E2) P (E1 ∪ E2) True Value

[0.984, [0.988, VCV2 0.278037 0.093014 0.08365 0.287407 0.31134

0.981]T 0.985]T VCV11 0.278037 0.093014 0.003868 0.367184 0.36411

VCV13 0.278037 0.093014 0.02586 0.34519 0.34519

[0.984, [0.988, VCV2 0.278037 0.000558 0.0005577 0.278037 0.27808

0.971]T 0.969]T VCV11 0.278037 0.000558 8.532E-06 0.278586 0.27858

VCV13 0.278037 0.000558 0.000155 0.27844 0.27844

[0.984, [0.988, VCV2 0.278037 8.29E-06 8.29E-6 0.278037 0.278037

0.964]T 0.961]T VCV11 0.278037 8.29E-06 6.30083E-8 0.278046 0.278046

VCV13 0.278037 8.29E-06 2.30599E-6 0.278043 0.278043

T = 0.003, B = [1, 1]T

Table 2.11: Results of our approach

Variance-Covariance P (E1) P (E2) P (E1 ∩ E2) P (E1 ∪ E2) True Value

VCV2 0.6188 0.004517 0.004517 0.6188 0.61891

VCV11 0.6188 0.004517 0.0008418 0.622458 0.62231

VCV13 0.6188 0.004517 0.0027948 0.620505 0.620505

x = [0.984, 0.978]T , y = [0.988, 0.981]T , T = 0.0005, B = [0.99, 0.99]T

the terminal point y for different combinations of a variance-covariance matrix and

a time horizon, T .

• Case 1: x = [0.784, 0.778]T , y = [0.788, 0.781]T , B = [1, 1]T

• Case 2: x = [0.884, 0.878]T , y = [0.688, 0.681]T , B = [1, 1]T

• Case 3: x = [0.954, 0.948]T , y = [0.968, 0.951]T , B = [1, 1]T

• Case 4: x = [0.654, 0.648]T , y = [0.668, 0.651]T , B = [1, 1]T
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The results are partially summarized in Figures 2.2 - 2.5, where we compare the

results of our proposed method and Baldi’s method to the benchmark values. B is

the level of barriers, and T is the length of time interval. The tables in Appendix

D display the probability that at least one component breaches its corresponding

barrier. True values are computed based on He et al. (1998), and the values in

the column “LDT” shows the results from our proposed approach as discussed

in Section 2.1.3. In addition, we show the actual error and the percentage error

amount. The values in the column “Baldi’s” show the approximations based on

Baldi’s approach, which is described in Section 2.1.2.
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Figure 2.2: Estimates of Exit Probability for Case 1 with T = 0.5

The setting of Case 1 is the same as that in Table 2.8. We compute the barrier

crossing probability for different variance-covariance matrices and different time

interval lengths. Case 2 is designed such that x is brought closer to the barrier and
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Figure 2.3: Estimates of Exit Probability for Case 2 with T = 0.5

y further from the barrier. Case 3 is the situation where x and y are located very

close the barriers. In Case 4, x and y are very distant from the barrier.

Overall, our proposed method results in reasonable approximations of the true

barrier crossing probabilities. We make several remarks from our results.

• Both absolute and percentage errors do not tend to increase much as T in-

creases. Accuracy does not deteriorate very fast as a function of time. For

the approximations with time interval T = 1, we still have reasonable approx-

imations.

• When ρ = 0, our estimates coincide with the true value.

• In all four cases, our estimates are the worst at a high positive correlation.

As we gradually change the correlation from high positive correlation toward
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Figure 2.4: Estimates of Exit Probability for Case 3 with T = 0.5

high negative correlation, accuracy of our estimates tend to increase. Hence,

our estimation works very well when the correlation is highly negative.

• Our estimates underestimate the true value when ρ > 0 and overestimate

when ρ < 0.

• Our estimates in Case 1 and Case 2 show similar accuracy. This indicates

that, as long as the probability of hitting barriers is within a similar range

(neither too high nor too low), the accuracy is relatively similar.

• In Case 3, the probability of barrier crossing is very high and indeed very

close to 1. In this case, the percentages errors are quite small. In some cases,

our estimates turned out to be a number greater than 1, in which case we

simply assign a value of 1 to the probability of barrier crossing.

• In Case 4, the probability of barrier crossing is very low. In this case, the
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Figure 2.5: Estimates of Exit Probability for Case 4 with T = 0.5

percentage errors are fairly small. However, we note that as before the error

increases for high positive correlation.

• We notice that Baldi’s approach always underestimates the true probability

because, due to its asymptotic nature, the estimate based on this approach

turns out to be the same as the maximum of barrier crossing probability of

the first component and that of the second. On the other hand, our approach

considers the event that two barriers are breached, which is of the second-

order. Hence, our estimates are always bigger than Baldi’s and provide better

approximations than Baldi’s.

These observations show that our proposed method works reasonably well under

various settings.
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Detailed Numerical Study 2

In previous section, we attributed magnitude of error of our estimates to different

factors. However, it is difficult to characterize the pattern, because the important

factors such as instantaneous variance, length of time interval, and the location of

initial and end points with respect to the barrier levels are all confounded. In this

numerical study, we investigate the relationship between the probability of barrier

crossing and the magnitude of the error of our proposed method. In particular, we

evaluate the probability that both barriers are breached in the 2-dimensional case,

and we consider different combinations of the initial value x, the end value y, and

correlations ρ for the given interval:

x = [0.99, 0.99], [0.9, 0.9], [0.8, 0.8]

y = [0.99, 0.99], [0.9, 0.9], [0.8, 0.8]

T = 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1

ρ = −0.4,−0.1, 0, 0.1, 0.4

Figure 2.6 establishes how the error magnitude of our proposed method is related

to the barrier crossing probability. We note that the error is quite small when the

probability of barrier crossing is either close to 1 or 0.

Figure 2.7 shows the relationship between the barrier crossing probability and the

percentage error of our proposed method. We see that the percentage error is

smallest when the barrier crossing probability is high, and that it gets larger as this

probability decreases toward 0.
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Figure 2.6: Relationship between Barrier Crossing Probability and Difference Error

From these numerical examples, we also note that generally the estimates are ac-

curate when correlation is close to 0, and the error increases as the correlation

deviates from zero in either direction.

2.3.3 Our Approach for the 3-Dimensional Case

In this section, we apply our proposed methodology from Section 2.1.3 to a 3-

dimensional Brownian Motion process with fixed terminal values. Since this is

a problem with dimension d > 2, it involves solving the optimization problem

described in Section 2.2.1.

We consider a 3-dimensional Brownian Bridge process with the following informa-

tion:

• The length of time interval T is 0.25.
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Figure 2.7: Relationship between Barrier Crossing Probability and Percentage Error

• The process has a fixed value x = [0.984, 0.978, 988]T at the beginning of the

interval and y = [0.988, 0.981, 0.98]T at the end.

• The levels of barriers for these three components are c = [1, 1, 1]T .

• The variance-covariance matrix for this correlated process is given to be

V CV =




0.1 r r

r 0.08 r

r r 0.1


 (2.85)

where r is the covariance.

In this numerical study, we compute the probability that all three components

of this 3-dimensional Brownian Bridge cross their respective barriers for the time

interval T = 0.25. The marginal 1-dimensional barrier crossing probabilities of each
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component are 0.9847, 0.9591, and 0.9810, respectively. Hence, we know that the

true value of the three-way joint barrier crossing probability with zero covariance

should be 0.9847× 0.9591× 0.9810 = 0.9265.

Table 2.12: Joint Exit Probabilities of 3-Dimensional Pinned Brownian Motion

Covariance Simulation Our Approach Our Approach (tol)

0.075 0.934294 0.959062 0.9588

(0.003)

0.05 0.913941 0.957735 0.9548

(0.002)

0.035 0.912647 0.953284 0.9501

(0.003)

0.025 0.911059 0.948336 0.9469

(0.004)

0.005 0.912824 0.931937 0.9291

(0.003)

0.001 0.908647 0.927597 0.9245

(0.002)

0 0.905706 0.926479 0.9249

(0.003)

-0.001 0.906647 0.925353 0.9205

(0.003)

-0.005 0.905588 0.920741 0.9174

(0.004)

-0.025 0.905176 0.895547 0.8936

(0.002)

-0.035 0.906471 0.881685 0.8804

(0.003)

Table 2.12 presents our estimates with varying degrees of covariance. Under the

column “Simulation”, we present this joint exit probabilities computed from the

Crude Monte Carlo approach with 1,300 subintervals and 17,000 runs of simula-

tions. We do not know the exact value of the joint exit probability, but we know
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that the Crude Monte Carlo method converges to the true value as we increase the

number of subintervals and the number of simulations. Our “Simulation” value at

zero correlation does not match our known result, indicating that the Crude Monte

Carlo estimate still has a downward bias even with using 1,300 subintervals. The

column “Our Approach” shows the results we obtain from our proposed method

in Section 2.1.3. The column “Our Approach (Tol)” is the same as the previous

column except that we have increased the tolerance level of the Matlab optimiza-

tion function “fmincon” to be 0.15 × T , in order to reduce time for solving the

optimization problem. From this table, we see that we do not lose much accuracy

by increasing the tolerance level. The efficient ways of approximating the solution

to this optimization problem are further discussed in detail in Section 3.1.3.

In our numerical study, we have explored our proposed methodology with different

locations of the initial point, x, and the ending point, y. In terms of percentage

error, our method works the best when the initial and the ending point are close

to the barriers (i.e. when the probability of crossing barriers is high). As the prob-

ability of crossing all the barriers becomes smaller, the percentage error increases

up to as high as 50-60 percent . However, in practice, this should not be a serious

problem because in such cases the absolute error is very small. In summary, the

proposed method works the best when the barrier crossing probability is high. The

situation where the barrier crossing probability is high for the given interval is the

case that matters the most when we compute the barrier crossing probability of a

Brownian Motion process, as discussed in the next chapter.
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Chapter 3

Simulation Methods of Exit

Probabilities of a Multivariate

Brownian Motion

In the previous chapter, we have discussed a method of computing the barrier

crossing probability of a Brownian Bridge process in one fixed interval. In this

chapter, we extend these concepts and propose an algorithm of computing a barrier

crossing probability for a given time interval when the underlying process follows a

correlated multivariate Brownian Motion process.

We first assume that the underlying process is 3-dimensional and describe an al-

gorithm for computing the barrier crossing probability. This algorithm is easily

extendible to higher dimensional processes. We consider a 3-dimensional Brownian

77



Motion X(t) of the following form

dX(t) = Udt + ΣdW(t), (3.1)

with barrier levels B = [b1, b2, b3]
T , where U is a 3×1 vector of drift terms, {W(t)}

is a 3-dimensional standard Brownian Motion, and Σ is a 3×3 matrix corresponding

to a square root of an instantaneous variance-covariance matrix.

In this chapter, we develop methods of efficiently computing a barrier crossing

probability of a multivariate Brownian Motion. In Section 3.1, we extend the idea

from Chapter 2 and propose an algorithm in a simulation framework for computing

the probability that at least one component breach its respective barrier. In Section

3.2, we propose a more time-efficient version of the algorithm described in Section

3.1. In Section 3.3, we compare efficiency of the proposed method to that of existing

methods. The remainder of this chapter deals with applications and extension of

our proposed algorithm. We compute the distribution of number of components

crossing barriers in Section 3.4 and price a credit basket derivative in Section 3.5.

3.1 An Effective Algorithm in a Simulation Frame-

work

We present a general simulation framework for computing a barrier crossing prob-

ability of a multivariate Brownian Motion process. In particular, we focus on

computing a probability that at least one component of the multivariate process
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breaches its respective barrier within a given time horizon. We describe the simu-

lation framework in Section 3.1.1. Then, in Section 3.1.2, we describe three differ-

ent methods of simulating barrier crossing probability, namely Crude Monte Carlo

Method, Baldi’s Method, and Our Proposed Method. The optimization involved in

Our Proposed Method imposes a huge computational burden. In Section 3.1.3, we

discuss some methods for solving the optimization problem, which was described in

Section 2.2.1. In Section 3.1.4, we present some numerical examples, and in Section

3.1.5, we illustrate a stylized example in the context of credit risk application.

3.1.1 General Simulation Framework

For the given time horizon T , we can select an arbitrary number of subintervals,

M , for simulating the barrier crossing probabilities within this time horizon. First

we suggest an algorithm for the case M = 1, and then show how this algorithm can

be generalized to any number of subintervals, M > 1.

For M = 1, we can apply the following algorithm with N runs of simulation to

evaluate the probability that at least one component breaches its corresponding

barrier. The justification for using the following algorithm for computing a barrier

crossing probability is given in Appendix E.

1. Let Default Cnt = 0 and suppose that X(0) = [x1(0), x2(0)x3(0)]T , such

that x1(0) > b1, x2(0) > b2, and x3(0) > b3.

2. Generate a value X(T ) = [x1(T ), x2(T ), x3(T )]T according to the Brownian

Motion process (3.1).
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3. If x1(T ) ≤ b1, x2(T ) ≤ b2, or x3(T ) ≤ b3, then at least one barrier is breached,

and we increment Default Cnt = Default Cnt + 1.

4. If x1(T ) > b1, x2(T ) > b2, and x3(T ) > b3, then a barrier crossing does

not occur at the simulated point T . We compute CP , which is the prob-

ability that the process X crosses the barrier B with fixed values X(0) =

[x1(0), x2(0), x3(0)]T and X(T ) = [x1(T ), x2(T ), x3(T )]T . We increment Default Cnt

by CP . i.e. Default Cnt = Default Cnt + CP

5. we repeat Steps 2-4 N times.

6. The probability of barrier crossing by at least one component is obtained as

Default Cnt
N

.

The methods of calculating CP in the above algorithm are discussed in the next

section. Now we consider the case M > 1. The above procedure will be slightly

modified in Steps 2, 3 and 4.

2
′

Generate values X(iε) = [x1(iε), x2(iε), x3(iε)]
T , i = 1, . . . , M according to

the Brownian Motion process (3.1), where ε is the size of each time step.

3
′
If there exists i ∈ {1, . . .M} such that X1(iε) ≤ b1, X2(iε) ≤ b2 or X3(iε) ≤ b3,

the barrier is breached by the simulated path. We increment Default Cnt =

Default Cnt + 1.

4
′
If ∀i ∈ {1, . . .M}, x1(iε) > b1, x2(iε) > b2, and x3(iε) > b3, the barriers are

not breached at the end points of subintervals.. We compute CPi, i = 1, . . . , M ,
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where CPi is the probability that the process X crosses the barrier B during the

interval from (i − 1)ε to iε with fixed values of the process X((i − 1)ε) = [x1((i −
1)ε), x2((i− 1)ε), x3((i− 1)ε)]T and X(iε) = [x1(iε), x2(iε), x3(iε)]. The probability

that {X(t), 0 ≤ t ≤ Mε} crosses at least one barrier is given to be 1−∏M
i=1(1−CPi).

Hence, we increment Default Cnt by 1 − ∏M
i=1(1 − CPi). i.e. Default Cnt =

Default Cnt + (1 − ∏M
i=1(1 − CPi)). Note that Mε = T , which is the specified

time horizon.

In the above algorithm, CP is the probability that any of the component of the mul-

tidimensional process crosses its corresponding barrier. We have not yet specified

how to formulate the values of CP in the single step case, or CPi in the multi-step

case. In the next section, we propose three different methods for simulating a bar-

rier crossing probability. The only difference among these methods is the way we

obtain CP or CPi’s.

3.1.2 Description of Simulation Methods

All three simulation methods are based on the same simulation scheme described

in Section 3.1.1, except for the way we compute CP .

Simulation 1: Crude Monte Carlo (CMC )

In this case, we neglect the probability that the barrier may be breached between

the discrete time intervals. In other words, we always assume CP = 0 in a single-

step case, and CPi = 0 in the multi-step case.
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Simulation 2: Baldi’s Method (LDMC1 )

This is a method based on Section 2.1.2. Suppose that we define the event

Ek = {The kth component breaches its corresponding barrier.} (3.2)

for k = 1, 2, 3. As discussed in Section 2.1.2, CP is computed in the following way,

CP = max(P (E1), P (E2), P (E3)) (3.3)

in a single step case. Estimates of CPi’s are obtained in a similar way.

Simulation 3: Our Proposed Method (LDMC2 )

CP is the probability that any of the components of the d dimension crosses its

corresponding barrier. CP is computed based on the method from Section 2.1.3.

Hence, using the notation of this section, CP = P (E1 ∪E2 ∪E2), when d = 3. We

know that

P (E1 ∪ E2 ∪ E3) = P (E1) + P (E2) + P (E3)− P (E1 ∩ E2)

− P (E2 ∩ E3)− P (E1 ∩ E3)

+ P (E1 ∩ E2 ∩ E3). (3.4)

In the above expression, the one-dimensional barrier crossing probabilities, P (E1),

P (E2), and P (E3) are easily obtained from the closed-form expression in (2.2). Also,

the pairwise exit probabilities such as P (E1 ∩E2), P (E2 ∩E3), and P (E1 ∩E3) are

obtained in the computationally efficient way, because we have the semi-analytic

approach as described in Section 2.1.3. For P (E1 ∩ E2 ∩ E3), we have discussed

how to obtain this probability in Section 2.2.1. However, this calculation is compu-

tationally expensive, since it involves solving a convex optimization problem that
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requires many iterations of numerical procedures. Hence, in the subsequent sec-

tion, we incorporate procedures that help to reduce computational burden of this

procedure.

3.1.3 Approaches for Solving the Optimization Problem in

Our Proposed Method

In Our Proposed Method(LDMC2 ), the evaluation of P (E1 ∩ E2 ∩ E3) takes a lot

of time, because we need to solve the optimization problem described in Section

2.2.1. In order to reduce the number of these evaluations, we incorporate the

ideas from Section 2.2.1. In many situations, P (E1 ∩ E2 ∩ E3) is very small, and

hence it is reasonable to assume that this quantity is zero. We need to have some

criteria to determine whether this probability is very small, and hence this term

can be ignored. We consider quantities, min(P (E1), P (E2), P (E3)) and min(P (E1∩
E2), P (E2 ∩ E3), P (E1 ∩ E3)). If one of these quantities are very small, we can

comfortably assume P (E1 ∩ E2 ∩ E3) to be zero. Hence, we can specify threshold

values of α1 and α2 for min(P (E1), P (E2), P (E3)) and min(P (E1 ∩ E2), P (E2 ∩
E3), P (E1 ∩ E3)), respectively. If any of these quantities are below the threshold

values, we can let P (E1 ∩ E2 ∩ E3) = 0. Otherwise, we compute P (E1 ∩ E2 ∩ E3)

using one of the approaches described below.

Approach I: Matlab-based Optimization

This method uses the original approach described in Section 2.2.1. From Lemma

2.2.1, we have shown that the objective function (2.79) is convex. Hence, the Matlab

function “fmincon” gives the global minimum of this problem.
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This approach gives us the most accurate result. However, the drawback of this

method is that it takes too much time to perform this optimization task, because

the function “fmincon” finds the solution using an iterative approach. Moreover,

we need to consider all the possible orderings of φ1, φ2, . . . , φd. The number of times

that we need to perform is d!, which is rather unmanageable in high dimensions.

Approach II: Algorithm Based On Local Optima

We describe a heuristic approach that gives us local minima. For the fixed sequence

of φ1, φ2, . . . , φd ∈ Rd, we perform the following procedure.

1. Initialize the values of φ1, φ2, . . . , φd. For the ease of notations, we use φ0,

and φd+1 to denote the fixed beginning value x and the terminal value y of

the process, respectively.

2. For each i where i = 1, . . . , d, we fix the values of φi−1 and φi+1. Then, we find

the point φ∗i ∈ Bi, such that the length of the path φi−1-φ
∗
i -φi+1 is minimized.

3. We update φi = φ∗i .

4. We iterate Step 2 and 3 until certain convergence criteria are reached, or for

the fixed number of iterations.

Given two points φi−1 and φi+1 for each i = 1, . . . , d, this algorithm finds φ∗i such

that the length of the path from φi−1 to φi+1 that touches the hyperplane defined by

the ith constraint is minimized. This approach performs a piece-wise optimization,

and hence it does not guarantee to yield global optima. However, it gives us the
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values that are quite close to the global optima in all the cases that we considered.

Also, in terms of time efficiency, this algorithm is much faster than Approach I.

Similar to Approach I, we also need to consider all the possible orderings of φ1, φ2, . . . , φd.

However, the time taken to perform each optimization is much faster.

Approach III: Combination of Approach I and II

Approach I requires a lot of computation time to handle all the possible orderings

of φ1, φ2, . . . , φd. Hence, for all the possible orderings, we perform Approach II in

order to determine which ordering minimizes the objective function. Then, for the

selected ordering, we can fine-tune the objective function by performing Approach

I.

This approach works faster than Approach I, but slower than Approach II. On the

other hand, the accuracy of this method is better than Approach II, but worse than

Method I. This method may be a good compromise between Approach I and II.

3.1.4 Numerical Examples

Problem Set-up

We show numerical examples in order to assess accuracy and computation efficiency

of the proposed method discussed in this section. In the following example, we focus

on computing the probability that at least one component of the process hits its

corresponding barrier.
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We assume that the underlying process follows a 3-dimensional correlated Brownian

Motion with parameters of each component as specified in Table 3.1.

Table 3.1: Parameters of Brownian Motions

Component Initial µ σ2

Value

1 4.54 0.07 0.02

2 4.54 0.0325 0.035

3 4.54 0.015 0.03

Because of the properties of Brownian Motion, the effect of variance, time horizon,

and distance to barrier are confounded. Therefore, we can just change one variable

to determine the accuracy of our results under different situations. In our study,

we fix the time horizon T = 1 and vary the distance to barrier by moving barrier

levels. Table 3.2 specifies different barrier levels used under different trials of this

study.

Table 3.2: Barrier Levels Used under Different Trials

Component 1 Component 2 Component 3

Trial 1 4.40 4.28 4.29

Trial 2 4.45 4.39 4.38

Trial 3 4.47 4.42 4.43

Trial 4 4.51 4.48 4.47

Trial 5 4.49 4.48 4.42

For each trial, we vary correlation ρ = −0.2, 0, 0.2, 0.8, where ρ is a correlation

between each pair of the components. We vary the number of subintervals M . We
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let N be the number of simulation runs. We also vary thresholds of α1 and α2,

which, as described in Section 3.1.3, determine whether to calculate the third order

term. We employ following different methods for obtaining the barrier crossing

probability for the given time horizon.

• Method 0 (M0): Our proposed method (LDMC2 ) with Optimization Ap-

proach 1 from Section 3.1.3 (N = 80000)

• Method 1 (M1): Our proposed method (LDMC2 ) with Optimization Ap-

proach 2 from Section 3.1.3 (N = 80000)

• Method 2 (M2): Our proposed method (LDMC2 ) with Optimization Ap-

proach 3 from Section 3.1.3 (N = 80000)

• Method 3 (M3): Crude Monte Carlo method (CMC ) (N = 80000)

Results and Findings

First of all, we note that the simulation results do not differ much whether we use

the method M0, M1 or M2. In Figure 3.1, we show the barrier crossing probability

estimate for different values of ρ and M . All the graphs show that the estimates of

M1 are very close to those of M0 and M2. These observations hold true not only in

this trial, but also in other trials as well. Hence, we can use M1, which involves time-

efficient approximating algorithm for optimization instead of the Matlab built-in

optimization function. Generally, the method M1 works about 2 to 10 times faster

than M2 and 2 to 50 times faster than M0.
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Figure 3.1: Comparison of Estimates from M0, M1, and M2 : Trial 4, with α1 = 0.1

and α2 = 0.03

Now we focus on the performance of M1 in comparison to other methods. Figure

3.2 and 3.3 show the estimates from M1 and M3 in the setting of Trial 4. The

values of α1 and α2 are 0.1 and 0.03 for Case 1, 0.8 and 0.6 for Case 2, and 1 and

1 for Case 3, respectively. As described in Section 3.1.3, α1 and α2 determine how

frequently we perform the computation of the third-order interaction term. In Case

3, the third-order interaction term is always completely ignored. In these figures,

the graphs on the left hand side in Figures 3.2 and 3.3 display the estimates using

88



0 10 20 30 40 50

0.
94

0.
95

0.
96

0.
97

0.
98

0.
99

ρ = − 0.2(M1)

Number of Subintervals (M)

P
ro

ba
bi

lit
y 

of
 B

ar
rie

r 
C

ro
ss

in
g

Case 1
Case 2
Case 3

0 2000 4000 6000 8000 10000

0.
94

0.
95

0.
96

0.
97

0.
98

0.
99

ρ = − 0.2(M3)

Number of Subintervals (M)

P
ro

ba
bi

lit
y 

of
 B

ar
rie

r 
C

ro
ss

in
g

0 10 20 30 40 50

0.
90

0.
92

0.
94

0.
96

0.
98

ρ = 0(M1)

Number of Subintervals (M)

P
ro

ba
bi

lit
y 

of
 B

ar
rie

r 
C

ro
ss

in
g

Case 1
Case 2
Case 3

0 2000 4000 6000 8000 10000

0.
90

0.
92

0.
94

0.
96

0.
98

ρ = 0(M3)

Number of Subintervals (M)

P
ro

ba
bi

lit
y 

of
 B

ar
rie

r 
C

ro
ss

in
g

Figure 3.2: Comparison of Estimates from M1 and M3 : Trial 4 (Case 1: α1 =

0.1, α2 = 0.03, Case 2: α1 = 0.8, α2 = 0.6, Case 3: α1 = 1, α2 = 1) [Part 1]

M1 with various values of α1 and α2. The graphs on the right hand column show

the results obtained from crude Monte Carlo simulations (M3). In both cases, we

plot the values of estimates as a function of the number of subintervals (M). We

do not know the true value of barrier crossing probability except for the case ρ = 0.

However, we can safely assume the true value to be in a neighbourhood of the value

where the curve resulted from M1 flattens and stabilizes at large values of M . Also,

we know that the estimate from Crude Monte Carlo converges to the true value as
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Figure 3.3: Comparison of Estimates from M1 and M3 : Trial 4 (Case 1: α1 =

0.1, α2 = 0.03, Case 2: α1 = 0.8, α2 = 0.6, Case 3: α1 = 1, α2 = 1) [Part 2]

M → ∞. When ρ = 0, the true barrier crossing probability in this setting can be

calculated explicitly and is 0.9736. Using the method M1, we obtain 0.9728 and

0.9733 with M = 1 and M = 2, respectively in the setting of Case 1. However,

with M3 (Crude Monte Carlo), to achieve the same level of accuracy we need more

than M = 10, 000. Even when M is a very big number, such as 10,000, we do not

completely remove the downward bias. We are not certain how many subintervals

are needed in order to completely remove this downward bias.

90



0 10 20 30 40 50

0.
75

0.
76

0.
77

0.
78

0.
79

0.
80

ρ = − 0.2

Number of Subintervals (M)

P
ro

ba
bi

lit
y 

of
 B

ar
rie

r 
C

ro
ss

in
g

Case 1
Case 2
Case 3

0 10 20 30 40 50

0.
70

0.
71

0.
72

0.
73

0.
74

0.
75

ρ = 0

Number of Subintervals (M)

P
ro

ba
bi

lit
y 

of
 B

ar
rie

r 
C

ro
ss

in
g

Case 1
Case 2
Case 3

0 10 20 30 40 50

0.
65

0.
66

0.
67

0.
68

0.
69

0.
70

ρ = 0.2

Number of Subintervals (M)

P
ro

ba
bi

lit
y 

of
 B

ar
rie

r 
C

ro
ss

in
g

Case 1
Case 2
Case 3

0 10 20 30 40 50

0.
40

0.
44

0.
48

0.
52

ρ = 0.8

Number of Subintervals (M)

P
ro

ba
bi

lit
y 

of
 B

ar
rie

r 
C

ro
ss

in
g

Case 1
Case 2
Case 3

Figure 3.4: Estimates from M1 with various values of α1 and α2 : Trial 2 (Case 1:

α1 = 0.1, α2 = 0.03, Case 2: α1 = 0.8, α2 = 0.6, Case 3: α1 = 1, α2 = 1)

Now we examine the effects of α1 and α2. For all values of the correlations, when

we have low values of α1 and α2, our estimates of M1 are closer to the true value

and converge faster as M increases. If we have small α’s, then it takes more

time to perform calculations, since it needs to evaluate the third-order term more

frequently. This observation is true for other trials, as exemplified in Figures 3.4

and 3.5. However, we notice that as the barriers are situated further from the initial

value, the third order term plays a less important role, and subsequently the effects
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Figure 3.5: Estimates from M1 with various values of α1 and α2 : Trial 1 (Case 1:

α1 = 0.1, α2 = 0.03, Case 2: α1 = 0.8, α2 = 0.6, Case 3: α1 = 1, α2 = 1)

of different values of α1 and α2 diminish.

We now assess how M1 performs under different correlation values. When ρ = −0.2

or 0, the estimate converges to the true value with M = 1 and M = 2, respectively

in Case 1. When ρ is a positive value, we need a larger number of M as ρ increases.

This finding is consistent with our earlier findings. When we look at the barrier

crossing probability of an interval with fixed initial and ending values, the estimates

of our proposed method are good when correlation is negative or close to 0. Hence,
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we can determine the number of subintervals depending on correlation and the

levels of α1 and α2. Also, when we determine the appropriate values of α1 and α2,

we consider the distance to the barrier. The choices of α1 and α2 are less significant,

because the sufficiently large value of M will ensure accuracy of the estimate, even

with high values of α1 and α2.
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Figure 3.6: Comparison of Estimates of LDMC1, Method 1, and CMC : Trial 4

Figure 3.6 compares convergence of estimates under three different simulation ap-

proaches outlined in Section 3.1.2. As expected, our proposed approach, namely

M1 (Case 1), exhibits the fastest convergence as a function of the number of subin-
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tervals. This graph shows the results obtained under Trial 4. Similar results are

obtained under different locations of barriers. Also, under more general correlation

structure than the one where we assume the same pair-wise correlation values, we

draw similar conclusions as well.

Table 3.3: Number of Subintervals Needed to Obtain Accurate Results (Trial 4)

ρ = −0.2 ρ = 0 ρ = 0.2 ρ = 0.8

Simulation Type M Time (sec) M Time (sec) M Time (sec) M Time (sec)

M1: Case 1 1 193.3 1 220.9 2 216.5 10 517.0

M1: Case 2 2 59.9 5 98.6 5 149.2 10 507.2

M1: Case 3 2 61.1 5 98.5 5 149.2 10 507.9

CMC 10,000 1375.4 10,000 1347 10,000 1383.3 10,000 1379.7

LDMC1 5 4.6 20 11.7 5 7.4 10 19.9

In Table 3.3, the column M shows the number of subintervals needed to achieve

accurate estimates under different settings. Also, the column Time is the time

needed to obtain the estimate with the given number of M , and is measured in

seconds. For the Crude Monte Carlo, we need a large number of subintervals to

eliminate the bias. When we look at other trials with different distances to barriers,

we also obtain similar results. Since the distance to barriers is confounded with

all other variables of interests, such as T and σ, we can conclude that our findings

in Table 3.3 generally hold true in most of the circumstances. Also, in terms of

computational time, M1 (Case 1) performs at the faster speed compared to the

Crude Monte Carlo method which achieves the same level of accuracy. M1 (Case

1) requires much fewer number of subintervals, and we can potentially increase
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its speed by making the optimization more efficient. We can also utilize the low

discrepancy sequences such as a Halton sequence in conjunction with M1, because

M1 involves fewer number of dimensions.

When we compare the results of M1 (Case 1) to Baldi’s method (LDMC1 ), M1

(Case 1) still converges at a smaller number of subintervals. However, the compu-

tational time is much smaller with LDMC1. Also, we note that LDMC1 works very

well at the presence of high correlation (i.e. ρ = 0.8). Hence, we need to devise an

algorithm so that we can make M1 (Case 1) computationally more efficient. This

issue is addressed in Section 3.2.

3.1.5 Credit Risk Example

Here we illustrate our proposed method using a practical example. Suppose that our

portfolio consists of bonds issued by 3 different firms. We would like to determine

the probability that at least one counterparty defaults within a horizon of 1 year.

We adopt the structural approach as discussed in Section 1.3.4, and we use the

stock prices as proxies for the values of the firms. We assume that these stock

prices follow a 3-dimensional Geometric Brownian motions as follows:

dS(t) = V S(t)dt + diag[S(t)]ΣdW (t), (3.5)

with a default threshold level C = [c1, c2, c3]
T . Here V is a 3 × 3 diagonal matrix,

Σ is a 3 × 3 matrix, and diag[S(t)] is a 3 × 3 diagonal matrix with S(t) being the

diagonal elements. Table 3.4 shows parameterizations of the Geometric Brownian

Motion.
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Table 3.4: Parameters of Geometric Brownian Motions for Stock Price Processes

Firm Initial Growth σ2 Default

Price Rate threshold

1 100 0.08 0.02 90.9218

2 100 0.05 0.035 88.2347

3 100 0.03 0.03 87.3567

We apply a log-transformation to (3.5), and, by Ito’s Lemma, we obtain the follow-

ing stochastic differential equation:

d lnS(t) = Udt + ΣdW (t), (3.6)

where U = [µ1, µ2, µ3]
T , µi = vi − σ2

i

2
, σ2

i is the ith diagonal element of ΣT Σ,

and vi is the ith diagonal element of V . Hence, by setting X = lnS and B =

[b1, b2, b3]
T = [ln c1 ln c2 ln c3]

T , we have a stochastic process X(t) that follows a

multivariate Brownian Motion of the following form,

dX(t) = Udt + ΣdW (t), (3.7)

with a new default threshold level B = [b1, b2, b3]
T . In this example, the corre-

sponding equivalent Brownian Motion process has parameters specified in Table

3.5. In this table, we also show the marginal default probability of each firm under

the column “Default Probability”.

From the default probabilities of individual firms, we see that these firms would

have quite bad credit ratings. For the illustration purpose, we have set up the

artificial portfolio with high probabilities of default, so that the joint probability

is also not too small. The bonds issued by these counterparties would be classified
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Table 3.5: Parameters of Brownian Motions for Underlying Stock Processes

Firm Initial µ σ2 Default Default

Value threshold Probability

1 4.60517 0.07 0.02 4.51 0.341969

2 4.60517 0.0325 0.035 4.48 0.445518

3 4.60517 0.015 0.03 4.47 0.406035

as junk bonds. We assume that the instantaneous correlation between any pair

of these three processes is given to be 0.2. We apply the simulation method M1

described in Section 3.1.4 to compute the probability that at least one firm defaults

within 1 year.

Table 3.6: Monte Carlo Simulation Result

No. of α1 α2 CMC LDMC2

Time Steps Estimate Estimate

1 0.1 0.03 0.400463 0.721135

5 0.08 0.025 0.566688 0.735321

10 0.01 0.005 0.614625 0.73664

20 0.002 0.001 0.6492 0.7365

200 0.0002 0.0001 0.71056 0.73843

(0.0005) (0.0003)

Table 3.6 summarizes our results of Monte Carlo simulation with N = 80, 000. The

values in parentheses are standard errors. In this table, “No. of Time Steps” is

the number of subintervals, α1 and α2 are as defined in Section 3.1.3, CMC is the

estimate based on M4, the Crude Monte Carlo method, and LDMC2 is the estimate

based on M1 as described in the previous section.
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The estimates based on LDMC2 give us consistent values regardless of the number

of subintervals. On the other hand, we observe that the CMC estimates converge

slowly to the consistent estimate as we increase the number of subintervals.

Table 3.7: Quasi-Monte Carlo Simulation Result

No. of α1 α2 CQMC LDMC2

Time Steps Estimate Estimate

1 0.05 0.03 0.4003 0.723

2 0.04 0.02 0.4865 0.7326

5 0.015 0.01 0.5707 0.738

10 0.008 0.005 0.6222 0.7385

20 0.002 0.001 0.6627 0.7505

In this problem, in order to obtain faster convergence, we also generate random

numbers using a low-discrepancy sequence. In particular, we used Halton’s se-

quence to generate 10,000 runs. The estimates using the Quasi-Monte Carlo are

summarized in Table 3.7. Crude Quasi-Monte Carlo (CQMC ) estimates behaves

similarly as in the Crude Monte Carlo case. LDMC2 estimates are obtained using

M1 in conjunction with the low discrepancy sequence. These estimates give us

consistent values except for the case where the number of subintervals is 20. In

this case, since we have 20 subintervals and 3 assets, the dimensionality of this

simulation is 20 × 3 = 60. We know that the Quasi Monte Carlo method is not

very good in high dimensions. Hence, the LDMC2 estimate for the case with 20

subintervals is not very reliable, due to the high dimensionality.
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3.2 An Improved Algorithm for Computing Bar-

rier Crossing Probability

In the previous section, we have proposed an algorithm based on the Large Devia-

tions Theory to compute the barrier crossing probability of a correlated multivariate

Brownian Motion process. As we have seen in the numerical example, our proposed

method, LDMC2, exhibits the fastest convergence rate as a function of the number

of subintervals. With this simulation method, we need to take only 1 or 2 subin-

tervals to obtain accurate approximations, whereas the other methods require a

larger number of subintervals in order to reach convergence. However, it takes a

lot of time to perform LDMC2, because this method involves solving a high dimen-

sional optimization problem specified in Section 2.2.1. Hence, this method may be

impractical. To overcome this inefficiency, in this section we suggest an algorithm

which approximates LDMC2. In the first section, we describe the algorithm and

the idea behind it, and then illustrate by numerical examples that this algorithm is

much faster, and also as accurate as LDMC2. We refer to this algorithm as a Fast

Large Deviations Monte Carlo (FLDMC ) method, because it is a faster version of

the simulation method based on the Large Deviations Theory.

3.2.1 Description of Algorithm

This method exploits the fact that we have an analytical representation of the

probability that at least one barrier is breached during the given time horizon

when the components of the process are uncorrelated. The algorithm is a two-stage
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procedure. In the first stage, we run a small number of simulations to determine

the ratio between the probability of barrier crossing under the given correlation

structure and that under zero correlation. In the second stage, where we run

the full set of simulations, we compute the barrier crossing probability under zero

correlation and then use the estimated ratio in order to adjust for the correlation

effects.

Step 1: Preliminary Runs

We perform the following procedures:

1. We generate a small number, for example N = 200, of values of the correlated

Brownian Motion at the end of the first time interval.

2. For the ith simulation run, we know the initial and the terminal values,

X i(0) = x and X i(ε) = yi, of the process. If yi does not breach the bar-

rier, we compute the probability CP ρ that at least one component breaches

its respective barrier. For this we use the Large Deviations method from

Section 2.1.3. In addition, we can analytically obtain CP 0, which is the exit

probability under zero correlation. Then, we find Ratioi = CP ρ

CP 0 .

3. After generating N paths, let N ′ be the number of simulations where the end

values did not breach the barrier. In this stage, we need to obtain the average

ratio of the exit probability under the correlation structure ρ and under zero

correlation. We set RatioSum to be the sum of Ratioi’s over the paths for

which yi did not breach the barrier. We can then obtain the desired average

ratio by Ratio = RatioSum
N ′ . This ratio is used in the second stage.
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Step 2 : Full Simulation

Now we perform a full set of simulation with a large number of runs, i.e. N =

80, 000. The general simulation framework still remains the same as described in

Section 3.1.1, but now we modify the way we calculate CP and CPi’s. We obtain

P (E1 ∪ E2 ∪ E3) in the following way.

For a given subinterval we have an initial value and a terminal value for each

simulated path. When the instantaneous correlation is 0, the probability that at

least one component breaches its respective barrier can be calculated explicitly. For

the 3-dimensional process, we denote this probability as P 0(E1 ∪ E2 ∪ E3). It can

be expressed as

P 0(E1 ∪ E2 ∪ E3) =
3∑

i=1

P (Ei)−
∑

i6=j

P (Ei)P (Ej) + P (E1)P (E2)P (E3). (3.8)

Since the marginal barrier crossing probability is given by formula (2.2), the com-

putation of (3.8) is quite fast.

The quantity that we ultimately need to compute is P ρ(E1 ∪ E2 ∪ E3), which

is the exit probability under the specified correlation structure ρ. This can be

approximated by adjusting P 0(E1 ∪ E2 ∪ E3) by the factor Ratio from Step 1 as

follows,

P ρ(E1 ∪ E2 ∪ E3) ≈ P 0(E1 ∪ E2 ∪ E3)×Ratio.

Once we obtain P ρ(E1∪E2∪E3), the remaining parts follow in the same way as in

LDMC2. When M > 1, the factor Ratio is calculated using the first subinterval as

described in Stage 1. Then the same value of Ratio is applied to approximate values

of the barrier crossing probabilities of other subintervals, namely CPi, i = 1, . . . ,M .

101



This algorithm works well if the the ratio between the barrier crossing probability

under the given correlation and that under zero correlation is more or less constant

with respect to different time steps and different locations of initial and termi-

nal values relative to the barrier levels. The numerical experiments that we have

conducted affirm that this method greatly improves time efficiency while retaining

accuracy of the estimates.

The method proposed in this section shares a similar idea with the control variate

method in the sense that we make use of known results in order to improve com-

putational efficiency. We present the method because it readily allows to compute

the barrier crossing probability using a small number of subintervals. However,

incorporating the control variate method in this framework is a good extension for

future research.

3.2.2 Numerical Examples

We continue with the same example from Section 3.1.4 using FLDMC. We use Trial

4 with N = 80, 000 for the illustration. We have seen that LDMC2 is the best in

terms of the convergence rate as a function of M , and that LDMC1 is the best in

terms of computational efficiency for the given M . By performing further numerical

exercises, we claim that FLDMC, described in this section, is as good as LDMC2

in convergence as a function of M , and as good as LDMC1 in time efficiency for

given M . Hence, we can arguably conclude that FLDMC is the best method to

apply in this situation.
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Figure 3.7: Comparison of Estimtes from Convergence rates of LDMC1, LDMC2,

and FLDMC

Figure 3.7 shows the estimates of LDMC1, LDMC2, and FLDMC under different

correlation assumptions as we vary the number of subintervals. Hence, we clearly

see that the estimates of FLDMC are almost the same as those of LDMC2 as

desired. In terms of convergence rate as a function of the number of subintervals,

FLDMC outperforms LDMC1, except in the case of high correlation, i.e. ρ = 0.8.

Now we compare the time efficiency of FLDMC and LDMC1. Figure 3.8 shows

that FLDMC takes a similar amount of time as LDMC1 for a given number of
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Figure 3.8: Comparison of Time Efficiency for FLDMC and LDMC1

subintervals.

From these observations, we conclude that FLDMC is the method of choice, because

it is time efficient and exhibits the fastest convergence rate as a function of M . Even

at high correlation ρ = 0.8, this method does not perform much worse than LDMC1.

Consequently, we have confidence that this method works effectively and efficiently.
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3.3 Existing Works on Multivariate Barrier Cross-

ing Probability

In this section, we discuss the work of Shevchenko (2003), which also deals with a

method of computing a multivariate barrier crossing probability. We briefly describe

his methodology and explain why our proposed method can be considered to be

more advantageous than Shevchenko’s.

Shevchenko (2003) simulates the trajectories of the underlying process at discrete

time intervals, and then computes the barrier crossing probability of Brownian

Bridge for a given interval. In the earlier discussion, we have described a way of

approximating barrier crossing probability based on the Large Deviations Theory.

Shevchenko proposes to use upper and lower bounds based on Frechet Bounds. This

result is stated in the following lemma.

Lemma 3.3.1 (Frechet Bounds) Let A1, . . . , Ak be the events such that P (Ai) = ai,

i = 1, . . . , k. Then

max(0,
k∑

i=1

ai − (k − 1)) ≤ P (A1 ∩ . . . ∩ Ak) ≤ min
i=1,...k

ai. (3.9)

Shevchenko proposes three estimators for joint barrier crossing probability of Brown-

ian Bridge, denoted by PU , PL, and PI . PU and PL correspond to the upper and the

lower Frechet bounds given in Lemma 3.3.1. PI is the joint barrier crossing prob-

ability assuming that underlying components are independent. Shevchenko argues

that by appropriately computing the probability of barrier crossing of Brownian
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Bridge for each time step of Monte Carlo simulation, we need to generate only a

small number of discrete points in order to obtain the barrier crossing probability

of a continuous process within reasonable accuracy.

We discuss how Shevchenko’s methods are related to the methods discussed in the

earlier sections of this chapter. We also demonstrate that his methods are no better

than FLDMC discussed in Section 3.2. In addition, we discuss some shortcomings

of Shevchenko’s approach, which can be addressed using the method discussed in

this thesis.

3.3.1 Relationship between Shevchenko’s Method and Large

Deviations Based Methods

We consider computing the probability that at least one of the components in the

3-dimensional continuous process breaches its respective barrier. The standard

approaches in both Shevchenko and the Large Deviations based methods are that

we generate paths of 3-dimensional underlying process in discrete time intervals and

then use some method to approximate the probability of barrier crossing between

the discrete time intervals.

Now we focus on the barrier crossing probability of a multivariate Brownian Bridge

process. Let Ei be the event where the ith component of the Brownian Bridge

crosses its corresponding barrier. Since we are interested in the event that at

least one component breaches its corresponding barrier, we are interested in the
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probability

P (E1 ∪ E2 ∪ E3) =
∑

i

P (Ei)−
∑
i<j

P (Ei ∩ Ej) + P (E1 ∩ E2 ∩ E3). (3.10)

As discussed in Section 2.1, the left hand side of (3.10) can be computed directly

using the method as in LDMC1, or the expressions on the right hand side can be

evaluated as in LDMC2 or FLDMC.

In Shevchenko’s method, the Frechet bounds are given for intersections of sets.

Hence, the right hand side of (3.10) should be calculated. The marginal probabil-

ities P (Ei)’s are computed easily, and the two-way probabilities P (Ei ∩ Ej)’s are

approximated by the semi-analytic result. Now the remaining term P (E1∩E2∩E3)

is obtained by PU , PL, or PI which are defined previously. These approximations

reflect the possibility of barrier crossing during the discrete time interval.

Since in Shevchenko’s method the marginal and the two-way probabilities need to

be evaluated, this approach takes some more time compared to LDMC1. In the

next section, we will show numerical examples to illustrate that the convergence

to the true value as a function of M is fairly good, but not as good as LDMC2 or

FLDMC.

To obtain a better insight into the method by Shevchenko, suppose that we approx-

imate the value of the two-way probability P (Ei ∩ Ej) by using the upper bound

of Frechet bounds, that is min(P (Ei), P (Ej)). Assume, without loss of generality,
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P (E1) < P (E2) < P (E3). Then we have

P (E1 ∪ E2 ∪ E3)

=
∑

i

P (Ei)−
∑
i,j

P (Ei ∩ Ej) + P (E1 ∩ E2 ∩ E3)

≈ P (E1) + P (E2) + P (E3)−min(P (E1), P (E2))−min(P (E1), P (E3))

− min(P (E2), P (E3)) + min(P (E1), P (E2), P (E3))

= P (E1) + P (E2) + P (E3)− P (E1)− P (E1)− P (E2) + P (E1)

= P (E3)

= max(P (E1), P (E2), P (E3)).

Hence, if Frechet’s upper bound is applied to compute two-way as well as three-way

probabilities, this estimator reduces to be the same as LDMC1.

The estimator used in LDMC1 can also be regarded as the Frechet lower bound for

the union of several events, since the Frechet bounds are given as

max(P (E1), P (E2), . . . , P (En)) ≤ P (E1 ∪ . . . ∪ En) ≤ min(1,
n∑

i=1

P (Ei)). (3.11)

Future research can be addressed to finding tighter bounds for the probability of

union of several sets.

3.3.2 Comparison of Computational Efficiency

We compute the probability that at least one component crosses its corresponding

barrier with the same set-up as specified in Section 3.2.2. Figure 3.9 and 3.10 display

the estimates of the barrier crossing probability and the time taken as a function
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Figure 3.9: Comparison of Convergence Rates of PU , PL, PI , and FLDMC

of the number of subintervals, M , respectively. The probability of barrier cross-

ing during the discrete interval is computed by four different methods: PU(Frechet

upper bound from Lemma 3.3.1), PL(Frechet lower bound), PI(independence as-

sumption), and FLDMC. Figure 3.9 shows that all the estimates are converging to

the true value at a relatively small number of M . In particular, when we assume

zero correlation (ρ = 0), FLDMC performs as well as PI . In all other situations,

FLDMC seems to converge to the true value faster than PI . Moreover, FLDMC

outperforms PU and PL except for the highly positive correlation case (ρ = 0.8).
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Figure 3.10: Time Taken to Obtain Estimates Using PU , PL, PI , and FLDMC

Also, from Figure 3.10, we see that the estimates from FLDMC is the most time

efficient because in Shevchenko’s method we evaluate two-way probabilities using

the results of He et al. (1998). Hence, we can conclude that the Monte Carlo sim-

ulation method combined with FLDMC is the most effective method unless the

underlying components are uncorrelated or highly positively correlated.
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3.3.3 Other Shortcomings of Shevchenko’s Method

All the numerical examples we have studied so far deal with computing the prob-

ability that at least one of many components breaches its corresponding barrier.

This problem can be solved by either Shevchenko’s method or the Large Deviations

based approach. Suppose that we consider related problems such as obtaining an

accurate estimate of the distribution of the number of components breaching barri-

ers or computing barrier crossing probabilities of a basket of Geometric Brownian

Motions. Shevchenko’s method can not give a straightforward extension to address

these problems. On the other hand, the Large Deviations based method, FLDMC

in particular, can be extended to address these issues, as will be shown in the

following sections.

3.4 Distribution of the Number of Barrier Cross-

ings

In the applications of multivariate barrier crossing probabilities in the context of

finance and actuarial science, it is often not sufficient to know whether any of the

components have breached a barrier. We often need to characterize the distribu-

tion of the number of components breaching barriers. For example, in credit risk,

one would like to know the distribution of the number of companies defaulting in

a given time horizon. In this section, we build upon our method based on the

Large Deviations Theory, and we provide an algorithm for efficiently obtaining the

distribution of the number of components breached. We primarily focus on the
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situation where the underlying process is 3-dimensional. For higher dimensional

processes, this approach can be extended, but some modifications of the algorithm

are needed. We first present the algorithm, and then show some numerical examples

to demonstrate efficiency of this method.

3.4.1 Description of Algorithm

In this section, we suppose that we have three components following a multivariate

correlated Brownian Motion process. The objective is to obtain the distribution

of the number of components breaching barriers in a given time horizon. The al-

gorithm extends the general simulation framework presented in Section 3.1.1. The

Large Deviations approach enables us to obtain not only the barrier crossing prob-

ability of one component but also the joint barrier crossing probabilities of two

or more components for a given time interval. From these, for each time step of

a given simulation path, we can characterize the probability of which components

breach their respective barriers. Then, by performing a random draw, we can deter-

mine which event actually occurs for the given time interval of the given simulation

path. Then, by going through each time step, we can find out how many compo-

nents breach their respective barriers during the given time horizon. By generating

simulation paths many times, we can approximate the proportion of the events that

i components cross barriers, where i = 0, 1, 2, 3. Let N be the number of simula-

tions, and M be the number of discrete time intervals. The algorithm consists of

the following procedures.

Step 1:
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• Simulate the underlying trajectory according to the specified multivariate

Brownian Motion process

• For each trajectory, we have a vector of indicators, W = [w1, w2, w3], indicat-

ing whether each component breached its corresponding barrier or not. This

vector is initialized to W = [0, 0, 0].

• For each trajectory, we check the values of components at all M discrete

points. If the ith component value at any discrete time period has breached

the barrier, then wi is assigned to 1.

Step 2:

• We go through each time step from 1 to M . For each time step, we only

look at components whose value of wi is 0, and whose marginal probability

of barrier crossing is greater than a pre-specified value, which we refer to

as a Cutoff value. The latter ensures that the components whose values

are quite far from the barrier are excluded from the computation of barrier

crossing probability for the sake of time efficiency. We denote the number of

these components by k.

• From the previous calculation we obtain the value k, which can be 0, 1, 2, or

3. We denote the event where the ith component breaches its barrier by Ei.

We consider the following four cases.

– Case 1: k = 3

By using the Large Deviations based approach as discussed in Section
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2.1.3, we can compute P (E1∩E2∩E3) and P (Ei∩Ej) for i = 1, 2, 3, j =

1, 2, 3, i 6= j. The marginal barrier crossing probabilities P (Ei), i =

1, 2, 3 can be easily obtained from the analytic formula. Now, using the

elementary set theory, we obtain the estimates of the probabilities of all

possible outcomes P (E1 ∩E2 ∩E3), P (Ē1 ∩E2 ∩E3), P (E1 ∩ Ē2 ∩E3),

P (E1 ∩ E2 ∩ Ē3), P (Ē1 ∩ Ē2 ∩ E3), P (E1 ∩ Ē2 ∩ Ē3), P (Ē1 ∩ E2 ∩ Ē3),

and P (Ē1 ∩ Ē2 ∩ Ē3). Then using a random draw from a standard

uniform distribution, we determine which of these 8 events occurred.

From this, we determine which components have crossed the barriers,

and we update the vector W , by switching the corresponding components

of W to 1.

– Case 2: k = 2

In this case, we compute P (E1 ∩ E2) using the semi-analytic solution

based on the Large Deviations Theory, or the analytic solution by He

et al. (1998). Then we obtain the estimates of P (E1 ∩E2), P (Ē1 ∩E2),

P (E1∩ Ē2), and P (Ē1∩ Ē2). Using a random draw, we determine which

of these events occurred. Then we update the vector W accordingly.

– Case 3: k = 1

Since P (E1) can be easily computed by the closed-form formula, we

generate a uniform random number to determine whether the component

breached the barrier. Then we update W accordingly.

– Case 4: k = 0

The vector W remains unchanged.
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Step 3:

Once we go through all the discrete time steps for the given trajectory, we determine

the number of components that breached the barriers by looking at the number of

1’s in the vector W .

Step 4:

We repeat Steps 1 to Step 3 N times, and we obtain the proportion of frequency

of 0, 1, 2, and 3 components crossing the barriers. This proportion is our estimate

of the distribution of the number of components that crossed their corresponding

barriers.

In this algorithm, we simulate paths according to the underlying process, and we

also simulate which components breach their respective barriers for each time period

according to the probabilities we estimate using the Large Deviation Theory. Since

the Large Deviations Theory provides us with a reasonable tool to understand

barrier crossing events during a time interval, the result of this algorithm should

converge to the true value at a relatively small value of M .

3.4.2 Numerical Examples

In this section, we provide numerical examples to illustrate that our algorithm

in Section 3.4.1 provides estimates of the distribution of the number of barrier

crossing accurately and efficiently. We take the same example from Section 3.1.4.

The location of the barrier is set according to Trial 4 in Section 3.1.4, and the

number of simulation N is equal to 80,000.
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Table 3.10: True Values of the Distribution with ρ = 0

Number of Probability

Barrier Crossings

0 0.02636

1 0.18797

2 0.44234

3 0.34334

Tables 3.8 and 3.9 show the results of the simulations to approximate the number of

components breaching the barriers. The values in parentheses are standard errors.

We use the algorithm formulated in Section 3.4.1, and we refer to this algorithm as

“Our Method”. As before, we compare efficiency of “Our Method” to that of Crude

Monte Carlo method. M denotes the number of subintervals used. The values, 0, 1,

2, and 3, in the column heading correspond to the number of components crossing

barrier. We vary correlation ρ among the components to take values of -0.2, 0,

0.2, and 0.8. In addition, the column “Time” shows the time taken in seconds to

perform this computation. For “Our Method”, we use the CutOff value of 0.02.

When the correlation of the underlying components is 0, we can obtain the true

values of this distribution and they are given in Table 3.10. Since the true values

of this distribution are unknown in non-zero correlation cases, we assume that the

values of the estimates that stabilize at the sufficiently high number of subintervals,

M , can be taken as true values. By examining the convergence of the estimates

as a function of M , “Our Method” gives sufficiently accurate results when M = 5,

and “Crude Monte Carlo” performs well with M = 7000. We show the estimates

of “Our Method” under different values of M in order to demonstrate that the
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convergence occurs at a small value of M . Hence, “Our Method” allows us to

obtain the estimates of the distribution with much fewer number of subintervals

compared to the Crude Monte Carlo method. Also, we note that the time required

to perform “Our Method” with M = 5 is much less compared to that for “Crude

Monte Carlo” with M = 7000, as observed from these tables.

We notice that the computational time for “Our Method” does not monotonically

increase with the number of subintervals M . As we increase M , a lot of defaults

are captured by the simulated values at discrete time points. Hence, we do not

need perform as much for the computation of barrier crossing probability between

the discrete times, which are computationally intensive.

“Our Method” performs well when we have negative or small positive correlation

among the components, and gets slightly worse at a high correlation. On the other

hand, Crude Monte Carlo converges at a faster rate when there is a high positive

correlation. In addition, we have repeated this exercise with different location of

barriers. The closer the barriers are located to the initial values of the underlying

process, the more advantageous “Our Method” is over “Crude Monte Carlo”.

“Our Method” effectively reduces dimensionality of this simulation because it allows

us to use fewer number of subintervals. With this reduction, one can also consider to

employ a more efficient simulation method such as a quasi-Monte Carlo method. We

believe also that the computational procedure for determining which components

may default between discrete times can be improved significantly. Hence, there is

a lot of opportunity that this method can be implemented in a computationally
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more efficient way.

3.5 Application: Pricing a Credit Basket Deriv-

ative

In this section, we apply the method developed in this thesis to pricing a credit

derivative. In particular, we examine a credit default swap (CDS) with the reference

entity consisting of three risky bonds and the assumption of no default by the CDS

issuer. In this example, we consider the first-to-default swap, where the payment is

triggered by the first default during a specified time horizon. The protection buyer

pays a certain amount of fixed premium, s, periodically to a protection seller. In

the credit event of the first default among the reference entities, the protection

buyer receives a fixed amount of money R from the protection seller. Below we

provide the description of the product in detail:

• The financial contract matures in a fixed time, T years.

• Premiums s are paid on a quarterly basis. The payments are made at the

end of each quarterly period.

• In the case of a credit event (first-to-default), all the payments of the premi-

ums are stopped without paying the accrued interest. The protection seller

pays the protection buyer a fixed amount of money, R, at the time of the

credit event.

• We assume no default by the protection seller.
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3.5.1 Determination of Swap Rate

In Hull and White (2001), a fair premium s is calculated by equating the expected

present value of all future cash flows of premium payments to the expected present

value of the payout in the case of the credit event. The authors give the following

simplified formula for s:

s =

∫ T

0
R · θ(t) · ν(t)dt∫ T

0
θ(t) · u(t)dt + πu(T )

, (3.12)

where θ(t) ·∆t is the probability of default by reference entity between times t and

t + ∆t with no earlier default, u(t) is the present value of quarterly payments at

the rate of $1 per year on the CDS payment dates between time zero and time t,

and ν(t) is the present value of $1 received at time t. Also, π is the probability of

no default by any component of the reference basket during the life of the credit

default swap.

The determination of s involves evaluating the integrals in the numerator and the

denominator of (3.12). We note that both integrands are dependent upon the

distribution of default time τ by any component of the reference basket. We extend

the simulation methods discussed in the previous sections to determine in which

time interval the default occurs for a given simulated trajectory of the underlying

process. Then we approximate the exact timing of the default. Below we outline

an algorithm that evaluate these integrals efficiently.

Evaluation of Integrals by Simulation

In the case when the components of the portfolio are assumed independent, we can

generate the default time of each component by using the distribution of the hitting
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time for a Brownian Motion. The minimum of default times of these components

will give a simulated value of the exact first-to-default time. Hence, the evaluation

of the integrals in (3.12) are straightforward.

Now we consider procedures for evaluating integrals in (3.12) when the underlying

components are dependent.

1. We take the endpoints of subintervals corresponding to the quarterly CDS

premium payment dates.

2. With the assumption of a correlated Multivariate Brownian Motion, we sim-

ulate the trajectories of the underlying process at the specified endpoints of

subintervals.

3. For each subinterval, we determine occurrence of a credit event (first-to-

default). If the terminal value of any component at the ith subinterval has

crossed the barrier, then we know for certain that the credit event occurred

between (i − 1)th and ith points. If not, then we compute the probability

of occurrence of the credit event, that is the probability that any one com-

ponent of the process may have crossed the barrier during this subinterval

given the terminal value. This probability can be estimated using LDMC1 or

LDMC2 from Section 3.1, or FLDMC from Section 3.2. Once we obtain this

probability, actual occurrence of the credit event is determined by a Bernoulli

trial.

4. If we determine that a credit event has occurred in the ith subinterval, we can

estimate the default time τ by using the following procedure.
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For dependent components of the portfolio an exact simulation of the default

time is more difficult. In this case, we have to resort to Monte Carlo simulation

of trajectories of a Brownian Bridge process. The number of steps will depend

on the required accuracy of the generated first-to-default time.

Since in Step 3 we obtain Large Deviations estimates of default probabili-

ties, the following approximation of the default time can also be considered.

Among the three entities of the reference basket, suppose that the pth en-

tity has the highest marginal probability of default. Let Xp
0 and Xp

1 are the

values of the pth component of the underlying process at time (i − 1)b and

ib, respectively, and b is the size of the subinterval. According to the Large

Deviations Theory, the event of the barrier crossing occurs via the most likely

path of the underlying process. Hence, as entity that defaults, we accept the

one that has the highest probability. As discussed in Section 2.1.2, we need to

consider the length minimizing path that starts from Xp
0 to Xp

1 that touches

the barrier Bp where Bp is the default threshold of the pth component. The

corresponding elapsed time τp when this minimizing path touches its barrier

Bp is given by

τp =
|Xp

0 −Bp|
|Xp

0 −Bp|+ |Xp
1 −Bp| .

Then, we estimate the default time τ by

τ = (i− 1)b + τpb.

This procedure does not simulate default times from the exact distribution but

is less computationally demanding than the previous one, and for small time

steps it should lead to reasonably accurate approximations of the integrals
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in (3.12), because our approximation method is consistent with the Large

Deviations Theory.

5. For the given trajectory with the corresponding default time τ , we can eval-

uate the integrands of the numerator and denominator of (3.12). Then, by

repeating Steps 2, 3, and 4, we evaluate these integrals. The probability of

no default π is obtained by monitoring the proportion of trajectories which

have no occurrences of the credit event during the time horizon T.

3.5.2 How Our Proposed Approach Differs from the Exist-

ing Approaches

The existing literature such as Li (1999) also discusses methods of modelling the

correlation of default events in pricing credit basket derivatives. In these papers,

the marginal distribution of the time of default is modelled and then an arbitrary

copula function is imposed to construct dependency among default times of several

counterparties. Laurent and Gregory (2005) use factor copulas in order to derive

an analytic solution of CDS prices. A caveat of this approach is that the valuation

of a credit derivative is dependent upon the choice of copula. Will (2003) provides

some numerical examples showing that the prices of the credit basket derivative are

impacted by the various copula choices.

In our suggested method of pricing CDS, instead of directly imposing arbitrary

dependency assumption on the marginal default times of several counterparties, we

establish dependency among the default times through an instantaneous variance-
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covariance matrix of the underlying process. Hence, the dependency is specified

from first principles and is more intuitive. In practice, these variance-covariance

matrices are easier to estimate and test than copulas.

Since we can readily incorporate the simulation framework discussed in this thesis,

we accurately simulate the default behavior of reference entities using a few discrete

points in a time-efficient way, as shown in the next section.

3.5.3 Numerical Examples

Here we apply the methods FLDMC, LDMC2, and CMC to price a first-to-default

credit default swap. In particular, the reference entity consists of 3 credit risky

bonds issued by three distinct counterparties. The credit worthiness of these coun-

terparties are modelled by a multivariate correlated Brownian Motion process whose

parameterizations of the marginal processes are specified in Table 3.11.

Table 3.11: Parameterizations of the Brownian Motions for the Underlying Process

Firm Initial µ σ2 Default

Value threshold

1 4.54 0.07 0.02 4.30

2 4.54 0.0325 0.035 4.27

3 4.54 0.03 0.015 4.28

We vary the instantaneous correlation ρ between these components, and we calcu-

late the fair premium s of the credit default swap as described in the beginning

of Section 3.5.1, with T = 3 and R = 100. Since the maturity of the CDS is 3
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years with quarterly premium payments, we take subinterval points correspond-

ing to premium payment dates, resulting in the number of subintervals to be 12

(M = 12) for the simulation methods LDMC2 and FLDMC. We perform 80,000

runs of simulations (N = 80, 000). The threshold values of α1 and α2, which are

used in the computation of barrier crossing probability within a subinterval, are set

to be 0.1 and 0.03, respectively. In the method CMC, we take many subintervals

(M being a large number), and assume that the probability of default occurrence

between the endpoints of subintervals is 0.

Table 3.12: Simulation Result for the Premium Value s of Credit Default Swap

ρ = −0.2 ρ = 0 ρ = 0.2 ρ = 0.8

Simulation Type s Time s Time s Time s Time

FLDMC 8.47 68 7.74 69 7.01 71 4.78 78

(0.01) (0.02) (0.01) (0.02)

LDMC2 8.47 1128 7.70 1188 6.99 1379 4.66 1657

(0.01) (0.01) (0.02) (0.02)

CMC (M = 1200) 8.19 516 7.46 529 6.74 525 4.57 549

CMC (M = 8400) 8.38 3563 7.55 3606 6.89 3646 4.68 3816

CMC (M = 12000) 8.43 5057 7.71 5128 6.91 5194 4.67 5432

CMC (M = 24000) 8.45 9307 7.71 9444 6.96 9564 4.71 9962

(0.02) (0.03) (0.03) (0.02)

Table 3.12 summarizes the results obtained by different simulation methods with

varying assumptions of the instantaneous correlation ρ. The column s shows the fair

premium s, and the column Time shows the amount of time taken for simulation,

and the values in parentheses are standard errors. The estimates of FLDMC and

LDMC2 are very similar in value, but their computational times differ greatly.

This observation reaffirms our earlier statement that FLDMC is to a great extent
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more time efficient than LDMC2, without losing accuracy. As a way of verifying

correctness of our estimates, we used the method CMC with very fine subintervals

where M denotes the number of subintervals. The estimates from CMC should

converge to the true value as we take finer partitions of subintervals. We observe

that the CMC estimates with many subintervals converge to those of FLDMC and

LDMC2. We also report standard errors of CMC estimates in parentheses for the

case with M = 24, 000. This indicates that our proposed simulation algorithms

provide accurate results of the CDS prices. In particular, the method FLDMC is

an accurate and time efficient technique of obtaining the CDS prices.

127





Chapter 4

Exit Probabilities of a

Multivariate Brownian Motion

with Curved Boundaries

In Chapters 2 and 3, we examined the problem of finding a probability that com-

ponents of a multivariate Brownian Motion breach their respective barriers. In this

case, the boundaries consist of a set of hyperplanes in Rd, where d is dimensional-

ity of the process. In this chapter, we address a more general situation where we

have curved boundaries instead of linear boundaries. This situation arises when

we compute a barrier crossing probability of a sum of several Geometric Brownian

Motions.

When the underlying process is one dimensional Geometric Brownian Motion, we

have an analytic formula for a barrier crossing probability. Also, there are analytic

valuation formulas for a barrier option with a single barrier and also with double
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exponential barriers as given by Kolkiewicz (2002). However, the barrier crossing

probability of a sum of several Geometric Brownian Motions is not known, and

we propose an efficient method of computing this quantity in this chapter. In

the context of finance, the sum of Geometric Brownian Motions can represent the

process followed by a portfolio of stocks or futures.

We formulate the problem in a mathematical representation as follows. Suppose

that S = [S1, . . . , Sd]
T follows a multivariate Geometric Brownian Motion process,

dS(t) = US(t)dt + diag[S(t)]ΣdW(t), (4.1)

where W = [W1, . . . ,Wd]
T is a vector of independent Brownian Motions, U is a

d × d diagonal matrix with diagonal values of u1, . . . , ud, and Σ is a d × d matrix

corresponding to a square root of an instantaneous variance-covariance matrix.

Also, diag[S(t)] is a d × d diagonal matrix with components of S(t) being the

diagonal elements. The initial value of S is denoted as s0 = [s01, . . . , s0d]
T .

We define a stochastic process

Q(t) = S1(t) + . . . + Sd(t) (4.2)

and denote by c a certain threshold value such that Q(0) > c. In this chapter, we

discuss methods of computing P (Q(t) ≤ c, for some t, 0 ≤ t ≤ T ), which corre-

sponds to the probability that the stochastic process Q(t) breaches the threshold

value c within the time horizon of T .

The probability distribution of a sum of Geometric Brownian Motions is not known.

Practitioners typically approximate the sum of Geometric Brownian Motions by a
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one-dimensional Geometric Brownian Motion process using moments matching, but

this approximation is not very accurate. For computing the probability that the

sum breaches a barrier, Monte Carlo simulation techniques can be used. However,

as we have discussed earlier in this thesis, this method would require the use of

many subintervals in order to remove bias in the estimates.

Thulin (2006) and Dionne et al. (2006) provide a comprehensive overview of the

existing literature on a basket option pricing, which is related to the problem pre-

sented in this chapter. Most published works in this area such as Brigo et al. (2004)

and Milevsky and Posner (1998) utilize a moment matching technique to approxi-

mate sums of lognormal distributions as some known distributions in order to price

an European basket option or an Asian option. However, this technique is not

suitable in computing a barrier crossing probability because the moment matching

focuses only on a marginal distribution and not on an entire process. We have not

been able to find any work in the existing literature that address the issue of com-

puting a barrier crossing probability of the sum of Geometric Brownian Motions.

This problem is non-trivial because it involves characterization of the underlying

process correctly as well as computing its barrier crossing probability in continuous

time.

In this chapter, we propose an approach based on Large Deviations Theory, so that

we can approximate the barrier crossing probabilities using Monte Carlo simulation

with a small number of subintervals. Earlier in this thesis, we addressed the problem

of computing the probability that at least one component breaches its respective

barrier. Here we extend this idea further to answer the question of computing the
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barrier crossing probability of a sum of Geometric Brownian Motions.

This chapter is organized as follows. In Section 4.1, we compute the barrier crossing

probability of a basket with fixed initial and terminal values. In Section 4.2, we show

how the results from Section 4.1 can be incorporated into a simulation framework

to compute barrier crossing probabilities of a sum of Geometric Brownian Motions

with and without jumps added. In Section 4.3, we present numerical examples.

Finally, in Section 4.4, we show that the method we develop in this chapter can

be used to find an optimal portfolio that maximizes an economic agent’s path-

dependent utility function.

4.1 Barrier Crossing Probability of a Sum of Geo-

metric Brownian Motions with Fixed Initial

and Terminal Values

In order to address the main problem of this chapter, we consider different methods

of characterizations of the process Q defined in (4.2) when the initial and termi-

nal points are fixed. One naive approach is to freeze the coefficients and treat

the process as a 1-dimensional Brownian Motion process. However, as reported in

Baldi and Caramellino (2002), this crude approximation falls apart quickly as the

interval size increases. In their paper, they compute the barrier crossing probability

when the underlying process follows a general one-dimensional diffusion process. In

order to apply the Large Deviations Theory, the authors use a series of transforma-

tions and prove the following lemma. We re-state Proposition 3.2 from Baldi and
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Caramellino (2002) below.

Lemma 4.1.1 Let U ε solve the SDE

dU ε
t = εb̃(U ε

t )dt +
√

εdBt (4.3)

U ε
s = u (4.4)

where s < t, and let us set

W ε
u,s(t) = u +

√
ε(Bt −Bs). (4.5)

We consider the probability laws

P η,ε
u,s : the law of W ε

u,s pinned by W ε
u,s(1) = η

Qη,ε
u,s : the law of U ε

u,s pinned by U ε
u,s(1) = η.

Suppose that b̃ is a bounded and continuously differentiable function on R with

bounded derivatives. If A ∈ F is an event, possibly depending on ε, then we have

Qη,ε
u,s(A) ∼ P η,ε

u,s(A) (4.6)

uniformly for (u, η) in a compact subset of R2, where pε ∼ qε means pε/qε → 1 as

ε → 0.

Proof. The proof is given in Baldi and Caramellino (2002). ¤

In order to compute the barrier crossing probability of a sum of Geometric Brown-

ian Motions instead of one dimensional general diffusion process, we follow a similar

line of reasoning as Baldi and Caramellino (2002). We start with a correlated multi-

variate Geometric Brownian Motion process, and apply a series of transformations
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in order to obtain a corresponding uncorrelated Brownian Motions with unit vari-

ances. Then we obtain the boundary of the region in Rd that corresponds to the

barrier crossing (i.e. Q(t) ≤ c) in the transformed space. Large Deviations Theory

allows us to compute the exit probability of a multivariate Brownian Motion from

this region. In particular, when the boundary of this region is a hyperplane, the exit

probability can be easily obtained using methods discussed in Chapter 2. Hence, we

need to show that the boundary of the region corresponding to the barrier crossing

can be replaced by a hyperplane so that Large Deviations Theory can be readily

applied to approximate the exit probability of the process.

4.1.1 Transformation

We consider the following standard transformation. Suppose that we have a sto-

chastic differential equation,

dS(t) = µS(t)dt + S(t)σdW (t) (4.7)

with the fixed initial point s0 and end point s1. We denote the barrier level by c.

We omit the time subscript t for notational convenience.

Let Y (t) = F (S(t)) where

F (s) =

∫ s

x

1

rσ
dr

=
1

σ
ln

s

x
(4.8)
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and x is a constant such that x ≤ s. Then, we obtain

∂F

∂s
=

1

sσ
∂2F

∂s2
= − 1

s2σ
∂F

∂t
= 0.

By applying Ito’s lemma, we obtain

dY (t) = b̃dt + dW (t) (4.9)

with initial point y0 = F (s0), ending point y1 = F (s1), and the barrier F (c). Here

b̃ is a constant given by

b̃ =
µ

σ
− σ

2
. (4.10)

4.1.2 Sum of Two Geometric Brownian Motions

Let S1 and S2 follow correlated Geometric Brownian Motion processes,

dSi(t) = µiSi(t)dt + Si(t)σidWi(t) (4.11)

for i = 1, 2, with the initial value of S(0) = s0 = [s01, s02]
T and the fixed terminal

value of S(T ) = s1 = [s11, s12]
T , where T denotes the time horizon. We assume

E(dW1dW2) = ρdt. For the process

Q(t) = S1(t) + S2(t), (4.12)

we are interested in computing the probability that it breaches a barrier level c,

where Q(0) > c. For notational simplicity, we omit the time subscript t of the

process from now on.
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For each of S1 and S2, we apply the transformation similar to (4.8),

Fi(s) =

∫ s

s0i

1

rσi

dr, (4.13)

and we get

Y1 = F1(S1)

Y2 = F2(S2).

By rearranging the transformation Yi = F (Si), we have

Si = s0ie
σYi . (4.14)

Equation (4.14) establishes the relationship between the original variable Si and

the transformed variable Yi, for i = 1, 2.

From (4.9), we know that

dYi = b̃idt + dWi, i = 1, 2, (4.15)

with the initial point

y0 = [y01, y02]
T = [F1(s01), F2(s02)]

T = [
1

σ1

ln
s01

s01

,
1

σ2

ln
s02

s02

]T = [0, 0]T ,

and the ending point y1 = [y11, y12]
T = [F1(s11), F2(s12)]

T = [ 1
σ1

ln s11

s01
, 1

σ2
ln s12

s02
]T .

This transformation allows us to obtain processes with unit variances.

Assume for a moment that dW1 and dW2 are independent. We would like to find

the boundary for the 2-dimensional process {Y1, Y2} such that it corresponds to the

process Q = S1 + S2 crossing a constant level c.
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In order to do this, we first start with the boundary expressed in untransformed

original variables,

{(s1, s2) : s1 + s2 = c}. (4.16)

By substituting (4.14) into (4.16), we perform following algebraic manipulations

s01e
σ1y1 + s02e

σ2y2 = c

s02e
σ2y2 = c− s01e

σ1y1

eσ2y2 =
c

s02

− s01

s02

eσ1y1

σ2y2 = ln(
c

x02

− s01

s02

eσ1y1)

y2 =
1

σ2

ln(
c

s02

− s01

s02

eσ1y1). (4.17)

The expression in (4.17) determines the shape of the boundary in R2 for the trans-

formed variables Y1 and Y2.

Now we assume that the instantaneous correlation between dW1 and dW2 is ρ.

Then the process (4.15) can be equivalently written as

dY = b̃dt + ΣdW̃ (4.18)

where Y and W̃ are 2×1 dimensional vectors, the components of ˜dW = [dW̃1, dW̃2]
T

are independent, and Σ is a 2 × 2 matrix, which is obtained by the Cholesky de-

composition

Σ =


 1 0

ρ
√

1− ρ2


 (4.19)

so that

ΣT Σ =


 1 ρ

ρ 1


 . (4.20)
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Also, we have

Σ−1 =


 1 0

− ρ√
1−ρ2

1√
1−ρ2


 . (4.21)

In order to eliminate correlation between variables, we define a new variable Z from

Y by the following transformation

Z = G(Y) = Σ−1Y. (4.22)

By applying the multivariate version of Ito’s Lemma, we obtain

dZ = ˜̃bdt + dW̃ (4.23)

where Z has fixed initial value z0 = [z01z02]
T = G(y0) = [0, 0]T and the fixed

terminal value z1 = [z11z12]
T = G(y1). Here ˜̃b = [ ˜̃b1,

˜̃b2] is a vector of constants

given as

˜̃b1 = b̃1

˜̃b2 = − ρ√
1− ρ2

b̃1 +
1√

1− ρ2
b̃2.

Now we need to express the corresponding boundary S1 + S2 = c in terms of the

newly transformed variables, Z1 and Z2. Since the transformation was

Z = Σ−1Y (4.24)

or


 1 0

ρ
√

1− ρ2





 z1

z2


 =


 y1

y2


 ,
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we have

y1 = z1 (4.25)

y2 = ρz1 +
√

1− ρ2z2. (4.26)

We can substitute (4.25) and (4.26) into (4.17) to obtain an expression for the

boundary in terms of Z1 and Z2 as follows

y2 =
1

σ2

ln(
c

x02

− s01

s02

eσ1y1)

ρz1 +
√

1− ρ2z2 =
1

σ2

ln(
c

s02

− s01

s02

eσ1z1)

√
1− ρ2z2 =

1

σ2

ln(
c

s02

− s01

s02

eσ1z1)− ρz1

z2 =
1√

1− ρ2
{ 1

σ2

ln(
c

s02

− s01

s02

eσ1z1)− ρz1}. (4.27)

The expression in (4.17) determines the shape of the boundary corresponding to

the barrier in the independent case, and the expression (4.27) for the correlated

case. In the correlated case, let D ∈ R2 be the region corresponding the values

of {Z1, Z2} for which the barrier is not breached. The problem is reduced to a

problem of finding an exit probability that the 2-dimensional underlying process

{Z1, Z2} with unit variance and zero correlation exits the region D whose boundary

is defined by (4.27).

4.1.3 Extension to a Sum of d Geometric Brownian Motions

Now we consider a sum of d correlated Geometric Brownian Motions with an in-

stantaneous correlation matrix H. The process of the sum is represented by

Q = S1 + S2 + . . . + Sd. (4.28)
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Our objective is to compute the probability that the process Q crosses a threshold

value c, Q(0) > c, during the given time interval. Below we extend our discussion

from Section 4.1.2 to address this issue.

We express the boundary that corresponds to the event S1 + . . . + Sd = c using

transformed variables Y1, . . . , Yd. The equation

s1 + s2 + . . . + sd = c

or

s01e
σ1y1 + s02e

σ2y2 + . . . + s0de
σdyd = c

is equivalent to

s0de
σdyd = c− s01e

σ1y1 − s02e
σ2y2 − . . .− s0(d−1)e

σd−1yd−1

eσdyd =
c

s0d

− s01

s0d

eσ1y1 − s02

s0d

eσ2y2 − . . .− s0(d−1)

s0d

eσd−1yd−1

σdyd = ln

(
c

s0d

− s01

s0d

eσ1y1 − s02

s0d

eσ2y2 − . . .− s0(d−1)

s0d

eσd−1yd−1

)

yd =
1

σd

ln

(
c

s0d

− s01

s0d

eσ1y1 − s02

s0d

eσ2y2 − . . .− s0(d−1)

s0d

eσd−1yd−1

)
.(4.29)

Suppose that the correlation matrix H is given as follows,

H =




1 ρ12 · · · ρ1d

ρ12 1 · · · ρ2d

...
...

. . .
...

ρ1d ρ2d · · · 1




.

Note that H is also a variance-covariance matrix for the transformed variables,

Y1, . . . , Yd, because we perform a transformation such that Y1, . . . , Yd have unit
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variances. Let Σ̃ be a d× d lower triangular matrix from Cholesky’s decomposition

of H, i.e. H = Σ̃Σ̃T . We denote

Σ̃ =




q11 0 · · · · · · 0

q21 q22 0 · · · 0
...

...
. . . . . .

...

qd1 qd2 · · · · · · qdd




, Σ̃−1 =




%11 0 · · · · · · 0

%21 %22 0 · · · 0
...

...
. . . . . .

...

%d1 %d2 · · · · · · %dd




.

The existence of Σ̃ is ensured by the positive semi-definiteness of H.

We transform the variable Y by Σ̃−1 to obtain an uncorrelated process Z as follows,

Z = Σ̃−1Y

or

Σ̃Z = Y, (4.30)

and, by Ito’s lemma, we obtain

dZ = ˜̃bdt + dW̃, (4.31)

where we use the same notations as in the previous section and ˜̃b = [˜̃b1, . . . ,
˜̃bd]

T are

given by

˜̃b1 = %11b̃1

˜̃b2 = %21b̃1 + %22b̃2

...

˜̃bd = %d1b̃1 + %d2b̃2 + . . . + %ddb̃d.

We note that W̃ is a vector of d independent standard Brownian Motions. We

know from Section 2.2.2 that the constant drift terms can be ignored when the
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terminal value of the process is fixed. Since ˜̃b is a vector of constant values, the

process (4.31) with the fixed initial and terminal values of z0 and z1 is equivalent to

a d-dimensional standard Brownian Motion with pinned initial and terminal values

of z0 and z1.

By re-writing (4.30) for each component of Y, we get

y1 = q11z1 (4.32)

y2 = q21z1 + q22z2

...

yd = qd1z1 + qd2z2 + · · ·+ qddzd. (4.33)

Substituting (4.32) - (4.33) into (4.29), the boundary in Rd in terms of the original

variables corresponding to s1 + . . .+sd = c, can be expressed in terms of Z1, . . . , Zd

in the following way:

qd1z1 + qd2z2 + · · ·+ qddzd

=
1

σd

ln

(
c

s0d

− s01

s0d

eσ1y1 − s02

s0d

eσ2y2 − . . .− s0(d−1)

s0d

eσd−1yd−1

)

qddzd

=
1

σd

ln

(
c

s0d

− s01

s0d

eσ1(q11z1) − s02

s0d

eσ2(q21z1+q22z2) − . . .− s0(d−1)

s0d

eσd−1(qd1z1+qd2z2+···+qd(d−1)zd−1)

)

− qd1z1 − qd2z2 − · · · − qd(d−1)zd−1
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which gives

zd =
1

qdd

{ 1

σd

ln

(
c

s0d

− s01

s0d

eσ1(q11z1) − s02

s0d

eσ2(q21z1+q22z2) − . . .− s0(d−1)

s0d

eσd−1(qd1z1+qd2z2+···+qd(d−1)zd−1)

)

−qd1z1 − qd2z2 − · · · − qd(d−1)zd−1}. (4.34)

The expression (4.34) defines the boundary for the transformed variables Z1, . . . , Zd

that follow a multivariate Brownian Bridge with unit variances and zero correla-

tions. The initial and terminal values are fixed and equal to z0 and z1, respectively.

The vectors z0 and z1 can be obtained in the same way as described in Section

4.1.2. We let D be the region corresponding to the barrier defined by (4.34). In

the next two sections, we address the problem of computing the probability that

the process Z with the fixed initial and terminal values of z0 ∈ D and z1 ∈ D exits

the region D.

4.1.4 Linear Approximation of the Boundary

As discussed in the previous section, our problem is reduced to computing an exit

probability from the region D that has a curved boundary. In this section, we show

that for the purpose of computing an exit probability, the curved boundary of D

can be replaced with a hyperplane in Rd. From Theorem 1.2.2, we see that we can

easily compute an exit probability of a d-dimensional process when a boundary is

a hyperplane. The series of propositions presented in this section provide justifica-

tions for replacing the curved boundary by a hyperplane, so that Large Deviations

Theory for a process can be readily applied to compute the exit probability.
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We need to consider two cases: (1) D is convex and (2) DC is convex. We show

in the next section that the fact whether the barrier is below or above the initial

value determines the case (1) or (2).

In this section, we need the concept of a supporting hyperplane. A supporting

hyperplane to a convex set V is a hyperplane which is the boundary of a supporting

half-space to V , where a supporting half-space to V is a closed half-space which

contains V and has a point of V in its boundary (Rockafellar (1970)).

We now consider following propositions.

Proposition 4.1.1 Suppose V is a convex closed set. Assume also that x and y

are points such that x, y /∈ V . Let z∗ be the unique point in V such that

z∗ = arg min{z ∈ V | ||x− z||+ ||z − y||}. (4.35)

Let L(V, z∗) be a set of supporting hyperplanes of V at z∗. Then, there exists a

unique l(z∗) ∈ L(V, z∗) such that

z∗ = arg min{w ∈ l(z∗) | ||x− w||+ ||w − y||}. (4.36)

Define, for any r ≥ 0,

S(r) = {w | ||x− w||+ ||w − y|| ≤ r}. (4.37)

For any point w on the boundary of S(r), let L(S(r), w) be the set of supporting

hyperplanes of S(r) at w. The following lemma shows that the boundary of S(r)

is smooth.
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Lemma 4.1.2 The following statements are true for any r ≥ 0.

(i) S(r) is convex.

(ii) If w is a point on the boundary of S(r), then there is a unique supporting

hyperplane of S(r) at w.

Proof. The boundary of S(r) can be represented by the set of points represented

by

{w | ||x− w||+ ||w − y|| = r}. (4.38)

Recall that an ellipse is the locus of points on a plane where the sum of the distances

from any point on the curve to two fixed points is constant. Also, an ellipsoid is a

a higher dimensional analogue of an ellipse. Hence, the surface given by (4.38) is

an ellipsoid. From this, it follows that both (i) and (ii) are true. ¤

We now give a proof of Proposition 4.1.1.

Proof of Proposition 4.1.1: The existence of z∗ follows from the closure of V and

the continuity of the distance functions. For z∗, define

r∗ = ||x− z∗||+ ||z∗ − y||. (4.39)

By the definition of S(r), z∗ is a boundary point of S(r∗). Let l∗ be the supporting

hyperplane of S(r∗) at z∗. It is unique by Lemma 4.1.2 (ii). By the definition of

the supporting hyperplane, it follows that

z∗ = arg min{z ∈ l∗ | ||x− z||+ ||z − y||}. (4.40)
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i.e., z∗ is the point on the hyperplane l∗ that minimizes the sum of distances from

x and y. Note that z∗ is unique since l∗ is unique. Thus, it remains to show that

l∗ is a supporting hyperplane of V .

Any hyperplane results in two open non-intersecting half-spaces. Let A and B be

these half-spaces resulting from l∗. Let Ā and B̄ be the closed half spaces from

the closures of A and B, respectively. Without loss of generality, suppose S(r∗) is

contained in Ā.

Suppose there exists e ∈ A ∩ V . Consider the line segment ez∗ between e and z∗.

From e ∈ A and the fact that the hyperplane l∗ does not intersect with A (by the

definition of A), it follows that the line segment ez∗ is not contained in l∗. Thus, it

follows that the line segment ez∗ intersects with the interior of S(r∗). Let u be the

point on ez∗ such that u is an interior point of S(r∗). Thus,

||x− u||+ ||u− y|| < r∗ = ||x− z∗||+ ||z∗ − y||. (4.41)

Recall that both e and z∗ belong to V . Thus, by the convexity of V , we obtain that

u is also in V . However, this contradicts the choice of z∗ and hence A ∩ V = ∅.

Therefore, l∗ is a supporting hyperplane of V , and hence Proposition 4.1.1 is true.

¤

Now consider the case x, y ∈ V .

Proposition 4.1.2 Suppose V is a convex closed set with a twice-differentiable

boundary. Suppose x and y are points such that x, y ∈ V . Let z∗ be any point on

146



the boundary of V , ∂V , such that

z∗ = arg min{z ∈ ∂V | ||x− z||+ ||z − y||}. (4.42)

Let L(V, z) be the set of supporting hyperplanes of V at z. Then the following

statements are true.

(a) There exists a unique l(z∗) ∈ L(V, z∗) such that

z∗ = arg min{w ∈ l(z∗) | ||x− w||+ ||w − y||}. (4.43)

(b) If the value of x is fixed and y is simulated from a continuous distribution, the

probability that z∗ is non-unique is 0.

Proof of Proposition 4.1.2 (a):

For a given z∗, l(z∗) ∈ L(V, z∗) is unique because the boundary of V is twice-

differentiable. Since V is convex, it follows from the definition of the supporting

hyperplane

z∗ = arg min{w ∈ l(z∗) | ||x− w||+ ||w − y||}. ¤

Proof of Proposition 4.1.2 (b):

We consider the shortest path that starts at x, touches a point on ∂V , and ends at

y. We need to show that the probability of the shortest path being non-unique is

0.

Suppose that one of the shortest paths that touches ∂V is denoted by x-v∗-y where

v∗ ∈ ∂V and the length of this path is r∗. We define an ellipsoid S(y, r∗) in Rd

S(y, r∗) = {w | ||x− w||+ ||w − y|| ≤ r∗}.
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Note that S(y, r∗) is completely contained in V , and there is at least one point on

∂V that is in contact with the surface of S(y, r∗). We see that the path x-v∗-y is

the unique shortest path only if the point of contact between ∂V and the surface

of S(y, r∗) is unique. Let U(x), U(x) ⊆ V , be the set of all y’s such that the point

of contact between ∂V and the surface of S(y, r∗) is not unique. Below we denote

by Bδ(y) a ball around y with a radius of δ, Bδ(y) = {x : ||y − x|| ≤ δ}.

Lemma 4.1.3 Suppose that y
′ ∈ U(x). Then, there does not exist δ > 0 such that

Bδ(y
′
) ⊆ U(x).

Proof. Since y
′ ∈ U(x), the shortest path from x to y

′
that touches ∂V is not

unique. Let x-v∗-y
′

be one of these paths with length r∗, where v∗ ∈ ∂V . Now

consider a point y
′′ ∈ V on the line segment v∗y′ such that the length of the path

x-v∗-y
′′

is r∗ − δ where δ is a small number.

Note that x-v∗-y
′′

is the shortest path from x to y
′′

that touches ∂V with length of

r∗− δ. We see that v∗ ∈ S(y
′′
, r∗− δ). We now show that the ellipsoid S(y

′′
, r∗− δ)

is completely contained in S(y
′
, r∗), with the only point of contact at v∗. This will

imply that there is a point y
′′ ∈ Bδ(y

′
) that does not belong to U(x).

Assume that we have a point z ∈ S(y
′′
, r∗ − δ), z 6= v∗, such that it is located on

the boundary or outside of S(y
′
, r∗). Then the length of x-z-y

′′
is less or equal to

r∗− δ because z ∈ S(y
′′
, r∗− δ). If by dist(.) we denote length of a path, then this

fact can be stated as

dist(xzy
′′
) ≤ r∗ − δ. (4.44)
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We now separately examine the case when z is outside of S(y
′
, r∗) and the case

when z is on the boundary. When z is outside of S(y
′
, r∗), we have

dist(xzy
′
) > r∗. (4.45)

Considering the path x-z-y
′
, we have

dist(xzy
′
) ≤ dist(xzy

′′
y
′
) (4.46)

= dist(xzy
′′
) + dist(y

′′
y
′
) (4.47)

≤ r∗ − δ + δ (4.48)

= r∗, (4.49)

where we obtain (4.48) by substituting (4.44) into (4.47). We see that (4.46)-(4.49)

contradict (4.45).

Similarly, when z is on the boundary of S(y
′
, r∗), we have

dist(xzy
′
) = r∗. (4.50)

Considering the path x-z-y
′
, we have

dist(xzy
′
) = dist(xv∗y

′
) (4.51)

= dist(xv∗y
′′
y
′
) (4.52)

≤ dist(xzy
′′
y
′
) (4.53)

= dist(xz) + dist(zy
′′
y
′
) (4.54)

< dist(xz) + dist(zy
′
) (4.55)

= dist(xzy
′
) (4.56)

= r∗, (4.57)
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where we have equality in (4.51) because both z and v∗ are on the boundary of

S(y
′
, r∗), and we have inequality between (4.54) and (4.55) since z-y

′′
-y
′

is not a

straight line due to z 6= v∗. The equality between (4.56) and (4.57) holds by (4.50).

We see that (4.51)-(4.57) contradict (4.50).

By contradiction, the ellipsoid S(y
′′
, r∗−δ) is completely contained in S(y

′
, r∗) with

the only point of contact at v∗. Since S(y
′
, r∗) is completely contained in V with

v∗ being one of the points of the contact, S(y
′′
, r∗ − δ) is contained in V with the

only point of contact at v∗.

Hence, for every y
′

and every δ > 0, we can find a point y
′′ ∈ Bδ(y

′
) such that

y
′′

/∈ U(x). ¤

We introduce another lemma. By λ(A) we denote a Lebesgue measure of a set

A ⊆ Rd.

Lemma 4.1.4 Suppose that for each point g ∈ G ⊆ V there is a line L(g) con-

necting g and a boundary of V , and all the points in L(g) except g do not belong to

G. Then λ(G) = 0.

Proof.

Let G1 be the set of points in the collection of lines generated by all points in G

G1 = {w | w ∈ L(g) for all g ∈ G}.

Let L
′
(g) denote the set of points in L(g) with the point g removed. Also, we

denote by G2 the following subset of G1

G2 = {w | w ∈ L
′
(g) for all g ∈ G}.
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By the fact that all the points in L(g) except for the point g do not belong to G, it

follows that no L
′
(g1) for g1 ∈ G is entirely contained in another L

′
(g2) for g2 ∈ G if

g1 6= g2. Also, we see that for any g ∈ G we have g /∈ G2, and the corresponding line

segments of L(g) and L
′
(g) are added to the set G1 and G2, respectively. Hence,

whether the line is with the point g or without will not affect the Lebesgue measure

of the set. This shows that

λ(G1) = λ(G2). (4.58)

Since G and G2 are disjoint and G1 = G2 ∪G, it follows that

λ(G1) = λ(G2) + λ(G). (4.59)

By combining (4.58) with (4.59), we get λ(G) = 0. ¤

From Lemma 4.1.3, we see that there does not exist any ball in Rd that belongs to

U(x). Moreover, for each y
′ ∈ U(x), there is a line L connecting y

′
and a boundary

of V , and all the points in L except y
′
do not belong to U(x). From Lemma 4.1.4,

these facts imply that the set U(x) has a probability mass of zero, since the terminal

value y ∈ V is drawn from a continuous distribution. Therefore, the event that the

shortest path is not unique has a probability of zero. This completes the proof for

Proposition 4.1.2 (b). ¤

We note that z∗ in Proposition 4.1.2 may not be unique. This depends on the

curvature of V and the locations of x and y. The fact that there may be more

than one minimizing path implies that the exit probability calculated using the

Large Deviations Theory must be suitably modified (Baldi (1995)). In the context

of our simulation framework, when we compute the shortest path, the initial value
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x is fixed and the terminal value y is simulated from a continuous multivariate

distribution. Hence, by Proposition 4.1.2 (b), the event that z∗ is not unique has a

probability of zero.

Propositions 4.1.1 and 4.1.2 are applicable in the cases when DC is convex and

when D is convex, respectively. These propositions show that the point, say z∗,

on the boundary of D that minimizes the distance from x, y ∈ D to ∂D has the

property that if you create a tangent hyperplane at this point then the minimum

distance from the two end-points, x and y, to this hyperplane is achieved at exactly

the same point z∗.

Using the above stated results and some properties of the Large Deviations ap-

proach, we can now show that the curved boundary of D can be replaced by a

hyperplane. Whether D is convex or DC is convex, the shortest path that touches

a point in the boundary of D, z∗, is the same as the shortest path that touches the

hyperplane that is a tangent of D at z∗. Let E denote the half-space defined by

this tangent hyperplane. According to Baldi (1995), the theory of Large Deviations

states that when the most likely path γ is unique, the exit probability of the process

{Z(t), t ≥ 0}, P ε{τ ≤ T}, is asymptotically the same as P ε{τ ≤ T,Z ∈ Bδ(γ))},
where Bδ(γ) denotes the neighbourhood (a tube) of radius δ of γ, and τ is the first

time the barrier is breached. The main result of this section can be summarized in

the following way.

Let D be a region such that either D is convex or DC is convex. For the underlying
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process Z(t), we have

P{Z(t) /∈ D for some t ∈ [t0, t0 + ε]} (4.60)

≈ P{Z(t) /∈ D for some t ∈ [t0, t0 + ε],Z ∈ Bδ(γ)} (4.61)

≈ P{Z(t) /∈ E for some t ∈ [t0, t0 + ε],Z ∈ Bδ(γ)} (4.62)

≈ P{Z(t) /∈ E for some t ∈ [t0, t0 + ε]}, (4.63)

where the approximation is valid as ε → 0 The quantity in (4.61) can be approx-

imated by (4.62) because, by Propositions 4.1.1 and 4.1.2, the shortest paths γ

are the same in both cases. Hence, the exit probability, P{Z(t) /∈ D for some t ∈
[t0, t0 + ε]} can be approximated by P{Z(t) /∈ E for some t ∈ [t0, t0 + ε]}. From

this, we see that the exit probability for the process Z(t) can be approximated by

assuming that the boundary of D is replaced by a supporting hyperplane of D at

z∗ ∈ ∂D that the minimizing path goes through.

4.1.5 Large Deviations Approach to Computing the Exit

Probability of One Time Interval

Recall that D is the region corresponding to non-breaching of the barrier, whose

boundary is defined by (4.27) in the case of a sum of two correlated Geomet-

ric Brownian Motions, or by (4.34), for a sum of d correlated Brownian Motion

processes. In this section, we discuss properties of this region D, and then show a

method of computing the exit probability from this region using the Large Devia-

tions Theory.
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We consider the region

V = {(z1, . . . , zd) | zd ≤ 1

qdd

{ 1

σd

ln

(
c

s0d

− s01

s0d

eσ1(q11z1) − s02

s0d

eσ2(q21z1+q22z2) − . . .− s0(d−1)

s0d

eσd−1(qd1z1+qd2z2+···+qd(d−1)zd−1)

)

− qd1z1 − qd2z2 − · · · − qd(d−1)zd−1}}. (4.64)

We first show that V is convex and discuss how D is related to V . In particular, we

show that D is the same as either V or the complement of V depending on whether

the barrier is an upper or a lower barrier. The boundary of V is the same as the

boundary of D, which is defined by (4.34),

zd = G(z1, . . . , zd−1)

=
1

qdd

{ 1

σd

ln

(
c

s0d

− s01

s0d

eσ1(q11z1) − s02

s0d

eσ2(q21z1+q22z2) − . . .− s0(d−1)

s0d

eσd−1(qd1z1+qd2z2+···+qd(d−1)zd−1)

)

− qd1z1 − qd2z2 − · · · − qd(d−1)zd−1}. (4.65)

We let

H(z1, . . . , zd)

=
1

σd

ln

(
c

s0d

− s01

s0d

eσ1(q11z1) − s02

s0d

eσ2(q21z1+q22z2) − . . .− s0(d−1)

s0d

eσd−1(qd1z1+qd2z2+···+qd(d−1)zd−1)

)

− qd1z1 − qd2z2 − · · · − qd(d−1)zd−1 − qddzd. (4.66)

Then the boundary of D, as shown in (4.65), can be expressed as

H(z1, . . . , zd) = 0, (4.67)

and V can be re-written as

V = {(z1, . . . , zd) | H(z1, . . . , zd) ≥ 0}. (4.68)
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We note that the exponential function ex is convex, and consider

f(x) = f(x1, . . . , xd) = ea1x1+...+adxd , (4.69)

where a1, . . . , ad are constants. With v = [v1, . . . , vd], w = [w1, . . . , wd], g =

a1v1 + . . . + advd, and h = a1h1 + . . . + adhd, we have

f(αv + (1− α)w)

= ea1(αv1+(1−α)w1)+...+ad(αvd+(1−α)wd)

= eα(a1v1+...+advd)+(1−α)(a1w1+...+adwd)

= eαg+(1−α)h

≤ αeg + (1− α)eh

= αea1v1+...+advd + (1− α)ea1h1+...+adhd

= αf(v) + (1− α))f(w).

Hence, f(.) from (4.69) is convex. This implies that each of s01

s0d
eσ1(q11z1), s02

s0d
eσ2(q21z1+q22z2),

. . .,
s0(d−1)

s0d
eσd−1(qd1z1+qd2z2+···+qd(d−1)zd−1) from (4.66) are convex with respect to zi’s.

Since Theorem 5.2 of Rockafellar (1970) states that a sum of convex functions is

convex and all the coefficients s0i

s0d
, i = 1, . . . , d− 1, are positive, then

(
s01

s0d

eσ1(q11z1) +
s02

s0d

eσ2(q21z1+q22z2) + . . . +
s0(d−1)

s0d

eσd−1(qd1z1+qd2z2+···+qd(d−1)zd−1)

)

is convex as well. A concave function is a function whose negative is convex. Hence,

the above result implies that

(
c

s0d

− s01

s0d

eσ1(q11z1) − s02

s0d

eσ2(q21z1+q22z2) − . . .− s0(d−1)

s0d

eσd−1(qd1z1+qd2z2+···+qd(d−1)zd−1)

)

is concave. Now we introduce two lemmas.
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Lemma 4.1.5 Let f be a concave function from Rd to (−∞, +∞] and ϕ be a

concave function from R to (−∞, +∞] which is non-decreasing. Then h(x) =

ϕ(f(x)) is concave on Rd.

Proof. For x and y in Rd and 0 < λ < 1, we have

f((1− λ)x + λy) ≥ (1− λ)f(x) + λf(y). (4.70)

By applying ϕ to both sides of this inequality, we get

h((1− λ)x + λy) ≥ ϕ((1− λ)f(x) + λf(y)) ≥ (1− λ)h(x) + λh(y).

Thus h is concave. ¤

The following lemma is taken from Rockafellar (1970).

Lemma 4.1.6 For any convex function f and any α ∈ [−∞, +∞], the level sets

{x|f(x) < α} and {x|f(x) ≤ α} are convex.

Since ln(.) is a concave function, by Lemma 4.1.5 function H(z1, . . . , zd) defined in

(4.66) is concave. The fact that −H(z1, . . . , zd) is convex and Lemma 4.1.6 imply

that the set {(z1, . . . , zd) | −H(z1, . . . , zd) ≤ 0} is a convex set. Therefore,

V = {(z1, . . . , zd) | H(z1, . . . , zd) ≥ 0} (4.71)

is a convex set.

These results allow us to determine under what circumstances the region D is

convex. We note that the initial values of components (s01, s02, . . . , s0d) correspond
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to (z1, z2, . . . , zd) = (0, 0, . . . , 0) after going through the transformations described

in Sections 4.1.2 and 4.1.3. Hence, when the sum of the initial values s01, . . . , s0d is

smaller than the barrier level c, the point (0, . . . , 0) is in the region V . Therefore, D,

which is a region corresponding to the non-breaching of the barrier, is the same as

V , and our previous discussion implies that D is convex. Conversely, when the sum

of the initial values s01, . . . , s0d is greater than the barrier level c, then the initial

point (0, . . . , 0) is not in V . In this case, the region corresponding to non-breaching

of the barrier, D, is the complement of V , and hence DC is convex.

We now show how we can approximate the probability that the underlying process Z

exits the region defined by D, D ⊆ Rd, using the Large Deviations Theory. Since Z

follows the multivariate Brownian Bridge with unit variances and zero correlations,

we first compute the following quantity,

u(z0, 0) = inf
φ∈∂D

{1

2
{(‖z0 − φ‖+ ‖z1 − φ‖)2 − ‖z0 − z1‖2}}, (4.72)

where φ = [φ1, . . . , φd]
T . Clearly, the optimal value of φ can be obtained from the

following,

inf
φ∈∂D

(‖z0 − φ‖+ ‖z1 − φ‖). (4.73)

Once again, we need to find the shortest path that starts from z0, touches a point

along the boundary of D, which is given by (4.34), and goes back to z1. In partic-

ular, when d = 2, the objective function in (4.73) can be expressed as

h(φ1, φ2) =
√

(z01 − φ1)2 + (z02 − φ2)2 +
√

(z11 − φ1)2 + (z12 − φ2)2. (4.74)

We can reduce the number of arguments by substituting for φ2 the expression

φ2 = 1√
1−ρ2

{ 1
σ2

ln( c
s02
− s01

s02
eσ1φ1)− ρφ1} as given in (4.27). Even for this simplified
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function, we were not able to obtain obtain the minimum point of h(φ1) analytically.

However, by Lemma 2.2.1, the objective function in (4.72) is convex. Therefore,

numerical procedures utilizing Matlab function “fminbnd” can be used to obtain

the global minimum value.

Suppose that z∗ is the point on ∂D that the shortest path goes through. From

(4.60) - (4.63), it follows that in both cases where D is convex or DC is convex

the curved boundary of D can be replaced with the supporting hyperplane E at

z∗. Therefore, by Propositions 4.1.1 and 4.1.2, the shortest path that touches E

still goes through z∗. For computing the exit probability we can now use Theorem

1.2.2. Application of this result in general is difficult as the quantities A and B that

appear there are very expensive to compute. However, these quantities vanish when

the boundary is a hyperplane. Since in our problem we can replace the boundary

of D by a hyperplane, then, by Theorem 1.2.2 and our discussion in Section 1.2.4,

the barrier crossing probability can be approximated as follows:

P ε
X,0{τ ≤ 1} = exp(−u(z0, 0)

ε
)(1 + o(εm)) (4.75)

for every m > 0, where ε is length of the time interval.

4.2 Simulation Method of Exit Probabilities

In this section, we discuss numerical methods for computing the probability that

Q = S1 + . . . + Sd breaches the level c, which can be above or below the sum of

initial values s0i, i = 1, . . . , d. In the last section, we have developed a method
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based on Large Deviations Theory to approximate the barrier crossing probability

of Q during one time interval, when the initial and terminal values of components of

Q are known. We now propose a simulation framework that allows us to compute

the exit probability of Q for a given time horizon T , assuming that the under-

lying components S1, . . . , Sd follow a correlated multivariate Geometric Brownian

Motion.

The simulation framework is similar to what we introduced in Section 3.1.1. We first

generate values of the underlying processes at discrete time intervals for a specified

time horizon. If the process Q breaches the barrier at any of the discrete points,

then the simulated path is considered to have crossed the barrier. Otherwise, for

each subinterval with fixed initial and terminal values, we need to approximate the

probability that the sum of the components have crossed the barrier. We do this

using the method based on the Large Deviations Theory described in the previous

section. In this way we generate simulated paths many times to approximate the

barrier crossing probability.

The described method for computing the barrier crossing probability of a basket of

risky securities can be applied to a process in either a risk-neutral or real measure,

and it can be easily extended to the case where the components of the portfolio

are assumed to follow a jump-diffusion process instead of a Geometric Brownian

Motion. From our earlier discussion, we know how to estimate the barrier crossing

probabilities for a diffusion process. By selecting endpoints of the subintervals to

be times when jumps occur, we only need to address the computation of barrier

crossing probabilities for diffusion processes for which we can apply the Large Devi-
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ation Theory. In a typical application in finance, the number of jumps are relatively

small, and hence we can expect that the number of subintervals will be comparable

to the values that we used in our numerical experiments. This suggests that in such

applications we should not see any additional accumulation of the computational

error. A large intensity of jumps warrants additional studies, which we plan to

conduct in a future.

We consider a multivariate jump diffusion model discussed by Kou (2002) and Kou

and Wang (2004). For this model, the underlying process of the ith component of

the basket is assumed to follow

dSi = µSidt + SiσdWi + Sid(

N(t)∑

k=1

(Vk − 1)), (4.76)

where {N(t)} is a Poisson process with rate λ, and Vk, k = 1, 2, . . ., is a sequence

of independent and identically distributed random variables such that Yk = log Vk

has a double exponential distribution with the density

fY (y) = pη1e
−η1y1{y≥0} + qη2e

η2y1{y<0}, η1 > 1, η2 > 0. (4.77)

In this model, the jumps are affecting all the components of the basket simultane-

ously as a common shock with the same magnitude. Below we briefly describe an

algorithm to compute the barrier crossing probability of a basket whose components

follow a joint jump-diffusion process:

1. Using the assumption of Poisson jumps, generate the inter-arrival times till

the time horizon T . Then generate the jumps’ magnitudes. The jumps occur

simultaneously to all the components of the basket. Let t1, t2, . . . denote the

times that the jumps occur.
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2. Generate the simulated path of S1, . . . Sd between the times of jumps by using

a multivariate Geometric Brownian Motion.

3. From Steps 1 and 2, obtain the values of the trajectories of S1, . . . , Sd at

discrete times t1, t2, . . .. If any of these values have breached the specified

barrier, then the simulated path is considered to have crossed the barrier.

Otherwise, for each time interval between discrete time points, the initial and

the terminal values of the components of the basket are known. Using the

method described in Section 4.1, we can determine the probability that the

basket value crosses the barrier c during the given subinterval, because the

process between the discrete interval points is a diffusion process.

4. Repeat Steps 1-3 many times to obtain the estimate of the barrier crossing

probability of Q.

The jump-diffusion model used in this section is fairly simplistic but this frame-

work can be extended to handle more general jump-diffusion models. This will be

subjects of future research.

4.3 Numerical Examples

In this section, we present numerical examples to illustrate the proposed approxi-

mation method for computing barrier crossing probability of a basket of stocks. The

components of the basket are assumed to follow a multivariate Geometric Brown-

ian Motion process and a Jump-Diffusion process, and the results are presented in

Section 4.3.1 and 4.3.2, respectively.
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4.3.1 Sum of Geometric Brownian Motions

Here we present examples of computing the probability of barrier crossing for a sum

of several Geometric Brownian Motions. We use the method presented in Sections

4.1-4.2, to which we refer as “LDT method”. We compare results obtained from

this method with the results from a Crude Monte Carlo method.

We consider a three-dimensional Geometric Brownian Motion process with the

parameters as specified in Table 4.1. The instantaneous correlation among these

processes is given by ρ, whose values are varied in our study.

Table 4.1: Parameters of Geometric Brownian Motions for Stock Price Processes

GBM Initial Growth σ2

Value Rate

S1 52 0.05 0.25

S2 23 0.05 0.20

S3 49 0.05 0.3

The process for the ith component of the basket is denoted by Si(t), i = 1, 2, 3. We

define the basket process as Q(t) = S1(t)+S2(t)+S3(t). For a specific barrier level,

c, we compute the probability that the basket process breaches the level before the

time horizon T = 1. We also investigate different values of barrier levels c.

Tables 4.2, 4.3, and 4.4 report estimates of barrier crossing probabilities using

the LDT method and the Crude Monte Carlo method when the barrier level is

c = 121.5, 115, and 106, respectively. The values in parentheses are standard devi-
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ations of the Crude Monte Carlo estimates. We also varied values of instantaneous

correlation ρ. In these tables, M denotes the number of subintervals used.

Table 4.2: Estimates of Barrier Crossing Probabilities with Barrier c = 121.5

LDT Method with Quasi-Monte Carlo (N = 10, 000)

ρ = −0.2 ρ = 0 ρ = 0.2 ρ = 0.8

M Estimates Time (s) Estimates Time (s) Estimates Time (s) Estimates Time (s)

1 0.852 185 0.8819 181 0.8991 173 0.9259 168

2 0.8482 128 0.88 122 0.8982 125 0.9273 117

5 0.8442 501 0.8777 471 0.8963 463 0.9269 426.2

10 0.8419 786 0.877 722 0.8949 694 0.926 625

Crude Monte Carlo (N = 50, 000)

ρ = −0.2 ρ = 0 ρ = 0.2 ρ = 0.8

M Estimates Time (s) Estimates Time (s) Estimates Time (s) Estimates Time (s)

1000 0.8203 259 0.857 259 0.8798 260 0.9135 260

(0.0017) (0.0012) (0.0017) (0.0001)

5000 0.8314 1243 0.8668 1244 0.8876 1244 0.9196 1245

(0.0013) (0.0007) (0.0010 (0.0001)

7000 0.8355 1744 0.866 1743 0.8862 1743 0.9189 1745

(0.0002) (0.0001) (0.0011) (0.0010)

15000 0.8352 3886 0.8706 3856 0.891 3812 0.9223 3812

(0.0007) (0.0018) (0.0007) (0.0010)

30000 0.8372 7949 0.8723 7925 0.8936 7978 0.9222 8066

(0.0014) (0.0012) (0.0017) (0.0019)

Since we can use a small number of time intervals for the LDT method, we can

combine this method with Quasi-Monte Carlo simulation, which works well in prob-

lems of low dimensionality and requires a lesser number of simulation trajectories

for convergence. Hence, we use only 10,000 simulation runs, whereas for the Crude

Monte Carlo method we use 50,000 simulation runs.

As the results in Tables 4.2, 4.3, and 4.4 demonstrate, the estimates from the LDT
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Table 4.3: Estimates of Barrier Crossing Probabilities with Barrier c = 115

LDT Method with Quasi-Monte Carlo (N = 10, 000)

ρ = −0.2 ρ = 0 ρ = 0.2 ρ = 0.8

M Estimates Time (s) Estimates Time (s) Estimates Time (s) Estimates Time (s)

1 0.4874 212 0.5767 200 0.6323 197 0.7243 190

2 0.4806 330 0.5718 312 0.6294 304 0.7262 256

5 0.4835 370 0.5734 337 0.6296 352 0.7268 538

10 0.4858 1273 0.5811 1160 0.6302 1116 0.7304 942

Crude Monte Carlo (N = 50, 000)

ρ = −0.2 ρ = 0 ρ = 0.2 ρ = 0.8

M Estimates Time (s) Estimates Time (s) Estimates Time (s) Estimates Time (s)

1000 0.4778 259 0.559 260 0.625 260 0.723 260

(0.0019) (0.0016) (0.0015) (0.0019)

5000 0.4778 1240 0.5701 1241 0.6299 1242 0.7311 1243

(0.0002) (0.0005) (0.0007) (0.0002)

7000 0.48 1736 0.5738 1737 0.6344 1738 0.7276 1739

(0.0001) (0.0001) (0.0001) (0.0029)

15000 0.4792 3891 0.5767 3895 0.6315 3902 0.7336 3904

(0.0010) (0.0010) (0.0014) (0.0016)

30000 0.4813 7839 0.5762 7823 0.6338 7803 0.7338 7908

(0.0016) (0.0030) (0.0028) (0.0011)

method with relatively small number of subintervals (5 or 10) are very close to the

asymptotic values obtained by the Crude Monte Carlo method. The differences

between the LDT estimates with M = 10 and the Crude Monte Carlo estimates

with M = 30, 000 are at most 0.005. We can attribute this discrepancy to the

discretization error of the Crude Monte method and to the approximation error of

the LDT method.

We can see that the computation time using the LDT method seems to be much

shorter than that for Crude Monte Carlo. This can be explained by the fact that the
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Table 4.4: Estimates of Barrier Crossing Probabilities with Barrier c = 106

LDT Method with Quasi-Monte Carlo (N = 10, 000)

ρ = −0.2 ρ = 0 ρ = 0.2 ρ = 0.8

M Estimates Time (s) Estimates Time (s) Estimates Time (s) Estimates Time (s)

1 0.1702 223 0.2613 214 0.3302 219 0.4643 209

2 0.1683 373 0.2646 357 0.3316 354 0.4696 326

5 0.1719 616 0.2735 584.4 0.3353 434 0.4798 360

10 0.1684 1659 0.2681 1572 0.3409 1510 0.4876 1326

Crude Monte Carlo (N = 50, 000)

ρ = −0.2 ρ = 0 ρ = 0.2 ρ = 0.8

M Estimates Time (s) Estimates Time (s) Estimates Time (s) Estimates Time (s)

1000 0.1545 259 0.256 259 0.3312 259 0.4806 259

(0.0006) (0.0016) (0.0008) (0.0005)

5000 0.1622 1237 0.2594 1238 0.3359 1239 0.4848 1240

(0.0001) (0.0011) (0.0019) (0.0001)

7000 0.1624 1733 0.2615 1734 0.3384 1735 0.4884 1737

(0.0007) (0.0001) (0.0006) (0.0012)

15000 0.1649 3886 0.2654 3890 0.337 3891 0.4881 3894

(0.0012) (0.0013) (0.0012) (0.0013)

30000 0.1641 7638 0.2654 11952 0.3392 12429 0.4893 10235

(0.0018) (0.0026) (0.0012) (0.0015)

former method uses smaller number of subintervals and requires fewer simulation

runs due to the application of Quasi-Monte Carlo method.

As we increase the number of components of the basket, we notice that the com-

putational time exhibits a moderate growth, which is shown in Figure 4.1. In this

case, the number of subintervals was one and the number of simulations runs was

N = 4, 000, but we expect that the linearity will hold also for different numbers of

subintervals.
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Figure 4.1: Computational Time vs Number of Components in the sum

4.3.2 Sum of Jump-Diffusions

In this section, we assume that the components of the basket follow a multivariate

jump-diffusion process as described in Section 4.2. The parameterizations of the

diffusion components are shown in Table 4.5.

We also assume that the correlation structure is given by



1 −0.2 −0.2 −0.1 −0.1

−0.2 1 −0.2 −0.1 −0.1

−0.2 −0.2 1 −0.1 −0.1

−0.1 −0.1 −0.1 1 −0.1

−0.1 −0.1 −0.1 −0.1 1




. (4.78)

For the jump terms, which are common shocks to all the underlying components
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Table 4.5: Parameters of Diffusion Components for Stock Price Processes

Component Initial Growth σ2

Value Rate

S1 190.6519 0.02 0.04

S2 41.2913 0.05 0.10

S3 61.2880 0.08 0.16

S4 105.0834 0.10 0.18

S5 101.6853 0.12 0.21

of the basket, we assume that they follow a Poisson process with λ = 0.7. The

magnitude of the jumps has a double exponential distribution with p = q = 0.5,

η1 = 25, and η2 = 25.

By using the simulation method described in Section 4.2, we have obtained the

probability that the basket crosses the barrier level of 490 to be 0.4132. This result

is based on 10,000 Quasi-Monte Carlo simulations. For the Crude Monte Carlo

method, the estimate converges to the true value as the number of subintervals

increases. For 10,000 Monte Carlo paths, we have obtained estimates of 0.3867,

0.3932, 0.3986, 0.4085, 0.4102, and 0.4132 with the number of subintervals of 500,

1000, 3000, 5000, 6000, and 7000, respectively. As before, the low discrepancy

sequence cannot be used in conjunction with the Crude Monte Carlo method, since

the dimensionality of the problem is large due to the large number of subintervals

used. We can see that the proposed method allows us to obtain accurate estimates

with a very small number of subintervals.
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4.4 Application: Path-Dependent Utility Func-

tion

In Sections 4.1-4.3, we have developed an efficient method of computing a barrier

crossing probability of a basket of stocks. In this section, we examine a particular

problem where this method can be applied. We incorporate the concept of barrier

crossing into the problem of a portfolio selection. The portfolio selection criteria

that take account of the barrier crossing probability can better reflect preferences of

an investor who is not willing to lose more than a certain amount of money during

a given time horizon.

The portfolio selection problems are typically addressed in two different approaches:

risk-criterion minimization and utility maximization. The risk-criterion minimiza-

tion approach was first explored by a seminal paper by Markowitz (1952). In his

pioneering work, he developed a model that fully takes into account the covariance

between asset returns and constructs an efficient portfolio by minimizing variance

of the portfolio. Alternatively, other risk criteria such as Value-at-Risk (VaR) or

Conditional Tail Expectations (CTE) can be minimized in determining an optimal

portfolio. In the existing literature, there are approaches that incorporate barrier

crossing probability in finding an optimal portfolio. Stutzer (2003) selects an asset

allocation so that the probability that the terminal portfolio value goes below a cer-

tain threshold level is minimized. Stutzer (2003) further shows that his criterion is

consistent with maximizing a power utility function. In a continuous-time setting

with dynamic portfolio rebalancing, Bielski et al. (2005) find the efficient mean-
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variance frontier of a portfolio with the constraint that the portfolio value is never

allowed to be below a bankruptcy level of zero during the given time horizon. For

their results to hold, the completeness of the market model is essential. Lamantia

and Rossello (2004) introduce the concept of dynamic Value-at-Risk, which consid-

ers the loss value not only at the end of the time horizon but also during the time

horizon. The authors show that the standard VaR measure can be inadequate in

addressing the liquidity of a firm.

In the utility maximization approach, we find an optimal portfolio that maximizes

the expected value of a utility function U(x) where x represents the amount of

the agent’s wealth. The utility is assumed to be strictly increasing and concave so

that U
′
(x) > 0 and U

′′
(x) ≤ 0. There is existing literature related to the path-

dependent utility function. In Bouchard and Pham (2004) and Blanchet-Scalliet

et al. (2005), the authors discuss maximizing the expected utility when the time

horizon is uncertain in a continuous time. The time horizon is given by T ∧ τ ,

where τ is a stopping time given by an exogenous or endogenous variable. This

uncertainty of the time horizon may reflect additional factors such as changes in

the investor’s position (retirement or death, exogenous endowment) or behaviour.

In this section, we focus on the utility maximization approach. In Section 4.4.1,

we propose a path-dependent utility function and show that its expectation can

be represented as a sum of many barrier crossing probabilities. In Section 4.4.2,

we modify the algorithm presented in Section 4.2 and discuss how the expected

utility function can be evaluated in a simulation framework. We can then find an

optimal portfolio that maximizes the path-dependent utility. In Section 4.4.3, we
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demonstrate numerical examples of the portfolio selection.

4.4.1 Path-Dependent Utility Function and Risk Criterion

A possible extension of a utility function that depends only on the terminal wealth

to the one that takes into account the way wealth evolved during a given time

horizon is

UC(x0≤t≤T ) = 1A(x0≤t≤T )U(xT ) + 1A(x0≤t≤T )ν, (4.79)

where xt denotes wealth at time t, t ∈ [0, T ], and A(x0≤t≤T ) = {inf0≤t≤T xt > b}
is the event that wealth amount does not become equal or lower than a certain

threshold value b during the given time horizon T . A denotes the complement of A.

We refer to this utility function UC(.) as a path-dependent utility function. Also,

the utility function U(.) is strictly increasing and concave so that U
′
(x) > 0 and

U
′′
(x) ≤ 0. From the definition it follows that the utility at time T will be the

same as the standard one-period utility if the wealth process does not go below a

threshold value during the time horizon. Otherwise, the utility will be equal to a

fixed residual value denoted by ν. This path-dependent utility reflects better the

investor’s utility, since it incorporates the fact that the investor can afford to take

only a certain amount of financial loss during a given time horizon.

In the utility maximization approach, we are looking for a portfolio that maximizes

the expected utility, E(UC(x0≤t≤T )). Below we demonstrate that for UC(.) the

expected utility approach is related to a certain form of barrier crossing probability.

As discussed in Section 1.3.2, in a one-period model, Gardiol et al. (2000) show
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that any expected utility function can be represented as a weighted sum of tail

probabilities to any desired degree by

E(U(XT )) ≈
K∑

k=1

akP (XT > bk) (4.80)

where ak and bk are suitably chosen constants. This implies that the optimal

portfolio may be obtained by maximizing a sum of tail probabilities. This can be

very helpful in risk management if the tail probabilities can be easily computed.

When K = 1, we have a degenerate utility function where the investor is satisfied

only if XT > b1. We derive similar results for the expected path-dependent utility

UC(XT ).

We have

E(UC(X0≤t≤T ))

= E(1A(X0≤t≤T )U(XT )) + E(1A(X0≤t≤T )ν)

= E(1A(X0≤t≤T )U(XT )) + νP (A(X0≤t≤T )). (4.81)

The first term in (4.81) can be rewritten as follows,

E(1A(X0≤t≤T )U(XT ))

= E(E(1A(X0≤t≤T )|XT )U(XT ))

=

∫

u:u>b

E(1A(X0≤t≤T )|XT = u)U(u)f(u)du

=

∫

u:u>b

P (A(X0≤t≤T )|XT = u)U(u)f(u)du

=

∫

u:u>b

g(u)U(u)du
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where f(.) is a density function of XT and g(u) = P (A(X0≤t≤T )|XT = u)f(u). We

define G(u) to be an antiderivative of g(u) such that

G(x) =

∫ x

0

g(u)du

=

∫ x

0

P (A(X0≤t≤T )|XT = u)f(u)du.

Hence G(x) is the probability that the terminal wealth XT is less than x and the

wealth process {Xt, 0 ≤ t ≤ T} has not crossed the threshold level. Suppose that R

is a sufficiently large number such that
∫

u:u>b
g(u)U(u) ≈ ∫ R

b
g(u)U(u). We make

use of R in order to avoid subtracting ∞ from ∞ in the steps shown below. Noting

that G(u) = 0 for u ≤ b and G(R) ≈ P (A(X0≤t≤T )), we have

E(1A(X0≤t≤T )U(XT ))

=

∫ R

b

g(u)U(u)du + Error1

= U(u)G(u)|Rb −
∫ R

b

G(u)U ′(u)du + Error1

= U(R)G(R)− U(b)G(b)−
∫ R

b

G(u)U ′(u)du + Error1

= U(R)G(R)−
∫ R

b

G(u)U ′(u)du + Error1

= U(R)G(R)− [

∫ R

b

G(R)U ′(u)du−
∫ R

b

(G(R)−G(u))U ′(u)du] + Error1

= U(R)G(R)− [G(R)U(R)−G(R)U(b)−
∫ R

b

(G(R)−G(u))U ′(u)du] + Error1

=

∫ R

b

(G(R)−G(u))U ′(u)du + G(R)U(b) + Error1

=

∫ R

0

(G(R)−G(u))U ′(u)du−
∫ b

0

(G(R)−G(u))U ′(u)du + G(R)U(b) + Error1

=

∫ R

0

(G(R)−G(u))U ′(u)du−
∫ b

0

G(R)U ′(u)du + G(R)U(b) + Error1
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=

∫ R

0

(G(R)−G(u))U ′(u)du + Error1 (4.82)

=
K∑

k=1

ak(P (A(X0≤t≤T )−G(uk)) + Error1 + Error2 (4.83)

=
K∑

k=1

akH(uk) + Error1 + Error2, (4.84)

where we obtain (4.83) by taking a Riemann sum approximation of the integral in

(4.82) with ak = U ′(uk)(uk−uk−1). Error1 can be removed by setting a sufficiently

large number for R, and Error2 can be removed by taking very fine discretizations

of the integral in (4.82). We also let H(u) = P (A(X0≤t≤T )) − G(u) which is the

probability that the terminal wealth XT is greater than u and the wealth process

{Xt, 0 ≤ t ≤ T} has not crossed the threshold level b. Now, by substituting (4.84)

into (4.81) and assuming b ∈ {u1, . . . uK}, we obtain

E(UC(X0≤t≤T )) ≈
K∑

k=1

akH(uk) + νP (Ā(X0≤t≤T )) (4.85)

=
K∑

k=1

akH(uk) + νH(b)

=
K∑

k=1

ãkH(uk),

where ãk = ak + ν when uk = b, and ãk = ak otherwise.

This shows that the expected path-dependent utility E(UC(X0≤t≤T )) can be ex-

pressed as a linear combination of H(uk)’s. This gives us an alternative way of

evaluating the expected utility, which can be useful when methods of rapid eval-

uation of H(uk)’s are available. A numerical example of this approximation is

provided in Section 4.4.3. In the extreme case when K = 1, an investor is satisfied
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when the terminal value is above a certain required value u1 and the wealth process

has not gone below the threshold value b. Hence, a single H(.) can be used as an

alternative criterion for the portfolio selection.

4.4.2 Evaluation of Utility Function

In this section, we build upon our methodology discussed in Sections 4.1-4.3,

and propose methods for evaluating the quantities H(uk)’s and E(UC(X0≤t≤T ))

in (4.85). We suppose that our portfolio comprises of d assets so that we have

X(t) = X1(t) + . . . + Xd(t),

where X1, . . . , Xd are assumed to follow a multivariate Geometric Brownian Motion.

Evaluation of H(uk)’s

We write H(uk) as H(X, uk, b) for k = 1, . . . K to emphasize that these are proba-

bilities that the terminal portfolio value X(T ) is greater than a certain level uk and

the process {X(t), 0 ≤ t ≤ T} did not breach the barrier b. Here we denote by K

the number of H(uk)’s to be summed in (4.85). Let J(X, uk, b) = 1 −H(X, uk, b)

be the probability that X(T ) is less than uk or {X(t), 0 ≤ t ≤ T} breached the

barrier b. We use the following procedures in order to evaluate J(X, uk, b)’s for

k = 1, . . . , K.

1. We initialize Wk = 0 for k = 1, . . . , K.

2. We generate terminal values of the underlying variables X1(T ), . . . , Xd(T ) by

assuming that they follow a multivariate Geometric Brownian Motion.
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3. Suppose that the generated terminal portfolio value X(T ) = X1(T ) + . . . +

Xd(T ) is xT . For each k = 1, . . . , K, if xT does not exceed the level uk, we set

Wk = Wk +1. Otherwise we compute R = Prob(inf0≤t≤T Xt ≤ b|X(T ) = xT ).

This quantity can be efficiently approximated by the Large Deviations based

method discussed in Sections 4.1-4.3. Then we set Wk = Wk + R.

4. We repeat Steps 2 and 3 N times.

5. Our estimate for J(X, uk, b) is Wk

N
for k = 1, . . . , K.

In this procedure, we use the same set of simulated values to evaluate all J(X, uk, b)’s

for k = 1, . . . , K. Hence, the time to perform this procedure is of the same magni-

tude regardless of the value of K.

Direct Evaluation of Expected Path-Dependent Utility

Instead of using the relation given by (4.85), the expected path-dependent utility,

E(UC(X0≤t≤T )), can also be directly evaluated in a similar way as follows.

1. We initialize W = 0.

2. We generate terminal values of the underlying variables X1(T ), . . . , Xd(T ) by

assuming that they follow a multivariate Geometric Brownian Motion, and

obtain the portfolio value X(T ).

3. With the fixed terminal value of X(T ) = xT , we compute R = Prob(inf0≤t≤T Xt >

b|X(T ) = xT ), the probability that the path does not breach the barrier. Then

we set W = W + RU(xT ) + (1 − R)ν, where the notations, U(.) and ν are

introduced in (4.79).

175



4. We repeat Steps 2 and 3 N times.

5. Our estimate for E(UC(X0≤t≤T )) is W
N

.

We note that the time needed to perform direct evaluation of the expected path-

dependent utility is approximately the same as the time needed to evaluate the sum

of H(.)’s because both procedures involve computing the barrier crossing probability

R over one set of simulated values.

4.4.3 Numerical Examples

In this section, we present some numerical examples of the concepts related to

the path-utility function. We show that the approximation in (4.85) holds and

demonstrate a portfolio selection using the path-dependent utility.

We suppose that an investor has 500 to invest. There are 5 risky assets, each of

which follows a Geometric Brownian Motion with parameters as specified in Table

4.6.

Table 4.6: Parameters of Geometric Brownian Motions for Risky Asset Price

Processes

Component Growth σ

Rate

X1 0.02 0.04

X2 0.05 0.10

X3 0.08 0.16

X4 0.10 0.18

X5 0.12 0.21
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The instantaneous correlations among these processes are given by


1 0.2 0.2 −0.1 −0.1

0.2 1 0.2 −0.1 −0.1

0.2 0.2 1 −0.1 −0.1

−0.1 −0.1 −0.1 1 −0.1

−0.1 −0.1 −0.1 −0.1 1




. (4.86)

Utility Function Approximation

We verify that the path-dependent utility function can be approximated by the

sum of H(uk)’s as shown in (4.85). We assume that the utility is a power utility

function with α = 1
2
, so that is U(X) = 2

√
X, and the barrier level b is 485.

Also, since both (4.81) and (4.85) contain the term νP (A(X0≤t≤T )), we do not

need to compare the value of this term. Hence, we can set ν to be 0. With the

number of simulations N being 2000, we directly evaluate E(UC(X0≤t≤T )). We

also obtain approximations based on the right hand side of (4.85) using different

number of points evenly distributed between 0 and 700. The methods of evaluating

E(UC(X0≤t≤T )) and H(uk)’s are described in Section 4.4.2. Table 4.7 shows the

results. In this table, the column “Number of Points” refers to K in (4.85), which

is the number of terms used for approximation.

The direct evaluation of E(UC(X0≤t≤T )) with N = 2000 gives 36.6346. As the

number of points increases, the approximations using sums of H(uk)’s approach the

value obtained from the direct evaluation of the expected path-dependent utility.

Portfolio Selection by Maximization of the Expected Path-Dependent

Utility
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Table 4.7: Utility Approximation

Number of Estimates

Points

140 34.068

280 34.8202

560 35.3514

1120 35.7274

2240 35.9932

Suppose that we have a one-period static portfolio selection problem to find an

optimal asset allocation that maximizes the expected path dependent utility func-

tion. We want to find a portfolio that maximizes E(UC(X0≤t≤T )), where U(X) =

2
√

X is a power utility and ν = 0. We adopt the direct evaluation method of

E(UC(X0≤t≤T )) described in Section 4.4.2. We use N = 2000 and M = 1 for eval-

uating expectation of the path-dependent utility functions, where N is the number

of simulations and M is the number of subintervals used.

Table 4.8: Results of Optimal Portfolios

Barrier Optimal Allocation of Initial Wealth Function

Level X1 X2 X3 X4 X5 Value

475 219.9659 114.9595 60.302 60.0943 44.6783 45.7268

480 269.6661 94.4447 58.2421 43.0824 34.5647 45.477

485 315.7673 85.9466 43.2356 29.4364 25.6141 44.5112

490 307.1396 126.5466 38.0489 20.8944 7.3706 44.4578

495 179.1686 80.837 141.2856 94.1618 4.5231 42.1476

We see from Table 4.8 that the optimal portfolio is different as we vary the barrier

level. The column “Function Value” shows the values of the expected utility of the

178



optimal portfolio. This value decreases as we increase the barrier level. We can

observe that as the barrier is lower, the optimal portfolio allocates more toward

riskier assets. The lower threshold barrier means that one can afford to lose more

money, and hence the portfolio composition can be riskier. As the barrier level gets

smaller, the optimal portfolio will converge to a portfolio that maximizes a non-

path-dependent expected utility. Hence the path-dependent utility as a criterion

selects portfolios differently than the non-path-dependent utility function.

As an alternative portfolio selection criterion, one can also consider using one or

more terms of H(uk)’s, and these criteria will give different optimal portfolio selec-

tions.
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Chapter 5

Directions for Future Research

In this thesis, we have devised efficient methods of computing barrier crossing prob-

abilities for multidimensional processes. In this chapter, we discuss some potential

future research topics that constitute natural extensions to the findings presented

in this thesis.

We have assumed that the underlying process follows a relatively simple multivari-

ate process, such as a Brownian Motion or a Geometric Brownian Motion. Also,

when the underlying process is a one-dimensional general diffusion process, an ef-

ficient simulation method for computing an exit probability is presented in Baldi

and Caramellino (2002). We would like to further develop our method so that we

can compute the barrier crossing probability when the underlying process follows

a multivariate general diffusion process or a Levy process.

Moreover, in this thesis, we have assumed that the barrier is a constant or linear

function of time. We would like to relax this assumption so that the exit boundary
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can be a non-linear function of time..

Also, we can develop a method of estimating the distribution of the exit time when

the process follows a correlated multivariate Brownian Motion process. As discussed

in Section 3.5, this is important in pricing financial derivatives whose values are

dependent upon time of barrier crossing.

In Chapter 4, we examined the problem of computing barrier crossing probabilities

when the underlying is a sum of Geometric Brownian Motions. In the future we

would like to extend this research on two frontiers. First, instead of assuming that

the underlying components follow Geometric Brownian Motions, we can assume

general diffusion processes or more general jump-diffusion processes. Second, we

can also look at an inverse problem. In other words, we can compute dynamic VaR

of a portfolio where dynamic VaR is the maximum loss during a given time period

at a specified level of confidence as defined by Lamantia and Rossello (2004).

In Section 4.4, we started looking at a portfolio selection problem that considers

level crossing of a portfolio during a given time horizon. The potential research top-

ics in this area include finding a coherent risk measure that incorporates the concept

of level crossing. Also, we would like to extend the work of Bielski et al. (2005)

so that we can relax the assumption of the market completeness and construct an

efficient mean-variance portfolio with bankruptcy prohibition.

In this thesis, we have priced relatively simple financial instruments that are de-

pendent on barrier crossing probabilities. We can devise efficient computational
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methods of pricing exotic options with American or Asian features with several

underlying instruments. The ability to price derivatives efficiently is of increasing

importance because the derivative market is rapidly becoming more complex.
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Appendix A

Proofs of Lemmas

A.1 Proof of Lemma 2.1.3

Let us denote the transformation matrix K =


 k1 k2

k2 k3


.

Let


 z

′
1

z
′
2


 be a transformed point of


 z1

z2


 such that


 z

′
1

z
′
2


 =


 k1 k2

k2 k3





 z1

z2


 . (A.1)

Then, we obtain 
 k1 k2

k2 k3



−1 

 z
′
1

z
′
2


 =


 z1

z2


 (A.2)
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1

k1k3 − k2
2


 k3 −k2

−k2 k1





 z

′
1

z
′
2


 =


 z1

z2


 (A.3)

[
k3z

′
1 − k2z

′
2

k1k3 − k2
2

,
−k2z

′
1 + k1z

′
2

k1k3 − k2
2

]T

= [z1, z2]
T . (A.4)

We substitute (A.4) into a1z1 + a2z2 = c which gives the following equation

a1

[
k3z

′
1 − k2z

′
2

k1k3 − k2
2

]
+ a2

[−k2z
′
1 + k1z

′
2

k1k3 − k2
2

]
= c (A.5)

or equivalently

a1k3z
′
1 − a1k2z

′
2 − a2k2z

′
1 + a2k1z

′
2 = c(k1k3 − k2

2)

(a1k3 − a2k2)z
′
1 + (a2k1 − a1k2)z

′
2 = c(k1k3 − k2

2). (A.6)

Therefore, we obtain a new equation of line a
′
1z1+a

′
2z2 = c

′
, where a

′
1 = a1k3−a2k2,

a
′
2 = a2k1 − a1k2, and c

′
= c(k1k3 − k2

2). ¤

A.2 Proof of Lemma 2.1.4

We compute y
′

that is a mirrored point of y around the linear line B, which is

represented as a1z1 + a2z2 = c. The point y
′
= (y

′
1, y

′
2) can be obtained by solving

the following system of equations:

a1 = k(y
′
1 − y1) (A.7)

a2 = k(y
′
2 − y2) (A.8)

a1(
y
′
1 + y1

2
) + a2(

y
′
2 + y2

2
) = c. (A.9)
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The first two equations, (A.7) and (A.8), impose the condition that the straight

line connecting y and y
′
should be parallel to the projection vector (a1, a2). This

condition is equivalent to that the straight line from y to y
′

is perpendicular to

the line B. The third equation (A.9) imposes the condition that the point of the

intersection of the line between y and y
′
and the line B should be equidistant to

y and y
′
. Solving this system of equations for the unknowns a1, a2, and k using

MapleTM , we obtain the following solution,

y
′
1 = −a2

1y1 − a2
2y1 + 2a1a2y2 − 2a1c

a2
1 + a2

2

(A.10)

y
′
2 = −−a2

1y2 + a2
2y2 + 2a1a2y1 − 2a2c

a2
1 + a2

2

. (A.11)

¤

A.3 Solution to Optimization Problem from Sec-

tion 2.1.3

We would like to find t∗1 and t∗2 that minimize the following objective function,

1

2
{‖x− φ1‖2

t1 − s
+
‖φ1 − φ2‖2

t2 − t1
+
‖y − φ2‖2

1− t2
+
‖x− y‖2

1− s
}. (A.12)

Since the fourth term in the objective function does not involve neither t1 nor t2,

the problem is equivalent to finding t∗1 and t∗2 that minimize

{‖x− φ1‖2

t1 − s
+
‖φ1 − φ2‖2

t2 − t1
+
‖y − φ2‖2

1− t2
}. (A.13)
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Hence, more formally, we want to minimize {‖x−φ1‖2
t1−s

+ ‖φ1−φ2‖2
t2−t1

+ ‖y−φ2‖2
1−t2

} with

respect to t1 and t2 subject to the constraint (t1 − s) + (t2 − t1) + (1− t2) = 1− s.

By setting u = ‖x− φ1‖, v = ‖φ1 − φ2‖, w = ‖y − φ2‖, a = t1 − s, b = t2 − t1, and

c = 1− t2, we have the following problem. We want to minimize

u2

a
+

v2

b
+

w2

c
(A.14)

with the constraint that a + b + c = 1− s.

Now we can set up a Lagrange equation,

F =
u2

a
+

v2

b
+

w2

c
− λ(1− s− a− b− c). (A.15)

The first-order conditions are

∂F

∂a
= −u2

a2
+ λ = 0 (A.16)

∂F

∂b
= −v2

b2
+ λ = 0 (A.17)

∂F

∂c
= −w2

c2
+ λ = 0 (A.18)

∂F

∂λ
= a + b + c− 1 + s = 0. (A.19)

These first order conditions give us

u

a
=

v

b
=

w

c
and a + b + c = 1− s. (A.20)

From these, we get

a = (1− s)
u

u + v + w
, b = (1− s)

v

u + v + w
, and c = (1− s)

w

u + v + w
. (A.21)
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By substituting back the values of u, v, w, a, b, and c, we obtain

t1 − s = (1− s)
‖x− φ1‖

‖x− φ1‖+ ‖φ1 − φ2‖+ ‖y − φ2‖ (A.22)

t2 − t1 = (1− s)
‖φ1 − φ2‖

‖x− φ1‖+ ‖φ1 − φ2‖+ ‖y − φ2‖ (A.23)

1− t2 = (1− s)
‖y − φ2‖

‖x− φ1‖+ ‖φ1 − φ2‖+ ‖y − φ2‖ . (A.24)

By rearranging (A.22) and (A.23), we get the following optimal values for t1 and

t2,

t∗1 = s + (1− s)
‖x− φ1‖

‖x− φ1‖+ ‖φ1 − φ2‖+ ‖y − φ2‖ (A.25)

t∗2 = s + (1− s)
‖φ1 − φ2‖+ ‖x− φ1‖

‖x− φ1‖+ ‖φ1 − φ2‖+ ‖y − φ2‖ . (A.26)

¤

195





Appendix B

Brownian Motion Conditioned on

its State at Time 1

In this section, we provide a brief discussion on conditional diffusion processes.

We also apply this concept to a Brownian Motion, so that we can obtain a diffu-

sion process for the Brownian Motion with its value fixed at time 1. Most of the

presented results are taken from Section 9.2 of Karlin and Taylor (1981).

Let us consider a regular diffusion process {X(t), 0 ≤ t ≤ 1} with infinitesimal

mean µ(x) and volatility σ(x). Also, let {X∗(t), 0 ≤ t ≤ 1} be the same process as

{X(t), 0 ≤ t ≤ 1}, but confined to the sample paths with α < X(1) < β. It turns

out that X∗ also follows a diffusion process with new infinitesimal mean µ∗(x) and

variance σ∗(x).

Now consider a constrained Brownian Motion with the condition that

α < X(1) < β. (B.1)
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Then the relationships between parameters of regular diffusion process and para-

meters of conditioned diffusion process are given as follows,

µ∗(x, t) = µ(x) +
∂π(x, t)/∂x

π(x, t)
σ2(x) (B.2)

σ∗(x, t) = σ(x) (B.3)

where π(x, t) is the probability that from the initial state value x on the sample

path satisfies (B.1) at time 1. This constrained Brownian Motion is also referred to

as a Brownian Bridge. We compute µ∗(x) and σ∗(x) under two cases: (1) assuming

that the drift term is 0 in the original Brownian Motion (2) assuming a non-zero

drift.

B.1 µ∗(x) and σ∗(x) with Zero Drift Assumption

We have

π(x, t) =

∫ β

α

1√
2π(1− t)σ

e(y−x)2/2(1−t)σ2

dy (B.4)

∂π(x, t)

∂x
=

∫ β

α

1√
2π(1− t)σ

e(y−x)2/2(1−t)σ2

(
2(y − x)

2(1− t)σ2

)
dy (B.5)

∂π(x, t)/∂x

π(x, t)
=

∫ β

α
1√

2π(1−t)σ
e(y−x)2/2(1−t)σ2 y−x

(1−t)σ2 dy

∫ β

α
1√

2π(1−t)σ
e(y−x)2/2(1−t)σ2dy

. (B.6)

Suppose that we want to condition on X(1) = a. We set α = a− ε and β = a + ε.

By letting ε → 0, we get
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∂π(x, t)/∂x

π(x, t)
= lim

ε→0

∫ a+ε

a−ε
e(y−x)2/2(1−t)σ2 y−x

(1−t)σ2 dy
∫ a+ε

a−ε
e(y−x)2/2(1−t)σ2dy

. (B.7)

We apply the change of variable technique by letting r = y − a. Then we have

∂π(x, t)/∂x

π(x, t)
= lim

ε→0

∫ ε

−ε
e(r+a−x)2/2(1−t)σ2 r+a−x

(1−t)σ2 dr∫ ε

−ε
e(r+a−x)2/2(1−t)σ2dr

. (B.8)

Since both the numerator and denominator of the right hand side of (B.8) approach

0 as we take the limit of ε, l’Hôpital’s rule give us

∂π(x, t)/∂x

π(x, t)
= lim

ε→0

e(ε+a−x)2/2(1−t)σ2 ε+a−x
(1−t)σ2 + e(−ε+a−x)2/2(1−t)σ2 −ε+a−x

(1−t)σ2

e(ε+a−x)2/2(1−t)σ2 + e(−ε+a−x)2/2(1−t)σ2 . (B.9)

Now, by taking a limit, we obtain

∂π(x, t)/∂x

π(x, t)
=

e(a−x)2/2(1−t)σ2 a−x
(1−t)σ2

e(a−x)2/2(1−t)σ2 (B.10)

=
a− x

(1− t)σ2
. (B.11)

Now, by using (B.2) and (B.3), we obtain the following parameters for the condi-

tioned process,

u∗(x, t) = 0 +
a− x

(1− t)σ2
σ2

=
a− x

1− t
(B.12)

σ∗(x, t) = σ. (B.13)
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B.2 µ∗(x) and σ∗(x) with Non-Zero Drift Assump-

tion

We assume that we have a non-zero drift term of the original Brownian Motion

given by µ(x, t) = µ. Then we get

π(x, t) =

∫ β

α

1√
2π(1− t)σ

e(y−(x+µ(1−t))2/2(1−t)σ2

dy (B.14)

∂π(x, t)

∂x
=

∫ β

α

1√
2π(1− t)σ

e(y−(x+µ(1−t))2/2(1−t)σ2 2(y − (x + µ(1− t))

2(1− t)σ2
dy (B.15)

∂π(x, t)/∂x

π(x, t)
=

∫ β

α
1√

2π(1−t)σ
e(y−(x+µ(1−t))2/2(1−t)σ2 2(y−(x+µ(1−t))

2(1−t)σ2 dy

∫ β

α
1√

2π(1−t)σ
e(y−(x+µ(1−t))2/2(1−t)σ2dy

. (B.16)

Suppose that we want to condition on X(1) = a. We set α = a− ε and β = a + ε.

Letting ε → 0, we have

∂π(x, t)/∂x

π(x, t)
= lim

ε→0

∫ a+ε

a−ε
e(y−(x+µ(1−t))2/2(1−t)σ2 y−(x+µ(1−t))

(1−t)σ2 dy
∫ a+ε

a−ε
e(y−(x+µ(1−t)))2/2(1−t)σ2dy

. (B.17)

By going through the same arguments in (B.8)-(B.11), we obtain

∂π(x, t)/∂x

π(x, t)
=

a− (x + µ(1− t))

(1− t)σ2
. (B.18)
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Now, by using (B.2) and (B.3), we obtain the following parameters for the condi-

tioned process:

u∗(x, t) = µ +
a− (x + µ(1− t))

(1− t)σ2
σ2

=
µ− µt + a− x− µ + µt

1− t

=
a− x

1− t
(B.19)

σ∗(x, t) = σ. (B.20)

(B.19) and (B.20) are identical to (B.12) and (B.13), indicating that the drift

term does not play any role in determining the parameters of the Brownian Bridge

process.

In this section, we have shown the relationship between the instantaneous parame-

ters of Brownian Motion and those of Brownian Bridge for one-dimension process.

For the multi-dimensional process, similar results are easily obtained by using the

same procedures with vectors and matrices.

In particular, in this thesis, when we have a multivariate process, we perform

a transformation so that the process becomes an uncorrelated multidimensional

process. Hence, we can apply the results of Sections B.1 and B.2 to each compo-

nent of the multidimensional process.

Suppose that we have a two-dimensional independent Brownian Motion process

with drift terms µi’s and volatility terms σi’s for i = 1, 2. Hence, by (B.19) and
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(B.20), for the conditioned process with Xi(1) = ai for i = 1, 2, we have the

following parameters for each component

u∗i (x, t) =
ai − xi

1− t
(B.21)

σ∗i (x, t) = σi, (B.22)

where i = 1, 2.
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Appendix C

Proof of Expressions (2.66) and

(2.67)

In order to make this section self-contained, let us re-state the result that we want

to prove here.

Let us consider the case where ar1p1 + ar2p2 < 1. This is the situation where the

line connecting x
′
B1

and y
′
B2

does not cross neither barriers B1 nor B2. In this case,

min
ε1∈B1,ε2∈B2

[‖x− ε1‖+ ‖ε2 − ε1‖+ ‖y − ε2‖] (C.1)

=





minε∈B1 [‖x− ε‖+ ‖y − ε‖] , if path x-ε∗-y crosses line B2

minε∈B2 [‖x− ε‖+ ‖y − ε‖] , if path x-ε∗-y crosses line B1

‖x− p‖+ ‖y − p‖ , otherwise

(C.2)

=





‖x′B1
− y‖ , if path x-ε∗-y crosses line B2

‖x− y
′
B2
‖ , if path x-ε∗-y crosses line B1

‖x− p‖+ ‖y − p‖ , otherwise

(C.3)
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where all the notations are defined in the same way as in Section 2.1.3.

The solutions of this optimization problem consist of three cases. The first two

cases are relatively easy to prove, but the third case is more involved. In the first

case, consider a path x-ε∗1-y. This is the shortest path that starts at x, touches a

point along line B1, and ends at y. If this path happens to cross the line B2, this

path is the shortest path that touches both B1 and B2. Since no other path that

starts at x, touches B1 and ends at y is shorter than x-ε∗1-y, there is no other path

that starts at x, touches both B1 and B2 and ends at y can be shorter than x-ε∗1-y.

In the second case, basically the same argument as in the first one can be used. In

this case, we have a path x-ε∗2-y, which starts at x, touches a point along B2, and

ends at y. If this particular path happens to cross B1, x-ε∗2-y would be the shortest

path that touches both B1 and B2.

In the third case, we know that the path x-ε∗1-y does not cross B2 nor x-ε∗2-y cross

B1 neither. Refer to Figure C.1 for this discussion. Without a loss of generality,

we assume that the point x is located near B1 and the point y near B2, depicted as

in the figure. Now let us compare the paths x-ε∗1-y, x-p-y, and x-q
′
1-y. These paths

all start at x, touch a point along B1 and ends at y. Since p is located closer to ε∗1

than q
′
1 to ε∗1, the length of x-p-y is shorter than that of x-q

′
1-y. Notice that both

x-p-y and x-q
′
1-y touch both line B1 and B2. Hence x-q

′
1-y, where q

′
1 is any point

along B1 to the right to the point p, can not be the minimizing path that touches

both B1 and B2. By a similar argument, we can also show that x-q
′
2-y, where q

′
2 is

any point along B2 to the left to the point p, can not be the minimizing path that
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B2

B1

e2*
e1*

x

y

xB1'

yB2'

q2'

p

q1'

Figure C.1: Finding a length minimizing path

touches both B1 and B2.

In the last paragraph, we have shown that we can exclude a certain portion of B1

and B2. The portion that we can exclude is denoted as a dotted line in Figure C.2.

Hence, as shown in Figure C.2, the solid lines of B1 and B2 are a set of points we

need to consider to find an optimal trajectory that minimizes its length. x
′
B1

is a

mirrored point of x around B1, and similarly, y
′
B2

is a mirrored point of y around

B2.

Recall that ar1p1 + ar2p2 < 1, where p = [p1, p2]
T is the point of the intersection

of B1 and B2, and ap1 and ap2 are defined in such a way that ap1z1 + ap2z2 = 1 is

the equation of the line connecting x
′
B1

and y
′
B2

. This is the situation where the
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y

yB2'xB1'

e1 e2

p

Figure C.2: Finding a length minimizing path

line connecting x
′
B1

and y
′
B2

does not cross neither barriers B1 nor B2, as shown in

Figure C.2.

We want to find the shortest path that starts at x, touches both B1 and B2, and

ends at y. This is equivalent to finding the shortest path that starts at x
′
B1

, touches

both B1 and B2, and ends at y
′
B2

. In Figure C.2, ε1 is any point along B1 that is left

of p, and ε2 is any point along B2 that is right of p. Then we can easily see that any

possible path x
′
B1

-ε1-ε2-y
′
B2

cannot be shorter than the path x
′
B1

-p-y
′
B2

. Therefore,

under the third case, x-p-y is the shortest path that starts at x, touches both B1

and B2, and ends at y. ¤
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Appendix D

Results of Numerical Study

In this section, we show the tables which contain the results of “Detailed Numerical

Study 1” in Section 2.3.2.
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Table D.1: LDT Approximations Case 1

True Value LDT Difference Relative Baldi’s

Error

T = 0.25

VCV1 0.028118 0.025756 -0.002362 0.084003 0.025646

VCV2 0.031223 0.029445 -0.001778 0.056945 0.025646

VCV3 0.032199 0.031284 -0.000915 0.028417 0.025646

VCV4 0.032624 0.032138 -0.000486 0.014897 0.025646

VCV5 0.033115 0.0033073 -4.2E-05 0.001268 0.025646

VCV6 0.033172 0.033165 -7E-06 0.000211 0.025646

VCV7 0.033196 0.033202 6E-06 0.000181 0.025646

VCV8 0.033238 0.033259 2.1E-05 0.000632 0.025646

VCV9 0.03335 0.033364 1.4E-05 0.00042 0.025646

VCV10 0.033369 0.033375 6E-06 0.00018 0.025646

VCV11 0.033379 0.033381 2E-06 5.99E-05 0.025646

VCV12 0.033382 0.033383 1E-06 3E-05 0.025646

VCV13 0.033184 0.033184 0 0 0.025646

T = 0.5

VCV1 0.18136 0.16077 -0.02059 0.113531 0.16014

VCV2 0.20662 0.18535 -0.02127 0.102943 0.16014

VCV3 0.21708 0.20229 -0.01479 0.068132 0.16014

VCV4 0.22284 0.21282 -0.01002 0.044965 0.16014

VCV5 0.23211 0.23049 -0.00162 0.006979 0.16014

VCV6 0.23365 0.23334 -0.00031 0.001327 0.16014

VCV7 0.23438 0.23466 0.00028 0.001195 0.16014

VCV8 0.23577 0.23697 0.0012 0.000509 0.16014

VCV9 0.24138 0.24376 0.00238 0.00986 0.16014

VCV10 0.24339 0.24539 0.002 0.008217 0.16014

VCV11 0.24554 0.24676 0.00122 0.004969 0.16014

VCV12 0.24728 0.24769 0.00041 0.001658 0.16014

VCV13 0.23402 0.23402 0 0 0.16014

x = [0.784, 0.778]T , y = [0.788, 0.781]T , B = [1, 1]T
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Table D.2: LDT Approximations Case 1 Continued

True Value LDT Difference Relative Baldi’s

Error

T = 0.75

VCV1 0.33439 0.29584 -0.03855 0.115285 0.299

VCV2 0.37865 0.33477 -0.04388 0.115885 0.299

VCV3 0.39824 0.36465 -0.03359 0.084346 0.299

VCV4 0.40969 0.3851 -0.02459 0.060021 0.299

VCV5 0.42981 0.42499. -0.00482 0.011214 0.299

VCV6 0.43346 0.43251 -0.00095 0.002192 0.299

VCV7 0.43524 0.43616 0.00092 0.002114 0.299

VCV8 0.43873 0.44283 0.0041 0.009345 0.299

VCV9 0.45457 0.46606 0.01149 0.025277 0.299

VCV10 0.46151 0.47323 0.01172 0.025395 0.299

VCV11 0.47062 0.48053 0.00991 0.021057 0.299

VCV12 0.48174 0.48714 0.0054 0.011209 0.299

VCV13 0.43435 0.43435 0 0 0.299

T = 1

VCV1 0.45137 0.40124 -0.05013 0.111062 0.40018

VCV2 0.50588 0.44625 -0.05963 0.117874 0.40018

VCV3 0.53051 0.48273 -0.04778 0.090064 0.40018

VCV4 0.5452 0.50891 -0.03629 0.066563 0.40018

VCV5 0.57185 0.56405 -0.0078 0.01364 0.40018

VCV6 0.57684 0.57527 -0.00157 0.002722 0.40018

VCV7 0.5793 0.58083 0.00153 0.002641 0.40018

VCV8 0.58416 0.59125 0.00709 0.012137 0.40018

VCV9 0.6073 0.63086 0.02356 0.038795 0.40018

VCV10 0.61824 0.64467 0.02643 0.04275 0.40018

VCV11 0.6339 0.66016 0.02626 0.041426 0.40018

VCV12 0.65731 0.67644 0.01913 0.029103 0.40018

VCV13 0.57807 0.57807 0 0 0.40018

x = [0.784, 0.778]T , y = [0.788, 0.781]T , B = [1, 1]T
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Table D.3: LDT Approximation Case 2

True Value LDT Difference Relative Baldi’s

Error

T = 0.25

VCV1 0.061071 0.055434 -0.005637 0.092302 0.055279

VCV2 0.068578 0.063575 -0.005003 0.072953 0.055279

VCV3 0.071255 0.068333 -0.002922 0.041008 0.055279

VCV4 0.07255 0.070829 -0.001721 0.023722 0.055279

VCV5 0.074273 0.074079 -0.000194 0.002612 0.055279

VCV6 0.074506 0.074473 -3.3E-05 0.000443 0.055279

VCV7 0.074611 0.07464 2.9E-0.5 0.000389 0.055279

VCV8 0.0748 0.074908 0.000108 0.001444 0.055279

VCV9 0.075395 0.07551 0.000115 0.001525 0.055279

VCV10 0.075535 0.075603 6.8E-05 0.0009 0.055279

VCV11 0.075635 0.07566 2.5E-05 0.000331 0.055279

VCV12 0.07568 0.075683 3E-06 3.96E-05 0.055279

VCV13 0.074559 0.074559 0 0 0.055279

T = 0.5

VCV1 0.26538 0.23566 -0.02972 0.11199 0.23512

VCV2 0.30129 0.26791 -0.03338 0.11079 0.23512

VCV3 0.31689 0.29222 -0.02467 0.07785 0.23512

VCV4 0.32583 0.30827 -0.01756 0.053893 0.23512

VCV5 0.34106 0.33786 -0.0032 0.009383 0.23512

VCV6 0.34373 0.34312 -0.00061 0.001775 0.23512

VCV7 0.34503 0.34561 0.00058 0.001681 0.23512

VCV8 0.34754 0.35006 0.00252 0.007251 0.23512

VCV9 0.35846 0.36466 0.0062 0.017296 0.23512

VCV10 0.36292 0.36878 0.00586 0.016147 0.23512

VCV11 0.36833 0.37269 0.00436 0.011837 0.23512

VCV12 0.39396 0.39588 0.00192 0.004874 0.23512

VCV13 0.34439 0.34439 0 0 0.23512

x = [0.884, 0.878]T , y = [0.688, 0.681]T , B = [1, 1]T
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Table D.4: LDT Approximations Case 2 Continued

True Value LDT Difference Relative Baldi’s

Error

T = 1

VCV1 0.5414 0.4856 -0.0558 0.103066 0.48489

VCV2 0.60024 0.5311 -0.06914 0.115187 0.48489

VCV3 0.62699 0.57001 -0.05698 0.090879 0.48489

VCV4 0.64308 0.59884 -0.044236 0.068788 0.48489

VCV5 0.67259 0.66258 -0.01001 0.014883 0.48489

VCV6 0.67819 0.67617 -0.00202 0.002979 0.48489

VCV7 0.68097 0.68294 0.00197 0.002893 0.48489

VCV8 0.68646 0.69578 0.00932 0.013577 0.48489

VCV9 0.71317 0.74745 0.03428 0.048067 0.48489

VCV10 0.72613 0.76694 0.04081 0.056202 0.48489

VCV11 0.74550 0.79019 0.04469 0.059945 0.48489

VCV12 0.77769 0.81710 0.03941 0.050679 0.48489

VCV13 0.67958 0.67958 0 0 0.48489

x = [0.884, 0.878]T , y = [0.688, 0.681]T , B = [1, 1]T
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Table D.5: LDT Approximations Case 3

True Value LDT Difference Relative Baldi’s

Error

T = 0.25

VCV1 0.91365 0.88891 -0.02474 0.027078 0.88891

VCV2 0.94201 0.89358 -0.04843 0.051411 0.88891

VCV3 0.95407 0.90889 -0.04518 0.047352 0.88891

VCV4 0.96091 0.92346 -0.03745 0.039873 0.88891

VCV5 0.97248 0.96345 -0.00903 0.009286 0.88891

VCV6 0.97452 0.97272 -0.0018 0.001847 0.88891

VCV7 0.9755 0.9773 0.0018 0.001845 0.88891

VCV8 0.97741 0.98638 0.00897 0.009177 0.88891

VCV9 0.98584 1 0.01416 0.014363 0.88891

VCV10 0.98938 1 0.01062 0.010734 0.88891

VCV11 0.99387 1 0.00613 0.006168 0.88891

VCV12 0.99891 1 0.00109 0.001091 0.88891

VCV13 0.97501 0.97501 0 0 0.88891

T = 0.5

VCV1 0.96100 0.94282 -0.01818 0.018918 0.94282

VCV2 0.97747 0.94548 -0.03199 0.032727 0.94282

VCV3 0.98371 0.95425 -0.02946 0.029948 0.94282

VCV4 0.98702 0.96266 -0.02436 0.02468 0.94282

VCV5 0.99214 0.98623 -0.00591 0.005957 0.94282

VCV6 0.99296 0.99178 -0.00118 0.001188 0.94282

VCV7 0.99335 0.99454 0.00119 0.001198 0.94282

VCV8 0.9941 1 0.0059 0.005935 0.94282

VCV9 0.99705 1 0.00295 0.002959 0.94282

VCV10 0.99810 1 0.0019 0.001904 0.94282

VCV11 0.99919 1 0.00081 0.000811 0.94282

VCV12 1 1 0 0 0.94282

VCV13 0.99316 0.99316 0 0 0.94282

x = [0.954, 0.948]T , y = [0.968, 0.951]T , B = [1, 1]T
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Table D.6: LDT Approximations Case 3 Continued

True Value LDT Difference Relative Baldi’s

Error

T = 1

VCV1 0.98284 0.97099 -0.01185 0.012057 0.97099

VCV2 0.99151 0.97241 -0.0191 0.019264 0.97099

VCV3 0.99441 0.97710 -0.01731 0.017407 0.97099

VCV4 0.99584 0.98162 -0.01422 0.014279 0.97099

VCV5 0.99785 0.99441 -0.00344 0.003447 0.97099

VCV6 0.99814 0.99745 -0.00069 0.000691 0.97099

VCV7 0.99828 0.99897 0.00069 0.000691 0.97099

VCV8 0.99853 1 0.00147 0.001472 0.97099

VCV9 0.99942 1 0.00058 0.00058 0.97099

VCV10 0.99968 1 0.00032 0.00032 0.97099

VCV11 0.99990 1 1E-04 0.0001 0.97099

VCV12 1 1 0 0 0.97099

VCV13 0.99821 0.67958 0 0 0.97099

x = [0.954, 0.948]T , y = [0.968, 0.951]T , B = [1, 1]T
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Table D.7: Result of Numerical Study 4

True Value LDT Difference Relative Baldi’s

Error

T = 0.5

VCV1 0.010835 0.010134 -0.000701 0.064698 0.010103

VCV2 0.011777 0.011322 -0.000455 0.038635 0.010103

VCV3 0.012031 0.011831 -0.0002 0.016624 0.010103

VCV4 0.012128 0.012034 -9.4E-05 0.007751 0.010103

VCV5 0.012221 0.012215 -6E-06 0.000491 0.010103

VCV6 0.012230 0.012229 -1E-06 8.18E-05 0.010103

VCV7 0.012233 0.012339 0.000106 0.008665 0.010103

VCV8 0.012239 0.012241 2.1E-06 0.000172 0.010103

VCV9 0.012251 0.012252 1E-06 8.16E-05 0.010103

VCV10 0.012253 0.012253 0 0 0.010103

VCV11 0.012253 0.012253 0 0 0.010103

VCV12 0.012253 0.012253 0 0 0.010103

VCV13 0.012231 0.012231 0 0 0.010103

T = 1

VCV1 0.11266 0.10085 -0.01181 0.10486 0.10052

VCV2 0.12781 0.11636 -0.01145 0.089586 0.10052

VCV3 0.13371 0.12633 -0.00738 0.055194 0.10052

VCV4 0.13679 0.13208 -0.00471 0.034432 0.10052

VCV5 0.14136 0.14071 -0.00065 0.004598 0.10052

VCV6 0.14206 0.14194 -0.000117 0.000824 0.10052

VCV7 0.14238 0.14285 0.00047 0.003301 0.10052

VCV8 0.14298 0.1434 0.00042 0.002937 0.10052

VCV9 0.14517 0.1458 0.00063 0.00434 0.10052

VCV10 0.14583 0.14628 0.00045 0.003086 0.10052

VCV11 0.14641 0.14663 0.00022 0.001503 0.10052

VCV12 0.14677 0.14682 5E-05 0.000341 0.10052

VCV13 0.14222 0.14222 0 0 0.10052

x = [0.654, 0.648]T , y = [0.668, 0.651]T , B = [1, 1]T

214



Appendix E

Computing the Barrier Crossing

Probability by Simulation

In Section 3.1.1, we have described an algorithm for computing a barrier crossing

probability by simulation, which uses the Large Deviations method. Particularly,

in the case where we take a single step for simulating the terminal value of the

underlying variable, we have described the six step method for approximating the

barrier crossing probability. In this section, we formally justify our approach in

Section 3.1.1 using probability theory.

We define the following events:

A = {At least one barrier is breached within the time horizon 1.}

A1 = {The value at time 1 of at least one component is below the barrier.}

A2 = Ā1 ∩ A.
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The ultimate goal of the algorithm in Section 3.1.1 is to compute P (A), which can

be represented in the following way,

P (A) = E(IA)

= E(IA1 + IA2)

= E(IA1) + E(IA2)

= P (A1) + P (A2)

= P (A1) + P (Ā1 ∩ A), (E.1)

where I is an indicator variable.

In this section, we describe how to obtain an approximation for P (A) using sim-

ulations. For the underlying variable, we generate N observations of its terminal

value and denote them as x1, x2, . . . , xN . Let s be the number of paths where the

terminal value of at least one component is lower than its corresponding barrier.

By the Law of Large Numbers, we have

P (A1) ≈ s

N
. (E.2)

We also have

P (Ā1 ∩ A) = E(IĀ1
IA).

From the N simulations above, we can also obtain the simulated values of IĀ1
. Let

pi be the specific instance of IĀ1
in the ith simulation.
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Hence, the following approximation can be obtained. Let X be a vector of terminal

values of all components. We have

P (Ā1 ∩ A) = E[E[IAIĀ1
|X]]

= E[IĀ1
E[IA|X]]

=

∫

x: all components above the barrier
P (A|X = x)dPx(x)

≈
∑

i|pi=1

P (A|xi)

N
. (E.3)

We note that P (A|xi) is the barrier crossing probability for the stochastic process

with a fixed terminal value of xi. We can approximate this quantity using Large

Deviations Theory. Now, combining (E.1), (E.2), and (E.3), we obtain the following

expression that approximates the barrier crossing probability, P (A),

P (A) ≈ s

N
+

∑

i|pi=1

P (A|xi)

N
. (E.4)

Now it is easy to see that the algorithm in Section 3.1.1 is consistent with the

approximation obtained in (E.4).
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Appendix F

Proof that Baldi’s Approach is

Sharp Large Deviations Estimate

In this section, we show that the Large Deviations Estimate for P (E1∪, . . . ,∪Ed)

described in Section 2.1.2, is indeed a Sharp Large Deviations Estimate. This will

imply, by Theorem 2.1 by Baldi(1999), that we can express

P ε
X,0{τ ≤ 1} = exp(−u(x, 0)

ε
)(1 + o(εm)), (F.1)

where m is an arbitrary positive number and τ is defined as the exit time from the

region D defined by a set of linear boundaries. We would refer to these boundaries

as B1, B2, . . . , Bd.

In order to show (F.1), we need to show that, in our problem, ω(x, s) = 1 and

ψi(x, s), i = 1, . . . , vanish in the expression given by Theorem 1.2.2. Without loss

of generality, we can assume that the underlying multivariate Brownian Bridge
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process is an uncorrelated one because, as shown in Section 2.1.2, we can transform

a correlated process to an uncorrelated one.

According to Baldi (1995), the theory of Large Deviations states that when the

most likely path γ of breaching a barrier is unique, the barrier crossing probability,

P ε{τ ≤ T} is asymptotically the same as P ε{τ ≤ T Xε ∈ Bδ(γ))} where Bδ(γ))

denotes the neighbourhood (a tube) of radius δ of γ and τ is the first time the

barrier is breached. Since D is defined by a set of linear boundaries, B1, . . . , Bd, let

B∗
i denote the linear boundary that the most likely path γ touches and let E∗

i be

the half-space defined by B∗
i .

Assume that B∗
i is unique. This is a reasonable assumption in our application

because the probability that we have non-unique B∗
i is 0 due to the fact that the

terminal values are generated from a continuous distribution. Under this assump-

tion, we have

P ε
x,0{τ ≤ 1} (F.2)

= P ε
x,0{τ ≤ 1, Xε ∈ Bδ(γ)} (F.3)

= P ε
x,0,E∗i

{τ ≤ 1}, (F.4)

where (F.4) is the probability that the process X(t) exits the half-space E∗
i . Note

that the equalities refer to the asymptotic equality as ε → 0.

By Theorem 1.2.2 and (1.14), we have

P ε
x,0,E∗i

{τ ≤ 1} = exp(−u(x, 0)

ε
)(1 + o(εm)) (F.5)
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for all m > 0, as shown by Example 4.5 of Baldi et al. (1999). Combining (F.5)

and (F.4), we can conclude that

P ε
x,0{τ ≤ 1} = exp(−u(x, 0)

ε
)(1 + o(εm)) (F.6)

for every m > 0. Hence, the Large Deviations estimate for the exit probability from

the region D is a Sharp Large Deviations estimate.
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