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Abstract

The aim of this thesis is to summarize some results in two approaches to studying how
quantum gravity may be relevant for experiments.

The first approach starts off by stating that one of the questions a theory of quantum
gravity might address is how a large-scale universe can be constructed from discrete Planck-
size elements. Starting from a discussion of the role of causal and foliation structure in
causal dynamical triangulations, this approach leads to a formulation of a model based on
graphs whose purpose is to uncover what kind organizational principle or structure might
be responsible for endowing spacetime with manifold-like properties. Thus in this approach,
experimental input used to constrain models for quantum gravity are observations of glaring
large-scale properties of the universe such as the dimensionality or total size.

The second approach considers the possible effects of quantum gravity on the propagation
of particles. In particular, the focus is on understanding the physics of deformed special
relativity when this novel symmetry is seen as a residual effect due to a gauge fixing from a
higher dimensional system. Thus here the hope is to connect a proposal for quantum gravity
phenomenology with precision experiments of particle properties.

A synthesis of such complementary approaches would represent a consistent model for
quantum gravity phenomenology and is the background goal for the work in this thesis. The
extent to which such a synthesis can be described today is presented.
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1 Introduction

The action for gravity and matter fields is

L[ iey=g(R+20) + / /=g Lo, (1.1)

- 167G

It describes everything that is familiar in the universe: the Einstein-Hilbert term R defines
the properties of spacetime in terms of a metric g,,, A is the cosmological constant, and the
Lagrangian £,; describes matter fields that propagate in the spacetime. In this view, matter
content usually refers to everything that is not included in the metric field g, .

This dichotomy between space and matter allowed modern physics to progress very
rapidly in the 20th century developing good understanding of the space and matter sectors
independently. Within the matter sector, quantum field theory (QFT) provides techniques
and interpretations that connect theoretical principles such as gauge invariance, unitarity,
and Lorentz symmetry to real phenomena observed in the low-energy condensed matter
laboratory as well as the very high-energy elementary particle accelerators. Due to the
great successes of quantum field theory in describing non-metric fields, QFT techniques
were also applied to quantize possible excitations of the metric, i.e. gravitational waves
or gravitons, defined with respect to a fiducial background metric, usually the flat metric
N = diag(—1,1,1,1). However, for technical reasons related to renormalization (one of the
key techniques of QFT that allows to translate between calculations and the finite quantities
recorded in experiments) it was realized that metric-based fields cannot be understood in the
same way as the fields describing photons, electrons, quarks, and all the other elementary
and composite particles.

The breakdown of QFT in the gravitational sector is usually taken as an indication for
new physics related to the interplay between matter and gravity that is not encoded in (1.1).
Research on quantum gravity aims to unravel and understand this new physics. Despite of
this problem of fundamental nature, the action (1.1) is an extremely accurate description
of known phenomena and is thus regarded as the correct low energy limit of the a true (or
maybe only ‘more true’) quantum theory of gravity. The crossover or boundary between
where the known description of physics is valid and the quantum gravitational regime is
believed to be the ‘Planck scale’. In the forms of length and energy, the Planck scale is

hG -35 [ he? 19

These quantities can be obtained through dimensional analysis by naive combinations of the
physical constants of gravity (G), relativity (¢) and quantum mechanics ().

Although the Planck scale is introduced above in a rather ad-hoc way, this scale does
indeed characterize new physical effects in research programs on quantum gravity. One of
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these programs, called Loop Quantum Gravity (LQG) [1], is based on the premise that
perturbation theory around a fiducial flat spacetime is not an adequate technique to use in a
setting where the spacetime geometry is dynamical and is actually expected to be an output
to the theory rather than an input. Thus instead of studying quantum gravitational waves
on a background, LQG considers an abstract Hilbert space for the gravitational degrees of
freedom expressed in a set of variables that resemble those of a standard gauge theory. One
of the key results in LQG is that when quantization is carried out in a way that is compatible
with the diffeomorphism symmetry of classical general relativity, the kinematical states of
the theory at the quantum level are characterized by graphs with labels called spin-networks
[1]. These states are expected to correspond to spatial geometry and the discrete labels
on the graph edges are directly responsible for the eigenstates of physical volume and area
operators acquiring discrete spectra. The spacings in these spectra are proportional to the
Planck area (%) and Planck volume (¢%). Thus in LQG geometry can be said to be discrete.

The fact remains that the Planck length ¢p is many orders of magnitude smaller than an
atomic nucleus (107'm) and that the Planck energy is greater than the energy in a typical
collider (10* GeV at the LHC) by a similarly large ratio. This fact is often used to explain
why an effective description of reality based on (1.1) can be so successful in low-energy
physics familiar from daily life even though it cannot in principle be the final state of our
understanding of the world. At the same time, the extreme values of the Planck scale have
caused concern that purely quantum gravitational phenomena can only be studied in the
realm of thought experiments, thereby disconnecting research in quantum gravity from real
experiments. But there is growing optimism regarding quantum gravity phenomenology due
to two complementary trends and developments.

The first of these developments has a somewhat indirect impact on quantum gravity
phenomenology. Several models have been considered in which the discreteness of geometry,
such as found in Loop Quantum Gravity, is taken as indicating that geometry is made up of
finite units or ‘atoms’ of space. For these ambitious models, a first step toward connecting
with experiment is showing how a large scale universe might emerge. This step may, but
does not have to, involve deriving (1.1) from something more fundamental. Further steps
in these models include providing satisfactory explanations for early universe dynamics that
are consistent with the growing number of observational constraints.

Second, it has been realized in the late 1990s [2] that certain experiments detecting ultra
high energy particles from astrophysical sources (cosmic rays and hard radiation from gamma
ray bursts) may be sensitive enough to pose bounds on possible quantum gravity-induced
corrections to the matter sector of (1.1). Initial analysis of the particle processes involved
were carried out using effective techniques, but more innovative models also now exist. All
these models have the aim of describing how quantum gravity effects might leave imprints on
particle physics at energies below Ep. Here the basic requirements are therefore to reproduce
known physics at collider energies and to predict the results of upcoming experiments.

These two avenues for phenomenologically relevant quantum gravity research, and how
they motivate the work in this thesis, are explained in more detail below.
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1.1 Discrete Models of Space and Spacetime

What if, instead of studying fields on a manifold, one postulates that space, or even space-
time, is made up discrete units? A theory of space would then have as a goal organizing these
units together to make a large-scale universe. Since not even the existence of a manifold
with fixed dimension would be presupposed, such a theory would be background indepen-
dent and geometry would be purely a result of the dynamics between the discrete units. One
might speculate that such a theory could be finite without needing renormalization, or that
it could resolve the issue of singularities at the Big-bang or within black holes. But before
such issues can even be formulated, it must be realized that the postulate of discrete units
of space turns most of the notions in familiar physics on their heads: large scale properties
of space cannot be assumed, near-continuity of space as seen by low-energy matter modes is
unclear, and even the notions of particle or field must be reconsidered and redefined. The
study of such a proposal must therefore start at a rather primitive level.

A notable proposal in which spacetime is discrete is the causal set program [3]. There,
events in spacetime are represented by points and causal relations between the events are
indicated by arrows - an example of a causal set is shown in Figure 1. This minimal body of
properties is motivated by the observation that causal structure is sufficient to reproduce the
geometry (metric) of a space up to a conformal factor. One of the interesting developments
within the causal set program is a reconciliation of Lorentz symmetry and discreteness.
However, while there is an accepted process (by Poisson sprinkling) by which a causal set
can be generated from a spacetime manifold, it is still unclear how to build an approximation
to a spacetime manifold starting only from points and arrows. Thus this research direction so
far cannot make the first steps towards confronting experiment in the way discussed above.

A different approach to quantum gravity is through dynamical triangulations [4]. In that
program, more complex units of space or spacetime are allowed (tetrahedra instead of points,
for example) and the discretized Einstein-Hilbert action of (1.1) is used from the start. Still,
only some dynamical triangulation models are able to generate homogenous and large scale
structures that are comparable to the observed universe. This further demonstrates the non-
triviality, already seen in the discussion of causal sets, of treating space (or spacetime) as
being composed of a collection of discrete units. At the same time, the partial successes of a



few of the dynamical triangulation models suggest that the basic idea of discrete space is not
entirely hopeless - what is needed is an understanding of what makes some models succeed
and others fail, and thus to formulate a principle that explains how or why the observed
universe has the large scale structure that it does.

1.2 Particle Phenomenology

A different approach to studying the implications of a Planck scale is to consider its possible
effects on the propagation of low energy particles. An appealing property of such an approach
is that it immediately offers opportunities to test various proposals experimentally.

Quantum field theory is the accepted description of low energy particle physics (energy
low compared to the Planck length). An action principle for a scalar field interacting with
itself is, for example,

dp
5o = [ Gz AP = m30(0) + Ll (13)
This is here written in momentum space, m is the mass of the scalar field, and £;,; encodes
the self-interactions; the signature used in particle physics is (1,—1,—1,—1). The way to
describe possible physics characterized by an energy scale Ep in effective field theory is to
append to the above action some new interaction terms of the form

dp (1 o, 1 .o
SP:/(QW)4 (E—PEP +E_%£P +)7 (14)

where the terms Eg’m are of mass dimensions five and six so to appropriately cancel the
Planck masses in the denominators, and the ellipses denote possible higher order terms
which are however suppressed by higher orders of the Planck energy. These terms encode
an effective description of Planck scale physics on the scalar field.

For studies of physics at energies low compared to the Planck energy, the higher order
terms are often ignored and discussions are focussed on truncated expansions of Sp. Trun-
cated models of this kind, however, usually break Lorentz symmetry. (Lorentz symmetry
is unbroken if the new terms are by themselves Lorentz invariant. However, in such cases
the new terms can be interpreted as a redefinitions of the mass parameter and are there-
fore not considered as true Planck scale corrections.) Thus the subject of studying possible
Planck-physics effects on particle physics has been tightly correlated with testing Lorentz
symmetry (see [33] for a review). The results of extensive studies show that correction terms

of the form Eg) /Ep in Sp above are practically ruled out on experimental grounds. This is
quite remarkable in itself in a field where the relevant energy scale is as high as the Planck
scale. Since then, however, a new question has been posed, namely whether the Planck en-
ergy can make an appearance in the Lorentz transformation equations as an invariant scale.
The answer seems to be that it is indeed possible to consider such deformed transformation
equations - the resulting framework has been called Doubly or Deformed Special Relativity
(DSR). The task ahead of DSR is to understand the origins of such a deformed symmetry
from a quantum gravity context and to work out its observational consequences.
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1.3 Outline

The rest of this thesis explores the two themes described in more detailed. The first theme
is the subject of sections 2 and 3, while the second theme is discussed in section 5. Section
4 is a bridge which shows correlations between the two themes.

In more detail, section 2 shows some results on the role of foliation structure within the
causal dynamical triangulations program. Section 3 presents a different model in which an
extended geometry is built up from discrete atoms of space. In section 4 the subject of
discussion changes slightly to the relation between noiseless subsystems and constrained me-
chanics. This is related to the definition of particles and propagating degrees of freedom in
background independent settings, which brings the discussion closer to particle physics phe-
nomenology. Section 5 deals with a particular interpretation of Deformed Special Relativitic
particles as solutions to a constrained system in five dimensions. Finally, a brief conclusion
and outlook on these themes is presented in section 6.



2 Causal Dynamical Triangulations

Background independent approaches to quantum gravity often rely on the Feynman path
integral (partition function). Given boundary conditions in the form of asymptotic past and
future space-like slices, the path integral over intermediate geometries provides a means for
evaluating the quantum amplitude for the evolution between the two slices. In practice one
needs a method for defining and regularizing this integral over geometries - causal dynamical
triangulations are a specific prescription for doing this which has recently gained attention
[4].

A sum over geometries can be defined with the help of the concept, developed by Regge,
that a macroscopic spacetime can be constructed by gluing together a large number of
elementary elements. These elementary building blocks in general are called n-simplices,
with n denoting the dimensionality; 0-simplices are points, 1-simplices are edges, 2-simplices
can be faces of triangles, 3-simplices can be tetrahedra, etc. Although the geometry inside the
individual simplices is flat, the way in which they are glued together can create a spacetime
that has curvature at the connecting points or areas. A convincing example of how this may
be possible is obtained by placing five equilateral triangles side be side so that they share a
common vertex - the result is a surface with curvature at the common vertex.

The dimensionality of the model refers to the largest simplex which is deemed as elemen-
tary in a model. For example, the building blocks in 2 4+ 1 dimensionsional models are the
tetrahedra shown in Figure 2. These 2 4+ 1 dimensional models are the focus of most of the
discussion below. It should be stressed, however, that the all approaches to quantum gravity
using simplicial methods, including dynamical triangulations, can be defined and studied in
any dimension. The main reason for choosing 2+ 1 dimensions for detailed studies is that in
that case the relevant equations are simpler than in the more observationally relevant 3 + 1
dimensions. (The simplification, however, is unrelated to the fact that General Relativity in
2+ 1 is a topological theory, which is important in some other approaches. The discussion
below does not rely on this topological property in the least.)

Dynamical triangulation models [4] are distinguished from other Regge-calculus based
approaches by the fact that the type and geometry of the elementary building blocks is fixed.
All the edges making up the tetrahedra are given fixed lengths squared and all the tetrahedra
in a triangulation are alike. Interpolating geometries between slices are obtained by changing
the gluing configurations of these simplices and not by varying some edge lengths in a fixed
configuration. This scheme is advantageous particularly if one has in mind simulating the
sum over geometries between given boundaries using a computer monte-carlo. It also allows
to visualize variations over geometries by certain moves, sometimes called Pachner moves,
that change one set of simplices into a new set that has the same boundary. Examples of
such moves involving tetrahedra are shown in Figures 3 and 4.

Since the path integral is well defined (non-oscillatory) and can be evaluated only in
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(3, 1) ,2)

Figure 2: Simplices in 2+1 dimensions. Edges pointing mostly vertically (mostly
sideways) are time-like (space-like). Simplices are named after the number of ver-
tices on space-like surfaces.

-9 §-T

(b)

Figure 3: Moves manipulating a triangulation. (a) Two (3, 1) change into six (3,1)
tetrahedra. (b) A combination of one (3, 1) and one (2, 2) tetrahedra change into a
combination with one (3,1) and two (2, 2) tetrahedra.

Euclidean signature when it becomes a proper partition function, attention was initially
devoted to purely Euclidean models. In the dynamical triangulation literature, this means
that the sum over interpolating geometries was performed without any restrictions beyond
those coming from the boundaries. Somewhat surprisingly, it was found that the most likely
geometries arising in such models do not resemble at all any large-scale spacetimes [4]. The
effective dimension of the likely configurations does not even match the dimensionality of
the simplices used in the models. The culprit for the pathological behavior turns out to be
the “Euclidean move” shown in Figure 4 (in three dimensions), which has the propensity of
bunching too many simplices within a small boundary.

A fix for this problem is to formulate what are now called Causal Dynamical Triangula-
tion (CDT) models [4]. These models retain the main philosophy of the original dynamical
triangulation models but impose that every d-simplex should be time-orientable. For exam-
ple, in 241 dimensions, the elementary building blocks are again the tetrahedra in Figure 2;
the lengths squared of the edges, however, are required to be space-like (positive) for some
edges and time-like (negative) for others. The assignment of these edge-lengths is suggested
in Figure 2: in the tetrahedron called (3, 1), for example, the edges of the base have positive
length squared while the edges meeting at the peak of the pyramid have negative length



Figure 4: A move allowed in Euclidean triangulation models but not in Lorentzian
ones.

squared. These assignments induce a causal order on the vertices in the tetrahedra and the
names (3,1) and (2,2) help to encode these causal relations.

It turns out the moves in Figure 3 preserve the ‘causal’ assignments of edge lengths. The
‘Euclidean move’ in Figure 4, however, does not. Thus the move that causes difficulties in
the Euclidean formulation is eliminated in the causal version. These models have again been
studied numerically [4] and simulations (in 2 4 1 and 3 + 1 dimensions) suggest that causal
dynamical triangulations generate large-scale space-times with desirable properties [4]. For
example, the space-times appear to have an appropriate Hausdorff dimension on the large
scale. They also seem to spontaneously demonstrate expanding and contracting behavior,
the first of which is appealing given the current cosmological data.

As a consequence of the ‘causal’ restrictions, allowed configurations of simplices in CDTs
can always be interpreted as foliated space-times in which every layer of simplices is separated
from another layer by a space-like hypersurface formed by the faces of the simplices. Hence,
there is a clear time-like direction and foliation structure in the macroscopic spacetime.
Given the success of causal dynamical triangulations, it is interesting to ask how rigid the
structure of the studied Lorentzian models really is: What are the consequences of loosening
the assumptions in the original Lorentzian models, and is it possible to build more general
models with the same low-energy properties? It is the task of this section to explore some
aspects of this question.

The remainder of this section is organized as follows. The next subsection contains
some more background material on Euclidean and Lorentzian causal dynamic triangulations
models. The presentation of this material is a set up for section 2.2 where a model that
includes foliation breaking simplices is introduced and studied. Some comments are presented
in 2.3.

2.1 Euclidean and Lorentzian models

In the original Lorentzian (causal) model, all space-like edges have length-squared set to
unity, and all time-like edges have length-squared equal to —a, where « is a positive constant.
Space-times formed by gluing these simplices together always have a layered structure so that
the space-like faces of the (3,1) tetrahedra make extended surfaces. These surfaces can be
thought of as the discrete analogs of foliation hyper-surfaces.



The Regge Action

The Regge action corresponding to such a configuration is

S=ky (—iV(a) <27r - Ze)) thy. (V(b) (27r - ZQ)) AN Ve, (@)

a

where the indeces a, b and ¢ run over all space-like edges, time-like edges, and 3— simplices
in the triangulation, respectively. kg is related to Newton’s constant and A is related to the
cosmological constant. The real functions V'(a, b, ¢) denote the lengths of edges or volumes
of tetrahedra, and the sums of 6’s tally the dihedral angles subtended by faces meeting at
an edge.

These volumes and dihedral angles can be computed using the techniques described by
Hartle [9] and summarized here for convenience. For each tetrahedron, one first labels the
vertices by numbers from 0 to 3. Then, to compute the area A of a face one uses the relation

A? = <%)2det (ei-e;), (2.2)

where the entries of the matrix e; - €; are expressed in terms of square lengths s;; between
points 7 and j,
1
€; €j = 5 (S(]i + Soj — Sm‘) . (23)
To compute the volume V of a tetrahedron, one can use the analogous

2 (%)2@1@ (ei-e;). (2.4)

Dihedral angles 6 subtended by two faces with areas A; and Ay at an edge of length L = /s

can be obtained using
: 3 LV
sinf = (5) (AlAQ) : (2.5)

All these quantities can be computed explicitly for the two tetrahedra in Figure 2.
Inserting explicit expressions into the action, one obtains

2 2 —i2v/2/2 1 —1
S = ko —Wle — —,Ném) sin~! — V2v20 + — éNég’l) cos Tt ———
i 7 da+ 1 V3o + 1

-1 (3,1) 1 20+ 1
— — 3N,
da+1 3 OB 4o +1

+kov/ (27TN1T - 4N:§2’2) cos ™!

1 1
— <N§2’2)E\/4a F2+ N:.S?”I)E\/Soz T 1) .

The variables Ny, NT, Nég’l) and N§2’2) count the number of space-like edges, time-like
edges, and 3—simplicies of the two kinds, respectively.

Although the model is formulated with Lorentzian signature, in order to put the partition
function to good use, one has to perform a Wick rotation and write the model in Euclidean
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space. In the present case, this rotation is simply realized by changing the sign of a. With
a = —1, some simplifications occur - various edge lengths, angles, and volumes related to the
(3,1) and (2,2) tetrahedra become equal. It is then possible, by using some combinatorial
manipulations, to write S as a function of Ny = N] + Ny and N3 = Nég’l) + Ném) only.
One finds

S — ZSE, SE = ngg — klNl (27)
where k; and k3 are
kl = 27Tk0, kg = kAk‘[) + )\kv (28)
and
k :6005_11 k L (2.9)
A 3, |4 6\/§ .

The Fuclidean action can also be rewritten as

Sp = ky N3(\ — koC) (2.10)
where " " N
1 A 1

_ _Fa _ M 2.11

The action is traditionally discussed in terms of the dimensionless parameter £. The other
parameter (, obtained from £ by a re-scaling and a shift, is introduced here because it will
be useful in the next subsection.

What is the allowed range for £ (and consequently, ¢)? The range affects the partition
function of the triangulation model in the large volume limit and therefore it is worth sketch-
ing how it can be estimated. One can write down an arbitrary configuration of tetrahedra
and define a set of moves, i.e. manipulations of the triangulation, that allow to generate
other configurations starting from the initial one. The minimal and maximal values of either
of these parameters can be estimated from the way these moves change the configuration of
simplices.

Interpolating Geometries and Partition Function

It is convenient to keep track of the interpolating configuration via a vector f counting the
number of simplices of various kinds,

f = f(No, NY, N{', Ns). (2.12)

Here N3 is the sum of (3,1) and (2,2) types of 3—simplices; they can be grouped together
because their volumes are equal when o = —1.

It is believed that just three types of moves are sufficient to manipulate an initial config-
uration of simplices into any other one. The moves are given names like (¢ — b), indicating
that they change a configuration with a tetrahedra into another configuration with b tetra-
hedra. Two examples are shown in Figure 3. Under these moves, the f vector also changes
as follows

A(ZHG).}C = (17 37 2a 4)7
Awp_3f=1(0,0,1,1).
10
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Starting with a triangulation consisting of N; edges and N3 tetrahedra, one can construct
another configuration by performing x moves of the (2 — 6) kind and z moves of the (2 — 3)
kind. The total change in the f vector in such a transaction would be

Af = (z, 3z, 20+ 2z, 4o + 2), (2.14)
giving a resulting ratio & of
Ni+ bz + 2
= 2.15

In the limit of large x and z, which corresponds to constructing triangulations of large
volume,
5
lim & = 7 lim & = 1. (2.16)

r—00 Z—00

These are in fact the upper and lower bounds for the parameter ¢ after many substitutions,
so the range for £ is

1<¢< 2. (2.17)
Using (2.8) and (2.11), this can be translated into a range for ¢
—9.356 < ¢ < 3.973, (2.18)

Note that after the Wick rotation, the ‘Lorentzian” model does not appear different from
what one could have started with for a ‘Euclidean” model. For example, the Wick rotated
(3,1) simplex has the same properties as an equilateral tetrahedron in Euclidean space.
What distinguishes the models, however, is the fact that in a a purely Euclidean model, a
move of the type (1 — 4) shown in Figure 4 would be allowed. The Af corresponding to
that move would be

A(1H4)f = (17 (4)7 3)7 (2.19)

where (4) denotes that there are four new edges created (their interpretation as time-like or
space-like is unclear.) With this new move, the maximum parameter £ would be pushed to
¢ — 4/3, correspondingly ¢ would be pushed to ( — 8.416.

As ¢ (equivalently, &) appears in the action Sg, its range plays an important role in
determining the partition function of the triangulation model [8]. The partition function is

Z (Ko, N3) = Z W (ko, N3, T)e™"vNs0—hoo) (2.20)
T

where W (kgy, N3, T') is a weighting function that depends on the symmetry of a configuration
T and the sum is over all possible configurations having a fixed volume. (In the present
situation, since all simplices have equal volume, the sum can be equally constrained by the
total number of simplices N3.) In the limit of a large fixed volume ky N3, the expression
for the partition function can be considerably simplified. Up to an overall factor, Z can be
written as

Z(ko, N3) ~ > W (ko, N3, T)ekvNskoC, (2.21)
T

11



The number of triangulations is known to be asymptotically bounded from above by an
exponential function [7]. This allows to rewrite the weighting function as

W (ko, N3, T) = f(ko, N3)e*v 2s(Q) (2.22)

where f(ko, N3) is a function that grows sub-exponentially with N3, and s(¢) is some function
that can (in principle) be found using combinatorics. As a result of this substitution, the
partition function becomes

Z(ko, N3) ~ Z [ (Ko, Na)elv Msls(QHhoc), (2.23)
T

Still working in the large ky N3 regime, the sum can be replaced by an integral; the
integration variable can be taken to be ( so that

Cmam
Z ~ / f(ko, Ng)ekvNa(s©)+ko) g (2.24)

Cmin

The limits on the integral indicate the minimum and maximum values that the parameter ¢
can take. The integral is dominated by the configurations for which the expression s(¢)+ ko(
in the exponential is maximized in the allowed range (unin < ¢ < Gnae- The position of the
maximum depends on the precise form of s(¢), but for ky large enough, it should occur at
Cmaz- Contributions to the partition function at other values of ( are exponentially smaller,
so the partition function can be simplified further to

C’maz
7~ / f(k?o, N3)eka3(S(C)+koC)5(C _ Cmam) d¢ = f(ko, N3)ekVN3(s(Cmam)+k0Cmaz). (2'25)

C'min

The final result is that the macroscopic properties of space-time are determined by the
triangulations with the maximal value of ¢, namely ( = 3.973 (alternatively, with £ = 5/4).
These configurations are formed by repetitively applying the (2 — 6) move in (2.13).

It is worth comparing again the Lorentzian and Euclidean versions of the dynamical
triangulation models. These models differ in that the partition function of the Euclidean
version includes a sum over more configurations than the Lorentzian version, which is re-
flected by the different ranges for ¢ or £&. The extra configurations counted in the Euclidean
models are those that do not respect the foliation structure present in the Lorentzian models
and are generated by the (1 — 4) moves. Numerical studies of these models show that the
Euclidean and Lorentzian versions have very different properties [4]. The Lorentzian version
produces well behaved spacetimes whereas the Fuclidean one does not. Those results sug-
gest to treat the parameter ( as an indicator to the large scale behavior of a model. In the
next subsection, a modified Lorentzian model is introduced with the goal of studying the
robustness of the original Lorentzian model.

2.2 Role of foliation structure

A different model is now presented in which the foliation is ‘punctured’ in the sense that
a new type of simplex is allowed to probe multiple layers of tetrahedra. There are several
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Figure 5: Simplices in 241 dimensions that span two foliation layers.

types of tetrahedra that can puncture the foliation in this way: two of them are shown in
figure 5. In the (1,2,1) simplex, for example, two vertices are spatially separated from each
other but are at the same time in the causal future of the third vertex and in the causal past
of the fourth; the notation (1,2, 1) again denotes the number of the vertices on distinct and
consecutive causality levels. The foliation, in the sense of the original triangulation model,
is punctured by the (1,2,1) tetrahedron because it does not have a space-like face that
passes through the spatially separated vertices. Thus, when these simplices are present, it is
generically impossible to construct space-like hyper-surfaces that span all of the space-time.

The presence of (1,2,1) tetrahedra may affect the large volume behavior of dynamical
triangulations. To investigate this possibility, consider a simple model in which there are
(3,1), (2,2) and (1,2, 1) simplices, all space-like edges have length-squared equal to 1, all
time-like edges of the (3,1) and (2, 2) tetrahedra and the shorter sides of the (1,2, 1) simplex
have length-squared —a, and the longer time-like edges of the (1,2,1) tetrahedron have
length-squared —(.

The Action

The action for this model is an extension of S,iginas in (2.6) by terms specific to the new
simplex type,

1 21 , (da—20+1)
S :Soriginal - ]{?0 (;Né )COS 1 TH

N (1L21) -1 VB
Vakg <4N3 oS NN 4a)

4 2 —
+ v/ Bho (27TN1L - Nél’Q’l) cos ! O;_—ﬁﬁ)
a R

1 /1 1
_ N(17271)_\/_ 2 .
A( 375 P ftas
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The variable N} counts the number of the ‘long’ time-like edges that have length-squared
—/f3. The meaning of N§1’2’1) is as expected the number of tetrahedra of the new kind.
Expressions for volumes and dihedral angles for the (1,2, 1) tetrahedron are computed using
the methods described before.

To study the statistical properties of this model, the action should be Wick-rotated into
Euclidean space. For the current purposes, this merely means choosing negative values for «
and (3 such that the action becomes purely imaginary. For the part of the action depending
on the (3,1) and (2,2) simplices, this can be done by taking & — —1 as before. As for the
part of the action specific to the new simplex, a value of § in the range between —4 and —1
satisfy the required S — iSg and Sg is real.

After the Wick rotation, the general form of the action is

Sp = (kako + Mey) N3(3,1)+(2,2) + (K ko + AK) N§1’2’1) _ (klleJrT + k’/1N1L) : (2.26)

where ki, k4, and ky are the same as in (2.8). The primed variables can be computed from
(2.26) by fixing 5. Now, Sg can be written in a form similar to (2.10) by factorizing the
volume terms. The result is

Sp=V A=k (2.27)
where
V = ky N$PUTED g NV (2.28)
and S (3,1)+(2,2) (1,2,1)
T » » 145
g’:@N1+ —k:A—N3 +k—3N—1L—k' N (2.29)
ke V % ke V. vV '

Here (' is a generalization of ¢ in (2.11).

The Partition Function

Since the form of the action Sg is the same as (2.10), the study of the statistical mechanics
of this new model can be carried out along similar lines as previously. The partition function
for the new model,

Z'(ko, N3) =Y W'(kg, N3, T)e*vNolA—ko¢), (2.30)
T

is like in (2.20). The summation is still restricted by the total volume but is now over all
possible triangulations that may include the new simplex type - thus there are now more
triangulations to sum over. As before, however, W’ should be asymptotically bounded by
an exponential in the large-volume limit. By the same reasoning as before, the sum can
therefore be replaced by an integral over (,

C;’VL(I,CL’ , /
VAR f(ko, N3)e¥ () Hho¢D) g (2.31)

/
C'm,in

The dominant contribution to the integral comes from the values of (' that maximize the
exponent. Under the same assumptions as before, one concludes that for kqy large enough,
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Figure 6: New moves manipulating (1,2, 1) simplices. (a) Two (3,1) change into
three (1,2,1) tetrahedra. (b) One (1,2, 1) changes into two (1,2,1) and two (3,1)
tetrahedra. The (3, 1) simplices appear distorted in the diagram.

the partition function should be dominated by maximal values of (’. Thus, in that approxi-
mation,

C’:‘)’LGZE ’ / ’ /
7'~ / f/(/fo, N3>€V(8(C )+koC )5(C/ _ CI az) dCI — f/<]{70, Ng)eV(S(Cmam)JrkoCmam)’ (2.32)

Cuin "
which is completely analogous to (2.25).

What is left to explore is how (., differs from (,q,. The governing assumption is that
the new parameter ¢/ . can serve as an indicator of large-volume behavior just like £ in
the case of the original Euclidean and Lorentzian models. If this assumption is correct, and
if the two values (4. and (.. are the same, then the partition functions of the models
would differ only by a multiplicative factor and the physics of the two models would be
similar. To investigate the range of {’, one can once again explore how various moves affect
configurations of tetrahedra.

Because ( reduces to & in the limit N§1’2’1) — 0, the moves defined in (2.13) suggest
that values for ¢’ within the range (2.18) should be allowed in the extended model as well.
But new moves are now possible as well. In particular, it is important to consider moves
that change the number of (1,2,1) tetrahedra. Two such moves are shown in figure 6. The
first move is of limited applicability since it cannot be used repeatedly. It does, however,
show how to introduce the foliation puncturing simplices into a triangulation that initially
contains only (3,1) and (2,2) tetrahedra. The second move can be applied repeatedly and
may therefore have an effect on the maximum value of ¢’. It is worth noting that other moves
that rearrange simplices while keeping a boundary surface fixed are also possible. However,
the two moves shown in the figure are sufficient to discuss the large-scale behavior of the
extended model.

The state of the configuration can be described by the vector

f'= f'(No, N3, NI, NE,NSD NG NB2D), (2.33)

15



The two moves shown in the figure, denoted as (2 — 3)’ and (1 — 4)’, change this vector by

A(2~>3)’f/ - <O7 07 07 17 _2a 07 3)7

2.34

Ag_ayf =(1,2,2,0,2,0,1). (2:34)
After a large number of moves of the (1 — 4)" type, ¢’ would be
k 4 2 1

(== ' (2.35)

= —k - .
ko2ky + K, 2y +k, 2%y +K,

The numerical value of expression (2.35) depends on the value of 3, the length-squared of
the long edge of the (1,2, 1) simplex, which should be between —4 and —1. Such values of
[ give ' in the range

6.42 < (' <84 (2.36)

and take (/... above the Lorentzian level (2.18), but still keep it below the Euclidean level.

max

Implications

What does this result mean in the context of previous work on Euclidean and Lorentzian
dynamical triangulation models? Unfortunately, the meaning of this result is not entirely
clear because the behavior of dynamical triangulation models as a function of ¢ has never
been studied. However, if the parameter ( is indeed a good indicator for the low energy
behavior, as assumed, then the behavior of the extended model should be intermediate
between the purely Euclidean and the original Lorentzian cases. More generally, one can
say that this extended Lorentzian model is likely to have a different low energy behavior
than either the Fuclidean model or the original Lorentzian model. The strength of the
deviation from either model is difficult to judge and one may still hope that some of the
desirable properties of the original Lorentzian model are preserved. To make more precise
statements about the low energy behavior, one would need to simulate the extended model
on a computer similarly as done for the original models.

One should note, that the result the analysis could have yielded a different answer had
the new moves in Figure 6 not caused a significant change in the vector f. If one were to
restrict the new moves to the type shown in Figure 6(a) and disallow the move shown in
Figure 6(b), the bounds on ¢ in the extended model would have been exactly as in (2.18), and
the conclusion of this section would have been that the extended model behaved equivalently
to the original Lorentzian model. While such restrictions could be artificially introduced, it
seems more natural to consider all kinds of configurations compatible with the simplices to
be present in the sum over triangulations. The ambiguous result should thus been seen as
a hint that there are still important issues to be understood about dynamical triangulations
models and the conditions under which they exhibit a good low-energy behavior.

2.3 Discussion

Dynamical triangulations models aim at constructing likely geometries between boundary
slices. The known discrepancies between the results of the Euclidean and Lorentzian versions
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demonstrate that obtaining smooth interpolating geometries is non-trivial and cannot be
easily grasped by a quick inspection of the simplex geometry or the action. The apparent
success of the Lorentzian models suggests that causal structure may be of importance in
making dynamical triangulations a candidate for a successful formulation of quantum gravity.
Thus the role of causal structure is a very interesting and relevant one to study.

An aspect of the original model is connected with the types of simplices used as the pri-
mary building blocks of space-time. The existence of global hyper-surfaces constructed from
the space-like faces of simplices can be compromised by introducing new types of simplices
into the triangulation. Introducing new types of simplices that puncture the hyper-surfaces
foliating the space-time causes triangulation models to generally behave differently than the
original models. (The extended models can, in principle, reproduce the familiar behavior if
additional constraints are introduced to restrict the number of foliation-puncturing simplices
that appear in the triangulations. Alternatively, a similar effect may be achievable by tuning
ko. Such restrictions, however, seem ad-hoc and are not very appealing.) Thus, the extended
model suggests that giving each simplex a clear internal arrow-of-time might not be sufficient
to reproduce the results of the original Lorentzian CDTs. It might be the case that those
results found in simulations actually require the presence of hyper-surfaces in addition to
causal structure. This may have important implications on the kind of discretizations that
are consistent with a well-behaved classical limit of quantum gravity.

Another important aspect of the original Lorentzian model is the requirement for all
time-like edges to have equal length-squared, which can be thought of as a ‘lapse’ constraint.
In 1 + 1 dimensions, it has been shown that this requirement on the individual simplices
can be removed, allowing their shapes and sizes to fluctuate, as long as a global constraint
on the ensemble of simplices in the entire space-time is enforced instead [5]. As shown in
6], a generalization to higher dimensions is also possible: analogous global constraints can
be interpreted as specifying average volume and/or curvature contributions for the simplices
in the triangulation. This holds in 2 + 1 as well as higher dimensions. Adopting this point
of view, the dynamical triangulation models are brought closer to other simplicial gravity
models in which the simplices are non-fixed. The fact that the properties of the dynamical
triangulation models under these extended conditions are largely unchanged further suggests
that foliation plays a crucial role in stabilizing these models.
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3 Quantum Graphity

Given that some dynamical triangulation models are successful at constructing a large-scale
universe while others are not puts forth the question: what kind of organizing principle is
needed for the notion of a discrete universe to make sense? This issue can also be seen in
the light of the causal sets program in which, as mentioned in the introduction, it is yet not
understood how to assemble a universe from just points and causal relations. A method for
studying this is therefore relevant for several research areas.

To motivate the “quantum graphity” proposal [11], it is worth comparing and merging a
few selected features from the causal dynamical triangulations and causal programs. On the
one hand, the idea behind causal sets is minimal, simple, and elegant: there are only points
and causal relations as the basic objects. However, the nature of the approach is perhaps too
minimal since there is no known way of writing a Lagrangian or Hamiltonian for causal sets.
Thus, despite some work on growth algorithms [10], there is no accepted way of discussing
kinematics or dynamics in causal sets. In other words, it is unknown how to generate a
causal set that approximates a manifold. On the other hand, dynamics is well-defined (if not
well understood) in the causal dynamical triangulation program through the Einstein-Hilbert
action and the Regge calculus. For this to be possible, however, CDTs introduce higher-
dimensional building blocks and require complex and restricted evolution rules (moves). Also,
even though CDT models are dubbed as Lorentzian, practical calculations are nonetheless
performed after Wick rotation to Euclidean signature.

Since, as in CDT's, path integrals are manageable only in Euclidean form, it is natural
to start with a Euclidean model. Thus, the proposal is to study a model that is as minimal
as possible in which nonetheless an emergent geometry might occur. The name “quantum
graphity” is a play on the words “gravity,” i.e. a theory of the spacetime, and “graph” which
is the primary object discussed in the model. By formulating the model in the Hamiltonian
language also allows to bring this line of research close to condensed matter physics, towards
which one can look for inspiration to write an explicit form of the Hamiltonian.

A relatively recent development in condensed matter physics has been the discovery
of a new type of matter phase dubbed as string-net condensate [12,13]. Driven by the
experimental discovery of the fractional quantum Hall effect in the 1980s and the subsequent
theoretical efforts to understand the phenomenon, research on string-net condensates shows
that quantum superpositions of one-dimensional objects on a lattice can give rise to surprising
collective behavior and a new kind of phase transitions. In particular, a model in which links
between lattice sites are given rotor-like states can exhibit gauge-theory particle excitations
in the thermodynamic limit [13]. For the purposes of the quantum graphity model, the
Hamiltonian of this rotor model is interesting because it can be formulated in a combinatorial
manner by using only the connectivity between sites. Furthermore, the interpretation and
implications of the terms of the rotor Hamiltonian are known. Therefore, the Hamiltonians
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of string-net condensates can be used as guides for a model aiming to implement emergence
of classical geometry.

The remainder of this section is organized as follows. The defining structures of the
quantum graphity model are presented in the next subsection. Two versions of the model
are presented, called ‘classical’ and ‘quantum;’ it is the quantum version which is ultimately
of physical interest although the classical model is the easier one to understand and study.
Next, the high and low temperature phases of the model are studied in section 3.2. The
discussion includes an explanation of the emergence of a gauge theory at low temperature
and a possible cosmological scenario. Finally, section 3.3 mentions some possible extensions
and/or changes to the basic model described which could be considered; some of these
inessential modifications have aesthetic appeal but their main purpose is to highlight which
features of the basic model are flexible and which are not.

3.1 Model Definition

A complete graph with N nodes is a collection of N points that are all connected to each
other by edges - there are thus

N(N -1
edges in total. For convenience, the points (nodes) can be labeled by lower-case Latin letters
a,b,...=1,2,...; edges can be identified by stating their end points.

Graphs are very abstract objects and can be defined and studied irrespectively of any
background geometry or embedding space. Starting from a complete graph, however, one can
remove certain edges and form less symmetric networks which in some cases may be assigned
some geometric interpretations. Two such examples are shown in Figure 7. Therefore, a
complete graph is a reasonable starting point for constructing a background independent
model which might exhibit emergent geometry. What is necessary is to make the notion of
erasing edges more precise and to give a systematic principle for which edges should be thus
removed.

Hilbert Space and Operators

Since the edges of the graph must be assigned at least the properties of being “on” or ‘off,”
it seems natural to associate to each edge in the graph a Hilbert space of states. For the
purpose of this model, this Hilbert space Hcqqe is taken to be spanned by four states,

Heage = span {0,0), [1, =1), |1, 0), [1,+1)}. (3.2)

The interpretation of the state |0, 0) is that there is no link between two points; thus this
state is called an “off” state. The remaining states, of which there are three and all have 1
in their first entry, are called “on” states. More generally the states can be referred to with
the notation |j, m).

Several operators can be defined acting on the Hilbert space of each edge. The first two
operators, J and M, are eigen-operators of the states |j, m) such that

S, m) =3jl5, m)
M j, m) =mlj, m).
19
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Figure 7: A complete graph with 8 nodes (top) can be transformed into a 1d chain
(left) or 2d sheet (right) by erasing selected edges.

The remaining operators are not eigen-operators of |7, m). Two operators J* and J~ alter-
nate between “off” on “on” states; their definitions are best stated by listing their actions
on all the states,

T ) j=0,m=0
T gy m) = { 0 otherwise
. (3.4)
T~ 1j, m) = |0, 0) j=1,m=0
HIE= 0 otherwise

The next two operators are M* and M~ are raising and lowering operators among the m
states. Their definitions can be succinctly written as

V2M*|j,m) =/ —m)(j+m—+1)|j, m+1)

3.5

The commutation relations between these operators can be derived from these definitions.

A few facts of particular interest are worth pointing out explicitly. The operator J commutes
with M and M*,

[J, M] = [J, M*] = 0. (3.6)

These M and M¥ in turn form a closed algebra among themselves
(M, M~ =M, (M, M*] = +M*. (3.7)
An important fact is also that all operators J, M, M*, annihilate the “off” state

J 10, 0) = M |0, 0) = M*10, 0) = 0. (3.8)
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Finally, if the |j, m) have unit normalization
<j= m|j,7 m/> = 5jj’ 5mm’7 (39)

then all matrix elements for these operators are either zero or have unit magnitude.

As an aside, note that there is a close resemblance between these definitions and standard
quantum mechanics. The Hilbert space Hcqqe is the same as the space of states of a spin 1
particle, and the above-defined operators J, M, and M™ are closely related to the familiar
angular momentum operators J2, J,, J*. However, these similarities should be viewed more
as a coincidence rather than as carriers of deep insight. To emphasize this point, note the
fact that there are three “on” states with m = 0, &1 is not a consequence of or associated in
any way with the dimensionality of any background space. A related issue is that analogs
of operators such as J,, J,, and J, from standard quantum mechanics, although can be
defined here, do not have the interpretation of measuring components of a spin in certain
spatial directions because, in this model, there is no ambient space and hence no notion
of x, y, or z. A possible way to remember this distinction is perhaps to note that the
operators defined here differ from the familiar ones in quantum mechanics by several factors
of \/ Jmaz(jmaz + 1) = V2. The true purpose of these factors, and what may be perceived
as strange definitions (3.3),(3.5), is to give these operators straight-forward interpretations
from the graph-theoretic perspective. This will become clearer in the discussion of the system
Hamiltonian.

Returning to the discussion of the present model, define the full Hilbert space of the
system of the complete graph with N points and N(N — 1)/2 edges as the tensor product

HN) = @NN-D/29¢ (3.10)

The normalization of states in this large Hilbert space follows from (3.9). The operators
acting on this large Hilbert space are constructed from the local operators defined above. For
example, an operator J,; acts non-trivially on the Hilbert space H.qq. of the edge between
nodes labeled ¢ and b, and as an identity on the other parts of H™). Several kinds of
extensions to HN) are possible. For example one can consider associating a Hilbert space to
the nodes of the graph, or connecting two nodes by more than one edges. Other extensions
and variations are mentioned briefly at the end of this section. The remainder of this section,
however, deals with the basic definition of the total Hilbert space that appear in (3.10).

The Hamiltonian

The proposed Hamiltonian for the model is

H=Hy+Ho+ Hp+ HS Y (+Hyop + Hioo) (3.11)
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where the individual terms are

Hy =VY)_ <v0 -y Jab> , (3.12)
He =C> (Z Mab) (3.13)

Hp =DY My, (3.14)
ab
L
gy =-3%" B[], (3.15)
loops =1
L
gy =-3" B[] M. (3.16)
loops i=1

The terms in parenthesis, denoted Hj,, and Hgq, need not be specified explicitly but are
discussed below qualitatively.

The notations in these terms deserve some explanations and may need some getting used
to. Physical interpretations of each term is given further below.

In the first term, lf]v, V' is a positive coupling constant, vy is a fixed number, and the
sums are over all points in the graph. The object inside the parenthesis is the difference
between a fixed number vy and the number of “on” links adjacent to a node labeled a. This
difference is raised to an even power to make it a positive quantity. This positive quantity,
times the coupling constant V', is the energy associated with the node a due to the links
adjacent to it. There is one such contribution for each node a in the graph. Because of the
even power, the minimum of Hy occurs when the number of “on” links adjacent to every
node in the graph is exactly vy.

The remaining listed terms depend on operators M and M¥ and not on J. Thus they
only contribute when they act along links that are “on.”

The interpretation of the sums in He is similar to that of Hy. This time, however, the
term is minimized when the m values on the edges adjacent to each vertex add up to zero
(the coupling constant is taken C' > 0). That is, this term is minimized when either all
m values at a node are exactly equal to zero, or if there is an equal number of edges with
m = —+1 as there are edges with m = —1. The term Hp, however, gives preferences to
configurations in which exactly all edges have m = 0 (again, the coupling constant satisfies
D > 0).

The next terms in the Hamiltonian are ﬁ](;) and ﬁg); the understanding is that only one
of these two kinds of terms will be considered in a model at a time (see however section 3.3).
The sums in each terms are over loops - closed paths that begin and end at the same node.
The products of operators are defined over a closed sequence of edges as follows

L
[[M: = My My ... M,. M., (3.17)
=1
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and

L
112 = M, . M0, (3.18)
=1

The parameter L in each product is the length of the loop, i.e. the number of edges that go
into the closed path defining the loop. In each case, the product instructs to multiply the
edge from node a to node b by an operator, then multiply the edge from node b to node ¢ by
another operator, and so forth until the path is closed back at node a. In the Hff version
of this product, the operators alternate between M+ and M~, and hence the length L of
the considered loops must be even. For simplicity, the same restriction can be imposed (by
hand) on the loops of I:I](gc). Note that a given on graph defined by an assignment of “on”
links can have loops of varying lengths.

For these loop terms, the coupling is taken to be dependant on the loop length L. The
explicit form of the coupling is a choice in the model, and can is taken here to be

B(L) = %BOBL (3.19)
where By is a positive coupling constant and B is dimensionless. The separation of B from
By is useful because B can be now associated with each instance of M (or M%) in the loop
products. The factor L! in the denominator is a combinatorial contribution. This choice of
B(L) has the property that it can be small at very low and at very high lengths L and have
a maximum value at some particular length L.,

B _ BY
TR

VL # L. (3.20)

This loop length L, is called the preferred loop length.

The last two terms in the Hamiltonian are Hp,, and Hrge. These need not be specified
in detail, but a brief description is in order. The description of Hhop is deferred to the
discussion of the ‘quantum version’ of the model below. The final term H roc 1s such that
allows certain edges to turn between their “on” and “off” states; thus it would have to be
formulated in terms of operators J* and J~. Some examples of suitable actions for the
graph-changing term are illustrated in Figure 8. They appear as local moves changing the
connectivity between nodes in the graph, and their role is precisely to allow the system to
sample the configuration space by morphing one arrangements of j assignments into another
one. For the most part of the analysis and discussion below, these terms are assumed not to
alter significantly the equilibrium and ground state of the model.

Definition of Loops

Before discussing the physical interpretation of the terms in the Hamiltonian and the model
as a whole, some more remarks on the definitions of loops are in order.

In the products (3.17) and (3.18), the repeated indices a, b, etc. are summed over. How-
ever, two restrictions should be imposed. First, the loops should not be self-intersecting -
this means that a closed path from point a back to point a should traverse intermediary
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Figure 8: Examples of terms in Hamiltonian Hyge that acts on j variables. (a)
Exchange of neighboring links. (b) Addition or subtraction of an edge.

points only once. Second, it is also helpful if two loops ¢; and /5 are allowed into the Hamil-
tonian only if their intersection is either null, a single node or one or two edges. Loops which
intersect overlap on more than two edges seem to be problematic, at least the first stages
of thinking of the model. Perhaps the role of intersecting loops can be worked out in the
future, but at the present stages of the model’s development, it is best to avoid them.

The first restriction may be implemented, for example, by carefully summing over points
b to avoid the base point a, to avoid nodes a and b when summing over nodes ¢, etc. There
is also another way in which a similar effect can be achieved. It is more involved, but it does
have the attractive feature of being also able to deal with the second restriction.

Suppose that a two dimensional Hilbert space (qubit) is introduced

Hqubit = Span{’0>a |1>} (321)
and suppose that n such qubits are associated with each node
Hrode = ®anubit- (322)

(The full Hilbert space for the quantum graphity system would be suitable enlarged.) Next
introduce raising and lowering operators on each of the qubits, which act as

T — _
all0,) = [1,), a,l0,) =0,
00 = L o) o0

au‘1u> =0, aull,) = [0,);
Here the subscript ;1 labels which copy of Hgupi the states belong to. Such operators could
be introduced into the loop products as follows

L L
H MF — 1_[]\4;[@7 a’) = M} al Mb_caz . MPal M_al +h.c. (3.24)
i=1

a yzy “rzaz
=1

There should be a distinct set of operators a and a' for each of the n copies of Hode.

Because the Hilbert space of the qubits is fermionic (a'a’ = 0 acting on the same Hilbert
space), such loop terms would not contribute to the Hamiltonian unless all the points visited
by the loop would be distinct. Also, since the number of qubit species is fixed at n, only
a maximum number of n loop operators could possibly give non-trivial contributions at a
particular node, hence implementing an upper bound on the number of loops supported at
a node.
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This method with an auxiliary fermionic Hilbert space is useful to show that the said
restrictions on the loop operators can actually be consistently implemented. In the following,
the rather cumbersome notation with the node operators a and a' will be avoided but the
restrictions will nonetheless be assumed to hold whenever a sum over loops is invoked.

Classical Version
A simplified version of the Hamiltonian H in (3.11) is
Hyp = Hy + HY (+Hgc). (3.25)

Ignoring the last term H Loc, this Hamiltonian Hyp can be called ’classical’ because the

operators in Hy and ]:I](SC) commute with each other. The last, graph-changing, term formally
does not commute with the others but if attention is restricted only to static or equilibrium
configurations, the discussion here should be valid.

What is the meaning of Hyp and why should it be of interest? It should be considered
as a simple model, leading up to the full version, that might have the important property of
selecting a classical geometry in its ground state.

To see this, consider the first term Hy-. It is minimized when the valence of each node
in the graph is set to the preferred value vy. Now there are many possible configurations
of “on” links that satisfy this broad constraint: some of the configurations resemble regular
structures but most of them do not. Thus if Hy were the only term in the Hamiltonian, the
state with minimal energy would be highly degenerate.

The role of the second term H 5 is exactly to break this degeneracy. This term assign
an energy B(L) to every loop of length L present in the graph. Since the sign of the term is
negative, this term can lower the overall energy if the m values along the loops all multiply
to unity. Thus, I:Ig) gives preference to graphs in which loops are present. Moreover, since
the coupling B(L) is maximized at a particular loop length L., this term actually favors
the presence of loops of that particular length. Combining the two effects, one can expect
the configuration of “on” links that would be assigned minimal energy to resemble a regular
lattice as shown in Figure 9.

There are several caveats, however, to the argument about the lowest energy state being
a regular structure. They are related to some interesting trade-offs that must be understood
between the valence and the loops.

The Hamiltonian for the system depends on the valence of nodes and on the lengths of
closed loops that are present in the graph. As bookkeeping tools, introduce two sets {n,(v)}
and {ny(L)} to denote the number of nodes with particular valence v and the number of
loops of length L, respectively. (The subscripts are only labels intended to distinguish the
two distributions; they are not indices and are not meant to be summed over.) From a
given graph, these sets can be constructed in a straightforward manner and from them the
Hamiltonian can be written as

Hyp =V ny(v) (v =" = ny(L)B(L). (3.26)

Information about the connectivity of various nodes is hidden as that is a property of a given
state and not of the Hamiltonian.
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@ (b)
Figure 9: Sample lattice formations. Solid lines represent “on” links and dashed

lines designate how the fragments shown fit inside a larger lattice. “Off” links are
not shown.

A crucial feature of the system is that the sets {n,(v)} and {n; (L)} are constrained and
correlated in several ways. First, the numbers {n,(v)} must add up to the fixed number of
nodes N in the system. This is expressed as

N = va(v) (3.27)

Second, the numbers of loops of length L is limited by the size of the system N as well as
the valence of the nodes. To see this, note that a node with valence v can subtend at most
v(v — 1)/2 different loops; we can say that such a node allows v(v — 1)/2 ‘arcs.” The total
number of arcs A in a graph is fixed by valences {n,(v)}. Since a loop of length L is made
up of L arcs, a system of a given A will only be able to support a limited number of loops
of a particular kind. Hence there is a constraint on {n(L)} as follows

A= Zn “_1 ZnL (3.28)

This relation correlates the two sets {n,(v)} and {nr(L)}. In particular it implies that, for
fixed valence, the total number of loops must decrease as their average length increases.
Increasing the valence, meanwhile, necessarily increases the number of loops in the graph.

There are further constraints on the sets {n,(v)} and {n.(L)} which come about from
the requirement that a graph can actually be realized given two such distributions obeying
the above constraints. Such constraints “due to graph construction” are ignored in the rest
of this section, even though one can expect them to become significant in some cases. What
is important is that the minimal energy state may be described by a homogenous graph
with all nodes having valence vy and all loops being of length L, only when the couplings
V and B(L) are in certain parameter ranges. That such parameter ranges exist should be
straight-forward; the evaluation of these ranges is quite difficult however, and some work in
that direction is presented in subsection 3.2.

Given a candidate for a minimal energy state, one can naturally ask about what other
states lie in its neighborhood. These state would correspond to excitations in the spatial
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geometry. Two kinds of such excitations can be distinguished. The first is the kind of link
configuration that can be obtained from the minimal energy state by a (relatively) small
number of local moves such as those shown in Figure 8. Such excitations could take the
form of the minimal energy lattice with a few edges removed or added - the latter might be
a manifestation of non-locality in the underlying geometry. The second kind of excitation is
the kind that has an energy close to the minimum but that cannot be built by manipulating
the true minimum state with only a few moves. For example, increasing the size of one
plaquette could produce a graph with an energy close to the minimum, but in enlarging
one plaquette one actually has to reconfigure connections between a macroscopic number of
nodes in the graph. Some more comments on these considerations can be found toward the
end of this section.

Quantum Version

The quantum, or full, version of the model is given by
H=Hy+ He+ Hp + HY (+Hyop + Hioo). (3.29)

Before discussing the novel features of this model that differentiate it from the “classical”
Hy g model, note that this Hamiltonian still contains a term that depends on the valence
and a term that depends on loops of various sizes. Although the loop term ﬁf;) is actually
different from Hg), this model can be expected to exhibit a similar kind of competition
between valence and loop contributions as discussed in the context of the simpler model.
In particular, these terms should again be instrumental in shaping the graph into a regular
structure.

In the following discussion of the role of the different terms in the Hamiltonian, it will
be helpful to think of the configuration of links as frozen in a regular lattice-like pattern
at low temperatures. The exact arrangement of links is not important but a square, cubic,
or diamond lattice are good base patterns to keep in mind. At the end, the discussion will
return to dynamical configurations and will be geared to understanding which one of the
frozen configurations is in fact more likely.

Once the link assignments (j values) freeze, the remaining degrees of freedom are the
m values of the “on” links. By construction, the terms of the Hamiltonian that deal with
these degrees of freedom, He+ Hp + Hg]), reproduce the rotor model introduced by Levin
and Wen [12,13]. Thus, the physics of these m degrees of freedom is the same as one would
expect from a rotor model Hamiltonian on a fixed lattice.

Because the loop term ng) does not commute with the other terms He and Hp, eigen-
states of the Hamiltonian generically will have to be superpositions of states involving dif-
ferent m configurations. In the |j, m) basis introduced so far, the precise form of the ground
state will therefore appear non-trivial. Insight into the nature of the ground state can still
be obtained, however, by considering a variational approach: One can start from a fiducial
configuration of m values and see the effect of each term in the Hamiltonian on this state.

A good fiducial state to start with is the one in which all m values on all links in the graph
take the value m = 0. In the absence of the loops term (i.e. if By = 0), this configuration
would be the exact ground state since, as discussed below (3.11), it would minimize both the
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C and D terms of H. Still ignoring the loop term, excitations on top of the ground state with
all m = 0 would take the form of closed or open chains of alternating m = +1 and m = —1
links. These excitations are called closed and open strings, respectively. The energy of the
closed strings would be proportional to D times the number of segments forming the string;
on a regular lattice with plaquettes of length L., the shortest and least energetic closed loops
would have energy DL,. For this reason, the Hp term in the Hamiltonian can be called a
string tension term. The energy of open strings would come from two sources. For a string
with length L, the string tension term would contribute an energy DL. In addition, the He
term would detect the two open ends of the string and contribute an energy 2C. Thus the
minimal energy associated with an open string would be 2C' + D for a string that spanned
only one segment of the graph. In the parameter regime where C' > D, open strings would
feel a much greater energy barrier than closed strings and so the latter would be dominant
at low temperatures.

Now consider the effect of the loop term ﬁg}) on the fiducial state. Given a graph with all
“on” edges labeled by m = 0, a loop operator acts as to create a closed string of alternating
m = +1 and m = —1 links. The string will acquire tension through the Hp term. However,
since the sign of the loop term is negative, the overall energy of the state may increase or
decrease and this creates the possibility of two distinct scenarios.

In one scenario, the tension in a string is greater than the contribution from the loops
term, so the overall effect of creating a string is to increase the energy of the system. If this
is the case, then the string represents an excited state over the vacuum in which all m values
are zero. The situation is not very different from the case above where the loop term was
ignored altogether albeit the energy of the shortest possible string here is somewhat lower
than DL, due to the negative contribution of H g).

The second scenario is actually the more interesting one. If the tension of a string is small
compared to the contribution from ﬁloop& creating a string decreases the energy. It follows
that creating another string also decreases the energy, and so on. Thus the true ground state
of the model consists of a superposition of a large number of strings: a string condensate.
The precise form of the string-condensed ground state is difficult to write down, but it can
be done in some simple situations [12,13]. It is also difficult to predict the precise value
of the By and D couplings which would give rise to the condensate. Reasonable estimates
for the division between the two scenarios, however, can be made by comparing the number
of edges and the number of plaquettes in a lattice. In a three dimensional cubic lattice,
there is on average one edge per plaquette, so the condition for string condensation would
be roughly,

D — %BOB“ <0. (3.30)
In a diamond lattice characterized by hexagonal plaquettes, there are two edges per plaquette,
so the requirement of condensation would be

1
2D — S ByB® <. (3.31)

A concise way of parametrizing these conditions is to introduce a parameter v > 1 and

require the couplings to satisfy
24vD = ByB* (3.32)
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for the cubic lattice and similarly for the diamond lattice.

Since the string condensate has lower energy than the fiducial state, one can worry about
negative energy states and whether the energy is bounded from below. In fact there is no
problem because the graph has a finite number of nodes. Also, the m values on each edge
only take three possible values so that the loop term can only act on an edge a limited
number of times. Thus the Hamiltonian is bounded from below. It also follows that the
Hamiltonian can be redefined by adding a constant so that the total energy for the ground
state is either exactly zero or is positive.

What are the excitations on top of the string-condensed state? Since the lattice is
assumed fixed so that the Hy term is minimized and since for the moment open strings are
ignored, the relevant terms in the Hamiltonian are Hp and I—:Tg]). If the graph is furthermore
assumed to be a square lattice in three dimensions so that all loop operators have exactly
four sides, then H effectively becomes

Hypur ~ DY M, — %BOBA‘ > ]2t (3.33)
ab ’

a =1

Since the lattice is regular, the sum over loops can be thought of as a sum over plaquettes.
One can define a plaquette operator W, anchored at a point a’ as

Wo = M}, My M5M,,. (3.34)

The points a',...d are now fixed by a convention of labeling plaquettes given their base
point so that there is no summation over repeated indices. With the help of this operator,
the Hamiltonian can be written as follows

3!

/

1
Higur ~ DY Mg, — :BoB* Y (W + hec.) (3.35)
ab

a

where h.c. stands for the Hermitian conjugate of W, i.e. a loop operator with M™ and
M~ interchanged on each link. The sum in the second term is over plaquettes. It turns
out that this Hamiltonian correspond to U(1) gauge theory in axial Ay = 0 gauge. In fact,
the Kogut-Susskind Hamiltonian [16] for a gauge field on a cubic lattice in three spatial
dimensions is

2
g v 2
Higg = =— M5 — — '+ h.c.). .
KS =5 Eab @ o (Wa + h.c.) (3.36)

a/

The sum in the first term is shown primed because it is only over nearest neighbors connection
in the lattice. The variables a and g denote the lattice spacing and the coupling constant,
respectively. Comparing coefficients of the gauge theory Hamiltonian with (3.35) gives the

identifications
4D 1 1
2 4
~A = — ~ =DByB". 3.37
Thus the excitations of the quantum graphity model, which is by construction related to the
rotor model of Levin and Wen, describe photon-like particles. In the limit of infinite lattice,

these particles become massless, propagate at the speed of light, and have two polarizations.
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What is particularly interesting is that these particles appear as collective excitations of the
m degrees of freedom in the edges’ Hilbert spaces.

To be sure, the correspondence between Hj,,r and Hgg is not exact because in the
pure gauge theory, the edges connecting lattice sites can carry arbitrary representations of
U(1) whereas the m labels in the graphity model can only take three values —1,0, and 1.
Nonetheless, the string condensed phase of Hj,,r should exhibit features of U(1) theory,
such as the presence of photon-like excitations, even in this crude approximation [17]. The
correspondence could be improved by allowing a wider range of m values on each edge. This
is not in principle an obstacle for the model, but the present setup is kept for simplicity.

Recall that string-net condensation, and thus the possibility of emergent U(1) theory,
only occurs when certain conditions such as (3.32) are satisfied. Inserting (3.32) into the
expression (3.37) for g% above gives

g = (27)_1/2. (3.38)

Recall that v > 1, so that the coupling ¢? of the emergent gauge field is weak. Furthermore,
if the inverse lattice spacing is set on the order of the Planck energy, a=! ~ Ep, then it
follows from (3.37) and (3.32) that

ByB* ~ Epg™2, D~ ¢*Ep. (3.39)

After discussing string condensation and the emergence of U(1) gauge theory, one must
return to the original issue of determining a likely graph structure in the ground state. It is
seen that the string tension term Hp to some degree opposes the tendency of the loop term
ng’) to lower energy and to create strings. Hence the appearance of a graph structure with
a large number of short loops can only be expected to be a low energy state if the loop term
is dominant. In other words, the possible emergence of a regular graph is directly correlated
with string condensation.

The Universe Today

To summarize, the proposed quantum model contains four dimensionful coupling constants
(V,C, D, and By) and three dimensionless numbers (N, B and vy). Following the given
line of thinking, one can estimate the magnitude of the coupling constants in order for the
emergent physics to describe the observed universe. Taking ¢g=2 to be of the order of 10? for
electromagnetism, then

ByB** ~ 10°Ep. (3.40)

For the graph to cover the visible universe with radius R ~ 10?°m, the required number of
nodes and the number of edges must be at least

N > 10" M > 10°%. (3.41)
Finally, the temperatures for which the system should exist in a lattice-like configurations

should span the range that is relevant for classical cosmology and particle experiments. As
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a conservative number, one can require the lattice to be consistent with the existence of
particles at energies of 102°eV. Thus a safe inverse temperature to consider is

B=10°EY (3.42)

This also comparable to temperatures associated with the universe at very early times.

3.2 Phases

The aim of this section is to study the statistical mechanics of a graph based model and
find the conditions when the system might form a regular low-dimensional structure. For
simplicity, the analysis is restricted to the simpler classical model based on the Hamiltonian
Hyp of (3.25). It is imagined that the system graph is coupled to a bath with inverse
temperature (3. The partition function is therefore

Zyp =Y e Mve, (3.43)

configs

where ‘configs’ stands for distinct configurations of links. Much of the difficulties and inter-
esting features of the model are hidden in exactly how these configurations can be identified
and enumerated. The calculation below therefore does not aim to solve the model but to
offer a reasonable case (subject to a particular set of approximations) that the model can
exhibit at least two very distinct types of behaviors or phases.

Homogenous Node Approximation

The Boltzman factor in (3.43) can be reorganized to give

ZVB g Z He_ﬂv(vo_zbJ(Lb)2+6zloopsataB(L) (344)

config a

so that contributions based on nodes labeled a are grouped together. The task of enumerating
configurations is no less complicated now, but this formulation prompts the idea of using a
particular approximation. Motivated by naive expectation that the graphs of interest should
be homogenous so that every node’s neighborhood is similar, the partition function could be

approximated by
ZVB ~ (Zl)N (345)

where Z; is now a partition function attributed to a single node (the right hand side may
have to be divided by N! since the nodes are indistinguishable.) The task at hand is thus
simplified: it is now to parametrize only the single-node partition function. The expectation
is that the function (Z;)" would be a first rough approximation to and would yield some
useful information about Zy 5.

As already discussed in the previous subsection, configurations of the whole graph may
be characterized by distributions such as {n,(v)} and {n;(L)} subjected to the constraints
(3.27) and (3.28). By assuming that the nodes are homogenous, the distribution {n,(v)}
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becomes irrelevant (all nodes have the same valence). The analog of the constraint (3.28)

becomes
—“(“2_ b _ ;nL(L)L (3.46)

where now ny (L) refer to the number of loops at a particular node. Using this notation, Z;
becomes

N

7, = Z Z "g{v,n. (L)} e BV (vo—v)? B, nL(L)B(L) (3.47)

v=0 {nr (L)}

The sums are over the valence and the loop distribution. The second sum is shown as primed
to emphasize that it is constrained by the fact that the numbers of loops {n (L)} must be
such that the total number of loops is compatible with the valence through (3.46). The
function g{v,ny (L)} counts the number of distinct configurations that give a node the same
values of v and {n.(L)}.

The scaling of g{v,nr(L)} with v and ny(L) can be expected to be rather complicated
in general. If, however, the goal of g{v,n;(L)} is to account for the entropy contribution to
the partition function, it is reasonable to chose a particular form or ansatz for this function
that in fact overcounts the number of configurations of a given kind. Taking this approach,
the scaling of the counting function with v and ny (L) is assumed to be independent so that
function factors

g{v,ni(L)} — gfvig{nc(L)}. (3.48)

The dependence on v should reflect the number of ways of connecting the node under con-
sideration with v of the other nodes in the graph. In a ‘classical’ counting scheme, this can
be encoded in the binomial coefficient

g{v} ="C,; (3.49)

the number of ways to chose v ‘on’ links out of order N possibilities. As for loops, the
appropriate factor is
g{nc(L)} =1 (3.50)
because the individual arrangements are taken into account explicitly in the sum Zf{nL( L)}
The counting scheme based on this g{v, ny (L)} is conservative in the sense that the contribu-
tion of the loops is effectively counted twice. Loops are counted once when the g{v} as above
is included for all single nodes in the system (all the Z; factors in (3.45)) - this effectively
counts all possible ways of connecting nodes together with ‘on’ links, including forming
loops of all possible kinds. Loops are counted a second time explicitly through {n;(L)}.
Furthermore, g{v,ny(L)} is conservative because it does not recognize graph isomorphisms.
Although the constrained sum can be evaluated in straight-forward manner in certain
limited cases for example when N and the average valence are small, it would be more useful
to have an expression for it that is valid in all cases. To this end, introduce a grand canonical
ensemble in which A (the number of arcs at the node) is allowed to vary and write a grand
partition function

o0

Z = Z e—oA Z Z' g{v} =BV (wo—v)? B2 (yne(L)B(L) | (3.51)

A=0 v {TLL}
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Here « is a chemical potential that must be adjusted at the end to satisfy (3.46). Since A
depends on both v and the loop distribution ny (L), the potential is split as follows

aAd =at—— ( i) ol — ZnL (3.52)

where ¢ is a free real parameter. Inserting this into (3.51) gives

2= | glvpeVlomtrae2 TT (eﬁ S (m) nL<L>B(L>—a(1—f>nL(L>L>

A=0 |{np} v L
(3.53)
Now the constrained sum over ny (L) together with the sum over A is equivalent to a product
of unconstrained sums over ny (L) for each L. Thus this partition function factorizes,

Z1=ZivZip (3.54)
with
Ziy = Z NC —BV (vo—v)?—atv(v—1)/2 (355>
—a(l— -1
25 = 1 ewe0or (3.56)

L

The first factor Z;y is a straight-forward partition function with an energy and potential de-
pendence and a counting function. In principle it is ready to be evaluated but unfortunately
the exact solution is not known. The second factor Z;p resembles the partition function for
a gas of Bose particles albeit with an unusual energy function and chemical potential. Still,
the average number of loops of a particular length is

1
(n(L)) = e—BB(L)p+(1-€)aL _

(3.57)

in direct relation with the standard result. This number should be positive for all values of
«, [ and L if this method is to make sense.

What is the advantage of these manipulations? The main reason for rewriting the system
in this language is that the arc constraint (3.46) is now eliminated. This comes at the cost
of two parameters a and £. The first parameter a can be interpreted as a chemical potential
and must be fixed using constraint equation (3.46). The second parameter £ has no physical
interpretation - it just paremetrizes the relative importance of valence and loops in the total
grand partition function. Thus the grand partition function Z; should be maximized with
respect to this parameter. There are three interesting ranges in the parameter &: & < 0,
0 <& <1, and € > 1. These ranges give the effective potentials in the partition functions
different signs and thus produce very different kinds of behaviors.

¢ = —1.  The case that will be discussed in most detail is when £ = —1 (or, more
generally, £ < 0.) Here, the potential encourages the formation of high-valence nodes and at
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the same time promotes short loops. There will be some (3 for which the system will exhibit
condensation of loops into a single type of length L,:

(n(L.)) =

A
L, (3.58)
(np(L # L,)) < 1.

For this to happen (v > 1 is required), one needs

SUNLEN LT A R ORA]

(1 _E) L 3 A L (3.59)

The first line verifies that the potential « is positive as required. The second line can be
satisfied by taking a large 3 as long as the quantity in the first set of parenthesis is positive;
this constraint on the function B(L) can be satisfied by choosing the coupling constants B
and By appropriately.

This solution for « can be now inserted into Z;y (with £ = —1). The exact evaluation
of this partition function and related observables is difficult analytically. (The difficulty lies
in the complicated dependence of the Boltzman factor on v in both the V' and « terms.)
However, some of the expected physics can be described qualitatively by approximating
the whole partition function by one dominant term corresponding to valence v. In this
approximation, one can set A = v(v — 1)/2 and thus obtain

v(v—1)

Ziy ~ N0, exp <—BV(U —v)? + 522 B(L,)v(v — 1)) (1 + %) - (3.60)

The last factor is ill-defined for v = 0,1 but this is not a problem as we are interested in
v = vp or higher anyway. Moreover, this factor has a modest growth with v and hence will
be treated as a constant (and ignored).

What value of v should be used to best approximate 27,7 A useful comparison is between
the cases v = vy and v = vg + 1,

ZlV’U:UO ~ NCUO exp _ﬁB(L*)
NCU0+1 L*

vo)] exp(BV). (3.61)

ZlV‘v:voJrl N

The first factor in square brackets is less than unity and indicates that the entropic drive
of the system is toward higher valence. The second factor on the other hand is greater
than unity and reflects the preference of the V' term in the Hamiltonian for valence v = vy.
These two factors compete and either can prevail depending on the parameters chosen. By
approximating the ratio of combinatorial factors as

N
C1110 1 —log N

~N — ~ e

Y
NCvo—i—l N

(3.62)
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one sees that configuration with v = vy is dominant if

BV > %L*)vo + log . (3.63)

Note that for couplings of order unity in Planck units, N and  on the order of (3.41) and
(3.42), the second term on the right hand side of this inequality is not large at all compared
to V. In any case, the main point is that for high enough SV, the second factor can
dominate in (3.61) and hence the term with v = vy term would be preferred over v = vy + 1
as an approximation of Zjy. Similarly, for high enough GV, the choice v = vy can be made
optimal over any other choice of v. As GV drops below a critical level, however, in this
approximation scheme, the partition function Zyy, should rather be approximated by one of
the other terms in the series with v > vy. Hence there is a hint for two distinct regimes
that depend on the combination of parameters V. The type of the transition that occurs
between these two regimes when [ varies should be a very interesting subject for further
study.

¢ =1 The next case is when ¢ = 1

5 5 (or, more generally, 0 < { < 1.) Then the potential
in Z,p acts to suppress long loops just as in the previous case. Thus, it can be expected
that there will be some (3 for which the system will exhibit condensation of loops into a
single type of length L,. The conditions are identical to (3.59). The major difference from
the £ = —1 case is in the function Z;, where the potential now suppresses high valence
configurations. Thus we expect a behavior that is qualitatively similar to that described in
the previous case with £ = —1. Again it is difficult to evaluate the partition function and
the observables analytically.

¢ = 2. The third case is £ = 2 (or more generally, £ > 1.) With this choice, the potential
encourages long loops and small valences. Thus the system should form a sparse network in
its ground state. This region of the parameter space does not seem to be of direct physical
significance.

Back to the general discussion, note that similar analysis can be performed in the high
temperature regime. For now, however, it is sufficient to remain at a qualitative level:
the above partition functions indicate that at high temperature (low () the valence of the
nodes can be high. This is described for example by the discussion below (3.63). Also, at
high temperatures, the distribution of loops can be quite diverse. Thus the typical graph
might look more like a random graph than a regular lattice and may be characterized by
a probability p that each of the (N — 1) ~ N edges adjacent to a node are excited. This
probability can be estimated by

for each edge. Thus when the temperature 7" is on the order of V', a macroscopic number of
edges in the complete graph will be “on.”

Implications for Cosmology

Based on the descriptions of the high and low temperature behavior of the quantum graphity
model, one can propose the following scenario for the evolution of the universe. It is presented
‘in reverse’ - starting from current times and tracing back to the beginning.
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At low temperatures, i.e. T << V or > V as in (3.42), the graph is in an ordered state
characterized by nodes of a fixed valence and loops of preferred length L,. A candidate for
the state of the graph in this regime is a regular lattice-like pattern. As time goes back, the
temperature T  increases and (3 decreases. This is imagined to occur because the temperature
in the heat reservoir is tuned up, but more thoughts on this are described in section 3.3.
When 3 becomes comparable to V' or the other couplings, defects in the graph can start to
appear due to thermal fluctuations: some loops may grow larger or smaller, and some nodes
may change valence. The effect of these defects on the overall structure of the graph, such
as its effective dimension or excitation spectrum, depend very much on the interaction terms
Hhop and H oG, which have not been studied in this work. Possibilities range from smooth
changes in the dimension to abrupt changes in the connectivity similar to what could be
expected in a phase transition. As time goes back further and 7" becomes much larger than
the couplings, T' > V', the graph ends up in a very disordered state and the average valence of
each node is large. The diameter of the graph, or the distance measured in “on” links between
any two points, is very short in this phase so that the degrees of freedom can be considered
to be highly interacting and can quickly come into thermal equilibrium. Running time in the
forward direction, the transition from the high temperature phase where there is no notion
of geometry to the low temperature ordered phase may be termed “geometrogenesis.”

Even if this is a simplified model of the emergence of space, it suggests insights for
physical cosmology. The horizon problem is the statement that distant parts of the universe
appear to be in thermal equilibrium despite universe’s evolution, modeled by standard FRW
dynamics, suggesting that these parts could not have interacted during the course of the
universe’s estimated lifetime. This is deemed to be a puzzle because its most straight-forward
resolution by positing special initial conditions lacks physical justification. The graphity
model provides such a justification because it suggests that the spins were interacting and
were part of a thermal ensemble before the temperature fell sufficiently for the system to
enter a phase of extended classical geometry. Thus the model shows the horizon problem may
be avoided if geometry is emergent. In this sense, the model also provides an explicit example
of a broader idea that a distinction between micro-locality (locality between fundamental
degrees of freedom) and macro-locality (locality between emergent degrees of freedom) may
be important for understanding quantum gravity and the physics of the very early universe
[14].

Again, the cosmological scenario of the graphity model is only a tentative description
of the early universe. Given the vast amount of data from observational cosmology that is
now available, it should be tested and scrutinized in much more detail. This is particularly
important if the model is to be fruitfully and meaningfully compared with the standard
inflation-based paradigm for the early universe. Among the issues that should be addressed
are the following. Constraints on the variation in time of the gravitational constant G
indicate that the dimensionality of the spatial slices of the universe is three up to very early
times - these observations should pose bounds as to when and how the transition from regular
to complete graph can occur in the graphity model. The spectrum of inhomogeneities in
the cosmic microwave background radiation is nearly scale invariant with an indication of
a small red tilt - it should be checked whether a transition from a highly connected graph
to a low dimensional structure can generate such a spectrum and the required small ratio

36



of anisotropies 6T/T ~ 107 in the CMB. Some interesting work on holographic phase
transitions [28] has appeared that is relevant to this last issue, but more analysis is needed
in the particular graphity scenario proposed here.

The cosmological scenario needs to be worked out in much more detail. This should
be a promising line of research given that the model is well-defined and there is now a lot
of experience and interest in describing cosmological models. If the model is found to be
successful, it would be a concrete example of a model which demonstrates both emergent
geometry and relevance for astrophysical observations.

3.3 Variations, Extensions, Open Issues

When considering a new model such as quantum graphity, it is sometimes unfeasible to attack
the whole problem directly. Instead it is useful to study certain variations or simplifications
as warm-up exercises as in the analysis of the “classical” version of the model using tools of
statistical mechanics in the previous subsection. There are variations and extensions that
one can naturally consider to the proposed model. Some of these are quickly reviewed below.
Open issues that are left to be studied are mentioned as well.

Removing the Heat Bath

In the statistical analysis of the model in the previous subsection, a prominent role is played
by the canonical ensemble and the inverse temperature § - the model can exhibit regularity
features such as fixed valence mainly thanks to the very high value of § (in Planck units)
associated with the universe today. Temperature is often related to the average energy per
degree of freedom in a system. In usual condensed matter physics, it is a parameter that can
be controlled by coupling the system to an environment. In a model like quantum graphity
where the system is supposed to describe the universe and its matter content, what is the
meaning of a heat bath or an environment? Moreover, what does a changing temperature
parameter imply about energy conservation in the system (universe)? These are interesting
questions that could be addressed in the context of quantum graphity. At this stage, the
approach to the model is a practical one in which [ is regarded as a useful parameter that
allows one to tame entropy in the partition function and favor low-energy configurations
which are regular. Thus the temperature parameter is found to be a very useful asset
that, for example, is not available in the approach of causal dynamical triangulations. In
future works, it would be very interesting to try to understand the temperature parameter
intrinsically without reference to an external heat source or sink.

Geometrical Interpretation

The results on the classical model in the previous subsection give evidence that the ground
state of the system is regular but do not technically prove that the ground state of the system
is a regular lattice. In fact, at this stage of the model’s development, the dimensionality of
the structures formed is not known either; a dimension operator and its expectation value
have not been computed. However, given the results on condensation and the definition of
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non-overlapping loops, it is reasonable to expect that the ground state for the cases discussed
at least locally resemble the honeycomb or diamond lattices shown in Figure 9.

Also, the calculations do not prove that the ground state is composed of a unique graph
- in principle, the ground state could be a superposition of configurations. For example, it
is conceivable for the elements in the superposition to represent discretizations of manifolds
with different topologies. The question of interpreting such a superposition is not addressed
here. A possibility worth mentioning, however, is that the dynamics of the transition between
a high temperature phase to a low temperature one could play a role in the reduction of the
superposition to one dynamically selected ground state. In particular, the graph changing
moves of H Lo in Figure 8, do not allow an initially connected graph to evolve into two
or more disconnected components. Thus the superposition making up the ground state can
already be said to dynamically select graphs which have the same number of connected
pieces.

Residual Matter Entropy

When thinking of entropy and stability, the matter content should be taken into account.
It is, in fact, a very important part of the model as it motivates the loop term in the
Hamiltonian. A gas of photons in three spatial dimensions carries an entropy

Sgas = NT? (3.65)

where the number of nodes N has been substituted for volume, and T is the temperature.
This is a residual entropy that must be present even when the graph does freeze into a lattice
configuration. In the microcanonical ensemble, this translates into a multiplicity of states
on the order of

Qgas == exp(NT?). (3.66)

This demonstrates that the the existence of matter in principle halts the break-up of the
regular lattice into a non-geometric graph with high valence or large loops. The extent of
this effect should also be studied in more detail.

Scaling

A very important issue that should be addressed in the graphity context is that of scaling,
i.e. the question of how the model behaves as the number of degrees of freedom changes. In
the context of lattice gauge theories, this question can be either associated with the limit of
the lattice spacing going to zero, or the lattice size going to infinity. Since the motivation
for the graphity model is that space is fundamentally composed of discrete units, the scaling
issue should be thought of in the latter sense. The issue is of theoretical interest because
it addresses the stability of the model, but it also has a practical side because current
observations suggest that the universe is expanding (and accelerating) and thus the number
of nodes N seems to be increasing.

Thus it would be interesting to define a related model to graphity in which the number of
nodes and edges in the system is not fixed. This could be achieved for example by defining
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a Fock Hilbert space of the form
Hron =HYVoHP @ o HV & (3.67)

where H) are Hilbert spaces for complete graphs with number of nodes ranging from X = 1
to X = oo. Some work on growing lattices is available and could serve as background for
future work on graphity [29]. But even before attempting to define a Hamiltonian acting
on such a space, some insights might be gained by just considering the graph connectivity
structure and the partition functions already studied.

In terms of graph structure, a fixed lattice seems problematic in the context of an ex-
panding universe. This is because when a new node is connected arbitrarily to somewhere
in the lattice, a large number of edges must be reconfigured so that the new graph config-
urations is again a regular lattice. Hence it seems that the connections between nodes in
a graphity model should in fact be quite malleable and movable. On the same vein, it has
been suggested that a lattice structure might be too rigid to allow gravitons to propagate as
fluctuations in the geometry [17].

In terms of the partition function, note that that a characteristic term in the sum over
configurations can be written (ignoring the chemical potential) as

NG, exp (—BV (v — vg)?) < exp (vlog N) exp (—8V (v — vg)?).. (3.68)

As N grows, the importance of the counting function ¥ C, increases as well; this is exagger-
ated by the vlog NV in the exponent on the right hand side of the above relation. However,
in an expanding universe, the inverse temperature also changes with N. Since T is inversely
proportional to the scale factor a when the universe is filled with radiation [19], and taking
the scale factor a as the radius of the 3 + 1 dimensional universe so that a®> ~ N, then
B ~ N3 For large N, /3 increases faster than the entropy factor as the universe expands.
In other words, the importance of the ¥ C,, factor actually diminishes with growing N with
respect to the other terms. It also follows that the combinatorial factor is relatively more
important at early times when N is smaller and the temperature is large than today. This
supports the proposed cosmological scenario wherein the high temperature phase is very
different (perhaps non-geometrical) from the low temperature phase.

Diffeomorphisms

The formulation of the quantum graphity model in terms of a complete graph may be dubbed
“background independent” because it does not presuppose any manifold structure. But can
one see “background independence” in the low energy states? Suppose that the ground
state of a vg = 3, L, = 6 model is a honeycomb lattice as suggested above. The lattice
possesses only some discrete translation and rotation symmetries and thus in the strict sense
it cannot be said to accommodate diffeomorphism invariance either. However, in a looser
sense, the discreteness of the lattice is not a very big problem. After embedding the lattice
in a manifold with metric g,,, the nodes of the lattice are assigned coordinate positions.
Smooth symmetries such as rotations, or more generally diffeomorphisms, can act on this
manifold in the usual manner; their effect is to assign new coordinate values to the nodes of
the lattice. The action of a particular diffeomorphism is portrayed in Figure 10. Its action
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Figure 10: The action of a diffeomorphism on the honeycomb lattice. The map is
trivial outside the dotted region and is a twirl or rotation inside that region. Bold
lines indicate strings.

changes the coordinate position of some of the nodes and the coordinate distance between
some of the nodes. However, since expectation values for observables in the underlying
graphity model must be defined and computed using the underlying linking structure and
the Hamiltonian that makes no reference to the embedding or the metric, all quantities that
are computable in the model will take the same values whether evaluated using the graph on
the left or the right of Figure 10. In this sense then, the model can be said to be background
independent and to respect diffeomorphism symmetry. This feature, however, should be
demonstrated explicitly for example by defining and computing two point functions for the
emergent gauge field in the low temperature regime.

Removing One Parameter

Note that the conditions for fixing the valence of nodes in the graph in (3.59) essentially
determine the relative strengths of the V' and B terms in the Hamiltonian. This suggests a
modification of the model Hamiltonian that would eliminate the parameter vy. Suppose the
V term in Hy g is replaced by

H, =V (Z Jab> (3.69)

so that the energy scales as the fourth power of the a node’s valence instead of the second
power. A consequence of this would be that, in the homogenous node approach, the grand
partition function 2y would become

Z{v _ Z NC’U e—ﬁVU‘l_a{v(v—l)/Q' (3'70)

Now it is possible to chose the couplings V and B such that it is advantageous for the
system to create vy ‘on’-links on each node (since this would allow the formation of loops).
Hence the emergence of a preferred valence vy would be a result of a dynamical process (a
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balance between the valence and loop formation) and would not be an explicit input in the
Hamiltonian. This certainly has an aesthetic appeal although for practical purposes it might
be more straight-forward to work within the original model.

Outlook

The outlook for the graphity model looks promising at this stage. Despite the model’s lengthy
Hamiltonian, it is nevertheless possible to study fragments of it analytically as shown in the
subsection on phases. As such, the model can be viewed both as an interesting problem in
statistical mechanics and as a physically relevant model for Planck scale physics and early
universe cosmology. Given the recent interest in cosmological evolution, it would be very
interesting to see whether a discrete model of this kind can reproduce the successes of the
standard inflationary theory. Simultaneously, it would be useful to connect the model back
to general relativity - a possible route for this would be to construct dual triangulations
to the graphs (in the low temperature limit) and map the various terms to a dynamical
triangulation model. In short, many open questions remain but answers to them appear to
be within reach. An honest evaluation of the model will be possible once these issues are
worked out.
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4 Noiseless Subsystems

In the situation where space and geometry are dynamical, perhaps evolving according to
the moves of causal dynamical triangulations (section 2) or changing linking patterns as
in quantum graphity (section 3), one would still like to be able to identify particle-like
excitations and interpret them in the familiar way. Since these particle excitations are
supposed to be detectable and measurable at human time-scales, the information carried
by particles must be preserved despite the microscopic changes in the structure of space.
Following this line of thought, it has been proposed that the objects of familiar physics,
particles and fields, must be resistant to various interactions that one can expect to take
place at the Planck scale [15,18]. To analyze this proposal, it is useful to look at quantum
information processing.

Quantum information processing is a relatively young field of research compared to, for
example, the study of thermodynamics, field theories, or gravity. Current interest and the
large amount research in this new field is largely due to its possible exciting applications in
computation and communication [20]; these potential uses for quantum mechanics have only
been observed quite recently in the 1980s and 1990s. Some quantum information processing
techniques may inspire new ways to look at some old problems related to quantum gravity
and physics of the Planck scale [18]. In particular, one set of tools dubbed by the name
of noiseless subsystems (NS) or passive error correction codes has been argued to provide
an intuitive picture for the emergence of particles and space-time from a fully quantum
background-independent system [15].

Originally, the framework of noiseless subsystems was developed as a tool to preserve
fragile quantum information against decoherence [21]. When a quantum register (a Hilbert
space) is subjected to an interaction with an external and uncontrollable environment, in-
formation stored in the register is, in general, degraded. However, when the source of
decoherence exhibits some symmetries, certain subsystems of the quantum register are unaf-
fected by the interactions with the environment and are thus noiseless. These subsystems are
therefore potentially very natural and robust tools that can be used for quantum information
processing.

In this work, it is shown how the framework of noiseless subsystem can provide a basis
for thinking about any (quantum) mechanical system that is subject to constraints [22].
The next section 4.1 contains a review of the details of noiseless subsystems and discusses
how they may be related to constrained mechanics. Then, in section 4.2, this relationship
is demonstrated through several examples. Implications of the proposed way of thinking of
constrained systems are summarized in section 4.3.
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4.1 Background

Quantum information science studies how quantum resources can be manipulated to trans-
mit messages or perform computations. It does not add any new postulates to standard
quantum mechanics, but in viewing quantum mechanics as a theory about information, it
sometimes shifts the focus of discussion onto aspects of computer science. From this different
perspective, the field of quantum information processing can contribute new ideas for other
topics such mechanics.

NS in Quantum Information Processing

Consider a quantum system S coupled to an environment (bath) B. The full Hilbert space
is given by the tensor product

Hpur = Hs @ Hp (4.1)

where Hg and Hp are Hilbert spaces of the two components. It is helpful to assume that
both of these Hilbert spaces are compact and discrete. The full Hamiltonian describing
evolution can generically be decomposed as

Hpyy=Hs®Ip+1s® Hp + Hy, (4.2)

where Hg and Hp are operators acting on the system and bath, Is and Ig are unit operators
on S and B, and H; encodes the interactions between S and B. This last term can be
expanded as

H; =) N,® B, (4.3)

where N, and B, are a set of operators acting only on the system and bath respectively.

It is worth pointing out that the terms Hg® Ip and I ® Hp that are singled out in Hy,y
are only special cases of interactions and could in principle be included in the expansion of
H;. In the following, these terms will be set to zero. Alternatively, one can say that the
following discussion will apply in the interaction picture, i.e. when the evolution according
to Hg ® Ig + Is ® Hp is absorbed into the definition of operators.

Operators Hg, Is and N,, i.e. the parts of the Hamiltonian that act on the system S,
generate an algebra which is usually called A. The interpretation of A is that it comprises all
the possible operations (as part of the system or the interaction Hamiltonians) that change
the state of the system. It follows from the fact that the Hamiltonian is hermitian that A is
a T-closed, unital algebra. It can be decomposed as

A=EP1., ® M, (4.4)
J

where the tensor sum is over independent algebras My, of d; x d; matrices, each occurring
with multiplicity n;. Following through, the Hilbert space of the system can similarly be
decomposed as

Hs =D Cn, ®Cy,. (4.5)
J
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An operator N, € A acts on |ab), where a and b denote states according to the above
decomposition (4.5), to give

N,|ab) = Zbe,\ab’>. (4.6)

The matrix My}, rotates the states labeled by b but does not depend on or change the label
a. One sees that the subspaces labeled by states a in C,,, are acted upon with the unit
operator by elements of A so that they are therefore left unchanged during evolution - these
subspaces are said to be ‘noiseless.’

Another terminology for the noiseless states is ‘decoherence free.” This name can be
appreciated when the situation is studied from a different point of view. Consider the
density matrix py = |ab)(ab|. The action of the operators N, on p is

NapNL =" Mgy |ab')(ab"| M), (4.7)
b/ b//

Tracing out the subsystem spanned by the |b) states gives

TepNapoNE = 30 S Mgy lab')(ab’| M2, [07)

b/// b/7 b//

=S o M o) M (19

b//l b/, b//
= |a){a] = Trppy

after using the identity

> MM =1. (4.9)

This shows that the subspace spanned by states |a) (or, density matrices of the form |a)(al)
is left invariant by the noise operations. Note that if a density matrix p is not initially
in the special product form |ab){ab|, then TrgN,pN} # Trpp, giving the appearance of
non-unitary evolution. Examples of these effects are given in the next section.

There is an interesting specialization of noiseless subsystems in the event where the
algebra A decomposes so that all the matrix algebras M, are one-dimensional. In this case,
the form of operators N, is

Nola,b) = paslaby, (4.10)

where the phases p,; replace the rotations Mg, of (4.6). The phases cancel out when using
the density matrix formalism,

N,|a,b)(a,b| NI = pasla, b)(a, blp! , = |ab){ab]. (4.11)

In such special cases, the operators N, are called ‘stabilizer’ elements and the invariance is
apparent without having to trace out a particular subsystem.

Now, recall that the system Hilbert space is coupled to an environment. Thus a full state
can be written as p = ¢ ¢) (1 ¢| where 1) is a state of the system Hilbert space and ¢ is a state
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of the environment. Evolution is generated by the unitary operator Uy, = exp(i7H ). In
time 7, dropping the subscripts, the density matrix changes as follows

2
p— UpUt ~ p+ % (2HpH — H2p — pH?) . (4.12)

The approximation being made is valid in the limit of short evolution times. For the case
of the interaction Hamiltonian (4.3), consider the operators N to act as N|¢) = |[¢') and
N|yY') = |¢"). Then, after a short evolution and after tracing out states of the environment,

one has )

[9) (| = [9) (] + % CIYW | = [N (& = ) ")) - (4.13)

The nature of the resulting state depends on the type of initial state. In the special case
where the original state is noiseless and obeys (4.10) with unit phase, i.e. [¢') = [¢") =
|1}, the terms in the parenthesis cancel and the evolution is trivial. In other cases, the
interpretation of the resulting state is less self-evident. For example, when the original state
|1) is noiseless and obeys (4.6), the evolution appears to be trivial only after tracing out a
subsystem similarly as in (4.8) (the b component of |¢).) A different situation arises when
the original state does not satisfy any of the noiselessness conditions. Then, the result of
the evolution is a state that is, generically, mixed and whose ‘extent’ of mixture grows as
the evolution progresses (the new terms in the density matrix are proportional to 7). Thus,
from the point of view of the system, noisy states evolve according to a dissipative and
non-unitary dynamics.

Decoherence-free states are of importance for quantum information processing because
they can reliably store information for long periods of time. For information processing,
however, it is also very important to be able to manipulate or change information in order
to perform computations. To this end, it is interesting to define the possible operations that
can be applied to a noiseless states without ruining its noiseless feature. These operations
are elements of the algebra A’ of all elements that commute with the interaction algebra 4
[21]. That is, an operator A" € A’ can be used to safely manipulate a noiseless state if and
only if [A, A'] =0 for all A € A. The algebra A’ is called the commutant of A; for more
details on identifying noiseless subsystems via the commutant of the algebra of operators on
the system, see [21].

Map to Constrained Mechanics

Shifting slightly to review the standard method of dealing with quantum constrained systems
(see, for example, [1]), consider the kinematical Hilbert space Hy;, of an unconstrained
system. Constraints are represented by operators C, acting on this Hilbert space. The kind
of constraints considered here are those that form a closed, first-class algebra [C,,, Cy] = f,,°C.
for some structure constants f,,°. Physical states of the system are defined to be those that
satisfy the constraint equations C,|1)),nys = 0; the span of these states forms the physical
Hilbert space, Hpnys. An important aspect of understanding constrained systems is the
construction of the algebra D of Dirac observables. Operators in this algebra commute with
the constraints and thus measure physical (invariant) properties of physical states. In other
words, D € D is an observable if and only if [D, C,] = 0 for all C,,.
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There are significant similarities in the algebraic structures that are relevant to the con-
strained systems and that appear in the discussion of noiseless subsystems. Specifically, in
each case one has two distinct algebras that commute. The aim of the present work is to
probe this similarity and establish a connection between constrained systems and noiseless
subsystems. This is accomplished by constructing a mapping from a constrained system to
a noiseless subspace.

Consider a system subject to a set of first-class constraints C,. Consider also an identity
operator I on the kinematical Hilbert space Hy;, and define new operators N,y = (I +AC,).
Then if Cy|¢)pnys = 0, operators N,y stabilize physical states for all A, i.e. Nyx|[t))pnys =
1) phys- Thus, an alternative description of the constrained system starts to develop in which
Hpin can be identified with Hg and the new stabilizer elements N, \ generate the algebra A.
Recall that elements of A have the interpretation of being operations that couple the system
to an environment. Thus, this approach suggests Hy;, should be coupled to a new Hilbert
space ‘Hp representing an environment or bath.

The interaction Hamiltonian (4.3) for the constrained system and environment will have
the form

Hy =) No®Ba=)Y (1®Ba+ACo®B,), (4.14)
(e (0%
for some operators B, acting on the environment. Incidentally, the decomposition of the
interaction terms on the right hand side make the first term appear as operators acting on
the environment only, i.e. being part of 1 ® Hp of (4.2). Only the terms proportional to the
constraints are therefore part of the ‘true’ interaction Hamiltonian,

H; — ) Co®Ba. (4.15)

In short, there is now a new quantum system with a full Hilbert space H ¢ = Hiin ® Hp
governed by a Hamiltonian of the form (4.3) with Hg given by the Hamiltonian of the
constrained problem, Hp given by the operators B,, and H; given by (4.15).

The noiseless states of this new system are, by construction, solutions to the constraints
C,. They therefore exhibit all the physical properties that the solutions to the constrained
problem do. Since the environment in the quantum information theoretic description is not
really of interest from the point of view of the constrained dynamics problem, it should be
traced out. As a result, the noiseless states evolve unitarily under the full Hamiltonian while
the noisy states, which do not satisfy the constraint equations, decay non-unitarily and as
such are not of physical interest.

The commutant A’ in the noiseless subspace picture is the set of all operators that
commute with the constraints C,. Thus, there is also a close correspondence between A’
and D, up to the status of the unit operator. The unit is always a Dirac observable and is
thus in D. On the noiseless subsystem side, however, the unit operator is also included in
the algebra A (recall that A is assumed unital). The interesting correspondence, therefore,
should be made between the non-trivial elements of A" and the non-trivial Dirac observables.
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4.2 Examples

This section demonstrates the mapping between noiseless subspaces and solutions to con-
straints through several examples. The first example is the standard case used to demonstrate
noiseless subsystems in the quantum information processing literature [21]. The other exam-
ples apply the concepts to situations more familiar from mechanics and field theory. One of
these, involving a scalar field, is worked out in detail, while the other examples are focussed
on discussing the conceptual implications of adopting the noiseless subsystems viewpoint.

Strong Collective Decoherence and Angular Momentum

The first example is a system well studied in the literature on fault-tolerant computation. It
consists of a group of qubits subjected to strong collective decoherence due to a coupling to
an environment. For concreteness, the number of qubits in the following discussion is set to
three as that is the minimal number that can give rise to a non-trivial noiseless subsystem
under the stated conditions. The system Hilbert space is

Hs = H1 @ Ha @ Hs (4.16)

where each of H; on the right hand side are spaces spanned by two states |0) and |1). The
interaction Hamiltonian for strong collective decoherence is of the form (4.3) with noise
operators

No=0,R01R1 4+ 100,31 4+ 1®1KQ 0y,; (4.17)

here the index « takes one of the values z, y, and z. The o, are the Pauli matrices

S ) PR KR R R I

and satisfy the algebra [0}, 0] = 2i€;;,04 when they act on the same qubit. The important
feature of these noise operators is that they act symmetrically on all the qubits; hence the
word “collective” in the name of the model. The term “strong” refers to the fact that all
three Pauli operators appear in three noise operators N,,.

From standard quantum mechanics, it is known that three qubits (which are effectively
spin 1/2 particles) combine to form a system with total angular momentum equal to either
J =3/2or J=1/2. In fact, there is a unique way of aligning the spins to produce J = 3/2
and there are two distinct ways of producing J = 1/2. The Hilbert space Hg described
above can therefore be also written in the form

Hs = (Co®Cy) @ (CL®Cy); (4.19)

the total dimension is still 8 (= 2 -2 + 4.) just as in (4.16). This is a decomposition of
the total Hilbert space of the form (4.5), and since there are two copies of the the Cy space
(angular momentum J = 1/2) that degeneracy can encode a noiseless subsystem.
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The states of Hg which have J = 1/2 can be computed with the help of Clebsch-Gordan
coefficients. In this case they are [21]:

[$o) = 7 (1010) — [100)) 120,
[91) = 7 (|011) — [101))
for the first copy of J = 1/2 and
lby) = % (—2[001) + [010) + |100)
| (4.21)
|1h1) = NG (2[110) — |101) — [011))

for the second copy. The subscripts 0 and 1 denote the m = —1/2 and m = 1/2 values,
respectively. The J = 3/2 states will not be needed below.

None of the states in (4.20) or (4.21) are exactly invariant under the action of any of the
N, operators. However, one finds curious properties. For example, if IV, acts on an arbitrary
superposition of |¢g) and |¢;), then one has

Nz (algo) + bld1)) = bldo) + alér). (4.22)

Thus the coefficients of the |¢y) and |¢;) in the initial state are rotated into each other
(@ — b, b — a). This corresponds to the general formula (4.6). One can check that the
other noise operators N, and NNV, perform similar rotations, so that the subspace spanned by
these two states is invariant under the action of arbitrary combinations of noise operators.
Similarly, the noise operators rotate superpositions of [¢)y) and |¢)1) into each other but do
not take a superposition of these states outside of the subspace spanned by them.

The two subspaces, one spanned by |¢g) and |¢;) and the other spanned by |¢g) and
|1)1), define two noiseless states. In summary, the three qubit system contains two noiseless
states which can be relied on to preserve encoded information despite there being a constant
interaction with the environment. Since there are two noiseless states, the system is said to
encode one qubit of information in a noiseless subsystem. The word subsystem is used (as
opposed to subspace) because neither state can be decomposed as a fixed superposition of
states in the computational (|0) and |1)) basis of the original three spins.

The goal is now to see the same states turn out as solutions to some constraints. To do
this, one interprets the noise operators N, as related to constraint operators C,. They form
a first class algebra [N;, N;] = 2ie;;, N}, and thus satisfy the criteria for the method outlined
before. In the kinematical Hilbert space Hyi, = Hg, one finds after group averaging over
the orbits of N, that two states

/dT/ r|¢o) + wmkbl))

/dr/ rlho) + ”mw) "



satisfy
(N, — 1)|®) = (N, — 1)|¥) =0. (4.24)

Thus these states can be interpreted as physical states which solve the constraints C, =
N, — 1. They span the physical Hilbert space Hp,s that one is interested in when dealing
with the constrained system. The group averaging in this presentation is equivalent to having
to trace out the b subsystem in the general noiseless subsystems framework, as in (4.8). The
example also illuminates the role of the unit operator in the relationship between the noise
operators N, and the constraints C,,.

The summary and conclusion is that the same two states, denoted by |®) and |¥), become
the objects of study either in the perspective of noiseless states for fault-tolerant computation
or in the viewpoint of physical states in constrained mechanics.

Momentum Constraint for a Scalar Field

Consider a system composed of a field ¢ in 4d subject to a constraint. A general Lagrangian
density for such a system is

L= 56V30 ~ Vo(é) —xC(0) (4.25)

where V?b = 0?7 — mé is the quadratic D’Alambertian operator for the field ¢, Vo(¢) is a
potential or self-interaction term, and y is a Lagrange multiplier whose equation of motion
imposes the constraint C'(¢) = 0. In what follows, the self-interaction potential is set Vy(¢) =
0 because the discussion is focussed on implementing the constraint on external (free) particle
states. The presence of such a potential, however, does not affect the main issues and it can
be easily added and treated perturbatively using standard methods.

According to the noiseless subsystems paradigm, one can avoid writing theories such as
(4.25) which explicitly contain Lagrange multiplier field and constraints. Instead, one can
write down alternative theories which have a larger number of fields, fewer symmetries, but
wherein the constraints on the physical degrees of freedom are implemented dynamically. In
the present case, one can introduce a scalar field y and write a new Lagrangian density as
follows

£ = S0V30+ sXVix+ X+ AC(9). (4.26)

Now x appears as a standard scalar field with its own kinetic operator; the mass of the
field will be denoted m,. The final interaction term in £’ establishes a link between this
theory and the constrained system (4.25). There appear two new constants p and A in this
interaction term. The first constant p has dimensions 4 — D(x) = 3; it will turn out that
it does not play a big role in the theory. The second constant A is more important and has
appropriate dimensions so that the term AxC(¢) has total dimension 4. For the Lagrangian
to be real, the constraint C(¢) must be real.

The interaction term is linear in , so the whole Lagrangian can be diagonalized to absorb
all the dependence on x into the quadratic kinetic piece. To do this, make the following shift

(@) = X(@) — i / d'y Dy(z,y) (1 + AC((1)) (4.27)
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where D, (z,y) is the Greens’ function (Feynman propagator) of the operator Vi, ie.
ViDy(x,y) = —id(z,y). After this shift, the Lagrangian becomes

1 1
L= §¢V§,¢ + §X’V§X’ — V() (4.28)
where V! is a new non-local potential

V) =i

N | —

(11 + AC(6(2))) / 2y Dy () (1 + AC(6(1))). (4.29)

Now, consider the functional integral

Z = / DDy exp (z / d*z L’) . (4.30)

Since the x’ field only has a quadratic part in the action, the integral [Dx’ is gaussian
(in Euclidean signature) and just gives an overall determinant factor which does not affect
any correlation functions nor expectation values for observables in the field ¢. The resulting
functional integral for the ¢ field is therefore given by

Z ~ / D¢ exp (z / d*z %Wj@ — VNL(¢)) . (4.31)

The non-local potential consists of four terms, but it turns out that only one of them is
important. One of the terms, uD(x,y)u, is independent of ¢ and can therefore be ignored.
To analyze the remaining terms, it is useful to define a new function C(p) as a Fourier
transform as follows

Clp) = / d'y C(p(y))e™? (4.32)

and to represent the Green’s function as the integral

4 .
D, (z,y) = / d’p ! et (@), (4.33)
XA (2m)* p? — mi + i€

In these notations, another one of the terms of the potential can be expressed as

d*p i
(2m)*p? —m2 + e

?

%Au/d% Dy(z,y)C(o(y)) = §Au/

C(p)e 7. (4.34)

When this potential is inserted into an action, there will be a factor of the form [ d*z e=#*.
This can be set to zero because it is an integral over an oscillating function. Thus, the second
term of the potential V¥ can also be ignored. The third term in the potential is

d*p i
(2m)* p? — m2 +ie

SMC(0(@) [ 'y Dyfy) = Co() | e [ty e (a35)
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Again, this term can be ignored because the last integral can be set to vanish. The fourth
term in the potential is the important one. To see how this term contributes to the action,
integrate over all of space to obtain

d*p i
2m)* p? —m2 +ie

1 1
¥ [ty Cloe) Do) = 32 [ : C(=p)Cp).  (436)
The objects C'(p) on the right hand side are again defined by (4.32).

After all these simplifications, the total resulting action in momentum space notation
becomes

5= [ o2 (360D - o) + 5 Cp) s Ol (437
= | —— | =o(— -m —C(—p)——— . .
(2m)* \ 2 £A8 ¢/ PP 2 pr—mi—l—ie P
Note that all dependence on the mass parameter u is removed.
Now it might be helpful to consider a concrete form of C(¢(z)) or C(p) to demonstrate
the effect of the formalism. A simple example is the momentum constraint

C(p(r)) = 0z¢(x), C(p) = —ip39(p). (4.38)

In the original Lagrangian formulation, this constraint effectively requires the modes of the
field ¢ to have momentum only in the p; and py components but not in the p3 component.
With this explicit function C', the resulting action is quadratic

5= [ a2 (st - o)+ S otp—L—o)  (a)

27)4 p* —m2 +ie
and the corresponding equation of motion is

2 S
-—mi+ =—— =0. 4.40
(= mi G s ) o (1.40)
Despite its simple form, the propagator in the last term reveals that the field is governed by
non-local dynamics; this is due to interactions with the x field which has been integrated
out. The inverse of the equation of motion gives the momentum space propagator,

Dr(p) = X . (4.41)
(p*> — m2)(p® — m2) + X p3

Since the denominator is quartic, Dr(p) has four poles at py = 4(E£2)'/2. An interesting

special case is when the masses are equal my = m, so that Am? = 0. In that case, the
propagator simply becomes a sum of two terms

1] 1 1
Dp:—[ + ] 4.42
S Py I iy 2

1
B =p +m®+ 5\/—2)\219%. (4.43)
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The last term is imaginary since both A and p3 are real.
There is a known correspondence between an imaginary mass in a propagator, such as in

1

D = 4.44
(p) p? —m?2 + imI ( )

and the decay rate of a particle I'. In the present case, the scalar particle is unstable and

decays with
A
o 228, (4.45)
m

The decay rate I' depends explicitly on p3 and vanishes when p3 = 0 so that free particles
which do not carry ps momentum are long-lived. Particles which do carry ps momentum,
decay. Since the parameter A is a dimensionful coupling in this setup, it can be expected to
grow large via the renormalization group flow in the infra red - this implies that the transition
in I between the p3 = 0 and p3 # 0 situations will be fairly sharp. (This statement, however,
is not general and the transition would have to be studied in other situations where a coupling
analogous to A had different dimension. A fast decay rate can also be achieved by increasing
the number of environment fields and thereby opening more decay channels.)

What does the particle ¢ decay into? From the original Lagrangian (4.25), one can
conclude that it decays into a x particle. However, the noiseless subsystems picture can be
sustained even if the content of the environment is unknown because all that is required
is that there is an explicit coupling between the constrained field and the environment. In
the above calculation, the Hilbert space of the environment was chosen explicitly and the
coupling was rather special, but other choices could have been made as well. The results
for the exact decay rate formula would then have been different. What is of interest here,
however, is that the modes that do not satisfy the constraint are unstable and decohere.

The next few examples are designed to bring out conceptual issues that arise when
adopting the noiseless subsystems viewpoint.

Relativistic Particle

A familiar example of a constrained system is the relativistic particle moving in a flat back-
ground (metric 7, = diag(—1,1,1,1)). Its Lagrangian is given by

L = —my/—nu4"¢". (4.46)

The overdot denotes time derivatives 0/0,. The conjugate momenta to g, are

_ 0L 5qu
and the standard Hamiltonian
H=p,g"—L=0 (4.48)

vanishes due to time-reparametrization invariance of the Lagrangian. The system is instead
characterized by the constraint
C = —p; +p; +m?, (4.49)
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which puts the relativistic particle on-shell. The total Hamiltonian therefore actually consists
of this constraint,

H = 30, (4.50)

where (3 is a Lagrange multiplier.

The kinematical Hilbert space Hy;, for the particle is the space of wavefunctions spanned
by the states |pg, p;). Due to the constraint, however, only three of the four momenta can
be independent. It is convenient to choose py as the dependent variable. States

|w>phys = ’po;nhys;pi) Pophys = \/ p? + m? (451)

satisfy the constraint, C|¢)pnys = 0.

To view the relativistic particle from a noiseless subsystem point of view, consider the
algebra A generated by the constraint C' and the identity operator. Then define operators
Ny, = 1+ \C acting on the system Hilbert space spanned by states labeled by four-momenta.
The full Hamiltonian describing the evolution of the particle coupled to the environment is
defined as

Hyy=1®B+C® B, (4.52)

in analogy to (4.2) but with Hg = 0 due to the actual Hamiltonian of the relativistic particle
being zero in the constrained dynamics picture. The particle and the environment evolve via
the evolution operator U = exp(iT Hpyy); the evolution is naturally parametrized by a new
external time variable 7 which has physical meaning as far as the environment evolution is
concerned.

In the quantum information theoretic picture, a generic initial state evolves into a totally
mixed background with particle-like excitations. This situation can be compared to the de-
scription of signals in liquid-state Nuclear Magnetic Resonance experiments. There, a liquid
sample is viewed as consisting of many small randomly-oriented spins. When a low-frequency
pulse is applied, the spins tilt slightly with the effect of generating a net magnetization in the
sample. An effective density matrix can be used to describe the state of the sample which
is composed of a sum of a total mixed state and a small particle contribution. Remarkably,
the particle contribution actually behaves like a real particle and can even be successfully
employed in experimental quantum information processing [23]. The proposal here is to view
the relativistic particle in a similar manner - as an excitation over a noisy background.

Electromagnetism

As another example, consider electromagnetism with the action
1 4 v
S = _Z/d x F,, F", (4.53)
where F),, = 0,A, — 0,A,. The action is invariant under gauge transformations A, —

A, + 0,0 where « is any space-time function. The momenta that are conjugate to A, are
7% =0 and 7* = F'°. The Hamiltonian for the theory is

11 |
H= / B (573-7# + 1 FFY — Aoaml) . (4.54)
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In the last term, Ay appears as a Lagrange multiplier imposing the constraint

The effect of the constraint is to reduce the number of physical, propagating degrees of
freedom in the vector potential down to two, giving electromagnetism an interpretation as
a theory of massless spin one particles (photons) propagating at the speed of light.

Since electromagnetism is a theory of a four-dimensional vector field, one might expect
the Hamiltonian to be a function of all four components of A, and their conjugate momenta,
H = H(Aq, o, Ai, m;). The Hamiltonian above, however, is of the special form

H= HS(TFZ‘, Al) — C(ﬂ'i, Al)AO (456)

whereby Hg does not depend on the scalar potential Ay nor its momentum, and the second
term is clearly split into two factors, one that depends on Ay and another one that does not.
This kind of splitting suggests writing the Hilbert space of electromagnetism as H = Hs®@H g,
treating the the vector potential A; as the ‘system’ and the scalar potential Ag as the ‘bath.’
The Hamiltonian is therefore composed of a piece Hg ® 1 that evolves the system only and
an interaction term H; = C' ® A,.

To make electromagnetism match the noiseless subsystems scheme, the system part of
the interaction term should act as a stabilizer on physical states. At the moment, that
part of H; annihilates physical states. Thus, the existing interaction term is replaced by
H; — N® Ay where N = 1+ C. The effect of this exchange is to introduce a new term into
the Hamiltonian:

H = Hg(m;, A;) — C(n", AY) Ay — Ao. (4.57)

Now the noiseless states in the system part, after tracing out the scalar potential degrees
of freedom, should be exactly the ones that correspond to the transverse polarizations of
photons. This is what happens when longitudinal modes decouple and do not contribute to
the amplitudes of scattering processes involving incoming transverse modes.

The physical picture that emerges from the noiseless subsystem framework is as follows.
The full set of fields (Ag, A;) evolves according to a Hamiltonian without constraints or
Lagrange multiplier fields which treats the vector potential as the ‘system’ and the scalar
potential as the environment. Due to the interaction term, only certain states of the vector
potential are noiseless. So only those states can be expected to be preserved in the ‘long
term’ when the environment is traced or averaged out. Presumably, these long lived states
are those that can be seen/observed /detected in the laboratory - thus photons are interpreted
as excitations in the noiseless sector of the vector potential.

Having experience dealing only with the noiseless states in the laboratory, the usual de-
scription of experimental results is made using a theory that is re-parametrization invariant,
i.e. a gauge theory. However, if experiments could give access to the full spectrum of states
as opposed only to the noise-free ones, in effect allowing us to measure the scalar potential
directly, then the gauge invariance would perhaps not be a true symmetry of the full system.

The extra term in the Hamiltonian has a similar effect to introducing a gauge fixing
condition. This is not a problem in the present sense because, at the same time, it is
postulated that the scalar potential is not observable and focus the discussion on noiseless
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states in the vector potential Hilbert space; tracing out the scalar potential gets rid of
the rigidity of the fixed gauge. At the end, the quantum information theoretic description
ends up with the same physical solutions as the original gauge theory. In this sense gauge
invariance is an emergent property in the noiseless states.

Gravity as a Constrained System

As a final example, consider general relativity which is, like the relativistic particle, a totally
constrained system [1]. The Hamiltonian in the Ashtekar variables is a sum of first-class
constraints,

H= / ALG' + N,D, + ND. (4.58)
P

The integral is taken over a three-dimensional manifold ¥. The Lagrange multiplier Af is of
the kind appearing in the gauge theory example and implements the Gauss constraint G°.
The lapse function N that implements the Hamiltonian constraint D is akin to the Lagrange
multiplier appearing in the relativistic particle example. The remaining multipliers NV, that
implement the three diffeomorphism constraints D, are characteristic to this example, but
they can be treated using similar methods.

Multiple constraints in the gravity Hamiltonian can be treated in sequence and on an
individual basis as follows. In general, each constraint (suppose there are n of them) can have
a separate environment Hilbert space H p,, associated with it giving Hyyy = Hs@Hpi1 ®---®
Hpy,. Solutions to the n-th constraint can be found in the space Hg ® Hp1 @ - -+ ® Hpm-1)
(or its dual) as the noiseless states with respect to the appropriate coupling. After having
characterized the solutions/noiseless states of this constraint, another constraint can be
considered to further restrict the set of states that are of physical significance, and so on
until all the constraints are taken care of. At each step, the size of the noiseless Hilbert space
decreases until one finally determines the states of interest.

If the goal of studying general relativity is said to be finding the exact solutions of the
constraints, it is of no significance whether the characterization of these solutions is done via
standard methods or via quantum information theoretic tools. In particular, the discussion of
quantum gravity in terms of noiseless subsystems can be simplified by using the well-known
result that states invariant under gauge transformations and spatial diffeomeorphisms can be
labeled by spin networks [1]. To formally obtain solutions to full quantum general relativity,
then, these spin-networks can be coupled to an environment and an interaction Hamiltonian
can be introduced to correspond to the Hamiltonian constraint. The noiseless spin networks
in this scheme are the physical solutions of interest. Unfortunately, the quantum information
theoretic approach does not make the problem of actually writing down simple expressions
for these states any easier than in the standard Dirac quantization program. A perhaps
promising feature of the noiseless subsystem approach, however, is that these physical states
should appear dynamically as invariant states out of a generic initial state of a system and
environment.
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4.3 Implications

From the above examples, one can make some general comments on the status of symmetries
in fundamental physics. The connection of physical states with noiseless subsystems brings
forth some conceptual differences with the standard approach of dealing with symmetries.

Role of Symmetries

In the case of the relativistic particle, noiseless states evolve as if the Hamiltonian were
zero exactly as in the original constrained system. Thus, these states exhibit an emergent
time-reparametrization invariance property. However, in the noiseless subsystems picture,
the ‘true’ Hamiltonian is actually H,; and is nonzero. The system evolves according to this
‘true’ Hamiltonian in an external time 7. There is no ‘problem of time’ as the evolution of
the environment provides, in principle, a well defined clock to measure time flow by.

The proposed viewpoint, in a sense, is orthogonal to the much discussed relational ap-
proach (see for example [26,27]) where the introduction of a background time is seen as
something that should be avoided. For example, there is a proposal [27] that uses noiseless
subsystems and quantum information theoretic tools to write a relational formulation of
quantum theory that is originally expressed in terms of a background time. In contrast, the
present proposal argues in the reverse direction that the relational features usually ascribed
to physical systems such as time-reparametrization invariance to the relativistic particle
can be understood as arising out of a non-relational theory of the system coupled to an
environment.

Relationalism can be restored, however, by considering the new non-relational system as
part of another even larger system. Then, density matrices would form a hierarchy

Prel = Pnonrel ™ Pnewrel (459>

where prers Pnonrer aNd pPrewrer describe, respectively, the usual relativistic particle, the par-
ticle together with the environment, and the particle together with an environment as well
as another auxiliary system (a clock). The transition between a density matrix in a large
Hilbert space to a density matrix in a smaller space is performed by tracing out the re-
dundant degrees of freedom. The bottom line is that the fixed background structure of the
environment can be treated in a relational manner if relationalism is desired.

Apart from time-reparametrization invariance, gauge symmetries can also be interpreted
to arise only in a particular sector of a background dependent theory. In the quantum
information theoretic picture, states in the full Hilbert space spanned by the system and
bath degrees of freedom act as if there was a fixed background time. Thus an observer
having access to the full Hilbert space can follow the evolution of a gravity state using
a set of external variables using the methods of standard quantum mechanics. It is only
the process of ignoring, or tracing out the background environment that reproduces the
background-independent features of general relativity. Tracing out the environment and
focusing attention on the noiseless states is of course motivated by observations of a four-
dimensional universe obeying the Einstein’s equations to a high degree of accuracy.

Adding an environment to the universe is certainly a strange thing to do and introduces
new interpretational issues. In addition, if the quantum theory of gravity is simply the
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quantization of the known gravity and matter, then the whole approach is not very useful as
in that case the noisy states would be regarded as “unphysical.” However, the situation is
different in approaches to quantum gravity such as those based on condensed matter systems
in which general relativity is expected to be an effective theory describing the behavior of the
low energy excitations of some other underlying system. In that case, an environment and
usually a true Hamiltonian are already present in the fundamental theory and the question is
how a constrained theory can arise at the effective level. There are similar questions in Causal
Dynamical Triangulations, in which the full theory has a time parameter. Finally, the whole
approach is reminiscent of the ‘random dynamics’ research program where fundamental laws
and interactions of nature are assumed to be essentially random (or, too complicated to be
easily determined and/or describe) and gauge and other symmetries are emergent at low
energies [25].

Applications

Besides rephrasing constrained dynamics in a new language, the noiseless subsystems ap-
proach may also have some useful applications [15]. For example, in models of discrete
space (or spacetime), as seen in the causal dynamical triangulation program and quantum
graphity model discussed previously, where geometry is fluctuating and cannot be assumed
constant, it is impossible to use standard tools to find and describe the low-lying particle
like excitations. In those cases, one needs a new set of criteria that could be used to identify
particle states. It has been argued [15] that the notion of noiseless subsystems could be used
in those situations since the criteria for noiselessness are formulated in the quite abstract
sense without reference to any underlying geometry.

Another possible application for noiseless subsystems is for simulations of constrained
systems. Since states which are not noiseless decohere, one can conceive simulating a system
as follows. Starting from an arbitrary initial state of the system (i.e. a state composed of
a noiseless and noisy part), and a large environment, one can evolve the full system and
environment unitarily according to the full Hamiltonian. At late times, the environment can
be traced out. Because of the specific interaction with the environment, the noisy states
of the system will drop out of the final description. Thus some insight on the constrained
system might be gained without actually having to formulate explicitly the physical states.
A negative feature of this idea is that it is in practice very difficult to simulate large quantum
systems.
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5 Particle Phenomenology

Regardless of what microscopic description one adopts for Planck scale geometry, it is gener-
ically expected that the Planck scale will have some effect on the propagation of matter.
Thus while it is important to understand what the predictions of each model of Planck-scale
spacetime structure are, the problem of particle phenomenology due to the Planck scale can
also be studied quite generically. The simplest way to incorporate the Planck energy into a
field theory, as mentioned in the introduction, is to add new terms to the standard model
Lagrangian. Models constructed in this manner usually break Lorentz invariance in their
very formulation. Thus, their tests are also tests of Lorentz symmetry. In recent years,
these models have been extensively studied with terms of mass dimension four and five, and
their free parameters have already been tightly constrained [36,37]. However, several other
proposals have also appeared in the literature. For example, there are models exhibiting
decoherence, models defined on non-commutative geometries, models with non-canonical
commutation relations - some of these can actually be mapped into one another [42].

One of the candidates for the resolution of the Lorentz symmetry problem is Deformed
Special Relativity (DSR). Originally, the motivation for DSR was the playful question of
whether it is possible to alter the postulates of special relativity so that in addition to an
invariant speed ¢, there would also be an invariant mass x (or length ¢p). Some examples
of transformations satisfying this conditions were actually written down [38] and soon those
transformation were found to correspond to a formalism of quantum deformations of the
Poincare algebra. Also, the deformed notion of low-energy symmetry has been found to arise
in the classical limit of one candidate for a full theory of quantum gravity in 2+ 1 dimensions
40, 41]; a similar correspondence of DSR with quantum gravity has been conjectured to occur
in the physical 3 + 1 dimensional case as well.

Despite the optimism around DSR, the idea of deformed symmetry was quickly associated
with several problems (see [30] or [47] for reviews). Among these, two are of importance here.
First, after the original DSR models were formulated, many other apparently distinct models
of DSR with different properties followed. This ambiguity problem was partially resolved
when it was realized that the DSR transformations were associated with a curved momentum
space, i.e. that the space of momenta of particles obeying DSR transformation rules is a
de Sitter space with constant curvature. Second, the interpretation of DSR based on the
work on quantum deformation of the Poincare algebra created the “soccer ball” problem:
the DSR transformation seemed to imply that collections of particles would also have their
energy bounded by x in contradiction with observations. The resolution of this paradox is
still debated.

The approach taken in this work relies on the observation that the momentum space of
a DSR particle is de Sitter and further that de Sitter space can be seen as surface embedded
in a five dimensional flat space. The embedding equation for de Sitter space is in fact the
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quadratic form ‘
Hsq = PyP° — P,P" — P,P* + x* = 0. (5.1)

In the DSR context, this Hs, is interpreted as a constraint that restricts the physical mo-
menta from to a five dimensional space to a reduced space that is actually de Sitter space
S0(4,1)/50(3,1). In addition to this constraint, one can also consider a constraint Hyq
which would endow the particle with a mass just like in the standard setup. Several possi-
bilities for this constraint exist, but a convenient one that will be used here is

Huqg = PP’ — P,P" —m? = 0. (5.2)
A different way of writing this is
Hag = P} — (k* +m?) = 0. (5.3)

Singling out the P, direction in this constraint is only a choice and has no deep explanation
or physical significance. An equivalent alternative would be to define Hyy in terms of a unit
vector V4 in the 5d space by Hyg = (PaV*)? — (k2 + m?). Either notation shows that the
mass constraint breaks the de Sitter symmetry of Hsqy.

The motivation for shifting attention to the higher dimensional flat space in this work
is that from this perspective, DSR has many similar features to standard special relativity.
To demonstrate this, the following section reviews the physics of the free particle in special
relativity where there is one constraint and then extends the discussion to the DSR context
where there are two [34]. Following that, a proposal for a DSR field theory is presented in
section 5.2. The definition of this field theory [35] is quite different from other proposals and
some of these differences, along with the conclusions of this work, are summarized in the
final remarks in section 5.3.

5.1 The Free Particle

A new proposed symmetry can be studied in a variety of settings, but the simplest one is the
free particle. This natural starting point is first reviewed in the context of standard special
relativity and then the same techniques are applied to DSR.

The Free Particle in Special Relativity

In the Lagrangian formulation, the action for a free relativistic spinless particle of mass m

is given by
S = /dTﬁ, L =mn\/iV'E,. (5.4)

It is just the line element on 4d space with flat metric and is parametrized by an arbitrary
time variable 7; the dot means & = Ox/07. The Euler-Lagrange equations specify the
symplectic form and phase space structure. The canonical momentum is defined as

oc i,
O N T (55)
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and the Poisson bracket on the phase space is canonical

{xuvpv} = Nuv- (5.6)

The Lagrangian £ can also be written as @#p, so that the Hamiltonian vanishes. Neverthe-
less, the momentum p,, satisfies

H=p*—m*=0, (5.7)

which is called the Hamiltonian constraint. Hence the free particle action can be written in
the first order formalism as

S = /dT(:'U“pM — \H), (5.8)

where \ is a Lagrange multiplier. Note that, unlike (5.4), this action can describe massless
particles.
The constraint H defines the equations of motion through the commutators

dr, = {z,, \XH} =2\p,,

6pp = A{pu, \H} =0. (5.9)

Enforcing the mass-shell condition p,p* = m? allows to solve for the value of the Lagrange

multiplier
1

A= 2—\/5xu5x“ (5.10)
m
so that the momentum is 5 )
Pu = M = (5.11)

\ox,oxY VI,

As a check, one can insert this expression in the action (5.8) to recover the original action
(5.4) in terms of the line element.

A time variable is a phase space function that does not commute with the Hamiltonian
or Hamiltonian constraint. As seen in (5.9), zo does not commute with AH and so t = x,
is a possible choice for the time variable. The equations of motion of the other variables in
terms of ¢ are obtained by the flow of the Hamiltonian constraint. Indeed, since {\H, z,} =

—2Ap, # 0 and {\H,p,} = 0, one has

0x; Di .
dTg Po ( )
This defines a notion of speed v; = @; = p;/po.
Substituting ¢t = ¢ into the action (5.8) gives
S = /dt [&ipi — po — A(p> — m?)] . (5.13)

Solving the constraint gives py = 41/ p' 2 + m?2 and the action reduces to
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Here H = ++/p'2 + m? is a non-vanishing Hamiltonian. Its sign depends on whether the
positive or negative energy branch is considered.

The choice of a time variable can be regarded as an explicit gauge fixing that breaks the
symmetry of the action under time reparametrization. After gauge fixing, the symplectic
form on the reduced phase space is given by the Dirac bracket. Given a constraint H and a
gauge fixing condition C such that {C, H} # 0, the Dirac bracket is defined as

1
0.0)0 =100}~ 1.} (g7 ) (o)

N (5.15)

-0 (g ) €01

For the standard time choice C = xy — t, where t is a free parameter, one has

{x07p0}D - 07
{%»Z%}D = —U, (5-16)

{zy,2,}p =0.

Note that py generates the usual Hamiltonian flow under the Dirac bracket and is actually
the true physical Hamiltonian dictating the time evolution with respect to the clock xg.

The Free Particle in Deformed Special Relativity

As mentioned before, the free particle in Deformed Special Relativity has a curved four
dimenional momentum space characterized by the de Sitter constraint (5.1) in a five dimen-
sional flat momentum space. In direct correspondence with (5.8), therefore, the action for a
particle in DSR in the Hamiltonian formalism is written as

Ssg = /dT [XAPA — AHsq — NHaal - (5.17)

The coordinates X4 and P4 form a ten dimensional phase space with the usual symplectic
structure { X 4, Pg} = nap. The two constraints are those of (5.1) implementing the curvature
in the four dimensional momentum space and (5.2) implementing the particle mass-shell
condition.

The symmetries of the action are generated by those operators that commute with both
of the constraints. It is straightforward to check that the angular momentum operators,

Juw = X, P, — X, P,, (5.18)

satisfy that condition. These J,’s together with the P,’s are the generators of a ten-
dimensional Lie algebra. In fact, this algebra is in direct correspondence with the Poincare
algebra in four-dimensions, suggesting that the action actually describes four-dimensional
physics. Note that the operators Jy, do not commute with the mass-shell constraint Hyq
and hence cannot be regarded as symmetries of the particle.

The proposed action Ss4 is defined independently of any choice of “basis” or coordinate
system on the reduced phase space. Standard presentations of DSR are then to be obtained
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through a gauge fixing of the 5d k-shell constraint Hsy. More precisely, a gauge fixing is
defined by a phase space function Cs4 which does not commute with Hsg,

{Hs4,Csa} # 0. (5.19)

The additional constraint Cs; = 0 turns Hsq into a second class constraint and imposing
Hsqa = Csq = 0 reduces the initial 10-dimensional phase space to a more traditional 8-
dimensional phase space for a relativistic particle. The symplectic structure induced on the
reduced phase space is described by the Dirac bracket defined previously.

Proper coordinates on the reduced phase will be denoted by (x,,p,). They should com-
mute with both Hs; and Csg,

{xm Hsa} = {xquSd} = {pwHSd} = {meSd} = 0. (5.20)

Their Dirac bracket with any phase space function is exactly equal to their Poisson bracket
with that same function, i.e.

{va}D = {$=F}7 {p7 F}D = {p, F} (521>

for all F' = F(X, P). A common convention for the coordinates p,, is that they are dependent
solely on the 5d momentum coordinates Py; the coordinates x, can be a mixture of X4 and
P,. The p,’s are a choice of coordinate system of the 4-dimensional de Sitter space, while
the x,, are the generators of the translations on this same de Sitter space. Different versions
of DSR are formulated through such a choice of coordinates (z,,p,), called a choice of basis.
This ambiguity is related to the choice of a gauge fixing condition, as will be seen below.

Using the eight coordinates x,, and p, together with the phase space functions Hs, and
Csq, it is possible to invert the relation between the 4d and the 5d coordinates. In other
words, the 5d coordinates X4 and P4 can be expressed in terms of Hsq4, Cs4, 2, pu- From the
conventions for defining p and z, it follows that Cs4 is not needed to express the 5d momentum
coordinates P4 which are a function of p, and x only. That condition is needed, however,
to express the 5d coordinates X4 in terms of the 4d coordinates z,. Thus, the condition Cs4
may be crucial to understanding the “meaning” of the fifth space-time coordinate Xj.

Some interesting properties follow from the fact that Hs; and Csq commute with the x’s
and p’s. For example, the z, p variables form a closed algebra under the Poisson bracket and
define a true 4d phase space without having 5d variables appearing in their commutation
relations. This also implies that it should be possible to understand and quantize the DSR
particle as a 4d system without recourse to the 5d space. Nevertheless, perhaps quantization
would be more transparent at the fully five-dimensional context without introducing any
particular gauge fixing.

Apart from this rather general discussion, one can see these principles at work in several
examples where the choice of gauge fixing condition Cs; can give rise to different versions
of DSR. In these considerations, the mass shell constrain is mostly ignored and the analysis
applies to the x-shell constraint Hsg only.

Snyder Basis
Consider the gauge fixing condition
Csa=D—T=X,P*-T (5.22)
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where T is an arbitrary real parameter. This is a 5d dilatation and in the following it is
shown that the reduced phase space of the particle obtained after imposing the gauge Cs; = 0
is the so called Snyder spacetime.

After some trial and error, a set of four-dimensional position and momentum variables
that satisfy the conditions (5.20) are

_tu
p/.t = Kk—,

1P4 , (5.23)
J]M = ; pd = E(XHP4 — X4PM).

In terms of these 4d variables, the kinetic part of the integrand in Ss4 in (5.17) can be written

up to boundary terms as v
K2 — p2

XaPA = d,p" —p, . (5.24)
In addition to the usual #,p* term, there is now a new term that depends on . Note that
to arrive at the above formula, the constraint relation Hsq = 0 is used.

The Poisson brackets of these 4d variables can be computed either directly from the
definitions (5.23) and the 5d symplectic structure or from the kinematical part of the action
given in (5.24). The resulting non-vanishing bracket relations are

1
{rp, 2.} = _E‘]/w’

PuPv
{qu,p,/} = Ny — 22 .

(5.25)

Although these relations involve .J,, defined in (5.18) in terms of the 5d variables, it turns
out (as expected from the general discussion above) that these generators can also be written
entirely in terms of the 4d variables:

JHV = (XMPV - XI/P,LL> = (x,upu - xl/p,u)- (526)

The deformed symplectic structure defines the Snyder non-commutative space-time. When
k goes to infinity, the standard phase space of the relativistic particle is recovered.

As an aside, note that the kinetic term in (5.24) can be trivialized to x,p# with the new
set of 4d position coordinates: .

T, =1, +pu/€2—_p;)2. (5.27)
The symplectic structure expressed with these new coordinates is simply {x:“pl,} = M-
Since the new primed coordinates are defined only in terms of the unprimed ones, they still
commute with both the Hamiltonian constraint and the gauge-fixing condition. The natural
issue is the physical meaning and interpretation of these new coordinates z/,.

Since the 4d variables x,, and p,, commute with the constraint Hs4, they can be interpreted
as Dirac observables of the 5d system with respect to the 5d k-shell constraint. This means
that considered as operators they leave the de Sitter space invariant: the z,’s generate
the translations on the de Sitter space which has become the 4d momentum space. Since
x,, p, also commute with the gauge fixing condition Cs4, both expressions can be set to zero,
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Hsq = Csq = 0, in the ten-dimensional phase space without interfering with the x, p variables.
This reduces the phase space to eight-dimensions and implies that the Dirac bracket of z,,, p,
with any function will be equal to their Poisson bracket with that function. It is also possible
to invert the definition (5.23) and express the 5d coordinates X, P in terms of z, p, x, T. The
condition Hsg = 0 is used to obtain the 5d momentum P4, while the condition D = 0 gives
the expression for the 5d position X 4. Denoting these resulting functions by X and P in
order to avoid confusion with the original variables X, P,

Pp=—

(5.28)
Db
By=nf1-5 e — Py
K24/1 — ’;—2
The latter can also be written in a more condensed format
- P P
Xy = —;‘x -p— T—4,
. (5.29)
Xu = /j ZE:L &
P, K

On the one hand, the final equation explains the meaning of the z}, coordinates: they are the
four-dimensional sector of the 5d coordinates (at 7= 0). On the other hand, the inversion
formula reveals the meaning of the fifth space-time coordinate (in the Snyder basis): it is
the dilatation D = x - p on the 4-dimensional relativistic particle.

Finally, one can compute the Dirac brackets corresponding to the gauge fixing. They are

—1 1
WJAB = PJAB>

PyP P P
{Xa, Pp}p = nap — PApﬁ—nAB+ 22

{Xa,XB}p =
(5.30)

The four dimensional sector of these relations are, by construction, the same as the commu-
tation relations (5.25) for z,, and p,. Also, the following relations hold for the 5d variables
{X4, Xp} = {Xa, Xp}p,

{Xa, P} = {X4, Ps}p, (5.31)
{Pa, Pp} = {Pa, Ps}p.

Bicrossproduct Basis

A similar analysis can be carried out for other gauge-fixing conditions. Consider as a different

example
Xo—X
Csy = PO—P‘* ~T (5.32)
0— Iy
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where T is again a free parameter. This turns out to produce the bicrossproduct version of
DSR, thus showing that basis relies on a “light cone” gauge for the 5d action.
A set of 4d momentum variables that commute with both Hs,; and C are

P4—P0 /iPi

=kln— i = ————. 5.33
As for the position variables, one can take
! J. ! (Jio — Jia) (5.34)
0 K 40, K

The ten variables (Hsq,C, x,,p,) parametrize the ten-dimensional phase space. Actually,
there is an implicit restriction in this basis to the sector P, > F,. If the whole space is
needed, then it should be parametrized by two sets of 4d momentum variables p, each
defined for different signs of P, — F.

From here, the same calculations as those presented in the previous subsection on the
Snyder gauge-fixing can be repeated. Imposing P4P* + k> = 0, the kinetic part of the 5d
action reduces to .

XaP* =p, i, + pi 7 po- (5.35)

This provides the 4d action principle describing the DSR particle in the bicrossproduct basis.
The non-vanishing Poisson brackets are

{zo,po} =1, {zi,p;} = —0dij,
1 | (5.36)
{zo,2;} = +Exi7 {zo,pi} = _Epi-

This is the symplectic structure of xk-Minkowski phase space.
Solving the 5d Hamiltonian constraint Hs; = 0 and fixing the gauge with Csq = 0 allows
to invert (5.33) and (5.34) to obtain

Py = —/isinh@ — p—eTO,
K 2K
Pi = _pie%a
P, = K cosh 22 — p—eTO, (5.37)
K 2K

~ T
Xﬂ = /ﬁ}ﬁ + TP/“
Xy =Kk——+TF,.

4 P _ P, 4

The first set of relations are just the familiar definitions of the bicrossproduct basis in terms
of planar coordinates on de Sitter.

65



The Dirac bracket induced by the gauge fixing condition acts on the 5d variables as

{Xo, Xi}p = %H

{Xi, Pj}p = 0y,

{Xo.Po}p=—1- %POIiOP4’

{X4, Patp = +1— %Po]}]ﬁ’ (5.38)
{Xo, Pi}p = _%POIE)P4’

{X4, Po}p = _%PO%PL

As earlier, the important facts about the Dirac bracket are that, first, the Dirac bracket
of (x,p) with any other phase space function is exactly equal to the Poisson bracket and,
second, the Poisson brackets of the ()? , ﬁ) variables is equal to the Dirac bracket of the
(X, P) variables computed above.

As in the Snyder case, there is an alternate system of position variables that trivializes
the 4d symplectic structure. For the bicrossproduct basis, this is achieved by defining

1 .
Ty = To — —1;p’, and T = x;. (5.39)
K

This choice of space-time coordinates is commutative and the couple (z/, p) have canonical
Poisson brackets. In terms of the 5d coordinates, z{ is given by

Pi
Py — P,
= (XyPy — XoPy) — X;P, + PP,

(Jio — Jia) (5.40)

Xo — Xy
Py— Py

li$6 = J40—
(5.41)

This variable is singular at Py — Py = 0. In terms of the 4d momentum coordinates, this sin-

gularity happens when the quantity pg, naively interpreted as an “energy,” becomes infinite.

The Py — P, = 0 is also the singularity for the bicrossproduct momentum variables (5.33).
The symmetry generators (5.18), in terms of p, and z, coordinates, are

Mij = Jij = I;pPj — TjPs,

2 5.42
N; = Jip = x; ke Sinh@ + P ToPi- ( )
K 2K

Hence the rotations appear in the usual way while the boosts are deformed in the first
term. They still form an undeformed Lorentz algebra (this is possible due to the deformed
symplectic structure), but their action on the space-time coordinates is deformed. More
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precisely, the action of these generators on the position variables z,, is

1
{Ni7IO} =T; — _Niv
KR
1
N3, 25} = @0 0y — — M, (5.43)
{Mij,l'()} =0

{Mij; Ik} =Ty 5zk — JI,(;jk

The action of these generators on the momentum variables give the well known relations of
the bicrossproduct basis

{Ni,po} = pi,
K o I DiDi
Nopd =g (B (1= ey o Lgai) _ Pibi
{Ni,p;} 1(2( e )+2Kpp) 7, (5.44)
{M;;,po} =0

{M;;,pe} = 6ikp; — Ojkpi.

Again, the rotation algebra does not seem deformed whatsoever while some new features
appear in the boost sector.

Relativistic effects

It is natural to ask whether Given the deformed symmetry algebra can give rise to observable
effects. For concreteness, the discussion of this issue below relies on the bicrossproduct
variables and algebra.

One consequence of the new algebra is that the Lorentz invariant quadratic form, the
“metric,” is not z,x* anymore. However a deformation of it in the form

1 2
L? =15 — (x — —Ni) (5.45)
K

is invariant and thus can be thought of in principle as a new metric. However, since the
quantity N; depends on the particle momentum, the whole quadratic form is momentum-
dependent. Explicitly, it is

2 9 ?2 s 2To_
L7 =g 1--7 —zix, f(p) —7x-pf(P), (5.46)
flp)=1—e% sinh 22 — ﬁ (5.47)
Kk 2K?

From the general relativistic perspective, a particle can be expected to deform the geometry
of the surrounding space-time depending on its energy-momentum tensor, so this metric may
not be so strange. If DSR is, as it has been suggested, an effective description of particles in
quantum gravity, then this is where this property of general relativity may be showing up in
the present framework. From the point of view of special relativity, however, a deformation
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of L? seems hard to accept on physical grounds. In fact, the metric in special relativity
usually has a clear operational meaning being the measure of distances between spacetime
points. What one should presumably do is to try to construct the metric operationally, in
terms of physical rods and clocks, using the fact that one has at one’s disposal a universal
observer-independent scale of velocity. It is crucial that all inertial observers agree on a
way the metric is constructed and that there exists a means to synchronize clocks and rods
of observers at different points and/or observers moving with respect to each other with
constant speed. The kinematical description of the particle presented here is a good starting
point for such a construction.

Consider for simplicity the action of boosts along the ¢ = 1 direction. Defining 0. F' =
{Ny, F} for any function F', one obtains from the commutators (5.43) the differential equa-
tions

Deo(€) = 2(€) — M(E).
Dex1(§) = x0(&),

Deal€) = —My(6), (548)
Os3(§) = +Ms(§).

The functions Ny (), Mo, 5(§) are shorthand for the combinations of x, p defined in (5.42) in
terms of the boost parameter. To solve this system of equations, it is worth simplifying the
right hand sides. Since {Ny, N1} = 0, the object N;(€) in the first equation above is actually
a constant independent of . Therefore, N1(£) = ny can be evaluated once at a certain time
in one particular reference frame (with a certain boost parameter) using (5.42), i.e.

2
ny = [5171 (e‘po sinh pg + %) — xopl} ) (5.49)
0

The subscript 0 on the bracket denotes that the expression is evaluated in a particular frame
defined by the initial conditions.

Another trick is to find the functions M;(&) and Ms(&). This can be done by considering
how they themselves behave under boosts,

(5.50)

Solutions to this set of differential equations are

&) = mgcosh& + ngsinh
&) = mgcosh& —ngsinh &
3
3

The coeflicients all denote initial values similarly as in (5.49).
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FEEE

ng cosh & + moy sinh .

(
9,
(&) = ngcosh& — mgsinh €
(€)



These observations makes it straight-forward to write down the solutions to the system
of differential equations (5.48):

zo(§) = x0(0) cosh & + z1(0) sinh £ — ny sinh &,
z1(€) = 20(0) sinh £ + x1(0) cosh & — ny cosh & + ny
. (5.52)
z9(§) = x2(0) — ngy + ng cosh & — mgsinh &
x3(§) = x3(0) — n3 + nz cosh & + mysinh €.

To study relativistic effects, these equations should be supplemented by the equations of
motion arising from the flow of x, p with respect to the mass shell constraint AHsy. These
flows are

dxg = —2A(k sinh Po,
K

Sx; = —2\pie~ (5.53)

If the time variable is chosen to be t = x¢, then the speed is defined as usual as v; = dx;/dxo.
Now the dependence of the velocity v; = dz;/dx¢ on the boost parameter can be checked
explicitly. Consider a particle that is initially at rest, i.e. its initial momentum p; = 0. Then,
using the transformation laws of momenta p, [49], the result is

v =tanh¢ (5.54)

just like in special relativity. The result does not depend on the initial value of the particle’s
energy (rest energy or mass), thus all particles approach the speed of light v = ¢ = 1 after
repeated boosts.

Other relativistic effects that are worth investigating are time dilation and length con-
traction. The following calculations are based on an approach developed in [50] and consider
a system of two particles. One particle, labeled A, is placed at 24 = 0 and has zero spatial
momentum in some reference frame. The other particle, labeled B, is placed at z® = ¢ in
the 1 direction and is also stationary in that same reference frame. The equations of motion
for these particles, in terms of their affine parameters s, and sg, are

25 (s4,€) = sasinhpj cosh &
$£(S £) =sa Slnhpo sinh & _—
x5 (s4,8) =
73 (54,€) =
and
25 (sp,€) = spsinhpy cosh € + £y sinh € — ny sinh .
2P (sp,€) = spsinhpf sinh & + ¢; cosh & — n¥ cosh & +n? (5.56)
23 (s, &) = {2 — ny + ng cosh & :
st(SB7§) = {3 — n3 + ngcosh&.
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In one reference frame characterized by £ = 0, the ‘time’ along each particle’s worldline
may be defined as the difference of zy functions at different value of the affine parameter s,

7 =z0(5',0) — 20(s,0). (5.57)

One can find how these quantities transform under boosts by introducing another frame with
general £&. Then time intervals become

7 =x0(8', &) — xo(s,&) = Tcosh (5.58)

for each particle. This is time dilation in its standard (special relativistic) form.
A naive way to define distance is to consider the coordinate difference

dy = 7(0,0) — 25(0,0) = 4; (5.59)

similar expressions in the other directions give dy and d3. The distance interval between the
particles in the second reference frame is computed by first setting x4 (s4,&) = 2¥(sp, ) to
obtain a relation between s, and sg, and then doing the subtraction of coordinates. The
result along the direction of the boost is

dll = ZE?(SA,f) - xf’(837§)
1 B (coshf - 1) (5.60)

- cosh & 1M cosh &

The first term gives the usual length contraction effect, whereas the second term is a cor-
rection due to the momentum space curvature. Its significance grows with the original
separation ¢ and with increasing € values. Since n? is also a function of p¥, the correction
is also dependant on what kind of particle is being discussed. In the orthogonal directions,
the distances are just dy = 28 (sp,&) and d3 = 28 (sp,£). In contrast to dj, these distances
become larger as the boost parameter is increased.

The invariant quadratic form is (5.45), however, and it suggests an alternative approach
for looking at length contraction by defining distances in terms of the combination x; — NN;.
This amounts to a shift of the coordinates by a constant. Then, one has

d; = (2(0,0) — ni") — (x2(0,0) = nP) = 4; — n? (5.61)

i .
In a boosted frame, the new measured distance along the direction of the boost is

, 1
' coshé¢

di, (5.62)

the usual length contraction. In the other directions, however, one has
dy = dy —n¥ (1 — cosh§). (5.63)

It appears that directions orthogonal to the boost are slightly contracted as well. And this
is not a regular standard relativistic effect.
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5.2 A Proposal for Field Theory

After looking at single particles in standard and deformed special relativity, one naturally
can ask whether the deformed symmetry can also be implemented in a field theory. Several
attempts at formulating field theory consistent with DSR already exist in the literature [43—
46]. The philosophy in this work, however, is to extend the use of the 5d formalism explained
above to the field theory context. As in the previous subsection, the goal is to use insights
gained from special relativity as much as possible when formulating the field theory for DSR.

There are several lessons to be learnt from standard special relativity that are relevant for
field theory. One lesson is that the curvature in momentum space has physical consequences.
In SR, that physical consequence is an upper bound on particle velocity and a velocity addi-
tion rule that is compatible with that bound. Another lesson is that, for practical purposes,
it is easier to work with the higher-dimensional flat space rather than the intrinsic variables
defining a curved space. In particular, calculations of scattering thresholds are easily done
using linear four-momentum conservation rules whereas they are much trickier in terms of
variables such as velocities that must be added in a non-trivial way. In addition to their
utility for computations, the higher-dimensional variables also have a physical interpretation.
As is well known, special relativity reveals a profound correlation between space and time
(momentum and energy). Together, these lessons imply that field theories based on standard
special relativity are usually formulated on a four-dimensional flat space.

When the DSR postulate is introduced, one is led to the five dimensional formalism where
particles are described by two constraints. One of the lessons from standard special relativity
suggests that momentum addition (conservation) rules on the underlying five-dimensional flat
space of momenta could be linear despite the constraints. Thus, a key feature of the proposal
below [35] is that all components of five-momentum, including the new ps component, are
taken to add linearly and are assumed to be conserved in scattering processes. This key
assumption sets this work apart from some of the previous works. A welcome consequence
of this assumption is that particle scattering amplitudes can be computed explicitly; new
features that arise because of the new postulated conservation law are super-selection rules
that can be understood as imposing what is usually termed as charge conservation in the
standard field theory language.

It should be stressed again that the proposal below relies heavily on the 5d interpretation
of the DSR particle and is not the usual approach to DSR-based quantum field theory [43—
46]. An alternative formulation of DSR field theory along with related criticism of the present
approach is briefly presented in the discussion section 5.3.

Free Scalar Theory

The proposal [35] is to make the fundamental momentum integral five-dimensional and to
select physical configurations by imposing the two constraints (5.1) and (5.2). The field
expansion is defined by

d® , ,
¢(I,I4) :/# Qﬁ(p’pél)elp'xe*lIMﬂm

x (2m)8W (p* —m?) (2m)6° (v — pi + K7).

(5.64)
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Integrating out the two delta-functions and selecting the solutions with positive pg and
positive py, the field becomes

dgp 1 1 1PoTO ,—1PX ,—1ipax4
oz, 1) = / 7) 20 2n o(p)eo™e e : (5.65)

where pg = /p? + m? and p; = VK% + m?. The resulting natural phase space integral for

the field is Bl
p
dTI(p) = - .
/ (») / (27)3 2po 2py” (5.66)

which is, up to a constant (2p4) ™!, the same as in standard field theory. The extra constraint
does not provide a regulator for this integral.
The normalization condition for the fields can be taken as

(6(p), p(1')) o (27) pops 6P (p — '), (5.67)

which is positive definite in the selected sector where both py and ps are positive. The
quantization of the field can proceed in the usual manner by setting

d3p 1 iPOTO LiPX P44
— —ipox 1P-X 1pAT. h . .
o(z, 4) / TN (ape™Pom0ePXePiTt 4 c.) (5.68)

where a, and a; obey the usual commutators
lap, al,] = (2)%® (p — ). (5.69)

The interpretation of these operators is similar to the usual case: a; creates a particle with
positive energy and positive py while a, annihilates such a particle if one exists.
The two point function for the new field is

D((e20) — (g 2)) = / %%%

From this, one can construct a propagator Dp. Since two momenta are constrained and it

was assumed above that physical particles have both of these momenta positive, the ordering
in the definition of this propagator involves both the xg, 9 and x4, y, variables,

Dp =O(zo — y0) O(ys — 24) D((2, 24) — (y,y4))+

O(yo — o) O(x4 — Y1) D((y, Y1) — (z, 74)).
Although this is not exactly the definition of the Feynman propagator in standard quantum
field theory, it is the closest to it that one can write given the new dimension and the new
constraint in the present setup. Proceeding, then, this propagator can be written in terms

of higher dimensional integrals with particular choices of contour integrations along the pq
and py directions. For computations with Feynman rules, this propagator will be defined as

—1 1
D = :
r(p) (p2 — m?2 +ie) (p7 — K2 — m?2 + ie)
The appearance of a new factor in the denominator reveals the propagator has poles along
the ps axis which implement the x-shell constraint. The placement of these new poles on
the axis of the extra dimension (as opposed to the py axis) will become important in the
discussion of unitarity below.

e~ P0(0=Y0) P (X=Y) pipa(Ta—ya) (5.70)

(5.71)

(5.72)
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Interactions

An interacting theory and scattering amplitudes for processes can be defined perturbatively
through Feynman diagrams. To obtain an analog of ¢* theory, the vertices can be made
four-valent and proportional to a small coupling constant —i\. The distinctive features of
interactions in this framework are that momentum conservation is required in all five dimen-
sions, and that momentum integrals arising in a loop diagrams are also five dimensional.

Using these Feynman rules, it is straight-forward to see that the amplitude for the first
order scattering of two incoming scalar fields into two outgoing scalar fields can be set up
to be |[M,|*> = A? just like in standard ¢? theory. This amplitude has the same form as in
the standard theory partly because the overall momentum conservation J-function for any
two-particle to two-particle process is trivially satisfied in the extra dimension because all
particles have p; = VK2 + m?2. However, any process that takes two incoming particles to
four or more outgoing particles is kinematically forbidden by p, conservation. Since such
processes are allowed in standard ¢* theory, the theory presented in this section makes some
very different predictions from the standard theory at higher orders in the perturbation
expansion. (In light of the discussion and results of the next section on fermions, however,
it is conceivable to arrange for this kind of discrepancy to be removed in the case where the
field is complex and ¢ and ¢* carry opposite signs of the momentum p,.) It is therefore clear
that the requirement for the momentum in an extra dimension to be fixed at a set value,
which may at first seem like a small modification to the usual QFT framework, can in fact
have significant effects on processes amplitudes.

Unitarity

A prescription for writing transition amplitudes from Feynman diagrams as defined above
can only be called self-consistent if the resulting model is unitary. The following discussion
mirrors Ref. [56] and shows that unitarity is preserved in the proposed interacting model to
A? order.

Consider a process whereby two particles with momenta p, ps and p’, p/; interact to produce
two other particles with momenta k, k, and &', k). The S-matrix is defined as S = 1 + T
where 7' is related to the process amplitude M, by

(kky, K'E}|T|pps, p'py) = iMy(pps, p'ply — kks, K'E})

2.73
x (2m)° 6O (p+p — k- k). (5:73)

Note that, as already mentioned earlier, the condition py + p)y — ks — kj = 0 is automatically
satisfied because all these components are fixed to vx2 + m?2. The theory is unitary if the
S-matrix satisfies SST = 1; in terms of the T-matrix, this translates into

—i(T —T" =T'T. (5.74)

The unitarity condition can be checked to first non-trivial order in perturbation theory
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Figure 11: A one-loop diagram with indicated cut.

by considering a one-loop diagram. Its amplitude is
iM SO (p+p —k—FK)

_ )\_2 d5q d5q/
- 2 (271')5/(271')5 (f0f4) (575)

x (2m)26 (p+p' —q— )0 g +q —k— k),

w= (i) ()
0=\ "9 _ o5 - 2 _ 2 ]
q me + 1€ q me + 1€ (5.76)
. 1 1
1T Q@2 — k2 —m? +ie Q2 — k2 —m?+ie/)’

The integration is actually over one undetermined five-momentum propagating around the
loop, but it is written in terms of integrals d°q and d°q’ and a J-function for convenience. A
useful feature is that all the dependence on the parameter x and the extra dimensions can
be neatly put in the function f;. Thus the amplitude splits into

where

MK] = MS M47 (577)

where M is the standard four-dimensional piece and M, depends only on the extra dimen-
sion.

In the ‘center of mass’ frame, the incoming particles have momenta (pg,p;,ps) and
(po, —pi, p4) so that the total momentum is (2pg,0,2ps). The energy py can be as large
as desired but py, is fixed by the on-shell conditions. Therefore, the matrix element M, for
this process can be taken to be a function of the energy py alone, M, = M, (po). The overall
amplitude M, should be real at low energies. This implies that the four-dimensional part
of the amplitude M satisfies the condition

Disc M(po) = 2i Im M(po + i€) (5.78)

relating the discontinuity (due to the +ie prescription in the standard part of the propagator)
and the imaginary parts of the amplitude. This is useful for checking unitarity because

Im M, (po + i€) = (Im M(po + i€)) My (5.79)

appears on the left hand side of (5.74).
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Thus checking unitarity involves computing the discontinuity of the amplitude (5.75)
and then comparing that result to the right hand side of (5.74). The discontinuity can be
computed using the usual cutting rules algorithm [56]. In the present case the cuts should
be made along the two internal lines in the loop diagram (momenta ¢ and ¢’). The cutting
rule algorithm replaces all the factors in fy by d-functions as follows

1
(¢ — m? + ie)

— —2mid(q* —m?) (5.80)

and similarly for the primed variables. These d-functions allow to evaluate the integrals
along the qo, ¢ directions. As for the integrals involving f4 in M, they can be evaluated
directly by replacing them by the residues of the two poles along the fifth-dimension axis,

for example
dqa 1 7
—. 5.81
/ (2m) (g3 — K% — m? + ie) 2 (5.81)

On the right hand side, g4 stands for the position of the pole. After these manipulations,
the discontinuity of the diagram is found to be

DisciM. 6O = ﬁ/ﬁii/ﬂii
i 2 ) (2m)32q02q J (27)3 2qf 24, (5.82)
x (21?6 (p+p —q—q) 0P (g +q — k- k).

Returning to the right hand side of (5.74) and inserting an identity operator in the middle
of TT' gives

(k kg, K KTV p pa, p’p&)

_ Z ( qu 2q4) (5.83)
<k ka, K k4ITT\{q u}){aw}TIpps, p' L),

Here the sum is over all possible intermediate configurations and the factors in parenthesis
are the one-particle phase space integrals from (5.66) (see [56] for more details on notation).
For the whole expression to be of order A\?, each of the matrix elements (-|T|-) on the right
hand side should correspond to single-vertex diagrams which are valued \. There is only one
possible such configuration and it contains two intermediate particles. Thus (5.83) reduces
to

(k ks, K K} T"T|ppa, p' D))
e / dg 1 1 [d¢ 1 1 (5.84)
(2m)32q02qs J (27)3 2q5 24 '
x 21)°00 (p+p —qg—¢)6P (g +q — k- FK),

which is very close to (5.82). The usual discrepancy of 1/2 is due to the fact (5.84) should be
symmetrized with respect to the intermediate particles labelled by ¢, ¢4 and ¢, ¢). The result
shows that the proposed Feynman rules generate unitary amplitudes, at least to second order
in the coupling constant .
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Renormalization

Another interesting question to ask is whether the proposed model is renormalizable. To
answer this question properly, one should first understand the physical meaning of the fifth
dimension in momentum space. Nevertheless, a quick assessment of this issue can still be
obtained by looking at the degree of superficial divergence for various Feynman diagrams
that can arise.

The superficial degree of divergence D of a Feynman diagram is the difference in powers
of momentum in the numerator and denominator of a Feynman diagram evaluation. In the
proposed model, the separation of the momentum dependence in the propagators implies
that all amplitudes M, can be split into a product

MH = Ms M47 (585)

where M is the standard piece containing the usual propagators, coupling constants, and
integrals over four-momenta, and My is related to the new component of momentum. The
degree of divergence D, of the first sector is just the usual one for ¢* theory, D, = 4L — 2P,
where L is the number of loops and P is the number of propagators. Using the combinatorial
relation

1 1
L=1+-P—--N 5.86
+5P =N, (5.86)

where N is the number of nodes in the diagram, gives
D,=4—N: (5.87)

only a finite number of amplitudes diverge so that the standard sector of the theory is
renormalizable. In the sector defined by My, the degree of divergence is Dy = L — 2P.
Substituting the same combinatorial relation for L as before gives

1 3

Dy=1- ZN — §P. (5.88)
Since all potentially divergent diagrams that contain a loop have P > 0, the last term in
this expression guarantees that D, is always negative. Thus, the new sector of the model
is ultra-violet finite. Put together, these observations suggest that the full scalar field the-
ory is renormalizable. (Note that this conclusion is different from what one would have
obtained from an analysis of a ¢* theory in five dimensions in the usual sense, which would
have suggested non-renormalizability, or from an analysis that ignored the factorization of
amplitudes, which would have suggested super-renormalizability.) Given that these power-
counting estimates are encouraging, the renormalization program should now be carried out
systematically to verify the validity of the estimates and to find out how radiative corrections
from the extra dimension affect scattering amplitudes. In what follows, however, attention is
shifted to discuss how the proposed framework can be applied to quantum electrodynamics

(QED).
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Electrodynamics

The primary goal of any extension of QED should be to reproduce all the amplitudes of
the standard theory at low energies. In the present context, it is important to ensure that
conservation of the momentum in the fifth momentum component is compatible with all the
standard QED processes. When extending quantum electrodynamics, a theory with many
types of particles, several questions arise about the properties of the p, momentum. Should
all particle types have the same magnitude of the constant x? Should physical particles all
have their p, momenta carry the same sign? To answer such questions, it is useful to consider
some simple scattering experiments.

As a first example, consider the reaction ete™ — 7777, In the center of mass frame, the
incoming particles both have p, of magnitude \/x2 + m?; the constant . has a subscript e
to emphasize that it is labeling the x-shell of an electron. Suppose further that the outgoing
particles both have their fifth components of momentum of magnitude \/x2 + m2. Momen-
tum is taken to be conserved, p§ + p§ = pj + pj . From this, one can infer that if all
the momenta are of the same sign, then the values of k., and x, must be different. If, how-
ever, the momenta for particles and anti-particles have opposite signs, then the conservation
equation is satisfied trivially.

As another example, consider the process et e~ — 7777777~ or any similar one in which
there are more than two outgoing particles. Momentum conservation forbids such processes
if all the particles have p, of the same sign. However, such processes can occur if particles
and anti-particles carry p4 of opposite signs. It should be concluded, therefore, that ps must
be different for particles and anti-particles; in this sense, p, seems to be directly correlated
with the particle charge. No conclusion can be reached on the values of x for the different
particle species. It seems reasonable at this points to set the values of k for all species equal
for simplicity.

As a final example, consider the process e~ — e~y - - -~ where an electron radiates one or
more photons. This process is forbidden in standard QED in vacuo; it can occur, however, in
the presence of an external electric field, for example when the electron travels in a liquid. If
the scale k., for the photon is assumed to be non-zero, then this radiation process is forbidden
due to momentum conservation in the fifth dimension. This would be a drastic modification
of standard electrodynamics and would likely be met with strong experimental constraints,
although these are not considered here.

In terms of particle kinematics, perhaps a less radical approach to allowing the e~ —
e~ ---v process would be to take x, = 0. But this choice of x, would pose restrictions on
the possible interpretation of the proposed framework. In the DSR literature, x is usually
assumed to be remnant of quantum gravity and is thus set close to the Planck energy.
Its large and non-zero size allows to define the bicrossproduct coordinates and to expand
dispersion relations to in a series in po/k. If the parameter x, were set to zero, it would no
longer be possible to use the bicrossproduct basis to write modified dispersion relations for
photons.

To summarize, the sample processes considered suggest that particles and anti-particles
should have the same deformation scale x but opposite signs of ps. In this sense the value
of the py, momentum is directly correlated with the particle charge (note that this allows
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one to think of charge conjugation in terms of a reversal of p; momentum just like, say,
time conjugation can be understood as a reversal in py). The photon is assumed to carry
positive momentum p, dependent on a scale x, which may have to be set to zero. There
is no indication as to whether the values of k for different fermions should be the same or
different. The remainder of this section shows how these ideas could be implemented.

The free fermion fields can be defined in a similar fashion as done in the section on the

scalar field,
v = [ ol
T, T4) =

X Z (af)us(p)e_ip’x + bfjvs(p)eip'x) e PaTs

and similarly for ¢)(z,z4). The operators ap, by, their conjugates, and the four-dimensional
spinors u®, v® and their conjugates are the usual ones. The presence of the new scale is
seen in the new phase functions e*”4** and in factors of pf/ 2, Operators b*" and a®' create
particles with the same four-momentum p but with opposite values of the fifth momentum
component py, in accordance with the insights obtained previously. The propagator for one
of these fermions can be computed as in the section on the scalar field with the result

Drp(p) = (p2 f;:l ie) (pi—ka?imQ—{—ie)' (5.90)

Similarly, a modification of the electromagnetic field A(x, z4) can yield

Myaw 1
Dpu(p) = : 91
i (P) <q2 +@'6> (qﬁ — K2 —i—ie) (5:91)

The main difference between this expression and the one used for the fermion propagator is
that the energy scale is k. rather than k.

For the purpose of introducing an interaction between fermions and the photons, it is
useful to have a Lagrangian or action formulation of the theory. An action for the photon
field giving rise to the desired propagator could be, in Lorentz gauge,

1 [ dqd
S X 5/ | ? [Au(—=a, —au)(qf — ©2)(¢*)A*(q, q4)]. (5.92)
(2m)
Similarly, from the structure of the fermion propagator, it seems reasonable to guess
d*pdpy —
Sy o / (2ﬂ)54 [1/)(_1% —Pa) (pi — /{2) (p—m) Qp(p,p4)]_ (5.93)

In a five dimensional position-space representation, these actions would lead to a higher-
derivative theory. Although this feature often implies the presence of ghost particles, the
present model can be expected to preserve unitarity in a similar fashion as in the case of the
scalar field. The reason behind this lies in the fact that the extra derivatives only act along
the extra dimension. For convenience, it is also useful to define

U(p,ps) = (02— 12) "> (p, pa) (5.94)
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in terms of which the fermion action resembles the usual form

4
oo [ THS [O(—p.~po) (4 = m) Wl )] (5.95)
The simplicity of the model is now evident. The significant modification to QED arises in
the interaction.

The definitions of interaction vertices and the coupling constant are usually obtained
by replacing partial derivatives by covariant derivatives, 9, — 0, + eA,. In momentum
space, this replacement roughly translates to p, — p, + eA,(q) and a condition enforcing
momentum conservation at the vertex. In the current scenario, the interaction term could

be
swoe ([ ) ([ 6r) ()
[@(nm)} [(QZ — 12) 2" A, q4)} [‘I’(p’,pg)]
x (2m)" 6 (p + 1’ + q) (27) (pa + 1y + qu).

(5.96)

Despite its long form, this term is not difficult to understand. The last line of (5.96) imposes
momentum conservation in all five-dimensions. The first and second line express that two
fermions are interacting with one photon in five dimensions. The factor e in front of the
integrals is the usual coupling constant used in perturbation series. There are also some
factors depending on the fifth component of momentum. These factors can be understood
as arising from (5.95) by the minimal coupling prescription. The factor associated with
the A field is introduced so that all three fields enter symmetrically in the expression. A
consequence of this minimal coupling prescription is that diagrammatic Ward identities are
automatically preserved in this model just like in standard QED.

From equations (5.95), (5.92) and the interaction term (5.96), it is clear that the structure
of the five-dimensional model is very similar to standard QED. When calculating amplitudes
of various Feynman diagrams, expression arising in this model split to M, = M M, just
like in the scalar theory. Moreover, the extra factors in the propagators (5.90) and (5.91) get
cancelled by similar factors coming from the interaction term (5.96). Thus the part M, of
an amplitude that depends on the extra dimension is either unity or an infinite integral over
undetermined momenta p, inside loops. It is therefore clear that the problem of ultra-violet
divergences in this model is actually worse than usual. Nevertheless, it may still be possible
to deal with those new divergences consistently due to their simple form, c.f. the previous
comments on divergences.

5.3 Discussion

The main motivations for studying Deformed Special Relativity are the following. First, the
possibility of special relativity being an approximation to a different symmetry is quite in-
triguing by itself. Second, the connection of deformed special relativity with non-commutative
spaces and thus to certain models for the micro-structure of spacetime is also relevant to the
viewpoint presented in this thesis. Third, the concrete framework where the Planck scale

79



plays an important role seems a promising foundation around which the phenomenology of
quantum gravity could be built. There are, however, still some important open questions
in DSR regarding its observable consequences and its interpretation as a physical theory
[52,53]. The results of this work offer some answers but also leave many open questions.

Results and Open Issues

Regarding the free particle, different versions of DSR can be seen as realizations of the
same five dimensional constrained system via distinct gauge fixings. The formulation of
the DSR particle as a five dimensional system has the advantage that it explains the non-
cummutativity of spatial coordinates x as a residual effect in the 4d reduced phase space after
gauge fixing. Also, the specific gauge fixing functions Cs4 which lead to different versions
of DSR can be written explicitly. Finally, and perhaps most importantly, the formulation
in terms of a higher dimension brings forth the viewpoint that the proposed deformations
of special relativity are an extension of standard relativity. This in turn motivates the field
theory proposal discussed in section 5.2.

The aim of the proposal of section 5.2 is to investigate how the energy scale x and
the curvature equation (5.1) can be incorporated in a quantum field theory. A key step
in formulating the model is the adoption a five dimensional flat space. Related to this
transition is the assumption that momentum is conserved linearly in the higher dimensional
space. Most of the analysis is carried out for a scalar field model. The proposed ¢*-like theory
is simple enough so that it is possible to perturbatively compute amplitudes of scattering
processes via Feynman diagrams. The amplitudes of the theory reproduce the expected
results at leading order and the theory is explicitly shown to be unitary to second order in
the coupling parameter. The new scale does not regularize loop integrals and the theory
needs to be renormalized as usual. Nevertheless, the proposed theory differs from standard
¢* theory in various ways, most notably in that certain processes become kinematically
forbidden due to momentum conservation in the extra dimension; momentum conservation
implements a new super-selection rule on process amplitudes.

Thinking about electrodynamics leads to several conclusions about the properties of
the postulated extra dimension. If the proposed framework is to reproduce low energy
phenomena like electron-positron scattering, particles and anti-particles must carry momenta
p4 of opposite sign. Thus, the momentum in the extra dimension must be correlated with
the particle charge. For processes involving photons, the framework is faced with one of
two options, both of which have strong implications. One possibility is that photons have
ps = ky # 0 and certain higher order processes such as e~ — e~ 7y ---v are kinematically
suppressed. Alternatively, photons have ps = k., = 0 and all processes occur as usual but the
constraint (5.1) loses its original interpretation as setting a curvature in the four-dimensional
momentum space of the photon. This would imply that photons may not display deformed
dispersion relations. Either of these options should be interesting to explore further. In any
case, it is both surprising and encouraging that certain properties of the extra dimension,
which in this work should be thought of as a byproduct of modeling quantum gravity, can
be deduced from low energy experiments using very simple kinematical arguments.

What does this framework say about Planck scale phenomenology? Unfortunately, this
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question does not have a clear answer at this point because of the unclear interpretation of
the five dimensional momentum variables and their relation to observable quantities. It may
be that the physically relevant momenta are ones that, like the bicrossproduct coordinates,
are coordinates on de Sitter space [53]. If so, then in order to convert the amplitudes
calculated in the proposed framework to observed cross-sections, one should replace all the
five-dimensional momentum variables used in the above calculations by four-dimensional
coordinates on the physical space. This is a subtle point: although the amplitude M, would
be of the same functional form as the standard amplitude M, the former would give a cross
section o, that deviates slightly from the usual oy,

O = 0 (1+01@+...) : (5.97)
K

where ¢; is some order-unity constant and the other terms are suppressed by further factors of
Po/k. Computations of scattering processes in this model would resemble the methods used
in previous work on reactions in DSR [54]. It would be very useful to obtain experimental
feedback on this matter.

The physical interpretation for the fifth dimension, both in momentum space and the dual
position space, is one of the issues that deserve more attention. In particular, the role of the
gauge-fixing function Cs4 in the field theory context could be studied. Other open issues are
related to the fact that the interacting field theories are defined only perturbatively through
a set of Feynman rules. It would be satisfying to have their formulation in terms of an action
principle from which the mechanism implementing the two constraints could be understood.
This should be particularly useful in the domain of quantization of the gauge field where an
action principle might be able to discriminate between the options of k, = 0 and k, # 0.
With regards to the scattering amplitudes, the issue of renormalizability should be addressed
systematically. A related concern is to check that loop effects and radiative corrections in the
modified electrodynamics are not in contradiction with existing high-precision experiments.
These technical checks provide the possibility to test or rule out the proposal.

Comparison with Other Approaches

It is both fair and appropriate to mention another viewpoint on formulating field theory based
on DSR. Elsewhere, research on DSR and modified dispersion relations has been motivated
by the connection of the deformed algebras of the bicrossproduct basis with Hopf algebras
and quantum groups. From the algebraic point of view, the Poincare algebra cannot be
deformed in the sense that any proposed deformation can be smoothly mapped back to the
familiar algebra (while this is true in the mathematical sense, the work in this section shows
that the deformations may have physical implications.) However, Hopf algebras based on
the Poincare algebra can be deformed and consequently the literature on DSR as a Hopf
algebra puts a lot of emphasis on the coalgebra related to the bicrossproduct. In brief, a
Hopf algebra is a structure in which in addition to the operators N;, M;;, and p,, and their
algebra (commutation relations) one also has addition structure. There is a coproduct A
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which acts (in the bicrossproduct basis) as

AP)=P e ™" +1 P

(5.98)
APR)=FR1+1®F
and an antipode map S which is defined by
S PZ _ —Py/k
(P) = —e (5.99)

S(P()) == —Po.

In addition there is a co-unit but it is not important for the current purposes. The main
point is that when the coproducts (5.98) are used to define total momenta for a collection
of particles, the total momenta are bounded from above by the Planck scale just as the
momentum of a single particle is bounded. (This is essentially the “soccer-ball” problem
mentioned earlier.) A recent review on this approach to DSR is [30].

Approaches to studying field theories that take the above Hopf structure seriously start
with actions defined on a non-commutative space. For example, an action for a free scalar

field [46] can be

S = % / d*p(z) 8,0(x)" x 0 (z) + m*¢(z)" * ¢(x). (5.100)
Field multiplication on the non-commutative space is defined through the “star-product”
compatible with the relations (5.98). At the end of the day, the physics of such a model
is mapped to a non-local theory with an infinite number of derivatives on a standard flat
Minkowski space.

In the language presented in the previous subsections, the approach based on Hopf-
algebras is based on the reduced phase space of the field rather than on the higher dimensional
flat space. This may have some advantages over the proposal of section 5.2. For example, the
action integral is over four spatial dimensions and so there are no issues with interpreting
any new dimensions. Also, it is hoped that working on the reduced phase may have a
regulatory effect on the ultraviolet behavior of scattering amplitudes. However, a large
drawback of the Hopf-algebra approach is that interacting theories have not been formulated
and studied in very much detail and most of the effort has focussed on free theories, the main
obstacle to working with interacting theories being the appearance of new derivative terms
and ambiguities associated with conservation laws. Thus those alternative works are still
have not made contact with physically interesting examples of quantum field theories (QED,
etc.) and experiments.

82



6 Conclusion

In conclusion, it is alluring to look back to the beginning, evaluate progress made on the two
themes spelled out in the introduction, and reflect on the possibility for advances in quantum
gravity in the near future. The two themes in the introduction were understanding the
possible micro-structure of space at the Planck scale and seeing how this it might reveal itself
through modifications to particle physics. While the results obtained in various subtopics
related to these themes and their implications were already discussed in the previous sections,
they are put into a broader context here.

With respect to the structure of spacetime at the Planck scale, results from the Causal
Dynamical Triangulation models suggest there are still several subtle and delicate issues
that should be studied and understood. Yet in CDT models it is hard to make progress
analytically (at least in 2+1 and 3+ 1 dimensions) and hence it may be fruitful to investigate
other models which are in some sense simpler, for example quantum graphity. More analytic
work on that system should still be possible thanks to available techniques in condensed
matter systems on infinite range interactions and symmetry breaking. Of course, just like
in dynamical triangulation models, in the end computer simulations may have to be used
to check the analytic results. On a different note, it would also be interesting to connect
models like graphity with Einstein’s equations of general relativity. Since the graphity model
presented here is not directly based on Einstein’s equations, the model might have to be
modified for this to be possible. An approach one can try in order to achieve this might be
to first map a graphity-like Hamiltonian to a dynamical triangulation or spin-foam model.

All of the issues studied here are relevant for the broad problem of the low energy limit
of quantum gravity. One can hope that progress on models such as graphity might provide
some insights into similar issues in other well-developed approaches to quantum gravity,
such as LQG. For example, one might be able to better understand the dynamics of spin
networks. Finally, an interesting question to be asked is whether quantum gravity should
naturally explain the evolution of the very early universe. In other words, should a quantum
theory of gravity automatically provide an inflationary or alternative mechanism to explain
the observed homogeneity, flatness, and anisotropies? There are still many open question in
the domain of using discrete systems as cosmological models.

In addition, thinking about Planck scale physics can also bring forth questions on foun-
dational issues such as the role of time, matter content, and other background structure in
theories of physics. These questions are interesting in the sense that they are arise in many
approaches to quantum gravity. An intriguing possibility that arises from the noiseless sub-
systems paradigm is that relational systems may in fact be subsystems of other non-relational
systems, and vice versa. Beyond providing a new perspective on the debate on background
independence in physics, this kind of interdependency hints that calculational tools from one
set of theories may be applicable to the other. This line of thought is still largely unexplored
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and, given its different nature from the model building and scenarios discussed above, could
be of interest to the quantum gravity community irrespective of what specific model turns
out to be favored by observations.

Coming to particle phenomenology, one can imagine that a quantum theory of gravity
will provide new definitions for low energy excitations and thus will emphasize that quantum
field theory is an effective rather than a fundamental framework. One can also imagine that
quantum gravity will leave some residual signs at low energies that may be detectable in
future experiments. This work focussed on a proposal for such a residual effect in the form
of a deformed symmetry principle - Deformed Special Relativity. Because of the various
ambiguities in the formulation of Deformed Special Relativity and a lack of physical principle
to fix them, there is currently some confusion on the status and interpretation of DSR.
Thus at the moment DSR can only point to possible signatures of quantum gravity and
not make final predictions. What is possible, however, is to study its internal structure
and self-consistency so that perhaps DSR could indicate correlations between experimental
signatures, if seen at all.

Beyond the discussion of unitarity presented in this work, one can also investigate for
example quantum (one-loop) corrections to amplitudes. It should also be interesting to see
whether the 5d field theoretic approach fit with the approaches based on the star-product.
But perhaps most importantly, it would be extremely interesting to find out in detail how
a deformed symmetry could arise in the low energy limit of some candidate for a quantum
theory of gravity. This again ties to the low energy limit of quantum gravity but puts the
focus on how particle properties are changed as a result of Planck scale physics.

It is reassuring that experimental data from various areas of physics are becoming in-
creasingly available to guide work on quantum gravity. Model building should try to connect
with the experiments as early in their development as possible because the goal of this kind
of research is, after all, to deduce what the physics of the Planck scale might be. As the
experimental evidence relevant to quantum gravity can and will be revealed in many forms,
it is important to remember that insight can be obtained by combining complementary ap-
proaches; in particular it is possible that understanding will come through the reconciliation
of large-scale and small-scale phenomena.

84



References

1]

[10]

T. Thiemann, “Lectures on loop quantum gravity,” Lect. Notes Phys. 631, 41 (2003)
[arXiv:gr-qc/0210094];

C. Rovelli, Quantum gravity, Cambridge University Press, 2004;

L. Smolin, “An invitation to loop quantum gravity,” arXiv:hep-th/0408048.

G. Amelino-Camelia, J. R. Ellis, N. E. Mavromatos, D. V. Nanopoulos and S. Sarkar,
“Potential Sensitivity of Gamma-Ray Burster Observations to Wave Dispersion in
Vacuo,” Nature 393, 763 (1998) [arXiv:astro-ph/9712103].

L. Bombelli, J. H. Lee, D. Meyer and R. Sorkin, “Space-Time As A Causal Set,” Phys.
Rev. Lett. 59, 521 (1987);
R. D. Sorkin, “Causal sets: Discrete gravity,” arXiv:gr-qc/0309009.

J. Ambjorn, J. Jurkiewicz and R. Loll, “A non-perturbative Lorentzian path integral
for gravity,” Phys. Rev. Lett. 85, 924 (2000) [arXiv:hep-th/0002050];

J. Ambjorn and R. Loll, “Non-perturbative Lorentzian quantum gravity, causality and
topology change,” Nucl. Phys. B 536, 407 (1998) [arXiv:hep-th/9805108];

J. Ambjorn, J. Jurkiewicz and R. Loll, “Non-perturbative 3d Lorentzian quantum grav-
ity,” Phys. Rev. D 64, 044011 (2001) [arXiv:hep-th/0011276];

J. Ambjorn, J. Jurkiewicz and R. Loll, “Dynamically triangulating Lorentzian quantum
gravity,” Nucl. Phys. B 610, 347 (2001) [arXiv:hep-th/0105267];

J. Ambjorn, J. Jurkiewicz and R. Loll, “Emergence of a 4D world from causal quantum
gravity,” Phys. Rev. Lett. 93, 131301 (2004) [arXiv:hep-th/0404156].

F. Markopoulou and L. Smolin, “Gauge fixing in causal dynamical triangulations”
[arXiv:hep-th/0409057].

T. Konopka, “Foliations and 2+1 causal dynamical triangulation models,” Phys. Rev.
D 73, 024023 (2006) [arXiv:hep-th/0505004].

J. Ambjorn, M. Carfora and A. Marzuoli, “The geometry of dynamical triangulations”
[arXiv:hep-th/9612069).

D. Gabrielli, “Polymeric phase of simplicial quantum gravity,” Phys. Lett. B 421, 79
(1998) [arXiv:hep-lat/9710055].

J. B. Hartle, “Simplicial Minisuperspace. I. General Discussion,” J. Math. Phys. 26,
804 (1985).

D. P. Rideout, “Dynamics of causal sets,” arXiv:gr-qc/0212064.

85



[11]

[12]

[16]

[17]
[18]

[19]
[20]

[21]

[22]

T. Konopka, F. Markopoulou and L. Smolin, “Quantum graphity,” arXiv:hep-
th/0611197.

X. G. Wen, “Artificial light and quantum order in systems of screened dipoles,” Phys.
Rev. B 68, 115413 (2003) [arXiv:cond-mat/0210040];

X. G. Wen, “Quantum order from string condensations and origin of light and massless
fermions,” Phys. Rev. D 68, 065003 (2003) [arXiv:hep-th/0302201];

M. Levin and X. G. Wen, “Fermions, strings, and gauge fields in lattice spin models,”
Phys. Rev. B 67, 245316 (2003) [arXiv:cond-mat/0302460];

M. A. Levin and X. G. Wen, “String-net condensation: A physical mechanism for
topological phases,” Phys. Rev. B 71, 045110 (2005) [arXiv:cond-mat/0404617].

M. Levin and X. G. Wen, “Quantum ether: Photons and electrons from a rotor model,”
arXiv:hep-th/0507118.

F. Markopoulou, “Towards gravity from the quantum,” arXiv:hep-th/0604120.

D. W. Kribs and F. Markopoulou, “Geometry from quantum particles,” arXiv:gr-
qc/0510052.

J. B. Kogut and L. Susskind, “Hamiltonian Formulation Of Wilson’s Lattice Gauge
Theories,” Phys. Rev. D 11, 395 (1975).

X. G. Wen, private communication.

F. Markopoulou, “The internal description of a causal set: What the universe looks like
from the inside,” Commun. Math. Phys. 211, 559 (2000) [arXiv:gr-qc/9811053];

F. Markopoulou, “Quantum causal histories,” Class. Quant. Grav. 17, 2059 (2000)
[arXiv:hep-th/9904009];

F. Markopoulou, “An insider’s guide to quantum causal histories,” Nucl. Phys. Proc.
Suppl. 88, 308 (2000) [arXiv:hep-th/9912137];

E. Hawkins, F. Markopoulou and H. Sahlmann, “Evolution in quantum causal histories,”
Class. Quant. Grav. 20, 3839 (2003) [arXiv:hep-th/0302111].

V. Mukhanov, “Physical Foundations of Cosmology,” Cambridge University Press, 2005.

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information,
Cambridge University Press, 2000.

P.Zanardi and M.Rasetti, Phys.Rev.Lett.79 3306 (1997);

D. A. Lidar, I. L. Chuang and K. B. Whaley, “Decoherence Free Subspaces for Quantum
Computation,” Phys. Rev. Lett. 81, 2594 (1998) [arXiv:quant-ph/9807004];

E.Knill, R.Laflamme and L.Viola, Phys.Rev.Lett. 84 2525 (2000);

J. Kempe, D. Bacon, D. A. Lidar and K. B. Whaley, “Theory of decoherence-free
fault-tolerant universal quantum computation,” Phys. Rev. A 63, 042307 (2001).

T. Konopka and F. Markopoulou, “Constrained mechanics and noiseless subsystems,”
arXiv:gr-qc/0601028.

36



[23]

[24]

[25]

[20]

[27]
28]

[29]

[30]

[32]

[33]

[35]

[36]

R. Laflamme, et al. “Introduction to NMR Quantum Information Processing,”
arXiv:quant-ph/020717.

V. Husain, “Background independent duals of the harmonic oscillator,” Phys. Rev. Lett.
96, 221303 (2006) [arXiv:hep-th/0511131].

D. Forster, H. B. Nielsen and M. Ninomiya, “Dynamical Stability Of Local Gauge
Symmetry: Creation Of Light From Chaos,” Phys. Lett. B 94, 135 (1980).

D. N. Page and W. K. Wootters, “Evolution Without Evolution: Dynamics Described
By Stationary Observables,” Phys. Rev. D 27, 2885 (1983);

W. G. Unruh and R. M. Wald, “Time And The Interpretation Of Canonical Quantum
Gravity,” Phys. Rev. D 40, 2598 (1989);

C. Rovelli, “Relational Quantum Mechanics,” Int. J. of Theor. Phys. 35 (1996) 1637,
arXiv:quant-ph/9609002;

R. Gambini, R. Porto and J. Pullin, “A relational solution to the problem of time in
quantum mechanics and quantum gravity induces a fundamental mechanism for quan-
tum decoherence,” New J. Phys. 6, 45 (2004) [arXiv:gr-qc/0402118].

D. Poulin, “A Relational Formulation of Quantum Theory,” arXiv:quant-ph/0505081.

J. Magueijo, L. Smolin and C. R. Contaldi, “Holography and the scale-invariance of
density fluctuations,” arXiv:astro-ph/0611695.

B. Z. Foster and T. Jacobson, “Quantum field theory on a growing lattice,” JHEP 0408,
024 (2004) [arXiv:hep-th/0407019].

J. Kowalski-Glikman, “Doubly special relativity: Facts and prospects,” arXiv:gr-
qc/0603022. (to appear in "Towards Quantum Gravity,” ed. D. Oriti, 2006).

L. Freidel and E. R. Livine, “Ponzano-Regge model revisited. III: Feynman diagrams
and effective field theory,” Class. Quant. Grav. 23, 2021 (2006) [arXiv:hep-th/0502106].

T. J. Konopka and S. A. Major, “Observational limits on quantum geometry effects,”
New J. Phys. 4, 57 (2002) [arXiv:hep-ph/0201184].

D. Mattingly, “Modern tests of Lorentz invariance,” Living Rev. Rel. 8, 5 (2005)
[arXiv:gr-qc,/0502097].

F. Girelli, T. Konopka, J. Kowalski-Glikman and E. R. Livine, “The free particle in
deformed special relativity,” Phys. Rev. D 73, 045009 (2006) [arXiv:hep-th/0512107].

T. Konopka, “A field theory model with a new Lorentz-invariant energy scale,”
arXiv:hep-th/0601030.

D. Colladay and V. A. Kostelecky, “Lorentz-violating extension of the standard model,”
Phys. Rev. D 58, 116002 (1998) [arXiv:hep-ph/9809521];

R. C. Myers and M. Pospelov, “Ultraviolet modifications of dispersion relations in ef-
fective field theory,” Phys. Rev. Lett. 90, 211601 (2003) [arXiv:hep-ph/0301124].

87



[37]

[38]

[39]

[40]

[41]

[42]

[43]

D. Mattingly, “Modern tests of Lorentz invariance,” Living Rev. Rel. 8, 5 (2005)
[arXiv:gr-qc/0502097];

T. Jacobson, S. Liberati and D. Mattingly, “Lorentz violation at high energy: Concepts,
phenomena and astrophysical constraints,” Annals Phys. 321, 150 (2006) [arXiv:astro-
ph/0505267];

R. Bluhm, “Overview of the SME: Implications and phenomenology of Lorentz viola-
tion,” arXiv:hep-ph/0506054.

G. Amelino-Camelia, “Relativity in space-times with short-distance structure governed
by an observer-independent (Planckian) length scale,” Int. J. Mod. Phys. D 11, 35
(2002) [arXiv:gr-qc/0012051];

J. Magueijo and L. Smolin, “Lorentz invariance with an invariant energy scale,” Phys.
Rev. Lett. 88, 190403 (2002) [arXiv:hep-th/0112090];

J. Magueijo and L. Smolin, “Generalized Lorentz invariance with an invariant energy
scale,” Phys. Rev. D 67, 044017 (2003) [arXiv:gr-qc/0207085].

J. Lukierski, H. Ruegg, A. Nowicki and V. N. Tolstoi, “Q deformation of Poincare
algebra,” Phys. Lett. B 264, 331 (1991);

J. Lukierski, H. Ruegg and W. J. Zakrzewski, “Classical quantum mechanics of free
kappa relativistic systems,” Annals Phys. 243, 90 (1995) [arXiv:hep-th/9312153];

J. Lukierski, A. Nowicki and H. Ruegg, “New quantum Poincare algebra and k deformed
field theory,” Phys. Lett. B 293, 344 (1992).

G. Amelino-Camelia, .. Smolin and A. Starodubtsev, “Quantum symmetry, the cosmo-
logical constant and Planck scale phenomenology,” Class. Quant. Grav. 21, 3095 (2004)
[arXiv:hep-th/0306134];

F. Girelli, E. R. Livine and D. Oriti, “Deformed special relativity as an effective flat
limit of quantum gravity,” Nucl. Phys. B 708, 411 (2005) [arXiv:gr-qc/0406100];

L. Smolin, “Falsifiable predictions from semiclassical quantum gravity,” arXiv:hep-
th/0501091;

K. Imilkowska and J. Kowalski-Glikman, “Doubly Special Relativity as a Limit of Grav-
ity,” arXiv:gr-qc/0506084.

L. Freidel, J. Kowalski-Glikman and L. Smolin, “2+1 gravity and doubly special rela-
tivity,” Phys. Rev. D 69, 044001 (2004) [arXiv:hep-th/0307085];

L. Freidel and E. R. Livine, “Ponzano-Regge model revisited. III: Feynman diagrams
and effective field theory,” Class. Quant. Grav. 23, 2021 (2006) [arXiv:hep-th/0502106];
L. Freidel and E. R. Livine, “Effective 3d Quantum Gravity and Non-Commutative
Quantum Field Theory,” arXiv:hep-th/0512113.

S. Hossenfelder, “Self-consistency in theories with a minimal length,” Class. Quant.
Grav. 23, 1815 (2006) [arXiv:hep-th/0510245].

M. Daszkiewicz, K. Imilkowska, J. Kowalski-Glikman and S. Nowak, “Scalar field theory
on kappa-Minkowski space-time and doubly special relativity,” Int. J. Mod. Phys. A 20,
4925 (2005) [arXiv:hep-th/0410058].

38



[44]

[45]

[48]

[50]

[51]

[52]

G. Amelino-Camelia and M. Arzano, “Coproduct and star product in field theories on
Lie-algebra non-commutative space-times,” Phys. Rev. D 65, 084044 (2002) [arXiv:hep-
th/0105120].

M. Dimitrijevic, L. Jonke, L. Moller, E. Tsouchnika, J. Wess and M. Wohlgenannt, “De-
formed field theory on kappa-spacetime,” Eur. Phys. J. C 31, 129 (2003) [arXiv:hep-
th/0307149];

M. Dimitrijevic, F. Meyer, L. Moller and J. Wess, “Gauge theories on the kappa-
Minkowski spacetime,” Eur. Phys. J. C 36, 117 (2004) [arXiv:hep-th/0310116].

L. Freidel, J. Kowalski-Glikman and S. Nowak, “From noncommutative kappa-
Minkowski to Minkowski space-time,” arXiv:hep-th/0612170.

G. Amelino-Camelia, “Doubly special relativity,” Nature 418, 34 (2002) [arXiv:gr-
qc/0207049];

J. Kowalski-Glikman, “Introduction to doubly special relativity,” Lect. Notes Phys.
669, 131 (2005) [arXiv:hep-th/0405273];

G. Amelino-Camelia, J. Kowalski-Glikman, G. Mandanici and A. Procaccini, “Phe-
nomenology of doubly special relativity,” Int. J. Mod. Phys. A 20, 6007 (2005) [arXiv:gr-
qc/0312124].

J. Kowalski-Glikman, “De Sitter space as an arena for doubly special relativity,” Phys.
Lett. B 547, 291 (2002) [arXiv:hep-th/0207279];

J. Kowalski-Glikman and S. Nowak, “Doubly special relativity and de Sitter space,”
Class. Quant. Grav. 20, 4799 (2003) [arXiv:hep-th/0304101].

N. R. Bruno, G. Amelino-Camelia and J. Kowalski-Glikman, Deformed boost transfor-
mations that saturate at the Planck scale, Phys. Lett. B 522 (2001) 133 [arXiv:hep-
th/0107039].

J. Kowalski-Glikman, Planck-scale relativity from quantum kappa-Poincare algebra,
Mod. Phys. Lett. A 17, 1 (2002) [arXiv:hep-th/0107054].

S. Majid and H. Ruegg, “Bicrossproduct structure of kappa Poincare group and non-
commutative geometry,” Phys. Lett. B 334, 348 (1994) [arXiv:hep-th/9405107].

D. V. Ahluwalia-Khalilova, “A freely falling frame at the interface of gravitational and
quantum realms,” Class. Quant. Grav. 22, 1433 (2005) [arXiv:hep-th/0503141];

S. Liberati, S. Sonego and M. Visser, “Interpreting doubly special relativity as a modi-
fied theory of measurement,” Phys. Rev. D 71, 045001 (2005) [arXiv:gr-qc/0410113];
R. Aloisio, A. Galante, A. Grillo, S. Liberati, E. Luzio and F. Mendez, “Deformed spe-
cial relativity as an effective theory of measurements on quantum gravitational back-
grounds,” Phys. Rev. D 73, 045020 (2006) [arXiv:gr-qc/0511031];

F. Girelli and E. R. Livine, “Physics of deformed special relativity: Relativity principle
revisited,” arXiv:gr-qc/0412004;

F. Girelli and E. R. Livine, “Physics of Deformed Special Relativity,” Braz. J. Phys.
35, 432 (2005) [arXiv:gr-qc/0412079).

39



[54]

[55]

[56]

S. Judes and M. Visser, “Conservation Laws in Doubly Special Relativity,” Phys. Rev.
D 68, 045001 (2003) [arXiv:gr-qc/0205067];

D. Heyman, F. Hinteleitner and S. Major, “On reaction thresholds in doubly special
relativity,” Phys. Rev. D 69, 105016 (2004) [arXiv:gr-qc/0312089];

S. Hossenfelder, M. Bleicher, S. Hofmann, J. Ruppert, S. Scherer and H. Stoecker,
“Collider signatures in the Planck regime,” Phys. Lett. B 575, 85 (2003) [arXiv:hep-
th/0305262].

F. Girelli and E. R. Livine, “Special Relativity as a non commutative geometry: Lessons
for Deformed Special Relativity,” arXiv:gr-qc/0407098.

M. E. Peskin and D. V. Schroeder, “An Introduction to Quantum Field Theory,” West-
view Press, 1995.

90



