
Prostate Segmentation

and Regions of Interest Detection in

Transrectal Ultrasound Images

by

Joseph Gaber Elias Awad

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Doctor of Philosophy

in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2007

c©Joseph Gaber Elias Awad, 2007



I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,

including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii



Abstract

The early detection of prostate cancer plays a significant role in the success of treatment

and outcome. To detect prostate cancer, imaging modalities such as TransRectal Ultra-

Sound (TRUS) and Magnetic Resonance Imaging (MRI) are relied on. MRI images are

more comprehensible than TRUS images which are corrupted by noise such as speckles

and shadowing. However, MRI screening is costly, often unavailable in many community

hospitals, time consuming, and requires more patient preparation time. Therefore, TRUS

is more popular for screening and biopsy guidance for prostate cancer. For these reasons,

TRUS images are chosen in this research. Radiologists first segment the prostate image

from ultrasound image and then identify the hypoechoic regions which are more likely to

exhibit cancer and should be considered for biopsy. In this thesis, the focus is on prostate

segmentation and on Regions of Interest (ROI) segmentation.

First, the extraneous tissues surrounding the prostate gland are eliminated. Conse-

quently, the process of detecting the cancerous regions is focused on the prostate gland

only. Thus, the diagnosing process is significantly shortened. Also, segmentation tech-

niques such as thresholding, region growing, classification, clustering, Markov random field

models, artificial neural networks (ANNs), atlas-guided, and deformable models are in-

vestigated. In this dissertation, the deformable model technique is selected because it is

capable of segmenting difficult images such as ultrasound images. Deformable models are

classified as either parametric or geometric deformable models. For the prostate segmen-

tation, one of the parametric deformable models, Gradient Vector Flow (GVF) deformable

contour, is adopted because it is capable of segmenting the prostate gland, even if the ini-

tial contour is not close to the prostate boundary. The manual segmentation of ultrasound

images not only consumes much time and effort, but also leads to operator-dependent re-

sults. Therefore, a fully automatic prostate segmentation algorithm is proposed based on

knowledge-based rules. The new algorithm results are evaluated with respect to their man-

ual outlining by using distance-based and area-based metrics. Also, the novel technique

is compared with two well-known semi-automatic algorithms to illustrate its superiority.

With hypothesis testing, the proposed algorithm is statistically superior to the other two

algorithms. The newly developed algorithm is operator-independent and capable of accu-

rately segmenting a prostate gland with any shape and orientation from the ultrasound
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image.

The focus of the second part of the research is to locate the regions which are more

prone to cancer. Although the parametric dynamic contour technique can readily segment

a single region, it is not conducive for segmenting multiple regions, as required in the regions

of interest (ROI) segmentation part. Since the number of regions is not known beforehand,

the problem is stated as 3D one by using level set approach to handle the topology changes

such as splitting and merging the contours. For the proposed ROI segmentation algorithm,

one of the geometric deformable models, active contours without edges, is used. This

technique is capable of segmenting the regions with either weak edges, or even, no edges at

all. The results of the proposed ROI segmentation algorithm are compared with those of

the two experts’ manual marking. The results are also compared with the common regions

manually marked by both experts and with the total regions marked by either expert. The

proposed ROI segmentation algorithm is also evaluated by using region-based and pixel-

based strategies. The evaluation results indicate that the proposed algorithm produces

similar results to those of the experts’ manual markings, but with the added advantages

of being fast and reliable. This novel algorithm also detects some regions that have been

missed by one expert but confirmed by the other.

In conclusion, the two newly devised algorithms can assist experts in segmenting the

prostate image and detecting the suspicious abnormal regions that should be considered for

biopsy. This leads to the reduction the number of biopsies, early detection of the diseased

regions, proper management, and possible reduction of death related to prostate cancer.
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Chapter 1

Introduction

1.1 Introduction

The prostate gland is a part of the male reproductive system and is located just below

the bladder. Prostate cancer is a very serious disease that is one of the leading causes of

cancerous death in men. According to the National Cancer Institute of Canada (NCIC),

prostate adenocarcinoma is the most common disease in middle-aged and elderly men all

over the world [1–4]:

• Approximately 20,700 Canadian men were diagnosed with prostate cancer in 2006,

and around 20% of them have died as a result of prostate cancer.

• Each week, 398 Canadian men are diagnosed with prostate cancer, and about 81 of

them die.

• One of every seven men develops prostate cancer during his lifetime after the age of

60. One every 26 dies of prostate cancer.

The early detection of prostate cancer is pivotal to the success of the treatment. Ul-

trasound B-mode is the standard means for imaging the prostate [5]. The most common

screening modalities for the early detection of prostate cancer are Digital Rectal Examina-

tion (DRE), Prostate Specific Antigen (PSA), and TransRectal UltraSound (TRUS). Their

1
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details are discussed in chapter 2. The DRE test is carried out by a skilled physician who

manually feels for any abnormalities in the prostate gland through the rectum. The accu-

racy of this examination is not high. Nevertheless, DRE is inexpensive, easy to perform,

and can detect most of the tumours of a sufficient volume. PSA is a reliable test for the

early detection of prostate cancer. PSA is an enzyme which is secreted by the prostatic

cells. High PSA values suggest problems with the prostate gland. Then TRUS is used to

display the prostate gland for a radiologist to diagnose. If any of the previous screening

modalities suggest any abnormalities, biopsies should be conducted, and then examined by

a pathologist. The chart in Figure 1.1 displays the diagnostic scheme for prostate cancer.

 
START 

Apply the following screening tests: 

1. DRE 

2. PSA 

3. TRUS 

Suspicious? 

Biopsies 

Yes 

Cancer? 

Treatment Follow up 

Yes No 

No 

Normal 

END 

Figure 1.1: Diagnosing scheme for prostate cancer
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1.2 Motivation

If prostate cancer is suspected, biopsies are conducted of the prostate gland. Transrectal

ultrasound (TRUS) is used to guide the procedure. The sextant approach is the most

common biopsy technique for diagnosing prostate cancer. In this technique, six biopsies are

taken from the prostate gland, three biopsies from each side, left and right sides, obtained

from the apex, centre, and base areas. Eskew et al. [6] have shown that increasing the

number of biopsies from six to thirteen increases the prostate cancer detection rate by 35%.

Since a biopsy is an invasive procedure, increasing the number of biopsies to cover all the

prostate gland is not the best solution. It is advantageous to develop a diagnostic tool for

detecting the suspicious regions of the prostate gland and precisely guide the biopsy needles

into these regions. Consequently, the detection rate of the prostate cancer is increased, and

the number of biopsies is decreased. After all, avoiding unnecessary biopsies saves time,

effort, and resources. Moreover, it is more convenient for the patient.

1.3 Objectives

The principal objective of this research is to implement a diagnostic tool for patients with

possible prostate cancer by using transrectal ultrasound images as shown in Figure 1.2.

The role of the radiologist is pivotal to the diagnostic procedure of prostate cancer. The

radiologist first segments the prostate image, Figure 1.3, from the ultrasound image and

then finds the hypoechoic regions, Figure 1.4, inside the prostate gland which are more

likely to have prostate cancer and should be considered for biopsies. The proposed di-

agnostic tool can assist radiologists in segmenting the prostate image and identifying the

suspicious regions which should be examined by conducting biopsies.

 

Figure 1.2: Transrectal ultrasound image
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Figure 1.3: Prostate image

 

Figure 1.4: Suspicious hypoechoic regions

1.4 Proposed Algorithm

The radiologist’s role in diagnosing prostate cancer seems straightforward. However, this

manual analysis of TRUS images of the prostate is extremely time consuming. Considerable

effort is required for the radiologist to repeat this tedious process for each frame of the 3D

ultrasound image. Moreover, the results of this manual diagnosing are operator-dependent.

As a result, a new algorithm is developed and implemented to automatically analyze the

ultrasound images. The proposed diagnostic tool consists of two main parts. The first

part is to, automatically, segment the prostate gland from the ultrasound images. The

second part is to detect and segment the regions, which might be cancerous, for biopsies.

An overview of the research is shown in Figure 1.5.

Since the interest is only in the cancer inside the prostate gland, the rest of the ultra-

sound image of the tissues surrounding the prostate gland is not required. Therefore, by

removing the unnecessary information, the search for cancer is focused on a smaller area,

the prostate area, of the ultrasound image. Not only is the diagnosing process speeded
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Figure 1.5: Research overview
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up, but also memory storage is mitigated. The manual segmentation of the ultrasound

images consumes much time and effort, and leads to operator-dependent results. Various

segmentation techniques, including thresholding, region growing, classification, clustering,

Markov random field models, artificial neural networks, atlas-guided, and deformable mod-

els as shown in Figure 1.6 are investigated. Many of these techniques are applied to the

TRUS images. It is found that the parametric deformable model proves to be the most

appropriate approach for the prostate segmentation part. One of the best techniques of

the parametric deformable models is the Gradient Vector Flow (GVF) which is examined

and incorporated in the proposed prostate segmentation algorithm.

 
 

Chapter 3 

Image Segmentation 

Background 

Segmentation Techniques 

Interaction Validation 

Definitions 

Thresholding Region Growing 

Classification Clustering 

Markov 

Random field 
Artificial Neural 

Networks 

Atlas-Guided 

Deformable Models 

Parametric 

Cancer 

Geometric 

Cancer 

Figure 1.6: Image segmentation chapter overview

A fully automatic prostate segmentation algorithm is proposed, based on knowledge-

based rules as shown in Figure 1.7. It is evaluated and compared with manual outlining by

using distance-based and area-based metrics. Moreover, the proposed automated algorithm

is compared with two well-known semi-automatic algorithms, and statically outperforms

either algorithm during hypothesis testing. The novel algorithm is operator-independent
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and is capable of accurately segmenting the prostate gland that has any shape and orien-

tation from the ultrasound image. No time is wasted waiting for operator input, or manual

editing or re-deforming. Moreover, the newly developed algorithm does not require any

training data.
 Chapter 4 

Prostate Segmentation 

Results Evaluation 

Algorithm Description 
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Point 

Enhancing the Image 

Distance-Based 
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Area-Based 

Cancer 

Hypothesis Testing 

Related Work 

 
Figure 1.7: Prostate segmentation chapter overview

The second part of the research is to find the regions that are more likely to have a

cancer and should be considered for biopsies. The parametric dynamic contour technique,

which is used in the prostate segmentation part, can be adopted to segment a single re-

gion. However, this technique is too complicated to segment multiple regions, as required

for Regions of Interest ROI Segmentation since the number of regions is not known. Con-

sequently, transferring the ROI segmentation process into 3D by adopting the level set

approach simplifies the problem because this approach is capable of handling the topology

changes by splitting and merging the contours. Thus, the proposed ROI segmentation

algorithm uses one of the geometric deformable model techniques, called active contours
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without edges. This technique is very powerful for segmenting the regions with weak edges

or no edges at all.

The proposed ROI segmentation algorithm is derived from knowledge-based rules as

illustrated in Figure 1.8. The results of the algorithm proposed for the ROI segmenta-

tion are compared with the manual marking of two experts. In addition, the results are

compared with the common regions marked by both experts and with the total regions

marked by either expert. Region-based and pixel-based strategies are adopted to evaluate

the proposed ROI algorithm. From the evaluation results, it is clear that the proposed ROI

algorithm produces very similar results to those of the experts’ manual marking. Further-

more, the proposed ROI algorithm detects some regions which are missed by one expert

but confirmed by the other. Consequently, the proposed algorithms can assist the experts

in finding the regions required to be considered for biopsy leading to early detection, proper

management, and the decreased incidence of death related to prostate cancer.

 Chapter 5 
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Figure 1.8: Regions of interest segmentation chapter overview
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1.5 Outline of the Thesis

The goal of this research is to implement a diagnostic tool for patients with possible prostate

cancer by using ultrasound images, leading to early detection, proper management, and a

decreased incidence of death related to this disease. This thesis is divided into six chapters:

Following this chapter, Chapter 2 provides the background to adequately understand

the anatomy of the prostate, prostate cancer, staging of the prostate cancer, and screening

modalities.

Chapter 3 studies existing image segmentation techniques to investigate the most suit-

able approach for TRUS images. The techniques include thresholding, region growing,

classification, clustering, Markov random field models, artificial neural networks, atlas-

guided, and deformable models.

In Chapter 4 a fully automated prostate segmentation algorithm based on knowledge-

based rules is proposed. The results are then evaluated with respect to manual outlining

by using distance-based and area-based metrics, and compared with the results of two

well-known semiautomatic algorithms. Also, it is proved, with a statistical confidence,

that the proposed algorithm is better than any of the other two algorithms by conducting

hypothesis testing.

The proposed ROI segmentation algorithm is presented in Chapter 5. This algorithm is

developed to successfully segment and extract the regions which are more likely to have a

cancer. The proposed algorithm results are compared with two experts’ manual marking.

Also, the results are compared with commonly marked regions of both experts, and the

total regions marked by either expert. The proposed algorithm is evaluated using region-

based and pixel-based strategies.

The conclusions, contributions, and suggestions for future work are presented in Chap-

ter 6.





Chapter 2

Prostate Cancer

2.1 Introduction

Prostate cancer is one of the leading causes of death in men with cancer [1]. The probability

of developing prostate cancer is about 14% of men, whereas the probability of death as a

result of prostate cancer is about 4%. Recently, the public has become much more aware

of prostate cancer, leading to efforts to improve early detection, and in turn, to increase

the percentage of survivals annually, as denoted in Figure 2.1 [2].
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Figure 2.1: Trends in prostate cancer survival
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2.2 Prostate Anatomy

The term prostate is derived from the Greek prohistani which means ”to stand in front of”.

This expression was adopted by Herophilus of Alexandria in 335 B.C. to describe the organ

located in front of the urinary bladder. Figure 2.2 is an anatomical view of the human

body, including the prostate, kidneys, bladder, lymph nodes and ureters. The prostate’s

anatomy, physiology and pathology have been described in detail only within the last six

decades. The prostate gland location is illustrated in Figure 2.3. The three major prostate

diseases are Benign Prostatic Hyperplasia (BPH), carcinoma of prostate, and prostatitis

[3].

 

Figure 2.2: Anatomy section shows prostate, bladder and kidneys [2]

McNeal(1968) has identified three anatomical zones: the peripheral zone, transition

zone and central zone, in Figure 2.4. The peripheral zone represents approximately 65%

of the prostatic volume. This zone extends around the postero-lateral peripheral aspects

of the gland from its apex to its base. The second largest part of the prostate is the

central zone. It is a cone-shaped region that represents approximately 25% of the prostatic

volume. The third zone of the prostate is called the transition zone, which represents only

5% to 10% of a typical prostatic volume.
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Figure 2.3: Location of the prostate gland [2]

 

Figure 2.4: Anatomical zones of the prostate [2]

The transition zone is separated from the other two zones by a narrow band of fibro-

muscular stroma. It extends, in an arc, from the posterior urethra in the mid-prostate

to the most anterior aspect of the gland. The clinical significance of zonal anatomy is

best observed in BPH. Although it is clear that most nodular hyperplasia occurs in the

transition zone, malignancy can affect any or all of the three zones. More than 70% of

cases originate in the peripheral zone [3]. The percentage of malignancy in the transition

zone is about 10–20%, and in the central zone, about 5–10%. The normal prostate size

is 3–4 cm in width, 4–6 cm in length, and 2–3 cm in thickness. Malignancy can cause an

increase in the prostate size, and BPH can increase the prostate size 100–200% [2].
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2.3 Pathology

2.3.1 Development of BPH

BPH can be identified in the prostate as early as age forty to fifty years of life. BPH is not

only due to an increase in the cell population, but is also to changes in the architecture

of the ducts and acini. Nodular hyperplasia is a characteristic histological feature of BPH

and occurs most commonly in the transition zone near the distal end of the bladder neck

smooth muscle. Progressive transition zone enlargement results in a mean decline in the

urinary flow rate. Nodular hyperplasia in the periurethral zone leads to a mass of dorsal

tissue at the bladder neck [3].

2.3.2 Cancer Classification

The most common histological type is adenocarcinoma representing 98% of all prostatic

cancers. Prostate cancer is classified as follows [2]:

• Acinar and proximal duct origin

• Distal duct origin

• Mixed carcinoma

2.4 Histological Grading of Prostate Cancer

The system, proposed by Gleason (1977), is the most widely accepted system. It is based

on the architectural arrangement of malignant epithelial cells within the prostatic stroma.

First, Gleason described nine reproducibly identifiable patterns of malignancy. In the

1970s, the Veterans Administration Urological Research Group determined the malignant

potential of these patterns by their correlation to survival data. The nine patterns are

arranged in five grades (1–5) in order of the ascending malignant potential, as exhibited

in Figure 2.5 [7]. Gleason chose to adopt the sum of the two most predominant patterns

instead of the average. Therefore, the malignant potential ranges from 2 to 10. The higher
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the Gleason scores the more cancer that exists. The tumour volume and Gleason grading

are closely correlated, as stated by McNeal in 1992 [3].

 

HISTOLOGIC CRITERIA 

FOR GLEASON CRADING* 

1 Single, separate, uniform glands closely 

packed with definite edge 

2 Single, separate uniform glands loosely 

packed with irregular edge 

3A Single, separate, uniform glands, 

scattered 

3B Single, separate, very small glands, 

scattered 

3C Papillary/cribriform masses, smoothly 

circumscribed 

4A Fused glands, raggedly infiltrating 

4B Same, with large pale cells 

(hypernephroid) 

5A Almost solid, rounded masses, necrosis 

(comedocarcinoma) 

5B Anaplastic, raggedly infiltrating 
*Original wording of Dr. D.F. Gleason. 

 

 

Figure 2.5: Gleason grading [7]

2.5 Early Detection

The early detection of prostate cancer is pivotal for the success of treatment. It is difficult

to detect prostate cancer early, since it does not produce any symptoms in most patients.

However, in advanced cases of prostate cancer, there are symptoms such as bladder outlet

obstruction, acute urinary retention, neurological symptoms of cord compression or patho-

logic fractures secondary to bony metastases. The currently used screening tests are as

follow [2, 7]:

• Digital Rectal Exam (DRE): It is easy and inexpensive, and is the most common

test for prostate cancer detection. This exam can detect localize advanced cancers
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with sufficient volume. However, the accuracy of the DRE exam is relatively low and

is operator-dependent. The percentage of DRE positive predictive value is from 21%

to 39%. In addition, the sensitivity of DRE is quite low (i.e., high false negative),

indicating that DRE alone can not be relied on to detect prostate cancer.

• Serum PSA: PSA is considered as the best serum marker in the early detection

of prostate cancer. PSA is an enzyme, secreted by prostatic cells. High PSA values

(>10 ng/ml) have a positive predictive value equal to 66%. PSA values in the range

of 4 to 10 ng/ml have a positive predictive value ranging from 22% to 35%. There is

an overlap between prostate cancer and benign hyperplasia.

• PSA Density: It is defined as the PSA per unit prostate volume. It is useful to

differentiate between prostate cancer and benign hyperplasia. The prostate volume

can be found from TRUS screening.

• PSA Velocity: It is defined as the rate of change of serum PSA with time. For a

normal prostate, PSAV is about 0.04 ng/ml/yr. However, for prostate cancer, PSAV

is high (≈ 0.7 ng/ml/yr).

• Age Specific PSA: To increase the detection of prostate cancer in younger men

and to reduce the biopsies of insignificant cancers in older patients, age should be

considered in PSA cut-off values.

• Free and Total PSA: Malignant prostate cells produce less free PSA than hyper-

plasia tissue. Therefore, it is a useful test to differentiate between prostate cancer

and benign hyperplasia.

• TransRectal UltraSound (TRUS) and TRUS Biopsy: TRUS is used to display

the prostate, visualize the cancer, and guide the needles to obtain biopsies from the

prostate. A TRUS image is illustrated in Figure 2.6. The most common approach

to biopsies is the sextant approach. Biopsies from the basal, mid, and apical zones

of the prostate are taken from both sides of the gland. TRUS can detect only the

peripheral zone prostate cancer, which represents about 70% of prostate cancer. The

accuracy of TRUS in detecting cancer is in the range of 57 to 76%.
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• MRI images: It is very expensive and hardly used.

 

Figure 2.6: Transrectal ultrasound image

2.6 Prostate Cancer Progress

The prostate cancer progress is summarized as follows:

• Intraprostatic spread Figure 2.7

• Seminal vesicle spread Figure 2.8

• Extracapsular spread Figure 2.9

• Lymph node spread Figure 2.10

 

Figure 2.7: Intraprostatic spread [2]
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Figure 2.8: Seminal vesicle spread [2]

 

Figure 2.9: Extracapsular spread [2]

 

Figure 2.10: Lymph nodal spread [2]
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2.7 Prostate Cancer Staging

Prostate cancer staging represents the extent of the cancer. Tumour Node Metastasis

(TNM) is used for staging the prostate cancer. The prostate cancer stages are listed in

Table 2.1.

Table 2.1: Tumour node metastasis staging [2, 7]

Stage Description

T1 TX: primary tumour cannot be assessed

 

T0: No evidence of primary tumour

T1: The tumour is neither visible in images nor palpable in

DRE

T1a: Incidental histologic finding; <5% of tissue resected

during TURP

T1b: Incidental histologic finding; >5% of tissue resected

during TURP

T1c: Tumour identified by needle biopsy due to an elevated

PSA

T2 T2: The tumour is palpable, whether or not visible on TRUS.

 

T2a: Tumour involves one lobe

T2b: Tumour involves both lobes

T3 T3: Tumour extends through the prostatic capsule

 

T3a: Extracapsular extension (unilateral or bilateral)

T3b: Tumour invades seminal vesicle(s)

continued on next page
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continued from previous page

Stage Description

T4

 

T4: Tumour is fixed or invades adjacent structures other than

seminal vesicles: bladder neck, external sphincter, rectum,

levator muscles, and/or is fixed to pelvic wall

N N: Regional lymph nodes

 

NX: Regional lymph nodes cannot be assessed

N0: No lymph node metastasis

N1: Metastasis in regional lymph node or nodes

M M: Distant Metastasis

 

MX: Distant metastasis cannot be assessed

M0: No distant metastasis

M1: Distant metastasis

M1a: Nonregional lymph node(s)

M1b: Bone(s)

M1c: other sites

2.8 Summary

In this chapter, the anatomy of the prostate, prostate cancer and staging of prostate cancer

are introduced. The early detection of prostate cancer plays a crucial role in the success of
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the cancer treatment. There are several screening tools to detect prostate cancer, includ-

ing TRUS and MRI imaging. MRI images are very clear, compared with TRUS images,

which contain noise such as speckles, shadowing, and other image artifacts. However, MRI

screening is more costly and not available in many community hospitals, is time consum-

ing, and requires more patient preparation time. Therefore, TRUS is more commonly used

than MRI for screening and biopsy guidance for prostate cancer. More details of the char-

acteristics of ultrasound are given in Appendix A. In this investigation TRUS images are

chosen for this research. The challenge is to use ultrasound images and perform some noise

reduction techniques so that an appropriate segmentation technique can be developed to

segment the prostate gland and to find the cancerous regions inside the prostate.





Chapter 3

Image Segmentation

3.1 Introduction

Image segmentation plays an important role in medical applications. Such segmentation

helps in delineating the anatomy of an organ and its volume. This is crucial in the diagnosis

of prostate cancer, where the ratio of the PSA to the volume of the prostate is important

to detect cancer and aid in treatment planning [8]. Medical images, in general, are difficult

to segment, especially, ultrasound images which suffer from a lake of contrast and are

corrupted by speckle noise [9]. In this chapter, a background of image segmentation is

given. In addition, the most common image segmentation techniques are examined. The

focus in this chapter is on the deformable models which is a superior approach for medical

image segmentation.

3.2 Background

3.2.1 Definition

Image segmentation divides an image into regions with no overlapping. Each region pos-

sesses different features including colour, intensity, texture or other statistical properties.

If the domain of the image is given by Ω, hence the sets Rk ⊂ Ω represent the segments

of the image. The union of all the segments results in the whole image again. The sets,

23
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which represent the segmentation, must satisfy the following:

Ω =
k⋃

k=1

Rk, (3.1)

where Rk∩Rj = ∅ for k 6= j,and each Rk is connected. If this constraint, which states that

the regions are connected, is removed, the segmentation problem becomes a classification

problem; then the sets, themselves, are called classes instead of segments. The direct way

to segment an image is by applying an edge detection technique, especially if the image

consists of clear objects on a different intensity background. However, this technique can

fail, if the image contains noise [8].

3.2.2 Interaction

There is a trade-off between manual interaction and automatic segmentation. The advan-

tage of manual interaction is that it depends on the prior knowledge of an operator, but

the disadvantage is that the results are operator-dependent and requires much time and

effort [8].

3.2.3 Validation

Validation experiments are necessary to quantify the performance of a segmentation tech-

nique. They can be conducted by comparing an automatic segmentation with the manual

segmentation of an expert. Another common approach is the use of physical phantoms or

computational phantoms [8].

3.3 Segmentation Techniques

There are many segmentation techniques. However, there is no standard segmentation

technique that works well for all images. This section highlights eight common segmenta-

tion techniques summarized as follows.

1. Thresholding
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2. Region growing

3. Classification

4. Clustering

5. Markov Random Field (MRF) Models

6. Artificial Neural Networks

7. Deformable Models

8. Atlas-Guided

3.3.1 Thresholding

The thresholding technique is the simplest image segmentation technique. It is based on the

assumption that the objects and the background in the image have a bimodal distribution.

Typically, this assumption is not valid for most images, especially medical ones. The key

point in this segmentation technique is to determine an intensity value, called the threshold,

which separates the desired classes. Thresholding segmentation transforms input image Ω

to a binary image g by grouping the pixels with intensities, higher than the threshold into

one class, and the other pixels into another class.

For any 2D digital image,

{Ω(i, j)|i ∈ {1, 2, . . . , M}, j ∈ {1, 2, . . . , N}}, (3.2)

the thresholding technique is defined as

g(i, j) =

{
1, for Ω(i, j) ≥ T

0, for Ω(i, j) < T.
(3.3)

Some images can be segmented by using more than one thresholding point, which is called

multi-thresholding, as depicted in Figure 3.1, where T1 and T2 are the two thresholds

segmenting the image.
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The output image, resulting from multi-thresholding, is no longer binary, but consists

of a limited number of grey levels as follows:

g(i, j) =





0, for Ω(i, j) < T1

1, for T1 ≤ Ω(i, j) < T2

...

n, for Tn ≤ Ω(i, j) < Ng − 1,

(3.4)

where Ng = the number of grey levels in the image (256).
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 Figure 3.1: Histogram showing three apparent classes, using two thresholds T1 and T2

There are two main methods of thresholding segmentation. The simplest and fastest

method is called global thresholding, where one threshold value is used for the entire image.

The second method is called local thresholding, where a different threshold value is assigned

to each sub-image. Although the second method is more accurate than the previous one,

the second one is more computationally complex. To determine the threshold value, the

histogram of the image is calculated and the minimum value of the histogram is used as

the threshold value. The histogram can be mathematically described as follows:[8, 10].

Let the histogram be

h(x), x ∈ G and G = {0, 1, . . . , Ng − 1}, (3.5)

where h(x) represents the density function and is derived from:

h(x) = Prob (Ω(m, n) = x) =
number of pixels with the grey value = x

Total number of pixels in the image
. (3.6)
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There are many techniques for determining the optimal thresholding value from the

histogram, as signified in Figure 3.2. These techniques can then be divided into six main

categories [11]:

 Thresholding Techniques 

Histogram Shape  Clustering Entropy Spatial Local 

Convex Hull 

Peak and Valley 

Shape Modelling 

Iterative Thresholding 

Clustering 

Minimum Error 

Fuzzy Clustering 

Entropic Thresholding 

Cross Entropic Thresholding 

Fuzzy Entropic Thresholding 

Object Attributes 

Local Variance 

Local Contrast 

Centre-Surround Schemes 

Surface Fitting 

Kriging Method 

Cooccurrence Thresholding 

High-Order Entropy 

Random Sets Thresholding 

2D Fuzzy Partitioning 

Moment Preserving 

Edge Field Matching 

Fuzzy Similarity 

Topological Stable State 

Maximum Information 

Enhancement of Fuzzy 

Compactness Thresholding 

 
Figure 3.2: Thresholding techniques
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1. Histogram shape-based techniques

2. Clustering-based techniques

3. Entropy-based techniques

4. Object attribute-based techniques

5. Spatial techniques

6. Local techniques

Excellent reviews are described in the literature [10–19]. Thresholding is used to detect

the pubic arch in TRUS during transperineal prostate brachytherapy [20]. The technique

is also used at the initial stage in multi-stage segmentation techniques. It yields coarse

estimation of the objects in the image, which can be modified [21–23]. One limitation of

the global thresholding technique is that it does not include the spatial information of the

image. One solution is the connectivity-based thresholding algorithm, proposed by Chulhee

et al. [24]; However, the thresholding technique is not powerful enough for a complicated

problem such as prostate segmentation in TRUS.

3.3.2 Region Growing

This segmentation technique depends on extracting a region from the image that has the

same characteristics such as intensity level or other statistical information. The straight-

forward region growing technique requires, first, a seed point to begin from, as portrayed

in Figure 3.3. Then, the pixels connected to the seed point that have the same predefined

characteristics are found. This seed point can be manually or automatically selected.

The goal of region growing segmentation is to divide the image into its regions, according

to image properties such as pixel intensity, spectral values, and textural properties. Assume

the entire image region is Ω. The purpose is to divide Ω into R1, R2, . . . , Rn such that [25]
n⋃

i=1

Ri = Ω,

Ri is a connected region, ∀i,
Ri ∪Rj = ∅ ∀i, j; i 6= j,
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Seed Point 
 

Figure 3.3: Example of region growing

P (Ri) = True, ∀i,
and

P (Ri ∪Rj) = False ∀i, j; i 6= j.

where P (Ri) is a logical predicate over the set of pixels in Ri. Region growing is categorized

into three classes [25].

1. Merging: The seed points inside the objects, which require to be segmented, are

defined. Then, the regions grow from these seed points by adding the neighbouring

pixels of the seed points, which have similar properties. The disadvantage of this

method is that the segmentation results depend on the order in which each region in

the image is processed [26].

2. Splitting: The goal is to divide the image into regions. The algorithm splitts until

P (Ri) = True. The disadvantage is that the final segmentation can contain adjacent

regions with the same properties [25].

3. Split and Merge: This technique is a combination of the previous techniques. Maria

et al. has summarized this technique as [25].

(a) Split any region Ri where P (Ri) = False into four square regions.

(b) Merge any adjacent regions Rj and Rk for which P (Rj ∪Rk) = True.

(c) Stop if there is no further merging or splitting possible, otherwise, repeat steps

(a) and (b).
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Much research has been carried out in the segmentation field by using region growing

[27–30]. Bozidar has developed an automatic region growing segmentation to detect ovarian

follicles with a recognition rate of approximately 78%. Also, he has used the thresholding

technique for preprocessing to determine the seed points [21]. Region growing is also relied

on to calculate the volume of the prostate by a manually identified seed point in the centre

of the prostate gland [31]. The critical point in the region growing segmentation technique

is how to choose noise insensitive properties for each object to correctly segment the image.

3.3.3 Classification

Classification methods are pattern recognition techniques, where a feature space is par-

titioned by using data with known labels. The image intensities are the most common

features. Histograms are a 1D feature space as shown in Figure 3.1. An example of a two-

feature space is shown in Figure 3.4. There are many classification techniques in image
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Figure 3.4: 2D feature space

segmentation. The principal drawback of such segmentation approach is that training data
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is required. Training data is not always available in medical field. Also, anatomical and

physiological variability in the training data decreases the accuracy of the results [8]. The

Bayesian classifier is adopted in image segmentation [32, 33]. The disadvantage is that

the technique depends on a training data set to estimate the parameters of the assumed

probability distribution function, which makes the results biased to the training set. The

nearest neighbouring technique is adopted in image segmentation, but it requires a large

storage space and a long computation time [34, 35]. There are much research [36–39] is con-

ducted in the segmentation field using classification approach. They include classification

techniques such as K-NN [40], neural networks [41–44], and fuzzy logic [45].

3.3.4 Clustering

Clustering techniques are similar to classification ones except that clustering techniques

are unsupervised. They iteratively alternate between characterizing the properties of each

class and segmenting the image. Researchers usually apply these techniques by using the

intensity levels as a feature, which produces results that are sensitive to noise [8]. There-

fore, it should take into account the spatial information to produce meaningful results.

The accuracy of the clustering techniques is usually less than that of the classification

techniques, a primary limitation. The most common clustering algorithms used in medical

image segmentation are:

1. The K-Means

2. The Fuzzy C-Means

3. The Expectation-Maximization (EM)

3.3.4.1 The K-Means or ISODATA Algorithm

The k-means is a simple and easy to perform clustering technique. It has been used

successfully in functional MRIs to distinguish between large veins and activated grey matter

[46]. Yan et al. [47] has employed an adaptive k-means to segment 3D MRIs into grey,

white matter, CSF, and other abnormal tissues. The proposed methodology is insensitive

to the shading effect. Chen et al. [48] have used adaptive k-means with knowledge-based
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morphological operations to segment 3D images. The results are very close to those of

manual segmentation. The average percentage difference between the proposed algorithm

and the manual segmentation is 6.7% in volume and 1.9% in surface area. Note that the

purpose of the k-means technique is to cluster N data points with M -dimensional feature

space into k clusters. The classification space F is defined as follows [46]:

Fi = [fi1, fi2, . . . , fiN ]T , i = 1, 2, . . . , M. (3.7)

The goal of this technique is to minimize the sum of the square distance within the cluster

between the pixels and the centre of the cluster by moving pixels from one cluster to

another. The objective function for minimizing is [46]:

ε =
N∑

j=1

D2(j, k), (3.8)

where D(j, k) is the Euclidian distance of jth pixel from the mean of the kth cluster which

is defined by [46]:

D2(j, k) =
M∑
i=1

{
[fij − µ(k, i)]2 ×W (k, i)

}
(3.9)

where µ(k, i) is the mean of the ith feature within the kth and W (k, i) is a weighting factor.

The procedure for k-means clustering is summarized as follows [46].

• Normalize the feature vectors by their variance

• Initialize the value of the mean of class 1 ”µ(1, i)” by the value of the furthest pixel

in the feature space.

• Initialize the value of the mean of class 2 by the value of the furthest pixel from the

mean of class 1.

• Initialize the value of the mean of class 3 by the value of the furthest pixel from both

class 1 and class 2. By the same way, the means of all k classes are initialized.

• Minimize the objective function iteratively by moving the pixels form one class to

another.
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3.3.4.2 The Fuzzy C-Means Algorithm

The Fuzzy c-means algorithm is a generalization of the k-means, allowing for soft segmen-

tation [8]. This algorithm is developed by Dunn in 1973 [49] and is improved by Bezdek

in 1981 [50]. Qing et al. [51] have proposed a modification of the fuzzy c-means to reduce

the computational time. In this algorithm, the histogram is used to find the centres of

the grey levels, enhancing the performance of the algorithm. Fuzzy c-means has also been

employed in MRI segmentation [52]. The images are first enhanced by using a wavelet-

based de-noising, before applying the fuzzy c-means. It is also combined with the Hopfield

neural network to segment multispectral MRI brain images. The proposed algorithm is

fully automatic which is desirable [53].

The objective function of this algorithm is [51]

J(U, V ) =
n∑

k=1

c∑
i=1

(Uik)
m (dik)

2 (3.10)

where,

c = number of classes

m = weighting exponent, for hard clustering, m = 1

dik = the inner product induced norm metric

n = number of data sets

Uik = fuzzy membership values of pixel k in cluster i

Vi = cluster centre of class i

U = Fuzzy c-partition

The goal of this algorithm is to find U and V to minimize the objective function. This

is achieved by using an iterative technique, which is described as follows [51].

• Choose the number of clusters c, 2 < c < n, weighting exponent m > 1

• Initialize the partition matrix U (0)

• Repeat for b =1, 2, . . .
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1. Compute the cluster prototypes (means) V
(b)
j from U (b)

V =

n∑
k=1

(Uik)
m Xk

n∑
k=1

(Uik)
m

. (3.11)

2. Update the partition matrix U (b)

(a) Compute Ik and Tk by

Ik = {i|1 < i < c, dik = |xi − vk| = 0}. (3.12)

Tk = {1, 2, . . . , c} − Ik. (3.13)

(b) Calculate the new membership values

i. If Ik = 0,

Uik =
1

c∑
j=1

(dik/djk)
2

m−1

. (3.14)

ii. Else, Uik = 0, for all i ∈ Tk such that

∑
i∈Ik

UIk
= 1. (3.15)

3. Until ‖U (b) − U (b−1)‖ < ε.

3.3.4.3 The Expectation-Maximization (EM) Algorithm

This is a statistical approach. It is adopted for the parameter estimation for retina image

segmentation [54], and depth estimating to recover 3D information from images sets [55].

Zhang et al. [56] have employed EM with a hidden Markov random field model to seg-

ment MRI images. They show that the proposed framework can segment 3D MRI brain

images automatically. The assumption in the EM family is that the image is a mixture

of distribution realization and probability distribution, following a Gaussian model. The

EM technique does not include spatial information, which is essential for accurate image

segmentation, a severe limitation [8, 54].
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3.3.5 Markov Random Field Models

A Markov random field is a statistical model that can be used in image segmentation with

EM to automatically segment 3D MRI images [56]. Also, the model is used in texture

segmentation [57] to model the interactions among neighbouring pixels. The drawback is

that it is difficult to select the proper parameters, which control the strength of the spatial

interaction [8, 56].

3.3.6 Artificial Neural Networks (ANNs)

Artificial Neural Networks (ANNs), also called Artificial Neural Systems (ANSs), neuro-

computers, Parallel Distributed Processors (PDPs) or connectionist models are an attempt

to mimic the structure and functions of the brain and nervous system of a living creature.

Generally speaking, an ANN is an information or signal processing system composed of

a large number of simple processing elements, called artificial neurons, or simply nodes.

They are interconnected by direct links called connections that cooperate to perform par-

allel distributed processing to solve a computational task. One of the attractive features

of ANNs is their capability to adapt to special environmental conditions by changing their

connection strengths or structures. NNs are used in medical image segmentation [8, 41–44].

The main limitation of this technique is that it requires a large training data set which is

not always available.

3.3.7 Deformable Models

The deformable models are used in many applications [58–75] including prostate segmen-

tation. Therefore, this technique is described in more detail in this section. In the early

1970s, an optimization method to find the object boundary in images was reported [76–80],

but was not well-known until Kass et al. [58] presented their research in 1987. Following

up on this, many deformable models were derived from different optimizing methods [65],

including the simulated annealing technique [81], dynamic programming [82], parametrical

space method [83], finite element method [84, 85], finite difference method [86], and greedy

algorithm[87]. The deformable contour is also called active contour, or snake. Deformable

model is a curve or surface that deforms under the influence of internal and external forces.
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The internal forces retain the smoothness of the contour during deformation. The external

forces are computed from the image itself to drive the contour to the desired object by us-

ing edge information [82–87], region information, or both [65]. Various methods have been

suggested to drive the contour by the use of region information. For example, the contrast

of the grey levels between the inside and outside of the object was adopted as a measure for

the region information by O’Sullivan et al. [88]. Storvik [81] has adopted the distribution

of grey levels inside and outside the object in his energy function. A region-based model

based on the Ward distance has been introduced by Ronfard [89]. Moreover, statistical

features such as the mean and standard deviation can represent regional information as in

[90, 91]. Edge information is easier to implement than regional information, yet the im-

age noise can affect techniques which use edge information more than regional information.

Therefore, the techniques for edge information require that the initial contour be very close

to the desired boundary[65]. Also, edge information or regional information depends on

the properties of the image. Some researchers [92–95] have developed a more complicated

approach by combining both edge and regional information to drive the contour to the

desired boundary.

Two techniques of deformable models are parametric deformable models and geometric

deformable models. The former models characterize the contour explicitly by parameters,

and the latter models characterize the contour implicitly as a level set of a developing

scalar function [96]. Both are elaborated on in the following sections.

3.3.7.1 Parametric Deformable Models

The contour in the parametric models is represented as X(s) = [x(s), y(s)] , s ∈ [0, 1]. The

goal is to minimize the following energy function [96]:

E =

1∫

0

1

2

(
α |X ′(s)|2 + β |X ′′(s)|2

)
+ Eext(X(s)) ds. (3.16)

Weighting factors α and β control the tension and the rigidity of the contour respectively,

where X ′(s) and X ′′(s) represent the first and the second derivatives of X(s) with respect

to s, respectively. Eext represents the external energy which drives the contour to the
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object boundary. The straight forward method to calculate the external energy is [96].

Eext(x, y) = −|∇ (Gσ(x, y) ∗ Ω(x, y))|2, (3.17)

where

Ω(x, y) is a grey level image

Gσ(x, y) is a 2D Gaussian function to smooth the image

σ is the standard deviation

∇ is gradient operator

The deformable contour must satisfy the Euler equation as follows:

αX ′′(s)− βX ′′′′(s)−∇Eext = 0 (3.18)

To represents the force balance equation as follows:

Fint + Fext = 0. (3.19)

Since the contour changes with time, X should be manipulated as a function of both t and

s. Thus, 3.18 should be reformed as

Xt(s, t) = αX ′′(s)− βX ′′′′(s)−∇Eext. (3.20)

Equation 3.20 should be solved numerically. When the contour achieves the final shape,

term Xt(s, t) becomes equal to zero which satisfies the Euler equation 3.18. Two complex-

ities face traditional parametric models. The first is that the initial contour should be very

close to the object boundary; Secondly, the active contours have some problems advancing

into boundary concavities. Chenyang Xu et al. [62] have developed an impressive tech-

nique to overcome these problems called the ”Gradient Vector Flow (GVF) Deformable

Models”. This technique is very promising, and is applied in the research described in this

thesis to segment the prostate from ultrasound images.
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3.3.7.1.1 Gradient Vector Flow (GVF) Deformable Models

Chenyang Xu et al. [62] have introduced a new static external force Fext = V (x, y) called

GVF field. Then they have replaced the potential force ∇Eext with the new force V (x, y)

in 3.20 as follows:

Xt(s, t) = αX ′′(s)− βx′′′′(s) + V. (3.21)

The GVF is defined by vector V (x, y) = [u(x, y), v(x, y)] which minimizes the following

energy functional:

ε =

∫∫
µ

(
u2

x + u2
y + v2

x + v2
y

)
+ |∇f |2 |V −∇f |2 dxdy, (3.22)

where µ is a regularization coefficient whose value depends on the amount of noise in the

image (more noise increases µ ). f is the edge map and is calculated as follows:

f(x, y) = −Eext(x, y), (3.23)

and Eext is calculated as shown in 3.17.

The GVF field is evaluated by the calculus of variations by solving the following Euler

equations:

µ∇2u− (u− fx)(f
2
x + f 2

y ) = 0, (3.24)

and

µ∇2v − (v − fy)(f
2
x + f 2

y ) = 0. (3.25)

Figure 3.5 exhibits the superiority of this technique over the conventional deformable con-

tour. Figure 3.5(b) illustrates the wide range of GVF contours, and Figure 3.5(c) demon-

strates that the GVF contour can handle concavities easily. A detailed analysis of GVF

contour which demonstrates its superiority over the traditional contours and various ex-

amples, can be found in the literature [96].
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(a) (b) (c)

Figure 3.5: (a) Contour convergence, (b) GVF external force and (c) Boundary concav-

ity [96]

3.3.7.2 Geometric Deformable Models

Parametric deformable models have many attractive attributes such as smoothness, connec-

tivity, the capability to integrate knowledge about the object which needs to be segmented.

However, the parametric contours do not represent topology changes such as splitting and

merging of the contours very well, and the dynamic contour needs to be reparameterized

after each step by defining new equal-spaced vertices adding to the complexity of the prob-

lem. Geometric models with a level set technique overcome these drawbacks by adding an

extra dimension to the problem. It transfers the problem from a moving curve to a moving

surface, which seems to be more difficult. However, the topological problem is simplified,

which makes the extension from 2D to nD a straight forward process [97, 98].

In 1998, the concept of geometric contours was introduced by Osher and Sethian [99].

There are many applications for level set [100] such as shape detection and recovery [101–

104], image enhancement [105, 106], robotic navigation with constraints [107], microchip

manufacturing [108–110], optimal design [111], and geometry [112].

To formulate geometric contours mathematically [61, 100], let Ω be a bounded open

subset of <2, and ∂Ω be its boundary. For 2D images, Ω is a fixed rectangular grid. The

curve C in Ω is the boundary of a subset ω of Ω. The point of this technique is to add
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another dimension to the problem to represent a scalar function φ, the level set function.

The contour C is represented by the zero level set as follows:

C = {(x, y) ∈ Ω : φ(x, y) = 0} . (3.26)

Initially, the level set function φ for any pixel of the image Ω is defined by

φ(x, y, t = 0) = ±d (3.27)

where d is the distance from the current pixel (x, y) to the contour C at t = 0. The pixels

inside the contour are calculated by using +d, whereas the pixels outside the contour are

evaluated by using −d. The geometric contour deforms according to the following partial

differential equation:
∂φ

∂t
= F |∇φ| , φ(x, y, 0) = φo(x, y), (3.28)

where the initial contour is defined as the set {(x, y) ∈ Ω : φo(x, y) = 0}, and F is the speed

function. Various forms for the speed function F are introduced in the literature. Many

of them depend on the image gradient as a stopping criterion. For instance, Caselles et al.

[113] have used the following form for the evolving contour:





∂φ
∂t

= g (|∇Ω|) |∇φ| (κ + ν),

φ(x, y, 0) = φo(x, y),

κ = div
(
∇φ
|∇φ|

)
,

g (|∇Ω(x, y)|) = 1
1+|∇Gσ(x,y)∗Ω(x,y)|p , p ≥ 1

(3.29)

where

g (|∇Ω|) is an edge function with p = 2

ν ≥ 0 is a constant

φo is an initial level set function

κ is the curvature function

Gσ(x, y) is the 2D Gaussian function used to smooth the image Ω
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σ is the standard deviation

∇ is gradient operator

Another form of the speed function has been introduced by Malladi et al. [114] as

follows:

{
∂φ
∂t

= |∇φ|
(
−ν + ν

(M1−M2)
(|∇Gσ ∗ Ω| −M2)

)

φ(x, y, 0) = φo(x, y),
(3.30)

where

ν is a constant

M1 is the maximum of the magnitude of the image gradient |∇Gσ ∗ Ω|

M2 is the minimum of the magnitude of the image gradient |∇Gσ ∗ Ω|

The primary limitation of the geometric deforming contours, which are based on an

edge criterion, is that they require a clear edge. A powerful technique which overcomes

this limitation was introduced by Chan et al. [61] called the active contours without edges,

and is capable of segmenting objects with weak or noise edges. This technique is discussed

in the next section.

3.3.7.2.1 Active Contours without Edges

This technique is applied to find multi-regions easily. Since, it does not need a clear or

complete boundary for the regions, the technique is a good candidate for segmenting the

hypoechoic regions inside the prostate. The idea of this technique is to minimize the

following function [61]:

F (c1, c2, C) = F1(C) + F2(C) =

∫

inside(C)

|Ω(x, y)− c1|2 dxdy +

∫

outside(C)

|Ω(x, y)− c2|2 dxdy,

(3.31)

where C is the deformable curve, while c1 and c2 are the averages of the intensity levels of

the image Ω inside and outside the curve C respectively.
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Figure 3.6 demonstrates that minimizing the function 3.31 leads the contour to the

boundary of the object. It is also evident that the only case that minimizes the function

occurs when the contour is on top of the boundary of the object.

F1 > 0, F2 = 0 F1 = 0, F2 > 0 F1 > 0, F2 > 0 F1 = 0, F2 = 0

⇒ F > 0 ⇒ F > 0 ⇒ F > 0 ⇒ F = 0

    
(a) (b) (c) (d)

Figure 3.6: Possible locations of the contour relative to the object [61]

The complete energy function that needs to be minimized is [61]:

F (c1, c2, C) = µ.Length(C) +ν.Area(inside(C))

+λ1

∫
inside(C)

|Ω(x, y)− c1|2 dxdy

+λ2

∫
outside(C)

|Ω(x, y)− c2|2 dxdy,

(3.32)

where µ ≥ 0, ν ≥ 0, λ1 > 0 and λ2 > 0 are weighting factors. Chan et al. [61] have used

the level set technique to minimize the previous energy function. The zero level set of a

Lipschitz function φ is represented by contour C as indicated in Figure 3.7. The problem

is formulated as

C = ∂ω = {(x, y) ∈ Ω : φ(x, y) = 0} ,

inside(C) = ω = {(x, y) ∈ Ω : φ(x, y) > 0} ,

outside(C) = Ω\ω̄ = {(x, y) ∈ Ω : φ(x, y) < 0} .

(3.33)

Then, the unknown contour C is replaced by the unknown level set function φ by using

the Heaviside function H and Dirac measure δo which are defined as

H(z) =

{
1, if z ≥ 0

0, if z < 0
δo(z) =

d

dz
H(z). (3.34)
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Figure 3.7: Level set representation

Thus, the length term can be reformulated in terms of the level set function φ as follows:

Length {φ = 0} =
∫
Ω

|∇H (φ(x, y))| dx dy

=
∫
Ω

δo (φ(x, y)) |∇φ(x, y)| dx dy.
(3.35)

The area term is represented by using the following level set function φ.

Area {φ ≥ 0} =

∫

Ω

H (φ(x, y)) dx dy. (3.36)

The last two terms F1(C) and F2(C) of the energy function F is reformulated by the level

set function φ such that:
∫

φ>0

|Ω(x, y)− c1|2 dx dy =

∫

Ω

|Ω(x, y)− c1|2 H (φ(x, y)) dx dy, (3.37)

and ∫

φ<0

|Ω(x, y)− c2|2 dx dy =

∫

Ω

|Ω(x, y)− c2|2 (1−H (φ(x, y))) dx dy. (3.38)

As a result, the complete energy function is reformulated as

F (c1, c2, φ) = µ
∫
Ω

δ (φ(x, y)) |∇φ(x, y)| dx dy

+ν
∫
Ω

H (φ(x, y)) dx dy

+λ1

∫
Ω

|Ω(x, y)− c1|2 H (φ(x, y)) dx dy

+λ2

∫
Ω

|Ω(x, y)− c2|2 (1−H (φ(x, y))) dx dy.

(3.39)
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Also, c1 and c2 are represented in terms of φ as follows:

c1(φ) =

∫
Ω

Ω(x, y)H (φ(x, y)) dx dy

∫
Ω

H (φ(x, y)) dx dy
(3.40)

and

c2(φ) =

∫
Ω

Ω(x, y) (1−H (φ(x, y))) dx dy

∫
Ω

(1−H (φ(x, y))) dx dy
. (3.41)

Therefore, the energy function is now a function of one scalar function, and can be solved

numerically to find the level set function φ that minimizes the energy function. The final

contour is found easily by finding the pixels which have a zero level set φ(x, y) = 0.

3.3.8 Atlas-Guided Technique

If a standard atlas or template is available, atlas-guided technique is a powerful tool for

medical-image segmentation. An atlas is generated from the anatomy information about

the image. Such atlas-guided technique performs the same function as that of classifiers

except that they are implemented in the spatial domain of the image rather than in the

feature space. The limitation in this technique is that it requires a template, which is not

available in many situations [8].

3.3.9 Other Techniques

The Model fitting technique fits a simple geometric shape such as an ellipse or parabola

to segment the image. The watershed algorithm uses edge detection and mathematical

morphology concepts to segment images into homogeneous regions [8].

Human sight is a very complex system and employs gained knowledge to recognize the

image. Experts’ knowledge enables them to retrieve more information from the image than

a normal person. Experts’ knowledge can be formulated and incorporated with any other

segmentation techniques in medical images [48, 115–117].
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3.4 Summary

Many research papers have been published regarding segmentation field. The goal of this

chapter is to examine the most common image segmentation techniques to find the most

suitable one to use in our research. In this chapter, several segmentation techniques have

been examined, including thresholding, region growing, classification, clustering, Markov

random field modelling, artificial neural networks, deformable models, and atlas-guided.

Thresholding is straightforward and yields good results for simple images; however it is

not capable of handling ultrasound images. The critical requirement of the region growing

technique is to choose noise insensitive properties for each object to correctly segment the

image. Due to speckle noise in ultrasound images, the region growing technique usually

fails to accurately segment ultrasound images. The segmentation problem is also considered

as a classification problem, but this requires training data. Training data is not always

available in medical field. Also, anatomical and physiological variability in the training data

decreases the accuracy of the results. Moreover, it is difficult to create a large training-data-

set in the medical field, especially, by an expert. For these reasons, classification technique

is not suitable for the research described in this thesis. Clustering is also considered

for image segmentation. Clustering technique does not require training data, a definite

advantage over the classification approach. However, the accuracy of clustering techniques

is usually less than that of the classification techniques, in particular, with high noisy

images such as ultrasound images. The Markov random field model technique is applied

for image segmentation, but the selection of the proper parameters to control the spatial

interaction, especially with ultrasound images, is challenging. Artificial neural networks

(ANNs) are also used in medical image segmentation, but requires a large training-data set

which is not available for the research point. Moreover, finding the ”right” structure of a

neural network is not easy. Deformable models are discussed in more details in this chapter.

Deformable models consist of parametric deformable models and geometric deformable

models. One of the best parametric deformable models, the Gradient Vector Flow (GVF),

is studied. For geometric deformable models, the active contours without edges technique

is presented. The last is the atlas-guided technique, but it requires a template which is not

available in many situations.

In conclusion, It is found that the deformable models approach is superior for medi-
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cal image segmentation and is adopted in this thesis. The parametric deformable models

technique, which is quite capable of segmenting one object in a noise image, has been suc-

cessfully used for many semi-automatic techniques for prostate segmentation in ultrasound

images. Therefore, one of the superior techniques of the parametric deformable mod-

els,Gradient Vector Flow (GVF), is used in the proposed automatic prostate segmentation

algorithm discussed in Chapter 4. The geometric deformable models can easily handle the

topology changes by splitting and merging the contours, a big advantage over the paramet-

ric parametric models. Since it is required to segment unknown number of regions in the

regions of interest (ROI) part, a geometric deformable model is used. Since some of the

suspicious regions, required to be segmented, do not have clear edges, the active contours

without edges technique is used in the proposed ROI segmentation algorithm discussed in

Chapter 5.



Chapter 4

Prostate Segmentation

4.1 Introduction

TRUS imaging has been pivotal in the decrease in the death rate from prostate cancer (Pca)

[2, 5]. TRUS enables needle biopsies to be accurately and safely performed, some cancers

to be detected, and the prostate volume to be measured with reasonable accuracy. Images

are obtained by inserting an ultrasound transducer into the rectum in a manner that allows

the imaging transducer to be close to the posterior wall of the prostate. Ultrasound waves

are then generated to cross the prostate and its surrounding tissue. A varying percentage

of these waves are reflected back from different tissue interfaces. These waves are collected

by the transducer and transformed into electrical signals that are displayed as an image on

a monitor. Sonography professionals mentally segment these images to detect the edges of

the prostate and different tissue textures within the prostate that might represent prostate

cancer.

Manual segmentation consumes considerable time and effort. Besides, manual segmen-

tation is not only operator-dependent, but also a tedious and repetitious. In this research,

a new multi-stage computer algorithm is introduced for segmenting and extracting the

prostate image by using knowledge-based rules. The proposed algorithm is fully automatic

and implements experts knowledge. The experimental results confirm that the proposed

algorithm is appropriate for efficiently extracting the prostate image from TRUS image.

The newly developed algorithm is operator-independent, and supports the segmentation

47
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of the prostate gland of any shape and orientation.

4.2 Related Work

Over the last few years, the prostate segmentation problem has received considerable at-

tention [118–135]. The algorithms in the literature are categorized as semiautomatic and

automatic segmentation.

4.2.1 Semiautomatic Prostate Segmentation

Most techniques depend on a human initialization [118–129], which in turn, leads to

operator-dependent results. A small number of research papers have reported on prostate

segmentation with 3D ultrasound images [118–120]. As a transition from 2D to 3D images

segmentation, Wang et al. [121] have segmented 3D images by using 2D ultrasound images.

Most semiautomatic prostate segmentation algorithms use 2D ultrasound images [122–129].

A number of them rely on deformable models for prostate segmentation [118–125].

Hu et al. [118, 119] have suggested an algorithm to segment the prostate from 3D

ultrasound images by using dynamic surface. This algorithm needs a manual initialization

by six points. The initial points should be close to the boundary of the prostate to prevent

the contour from attracted to false edges. Some results of this algorithm must be edited

and re-deformed a number of times to reach the final result.

Ghanei et al. [120] have developed a prostate segmentation algorithm in 3D ultrasound

images with deformable surfaces. Forty percent to 70% of the slices of the 3D ultrasound

image need to be initialized by employing four to five points per slice. After the algorithm

creates the initial surface from these initial contours, the initial surface deforms under the

internal and external forces to reach the final surface.

Wang et al. [121] have devised an algorithm to segment the prostate from 3D images

by using 2D slices. The algorithm needs four initial points to be identified manually on

the boundary of a selected slice. Next, the algorithm creates an initial contour from the

manually identified points. The contour is then deformed under internal and external

forces. After the boundary of the prostate is found in the selected slice, the algorithm

iteratively propagates the resulting boundary to the adjacent slices. The segmentation
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process needs to be paused from time to time to manually edit the contours, which requires

much human interaction.

A 2D prostate segmentation algorithm is introduced by Ladak et al. [122] who have

employed a Discrete Dynamic Contour (DDC). This algorithm requires four initial points

which should represent the prostate shape and be close to the prostate boundary. Also,

the first and the third initial points should be positioned approximately on the axis of

symmetry. Even with a good initialization, the results of some images need to be edited

by moving the vertices which are distant from the boundary to the prostate boundary.

The authors have classified the ultrasound images into three categories: easy, moderate,

and difficult. For the easy images, no editing is required. Moderate images need to be

edited and re-deformed once, whereas the difficult images are required to be edited and

re-deformed at least two times. Hence, this algorithm requires a great deal of manual

interaction and produces operator-dependent results.

Applying the dyadic wavelet transform and deformable contour, Chiu et al. [123, 124]

have developed another semi-automatic method. Four initial points are required, and they

should be adjacent to the prostate boundary to prevent the contour from being attracted

to false edges due to noise, which leads to operator-dependent results.

Jendoubi et al. [125] have used balloon and GVF deformable contours. Their results

are promising, but not accurate, because only a median filter is chosen for enhancing the

ultrasound images. Although the median is powerful, it cannot filter out ultrasound image

noise. Furthermore, no evaluation is provided to judge the accuracy of this algorithm.

Employing deformable superellipses, Gong et al. [126] have offered a semiautomatic

technique for prostate segmentation. The algorithm uses fixed length sticks (15 pixcels)

to enhance the contrast of the ultrasound images. This technique requires more than two

points to determine the scale of the prostate gland. Moreover, the authors have used a

large number of manual outlining images as a training set to find the optimal parameters

and their distribution. This training data represents most of their data. In addition, the

usage of manual segmented images for training makes the results biased to the training

data. Since prostate images have many different shapes, it is challenging to find a single

mean shape which represents the variability of the prostate shapes.

Another semiautomatic algorithm has been presented by Pathak et al. [127]. It consists
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of a weak membrane filter, fixed sticks technique, and basic knowledge to segment the

prostate from the ultrasound images. Since the seed point is identified manually, the

algorithm is operator-dependant. Also, the selected seed point must be in the mid-gland

region of the image. This is essential because the edges which are more than two standard

deviations distant from the seed point are removed. Furthermore, this algorithm uses

a stick technique with fixed length, 15 pixels, to enhance the image. In this chapter,

cascading sticks with lengths ranging from 3 pixels to 17 pixels substantially enhance the

image much more than the fixed length proposed in this paper.

Abolmaesumi et al. [128] have reported a semi-automatic algorithm, based on the

Interacting Multiple Model (IMM) estimator, along with a Probabilistic Data Association

Filter (PDAF). They have used a fixed length sticks filter with 15 pixels in length, to

enhance the ultrasound images as a preprocessing stage. Their algorithm requires a seed

point inside the prostate to be identified manually. However, their algorithm exhibits some

limitations. All the cavity boundary points should be observed from a point inside the

cavity to prevent the algorithm from segmenting some practical prostate shapes. Also,

this algorithm is very sensitive to the location of the seed point; In fact, any small shift of

the seed point location changes the resulting contour. Since, no evaluation exists for this

algorithm, it is difficult to determine its accuracy.

Adopting morphologic operators and fuzzy membership functions, Sahba et al. [129]

have presented a semiautomatic algorithm for prostate segmentation. The algorithm de-

pends on a minimum level of user interaction by manually identifying some parameters;

however, the authors have acknowledged that their technique has introduced many param-

eters that need to be adjusted.

4.2.2 Automatic Prostate Segmentation

Some researchers have proposed automatic algorithms[130–135] for prostate segmentation

in 2D ultrasound images. To avoid manual initialization, manual segmented images are

used as a training set to produce the initial shape of the prostate [130–132]. However,

this technique has a severe drawback. Since the prostate glands have diverse shapes, the

initialization does not work for many images. Moreover, the use of manual segmented

images in the training can lead to biased results.
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Shen et al. [130] have used the previously mentioned initialization, but acknowledged

that such initializations is not possible with different prostate shapes. The authors have

used Gabor filter features to segment the prostate gland. The evaluation of this algorithm

is calculated for only eight images, which is not good enough to prove the stability of the

algorithm.

Betrouni et al. [131] have used 25 out of 30 images as a training set to generate the

average shape. In [132], the authors have used 35 images as a training set. Then, they

have tested the algorithm with 10 images, 4 of which were used in the training set. The

average shape in both papers has a similar shape as the test prostate images.

Another technique for solving the automatically initialization problem is edge detection

[133]. To find an initial open contour, Nanayakkara et al. [133] have applied the Canny

edge detector. Then, the final contour is found by the discrete dynamic contour, but no

evaluation exists.

Richard et al. [134] have employed clustering technique and the texture features, but

no evaluation is provided for this technique and the resulting image is not that accurate.

Chiu [135] has used a special initialization method with many thresholding and user-

defined parameters, which is not suitable to many practical images. He has evaluated his

algorithm with eight images, which is not enough to validate this method.

4.2.3 Analysis of the Existing Algorithms and Research Goals

From the previous survey, the following is noted.

1. Most algorithms for prostate segmentation are semiautomatic [118–129] and require

human interaction and produce operator-dependent results. Semiautomatic algo-

rithms are sensitive to manual initialization. Some require more than two initial

points[118–126] close to the prostate boundary to prevent the contour from being

attracted to false edges due to noise. Other semiautomatic algorithms [127–129] re-

quire only one seed point. It is essential for [127] the algorithm to pick the seed

point in the mid-gland region. Algorithm [128] is also very sensitive to the location

of the seed point, and any small shift in the seed point location changes the resulting

contour.
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2. Most prostate segmentation algorithms use 2D ultrasound images [122–135], rather

than 3D images [118–120]; in fact, the segmentation of the 3D image can be achieved

by segmenting the corresponding 2D slices [121].

3. Most algorithms have adopted deformable models [118–125, 133, 135] which exhibit

the superiority of this technique over other techniques.

4. Some semiautomatic algorithms require manual editing during the segmentation pro-

cess [118–122], which implies more effort, more time, and operator-dependent results.

5. For most automatic algorithms manual segmented images are adopted as a training

data [130–132] which is not suitable for prostate segmentation for the following rea-

sons. First, due to the variability of prostate gland shapes, it is hard to find a single

mean shape which represents all the variability of the prostate shapes. As a result,

if the mean shape is not very close to the prostate boundary of the test image, the

contour is attracted to false edges due to the noise. Secondly, the training set leads

to operator-dependent results. Thirdly, it is hard to create a large training data set

in the medical field, especially if it is created by an expert.

6. Using most of the data set as a training data [126, 131, 132] makes the results of the

algorithm biased to the training data.

To overcome the limitations of the existing algorithms, some goals require to be achieved.

1. The proposed algorithm requires to be automatic.

(a) It should be operator-independent. It should not require any initial points to

be defined by an operator or any further manual editing. By doing so, the

algorithm can process hundreds of images, saving effort and time for the expert.

(b) It should not require any training data to overcome the following limitations.

i. It is quite difficult to determine a single mean shape which represents the

large variability of the prostate shape

ii. Using most of the data set for training may generate biased results, espe-

cially, for small data sets.
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iii. It is difficult to create a large training-data set in the medical field ,espe-

cially, if it is created by an expert

2. It should be accurate.

3. It should be capable of segmenting various prostate shapes. Therefore, any preset

prostate shape should not be assumed.

The proposed prostate segmentation algorithm is developed and described in Sec-

tion 4.3. The proposed algorithm has achieved the required goals.

4.3 Algorithm Description

To automatically segment and extract the prostate from the ultrasound images, a multi-

stage segmentation algorithm is proposed in this chapter. It consists of the five stages as

illustrated in Figure 4.1.

1. Building the knowledge-based rules

2. Enhancing the image

3. Generating the seed point

4. Detecting the prostate edge

5. Extracting the prostate image

Building the knowledge-based rules is the first stage of the proposed prostate segmen-

tation algorithm. Two radiologists are asked about the knowledge-based rules that they

apply to segment the prostate from the ultrasound images. These rules are summarized in

the next section. These rules are integrated in the algorithm as displayed in Figure 4.1.

In the second stage, the proposed algorithm enhances the quality of the image. The

enhancement is achieved in two steps: the proposed sequential sticks and a Gaussian filter.

Also, a comparison is conducted between the regular sticks and the proposed sequential

sticks technique to prove the significantly enhancement, gained by using sequential sticks.
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Figure 4.1: Prostate segmentation flow chart
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In the third stage, the seed point is identified automatically by the algorithm by using

the generated knowledge-based rules. The algorithm is neither sensitive to the position of

the seed point inside the prostate nor to the shape of the prostate gland.

Prostate edge detection is the fourth stage in the proposed algorithm. This stage is

the principal part of the algorithm and consists of five steps. The goal of the first step

is to find a preliminary edge map by a Canny edge detector. Since these edges contain

some false edges, they are removed in the second step by applying knowledge-based rules

and morphologic operators. In the third step, the algorithm scans the image from the seed

point in the radial direction to remove other false edges, to interpolate the missing parts,

and to find the initial boundary of the prostate. In the fourth step, the initial boundary is

then deformed by using the GVF deformable model to find the prostate’s boundary. Since

experts always tend to find the outer boundary for the prostate, the inner boundary, found

by the previous steps, is expanded by applying a small shift in the last step.

Some results of the algorithm are presented for visual inspection, and evaluated by

comparing the new algorithm results with the manual segmentation ones by distance-

based and area-based metrics. The results of the evaluation are then compared with the

results of the two other algorithms to exhibit the superiority of the proposed algorithm.

4.3.1 Building the Knowledge-Based Rules

The knowledge-based rules for segmenting the prostate from ultrasound images are col-

lected from two medical radiologists from the University of Western Ontario and Grand

River Hospital in Kitchener. These rules are summarized by the following five rules which

are applied to the proposed algorithm.

1. TRUS images consist of three different regions: the prostate, the tissues around the

prostate, and the background.

2. The background of the image is black.

3. The grey level of the prostate is low in respect to the tissues surrounding it.

4. The prostate is not in the periphery of the image, nor necessarily in the middle.

5. The prostate has a smooth curvature shape.
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4.3.2 Enhancing the Image

Speckle noise renders the segmentation of ultrasound images challenging. The goal of

the pre-processing stage is to eliminate the speckle noise and enhance the edges. First,

the contrast of the image is enhanced by using the proposed sequential sticks technique.

Secondly, the noise is further reduced by applying a Gaussian filter. These two steps are

discussed in more detail in the next two subsections.

4.3.2.1 Sequential Sticks Technique

Most image enhancement techniques blur the edge information in order to filter out the

noise in the images. The sticks technique is one of the powerful techniques for removing

speckle noise, and at the same time, improving the edges. The sticks technique detects

whether a line is passing through each pixel, which is related to line detection techniques.

The main idea behind this technique is to apply a set of templates as a filter bank and

find the largest filter output at each pixel. For the N × N neighbourhood in the image,

there are 2N − 2 short lines that pass through the central pixel with N pixels in length.

The sum of the pixel values along each line segment is calculated. The largest sum of the

segments is put in the centre pixel of N×N sub-matrix in the image. This step is repeated

for the entire image [136, 137]. Then, the intensity level of the image is readjusted to the

original level. Figure 4.2 illustrates different sticks whose length is five pixels. Czerwinski

et al. [137] have studied the effect of stick length and thickness. They have found that

increasing stick length remove more speckle noise, while blurring the details of the tightly

curving edges. They have also found that increasing stick thickness enhances the broad

edges, while blurring the thin edges. For more information about this technique, the reader

can consult the literature [136, 137].

In this research, one pixel stick thickness is adopted to avoid losing any of the thing

edges. Some researchers [126–128] have used the sticks technique with a length of 15

pixels to enhance ultrasound images. By conducting some experiments with 50 images,

it is found that applying sequential sticks with lengths varying from 3 pixels to 17 pixels,

an increment of two improves the details of the tightly curving edges and decreases the

speckle noise much better than the fixed sticks technique. Figure 4.3 illustrates the effect

of changing a stick length. It shows that increasing the stick length reduces more speckle
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Figure 4.2: Different sticks five pixels in length

noise. Figure 4.3 shows also the dramatical enhancement gained by applying the proposed

sequential sticks over the fixed length sticks. The procedure of the proposed sequential

sticks technique is as follows. The sticks technique is applied with a length of 3 pixels to

enhance the details of the tightly curving edges. Next, the output image from this process

is used as an input image to the next sticks which are 5 pixels in length. The output from

this is used as an input to the next size of sticks and so on. Sticks with odd lengths between

3 and 17 pixels are used. A small enhancement of the image is gained by increasing the size

of the sticks to more than 17 pixels. Further improvement does not justify the processing

time. To demonstrate the improvement gained by applying the sequential sticks over the

fixed sticks, the edge map is generated twice, as depicted in Figure 4.4. The first edge

map is obtained by enhancing the image by using fixed sticks with a length of 15 pixels

[126–128], whereas the other one is generated after applying a sequential sticks technique

with lengths from 3 pixels to 17 pixels with an increment of 2 pixels.
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Raw ultrasound image Edge map (no sticks)

  

Enhanced image (9 pixels) Edge map (9 pixels)

  

Enhanced image (15 pixels) Edge map (15 pixels)

  

Enhanced image (17 pixels) Edge map (17 pixels)

  

Enhanced image (3–17, step = 2 pixels) Edge map (3–17, step = 2 pixels)

Figure 4.3: Effect of changing stick length
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Figure 4.4: Comparison between fixed and sequential sticks. The edge map after applying

(a) fixed sticks with 15 pixels in length and (b) sequential sticks with lengths from 3 to 17

with an increment of 2 pixels
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4.3.2.2 Gaussian Filter

The goal of the second step of the image enhancement is to further reduce the noise to

improve the edge map by applying a 20 x 20 Gaussian kernel, where σ = 5.

4.3.3 Generating the Seed Point

In order to automate the segmentation process, the proposed algorithm require to locate

a seed point in the prostate. The proposed algorithm uses this seed point to filter out the

false edges as described in Section 4.3.4.2 and find the initial boundary of the prostate as

described in Section 4.3.4.3. The proposed algorithm does not require the seed point to be

in the centre of the prostate. Hence, it is not difficult to find a seed point in the prostate.

This is achieved by using knowledge-based rules (rule 1 to rule 4), described in Section 4.3.1.

The input of this stage is an ultrasound image and the outputs are the x and y coordinates

of the seed point. To identify a point inside the prostate gland, the algorithm should look

for the low intensity pixels because the grey levels of most of the pixels in the prostate are

darker than those surrounding the tissues, rule 3. Because ultrasound manufacturers have

arbitrarily designated the background of the ultrasound images as black, rule 2, a factor

that affects the algorithm results, the algorithm replaces the background of the image with

a white colour before searching for the low intensity pixels. The prostate gland is not in

the periphery of the image as stated in rule 4; therefore, the first and the last third of

the rows, and the first and the last quarter of the columns, are excluded from the seed

point calculations. Even though the excluded parts might include part of the prostate, this

operation increases the stability of the seed point localization by eliminating the shadowing

and focusing on the part of the image which contains most of the prostate gland. Primarily,

the algorithm sorts the rest of the pixels in the image according to their intensities. The

number of low intensity pixels that is considered for the seed point localization is defined as

ns. The ratio between these ns pixels and the total number of pixels, which are considered

in the seed point calculations, is defined as P . For different image sizes, the algorithm

picks the same ratio P of pixels to calculate the median coordinates of these pixels and

assigns this median to the seed point. The algorithm is not sensitive to the value of P .

Nevertheless, some guidelines are proposed for the selection of this value. If the value of
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P is high, close to 1, some of the high intensity pixels are considered in the seed point

evaluation which can affect the result. However, if the value of P is small, close to 0,

the result may be affected by the noise. The reason for choosing the median instead of

the mean in the seed point evaluation is to render this stage more robust against noise.

This technique is tested by selecting different values of P for 50 TRUS images, where the

prostate glands are at different positions in the image, and exhibit different shapes. It is

found that the P value should be in the range of (0.2: 0.8) to yield a seed point inside the

prostate. A value of 0.5 representing P is adopted.

4.3.4 Detecting the Prostate Edge

At this crucial stage, the algorithm employs the enhanced image, the seed point, and

knowledge-based rules to find the prostate boundary. This stage consists of five steps.

1. Applying Canny edge detection

2. Eliminating the false edges

3. Finding the initial prostate boundary

4. Applying the GVF deformable model

5. Finding the outer boundary of the prostate

The details are described in the following subsections.

4.3.4.1 Applying Canny edge detection

In this stage, a preliminary edge map is obtained by using the Canny edge detector to find

the weak edges, even if more false edges are generated, because they are removed later by

using knowledge-based rules and morphological operators.

4.3.4.2 Eliminating the False Edges

The newly developed algorithm adopts the gained knowledge to recognize images. By

using rule 3, described in Section 4.3.1 which states, The grey level of the prostate is low in
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respect to the tissues surrounding it, most of the false edges are eliminated by scanning the

image in a radial direction from the seed point, and removing any false edge that represents

a light to dark transition. This step is similar to the method in the literature [127]. The

previous step removes most of the false edges and breaks the rest of the false edges into

short segments. To filter out these short segments, a morphological opening is applied to

remove all the linked pixels with areas less than 50 pixels.

4.3.4.3 Initial Boundary Detection by Radial Scanning

In this stage, the edge map is scanned from the seed point in a radial direction to find the

initial boundary of the prostate. Also it is assumed that there are still some false edges in

the edge map that have to be eliminated. To achieve this, the algorithm requires rule 5,

described in Section 4.3.1, which states The prostate has a smooth curvature shape. The

algorithm calculates the distance between each edge pixel and the seed point. Because the

boundary of the prostate is smooth, this distance should change gradually. Therefore, any

sudden change in the radial distance indicates a false edge pixel and it is eliminated. Then,

the algorithm uses interpolation to find any missing parts of the contour and consequently,

obtains the complete smooth prostate boundary which is considered as the initial contour

for the next step.

4.3.4.4 Gradient Vector Flow (GVF) Deformable Contour

The boundary detected in Section 4.3.4.3 is considered as an initialization for the GVF

deformable contour, described in Section 3.3.7.1.1. The only modification here is that the

filtered edge map, which is generated in Section 4.3.4.2 is employed instead of generating

the edge map by a gradient operator. The parameters used in the contour are as follow.

Elasticity, α = 0.25; the rigidity, β = 0.0; and the GVF regularization coefficient, µ = 0.2.

At each deformation step, the contour is reparameterized to maintain a 5 pixels distance

between each successive vertices.
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4.3.4.5 Find the Outer Boundary of the Prostate

Experts tend to find the outer boundary of the prostate. Therefore, the inner boundary,

found through the previous steps, requires to be expanded by a fixed value. This step is

similar to another in the literature [127]. Although the fixed value which is used by Pathak

et al. is 20 pixels, in this thesis, expanding the boundary by only 3 pixels is all that is

required to attain the outer boundary of the prostate. To prove that this fixed value is

good enough to find the outer boundary, the average mean difference MD is calculated for

50 images. It is found that the average MD value is approximately equal to zero which

means that the algorithm boundary is exactly on the outer boundary.

4.3.5 Extracting the Prostate Image

This is the final stage of the algorithm. It consists of two steps. The first one is to extract

the prostate from the raw ultrasound image by using the prostate boundary found in the

previous stage. The second step is to crop the image to the size of the prostate to mitigate

the computation time and storage space of the ROI algorithm, described in the Chapter 5.

4.3.5.1 Extracting the Prostate Image

The algorithm, at this stage, extracts the prostate from the image by using the detected

boundary and the ultrasound raw image. It is note worth that the prostate segmentation

part, the focus of this chapter, is a part of the proposed complete algorithm for prostate

cancer diagnoses. It is also noteworthy that the complete diagnosis proposed algorithm

is divided into parts to decrease the complexity of the problem. To design each part

separately, any side effects of the different parts should be prevented. For instance, the

scope of this chapter is the segmentation and extraction of the prostate image, whereas the

scope in the next chapter is to find the regions inside the prostate which are more likely to

exhibit cancer. Each of these two parts involves a different image enhancement technique.

Moreover, image enhancement used in the first part does not affect that in the second

part. In other words, the side effects of the two parts are prevented. The only connection

between the two parts is a clearly defined set of input and output. For instance, the input

of the first part, prostate segmentation part, is the raw ultrasound image. The output of
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the prostate segmentation is the raw prostate image. It is important to emphasize that the

raw image is used instead of the processed image, as indicated by line A-B in Figure 4.1, to

avoid any side effects of the image enhancement that might affect the diagnosing algorithm

at a later stage.

4.3.5.2 Cropping the Image

This is the final stage of the algorithm. Here, the ultrasound image is cropped to the size

of the prostate. This stage is required for the next part of the prostate cancer-diagnosing

algorithm, the Regions of Interest ROI segmentation. Since the goal is to diagnose cancer

inside the prostate, the rest of the image is discarded. Therefore, cropping the image to the

size of the prostate saves computational time and storage space during the classification of

the cancerous regions in the image.

4.4 Results

The proposed segmentation algorithm is applied to 50 ultrasound images with various

prostate shapes. The algorithm detects the boundary of the prostate, successfully, in all 50

images. Matlab 6.1 is used to implement the algorithm with an average execution time of

about 3 minutes, running on a 1.3 GHz computer, to automatically detect the boundary of

the prostate. The key point that makes the algorithm fully automatic is finding the initial

contour, as described in the next subsection.

4.4.1 Initial Contour

The principal problem in many prostate segmentation algorithms is how to find the initial

contour. As discussed in Section 4.2, some research papers use a manual initial contour

to guarantee that the initial contour is close to the prostate boundary. Other papers

describe the use of manual segmented images to find an initial contour of the prostate

gland, which does not work with some images due to the diversity of the prostate shapes.

The characteristics of the proposed initial contour are as follow:

1. The proposed initial contour is found automatically.
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2. The proposed initial contour is very close to the prostate boundary.

3. The technique for finding the initial contour is able to handle the diversity of the

prostate shapes.

Figure 4.5, Figure 4.6, and Figure 4.7 offer some results of the initial contour part of the

algorithm. Since the slices of the same prostate have similar shapes and produce similar

results, different prostate shapes are examined.

In each figure, the raw TRUS images are shown in row (a); the locations of the seed

points are shown on the raw images as small white solid circles. The results of the image

enhancement stage are shown in row (b), whereas row (c) shows the edge map images

resulted from applying the Canny edge detector on the enhanced version of the TRUS

images. The edge map images contain the prostate boundary, as well as other false edges.

Most of the false edges are removed by applying the knowledge-based rules and morpholog-

ical operators, as shown in row (d). Then, the initial boundary of the prostate is detected

by radial scanning, as shown in row (e), which is considered as the initialization of the

GVF dynamic contour.
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(a) (a) (a)

   
(b) (b) (b)

   
(c) (c) (c)

   
(d) (d) (d)

   
(e) (e) (e)

Figure 4.5: (a) The original image with the location of the seed point, (b) image after

image enhancement, (c) edge detection by Canny, (d) knowledge-based and morphological

opening, and (e) prostate initial boundary superimposed on the image
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(a) (a) (a)

   
(b) (b) (b)

   
(c) (c) (c)

   
(d) (d) (d)

   
(e) (e) (e)

Figure 4.6: (a) The original image with the location of the seed point, (b) image after

image enhancement, (c) edge detection by Canny, (d) knowledge-based and morphological

opening, and (e) prostate initial boundary superimposed on the image
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(a) (a) (a)

   
(b) (b) (b)

   
(c) (c) (c)

   
(d) (d) (d)

   
(e) (e) (e)

Figure 4.7: (a) The original image with the location of the seed point, (b) image after

image enhancement, (c) edge detection by Canny, (d) knowledge-based and morphological

opening, and (e) prostate initial boundary superimposed on the image
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4.4.2 Final Contour

For the visual inspection of the results of the proposed prostate segmentation algorithm,

Figure 4.8, Figure 4.9, and Figure 4.10 summarize final contours of the proposed algorithm

versus the manual outline. The results of the novel algorithm is fully automatic and do

not need any further editing as required in the literature [122]. From these figures, it

is clear that the proposed algorithm results are very close to the manual contours. A

detailed evaluation of the proposed algorithm results is discussed in the next section. It is

worth noting that the algorithm code is not optimized from the execution time perspective.

Thus, the computational time can be decreased significantly by avoiding the unnecessary

loops (loops consume considerable time in Matlab). The calculation time can be further

decreased by coding the loops in MEX-files. In this way, the execution of the loops are

much quicker. Moreover, the execution time can be drastically decreased by implementing

the algorithm in C language.
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Figure 4.8: Proposed automatic segmentation (dash line) versus manual segmentation

(solid line)
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Figure 4.9: Proposed automatic segmentation (dash line) versus manual segmentation

(solid line)
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Figure 4.10: Proposed automatic segmentation (dash line) versus manual segmentation

(solid line)
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4.5 Evaluation of Prostate Segmentation Algorithm

The proposed algorithm is evaluated by using distance-base and area-based metrics, adopted

in the literature [122]. The procedures of these metrics are described in the next two sec-

tions.

4.5.1 Distance-Based Metrics

The procedure of the distance-based metrics is summarized [122].

1. Find the centre of gravity of the manually identified boundary Cm.

2. Calculate the radial distances of both the manual contour and the proposed algorithm

contour from the centre point, Cm, as indicated in Figure 4.11.

3. Evaluate the differences in the distances as a function of the angle as denoted in

Figure 4.12, and expressed as

d(θi) = da(θi)− dm(θi), (4.1)

where

i = 1, 2, . . . , N

N = the total number of radial angles

da(θi) = the radial distances of the proposed algorithm contour from the centre point

Cm

dm(θi) = The radial distances of the manual contour from the centre point Cm.

4. Calculate the Mean Difference MD which indicates the average error in the segmen-

tation by

MD =
N∑

i=1

d(θi)/N. (4.2)
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5. Compute the Mean Absolute Difference MAD which shows the average absolute

error in the proposed algorithm with respect to the manual segmentation by

MAD =
N∑

i=1

|d(θi)| /N. (4.3)

6. Determine the MAXimum Difference MAXD which presents the max absolute error

in the segmentation by

MAXD = max (|d(θi)|) . (4.4)

 

Cm (0 )od    

( )
i

d θ  

i
θ  

Figure 4.11: Manual (solid) and automatic (dotted) segmentation
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Figure 4.12: Radial difference between the proposed algorithm and the manual contour as

a function of the angle

4.5.2 Area-Based Metrics

The area-based metrics procedure is also summarized [122].

1. Calculate the true positive area TP which is defined by the common area between

both the manual and the proposed algorithm contours, as displayed in Figure 4.13.

2. Compute the false positive area FP which is equal to the area inside the proposed

algorithm contour but outside the manual contour, as indicated in Figure 4.13.

3. Evaluate the false negative area FN which is represented by the area inside the man-

ual contour but outside the proposed algorithm contour, as depicted in Figure 4.13.

4. Calculate the area inside the manual contour Am.
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5. Compute the sensitivity from the following:

Sensitivity = Cs = TP/Am. (4.5)

6. Then compute the accuracy by the following formula.

Accuracy = Ca = 1− (FP + FN) /Am (4.6)

 

Proposed True Positive (TP) 

False Positive (FP) 

False Negative (FN) 

Manual Contour 

Algorithm Contour 

Figure 4.13: Area-based metrics

4.5.3 Testing the Results of the Proposed Algorithm

The distance-base and area-base metrics are adopted to evaluate the proposed algorithm

contour with respect to the manual contour. The performance of the new algorithm is

compared with the performance of the algorithms, proposed by Ladak et al. [122] and

Pathak et al. [127]. The proposed algorithm performance and that of the others are

summarized in Table 4.1.

Table 4.1 shows that the proposed algorithm is more accurate than Pathak’s algorithm.

However, there is not enough information to evaluate Pathak’s algorithm. Therefore, the

proposed algorithm is compared only with Ladak’s algorithm. The hypotheses, in this

thesis, are that the proposed algorithm has smaller MAD and MAXD errors, and higher

sensitivity and accuracy than those of Ladak’s. Although the MD error of the novel

algorithm is much less than that of Ladak’s algorithm, it is not evaluated by hypothesis

testing. A smaller MD does not mean that the errors are insignificant, yet the summations
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Table 4.1: Comparison between the proposed algorithm and two other algorithms proposed

by Ladak et al. [122] and Pathak et al. [127]

Measures
Proposed algorithm Ladak et al. [122] Pathak et al. [127]

Average Standard

deviation

Average Standard

deviation

Average Standard

deviation

MD

(pixels)

-0.009 1.609 -0.5 2.3 – –

MAD

(pixels)

3.384 0.754 4.4 1.8 7.9 –

MAXD

(pixels)

14.167 4.886 19.5 7.8 21.1 –

Sensitivity

(%)

95.607 2.508 94.5 2.7 – –

Accuracy

(%)

91.271 2.640 90.1 3.2 – –

of the positive errors and of the negative errors are close to each other. Therefore, an MD

error measure is not a powerful measure to compare the contours. However, the average

value of MD in the proposed algorithm is, approximately, equal to zero, which indicates

that this error behaves like that of a random noise. In other words, the proposed algorithm

is not biased either positively or negatively. There are two principal types of hypothesis

testing: directional (one-tailed) and nondirectional (two-tailed) hypotheses. The former

is used, when one direction change (an increase or a decrease) is specified beforehand,

whereas, the latter is used when the hypothesized change can be either an increase or a

decrease [138].

To investigate if a one-tailed hypothesis such as the MAD or MAXD error of Ladak’s

algorithm is greater than that of the proposed algorithm, the procedure given in Ap-

pendix B is conducted. During the analysis, Ladak’s algorithm is represented by the

subscript 1 and the proposed algorithm is represented by the subscript 2.
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To investigate if a one-tailed hypothesis such as the sensitivity or accuracy of the

proposed algorithm is greater than that of the Ladak’s algorithm, the same procedure given

in Appendix B is applied, but the subscripts are exchanged. Thus, Ladak’s algorithm is

assigned subscript 2 whereas the proposed algorithm is assigned subscript 1.

The number of images used in the proposed algorithm and Ladak’s algorithm are 50

and 117, respectively. Therefore, the degree of freedom df is equal to 165. The critical

value tcv is equal to 1.654 with a 0.05 level of significance, α = 0.05. This value is obtained

from the t statistical tables [138]. Table 4.2 and Table 4.3 indicate the hypotheses testing

for MAD, MAXD, sensitivity and accuracy. The decision of all these hypotheses is to

reject the null and support the alternative hypotheses, proving with a statistical confidence

that the new algorithm is better than the one obtained by Ladak et al.

Table 4.2: Hypotheses testing for MAD and MAXD errors

Measures Ladak

x̄1

Proposed

x̄2

Ladak

s1

Proposed

s2

s2
p sx̄1−x̄2 tobs tcv Decision

MAD 4.4 3.384 1.8 0.754 2.447 0.264 3.843 1.654 Reject

MAXD 19.5 14.167 7.8 4.886 49.862 1.193 4.470 1.654 Reject

Table 4.3: Hypotheses testing for sensitivity and accuracy

Measures Proposed

x̄1

Ladak

x̄2

Proposed

s1

Ladak

s2

s2
p sx̄1−x̄2 tobs tcv Decision

Sensitivity 95.607 94.5 2.508 2.7 6.993 0.447 2.477 1.654 Reject

Accuracy 91.271 90.1 2.640 3.2 9.269 0.514 2.276 1.654 Reject

4.6 Summary

In this chapter, a multi-stage computerized technique is proposed to automatically detect

the boundary of the prostate in TRUS images. The new algorithm consists of five stages. In

the first stage, the knowledge-based rules are built off-line. In the image enhancement stage,
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the algorithm enhances the edges, and at the same time, filters out the noise in the image

by the proposed sequential sticks technique and Gaussian kernel smoothing as described

in the second stage. Then, a seed point is found automatically inside the prostate by using

knowledge-based rules in the third stage. In the fourth stage, the edge map is found using

a Canny edge detector. The false edges are then removed by applying knowledge-based

rules collected from experts and morphological operators. After the prostate boundary is

found by radial scanning the image from the seed point, the resultant boundary is adopted

as an initial contour for the GVF deformable model. Afterwards, the algorithm finds the

outer boundary of the prostate. In the last stage, the prostate is extracted from the raw

ultrasound image by using the previously found boundary. Then, the algorithm crops the

image to the size of the prostate to save computational time and storage space for the

regions of interest segmentation which is described in the following chapter. The newly

devised prostate segmentation algorithm is fully automated and does not require any input

from the operator. Consequently, the results of the algorithm are operator-independent.

Moreover, the program can be applied for twenty-four hours a day to segment hundreds

of images. The proposed algorithm is evaluated with respect to manual outlining by using

distance-based and area-based metrics. The automated algorithm is compared with two

well-known semi-automatic algorithms to show that it is superior. With hypothesis testing,

the superiority of the proposed algorithm is also proven. The presented results show that

the proposed algorithm is capable of efficiently extracting prostate images with any shape

and orientation from ultrasound images for further analysis.





Chapter 5

Regions of Interest Segmentation

5.1 Introduction

The purpose of this part of the research is to select the regions, which are more likely

to develop cancer. In this chapter, a novel approach by using a level set is proposed to

accurately identify the hypoechoic regions which are more likely to show cancer. The

proposed algorithm can assist the radiologist in identifying the regions which require to be

medically examined by biopsies. Also, the proposed technique saves considerable time and

effort.

5.2 Related Work

Some researchers have introduced various techniques for ROI segmentations. Felzenszwalb

et al. [139] have proposed a graph-theoretic approach to segment different regions in

the image. Although this approach indicates promising results for some images, it is

not suitable for ultrasound images. Hui [140] has tried the graph-theoretic approach to

segment different regions in ultrasound images. However, the results are poor because it

produces concentric ring-shaped regions, as portrayed in Figure 5.1. Therefore, Hui [140]

has abandoned this approach and adopted a simple thresholding technique. However, it too

has its own limitations, since it assumes the availability of the boundary of the transition

81



82 Prostate Segmentation and ROI Detection in TRUS Images

zone which is usually not available.

 

 

Figure 5.1: Regions segmentation using graph theory [140]

Another technique has been suggested by Mohamed et al. [141, 142] to segment the ROI

by using Gabor filter. However, this technique also generates concentric regions, defeating

the purpose of ROI segmentation and degrading the performance [140]. Concentric regions

cause classification confusion, as described in Section 5.3. Besides, this technique misses

some regions which are marked by the expert radiologist. Moreover, using most of the data

set as a training data can lead to over fitting or biasing problems. To avoid any biased

results, it is better to utilize unsupervised technique. Potocnik et al. [143] have chosen

region growing to detect the ovarian follicle in ultrasound images. They have based their

algorithm on their knowledge that the follicles appear as homogeneous regions. However,

the produced edges were jagged. Fukushima et al. [144] have used Neural Networks NN to

diagnose diffuse liver diseases. They have chosen five ROI (32x 32 pixels). They consist of

a centre one and four overlapped ROIs. Each of the overlapped ROI contains half of the

centre ROI. Then, the authors have calculated some features for these ROIs and use a NN

as a classifier. A large training set is required which is not available in this thesis. Zayed

et al. [145] have used fuzzy c-means to segment the fetal ultrasound images, presenting

some preliminary, yet promising, results.
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5.3 Goals of the ROI Segmentation Algorithm

The main purpose of the ROI segmentation is to find the regions in the prostate which

are more likely to exhibit prostate cancer. The goals considered during implementing the

proposed ROI algorithm are:

1. The algorithm should not require any training data so as to avoid any over-fitting or

biasing results. It is challenging to create a decent training-data-set in the medical

field, especially if it is created by an expert.

2. The resultant regions should not overlap; Ri ∩ Rj = φ for i 6= j. If this condition is

not fulfilled, this leads to a confusion situation in the classification. For instance, if

Ri ∩ Rj = Rc, and the classifier labels Ri, and Rj with different classes, the class of

the intersection region Rc is unavailable.

3. The obtained ROI should contain the regions which are marked by the experts to

ensure that the proposed algorithms do not miss any cancerous regions.

4. The novel algorithm should be able to segment multiple regions with any shape.

5. The proposed algorithm should be able to segment the hypoechoic regions which

have weak edges or even no edges.

As discussed in Sections 3.3.7 and 4.2, the deformable models are quite powerful ap-

proach for image segmentation. One of the parametric deformable models is successful in

segmenting the prostate image in Chapter 4. Although the parametric dynamic contour

technique can segment a single region quite well, it is very difficult to segment multiple

regions, as required in this chapter. It is easier to transfer the problem into a 3D one

by using a level set approach to handle the topology changes such as splitting and the

merging of the contours. The algorithm proposed in this chapter requires one of the geo-

metric deformable models called ”active contours without edges,” discussed previously in

Section 3.3.7.2.1. The details of the proposed algorithm are described in the next section.
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5.4 Algorithm Description

The proposed algorithm for ROI segmentation consists of the five main stages in Figure 5.2.

1. Building the ROI knowledge-based rules

2. Enhancing the image

3. Finding the hypoechoic regions

4. Eliminating the regions which are not likely to exhibit cancer

5. Extracting the ROI

In the first stage of the proposed ROI algorithm, the ROI knowledge-based rules are built

offline. These rules are built by using the knowledge of the two medical radiologists, as

discussed in Section 4.3.1.

In the second stage, the proposed algorithm replaces the background of prostate image

by a bright colour to force the contours to select the hypoechoic regions, and enhances the

contrast of the prostate image using the proposed sequential sticks technique, discussed in

Section 4.3.2.1.

The third stage, finding the hypoechoic regions, is the principal stage in the algorithm.

In this stage, the newly developed algorithm starts by drawing an initial contour which

does not require any points to be entered by an operator. Then, this initial contour

deforms under the inside and outside forces. This initial contour can be split into multiple

contours. These contours can be split or merged to minimize the energy function, until the

minimum value of the energy function is achieved. In each iteration, the background colour

is dynamically changed to prevent the contours from selecting the prostate and focus on

the regions in the prostate. The last step is to mark the different regions inside the final

contours.

In the fourth stage, the proposed algorithm eliminates the regions which are not likely to

be cancerous. First, the algorithm eliminates the small regions which represent the urethra

and the clustered noise regions. Then, the proposed algorithm eliminates the central zone

because it is not likely to have cancer, as discussed in Section 2.2.



Regions of Interest Segmentation 85

 
START 

Read prostate image 

Deform the dynamic contours 

Eliminate the urethra and the 

clustered noise regions 

Find the apex of the prostate 

gland  

ROI knowledge-

based rules 

Enhance the contrast using 

sequential sticks technique 

2-Enhancing the image 

Draw the initial contour 

Find the hypoechoic regions 

END 

1-Building the ROI 

knowledge-based rules 

 

3- Finding the hypoechoic regions 

4- Eliminating the regions which  are not likely to exhibit cancer 

A 

B 

5- Extracting the ROI  

Eliminate the central zone 

region 

Extract the ROI from the raw 

prostate image 

Change the background of the 

prostate image to a bright colour 

Figure 5.2: Proposed regions of interest segmentation flow chart
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In the last stage, the algorithm extracts the regions of interest from the raw prostate

image and not from the processed image to be ready for further analysis.

5.4.1 Building the ROI Knowledge-Based Rules

The main knowledge-based rules for the ROI segmentation are now summarized.

1. The hypoechoic regions are more likely to exhibit cancer

2. The peripheral zone is more likely to show cancer.

3. The central zone is unlikely to have cancer.

4. It is less likely to have many scattered small regions of cancer that can be recognized

radiologically.

5.4.2 Enhancing the Image

This stage consists of two steps. In the first step, the proposed algorithm replaces the

background of prostate image by a bright colour to ensure that the regions inside the

contours are the hypoechoic regions, not hyperechoic regions. It is found that replacing

the intensity level of the background of the prostate image by 0.7 or more for the first

iteration ensures that the algorithm selects the hypoechoic regions. It is worth noting

that the background colour of the prostate image changes dynamically during the contour

deformation.

The goal of the second step of this stage is to enhance the contrast of the different

regions of the prostate image. The proposed sequential sticks technique is adopted which

is successful for enhancing the ultrasound image, as illustrated in Section 4.3.2.1. In this

step, sequential sticks with different lengths from 3 pixels to 11 pixels with an increment

of 2 are applied to enhance the various regions inside the prostate.

5.4.3 Finding the Hypoechoic Regions

The goal of this primary stage is to find the hypoechoic regions inside the prostate by using

geometric deformable models. This stage consists of the following.
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1. Draw the initial contour

2. Deform the dynamic contours

3. Find the hypoechoic regions

In the first step of this stage the proposed algorithm draws an initial contour. This initial

contour does not require any initial points to be defined manually.

In the second step the proposed algorithm deforms the initial contour constructed in

the previous step. Then, this contour is splitted into multiple contours. Some of these

contours may be merged later. Then, the proposed algorithm keeps deforming, splitting,

and merging the contours until the energy function is minimized.

The last step of this stage, find the hypoechoic regions, is straightforward. In this

step, the algorithm marks the hypoechoic regions which have positive level set values as

illustrated in Figure 3.7.

The details of these steps are given in the following subsections.

5.4.3.1 The Initial Contour

The goal of the first step is to draw an initial contour. It does not require any points to be

entered manually. The initial level set function φo represents a part of a right cone centred

in the image such that the zero-level contour is a circle inside the image as illustrated in

Figure 5.3 and Figure 5.4.

The initial level set function is to achieve the required shape displayed in Figure 5.3 is

given by the following equation:

φo (x, y) = φ (t = 0, x, y) = h−
√

(x− xc)
2 + (y − yc)

2, (5.1)

where

φo is the initial level set function.

xc is the centre of the image in the x direction.

yc is the centre of the image in the y direction.
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h is a shift given by the following equation.

h =
min(r, c)

2
− b, (5.2)

where

r is the number of rows of the prostate image.

c is the number of columns of the prostate image.

b is a constant ≥ 0 to attain a closed contour. b = 3 is chosen in the proposed algorithm.

The value of the initial level set function inside the initial contour is positive, and outside

the initial contour is negative, as illustrated in Figure 3.7. The initial contour Co, initial

zero level set, is found as follows:

Co = {(x, y) ∈ Ω : φo(x, y) = 0} , (5.3)

where

φo is the initial level set function.

Ω The set of the prostate image.

5.4.3.2 Dynamic Contours Deformation

The active contours without edges technique, described in Section 3.3.7.2.1 is adopted.

The energy function which required to be minimized is given in 3.39. A regularized version

of Heaviside H and Dirac δo functions is also required to be able to evaluate the Euler-

Lagrange equation for the unknown function φ. The regularized version of H, δo functions,

given in 3.34, are denoted by Hε , and δε, respectively. Hε, is formulated as follows [61]:

Hε(z) =
1

2

(
1 +

2

Π
arctan

(z

ε

))
(5.4)

Hε converges to H as ε approaches zero. Figure 5.5 shows Hε(z) versus H(z). Thus, δε is
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Figure 5.5: Hε(z) versus H(z)

computed as follows:

δε =
d

dz
Hε(z) =

1

π

(
ε

z2 + ε2

)
. (5.5)

and the energy function in 3.39 is written as

Fε(c1, c2, φ) = µ
∫
Ω

δε (φ(x, y)) |∇φ(x, y)| dx dy

+ν
∫
Ω

Hε (φ(x, y)) dx dy

+λ1

∫
Ω

|µo(x, y)− c1|2 Hε (φ(x, y)) dx dy

+λ2

∫
Ω

|µo(x, y)− c2|2 (1−Hε (φ(x, y))) dx dy.

(5.6)

The equation in φ(t, x, y) becomes

∂φ

∂t
= δε(φ)

[
µ div

( ∇φ

|∇φ|
)
− ν − λ1(uo − c1)

2 + λ2(uo − c2)
2

]
= 0. (5.7)

The initial condition is shown in 5.1 and 5.2, whereas the initial contour is found by using

5.3. Let ∆t be the time step, and h be the space step. As a result, any pixel in the image

can be represented by using the space step h as follows. (xi, yi) = (ih, jh). Consequently,

the level set function at any time is expressed by

φn
i,j = φ(n∆t, ih, jh), n ≥ 0, φo = φo. (5.8)
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The equation in φ can be discretized by using the following finite differences:

∆x
−φi,j = φi,j − φi−1,j, ∆x

+φi,j = φi+1,j − φi,j,

∆y
−φi,j = φi,j − φi,j−1, ∆y

+φi,j = φi,j+1 − φi,j.
(5.9)

Consequently, 5.7 is discretized as follows [61]:

φn+1
i,j −φn

i,j

∆t
= δh

(
φn

i,j

) [
µ
h2 ∆

x
−.

(
∆x

+φn+1
i,j√

(∆x
+φn

i,j)
2
/(h2)+(φn

i,j+1−φn
i,j−1)

2
/(2h)2

)

+ µ
h2 ∆

y
−.

(
∆y

+φn+1
i,j√

(φn
i+1,j−φn

i−1,j)
2
/(2h)2+(∆y

+φn
i,j)

2
/(h2)

)

−ν − λ1 (uo,i,j − c1 (φn))2 + λ2 (uo,i,j − c2 (φn))2]
(5.10)

φn+1 is obtained by solving 5.10 iteratively.

The algorithm used in this step is summarized as follows.

1. Use the initial level set function φo(φn, n = 0), generated in the previous step 5.1.

2. Calculate c1(φ
n) and c2(φ

n) by using 3.40 and 3.41. For convenience, these equations

are rewritten as

c1(φ
n) =

∫
Ω

uo(x, y)H (φn(x, y)) dx dy

∫
Ω

H (φn(x, y)) dx dy
(5.11)

and

c2(φ
n) =

∫
Ω

uo(x, y) (1−H (φn(x, y))) dx dy

∫
Ω

(1−H (φn(x, y))) dx dy
(5.12)

3. Replace the background of the prostate image by c2 (φn) to prevent the contours from

selecting the prostate and focus on the regions inside the prostate.

4. Obtain φn+1 by solving the 5.10.

5. If the stationary solution is achieved, stop the program; otherwise increment the

counter (n = n + 1) and go to step 2.
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The stopping criterion, developed in this research is computed as

∫
Ω

H (φn+1(x, y)) dx dy +
∫
Ω

H (φn(x, y)) dx dy

−2
∫
Ω

(H (φn+1(x, y)) H (φn(x, y))) dx dy ≤ ζ.
(5.13)

To explain the proposed stopping criterion, consider an image with only one region, as

shown in Figure 5.6. The first term of the proposed criterion,
∫
Ω

H (φn+1(x, y)) dx dy, is

the area of the left ellipse which represents the marked region in the iteration number

(n + 1). The second term of the stopping criterion,
∫
Ω

H (φn(x, y)) dx dy, is the area

of the right ellipse which represents the marked region in the previous iteration (n).

The area of the region number 2 in Figure 5.6 represents the area of the marked re-

gion which is not changed from iteration (n) to iteration (n + 1) and is computed from∫
Ω

(H (φn+1(x, y)) H (φn(x, y))) dx dy. Twice this area is subtracted in the third term, be-

cause the area is added twice in the first two terms. The left side of the stopping criterion

represents the total number of pixels added to, region 1 in Figure 5.6, or removed, region 3

in Figure 5.6, from the marked regions. The stopping factor ζ on the right side is used to

insure the conversion of the solution. A fixed value of 15 pixels is assigned for the stopping

factor ζ of all the images.

There are some parameters for adjusting: λ1, λ2, h, ∆t, ε, µ, and ν. The parameter

λ1 represent the weighting factor for the regions inside the contours, whereas λ2 is the

weighting factor for the regions outside the contour. Both weighting factors λ1, and λ2 are

set to one to make sure that contours are neither biased to the inside nor to the outside

regions (λ1 = λ2 = 1). The space step h is set to one (h = 1) to obtain a fine grid, which in

turn enables the contours to capture the fine details. The time step ∆t is chosen to be 0.5.

The regularization factor ε is set to 1. Chan et al. [61] have used various values for the

length parameter µ for different images ranging from 0.0000033 x 2552 to 2 x 2552. In the

proposed algorithm, a fixed value for the length parameter µ = 0.01 x 2552 is used. The

parameter ν does not have a fixed value to enable the operator to obtain various cases.

After all, the goal is to provide the radiologists with tools to facilitate the analysis of the

images, not to replace the radiologists. The values of ν are included with the results.
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Figure 5.6: Stopping criterion

5.4.3.3 Hypoechoic Regions Marking

The goal of this step is to find and mark the hypoechoic regions, because they are more

likely to exhibit cancer as stated in the first rule of the ROI knowledge-based rules (Sec-

tion 5.4.1). This step is straight forward. After the final level set function φn+1 is found,

as described in the previous step, the hypoechoic regions are captured inside the contours.

The hypoechoic regions are marked as shown in Figure 3.7 by applying the following equa-

tion:

ROI =
{
(x, y) ∈ Ω : φn+1(x, y) > 0

}
. (5.14)

5.4.4 Eliminating the Regions which are not Likely to Exhibit

Cancer

This stage consists of three steps as displayed in Figure 5.2.

1. Eliminate the urethra and the clustered noise regions.

2. Find the apex of the prostate gland.

3. Eliminate the central zone region.
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Usually, the urethra appears in the ultrasound images as a small hypoechoic region near

the centre of the prostate. Due to the noise of ultrasound images, some clustered noise

regions appear as very small hypoechoic regions, scattered in the prostate gland. From the

fourth rule of ROI knowledge-based rules (Section 5.4.1), ”It is less likely to have many

scattered small regions of cancer that can be recognized radiologically.” Consequently, the

goal of the first step of this stage is to eliminate these regions from the marked regions by

removing all the regions with areas smaller than 0.025 of the prostate gland area. This

factor is obtained experimentally.

In the second step, the apex of the prostate gland is obtained to find the central zone.

This step consists of three substeps. First, find the centre of the transducer by finding the

centre of the black circle in the middle bottom of the image. Secondly, find the centroid of

the prostate gland. Thirdly, extend the line connecting between the previous two points

to obtain the apex of the prostate gland.

It is stated in the third rule of the ROI knowledge-based rules (Section 5.4.1) that ”The

central zone is unlikely to have cancer.” Therefore, the goal of the third step is to remove

from the marked regions the central zone which is found by using the apex of the prostate,

identified in the second step.

5.4.5 Extracting the ROI

This is the last stage of the proposed algorithm. Here, the remaining of the marked regions

are used to extract the ROI from the raw prostate image as illustrated by the line AB in

Figure 5.2.

5.5 Results

The proposed ROI segmentation algorithm is applied to 26 prostate images. it detects the

hypoechoic regions inside the prostate, successfully, in all 26 images. Matlab 6.1 is used to

implement the algorithm. The average execution time is about half a minute, running on

a 1.3 GHz computer, to detect and extract the regions of interest from the prostate image.

The primary part in the proposed algorithm is the deformation part. The deformation

technique is capable of handling multiple regions easily. Since the number of regions is



Regions of Interest Segmentation 95

not known beforehand, the deformation technique is also capable of splitting and merging

the contours as denoted in Figure 5.7. In this figure, the top row ”a” shows the enhanced

images resulting from the image enhancement stage of the proposed algorithm illustrated

in Figure 5.2 superimposed with the initial contour computed in the first step, draw the

initial contour, of the third stage, finding the hypoechoic regions, of the algorithm. Rows

”b”, ”c”, and ”d” of Figure 5.7 indicate the dynamic deformation of the contours. The final

contours results from the second step, deform the dynamic contours, of the third stage,

finding the hypoechoic regions, of the proposed algorithm in Figure 5.2 are displayed in row

”e” of Figure 5.7.

The parametric deformable model, used in Chapter 4 is not suitable in this chapter

because it is difficult to split and merge the contours. The parametric deformable contours

are more appropriate to segment one object. Therefore, the proposed algorithm uses a

geometric deformable contour by using level set approach for segmenting multiple regions

by splitting and merging.

The area weighting factor ν enables the operator to try different cases. It is worth

noting that the obtained results are not sensitive to the change in the area weighting

factor. In other words, a large change in the area weighting factor is necessary to obtain

any noticeable effect on the resulted image. We have noticed that increasing the value for

ν decreases the total regions area. As a result, it marks the darker regions which have a

higher probability to exhibit prostate cancer. It might be related to the Gleason grading

displayed in Figure 2.5; However, the required data to confirm or rule out the finding is

not available. The area weighting factor ν, applied for each image of the 26 images is listed

in Table 5.1.

Table 5.1: Area weighting factor ν

Image 1 2 3 4 5 6 7 8 9 10 11 12 13

ν/1000 1.50 2.80 3.00 4.60 0.20 2.40 1.40 1.20 1.70 3.00 3.40 5.50 2.50

Image 14 15 16 17 18 19 20 21 22 23 24 25 26

ν/1000 2.50 5.60 6.90 5.00 3.50 6.00 2.50 3.60 2.50 3.00 2.50 0.80 3.00
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(a)Image 3: initial contour (a)Image 16: initial contour (a)Image 23: initial contour

   

(b)Image 3: iteration 5 (b)Image 16: iteration 25 (b)Image 23: iteration 5

   

(c)Image 3: iteration 17 (c)Image 16: iteration 65 (c)Image 23: iteration 21

   

(d)Image 3: iteration 81 (d)Image 16: iteration 141 (d)Image 23: iteration 53

   

(e)Image 3: iteration 273 (e)Image 16: iteration 265 (e)Image 23: iteration 237

Figure 5.7: Level set deformation: (a) the initial contour, (b, c, d) intermediate contours,

and (e) final contours
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By using the proposed ROI algorithm, it is possible to segment the hypoechoic regions

with weak or no edges. Figure 5.8 – Figure 5.11 show intermediate results of the proposed

algorithm. The top row (a) of each figure portrays raw prostate images which are the in-

puts of the proposed ROI segmentation algorithm. Row (b) reflects the enhanced images,

resulting from the second stage, enhancing the image, of the proposed algorithm, super-

imposed with the initial contours. These initial contours are computed in the first step,

draw the initial contour, of the third stage of the proposed algorithm. The final contours

after deformation resulted from the second step, deform the dynamic contours, of the third

stage are displayed in row (c). The hypoechoic regions resulted from the last step of the

third stage, find the hypoechoic regions, are displayed in row (d). The final marked regions

resulted from the fourth stage, eliminating the regions which are not likely to exhibit cancer,

of the proposed algorithm are presented in row (e) in Figure 5.8 – Figure 5.11.
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(a) Image 3 (a) Image 4 (a) Image 5

   

(b) Image 3 (b) Image 4 (b) Image 5

   

(c) Image 3 (c) Image 4 (c) Image 5

   

(d) Image 3 (d) Image 4 (d) Image 5

   

(e) Image 3 (e) Image 4 (e) Image 5

Figure 5.8: (a) Raw prostate image, (b) the initial contour superimposed on the enhanced

prostate image, (c) final contours, (d) regions inside the contours, and (e) final regions of

interest
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(a) Image 6 (a) Image 7 (a) Image 10

   

(b) Image 6 (b) Image 7 (b) Image 10

   

(c) Image 6 (c) Image 7 (c) Image 10

   

(d) Image 6 (d) Image 7 (d) Image 10

   

(e) Image 6 (e) Image 7 (e) Image 10

Figure 5.9: (a) Raw prostate image, (b) the initial contour superimposed on the enhanced

prostate image, (c) final contours, (d) regions inside the contours, and (e) final regions of

interest
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(a) Image 14 (a) Image 19 (a) Image 20

   

(b) Image 14 (b) Image 19 (b) Image 20

   

(c) Image 14 (c) Image 19 (c) Image 20

   

(d) Image 14 (d) Image 19 (d) Image 20

   

(e) Image 14 (e) Image 19 (e) Image 20

Figure 5.10: (a) Raw prostate image, (b) the initial contour superimposed on the enhanced

prostate image, (c) final contours, (d) regions inside the contours, and (e) final regions of

interest
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(a) Image 22 (a) Image 23 (a) Image 25

   

(b) Image 22 (b) Image 23 (b) Image 25

   

(c) Image 22 (c) Image 23 (c) Image 25

   

(d) Image 22 (d) Image 23 (d) Image 25

   

(e) Image 22 (e) Image 23 (e) Image 25

Figure 5.11: (a) Raw prostate image, (b) the initial contour superimposed on the enhanced

prostate image, (c) final contours, (d) regions inside the contours, and (e) final regions of

interest
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5.6 Evaluation

To evaluate the results of the proposed algorithm, two radiologists are invited to mark the

regions, on the same set of images, which are more likely to exhibit prostate cancer. One

expert is from the University of Western Ontario in London, and the other one is from

the Grand River Hospital in Kitchener. Then, the regions marked by both experts using

AND operator are computed. The total regions marked by either of the two experts are

calculated by using the OR operator.

Figure 5.12 reflects some results of the ROI proposed algorithm. The rest of the results

are shown in Appendix C, Figure C.1 – Figure C.8. In theses figures, the results of the

proposed ROI algorithm are displayed in row (a). Rows (b) and (c) show the manual

marking of the two experts. The common regions of the two experts ”AND” are displayed

in row (d), and the total marked regions by the two experts ”OR” are shown in row (e).

From these figures, it is clear that the proposed algorithm results are very close to those

of the manual marking. In the next two sections, the proposed algorithm is evaluated

using both region and pixel frameworks. The evaluation measures which are used in both

frameworks follow [3].

• Accuracy: It measures the ratio between the pixels/regions which are correctly iden-

tified to the total number of pixels/regions.

• Sensitivity: It measures the accuracy of a marking method to identify all marked

pixels/regions

• Specificity: It measures the accuracy of a marking method to identify all unmarked

pixels/regions

To illustrate the previously mentioned evaluation measures, let us consider Table 5.2.
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Table 5.2: Evaluation table [3]

Evaluated Marking
Reference

Marked Unmarked

Marked TP FP

Unmarked FN TN

Where

TP is True Positive

FP is False Positive

TN is True Negative

FN is False Negative

The evaluation measures are calculated as follows:

Accuracy =
TP + TN

TP + FP + TN + FN
∗ 100%, (5.15)

Sensitivity =
TP

TP + FN
∗ 100%, (5.16)

and

Specificity =
TN

TN + FP
∗ 100%. (5.17)
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(a) Image 1 (a) Image 2 (a) Image 3

   

(b) Image 1 (b) Image 2 (b) Image 3

   

(c) Image 1 (c) Image 2 (c) Image 3

   

(d) Image 1 (d) Image 2 (d) Image 3

   

(e) Image 1 (e) Image 2 (e) Image 3

Figure 5.12: (a) ROI algorithm results, (b) manual marking of the first expert (c) manual

marking of the second expert, (d) shared regions marked by both experts (AND), and (e)

the total regions marked by both experts (OR)
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5.6.1 Region Evaluation

To evaluate the regions wisely, it is required to calculate for each image: the total number

of marked regions selected by any of the two experts, the number of those regions selected

by the first expert ”E1”, the number of those regions selected by the second expert ”E2”,

the number of those regions selected by the proposed algorithm ”ROI”, and the number

of the extra regions ”Extra” marked by the newly devised algorithm but not marked by

the experts. Counting the regions is complex. Consider image number 22 in Figure C.7

in Appendix C for instance, where the first expert marks the right region but misses the

left one. However, the second expert has marked both the right and left regions, but he

combines them in one region. Computing the number of regions for this image is also

problematic. If the number of regions is considered one for both experts and two for the

proposed algorithm, inaccuracy results for two reasons. First, counting the regions this way

does not show that the first expert misses the left region, marked by the second expert.

Secondly, this method of counting assumes that the proposed algorithm has marked an

extra region. Of course, this is not correct because the right and the left regions are

marked by one of the experts. The region counting problem can be considered as a prime

decomposition problem. Consequently, the region of the second expert is decomposed into

its prime regions left and right. As a result, the number of regions for the second expert

is two. Thus, the total number of the marked regions is two; one of which is marked by

the first expert. The use of the novel algorithm results in marking both regions with no

extra regions. To generalize this technique to enable the computer to count all regions

directly by the prime decomposition method, a block diagram in Figure 5.13 is designed

for a maximum of three regions, but it can be extended easily to any number of regions.

The logic is straight forward. If any region is intersected by two or three other regions,

it is counted as two or three regions, prime regions, respectively. ROIri, in this figure,

represents the number of pixels of the ith region in the proposed algorithm result image.

Similarly, E1ri and E2ri represent the number of pixels of the ith region in the first and the

second expert images, respectively. The details of the percentage intersection ” ∩% ” block

are conveyed in Figure 5.14. Inside this block, the number of the intersected pixels ”I”

between regions r1 and r2 is first calculated by the intersection ”∩” block. The minimum

area ”M” of the two regions is then calculated. The intersected pixels ”I” are then divided
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by the minimum region area ”M” and multiplied by 100 to calculate the percentage of the

intersection of the two regions r1 and r2. There are two reasons for using the minimum

area of the two regions. First, this method ensures that r1 ∩ % r2 = r2 ∩ % r1, which

simplifies the analysis considerably. Secondly, if one region is intersected by two or three

other regions, and the percentage intersection between this large region and one of the

other regions, is then calculated by dividing by the large region area, the result is small,

perhaps be less than the thresholding value. As a result, the computer assumes there is

no intersection which is not true. The reason for using a thresholding value is to avoid

the regions which share a very small number of pixels, to be considered as intersected.

Therefore, two regions are considered intersected if the percentage intersection is at least

40%. The result of the thresholding block is one if there is intersection, and zero otherwise.

The extra regions are calculated by counting the regions of the proposed algorithm which

are not intersected with any of the experts’ regions. The rest of the block diagram is straight

forward. The results of the regions counting block diagram, depicted in Figure 5.13 are

summarized in Table 5.3.
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Figure 5.14: Percentage intersection block diagram

For region evaluation, two cases are studied.

1. By considering the extra regions as False Positive (FP ) regions

2. By considering the extra regions as True Positive (TP ) regions

The details of these two cases are discussed in the next two subsections.
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Table 5.3: Number of marked regions

Image Total Regions E1 E2 ROI Extra

1 2 2 2 2 0

2 2 2 2 2 0

3 2 2 2 2 0

4 3 2 3 3 0

5 2 2 2 2 0

6 1 1 1 1 0

7 3 1 3 3 0

8 2 2 2 2 0

9 2 2 2 2 0

10 2 1 1 2 0

11 4 3 3 4 0

12 1 1 1 1 0

13 1 1 1 1 0

14 1 1 1 1 1

15 2 2 2 2 0

16 1 1 1 1 0

17 2 2 2 2 0

18 2 2 2 2 0

19 2 1 2 2 0

20 2 1 2 2 0

21 1 1 1 1 0

22 2 1 2 2 0

23 2 1 2 2 0

24 1 1 1 1 0

25 3 1 3 3 0

26 1 1 1 1 0

Summation 49 38 47 49 1
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5.6.1.1 Considering the Extra Regions as the FP Regions

In the first case, the extra regions, denoted by the algorithm are considered as false positive

regions, because they have not been identified by either of the two experts. The region

evaluation of the first expert E1, the second expert E2, the proposed ROI algorithm

with respect to total marked regions are summarized in tables Table 5.4, Table 5.5, and

Table 5.6, respectively. The evaluation is carried out by the accuracy, sensitivity, and

specificity measures, described in 5.15 to 5.17.

Table 5.4: Region evaluation of the first expert (first case)

E1

Total

Marked Unmarked

Marked 38 0

Unmarked 11 27

The evaluation results for the first expert are as follow:

• AccuracyE1 = 85.53%

• SensitivityE1 = 77.55%

• SpecificityE1 = 100.00%

Table 5.5: Region evaluation of the second expert (first case)

E2

Total

Marked Unmarked

Marked 47 0

Unmarked 2 27

The evaluation results for the second expert are as follow:
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• AccuracyE2 = 97.37%

• SensitivityE2 = 95.92%

• SpecificityE2 = 100.00%

Table 5.6: Region evaluation of the proposed algorithm (first case)

ROI
Total

Marked Unmarked

Marked 49 1

Unmarked 0 26

The evaluation results for the proposed algorithm are as follow:

• AccuracyROI = 98.68%

• SensitivityROI = 100.00%

• SpecificityROI = 96.30%

5.6.1.2 Considering the Extra Regions as the TP Regions

In the second situation, the extra regions marked by the algorithm are considered as true

positive regions but are missed by both experts. The region evaluation of the first expert

E1, the second expert E2, the proposed ROI algorithm, with respect to total marked

regions, are shown in Table 5.7, Table 5.8, and Table 5.9, respectively. The evaluation is

conducted by using the accuracy, sensitivity, and specificity measures, described in 5.15 to

5.17.
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Table 5.7: Region evaluation of the first expert (second case)

E1

Total

Marked Unmarked

Marked 38 0

Unmarked 12 26

The evaluation results for the first expert are as follow:

• AccuracyE1 = 84.21%

• SensitivityE1 = 76.00%

• SpecificityE1 = 100.00%

Table 5.8: Region evaluation of the second expert (second case)

E2

Total

Marked Unmarked

Marked 47 0

Unmarked 3 26

The evaluation results for the second expert are as follow:

• AccuracyE2 = 96.05%

• SensitivityE2 = 94.00%

• SpecificityE2 = 100.00%
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Table 5.9: Region evaluation of the proposed algorithm (second case)

ROI
Total

Marked Unmarked

Marked 50 0

Unmarked 0 26

The evaluation results for the proposed algorithm are as follow:

• AccuracyROI = 100.00%

• SensitivityROI = 100.00%

• SpecificityROI = 100.00%

A summary of the region evaluation results of both cases is shown in Table 5.10. Obvi-

ously, the algorithm yields very similar results when it is compared with those of the two

experts.

Table 5.10: Summary of the region evaluation results of both cases

Measures
Case 1 Case 2

E1 E2 ROI E1 E2 ROI

Accuracy 86.49 97.30 98.65 85.14 95.95 100.00

Sensitivity 78.72 95.74 100.00 77.08 93.75 100.00

Specificity 100.00 100.00 96.30 100.00 100.00 100.00

5.6.2 Pixel Evaluation

The region evaluation presented in the previous section provides a rough evaluation of

the proposed algorithm. For a more precise evaluation, the novel algorithm results are

pixel-wisely evaluated with respect to the manual marking of the first expert A::E1, the
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manual marking of the second expert A::E2, agreed regions which have been marked by

both experts A::AND, and total regions which have been marked by any of the experts

A::OR. Moreover, the manual marking of each expert is pixel-wisely evaluated with respect

to that of the other expert E1::E2, E2::E1. Then the maximum of the proposed algorithm

evaluation is computed in the MAXA column, whereas, the minimum and average of

the experts evaluation is calculated in columns MINE and AV GE, respectively. The

accuracy, sensitivity, and specificity pixel evaluation are shown in Table 5.11, Table 5.12,

and Table 5.13, respectively.



Regions of Interest Segmentation 115

Table 5.11: Evaluation using accuracy measure (all values are a percentage)

Image A::E1 A::E2 A::And A::Or E1::E2 E2::E1 MAXA MINE AV GE

1 92.5 86.0 92.2 86.3 88.8 88.8 92.5 88.8 88.8

2 82.3 84.3 86.7 79.9 89.1 89.1 86.7 89.1 89.1

3 74.1 86.5 79.0 81.6 77.4 77.4 86.5 77.4 77.4

4 61.8 76.9 67.3 71.4 66.9 66.9 76.9 66.9 66.9

5 86.8 88.2 88.3 86.7 95.0 95.0 88.3 95.0 95.0

6 92.7 89.6 94.1 88.2 93.8 93.8 94.1 93.8 93.8

7 60.3 78.4 64.8 73.8 51.7 51.7 78.4 51.7 51.7

8 85.3 79.3 88.3 76.4 75.5 75.5 88.3 75.5 75.5

9 86.8 84.8 88.7 83.0 83.3 83.3 88.7 83.3 83.3

10 64.8 78.3 72.2 70.9 50.3 50.3 78.3 50.3 50.3

11 74.3 75.5 78.1 71.7 60.6 60.6 78.1 60.6 60.6

12 73.9 85.9 79.3 80.5 74.4 74.4 85.9 74.4 74.4

13 89.0 83.5 91.0 81.5 82.6 82.6 91.0 82.6 82.6

14 61.4 66.2 62.8 64.8 78.5 78.5 66.2 78.5 78.5

15 73.2 80.5 83.4 70.4 84.9 84.9 83.4 84.9 84.9

16 78.4 82.8 82.6 78.6 85.4 85.4 82.8 85.4 85.4

17 79.4 79.8 82.2 77.0 76.2 76.2 82.2 76.2 76.2

18 63.2 74.3 74.5 63.0 81.5 81.5 74.5 81.5 81.5

19 64.0 85.9 68.5 81.4 59.0 59.0 85.9 59.0 59.0

20 71.9 80.0 73.1 78.8 73.6 73.6 80.0 73.6 73.6

21 73.0 85.6 85.8 72.8 85.6 85.6 85.8 85.6 85.6

22 58.1 78.9 60.4 76.6 57.2 57.2 78.9 57.2 57.2

23 83.1 73.4 83.9 72.7 69.2 69.2 83.9 69.2 69.2

24 88.2 89.6 89.2 88.6 88.7 88.7 89.6 88.7 88.7

25 81.0 87.7 80.7 87.9 81.1 81.1 87.9 81.1 81.1

26 47.8 93.3 93.1 48.0 47.8 47.8 93.3 47.8 47.8
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Table 5.12: Evaluation using sensitivity measure (all values are a percentage)

Image A::E1 A::E2 A::And A::Or E1::E2 E2::E1 MAXA MINE AV GE

1 80.0 62.8 81.6 62.7 71.0 92.9 81.6 71 81.95

2 49.8 52.8 58.0 46.6 80.3 85.8 58 80.3 83.05

3 71.8 79.0 82.0 72.0 68.6 86.2 82 68.6 77.4

4 23.4 55.0 32.0 48.8 34.9 73.0 55 34.9 53.95

5 55.0 58.5 59.3 54.5 92.5 86.6 59.3 86.6 89.55

6 37.1 28.9 42.1 26.7 68.7 85.3 42.1 68.7 77

7 50.8 65.9 67.1 61.1 24.5 75.6 67.1 24.5 50.05

8 79.0 66.6 87.8 62.6 65.8 86.1 87.8 65.8 75.95

9 79.3 73.7 86.4 69.5 76.5 86.5 86.4 76.5 81.5

10 30.3 60.0 - 48.8 0 0 60 0 0

11 52.5 53.2 75.8 48.5 26.2 43.9 75.8 26.2 35.05

12 67.0 75.2 81.1 67.0 57.8 81.0 81.1 57.8 69.4

13 49.3 39.3 57.3 36.8 43.9 84.1 57.3 43.9 64

14 45.6 55.8 51.1 53.5 35.5 89.0 55.8 35.5 62.25

15 38.5 46.2 50.6 36.1 90.9 72.2 50.6 72.2 81.55

16 59.7 63.5 66.9 58.0 78.7 87.7 66.9 78.7 83.2

17 56.1 54.0 63.6 50.6 50.6 86.6 63.6 50.6 68.6

18 50.3 63.1 65.1 50.1 88.7 73.8 65.1 73.8 81.25

19 64.6 76.8 83.0 70.6 30.7 77.1 83 30.7 53.9

20 72.9 70.7 79.6 68.2 41.6 87.7 79.6 41.6 64.65

21 37.2 52.9 53.3 37.1 99.3 66.8 53.3 66.8 83.05

22 63.5 73.1 73.7 70.1 25.8 86.0 73.7 25.8 55.9

23 45.5 36.8 48.0 36.4 29.5 88.0 48 29.5 58.75

24 9.8 36.9 11.5 34.7 37.1 85.3 36.9 37.1 61.2

25 71.4 70.0 72.6 69.8 25.4 88.0 72.6 25.4 56.7

26 29.2 84.9 88.0 30.0 90.6 29.3 88 29.3 59.95
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Table 5.13: Evaluation using specificity measure (all values are a percentage)

Image A::E1 A::E2 A::And A::Or E1::E2 E2::E1 MAXA MINE AV GE

1 96.6 97.1 95.4 98.6 97.4 87.5 98.6 87.5 92.45

2 96.9 100 97.1 99.9 93.4 90.5 99.9 90.5 91.95

3 75.8 95.0 77.2 95.5 87.5 71.0 95.5 71 79.25

4 71.6 93.0 73.4 92.3 90.5 65.4 93 65.4 77.95

5 97.1 97.1 96.1 98.2 95.8 97.7 98.2 95.8 96.75

6 100 99.8 99.8 100 98.0 94.9 100 94.9 96.45

7 62.4 95.6 64.4 95.1 89.1 46.1 95.6 46.1 67.6

8 89.9 94.5 88.6 97.3 87.3 68.0 97.3 68 77.65

9 92.2 94.7 89.9 98.0 89.4 81.1 98 81.1 85.25

10 72.7 86.6 72.2 92.9 72.8 61.9 92.9 61.9 67.35

11 80.4 88.5 78.4 93.9 80.6 65.3 93.9 65.3 72.95

12 77.3 95.0 78.6 95.3 88.5 71.1 95.3 71.1 79.8

13 95.6 99.8 95.5 100 96.9 82.4 100 82.4 89.65

14 63.7 70.9 64.2 70.3 98.0 77.0 70.9 77.0 87.5

15 99.4 98.3 98.3 99.5 81.8 94.5 99.5 81.8 88.15

16 91.2 98.8 91.3 99.4 90.9 83.8 99.4 83.8 87.35

17 86.9 98.2 87.2 98.5 94.4 72.8 98.5 72.8 83.6

18 77.2 82.8 80.4 80.1 75.9 89.8 82.8 75.9 82.85

19 63.8 95.9 65.7 95.8 90.0 54.2 95.9 54.2 72.1

20 71.7 86.5 71.8 86.9 96.0 70.2 86.9 70.2 83.1

21 99.7 98.8 98.8 99.7 80.1 99.7 99.7 80.1 89.9

22 57.1 85.9 58.2 85.1 95.0 51.6 85.9 51.6 73.3

23 89.2 99.2 88.8 100 97.2 66.2 100 66.2 81.7

24 94.2 99.8 94.2 99.8 98.8 89.0 99.8 89 93.9

25 81.7 93.3 81.3 93.9 98.9 80.6 93.9 80.6 89.75

26 93.0 95.8 94.4 96.9 35.0 92.6 96.9 35 63.8
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From Table 5.11 to Table 5.13, it is evident that the algorithm yields similar results

to those of the experts. In Table 5.11, the accuracy of the evaluation of the proposed

algorithm exceeds 74.5%, except for image number 14 whose accuracy is 66.2%. This is

due to the fact that the proposed algorithm indicates an extra region, not marked by either

expert. Because of the uncertainty regarding whether the region is cancerous or not, it

is considered to be false positive region. The minimum experts’ accuracy in Table 5.11 is

47.8% for image number ”26”.

For the sensitivity evaluation Table 5.12, manual marking appears to include more

pixels than those of the hypoechoic regions, rendering the novel algorithm’s sensitivity

somewhat low. The experts’ sensitivity for image 10 is zero because each expert marks a

different region and missed the other. The proposed algorithm sensitivity for image number

10 is 60%, because the proposed algorithm has marked both regions.

In Table 5.13 (the specificity evaluation) the proposed algorithm has a higher specificity

than that of the experts’ for all images except for image number 14, because the algorithm

marks an extra region for this image, as mentioned in the accuracy evaluation. The pixels

evaluation results of Table 5.11 to Table 5.13 are summarized in Table 5.14.

Table 5.14: Pixels evaluation summary

Measures
Experts Proposed Algorithm

Min. Max. Average Standard

deviation

Min. Max. Average Standard

deviation

Accuracy 47.80 95.00 75.31 13.63 66.20 94.10 84.16 6.46

Sensitivity 0.00 86.60 50.07 23.16 36.90 88.00 66.56 14.65

Specificity 35.00 95.80 73.05 14.91 70.90 100.00 94.93 6.72

5.7 Summary

In this chapter, a ROI segmentation algorithm is developed to segment the hypoechoic

regions which are more likely to exhibit cancer and should be considered for biopsies. The
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proposed algorithm consists of five stages. In the first stage, the ROI knowledge-based rules

are built by using the knowledge of two radiologists. In the second stage, the background

of the prostate image is replaced by a bright colour such that the algorithm can select the

hypoechoic regions. Then, the contrast of the prostate image is enhanced by using the

proposed sequential sticks technique. In the third stage, the proposed algorithm draws

an initial contour, which does not require any initial points to be entered by an operator.

Then, this initial contour deforms under the inside and outside forces. A level set technique

is chosen for this stage, because it is flexible enough to detect different topologies through

the splitting and merging contours. Besides, the technique can detect the hypoechoic

regions which have weak edges or no edges. Also, during this stage, the background colour

of the prostate image is dynamically changed to prevent the contours from selecting the

prostate, and focus only on the regions inside the prostate. In the last step in this stage,

the different regions inside the final contours are marked if they have a positive level set

function. In the fourth stage, the algorithm eliminates the regions which are less likely to

be cancerous such as the small regions which represent the urethra and the clustered noise

regions. Then, the proposed algorithm eliminates the central zone because it is less likely

to have cancer as discussed in Section 2.2. In the last stage, the algorithm extracts the

ROI, for consideration of biopsies.

The results show that the proposed algorithm can handle different topologies by split-

ting and merging contours quite well. Also, the newly developed ROI algorithm can detect

the hypoechoic regions with weak or no edges. The results of the novel algorithm are com-

pared with the manual marking of two experts. The results are also compared with the

commonly regions, marked by both experts and with those marked by either expert. The

proposed algorithm is evaluated by region-based and pixel-based strategies. The evalua-

tion results show that the proposed algorithm produces very good results compared with

those of the experts’ manual marking. In addition, the proposed algorithm indicates some

regions, missed by one expert but confirmed by the other. Therefore, the proposed algo-

rithm can assist the experts in detecting the suspicious abnormal regions that should be

considered for biopsy.





Chapter 6

Conclusions and Contributions

6.1 Conclusions

The primary goal of the research, described in this thesis, is to develop a diagnostic tool

using ultrasound images for patients with possible prostate cancer. This tool assists ra-

diologists to accurately identify the suspicious regions for biopsies. Radiologists extract

the prostate image from the ultrasound image, and mark the abnormal regions that re-

quire further testing by conducting biopsies. To assist the radiologist to better identify the

cancerous regions in the prostate, the research is divided into two main parts: prostate

segmentation and Regions Of Interest (ROI) segmentation.

The manual segmentation of the prostate gland from the TransRectal UltraSound

(TRUS) image is time consuming and prone to many drawbacks, including poor accuracy

and operator-dependant results. Many algorithms have been developed for prostate seg-

mentation, and most rely on deformable models. To overcome the limitations of the man-

ual segmentation of the prostate from TRUS, two approaches are adopted by researchers

namely the semiautomatic segmentation, and the automatic segmentation.

For the semiautomatic algorithms, the operator defines some initial points, usually

on the boundary of prostate. There are rules and conditions for selecting these initial

points. The semiautomatic algorithm uses these manual initial points to construct the

initial contour. Afterward, the algorithm deforms the initial contour to find the boundary

of the prostate gland. However, sometimes the contour is attracted to some false edges

121
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instead of the prostate boundary due to the high noise of ultrasound images. Consequently,

many researchers have suggested that the initial points should be very close to the prostate

boundary. However, even with accurate initial points, some parts of the constructed initial

contour are not close enough to prostate boundary. As a result, the contour is attracted

to false edges near the prostate boundary. To overcome this problem, some researchers

have used manual editing during the segmentation process by stopping the deformation

of the contour if the contour is attracted to false edges. Then, the vertices are manually

readjusted back to the prostate boundary. This process is labour-intensive since it is

repeated as many times as required to find the correct boundary of the prostate. Due to

the effort, time and operator-dependency, the semiautomatic segmentation approach is not

adopted in this research.

The automatic approach of the prostate segmentation is superior to the previous ap-

proach. Constructing the initial contour is the key challenge of this approach. Most

automatic algorithms for prostate segmentation depend on the use of manual segmented

images as training data. However, such data is not suitable for prostate segmentation,

because it is difficult to find a single mean shape that can capture all the variability of

the prostate configurations. Consequently, if the mean shape is not close to the prostate

boundary of the test image, the contour is attracted to false edges due to ultrasound im-

age noise. Besides, it is difficult to create a large training-data-set in the medical field,

especially, if it is created by an expert.

There are two main challenges in prostate segmentation. The first challenge is to find

the initial contour of the prostate automatically without using manually segmented images

for training purposes. The second challenge is to prevent the contour from being attracted

to false edges. The proposed fully automated algorithm for prostate segmentation has

overcome these challenges. Existing automatic algorithms are employed to capture the

experts’ knowledge by using manually segmented images to construct the initial contour.

This is a lengthy and often, unsuccessful, process. In this research, experts’ knowledge is

collected from two radiologists to construct a set of abstract rules which are used during

many stages of the proposed prostate segmentation algorithm. The proposed algorithm

employs these knowledge-based rules to automatically find a seed point inside the prostate

to construct the initial contour. Such rules are far more efficient and effective in handling
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difficult images, where the prostate is not in the centre of the image, or the shape of the

prostate is skewed and different from the typical shape.

To tackle the second challenge, the proposed automatic algorithm significantly en-

hances the images by the proposed sequential sticks technique. Besides, more false edges

are eliminated by using the constructed knowledge-based rules and morphological opera-

tors. Moreover, the proposed prostate segmentation algorithm uses the Gradient Vector

Flow (GVF) deformable contour which can segment the prostate gland even if the initial

contour is not close to the prostate boundary. All these improvements confirm that the

proposed algorithm is more robust against noise. The proposed automatic algorithm is

evaluated with respect to the manual outlining by distance-based and area-based metrics.

This proposed prostate segmentation algorithm is compared with two well-known semi-

automatic algorithms to show its superiority. Hypothesis testing is conducted to prove,

with statistical confidence, that the novel algorithm is more accurate and efficient than the

other two algorithms. The proposed algorithm is operator-independent, and is capable of

accurately segmenting a prostate gland that has any shape and orientation from the ultra-

sound image. Besides, the proposed prostate segmentation algorithm can be expanded to

automatically segment the prostate in 3D ultrasound images.

The goal of the second part of this research is to find the regions of interest (ROI). These

ROI are the regions in the prostate glands that can contain specious cancerous areas. A

review of research papers on the ROI presents some challenges. The first challenge, some of

ROI segmentation techniques, such as graph-theoretic and Gabor filters, generate concen-

tric ring-shaped regions leading to classification confusion which degrades the performance.

To overcome this problem, the proposed ROI algorithm generates separate regions; that

is, there is no overlap between the generated regions. The second challenge is that the

number of abnormal regions of the prostate gland is not known beforehand. Therefore, the

problem is transferred into a 3D one by using level set approach. It is capable of segmenting

multiple regions with any shapes, and can handle the topology changes by splitting and

merging contours. The weak edges of some of the abnormal regions in the prostate gland

represent the third challenge. Thus, the proposed ROI algorithm uses one of the most

powerful geometric deformable contours called active contours without edges to segment

the regions with weak edges or no edges. Fourthly, the limited data size is a problem. The
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number of the images marked by radiologists is small, which make it very difficult to use it

to train a reliable classifier. To overcome this problem, some researches attempt to adopt

most of the data-set as a training data and a small amount of data for testing. However,

this leads to overfitting or biasing problems. Therefore, the proposed algorithm depends

on knowledge-based rules to avoid the need for any training data. The fifth challenge is

notoriously low accuracy of radiologist’s marking. Therefore, another radiologist is asked

to mark the same set of images, marked by the first radiologist. If any region is missed by

one radiologist, the second radiologist might detect it, reducing the false negative regions.

The sixth challenge is the long processing time of some ROI algorithms that require to

generate a large number of features. Therefore,extensive features generation and selection,

which require an extremely long time, are avoided. The seventh challenge is the reliable

evaluation of the ROI algorithm. To accurately evaluate the proposed ROI algorithm, a

new region evaluation technique is developed.

ROI segmentation’s results demonstrate that the proposed ROI algorithm can handle

different topologies quite well by splitting and merging the contours. Beside, the proposed

algorithm can extract the hypoechoic regions with weak or no edges. The proposed algo-

rithm results have been compared with those of two experts’ manual marking. Then, the

results are compared with the common regions that are marked by both experts and with

the total regions which are marked by either expert. The proposed algorithm is evaluated

by applying region-based and pixel-based strategies. The evaluation results indicate that

the proposed algorithm yields similar results, if it is compared with the experts’ markings,

but with the added advantages of being, fast and reliable.

The proposed algorithm also detects some regions, missed by one expert but confirmed

by the other. Therefore, the proposed algorithm is proven to assist the experts in accurately

selecting biopsy sites.

6.2 Contributions

In this research, a diagnostic tool is developed and applied to ultrasound images for pa-

tients with possible prostate cancer. This assistive tool leads to early detection, proper

management and most likely reducing the mortality rate related to this disease. As dis-
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cussed before, the diagnostic algorithm developed in this research consists of prostate

segmentation and Regions Of Interest (ROI) segmentation.

The contributions of the proposed prostate segmentation algorithm are summarized.

• It is fully automatic.

– It is by large operator-independent. It does not require any initial points to

be defined manually or any further manual editing. This will speed up the

segmentation process.

– It does not require any training data.

– It overcomes the difficulty of determine the single mean shape which represents

the large variability of the prostate shape.

– It uses all the available data for the testing phase. This will prevent the draw-

back of generating the biased results which are common when most of the data

are used for training and few data are used for the testing.

– It overcomes the scarcity of the training data sets in the medical field, especially,

if it evolves experts input.

• It is accurate.

– The proposed algorithm is compared with two other well-known semi-automatic

algorithms (Ladak’s, Pathak’s algorithms), which were used in the thesis as

benchmark. Also it is confirmed, with statistical confidence, that the novel

prostate segmentation algorithm is superior to the other two algorithms (see

Section 4.5.3, p. 76).

– It prevents the contour from being attracted to false edges.

• It is capable of segmenting various prostate shapes (see Figures 4.8–4.10, pp. 70–72)

because the algorithm does assume any preset prostate model to start from.

• It uses the proposed sequential sticks technique with variables length instead of sticks

filter with a fixed length which enables the algorithm to generate a more accurate

edge map by enhancing the small details of the prostate boundary and reducing the
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noise. A comparison study indicates a significant improvement in the edge map by

applying the proposed method (see Figure 4.4, p. 59).

The contributions of the proposed ROI segmentation algorithm are also summarized.

• The proposed ROI algorithm is based on knowledge-based rules to avoid the use of

any training data.

• It is accurate because of the following.

– It does not generate any overlapped regions.

– It can eliminate the regions that are less likely to exhibit prostate cancer (see

Section 5.4.4, p. 93).

– It is capable of segmenting suspected regions that have weak edges or even no

edges because the segmentation process depends on the region properties and

not on the edges.

– It can handle the topology changes through splitting and merging the contours

(see Figure 5.7, p. 96).

• It does not require the identification of the number of regions beforehand.

• The initial contour is generated by the proposed algorithm without any manual initial

points (see Section 5.4.3.1, p. 87).

• A new region evaluation technique is devised to accurately evaluate the proposed

ROI algorithm (see Section 5.6.1, p. 105).

• It is fast because extensive features generation and selection, which require an ex-

tremely long time, are avoided.

6.3 Future Work

This thesis describes a diagnostic tool to automatically segment the prostate gland from

ultrasound images and find the abnormal regions of the prostate that are suspected to have
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prostate cancer. A number of research projects can be investigated to extend this research

work:

• Incorporate clinical data such as Prostate Specific Antigen (PSA) blood level, PSA

density, PSA Velocity, age Specific PSA, free to total PSA, prostate volume, patient

age, digital rectal examination, and family history in the algorithms to further im-

prove the diagnosing process. Moreover, it integrates the biopsy results with the

radiologist’s marking as a gold standard in order to better evaluate the proposed

algorithms.

• Extend the work to MRI and other imaging modalities.

• Use data fusion of two or more imaging modalities to further improve the diagnosing

of prostate cancer.

• Extend the work to other types of cancer such as breast and lung cancer.

• Obtain a large data set to be able to apply multi-classification techniques such as

classifiers fusion and selection.





Appendix A

Ultrasound Characteristics

A.1 Introduction

Ultrasound is an acoustic wave like the infrasound, sound, and hypersound wave. Their

differences are not in their characteristics but in their frequency ranges. The infrasound

frequency range is between 0 to 20 Hz. The sound that can be detected by the human ear

is (20 Hz – 20 KHz). Typically, the ultrasound frequency range is between 20 KHz and 30

MHz, whereas the hypersound frequency is above 1 GHz. Ultrasound is like any acoustic

wave; it needs a medium to propagate in because it can not exist in a vacuum [146].

Since 1950, ultrasound diagnostic equipment has been available but its applications

have been very limited. The transducers worked at low frequencies, the resolution was

inadequate, and the format of the ultrasound images was black and white ”bi-stable”.

In 1972, Kossoff developed grey scale displays. The transducers’ capabilities were later

improved, enabling operation at different high frequencies. Also, the transducers’ shapes

and volumes were improved. The small size of instrument facilitated its insertion into such

areas as arteries, ureters. [147, 148]. The most noticeable advantages of ultrasound follow

[149].

• is safe

• is cost effective

• can provides useful information about the velocity and flow of the blood
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• enables working in real time

• controls resolution of the images by frequency

• is easy to handle

A.2 Fundamentals of Ultrasound

Piezoelectrical crystals transform electrical energy into acoustic energy, and vice versa.

Consequently, pieozoelectrical crystals play a principal role in producing ultrasound. Ul-

trasound behaves like radar and the transducer produces pulses that can penetrate the

human body. After the organ reflecs these pulses, the transducer detects the echoes. The

time interval between emitting the pulse and receiving it is twice the time needed for the

pulse to reach the organ. The distance between the transducer and the reflector is calcu-

lated by multiplying half of time interval between emitting and receiving the pulse, and

the ultrasound velocity. Therefore, an anatomical image can be obtained by ultrasound

[146, 150].

When ultrasound propagates in a medium, it produces disturbances in this medium

such as pressure, temperature, density, medium velocity, and medium displacement. A

sinusoidal acoustic wave is shown in Figure A.1 [149], where λ is the wavelength with a

unit of m, and T is the time period in s.

A.2.1 Attenuation of Ultrasound

When ultrasound penetrates a medium such as tissue, its intensity is reduced due to [146].

1. Divergence

2. Reflection

3. Scattering

4. Absorption

5. Refraction
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Figure A.1: Sinusoidal acoustic wave propagation as a function of (a) space at a fixed time

and (b) time at a fixed distance z

A.2.1.1 Divergence

It occurs in a non-focused ultrasound beam. As a result, the beam becomes diverted in

other directions [149].
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A.2.1.2 Reflection

When the wave encounters a discontinuity in the acoustic, such as at the interface of two

different media, part of the ultrasound beam is reflected back to the incident medium by

the same velocity, as shown in Figure A.2 [146].
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Figure A.2: Reflection and refraction of ultrasonic waves

A.2.1.3 Scattering

If the surface of the medium, which the ultrasound beam is incident on, is at least several

wave lengths, the beam is reflected. On the contrary, if the surface dimensions are smaller,

the incident beam is reflected in all directions and is scattered [146].

A.2.1.4 Absorption

When the ultrasonic beam penetrates a tissue, part of the ultrasonic energy is absorbed

by the tissue and converted into heat [149].

A.2.1.5 Refraction

When an ultrasonic beam is incident on a medium, part of this beam is reflected, and the

rest of it is transmitted or refracted into the medium with a velocity corresponding to that

medium [146].
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A.2.2 Doppler Effect

Ultrasound is relied on for measuring the flow velocity by using the means of Doppler

effect. When the ultrasound beam is reflected by a moving target whose velocity has a

component in the direction of the beam, the frequency of the reflected beam is higher, as

the target moves away from it. The Doppler frequency shift is in the audible range for

medical ultrasound frequencies. If extracted properly, it can be heard by a loud speaker.

Figure A.3 illustrates a method of measuring blood flow velocity [149].
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Figure A.3: Measuring blood flow velocity by ultrasound

A.3 Diagnostic Ultrasonic Imaging

There are various modes for displaying ultrasound images: A-, B-, C- and M- modes. A, B,

C and M are referred to Amplitude, Brightness, Constant depth and Motion, respectively.

The most common mode is the brightness mode, B. Figure A.4 depicts the A- and B- mode

images [149].
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Figure A.4: (a) A-mode: echo amplitude is displayed as a function of the depth of pen-

etration and (b) B-mode: the echo amplitude is represented by the grey or brightness

level

A.3.1 Transducers

When certain crystals are placed under pressure or mechanical stress, an electrical potential

appears on their surfaces. This is called the piezoelectric effect. Some substances have been

developed which exhibit this effect. They include lead zirconate titanate, led metaniobate,

and barium titanate. The most satisfactory substance, at frequencies as high as 10MHz, is

lead zirconate titnate [146]. A single element transducer consisting of a circular disc, two

matching layers, a lens, and backing material is signified in Figure A.5 [149].
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Figure A.5: Construction of a single-element ultrasonic transducer

A.3.2 A-Mode and B-Mode

Figure A.6 is a block diagram for an A-mode ultrasound instrument [149]. It contains a

single transducer which transmits the ultrasound pulses and receives the echoes. Then, the

echoes are displayed on an image to yield information about the distance and the strength

of the signals [146].
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Figure A.6: Block diagram of an A-mode instrument

In brightness mode, the strength of the signals is converted into an intensity level of
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grey colours [146]. The block diagram of the B-mode ultrasound instrument is shown in

Figure A.7 [149].
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Figure A.7: Block diagram of a B-mode ultrasonic imaging system

A.3.3 M-Mode and C-Mode imaging

If an A- or B-mode signal is moving across the monitor as a function of time, the display

is called the M-mode. It is used to display the motion of the organs inside the human

body (e.g., heart). The C-mode imaging acts like radar. A second transducer is needed to

detect the ultrasound waves after propagation in an object, and then displays a 2D map

of the object [149].

A.3.4 Doppler Methods for Flow Measurement

There are two types of flow measuring. The first is the Continuous Wave (CW) Doppler

as depicted in Figure A.8. The second is the Pulsed Wave (PW) Doppler in Figure A.9.

The drawback of the CW is that it cannot differentiate between the origins of the Doppler

signals, produced in the ultrasound beam. That is why, PW is preferable to CW [149].
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Figure A.8: Block diagram of a CW Doppler flow metre
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Figure A.9: The block diagram of a pulsed Doppler system

A.3.5 Colour Doppler Flow Imaging

This type of imaging displays the coloured Doppler flow image superimposed on the grey

level B mode image in real time. This imaging technique is very useful because it gives
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anatomical image and also the blood flow information in a clear and coloured presentation.

A.4 Summary

Ultrasound imaging has improved significally over the years. It has evolved from the radar

used by the Navy to detect submarines to a myriad of applications in industry, medicine

and even in homes. It is the medical applications of ultrasound that is the driving force,

not only for diagnoses, but also the treatment of diseases.



Appendix B

One Tailed Hypothesis Testing

The procedure of a one-tailed hypothesis testing about the means of two independent

samples is summarized as follows [138]:

1. State the null and alternative hypotheses:

the null hypothesis H0 : µ1 − µ2 = 0

and

the alternative hypothesis H1 : µ1 − µ2 > 0,

where: µ1 and µ2 are the means of the first and the second populations, respectively.

2. Calculate the mean and the standard of each sample by using the following formulas:

Mean of a sample = x̄ =

∑
xi

n
(B.1)

and

Standard deviation of a sample = s =

√∑
x2

i − (
∑

xi)
2

n

n− 1
, (B.2)

where:

n is the number of observations in the sample
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and

x is the ith value of the variable x.

3. Calculate the standard error of the difference between the two means as follows:

sx̄1−x̄2 =

√
s2

p

(
1

n1

+
1

n2

)
(B.3)

where

n1 and n2 are the number of observations in the first and second sample, respectively

Sp is the pooled variance and is given by

s2
p =

(n1 − 1)s2
1 + (n2 − 1)s2

2

n1 + n2 − 2
(B.4)

where

s1 and s2 are the standard deviations of the first and second sample, respectively

4. Evaluate the observed value of the difference between the two means by using statis-

tical t such that

tobs =
x̄1 − x̄2

sx̄1−x̄2

(B.5)

5. Find the critical value of t (tcv). This value can be found from one-tailed t-statistical

tables by using the degree of freedom df and the level of significance α. The most

common significance levels are 0.05 or 0.01 whereas df is calculated by

df = n1 − n2 − 2. (B.6)

6. Decide whether to reject H0. If the observed value of the t statistical test falls in

the rejection region, as displayed in Figure B.1, the null hypothesis is rejected and

the alternative hypothesis is supported. Otherwise, there is not enough evidence to

reject the null hypothesis or to support the alternative hypothesis.
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Figure B.1: t statistic test





Appendix C

ROI Algorithm Results

Figure C.1 – Figure C.8 show some results of the ROI proposed algorithm developed in

Chapter 5. In theses figures, the results of the proposed ROI algorithm are displayed in

row (a). Rows (b) and (c) show the manual marking of the two experts. The common

regions of the two experts ”AND” are displayed in row (d), and the total marked regions

by the two experts ”OR” are shown in row (e).
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(a) Image 4 (a) Image 5 (a) Image 6

   

(b) Image 4 (b) Image 5 (b) Image 6

   

(c) Image 4 (c) Image 5 (c) Image 6

   

(d) Image 4 (d) Image 5 (d) Image 6

   

(e) Image 4 (e) Image 5 (e) Image 6

Figure C.1: (a) ROI algorithm results, (b) manual marking of the first expert (c) manual

marking of the second expert, (d) shared regions marked by both experts (AND), and (e)

the total regions marked by both experts (OR)



ROI Algorithm Results 145

   

(a) Image 7 (a) Image 8 (a) Image 9

   

(b) Image 7 (b) Image 8 (b) Image 9

   

(c) Image 7 (c) Image 8 (c) Image 9

   

(d) Image 7 (d) Image 8 (d) Image 9

   

(e) Image 7 (e) Image 8 (e) Image 9

Figure C.2: (a) ROI algorithm results, (b) manual marking of the first expert (c) manual

marking of the second expert, (d) shared regions marked by both experts (AND), and (e)

the total regions marked by both experts (OR)
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(a) Image 10 (a) Image 11 (a) Image 12

   

(b) Image 10 (b) Image 11 (b) Image 12

   

(c) Image 10 (c) Image 11 (c) Image 12

   

(d) Image 10 (d) Image 11 (d) Image 12

   

(e) Image 10 (e) Image 11 (e) Image 12

Figure C.3: (a) ROI algorithm results, (b) manual marking of the first expert (c) manual

marking of the second expert, (d) shared regions marked by both experts (AND), and (e)

the total regions marked by both experts (OR)
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(a) Image 13 (a) Image 14 (a) Image 15

   

(b) Image 13 (b) Image 14 (b) Image 15

   

(c) Image 13 (c) Image 14 (c) Image 15

   

(d) Image 13 (d) Image 14 (d) Image 15

   

(e) Image 13 (e) Image 14 (e) Image 15

Figure C.4: (a) ROI algorithm results, (b) manual marking of the first expert (c) manual

marking of the second expert, (d) shared regions marked by both experts (AND), and (e)

the total regions marked by both experts (OR)
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(a) Image 16 (a) Image 17 (a) Image 18

   

(b) Image 16 (b) Image 17 (b) Image 18

   

(c) Image 16 (c) Image 17 (c) Image 18

   

(d) Image 16 (d) Image 17 (d) Image 18

   

(e) Image 16 (e) Image 17 (e) Image 18

Figure C.5: (a) ROI algorithm results, (b) manual marking of the first expert (c) manual

marking of the second expert, (d) shared regions marked by both experts (AND), and (e)

the total regions marked by both experts (OR)
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(a) Image 19 (a) Image 20 (a) Image 21

   
(b) Image 19 (b) Image 20 (b) Image 21

   
(c) Image 19 (c) Image 20 (c) Image 21

   
(d) Image 19 (d) Image 20 (d) Image 21

   
(e) Image 19 (e) Image 20 (e) Image 21

Figure C.6: (a) ROI algorithm results, (b) manual marking of the first expert (c) manual

marking of the second expert, (d) shared regions marked by both experts (AND), and (e)

the total regions marked by both experts (OR)
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(a) Image 22 (a) Image 23 (a) Image 24

   

(b) Image 22 (b) Image 23 (b) Image 24

   

(c) Image 22 (c) Image 23 (c) Image 24

   

(d) Image 22 (d) Image 23 (d) Image 24

   

(e) Image 22 (e) Image 23 (e) Image 24

Figure C.7: (a) ROI algorithm results, (b) manual marking of the first expert (c) manual

marking of the second expert, (d) shared regions marked by both experts (AND), and (e)

the total regions marked by both experts (OR)
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(a) Image 25 (a) Image 26

  

(b) Image 25 (b) Image 26

  

(c) Image 25 (c) Image 26

  

(d) Image 25 (d) Image 26

  

(e) Image 25 (e) Image 26

Figure C.8: (a) ROI algorithm results, (b) manual marking of the first expert (c) manual

marking of the second expert, (d) shared regions marked by both experts (AND), and (e)

the total regions marked by both experts (OR)
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