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Abstract 

In recent years, light gauge cold-formed steel members have been used extensively in low 

and mid- rise residential building construction. In cold-formed steel design there are several 

applications where built-up box girders are used to resist load induced in a structure when a 

single section is not sufficient to carry the design load. The cold-formed steel box girders 

may be subjected to eccentric loading when the web of one of the sections receives the load 

and transfers it through the connection to another section. There may be an unequal 

distribution of load in built-up girder assemblies loaded from one side. In the current North 

American Specification for the Design of Cold-Formed Steel Structural Members (CSA-

S136-01, 2001), there is no guideline or design equation to calculate the flexural capacity of 

this type of section. AISI cold-formed steel framing design guide (2002) has recommended 

that the moment of resistance and inertia of the built-up section are the simple addition of the 

component parts, based on deflection compatibility of the two sections. However, this design 

approximation has not been justified by any experimental or numerical study. Very little 

information was found in literature about this topic.  

The objective of this study is the investigation of the flexural behaviour of built-up box 

girders assembled from cold-formed stud and track sections when subjected to eccentric 

loading. Finite element analysis is conducted for this purpose, being much more economical 

than expensive experimental testing. Detailed parametric studies are carried out to identify 

the factors affecting the flexural capacity of built-up cold-formed steel sections.  The 

parametric results are used to develop a design equation for calculating the flexural capacity 

of built-up cold-formed steel sections. 
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Chapter 1 

Introduction 

1.1 General 

In steel construction, there are two main categories of steel: hot-rolled steel and cold-formed 

steel. Hot-rolled steel sections have been used in the construction industry for more than one 

hundred years. As compared with thicker hot-rolled shapes, thin cold-formed members can 

be used for relatively light loads and short spans. Unusual sectional configurations can also 

be produced economically by cold-forming operations. Cold-formed steel structural members 

are made by cold-forming steel sheets, strips, plates or flat bars in roll forming machines or 

by press brake operations. The typical thickness of cold-formed steel products ranges from 

0.4mm to about 6.4mm, although plates as thick as 25mm can also be cold-formed by some 

manufacturers. Presently, cold-formed steel sections are being extensively used in airplanes, 

automobiles, grain storage structures and building structures, to name just a few. They have 

been used in building construction as early as the 1850’s. However, in North America such 

steel members were not widely used in buildings until the publication of the first edition of 

the American Iron and Steel Institute (AISI) specification in 1946. The first edition of the 

unified North American Specification was prepared and issued in 2001(CSA-S136-01, 2001). 

Cold-formed steel is currently being used widely in residential and light commercial 

building constructions instead of wood framing because of the decreasing supply of 

reasonably priced quality lumber. Besides that, cold-formed steel has the highest strength-to-

weight ratio of any building material used in construction today. Cold-formed steel sections 

are economical, light weight, non-combustible and also recyclable.  
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1.2 Description of the problem 

Cold -formed steel sections such as C-sections with or without lips, I-sections, and hat 

sections are normally used as flexural members. When single sections are not sufficient for 

design loads, built-up sections made of back-to-back C-sections or nested C-sections forming 

a box girder are normally used as flexural members. Figure 1.1 shows a picture of a floor 

opening where built-up joists are used to carry a heavy load. For the joist assembly shown in 

Figure 1.1, load from the framing member is directly applied to the web of one member of the 

built-up joist assembly. As a result, any resistance provided by the other members in the 

assembly depends on the efficiency of the connection components in transferring load. Cold-

formed steel (CFS) built-up box girders may also be subject to torsional moments. There may 

also be an unequal distribution of load in built-up girder assemblies loaded from one side. 

The current North American Specification for the Design of Cold-Formed Steel Structural 

Members (CSA-S136-01, 2001) does not provide any guideline on this issue. The AISI Cold-

Formed Steel Framing Design Guide (AISI Cold-Formed Steel Framing Design Guide, 2002) 

suggests that the moment of resistance and inertia of built-up sections are the simple addition 

of the component parts. This assumption was made based on the assumption of displacement 

compatibility among the component parts but has not been confirmed by testing. Unequal 

load distribution can potentially lead to a reduction in capacity compared to the sum of the 

capacities of the individual members that make up the assembly.  Addressing these problems 

presents an interesting challenge for the designer, or research is required to understand the 

flexural behaviour of CFS built-up box girders subjected to eccentric loading.  
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Figure 1.1 Flexural loading condition in cold-formed steel framing (CSSBI low rise residential 

construction details, 1994) 
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1.3 Objective of study 

The objective of this study is to understand the flexural behaviour of CFS built-up box 

girders subjected to eccentric loading, and to verify whether the current design practice for  

calculating the moment capacity of this type of section is conservative or not. The built-up 

girder studied in this thesis is made from a stud section and a track section. The descriptions 

of the stud and track sections are given in section 1.4 in this chapter. The box sections were 

made by connecting both the top and bottom flanges of the stud and track sections using self-

drilling screws, as shown in Figure 1.2. The stud section receives the load first and then 

transfers the load to the track section through the self-drilling screws. A finite element model 

is developed using ANSYS (version 10) to determine the ultimate moment capacity of CFS 

built-up box girders. After that, parametric studies are conducted using FEM analysis to 

identify the factors affecting the moment capacity of this type of section. Based on the results 

from the parametric studies, a simple equation is developed to calculate the ultimate moment 

capacities of CFS built-up box girders. 

1.4 Terminology 

The CFS built-up box sections examined in this study consist of two C-sections, one with 

stiffening lips and one without. Figure 1.2 shows cross-sections of C-sections with (a) 

stiffening lips and (b) without stiffening lips. The combination of the C-sections used in 

built-up assemblies is shown in Figure1.2(c) and 1.2(d).  

In this study, C-sections with lips are called stud sections. C-sections without lips are often 

used as alignment tracks for channels. For this reason, C-sections without lips are commonly 

referred to as track sections. The track sections with equal top and bottom flanges are 
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referred to as track sections, whereas track sections with bottom flanges longer than the top 

flanges are referred to as rim-track sections.  

 

Figure 1.2 Cold-formed steel sections 

1.5 Organization of thesis 

The first requirement of any study is to review the theoretical background and identify what 

research has already been done in the field of interest. In Chapter 2, the theoretical 

a) Stud section b)Track section b) Rim-track section 

d) Stud plus Rim-track assembly c) Stud plus track assembly 
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background necessary to understand the behaviour of cold-formed steel sections is discussed, 

including elastic plate buckling theory, the effective width concept for post buckling analysis 

of plates, and design expressions for calculating moment capacity. A review of previous 

experimental work and finite element analysis carried out in the cold-formed steel research 

area is also discussed in this chapter. 

In Chapter 3, the development and verification of the finite element method (FEM) model 

created by this study to investigate the flexural behaviour of CFS built-up box girders is 

discussed. The FEM model accounts for the material nonlinearities, geometric nonlinearities 

and initial geometric imperfections of cold-formed sections. The results from the FEM 

analysis are compared with the available experimental test results to establish the accuracy of 

the FEM model. It is demonstrated that the FEM model reliably predicts the ultimate moment 

capacities of CFS built-up box girders as determined by laboratory tests.  

As such, instead of doing expensive testing, the FEM model is used in Chapter 4 to 

investigate CFS girders configurations that were not tested and to carry out parametric 

studies. Specifically, the FEM model is used to investigate the influence of section depth, 

thickness, flange screw spacing and material yield stress on the ultimate moment capacity of 

CFS built-up sections. The results from the parametric studies are then used to develop an 

equation for calculating the moment capacity of CFS built-up box girders. 

Chapter 5 gives a summary of the work carried out, and presents the conclusions and topics 

for future work emanating from the study. The appendices list all the calculations required to 

determine the nominal moment capacities of individual CFS built-up sections. 
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Chapter 2 

Theoretical background and literature review 

2.1 Introduction 

The purpose of this chapter is to provide some background knowledge on the theoretical 

development of the design equations for cold-formed steel flexural members. Although the 

main objective of the research is to investigate the flexural performance of built-up box 

girders, current design practice and all experimental and numerical studies related to this 

topic are also discussed later in this chapter. 

2.2 Theoretical background 

In 1883, Saint Venant derived (Timoshenko and Gere, 1961) the differential equation for a 

plate subjected to combined bending and tension or compression. The equation is as follows: 
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where, 

 Nx = Force acting in x direction per unit width 

 Ny = Force acting in y direction per unit width 

 Nxy = Shearing force acting in y direction, per unit width of plate perpendicular to x    axis. 

 X = Body force acting in x direction. 

 Y = Body force acting in y direction. 
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 q = Pressure loading force in direction of w 

 D = Flexural rigidity of plate  

  

)1(12 2

3

ν−
=

Et  

If the plate is subjected to a compressive edge loading in the x direction and there is no body 

force and q = 0, Eq. (2.1) reduces to:            

 (2.2) 

 

Putting Nx = -tσx , Eq. (2.2) reduces to: 

   (2.3) 

 

If the deflection w is independent of y, the solution of this differential equation for hinged 

end is:
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where, a is the length of the strip in x the direction. This solution is equivalent to the Euler 

critical buckling load for columns. 

In 1891, Bryan (Bryan, 1891) solved the stability problem of plate buckling using the energy 

method. He considered a simply supported rectangular plate under uniform edge compression 

in one direction. The deflection surface of the buckled simply-supported plate is represented 

by a double trigonometric series as follows:   
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where, a = length of the plate     

b = width of the plate 

m, n are numbers of half sine waves in the x and y directions, respectively. 

 

 

 

 

 

Figure 2.1 Buckled shape of simply supported plate
 
(Timoshenko and Gere, 1961) 

 

The corresponding critical value of the compressive force ((Nx)cr) can be determined by 

integrating Eq. (2.3) using Eq.(2.5), or by considering the energy of the system. The resulting 

critical value is as follows: 
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The first factor in this expression represents the Euler load for a strip of unit width and length 

a. The second factor indicates in what proportion the stability of a continuous plate is greater 

than the stability of an isolated strip. The magnitude of the factor depends on the magnitude 

Nx 

w 
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b
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of the ratio a/b and also the number of half sine waves into which the plate buckles. Eq.(2. 6) 

can be rewritten as follows: 
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                                                                                  (2.7)  

Substituting in the value of D, and using the notation, 

2
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                                                                                                                 (2.8)      

the equation for the critical elastic plate buckling stress Fcr is expressed as follows: 
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                                                                                                         (2.9) 

Values of the plate buckling coefficient for a plate with simply supported edges are shown in 

Figure 2.2. From this figure it is clear that when a/b ratio is an integer, the value of k becomes 

4.The transition from m to m+1 half sine waves occurs when the two corresponding curves 

have equal ordinates. Equating ordinates of the two corresponding curves, the following 

equation can be derived: 

( )1+= mm
b

a
                                                                                                                 (2.10) 

For a long plate Eq.(2.10) becomes: 

m
b

a
≈                                                                                                                                  (2.11) 



 

  11 

Eq. (2.11) indicates that a very long plate buckles in half sin waves and the length of half sin 

waves equals approximately the width of plate, and therefore square waves are formed as 

shown in Figure 2.1.As shown in Figure 2.2, whenever the aspect ratio exceeds 4, k approaches 

4. So k = 4 can be used for determining the critical buckling stress for a simply supported 

plate subjected to uniform compression in one direction. For different loading and boundary 

conditions, the value of k will vary.  The values of k for different loading and boundary 

conditions are listed in Table 2.1
 
(Yu, 2000). 

  

Figure 2.2 Buckling coefficients for flat rectangular plate (Timoshenko and Gere, 1961) 

2.3 Effective design width concept 

The critical elastic buckling load Fcr, does not necessarily indicate the failure of the plate, but 

distinguishes a load carrying region within which the load carrying mechanism of the plate 
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changes from one form to another. An additional load can be carried by the element after 

buckling by means of a redistribution of stress. The additional load carrying capacity 

developed in the plate beyond Fcr is called post buckling capacity and is most pronounced for 

stiffened compression elements with large width-to-thickness ratios (w/t). Post buckling 

strength increases with increase of the w/t ratio. The mechanism of the post buckling 

behaviour of a compression element was discussed by Winter
 
(Winter, 1970) using a square 

plate model.  

The plate is uniformly compressed in one direction and simply supported along the 

unloaded edges. This plate can be replaced by a model as shown in Figure 2.3 (Winter, 1970), 

which consists of longitudinal and transverse bars in which the material of the plate is 

assumed to be concentrated. As soon as the longitudinal bars start deflecting at Fcr, the 

transverse bars in the grid will act as tie rods to counteract the increasing deflection of the 

longitudinal struts. After Fcr is reached, a portion of the pre-buckling load of the centre strip 

is transferred to the edge strips. The strut closest to the edges continues to resist increasing 

load with hardly any increasing deflection. As a result the uniformly distributed compression 

stress in the plate redistributes itself in a manner as shown in Figure 2.4, with the stress being 

largest at the edges and smallest in the centre. With further increase in load this 

nonuniformity increases further. The plate fails only when the most highly stressed strips, 

near the supported edges, begin to yield. 
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Table 2.1 Plate Buckling Coefficient (Yu, 2000) 

Case 

 

(a) 

 

(b) 

 

 

(c) 

 

 

 

(d) 

 

 

(e) 

 

 

(f) 

 

 

 

(g) 

 

 

 

(h) 

 

 

(i) 

 

 

Boundary condition Type of stress 

 

Compression 

 

 

Compression 

 

Compression 

 

 

 

Compression 

 

 

Compression 

 

 

Shear 

 

 

 

Shear 

 

 

 

Bending 

 

 

Bending 

Value of k for 

long plate 

4.0 

 

 

6.97 

 

0.425 

 

 

 

1.277 

 

 

5.42 

 

 

5.34 

 

 

 

8.98 

 

 

 

23.9 

 

 

41.8 

s.s 

s.s                         s.s 

s.s 

Fixed 

s.s                        s.s 

Fixed 

s.s 

s.s                     s.s 

Free 

Fixed 

s.s                    s.s 

Free 

Fixed 

s.s                    s.s 

s.s 

Fixed 

Fixed                Fixed 

Fixed 

s.s 

s.s                           s.s 

s.s 

Fixed 

Fixed                 Fixed 

Fixed 

s.s 

s.s                          s.s 

s.s 
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Figure 2.3 Post buckling behaviour of square plate (Winter, 1970) 

 
  

Post-buckling behaviour of plates can be analyzed by using large deflection theory. In 1910, 

von Karman first proposed the following differential equation: 
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This equation depends on the external stress function F and the deformation w. 

As the solution of Eq. (2.12) is complicated, it has limited application in practical design. For 

this reason, in 1932, von Karman et al. (von Karman et al. 1932) proposed the “Effective 

width concept”. In this approach, instead of considering the non uniform distribution of stress 

over the entire width of w, it is assumed that the total load is carried by a fictitious effective 

width b, subject to a uniformly distributed stress equal to the edge stress fmax, as shown in the 

w 

w 

a 

b 

c 

d 
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Figure 2.4. The width b is selected so that the area under the curve of the actual non uniform 

stress distribution is equal to the sum of the two parts of the equivalent rectangular shaded 

area with a total width b and an intensity of stress equal to the edge stress fmax, i.e., 

∫ =
w

bffdx
0

max                                                                                                                   (2.13) 

 

 

 

 

Figure 2.4 Effective width assumed by von Karman. 

Rearranging Eq. (2.9) and solving for the plate width b, gives the following equation: 

( ) cr

kEt
b

σν

π
2112 −

=
                                                                                       (2.14) 

By setting the critical buckling stress σcr equal to the yield stress, Poisson’s ratio ν = 0.3 and 

factor k = 4 (for simply supported edges), Eq.(2.14) reduces to: 

yF

E
tb 9.1=                                                                                                                    (2.15) 

where b is the equivalent plate width for thickness t. 

Based on extensive investigation, Winter
 
(Winter, 1946) proposed that the effective width 

equation developed by von Karman (von Karman et al. 1932) was not limited to determining 

w 

fmax 

f 

b/2  

Enx 
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ultimate load, but was also valid for stress levels below the yield stress. Eq.(2.15) can be 

rewritten as: 

S

E
Ctbe =                                                                                                                      (2.16) 

where, 

be = effective width of plate 

 S = any stress at or below the yield point. 

It has been found that the value of coefficient C depends on the nondimensional parameter 










w

t

S

E
 and can be expressed by the following linear equation: 


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




−=

w

t

S

E
C 09.19.1                                                                                                    (2.17) 

By substituting this expression for C into Eq. (2.16), the following equation is obtained for 

the equivalent width be for a stiffened compression element simply supported along both 

longitudinal edges: 


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


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
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574.019.1
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t

f

E
tbe                                                                         (2.18) 

 The first AISI specification
 
(AISI, 1946) for the design of cold form steel, published in 

1946, incorporated the effective width concept for a stiffened compression element based on 

the work of Winter and others. The equation accounted for the effects of various 

imperfections and out of straightness. During the period from 1946 to 1968, the AISI design 
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provision for the determination of the effective design width was based on the following 

equation
 
(AISI, 1946; AISI, 1968): 
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E
tbe                                                                         (2.19) 

Based on long time accumulated data and experience, Eq. (2.19) was modified as follows 

(Winter, 1970): 
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which can be rewritten in terms of Fcr/fmax ratio as follows: 
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Therefore, the effective width can be determined as,  

be=ρw                                                                                                                              (2.22) 

where 1

22.0

1

22.0
1

max

max

≤



















−=

−

=
λ
λρ

cr

cr

F

f

F

f

                                                                         (2.23) 

in which, 

crF

fmax=λ = slenderness factor.                                                                                    (2.24) 
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From the relationship between ρ and λ, it is clear that when λ ≤ 0.673, ρ = 1. 

So, the equation for effective width becomes: 

be = w, when  λ ≤0 .673                                                                                                  (2.25) 

be = ρw when λ > 0.673                                                                                                  (2.26) 

The 1986 edition of the AISI specification adopted Eqs. (2.25/6) for determining the 

effective width for a uniformly compressed stiffened element
 
(AISI, 1986), and these 

equations are retained in the North American Specification
 
(CSA-S136-01, 2001). 

E.A. Miller
 
(Miller, 1943) proposed the following equation for determining the equivalent 

width of an unstiffened element under uniform compression: 
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
−=

maxmax

333.0125.1
f

E

w

t

f

E
tbe                                                                            (2.27) 

where fmax is the stress in the unstiffened compression element at the supported edge. 

As Eq. (2.27) showed considerable scatter, a more conservative equation was proposed by 

Winter
 
(Winter, 1946) as follows: 
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202.018.0
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f

E
tbe                                                                              (2.28) 

Due to lack of extensive experimental verification and concern for excessive out of plate 

distortion at service load, the effective width concept was not used in the AISI specification 

prior to 1986
 
(AISI, 2001). In 1986, Pekoz (Pekoz, 1986) evaluated some experimental data 

using k  = 0.43 and concluded that Eq. (2.23)  developed for a stiffened compression element 
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gives a conservative lower bound to the test results for an unstiffened compression element. 

The effective width design approach for unstiffened elements was adopted for the first time 

in the 1986 AISI specification, and is retained in the North American Specification.   

The compression portion of a flexural member may buckle due to compressive stress 

developed by bending. Buckling of a simply supported beam subjected to bending was 

investigated by Timoshenko
 
(Timoshenko and Gere, 1961) and he showed that the theoretical 

critical buckling stress of a flat rectangular plate under pure bending can be determined by: 
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t

h

Ek
Fcr

µ

π
                                                                                                    (2.29) 

where h = flat depth of web, t = thickness of web, and k = plate buckling coefficient. 

k depends on the boundary condition, bending stress ratio and edge restraint provided by 

the beam flange
 
(Yu, 2000). Bending strength of the beam web is affected by the web 

slenderness ratio h/t, aspect ratio (a/h), bending strength ratio, material properties such as E, 

Fy, µ, and the interaction between flange and web
 
(Yu, 2000).  

As bending strength depends on so many parameters, test results have been used to 

develop AISI design criteria. Before 1986, the full depth of web with allowable bending 

stress was used for the design of cold formed steel beam webs. The “effective depth design” 

concept was first adopted in the 1986 AISI specification based on studies performed by 

Pekoz
 
(Pekoz, 1986), Cohen and Pekoz

 
(Cohen and Pekoz, 1987). 
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2.4 Moment capacity of built-up sections: Hot-rolled versus cold-formed steel 

sections 

Cold-formed steel sections such as C-sections with or without lip, I-sections, hat sections, 

and built-up sections made of back to back C-sections or nested C-sections forming a box 

girder are normally used as flexural members. The moment resisting capacity of these 

members is highly influenced by the lateral buckling of the beam. So, flexural members 

should be braced adequately according to specifications to provide lateral restraint.  

The North American Specification (CSA-S136-01, 2001) has included Section C3.1.1, 

where two procedures for calculating the section strength of laterally supported flexural 

members are discussed
 
(CSA-S136-01, 2001). Procedure 1 is based on “initiation of material 

yielding” and Procedure 2 is based on “inelastic reserve capacity”. In procedure 1, the 

nominal moment capacity of the cross section is the effective yield moment My based on 

effective areas of flanges and webs. The yield moment My is defined as the moment at which 

the outer fibre first attains yields. For a balanced section, the outer fibres for compression and 

tension reach the yield point at the same time. But for an eccentrically located neutral axis, 

initiation of yielding can take place either in the compression flange or tension flange. The 

nominal section strength for the initiation of yielding is calculated by using the following 

equation: 

Mn = My = SeFy                                                                                                                  (2.30) 

where Fy = design yield stress, and Se = elastic section modulus of the effective section. 
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Effective section modulus is calculated based on the effective width of individual elements of 

the section under design yield stress.  

There is no specified design formula to calculate the moment resistance of built-up 

sections in the current North American Standard (CSA-S136-01, 2001). Instead, the AISI 

Cold-Formed Steel Framing Design Guide (AISI, 2002) and CSSBI Lightweight Steel 

Framing Design Manual (CSSBI, 2006) suggest that the moments of resistance and inertia of 

built-up sections are the simple addition of the component parts. This assumption was made 

based on the assumption of deflection compatibility of the two sections but not confirmed by 

testing.   

For laterally braced hot-rolled beam sections, the nominal moment resistance of the section 

is calculated according to the Clause 13.5 of CSA S16-01 (CSA S16-01, 2003). According to 

that clause, when both the web and compressive flanges exceed the limits for Class 3 

sections, the nominal moment resistance shall be determined in accordance with CSA-S136.  

In the current North American specification (CSA-S136-01, 2001), there is no guideline 

about the minimum and maximum spacing of the connecting screws of built-up flexural 

members. The current design practice also does not account for the torsion resulting from 

unequal distribution of load due to eccentric loading condition. In the clause 19.3, CSA S16-

01 (CSA S16-01, 2003) specifies requirements for built-up open box type beams and 

grillages. According to this clause, two or more hot-rolled beams or channels used side by 

side to form a flexural member shall be connected at intervals of not more than 1500mm. 
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Through-bolts and separators may be used, provided that, in beams having a depth of 300mm 

or more, no fewer than two bolts shall be used at each separator locations. 

2.5 Review of previous experimental work 

A thorough literature review of previous work related to the flexural capacity of built-up box 

girder members was performed, and very little corresponding information was found. 

Serrette
 
(Serrette, 2004) investigated the flexural performance of rafter box beams under 

eccentric loading as shown in Figure 2.5. The top and bottom tracks did not extend to the 

bearing support. Their primary function was to tie the joist member together to form a box. 

Three different box beam configurations were evaluated. The tests revealed that failure of the 

beams under the eccentric loading condition ultimately resulted from twisting. The 

analytically computed capacities of the tested box beams were compared with the test values. 

The cumulative strength of the box beam joist members was computed based on the 

assumptions that there is no composite flexural action between the box components and that 

lateral buckling is restrained. The limited test data suggests that the eccentric loading and the 

mechanism of load transfer from the directly loaded joist member to the adjacent joist 

member induces twist in the box beam. The edge loaded box beam was able to resist at most 

85-90% of its calculated fully braced flexural capacity. 



 

  23 

 

Figure 2.5 Box beam edge loading
 
(Serrette, 2004) 

For box type girders constructed of nested C-sections, screws are commonly located along 

the upper and lower faces of the box. Dietrich Design Group (DDG) (Beshara and Lawson, 

2002), performed “Built-Up girder Screw connection Variation Flexural Tests”. The purpose 

of the tests was to evaluate the impact of varying the location of connection screws on the 

behaviour of built-up box girders. These test results were used to validate the FEM model of 

the built-up cold-formed steel beams in Chapter 3 of this study. 

All specimens were fabricated from 16-gauge material and all utilized the same inner C-

section component, a Dietrich 254 mm (10 in) deep x 16-gauge CSS stud. The CSS section 

had a 76.2 mm (3 in) flange width with 25.4 mm (1 in) long return lips. The outer C-sections 

were either unpunched 254 mm (10 in) deep TradeReady rim-track or 254 mm (10 in) deep 

TSB track. The TradeReady product had a bottom flange width of 63.5 mm (2.5 in), and a 
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top flange width of 31.8 mm (1.25 in). The TSB track system was symmetric with 31.8 mm 

(1.25 in) long flanges. The flanges of these track sections did not have return lips. The 

connections between the girders components were made with #10-16 HWH T-3 self drilling 

screws placed 300 mm (12 in) on center. When the connection was flange-to-flange, screws 

were placed approximately 19 mm (3/4 in) from the outer edge of flanges. When the 

connection was web-to-lip, the screws were centered along the length of the lips. 

The mechanical properties of the test specimen components were determined from tensile 

tests according to ASTM A370, 1992. The yield strength and ultimate strengths were 

recorded for each test coupons, as well as the elongation based on a 50.8 mm (2 in) gauge 

length.  

Each test assembly consisted of two parallel girder specimens with span lengths of 3048 

mm (120 in). Two 914.4 mm (3 ft) long cross–member beams that framed into the girder 

webs through hot-rolled steel angle brackets linked the girders. A single row of #12 self-

drilling screws connected each angle bracket to the girder web, defining the two lines of load 

application. The lines of loading were spaced 813 mm (32 in) apart. 

The cross members were formed from 254 mm (10 in) × 12-gauge back-to-back C-section 

joist members. A load distribution beam spanned between these cross members. Load was 

applied at the centre of the load distribution beam, loading each cross members equally and 

creating a region of constant bending moment between the two lines of load application on 

both specimens. The distance between the girder support and the line of loading was 1118 

mm (44 in). An Enerpac hydraulic cylinder was stacked onto a 222 kN (50 kip) capacity 

interface load cell placed at the centre of the load distribution beam. The hydraulic cylinder 
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was activated with an electric pump, and reacted against the horizontal crosshead of the 

reaction frame. Mid-span deflections of each girder specimen were monitored using linear 

potentiometer displacement transducers. All measurements were recorded using a digital data 

acquisition system. Load was applied continuously until the specimen displayed increased 

deflection with no increase in loading. The peak load measured was defined as the test load 

for each specimen assembly. 

The flexural capacity of the built-up girder was determined to investigate the influence of 

screw connection variation. It was found that the nominal moment capacity from the test was 

significantly less than the capacity calculated by adding the individual moment capacity of 

the CSS stud and track sections, as shown in Table 2.2. 

Table 2.2 Test results
 
(Beshara and Lawson, 2002) 

Test 

Description 

Test 

No. 

Test 

Load 

N 

(lbs) 

Teseted 

Moment 

kN.m 

(lb.in) 

Stud 

Nominal 

Moment  

kN.m 

(lb.in) 

Track 

Nominal 

Moment 

kN.m 

(lb.in) 

AISI 

Nominal 

Total 

Moment 

kN.m 

(lb.in) 

Mtest/Mcalc 

1 
63058 

(14176) 

17.618 

(155937) 

15.560 

(137723) 

6.678 

(59108) 

22.239 

(196831) 
0.79 

2 
61145 

(13746) 

17.084 

151203 

15.560 

(137723) 

6.678 

(59108) 

22.239 

(196831) 
0.77 

CSS stud + 

rim-track-

flange 

screws 

(loading 

stud side) 

 
Average 

62101 

(13961) 

17.351 

(153570) 

15.560 

(137723) 

6.678 

(59108) 

22.239 

(196831) 
0.78 

1 
62315 

(14009) 

17.411 

(154101) 

15.560 

(137723) 

6.142 

(54360) 

21.702 

(192083) 
0.80 

2 
62653 

(14085) 

17.506 

(154939) 

15.560 

(137723) 

6.142 

(54360) 

21.702 

(192083) 
0.81 

CSS stud + 

TSB track-

flange 

screws 

(loading 

stud side) 

 
Average 

62484 

(14047) 

17.458 

(154520) 

15.560 

(137723) 

6.142 

(54360) 

21.702 

(192083) 
0.80 
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Test 

Description 

Test 

No. 

Test 

Load 

N 

(lbs) 

Teseted 

Moment 

kN.m 

(lb.in) 

Stud 

Nominal 

Moment  

kN.m 

(lb.in) 

Track 

Nominal 

Moment 

kN.m 

(lb.in) 

AISI 

Nominal 

Total 

Moment 

kN.m 

(lb.in) 

Mtest/Mcalc 

1 
61986 

(13935) 

17.318 

(153280) 

15.560 

(137723) 

6.678 

(59108) 

22.239 

(196831) 
0.78 

2 
60723 

(13651) 

16.966 

(150164) 

15.560 

(137723) 

6.678 

(59108) 

22.239 

(196831) 
0.76 

CSS stud + 

rim-track 

lip screw 

(loading 

stud side) Average 
61354 

(13793) 

17.142 

(151722) 

15.560 

(137723) 

6.678 

(59108) 

22.239 

(196831) 
0.77 

1 
59317 

(13335) 

16.573 

(146681) 

15.560 

(137723) 

6.142 

(54360) 

21.702 

(192083) 
0.76 

2 
60789 

(13666) 

16.985 

(150331) 

15.560 

(137723) 

6.142 

(54360) 

21.702 

(192083) 
0.78 

CSS stud + 

TSB track-

lip screws 

(loading 

stud side Average 
60055 

(13501) 

17.411 

(154101) 

15.560 

(137723) 

6.142 

(54360) 

21.702 

(192083) 
0.77 

1 
56701 

(12747) 

15.843 

(140219) 

15.560 

(137723) 

6.142 

(54360) 

21.702 

(192083) 
0.73 

2 
58810 

(13221) 

16.431 

(145430) 

15.560 

(137723) 

6.142 

(54360) 

21.702 

(192083) 
0.76 

CSS stud + 

TSB track-

lip screws 

(loading 

track side) Average 
57756 

(12984) 

16.138 

(142824) 

15.560 

(137723) 

6.142 

(54360) 

21.702 

(192083) 
0.74 

 

Based on the results of this test series, Beshara and Lawson (Beshara and Lawson, 2002) 

recommended that the nominal moment capacity of a built-up girder section should be 

considered equivalent to 75% of the combined nominal capacities of its component members. 

2.6 Finite element analysis of thin-walled steel sections 

The finite-element method (FEM) originated from the needs for solving complex, structural 

analysis problems in civil, mechanical and aeronautical engineering. Although much of the 

mathematical foundation of finite element methods was laid during the 1940’s and 1950’s, 

the method began to establish itself as one of the standard tools for modelling and analysis of 
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physical systems in the 1960’s. The development and accessibility of powerful computers 

during 1960’s made it feasible to develop computer-based methods to perform these 

analyses. It is difficult to determine the origins of the finite element method and the precise 

moment of its invention. Table 2.3 shows the process of evolution which led to the present 

concept of the finite element method (Zienkiewicz, 1977). 

Table 2.3 Family tree of finite element method
 
(Zienkiewicz, 1977) 

 

 

Today, finite element analysis is widely used in cold-formed steel research and design. 

Following on more than 35 years of intense efforts, research continues towards developing 

robust finite elements for the linear, buckling, geometric nonlinear and material nonlinear 
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analysis of plate and shell structures. As cold-formed steel sections are subjected to local 

buckling, web crippling, distortional buckling, and flexural and lateral torsional buckling, 

depending on different shapes and dimensions, special care has to be taken during modelling 

to simulate their exact behaviour. A thorough literature review has been conducted to find 

applications of the finite element method to thin-walled structures
 
(Rasmussen and Hancock, 

2000; Sarawit et al., 2003; Chou et al. 2000; Zhang et al., 2007; Hancock, 2003; Shanmugam 

and Dhanalakshmi, 2001;Graciano and Casanova, 2005; Tryland et al., 2001). Though no 

paper was found about finite element modelling of built-up beam sections, several papers 

were found about finite element modelling of cold-formed steel sections. Some of these 

papers provide very important information about modelling, element selection, mesh density 

and highly nonlinear simulation techniques.  

In 1994, Moreyra and Pekoz (Moreyra and Pekoz, 1994) carried out a finite element 

analysis of lipped channel flexural members. Their model of the C-section used nine node 

shell elements and incorporated nonlinear material and geometric properties. Though their 

primary objective was to investigate the strength of these members, their numerical model 

also served to highlight problems with the design procedures at that time.  

Extensive numerical modelling was carried out by Shafer in 1997 (Schafer, 1997). In this 

study three specific problems were investigated in detail: a stiffened element with multiple 

longitudinal intermediate stiffeners in compression, a stiffened element with a longitudinal 

intermediate stiffener under a stress gradient, and a flexural member with edge stiffened 

flanges. An ultimate strength design approach was proposed based on the elastic local 

distortional and overall buckling modes.  
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Finite element simulations of cold-formed steel C and Z- section beams were done by Yu 

and Schafer
 
(Yu and Schafer, 2007). A nonlinear finite element model was developed to 

simulate local and distortional buckling failure of beams using ABAQUS. The beams were 

modelled using shell elements. Initial geometric imperfections and material nonlinearities 

were incorporated in the model, but residual stress was not considered. The developed finite 

element model showed good agreement with the test data for ultimate bending strength. The 

model was also applied to investigate the effect of moment gradient on distortional buckling. 

An empirical equation was developed for use in design to predict the increase in the elastic 

distortional buckling moment due to change in moment gradient.  

The finite element method has also been used widely to investigate web crippling 

behaviour of cold-formed steel sections. Wei-Xin Ren, Shen-En fang and Ben Young
 
(Ren et 

al., 2006a) carried out a finite element simulation of cold formed steel channels subjected to 

web crippling under end one flange loading (EOF) and interior one flange loading (IOF) 

conditions. They also carried out another finite element study to predict the ultimate strength 

of channel sections under both pure bending and combined bending and web crippling
 
(Ren 

et al., 2006b). ANSYS was used for the numerical analysis. A 3D model was developed 

considering material and geometric nonlinearities. Their finite element model of unstiffened 

channel sections used 4 node shell elements with six degrees of freedom at each node. This 

shell element is suitable to model thin to moderately thick structures with large deflection, 

large rotation and large strain nonlinear capabilities.  The developed finite element models 

for web crippling capacity were then verified against the test results and used for an 

extensive parametric study of different channel dimensions. Modified design formulas based 
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on plastic mechanisms were also proposed to calculate web crippling strengths within an 

accepted safety margin. 

The finite element results for pure bending and combined bending and web crippling were 

in good agreement with the experimental results in terms of ultimate loads and moments, 

failure modes and web load deformation curves. The verified finite element model was used 

for extensive parametric studies and it was shown that the interaction equations for combined 

bending and web crippling specified in the North American Specifications are generally 

conservative for cold-formed steel channels with web slenderness ranging from 7.8 to 108.5. 
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Chapter 3 

Finite Element Modelling 

3.1 The finite element method 

The finite element method is a numerical technique of solving differential equations 

describing a physical phenomenon. It is a convenient way to find displacements and stresses 

of structures at definite physical coordinates called nodes. The structure to be analyzed is 

discretized into finite elements connected to each other at their nodes. Elements are defined 

and equations are formed to express nodal forces in terms of the unknown nodal 

displacements, based on known material constitutive laws. Forces and initial displacements 

are prescribed as initial conditions and boundary conditions. A global matrix system is 

assembled by summing up all individual element stiffness matrices and the global vector of 

unknown nodal displacement values is solved for using current numerical techniques.  

3.2 Reasons for finite element study 

Until now no research papers are to be found in the literature about the ultimate moment 

capacity of the cold formed steel (CFS) built-up box girders discussed in chapter 2. The 

experiments conducted by Dietrich Design Group (Beshara and Lawson, 2002) that were 

presented in the previous chapter are not sufficient to develop a comprehensive model of the 

behaviour of the built-up box girder assembly. Numerous physical experiments are required 

to develop and verify any newly proposed design procedure. With the availability of 

powerful computers and software, the finite element method is an excellent tool to 

investigate the behaviour of engineering structures. The accuracy of the results mainly 
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depends on the finite element model, application of load and the boundary conditions. The 

model and the boundary conditions should be appropriate to represent the actual member and 

loading conditions in order to get results close to reality. At present, the finite element 

method is being used extensively to understand the behaviour of cold-formed steel sections. 

Finite element analysis has been used to investigate the ultimate moment capacity of flexural 

members, ultimate load capacity of compression members, web crippling capacity, local, 

torsional, flexural and distortional buckling modes of different kinds of cold formed steel 

sections, as discussed in Chapter 2.  Many of the papers discussed in Chapter 2 demonstrated 

that finite element results show very good agreement with test results. Finite element analysis 

is also more economical than physical testing, especially in parametric studies. So, in lieu of 

conducting expensive testing, the finite element method has been used in this study to 

investigate the flexural performance of cold formed steel (CFS) built-up box girders under 

eccentric loading. In particular, parametric studies have been conducted to determine the 

factors affecting the moment capacity of CFS built-up box girders. 

3.3 Objective of Finite element study 

The main objectives of the finite element study are to understand the flexural behaviour and 

determine the ultimate moment capacity of CFS built-up box sections, and identify the 

factors that affect the flexural capacity. The established finite element model was first 

verified with experimental results. A parametric study was then carried out to investigate the 

influence of section depth, thickness, connection screw spacing and material yield stress on 

the ultimate moment capacity of CFS built-up box girders. 
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3.4 General features of finite element modelling 

Finite element analysis consists of four steps: creating the geometry of the model, generating 

a mesh for the solid model (i.e. dividing the model into elements), applying appropriate 

boundary and loading conditions, and solution. When the meshing of the model and 

assigning of the material properties are completed, the appropriate load and boundary 

conditions are applied at the element nodes. Once stiffness equations describing individual 

elements are constructed, the global stiffness matrix is assembled. The unknown 

displacement vector to be solved can be symbolically written as follows: 

{ } [ ] { }FKu
1−

=                                                                                                                   (3.1) 

where {u} is the vector of nodal unknown displacements, {F} is the load vector, and [K] is 

the global stiffness matrix. 

Finite element analysis with geometric and material nonlinearities is carried out herein using 

the software ANSYS (version 10). Details concerning the modelling are discussed in the 

following sections. 

3.4.1 Finite Elements used in FE model 

The accuracy of the finite element analysis results highly depends on choosing the 

appropriate elements to predict the actual behaviour of the structure. In this study, shell, link 

and contact elements were used to model the CFS built-up box girder. 

3.4.1.1 Shell element 

Cold-formed steel sections are very thin, with high width to thickness ratio. The ultimate 

strength of the CFS section is mainly governed by the post buckling strength. The Shell181 
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element is the most advanced shell element in the ANSYS element library, and it was 

determined to be the best choice to model the stud and track section. This element is suitable 

for analyzing thin to moderately thick shell structures. It is a four node element with six 

degrees of freedom at each node: translations in the x, y and z directions and rotations about 

the x, y, and z axes, as shown in Figure 3.1. Element formulation is based on logarithmic 

strain and true stress measures. Element kinematics allow for finite membrane strains. It is 

well suited for linear, large rotation, and/or large strain nonlinear applications. It can account 

for changes in shell thickness during nonlinear analysis. It supports uniform reduced 

integration and full integration. For all options, ANSYS uses five points of integration 

through the thickness of the shell. In this study the uniform reduced integration option was 

used for better nonlinear analysis performance. The element can be associated with linear 

elastic, elastoplastic or hyperelastic material properties. Only isotropic and orthotropic linear 

elastic properties can be input for elasticity. The von Mises isotropic hardening plasticity 

models can be invoked. Kinematic hardening plasticity and creep material models are not 

available for this element. 

3.4.1.2 Link element 

The ANSYS Link8 element is a two node uniaxial tension, compression element with three 

degrees of freedom at each node: translations in x, y and z direction, as shown in Figure 3.2. 

Plasticity, creep, swelling, stress stiffening, and large deflection capabilities are included. As 

in a pin-jointed structure, no bending of the element is considered. The Link8 element has 

been used to model the bracing connecting two parallel girders by connecting the mid-nodes 

of top and bottom flanges. 
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Figure 3.1 Shell181 Finite Strain shell (ANSYS) 

 

 

 

 

 

 

Figure 3.2 link8 element (ANSYS) 

3.4.1.3 Contact element 

Contact elements have been used to simulate the boundary condition. Contacts are classified 

as rigid-to-flexible or flexible-to-flexible depending on the relative rigidity between the 

surfaces in contact. In rigid-to-flexible contact problems, one or more of the contacting 

surfaces are treated as rigid, which means it has a much higher stiffness relative to the 

deformable body it contacts. In flexible-to-flexible contact, both (or all) contacting bodies are 

deformable which means they have similar stiffness. In this study, all the contacts are 

flexible-to-flexible type contacts. Depending on the geometry and loading of the structure, 
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contact can be defined as node-to-node, node-to-surface and surface-to-surface. For this 

model, surface-to-surface flexible-to-flexible contact has been used. In order to define the 

contact, two types of contact elements are necessary, contact and target. For this model, the 

two elements used are known in the ANSYS element library as CONTA174 and its target 

TARGE170.  

The CONTA174 element has eight nodes as shown in Figure 3.3. The target element 

TARGE170 is used to represent various 3D target surfaces for the associated contact 

elements. This target surface is discretized by a set of target segment elements (TARGE170) 

as shown in Figure 3.4 and is paired with its associated contact surface via a shared real 

constant set. 

For surface-to-surface contact elements, ANSYS offers several different contact algorithms 

such as the penalty method, augmented Lagrangian, Lagrange multiplier on contact normal 

and penalty on tangent, pure Lagrange multiplier on contact normal and tangent , and internal 

multipoint constraint (MPC). The penalty method uses a contact “spring” to establish a 

relationship between the two contact surfaces. The spring stiffness is called the contact 

stiffness. The augmented Lagrangian method (default) is an iterative series of penalty 

methods. The contact tractions (pressure and frictional stresses) are augmented during 

equilibrium iterations so that the final penetration is smaller than the allowable tolerance 

(FTOLN). Compared to the penalty method, the augmented Lagrangian method usually leads 

to better conditioning and is less sensitive to the magnitude of the contact stiffness. This is 

the default option in ANSYS and this option is used in this study. For this method, normal 

and tangential contact stiffnesses are required. The amount of penetration between contact 
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and target surfaces depends on the normal stiffness. The amount of slip in sticking contact 

depends on the tangential stiffness. Higher stiffness values decrease the amount of 

penetration/slip, but can lead to ill-conditioning of the global stiffness matrix and to 

convergence difficulties. Lower stiffness values can lead to a certain amount of 

penetration/slip and produce an inaccurate solution. ANSYS provides default values for 

contact stiffness (FKN, FKT), allowable penetration (FTOLN), and allowable slip (SLTO). 

For this analysis the default values are used. The contact stiffness was updated automatically 

after each iteration during the analysis.  

 

Figure 3.3 CONTA174-3D surface-to-surface contact element (ANSYS) 

 

 

Figure 3.4 TARGE170 target surface element (ANSYS) 
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3.4.2 Meshing of the model  

The model was first developed to simulate the test conducted by Dietrich Design Group 

(DDG) (Beshara and Lawson, 2002). Instead of simulating the whole test set up, only half of 

the specimen was modelled taking the advantage of symmetry. The section dimensions were 

as shown in Figure 3.5 and Table 3.1.  The solid geometry of the stud and track sections was 

modelled as shown in Figure 3.6 and Figure 3.7. After creating the solid geometry, the area 

was meshed with shell181 elements. A free mesh technique could be used for meshing but it 

would increase both the number of elements and the computational time. Instead, the model 

was meshed with two objectives: to create a sufficiently fine mesh to model the essential 

feature of the deformed shape, and to minimize the number of elements to reduce 

computation time. The stud sections were perforated sections with holes in the mid depth, as 

shown in Figure 3.5. The area of the stud section was divided into several areas. The area 

with holes was meshed using the free mesh command. Near the hole, a fine mesh was created 

to account for stress concentrations. The maximum size of the shell element was 12.5mm by 

10mm. The cold forming process for fabricating members such as C section does not make 

square corners, but will have some bend radius. The rounded corners avoid manufacturing 

problems associated with cracking the base steel or metallic coatings along the tension bends, 

which can occur with sharp corners. The standard inside bend radius is equal to two times the 

thickness. The finite element model accounted for the corner radius with 3 elements along 

the bend. 
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a) Stud section 

 

 

 

 

 

 

                                                                                               

 

                           b) Track section                                 c) Rim-track section 

Figure 3.5 Stud and Track section dimension 

 

Table 3.1 Section dimensions (Beshara and Lawson, 2002) 

Hole dimension 

Section Gauge 

Yield 

stress 

Fy 

MPa 

(ksi) 

Thickness 

mm 

(in) 

Depth 

A 

mm 

(in) 

Top 

Flange 

B1 

mm 

(in) 

Bottom 

Flange 

B2 

mm 

(in) 

Lip 

C 

mm 

(in) 

Depth 

F 

mm 

(in) 

Width 

E 

mm 

(in) 

Stud 

section 
16 

349 

(50.6) 

1.61 

(0.0632) 

254 

(10) 

76.2 

(3) 

76.2 

(3) 

25.4 

(1) 

38.1 

(1.5) 

101.6 

(4.0) 

Track 

section 
16 

307 

(44.5) 

1.44 

(0.0567) 

254 

(10) 

31.8 

(1.25) 

31.8 

(1.25) 
   

Rim-

track 

section 

16 
417 

(60.5) 

1.39 

(0.0547) 

254 

(10) 

31.8 

(1.25) 

63.5 

(2.5) 
   

 

C 

C 

B1 

B2 

A 

A 

B2 

B1 

B2 

A 

B1 
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Figure 3.6 Typical mesh of stud section 

 

Figure 3.7 Typical mesh of rim-track section 



 

  41 

3.4.3 Screw representation 

In the experiment, the top and bottom flanges of CFS stud and track sections were connected 

using self drilling screws with 300mm (12in) spacing. For modelling purposes, the effect of 

screws has been accounted for by coupling translational and rotational degrees of freedom 

(DOF) of the nodes in the global x, y and z directions at the exact locations of the screws in 

the flanges. The size of the screws and the possible failure of the screws are neglected in the 

FE model. 

3.4.4 Modelling End stiffener 

In practice and in the test conducted by DDG (Beshara and Lawson, 2002), an end stiffener is 

used at the support location to avoid web crippling. This was modelled by creating shell181 

elements that overlapped the web in the location of the stiffener. Designating it as a contact 

area and the corresponding area on the web as a target area, a bonded contact was defined to 

model the influence of the stiffener restraining the deformation of the joist web. 

3.4.5 Material properties 

Material nonlinearities can be defined as a nonlinear relationship between stress and strain; 

that is, the stress being a nonlinear function of the strain. Plasticity theories model the 

material’s mechanical response as it undergoes nonrecoverable deformation in a ductile 

fashion. The ANSYS program can account for many material nonlinearities. Plasticity theory 

provides a mathematical relationship that characterizes the elastoplastic response of 

materials. There are three ingredients in the rate-independent plasticity theory, they are: a 

yield criterion, flow rule and hardening rule. The yield criterion determines the stress level at 
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which yielding is initiated, the flow rule determines the direction of plastic straining and the 

hardening rule describes the changing of the yield surface with progressive yielding, so that 

the conditions (i.e. stress states) for subsequent yielding can be established. Two hardening 

rules are widely used: work (or isotropic) hardening and kinematic hardening. In work 

hardening, the yield surface remains centered about its initial centerline and expands in size 

as the plastic strains develop, whereas kinematic hardening assumes that the yield surface 

remains constant in size and the surface translates in the stress space with progressive 

yielding. 

Material nonlinearity of cold-formed steel sections has been incorporated by considering a 

perfectly elastic plastic material obeying von Mises yield criteria. The cold forming process 

introduces cold work into sections, especially in the corners. As a result, in corner regions the 

yield stress is increased and the ductility is decreased. The material at corner region may be 

anisotropic and in addition include residual stresses. Due to lack of test data, addressing these 

properties in the finite element model is extremely difficult. To make the model simple, the 

same material properties were adopted for the entire section. As the finite element model was 

verified with test results found in literature, the material properties were adopted to be 

consistent with the test report
 
(Beshara and Lawson, 2002). For all the members, young 

modulus E = 203000 MPa (29435 ksi) and Poisson’s ratio = 0.3.The yield stress for the stud, 

rim-track and track sections were taken as 349 MPa (50.6 ksi), 417 MPa (60.5 ksi) and 307 

MPa (44.5 ksi), respectively, as mentioned in the test report. Residual stresses were ignored 

for the model because in this study, the ultimate moment capacity of the CFS built-up box 
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sections obtained from the FE analysis was compared with the nominal moment of the 

sections calculated according to CSA-S136-01 without considering the cold work of forming. 

3.4.6 Initial Geometric imperfection  

Geometric imperfection can be defined as the deviation of a member from its perfect 

geometry. Imperfections of a member may include bowing, warping and twisting as well as 

local deviations. Global and local distortion may be present, as a result of the manufacturing 

process of the plates and due to accidental impacts during the transportation and erection of 

girders. Initial geometric imperfections influence significantly the ultimate strength of cold-

formed steel sections. Chou et al. (Chou et al, 2000) presented a buckling analysis using the 

finite element method and pointed out that to accurately obtain the ultimate load of a 

structure that has undergone buckling; the initial geometric imperfections must be 

considered. Modelling geometric imperfections remains an active research area because of 

the sensitivity of thin walled structures to the initial geometric imperfection. When precise 

data for the distribution of geometric imperfections is not available, several modelling 

approaches have been proposed by Schafer and Pekoz (Schafer and Pekoz, 1998). Initial 

imperfections can be incorporated into the numerical model by superimposing multiple 

buckling modes and controlling their magnitudes, using the Fourier transform and spectra. 

Schafer and Pekoz (Schafer and Pekoz, 1998)
 
also recommended the use of a maximum 

deviation that is approximately equal to the plate thickness as a simple rule of thumb. 

DeVille (DeVille, 1996) questioned the conventional procedure of modelling imperfections 

as a linear combination of factored elastic buckling modes. He suggested that the 

imperfection be chosen in the shape of the final elastic–plastic collapse pattern.  
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No measurement was taken to identify the initial geometric imperfection of the CFS 

sections used in the test conducted by DDG (Beshara and Lawson, 2002). As initial 

imperfections influence the ultimate load capacity of CFS sections, it is important to consider 

it in the finite element model. In this study, first eigenvalue buckling analysis was performed 

on the perfect structure to establish the probable collapse mode using ANSYS. Initial 

imperfection was incorporated in the model by scaling the first eigenvalue buckling mode 

shape and then adding it to the perfect geometry such that the maximum imperfection does 

not exceed the thickness of the section, as proposed by Schafer and Pekoz
 
(Schafer and 

Pekoz, 1998). Then, a geometrically nonlinear load displacement analysis of the structure 

containing the imperfection was carried out to determine the ultimate moment capacity. 

The response of some structures is highly influenced by the initial imperfections in the 

original geometry. By adjusting the magnitude of the scaling factors of the various buckling 

modes, the imperfection sensitivity of the structure can be assessed, but this was not 

investigated in this study. 

3.4.7 Boundary conditions and application of loads 

The accuracy of finite element analysis is highly influenced by the simulation of exact 

boundary conditions. In the test
 
(Beshara and Lawson, 2002), the CFS built-up box girders 

are laterally restrained at locations 762 mm (30 in) from both end supports. The ends of the 

beams were not laterally restrained. The top and bottom flanges of the two parallel girders 

were braced by using stud sections located 152 mm (6 in) and 762 mm (30 in) from the 

support. The test setup was as shown in Figure 2.6. Instead of modelling the two parallel CFS 
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built-up box girders, only half of one girder need be modelled with appropriate boundary 

condition so as to save computational time. Details about boundary conditions are discussed 

later on in this chapter. 

 In finite element analysis the loading can be applied in two ways: apply load directly on 

the model or, instead, impose displacement on the model. In order to simulate the test results, 

loading was applied in both ways and comparison was made between the results in terms of 

ultimate moment capacity, load-deformation behaviour, failure modes and stress conditions. 

In the test setup, the two parallel built-up box girders were connected by two cross girders 

with clip angles. Six self drilling screws were used for this connection. Thus, the web of stud 

sections first received the load as shown in Figure 3.8. In the FE analysis when loading was 

applied directly, a 2890 N (650 lb) load was applied vertically downward on each node at the 

location of screws attaching the built-up box girder and cross girder as shown in Figure 

3.9(a). The loading was applied incrementally by defining the initial load as 347 N (78 lb), 

with a maximum and minimum load increment of 867 N (195 lb) and 2.9 N (0.65 lb), 

respectively. When loading was applied as controlled displacement, a 17.78 mm (0.7 in) 

vertical downward displacement was applied incrementally by defining the initial 

displacement as 0.35 mm (0.014 in), with a maximum and minimum displacement increment 

of 1.7 mm (0.07 in) and 0.0003 mm (0.0000145 in), respectively, as shown in Figure 3.9(b).  
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Figure 3.8 Built-up girder test assembly
 
(Beshara and Lawson, 2002) 

             

                    a) Applied load as force                    b) Load applied as controlled displacement 

Figure 3.9 Application of load as force or displacement in finite element model 
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3.4.8 Solution 

A large displacement static analysis considering geometric nonlinearities was carried out to 

determine the ultimate load carrying capacity of the CFS built-up box girders. The stress 

stiffening effect was included to simulate the local buckling behaviour. Stress stiffening (also 

called geometric stiffening, incremental stiffening, initial stress stiffening, or differential 

stiffening) is the stiffening (or weakening) of a structure due to its stress state. This stiffening 

effect normally needs to be considered for thin structures with bending stiffnesses that are 

very small compared to axial stiffness, such as cables, thin beams, and shells. This effect also 

augments the regular nonlinear stiffness matrix produced by large strain or large deflection 

effects. The effect of stress stiffening is accounted for by generating and then using an 

additional stiffness matrix, called the “stress stiffness matrix”. The stress stiffness matrix is 

added to the regular nonlinear stiffness matrix in order to obtain the total stiffness. If 

membrane stresses become compressive rather than tensile, then terms in the stress stiffness 

matrix may cancel the positive terms in the regular stiffness matrix and therefore yield a 

nonpositive-definite total stiffness matrix, which indicates the onset of buckling.  

In this study, the Newton-Raphson method was used for solution. The Newton-Raphson 

solution uses the tangent modulus stiffness corresponding to the previous iteration to 

calculate the next deformed position. The stiffness continues to be updated until the 

difference between the load step magnitude and the projected position is within some 

acceptable tolerance.  

A nonlinear analysis requires multiple substeps within each load step so that ANSYS can 

apply the specified loads gradually and obtain an accurate solution. To apply load (force or 
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displacement) gradually, a number of substeps was defined in the ANSYS “Solution 

Controls” dialogue box. The load (Force or displacement) was applied in one step with 50 

initial substeps. By default the “Solution Control” is on, which means that ANSYS will 

monitor how many iterations are required to converge at that substep. If convergence is 

deemed to be difficult, it will automatically reduce the next increment of load (force or 

displacement) it takes and add more substeps with the automatic time stepping on options. 

Minimum and maximum numbers of substeps were equal to 10 and 48000, respectively, 

when the load was applied as controlled displacement. When the load was applied directly, 

the minimum and maximum substeps were equal to 20 and 6000 respectively. A default 

convergence criterion for both force and moment was used for all solutions.  

3.5 Investigation of lateral restraint provided by bracing 

The ultimate moment capacity of a CFS box girder is highly influenced by the lateral 

restraint of the girder. Though the box girder was not laterally restrained at the support, the 

adjacent bracing may have provided restraint to the lateral movement. In order to investigate 

the effect of bracing, the first half of the test set up was modelled as shown in Figure 3.10. 

The mid-nodes of both top and bottom flanges of the two parallel girders were connected by 

Link8 elements at the location of the bracing. The mid-nodes of both the top and bottom 

flanges located 762 mm (30in) away from end supports were laterally restrained. Only half of 

one CFS box girder was modelled by constraining the mid-nodes of both the top and bottom 

flanges in the lateral direction at the location of bracing, as shown in Figure 3.11. A 

symmetrical boundary condition was defined by setting the translational DOF equal to zero 

in the direction perpendicular to the symmetry plan (Uz = 0) and setting the rotational DOF 



 

  49 

equal to zero along the symmetry plan (Rotx = 0 and Roty = 0) at all the nodes on the 

symmetry plan, as shown in Figure 3.10 and Figure 3.11. For both cases the translational 

DOF in the vertical direction (Uy = 0) was restrained for all the nodes of the bottom flanges 

of both the track and stud sections at the support location. In practice, the stud and track 

sections can not penetrate each other during deformation. Flexible- to-flexible standard 

contact was used along the overlap between stud and track sections to prevent the penetration 

of one through the other. Default contact settings in ANSYS were used for all types of 

contact pairs.  

For this case, load was applied as controlled displacement. Nonlinear static analysis was 

performed considering the material nonlinearity and geometric nonlinearity. Initial geometric 

imperfection was not considered for simplification. 

Load versus mid-span deflection curves were compared for both the cases shown in Figure 

3.10 and Figure 3.11. From Figure 3.12, it is clear that the two models predict the same load 

deflection pattern and also the same ultimate load capacity. From this result, it can be 

concluded that the bracing is providing full lateral restraint of the two parallel CFS box 

girders. So, instead of modelling two parallel CFS box girders, only one box girder was 

modelled by restraining the lateral translational DOF (Ux = 0) of mid-nodes of top and 

bottom flanges at the bracing location. 
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Figure 3.10 Finite element model (Full model) 

 

Figure 3.11 Finite Element model (Half model) 
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Load versus Deflection
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Figure 3.12 Load versus mid-span deflection curve 

3.6 Finite element modelling for simulating test 

In order to simulate the test results conducted by DDG, (Beshara and Lawson, 2002), only 

half of one CFS built-up box girder was modelled by using the symmetric boundary 

conditions. As described in section 3.5 in this chapter, the FE model of the CFS built-up box 

girders were laterally restrained by constraining the mid-nodes of both top and bottom 

flanges in the lateral direction (Ux = 0) at the location of bracing. Finite element results are 

highly influenced by appropriate boundary conditions. Simulating exact test boundary 

conditions is a great challenge. In the tests the CFS box girder was on top of an inverted 
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angle at one end and a roller on the other end to create the simply supported condition shown 

in Figure 3.13(a). There was no bearing plate at the support.  

        

                                a) Test support condition                                                      b) Girder cross-section 

 

c) Support condition of FEM   

Figure 3.13 End support condition                                                                    

Due to the cross sectional shape of the built-up section, only the track section was in touch 

with the support before application of the load (Figure 3.13(b)). The stud section may come 

in contact with the support during the application of the load. In order to simulate the exact 

boundary condition, on one end, a plate was modelled with a very small width (5mm) as 

shown in Figure 3.13(c).  The plate was modelled as a 2D surface and then meshed it with 

shell181 elements as shown in Figure 3.14. The CFS box girder was placed upon it as in the 

 

75mm 1118mm 1118mm 813mm 

5mm  

75mm 1118mm 406.5mm 
Symmetrical 

plane 

75mm 
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test. Bonded flexible- to-flexible contact was defined between the plate and the track section. 

As the stud section can come in contact with the support during application of load, standard 

flexible-to-flexible contact was also defined between the stud and support plate. The 

translational DOF of all the nodes of the plates at the support location was restrained in the 

vertical direction (Uy = 0). Geometric imperfections were incorporated by updating the 

geometry using a scaled first eigenvalue deformed shape so that maximum imperfection does 

not exceed the thickness of the section. Load (force or controlled displacement) was applied 

in the same way as discussed in the section 3.4.7 of this chapter. The first eigenvalue 

buckling shape used as initial geometric imperfection was shown in Figure 3.15.After 

incorporating the initial geometric imperfections, nonlinear static analysis was performed 

considering the material nonlinearities and geometric nonlinearities.  

 

Figure 3.14 Support condition of FE model for simulating test 
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Figure 3.15 Initial geometric imperfection plotted in large scale ( 35 times) 

3.7 Determining ultimate moment capacity from FEM 

In order to determine the ultimate load carrying capacity, the load (Force or controlled 

displacement) was applied in very small increments as discussed in section 3.4.7 of this 

chapter. Based on the load deflection curves shown in Figure 3.16 and Figure 3.17, it was 

concluded that the model could not predict the behaviour after reaching the ultimate load 

capacity due to convergence problems even for very small increments of loading (force or 

displacement). Convergence problem could not be overcome even using Riks solution 

method and refining the mesh near the support. 
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Load versus Deflection
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Figure 3.16 Load versus mid-span deflection curve for stud plus rim-track section 
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Figure 3.17 Load versus mid-span deflection curve for stud plus track section 
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Upon investigating the stress and strain condition of the last converged solution, it was 

found that the material starts yielding in the stud and track sections near support locations 

shown in Figures 3.18 and 3.19 as the stress to yield stress ratio is equal to unity. Figure 3.20 

shows the von Mises total strain, where the maximum strain is equal to 0.319. For the stud 

sections, the percentage elongation reported in the material coupon test
 
(Beshara and 

Lawson, 2002) was 27%. So it can be concluded that the CFS box girder has already reached 

its ultimate load capacity due to material failure at the support location at the last converged 

solution. As such, the result of the last converged solution was taken as the ultimate load 

capacity of the CFS built-up box girder. 

 

 

Figure 3.18 Stress state ratio of stud section at ultimate moment capacity (stud plus track 

assembly) 
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Figure 3.19 Stress state ratio of track section at ultimate moment capacity (stud plus track 

assembly) 

 

Figure 3.20 von Mises total strain at ultimate moment capacity 
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3.8 Verifying finite element model 

It is very important to be sure that the finite element model is giving reasonable results and 

can predict the actual behaviour of the structure. The best way to verify the accuracy of the 

model is to compare the results with test results. The results from finite element simulation 

were compared with the ultimate moment capacity, deformed shape and load deflection 

curve obtained from the tests (Beshara and Lawson, 2002). For both of the track assemblies, 

the ultimate load carrying capacity is almost equal to the test values, as shown in Table 3.2, 

when the load was applied directly or as controlled displacement. The failure pattern is also 

similar to the test failure pattern. The upper flange of track section was observed to ripple 

prior to local flange buckling failure just like the test, as shown in Figures 3.21 and 3.22. The 

valleys of the ripples were seemed to coincide with the screw locations. Local buckling of the 

flanges of the track sections in the constant moment region was observed in the model like 

the tests, as shown in Figures 3.23 to 3.25. The von Mises stress for both type of assemblies 

are shown in Figures 3.24 through 3.31. These figures indicate that the von Mises stress in 

the flanges of both stud and track sections reached the material yield stress level in the 

constant moment region and also at the support locations for both types of loading (force or 

displacement). Distortion of the built-up girder sections was observed as a consequence of 

the applied load, as shown in Figure 3.32. The load versus mid-span deflection curves shown 

in Figures 3.16 and 3.17 have been compared with the test curves. For the stud plus rim-track 

section, the FE analysis initially predicts the exact same shape as the test. For the stud plus 

track section, the FE analysis gave a higher stiffness than the test results. Though the model 

deflection is less than the test value, the ultimate load was almost equal for both track 
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assemblies. The deflection curves represent well the actual behaviour of the sections. The 

curves are straight for a very short time and after that they become nonlinear. The curve 

shows a softer response initially due to the distortion of the girder cross sections. Figures 

3.16 and 3.17 also indicate that the load-deflection curve follows the same path for the FE 

model whether the load is applied directly as force or as a controlled displacement. The 

ultimate moment capacities for the two cases differ by less than 3%. 

 

Figure 3.21 Rippled upper compression flange
 
(Beshara and Lawson, 2002) 
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Figure 3.22 Rippled upper compression flange (FEM) 

 

Figure 3.23 Typical Failure (Beshara and Lawson, 2002) 
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Figure 3.24 von Mises stress of track section at ultimate moment capacity (load applied as 

controlled displacement, stud plus track assembly) 

 

Figure 3.25 von Mises stress of track section at ultimate moment capacity (load applied as force, 

stud plus track assembly) 

All units are in psi 

1 MPa = 145 psi 

All units are in psi 

1 MPa = 145 psi 
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Figure 3.26 von Mises stress of stud section at ultimate moment capacity (load applied as 

controlled displacement, stud plus track assembly) 

 

Figure 3.27 von Mises stress of stud section at ultimate moment capacity (load applied as force, 

stud plus track assembly) 

All units are in psi 

1 MPa =145 psi 

All units are in psi 

1 MPa =145 psi 
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Figure 3.28 von Mises stress of stud section at ultimate moment capacity (load applied as 

controlled displacement, stud and rim-track assembly) 

 

Figure 3.29 von Mises stress of stud section at ultimate moment capacity (load applied as force, 

stud and rim-track assembly) 

All units are in psi 

1 MPa =145 psi 

All units are in psi 

1 MPa =145 psi 
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Figure 3.30 von Mises stress of rim-track section at ultimate moment capacity (load applied as 

controlled displacement, stud and rim-track assembly) 

 

Figure 3.31 von Mises stress of rim-track section at ultimate moment capacity (load applied as 

force, stud and rim-track assembly) 

All units are in psi 

1 MPa =145 psi 

All units are in psi 

1 MPa = 145 psi 
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a) stud plus rim-track section                              b) stud plus track section 

 

 

 
c) stud plus track section 

Figure 3.32 Distorted girder assembly 
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3.9 Comparison of flexural capacity  

The ultimate moment capacity of CFS built-up box girders determined from FE analysis was 

compared with both the test results and calculated values found according to the Cold-formed 

Steel Framing Design Guide
 
(AISI Cold-formed steel framing design guide, 2002). 

According to the guide, the capacity is the sum of the moment capacity of the two individual 

sections forming the built-up box. In this study, the nominal moment capacities of the stud, 

track and rim-track sections were calculated according to North American Specification for 

the Design of Cold-Formed Steel Structures (CSA-S136-01, 2001) and supplement to CSA-

S136-01 (CSA-S136S1-04, 2004). After that, the nominal moment capacities of the built-up 

sections (Mn) were calculated by adding the capacities of the individual sections. A 

MathCAD file was created for this calculation, the details of which calculations are shown in 

Appendix A. The ultimate moment capacities obtained from finite element analysis (MFEM) 

with the load applied as a controlled displacement are listed in the third column of Table 3.2. 

Similar values obtained from the FE analysis when applying the load directly as force are 

listed in the fourth column of Table 3.2. The moment capacities of the built-up sections 

obtained from the FE analysis and the test (Beshara and Lawson, 2002) are almost the same 

for both types of track assemblies. For the stud and rim-track assembly, the ratio MFEM/Mn 

equals 0.786 and 0.801 when applying the load as controlled displacement or direct force, 

respectively. For the stud and track assembly, the corresponding MFEM/Mn ratios are 0.848 

and 0.811.The ultimate moment capacities vary within 3.8% due to the different way of 

applying load in the FE model. The ratios MFEM/Mn and Mtest/Mn are compared in the last 

three columns of Table 3.2. 
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Table 3.2 Comparison of FEM and Test results 

Description Mtest         
(kN.m)        

MFEM  

(Displace

-ment)     
(KN.m)  

MFEM  

(Force)     
(kN.m) 

Mn  

(kN.m) 

Mtest/Mn MFEM/Mn 

(displace

-ment) 

MFEM/Mn 

(Force) 

Stud + 

Rim-track 

17.351 17.438 17.779 22.187 0.782 0.786 0.801 

Stud + 

Track 

17.458 17.984 17.194 21.194 0.824 0.848 0.811 

 

For both cases, the finite element values are very close to the corresponding experimental 

values (the results vary within an acceptable range of 3.8%).  

3.10 Summary 

In this chapter, CFS built-up box girders were modelled using the FE analysis software 

ANSYS (version 10) to simulate the tests conducted by DDG (Beshara and Lawson, 2002). 

In the tests, no bearing plate was used at the support location. From the FE analysis, it was 

found that material failure occurred at the support location. The ultimate moment capacity 

obtained from the FE analysis is very close to the experimental value (within 3.8%). When a 

bearing plate was not used at the support location, the ultimate moment capacity of the CFS 

built-up box sections obtained from the FE analysis (MFEM) is equal to 78%-85% of the 

nominal moment (Mn) calculated according to current design practice, which is quite close to 

the 78%-82% range predicted by the test results (Beshara and Lawson, 2002).  

It is therefore concluded that the ANSYS finite element model reliably predicts the 

ultimate moment capacities of CFS box girders. Hence, it can be used to carry out parametric 

studies in order to identify the factors affecting the ultimate moment capacity of these 

girders. 
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Chapter 4 

 Parametric Study 

4.1 Introduction 

In the Chapter 3, it was shown that a finite element model can predict the ultimate moment 

capacity of a CFS built-up box girder quite accurately. In the analyzed test (Beshara and 

Lawson 2002), no bearing plate was used at the support location. From the finite element 

analysis it was found that material failure was occurring at the support location in the stud 

and track sections as shown in Figure 4.1, thereby reducing the ultimate moment capacity of 

the CFS built-up box girder. In practice, there is a requirement for a minimum-width bearing 

plate at support locations for CFS box girders. In order to investigate the effect of a bearing 

plate at the support location on the ultimate moment capacity of a CFS built-up box girder, 

the finite element models were modified to include a bearing plate as shown in Figure 4.2. 

This chapter presents the results of a parametric study carried out to understand the effect of 

the height, thickness, screw spacing and material yield stress on the ultimate moment 

capacity of a CFS built-up box girder.  

           

Figure 4.1 Failure at support location (von Mises stress) 

All units in psi 

1 MPa = 145 psi 

All units in psi 

1 MPa = 145 psi 
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Figure 4.2 Support condition of test specimen and FE model. 

4.2 Specimen labelling scheme 

An example of the CFS built-up box girder labelling scheme used in this thesis is “254-ST-

16-S300-BP-F1”, where: “254” represents the section depth of 254 mm (10 in); “ST” 

indicates a stud + track section (alternatively, “SRT” indicates a stud + rim-track section); 

“16” represents the section thickness of 16-gauge (1.44 mm);  “S300” represents the flange 

screw spacing of 300 mm (12 in); “BP” indicates that a bearing plate is used at the support 

location;“F1” indicates that the yield stresses of stud, track and rim-track sections are 349 

MPa (50.6 ksi), 307 MPa (44.5 ksi), and 417 MPa (60.5 ksi), respectively (alternatively, “F2” 

75mm 75mm 

Load Load 

1118mm 1118mm 813mm 

a) Test specimen support condition (Beshara and Lawson, 2002). 

75mm 75mm 

Load Load 

1118mm 1118mm 813mm 

   b) FE model support condition 

38mm 38mm 
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indicates that the yield stress of stud, track and rim-track sections is equal to 228 MPa (33 

ksi)). 

4.3 Effect of bearing plate on the ultimate moment capacity of CFS built-up 

box girder  

4.3.1 Finite element modelling 

The box girders assembled with either stud and track sections, or stud and rim-track sections 

were modelled with a bearing plate at support locations. The stud and track sections were 

modelled using a mesh identical to that used for the finite element model discussed in 

Chapter 3. The bearing plate was modelled with dimensions of width = 38 mm (1.5 in) and 

length = 75 mm (3 in), and the corresponding area was meshed with Shell181 elements 

(ANSYS element library) as shown in Figure 4.3. The thickness of the bearing plate was 

taken equal to 10 mm (3/8 in). The self drilling screws connecting the top and bottom flanges 

of the stud and track sections were spaced at 300 mm, which is consistent with the test report 

(Beshara and Lawson 2002). The self drilling screws and end stiffener were modelled as 

discussed in Chapter 3. For all steel sections, young modulus E = 203000 MPa (29435 ksi) 

and Poisson’s ratio = 0.3 were used. The yield stress for the stud, rim-track and track sections 

was taken as 349 MPa (50.6 ksi), 417 MPa (60.5 ksi) and 307 MPa (44.5 ksi), respectively, 

as mentioned in the test report (Beshara and Lawson, 2002). Residual stresses were ignored. 

Initial geometric imperfection was incorporated in the model by scaling the first eigenvalue 

buckling mode shape and adding it to the initial geometry such that maximum imperfection 

did not exceed the wall thickness of the section, as discussed in Chapter 3. 
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4.3.2 Boundary condition and application of load 

Due to the cross sectional shape, the support bearing plate is initially in contact with the track 

section only. During application of load the stud section may come in contact with the plate 

due to deformation of the stud section As the plate is always in contact with the track section, 

a flexible-to-flexible bonded contact was defined using the default contact options in ANSYS 

(ANSYS manual). A flexible-to-flexible standard contact was defined between the plate and 

the bottom flange of the stud section. The translational DOF of all the nodes of the plates at 

the location of support along the vertical direction (Uy = 0) was restrained as shown in the 

Figure 4.4. A symmetrical boundary condition was defined by setting the translational DOF 

equal to zero in the direction perpendicular to the symmetry plan (Uz = 0), and by also setting 

the rotational DOF equal to zero for all the nodes on the symmetry plan (Rotx = 0 and Roty = 

0), as shown in Figure 4.4. By defining Ux = 0 at the mid-nodes of both top and bottom 

flanges, the CFS built-up box girders were laterally restrained at locations 152 mm (6 in) and 

762 mm (30 in) from both end supports, as in the test (Beshara and Lawson, 2002).  

Loading was again applied in two ways, either as a direct force or as a controlled 

displacement, as discussed in section 3.4.7 of Chapter 3. For direct loading, a 3336 N (750 

lb) load was applied gradually at each node with an initial load of 400 N (90 lb) and a 

minimum and maximum load increment of 3.34 N (0.75 lb) and 1000 N (225 lb), 

respectively. When the loading was applied as controlled displacement, the same procedure 

as discussed in section 3.4.7 of Chapter 3 was followed. For all the results presented in this 

chapter, elastic eigenvalue buckling analysis was first conducted and scaled displacements 

associated with the first buckling mode were taken used for the initial geometric 
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imperfections. Then nonlinear static analysis was carried out accounting for geometric and 

material nonlinearities to determine the ultimate moment capacity of the CFS built-up box 

girder. 

 

Figure 4.3 Finite element model of bearing plate 

 

 

 

 

Figure 4.4 Boundary condition of FE model with bearing plate (Right side view) 

Uy=0 

Lateral restraint Applied load 

Screw location 

Symmetrical 

boundary 

condition 
End stiffener 
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4.3.3 Effect of support bearing plate 

Without a support bearing plate, the CFS box girder’s ultimate moment capacity was found 

to be limited by local material failure in the bottom flanges of both stud and track sections at 

the support location, as shown in Figure 4.1. Using a bearing plate at the support increased 

the ultimate load carrying capacity of the CFS built-up box girder because the ultimate 

capacity was then limited by material failure in the constant moment region, not at the 

support location. The stress in the top flanges for both stud and track sections reached the 

material yield stress in the constant moment region. The stress for the bottom flanges of track 

sections at the support location was below the material yield stress. As the bottom flange of 

the stud sections was not in contact with the bearing plate initially, the stress at this location 

reached the material yield stress due to deformation.  

The FE results for the two models, obtained by applying the load directly and as controlled 

displacement, were compared in terms of the ultimate moment capacity, load-deformation 

behaviour, and stress condition of the model. For both the cases, the upper flange of the track 

section was observed to ripple prior to local buckling. The valleys of the ripples coincided 

with the screw locations. Local buckling occurred in the top flanges of the track and rim-

track sections in the constant moment region, as shown in Figure 4.5 to 4.10. Local buckling 

of the top flanges and lip of the stud sections was observed for both models, as shown in 

Figure 4.11 to 4.14. The von Mises stress shown in Figures 4.7 through 4.14 reached the 

yield stress of the material in the constant moment region for both models. As the material 

model used in the simulation is perfectly elastic-plastic, the von Mises stress will not increase 

beyond the yield stress of the material.  As a consequence of the applied load, some 
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distortion of the built-up box girder cross sections was also observed at the support location 

for both the models. The stress to yield stress ratio was equal to unity in the top flanges of 

stud and track sections in the constant moment region and also in the corner of the bottom 

flange of stud sections near the support location, as shown in Figures 4.15 and 4.18. All the 

Figures from 4.5 to 4.18 show that the deformation pattern, failure mode and the stress 

condition are almost the same for both the cases, i.e., whether the load is applied directly or 

as controlled displacement. 

The FEM load versus mid-span deflection curves accounting for the bearing plate are 

compared with the test
 
curves (Beshara and Lawson, 2002) found without the bearing plate as 

shown in Figures 4.19 and 4.20. Whether the FE analysis was conducted applying the load 

directly or as controlled displacement, the load-deflection curves followed the same path, as 

shown in Figures 4.19 and 4.20 for both cases. However, the FE model with the load applied 

directly as force could not predict the load-deformation behaviour beyond the ultimate 

capacity. For both of the models, the curve initially shows softer response due to distortion of 

the girder cross section. When the stud sections come in contact with the bearing plate, the 

load deflection curve displays higher stiffness than before as shown in Figures 4.19 and 4.20. 

The FEM load deflection curve for the stud plus rim-track assembly with bearing plate 

initially followed the same path as the test curve, as shown in Figure 4.19. After that, the 

stiffness increases, such that the FEM model with bearing plate shows higher ultimate load 

capacity than the test without bearing plate. The FEM load deflection curve for the stud plus 

track assembly with bearing plate initially followed the same path as the test curve without 
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bearing plate, as shown in Figure 4.20. After that, the FEM curve could not follow the test 

curve any more.  

 

Figure 4.5 von Mises stress on deformed shape at ultimate moment capacity (load applied as 

controlled displacement, stud plus track assembly) 

 

Figure 4.6 von Mises stress on deformed shape at ultimate moment capacity (load applied as 

force, stud plus track assembly) 

All units are in psi 

1 MPa = 145 psi 

All units are in psi 

1 MPa  = 145 psi 
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Figure 4.7 von Mises stress on deformed shape at ultimate moment capacity (load applied as 

controlled displacement, stud plus track assembly) 

 

Figure 4.8 von Mises stress on deformed shape at ultimate moment capacity (load applied as 

force, stud plus track assembly) 

All units are in psi 

1 MPa = 145 psi 

All units are in psi 

1 MPa = 145 psi 
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Figure 4.9 von Mises stress of stud sections on deformed shape at ultimate moment capacity 

(load applied as controlled displacement, stud plus rim-track assembly) 

 

Figure 4.10 von Mises stress of stud sections on deformed shape at ultimate moment capacity 

(load applied as force, Model stud plus rim-track assembly) 

All units are in psi 

1 MPa = 145 psi 

All units are in psi 

1 MPa = 145 psi 
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Figure 4.11 von Mises stress of stud sections on deformed shape at ultimate moment capacity 

(load applied as controlled displacement, stud plus track assembly) 

 

Figure 4.12 von Mises stress of stud sections on deformed shape at ultimate moment capacity 

(load applied as force, stud plus track assembly) 

All units are in psi 

1 MPa = 145 psi 

All units are in psi 

1 MPa = 145 psi 
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Figure 4.13 von Mises stress of stud sections on deformed shape at ultimate moment capacity 

(load applied as controlled displacement, stud plus rim-track assembly) 

 

Figure 4.14 von Mises stress of stud sections on deformed shape at ultimate moment capacity 

(load applied as force, stud plus rim-track assembly) 

All units are in psi 

1 MPa = 145 psi 

All units are in psi 

1 MPa = 145 psi 
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Figure 4.15 Stress state ratio on deformed shape at ultimate moment capacity (load applied as 

controlled displacement, stud plus track assembly) 

 

Figure 4.16 Stress state ratio on deformed shape at ultimate moment capacity (load applied 

directly as force, stud plus track assembly) 
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Figure 4.17 Stress state ratio on deformed shape at ultimate moment capacity (load applied as 

controlled displacement, stud plus rim-track assembly) 

 

Figure 4.18 Stress state ratio on deformed shape at ultimate moment capacity (load applied 

directly as force, stud plus rim-track assembly) 
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Load versus deflection curve
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Figure 4.19 Load versus mid-span deflection curve (stud plus rim-track sections) 
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Figure 4.20 Load versus mid-span deflection curve (stud plus track sections) 

Test without bearing plate 

FEM with bearing plate 

Test without bearing plate 

FEM with bearing plate 
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4.3.4 Comparison of ultimate moment capacity of CFS built-up box girder 

 The peak loads of the FEM load deflection curves shown in Figure 4.19 and Figure 4.20 were 

taken as the ultimate load capacities of the CFS built-up box girders, and the corresponding 

ultimate moment capacities of the CFS built-up box girders were calculated. The ultimate 

moment capacity predicted from FE analysis (MFEM) was compared with the nominal 

moment capacity (Mn) calculated assuming addition of the capacity of the two individual 

sections, and also with the test moment capacity (Mtest) found by Behsara and Lawson 

(2002), as shown in Table 4.1. The MFEM/Mn ratio increased from 0.786 to 0.951 for the stud 

plus rim-track assembly and from 0.848 to 0.938 for the stud plus track assembly when load 

was applied as controlled displacement because of the use of the bearing plate at the support 

location, as shown in Table 4.1. When the load was applied directly, the MFEM/Mn ratio for the 

stud plus rim-track assembly increased from 0.801 to 0.971 while that for stud plus track 

assembly increased from 0.811 to 0.918. 

Table 4.1 Comparison of ultimate moment capacity of CFS built-up box girder  

Description 
Mtest 

(kN.m) 

MFEM 

(Displace-

ment) 

(kN.m) 

MFEM 

(Force) 

(kN.m) 

Mn 

(kN.m) 
Mtest/Mn 

MFEM/Mn 

(Displace-

ment) 

MFEM/Mn 

(Force) 

Stud+rim-

track (no 

bearing plate) 

17.351 17.438 17.779 22.187 0.782 0.786 0.801 

Stud+rim-

track (with 

bearing plate) 

 21.103 21.557 22.187  0.951 0.971 

Stud+track (no 

bearing plate) 
17.458 17.984 17.194 21.194 0.824 0.848 0.811 

Stud+track 

(with bearing 

plate) 

 19.888 19.466 21.194  0.938 0.918 
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From the finite element analysis, it can be concluded that if no bearing plate was used, as 

in the test
 
(Beshara and Lawson, 2002), the ultimate moment capacity of the CFS built-up 

box girder was 78% to 85% of Mn due to material failure at the support location. By using a 

bearing plate at the support location, the ultimate moment capacity of the CFS built-up box 

girder is increased to almost 94% to 97% of the nominal moment capacity calculated 

according to the current design practice. The FE analysis results for the loading applied as 

either direct force or controlled displacement showed the same failure pattern and 

deformation behaviour. The ultimate moment capacities predicted by FE for both cases are 

within 1.5%-3.8% of each other.  

4.4 Parametric Study 

Cold-formed steel members possess considerable post-buckling strength, although they are 

susceptible to local buckling at relatively low loads. The ultimate moment capacities of CFS 

flexural members depend mainly on the material yield strength and the width-to-thickness 

ratio of the individual plate elements that form the sections, assuming the members are 

laterally restrained properly. Built-up box girders are made of CFS stud and track sections 

connected by self drilling screws in both the top and bottom flanges. The stud section 

receives the load and transfers it to the track section through the connecting screws. The 

screw spacing may have a great influence on the ultimate moment capacity of CFS built-up 

box sections. Parametric studies are necessary to investigate the effects of section height, 

thickness, yield strength and screw spacing on the ultimate moment capacity of CFS built-up 

sections. In lieu of doing expensive tests, CFS built-up box girders consisting of stud and 

regular track sections and supported on bearing plates are investigated herein as extensive 
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FEM-based parametric study involving a variety of different section dimensions and 

properties. The four parameters considered for the parametric study are section depth, 

thickness, material yield strength and screw spacing. The section dimensions of the stud and 

track sections were chosen based on available sections in the market. The depth of sections 

considered for the parametric studies were 203 mm (8 in), 254 mm (10 in) and 305 mm (12 

in). The section thicknesses were taken to be 18-gauge (1.14 mm), 16-gauge (1.44 mm) and 

14-gauge (1.81 mm).The section dimensions of all of the stud and track sections considered 

in the parametric studies are given in Table 4.2 and Table 4.3. The length of the CFS built- 

up box girders was taken as 3200 mm (126 in) for the entire parametric studies. The yield 

strength of the stud and track sections available in the market is 228 MPa (33 ksi). As such, 

the finite element analyses were carried out using a yield stress equal to 228 MPa (33 ksi) for 

both the stud and track sections (F2), as well as with material properties similar to the test, as 

described in section 3.4.5 of Chapter 3 (F1). The labelling used to describe the FE model is 

same as that discussed in section 4.2 of this chapter.  

 Initial geometric imperfection, material nonlinearity and geometric nonlinearity were 

considered in the same way as before. In order to predict the load-deformation curve beyond 

ultimate capacity, the loading was applied as controlled displacement in the parametric study. 

The boundary conditions used for the parametric study were identical to those used in the FE 

model discussed in section 4.3 of this chapter. Extensive finite element analyses were carried 

out by varying each particular parameter while keeping the others constant. A total of thirty 

FE analyses were carried out for different section dimensions, material properties and screw 
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spacing, as shown in Table 4.4. The last two columns of Table 4.4 show the ultimate moment 

capacity and maximum mid-span deflection at ultimate load obtained from FE analysis.  

Table 4.2 Sections dimension of CFS stud sections used in parametric studies. 

Hole dimension 

Description 
Thickness 

mm (in) 

Depth 

mm(in) 
Flange Lip Depth 

mm(in) 

Width 

mm(in) 

203S76-18 1.14(0.0451) 203(8) 76.2(3) 25.4 (1) 38.1(1.5) 101.6(4) 

203S76-16 1.44(0.0566) 203(8) 76.2(3) 25.4 (1) 38.1(1.5) 101.6(4) 

203S76-14 1.81(0.0713) 203(8) 76.2(3) 25.4 (1) 38.1(1.5) 101.6(4) 

254S76-18 1.14(0.0451) 254(10) 76.2(3) 25.4 (1) 38.1(1.5) 101.6(4) 

254S76-16 1.44(0.0566) 254(10) 76.2(3) 25.4 (1) 38.1(1.5) 101.6(4) 

254S76-14 1.81(0.0713) 254(10) 76.2(3) 25.4 (1) 38.1(1.5) 101.6(4) 

304S76-18 1.14(0.0451) 305(12) 76.2(3) 25.4 (1) 38.1(1.5) 101.6(4) 

304S76-16 1.44(0.0566) 305(12) 76.2(3) 25.4 (1) 38.1(1.5) 101.6(4) 

304S76-14 1.81(0.0713) 305(12) 76.2(3) 25.4 (1) 38.1(1.5) 101.6(4) 

Table 4.3 Sections dimension of CFS track sections used in parametric studies 

Description 
Thickness 

mm (in) 

Depth 

mm(in) 

Flange 

mm(in) 

203T32-18 1.14(0.0451) 203(8) 32(1.25) 

203T32-16 1.44(0.0566) 203(8) 32(1.25) 

203T32--14 1.81(0.0713) 203(8) 32(1.25) 

254T32-18 1.14(0.0451) 254(10) 32(1.25) 

254T32-16 1.44(0.0566) 254(10) 32(1.25) 

254T32-14 1.81(0.0713) 254(10) 32(1.25) 

305T32-18 1.14(0.0451) 305(12) 32(1.25) 

305T32-16 1.44(0.0566) 305(12) 32(1.25) 

305T32-14 1.81(0.0713) 305(12) 32(1.25) 
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Table 4.4 Results of FE parametric studies 

Stud 

designation 

Track 

designation 
FE model 

description 

Depth 

(A) 

mm 

(in) 

Thickness 

(t) 

mm (in) 
Yield 

stress Fy 

MPa(ksi) 

Yield stress 

Fy 

MPa(ksi) 

Flange 

screw 

spacing 

mm 

(in) 

MFEM                             

kN.m 

Mid-span 

deflection 

mm(in) 

203S76-18 203T32-18 203-ST-18-

S300-BP-

F1 

203 

(8) 

1.14 

(0.0451) 349(50.6) 307(44.5) 

300 

(12) 
9.515 

13.64 

(0.537) 

203S76-18 203T32-18 203-ST-18-

S300-BP-

F2 

203 

(8) 

1.14 

(0.0451) 228(33) 228(33) 

300 

(12) 
7.203 

9.98 

(0.393) 

203S76-16 203T32-16 203-ST-16-

S300-BP-

F1 

203 

(8) 

1.44 

(0.0566) 349(50.6) 307(44.5) 

300 

(12) 
14.049 

14.50 

(0.571) 

203S76-16 203T32-16 203-ST-16-

S300-BP-

F2 

203 

(8) 

1.44 

(0.0566) 228(33) 228(33) 

300 

(12) 
10.455 

10.95 

(0.431) 

203S76-14 203T32-14 203-ST-14-

S300-BP-

F1 

203 

(8) 

1.81 

(0.0713) 349(50.6) 307(44.5) 

300 

(12) 
19.545 

16.33 

(0.643) 

203S76-14 203T32-14 203-ST-14-

S300-BP-

F2 

203 

(8) 

1.81 

(0.0713) 228(33) 228(33) 

300 

(12) 
14.237 

11.61 

(0.457) 

254S76-18 254T32-18 254-ST-18-

S300-BP-

F1 

254 

(10) 

1.14 

(0.0451) 349(50.6) 307(44.5) 

300 

(12) 
11.938 

11.05 

(0.435) 

254S76-18 254T32-18 254-ST-18-

S300-BP-

F2 

254 

(10) 

1.14 

(0.0451) 228(33) 228(33) 

300 

(12) 
9.078 

7.47 

(0.294) 

254S76-16 254T32-16 254-ST-16-

S300-BP-

F1 

254 

(10) 

1.44 

(0.0566) 349(50.6) 307(44.5) 

300 

(12) 
19.888 

12.57 

(0.495) 

254S76-16 254T32-16 254-ST-16-

S300-BP-

F2 

254 

(10) 

1.44 

(0.0566) 228(33) 228(33) 

300 

(12) 
15.061 

9.17 

(0.361) 

254S76-14 254T32-14 254-ST-14-

S300-BP-

F1 

254 

(10) 

1.81 

(0.0713) 349(50.6) 307(44.5) 

300 

(12) 
25.548 

12.75 

(0.502) 

254S76-14 254T32-14 254-ST-14-

S300-BP-

F2 

 

 

254 

(10) 

1.81 

(0.0713) 228(33) 228(33) 

300 

(12) 
18.468 

9.32 

(0.367) 
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Stud 

designation 

Track 

designation 
FE model 

description 

Depth 

(A) 

mm 

(in) 

Thickness 

(t) 

mm (in) 
Yield 

stress Fy 

MPa(ksi) 

Yield stress 

Fy 

MPa(ksi) 

Flange 

screw 

spacing 

mm 

(in) 

MFEM                             

kN.m 

Mid-span 

deflection 

mm(in) 

305S76-18 305T32-18 305-ST-18-

S300-BP-

F1 

 

305 

(12) 

1.14 

(0.0451) 349(50.6) 307(44.5) 

300 

(12) 
15.028 

9.25 

(0.364) 

305S76-18 305T32-18 305-ST-18-

S300-BP-

F2 

305 

(12) 

1.14 

(0.0451) 228(33) 228(33) 

300 

(12) 
11.359 

7.21 

(0.284) 

305S76-16 305T32-16 305-ST-16-

S300-BP-

F1 

305 

(12) 

1.44 

(0.0566) 349(50.6) 307(44.5) 

300 

(12) 
21.239 

9.30 

(0.366) 

305S76-16 305T32-16 305-ST-16-

S300-F2 

305 

(12) 

1.44 

(0.0566) 228(33) 228(33) 

300 

(12) 
16.488 

7.49 

(0.295) 

305S76-14 305T32-14 305-ST-14-

S300-BP-

F1 

305 

(12) 

1.81 

(0.0713) 349(50.6) 307(44.5) 

300 

(12) 
29.860 

10.29 

(0.405) 

305S76-14 305T32-14 305-ST-14-

S300-BP-

F2 

305 

(12) 

1.81 

(0.0713) 228(33) 228(33) 

300 

(12) 
22.466 

8.26 

(0.325) 

203S76-16 203T32-16 203-ST-16-

S600-BP-

F2 

203 

(8) 

1.44 

(0.0566) 228(33) 228(33) 

600 

(24) 
9.979 

10.46 

(0.412) 

203S76-16 203T32-16 203-ST-16-

S150-BP-

F2 

203 

(8) 

1.44 

(0.0566) 228(33) 228(33) 

150 

(6) 
10.667 

11.15(0.4

39) 

254S76-16 254T32-16 254-ST-16-

S600-BP-

F2 

254 

(10) 

1.44 

(0.0566) 228(33) 228(33) 

600 

(24) 
14.066 

8.41 

(0.331) 

254S76-16 254T32-16 254-ST-16-

S150-BP-

F2 

254 

(10) 

1.44 

(0.0566) 228(33) 228(33) 

150 

(6) 
15.982 

9.73 

(0.383) 

305S76-16 305T32-16 305-ST-16-

S600-BP-

F2 

305 

(12) 

1.44 

(0.0566) 
228(33) 228(33) 

600 

(24) 
15.698 

6.83 

(0.269) 

305S76-16 305T32-16 305-ST-16-

S150-BP-

F2 

305 

(12) 

1.44 

(0.0566) 228(33) 228(33) 

150 

(6) 
16.638 

7.75 

(0.305) 

203S76-14 203T32-14 203-ST-14-

S600-BP-

F2 

 

203 

(8) 

1.81 

(0.0713) 228(33) 228(33) 

600 

(24) 
13.425 

11.25 

(0.443) 
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Stud 

designation 

Track 

designation 
FE model 

description 

Depth 

(A) 

mm 

(in) 

Thickness 

(t) 

mm (in) 
Yield 

stress Fy 

MPa(ksi) 

Yield stress 

Fy 

MPa(ksi) 

Flange 

screw 

spacing 

mm 

(in) 

MFEM                             

kN.m 

Mid-span 

deflection 

mm(in) 

203S76-14 203T32-14 203-ST-14-

S150-BP-

F2 

203 

(8) 

1.81 

(0.0713) 228(33) 228(33) 

150 

(6) 
14.696 

12.57 

(0.495) 

254S76-14 254T32-14 254-ST-14-

S600-BP-

F2 

254 

(10) 

1.81 

(0.0713) 228(33) 228(33) 

600 

(24) 
17.746 

8.92 

(0.351) 

254S76-14 254T32-14 254-ST-14-

S150-BP-

F2 

254 

(10) 

1.81 

(0.0713) 228(33) 228(33) 

150 

(6) 
19.320 

10.19 

(0.401) 

305S76-14 305T32-14 305-ST-14-

S600-BP-

F2 

305 

(12) 

1.81 

(0.0713) 228(33) 228(33) 

600 

(24) 
22.512 

7.95 

(0.313) 

305S76-14 305T32-14 305-ST-14-

S150-BP-

F2 

305 

(12) 

1.81 

(0.0713) 228(33) 228(33) 

150 

(6) 
23.265 

8.99 

(0.354) 

 

4.4.1 Parametric study of section depth and thickness variation 

FE analyses were performed to investigate the influence of section depth and thickness 

variation on the ultimate moment capacity of the CFS built-up box girders. For this part of 

the study, a screw spacing of 300 mm was maintained. For a particular section depth, three 

different models were created for three different section thicknesses of 1.14 mm (0.0451 in), 

1.44 mm (0.0566 in) and 1.81 mm (0.0713 in). All the FE analyses were conducted for two 

different types of steel material (F1 & F2) as discussed in the previous section. A total of 

eighteen FE analyses were conducted to investigate the influence of section depth and 

thickness on the ultimate moment capacity of the CFS built-up box girders. 
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4.4.1.1 Discussion of section depth and thickness study results 

The FE analysis results for the girder models of different depths and thicknesses were 

compared with each other in terms of moment capacity, deformed shape and load vs. 

deflection response. Local buckling of top flanges of the track sections were observed for all 

the models in the constant moment region, as shown in Figures 4.21 to 4.36 (thickness 1.14 

mm-1.81 mm, depth 203 mm-305 mm). The buckling of the top flanges and lips of stud 

sections were also observed in the models with 18-gauge and 16-gauge section thicknesses 

due to high flange width-to-thickness ratios. As the section thickness increases, local 

buckling of the top flanges of stud sections was not observed for 14-gauge thickness. The 

material of the top flanges and also some parts of the bottom flanges of all the models started 

to yield before the girder reached to its ultimate moment capacity. The stress to yield stress 

ratios (F/Fy) for all the models are shown on deformed shapes of the girders in Figures 4.21 

to 4.36. As the material is perfectly elastic plastic, the maximum stress ratio equals unity 

indicating yielding of material. Local buckling of the web was also observed in the constant 

moment region for the models with thickness 1.14 mm-1.44 mm and depth 254 mm-305 mm. 

Material yielding occurred in the unsupported portion of the bottom flanges of stud sections 

at the support location. Distortion of the built-up cross sections was observed for all models 

as a consequence of the applied load.  

For the models 305-ST-18-S300-BP-F1, 305-ST-18-S300-BP-F2 and 305-ST-16-S300-

BP-F2, the finite element analysis could not converge after the ultimate load level was 

reached due to the presence of a large strain in the corner of the stud section at the support 
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location, even for a very small increment of displacement. In those cases the last converged 

solution was taken as the ultimate load capacity of the built-up box girder. 

The ultimate load carrying capacities of the built-up girders were determined from the load 

versus mid-span deflection curves obtained from the FE analysis as shown in Figures 4.37 to 

4.48. According to the AISI Design Guide (AISI Cold-Formed Steel Framing Design Guide, 

2002), the nominal moment capacity of CFS built-up box girders is the addition of the 

nominal moment capacities of the individual CFS sections. In order to determine whether this 

assumption is conservative or not for each girder model, the ratio between the ultimate 

moment capacity obtained from FE analysis (MFEM) and the nominal moment capacity of the 

built-up sections (Mn) was calculated as shown in the last column of  Table 4.5. 

Table 4.5 Ratio of Ultimate moment capacity obtained from FEM to the calculated Mn of CFS 

built-up box girder 

CSA-S136-01 nominal 

moment 

Model 

description 

Web 

depth to 

thickness 

ratio of 

track 

section 

h/t 

MFEM          

kN.m 

Mstud       

kN.m 

Mtrack      

kN.m 

Nominal 

moment of 

built-up 

sections 

Mn 

kN.m 

MFEM/Mn 

203-ST-18-

S300-BP-F1 

174.38 9.515 6.741 2.861 9.602 0.991 

254-ST-18-

S300-BP-F1 

173.68 11.938 8.428 3.647 12.075 0.989 

305-ST-18-

S300-BP-F1 

263.07 15.028 10.117 4.438 14.554 1.033 

203-ST-16-

S300-BP-F1 

138.34 14.049 10.318 4.251 14.568 0.964 

254-ST-16-

S300-BP-F1 

173.67 19.888 15.713 5.482 21.195 0.938 

305-ST-16-

S300-BP-F1 

209.0 21.239 15.321 6.712 22.033 0.964 

203-ST-14-

S300-BP-F1 

109.2 19.545 14.357 6.215 20.572 0.950 
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CSA-S136-01 nominal 

moment 

Model 

description 

Web 

depth to 

thickness 

ratio of 

track 

section 

h/t 

MFEM          

kN.m 

Mstud       

kN.m 

Mtrack      

kN.m 

Nominal 

moment of 

built-up 

sections 

Mn 

kN.m 

MFEM/Mn 

254-ST-14-

S300-BP-F1 

137.25 25.548 19.268 8.102 27.370 0.933 

305-ST-14-

S300-BP-F1 

165.3 29.860 22.717 10.000 32.717 0.913 

203-ST-18-

S300-BP-F2 

174.38 7.203 5.202 2.359 7.561 0.953 

254-ST-18-

S300-BP-F2 

173.68 9.078 6.535 3.024 9.559 0.950 

305-ST-18-

S300-BP-F2 

263.07 11.359 7.816 3.687 11.503 0.987 

203-ST-16-

S300-BP-F2 

138.34 10.455 7.535 3.462 10.997 0.951 

254-ST-16-

S300-BP-F2 

173.67 15.061 11.168 4.503 15.671 0.961 

305-ST-16-

S300-BP-F2 

209.0 16.488 11.834 5.516 17.350 0.950 

203-ST-14-

S300-BP-F2 

109.2 14.237 10.05 4.976 15.026 0.947 

254-ST-14-

S300-BP-F2 

137.25 18.468 13.589 6.556 20.145 0.917 

305-ST-14-

S300-BP-F2 

165.3 22.466 17.489 8.142 25.631 0.876 

     Average 0.954 

     Std_Dev 0.034 

     Coefficient 

of variation 

0.036 

4.4.1.2 Effect of section depth and thickness variation on the ultimate moment 

capacity 

The effect of section depth and thickness variation on the ultimate moment capacity of the 

built-up girders was investigated. To make a comparison of different load-deflection 

behaviour due to section depth variation only, the load versus mid-span deflection curves for 

girders of different depth with all other factors constant were plotted on the same graph, as 

shown in Figures 4.37 through 4.42. All the curves show nonlinear behaviour after 
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application of a very small amount of load. The initial nonlinearity of the curve is an 

indication of the distortion of the stud section at the support location prior to the bottom 

flange of the stud coming into contact with the bearing plate. The stiffness increases as the 

stud section comes into contact with the bearing plate. The slope of the load-deflection curve 

increases with the increase of section depth, as shown in Figures 4.37 to 4.42, indicating an 

increase in section stiffness. The ultimate moment capacity of the CFS built-up box girders 

also increases with an increase in section depth.  

For different thicknesses of the section, keeping all other factors constant, the load 

deflection curves for the girder models were plotted in the same graphs in Figure 4.43 

through 4.48. Looking at these graphs, it can be seen that the slope of load-deflection curve 

increases with an increase in section thickness. The ultimate moment capacities of the CFS 

built-up box girders also increase with an increase in section thickness. The MFEM/ Mn ratios 

shown in Table 4.5 vary from 0.876 to 1.03 for the different section depths and thicknesses, 

with an average value of 0.954, standard deviation of 0.03 and coefficient of variation of 

0.036. The bar charts shown in Figures 4.49 and 4.50 indicate the effect of section depth and 

thickness on the MFEM/Mn ratio. From these figures it can be observed that for a particular 

section depth, the MFEM/Mn ratios decrease with an increase in section thickness. For the 

depth of 305 mm, the effect of thickness variation on the MFEM/Mn ratios is significant and 

the ratio ranges from 0.876 to 1.033. For the depth of 203 mm, the ratio varies from 0.947 to 

0.991, and for the 254 mm depth, these ratios vary from 0.91-0.989.  For the 14-gauge 

thickness, the MFEM/Mn ratio decreases with the increase of section depth from 203 mm to 

305 mm and varies from 0.876 to 0.95. For the 16-gauge and 18-gauge thicknesses, the 



 

  94 

MFEM/Mn ratio decreases with an increase in depth from 203 mm to 254 mm and varies from 

0.93 to 0.962 and 0.95 to 0.99, respectively. The MFEM/Mn  ratio increases with the increase 

of section depth from 254 mm to 305 mm for 16-gauge and 18-gauge thicknesses. 

 For the section  depth of 305 mm with thicknesses of 18-gauge and 16-gauge, and for the 

section depth of 254 mm with 18-gauge thickness, the web depth to thickness ratio (h/t) is 

higher than 200. CSA-S136-01 is therefore not applicable to determine the effective width of 

webs with holes under stress gradient for these sections. In this study, in order to calculate 

the nominal moment capacity (Mn), the effective width of web with h/t≥ 200 was determined 

according to the Clause B2.4 of CSA-S136-01 (CSA-S136-01, 2001). 
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Figure 4.21 Stress state ratio at ultimate moment capacity of the built-up box girder (Model: 

305-ST-18-S300-BP-F1) 

 

Figure 4.22 Stress state ratio at ultimate moment capacity of the built-up box girder (Model: 

305-ST-18-S300-BP-F2) 
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Figure 4.23 Stress state ratio at ultimate moment capacity of the built-up box girder (Model: 

254-ST-18-S300-BP-F1) 

 

Figure 4.24 Stress state ratio at ultimate moment capacity of the built-up box girder (Model: 

254-ST-18-S300-BP-F2) 



 

  97 

 

Figure 4.25 Stress state ratio at ultimate moment capacity of the built-up box girder (Model: 

203-ST-18-S300-BP-F1) 

 

Figure 4.26 Stress state ratio at ultimate moment capacity of the built-up box girder (Model: 

203-ST-18-S300-BP-F2) 
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Figure 4.27 Stress state ratio at ultimate moment capacity of the built-up box girder (Model: 

305-ST-16-S300-BP-F1) 

 

Figure 4.28 Stress state ratio at ultimate moment capacity of the built-up box girder (Model: 

305-ST-16-S300-BP-F2) 



 

  99 

 

Figure 4.29 Stress state ratio at ultimate moment capacity of the built-up box girder (Model: 

203-ST-16-S300-BP-F1) 

 

Figure 4.30 Stress state ratio at ultimate moment capacity of the built-up box girder (Model: 

203-ST-16-S300-BP-F2) 
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Figure 4.31 Stress state ratio at ultimate moment capacity of the built-up box girder (Model: 

305-ST-14-S300-BP-F1) 

 

Figure 4.32 Stress state ratio at ultimate moment capacity of the built-up box girder (Model: 

305-ST-14-S300-BP-F2) 
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Figure 4.33 Stress state ratio at ultimate moment capacity of the built-up box girder (Model: 

254-ST-14-S300-BP-F1) 

 

Figure 4.34 Stress state ratio at ultimate moment capacity of the built-up box girder (Model: 

254-ST-14-S300-BP-F2) 
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Figure 4.35 Stress state ratio at ultimate moment capacity of the built-up box girder (Model: 

203-ST-14-S300-BP-F1) 

 

Figure 4.36 Stress state ratio at ultimate moment capacity of the built-up box girder (Model: 

203-ST-14-S300-BP-F2) 
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Load versus deflection
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Figure 4.37 Load versus mid-span deflection curve 
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Figure 4.38 Load versus mid-span deflection curve 
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Load versus Deflection
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Figure 4.39 Load versus mid-span deflection curve 
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Figure 4.40 Load versus mid-span deflection Curve 
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Load versus deflection
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Figure 4.41 Load versus mid-span deflection curve 
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Figure 4.42 Load versus mid-span deflection curve 
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Load versus Deflection 
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Figure 4.43 Load versus mid-span deflection curve 
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Figure 4.44 Load versus mid-span deflection curve 
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Figure 4.45 Load versus mid-span deflection curve 
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Figure 4.46 Load versus mid-span deflection curve 
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Figure 4.47 Load versus mid-span deflection curve 
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Figure 4.48 Load versus mid-span deflection curve 
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Figure 4.49 MFEM/ Mn for CFS built-up box sections of different section depth and thickness 

(Fy for stud=349 MPa, for track = 307 MPa) 
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Figure 4.50 MFEM/ Mn for CFS built-up box sections of different section depth and thickness 

(Fy for both stud and track = 228 MPa) 
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4.4.2 Parametric studies of flange screw spacing variation 

The influence of screw spacing was investigated for screw spacing of 150 mm, 300 mm and 

600 mm, while keeping all other factors the same for each finite element analysis. The 

sections with 16-gauge and 14-gauge thickness were chosen with depths of 305 mm (12 in), 

254 mm (10 in) and 203 mm (8 in). A total of eighteen FE analyses were conducted, and the 

results obtained are shown in Table 4.6. 

Table 4.6 Effect of flange screw variation on ultimate moment capacity 

CSA-S136-01 nominal 

moment 

Model description Web depth 

to 

thickness 

ratio of 

track 

section h/t 

MFEM             

kN.m 

Mstud                 

kN.m 

Mtrack              

kN.m 

Nominal 

moment of 

built-up 

sections 

Mn 

kN.m  

MFEM/Mn 

203-ST-16-S600-

BP-F2 

138.34 9.979 7.535 3.462 10.997 0.907 

203-ST-16-S300-

BP-F2 

138.34 10.455 7.535 3.462 10.997 0.951 

203-ST-16-S150-

BP-F2 

138.34 10.667 7.535 3.462 10.997 0.970 

254-ST-16-S600-

BP-F2 

173.68 14.066 11.168 4.503 15.671 0.898 

255-ST-16-S300-

BP-F2 

173.68 15.061 11.168 4.503 15.671 0.961 

254-ST-16-S150-

BP-F2 

173.68 15.982 11.168 4.503 15.671 1.020 

305-ST-16-S600-

BP-F2 

209.01 15.698 11.834 5.516 17.350 0.905 

305-ST-16-S300-

BP-F2 

209.01 16.488 11.834 5.516 17.350 0.950 

305-ST-16-S150-

BP-F2 

209.01 16.638 11.834 5.516 17.350 0.959 

203-ST-14-S600-

BP-F2 

109.2 13.425 10.050 4.976 15.026 0.893 

203-ST-14-S300-

BP-F2 

109.2 14.237 10.050 4.976 15.026 0.947 

203-ST-14-S150-

BP-F2 

109.2 14.696 10.050 4.976 15.026 0.978 

254-ST-14-S600-

BP-F2 

137.25 17.746 13.589 6.556 20.145 0.881 



 

  111 

CSA-S136-01 nominal 

moment 

Model description Web depth 

to 

thickness 

ratio of 

track 

section h/t 

MFEM             

kN.m 

Mstud                 

kN.m 

Mtrack              

kN.m 

Nominal 

moment of 

built-up 

sections 

Mn 

kN.m  

MFEM/Mn 

254-ST-14-S300-

BP-F2 

137.25 18.468 13588.622 6556.479 20145.101 0.917 

254-ST-14-S150-

BP-F2 

137.25 19.320 13588.622 6556.479 20145.101 0.959 

305-ST-14-S600-

BP-F2 

165.3 22.512 17489.179 8142.440 25631.618 0.878 

305-ST-14-S300-

BP-F2 

165.3 22.466 17489.179 8142.440 25631.618 0.876 

305-ST-14-S150-

BP-F2 

165.3 23.265 17489.179 8142.440 25631.618 0.908 

     Average 0.931 

     Std_Dev. 0.041 

     Coefficient 

of variation 

0.043 

 

From Table 4.6, it is observed that the ultimate moment capacity of the CFS built-up box 

girders is influenced by the screw spacing in that MFEM decreases as the screw spacing is 

increased. The effect of screw spacing on the ultimate capacity of CFS built-up box girders 

was investigated by comparing the MFEM/Mn ratios for different screw spacings with all the 

other factors held constant. The MFEM/Mn ratios were then plotted with respect to girder 

depth for different screw spacings for section thicknesses of 16-gauge and 14-gauge, as 

shown in Figures 4.51 and 4.52, respectively. The MFEM/Mn ratio reduces with an increase in 

the screw spacing, which means the effectiveness of the built-up section increases with 

increasing screw spacing. For section depths of 203 mm, 254 mm, and 305 mm, the 

MFEM/Mn ratio varies from 0.907 to 0.97, 0.898 to 1.02, and 0.905 to 0.959 for the 16-gauge 

thickness and from 0.893 to 0.978, 0.881 to 0.959 and 0.878 to 0.908 for the 14-gauge, 

respectively, for the three different screw spacing. For the 600 mm screw spacing, the 
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ultimate moment capacity of the CFS built-up girder is very low, whereas for the screw 

spacings of 300 mm and 150 mm, the moment capacities are within 4% of each other, except 

for the girder with a 254 mm depth and 16-gauge thickness. The average MFEM/Mn ratio is 

equal to 0.931 and standard deviation is 0.041, as shown in Table 4.6. 

 

Effect of screw spacing variation
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Figure 4.51 Effect of screw spacing variation for 16-gauge material. (Fy  = 228 MPa) 
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Effect of screw spacing variation
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Figure 4.52 Effect of screw spacing variation for 14-gauge material (Fy = 228 MPa) 

4.4.3 Effect of material yield strength on the ultimate moment capacity 

A total eighteen finite element analyses were conducted using two different material 

properties to investigate the effect of material yield stress on the ultimate moment capacity of 

CFS built-up box girders. Nine analyses were conducted using a different yield stress for the 

stud (349 MPa) and track sections (307 MPa), like the test (Beshara and Lawson, 2002). 

Another nine analyses were performed using the same yield stress (228 MPa) for both stud 

and track sections. Figures 4.53 through 4.55 indicate the effect of material yield stress on the 

load deformation behaviour of the built-up box girders. From these Figures it is clear that 

decreasing the material yield stress decreases the ultimate moment capacity of the girders. 

The slope of the load-deflection curve remains same for the girder models with different 

h/t=109.2 h/t=137.25 h/t=165.30 
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yield stress, which indicates that there is no variation of the stiffness of CFS built-up box 

sections due to the yield stress variation. The MFEM/Mn ratios are, however, influenced by the 

material yield stress as shown in Figures 4.56 to 4.58. The MFEM/Mn ratios for all of the 

girder models decrease with the decrease of material yield stress up to 3%, except for the 

girder with 254 mm depth and 16-gauge thickness. For the model 254-ST-16-S300-BP, the 

ratio increases from 0.938 to 0.961 with the decrease of material yield stress, as shown in 

Figure 4.57.  
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Figure 4.53 Load versus mid-span deflection curve for two types of material 
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Load versus Deflection
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Figure 4.54 Load versus mid-span deflection curve for two types of material 
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Figure 4.55 Load versus mid-span deflection curve for two types of material 
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Figure 4.56 Effect of material yield stress on MFEM/Mn ratio 
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Figure 4.57 Effect of material yield stress on MFEM/Mn ratio 

h/t=174.38 h/t=218.7 h/t=263.08 

h/t=138.34 h/t=173.68 h/t=209.01 
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Effect of yield stress variation(gauge14)
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Figure 4.58 Effect of material yield stress on MFEM/Mn ratio 

4.5 Prediction of moment capacity 

In order to propose a single equation to calculate the moment capacity of CFS built-up box 

girders, the ultimate moment capacities (MFEM) obtained from FE analysis considering 

different section depth, thickness, flange screw spacing and material yield stress, were 

plotted against the nominal moment capacities (Mn) calculated according to the current 

design practice, as shown in Figure 4.59 for web depth-to-thickness ratio (h/t) less than or 

equal to 200.  

h/t=109.2 h/t=137.25 h/t=165.3 
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Figure 4.59 MFEM  versus Mn (h/t ≤ 200) 

 

All the points in  Figure 4.59 can be seen to fall very close to the line y = 0.9233x with R
2 

= 

0.986, thus confirming the fact that the moment capacities predicted by FE analysis are equal 

to 92% of the nominal moment capacity calculated according to current design practice. On 

this basis, it is proposed that: 

n
/
n ΜΜ β=                                                                                                                                   (4.1) 

 where =/
nΜ  modified nominal moment capacity of built-up box girder. 

Based on Eq. (4.1) 
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Mn = nominal moment capacity of CFS built-up box girder calculated   

according to current design practice. 

            β = proposed modification factor = 0.9 

The parameter β is a factor of section depth (203 mm-305 mm), thickness (1.14 mm-1.81 

mm); screw spacing (150 mm-600 mm) and material yield stress (228 MPa-349 MPa). 

The dotted line in the Figure 4.59 was drawn according to the proposed Eq. (4.1) and shows 

that most of the points are at or above the line. So assuming the value of the parameter β 

equals 0.9, the nominal moment capacity of the CFS built-up box girder calculated according 

to Eq. (4.1) is conservative. 
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Chapter 5 

Conclusions 

5.1 Summary 

Cold-formed built-up sections are used when a single section is not sufficient to carry the 

design load. In practice, CFS built-up box sections consist of two C-sections connected by 

self drilling screws through the top and bottom flanges. Load from the framing member may 

be directly applied to the web of one member of the built-up joist assembly. As a result, any 

resistance provided by the other members in the assembly depends on the efficiency of the 

connection components in transferring load. CFS built-up box girders may also be subject to 

torsion due to loading conditions. The current North American Specification for the Design 

of Cold-Formed Steel Structural Members (CSA-S136-01, 2001) does not provide any 

guideline on this issue. The AISI Cold-Formed Steel Framing Design Guide (AISI Cold-

Formed Steel Framing Design Guide, 2002) suggests that the moment resistance and inertia 

of built-up sections are the simple addition of those for the component parts. The objective of 

this research was to study the flexural behaviour of cold-formed steel built-up box sections 

subjected to eccentric loading, and to investigate whether the current design practice 

proposed by the AISI Cold-Formed Steel Framing Design Guide (AISI Cold-Formed Steel 

Framing Design Guide, 2002) is conservative or not.  

A theoretical background and thorough literature review was carried out and presented in 

Chapter 2, and very little corresponding information was found. Numerous physical 

experiments are required to develop and verify any newly proposed design procedure. With 
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the availability of powerful computers and software, the finite element method is an excellent 

tool to investigate the behaviour of engineering structures. So, in lieu of conducting 

expensive testing, the finite element method was used by this study to investigate the flexural 

performance of cold formed steel (CFS) built-up box girders. In particular, parametric studies 

were conducted to determine the factors affecting the moment capacity of CFS built-up box 

girders. 

The main objectives of the finite element study were to understand the flexural behaviour 

and determine the ultimate moment capacity of CFS built-up box sections, and to identify the 

factors which affect the flexural capacity. A finite element model was established and 

verified through comparison of its results with those from experimental tests reported in the 

literature (Beshara and Lawson, 2002). It was shown that FE analysis can reliably predict the 

ultimate moment capacity of CFS built-up box sections.  

The loading was applied in the finite element model by two methods: applying the load 

directly as force and applying the load as controlled displacement to investigate the effect of 

the method of load application on ultimate moment capacity and failure of the CFS built-up 

box girder. It was shown that the ultimate moment capacity varies within 1.5%-3.8% for the 

different methods of load application. The failure mechanism also remains the same 

regardless of the method of load application. So it can be concluded that the method of load 

application does not affect the ultimate moment capacity of the CFS built-up box girder 

under eccentric loading. In the parametric studies, load was applied as controlled 

displacement instead of force in order to simulate the load-deformation behaviour beyond 

ultimate capacity.  
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The ultimate moment capacities of the CFS built-up box girders are highly influenced by 

the support conditions. In the test (Beshara and Lawson, 2002), no bearing plate was used at 

the support location and, as a result, material failure occurred at the bearing location due to 

the high reaction forces. The FE analysis was conducted with a bearing plate at the support 

location. The FE model showed that by introducing a bearing plate at the support location, 

the local failure at that region can be minimized and the ultimate moment capacity of built-up 

box girders can be increased up to 95% of the nominal moment capacity (Mn) calculated 

according to current design practice. 

A parametric study was carried out to investigate the influence of section depth, thickness, 

connection screw spacing, the use of bearing plate at the support location, and material yield 

stress on the ultimate moment capacity of CFS built-up box girders.  A total of thirty FE 

studies were carried out for different depth (203 mm-305 mm), thickness (1.41 mm-1.81 

mm), flange screw spacing (150 mm-600 mm) and material yield stress (207 MPa-349 MPa). 

The web slenderness ratio (h/t) varies from 109-263 for different sections. Nonlinear static 

analysis was carried out considering the material nonlinearities, geometric nonlinearities and 

initial geometric imperfections to obtain the ultimate moment capacity of CFS built-up box 

sections under eccentric loading. All the FE models for the different section dimensions 

showed distortion of the girder cross sections as a consequence of the applied load. The local 

buckling of the top flange of track sections was also observed at the constant moment region. 

The moment capacity (MFEM) obtained from the FE analysis was compared with the nominal 

moment (Mn) calculated according to current design practice. It was found that the nominal 

moment capacity of CFS built-up box sections is not equal to the simple addition of the 
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nominal moment capacity of the individual sections. In fact, the ratio MFEM/Mn was found to 

be less than 1.  

From the parametric studies it was found that the ultimate moment capacity of CFS built-

up box sections increases with an increase in section depth and thickness. The stiffness of 

built-up girders also increases with an increase in these parameters. The average MFEM/Mn 

for built-up sections of different depth (203 mm-305 mm) and different thickness (1.14 mm-

1.81 mm) equals 0.954 with a standard deviation of 0.034 and coefficient of variation of 

0.036. The ultimate moment capacity of CFS built-up box sections was also influenced by 

the flange screw spacing. The moment capacity reduces with an increase in screw spacing. 

The average MFEM/Mn ratio equals 0.931 with a standard deviation of 0.04 and coefficient of 

variation of 0.043 as flange screw spacing varies from 150mm-600mm. FE studies were also 

conducted to investigate the effect of the material yield stress (228 MPa-349 MPa) variation 

on the ultimate moment capacity of CFS built-up sections. It was found that decreasing yield 

stress of the steel reduces the ultimate moment capacity, however, the stiffness of the CFS 

built-up box girder remains the same. The MFEM/Mn ratio decreases with the decrease of 

material yield stress. 

For all thirty FE studies (h/t varies from 109-264),considering all the parameters, the 

average MFEM /Mn ratio equals 0.938 with a standard deviation of 0.04 and coefficient of 

variation of 0.043. Considering only sections with h/t ≤200, the average MFEM /Mn ratio 

equals 0.926 with a standard deviation of 0.038 and coefficient of variation of 0.04. 
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From the results of the parametric studies, it was concluded that the current design practice 

to determine the moment capacity of CFS built-up box sections under eccentric loading is not 

conservative. 

5.2 Design recommendations 

By analyzing the data obtained from the FE model for h/t ≤ 200 (web slenderness ratio), a 

modification factor (β) that is a function of section depth, thickness, yield stress and flange 

screw spacing was proposed to calculate the nominal moment capacity of built-up box 

sections. This study concluded that the modified nominal moment capacity (Mn
/
) of 

eccentrically loaded CFS built-up box sections eccentric load can be determined according to 

the following equation: 

n
/
n ΜΜ β=                                                                                             (5.1) 

Where =/
Μn  modified nominal moment capacity of built-up box girder. 

=nΜ  nominal moment capacity of CFS built-up box girder calculated by adding 

the nominal moment capacities of individual sections, as currently specified by the 

AISI cold-formed steel framing design guide (AISI, 2002). 

   β = Proposed modification factor = 0.9 

The modification factor (β) is valid for built-up box girders made of two C-sections 

connected through the top and bottom flanges and having a minimum bearing length at the 

support location equal to 38 mm (1.5 in). The β factor was based on FE results with section 
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depth of 203 mm-305 mm, thickness of 1.14 mm-1.81 mm, flange screw spacing of 150 mm-

600 mm and material yield stress of 228 MPa-349 MPa. 

5.3 Recommendations for future work 

In the FE analysis, the self drilling screws connecting the top and bottom flanges of the two 

sections were not modelled. Instead, the screws were represented using a coupling node 

technique whereby the size of the screw, screw hole, and failure of the screws were 

neglected. The FE model could be improved by taking direct account of the actual screws 

and their related properties.  

The initial geometric imperfections of the CFS sections were accounted for by scaling the 

first eigenvalue buckling mode and adding it to the perfect geometry so that the maximum 

imperfection did not exceed the thickness of the section. Future studies should include a 

sensitivity analysis to investigate the effect of initial geometric imperfection on the ultimate 

moment capacity of the CFS built-up box girders. 

Even though bearing plates at support locations are recommended in practice, in the tests 

conducted by DDG (Beshara and Lawson, 2002) the CFS built-up box sections were placed 

directly on top of a knife-edge support. Based on the FE analysis carried out in this study, it 

was found that material failure occurred at the support location when no bearing plate was 

used. By accounting for a bearing plate at the support location, the FE analysis determined 

that the ultimate moment capacity of the CFS built-up box sections was increased. The 

author recommends that future tests should be carried out using a bearing plate at the support 

location, so as to verify the results obtained from the FE analysis in this research. 
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Appendix A 

Sample calculation 

Stud sections: 254S76 16−

E 29435ksi:= fy 50.6ksi:= µ 0.3:= t .0632in:= h0 10in:= b0 3in:=

ri 1.5 t⋅:= ri 0.095in= d1 t ri+:= D 1in:=

Stiffened compression flange under uniform compression

w b0 2 d1⋅−:= w 2.684in=

Gross section properties

Element L y Ly Ly2 I

1 0.842 0.579 0.488 0.282 0.050

2 0.397 0.077 0.031 0.002

3 2.684 0.032 0.085 0.003

4 9.684 5.000 48.420 242.100 75.680

5 2.684 9.968 26.755 266.706

6 0.397 9.923 3.939 39.087

7 0.842 9.421 7.932 74.732 0.050

sum 17.530 87.650 622.913 75.780

Ytop 5.000 Ix 260.443

Ixg 16.460

d D d1−:=w

t
42.468= Is

d
3

t⋅

12
:=

Is 3.144 10
3−

× in
4

= f fy:=

S 1.28
E

f
⋅:= S 30.872= 0.328S⋅ 10.126=

w

t
0.328.S>

Ia1 399 t
4

⋅

w

t

S
0.328−











3

⋅:=

Ia1 7.319 10
3−

× in
4

=

Ia2 t
4

115

w

t

S
⋅ 5+











⋅:= Ia2 2.604 10
3−

× in
4

=

Ia Ia1 Ia1 Ia2<if

Ia2 otherwise

:=

Ia 2.604 10
3−

× in
4

=
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Ri
Is

Ia

Is

Ia
1<if

1 otherwise

:= Ri 1=D

w
0.373=

n 0.582

w

t

4 S⋅
− 0.582

w

t

4 S⋅
−

1

3
≥if

1

3
otherwise

:=

n 0.333=

k 4.82 5
D

w
⋅−








Ri
n

⋅ 0.43+ 0.25
D

w
< 0.8≤if

3.57 Ri
n

⋅ 0.43+ otherwise

:=

k 4 k 4>if

k otherwise

:= k 3.387=

Fcr
k π

2
⋅ E⋅

12 1 µ
2

−( )⋅

t

w









2

⋅:= Fcr 49.962ksi= λ
f

Fcr
:= λ 1.006=

ρ

1
0.22

λ
−

λ
λ 0.673>if

1 otherwise

:= ρ 0.776=

be ρ w⋅:= be 2.084in=

Lip (Unstiffened compression element)

Ytop 5in:= d1 t ri+:= f fy:= d 0.842in=

d

t
13.323= f1 f

Ytop d1−

Ytop
⋅:= f2 f

Ytop d1− d−

Ytop
⋅:=

f1 49.001ksi= f2 40.48ksi= ψ
f2

f1
:= ψ 0.826=

k
0.578

ψ 0.34+
:= k 0.496=

Fcr
k π

2
⋅ E⋅

12 1 µ
2

−( )⋅

t

d









2

⋅:=
Fcr 74.292ksi= f f1:=

 



 

  133 

λ
f

Fcr
:= λ 0.812=

ρ

1
0.22

λ
−

λ
λ 0.673>if

1 otherwise

:= ρ 0.898=

ds' ρ d⋅:= ds' 0.756in= ds ds' Ri⋅:= ds 0.756in=

Web under stress gradient

h h0 2 d1⋅−:= h 9.684in=
h

t
153.228= f f1:= f2

h0 Ytop− d1−( ) fy⋅

Ytop
:=

f1 49.001ksi= f2 49.001ksi=

ψ
f2

f1
:= ψ 1= k 4 2 1 ψ+( )3

⋅+ 2 1 ψ+( )⋅+:= k 24=

Fcr
k π

2
⋅ E⋅

12 1 µ
2

−( )⋅

t

h









2

⋅:=
Fcr 27.194ksi= f f1:=

λ
f

Fcr
:= λ 1.342=

ρ

1
0.22

λ
−

λ
λ 0.673>if

1 otherwise

:= ρ 0.623=

be ρ h⋅:= be 6.032in=

ho

b0
4≤h0

b0
3.333=

b1
be

3 ψ+
:=

b2
be

2
ψ 0.236>if

be b1− otherwise

:=

b1 1.508in= b2 3.016in=

b1 b2+ 4.524in= Ytop d1− 4.842in=
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b1 b2+ 4.842.in< the web is not fully effective.

Moment of Inertia calculation

Trial1 Assume Ytop=5in

Element L y Ly Ly2 I

1 0.756 0.536 0.405 0.217 0.036

2 0.397 0.077 0.031 0.002

3 2.084 0.032 0.066 0.002

4a 1.508 0.912 1.375 1.254 0.286

4b 3.016 3.492 10.532 36.777 2.286

4c 4.842 7.421 35.932 266.655 9.460

5 2.684 9.968 26.755 266.706

6 0.397 9.923 3.939 39.087

7 0.842 9.464 7.969 75.416 0.050

sum 16.526 87.005 686.117 12.118

Ytop 5.265 Ix 240.181

Ixe 15.179

Trial2

Ytop 5.3in:= f fy:=

Web under stress gradient

h h0 2 d1⋅−:= h 9.684in=
h

t
153.228=

f1 f
Ytop d1−

Ytop
⋅:= f2

h0 Ytop− d1−( ) fy⋅

Ytop
:=

f1 49.092ksi= f2 43.363ksi=

ψ
f2

f1
:= ψ 0.883= k 4 2 1 ψ+( )3

⋅+ 2 1 ψ+( )⋅+:= k 21.126=

Fcr
k π

2
⋅ E⋅

12 1 µ
2

−( )⋅

t

h









2

⋅:=
Fcr 23.938ksi= f f1:=

λ
f

Fcr
:= λ 1.432=
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ρ

1
0.22

λ
−

λ
λ 0.673>if

1 otherwise

:= ρ 0.591=

be ρ h⋅:= be 5.723in=

ho

b0
4≤h0

b0
3.333=

b1
be

3 ψ+
:=

b2
be

2
ψ 0.236>if

be b1− otherwise

:=

b1 1.474in= b2 2.862in=

b1 b2+ 4.336in= Ytop d1− 5.142in=

b1 b2+ 5.142< the web is not fully effective.

Trail 2 assume Ycg=5.3in

Element L y Ly Ly2 I

1 0.756 0.536 0.405 0.217 0.036

2 0.397 0.077 0.031 0.002

3 2.084 0.032 0.066 0.002

4a 1.474 0.895 1.319 1.181 0.267

4b 2.862 3.869 11.073 42.842 1.954

4c 4.542 7.571 34.387 260.348 7.808

5 2.684 9.968 26.755 266.706

6 0.397 9.923 3.939 39.087

7 0.842 9.421 7.932 74.732 0.050

sum 16.038 85.909 685.117 10.115

Ytop 5.357 Ix 235.057

Ixe 14.856

Trial 3

Ytop 5.38in:= f fy:=

Web under stress gradient

h h0 2 d1⋅−:= h 9.684in=
h

t
153.228=

f1 f
Ytop d1−

Ytop
⋅:= f2

h0 Ytop− d1−( ) fy⋅

Ytop
:=

f1 49.114ksi= f2 41.966ksi=
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ψ
f2

f1
:= ψ 0.854= k 4 2 1 ψ+( )3

⋅+ 2 1 ψ+( )⋅+:= k 20.464=

Fcr
k π

2
⋅ E⋅

12 1 µ
2

−( )⋅

t

h









2

⋅:=
Fcr 23.188ksi= f f1:=

λ
f

Fcr
:= λ 1.455=

ρ

1
0.22

λ
−

λ
λ 0.673>if

1 otherwise

:= ρ 0.583=

be ρ h⋅:=

ho

b0
4≤h0

b0
3.333=

b1
be

3 ψ+
:=

b2
be

2
ψ 0.236>if

be b1− otherwise

:=

b1 1.465in= b2 2.824in=

b1 b2+ 4.289in= Ytop d1− 5.222in=

b1 b2+ 5.222< the web is not fully effective.

Trial3 Assume Ycg=5.38in

Element L y Ly Ly2 I

1 0.756 0.536 0.405 0.217 0.036

2 0.397 0.077 0.031 0.002

3 2.084 0.032 0.066 0.002

4a 1.465 0.891 1.305 1.162 0.262

4b 2.824 3.968 11.206 44.464 1.877

4c 4.462 7.611 33.960 258.472 7.403

5 2.684 9.968 26.755 266.706

6 0.397 9.923 3.939 39.087

7 0.842 9.421 7.932 74.732 0.050

sum 15.911 85.599 684.845 9.628

Ytop 5.380 Ix 233.959

Ixe 14.786
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From trial 3 it is found that Ytop=5.380in which is almost equal to 5.38 in. So no other iteration

is necessary. 

Ixe 14.78619in
4

:= Yxe 5.379878in:=

Sxe
Ixe

Yxe
:= Sxe 2.748in

3
= Mn Sxe fy⋅:= fy 50.6ksi=

Mn 139.07kip in⋅=
 

 

Stud section: 254S76 18−

E 29435ksi:= fy 50.6ksi:= µ 0.3:= t 0.0451in:= h0 10in:= b0 3in:=

ri 1.5 t⋅:= ri 0.068in= d1 t ri+:= D 1in:=

Gross section properties

Element L y Ly Ly
2

I

1 0.887 0.556 0.494 0.275 0.058

2 0.284 0.055 0.016 0.001

3 2.775 0.023 0.063 0.001

4 9.775 5.000 48.873 244.363 77.822

5 2.775 9.977 27.682 276.200

6 0.284 9.945 2.824 28.087

7 0.887 9.444 8.379 79.127 0.058

sum 17.666 88.330 628.053 77.938

Ytop 5.000 Ix 264.342

Ixg 11.922
 

Stiffened compression flange under uniform compression

w b0 2 d1⋅−:= w 2.774in=

d D d1−:=w

t
61.519= Is

d
3

t⋅

12
:=

Is 2.625 10
3−

× in
4

= f fy:=
w

t
0.328.S>

S 1.28
E

f
⋅:= S 30.872= 0.328S⋅ 10.126=

Ia1 399 t
4

⋅

w

t

S
0.328−











3

⋅:=
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Ia1 7.615 10
3−

× in
4

=

Ia2 t
4

115

w

t

S
⋅ 5+











⋅:= Ia2 9.688 10
4−

× in
4

=

Ia Ia1 Ia1 Ia2<if

Ia2 otherwise

:=

Ia 9.688 10
4−

× in
4

=

Ri
Is

Ia

Is

Ia
1<if

1 otherwise

:= Ri 1=D

w
0.36=

n 0.582

w

t

4 S⋅
− 0.582

w

t

4 S⋅
−

1

3
≥if

1

3
otherwise

:=

n 0.333=

k 4.82 5
D

w
⋅−








Ri
n

⋅ 0.43+ 0.25
D

w
< 0.8≤if

3.57 Ri
n

⋅ 0.43+ otherwise

:=

k 4 k 4>if

k otherwise

:= k 3.448=

Fcr
k π

2
⋅ E⋅

12 1 µ
2

−( )⋅

t

w









2

⋅:= Fcr 24.237ksi= λ
f

Fcr
:= λ 1.445=

ρ

1
0.22

λ
−

λ
λ 0.673>if

1 otherwise

:= ρ 0.587=

be ρ w⋅:= be 1.628in=

Lip (Unstiffened compression element)
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be w be 1.628in

Lip (Unstiffened compression element)

Ytop 5in:= d1 t ri+:= f fy:= d 0.887in=

d

t
19.673= f2 f

Ytop d1− d−

Ytop
⋅:=

f1 f
Ytop d1−

Ytop
⋅:=

f1 49.459ksi= f2 40.48ksi= ψ
f2

f1
:= ψ 0.818=

k
0.578

ψ 0.34+
:= k 0.499=

Fcr
k π

2
⋅ E⋅

12 1 µ
2

−( )⋅

t

d









2

⋅:=
Fcr 34.297ksi= f f1:=

λ
f

Fcr
:= λ 1.201=

ρ

1
0.22

λ
−

λ
λ 0.673>if

1 otherwise

:= ρ 0.68=

ds' ρ d⋅:= ds' 0.603in= ds ds' Ri⋅:= ds 0.603in=

Web under stress gradient

h h0 2 d1⋅−:= h 9.774in=
h

t
216.729= f f1:= f2

h0 Ytop− d1−( ) fy⋅

Ytop
:=

f1 49.459ksi= f2 49.459ksi=

ψ
f2

f1
:= ψ 1= k 4 2 1 ψ+( )3

⋅+ 2 1 ψ+( )⋅+:= k 24=

Fcr
k π

2
⋅ E⋅

12 1 µ
2

−( )⋅

t

h









2

⋅:=
Fcr 13.593ksi= f f1:=

 

λ
f

Fcr
:= λ 1.907=

ρ

1
0.22

λ
−

λ
λ 0.673>if

1 otherwise

:= ρ 0.464=
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be ρ h⋅:= be 4.533in=

ho

b0
4≤h0

b0
3.333=

b1
be

3 ψ+
:=

b2
be

2
ψ 0.236>if

be b1− otherwise

:=

b1 1.133in= b2 2.267in=

b1 b2+ 3.4in= Ytop d1− 4.887in=

b1 b2+ 4.887< the web is not fully effective.

Moment of Inertia calculation

Trial1 Assume Ytop=5in

Element L y Ly Ly
2

I

1 0.603 0.414 0.250 0.103 0.018

2 0.284 0.055 0.016 0.001

3 1.628 0.023 0.037 0.001

4a 1.133 0.679 0.770 0.523 0.121

4b 2.267 3.867 8.765 33.891 0.971

4c 4.887 7.444 36.379 270.791 9.728

5 2.775 9.977 27.682 276.200

6 0.284 9.945 2.824 28.087

7 0.887 9.444 8.379 79.127 0.058

sum 14.748 85.102 688.723 10.896

Ytop 5.770 Ix 208.551

Ixe 9.406

Trial 2 

Ytop 5.85in:= f fy:=
 

Web under stress gradient

h h0 2 d1⋅−:= h 9.774in=
h

t
216.729=

f1 fy
Ytop d1−

Ytop
⋅:= f2

h0 Ytop− d1−( ) fy⋅

Ytop
:=

f1 49.625ksi= f2 34.92ksi=
 



 

  141 

ψ
f2

f1
:= ψ 0.704= k 4 2 1 ψ+( )3

⋅+ 2 1 ψ+( )⋅+:= k 17.298=

Fcr
k π

2
⋅ E⋅

12 1 µ
2

−( )⋅

t

h









2

⋅:=
Fcr 9.797ksi= f f1:=

λ
f

Fcr
:= λ 2.251=

ρ

1
0.22

λ
−

λ
λ 0.673>if

1 otherwise

:= ρ 0.401=

be ρ h⋅:= be 3.918in=

ho

b0
4≤h0

b0
3.333=

b1
be

3 ψ+
:=

b2
be

2
ψ 0.236>if

be b1− otherwise

:=

b1 1.058in= b2 1.959in=

b1 b2+ 3.017in= Ytop d1− 5.737in=

b1 b2+ 5.737< the web is not fully effective.
 

Trail 2 assume Ycg=5.85

Element L y Ly Ly
2

I

1 0.603 0.414 0.250 0.103 0.018

2 0.284 0.055 0.016 0.001

3 1.628 0.023 0.037 0.001

4a 1.058 0.642 0.679 0.436 0.099

4b 1.959 4.871 9.541 46.471 0.627

4c 4.037 7.869 31.768 249.967 5.484

5 2.775 9.977 27.682 276.200

6 0.284 9.945 2.824 28.087

7 0.887 9.444 8.379 79.127 0.058

sum 13.515 81.176 680.393 6.285

Ytop 6.006 Ix 199.110

Ixe 8.980  
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Trial 3

Ytop 6.05in:= f fy:=

Web under stress gradient

h h0 2 d1⋅−:= h 9.774in=
h

t
216.729=

f1 fy
Ytop d1−

Ytop
⋅:= f2

h0 Ytop− d1−( ) fy⋅

Ytop
:=

f1 49.657ksi= f2 32.093ksi=

ψ
f2

f1
:= ψ 0.646= k 4 2 1 ψ+( )3

⋅+ 2 1 ψ+( )⋅+:= k 16.217=

Fcr
k π

2
⋅ E⋅

12 1 µ
2

−( )⋅

t

h









2

⋅:=
Fcr 9.185ksi= f f1:=

λ
f

Fcr
:= λ 2.325=

ρ

1
0.22

λ
−

λ
λ 0.673>if

1 otherwise

:= ρ 0.389=

be ρ h⋅:=

ho

b0
4≤h0

b0
3.333=

b1
be

3 ψ+
:=

b2
be

2
ψ 0.236>if

be b1− otherwise

:=

b1 1.044in= b2 1.903in=

b1 b2+ 2.947in= Ytop d1− 5.937in=

b1 b2+ 5.937in< the web is not fully effective.
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Trial3 y=6.05

Element L y Ly Ly
2

I

1 0.603 0.414 0.250 0.103 0.018

2 0.284 0.055 0.016 0.001

3 1.628 0.023 0.037 0.001

4a 1.044 0.635 0.663 0.421 0.095

4b 1.903 5.099 9.702 49.468 0.574

4c 3.837 7.969 30.578 243.661 4.708

5 2.775 9.977 27.682 276.200

6 0.284 9.945 2.824 28.087

7 0.887 9.444 8.379 79.127 0.058

sum 13.245 80.131 677.069 5.454

Ytop 6.050 Ix 197.744

Ixe 8.918

From trial 3 it is found that Ycg=6.04987in  which is almost equal to 6.05 in. So no other

iteration is necessary. 

Ixe 8.91824in
4

:= Yxe 6.04987in:=

Sxe
Ixe

Yxe
:= Sxe 1.474in

3
= Mn Sxe fy⋅:= fy 50.6ksi=

Mn 74.591kip in⋅=
 

Stud section: 254S76 14−

E 29435ksi:= fy 50.6ksi:= µ 0.3:= t 0.0713in:= h0 10in:= b0 3in:=

ri 1.5 t⋅:= ri 0.107in= d1 t ri+:= D 1in:=

Gross section properties:

Element L y Ly Ly
2

I

1 0.822 0.589 0.484 0.285 0.046

2 0.448 0.087 0.039 0.003

3 2.644 0.036 0.094 0.003

4 9.644 5.000 48.218 241.088 74.735

5 2.644 9.964 26.341 262.469

6 0.448 9.913 4.438 43.997

7 0.822 9.411 7.733 72.778 0.046

sum 17.470 87.348 620.623 74.827

Ytop 5.000 Ix 258.712

Ixg 18.446
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Stiffened compression flange under uniform compression

w b0 2 d1⋅−:= w 2.643in=

d D d1−:=w

t
37.076= Is

d
3

t⋅

12
:=

Is 3.297 10
3−

× in
4

= f fy:=

S 1.28
E

f
⋅:= S 30.872= 0.328S⋅ 10.126=

w

t
0.328.S>

Ia1 399 t
4

⋅

w

t

S
0.328−











3

⋅:=

Ia1 6.859 10
3−

× in
4

=

Ia2 t
4

115

w

t

S
⋅ 5+











⋅:= Ia2 3.698 10
3−

× in
4

=

Ia Ia1 Ia1 Ia2<if

Ia2 otherwise

:=

Ia 3.698 10
3−

× in
4

=

Ri
Is

Ia

Is

Ia
1<if

1 otherwise

:= Ri 0.891=D

w
0.378=

n 0.582

w

t

4 S⋅
− 0.582

w

t

4 S⋅
−

1

3
≥if

1

3
otherwise

:=

n 0.333=

k 4.82 5
D

w
⋅−








Ri
n

⋅ 0.43+ 0.25
D

w
< 0.8≤if

3.57 Ri
n

⋅ 0.43+ otherwise

:=

k 4 k 4>if

k otherwise

:= k 3.249=
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Fcr
k π

2
⋅ E⋅

12 1 µ
2

−( )⋅

t

w









2

⋅:= Fcr 62.871ksi= λ
f

Fcr
:= λ 0.897=

ρ

1
0.22

λ
−

λ
λ 0.673>if

1 otherwise

:= ρ 0.841=

be ρ w⋅:= be 2.224in=

Lip (Unstiffened compression element)

Ytop 5in:= d1 t ri+:= f fy:= d 0.822in=

d

t
11.525= f1 f

Ytop d1−

Ytop
⋅:= f2 f

Ytop d1− d−

Ytop
⋅:=

f1 48.796ksi= f2 40.48ksi= ψ
f2

f1
:= ψ 0.83=

k
0.578

ψ 0.34+
:= k 0.494=

Fcr
k π

2
⋅ E⋅

12 1 µ
2

−( )⋅

t

d









2

⋅:=
Fcr 98.978ksi= f f1:=

λ
f

Fcr
:= λ 0.702=

ρ

1
0.22

λ
−

λ
λ 0.673>if

1 otherwise

:= ρ 0.978=

ds' ρ d⋅:= ds' 0.804in= ds ds' Ri⋅:= ds 0.716in=

Web under stress gradient

h h0 2 d1⋅−:= h 9.643in=
h

t
135.252= f f1:= f2

h0 Ytop− d1−( ) fy⋅

Ytop
:=

f1 48.796ksi= f2 48.796ksi=
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ψ
f2

f1
:= ψ 1= k 4 2 1 ψ+( )3

⋅+ 2 1 ψ+( )⋅+:= k 24=

Fcr
k π

2
⋅ E⋅

12 1 µ
2

−( )⋅

t

h









2

⋅:=
Fcr 34.903ksi= f f1:=

λ
f

Fcr
:= λ 1.182=

ρ

1
0.22

λ
−

λ
λ 0.673>if

1 otherwise

:= ρ 0.688=

be ρ h⋅:= be 6.638in=

ho

b0
4≤h0

b0
3.333=

b1
be

3 ψ+
:=

b2
be

2
ψ 0.236>if

be b1− otherwise

:=

b1 1.66in= b2 3.319in=

b1 b2+ 4.979in= Ytop d1− 4.822in=

b1 b2+ 4.822.in> the web is  fully effective.

Moment of Inertia calculation

Trial1 Assume Ytop=5

Element L y Ly Ly
2

I

1 0.716 0.536 0.384 0.206 0.036

2 0.448 0.087 0.039 0.003

3 2.224 0.036 0.094 0.003

4 9.644 5.000 48.218 241.088 74.735

5 2.644 9.964 26.341 262.469

6 0.448 9.913 4.438 43.997

7 0.822 9.411 7.733 72.778 0.046

sum 16.944 87.247 620.544 74.817

Ytop 5.149 Ix 246.116

Ixe 17.548
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b1 b2+ 4.972<

Trial2 assume Ytop=5.15

Element L y Ly Ly
2

I

1 0.716 0.536 0.384 0.206 0.036

2 0.448 0.087 0.039 0.003

3 2.224 0.036 0.094 0.003

4a 1.642 0.999 1.641 1.640 0.267

4b 3.234 3.533 11.426 40.367 2.819

4c 4.672 7.486 34.972 261.797 8.497

5 2.644 9.964 26.341 262.469

6 0.448 9.913 4.438 43.997

7 0.822 9.411 7.733 72.778 0.046

sum 16.849 87.069 683.260 11.665

Ytop 5.168 Ix 244.978

Ixe 17.467

Trial 3

Ytop 5.175in:= f fy:=

Web under stress gradient

h h0 2 d1⋅−:= h 9.643in=
h

t
135.252=

f1 f
Ytop d1−

Ytop
⋅:= f2

h0 Ytop− d1−( ) fy⋅

Ytop
:=

f1 48.857ksi= f2 45.435ksi=

ψ
f2

f1
:= ψ 0.93= k 4 2 1 ψ+( )3

⋅+ 2 1 ψ+( )⋅+:= k 22.237=

Fcr
k π

2
⋅ E⋅

12 1 µ
2

−( )⋅

t

h









2

⋅:=
Fcr 32.339ksi= f f1:=

λ
f

Fcr
:= λ 1.229=

ρ

1
0.22

λ
−

λ
λ 0.673>if

1 otherwise

:= ρ 0.668=

be ρ h⋅:=

ho

b0
4≤h0

b0
3.333=

b1
be

3 ψ+
:=

b2
be

2
ψ 0.236>if

be b1− otherwise

:=
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b1 1.639in= b2 3.221in=

b1 b2+ 4.86in= Ytop d1− 4.997in=

b1 b2+ 5.222< the web is not fully effective.

Trial3 assume Ytop=5.175

Element L y Ly Ly
2

I

1 0.716 0.536 0.384 0.206 0.036

2 0.448 0.087 0.039 0.003

3 2.224 0.036 0.094 0.003

4a 1.639 0.998 1.635 1.632 0.367

4b 3.221 3.565 11.481 40.925 2.785

4c 4.647 7.498 34.843 261.266 8.361

5 2.644 9.964 26.341 262.469

6 0.448 9.913 4.438 43.997

7 0.822 9.411 7.733 72.778 0.046

sum 16.808 86.990 683.279 11.595

Ytop 5.176 Ix 244.648

Ixe 17.443

From trial 3 it is found that Ycg=5.175635 which is almost equal to 5.175 in. So no other

iteration is 

necessary. 

Ixe 17.44339in
4

:= Yxe 5.175635in:=

Sxe
Ixe

Yxe
:= Sxe 3.37in

3
= Mn Sxe fy⋅:= fy 50.6ksi=

Mn 170.537kip in⋅=
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Stud section: 203S76 18−

E 29435ksi:= fy 50.6ksi:= µ 0.3:= t 0.0451in:= h0 8in:= b0 3in:=

ri 1.5 t⋅:= ri 0.068in= d1 t ri+:= D 1in:=

Gross section:

Element L y Ly Ly
2

I

1 0.887 0.556 0.494 0.275 0.058

2 0.284 0.055 0.016 0.001

3 2.775 0.023 0.063 0.001

4 7.775 4.000 31.098 124.392 39.159

5 2.775 7.977 22.133 176.568

6 0.284 7.945 2.256 17.926

7 0.887 7.444 6.604 49.160 0.058

sum 15.666 62.664 368.323 39.276

Ytop 4.000 Ix 156.943

Ixg 7.078
 

Stiffened compression flange under uniform compression

w b0 2 d1⋅−:= w 2.774in=

d D d1−:=w

t
61.519= Is

d
3

t⋅

12
:=

Is 2.625 10
3−

× in
4

= f fy:=

S 1.28
E

f
⋅:= S 30.872= 0.328S⋅ 10.126=

w

t
0.328.S>

Ia1 399 t
4

⋅

w

t

S
0.328−











3

⋅:=

Ia1 7.615 10
3−

× in
4

=

Ia2 t
4

115

w

t

S
⋅ 5+











⋅:= Ia2 9.688 10
4−

× in
4

=

Ia Ia1 Ia1 Ia2<if

Ia2 otherwise

:=

Ia 9.688 10
4−

× in
4

=
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Ri
Is

Ia

Is

Ia
1<if

1 otherwise

:= Ri 1=D

w
0.36=

n 0.582

w

t

4 S⋅
− 0.582

w

t

4 S⋅
−

1

3
≥if

1

3
otherwise

:=

n 0.333=

k 4.82 5
D

w
⋅−








Ri
n

⋅ 0.43+ 0.25
D

w
< 0.8≤if

3.57 Ri
n

⋅ 0.43+ otherwise

:=

k 4 k 4>if

k otherwise

:= k 3.448=

Fcr
k π

2
⋅ E⋅

12 1 µ
2

−( )⋅

t

w









2

⋅:= Fcr 24.237ksi= λ
f

Fcr
:= λ 1.445=

ρ

1
0.22

λ
−

λ
λ 0.673>if

1 otherwise

:= ρ 0.587=

be ρ w⋅:= be 1.628in=

Lip (Unstiffened compression element)

Ytop 4in:= d1 t ri+:= f fy:= d 0.887in=

d

t
19.673= f2 f

Ytop d1− d−

Ytop
⋅:=

f1 f
Ytop d1−

Ytop
⋅:=

f1 49.174ksi= f2 37.95ksi= ψ
f2

f1
:= ψ 0.772=

k
0.578

ψ 0.34+
:= k 0.52=

Fcr
k π

2
⋅ E⋅

12 1 µ
2

−( )⋅

t

d









2

⋅:=
Fcr 35.737ksi= f f1:=
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λ
f

Fcr
:= λ 1.173=

ρ

1
0.22

λ
−

λ
λ 0.673>if

1 otherwise

:= ρ 0.693=

ds' ρ d⋅:= ds' 0.615in= ds ds' Ri⋅:= ds 0.615in=

Web under stress gradient

h h0 2 d1⋅−:= h 7.774in=
h

t
172.384= f f1:= f2

h0 Ytop− d1−( ) fy⋅

Ytop
:=

f1 49.174ksi= f2 49.174ksi=

ψ
f2

f1
:= ψ 1= k 4 2 1 ψ+( )3

⋅+ 2 1 ψ+( )⋅+:= k 24=

Fcr
k π

2
⋅ E⋅

12 1 µ
2

−( )⋅

t

h









2

⋅:=
Fcr 21.486ksi= f f1:=

λ
f

Fcr
:= λ 1.513=

ρ

1
0.22

λ
−

λ
λ 0.673>if

1 otherwise

:= ρ 0.565=

be ρ h⋅:= be 4.392in=

ho

b0
4≤h0

b0
2.667=

b1
be

3 ψ+
:=

b2
be

2
ψ 0.236>if

be b1− otherwise

:=

b1 1.098in= b2 2.196in=

b1 b2+ 3.294in= Ytop d1− 3.887in=

b1 b2+ 3.887< the web is not fully effective.
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Moment of Inertia calculation

Trial1 assume Ytop=4in

Element L y Ly Ly
2

I

1 0.615 0.420 0.258 0.109 0.019

2 0.284 0.055 0.016 0.001

3 1.628 0.023 0.037 0.001

4a 1.098 0.662 0.727 0.481 0.110

4b 2.196 2.902 6.373 18.494 0.883

4c 3.887 5.944 23.104 137.324 4.895

5 2.775 7.977 22.133 176.568

6 0.284 7.945 2.256 17.926

7 0.887 7.444 6.604 49.160 0.058

sum 13.654 61.509 400.063 5.965

Ytop 4.505 Ix 128.943

Ixe 5.815

Trial 2 

f fy:= Ytop 4.6in:=

Web under stress gradient

h h0 2 d1⋅−:= h 7.774in=
h

t
172.384=

f2
h0 Ytop− d1−( ) fy⋅

Ytop
:=

f1 f
Ytop d1−

Ytop
⋅:=

f1 49.36ksi= f2 36.16ksi=

ψ
f2

f1
:= ψ 0.733= k 4 2 1 ψ+( )3

⋅+ 2 1 ψ+( )⋅+:= k 17.867=

Fcr
k π

2
⋅ E⋅

12 1 µ
2

−( )⋅

t

h









2

⋅:=
Fcr 15.996ksi= f f1:=

λ
f

Fcr
:= λ 1.757=

ρ

1
0.22

λ
−

λ
λ 0.673>if

1 otherwise

:= ρ 0.498=

be ρ h⋅:= be 3.871in=
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λ
f

Fcr
:= λ 1.795=

ρ

1
0.22

λ
−

λ
λ 0.673>if

1 otherwise

:= ρ 0.489=

be ρ h⋅:=

ho

b0
4≤h0

b0
2.667=

b1
be

3 ψ+
:=

b2
be

2
ψ 0.236>if

be b1− otherwise

:=

b1 1.029in= b2 1.9in=

b1 b2+ 2.929in= Ytop d1− 4.587in=

b1 b2+ 4.587in< the web is not fully effective.

Trial3 assume Ytop=4.7in

Element L y Ly Ly
2

I

1 0.615 0.420 0.258 0.109 0.019

2 0.284 0.055 0.016 0.001

3 1.628 0.023 0.037 0.001

4a 1.029 0.627 0.645 0.405 0.091

4b 1.900 3.750 7.125 26.719 0.572

4c 3.187 6.294 20.059 126.246 2.698

5 2.775 7.977 22.133 176.568

6 0.284 7.945 2.256 17.926

7 0.887 7.444 6.604 49.160 0.058

sum 12.589 59.135 397.134 3.438

Ytop 4.697 Ix 122.797

Ixe 5.538

From trial 3 it is found that Ycg=4.697in  which is almost equal to 4.7 in. So no other iteration is

necessary. 

Ixe 5.538131in
4

:= Yxe 4.697in:=

Sxe
Ixe

Yxe
:= Sxe 1.179in

3
= Mn Sxe fy⋅:= fy 50.6ksi=

      
Mn 59.661kip in⋅=  
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Stud section: 203S76 16−

E 29435ksi:= fy 50.6ksi:= µ 0.3:= t 0.0566in:= h0 8in:= b0 3in:=

ri 1.5 t⋅:= ri 0.085in= d1 t ri+:= D 1in:=
Gross section:

Element L y Ly Ly
2

I

1 0.859 0.571 0.490 0.280 0.053

2 0.356 0.069 0.025 0.002

3 2.717 0.028 0.077 0.002

4 7.717 4.000 30.868 123.472 38.297

5 2.717 7.972 21.659 172.660

6 0.356 7.931 2.823 22.390

7 0.859 7.429 6.382 47.408 0.053

sum 15.581 62.324 366.215 38.403

Ytop 4.000 Ix 155.321

Ixg 8.791

Stiffened compression flange under uniform compression

w b0 2 d1⋅−:= w 2.717in=

d D d1−:=w

t
48.004= Is

d
3

t⋅

12
:=

Is 2.984 10
3−

× in
4

= f fy:=

S 1.28
E

f
⋅:= S 30.872= 0.328S⋅ 10.126=

w

t
0.328.S>

Ia1 399 t
4

⋅

w

t

S
0.328−











3

⋅:=

Ia1 7.563 10
3−

× in
4

=

Ia2 t
4

115

w

t

S
⋅ 5+











⋅:= Ia2 1.886 10
3−

× in
4

=

Ia Ia1 Ia1 Ia2<if

Ia2 otherwise

:=

Ia 1.886 10
3−

× in
4

=

Ri
Is

Ia

Is

Ia
1<if

1 otherwise

:= Ri 1=D

w
0.368=
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n 0.582

w

t

4 S⋅
− 0.582

w

t

4 S⋅
−

1

3
≥if

1

3
otherwise

:=

n 0.333=

k 4.82 5
D

w
⋅−








Ri
n

⋅ 0.43+ 0.25
D

w
< 0.8≤if

3.57 Ri
n

⋅ 0.43+ otherwise

:=

k 4 k 4>if

k otherwise

:= k 3.41=

Fcr
k π

2
⋅ E⋅

12 1 µ
2

−( )⋅

t

w









2

⋅:= Fcr 39.365ksi= λ
f

Fcr
:= λ 1.134=

ρ

1
0.22

λ
−

λ
λ 0.673>if

1 otherwise

:= ρ 0.711=

be ρ w⋅:= be 1.931in=

Lip (Unstiffened compression element)

Ytop 4in:= d1 t ri+:= f fy:= d 0.859in=

d

t
15.168= f2 f

Ytop d1− d−

Ytop
⋅:=

f1 f
Ytop d1−

Ytop
⋅:=

f1 48.81ksi= f2 37.95ksi= ψ
f2

f1
:= ψ 0.778=

k
0.578

ψ 0.34+
:= k 0.517=

Fcr
k π

2
⋅ E⋅

12 1 µ
2

−( )⋅

t

d









2

⋅:=
Fcr 59.81ksi= f f1:=

λ
f

Fcr
:= λ 0.903=
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ρ

1
0.22

λ
−

λ
λ 0.673>if

1 otherwise

:= ρ 0.837=

ds' ρ d⋅:= ds' 0.719 in= ds ds' Ri⋅:= ds 0.719 in=

Web under stress gradient

h h0 2 d1⋅−:= h 7.717 in=
h

t
136.343=

f1 fy
Ytop d1−

Ytop
⋅:= f2

h0 Ytop− d1−( ) fy⋅

Ytop
:=

f1 48.81 ksi= f2 48.81 ksi=

ψ
f2

f1
:= ψ 1= k 4 2 1 ψ+( )3

⋅+ 2 1 ψ+( )⋅+:= k 24=

Fcr
k π

2
⋅ E⋅

12 1 µ
2

−( )⋅

t

h









2

⋅:=
Fcr 34.347 ksi= f f1:=

λ
f

Fcr
:= λ 1.192=

ρ

1
0.22

λ
−

λ
λ 0.673>if

1 otherwise

:= ρ 0.684=

be ρ h⋅:= be 5.279 in=

ho

b0
4≤h0

b0
2.667=

b1
be

3 ψ+
:=

b2
be

2
ψ 0.236>if

be b1− otherwise

:=

b1 1.32 in= b2 2.639 in=

b1 b2+ 3.959 in= Ytop d1− 3.858 in=

b1 b2+ 3.858< the web is not fully effective.

Moment of Inertia calculation
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Trial1 assume Ytop=4in

Element L y Ly Ly
2

I

1 0.719 0.501 0.360 0.180 0.031

2 0.356 0.069 0.025 0.002

3 1.931 0.028 0.055 0.002

4a 1.320 0.802 1.058 0.848 0.192

4b 2.639 2.681 7.074 18.961 1.532

4c 3.859 5.929 22.878 135.649 4.787

5 2.717 7.972 21.659 172.660

6 0.356 7.931 2.823 22.390

7 0.859 7.429 6.382 47.408 0.053

sum 14.756 62.313 398.101 6.594

Ytop 4.223 Ix 141.543

Ixe 8.011

Trial 2 

Ytop 4.23in:= f fy:=

Web under stress gradient

h h0 2 d1⋅−:= h 7.717in=
h

t
136.343=

f1 fy
Ytop d1−

Ytop
⋅:= f2

h0 Ytop− d1−( ) fy⋅

Ytop
:=

f1 48.907ksi= f2 43.405ksi=

ψ
f2

f1
:= ψ 0.887= k 4 2 1 ψ+( )3

⋅+ 2 1 ψ+( )⋅+:= k 21.224=

Fcr
k π

2
⋅ E⋅

12 1 µ
2

−( )⋅

t

h









2

⋅:=
Fcr 30.374ksi= f f1:=

λ
f

Fcr
:= λ 1.269=

ρ

1
0.22

λ
−

λ
λ 0.673>if

1 otherwise

:= ρ 0.651=

be ρ h⋅:= be 5.027in=

ho

b0
4≤h0

b0
2.667=
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b1
be

3 ψ+
:=

b2
be

2
ψ 0.236>if

be b1− otherwise

:=

b1 1.293 in= b2 2.514 in=

b1 b2+ 3.807 in= Ytop d1− 4.089 in=

b1 b2+ 4.089< the web is not fully effective.

Trail 2 assume Ytop=4.23

Element L y Ly Ly
2

I

1 0.719 0.501 0.360 0.180 0.031

2 0.356 0.069 0.025 0.002

3 1.931 0.028 0.055 0.002

4a 1.293 0.788 1.019 0.803 0.180

4b 2.514 2.973 7.474 22.221 1.324

4c 3.629 6.044 21.932 132.560 3.981

5 2.717 7.972 21.659 172.660

6 0.356 7.931 2.823 22.390

7 0.859 7.429 6.382 47.408 0.053

sum 14.374 61.728 398.226 5.569

Ytop 4.295 Ix 138.699

Ixe 7.850

Trial 3

Ytop 4.32in:= f fy:=

Web under stress gradient

h h0 2 d1⋅−:= h 7.717 in=
h

t
136.343=

f1 fy
Ytop d1−

Ytop
⋅:= f2

h0 Ytop− d1−( ) fy⋅

Ytop
:=

f1 48.943ksi= f2 41.446ksi=

ψ
f2

f1
:= ψ 0.847= k 4 2 1 ψ+( )3

⋅+ 2 1 ψ+( )⋅+:= k 20.292=

Fcr
k π

2
⋅ E⋅

12 1 µ
2

−( )⋅

t

h









2

⋅:=
Fcr 29.04 ksi= f f1:=
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λ
f

Fcr
:= λ 1.298=

ρ

1
0.22

λ
−

λ
λ 0.673>if

1 otherwise

:= ρ 0.64=

be ρ h⋅:= be 4.937in=

ho

b0
4≤h0

b0
2.667=

b1
be

3 ψ+
:=

b2
be

2
ψ 0.236>if

be b1− otherwise

:=

b1 1.283in= b2 2.469in=

b1 b2+ 3.752in= Ytop d1− 4.179in=

b1 b2+ 4.179in< the web is not fully effective.

Trial3 assume y=4.32in

Element L y Ly Ly
2

I

1 0.719 0.501 0.360 0.180 0.031

2 0.356 0.069 0.025 0.002

3 1.931 0.028 0.055 0.002

4a 1.283 0.783 1.005 0.787 0.176

4b 2.469 3.086 7.618 23.506 1.254

4c 3.509 6.104 21.417 130.733 3.599

5 2.717 7.972 21.659 172.660

6 0.356 7.931 2.823 22.390

7 0.859 7.429 6.382 47.408 0.053

sum 14.199 61.343 397.668 5.113

Ytop 4.320 Ix 137.756

Ixe 7.797

From trial 3 it is found that Ycg=4.32038in  which is almost equal to 4.32 in. So no other

iteration is necessary. 

Ixe 7.796991in
4

:= Yxe 4.32038in:=

Sxe
Ixe

Yxe
:= Sxe 1.805in

3
= Mn Sxe fy⋅:= fy 50.6ksi=

Mn 91.318kip in⋅=
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Stud section: 203S76 14−

E 29435ksi:= fy 50.6ksi:= µ 0.3:= t 0.0713in:= h0 8in:= b0 3in:=

ri 1.5 t⋅:= ri 0.107in= d1 t ri+:= D 1in:=

Gross section properties

Element L y Ly Ly
2

I

1 0.822 0.589 0.484 0.285 0.046

2 0.448 0.087 0.039 0.003

3 2.644 0.036 0.094 0.003

4 7.644 4.000 30.574 122.296 37.213

5 2.644 7.964 21.054 167.680

6 0.448 7.913 3.543 28.034

7 0.822 7.411 6.090 45.131 0.046

sum 15.470 61.878 363.433 37.306

Ytop 4.000 Ix 153.226

Ixg 10.925

Stiffened compression flange under uniform compression

w b0 2 d1⋅−:= w 2.643in=

d D d1−:=w

t
37.076= Is

d
3

t⋅

12
:=

Is 3.297 10
3−

× in
4

= f fy:=

S 1.28
E

f
⋅:= S 30.872= 0.328S⋅ 10.126=

Ia1 399 t
4

⋅

w

t

S
0.328−











3

⋅:=

Ia1 6.859 10
3−

× in
4

=

Ia2 t
4

115

w

t

S
⋅ 5+











⋅:= Ia2 3.698 10
3−

× in
4

=

Ia Ia1 Ia1 Ia2<if

Ia2 otherwise

:=

Ia 3.698 10
3−

× in
4

=

Ri
Is

Ia

Is

Ia
1<if

1 otherwise

:= Ri 0.891=D

w
0.378=
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n 0.582

w

t

4 S⋅
− 0.582

w

t

4 S⋅
−

1

3
≥if

1

3
otherwise

:=

n 0.333=

k 4.82 5
D

w
⋅−








Ri
n

⋅ 0.43+ 0.25
D

w
< 0.8≤if

3.57 Ri
n

⋅ 0.43+ otherwise

:=

k 4 k 4>if

k otherwise

:= k 3.249=

Fcr
k π

2
⋅ E⋅

12 1 µ
2

−( )⋅

t

w









2

⋅:= Fcr 62.871ksi= λ
f

Fcr
:= λ 0.897=

ρ

1
0.22

λ
−

λ
λ 0.673>if

1 otherwise

:= ρ 0.841=

be ρ w⋅:= be 2.224 in=

Lip (Unstiffened compression element)

Ytop 4in:= d1 t ri+:= f fy:= d 0.822 in=

d

t
11.525= f2 f

Ytop d1− d−

Ytop
⋅:=

f1 f
Ytop d1−

Ytop
⋅:=

f1 48.345ksi= f2 37.95ksi= ψ
f2

f1
:= ψ 0.785=

k
0.578

ψ 0.34+
:= k 0.514=

Fcr
k π

2
⋅ E⋅

12 1 µ
2

−( )⋅

t

d









2

⋅:=
Fcr 102.902ksi= f f1:=

λ
f

Fcr
:= λ 0.685=

ρ

1
0.22

λ
−

λ
λ 0.673>if

1 otherwise

:= ρ 0.991=
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ds' ρ d⋅:= ds' 0.814in= ds ds' Ri⋅:= ds 0.726in=

Web under stress gradient

h h0 2 d1⋅−:= h 7.643in=
h

t
107.202= f f1:= f2

h0 Ytop− d1−( ) fy⋅

Ytop
:=

f1 48.345ksi= f2 48.345ksi=

ψ
f2

f1
:= ψ 1= k 4 2 1 ψ+( )3

⋅+ 2 1 ψ+( )⋅+:= k 24=

Fcr
k π

2
⋅ E⋅

12 1 µ
2

−( )⋅

t

h









2

⋅:=
Fcr 55.558ksi= f f1:=

λ
f

Fcr
:= λ 0.933=

ρ

1
0.22

λ
−

λ
λ 0.673>if

1 otherwise

:= ρ 0.819=

be ρ h⋅:= be 6.261in=

ho

b0
4≤h0

b0
2.667=

b1
be

3 ψ+
:=

b2
be

2
ψ 0.236>if

be b1− otherwise

:=

b1 1.565in= b2 3.131in=

b1 b2+ 4.696in= Ytop d1− 3.822in=

b1 b2+ 3.822> the web is  fully effective.

Moment of Inertia calculation
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Trial1 assume Ytop=4in

1 0.726 0.541 0.393 0.213 0.032

2 0.448 0.087 0.039 0.003

3 2.224 0.036 0.079 0.003

4 7.644 4.000 30.574 122.296 37.213

5 2.644 7.964 21.054 167.680

6 0.448 7.913 3.543 28.034

7 0.822 7.411 6.090 45.131 0.046

sum 14.954 61.772 363.360 37.291

Ytop 4.131 Ix 145.488

Ixe 10.373

Web under stress gradient

Ytop 4.130724in:= f fy:=

h h0 2 d1⋅−:= h 7.643 in=
h

t
107.202=

f1 f
Ytop d1−

Ytop
⋅:= f2

h0 Ytop− d1−( ) fy⋅

Ytop
:=

f1 48.416 ksi= f2 45.214 ksi=

ψ
f2

f1
:= ψ 0.934= k 4 2 1 ψ+( )3

⋅+ 2 1 ψ+( )⋅+:= k 22.332=

Fcr
k π

2
⋅ E⋅

12 1 µ
2

−( )⋅

t

h









2

⋅:=
Fcr 51.697ksi= f f1:=

λ
f

Fcr
:= λ 0.968=

ρ

1
0.22

λ
−

λ
λ 0.673>if

1 otherwise

:= ρ 0.798=

be ρ h⋅:= be 6.103 in=

ho

b0
4≤h0

b0
2.667=

b1
be

3 ψ+
:=

b2
be

2
ψ 0.236>if

be b1− otherwise

:=
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b1 1.551in= b2 3.051in=

b1 b2+ 4.603in= Ytop d1− 3.952in=

b1 b2+ 3.96> the web is  fully effective.

Yxe 4.130724in:=
Ixe 10.3733in

4
:=

Sxe
Ixe

Yxe
:= Sxe 2.511in

3
= Mn Sxe fy⋅:= fy 50.6ksi=

Mn 127.069kip in⋅=
 

Stud section: 305S76 18−

E 29435ksi:= fy 50.6ksi:= µ 0.3:= t 0.0451in:= h0 12in:= b0 3in:=

ri 1.5 t⋅:= ri 0.068in= d1 t ri+:= D 1in:=

Gross section

Element L y Ly Ly
2

I

1 0.887 0.556 0.494 0.275 0.058

2 0.283 0.055 0.016 0.001

3 2.775 0.023 0.063 0.001

4 11.775 6.000 70.647 423.882 39.159

5 2.775 11.977 33.231 398.028

6 0.283 11.945 3.383 40.410

7 0.887 11.444 10.153 116.191 0.058

sum 19.664 117.987 978.788 39.276

Ytop 6.000 Ix 310.143

Ixg 13.987
 

Stiffened compression flange under uniform compression

w b0 2 d1⋅−:= w 2.774in=

d D d1−:=w

t
61.519= Is

d
3

t⋅

12
:=

Is 2.625 10
3−

× in
4

= f fy:=

S 1.28
E

f
⋅:= S 30.872= 0.328 S⋅ 10.126=

 

Ia1 399 t
4

⋅

w

t

S
0.328−











3

⋅:= Ia1 7.615 10
3−

× in
4

=
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Ia2 t
4

115

w

t

S
⋅ 5+











⋅:=
Ia2 9.688 10

4−
× in

4
=

Ia Ia1 Ia1 Ia2<if

Ia2 otherwise

:=

Ia 9.688 10
4−

× in
4

=

Ri
Is

Ia

Is

Ia
1<if

1 otherwise

:= Ri 1=D

w
0.36=

n 0.582

w

t

4 S⋅
− 0.582

w

t

4 S⋅
−

1

3
≥if

1

3
otherwise

:=

n 0.333=

k 4.82 5
D

w
⋅−








Ri
n

⋅ 0.43+ 0.25
D

w
< 0.8≤if

3.57 Ri
n

⋅ 0.43+ otherwise











:=

k 4 k 4>if

k otherwise

:= k 3.448=

Fcr
k π

2
⋅ E⋅

12 1 µ
2

−( )⋅

t

w









2

⋅:= Fcr 24.237ksi= λ
f

Fcr
:= λ 1.445=

ρ

1
0.22

λ
−

λ
λ 0.673>if

1 otherwise

:= ρ 0.587=

be ρ w⋅:= be 1.628in=

Lip (Unstiffened compression element)

Ytop 6in:= d1 t ri+:= f fy:= d 0.887in=

d

t
19.673= f2 f

Ytop d1− d−

Ytop
⋅:=

f1 f
Ytop d1−

Ytop
⋅:=

f1 49.649ksi= f2 42.167ksi= ψ
f2

f1
:= ψ 0.849=

k
0.578

ψ 0.34+
:= k 0.486=
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Fcr
k π

2
⋅ E⋅

12 1 µ
2

−( )⋅

t

d









2

⋅:=
Fcr 33.407ksi= f f1:=

λ
f

Fcr
:= λ 1.219=

ρ

1
0.22

λ
−

λ
λ 0.673>if

1 otherwise

:= ρ 0.672=

ds' ρ d⋅:= ds' 0.596in= ds ds' Ri⋅:= ds 0.596in=

Web under stress gradient

h h0 2 d1⋅−:= h 11.774in=
h

t
261.075= f f1:= f2

h0 Ytop− d1−( ) fy⋅

Ytop
:=

f1 49.649ksi= f2 49.649ksi=

ψ
f2

f1
:= ψ 1= k 4 2 1 ψ+( )3

⋅+ 2 1 ψ+( )⋅+:= k 24=

Fcr
k π

2
⋅ E⋅

12 1 µ
2

−( )⋅

t

h









2

⋅:=
Fcr 9.367ksi= f f1:=

λ
f

Fcr
:= λ 2.302=

ρ

1
0.22

λ
−

λ
λ 0.673>if

1 otherwise

:= ρ 0.393=

be ρ h⋅:= be 4.626in=

ho

b0
4≤h0

b0
4=

b1
be

3 ψ+
:=

b2
be

2
ψ 0.236>if

be b1− otherwise

:=
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b1 1.156in= b2 2.313in=

b1 b2+ 3.469in= Ytop d1− 5.887in=

b1 b2+ 5.887< the web is not fully effective.

Moment of Inertia calculation

Element L y Ly Ly
2

I

1 0.596 0.411 0.245 0.101 0.018

2 0.283 0.055 0.016 0.001

3 1.628 0.023 0.037 0.001

4a 1.156 0.691 0.799 0.552 0.129

4b 2.313 4.844 11.203 54.262 1.031

4c 5.887 8.944 52.653 470.912 17.004

5 2.775 11.977 33.231 398.028

6 0.283 11.945 3.383 40.410

7 0.887 11.444 10.153 116.191 0.058

sum 15.808 111.720 1080.456 18.240

Ytop 7.067 Ix 309.161

Ixe 13.943

Trial 2 

Ytop 7.25in:= f fy:=

Web under stress gradient

h h0 2 d1⋅−:= h 11.774in=
h

t
261.075=

f1 fy
Ytop d1−

Ytop
⋅:=

f2
h0 Ytop− d1−( ) fy⋅

Ytop
:=

f1 49.813ksi= f2 32.365ksi=

ψ
f2

f1
:= ψ 0.65= k 4 2 1 ψ+( )3

⋅+ 2 1 ψ+( )⋅+:= k 16.279=

Fcr
k π

2
⋅ E⋅

12 1 µ
2

−( )⋅

t

h









2

⋅:=
Fcr 6.354ksi= f f1:=

λ
f

Fcr
:= λ 2.8=

 

ρ

1
0.22

λ
−

λ
λ 0.673>if

1 otherwise

:= ρ 0.329=

be ρ h⋅:= be 3.875 in=
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ho

b0
4≤h0

b0
4=

b1
be

3 ψ+
:=

b2
be

2
ψ 0.236>if

be b1− otherwise

:=

b1 1.062in= b2 1.937in=

b1 b2+ 2.999in= Ytop d1− 7.137in=

b1 b2+ 7.137< the web is not fully effective.

Trial2 assume Ytop=7.25in

Element L y Ly Ly2 I

1 0.596 0.411 0.245 0.101 0.018

2 0.283 0.055 0.016 0.001

3 1.628 0.023 0.037 0.001

4a 1.062 0.644 0.684 0.440 0.100

4b 1.937 6.282 12.167 76.429 0.606

4c 4.637 9.569 44.372 424.580 8.310

5 2.775 11.977 33.231 398.028

6 0.283 11.945 3.383 40.410

7 0.887 11.444 10.153 116.191 0.058

sum 14.088 104.288 1056.180 9.091

Ytop 7.402 Ix 293.291

Ixe 13.227
 

Trial 3

Ytop 7.4in:= f fy:=

Web under stress gradient

h h0 2 d1⋅−:= h 11.774in=
h

t
261.075=

f2
h0 Ytop− d1−( ) fy⋅

Ytop
:=

f1 fy
Ytop d1−

Ytop
⋅:=

f1 49.829ksi= f2 30.683ksi=

ψ
f2

f1
:= ψ 0.616= k 4 2 1 ψ+( )3

⋅+ 2 1 ψ+( )⋅+:= k 15.668=
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Fcr
k π

2
⋅ E⋅

12 1 µ
2

−( )⋅

t

h









2

⋅:=
Fcr 6.115ksi= f f1:=

λ
f

Fcr
:= λ 2.854=

ρ

1
0.22

λ
−

λ
λ 0.673>if

1 otherwise

:= ρ 0.323=

be ρ h⋅:=

ho

b0
4≤h0

b0
4=

b1
be

3 ψ+
:=

b2
be

2
ψ 0.236>if

be b1− otherwise

:=

b1 1.053in= b2 1.903in=

b1 b2+ 2.956in= Ytop d1− 7.287in=

b1 b2+ 7.287in< the web is not fully effective.

Trial 3 assume Ytop=7.4in

Element L y Ly Ly
2

I

1 0.596 0.411 0.245 0.101 0.018

2 0.283 0.055 0.016 0.001

3 1.628 0.023 0.037 0.001

4a 1.053 0.639 0.673 0.430 0.097

4b 1.903 6.449 12.271 79.133 0.574

4c 4.487 9.644 43.273 417.312 7.529

5 2.775 11.977 33.231 398.028

6 0.283 11.945 3.383 40.410

7 0.887 11.444 10.153 116.191 0.058

sum 13.895 103.283 1051.606 8.277

Ytop 7.433 Ix 292.194

Ixe 13.178

Trial 4
f fy:=

Ytop 7.44in:=
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Web under stress gradient

h h0 2 d1⋅−:= h 11.774in=
h

t
261.075=

f1 fy
Ytop d1−

Ytop
⋅:= f2

h0 Ytop− d1−( ) fy⋅

Ytop
:=

f1 49.833ksi= f2 30.246ksi=

ψ
f2

f1
:= ψ 0.607= k 4 2 1 ψ+( )3

⋅+ 2 1 ψ+( )⋅+:= k 15.513=

Fcr
k π

2
⋅ E⋅

12 1 µ
2

−( )⋅

t

h









2

⋅:=
Fcr 6.055ksi= f f1:=

λ
f

Fcr
:= λ 2.869=

ρ

1
0.22

λ
−

λ
λ 0.673>if

1 otherwise

:= ρ 0.322=

be ρ h⋅:=

ho

b0
4≤h0

b0
4=

b1
be

3 ψ+
:= b2

be

2
ψ 0.236>if

be b1− otherwise

:=

b1 1.051in= b2 1.895in=

b1 b2+ 2.945in= Ytop d1− 7.327in=

b1 b2+ 7.287in< the web is not fully effective.
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Trial4 assume y=7.44in

Element L y Ly Ly
2

I

1 0.596 0.411 0.245 0.101 0.018

2 0.283 0.055 0.016 0.001

3 1.628 0.023 0.037 0.001

4a 1.051 0.638 0.671 0.428 0.097

4b 1.895 6.493 12.303 79.879 0.567

4c 4.447 9.664 42.977 415.309 7.330

5 2.775 11.977 33.231 398.028

6 0.283 11.945 3.383 40.410

7 0.887 11.444 10.153 116.191 0.058

sum 13.845 103.016 1050.348 8.069

Ytop 7.440 Ix 291.940

Ixe 13.166  

From trial 4 it is found that Ycg=7.440397in  which is almost equal to 7.44 in. So no other

iteration is necessary. 

Yxe 7.440397in:=
Ixe 13.16647in

4
:=

Sxe
Ixe

Yxe
:= Sxe 1.77in

3
= Mn Sxe fy⋅:= fy 50.6ksi=

Mn 89.541kip in⋅=
 

Stud section: 305S76 16−

E 29435ksi:= fy 50.6ksi:= µ 0.3:= t 0.0566in:= h0 12in:= b0 3in:=

ri 1.5 t⋅:= ri 0.085in= d1 t ri+:= D 1in:=

Gross section

Element L y Ly Ly
2

I

1 0.859 0.571 0.490 0.280 0.053

2 0.356 0.069 0.025 0.002

3 2.717 0.028 0.077 0.002

4 11.717 6.000 70.302 421.812 134.050

5 2.717 11.972 32.527 389.405

6 0.356 11.931 4.247 50.673

7 0.859 11.429 9.818 112.204 0.053

sum 19.581 117.486 974.378 134.156

Ytop 6.000 Ix 403.618

Ixg 22.845
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Stiffened compression flange under uniform compression

w b0 2 d1⋅−:= w 2.717in=

d D d1−:=w

t
48.004= Is

d
3

t⋅

12
:=

Is 2.984 10
3−

× in
4

= f fy:=

S 1.28
E

f
⋅:= S 30.872= 0.328S⋅ 10.126=

w

t
0.328.S>

Ia1 399 t
4

⋅

w

t

S
0.328−











3

⋅:=

Ia1 7.563 10
3−

× in
4

=

Ia2 t
4

115

w

t

S
⋅ 5+











⋅:= Ia2 1.886 10
3−

× in
4

=

Ia Ia1 Ia1 Ia2<if

Ia2 otherwise

:=

Ia 1.886 10
3−

× in
4

=

Ri
Is

Ia

Is

Ia
1<if

1 otherwise

:= Ri 1=D

w
0.368=

n 0.582

w

t

4 S⋅
− 0.582

w

t

4 S⋅
−

1

3
≥if

1

3
otherwise

:=

n 0.333=
 

k 4.82 5
D

w
⋅−








Ri
n

⋅ 0.43+ 0.25
D

w
< 0.8≤if

3.57 Ri
n

⋅ 0.43+ otherwise

:=

 

k 4 k 4>if

k otherwise

:= k 3.41=
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Fcr
k π

2
⋅ E⋅

12 1 µ
2

−( )⋅

t

w









2

⋅:= Fcr 39.365ksi= λ
f

Fcr
:= λ 1.134=

ρ

1
0.22

λ
−

λ
λ 0.673>if

1 otherwise

:= ρ 0.711=

be ρ w⋅:= be 1.931in=

Lip (Unstiffened compression element)

Ytop 6in:= d1 t ri+:= f fy:= d 0.859in=

d

t
15.168= f2 f

Ytop d1− d−

Ytop
⋅:=

f1 f
Ytop d1−

Ytop
⋅:=

f1 49.407ksi= f2 42.167ksi= ψ
f2

f1
:= ψ 0.853=

k
0.578

ψ 0.34+
:= k 0.484=

Fcr
k π

2
⋅ E⋅

12 1 µ
2

−( )⋅

t

d









2

⋅:=
Fcr 56.003ksi= f f1:=

λ
f

Fcr
:= λ 0.939=

ρ

1
0.22

λ
−

λ
λ 0.673>if

1 otherwise

:= ρ 0.815=

ds' ρ d⋅:= ds' 0.7in= ds ds' Ri⋅:= ds 0.7in=

Web under stress gradient

h h0 2 d1⋅−:= h 11.717in=
h

t
207.014=

f1 fy
Ytop d1−

Ytop
⋅:= f2

h0 Ytop− d1−( ) fy⋅

Ytop
:=

f1 49.407ksi= f2 49.407ksi=
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ψ
f2

f1
:= ψ 1= k 4 2 1 ψ+( )3

⋅+ 2 1 ψ+( )⋅+:= k 24=

Fcr
k π

2
⋅ E⋅

12 1 µ
2

−( )⋅

t

h









2

⋅:=
Fcr 14.899ksi= f f1:=

λ
f

Fcr
:= λ 1.821=

ρ

1
0.22

λ
−

λ
λ 0.673>if

1 otherwise

:= ρ 0.483=

be ρ h⋅:= be 5.657in=

ho

b0
4≤h0

b0
4=

b1
be

3 ψ+
:=

b2
be

2
ψ 0.236>if

be b1− otherwise

:=

b1 1.414in= b2 2.828in=

b1 b2+ 4.243in= Ytop d1− 5.858in=

b1 b2+ 5.858< the web is not fully effective.

Moment of Inertia calculation

Trial1 assume Ycg=6in

Element L y Ly Ly2 I

1 0.700 0.492 0.344 0.169 0.029

2 0.356 0.069 0.025 0.002

3 1.931 0.028 0.055 0.002

4a 1.414 0.849 1.200 1.018 0.236

4b 2.828 4.586 12.969 59.477 1.885

4c 5.859 8.929 52.312 467.107 16.756

5 2.717 11.972 32.527 389.405

6 0.356 11.931 4.247 50.673

7 0.859 11.429 9.818 112.204 0.053

sum 17.020 113.496 1080.056 18.958

Ytop 6.669 Ix 342.152

Ixe 19.366
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Trial 2 

Ytop 6.85in:= f fy:=

Web under stress gradient

h h0 2 d1⋅−:= h 11.717in=
h

t
207.014=

f1 fy
Ytop d1−

Ytop
⋅:= f2

h0 Ytop− d1−( ) fy⋅

Ytop
:=

f1 49.555ksi= f2 36.997ksi=

ψ
f2

f1
:= ψ 0.747= k 4 2 1 ψ+( )3

⋅+ 2 1 ψ+( )⋅+:= k 18.149=

Fcr
k π

2
⋅ E⋅

12 1 µ
2

−( )⋅

t

h









2

⋅:=
Fcr 11.267ksi= f f1:=

λ
f

Fcr
:= λ 2.097=

ρ

1
0.22

λ
−

λ
λ 0.673>if

1 otherwise

:= ρ 0.427=

be ρ h⋅:= be 5.001in=

ho

b0
4≤h0

b0
4=

b1
be

3 ψ+
:=

b2
be

2
ψ 0.236>if

be b1− otherwise

:=

b1 1.335in= b2 2.5in=

b1 b2+ 3.835in= Ytop d1− 6.708in=

b1 b2+ 6.708< the web is not fully effective.
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Trail 2 assume Ycg=6.85

Element L y Ly Ly2 I

1 0.700 0.492 0.344 0.169 0.029

2 0.356 0.069 0.025 0.002

3 1.931 0.028 0.055 0.002

4a 1.335 0.809 1.080 0.874 0.198

4b 2.500 5.600 14.000 78.400 1.302

4c 5.009 9.354 46.851 438.254 10.470

5 2.717 11.972 32.527 389.405

6 0.356 11.931 4.247 50.673

7 0.859 11.429 9.818 112.204 0.053

sum 15.763 108.946 1069.982 12.052

Ytop 6.912 Ix 329.028

Ixe 18.623

Trial 3

Ytop 6.93in:= f fy:=

Web under stress gradient

h h0 2 d1⋅−:= h 11.717in=
h

t
207.014=

f1 fy
Ytop d1−

Ytop
⋅:= f2

h0 Ytop− d1−( ) fy⋅

Ytop
:=

f1 49.567ksi= f2 35.986ksi=

ψ
f2

f1
:= ψ 0.726= k 4 2 1 ψ+( )3

⋅+ 2 1 ψ+( )⋅+:= k 17.736=

Fcr
k π

2
⋅ E⋅

12 1 µ
2

−( )⋅

t

h









2

⋅:=
Fcr 11.01ksi= f f1:=

λ
f

Fcr
:= λ 2.122=

ρ

1
0.22

λ
−

λ
λ 0.673>if

1 otherwise

:= ρ 0.422=

be ρ h⋅:= be 4.95 in=

ho

b0
4≤h0

b0
4=

b1
be

3 ψ+
:=

b2
be

2
ψ 0.236>if

be b1− otherwise

:=
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b1 1.328in= b2 2.475in=

b1 b2+ 3.803in= Ytop d1− 6.788in=

b1 b2+ 6.788in< the web is not fully effective.

Trial3 assume Ytop=6.93

Element L y Ly Ly
2

I

1 0.700 0.492 0.344 0.169 0.029

2 0.356 0.069 0.025 0.002

3 1.931 0.028 0.055 0.002

4a 1.328 0.806 1.070 0.862 0.195

4b 2.475 5.693 14.089 80.201 1.263

4c 4.929 9.394 46.300 434.950 9.976

5 2.717 11.972 32.527 389.405

6 0.356 11.931 4.247 50.673

7 0.859 11.429 9.818 112.204 0.053

sum 15.651 108.474 1068.467 11.516

Ytop 6.931 Ix 328.154

Ixe 18.574

From trial 3 it is found that Ycg=6.930994in  which is almost equal to 6.93 in. So no other

iteration is necessary. 

Ixe 18.5735in
4

:= Yxe 6.930994in:=

Sxe
Ixe

Yxe
:= Sxe 2.68in

3
= Mn Sxe fy⋅:= fy 50.6ksi=

Mn 135.597kip in⋅=
 

Stud section: 305S76 14−

E 29435ksi:= fy 50.6ksi:= µ 0.3:= t 0.0713in:= h0 12in:= b0 3in:=

ri 1.5 t⋅:= ri 0.107in= d1 t ri+:= D 1in:=

Gross section

Element L y Ly Ly
2

I

1 0.822 0.589 0.484 0.285 0.046

2 0.448 0.087 0.039 0.003

3 2.644 0.036 0.094 0.003

4 11.644 6.000 69.861 419.166 131.544

5 2.644 11.964 31.628 378.406

6 0.448 11.913 5.334 63.542

7 0.822 11.411 9.377 106.998 0.046

sum 19.470 116.817 968.404 131.636

Ytop 6.000 Ix 399.137

Ixg 28.458
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Stiffened compression flange under uniform compression

w b0 2 d1⋅−:= w 2.643in=

d D d1−:=w

t
37.076= Is

d
3

t⋅

12
:=

Is 3.297 10
3−

× in
4

= f fy:=

S 1.28
E

f
⋅:= S 30.872= 0.328 S⋅ 10.126=

Ia1 399 t
4

⋅

w

t

S
0.328−











3

⋅:=

Ia1 6.859 10
3−

× in
4

=

Ia2 t
4

115

w

t

S
⋅ 5+











⋅:= Ia2 3.698 10
3−

× in
4

=

Ia Ia1 Ia1 Ia2<if

Ia2 otherwise

:=

Ia 3.698 10
3−

× in
4

=

Ri
Is

Ia

Is

Ia
1<if

1 otherwise

:= Ri 0.891=D

w
0.378=

n 0.582

w

t

4 S⋅
− 0.582

w

t

4 S⋅
−

1

3
≥if

1

3
otherwise

:=

n 0.333=

k 4.82 5
D

w
⋅−








Ri
n

⋅ 0.43+ 0.25
D

w
< 0.8≤if

3.57 Ri
n

⋅ 0.43+ otherwise











:=

k 4 k 4>if

k otherwise

:= k 3.249=
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Fcr
k π

2
⋅ E⋅

12 1 µ
2

−( )⋅

t

w









2

⋅:= Fcr 62.871ksi= λ
f

Fcr
:= λ 0.897=

ρ

1
0.22

λ
−

λ
λ 0.673>if

1 otherwise

:= ρ 0.841=

be ρ w⋅:= be 2.224in=

Lip (Unstiffened compression element)

Ytop 6in:= d1 t ri+:= f fy:= d 0.822in=

d

t
11.525= f2 f

Ytop d1− d−

Ytop
⋅:=

f1 f
Ytop d1−

Ytop
⋅:=

f1 49.097ksi= f2 42.167ksi= ψ
f2

f1
:= ψ 0.859=

k
0.578

ψ 0.34+
:= k 0.482=

Fcr
k π

2
⋅ E⋅

12 1 µ
2

−( )⋅

t

d









2

⋅:=
Fcr 96.562ksi= f f1:=

λ
f

Fcr
:= λ 0.713=

ρ

1
0.22

λ
−

λ
λ 0.673>if

1 otherwise

:= ρ 0.97=

ds' ρ d⋅:= ds' 0.797in= ds ds' Ri⋅:= ds 0.71in=

Web under stress gradient

h h0 2 d1⋅−:= h 11.643in=
h

t
163.303= f f1:= f2

h0 Ytop− d1−( ) fy⋅

Ytop
:=

f1 49.097ksi= f2 49.097ksi=

ψ
f2

f1
:= ψ 1= k 4 2 1 ψ+( )3

⋅+ 2 1 ψ+( )⋅+:= k 24=

Fcr
k π

2
⋅ E⋅

12 1 µ
2

−( )⋅

t

h









2

⋅:=
Fcr 23.942ksi= f f1:=

λ
f

Fcr
:= λ 1.432=
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ρ

1
0.22

λ
−

λ
λ 0.673>if

1 otherwise

:= ρ 0.591=

be ρ h⋅:= be 6.882in=

ho

b0
4≤h0

b0
4=

b1
be

3 ψ+
:=

b2
be

2
ψ 0.236>if

be b1− otherwise

:=

b1 1.72in= b2 3.441in=

b1 b2+ 5.161in= Ytop d1− 5.822in=

b1 b2+ 5.822in< the web is not fully effective.

Moment of Inertia calculation

Trial1 assume Ycg=6in

Element L y Ly Ly
2

I

1 0.710 0.533 0.484 0.285 0.030

2 0.448 0.087 0.039 0.003

3 2.224 0.036 0.094 0.003

4a 1.720 1.038 1.786 1.854 0.424

4b 3.441 4.280 14.726 63.019 3.395

4c 5.822 8.911 51.877 462.268 16.443

5 2.644 11.964 31.628 378.406

6 0.448 11.913 5.334 63.542

7 0.822 11.411 9.377 106.998 0.046

sum 18.278 115.345 1076.380 20.338

Ytop 6.311 Ix 368.809

Ixe 26.296

Web under stress gradient

Ytop 6.45in:=

h h0 2 d1⋅−:= h 11.643in=
h

t
163.303=

f1 fy
Ytop d1−

Ytop
⋅:=

f2
h0 Ytop− d1−( ) fy⋅

Ytop
:=

f1 49.202ksi= f2 42.141ksi=
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ψ
f2

f1
:= ψ 0.856= k 4 2 1 ψ+( )3

⋅+ 2 1 ψ+( )⋅+:= k 20.51=

Fcr
k π

2
⋅ E⋅

12 1 µ
2

−( )⋅

t

h









2

⋅:=
Fcr 20.461ksi= f f1:=

λ
f

Fcr
:= λ 1.551=

ρ

1
0.22

λ
−

λ
λ 0.673>if

1 otherwise

:= ρ 0.553=

be ρ h⋅:= be 6.443in=

ho

b0
4≤h0

b0
4=

b1
be

3 ψ+
:=

b2
be

2
ψ 0.236>if

be b1− otherwise

:=

b1 1.671in= b2 3.222in=

b1 b2+ 4.892in= Ytop d1− 6.272in=

b1 b2+ 6.272.in< the web is not fully effective.

Trial2 Assume ycg=6.45

Element L y Ly Ly
2

I

1 0.710 0.533 0.484 0.285 0.030

2 0.448 0.087 0.039 0.003

3 2.224 0.036 0.094 0.003

4a 1.671 1.014 1.694 1.717 0.389

4b 3.222 4.839 15.591 75.446 2.787

4c 5.372 9.136 49.076 448.349 12.917

5 2.644 11.964 31.628 378.406

6 0.448 11.913 5.334 63.542

7 0.822 11.411 9.377 106.998 0.046

sum 17.560 113.317 1074.750 16.169

Ytop 6.453 Ix 359.650

Ixe 25.643

From trial 2 Yxe=6.453in which is amost equal to 6.45in. So further iteration is not necessary. 

Yxe 6.453308in:= Ixe 25.64305in
4

:=

Sxe
Ixe

Yxe
:= Sxe 3.974in

3
= Mn Sxe fy⋅:= fy 50.6ksi=

Mn 201.066kip in⋅=
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Track section:  254T32 16−

Fy 44.5ksi:= h 10.1134in:= t 0.0566in:= r 1.5 t⋅:= r 0.085 in=

b 1.25in:= w b 2.5t−:= w 1.109 in= E 29435ksi:= µ 0.3:=

Element Length y LY Ly
2

I'

1 1.108 0.028 0.031 0.001

2 0.178 0.070 0.012 0.001

3 9.830 5.057 49.707 251.353 79.153

4 0.178 10.044 1.788 17.960

5 1.108 10.085 11.177 112.718

sum 12.402 62.716 382.033 79.153

ycg 5.057

Ixg 8.168

Flange under uniform compression:

w

t
19.585= k 0.43:= f Fy:=

Fcr
k π

2
⋅ E⋅

12 1 µ
2

−( )⋅
w

t









2

⋅

:= Fcr 29.824 ksi=

λ
f

Fcr
:= λ 1.222=

ρ

1
0.22

λ
−

λ
:=

ρ 0.671=

be ρ w⋅:= be 0.744 in=

Web under stress gradient:

w h 5 t⋅−:= w 9.8304 in=
w

t
173.682= ycg 5.0567in:=

w 9.8304 in=

f1
Fy

ycg
ycg 2.5 t⋅−( )⋅:= f1 43.255 ksi= f2 f1

h ycg− 2.5 t⋅−

ycg 2.5 t⋅−
⋅:= f2 43.255 ksi=

ψ
f2

f1
:= ψ 1=

k 4 2 1 ψ+( )3
⋅+ 2 1 ψ+( )⋅+:= k 24=
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Fcr
k π

2
⋅ E⋅

12 1 µ
2

−( )⋅
w

t









2

⋅

:= Fcr 21.166ksi= f f1:=

λ
f

Fcr
:= λ 1.43=

ρ

1
0.22

λ
−

λ
:=

ρ 0.592= be ρ w⋅:= be 5.818in=

ho 10.1134in:= bo 1.25in:=
ho

bo
8.091=

b1
be

3 ψ+
:= b2

be

1 ψ+
b1−:=

b1 1.455in= b2 1.455in=

b1 b2+ 2.909in= is less than compression portion of web element=6.4085in

So the web is not fully effective

Trial1 assume ycg=5.0566in

Element Length y LY Ly
2

I'

1 0.744 0.028 0.021 0.001

2 0.178 0.070 0.012 0.001

3a 1.455 0.869 1.265 1.099 0.257

3b 1.455 4.329 6.299 27.270 0.257

3c 4.915 7.514 36.932 277.512 9.894

4 0.178 10.044 1.788 17.960

5 1.108 10.085 11.177 112.718

sum 10.033 57.494 436.561 10.407

ycg 5.730

Ixe 6.663

Trial 2 ycg 5.75in:=

f2
Fy

ycg
h ycg− 2.5 t⋅−( )⋅:= f2 32.674ksi=

f1
Fy

ycg
ycg 2.5t−( )⋅:= f1 43.405ksi=

ψ
f2

f1
:= ψ 0.753=

k 4 2 1 ψ+( )3
⋅+ 2 1 ψ+( )⋅+:= k 18.275=

Fcr
k π

2
⋅ E⋅

12 1 µ
2

−( )⋅
w

t









2

⋅

:= Fcr 16.117ksi= f f1:=

λ
f

Fcr
:= λ 1.641=
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ρ

1
0.22

λ
−

λ
:=

ρ 0.528= be ρ w⋅:= be 5.187in=

ho 12.1132in:= bo 1.25in:=
ho

bo
9.691=

b1
be

3 ψ+
:= b2

be

1 ψ+
b1−:=

b1 1.382in= b2 1.577in=

Trial2 Assume ycg=5.75

Element Length y LY Ly
2

I'

1 0.744 0.028 0.021 0.001

2 0.178 0.070 0.012 0.001

3a 1.382 0.833 1.151 0.958 0.220

3b 1.577 4.962 7.824 38.820 0.327

3c 4.222 7.861 33.186 260.867 6.270

4 0.178 10.044 1.788 17.960

5 1.108 10.085 11.177 112.718

sum 9.389 55.159 431.325 6.817

ycg 5.875

Ixe 6.469

 Trial 3 ycg 5.9in:=

f1
Fy

ycg
ycg 2.5t−( )⋅:= f1 43.433ksi= f2

Fy

ycg
h ycg− 2.5 t⋅−( )⋅:=

f2 30.712ksi=

ψ
f2

f1
:= ψ 0.707=

k 4 2 1 ψ+( )3
⋅+ 2 1 ψ+( )⋅+:= k 17.364=

Fcr
k π

2
⋅ E⋅

12 1 µ
2

−( )⋅
w

t









2

⋅

:= Fcr 15.314ksi= f f1:=

λ
f

Fcr
:= λ 1.684=

ρ

1
0.22

λ
−

λ
:=

ρ 0.516= be ρ w⋅:= be 5.075in=

ho

bo
9.691=

b1
be

3 ψ+
:= b2

be

1 ψ+
b1−:=
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b1 1.369in= b2 1.604in=

Trial 3 assume ycg=5.9

Element Length y LY Ly2 I'

1 0.744 0.028 0.021 0.001

2 0.178 0.070 0.012 0.001

3a 1.369 0.826 1.131 0.935 0.214

3b 1.604 5.098 8.177 41.687 0.344

3c 4.072 7.936 32.312 256.422 5.625

4 0.178 10.044 1.788 17.960

5 1.108 10.085 11.177 112.718

sum 9.253 54.619 429.724 6.183

ycg 5.903

Ixe 6.436

Ycg 5.90282in:= So no further iteration isnecessary.

Ixe 6.435581in
4

:= Sxe
Ixe

Ycg
:= Ycg 5.903in=

Mn Fy Sxe⋅:= Mn 48.516kip in⋅=
 

Rim Track section

Fy 60.5ksi:= h 10.1094in:= t 0.0547in:= r 2 t⋅:= r 0.109in=

b 1.25in:= w b 2.5t−:= w 1.113in= E 29435ksi:= µ 0.3:=

Gross section

Element Length y Ly Ly2 I'

1 1.114 0.027 0.030 0.001

2 0.172 0.067 0.012 0.001

3 9.836 5.055 49.718 251.307 79.298

4 0.172 10.042 1.725 17.322

5 2.363 10.082 23.826 240.219

13.656 75.311 508.849 79.298

ycg 5.515

Ixe 9.454
 

Flange under uniform compression:

w

t
20.352= k 0.43:= f Fy:=

Fcr
k π

2
⋅ E⋅

12 1 µ
2

−( )⋅
w

t









2

⋅

:= Fcr 27.618ksi=
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 

λ
f

Fcr
:= λ 1.48=

ρ

1
0.22

λ
−

λ
:=

ρ 0.575= be ρ w⋅:= be 0.64 in=

Web under stress gradient:

w h 5 t⋅−:= w 9.8359in=
w

t
179.815= ycg 5.514772in:=

w 9.8359in=

f1
Fy

ycg
ycg 2.5 t⋅−( )⋅:= f1 59 ksi= f2 f1

h ycg− 2.5 t⋅−

ycg 2.5 t⋅−
⋅:= f2 48.905ksi=

ψ
f2

f1
:= ψ 0.829=

k 4 2 1 ψ+( )3
⋅+ 2 1 ψ+( )⋅+:= k 19.893=

Fcr
k π

2
⋅ E⋅

12 1 µ
2

−( )⋅
w

t









2

⋅

:= Fcr 16.368ksi= f f1:=

λ
f

Fcr
:= λ 1.899=

ρ

1
0.22

λ
−

λ
:=

ρ 0.466= be ρ w⋅:= be 4.58 in=

ho 10.1094in:= bo 1.25in:=
ho

bo
8.088=

b1
be

3 ψ+
:= b2

be

1 ψ+
b1−:=

b1 1.196in= b2 1.308in=

b1 b2+ 2.504in= is less than compression portion of web element=5.378022in

So the web is not fully effective

Trial1 assume ycg=5.5147in

Element Length y Ly Ly
2

I'

1 0.640 0.027 0.018 0.000

2 0.172 0.067 0.012 0.001

3a 1.196 0.735 0.879 0.646 0.143

3b 1.308 4.861 6.358 30.904 0.186

3c 4.458 7.744 34.521 267.317 7.382

4 0.172 10.042 1.725 17.322

5 2.363 10.082 23.826 240.219

10.309 67.337 556.409 7.712

ycg 6.532

Ixe 6.797
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Trial 2 ycg 6.75in:=

f1 59ksi= f2
Fy

ycg
h ycg− 2.5 t⋅−( )⋅:= f2 28.884ksi=

f1
Fy

ycg
ycg 2.5t−( )⋅:=

ψ
f2

f1
:= ψ 0.487=

k 4 2 1 ψ+( )3
⋅+ 2 1 ψ+( )⋅+:= k 13.555=

Fcr
k π

2
⋅ E⋅

12 1 µ
2

−( )⋅
w

t









2

⋅

:= Fcr 11.153ksi= f f1:=

λ
f

Fcr
:= λ 2.305= w

ρ

1
0.22

λ
−

λ
:=

ρ 0.392= be ρ w⋅:= be 3.859in=

ho 10.1094in:= bo 1.25in:=
ho

bo
8.088=

b1
be

3 ψ+
:= b2

be

1 ψ+
b1−:=

b1 1.107in= b2 1.488in=

Trial2 assume ycg=6.75in

Element Length y Ly Ly
2

I'

1 0.640 0.027 0.018 0.000

2 0.172 0.067 0.012 0.001

3a 1.107 0.690 0.764 0.527 0.113

3b 1.488 6.006 8.937 53.675 0.275

3c 3.223 8.361 26.946 225.301 2.789

4 0.172 10.042 1.725 17.322

5 2.363 10.082 23.826 240.219

9.164 62.227 537.046 3.177

ycg 6.790

Ixe 6.438

Trial 3 ycg 6.80in:=

f1
Fy

ycg
ycg 2.5t−( )⋅:= f1 59.283ksi= f2

Fy

ycg
h ycg− 2.5 t⋅−( )⋅:=

f2 28.227ksi= ψ
f2

f1
:= ψ 0.476=
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k 4 2 1 ψ+( )3
⋅+ 2 1 ψ+( )⋅+:= k 13.385=

Fcr
k π

2
⋅ E⋅

12 1 µ
2

−( )⋅
w

t









2

⋅

:= Fcr 11.013ksi= f f1:=

λ
f

Fcr
:= λ 2.32=

ρ

1
0.22

λ
−

λ
:=

ρ 0.39= be ρ w⋅:= be 3.837in=

ho 10.1094in:= bo 1.25in:=
ho

bo
8.088=

b1
be

3 ψ+
:= b2

be

1 ψ+
b1−:=

b1 1.104in= b2 1.496in=

Yxe 6.7915in:=

So no further iteration isnecessary.

Ixe 6.43241in
4

:= Sxe
Ixe

Yxe
:= Yxe 6.792in=

Mn Fy Sxe⋅:= Mn 57.301kip in⋅=
 

Track section: 254T32 18−

Fy 44.5ksi:= h 10.0902in:= t 0.0451in:= r 1.5 t⋅:= r 0.068in=

b 1.25in:= w b 2.5t−:= w 1.137in= E 29435ksi:= µ 0.3:=

Gross section

Element Length y LY Ly
2

I'

1 1.137 0.023 0.026 0.001

2 0.142 0.055 0.008 0.000

3 9.865 5.045 49.768 251.087 79.996

4 0.142 10.035 1.421 14.260

5 1.137 10.068 11.449 115.269

sum 12.422 62.672 380.617 79.996

ycg 5.045

Ixe 6.514
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Flange under uniform compression:

w

t
25.216= k 0.43:= f Fy:=

Fcr
k π

2
⋅ E⋅

12 1 µ
2

−( )⋅
w

t









2

⋅

:= Fcr 17.991ksi=

λ
f

Fcr
:= λ 1.573= ρ

1
0.22

λ
−

λ
:= ρ 0.547=

be ρ w⋅:= be 0.622in=

Web under stress gradient:

w h 5 t⋅−:= w 9.8647in=
w

t
218.729= ycg 5.0451in:=

w 9.8647in=

f1
Fy

ycg
ycg 2.5 t⋅−( )⋅:= f1 43.505ksi= f2 f1

h ycg− 2.5 t⋅−

ycg 2.5 t⋅−
⋅:= f2 43.505ksi=

ψ
f2

f1
:= ψ 1= k 4 2 1 ψ+( )3

⋅+ 2 1 ψ+( )⋅+:= k 24=

Fcr
k π

2
⋅ E⋅

12 1 µ
2

−( )⋅
w

t









2

⋅

:= Fcr 13.346ksi= f f1:=

λ
f

Fcr
:= λ 1.806= ρ

1
0.22

λ
−

λ
:= ρ 0.486=

be ρ w⋅:= be 4.798in=

ho 10.0902in:= bo 1.25in:=
ho

bo
8.072=

b1
be

3 ψ+
:= b2

be

1 ψ+
b1−:=

b1 1.199in= b2 1.199in=

b1 b2+ 2.399in= is less than compression portion of web element=4.93235in

So the web is not fully effective
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Trial1 assme ycg=5.0451

Element Length y LY Ly
2

I'

1 0.622 0.028 0.018 0.000

2 0.142 0.055 0.008 0.000

3a 1.199 0.712 0.854 0.608 0.144

3b 1.199 4.446 5.330 23.696 0.136

3c 4.932 7.511 37.048 278.279 10.000

4 0.142 10.035 1.421 14.260

5 1.137 10.068 11.449 115.269

sum 9.373 56.128 432.114 10.280

ycg 5.988

Ixe 4.793

Trial 2 ycg 6in:=

f1
Fy

ycg
ycg 2.5t−( )⋅:= f1 43.664ksi= f2

Fy

ycg
h ycg− 2.5 t⋅−( )⋅:= f2 29.499ksi=

ψ
f2

f1
:= ψ 0.676= k 4 2 1 ψ+( )3

⋅+ 2 1 ψ+( )⋅+:= k 16.76=

Fcr
k π

2
⋅ E⋅

12 1 µ
2

−( )⋅
w

t









2

⋅

:= Fcr 9.32ksi= f f1:=

λ
f

Fcr
:= λ 2.164= ρ

1
0.22

λ
−

λ
:=

ρ 0.415=

be ρ w⋅:= be 4.094in= ho 10.0902in:= bo 1.25in:=
ho

bo
8.072=

b1
be

3 ψ+
:= b2

be

1 ψ+
b1−:= b1 1.114in= b2 1.33in=

Trial2 Assume ycg=6in

Element Length y LY Ly
2

I'

1 0.622 0.028 0.018 0.000

2 0.142 0.055 0.008 0.000

3a 1.114 0.670 0.746 0.500 0.115

3b 1.330 5.335 7.096 37.855 0.190

3c 3.977 7.989 31.775 253.840 5.244

4 0.142 10.035 1.421 14.260

5 1.137 10.068 11.449 115.269

sum 8.464 52.512 421.725 5.549

ycg 6.204

Ixe 4.576
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Trial 3 ycg 6.25in:=

f1
Fy

ycg
ycg 2.5t−( )⋅:= f1 43.697ksi= f2

Fy

ycg
h ycg− 2.5 t⋅−( )⋅:=

f2 26.539ksi=

ψ
f2

f1
:= ψ 0.607= k 4 2 1 ψ+( )3

⋅+ 2 1 ψ+( )⋅+:= k 15.52=

2
 

f1

Fcr
k π

2
⋅ E⋅

12 1 µ
2

−( )⋅
w

t









2

⋅

:= Fcr 8.63ksi= f f1:=

λ
f

Fcr
:= λ 2.25= ρ

1
0.22

λ
−

λ
:= ρ 0.401= be ρ w⋅:= be 3.955in=

ho

bo
8.072= b1

be

3 ψ+
:= b2

be

1 ψ+
b1−:= b1 1.096in= b2 1.364in=

Trial 3 assume ycg=6.25in

Element Length y LY Ly
2

I'

1 0.622 0.028 0.018 0.000

2 0.142 0.055 0.008 0.000

3a 1.096 0.661 0.724 0.479 0.110

3b 1.364 5.568 7.595 42.288 0.211

3c 3.727 8.114 30.244 245.387 4.316

4 0.142 10.035 1.421 14.260

5 1.137 10.068 11.449 115.269

sum 8.230 51.458 417.684 4.637

ycg 6.253

Ixe 4.536

Yxe 6.252593in:= So no further iteration isnecessary.

Ixe 4.535815in
4

:= Sxe
Ixe

Yxe
:= Yxe 6.253in= Mn Fy Sxe⋅:= Mn 32.282kip in⋅=

 

Track section: 254T32 14−

Fy 44.5ksi:= h 10.1426in:= t 0.0713in:= r 2 t⋅:= r 0.143in=

b 1.25in:= w b 2.5t−:= w 1.072in= E 29435ksi:= µ 0.3:=
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Gross section

Element Length y LY Ly
2

I'

1 1.072 0.036 0.038 0.001

2 0.224 0.087 0.020 0.002

3 9.786 5.071 49.628 251.680 78.099

4 0.224 10.055 2.251 22.636

5 1.072 10.107 10.832 109.480

sum 12.377 62.769 383.799 78.099

ycg 5.071

Ixe 10.237

Flange under uniform compression:

w

t
15.032= k 0.43:= f Fy:= Fcr

k π
2

⋅ E⋅

12 1 µ
2

−( )⋅
w

t









2

⋅

:= Fcr 50.629ksi=

λ
f

Fcr
:= λ 0.938= ρ

1
0.22

λ
−

λ
:= ρ 0.816= be ρ w⋅:= be 0.875in=

Web under stress gradient:

w h 5 t⋅−:= w 9.7861in=
w

t
137.252= ycg 5.0713in:=

w 9.7861in=

f1
Fy

ycg
ycg 2.5 t⋅−( )⋅:= f1 42.936ksi= f2 f1

h ycg− 2.5 t⋅−

ycg 2.5 t⋅−
⋅:= f2 42.936ksi=

ψ
f2

f1
:= ψ 1= k 4 2 1 ψ+( )3

⋅+ 2 1 ψ+( )⋅+:= k 24=

Fcr
k π

2
⋅ E⋅

12 1 µ
2

−( )⋅
w

t









2

⋅

:= Fcr 33.893ksi= f f1:= λ
f

Fcr
:= λ 1.126=

ρ

1
0.22

λ
−

λ
:= ρ 0.715= be ρ w⋅:= be 6.995in=

ho 10.1426in:= bo 1.25in:=
ho

bo
8.114= b1

be

3 ψ+
:= b2

be

1 ψ+
b1−:=

b1 1.749in= b2 1.749in=

b1 b2+ 3.498in= is less than compression portion of web element=4.89305in

So the web is not fully effective
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Trial1 ycg=5.0713

Element Length y LY Ly
2

I'

1 0.875 0.036 0.031 0.001

2 0.224 0.087 0.020 0.002

3a 1.749 1.053 1.841 1.938 0.446

3b 1.749 4.197 7.340 30.805 0.446

3c 4.893 7.518 36.785 276.544 9.762

4 0.224 10.055 2.251 22.636

5 1.072 10.107 10.832 109.480

sum 10.786 59.101 441.406 10.654

ycg 5.480

Ixe 9.142

Trial 2 ycg 5.50in:=

f1
Fy

ycg
ycg 2.5t−( )⋅:= f1 43.058ksi= f2

Fy

ycg
h ycg− 2.5 t⋅−( )⋅:= f2 36.121ksi=

ψ
f2

f1
:= ψ 0.839= k 4 2 1 ψ+( )3

⋅+ 2 1 ψ+( )⋅+:= k 20.114=

Fcr
k π

2
⋅ E⋅

12 1 µ
2

−( )⋅
w

t









2

⋅

:= Fcr 28.406ksi= f f1:=

λ
f

Fcr
:= λ 1.231= ρ

1
0.22

λ
−

λ
:= ρ 0.667= be ρ w⋅:= be 6.528in=

ho 10.1426in:= bo 1.25in:=
ho

bo
8.114= b1

be

3 ψ+
:= b2

be

1 ψ+
b1−:=

b1 1.701in= b2 1.85in=

Trial2 Ycg=5.50in

Element Length y LY Ly
2

I'

1 0.875 0.036 0.031 0.001

2 0.224 0.087 0.020 0.002

3a 1.701 1.029 1.750 1.800 0.410

3b 1.850 4.575 8.464 38.722 0.528

3c 4.464 7.732 34.519 266.908 7.415

4 0.224 10.055 2.251 22.636

5 1.072 10.107 10.832 109.480

sum 10.410 57.867 439.548 8.352

ycg 5.559

Ixe 9.000
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Trial 3 ycg 5.57in:=

f1
Fy

ycg
ycg 2.5t−( )⋅:= f1 43.076ksi= f2

Fy

ycg
h ycg− 2.5 t⋅−( )⋅:= f2 35.107ksi=

ψ
f2

f1
:= ψ 0.815= k 4 2 1 ψ+( )3

⋅+ 2 1 ψ+( )⋅+:= k 19.588=

Fcr
k π

2
⋅ E⋅

12 1 µ
2

−( )⋅
w

t









2

⋅

:= Fcr 27.663ksi= f f1:= λ
f

Fcr
:= λ 1.248=

ρ

1
0.22

λ
−

λ
:= ρ 0.66= be ρ w⋅:= be 6.46in=

ho 10.1426in:= bo 1.25in:=
ho

bo
8.114= b1

be

3 ψ+
:= b2

be

1 ψ+
b1−:=

b1 1.693in= b2 1.866in=

Trial 3 ycg=5.57.in

Element Length y LY Ly
2

I'

1 0.875 0.036 0.031 0.001

2 0.224 0.087 0.020 0.002

3a 1.693 1.025 1.735 1.778 0.404

3b 1.866 4.637 8.653 40.122 0.541

3c 4.394 7.767 34.132 265.107 7.071

4 0.224 10.055 2.251 22.636

5 1.072 10.107 10.832 109.480

sum 10.348 57.653 439.125 8.017

ycg 5.572

Ixe 8.979

Ycg 5.571516in:= So no further iteration isnecessary.

Ixe 8.978551in
4

:= Ycg 5.572in= Sxe
Ixe

Ycg
:= Mn Fy Sxe⋅:= Mn 71.712kip in⋅=

 

Track section: 203T32 18−

Fy 44.5ksi:= h 8.0902in:= t 0.0451in:= r 1.5 t⋅:= r 0.068in=

b 1.25in:= w b 2.5t−:= w 1.137in= E 29435ksi:= µ 0.3:=
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Gross section

Element Length y Ly Ly
2

I'

1 1.137 0.023 0.026 0.001

2 0.142 0.055 0.008 0.000

3 7.865 4.045 31.813 128.689 40.538

4 0.142 8.035 1.138 9.143

5 1.137 8.068 9.175 74.020

sum 10.422 42.160 211.853 40.538

ycg 4.045

Ixe 3.691

Flange under uniform compression:

w

t
25.216= k 0.43:= f Fy:= Fcr

k π
2

⋅ E⋅

12 1 µ
2

−( )⋅
w

t









2

⋅

:= Fcr 17.991ksi=

λ
f

Fcr
:= λ 1.573= ρ

1
0.22

λ
−

λ
:= ρ 0.547= be ρ w⋅:= be 0.622in=

Web under stress gradient:

w h 5 t⋅−:= w 7.8647in=
w

t
174.384= ycg 4.0451in:= w 7.8647in=

f1
Fy

ycg
ycg 2.5 t⋅−( )⋅:= f1 43.26ksi= f2 f1

h ycg− 2.5 t⋅−

ycg 2.5 t⋅−
⋅:= f2 43.26ksi=

ψ
f2

f1
:= ψ 1= k 4 2 1 ψ+( )3

⋅+ 2 1 ψ+( )⋅+:= k 24= Fcr
k π

2
⋅ E⋅

12 1 µ
2

−( )⋅
w

t









2

⋅

:=

Fcr 20.996ksi= f f1:= λ
f

Fcr
:= λ 1.435=

ρ

1
0.22

λ
−

λ
:= ρ 0.59= be ρ w⋅:= be 4.639in=

ho 8.0902in:= bo 1.25in:=
ho

bo
6.472=

b1
be

3 ψ+
:= b2

be

1 ψ+
b1−:= b1 1.16in= b2 1.16in=

b1 b2+ 2.32in= is less than compression portion of web element=3.93235in

So the web is not fully effective
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Trial1 assme ycg=4.0451

Element Length y Ly Ly
2

I'

1 0.622 0.028 0.018 0.000

2 0.142 0.055 0.008 0.000

3a 1.160 0.693 0.804 0.557 0.144

3b 1.160 3.465 4.020 13.928 0.136

3c 3.932 6.011 23.638 142.097 10.000

4 0.142 8.035 1.138 9.143

5 1.137 8.068 9.175 74.020

sum 8.295 38.800 239.746 10.280

ycg 4.678

Ixe 3.091

Trial 2 ycg 4.83in:=

f1
Fy

ycg
ycg 2.5t−( )⋅:= f1 43.461ksi= f2

Fy

ycg
h ycg− 2.5 t⋅−( )⋅:= f2 28.998ksi=

ψ
f2

f1
:= ψ 0.667=

k 4 2 1 ψ+( )3
⋅+ 2 1 ψ+( )⋅+:= k 16.603=

Fcr
k π

2
⋅ E⋅

12 1 µ
2

−( )⋅
w

t









2

⋅

:= Fcr 14.525ksi= f f1:=

λ
f

Fcr
:= λ 1.73= ρ

1
0.22

λ
−

λ
:=

ρ 0.505= be ρ w⋅:= be 3.968in=

b1
be

3 ψ+
:= b2

be

1 ψ+
b1−:=

ho 8.0902in:= bo 1.25in:=
ho

bo
6.472=

b1 1.082in= b2 1.298in=

Trial2 Assume ycg=4.83in

Element Length y Ly Ly
2

I'

1 0.622 0.028 0.018 0.000

2 0.142 0.055 0.008 0.000

3a 1.082 0.654 0.707 0.462 0.106

3b 1.298 4.181 5.427 22.690 0.182

3c 3.147 6.404 20.155 129.070 2.598

4 0.142 8.035 1.138 9.143

5 1.137 8.068 9.175 74.020

sum 7.570 36.628 235.386 2.886

ycg 4.839

Ixe 2.753

Ycg 4.838609in:= So no further iteration isnecessary.

Ixe 2.753072in
4

:= Sxe
Ixe

Ycg
:= Ycg 4.839in= Mn Fy Sxe⋅:= Mn 25.32kip in⋅=
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Track section: 203T32 16−

Fy 44.5ksi:= h 8.1132in:= t 0.0566in:= r 1.5 t⋅:= r 0.085in=

b 1.25in:= w b 2.5t−:= w 1.109in= E 29435ksi:= µ 0.3:=

Gross section:

Element Length y Ly Ly
2

I'

1 1.109 0.028 0.031 0.001

2 0.178 0.069 0.012 0.001

3 7.830 4.057 31.764 128.854 40.007

4 0.178 8.044 1.430 11.499

5 1.109 8.085 8.966 72.490

sum 10.404 42.203 212.845 40.007

ycg 4.057

Ixe 4.621

Flange under uniform compression:

w

t
19.585= k 0.43:= f Fy:= Fcr

k π
2

⋅ E⋅

12 1 µ
2

−( )⋅
w

t









2

⋅

:= Fcr 29.824ksi=

λ
f

Fcr
:= λ 1.222= ρ

1
0.22

λ
−

λ
:= ρ 0.671= be ρ w⋅:= be 0.744in=

Web under stress gradient:

w h 5 t⋅−:= w 7.8302in=
w

t
138.343= ycg 4.0566in:=

w 7.8302in=

f1
Fy

ycg
ycg 2.5 t⋅−( )⋅:= f1 42.948ksi= f2 f1

h ycg− 2.5 t⋅−

ycg 2.5 t⋅−
⋅:= f2 42.948ksi=

ψ
f2

f1
:= ψ 1= k 4 2 1 ψ+( )3

⋅+ 2 1 ψ+( )⋅+:= k 24=

Fcr
k π

2
⋅ E⋅

12 1 µ
2

−( )⋅
w

t









2

⋅

:= Fcr 33.361ksi= f f1:= λ
f

Fcr
:= λ 1.135=

ρ

1
0.22

λ
−

λ
:= ρ 0.71= be ρ w⋅:= be 5.563in=

ho 8.1132in:= bo 1.25in:=
ho

bo
6.491= b1

be

3 ψ+
:= b2

be

1 ψ+
b1−:=

b1 1.391in= b2 1.391in=
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b1 b2+ 2.782 in= is less than compression portion of web element=3.9151in

So the web is not fully effective

Trial1 ycg=4.0566in

Element Length y Ly Ly
2

I'

1 0.744 0.028 0.021 0.001

2 0.178 0.069 0.012 0.001

3a 1.391 0.837 1.164 0.974 0.139

3b 1.391 3.361 4.675 15.714 0.191

3c 3.915 6.014 23.546 141.609 3.487

4 0.178 8.044 1.430 11.499

5 1.109 8.085 8.966 72.490

sum 8.906 39.815 242.289 3.817

ycg 4.471

Ixe 3.855

Trial 2 ycg 4.56in:=

f1
Fy

ycg
ycg 2.5t−( )⋅:= f1 43.119ksi= f2

Fy

ycg
h ycg− 2.5 t⋅−( )⋅:= f2 33.294ksi=

ψ
f2

f1
:= ψ 0.772= k 4 2 1 ψ+( )3

⋅+ 2 1 ψ+( )⋅+:= k 18.675=

Fcr
k π

2
⋅ E⋅

12 1 µ
2

−( )⋅
w

t









2

⋅

:= Fcr 25.959ksi= f f1:= λ
f

Fcr
:= λ 1.289=

ρ

1
0.22

λ
−

λ
:= ρ 0.643= be ρ w⋅:= be 5.038in=

ho 8.1132in:= bo 1.25in:=
ho

bo
6.491= b1

be

3 ψ+
:= b2

be

1 ψ+
b1−:=

b1 1.336 in= b2 1.507in=

Trial2 Ycg=4.56in

Element Length y Ly Ly
2

I'

1 0.744 0.028 0.021 0.001

2 0.178 0.069 0.012 0.001

3a 1.336 0.810 1.081 0.875 0.199

3b 1.507 3.807 5.736 21.836 0.285

3c 3.412 6.266 21.377 133.946 3.309

4 0.178 8.044 1.430 11.499

5 1.109 8.085 8.966 72.490

sum 8.463 38.624 240.649 3.793

ycg 4.564

Ixe 3.858

Ycg 4.5638in:= So no further iteration isnecessary.

Ixe 3.8584in
4

:= Sxe
Ixe

Ycg
:= Ycg 4.564 in= Mn Fy Sxe⋅:= Mn 37.622kip in⋅=
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Track section: 203T32 14−

Fy 44.5ksi:= h 8.1426in:= t 0.0713in:= r 1.5 t⋅:= r 0.107in=

b 1.25in:= w b 2.5t−:= w 1.072in= E 29435ksi:= µ 0.3:=

Gross section

Element Length y Ly Ly
2

I'

1 1.072 0.036 0.038 0.001

2 0.224 0.087 0.020 0.002

3 7.786 4.071 31.700 129.058 39.335

4 0.224 8.055 1.803 14.527

5 1.072 8.107 8.689 70.438

sum 10.377 42.249 214.026 39.335

ycg 4.071

Ixe 5.800

Flange under uniform compression:

w

t
15.032= k 0.43:= f Fy:= Fcr

k π
2

⋅ E⋅

12 1 µ
2

−( )⋅
w

t









2

⋅

:= Fcr 50.629ksi=

λ
f

Fcr
:= λ 0.938= ρ

1
0.22

λ
−

λ
:= ρ 0.816= be ρ w⋅:= be 0.875in=

Web under stress gradient:

w h 5 t⋅−:= w 7.7861in=
w

t
109.202= ycg 4.0713in:= w 7.7861in=

f1
Fy

ycg
ycg 2.5 t⋅−( )⋅:= f1 42.552ksi= f2 f1

h ycg− 2.5 t⋅−

ycg 2.5 t⋅−
⋅:= f2 42.552ksi=

ψ
f2

f1
:= ψ 1= k 4 2 1 ψ+( )3

⋅+ 2 1 ψ+( )⋅+:= k 24=

Fcr
k π

2
⋅ E⋅

12 1 µ
2

−( )⋅
w

t









2

⋅

:= Fcr 53.542ksi= f f1:= λ
f

Fcr
:= λ 0.891=

ρ

1
0.22

λ
−

λ
:= ρ 0.845= be ρ w⋅:= be 6.579in=

ho 8.1426in:= bo 1.25in:=
ho

bo
6.514= b1

be

3 ψ+
:= b2

be

1 ψ+
b1−:=

b1 1.645in= b2 1.645in=

b1 b2+ 3.289in= is less than compression portion of web element=3.89305in
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So the web is not fully effective

Trial1 ycg=4.0713

Element Length y Ly Ly
2

I'

1 0.875 0.036 0.031 0.001

2 0.224 0.087 0.020 0.002

3a 1.645 1.001 1.646 1.647 0.371

3b 1.645 3.249 5.344 17.362 0.371

3c 3.893 6.018 23.428 140.984 4.917

4 0.224 8.055 1.803 14.527

5 1.072 8.107 8.689 70.438

sum 9.578 40.961 244.962 5.659

ycg 4.277

Ixe 5.379

Trial 2 ycg 4.313in:=

f1
Fy

ycg
ycg 2.5t−( )⋅:= f1 42.661ksi= f2

Fy

ycg
h ycg− 2.5 t⋅−( )⋅:= f2 37.673ksi=

ψ
f2

f1
:= ψ 0.883= k 4 2 1 ψ+( )3

⋅+ 2 1 ψ+( )⋅+:= k 21.121=

Fcr
k π

2
⋅ E⋅

12 1 µ
2

−( )⋅
w

t









2

⋅

:= Fcr 47.119ksi= f f1:= λ
f

Fcr
:= λ 0.952=

ρ

1
0.22

λ
−

λ
:=

ρ 0.808= be ρ w⋅:= be 6.291in=

ho 8.1426in:= bo 1.25in:=
ho

bo
6.514= b1

be

3 ψ+
:= b2

be

1 ψ+
b1−:=

b1 1.62 in= b2 1.721in=

Trial2 Ycg=4.313in

Element Length y Ly Ly
2

I'

1 0.875 0.036 0.031 0.001

2 0.224 0.087 0.020 0.002

3a 1.620 0.988 1.601 1.582 0.354

3b 1.721 3.453 5.942 20.514 0.425

3c 3.651 6.139 22.414 137.595 4.057

4 0.224 8.055 1.803 14.527

5 1.072 8.107 8.689 70.438

sum 9.387 40.500 244.659 4.836

ycg 4.314

Ixe 5.333

Ycg 4.314in:= So no further iteration isnecessary.

Ixe 5.333in
4

:= Ycg 4.314in= Sxe
Ixe

Ycg
:= Mn Fy Sxe⋅:= Mn 55.011kip in⋅=
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Track section: 305T32 18−

Fy 44.5ksi:= h 12.0902in:= t 0.0451in:= r 1.5 t⋅:= r 0.068in=

b 1.25in:= w b 2.5t−:= w 1.137in= E 29435ksi:= µ 0.3:=

Gross section:

Element Length y LY Ly
2

I'

1 1.137 0.023 0.026 0.001

2 0.142 0.055 0.008 0.000

3 11.865 6.045 71.723 433.575 139.184

4 0.142 12.035 1.704 20.511

5 1.137 12.068 13.724 165.616

sum 14.422 87.185 619.702 139.184

ycg 6.045

Ixe 10.456

Flange under uniform compression:

w

t
25.216= k 0.43:= f Fy:= Fcr

k π
2

⋅ E⋅

12 1 µ
2

−( )⋅
w

t









2

⋅

:= Fcr 17.991ksi=

λ
f

Fcr
:= λ 1.573= ρ

1
0.22

λ
−

λ
:= ρ 0.547= be ρ w⋅:= be 0.622in=

Web under stress gradient:

w h 5 t⋅−:= w 11.8647in=
w

t
263.075= ycg 6.0451in:=

w 11.8647in=

f1
Fy

ycg
ycg 2.5 t⋅−( )⋅:= f1 43.67ksi= f2 f1

h ycg− 2.5 t⋅−

ycg 2.5 t⋅−
⋅:= f2 43.67ksi=

ψ
f2

f1
:= ψ 1=

k 4 2 1 ψ+( )3
⋅+ 2 1 ψ+( )⋅+:= k 24=

Fcr
k π

2
⋅ E⋅

12 1 µ
2

−( )⋅
w

t









2

⋅

:= Fcr 9.226ksi= f f1:=
λ

f

Fcr
:= λ 2.176=

ρ

1
0.22

λ
−

λ
:= ρ 0.413= be ρ w⋅:= be 4.902in=

ho 12.0902in:= bo 1.25in:=
ho

bo
9.672= b1

be

3 ψ+
:= b2

be

1 ψ+
b1−:=

b1 1.225in= b2 1.225in=

b1 b2+ 2.451in= is less than compression portion of web element=5.93235in
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Trial1 assume ycg=6.0451

Element Length y LY Ly
2

I'

1 0.622 0.028 0.018 0.000

2 0.142 0.055 0.008 0.000

3a 1.225 0.725 0.888 0.644 0.153

3b 1.225 5.433 6.655 36.154 0.153

3c 5.932 9.011 53.458 481.725 17.398

4 0.142 12.035 1.704 20.511

5 1.137 12.068 13.724 347.651

sum 10.425 76.455 886.686 17.704

ycg 7.334

Ixe 15.500

Trial 2 ycg 7.34in:=

f1 43.67ksi= f2
Fy

ycg
h ycg− 2.5 t⋅−( )⋅:= f2 28.115ksi=

f1
Fy

ycg
ycg 2.5t−( )⋅:=

ψ
f2

f1
:= ψ 0.642= k 4 2 1 ψ+( )3

⋅+ 2 1 ψ+( )⋅+:= k 16.132=

Fcr
k π

2
⋅ E⋅

12 1 µ
2

−( )⋅
w

t









2

⋅

:= Fcr 6.201ksi= f f1:= λ
f

Fcr
:= λ 2.658=

ρ

1
0.22

λ
−

λ
:= ρ 0.345= be ρ w⋅:= be 4.094in=

ho 12.1132in:= bo 1.25in:=
ho

bo
9.691= b1

be

3 ψ+
:= b2

be

1 ψ+
b1−:=

b1 1.124in= b2 1.37in=

Trial2 assume ycg=7.34

Element Length y LY Ly
2

I'

1 0.622 0.028 0.018 0.000

2 0.142 0.055 0.008 0.000

3a 1.124 0.675 0.758 0.512 0.118

3b 1.370 6.655 9.117 60.676 0.214

3c 4.637 9.659 44.792 432.632 8.309

4 0.142 12.035 1.704 20.511

5 1.137 12.068 13.724 165.616

sum 9.174 70.121 679.948 8.641

ycg 7.644

Ixe 6.883

Trial 3 ycg 7.715in:=
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f1
Fy

ycg
ycg 2.5t−( )⋅:= f1 43.85ksi= f2

Fy

ycg
h ycg− 2.5 t⋅−( )⋅:=

f2 24.586ksi=

ψ
f2

f1
:= ψ 0.561= k 4 2 1 ψ+( )3

⋅+ 2 1 ψ+( )⋅+:= k 14.724=

Fcr
k π

2
⋅ E⋅

12 1 µ
2

−( )⋅
w

t









2

⋅

:= Fcr 5.66ksi= f f1:= λ
f

Fcr
:= λ 2.783=

ρ

1
0.22

λ
−

λ
:= ρ 0.331= be ρ w⋅:= be 3.926in=

ho

bo
9.691= b1

be

3 ψ+
:= b2

be

1 ψ+
b1−:=

b1 1.103in= b2 1.413in=

Trial 3 assume ycg=7.715

Element Length y LY Ly
2

I'

1 0.622 0.028 0.018 0.000

2 0.142 0.055 0.008 0.000

3a 1.103 0.664 0.733 0.487 0.112

3b 1.413 7.009 9.903 69.405 0.235

3c 4.262 9.846 41.969 413.237 6.454

4 0.142 12.035 1.704 20.511

5 1.137 12.068 13.724 165.616

sum 8.821 68.058 669.256 6.800

ycg 7.716

Ixe 6.808

Ycg 7.71556in:= So no further iteration isnecessary.

Ixe 6.807761in
4

:= Sxe
Ixe

Ycg
:= Ycg 7.716in= Mn Fy Sxe⋅:= Mn 39.264kip in⋅=
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Track section: 305T32 16−

Fy 44.5ksi:= h 12.1132in:= t 0.0566in:= r 1.5 t⋅:= r 0.085in=

b 1.25in:= w b 2.5t−:= w 1.109in= E 29435ksi:= µ 0.3:=

Gross section

Element Length y Ly Ly
2

I'

1 1.109 0.028 0.031 0.001

2 0.178 0.069 0.012 0.001

3 11.830 6.057 71.651 433.960 137.973

4 0.178 12.044 2.140 25.779

5 1.109 12.085 13.396 161.891

sum 14.403 87.231 621.632 137.973

ycg 6.057

Ixe 13.091

Flange under uniform compression:

w

t
19.585= k 0.43:= f Fy:= Fcr

k π
2

⋅ E⋅

12 1 µ
2

−( )⋅
w

t









2

⋅

:= Fcr 29.824ksi=

λ
f

Fcr
:= λ 1.222= ρ

1
0.22

λ
−

λ
:= ρ 0.671= be ρ w⋅:= be 0.74404in=

Web under stress gradient:

w h 5 t⋅−:= w 11.8302in=
w

t
209.014= ycg 6.0566in:= w 11.8302in=

f1
Fy

ycg
ycg 2.5 t⋅−( )⋅:= f1 43.46ksi= f2 f1

h ycg− 2.5 t⋅−

ycg 2.5 t⋅−
⋅:=

f2 43.46ksi=

ψ
f2

f1
:= ψ 1= k 4 2 1 ψ+( )3

⋅+ 2 1 ψ+( )⋅+:= k 24=

Fcr
k π

2
⋅ E⋅

12 1 µ
2

−( )⋅
w

t









2

⋅

:= Fcr 14.615ksi= f f1:= λ
f

Fcr
:= λ 1.724=

ρ

1
0.22

λ
−

λ
:=

ρ 0.506= be ρ w⋅:= be 5.985in=

ho 12.1132in:= bo 1.25in:=
ho

bo
9.691= b1

be

3 ψ+
:= b2

be

1 ψ+
b1−:=

b1 1.496in= b2 1.496in=

b1 b2+ 2.993in= is less than compression portion of web element=5.9151in

So the web is not fully effective
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Trial1

Element Length y Ly Ly
2

I'

1 0.744 0.028 0.021 0.001

2 0.178 0.069 0.012 0.001

3a 1.496 0.890 1.331 1.184 0.279

3b 1.496 5.309 7.942 42.159 0.279

3c 5.915 9.014 53.320 480.631 17.247

4 0.178 12.044 2.140 25.779

5 1.109 12.085 13.396 161.891

sum 11.115 78.162 711.645 17.805

ycg 7.032

Ixe 10.177

Trial 2 ycg 7.047in:=

f1 43.46ksi= f2
Fy

ycg
h ycg− 2.5 t⋅−( )⋅:= f2 31.098ksi=

f1
Fy

ycg
ycg 2.5t−( )⋅:=

ψ
f2

f1
:= ψ 0.713= k 4 2 1 ψ+( )3

⋅+ 2 1 ψ+( )⋅+:= k 17.482=

Fcr
k π

2
⋅ E⋅

12 1 µ
2

−( )⋅
w

t









2

⋅

:= Fcr 10.646ksi= f f1:= λ
f

Fcr
:= λ 2.024=

ρ

1
0.22

λ
−

λ
:=

ρ 0.44= be ρ w⋅:= be 5.21in=

ho 12.1132in:= bo 1.25in:=
ho

bo
9.691= b1

be

3 ψ+
:= b2

be

1 ψ+
b1−:=

b1 1.403in= b2 1.638in=

Trial2 Assume ycg=7.047

Element Length y Ly Ly
2

I'

1 0.744 0.028 0.021 0.001

2 0.178 0.069 0.012 0.001

3a 1.403 0.843 1.183 0.997 0.230

3b 1.638 6.228 10.201 63.535 0.366

3c 4.925 9.509 46.831 445.329 9.953

4 0.178 12.044 2.140 25.779

5 1.109 12.085 13.396 161.891

sum 10.174 73.785 697.533 10.549

ycg 7.253

Ixe 9.789

Trial 3 ycg 7.29in:=

f1
Fy

ycg
ycg 2.5t−( )⋅:= f1 43.636ksi= f2

Fy

ycg
h ycg− 2.5 t⋅−( )⋅:=

f2 28.578ksi=

f2
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ycg ycg

ψ
f2

f1
:= ψ 0.655= k 4 2 1 ψ+( )3

⋅+ 2 1 ψ+( )⋅+:= k 16.375=

Fcr
k π

2
⋅ E⋅

12 1 µ
2

−( )⋅
w

t









2

⋅

:= Fcr 9.972ksi= f f1:= λ
f

Fcr
:= λ 2.092=

ρ

1
0.22

λ
−

λ
:=

ρ 0.428= be ρ w⋅:= be 5.06in=

ho

bo
9.691= b1

be

3 ψ+
:= b2

be

1 ψ+
b1−:= b1 1.3846in= b2 1.6733in=

Trial 3 assume ycg=7.29

Element Length y Ly Ly
2

I'

1 0.744 0.028 0.021 0.001

2 0.178 0.069 0.012 0.001

3a 1.385 0.834 1.154 0.963 0.221

3b 1.673 6.453 10.798 69.686 0.391

3c 4.682 9.631 45.089 434.243 8.551

4 0.178 12.044 2.140 25.779

5 1.109 12.085 13.396 161.891

sum 9.948 72.612 692.563 9.163

ycg 7.298

Ixe 9.743

Ycg 7.298in:= So no further iteration isnecessary.

Ixe 9.7432in
4

:= Sxe
Ixe

Ycg
:= Ycg 7.298in= Mn Fy Sxe⋅:= Mn 59.41kip in⋅=

 

Track section: 305T32 14−

Fy 44.5ksi:= h 12.1426in:= t 0.0713in:= r 1.5 t⋅:= r 0.107in=

b 1.25in:= w b 2.5t−:= w 1.072in= E 29435ksi:= µ 0.3:=

Gross section

Element Length y Ly Ly
2

I'

1 1.072 0.036 0.038 0.001

2 0.224 0.087 0.020 0.002

3 11.786 6.071 71.557 434.444 136.384

4 0.224 12.055 2.699 32.536

5 1.072 12.107 12.976 157.095

sum 14.377 87.289 624.078 136.384

ycg 6.071

Ixe 16.435
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Flange under uniform compression:

w

t
15.032= k 0.43:= f Fy:= Fcr

k π
2

⋅ E⋅

12 1 µ
2

−( )⋅
w

t









2

⋅

:= Fcr 50.629ksi=

λ
f

Fcr
:= λ 0.938=

ρ

1
0.22

λ
−

λ
:= ρ 0.816= be ρ w⋅:= be 0.875in=

Web under stress gradient:

w h 5 t⋅−:= w 11.7861in=
w

t
165.303= ycg 6.0713in:=

w 11.7861in=

f1
Fy

ycg
ycg 2.5 t⋅−( )⋅:= f1 43.194ksi= f2 f1

h ycg− 2.5 t⋅−

ycg 2.5 t⋅−
⋅:= f2 43.194ksi=

ψ
f2

f1
:= ψ 1=

k 4 2 1 ψ+( )3
⋅+ 2 1 ψ+( )⋅+:= k 24=

Fcr
k π

2
⋅ E⋅

12 1 µ
2

−( )⋅
w

t









2

⋅

:= Fcr 23.366ksi= f f1:= λ
f

Fcr
:= λ 1.36=

ρ

1
0.22

λ
−

λ
:=

ρ 0.616= be ρ w⋅:= be 7.266in=

ho 12.1426in:= bo 1.25in:=
ho

bo
9.714= b1

be

3 ψ+
:= b2

be

1 ψ+
b1−:=

b1 1.817in= b2 1.817in=

b1 b2+ 3.633in= is less than compression portion of web element=5.89305in

So the web is not fully effective

Trial1 ycg=6.0713

Element Length y Ly Ly
2

I'

1 0.875 0.036 0.031 0.001

2 0.224 0.087 0.020 0.002

3a 1.817 1.053 1.913 2.014 0.500

3b 1.817 4.197 7.626 32.003 0.500

3c 5.893 9.018 53.142 479.230 17.055

4 0.224 12.055 2.699 32.536

5 1.072 12.107 12.976 157.095

sum 11.922 78.406 702.881 18.055

ycg 6.577

Ixe 14.636
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Trial 2 ycg 6.89in:=

f1
Fy

ycg
ycg 2.5t−( )⋅:= f1 43.349ksi= f2

Fy

ycg
h ycg− 2.5 t⋅−( )⋅:= f2 32.773ksi=

ψ
f2

f1
:= ψ 0.756= k 4 2 1 ψ+( )3

⋅+ 2 1 ψ+( )⋅+:= k 18.342=

Fcr
k π

2
⋅ E⋅

12 1 µ
2

−( )⋅
w

t









2

⋅

:= Fcr 17.858ksi= f f1:= λ
f

Fcr
:= λ 1.558=

ρ

1
0.22

λ
−

λ
:=

ρ 0.551= be ρ w⋅:= be 6.497in=

b1
be

3 ψ+
:= b2

be

1 ψ+
b1−:=

ho 12.1426in:= bo 1.25in:=
ho

bo
9.714=

b1 1.73in= b2 1.97in=

Trial2 Ycg=6.89in

Element Length y Ly Ly
2

I'

1 0.875 0.036 0.031 0.001

2 0.224 0.087 0.020 0.002

3a 1.730 1.043 1.805 1.883 0.432

3b 1.970 5.905 11.633 68.692 0.637

3c 5.074 9.427 47.837 450.966 10.889

4 0.224 12.055 2.699 32.536

5 1.072 12.107 12.976 157.095

sum 11.169 77.000 711.175 11.958

ycg 6.894

Ixe 13.712

Ycg 6.894in:= So no further iteration isnecessary.

Ixe 13.7123in
4

:= Ycg 6.894in= Sxe
Ixe

Ycg
:=

Mn Fy Sxe⋅:= Mn 88.511kip in⋅=
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Stud section : 254S76-18

E 29435ksi:= fy 33ksi:= µ 0.3:= t 0.0451in:= h0 10in:= b0 3in:=

ri 1.5 t⋅:= ri 0.068in= d1 t ri+:= D 1in:=

Gross section

Element L y Ly Ly
2

I

1 0.887 0.556 0.494 0.275 0.058

2 0.284 0.055 0.016 0.001

3 2.775 0.023 0.063 0.001

4 9.775 5.000 48.873 244.363 77.822

5 2.775 9.977 27.682 276.200

6 0.284 9.945 2.824 28.087

7 0.887 9.444 8.379 79.127 0.058

sum 17.666 88.330 628.053 77.938

Ytop 5.000 Ix 264.342

Ixg 11.922

Stiffened compression flange under uniform compression

w b0 2 d1⋅−:= w 2.774in= w

t
61.519= d D d1−:= Is

d
3

t⋅

12
:=

Is 2.625 10
3−× in

4
= f fy:=

S 1.28
E

f
⋅:= S 38.228= 0.328 S⋅ 12.539=

w

t
0.328.S>

Ia1 399 t
4

⋅

w

t

S
0.328−











3

⋅:= Ia1 3.472 10
3−× in

4
=

Ia2 t
4

115

w

t

S
⋅ 5+











⋅:= Ia2 7.863 10
4−× in

4
=

Ia Ia1 Ia1 Ia2<if

Ia2 otherwise

:=
Ia 7.863 10

4−× in
4

=

Ri
Is

Ia

Is

Ia
1<if

1 otherwise

:= Ri 1=D

w
0.36=

n 0.582

w

t

4 S⋅
− 0.582

w

t

4 S⋅
−

1

3
≥if

1

3
otherwise

:=

n 0.333=

D  D
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n 0.333=

k 4.82 5
D

w
⋅−









Ri
n

⋅ 0.43+ 0.25
D

w
< 0.8≤if

3.57 Ri
n

⋅ 0.43+ otherwise

:=

k 4 k 4>if

k otherwise

:= k 3.448=

Fcr
k π

2
⋅ E⋅

12 1 µ
2

−( )⋅

t

w









2

⋅:= Fcr 24.237ksi= λ
f

Fcr
:= λ 1.167=

ρ

1
0.22

λ
−

λ
λ 0.673>if

1 otherwise

:= ρ 0.695=

be ρ w⋅:= be 1.929in=

Lip (Unstiffened compression element)

Ytop 5in:= d1 t ri+:= f fy:= d 0.887in=

d

t
19.673= f2 f

Ytop d1− d−

Ytop
⋅:=

f1 f
Ytop d1−

Ytop
⋅:=

f1 32.256ksi= f2 26.4ksi= ψ
f2

f1
:= ψ 0.818=

k
0.578

ψ 0.34+
:= k 0.499=

Fcr
k π

2
⋅ E⋅

12 1 µ
2

−( )⋅

t

d








2

⋅:=
Fcr 34.297ksi= f f1:=

λ
f

Fcr
:= λ 0.97=

ρ

1
0.22

λ
−

λ
λ 0.673>if

1 otherwise

:= ρ 0.797=

ds' ρ d⋅:= ds' 0.707in= ds ds' Ri⋅:= ds 0.707in=
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Web under stress gradient

h h0 2 d1⋅−:= h 9.774 in=
h

t
216.729= f f1:= f2

h0 Ytop− d1−( ) fy⋅

Ytop
:=

f1 32.256 ksi= f2 32.256 ksi=

ψ
f2

f1
:= ψ 1= k 4 2 1 ψ+( )3

⋅+ 2 1 ψ+( )⋅+:= k 24=

Fcr
k π

2
⋅ E⋅

12 1 µ
2

−( )⋅

t

h








2

⋅:=
Fcr 13.593 ksi= f f1:= λ

f

Fcr
:= λ 1.54=

ρ

1
0.22

λ
−

λ
λ 0.673>if

1 otherwise

:= ρ 0.556= be ρ h⋅:= be 5.439 in=

h0

b0
3.333=

ho

b0
4≤

b1
be

3 ψ+
:=

b2
be

2
ψ 0.236>if

be b1− otherwise

:=

b1 1.36 in= b2 2.72 in=

b1 b2+ 4.079 in= Ytop d1− 4.887 in=

b1 b2+ 4.887< the web is not fully effective.

Moment of Inertia calculation

Trial 1

Element L y Ly Ly
2

I

1 0.707 0.466 0.330 0.154 0.029

2 0.284 0.055 0.016 0.001

3 1.929 0.023 0.043 0.001

4a 1.360 0.793 1.078 0.855 0.210

4b 2.720 3.640 9.901 36.039 1.677

4c 4.887 7.444 36.379 270.791 9.728

5 2.775 9.977 27.682 276.200

6 0.284 9.945 2.824 28.087

7 0.887 9.444 8.379 79.127 0.058

sum 15.833 86.632 691.253 11.702

Ytop 5.472 Ix 228.936

Ixe 10.325
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Trial 2 Ytop 5.66in:= f fy:=

Web under stress gradient

h h0 2 d1⋅−:= h 9.774in=
h

t
216.729=

f1 fy
Ytop d1−

Ytop
⋅:= f2

h0 Ytop− d1−( ) fy⋅

Ytop
:= f1 32.343ksi= f2 24.647ksi=

ψ
f2

f1
:= ψ 0.762= k 4 2 1 ψ+( )3

⋅+ 2 1 ψ+( )⋅+:= k 18.466=

Fcr
k π

2
⋅ E⋅

12 1 µ
2

−( )⋅

t

h








2

⋅:=
Fcr 10.459ksi= f f1:= λ

f

Fcr
:= λ 1.759=

ρ

1
0.22

λ
−

λ
λ 0.673>if

1 otherwise

:= ρ 0.498=

be ρ h⋅:= be 4.863in=

ho

b0
4≤h0

b0
3.333=

b1
be

3 ψ+
:=

b2
be

2
ψ 0.236>if

be b1− otherwise

:=

b1 1.293in= b2 2.431in=

b1 b2+ 3.724in= Ytop d1− 5.547in=

b1 b2+ 5.547< the web is not fully effective.

Trail 2 assume Ycg=5.66

Element L y Ly Ly
2

I

1 0.707 0.466 0.330 0.154 0.029

2 0.284 0.055 0.016 0.001

3 1.929 0.023 0.043 0.001

4a 1.293 0.759 0.982 0.745 0.180

4b 2.431 4.445 10.805 48.021 1.197

4c 4.227 7.774 32.861 255.450 6.295

5 2.775 9.977 27.682 276.200

6 0.284 9.945 2.824 28.087

7 0.887 9.444 8.379 79.127 0.058

sum 14.817 83.922 687.785 7.760

Ytop 5.664 Ix 220.222

Ixe 9.932
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From trial 2 it is found that Ycg=5.664in  which is almost equal to 5.66 in. So no other

iteration is necessary. 

Ixe 9.932in
4

:= Yxe 5.663884in:=

Sxe
Ixe

Yxe
:= Sxe 1.754in

3
= Mn Sxe fy⋅:= fy 33ksi= Mn 57.868kip in⋅=
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Stud section: 254S76 16−

E 29435ksi:= fy 33ksi:= µ 0.3:= t .0632in:= h0 10in:= b0 3in:=

ri 1.5 t⋅:= ri 0.095in= d1 t ri+:= D 1in:=

Gross section

Element L y Ly Ly
2

I

1 0.842 0.579 0.488 0.282 0.050

2 0.397 0.077 0.031 0.002

3 2.684 0.032 0.085 0.003

4 9.684 5.000 48.420 242.100 75.680

5 2.684 9.968 26.755 266.706

6 0.397 9.923 3.939 39.087

7 0.842 9.421 7.932 74.732 0.050

sum 17.530 87.650 622.913 75.780

Ytop 5.000 Ix 260.443

Ixg 16.460

Stiffened compression flange under uniform compression

w b0 2 d1⋅−:= w 2.684in=

d D d1−:=w

t
42.468= Is

d
3

t⋅

12
:= Is 3.144 10

3−
× in

4
= f fy:=

S 1.28
E

f
⋅:= S 38.228= 0.328 S⋅ 12.539=

w

t
0.328.S>

Ia1 399 t
4

⋅

w

t

S
0.328−











3

⋅:= Ia1 3.055 10
3−

× in
4

=

Ia2 t
4

115

w

t

S
⋅ 5+











⋅:= Ia2 2.118 10
3−

× in
4

=

Ia Ia1 Ia1 Ia2<if

Ia2 otherwise

:=

Ia 2.118 10
3−

× in
4

=

Ri
Is

Ia

Is

Ia
1<if

1 otherwise

:= Ri 1=D

w
0.373=

n 0.582

w

t

4 S⋅
− 0.582

w

t

4 S⋅
−

1

3
≥if

1

3
otherwise

:=
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n 0.333=

k 4.82 5
D

w
⋅−








Ri
n

⋅ 0.43+ 0.25
D

w
< 0.8≤if

3.57 Ri
n

⋅ 0.43+ otherwise

:=

k 4 k 4>if

k otherwise

:= k 3.387=

Fcr
k π

2
⋅ E⋅

12 1 µ
2

−( )⋅

t

w









2

⋅:= Fcr 49.962 ksi= λ
f

Fcr
:= λ 0.813=

ρ

1
0.22

λ
−

λ
λ 0.673>if

1 otherwise

:= ρ 0.897=

be ρ w⋅:= be 2.409 in=

Lip (Unstiffened compression element)

Ytop 5in:= d1 t ri+:= f fy:= d 0.842 in=

d

t
13.323= f1 f

Ytop d1−

Ytop
⋅:= f2 f

Ytop d1− d−

Ytop
⋅:=

f1 31.957 ksi= f2 26.4 ksi= ψ
f2

f1
:= ψ 0.826= k

0.578

ψ 0.34+
:= k 0.496=

Fcr
k π

2
⋅ E⋅

12 1 µ
2

−( )⋅

t

d









2

⋅:=
Fcr 74.292 ksi= f f1:= λ

f

Fcr
:= λ 0.656=

ρ

1
0.22

λ
−

λ
λ 0.673>if

1 otherwise

:= ρ 1=

ds' ρ d⋅:= ds' 0.842 in= ds ds' Ri⋅:= ds 0.842 in=

Web under stress gradient

h h0 2 d1⋅−:= h 9.684 in=
h

t
153.228= f f1:= f2

h0 Ytop− d1−( ) fy⋅

Ytop
:=

f1 31.957 ksi= f2 31.957 ksi=

ψ
f2

f1
:= ψ 1= k 4 2 1 ψ+( )3

⋅+ 2 1 ψ+( )⋅+:= k 24=

Fcr
k π

2
⋅ E⋅

12 1 µ
2

−( )⋅

t

h









2

⋅:=
Fcr 27.194 ksi= f f1:= λ

f

Fcr
:= λ 1.084=
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ρ

1
0.22

λ
−

λ
λ 0.673>if

1 otherwise

:= ρ 0.735= be ρ h⋅:= be 7.12in=

ho

b0
4≤h0

b0
3.333=

b1
be

3 ψ+
:=

b2
be

2
ψ 0.236>if

be b1− otherwise

:=

b1 1.78in= b2 3.56in=

b1 b2+ 5.34in= Ytop d1− 4.842in=

b1 b2+ 4.842.in> the web is  fully effective.

Moment of Inertia calculation

Trial1

Element L y Ly Ly
2

I

1 0.842 0.579 0.488 0.282 0.050

2 0.397 0.077 0.031 0.002

3 2.084 0.032 0.066 0.002

4c 9.684 5.000 48.420 242.100 75.680

5 2.684 9.968 26.755 266.706

6 0.397 9.923 3.939 39.087

7 0.842 9.464 7.969 75.416 0.050

sum 16.930 87.667 623.596 75.780

Ytop 5.178 Ix 245.416

Ixe 15.510

Trial2 Ytop 5.178in:= f fy:=

Web under stress gradient

h h0 2 d1⋅−:= h 9.684in=
h

t
153.228=

f1 f
Ytop d1−

Ytop
⋅:= f1 31.993ksi= f2

h0 Ytop− d1−( ) fy⋅

Ytop
:= f2 29.724ksi=

ψ
f2

f1
:= ψ 0.929= k 4 2 1 ψ+( )3

⋅+ 2 1 ψ+( )⋅+:= k 22.216=
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Fcr
k π

2
⋅ E⋅

12 1 µ
2

−( )⋅

t

h









2

⋅:= Fcr 25.173ksi= f f1:= λ
f

Fcr
:= λ 1.127=

ρ

1
0.22

λ
−

λ
λ 0.673>if

1 otherwise

:= ρ 0.714= be ρ h⋅:= be 6.914in=

ho

b0
4≤h0

b0
3.333=

b1
be

3 ψ+
:=

b2
be

2
ψ 0.236>if

be b1− otherwise

:=

b1 1.76in= b2 3.457in=

b1 b2+ 5.216in= Ytop d1− 5.02in=

b1 b2+ 5.02> the web is fully effective.

Ixe 15.51027in
4

:= Yxe 5.1782in:=

Sxe
Ixe

Yxe
:= Sxe 2.995in

3
= Mn Sxe fy⋅:= fy 33ksi= Mn 98.845kip in⋅=

 

Stud section: 254S76-14

E 29435ksi:= fy 33ksi:= µ 0.3:= t 0.0713in:= h0 10in:= b0 3in:=

ri 1.5 t⋅:= ri 0.107in= d1 t ri+:= D 1in:=

Gross section

Element L y Ly Ly
2

I

1 0.822 0.589 0.484 0.285 0.046

2 0.448 0.087 0.039 0.003

3 2.644 0.036 0.094 0.003

4 9.644 5.000 48.218 241.088 74.735

5 2.644 9.964 26.341 262.469

6 0.448 9.913 4.438 43.997

7 0.822 9.411 7.733 72.778 0.046

sum 17.470 87.348 620.623 74.827

Ytop 5.000 Ix 258.712

Ixg 18.446
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Stiffened compression flange under uniform compression

w b0 2 d1⋅−:= w 2.643in=

d D d1−:=w

t
37.076= Is

d
3

t⋅

12
:=

Is 3.297 10
3−× in

4
= f fy:=

S 1.28
E

f
⋅:= S 38.228= 0.328 S⋅ 12.539=

w

t
0.328.S>

Ia1 399 t
4

⋅

w

t

S
0.328−











3

⋅:= Ia1 2.727 10
3−× in

4
=

Ia2 t
4

115

w

t

S
⋅ 5+











⋅:= Ia2 3.012 10
3−× in

4
=

Ia Ia1 Ia1 Ia2<if

Ia2 otherwise

:=
Ia 2.727 10

3−× in
4

=

Ri
Is

Ia

Is

Ia
1<if

1 otherwise

:= Ri 1=D

w
0.378=

n 0.582

w

t

4 S⋅
− 0.582

w

t

4 S⋅
−

1

3
≥if

1

3
otherwise

:=

n 0.34=

k 4.82 5
D

w
⋅−









Ri
n

⋅ 0.43+ 0.25
D

w
< 0.8≤if

3.57 Ri
n

⋅ 0.43+ otherwise

:=

k 4 k 4>if

k otherwise

:= k 3.359=

Fcr
k π

2
⋅ E⋅

12 1 µ
2

−( )⋅

t

w









2

⋅:= Fcr 65ksi= λ
f

Fcr
:= λ 0.713=
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ρ

1
0.22

λ
−

λ
λ 0.673>if

1 otherwise

:= ρ 0.97=

be ρ w⋅:= be 2.565in=

Lip (Unstiffened compression element)

Ytop 5in:= d1 t ri+:= f fy:= d 0.822in=

d

t
11.525= f1 f

Ytop d1−

Ytop
⋅:= f2 f

Ytop d1− d−

Ytop
⋅:=

f1 31.824ksi= f2 26.4ksi= ψ
f2

f1
:= ψ 0.83= k

0.578

ψ 0.34+
:= k 0.494=

Fcr
k π

2
⋅ E⋅

12 1 µ
2

−( )⋅

t

d








2

⋅:=
Fcr 98.978ksi= f f1:= λ

f

Fcr
:= λ 0.567=

ρ

1
0.22

λ
−

λ
λ 0.673>if

1 otherwise

:= ρ 1=

ds' ρ d⋅:= ds' 0.822in= ds ds' Ri⋅:= ds 0.822in=

Web under stress gradient

h h0 2 d1⋅−:= h 9.643in=
h

t
135.252= f f1:= f2

h0 Ytop− d1−( ) fy⋅

Ytop
:=

f1 31.824ksi= f2 31.824ksi=

ψ
f2

f1
:= ψ 1= k 4 2 1 ψ+( )3

⋅+ 2 1 ψ+( )⋅+:= k 24=

Fcr
k π

2
⋅ E⋅

12 1 µ
2

−( )⋅

t

h








2

⋅:=
Fcr 34.903ksi= f f1:= λ

f

Fcr
:= λ 0.955=

ρ

1
0.22

λ
−

λ
λ 0.673>if

1 otherwise

:= ρ 0.806= be ρ h⋅:= be 7.772in=

ho
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1 otherwise

ho

b0
4≤h0

b0
3.333=

b1
be

3 ψ+
:=

b2
be

2
ψ 0.236>if

be b1− otherwise

:=

b1 1.943in= b2 3.886in=

b1 b2+ 5.829in= Ytop d1− 4.822in=

b1 b2+ 4.822.in> the web is  fully effective.

Moment of Inertia calculation

Trial1 Assume Ytop=5

Element L y Ly Ly
2

I

1 0.822 0.589 0.484 0.285 0.046

2 0.448 0.087 0.039 0.003

3 2.565 0.036 0.094 0.003

4 9.644 5.000 48.218 241.088 74.735

5 2.644 9.964 26.341 262.469

6 0.448 9.913 4.438 43.997

7 0.822 9.411 7.733 72.778 0.046

sum 17.391 87.348 620.623 74.827

Ytop 5.023 Ix 256.741

Ixe 18.306

Trial2 Ytop 5.023in:= f fy:=

Web under stress gradient

h h0 2 d1⋅−:= h 9.643in=
h

t
135.252=

f1 f
Ytop d1−

Ytop
⋅:= f1 31.829ksi= f2

h0 Ytop− d1−( ) fy⋅

Ytop
:= f2 31.527ksi=

ψ
f2

f1
:= ψ 0.991= k 4 2 1 ψ+( )3

⋅+ 2 1 ψ+( )⋅+:= k 23.754=

Fcr
k π

2
⋅ E⋅

12 1 µ
2

−( )⋅

t

h








2

⋅:=
Fcr 34.546ksi= f f1:= λ

f

Fcr
:= λ 0.96=

ρ

1
0.22

λ
−

λ
λ 0.673>if

1 otherwise

:= ρ 0.803= be ρ h⋅:= be 7.744in=

ho
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1 otherwise

ho

b0
4≤h0

b0
3.333=

b1
be

3 ψ+
:=

b2
be

2
ψ 0.236>if

be b1− otherwise

:=

b1 1.941in= b2 3.872in=

b1 b2+ 5.813in= Ytop d1− 4.845in=

b1 b2+ 4.845> the web is fully effective.

Ixe 18.30561in
4

:= Yxe 5.022569in:=

Sxe
Ixe

Yxe
:= Sxe 3.645in

3
= Mn Sxe fy⋅:= fy 33ksi= Mn 120.274kip in⋅=

 

Stud section: 203S76 18−

E 29435ksi:= fy 33ksi:= µ 0.3:= t 0.0451in:= h0 8in:= b0 3in:=

ri 1.5 t⋅:= ri 0.068in= d1 t ri+:= D 1in:=

Gross section

Element L y Ly Ly
2

I

1 0.887 0.556 0.494 0.275 0.058

2 0.284 0.055 0.016 0.001

3 2.775 0.023 0.063 0.001

4 7.775 4.000 31.098 124.392 39.159

5 2.775 7.977 22.133 176.568

6 0.284 7.945 2.256 17.926

7 0.887 7.444 6.604 49.160 0.058

sum 15.666 62.664 368.323 39.276

Ytop 4.000 Ix 156.943

Ixg 7.078
 

Stiffened compression flange under uniform compression

w b0 2 d1⋅−:= w 2.774in=
w

t
61.519= d D d1−:= Is

d
3

t⋅

12
:=

Is 2.625 10
3−

× in
4

= f fy:= S 1.28
E

f
⋅:= S 38.228= 0.328S⋅ 12.539=

w

t
0.328.S>
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Ia1 399 t
4

⋅

w

t

S
0.328−











3

⋅:=
Ia1 3.472 10

3−
× in

4
=

Ia2 t
4

115

w

t

S
⋅ 5+











⋅:= Ia2 7.863 10
4−

× in
4

=

Ia Ia1 Ia1 Ia2<if

Ia2 otherwise

:=
Ia 7.863 10

4−
× in

4
=

Ri
Is

Ia

Is

Ia
1<if

1 otherwise

:= Ri 1=D

w
0.36=

n 0.582

w

t

4 S⋅
− 0.582

w

t

4 S⋅
−

1

3
≥if

1

3
otherwise

:=

n 0.333=

k 4.82 5
D

w
⋅−








Ri
n

⋅ 0.43+ 0.25
D

w
< 0.8≤if

3.57 Ri
n

⋅ 0.43+ otherwise

:=

k 4 k 4>if

k otherwise

:= k 3.448=

Fcr
k π

2
⋅ E⋅

12 1 µ
2

−( )⋅

t

w









2

⋅:= Fcr 24.237ksi= λ
f

Fcr
:= λ 1.167=

ρ

1
0.22

λ
−

λ
λ 0.673>if

1 otherwise

:= ρ 0.695= be ρ w⋅:= be 1.929in=

Lip (Unstiffened compression element)

Ytop 4in:= d1 t ri+:= f fy:= d 0.887in=

d

t
19.673= f1 f

Ytop d1−

Ytop
⋅:= f2 f

Ytop d1− d−

Ytop
⋅:= f1 32.07ksi= f2 24.75ksi=
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ψ
f2

f1
:= ψ 0.772= k

0.578

ψ 0.34+
:= k 0.52=

Fcr
k π

2
⋅ E⋅

12 1 µ
2

−( )⋅

t

d









2

⋅:=
Fcr 35.737ksi= f f1:= λ

f

Fcr
:= λ 0.947=

ρ

1
0.22

λ
−

λ
λ 0.673>if

1 otherwise

:= ρ 0.81=

ds' ρ d⋅:= ds' 0.719in= ds ds' Ri⋅:= ds 0.719in=

Web under stress gradient

h h0 2 d1⋅−:= h 7.774in=
h

t
172.384= f f1:= f2

h0 Ytop− d1−( ) fy⋅

Ytop
:=

f1 32.07ksi= f2 32.07ksi=

ψ
f2

f1
:= ψ 1= k 4 2 1 ψ+( )3

⋅+ 2 1 ψ+( )⋅+:= k 24=

Fcr
k π

2
⋅ E⋅

12 1 µ
2

−( )⋅

t

h









2

⋅:=
Fcr 21.486ksi= f f1:=

λ
f

Fcr
:= λ 1.222=

ρ

1
0.22

λ
−

λ
λ 0.673>if

1 otherwise

:= ρ 0.671= be ρ h⋅:= be 5.218in=

ho

b0
4≤h0

b0
2.667=

b1
be

3 ψ+
:=

b2
be

2
ψ 0.236>if

be b1− otherwise

:=

b1 1.304in= b2 2.609in=

b1 b2+ 3.913in= Ytop d1− 3.887in=

b1 b2+ 3.887> the web is fully effective.
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Moment of Inertia calculation

Trial1 assume Ycg=4.0in

Element L y Ly Ly
2

I

1 0.719 0.472 0.340 0.160 0.031

2 0.284 0.055 0.016 0.001

3 1.929 0.023 0.043 0.001

4a 7.775 4.000 31.098 124.392 39.159

5 2.775 7.977 22.133 176.568

6 0.284 7.945 2.256 17.926

7 0.887 7.444 6.604 49.160 0.058

sum 14.652 62.491 368.209 39.249

Ytop 4.265 Ix 140.938

Ixe 6.356

Trial 2 f fy:= Ytop 4.265in:=

Web under stress gradient

h h0 2 d1⋅−:= h 7.774in=
h

t
172.384=

f1 f
Ytop d1−

Ytop
⋅:= f1 32.128ksi= f2

h0 Ytop− d1−( ) fy⋅

Ytop
:= f2 28.027ksi=

ψ
f2

f1
:= ψ 0.872= k 4 2 1 ψ+( )3

⋅+ 2 1 ψ+( )⋅+:= k 20.873=

Fcr
k π

2
⋅ E⋅

12 1 µ
2

−( )⋅

t

h









2

⋅:=
Fcr 18.686ksi= f f1:= λ

f

Fcr
:= λ 1.311=

ρ

1
0.22

λ
−

λ
λ 0.673>if

1 otherwise

:= ρ 0.635= be ρ h⋅:= be 4.934in=

ho

b0
4≤h0

b0
2.667=

b1
be

3 ψ+
:=

b2
be

2
ψ 0.236>if

be b1− otherwise

:=

b1 1.274in= b2 2.467in=

b1 b2+ 3.741in= Ytop d1− 4.152in=

b1 b2+ 4.152< the web is not fully effective.
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Trial2 assume Ycg=4.2649

Element L y Ly Ly
2

I

1 0.719 0.472 0.340 0.160 0.031

2 0.284 0.055 0.016 0.001

3 1.929 0.023 0.043 0.001

4a 1.274 0.779 0.992 0.772 0.172

4b 2.467 2.767 6.825 18.881 1.251

4c 3.622 6.076 22.010 133.732 3.961

5 2.775 7.977 22.133 176.568

6 0.284 7.945 2.256 17.926

7 0.887 7.444 6.604 49.160 0.058

sum 14.241 61.219 397.202 5.474

Ytop 4.299 Ix 139.508

Ixe 6.292

Trial 3 Ytop 4.37in:= f fy:=

Web under stress gradient

h h0 2 d1⋅−:= h 7.774in=
h

t
172.384= f1 f

Ytop d1−

Ytop
⋅:= f2

h0 Ytop− d1−( ) fy⋅

Ytop
:=

f1 32.149ksi= f2 26.56ksi= ψ
f2

f1
:= ψ 0.826=

k 4 2 1 ψ+( )3
⋅+ 2 1 ψ+( )⋅+:= k 19.833=

Fcr
k π

2
⋅ E⋅

12 1 µ
2

−( )⋅

t

h









2

⋅:= Fcr 17.755ksi= f f1:= λ
f

Fcr
:= λ 1.346=

ρ

1
0.22

λ
−

λ
λ 0.673>if

1 otherwise

:= ρ 0.622= be ρ h⋅:=

ho

b0
4≤h0

b0
2.667=

b1
be

3 ψ+
:=

 

b1
be

3 ψ+
:=

b2
be

2
ψ 0.236>if

be b1− otherwise

:=

b1 1.263in= b2 2.417in=
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b1 b2+ 3.68in= Ytop d1− 4.257in=

b1 b2+ 4.257in< the web is not fully effective.

Trial3 y=4.37in

Element L y Ly Ly2 I

1 0.719 0.472 0.340 0.160 0.031

2 0.284 0.055 0.016 0.001

3 1.929 0.023 0.043 0.001

4a 1.263 0.744 0.940 0.700 0.091

4b 2.417 3.162 7.641 24.158 0.572

4c 3.517 6.129 21.556 132.108 2.698

5 2.775 7.977 22.133 176.568

6 0.284 7.945 2.256 17.926

7 0.887 7.444 6.604 49.160 0.058

sum 14.075 61.530 400.782 3.450

Ytop 4.372 Ix 135.248

Ixe 6.100

From trial 3 it is found that Ycg=4.372in  which is almost equal to 4.37 in. So no other iteration

is necessary. 

Ixe 6.099684in
4

:= Yxe 4.372in:=

Sxe
Ixe

Yxe
:= Sxe 1.395in

3
= Mn Sxe fy⋅:= fy 33ksi= Mn 46.041kip in⋅=

 

Stud section: 203S76 16−

E 29435ksi:= fy 33ksi:= µ 0.3:= t 0.0566in:= h0 8in:= b0 3in:=

ri 1.5 t⋅:= ri 0.085in= d1 t ri+:= D 1in:=

Gross section

Element L y Ly Ly
2

I

1 0.859 0.571 0.490 0.280 0.053

2 0.356 0.069 0.025 0.002

3 2.717 0.028 0.077 0.002

4 7.717 4.000 30.868 123.472 38.297

5 2.717 7.972 21.659 172.660

6 0.356 7.931 2.823 22.390

7 0.859 7.429 6.382 47.408 0.053

sum 15.581 62.324 366.215 38.403

Ytop 4.000 Ix 155.321

Ixg 8.791
 

Stiffened compression flange under uniform compression

w b0 2 d1⋅−:= w 2.717in=
w

t
48.004= d D d1−:= Is

d
3

t⋅

12
:=

Is 2.984 10
3−

× in
4

= f fy:=
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Is 2.984 10 in f fy

S 1.28
E

f
⋅:= S 38.228= 0.328 S⋅ 12.539=

w

t
0.328.S>

Ia1 399 t
4

⋅

w

t

S
0.328−











3

⋅:= Ia1 3.269 10
3−

× in
4

=

Ia2 t
4

115

w

t

S
⋅ 5+











⋅:= Ia2 1.533 10
3−

× in
4

=

Ia Ia1 Ia1 Ia2<if

Ia2 otherwise

:=

Ia 1.533 10
3−

× in
4

=

Ri
Is

Ia

Is

Ia
1<if

1 otherwise

:= Ri 1=D

w
0.368=

n 0.582

w

t

4 S⋅
− 0.582

w

t

4 S⋅
−

1

3
≥if

1

3
otherwise

:=

n 0.333=

k 4.82 5
D

w
⋅−








Ri
n

⋅ 0.43+ 0.25
D

w
< 0.8≤if

3.57 Ri
n

⋅ 0.43+ otherwise

:=

k 4 k 4>if

k otherwise

:= k 3.41=

Fcr
k π

2
⋅ E⋅

12 1 µ
2

−( )⋅

t

w









2

⋅:= Fcr 39.365ksi= λ
f

Fcr
:= λ 0.916=

ρ

1
0.22

λ
−

λ
λ 0.673>if

1 otherwise

:= ρ 0.83= be ρ w⋅:= be 2.254in=
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Lip (Unstiffened compression element)

Ytop 4in:= d1 t ri+:= f fy:= d 0.859in=

d

t
15.168= f2 f

Ytop d1− d−

Ytop
⋅:=

f1 f
Ytop d1−

Ytop
⋅:=

f1 31.833ksi= f2 24.75ksi= ψ
f2

f1
:= ψ 0.778= k

0.578

ψ 0.34+
:= k 0.517=

Fcr
k π

2
⋅ E⋅

12 1 µ
2

−( )⋅

t

d









2

⋅:= Fcr 59.81ksi= f f1:= λ
f

Fcr
:= λ 0.73=

ρ

1
0.22

λ
−

λ
λ 0.673>if

1 otherwise

:= ρ 0.957=

ds' ρ d⋅:= ds' 0.822in= ds ds' Ri⋅:= ds 0.822in=

Web under stress gradient

h h0 2 d1⋅−:= h 7.717in=
h

t
136.343=

f1 fy
Ytop d1−

Ytop
⋅:= f1 31.833ksi= f2

h0 Ytop− d1−( ) fy⋅

Ytop
:= f2 31.833ksi=

ψ
f2

f1
:= ψ 1= k 4 2 1 ψ+( )3

⋅+ 2 1 ψ+( )⋅+:= k 24=

Fcr
k π

2
⋅ E⋅

12 1 µ
2

−( )⋅

t

h









2

⋅:= Fcr 34.347ksi= f f1:= λ
f

Fcr
:= λ 0.963=

ρ

1
0.22

λ
−

λ
λ 0.673>if

1 otherwise

:= ρ 0.801= be ρ h⋅:= be 6.184in=

ho

b0
4≤h0

b0
2.667=

be
 



 

  230 

b0

b1
be

3 ψ+
:=

b2
be

2
ψ 0.236>if

be b1− otherwise

:=

b1 1.546 in= b2 3.092 in=

b1 b2+ 4.638 in= Ytop d1− 3.858 in=

b1 b2+ 3.858> the web is  fully effective.

Moment of Inertia calculation

Trial1

Element L y Ly Ly
2

I

1 0.822 0.553 0.454 0.251 0.046

2 0.356 0.069 0.025 0.002

3 2.254 0.028 0.064 0.002

4c 7.717 4.000 30.868 123.472 38.297

5 2.717 7.972 21.659 172.660

6 0.356 7.931 2.823 22.390

7 0.859 7.429 6.382 47.408 0.053

sum 15.081 62.275 366.185 38.396

Ytop 4.129 Ix 147.428

Ixe 8.344

Trial 2 Ytop 4.129in:= f fy:=

Web under stress gradient

h h0 2 d1⋅−:= h 7.717 in=
h

t
136.343=

f1 fy
Ytop d1−

Ytop
⋅:= f1 31.869 ksi= f2

h0 Ytop− d1−( ) fy⋅

Ytop
:= f2 29.807 ksi=

ψ
f2

f1
:= ψ 0.935= k 4 2 1 ψ+( )3

⋅+ 2 1 ψ+( )⋅+:= k 22.367=

Fcr
k π

2
⋅ E⋅

12 1 µ
2

−( )⋅

t

h









2

⋅:=
Fcr 32.011 ksi= f f1:= λ

f

Fcr
:= λ 0.998=

ρ

1
0.22

λ
−

λ
λ 0.673>if

1 otherwise

:= ρ 0.781= be ρ h⋅:= be 6.029 in=

ho

b0
4≤h0

b0
2.667=

b1
be

3 ψ+
:=
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b2
be

2
ψ 0.236>if

be b1− otherwise

:=

b1 1.532in= b2 3.014in=

b1 b2+ 4.546in= Ytop d1− 3.987in=

b1 b2+ 3.987> the web is fully effective.

Ixe 8.34444in
4

:= Yxe 4.129in:=

Sxe
Ixe

Yxe
:= Sxe 2.021in

3
= Mn Sxe fy⋅:= fy 33ksi= Mn 66.691kip in⋅=

 

Stud section: 203S76 14−

E 29435ksi:= fy 33ksi:= µ 0.3:= t 0.0713in:= h0 8in:= b0 3in:=

ri 1.5 t⋅:= ri 0.107in= d1 t ri+:= D 1in:=

Gross section

Element L y Ly Ly2 I

1 0.822 0.589 0.484 0.285 0.046

2 0.448 0.087 0.039 0.003

3 2.644 0.036 0.094 0.003

4 7.644 4.000 30.574 122.296 37.213

5 2.644 7.964 21.054 167.680

6 0.448 7.913 3.543 28.034

7 0.822 7.411 6.090 45.131 0.046

sum 15.470 61.878 363.433 37.306

Ytop 4.000 Ix 153.226

Ixg 10.925

Stiffened compression flange under uniform compression

w b0 2 d1⋅−:= w 2.643in=
w

t
37.076= d D d1−:= Is

d
3

t⋅

12
:=

Is 3.297 10
3−

× in
4

= f fy:= S 1.28
E

f
⋅:= S 38.228= 0.328S⋅ 12.539=

Ia1 399 t
4

⋅

w

t

S
0.328−











3

⋅:=
Ia1 2.727 10

3−
× in

4
=

Ia2 t
4

115

w

t

S
⋅ 5+











⋅:= Ia2 3.012 10
3−

× in
4

=
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Ia Ia1 Ia1 Ia2<if

Ia2 otherwise

:=

Ia 2.727 10
3−

× in
4

=

Ri
Is

Ia

Is

Ia
1<if

1 otherwise

:= Ri 1=D

w
0.378=

n 0.582

w

t

4 S⋅
− 0.582

w

t

4 S⋅
−

1

3
≥if

1

3
otherwise

:=

n 0.34=

k 4.82 5
D

w
⋅−








Ri
n

⋅ 0.43+ 0.25
D

w
< 0.8≤if

3.57 Ri
n

⋅ 0.43+ otherwise

:=

k 4 k 4>if

k otherwise

:= k 3.359=

Fcr
k π

2
⋅ E⋅

12 1 µ
2

−( )⋅

t

w









2

⋅:= Fcr 65ksi= λ
f

Fcr
:= λ 0.713=

ρ

1
0.22

λ
−

λ
λ 0.673>if

1 otherwise

:= ρ 0.97= be ρ w⋅:= be 2.565in=

Lip (Unstiffened compression element)

Ytop 4in:= d1 t ri+:= f fy:= d 0.822in=

d

t
11.525= f2 f

Ytop d1− d−

Ytop
⋅:=

f1 f
Ytop d1−

Ytop
⋅:=

f1 31.529ksi= f2 24.75ksi= ψ
f2

f1
:= ψ 0.785=

k
0.578

ψ 0.34+
:= k 0.514=

Fcr
k π

2
⋅ E⋅

12 1 µ
2

−( )⋅

t

d









2

⋅:=
Fcr 102.902ksi= f f1:= λ

f

Fcr
:= λ 0.554=
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ρ

1
0.22

λ
−

λ
λ 0.673>if

1 otherwise

:= ρ 1=

ds' ρ d⋅:= ds' 0.822 in= ds ds' Ri⋅:= ds 0.822 in=

Web under stress gradient

h h0 2 d1⋅−:= h 7.643 in=
h

t
107.202= f f1:= f2

h0 Ytop− d1−( ) fy⋅

Ytop
:=

f1 31.529ksi= f2 31.529ksi=

ψ
f2

f1
:= ψ 1= k 4 2 1 ψ+( )3

⋅+ 2 1 ψ+( )⋅+:= k 24=

Fcr
k π

2
⋅ E⋅

12 1 µ
2

−( )⋅

t

h









2

⋅:= Fcr 55.558ksi= f f1:= λ
f

Fcr
:= λ 0.753=

ρ

1
0.22

λ
−

λ
λ 0.673>if

1 otherwise

:= ρ 0.94= be ρ h⋅:= be 7.183 in=

ho

b0
4≤h0

b0
2.667=

b1
be

3 ψ+
:=

b2
be

2
ψ 0.236>if

be b1− otherwise

:=

b1 1.796 in= b2 3.592 in=

b1 b2+ 5.387 in= Ytop d1− 3.822 in=

b1 b2+ 3.822> the web is  fully effective.

Moment of Inertia calculation

Trial1

1 0.822 0.589 0.484 0.285 0.046

2 0.448 0.087 0.039 0.003

3 2.565 0.036 0.091 0.003

4 7.644 4.000 30.574 122.296 37.213

5 2.644 7.964 21.054 167.680

6 0.448 7.913 3.543 28.034

7 0.822 7.411 6.090 45.131 0.046

sum 15.391 61.875 363.433 37.306

Ytop 4.020 Ix 151.986

Ixe 10.837
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Web under stress gradient

Ytop 4.02in:= f fy:= h h0 2 d1⋅−:= h 7.643in=
h

t
107.202=

f1 f
Ytop d1−

Ytop
⋅:= f1 31.537ksi= f2

h0 Ytop− d1−( ) fy⋅

Ytop
:= f2 31.208ksi=

ψ
f2

f1
:= ψ 0.99= k 4 2 1 ψ+( )3

⋅+ 2 1 ψ+( )⋅+:= k 23.731=

Fcr
k π

2
⋅ E⋅

12 1 µ
2

−( )⋅

t

h









2

⋅:= Fcr 54.934ksi= f f1:= λ
f

Fcr
:= λ 0.758=

ρ

1
0.22

λ
−

λ
λ 0.673>if

1 otherwise

:= ρ 0.937= be ρ h⋅:= be 7.159in=

ho

b0
4≤h0

b0
2.667=

b1
be

3 ψ+
:=

b2
be

2
ψ 0.236>if

be b1− otherwise

:=

b1 1.794in= b2 3.579in=

b1 b2+ 5.374in= Ytop d1− 3.842in=

b1 b2+ 3.842> the web is  fully effective.

Yxe 4.02022in:= Ixe 10.83661in
4

:=

Sxe
Ixe

Yxe
:= Sxe 2.696in

3
= Mn Sxe fy⋅:= fy 33ksi= Mn 88.952kip in⋅=
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Stud section: 305S76 18−

E 29435ksi:= fy 33ksi:= µ 0.3:= t 0.0451in:= h0 12in:= b0 3in:=

ri 1.5 t⋅:= ri 0.068in= d1 t ri+:= D 1in:=
Gross section

Element L y Ly Ly
2

I

1 0.887 0.556 0.494 0.275 0.058

2 0.283 0.055 0.016 0.001

3 2.775 0.023 0.063 0.001

4 11.775 6.000 70.647 423.882 39.159

5 2.775 11.977 33.231 398.028

6 0.283 11.945 3.383 40.410

7 0.887 11.444 10.153 116.191 0.058

19.664 117.987 978.788 39.276

Ytop 6.000 Ix 310.143

Ixg 13.987

Stiffened compression flange under uniform compression

w b0 2 d1⋅−:= w 2.774in= w

t
61.519= d D d1−:= Is

d
3

t⋅

12
:=

Is 2.625 10
3−

× in
4

= f fy:= S 1.28
E

f
⋅:= S 38.228= 0.328S⋅ 12.539=

Ia1 399 t
4

⋅

w

t

S
0.328−











3

⋅:= Ia1 3.472 10
3−

× in
4

=

Ia2 t
4

115

w

t

S
⋅ 5+











⋅:= Ia2 7.863 10
4−

× in
4

=

Ia Ia1 Ia1 Ia2<if

Ia2 otherwise

:=

Ia 7.863 10
4−

× in
4

=

Ri
Is

Ia

Is

Ia
1<if

1 otherwise

:= Ri 1=D

w
0.36=

n 0.582

w

t

4 S⋅
− 0.582

w

t

4 S⋅
−

1

3
≥if

1

3
otherwise

:=
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n 0.333=

k 4.82 5
D

w
⋅−








Ri
n

⋅ 0.43+ 0.25
D

w
< 0.8≤if

3.57 Ri
n

⋅ 0.43+ otherwise











:=

k 4 k 4>if

k otherwise

:= k 3.448=

Fcr
k π

2
⋅ E⋅

12 1 µ
2

−( )⋅

t

w









2

⋅:= Fcr 24.237ksi= λ
f

Fcr
:= λ 1.167=

ρ

1
0.22

λ
−

λ
λ 0.673>if

1 otherwise

:= ρ 0.695= be ρ w⋅:= be 1.929in=

Lip (Unstiffened compression element)

Ytop 6in:= d1 t ri+:= f fy:= d 0.887in=

d

t
19.673= f2 f

Ytop d1− d−

Ytop
⋅:=

f1 f
Ytop d1−

Ytop
⋅:=

f1 32.38ksi= f2 27.5ksi= ψ
f2

f1
:= ψ 0.849=

k
0.578

ψ 0.34+
:= k 0.486=

Fcr
k π

2
⋅ E⋅

12 1 µ
2

−( )⋅

t

d









2

⋅:=
Fcr 33.407ksi= f f1:= λ

f

Fcr
:= λ 0.985=

ρ

1
0.22

λ
−

λ
λ 0.673>if

1 otherwise

:=
ρ 0.789=

ds' ρ d⋅:= ds' 0.7in= ds ds' Ri⋅:= ds 0.7in=

Web under stress gradient

h h0 2 d1⋅−:= h 11.774in=
h

t
261.075= f f1:= f2

h0 Ytop− d1−( ) fy⋅

Ytop
:=

f1 32.38ksi= f2 32.38ksi=
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ψ
f2

f1
:= ψ 1= k 4 2 1 ψ+( )3

⋅+ 2 1 ψ+( )⋅+:= k 24=

Fcr
k π

2
⋅ E⋅

12 1 µ
2

−( )⋅

t

h









2

⋅:=
Fcr 9.367ksi= f f1:= λ

f

Fcr
:= λ 1.859=

ρ

1
0.22

λ
−

λ
λ 0.673>if

1 otherwise

:= ρ 0.474= be ρ h⋅:= be 5.584in=

ho

b0
4≤h0

b0
4=

b1
be

3 ψ+
:=

b2
be

2
ψ 0.236>if

be b1− otherwise

:=

b1 1.396in= b2 2.792in=

b1 b2+ 4.188in= Ytop d1− 5.887in=

b1 b2+ 5.887< the web is not fully effective.
 

Moment of Inertia calculation

Trial1

Element L y Ly Ly
2

I

1 0.700 0.463 0.324 0.150 0.029

2 0.283 0.055 0.016 0.001

3 1.929 0.023 0.043 0.001

4a 1.396 0.811 1.132 0.918 0.227

4b 2.792 4.604 12.854 59.182 1.814

4c 5.887 8.944 52.653 470.912 17.004

5 2.775 11.977 33.231 398.028

6 0.283 11.945 3.383 40.410

7 0.887 11.444 10.153 116.191 0.058

16.932 113.790 1085.792 19.131

Ytop 6.720 Ix 340.222

Ixe 15.344
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Trial 2 Ytop 6.9in:= f fy:=

Web under stress gradient

h h0 2 d1⋅−:= h 11.774in=
h

t
261.075=

f1 fy
Ytop d1−

Ytop
⋅:= f1 32.461ksi= f2 32.38ksi=

f2
h0 Ytop− d1−( ) fy⋅

Ytop
:=

ψ
f2

f1
:= ψ 0.735= k 4 2 1 ψ+( )3

⋅+ 2 1 ψ+( )⋅+:= k 17.911=

Fcr
k π

2
⋅ E⋅

12 1 µ
2

−( )⋅

t

h









2

⋅:=
Fcr 6.991ksi= f f1:= λ

f

Fcr
:= λ 2.155=

ρ

1
0.22

λ
−

λ
λ 0.673>if

1 otherwise

:= ρ 0.417=

be ρ h⋅:= be 4.906in=

ho

b0
4≤h0

b0
4=

b1
be

3 ψ+
:=

b2
be

2
ψ 0.236>if

be b1− otherwise

:=

b1 1.314in= b2 2.453in=

b1 b2+ 3.767in= Ytop d1− 6.787in=

b1 b2+ 6.787< the web is not fully effective.

Trial2 assume Ycg=6.9

Element L y Ly Ly
2

I

1 0.700 0.463 0.324 0.150 0.018

2 0.283 0.055 0.016 0.001

3 1.929 0.023 0.043 0.001

4a 1.314 0.770 1.011 0.779 0.189

4b 2.453 5.674 13.917 78.959 1.230

4c 4.987 9.394 46.848 440.076 10.337

5 2.775 11.977 33.231 398.028

6 0.283 11.945 3.383 40.410

7 0.887 11.444 10.153 116.191 0.058

15.611 108.928 1074.594 11.832

Ytop 6.977 Ix 326.389

Ixe 14.720
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Trial 3 Ytop 7.0in:= f fy:=

Web under stress gradient

h h0 2 d1⋅−:= h 11.774 in=
h

t
261.075=

f2
h0 Ytop− d1−( ) fy⋅

Ytop
:= f2 23.04 ksi=

f1 fy
Ytop d1−

Ytop
⋅:= f1 32.468 ksi=

ψ
f2

f1
:= ψ 0.71= k 4 2 1 ψ+( )3

⋅+ 2 1 ψ+( )⋅+:= k 17.413=

Fcr
k π

2
⋅ E⋅

12 1 µ
2

−( )⋅

t

h









2

⋅:=
Fcr 6.796 ksi= f f1:= λ

f

Fcr
:= λ 2.186=

ρ

1
0.22

λ
−

λ
λ 0.673>if

1 otherwise

:= ρ 0.411= be ρ h⋅:=

ho

b0
4≤h0

b0
4=

b1
be

3 ψ+
:=

b2
be

2
ψ 0.236>if

be b1− otherwise

:=

b1 1.306 in= b2 2.422 in=

b1 b2+ 3.728 in= Ytop d1− 6.887 in=

b1 b2+ 6.907in< the web is not fully effective.

Trial3 Ytop=7.0in

Element L y Ly Ly2 I

1 0.700 0.463 0.324 0.150 0.029

2 0.283 0.055 0.016 0.001

3 1.929 0.023 0.043 0.001

4a 1.306 0.766 1.000 0.766 0.186

4b 2.422 5.789 14.021 81.167 1.184

4c 4.887 9.444 46.153 435.855 9.728

5 2.775 11.977 33.231 398.028

6 0.283 11.945 3.383 40.410

7 0.887 11.444 10.153 116.191 0.058

15.472 108.325 1072.569 11.184

Ytop 7.001 Ix 325.349

Ixe 14.673

From trial 3 it is found that Ycg=7.0in .So no other iteration is necessary. 

Yxe 7.0in:= Ixe 14.67322in
4

:=

Sxe
Ixe

Yxe
:= Sxe 2.096 in

3
= Mn Sxe fy⋅:= fy 33 ksi= Mn 69.174 kip in⋅=
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Stud section: 305S76 16−

E 29435ksi:= fy 33ksi:= µ 0.3:= t 0.0566in:= h0 12in:= b0 3in:=

ri 1.5 t⋅:= ri 0.085in= d1 t ri+:= D 1in:=

Gross section

Element L y Ly Ly
2

I

1 0.859 0.571 0.490 0.280 0.053

2 0.356 0.069 0.025 0.002

3 2.717 0.028 0.077 0.002

4 11.717 6.000 70.302 421.812 134.050

5 2.717 11.972 32.527 389.405

6 0.356 11.931 4.247 50.673

7 0.859 11.429 9.818 112.204 0.053

sum 19.581 117.486 974.378 134.156

Ytop 6.000 Ix 403.618

Ixg 22.845

Stiffened compression flange under uniform compression

w b0 2 d1⋅−:= w 2.717in=
w

t
48.004= d D d1−:= Is

d
3

t⋅

12
:=

Is 2.984 10
3−

× in
4

= f fy:= S 1.28
E

f
⋅:= S 38.228= 0.328 S⋅ 12.539=

w

t
0.328.S>

Ia1 399 t
4

⋅

w

t

S
0.328−











3

⋅:= Ia1 3.269 10
3−

× in
4

=

Ia2 t
4

115

w

t

S
⋅ 5+











⋅:= Ia2 1.533 10
3−

× in
4

=

Ia Ia1 Ia1 Ia2<if

Ia2 otherwise

:=

Ia 1.533 10
3−

× in
4

=

Ri
Is

Ia

Is

Ia
1<if

1 otherwise

:= Ri 1=D

w
0.368=

n 0.582

w

t

4 S⋅
− 0.582

w

t

4 S⋅
−

1

3
≥if

1

3
otherwise

:=

n 0.333=

k 4.82 5
D

w
⋅−








Ri
n

⋅ 0.43+ 0.25
D

w
< 0.8≤if

3.57 Ri
n

⋅ 0.43+ otherwise

:=
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k 4 k 4>if

k otherwise

:= k 3.41=

Fcr
k π

2
⋅ E⋅

12 1 µ
2

−( )⋅

t

w









2

⋅:= Fcr 39.365ksi= λ
f

Fcr
:= λ 0.916=

ρ

1
0.22

λ
−

λ
λ 0.673>if

1 otherwise

:= ρ 0.83= be ρ w⋅:= be 2.254in=

Lip (Unstiffened compression element)

Ytop 6in:= d1 t ri+:= f fy:= d 0.859in=

d

t
15.168= f2 f

Ytop d1− d−

Ytop
⋅:=

f1 f
Ytop d1−

Ytop
⋅:=

f1 32.222ksi= f2 27.5ksi= ψ
f2

f1
:= ψ 0.853=

k
0.578

ψ 0.34+
:= k 0.484=

Fcr
k π

2
⋅ E⋅

12 1 µ
2

−( )⋅

t

d









2

⋅:= Fcr 56.003ksi= f f1:= λ
f

Fcr
:= λ 0.759=

ρ

1
0.22

λ
−

λ
λ 0.673>if

1 otherwise

:= ρ 0.936=

ds' ρ d⋅:= ds' 0.804in= ds ds' Ri⋅:= ds 0.804in=

Web under stress gradient
h h0 2 d1⋅−:= h 11.717in=

h

t
207.014=

f1 fy
Ytop d1−

Ytop
⋅:= f1 32.222ksi= f2

h0 Ytop− d1−( ) fy⋅

Ytop
:= f2 32.222ksi=

ψ
f2

f1
:= ψ 1= k 4 2 1 ψ+( )3

⋅+ 2 1 ψ+( )⋅+:= k 24=

Fcr
k π

2
⋅ E⋅

12 1 µ
2

−( )⋅

t

h









2

⋅:=
Fcr 14.899ksi= f f1:= λ

f

Fcr
:= λ 1.471=
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ρ

1
0.22

λ
−

λ
λ 0.673>if

1 otherwise

:= ρ 0.578= be ρ h⋅:= be 6.776in=

ho

b0
4≤h0

b0
4=

b1
be

3 ψ+
:=

b2
be

2
ψ 0.236>if

be b1− otherwise

:=

b1 1.694in= b2 3.388in=

b1 b2+ 5.082in= Ytop d1− 5.859in=

b1 b2+ 5.858< the web is not fully effective.

Moment of Inertia calculation

Trial1

Element L y Ly Ly
2

I

1 0.804 0.544 0.437 0.237 0.043

2 0.356 0.069 0.025 0.002

3 2.254 0.028 0.064 0.002

4a 1.694 0.989 1.675 1.655 0.405

4b 3.388 4.306 14.589 62.819 3.241

4c 5.859 8.929 52.312 467.107 16.756

5 2.717 11.972 32.527 389.405

6 0.356 11.931 4.247 50.673

7 0.859 11.429 9.818 112.204 0.053

sum 18.287 115.693 1084.104 20.498

Ytop 6.327 Ix 372.654

Ixe 21.092

Trial 2 Ytop 6.48in:= f fy:=

Web under stress gradient

h h0 2 d1⋅−:= h 11.717in=
h

t
207.014=

f1 fy
Ytop d1−

Ytop
⋅:= f1 32.279ksi= f2

h0 Ytop− d1−( ) fy⋅

Ytop
:= f2 27.391ksi=

ψ
f2

f1
:= ψ 0.849= k 4 2 1 ψ+( )3

⋅+ 2 1 ψ+( )⋅+:= k 20.33=

Fcr
k π

2
⋅ E⋅

12 1 µ
2

−( )⋅

t

h









2

⋅:= Fcr 12.621ksi= f f1:=
λ

f

Fcr
:= λ 1.599=
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ρ

1
0.22

λ
−

λ
λ 0.673>if

1 otherwise

:= ρ 0.539= be ρ h⋅:= be 6.319in=

ho

b0
4≤h0

b0
4=

b1
be

3 ψ+
:=

b2
be

2
ψ 0.236>if

be b1− otherwise

:=

b1 1.642in= b2 3.159in=

b1 b2+ 4.801in= Ytop d1− 6.339in=

b1 b2+ 6.339< the web is not fully effective.

Trail 2 assume Ycg=6.48

Element L y Ly Ly
2

I

1 0.804 0.544 0.437 0.237 0.043

2 0.356 0.069 0.025 0.002

3 2.254 0.028 0.064 0.002

4a 1.642 0.963 1.580 1.521 0.369

4b 3.159 4.901 15.481 75.863 2.627

4c 5.379 9.169 49.317 452.198 12.966

5 2.717 11.972 32.527 389.405

6 0.356 11.931 4.247 50.673

7 0.859 11.429 9.818 112.204 0.053

sum 17.526 113.495 1082.105 16.058

Ytop 6.476 Ix 363.167

Ixe 20.555

From trial 2 it is found that Ycg=6.48in  which is almost equal to 6.476 in. So no other iteration

is necessary. 

Ixe 20.55524in
4

:= Yxe 6.476in:=

Sxe
Ixe

Yxe
:= Sxe 3.174in

3
= Mn Sxe fy⋅:= fy 33ksi= Mn 104.744kip in⋅=
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Stud section: 305S76 14−

E 29435ksi:= fy 33ksi:= µ 0.3:= t 0.0713in:= h0 12in:= b0 3in:=

ri 1.5 t⋅:= ri 0.107in= d1 t ri+:= D 1in:=

Gross section

Element L y Ly Ly
2

I

1 0.822 0.589 0.484 0.285 0.046

2 0.448 0.087 0.039 0.003

3 2.644 0.036 0.094 0.003

4 11.644 6.000 69.861 419.166 131.544

5 2.644 11.964 31.628 378.406

6 0.448 11.913 5.334 63.542

7 0.822 11.411 9.377 106.998 0.046

sum 19.470 116.817 968.404 131.636

Ytop 6.000 Ix 399.137

Ixg 28.458

Stiffened compression flange under uniform compression

w b0 2 d1⋅−:= w 2.643in=
w

t
37.076= d D d1−:= Is

d
3

t⋅

12
:=

Is 3.297 10
3−

× in
4

= f fy:=
S 1.28

E

f
⋅:= S 38.228= 0.328 S⋅ 12.539=

Ia1 399 t
4

⋅

w

t

S
0.328−











3

⋅:= Ia1 2.727 10
3−

× in
4

=

Ia2 t
4

115

w

t

S
⋅ 5+











⋅:= Ia2 3.012 10
3−

× in
4

=

Ia Ia1 Ia1 Ia2<if

Ia2 otherwise

:=
Ia 2.727 10

3−
× in

4
=

Ri
Is

Ia

Is

Ia
1<if

1 otherwise

:= Ri 1=D

w
0.378=

n 0.582

w

t

4 S⋅
− 0.582

w

t

4 S⋅
−

1

3
≥if

1

3
otherwise

:=

n 0.34=

k 4.82 5
D

w
⋅−








Ri
n

⋅ 0.43+ 0.25
D

w
< 0.8≤if

3.57 Ri
n

⋅ 0.43+ otherwise











:=
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k 4 k 4>if

k otherwise

:= k 3.359=

Fcr
k π

2
⋅ E⋅

12 1 µ
2

−( )⋅

t

w









2

⋅:= Fcr 65ksi= λ
f

Fcr
:= λ 0.713=

ρ

1
0.22

λ
−

λ
λ 0.673>if

1 otherwise

:= ρ 0.97= be ρ w⋅:= be 2.565in=

Lip (Unstiffened compression element)

Ytop 6in:= d1 t ri+:= f fy:= d 0.822in=

d

t
11.525= f2 f

Ytop d1− d−

Ytop
⋅:=

f1 f
Ytop d1−

Ytop
⋅:=

f1 32.02ksi= f2 27.5ksi= ψ
f2

f1
:= ψ 0.859=

k
0.578

ψ 0.34+
:= k 0.482=

Fcr
k π

2
⋅ E⋅

12 1 µ
2

−( )⋅

t

d









2

⋅:= Fcr 96.562ksi= f f1:= λ
f

Fcr
:= λ 0.576=

ρ

1
0.22

λ
−

λ
λ 0.673>if

1 otherwise

:= ρ 1=

ds' ρ d⋅:= ds' 0.822in= ds ds' Ri⋅:= ds 0.822in=

Web under stress gradient

h h0 2 d1⋅−:= h 11.643in=
h

t
163.303= f f1:= f2

h0 Ytop− d1−( ) fy⋅

Ytop
:=

f1 32.02ksi= f2 32.02ksi=

ψ
f2

f1
:= ψ 1= k 4 2 1 ψ+( )3

⋅+ 2 1 ψ+( )⋅+:= k 24=
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Fcr
k π

2
⋅ E⋅

12 1 µ
2

−( )⋅

t

h









2

⋅:= Fcr 23.942ksi= f f1:= λ
f

Fcr
:= λ 1.156=

ρ

1
0.22

λ
−

λ
λ 0.673>if

1 otherwise

:= ρ 0.7= be ρ h⋅:= be 8.153in=

ho

b0
4≤h0

b0
4=

b1
be

3 ψ+
:=

b2
be

2
ψ 0.236>if

be b1− otherwise

:=

b1 2.038in= b2 4.076in=

b1 b2+ 6.115in= Ytop d1− 5.822in=

b1 b2+ 5.822in> the web is  fully effective.

Moment of Inertia calculation

Trial1

Element L y Ly Ly
2

I

1 0.822 0.589 0.484 0.285 0.046

2 0.448 0.087 0.039 0.003

3 2.565 0.036 0.094 0.003

4c 11.644 6.000 69.861 419.166 131.544

5 2.644 11.964 31.628 378.406

6 0.448 11.913 5.334 63.542

7 0.822 11.411 9.377 106.998 0.046

sum 19.391 116.817 968.404 131.636

Ytop 6.024 Ix 396.309

Ixe 28.257

Web under stress gradient

Ytop 6.02in:= h h0 2 d1⋅−:= h 11.643in=
h

t
163.303=

f1 fy
Ytop d1−

Ytop
⋅:= f1 32.023ksi=

f2
h0 Ytop− d1−( ) fy⋅

Ytop
:= f2 31.804ksi=

ψ
f2

f1
:= ψ 0.993= k 4 2 1 ψ+( )3

⋅+ 2 1 ψ+( )⋅+:= k 23.823=

Fcr
k π

2
⋅ E⋅

12 1 µ
2

−( )⋅

t

h









2

⋅:= Fcr 23.765ksi= f f1:= λ
f

Fcr
:= λ 1.161=
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ρ

1
0.22

λ
−

λ
λ 0.673>if

1 otherwise

:= ρ 0.698= be ρ h⋅:= be 8.13in=

ho

b0
4≤h0

b0
4=

b1
be

3 ψ+
:=

b2
be

2
ψ 0.236>if

be b1− otherwise

:=

b1 2.036in= b2 4.065in=

b1 b2+ 6.101in= Ytop d1− 5.842in=

b1 b2+ 5.842.in> the web is  fully effective.

Yxe 6.024in:= Ixe 28.2568in
4

:=

Sxe
Ixe

Yxe
:= Sxe 4.691in

3
= Mn Sxe fy⋅:= fy 33ksi= Mn 154.793kip in⋅=

 

Track section: 305T32-18

Fy 33ksi:= h 12.0902in:= t 0.0451in:= r 1.5 t⋅:= r 0.068in=

b 1.25in:= w b 2.5t−:= w 1.137in= E 29435ksi:= µ 0.3:=

Gross section

Element Length y Ly Ly
2

I'

1.000 1.137 0.023 0.026 0.001

2.000 0.142 0.055 0.008 0.000

3.000 11.865 6.045 71.723 433.575 139.184

4.000 0.142 12.035 1.704 20.511

5.000 1.137 12.068 13.724 165.616

sum 14.422 87.185 619.702 139.184

ycg 6.045

Ixe 10.456

Flange under uniform compression:

w

t
25.216= k 0.43:= f Fy:= Fcr

k π
2

⋅ E⋅

12 1 µ
2

−( )⋅
w

t









2

⋅

:= Fcr 17.991ksi=

λ
f

Fcr
:= λ 1.354= ρ

1
0.22

λ
−

λ
:= ρ 0.618= be ρ w⋅:= be 0.703in=
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Web under stress gradient:

w h 5 t⋅−:= w 11.8647in=
w

t
263.075= ycg 6.0451in:=

w 11.8647in=

f1
Fy

ycg
ycg 2.5 t⋅−( )⋅:= f1 32.385ksi= f2 f1

h ycg− 2.5 t⋅−

ycg 2.5 t⋅−
⋅:= f2 32.385ksi=

ψ
f2

f1
:= ψ 1= k 4 2 1 ψ+( )3

⋅+ 2 1 ψ+( )⋅+:= k 24=

Fcr
k π

2
⋅ E⋅

12 1 µ
2

−( )⋅
w

t









2

⋅

:= Fcr 9.226ksi= f f1:= λ
f

Fcr
:= λ 1.874=

ρ

1
0.22

λ
−

λ
:=

ρ 0.471= be ρ w⋅:= be 5.589in=

ho 12.0902in:= bo 1.25in:=
ho

bo
9.672=

b1
be

3 ψ+
:= b2

be

1 ψ+
b1−:= b1 1.397in= b2 1.397in=

b1 b2+ 2.795in= is less than compression portion of web element=5.93235in

So the web is not fully effective

Trial1 assme ycg=6.0451

Element Length y Ly Ly
2

I'

1.000 0.703 0.028 0.020 0.001

2.000 0.142 0.055 0.008 0.000

3a 1.397 0.811 1.133 0.919 0.227

3b 1.397 5.347 7.469 39.935 0.227

3c 5.932 9.011 53.458 481.725 17.398

4.000 0.142 12.035 1.704 20.511

5.000 1.137 12.068 13.724 347.651

sum 10.850 77.517 890.742 17.852

ycg 7.144

Ixe 16.001

Trial 2 ycg 7.34in:=

f1
Fy

ycg
ycg 2.5t−( )⋅:= f1 32.493ksi= f2

Fy

ycg
h ycg− 2.5 t⋅−( )⋅:= f2 20.85ksi=

ψ
f2

f1
:= ψ 0.642= k 4 2 1 ψ+( )3

⋅+ 2 1 ψ+( )⋅+:= k 16.132=

2
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f1

Fcr
k π

2
⋅ E⋅

12 1 µ
2

−( )⋅
w

t









2

⋅

:= Fcr 6.201ksi= f f1:= λ
f

Fcr
:= λ 2.289=

ρ

1
0.22

λ
−

λ
:=

ρ 0.395= be ρ w⋅:= be 4.685in=

ho 12.1132in:= bo 1.25in:=
ho

bo
9.691=

b1
be

3 ψ+
:= b2

be

1 ψ+
b1−:= b1 1.287in= b2 1.567in=

Trial2 Assume ycg=7.34

Element Length y Ly Ly
2

I'

1.000 0.703 0.028 0.020 0.001

2.000 0.142 0.055 0.008 0.000

3a 1.287 0.756 0.973 0.736 0.178

3b 1.567 6.557 10.274 67.362 0.321

3c 4.637 9.659 44.792 432.632 8.311

4.000 0.142 12.035 1.704 20.511

5.000 1.137 12.068 13.724 165.616

sum 9.615 71.495 686.858 8.809

ycg 7.436

Ixe 7.398

Trial 3 ycg 7.455in:=

f1
Fy

ycg
ycg 2.5t−( )⋅:= f1 32.501ksi= f2

Fy

ycg
h ycg− 2.5 t⋅−( )⋅:=

f2 20.019ksi=

ψ
f2

f1
:= ψ 0.616= k 4 2 1 ψ+( )3

⋅+ 2 1 ψ+( )⋅+:= k 15.671=

Fcr
k π

2
⋅ E⋅

12 1 µ
2

−( )⋅
w

t









2

⋅

:= Fcr 6.024ksi= f f1:= λ
f

Fcr
:= λ 2.323=

ρ

1
0.22

λ
−

λ
:=

ρ 0.39= be ρ w⋅:= be 4.624in=
ho

bo
9.691=

b1
be

3 ψ+
:= b2

be

1 ψ+
b1−:= b1 1.279in= b2 1.583in=
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Trial 3 assume ycg=7.455

Element Length y Ly Ly
2

I'

1.000 0.703 0.028 0.020 0.001

2.000 0.142 0.055 0.008 0.000

3a 1.279 0.753 0.963 0.724 0.174

3b 1.583 6.664 10.548 70.289 0.331

3c 4.522 9.716 43.941 426.942 7.708

4.000 0.142 12.035 1.704 20.511

5.000 1.137 12.068 13.724 165.616

sum 9.508 70.908 684.083 8.213

ycg 7.457

Ixe 7.376

Ycg 7.457in:= So no further iteration isnecessary.

Ixe 7.3757in
4

:= Sxe
Ixe

Ycg
:= Ycg 7.457in= Mn Fy Sxe⋅:= Mn 32.64kip in⋅=

 

Track section: 305T32 16−

Fy 33ksi:= h 12.1132in:= t 0.0566in:= r 1.5 t⋅:= r 0.085in=

b 1.25in:= w b 2.5t−:= w 1.109in= E 29435ksi:= µ 0.3:=

Gross section

Element Length y Ly Ly
2

I'

1 1.109 0.028 0.031 0.001

2 0.178 0.069 0.012 0.001

3 11.830 6.057 71.651 433.960 137.973

4 0.178 12.044 2.140 25.779

5 1.109 12.085 13.396 161.891

14.403 87.231 621.632 137.973

ycg 6.057

Ixe 13.091

Flange under uniform compression:

w

t
19.585= k 0.43:= f Fy:= Fcr

k π
2

⋅ E⋅

12 1 µ
2

−( )⋅
w

t









2

⋅

:= Fcr 29.824ksi=

λ
f

Fcr
:= λ 1.052= ρ

1
0.22

λ
−

λ
:= ρ 0.752= be ρ w⋅:= be 0.833in=

 

Web under stress gradient:

w h 5 t⋅−:= w 11.8302in=
w

t
209.014= ycg 6.0566in:= w 11.8302in=

Fy h ycg− 2.5 t⋅−
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t

f1
Fy

ycg
ycg 2.5 t⋅−( )⋅:= f1 32.229ksi= f2 f1

h ycg− 2.5 t⋅−

ycg 2.5 t⋅−
⋅:= f2 32.229ksi=

ψ
f2

f1
:= ψ 1= k 4 2 1 ψ+( )3

⋅+ 2 1 ψ+( )⋅+:= k 24=

Fcr
k π

2
⋅ E⋅

12 1 µ
2

−( )⋅
w

t









2

⋅

:= Fcr 14.615ksi= f f1:= λ
f

Fcr
:= λ 1.485=

ρ

1
0.22

λ
−

λ
:=

ρ 0.574= be ρ w⋅:= be 6.786in=

ho 12.1132in:= bo 1.25in:=
ho

bo
9.691=

b1
be

3 ψ+
:= b2

be

1 ψ+
b1−:= b1 1.697in= b2 1.697in=

b1 b2+ 3.393in= is less than compression portion of web element=5.9151in

So the web is not fully effective

Trial1

Element Length y Ly Ly
2

I'

1 0.833 0.028 0.024 0.001

2 0.178 0.069 0.012 0.001

3a 1.697 0.990 1.680 1.663 0.279

3b 1.697 5.208 8.838 46.030 0.279

3c 5.915 9.014 53.320 480.631 17.247

4 0.178 12.044 2.140 25.779

5 1.109 12.085 13.396 161.891

11.606 79.410 715.996 17.805

ycg 6.842

Ixe 10.780
 

Trial 2 ycg 7.047in:=

f1
Fy

ycg
ycg 2.5t−( )⋅:= f1 32.337ksi= f2

Fy

ycg
h ycg− 2.5 t⋅−( )⋅:= f2 23.062ksi=

ψ
f2

f1
:= ψ 0.713= k 4 2 1 ψ+( )3

⋅+ 2 1 ψ+( )⋅+:= k 17.482=

Fcr
k π

2
⋅ E⋅

12 1 µ
2

−( )⋅
w

t









2

⋅

:= Fcr 10.646ksi= f f1:=
λ

f

Fcr
:= λ 1.743=

0.22
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t 

ρ

1
0.22

λ
−

λ
:=

ρ 0.501= be ρ w⋅:= be 5.931in=

ho 12.1132in:= bo 1.25in:=
ho

bo
9.691=

b1
be

3 ψ+
:= b2

be

1 ψ+
b1−:= b1 1.597in= b2 1.865in=

Trial2 Assume ycg=7.047

Element Length y Ly Ly
2

I'

1 0.833 0.028 0.024 0.001

2 0.178 0.069 0.012 0.001

3a 1.597 0.940 1.501 1.411 0.339

3b 1.865 6.115 11.404 69.727 0.541

3c 4.925 9.509 46.831 445.329 9.954

4 0.178 12.044 2.140 25.779

5 1.109 12.085 13.396 161.891

10.684 75.308 704.139 10.834

ycg 7.048

Ixe 10.426

Ycg 7.048in:= So no further iteration isnecessary.

Ixe 10.426in
4

:= Sxe
Ixe

Ycg
:= Ycg 7.048in= Mn Fy Sxe⋅:= Mn 48.82kip in⋅=

 

Track section: 305T32 14−

Fy 33ksi:= h 12.1426in:= t 0.0713in:= r 1.5 t⋅:= r 0.107in=

b 1.25in:= w b 2.5t−:= w 1.072in= E 29435ksi:= µ 0.3:=

Gross section

Element Length y Ly Ly
2

I'

1 1.072 0.036 0.038 0.001

2 0.224 0.087 0.020 0.002

3 11.786 6.071 71.557 434.444 136.384

4 0.224 12.055 2.699 32.536

5 1.072 12.107 12.976 157.095

sum 14.377 87.289 624.078 136.384

ycg 6.071

Ixe 16.435
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Flange under uniform compression:

w

t
15.032= k 0.43:= f Fy:= Fcr

k π
2

⋅ E⋅

12 1 µ
2

−( )⋅
w

t









2

⋅

:= Fcr 50.629ksi=

λ
f

Fcr
:= λ 0.807=

ρ

1
0.22

λ
−

λ
:= ρ 0.901=

be ρ w⋅:= be 0.966in=

Web under stress gradient:

w h 5 t⋅−:= w 11.7861in=
w

t
165.303= ycg 6.0713in:= w 11.7861in=

f1
Fy

ycg
ycg 2.5 t⋅−( )⋅:= f1 32.031ksi= f2 f1

h ycg− 2.5 t⋅−

ycg 2.5 t⋅−
⋅:= f2 32.031ksi=

ψ
f2

f1
:= ψ 1= k 4 2 1 ψ+( )3

⋅+ 2 1 ψ+( )⋅+:= k 24=

Fcr
k π

2
⋅ E⋅

12 1 µ
2

−( )⋅
w

t









2

⋅

:= Fcr 23.366ksi= f f1:= λ
f

Fcr
:= λ 1.171=

ρ

1
0.22

λ
−

λ
:=

ρ 0.694= be ρ w⋅:= be 8.175in=

ho 10.1426in:= bo 1.25in:=
ho

bo
8.114=

b1
be

3 ψ+
:= b2

be

1 ψ+
b1−:= b1 2.044in= b2 2.044in=

b1 b2+ 4.088in= is less than compression portion of web element=5.89305in

So the web is not fully effective

Trial1 ycg=6.0713

Element Length y Ly Ly
2

I'

1 0.966 0.036 0.034 0.001

2 0.224 0.087 0.020 0.002

3a 2.044 1.200 2.453 2.945 0.500

3b 2.044 5.049 10.321 52.113 0.500

3c 5.893 9.018 53.142 479.230 17.055

4 0.224 12.055 2.699 32.536

5 1.072 12.107 12.976 157.095

sum 12.467 81.645 723.921 18.055

ycg 6.549

Ixe 14.778
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Trial 2 ycg 6.65in:=

f1
Fy

ycg
ycg 2.5t−( )⋅:= f1 32.115ksi= f2

Fy

ycg
h ycg− 2.5 t⋅−( )⋅:= f2 26.372ksi=

ψ
f2

f1
:= ψ 0.821=

k 4 2 1 ψ+( )3
⋅+ 2 1 ψ+( )⋅+:= k 19.723=

Fcr
k π

2
⋅ E⋅

12 1 µ
2

−( )⋅
w

t









2

⋅

:= Fcr 19.202ksi= f f1:= λ
f

Fcr
:= λ 1.293=

ρ

1
0.22

λ
−

λ
:=

ρ 0.642= be ρ w⋅:= be 7.563in=

ho 8.1426in:= bo 1.25in:=
ho

bo
6.514=

b1
be

3 ψ+
:= b2

be

1 ψ+
b1−:= b1 1.979in= b2 2.174in=

Trial2 ycg=6.65in

Element Length y Ly Ly
2

I'

1 0.966 0.036 0.031 0.001

2 0.224 0.087 0.020 0.002

3a 1.979 1.168 2.311 2.699 0.646

3b 2.174 5.563 12.094 67.279 0.856

3c 5.314 9.307 49.462 460.348 12.507

4 0.224 12.055 2.699 32.536

5 1.072 12.107 12.976 157.095

sum 11.953 79.592 719.959 14.009

ycg 6.659

Ixe 14.542

Ycg 6.659in:= So no further iteration isnecessary.

Ixe 14.5423in
4

:= Ycg 6.659in= Sxe
Ixe

Ycg
:= Mn Fy Sxe⋅:= Mn 72.067kip in⋅=

 

Track section: 254T32 18−

Fy 33ksi:= h 10.0902in:= t 0.0451in:= r 2 t⋅:= r 0.09in=

b 1.25in:= w b 2.5t−:= w 1.137in= E 29435ksi:= µ 0.3:=
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Gross section

Element Length y LY Ly
2

I'

1 1.137 0.023 0.026 0.001

2 0.142 0.055 0.008 0.000

3 9.865 5.045 49.768 251.087 79.996

4 0.142 10.035 1.421 14.260

5 1.137 10.068 11.449 115.269

12.422 62.672 380.617 79.996

ycg 5.045

Ixe 6.514

Flange under uniform compression:

w

t
25.216= k 0.43:= f Fy:= Fcr

k π
2

⋅ E⋅

12 1 µ
2

−( )⋅
w

t









2

⋅

:= Fcr 17.991ksi=

λ
f

Fcr
:= λ 1.354= ρ

1
0.22

λ
−

λ
:= ρ 0.618= be ρ w⋅:= be 0.703in=

Web under stress gradient:

w h 5 t⋅−:= w 9.8647in=
w

t
218.729= ycg 5.0451in:= w 9.8647in=

f1
Fy

ycg
ycg 2.5 t⋅−( )⋅:= f1 32.263ksi= f2 f1

h ycg− 2.5 t⋅−

ycg 2.5 t⋅−
⋅:= f2 32.263ksi=

ψ
f2

f1
:= ψ 1=

k 4 2 1 ψ+( )3
⋅+ 2 1 ψ+( )⋅+:= k 24=

Fcr
k π

2
⋅ E⋅

12 1 µ
2

−( )⋅
w

t









2

⋅

:= Fcr 13.346ksi= f f1:= λ
f

Fcr
:= λ 1.555=

ρ

1
0.22

λ
−

λ
:=

ρ 0.552= be ρ w⋅:= be 5.447in=

ho 10.0902in:= bo 1.25in:=
ho

bo
8.072=

b1
be

3 ψ+
:= b2

be

1 ψ+
b1−:=

b1 1.362in= b2 1.362in=

b1 b2+ 2.723in= is less than compression portion of web element=4.93235in

So the web is not fully effective
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Trial1 assme ycg=5.0451

Element Length y LY Ly
2

I'

1 0.703 0.028 0.020 0.001

2 0.142 0.055 0.008 0.000

3a 1.362 0.794 1.081 0.858 0.211

3b 1.362 5.726 7.799 44.658 0.211

3c 4.932 7.511 37.048 278.279 10.000

4 0.142 10.035 1.421 14.260

5 1.137 10.068 11.449 115.269

9.780 58.827 453.326 10.421

ycg 6.015

Ixe 4.956

Trial 2 ycg 6.015in:=

f1
Fy

ycg
ycg 2.5t−( )⋅:= f1 32.381ksi= f2

Fy

ycg
h ycg− 2.5 t⋅−( )⋅:= f2 21.739ksi=

ψ
f2

f1
:= ψ 0.671= k 4 2 1 ψ+( )3

⋅+ 2 1 ψ+( )⋅+:= k 16.68=

Fcr
k π

2
⋅ E⋅

12 1 µ
2

−( )⋅
w

t









2

⋅

:= Fcr 9.275ksi= f f1:= λ
f

Fcr
:= λ 1.868=

ρ

1
0.22

λ
−

λ
:=

ρ 0.472= be ρ w⋅:= be 4.658in=

ho 10.0902in:= bo 1.25in:=
ho

bo
8.072=

b1
be

3 ψ+
:= b2

be

1 ψ+
b1−:= b1 1.269in= b2 1.518in=
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Trial2 Assume ycg=6.015

Element Length y LY Ly
2

I'

1 0.703 0.028 0.020 0.001

2 0.142 0.055 0.008 0.000

3a 1.269 0.747 0.948 0.709 0.170

3b 1.518 5.256 7.979 41.936 0.291

3c 3.962 7.996 31.685 253.358 5.185

4 0.142 10.035 1.421 14.260

5 1.137 10.068 11.449 115.269

8.873 53.510 425.532 5.646

ycg 6.031

Ixe 4.892

Trial 3 ycg 6.033in:=

f1
Fy

ycg
ycg 2.5t−( )⋅:= f1 32.383ksi= f2

Fy

ycg
h ycg− 2.5 t⋅−( )⋅:=

f2 21.576ksi=

ψ
f2

f1
:= ψ 0.666= k 4 2 1 ψ+( )3

⋅+ 2 1 ψ+( )⋅+:= k 16.585=

Fcr
k π

2
⋅ E⋅

12 1 µ
2

−( )⋅
w

t









2

⋅

:= Fcr 9.222ksi= f f1:= λ
f

Fcr
:= λ 1.874=

ρ

1
0.22

λ
−

λ
:=

ρ 0.471= be ρ w⋅:= be 4.646in=

ho

bo
8.072= b1

be

3 ψ+
:= b2

be

1 ψ+
b1−:= b1 1.267in= b2 1.521in=

Trial 3 assume ycg=6.033

Element Length y LY Ly
2

I'

1 0.703 0.028 0.020 0.001

2 0.142 0.055 0.008 0.000

3a 1.267 0.746 0.945 0.706 0.170

3b 1.521 5.271 8.016 42.251 0.293

3c 3.946 8.004 31.588 252.840 5.122

4 0.142 10.035 1.421 14.260

5 1.137 10.068 11.449 115.269

8.858 53.448 425.326 5.585

ycg 6.033

Ixe 4.893

Ycg 6.033in:= So no further iteration isnecessary.

Ixe 4.8934in
4

:= Sxe
Ixe

Ycg
:= Ycg 6.033in= Mn Fy Sxe⋅:= Mn 26.766kip in⋅=

 



 

  258 

Track section: 254T32 16−

Fy 33ksi:= h 10.1134in:= t 0.0567in:= r 1.5 t⋅:= r 0.085in=

b 1.25in:= w b 2.5t−:= w 1.108in= E 29435ksi:= µ 0.3:=

Gross section

Element Length y Ly Ly
2

I'

1 1.108 0.028 0.031 0.001

2 0.178 0.070 0.012 0.001

3 9.830 5.057 49.707 251.353 79.153

4 0.178 10.044 1.788 17.960

5 1.108 10.085 11.177 112.718

sum 12.402 62.716 382.033 79.153

ycg 5.057

Ixe 8.168

Flange under uniform compression:

w

t
19.546= k 0.43:= f Fy:= Fcr

k π
2

⋅ E⋅

12 1 µ
2

−( )⋅
w

t









2

⋅

:= Fcr 29.943ksi=

λ
f

Fcr
:= λ 1.05=

ρ

1
0.22

λ
−

λ
:= ρ 0.753= be ρ w⋅:= be 0.834in=

Web under stress gradient:

w h 5 t⋅−:= w 9.8299in=
w

t
173.367= ycg 5.0567in:= w 9.8299in=

f1
Fy

ycg
ycg 2.5 t⋅−( )⋅:= f1 32.075ksi= f2 f1

h ycg− 2.5 t⋅−

ycg 2.5 t⋅−
⋅:= f2 32.075ksi=

ψ
f2

f1
:= ψ 1= k 4 2 1 ψ+( )3

⋅+ 2 1 ψ+( )⋅+:= k 24=

Fcr
k π

2
⋅ E⋅

12 1 µ
2

−( )⋅
w

t









2

⋅

:= Fcr 21.243ksi= f f1:=
λ

f

Fcr
:= λ 1.229=

ρ

1
0.22

λ
−

λ
:=

ρ 0.668= be ρ w⋅:= be 6.567in=

ho 10.1134in:= bo 1.25in:=
ho

bo
8.091=

b1
be

3 ψ+
:= b2

be

1 ψ+
b1−:= b1 1.642in= b2 1.642in=

b1 b2+ 3.284in= is less than compression portion of web element=6.4085in

So the web is not fully effective
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Trial1

Element Length y Ly Ly
2

I'

1 0.834 0.028 0.024 0.001

2 0.178 0.070 0.012 0.001

3a 1.642 0.963 1.581 1.522 0.257

3b 1.642 4.236 6.955 29.459 0.257

3c 4.915 7.514 36.932 277.512 9.894

4 0.178 10.044 1.788 17.960

5 1.108 10.085 11.177 112.718

sum 10.497 58.469 439.173 10.407

ycg 5.570

Ixe 7.026

Trial 2 ycg 5.68in:=

f2
Fy

ycg
h ycg− 2.5 t⋅−( )⋅:= f2 24.934ksi=

f1
Fy

ycg
ycg 2.5t−( )⋅:= f1 32.176ksi=

ψ
f2

f1
:= ψ 0.775=

k 4 2 1 ψ+( )3
⋅+ 2 1 ψ+( )⋅+:= k 18.733=

Fcr
k π

2
⋅ E⋅

12 1 µ
2

−( )⋅
w

t









2

⋅

:= Fcr 16.581ksi= f f1:= λ
f

Fcr
:= λ 1.393=

ρ

1
0.22

λ
−

λ
:=

ρ 0.604= be ρ w⋅:= be 5.942in=

ho 12.1132in:= bo 1.25in:=
ho

bo
9.691=

b1
be

3 ψ+
:= b2

be

1 ψ+
b1−:= b1 1.574in= b2 1.774in=

Trial2 Assume ycg=5.68

Element Length y Ly Ly
2

I'

1 0.834 0.028 0.024 0.001

2 0.178 0.070 0.012 0.001

3a 1.574 0.929 1.462 1.358 0.325

3b 1.774 4.793 8.503 40.754 0.465

3c 4.292 7.826 33.586 262.836 6.587

4 0.178 10.044 1.788 17.960

5 1.108 10.085 11.177 112.718

sum 9.938 56.551 435.627 7.377

ycg 5.690

Ixe 6.872
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Trial 3 ycg 5.6904in:=

f1
Fy

ycg
ycg 2.5t−( )⋅:= f1 32.178ksi= f2

Fy

ycg
h ycg− 2.5 t⋅−( )⋅:=

f2 24.828ksi=

ψ
f2

f1
:= ψ 0.772= k 4 2 1 ψ+( )3

⋅+ 2 1 ψ+( )⋅+:= k 18.663=

Fcr
k π

2
⋅ E⋅

12 1 µ
2

−( )⋅
w

t









2

⋅

:= Fcr 16.52ksi= f f1:= λ
f

Fcr
:= λ 1.396=

ρ

1
0.22

λ
−

λ
:=

ρ 0.604= be ρ w⋅:= be 5.933in=
ho

bo
9.691=

b1
be

3 ψ+
:= b2

be

1 ψ+
b1−:= b1 1.573in= b2 1.776in=

Trial 3 assume ycg=5.6904

Element Length y Ly Ly
2

I'

1 0.834 0.028 0.024 0.001

2 0.178 0.070 0.012 0.001

3a 1.573 0.928 1.460 1.355 0.324

3b 1.776 4.802 8.528 40.953 0.467

3c 4.281 7.831 33.526 262.546 6.539

4 0.178 10.044 1.788 17.960

5 1.108 10.085 11.177 112.718

sum 9.929 56.516 435.534 7.330

ycg 5.691

Ixe 6.873

Ycg 5.691in:= So no further iteration isnecessary.

Ixe 6.8731in
4

:= Sxe
Ixe

Ycg
:= Ycg 5.691in= Mn Fy Sxe⋅:= Mn 39.855kip in⋅=

 

Track section: 254T32 14−

Fy 33ksi:= h 10.1426in:= t 0.0713in:= r 2 t⋅:= r 0.143in=

b 1.25in:= w b 2.5t−:= w 1.072in= E 29435ksi:= µ 0.3:=
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Gross section

Element Length y Ly Ly
2

I'

1 1.072 0.036 0.038 0.001

2 0.224 0.087 0.020 0.002

3 9.786 5.071 49.628 251.680 78.099

4 0.224 10.055 2.251 22.636

5 1.072 10.107 10.832 109.480

sum 12.377 62.769 383.799 78.099

ycg 5.071

Ixe 10.237

Flange under uniform compression:

w

t
15.032= k 0.43:= f Fy:= Fcr

k π
2

⋅ E⋅

12 1 µ
2

−( )⋅
w

t









2

⋅

:= Fcr 50.629ksi=

λ
f

Fcr
:= λ 0.807= ρ

1
0.22

λ
−

λ
:= ρ 0.901= be ρ w⋅:= be 0.966in=

Web under stress gradient:

w h 5 t⋅−:= w 9.7861in=
w

t
137.252= ycg 5.0713in:= w 9.7861in=

f1
Fy

ycg
ycg 2.5 t⋅−( )⋅:= f1 31.84ksi= f2 f1

h ycg− 2.5 t⋅−

ycg 2.5 t⋅−
⋅:= f2 31.84ksi=

ψ
f2

f1
:= ψ 1= k 4 2 1 ψ+( )3

⋅+ 2 1 ψ+( )⋅+:= k 24=

Fcr
k π

2
⋅ E⋅

12 1 µ
2

−( )⋅
w

t









2

⋅

:= Fcr 33.893ksi= f f1:= λ
f

Fcr
:= λ 0.969=

ρ

1
0.22

λ
−

λ
:=

ρ 0.798= be ρ w⋅:= be 7.805in=

ho 10.1426in:= bo 1.25in:=
ho

bo
8.114=

b1
be

3 ψ+
:= b2

be

1 ψ+
b1−:= b1 1.951in= b2 1.951in=

b1 b2+ 3.902in= is less than compression portion of web element=4.87845in

So the web is not fully effective
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Trial1 ycg=5.0713

Element Length y Ly Ly
2

I'

1 0.966 0.036 0.034 0.001

2 0.224 0.087 0.020 0.002

3a 1.951 1.154 2.251 2.597 0.446

3b 1.951 4.096 7.991 32.729 0.446

3c 4.893 7.518 36.785 276.544 9.762

4 0.224 10.055 2.251 22.636

5 1.072 10.107 10.832 109.480

sum 11.281 60.164 443.989 10.654

ycg 5.333

Ixe 9.537

Trial 2 ycg 5.385in:=

f1
Fy

ycg
ycg 2.5t−( )⋅:= f1 31.908ksi= f2

Fy

ycg
h ycg− 2.5 t⋅−( )⋅:= f2 28.063ksi=

ψ
f2

f1
:= ψ 0.88=

k 4 2 1 ψ+( )3
⋅+ 2 1 ψ+( )⋅+:= k 21.038=

Fcr
k π

2
⋅ E⋅

12 1 µ
2

−( )⋅
w

t









2

⋅

:= Fcr 29.71ksi= f f1:= λ
f

Fcr
:= λ 1.036=

ρ

1
0.22

λ
−

λ
:=

ρ 0.76= be ρ w⋅:= be 7.438in=

ho 8.1426in:= bo 1.25in:=
ho

bo
6.514=

b1
be

3 ψ+
:= b2

be

1 ψ+
b1−:= b1 1.917in= b2 2.04in=

Trial2 ycg=5.385in

Element Length y Ly Ly
2

I'

1 0.966 0.036 0.031 0.001

2 0.224 0.087 0.020 0.002

3a 1.917 1.137 2.179 2.477 0.587

3b 2.040 4.365 8.905 38.869 0.707

3c 4.579 7.675 35.145 269.727 8.003

4 0.224 10.055 2.251 22.636

5 1.072 10.107 10.832 109.480

sum 11.022 59.363 443.191 9.298

ycg 5.385

Ixe 9.469

Ycg 5.3851in:= So no further iteration isnecessary.

Ixe 9.469in
4

:= Ycg 5.385in= Sxe
Ixe

Ycg
:= Mn Fy Sxe⋅:= Mn 58.026kip in⋅=
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Track section:  203T32 18−

Fy 33ksi:= h 8.0902in:= t 0.0451in:= r 1.5 t⋅:= r 0.068in=

b 1.25in:= w b 2.5t−:= w 1.137in= E 29435ksi:= µ 0.3:=

Gross section:

Element Length y Ly Ly
2

I'

1 1.137 0.023 0.026 0.001

2 0.142 0.055 0.008 0.000

3 7.865 4.045 31.813 128.689 40.538

4 0.142 8.035 1.138 9.143

5 1.137 8.068 9.175 74.020

sum 10.422 42.160 211.853 40.538

ycg 4.045

Ixe 3.691

Flange under uniform compression:

w

t
25.216= k 0.43:= f Fy:= Fcr

k π
2

⋅ E⋅

12 1 µ
2

−( )⋅
w

t









2

⋅

:= Fcr 17.991ksi=

λ
f

Fcr
:= λ 1.354=

ρ

1
0.22

λ
−

λ
:= ρ 0.618= be ρ w⋅:= be 0.703in=

Web under stress gradient:

w h 5 t⋅−:= w 7.8647in=
w

t
174.384= ycg 4.0451in:= w 7.8647in=

f1
Fy

ycg
ycg 2.5 t⋅−( )⋅:= f1 32.08ksi= f2 f1

h ycg− 2.5 t⋅−

ycg 2.5 t⋅−
⋅:= f2 32.08ksi=

ψ
f2

f1
:= ψ 1= k 4 2 1 ψ+( )3

⋅+ 2 1 ψ+( )⋅+:= k 24=

Fcr
k π

2
⋅ E⋅

12 1 µ
2

−( )⋅
w

t









2

⋅

:= Fcr 20.996ksi= f f1:= λ
f

Fcr
:= λ 1.236=

ρ

1
0.22

λ
−

λ
:=

ρ 0.665= be ρ w⋅:= be 5.23in=

ho 8.0902in:= bo 1.25in:=
ho

bo
6.472=

b1
be

3 ψ+
:= b2

be

1 ψ+
b1−:= b1 1.308in= b2 1.308in=

b1 b2+ 2.615in= is less than compression portion of web element=3.93235in

So the web is not fully effective
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Trial1 assme ycg=4.0451

Element Length y Ly Ly
2

I'

1 0.703 0.028 0.020 0.001

2 0.142 0.055 0.008 0.000

3a 1.308 0.832 1.089 0.906 0.144

3b 1.308 3.391 4.436 15.041 0.136

3c 3.932 6.011 23.638 142.097 10.000

4 0.142 8.035 1.138 9.143

5 1.137 8.068 9.175 74.020

sum 8.672 39.503 241.208 10.280

ycg 4.555

Ixe 3.226

Trial 2 ycg 4.66in:=

f1
Fy

ycg
ycg 2.5t−( )⋅:= f1 32.202ksi= f2

Fy

ycg
h ycg− 2.5 t⋅−( )⋅:= f2 23.493ksi=

ψ
f2

f1
:= ψ 0.73= k 4 2 1 ψ+( )3

⋅+ 2 1 ψ+( )⋅+:= k 17.806=

Fcr
k π

2
⋅ E⋅

12 1 µ
2

−( )⋅
w

t









2

⋅

:= Fcr 15.578ksi= f f1:= λ
f

Fcr
:= λ 1.438=

ρ

1
0.22

λ
−

λ
:=

ρ 0.589= be ρ w⋅:= be 4.633in=

ho 8.0902in:= bo 1.25in:=
ho

bo
6.472=

b1
be

3 ψ+
:= b2

be

1 ψ+
b1−:= b1 1.242in= b2 1.437in=

Trial2 Assume ycg=4.66in

Element Length y Ly Ly
2

I'

1 0.703 0.028 0.020 0.001

2 0.142 0.055 0.008 0.000

3a 1.242 0.734 0.911 0.669 0.160

3b 1.437 3.942 5.664 22.324 0.247

3c 3.317 6.319 20.962 132.453 3.043

4 0.142 8.035 1.138 9.143

5 1.137 8.068 9.175 74.020

sum 8.120 37.878 238.610 3.449

ycg 4.664

Ixe 2.951

Ycg 4.664in:= So no further iteration isnecessary.

Ixe 2.9506in
4

:= Sxe
Ixe

Ycg
:= Ycg 4.664in= Mn Fy Sxe⋅:= Mn 20.877kip in⋅=
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Track section: 203T32 16−

Fy 33ksi:= h 8.1132in:= t 0.0566in:= r 1.5 t⋅:= r 0.085in=

b 1.25in:= w b 2.5t−:= w 1.109in= E 29435ksi:= µ 0.3:=

Gross section

Element Length y Ly Ly
2

I'

1 1.109 0.028 0.031 0.001

2 0.178 0.069 0.012 0.001

3 7.830 4.057 31.764 128.854 40.007

4 0.178 8.044 1.430 11.499

5 1.109 8.085 8.966 72.490

10.404 42.203 212.845 40.007

ycg 4.057

Ixe 4.621

Flange under uniform compression:

w

t
19.585= k 0.43:= f Fy:= Fcr

k π
2

⋅ E⋅

12 1 µ
2

−( )⋅
w

t









2

⋅

:= Fcr 29.824ksi=

λ
f

Fcr
:= λ 1.052= ρ

1
0.22

λ
−

λ
:= ρ 0.752= be ρ w⋅:= be 0.833in=

Web under stress gradient:

w h 5 t⋅−:= w 7.8302in=
w

t
138.343= ycg 4.0566in:= w 7.8302in=

f1
Fy

ycg
ycg 2.5 t⋅−( )⋅:= f1 31.849ksi= f2 f1

h ycg− 2.5 t⋅−

ycg 2.5 t⋅−
⋅:= f2 31.849ksi=

ψ
f2

f1
:= ψ 1= k 4 2 1 ψ+( )3

⋅+ 2 1 ψ+( )⋅+:= k 24=

Fcr
k π

2
⋅ E⋅

12 1 µ
2

−( )⋅
w

t









2

⋅

:= Fcr 33.361ksi= f f1:= λ
f

Fcr
:= λ 0.977=

ρ

1
0.22

λ
−

λ
:=

ρ 0.793= be ρ w⋅:= be 6.209in=

ho 8.1132in:= bo 1.25in:=
ho

bo
6.491=

b1
be

3 ψ+
:= b2

be

1 ψ+
b1−:=

b1 1.552in= b2 1.552in=
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b1 b2+ 3.105in= is less than compression portion of web element=3.9153in

So the web is not fully effective

Trial1

Element Length y Ly Ly
2

I'

1 0.833 0.028 0.024 0.001

2 0.178 0.069 0.012 0.001

3a 1.552 0.837 1.299 1.087 0.312

3b 1.552 3.361 5.216 17.533 0.312

3c 3.915 6.014 23.546 141.609 3.487

4 0.178 8.044 1.430 11.499

5 1.109 8.085 8.966 72.490

9.317 40.493 244.221 4.110

ycg 4.346

Ixe 4.094

Trial 2 ycg 4.40in:=

f1
Fy

ycg
ycg 2.5t−( )⋅:= f1 31.939ksi= f2

Fy

ycg
h ycg− 2.5 t⋅−( )⋅:= f2 26.788ksi=

ψ
f2

f1
:= ψ 0.839= k 4 2 1 ψ+( )3

⋅+ 2 1 ψ+( )⋅+:= k 20.111=

Fcr
k π

2
⋅ E⋅

12 1 µ
2

−( )⋅
w

t









2

⋅

:= Fcr 27.954ksi= f f1:= λ
f

Fcr
:= λ 1.069=

ρ

1
0.22

λ
−

λ
:=

ρ 0.743= be ρ w⋅:= be 5.818in=

ho 8.1132in:= bo 1.25in:=
ho

bo
6.491=

b1
be

3 ψ+
:= b2

be

1 ψ+
b1−:= b1 1.516in= b2 1.648in=

Trial2 Ycg=4.40in

Element Length y Ly Ly
2

I'

1 0.83300 0.02830 0.02357 0.00067

2 0.17772 0.06939 0.01233 0.00086

3a 1.51600 0.89950 1.36364 1.22660 0.29035

3b 1.64800 3.57600 5.89325 21.07425 0.37298

3c 3.57170 6.18585 22.09400 136.67017 3.79703

4 0.17772 8.04380 1.42958 11.49923

5 1.10900 8.08490 8.96615 72.49046

9.03315 39.78253 242.96223 4.46036

ycg 4.40400

Ixe 4.088

Ycg 4.404in:= So no further iteration isnecessary.

Ixe 4.0885in
4

:= Sxe
Ixe

Ycg
:= Ycg 4.404in= Mn Fy Sxe⋅:= Mn 30.64kip in⋅=
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Track section: 203T32 14−

Fy 33ksi:= h 8.1426in:= t 0.0713in:= r 1.5 t⋅:= r 0.107in=

b 1.25in:= w b 2.5t−:= w 1.072in= E 29435ksi:= µ 0.3:=

Gross section

Element Length y Ly Ly
2

I'

1 1.07 0.04 0.04 0.00

2 0.22 0.09 0.02 0.00

3 7.79 4.07 31.70 129.06 39.33

4 0.22 8.06 1.80 14.53

5 1.07 8.11 8.69 70.44

sum 10.38 42.25 214.03 39.33

ycg 4.07

Ixe 5.80

Flange under uniform compression:

w

t
15.032= k 0.43:= f Fy:= Fcr

k π
2

⋅ E⋅

12 1 µ
2

−( )⋅
w

t









2

⋅

:= Fcr 50.629ksi=

λ
f

Fcr
:= λ 0.807= ρ

1
0.22

λ
−

λ
:= ρ 0.901= be ρ w⋅:= be 0.966in=

Web under stress gradient:

w h 5 t⋅−:= w 7.7861in=
w

t
109.202= ycg 4.0713in:= w 7.7861in=

f1
Fy

ycg
ycg 2.5 t⋅−( )⋅:= f1 31.555ksi= f2 f1

h ycg− 2.5 t⋅−

ycg 2.5 t⋅−
⋅:= f2 31.555ksi=

ψ
f2

f1
:= ψ 1=

k 4 2 1 ψ+( )3
⋅+ 2 1 ψ+( )⋅+:= k 24=

Fcr
k π

2
⋅ E⋅

12 1 µ
2

−( )⋅
w

t









2

⋅

:= Fcr 53.542ksi= f f1:= λ
f

Fcr
:= λ 0.768=

ρ

1
0.22

λ
−

λ
:=

ρ 0.929= be ρ w⋅:= be 7.236in=

ho 8.1426in:= bo 1.25in:=
ho

bo
6.514=

b1
be

3 ψ+
:= b2

be

1 ψ+
b1−:= b1 1.809in= b2 1.809in=

b1 b2+ 3.618in= is less than compression portion of web element=3.89305in

So the web is not fully effective
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Trial1 ycg=4.0713

Element Length y Ly Ly
2

I'

1 0.97 0.04 0.03 0.00

2 0.22 0.09 0.02 0.00

3a 1.81 1.08 1.96 2.12 0.49

3b 1.81 3.17 5.73 18.14 0.49

3c 3.89 6.02 23.43 140.98 3.45

4 0.22 8.06 1.80 14.53

5 1.07 8.11 8.69 70.44

sum 10.00 41.66 246.21 4.44

ycg 4.17

Ixe 5.49

Trial 2 ycg 4.18in:=

f1
Fy

ycg
ycg 2.5t−( )⋅:= f1 31.593ksi= f2

Fy

ycg
h ycg− 2.5 t⋅−( )⋅:= f2 29.876ksi=

ψ
f2

f1
:= ψ 0.946=

k 4 2 1 ψ+( )3
⋅+ 2 1 ψ+( )⋅+:= k 22.623=

Fcr
k π

2
⋅ E⋅

12 1 µ
2

−( )⋅
w

t









2

⋅

:= Fcr 50.469ksi= f f1:= λ
f

Fcr
:= λ 0.791=

ρ

1
0.22

λ
−

λ
:=

ρ 0.912= be ρ w⋅:= be 7.105in=

ho 8.1426in:= bo 1.25in:=
ho

bo
6.514=

b1
be

3 ψ+
:= b2

be

1 ψ+
b1−:= b1 1.801in= b2 1.851in=

Trial2 Ycg=4.18in

Element Length y Ly Ly
2

I'

1 0.97 0.04 0.03 0.00

2 0.22 0.09 0.02 0.00

3a 1.80 1.08 1.94 2.10 0.49

3b 1.85 3.25 6.02 19.61 0.53

3c 3.78 6.07 22.98 139.53 4.52

4 0.22 8.06 1.80 14.53

5 1.07 8.11 8.69 70.44

sum 9.92 41.49 246.20 5.53

ycg 4.18

Ixe 5.58

Ycg 4.181in:= So no further iteration isnecessary.

Ixe 5.5803in
4

:= Ycg 4.181in= Sxe
Ixe

Ycg
:= Mn Fy Sxe⋅:= Mn 44.044kip in⋅=

 

 


