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Abstract

The estimation of a predictive model for multivariate responses requires the estimation of
several parameters. In the presence of several correlated explanatory variables it may be
necessary to consider the predictions from a sub-space of the space spanned by the whole
set of predictors. This dimensionality reduction decreases the number of parameter to
be estimated and may increase the precision of the predictions. In many situations the
sample based optimal Least Squares solutions have proved to yield worse predictions than
those obtained with heuristic Dimensionality Reduction Methods (DRMs). In this thesis
we give a thorough discussion of various DRMs giving novel interpretations. These DRMs
include Principal Component Regression (PCR), Partial least Squares (PLS). Reduced
Rank Regression (RRR) and Canonical Correlation Regression (CCR). We also discuss
the different algorithms proposed for PLS and suggest a modified one for more efficient
computation. We introduce a common objective function from which the various DRMs
can be obtained as special cases. The common objective function shows that methods like
PCR and PLS include in their objective the variance of the predictive space retained by
the latent sub-space. We suggest determining the predictive latent space by maximizing
simultaneously the variance explained in both the predictive and the explanatory spaces.
We call this method Maximum Overall Redundancy (MOR) and introduce a weighted
version of it. WMOR. The matrix solution of this method is made up of the convex sum of
the matrix that generates the principal components and the matrix that generates the RRR
solutions. Letting the weights vary we obtain a continuum of solutions from PCA to RRR.
The weight can be determined by optimizing a measure of distance between the latent sub-
space and the original spaces. Another way of obtaining latent spaces that retain a good
portion of the variance of the original X space is to assign weights iteratively to the RRR
solution matrix and deflating the X space of the latent directions previously determined.

This method gives good results, similar to those of PLS, in fact, but it is costly in terms



of computation. The classical MLE approach based on multinormal assumptions does not
seem to provide estimates that are more useful than the sample based ones. In fact, for the
Reduced Rank Regression model, these turn out to be the Canonical Correlation solutions
and the RRR solutions. which have been out-performed in many applications by other
methods. However. we obtain the MLE estimates for the joint reduction of the predictive
and response spaces, that is for MOR. By choosing the variances of the errors to have
special forms, we can obtain the CCA and RRR solutions and also the sample based MOR
and WMOR solutions.

We apply the various DRMs to two data sets. The first one was published as an
application of PLS to a Poly-Ethylene reaction. The second was obtained from a simulator
of a copolymer reactor. We find that the WMOR methods perform well and are comparable
to PLS. We also perform a simulation study to understand the performance of the various
DRMs. In the study we consider different data structures for which we compare the
performance of the DRMs with respect to the objective function and the sum of squared
prediction errors. The study confirms that MOR and WMOR with different weights all

perform well in predicting the responses and its results are comparable to those of PLS.
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Chapter 1

Introduction

The methodologies that will be considered in this thesis have the aim of determining a
simplification in the predictive space of multivariate phenomena. Although some of the
methods considered here have been known for a long time, it is only recently that they have
been applied, ona regular basis, to Industrial Process Control. The increasing competition
over the quality of products and processes, together with the increase in automation in
data collection, have created the need for analyzing very large data sets. Often these data
sets consist of several measurements on process variables and product characteristics. The
obvious way of dealing with such data is to postulate a model for the product characteristics
based on the values of the process variables. That is the value of the characteristics is

modeled as a function of the process variables through the model
Y=fX)+E

where Y are the product characteristics, X the process variables and E errors with zero
mean and finite variance. As is often the case in statistical modelling, the response function
f(-) represents only an approximation to the unknown true (possibly not constant) one.

The problem of choosing such a model is well described by Box and Draper (1987, page



2 CHAPTER 1. INTRODUCTION

1): “...] the methods we discuss here are appropriate to the study of phenomena that are
presently not sufficiently understood to permit a mechanistic approach” and later (page 13)
“When input variables are quantitative, and experimental error is not too large compared
with the range covered by the response, it may be profitable to attempt to estimate the
response function within some areas of immediate interest. In many problems, the form
of the true response function f(£,4) is unknown and cannot economically be obtained but
may be capable of being locally approximated by a polynomial or some type of graduating
function, g(£,6), say.” The distinction between a mechanistic approach and a graduating
function is present in the literature also in other forms. Wold (1982) distinguishes between
hard and soft modelling (or science). A model is considered hard when it is known to be an
adequate representation of the functioning of the system under study. It is considered soft
when the knowledge of the functioning is vague and it is used as a tentative mathematical
representation of the mechanism. The emphasis in soft modelling is often in prediction.
Stone and Brooks (1990) (p. 238) suggest the existence of elastic science, which they define
as: “The terrain between the peaks of hardened science and the quicksand of soft science is
occupied by elastic science. One variety of this is a mixture of the hard and the soft, which
may be envisaged as a sort of bog with tussock corresponding to given regressor variables
that the scientist is determined to include, embedded in the soft matrix of additional ad
hoc regressors.” Outside hard modelling, data analysts shape models and objective of the
analysis relying on the available theoretical knowledge and on the exploration of samples
of data, either previously recorded or taken for this purpose.

When dealing with multivariate observations a clear definition of an appropriate model
is often difficult because of the many possible different choices. Gnanadesikan and Wilk
(1968) describe some of the difficulties in multivariate analysis: these include

i) Lack of clear definition and understanding of objectives and models. This is true for
univariate analysis, when dealing with p variables this difficulty is raised to the p-th




power.
ii) There is no obvious natural value of the dimensionality of the response.

iii) Even with modern computing facilities the complexity of the arithmetic and the
number of iterations required can be such to severely limit the number of observations

or variables that can be analyzed.

iv) Pictures and graphs play a key role in data analysis. With multiresponse data ele-
mentary plots of data cannot be easily obtained.

v) Points in a p-dimensional space, unlike those on a line, do not have a unique linear
ordering, which sometimes seems to be almost a basic requirement of multivariate

analysis.

On the last point (v) they add “Most formal models and their motivation grasp almost
desperately for this feature - something to optimize or things to order. This is no sin
unless in the desperation to achieve the comfort of linear ordering, one closes one’s mind
to the nature of the problem and the guidance which the data may contain.” The authors
suggest taking a more pragmatic approaches in order to gain a better insight of the data.
Among the suggestions we find the reduction of the dimension of the problem, which is
the approach we shall consider here.

In a predictive context this approach consists in approximating the graduating function
f(X) with a rank deficient function of the X values. In other words, to make use of only a
subspace of the explanatory space for the prediction of Y. The group of methods involving
such reduction in dimension will be called Dimensionality Reduction Methods (DRM). In
addition to the difficulties mentioned above in the choice of the function f(-), the use
of DRMs implies the further constraint of working in a lower dimensional space. The
graduating function used for the prediction is often taken to be a linear regression function

with rank constraints on the matrix of the coefficients. We are not sure if this way of
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proceeding pertains to either elastic modelling or soft modelling. We prefer to consider
the models behind DRMs as an extreme simplification of the real response function. This
simplification becomes necessary, when the response function is often only expressable
by complicated systems of highly non-linear equations. The high number of unknown
parameters to be estimated makes further simplification or additional constraints on the
model necessary. When the explanatory variables are noisy or form a redundant set,
thought to have lower real dimension, the use of DRMs can lead also to an increase in
precision of the estimates. As pointed out in the above citation from Box and Draper, the
approximation of the transfer function by a simpler one is often mainly local. The hope
in applying these methods is that the approximated model represents well the “normal
operating conditions” and that it is sensitive to changes of these. The arbitrariness of
this approximation creates a problem in comparing these methods. It is, in fact, often
inappropriate to claim that one method performs “overall” better than another one, since
it might be just a local superiority that could be subverted in different operating conditions
or data structure. Furthermore, it is sometimes unclear what needs to be predicted and

which function of the data is to be optimized.

1.1 Geometrical versus Probabilistic Objective Func-

tions

The methods that we consider here are based on geometrical models rather than probabilis-
tic ones, in the sense that the solutions are not based on the hypothetical distribution of the
variables in the population but on properties of the observed sample. Once a (parametric)
model for the observed data has been chosen, the estimated values of the unknown param-
eters are determined as optimal solutions of an objective function, (o.f.). The objective

function is generally a measure of goodness of fit of the model to the data.
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In the classical statistical modelling approach. probabilistic assumptions are made over
the distribution of the variables in some population. The observed sample is supposed to
be a realization from that population with distribution function F(-;a) where a is a set of
unknown parameters. The estimates are then the optimal solution of the objective function
over the sample and, as such, are treated as the realization of random variables. Their
distribution is derived from F(-;a), either exactly or approximately. In many instances
the objective function itself is based on the distribution of the data, e.g. in Uniformly
Minimum Variance Unbiased (UMVU) and Maximum Likelihood (ML) estimation.

In multivariate estimation the exact distribution of the sample estimates is often im-
possible to determine. ML estimation becomes then very valuable because the estimates
have a known asymptotic behaviour and are “well behaved” because their distribution
tends, consistently, to normality. In ML estimation the estimates are obtained as the
values of the unknown parameters that maximize the likelihood of the observed sample.
This implies that the density function plays the role of the objective function, that is of
the measure of goodness of fit. One problem related to maximum likelihood estimation
is that the likelihood does not represent the goal of the analysis, which is prediction. Of
course, the asymptotic results for the MLEs are only true if the data are, at least approx-
imately, distributed as assumed. The uncertainty related to multivariate analysis renders
putting distributional assumptions for multivariate phenomena a difficult task. In most of
the methods with which we will deal. the estimates are obtained from objective functions
based on the sample observations, in other words on geometrical properties of the observed
sample. This is equivalent to conditioning on the observed data.

The DRMs that we consider here have as ultimate goal the prediction of future values.
They are geometrical in the sense that their solutions are based on the minimization of
distances, or functions of them, under the assumption that the underlying model is &inear
in the explanatory variables. Under the linear model Y = XB + E the estimator of B,

say B, is determined by minimizing some measure of distance between Y and XB. This
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procedure makes sense only if the prediction XB is linear in X. However, in most cases
the initial assumption of linearity is then put aside in practice and the estimate XB in the
observed sample is non-linear in X since it is taken to be X(X"X)~!X"Y. All the DRMs
commonly used in prediction suffer from this discrepancy. In fact, the sample prediction
are determined as the orthogonal projections of the responses onto the explanatory space,
which (projections) are non-linear in the X. Furthermore, in some cases the solutions
are derived by minimizing the distance between linear combinations of the responses and
the explanatory space. These are then used as “artificial regressors” for the predictions
of the responses. This is equivalent to including highly non-linear terms in the regression
equation. In most cases the use of these methods for prediction does not have a model based
justification. Methods like Canonical Correlation and Principal Components analysis have
been developed for descriptive or exploratory purposes and are based on the optimization
of geometrical properties of the observed sample. Their use in a regression context is
merely heuristic. In fact, it is not possible to establish when they are going to give good
predictions.

When these methods are used in multivariate prediction the “regression coefficients” of
Y on X are rebuilt from a reduced space of the explanatory variables. One of the problems
in assessing the predictive power of one method with respect to another is that, for the rea-
sons given above, the use of the sample Residual Sum of Squares for comparison is rather
misleading. It is difficult to determine an objective function involving predictions of yet to
be observed values because by definition these cannot be part of the derivation of results.
In the absence of estimates of the variability of the predictions, a method often used for as-
sessing the predictive power of a method is Cross-Validation, CV (Stone (1974)). CV is also
used for estimation of parameters (e.g. Continuum Regression (Stone and Brooks (1990))
and Curds and Whey (Breiman and Friedman (1997)).

Most of the work in this thesis has been done trying to find a (linear) model based
justification for a method that has recently become popular, Partial Least Squares (PLS).
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This method seemingly behaves like the other DRMs, in the sense that the sample pre-
dictions are built as orthogonal projections on a latent space; it does not seem to have
any optimality with respect to these. PLS was derived from latent path modelling with
more or less heuristic motivations and, especially in its multivariate form, does not seem
to have an understandable rationale for its use in Reduced Rank Regression context. The
explanation of why it can produce good predictions must be then found in its non-linear
properties and in the eigen-structure of product matrices, which can be a very hard subject
to study.

Multivariate non parametric predictive methods, such as Projection Pursuit Regression
(Friedman and Stuetzle (1981)) and Gifi (Gifi (1990)) have also been proposed. However
these have not gained much popularity due to the instability of the results and to the
difficulty in their interpretation.

1.2 Appiications of DRMs for Prediction

In many real life situations there is a strong need for predicting accurately variables of
interest. Often pratictioners prefer to use heuristic, sample based, methods rather than
more “mathematically sound” techniques. The reason for this is that often these heuris-
tic methods have proved to provide more accurate predictions and offer more flexibility
in modelling. The importance of achieving good predictions, even at the cost of losing
distributional results, is hardly accepted in the statistical community. However, some do
recognize it; for instance Dawid (1993) says “ If statistician would aspire to scientific re-
spectability, [...] inferences we make should be about real, observable quantities.” The
availability of powerful computers has made the analysis of large data sets using recursive
algorithms possible. In recent years techniques like neural networks have received great
attention and even more recently computer intensive techniques for data mining have been

developed. The mere fact that nowadays it is possible to handle large data sets, has not
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diminished the need for parsimony. Parsimony in modelling has long been recognized
as an important feature which can help interpretation and increase precision by avoiding
over-fitting.

Dimensionality Reduction Methods have been proposed for dealing with predictive
problems involving several variables, these methods achieve parsimony by reducing the
number of parameters to be estimated in a multivariate linear regression model by putting
rank constraints on the matrix of coefficients. The number of unknown parameters is
often left as an additional unknown in the model. The challenge for the use of DRMs
in prediction is to achieve precision. The problem of which DRM gives the most precise
predictions is still open. There probably is not “a solution” as different methods often give
different results for different sets of data.

Although DRMs have been employed throughout this century’s scientific research, it
is only recently that they have been applied systematically. There are three main fields
of application in which these are used for prediction. In Chemometrics DRMs have been
used for predicting Near-Infra-Red (NIR) data. These data consist of measuring several
NIR refractions, at different band-width, in order to establish the substances contained
in the product. These measurements are taken automatically and can be in the order of
hundreds, one for each band-with chosen. The readings of close band-widths will be highly
correlated. The problem is to make good use of this wealth of information for prediction
of the actual content of the product under examination, which is difficult and lengthy to
measure. An additional difficulty that arises for the analysis of these data is that often
there are fewer observations than variables measured, hence a regression type approach
is not feasible. Chemometricians have looked at techniques such as Principal Component
Regression (Massy (1965)) and Partial Least Squares (PLS, Wold (1982)). Both these
techniques allow the estimation of the parameters of a linear regression model without
inverting the product matrix of the regressors. For neither of these techniques do we have

standard distributional results. There is a vast literature on the use of DRMs for prediction
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in the Chemometrics literature.

Another field in which DRMs have been applied for prediction is Quantitative Structure-
Activity Relationships (QSAR). Researchers in this field need to predict how changes in the
molecular structure of a certain substance would affect its properties, often the properties
considered refer to biological activity of drugs. The number of possible changes is very large
and the investigation of each one requires synthesizing the new substance and measuring
its properties. This could take up to a month for each substance and hence prediction
becomes very important. In this field the technique of Reduced Rank regression seems to
be the most popular, however there are several applications of PCR and PLS as well. See
Schmidli (1995) for a review and references.

The application of DRMs to statistical quality control (SQC) is what has motivated
this thesis. The use of PCA in quality control was proposed by Jackson (1993). Kresta,
MacGregor and Marlin (1991) and others have developed a methodology for the use of
DRMs for multivariate SQC. This kind of multivariate control chart can monitor several
product characteristics and the process variables at the same time. Another attractive
feature of these charts is their capability of giving indications on the possible causes of an
out-of-control signal. In the next section we will discuss these control charts further and
in Chapter 5 we will illustrate their implementation with an example.

DRMs have also been extensively applied in other branches of scientific research. Prob-
ably, the most applications have been in psychometrics. The idea of determining a few
artificial variables that could explain human characteristics, such as intelligence and be-
haviour, has fascinated many psychometricians. It must be stressed that a satisfactory
solution has not been found yet and, probably, never will. Several applications of Factor
Analysis and Principal Components Analysis in social, biological and economical sciences
have been published. PLS was firstly applied to the field of Econometrics {Wold (1978))
but it has been also applied to Biology (Schmidli (1995)), Psychology (Bookstein (1994))
and Marketing research (Camillo (1996)). The last two papers are examples of applications
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of PLS to discrete data via generalized linear models. There are examples of applications of
PLS algorithms to Neural Nets for modelling dynamic processes (Qin and McAvoy (1996)).

Multivariate Control Charts

Statistical Process Control (SPC) methodology has become very important in industry.
The objective of on-line SPC is to monitor processes in order to detect departures from
“in-control” specifications in a timely manner. One of the most widely used tools of on-line
SPC is control charts whose success is due to their simplicity: once the control limits have
been determined, a product characteristic is monitored graphically and when a point does
not fall inside the control limits an out-of-control signal is generated.

Individual product characteristics can be monitored with simple Shewhart charts (such
as Z-charts and R-charts) or with more sophisticated ones, such as CuSum and EWMA
charts. However in many processes there are multiple characteristics of the product that
need to be kept under control (simultaneously). The use of a univariate chart for each
characteristic, is not only impractical but also gives rise to serious statistical problems. As
an example, consider 9 uncorrelated variables, each of which is monitored with a control
chart with Type I error probability equal to . When the process is in—control, the prob-
ability that all the charts are in control is @* = (1 — @) and, therefore, the overall Type
I error probability is 1 — a* = 1 — (1 — «)?; this means that if @ = 0.05, «™ = 0.37. Thus
in attempting to control these 9 independent variables, at least one of them would give a
false out of control signal by chance about one third of the time. The problem becomes
more complicated when the variables are correlated. If they were perfectly correlated, the
Type I error probability would remain 0.05.

In order to handle multiple responses, charts have been suggested, analogous to the
univariate ones, but hinging on a measure of overall discrepancy of the observations from

the target values. Typically this measure is Hotelling’s T, which is sometimes obtained
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from few principal components of the observed responses. MacGregor and Kourti (1995),
MacGregor et al. (1993) and Kourti and MacGregor (1996) give an overview of such charts,
including the multivariate equivalent of univariate CuSum and EWMA charts, and give
many references. Jackson (1993) discusses the use of Principal Component Analysis for
multivariate control charts extensively .

The above SPC methods are applied to measurements of the output characteristics and
are meant to be only monitoring tools. When an abnormal value is detected the task of
finding the cause of it is left to the production engineers, since those charts can give no
information on the process variables. The growing use of computers in industry has led
to an increased amount of information available on the process. In fact, many modern
processes are equipped with sensors connected to computers that can provide several,
perhaps hundreds of measurements taken on the process variables (X) every few minutes
or seconds and on the output characteristics (Y), sometimes on a less frequent basis. The
variables measured are often highly correlated and as a whole can be very informative, even
though individually each of them adds very little information to that carried by the others.
The structure of such data requires a different approach from that of multivariate charts
mentioned above. In fact, the availability of the measurements on the x variables can be
exploited to monitor the process itself and as a diagnostic tool for causes of out-of-control
values of the y variables, as well.

In recent years, MacGregor and his group (for example, see Kresta et al. (1991) and
Kourti et al. (1995) have proposed an approach that would suit this need; we shall call
this Multivariate Statistical Process Control (MSPC). The idea behind MSPC is that
each process has a few characteristics that influence the output so that, even if there
may be measurements on hundreds of variables, the effective dimension, the “underlying
dimension” as Kresta et al. (1991) call it, in which the process moves is much lower.
Their approach is based on the use of Dimensionality Reduction Methods (DRM). DRMs

are statistical techniques that, in a multiple regression context, achieve a parsimonious
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representation of the predictor’s space, the X-space, building an orthogonal basis for a
subspace of it that is optimal, in some sense, for the prediction of the y variables. Thus.
these methods try to shrink the information dispersed in many correlated variables into a
representation of minimal dimensionality while preserving the relationship between the x

and the y variables.

A more formal way of describing MSPC is to say that, given n observations of the

process variables (x;,....Xx,) and of the output characteristics (y1,...,Yq), we seek an
undetermined number, d. of orthogonal latent variables (t;,... ,t4), defined as linear com-
binations of the x;’s with coeflicients (a,, ... ,a4), such that

X =T,C

v e (1.2.1)

Y =T;B4

are “good” estimates of X and Y. The choice of the criteria for assessing the goodness of
these estimates will be discussed later and will be some function of the squared prediction
residuals. Assuming that such a criterion has been chosen, the first step of MSPC consists
in estimating the p vectors of coefficients, a; ¢ = 1,... ,p, called weights when they have
unit sum of squares, for the latent variables t; = Xa;, also called scores, and the smallest
number d of them that satisfy the criterion. The choice of a method for building a latent
components model for this kind of data will be the topic of what follows, hence will be
discussed later. In the literature the most used methods are Partial Least Square and
Principal Component Regression (MacGregor et al.(1993), Kresta et al.(1991), MacGregor
et al.(1995), Nomikos et al.(1993), Nomikos et al.(1995), etc).

The second step consists of making some use of the reduced representation of the pro-
cess. If the t;’s can be estimated from data coming from normal operating conditions
for which the variation of the measurement is acceptable, then, under distributional as-

sumptions or from the data themselves, it is possible to determine “in-control” regions
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Figure 1.1: Multivariate control chart. a) 3-dimensional representation, b) 2-dimensional
representation, c¢) SPE plotted vs. time.

for the observations t;’s and for the Prediction Error Sum of Squares (PRESS) of y,
N q
PRESS(Y) = Y (y; — y;)?, for the future observations. All the points falling outside this

Jj=1
region would generate an out-of-control signal.

Figure 1.1 (taken from Kresta et al.(1991)) shows an example of MSPC applied to a
process with underlying dimension of 2. The MSPC chart (Figure 1.1a) consists of a three-
dimensional plot in which the plane (t;,t2) is used to monitor the process and the vertical
axis PRESS(Y) is used to monitor the output. The 3-D plot can also be divided into
marginal two dimensional scatter plots (Figure 1.1b) or the PRESS (Y) could be plotted
versus time (Figure 1.1c). An abnormal variation in the process values could manifest itself
in three ways. The most obvious would be a point or a series of points falling completely
outside the control region. In some other cases points might fall inside the limits along the
PRESS axes but outside on the latent plane t, — t; (like the points marked with a ¢ in

Figure 1.1).
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In this case the basic relationship between X and Y is unchanged but some of the x
variables have changed. If, conversely, points fall outside the SPE control limits and inside
the latent variables control region (points marked with a e in Figure 1.1), this would mean
that the basic relationship between X and Y has changed by some event not captured
by the x variables. This example illustrates why such charts would also be a diagnostic
tool. Once the charts show a shift in the latent variables plane, it is possible to go back
to the X or, at least, to a group of x variables that caused it, provided that the t’s are
good predictors of x variables. McGregor (1994) mentioned that he has developed software
for these multivariate charts. This software plots the charts and it is capable of creating
a window showing the histogram, or contribution plot as it is called (MacGregor et al.
(1995)), of the contribution of each x variable in determining a the score value of a point.

In some cases the readings on the x variables are taken much more frequently than those
on the y variables. In this case it can be convenient to build control charts for the process
alone. This is done through monitoring the T'? obtained from few principal components or
SPE(X) (MacGregor et al. (1995)). Of course. this can always be done beside monitoring
SPE(Y). This is another reason why the latent variables used for MSPC should be good
predictors of the x variables as well as of the y variables.

In real life, production processes are complex systems in which non-linear behaviours
and unobservable noises play an important role. The model at the base of MSPC is in
a sense simplistic and rests on assumptions that are almost never realistic. However, the
linear approximation allows us to keep the methodology mathematically simple and the
results interpretable. A-priori knowledge on the functioning of a process can be added to
the model via different scalings of the data or the inclusion of quadratic terms. In the
literature there are several examples of MSPC applied to complex processes, such as batch
processes ( Kourti et al. (1995), Nomikos et al. (1993) and (1995)) or multiblock processes
(Kourti et al. (1995), Wang (1988), Gelaldi et al. (1986a), MacGregor et al. (1993)). In
these papers PLS and PCR are applied without actually giving a theoretical justification
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why the method should perform well. Firstly our interest here is to develop a methodology
for estimating satisfactorily the latent structure for the simple linear model 1.2.1; this could
then be adjusted to cope with more complex systems. We, therefore, will not discuss the
application of MSPC to complex process, although we are aware of the work being done.

In the next Chapter we will discuss some preliminary issues regarding DRMs. In
Chapter 3 we will discuss the best known methods, giving further details for Partial Least
Squares. We will put the DRMs in a common framework, discussing and suggesting some
alternative, heuristic methods. In Chapter 4 we will look at other alternative methods .
Chapter 5 will contain two applications of DRMs for predictions. Chapter 6 will present
the results of simulations for comparing these different methods. Chapter 7 will have a

summary and some future research ideas.




16



Chapter 2

Assumptions and Preliminaries for

Dimensionality Reduction Methods

Multivariate methods are techniques that deal with two or more variables that are somehow
interdependent. These techniques should be able to reveal links among the variables that
could not be discovered applying univariate methods. Among the books on multivariate
methods, Mardia et al. (1982) and Seber (1984) give detailed accounts of practical issues,
while Anderson (1958) and Muirhead (1982) are among the most complete collections
of theoretical results. An interesting point of view is that of graphical models found
in Whittaker (1990). The study of datasets of large dimension can be unmanageable and
difficult without some kind of condensation. Often the presence of high correlations among
the variables or of redundant variables leads to over-fitting and renders the interpretation
of results extremely difficult. There are two possible approaches to this problem. The first
one is to determine a subset of variables that is optimal in some geometrical or statistical
sense. The other approach is to replace the p variables with d (< p) linear combinations of
them, that are optimal in some geometrical or statistical sense. We consider this second

approach and the methods belonging to this, that go under the name of Dimensionality
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Reduction Methods, DRM. In geometrical terms DRMs determine a d-dimensional sub-
space of the space spanned by the p variables. This sub-space is called latent sub-space.
As we pointed out in the previous Chapter, DRMs are a much needed tool for the
study of the structure of multivariate sets of data. They provide a simplified description
of phenomena depending on several correlated variables. They are then valuable for the
exploration of the sets, that is for the visualization and comparison of the observations.
However. these methods are sometimes used for drawing inferential results, such as predic-
tions and hypothesis testing. This latter use, and to some extent also the former, must be
carried out under the assumption (or the hope) that the phenomena and the characteristics
that are relevant to the analysis can be compounded into a restricted space representing
the null conditions. Hence departure from these conditions can be detected. When used in
prediction. DRMs consist of condensing the “information” contained in a multivariate set
of explanatory variables into a lower dimensional space that is used for the prediction of the
responses under a linear model. The problem is that of finding a set of linear combinations
of explanatory variables that can be used as regressors. This problem is also known as
Reduced Rank Regression. In fact, as we will see later, the projection of a set of responses
onto a sub-space of the predictor space can be equivalently formulated in terms of a multi-
variate regression with rank constraints on the matrix of regression coefficients. However,
the expression Reduced Rank Regression is usually used to denote a specific method and
therefore we will use the generic name DRM to avoid confusion. The main problem we will
be concerned with is to determine a latent space in the space of a set of predictors that
can be used to predict future values of a set of responses. There are a number of issues

that need to be addressed:

1 Choice of the model.
One choice has already been made by requiring that the responses are represented

by linear functions of the predictors. The relationship of the latent space to the full
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space of the predictors and to the space of the responses needs to be specified.

2 Choice of the objective and assessment of the fit.
The objective of the reduction of dimensionality must be specified. The latent space
is determined as the optimal solution of an objective function. The objective func-
tion is the mathematical expression of a property of the latent space that has to
be optimized. We also need a measure of the goodness of the fitted values to the

observed.

3 Treatment of the variables.
Most of the DRMs depend on the scale in which the variables are measured. In some
cases it is suggested to scale the observations so that each observed variable has the
same variability. This choice changes the structure of the data and, in some cases.

the results of the analysis can be very different.

In this chapter we will first establish some notation and conventions and then discuss
some of the preliminary issues regarding the theory of DRM. Such preliminaries are the
distinction between geometrical and probabilistic approach. scaling of the data. choice of
the model, choice of the objective function and assessment of the fit. In section (2.4) we will
present briefly some properties of the multivariate Ordinary Least Squares (OLS) method
useful for discussing DRMs.

2.1 Notation and Convention

For future reference, we define here the notation and conventions that will be adopted and
most frequently used throughout the thesis. We will restate them whenever necessary and

explain new ones when introduced.
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1. Lower-case italic Greek and Roman letters

a.b.c,... .a,8,7,...

will denote scalar quantities.

. Lower-case bold Greek and Roman letters

will denote column vectors. The i-th element of a vector a will, therefore be a;.

. Upper-case Roman and Greek letters

A B, C,....T'A.0....

will denote matrices. The dimension of a matrix with n rows and p columns will be
indicated as (n x p). Each column of a matrix will be the corresponding lower-case

bold letter with the index of the column.

. Special Symbols

The explanatory variables will be denoted with x and their number will be p. The
response variables will be denoted with y and their number will be g. When referring
to observed data, n will be the number of observations, X and Y the matrices of
the observations, of dimension n x p and n x g respectively. The i-th observation is
then a row vector. The sample covariance matrices will generally be denoted with S
indexed by the variable when necessary. The symbol M(-) denotes the space spanned
(the manifold) by the columns of the argument. Therefore M(X) denotes the space

spanned by the columns of X. When needed, the matrix consisting of the first few
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columns of a larger matrix will be denoted by a subscript to the right of the matrix
symbol with the number of columns enclosed in round brackets. e.g. T will be
the matrix formed by the first k columns of T, that is T(x) = (ti.t2,... ,tx). The
symbol “7" hat, will denote orthogoral projections, so Y (X) will be the orthogonal
projection of Y onto the space of X, when obvious the argument of the projection
will be omitted. The symbol P will be reserved for projection operators. that is
matrices of the kind Px = X(X'X) X", where (X"X)~ denotes any generalized
inverse. The Moore-Penrose generalized inverse of 2 matrix A will be denoted as
A*. If the singular value decomposition of a singular matrix M is UAVT, and the
d smallest singular-values are A,_q = -+ = A, = 0. then Mt = UA*VT" where
A* is the diagonal matrix with the diagonal made up of the inverse of the non-null
singular-values ); # 0 and zero’s in place of the null singular-values. Of course. when
(X™X) is non-singular the generalized inverse is the ordinary inverse. Sometimes
the projections will have subscripts on the left referring to the model and/or to the
method used for generating the predictors and, possibly. a number subscribed to the
right denoting the number of (ordered) predictors used. Hence the symbol pLsYa
stands for Y(T(d)) that is the orthogonal projection of Y onto the first d latent

variables generated with PLS.

L, will denote the identity matrix of order p. 0 will denote an array containing only
zeroes, its dimensions will be specified only for ambiguous cases. The symbol 1 will

refer to the vector whose elements are all ones.

5. Matrix Notation

For matrix algebra we will use the standard notation. For instance, |X| will denote

the determinant of X,, |[Y|| = /3, ;9% = V/tr(YTY) the Euclidian Norm of Y, etc.

Often matrices denoted by Greek letters will be diagonal matrices of eigenvalues. This
will be made clear by writing, for instance, A = diag{\;}. However the symbol =
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will denote population covariance matrix and the subscript will refer to the variables

considered.

. Eigenvalues and Eigenvectors

We will deal with eigen-analysis of real symmetric matrices or products of symmet-
ric real matrices. therefore all eigenvalues and eigenvectors can be taken to be real.
We will refer to the right eigenvector of a matrix as the eigenvector. We will as-
sume that the eigenvectors are scaled to unit length and their direction chosen so
that the first term is positive. We follow the convention that the eigenvalues are in
non-increasing order, and we will refer also to the eigenvectors in the order of the
corresponding eigenvalues. Therefore. we will indicate as the first eigenvector of a
matrix the eigenvector corresponding to the largest eigenvalue. Eigenvalues will be

denoted with Greek lower-case letters.

. Sample Data and Random Variables

We will mostly consider sample quantities, but we will also consider random vectors.
Distinguishing between the two cases will require a bit of care in the notation. In
fact. following long established conventicns, we will denote a p-dimensional random
vector as a column vector, e.g. x € RP, while one observation of the p variables
will be stored as a p-row vector, hence the observed sample will be contained in an
(n x p) matrix. Notice that with this convention, for instance, a population regression
model is y = B"x + € while the sample equivalent is Y = XB + E. We will try to
avoid confusion by adopting the sample notation, using additional notation when
the context requires it. Unless specifically required by the context, we will not use

different symbols for variables centred around the mean or rescaled.
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2.2 Preliminaries

2.2.1 The Multivariate Predictive Linear Model

Multivariate predictive models postulate that the value of q response variables,

Y = (¥1,--- ,Yq), is a function of a set of p explanatory variables, x = (z,,... ,z,). Given
n observations on these variables, stored in the (n x p) matrix X and the (n x ¢) matrix Y.
it is assumed that the observed responses are affected by an additive random error. The

multivariate predictive model can be written as

yi=f(x)+e t=1...,n (2.2.1)

where the index z refers to the observation f : RP — R? is a function to be specified and
e; is the (g x 1) vector of errors. The adoption of this model is done under the following

assumptions:

1) Independence of the observations. The errors on the : — th observation do not affect

the errors on other observations.

ii) Identical distribution of the errors. The errors have the same distribution for each

observation, with zero mean and fixed variances and covariances.

We will consider a restricted class of models in which the function f is specified to be linear
with unknown parameters. That is the class of models in which Y is expressed as

Y=XB+E (2.2.2)

where B is a (p x ¢) matrix of unknown parameters. This model is known as Multivariate

Linear Regression model or Linear Regression (LR) model, for short. The LR model can
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be specified as a set of q separate linear models on each response
yi=Xbj+e; j=1,....q

The advantage of modelling the responses simultaneously is that one can take advantage
of existing links among the parameters or the errors. In particular, we will consider LR
models in which the matrix of coefficients B is constrained to have rank less than full.

That is, we require that
rank(B) = d < min{p, ¢}

A matrix of dimension (p x g) and rank d can always be written as the product of a (p x d)
matrix A and a (d x ¢) matrix Q, both of rank d. Hence the LR with the rank constraint

can be written as

Y =XAQ+E (2.2.3)

The matrix T = XA is a set of d independent linear combinations of the columns of X.
Hence, model (2.2.3) can be thought of as a LR model where the responses are regressed on
a set of d artifictal regressors t; = Xa;. This model implies that Y is linearly independent of
the sub-space M(X — T) of rank rank(X)—d. The t; are the non-observable latent variables
and the d dimensional space that they span is the latent space. Presenting the reduced rank
LR model in terms of the latent variables is more appealing to us because it immediately
shows the flexibility that can be obtained choosing different sets of latent variables. The
rank constraint introduces a simplification in the space of the unknown parameters by
lowering their number but also introduces the rank d as a new parameter. Since in most
applications it is not possible to specify its value a priori, it must be considered as unknown.
In addition the decomposition B = AQ is not unique and therefore some constraints are

required to remove this indeterminacy. The estimation of the parameters in model (2.2.3)
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requires the following:
Specification of constraints to identify the decomposition AQ.
Specification of an objective function for estimating the unknown parameters.

Specification of a measure for assessing the goodness of fit between Y and the or-

thogonal projection Y.

We will discuss these preliminary points and related ones in this chapter.

2.2.2 Population and Sample Quantities

In statistical analysis it is customary to make assumptions about observed data in terms of
the distribution F of all possible values in a hypothetical population. The observed sample
is supposed to be a realization from a population with distribution function F(-;0) where
0 is a set of unknown parameters. The estimation is then carried out with respect to the
distribution, typically by taking expectations or maximizing the likelihood f(X,Y;8). As
pointed out in the introduction, in multivariate analysis this way of proceeding is extremely
difficult. One of the reasons of this difficulty derives from the transformations of vector
valued functions to scalar values which renders the mathematical treatment very difficult,
if not impossible. Also, there is the difficulty connected to laying hypothesis on the distri-
bution of several variables. Because of these problems, DRMs are often defined over the
observed sample without reference to the underlying distribution. In this approach the
observed quantities are regarded as fixed quantities and, in practice, each observed point
has “probability mass” %, where in the population it would have density f(-). Among
the many that have asserted the validity of this approach we mention Banzecri (1973),
Escoufier and Roberts (1977), Gnanadesikan and Wilk (1968), Kruskal and Carroll (1968)
and Coppi and Bolasco (1989). Also Rao (in particular (1964b)) and Seber (1984) consider
the approach valuable. The work of Banzecri, Escouffier and other people is often referred
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to as “Data Analysis” or “Analysis of Data” (from the French “Analyse des données”) or
more generically “exploratory data analysis”. However, the lack of probabilistic assump-
tions is often regarded as a lack of statistical respectability. About this point, Kruskal
and Carroll (1968) says: “Likelihood is a goodness-of-fit function which can only be de-
fined in terms of an explicit stochastic or probabilistic model. While statisticians are also
accustomed to badness-of-fit functions where no stochastic element is present, they are
sometimes disparaging.” They argue that although the method of least squares can be
defined. without recourse to any explicit stochastic element, in terms of goodness-of-fit,
it is traditionally “justified” by some underlying stochastic model. Kruskal finds the use
of goodness-of-fit models where no stochastic element is present perfectly well justified
when the knowledge of the data is insufficient for formulating probabilistic models. In
our view, sometimes estimates derived from maximizing the likelihood or other population
quantities are hard to justify in model terms because of the different objective functions.
Certainly, any inferential procedure requires distributional assumptions. However when it
comes to understanding the properties of a predictor on the observed data, the large sam-
ple convergences are of little help. It is sometimes appropriate to derive methods from the
sample quantities that are satisfactory and then to try to find some inferential procedure
for assessing them. This inverse procedure is of course very difficult and often leads to

unsolvable problems.

The relationship between sample based quantities and the corresponding population
quantities can be justified by the argument that we condition on the observations. Inde-
pendence between random variables becomes orthogonality between variables in the sample
and conditional variables become the orthogonal residuals. The use of the Euclidian metric
over the sample is justified under Normal assumptions and the use of sample quantities

can be justified with the argument that the population space is furnished with an inner
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product
< x1,Xz >= E(x; — p)7(x2 — p)

For instance, the sample covariance is the sample average squared Euclidian distance.
It is well known that the matrix Sy made up of the sample variances and covariances
is a consistent estimate (by the Law of Large Numbers in its multivariate forms) of the
corresponding population quantity. The sample covariance matrix is also, up to the propor-
tionality factor 27, an unbiased estimate and, under Normal assumptions, the maximum
likelihood estimate of the population covariance matrix. The same relationship exists
between population mean and sample average. Also the sample orthogonal projections,
?(X) = XS,}1 Sxy = PxY say, are MLEs of the conditional means. However, this proce-
dure can not justify other estimates, involving products of random variables. In order to
avoid redundant notation, in most cases we do not consider the population quantities but

work directly on the sample quantities.

Unless otherwise stated, we will take the observations on each variable to be mean-
centered, that is we will assume that the observed matrix X and Y have been transformed

as

Xe X-I11"X
(2.2.4)

Y« Y-iu1y
The sample covariance matrices, denoted by S, will be taken to be the MLEs, that is with
denominator n, the number of observations. When reasoning over a given sample, the

number of observations n is a fixed constant and can be omitted from the notation.
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2.3 Models and Parametrization

The model underlying any DRM considers a division of an observable variable into two
unobservable components: the latent component that lies in a lower dimensional space and
the residual component. The problem of estimating such a partition has been extensively
studied in the literature, Anderson (1984) gives a review of general issues on maximum
likelihood estimation; discussions and references can be found in most books on multivariate

analysis (e.g Jackson (1993)) and monographs, especially related to Factor Analysis.

Given a matrix of n observations on p variables, X, column mean centered, the generic

model of the latent space is

X=Z+F (2.3.1)

where Z is an (n x p) matrix of rank < d and F an (n x p) matrix of residuals such that
F'Z = 0. This means that the space M(X), spanned by the x variables, is partitioned into
the two orthogonal complements M(Z) and M(F) of dimension d and (p — d), respectively.
Requiring that Z has rank d is equivalent to requiring that there exists a [p x (p — d)]
matrix M of rank (p — d) such that

ZM =0 (2.3.2)

so that Z lies in the d dimensional hyper-plane defined by this equation. Then Equation

(2.3.2) can be written in parametric form as
Z=TP (2.3.3)

where T is the (n x d) matrix of latent variables, defined before, and P is the (d x p) matrix
of loadings, both of rank d. The dimension d has been omitted for ease of notation. The
columns of the matrix T span the latent space. The matrix P is called the loading matrix.
Substituting (2.3.3 into (2.3.2) shows PM = 0. We are interested in the parametric form
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(2.3.3), which substituted into model (2.3.1) gives the working model
X=TP+F (2.3.4)

If we suppose that the latent space is fixed, model (2.3.4) is still not uniquely identified
since it can be reparametrized as X = TMM™'P + F where M is any (d x d) non singular
matrix. This is to say that the same latent space can be expressed with respect to any
basis. Different systems of constraints have been suggested, each of which leads to some
simplification of the parameter space. The system of constraints that is most commonly
adopted for estimating the parameters in DRMs is the requirement that the latent variables
t; are mutually orthogonal and have length 1. Since we require that the dimension of the
latent space to be d, we can adopt these constraints, without loss of generality. However,
the orthogonality constraints are not sufficient to completely identify the model. In fact, it
identifies the model up to orthogonal transformations. For any (d x d) orthonormal matrix
O, and orthogonal set of latent vectors T a rotation O in R is determined by ‘1(52'—”
conditions (Robert and Escoufier (1976)), then the indeterminacy can be eliminated by
specifying the same number of constraints on the matrix of coefficients A or, equivalently.
on T. We do not put these constraints since they are not necessary for the estimation. In
some instances the d constraints on the length of the latent vectors are replaced by the d
constraints that the coefficients of each latent variable have unit length. The use of either
ones is irrelevant to the definition of the latent space, it does make a difference in terms of
the minimization of the objective function, as we will see later. We then have the following

two alternative systems of constraints:
i) T"T=1
i) T'T = Ar = diagonal, with ||a;||=1

where ||a;|| is the Euclidian norm of the coefficients of the :-th latent variable. Most
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often we will employ constraints (i) but in some cases system (ii) will be considered. The

adoption of either system of constraints allows the elimination of the matrix of parameters

P. Recalling that T'F = 0, we write
T'X=T"TP+T'F=T'TP
hence
P=(T"T)'T'X
Then substituting the constraints (i) we have
P=T'X
and for the constraints (ii)

P=A7'T'X

For any choice of the latent variables we have that

X=T(T"T)'T'X +F =PrX + P;X

(2.3.5)

(2.3.6)

(2.3.7)

(2.3.8)

(2.3.9)
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where Pr is the projection matrix on the column space of T and Pjf is the projection
matrix on its orthogonal complement. Hence the representation of X on the latent space

is simply its orthogonal projection on the latent variables
X(T) = PrX (2.3.10)
Under constraints (1) model (2.3.4) becomes
X(T)=TTX = PrX = XAA'X'X (2.3.11)
and under (ii)

X(T) = TAF!T'X = XA(ATX'XA)'A'X"X (2.3.12)

The orthogonal subdivision of the variable space allows to decompose the covariance matrix

as the sum of the covariances in the two spaces. In fact we have
XX=P'T'TP+FF=S;+S4 (2.3.13)

where S = %f(’f( Until now we have only considered the partitioning of the variables

X. The idea of a dimensional reduction of the X space applied in a multivariate LR model
gives rise to the Reduced Rank Regression (RRR) model (2.2.3)

Y =XAQ +E (2.3.14)
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By the requirement that the latent variables are orthogonal to the residuals E we have
Q=(T'"T)'T"Y (2.3.15)
Hence, the loading matrix Q becomes
Q=TY (2.3.16)
for the constraints (i) and

Q=A7TY (2.3.17)

for those in system (ii). The representation of the Y matrix on the latent space is its

orthogonal projection on the latent variables

Y(T) = PrY (2.3.18)

By requiring that the latent variables are orthogonal we achieve a simplification that turns
the generic RRR problem into a regression problem with orthogonal regressors. Orthogonal
regressors are desirable because the predictions can be written as the sum of the predictions

on the d individual variables as
YV(Tig) = Y(t:) + Y(ts) + -+ Y(ta) = Py + Pey + -+ Pe))Y

The idea that the image of Y on M(X) lies in a d-dimensional space can be extended to
the idea of a d-dimensional sub-space of the Y space that is linearly dependent on the
latent space of M(X). Let R = YD be an (n x d) matrix of latent variables in the space
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of Y. Then, we can formalize this idea with the following model

X=TP+F
{Y =RQ" +E* (2.3.19)
R=TN+G

where E* and G are two (n x ¢) matrices of residuals, orthogonal to the respective latent
spaces ,Q" and N are two matrices of loadings, of size is a (d x q) and d x d respectively.
From this model we can obtain the RRR model by substituting for R in the expression of
Y. Then we obtain

X=TP+F
(2.3.20)

Y = (TN + G)Q" +E- = TNQ" + (GQ" + E*) = TQ+E

which is equivalent to the RRR model (2.3.21) with Q = NQ~ and E = GQ~ + E*. In this
case the requirement that the residuals of the two sets of variables are orthogonal would

be consistent with the original model (2.3.19). If instead we consider simply the model

X=TP+F
(2.3.21)
Y=XB+E°
with T orthogonal to both E and F, substituting for X, we obtain
X =TP+F
(2.3.22)

Y =(TP+F)B+E-=TPB+FB+E"=TQ+E

which is equivalent to model (2.2.3). The requirement that E and F are orthogonal is
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inconsistent with the original defining model (2.3.21). This distinction will become impor-
tant when we consider the simultaneous partition of the two spaces. In fact, a key point
about model (2.2.3) concerns the role of the latent space. In some applications we might be
interested only in representing the y variables through the t variables, in others we might
also require that the t variables are a good approximation of the original x variables.
Once we establish which model is preferable for representing the data, the latent
space(s) are determined with respect to a measure of “preference” or a measure of “loss™.

Each measure represent a different objective of the analysis.

2.3.1 Choice of the Objective Function

An objective function introduces a measure of “preference”, that is an ordering in R, for
the dimensionality reduction defined by the latent space. In general, the objective function
is some measure of multivariate relationship, that is a form of dependency.

Gnanadesikan and Wilk (1968) distinguish between internal and external ones. Internal
dependencies are those involving only the set of variables under study. The external ones
are dependencies involving a set of extraneous variables. We prefer to distinguish among

two types of objective functions:

i) Measures of association
This group comprises measures of some internal property of the latent space or of
the distance between latent space vectors that are to be optimized. When the DRM

is applied to one set of variables, a commonly chosen measure of association is the

total variance of the latent space

br(T7T) = ) _ tits (2.3.23)
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Another measure sometimes encountered is the generalized variance
|T™T| (2.3.24)

These measures can also be defined as the trace and the determinant of the sum of
squared distances between each pair of points in the latent space, respectively. Several
different measures of multivariate association have been proposed (e.g. Cramer and
Nicewander (1982)). A brief review can be found in Seber (1984). Cramer and
Nicewander (1982) distinguish between measures of multivariate association (MVA)
and measures of redundancy. The former measures do not include the notion of
predictor and response and are therefore symmetric in the two sets, that is in which
the role of the two can be exchanged without changing their value. The latter are
measures of predictability of one set from the other. Cramer and Nicewander (1982)
also require that the MVA are invariant under non-singular linear transformation
of either set. The oldest MVA is squared Canonical Correlation coefficient. This
is defined as the largest squared correlation between any two vectors in the two
spaces. That is, given the matrices X and Y, both column-mean centerd. the squared
Canonical Correlation is defined as

. (@XTYd)
A1 = oase a X Xad" YTYd

(2.3.25)

where a and d are any two vectors of proper dimension and bounded length. The
Squared Canonical Correlation can be extended to further pairs of vectors by re-
quiring that each new vector be orthogonal with the previous ones determined in
the same space. Since the squared correlation coefficient between two vectors is the
squared cosine of the angle they form, this MVA is defined as a fanction of the

smallest angle between the two spaces. However, the use of more than one Canoni-
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cal Correlation coefficient requires defining a real valued function of them as MVA.
Cramer and Nicewander (1982) consider 6 different such real valued measures that

are monotonic functions of all the Canonical Correlation coefficients. One of them is

the Coxhead-Shaffer-Gillo index

_ (SSiSpy) _ Xl dip}
™= BSaSry) | 3id: (2.3.26)

where S, is the variance covariance matrix of the OLS predictions o,_s?,
See = Syy — Spy and p? are the Squared Canonical Correlation coefficients and
d = 1—:‘;;. Hence 73 is a weighted average of the Squared Canonical Correlation

coefficients. Another, related MVA is

-1q. . q 2
Y6 = tr(SYYSYY) — Zi Pi (2.3.27)
p p
that is the average Squared Canonical correlation. Among the MVA, there is also
the RV coefficient (Escoufier and Roberts (1977)) which is defined as
tr(X'YY'X)

RV(X,Y) = : (2.3.28)
{tr(XTX)2tc(YTY)2}s

It is possible to derive most of the DRMs from the maximization of the RV coefficient,
as we will see later. Stewart and Love (1968), (see Gower (1966) for discussion)
suggest using the Redundancy Index

_ (YY)

Rl = )

(2.3.29)

as a measure of multivariate association. Rl is an asymimetric measures of association,
in the sense specified before, and its use as an MVA has been criticized (e.g. Cramer

and Nicewander (1982)) for this reason. RI can be seen as an average multiple
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correlation coefficient and it is adopted for measuring how much a set of explanatory
variables is related to a multivariate set of responses. When all the variables have been
standardized to comstant length, RI is the sum of the squared multiple correlation

coefficients R§ ]

Measures of loss of information

Since DRMs have the general purpose of condensing the information contained in high
dimensional space into a lower dimensional one, it is natural to define the objective
function as the loss of information due to the reduction of the space. As Rao (1964b)
points out, DRMs must be examined with respect to the loss of a specific information
contained in the data. In fact, there cannot be a univocal definition of information
contained in a set of data. When approximating an (n X ¢) random matrix Y with
a lower rank representation XP, it is natural to measure the loss of information
with the difference of the two, Y — XP. For optimization purposes we need to
define a scalar measure of “magnitude” of Y — XP. The functions that measure the
“magnitude” of a matrix are the norms. Hence, the DRMs can be derived from the
optimization of objective functions, to which we will refer to as Loss functions, in the

form

1
L(T) = ~[IY - TP|] (2.3.30)

where || - || is a suitably chosen norm. In some cases a symmetric matrix of weights,
W, is attached to the matrix of residuals hence we can consider the more general

form
Lo(T) = ~||(¥ - TR)WH |/ (2.3.31)

with W symmetric positive definite. The elements on the diagonal of W are weights
on the residuals of the single variables, those on the off-diagonal elements are weights

on pairs of residuals. The most common norm used for deriving DRMs is the Eu-
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PP

clidian Norm, [|A[| =,/ Y a} = VtrATA. We will denote the Euclidian norm
=1 j=1

simply as || - ||. The use of the Euclidian Norm in connection with linear models is

mathematically convenient since the first order conditions are linear. The adoption
of the Euclidian norm of the residuals is equivalent to adopting the total variance
(2.3.24) of the residuals as the Loss function which has the major drawback of ig-
noring the covariances. In fact, suppose we are approximating p variables x; with
lower rank representations z;, let s?, ¢ = 1.... ,p be the variances of the residuals of
variable x;, then ||[X — Z|| = \/_:._;i—s?. The above is one of the arguments often
used against its use and for regarding it as a generalization of univariate variance
rather than a measure of multivariate variability. One way of avoiding this problem

would be to consider the Euclidian norm of the sample variance and covariance ma-

trix itself, ||S]|| = gg .s?j, but then the linearity of the first order condition is
usually lost. Another measure that can be used is the generalized variance. This is a
truly multivariate measure but it has the drawback of being null for singular matri-
ces. Another measure that is sometimes encountered is that defined by the normal

density
’2—‘{1n|2-11 — tr(E'EZ 1)}

where E is the matrix of the residuals and 3 is the covariance matrix in the popula-
tion. This measure is typical of maximum likelihood estimation under normal model.
The Euclidian norm belongs to a wider class of norms, the unitarily invariant norms,
UIN. The UIN were introduced by von Neumann (1937) for square matrices and Rao

(1979) extended them to rectangular matrices. If a norm satisfies
||JUTAV|| = ||A]| VU € R™*™ 5.t.U'U =T andV € R**"s.t.V'V =1

then || - [| is a unitarily invariant norm. A norm that satisfies
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ITUTAV||=||A||VU e R™*™ s.t. UMU =1 and V € R**"
s.t.VINV =1 for M, N p.d.

is called (M,N)-invariant norm. The (M,N)-invariant norms can easily be transformed
into UIN by considering the UIN of MZ AN3. The UIN are important because they
are functions of the singular values of the argument and optimality conditions can be
derived for a wide class of norms that include the Euclidian one. The paper by Rao
(1964b) gives several optimality properties for these norms together with derivations
of statistical results. In general we will adopt the Euclidian norm, generalizing results
to the UIN class, when possible.

2.3.2 Expected Loss

We defined the Loss as a measure on the observed sample. More relevant to the problem
of prediction is the expected loss, that is the Loss over all possible values of x and y, which
is sometimes called Risk. Clearly, to define a function on unobserved points we need to

switch to the population. With the usual notation, the expected Loss is
E(L) = E(|W3(y — P)|I") (2.3.32)

There are three possible approaches to estimating the expected Loss:

Fit Approach:

It simply consists in taking the observed Loss as the estimate. This approach typically
leads to under-estimates of the Risk. In fact it is well known that the expected Loss
for the observations with which the estimates is obtained is lower than that for points

that are not observed.

Asymptotic Approach:

Under distributional assumptions it is sometimes possible to obtain large sample
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approximations of the expected Loss. This approach is applicable for Maximum
Likelihood Estimates, whose variance and covariance matrix is the inverse of the

Fisher Information Matrix.

Resampling Approach:
Resampling methods, such as Bootstrap or Cross-Validation. are used.

2.3.3 Scaling of the Variables

When dealing with several measurements in different units it is impossible to compare
their variances because these are expressed in squared units of the variables. The problem
becomes particularly relevant when the total variance is adopted as the Loss function (see
2.3.31). Since this Loss is the sum of the variances, it does not have physical meaning and
its magnitude can be changed by changing the scale of individual measurements. It is often
advised to “standardize” (or “autoscale”) the variables, that is divide each variable by its
standard deviation. If AZ is the diagonal matrix made up of the sample variances of the
y variables, s; = i(y,- — 14;)"(y: — 1%:),2 = 1,... ,q, then the matrix of the autoscaled

variables 1s
YA

Standardization transforms the measurements into numbers with no physical dimension,
which are comparable and summable. Another advantage of standardizing the variables is
that the results are expressed in proportions, that is 0.1 x vartable would (assuming scale
invariant models) apply to the variable expressed in any unit. From a statistical point of
view standardization implies transforming the covariance matrix to the correlation matrix.
A drawback of this transformation (of any change of scale) is that most DRMs are not

scale invariant and, therefore, changing the scale can change, sometimes dramatically, the
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results of the analysis. Another concern regards the effect of such a transformation on
the hypothesis on the variances of the measurement errors. If, for instance, it is credible
that the measurement errors have the same variance in a unit system. then the same is
not credible for standardized measurements. Another problem connected with autoscaling
the variables is that not many inferential results regarding the DRMs have been devel-
oped (for instance Jackson (1993) and Mardia et al. (1982)), as the distribution theory
associated with the correlation matrix is more complex than that associated with the co-
variance matrix. Hence, most of the inferential approximations that may be used for the
original variables cannot be used anymore. Some practitioners suggest that the variables
should always be standardized prior to applying DRMs. Actually some computer packages
implement this transformation by default. There does not seem to be a consensus about
the standardization of the variables prior to the analysis. For instance Massey ((1965),
page 235) says: “A discussion of the relation between units of measurement and principal
components is beyond the scope of this paper, but the problem can be side-stepped if the
analyses are confined to the principal axes of the z elements, as standardized through the
division by the square roots of their respective sums of squares.” This view, however, is not
shared by Gnanadesikan and Wilks (1977, page 12) who, referring to Principal Component
Analysis, conclude that there “does not seem to be any general elementary rationale to
motivate the choice of scaling of the variables as a preliminary to principal components
analysis on the resulting covariance matrix.” One other problem concerns the use of the
standard deviation for autoscaling, which is related to the use of the variance as a measure
of information. Leti (1983), in discussing the choice of relative indices of variability, argues’
“In general, for example, absolute indices of variability of the height or of the weight of a
group of adults will be higher than those of a group of newborns because of the different

mean intensity of the characteristics in the two groups.” One of Leti’s suggestions for

Translated from Italian by the author GMM.
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overcoming this problem is to divide the variance by the squared mean (that is considering
the Coefficient of Variation). This is a better measure of information , when the origins
of the measured quantities is not arbitrary. On this point Gower (1966) says “As a mea-
sure of similarity d;; [d}; = ) }(za — z;x)?] has the obvious defect that it depends in a
complex manner on then scales of measurement of the different variates. When different
variates are measured in different scales, d;; has nonsensical physical dimensions. To avoid
this difficulty it is common practice to normalize the variates by dividing each by its sam-
ple standard error, but other normalizations could be used, for example the variate mean
(when zero is not arbitrarily located), or the range or even the cube root of the sample
third moment.” Note that, the RV coefficient (2.3.28) is justified as the cross product of
variables standardized with the Euclidian Norm of the whole set. In the literature many
authors choose to standardize the variables to unit length, with different justifications.
sometimes humorous ones; for instance, Wold (1982) calls the autoscaling “standardization
of scales for unambiguity”, hence the justification is to eliminate “ambiguity” and Breiman

and Friedman (1997) “democratically scale all variables to unit length” (emphasis added).

In terms of the Loss function (2.3.31), the autoscaling of the variables ‘is equivalent to
choosing the matrix of weights W to be Ay'. The implication is that the residuals of each
variable account for the same “variability”. Hence, the natural measure of precision of the

measurements is lost.

For the sake of generality of the results and for the concerns about summing heteroge-
neous units, we consider it appropriate to standardize the variables. However, there could
be instances in which the analysis of the original measurements leads to more accurate
results or in which results expressed in the original units are required. When the dataset
is not too large it is appropriate, in the exploratory stage, to carry out analysis on both
standardized and non standardized data in order to compare the results and gain a better

understanding of the existing linear relationships.
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2.4 Ordinary Least Squares

The Linear Regression model (2.2.2) with quadratic Loss function (2.3.30) leads the Ordi-
nary Least Squares (OLS) solutions, which is the best known method for fitting a linear
model. We assume that the readers are familiar with this technique and we will give, with-
out proof, only some results that are of interest for our discussion. Multivariate OLS is
treated in almost every book on multivariate statistics. The term Ordinary Least Squares
derives from the minimization of the sum of squared residuals as opposed to the General-
ized Least Squares in which the sum of squares is weighed with the inverse of the covariance
matrix of the responses. In a probabilistic context. The OLS estimates are optimal under
the assumption of homoscedasticity and independence of the observations, the GLS are
instead optimal under more general assumptions (e.g. Seber (1984)).

In the univariate case, given the (n x p) matrix X and the n-vector y, whose relationship
we want to model with the linear model y = Xb + e, the OLS estimates are
oY (X) =XX"y=Pxy= Xb where X~ denotes a generalized inverse and
Px = XX~ = X(X™X)~X" the orthogonal projection matrix on the space spanned by the
columns of X. Px is independent of the choice of the generalized inverse (X*X)~, hence it
is uniquely determined (see e.g. Rao et al. (1995)) and is symmetric idempotent. However,
the vector b depends on the choice of (X"X)~ and it is uniquely identified if and only if
r(X"X) = p, in which case (X"X)~ = (X"X)~!. The OLS solutions y satisfy the following

properties

- . v )2 — . Ty _ hTYT
y =arg min 3 (3 — x:b)” = arg min (y'y ~ b'X"Xb)
=1 (2.4.1)
b'X"Xb
= arg max ———

b ¥y
where x; is the i-th row of the X matrix. When the OLS model is extended to aset of ¢ > 1

responses Y, the solutions are the same as those obtained with g separate regressions. It
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is easy to see that the OLS solutions OLS?(X) = PxY satisfy
(Y -XB) (Y -XB) > (Y -PxY) (Y - PxY) (2.4.2)

where the notation G > H means that G — H is a positive semidefinite (psd) matrix. By
the properties of the UIN on psd matrices (Rao and Toutenburg (1995)), the OLS solutions
are optimal for every UIN of the residuals. The space spanned by orsY is the OLS sub-
space of Y with respect to X. This is the sub-space of M(X) that contains the orthogonal
projection of Y onto the space of X. The dimension of M(oLsY) is min{r(X),r(Y)}. It is
important to note that if T = XA represent a linear transformation of X of rank d < p
then

(Y —PrY) (Y —PrY) > (Y - PxY)"(Y — PxY) (2.4.3)

This can be easily seen by writing PxY = PrY + (PxY — PrY) hence
(YTPxY) =Y'PrY + YT(PX -Pr)Y > Y'PrY (2.4.4)

because (Px — Pr) is psd. Therefore, the residual sum of squares corresponding to a

projection onto a sub-space of M(X) will be larger than that of OLS.

Although the OLS estimates minimize the norm of the residuals, in some instances
fail to give good predictions for points external to the sample. One characteristic of the
OLS estimation procedure that is often overlooked is the difference between the theoretical
linear model and the estimated model. But it is well illustrated by Whittaker (1990): “at
the beginning of our treatment of prediction, the predictor Y = b"z appears to be linear
in both the prediction coefficients b and the explanatory variables X; but finally when it is
viewed as Y(X) = cov(Y, X)var(X)~'X it turns out to be linear in Y and non-linear in X!”
The same problem is pointed out by Seber (1984). When the estimates of the regression

coefficients are used for predicting points outside the sample taken as independent, they
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are used linearly. That is the prediction of ¥,.. i Juce = X..eB3 Where B is independent of

Xocw-

In the OLS model it is hypothesized that the y variables change linearly with the x’s.

If we look at the expression of the OLS estimates, in the sample, we have
Y =XB =X(X'X)"'X"Y

which is non-linear in X (Seber (1984)). The prediction of an external point Y* is, instead,
linear in the corresponding X*, being .

Y =XB=X"(X"X)"'X"Y

The same can be said of all the methods whose sample solutions are orthogonal projections.
We make this point to stress the difference between fitting points belonging to the sample

and predicting points not present in the sample.

It is sometimes argued that multivariate OLS is not a truly multivariate method since
the solutions are the same as those obtained by performing g separate univariate regressions
for the individual y’s. When the OLS solutions are used in a probabilistic context, the
multivariate approach will account for the correlation between the y variables for the
inferential procedures while the simultaneous univariate approach does not necessarily
require that. Although we are more concerned with the geometrical properties of our
solutions, one distributional results is worth mentioning. Given the matrix X of n i.i.d.

realizations from a multivariate Normal M N,(u,3), it holds for A symmetric

E(X'AX) = Btr(A) + pA'p’ (2.4.5)
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Hence for the OLS solution o, Y with variables mean centered, we have

E(osY!, Y) = B tr(Px) = p® (2.4.6)

2.4.1 Multicollinearity

The issue associated with the case in which r(X) = d < p is known as multicollinearity. In
this case (p — d) eigen-values of the matrix X'X will be zero, rendering the OLS estimates
of the coefficients B non-unique. The case in which one or more eigen-values of X"X are
close to zero, that is the matrix X*X is ill-conditioned or nearly singular, is also referred
to as multicollinearity. In fact, although the inversion of the matrix X"X is still feasible. it
is numerically unstable and so are the estimates of b;;. It can be shown that the variance

of each estimated coefficient i);,- is

Var(b;;) o i %Var(y;) (2.4.7)
=1 7

where u;; is the i-th element of the eigenvector of X corresponding to the eigenvalue A2.
The presence of small eigenvalues in the X matrix can increase significantly the variance
of the estimates. Of course, determining the real rank of an ill-conditioned set of variables
is arbitrary. Some suggest considering the ill-conditioning indices %;- and declare the rank
of X to be & when arg min; %;L is “small”. This index derives from numerical analysis
of the rounding error of the inversion of matrices (e.g. Golub and Van Loan (1983)).
In statistics this problem is often studied in connection with determining the number of
latent components to retain in a lower dimensional model. Some (e.g. Burnaham et al.
in discussion of Breiman and Friedman (1997)) prefer using arg ming -z—:f:,%tg- > 0.95.

However, Jackson (1993) advises against the use of this last measure. Note that the

eigenvalues of the covariance matrix can be extremely sensitive to changes of scale on the
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individual variables (see Jackson (1993) for a review and discussion on this problem).
Geometrically the problem of multicollinearity in prediction can be explained consid-
ering that some axis of the OLS sub-space will be almost collinear. Thus any combination
of them gives almost the same predictions and the regression coefficients are determined
by small numerical differences between residual sum of squares. The problem of multi-
collinearity has been extensively studied in the literature. Beside methods for eliminating
some of the X variables and other numerical methods, like Ridge regression, DRM’s have

been proposed to overcome the problem.
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Chapter 3

Dimensionality Reduction Methods

for Prediction

The idea of shrinking the information contained in a set of variables into a smaller set of
linear combinations of them has been present in statistics for a long time and several dif-
ferent techniques for determining such a partition of a variable space have been developed.
The oldest DRM is Principal Component Analysis (PCA). Factor Analysis (FA) is another
approach to determine a set of latent components. It differs from PCA because of stricter
requirements on the structure of the latent and residual spaces. FA has been very popular
among the social scientists, especially psychometricians, however it is more concerned with
the derivation of links among the variables than actually representing the observed values.
Also, the solutions are not uniquely determined and they vary with the dimension of the
latent space. For this reason this method is not often used in a regression context and we

will not include it in the discussion.

Sometimes DRMs are employed in the simultaneous study of two groups of variables
measured on the same individuals. The first of these methods was Canonical Correlation

Analysis (CCA). This method does not postulate any dependence structure among the two

49
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sets of variables, in the sense that the sets are treated symmetrically. DRMs that postulate
a linear dependence of one set from the other are what we are mainly concerned with. These
methods consist in determining an estimate of the coefficients of a multivariate linear
regression model which is rank deficient. In fact. the method that tackles this problem
directly is named Reduced Rank Regression (RRR). As we will see later, RRR consists
of projecting the response variables on a sub-space of the explanatory space. Hence. an
orthonormal basis of this sub-space in terms of latent variables can be defined and RRR
can be seen as a method for reducing the dimension of the predictive space.

Some authors who were not satisfied with RRR suggested the use of the latent com-
ponents derived with other DRMs for achieving a reduction of the explanatory space.
Some proposed using the principal component decomposition to achieve a dimensional re-
duction of the explanatory space. This technique takes the name of Principal Component
Regression (PCR). The original motivation for PCR was to overcome the problem of multi-
collinearity among the predictors in both univariate and multivariate regression. It cannot
be easily cast into the same framework as RRR. Also the latent variables determined by
CCA can be employed for the same purpose. The use of a subset of the CCA variates in
regression takes the name of Canonical Correlation Regression (CCR).

One of the most recent DRMs for multivariate prediction is Partial Least Squares (PLS).
Also in this case the latent components are not determined by optimizing a function of
the predictions. However several papers have been published in which this method per-
forms better than others, including RRR. Because of the absence of a rationale for their
use in prediction, methods like PCR, PLS and CCR are considered heuristic. However,
their growing popularity in applications makes it important to understand why or when
these methods give better results than others in spite of not having any explicit predic-
tive optimality. Another method that we consider here is Multiple Principal Component
Regression (MPCR).

In this chapter we will review and discuss the most used Dimensionality Reduction
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Methods and their use for the prediction of a set of responses, giving some new interpre-
tation, stressing their geometrical properties over the sample. Although these methods
are discussed in different references, provided later, we have assimilated these results in a
common framework which allows a better understanding of their performance in prediction.

As mentioned before, Factor Analysis will not be included in the review. A whole group
of methods that will be entirely ignored is that of methods operating on the observation—
space. This group includes techniques like Cluster Analysis. In the review we will not
distinguish between standardized and non standardized variables, since the mathematical
derivations do not change. PCA and PCR will be presented in Section (3.1), CCA and
CCR in Section (3.3). RRR will be presented in Section (3.4). In Section (3.5) we will
present PLS, discussing the algorithmic computation and its use in prediction. In the last
Section of this Chapter we will discuss the geometric properties of these methods and we
will cast them in a common framework based on the optimization of a common objective

function.

3.1 Principal Component Analysis

PCA is the most popular and well known DRM. It was discovered by K. Pearson (1901)
from a purely geometrical point of view. PCA was proposed again by Hotelling (1936) 30
years later. Hotelling derived the sample principal components as estimates of the linear
combinations of a set of random variables that explained the highest possible variance.
It was only after Hotelling’s derivation that PCA gained consideration by the statistical
community. This technique has been employed in many different fields of research and
extensively studied. Its popularity is due to being the oldest DRM, and therefore most
studied, to being relatively easy to compute and, most of all, to being the solution to a
number of different problems involving dimension reduction of one set of variables. That is

to say that PCA enjoys several optimality properties. PCA is treated in almost every book
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on multivariate analysis and in many monographs (e.g. Jackson (1993), Jolliffe (1986) and
Lebart, Morineau and Warwick (1984)).

K. Pearson (1901) defined the principal components as the set of “lines of best fit”.
That is, the set of orthogonal lines from which the sum of orthogonal distances of a cloud
of n points in p dimensions is minimized. If we let X be an (n x p) matrix of observations
whose columns have been mean centred and T = (t;,....t,) = X(ay,...,a,) be a set
of mutually orthogonal linear combinations, T constitutes a new orthogonal basis for the
space spanned by the columns of X. Let x; be the column p-vector representing the i-th
observation on the x variables (that is x; is stored as a row of the matrix X). then the
squared orthogonal distance of the point x; from the first d axis, that is the hyper-plane
defined by T 4, is given by

(%] — x Tya) (T Tea)) ™" Tg)) (x: = T (Ty Tiay) ™ Ty x:)

Since (T7,;T(q)) = diag{t]t;}. this can be written as

d d
3 (,g_“_ztz_x')(,g_ﬁ‘:> - (xrx‘._%)
= (t7t5) (tit)) ) S\ (t5t5)
Hence the squared orthogonal distance of the point from the sub-space defined by T g4 is
given by the sum of those distances from each axes. The minimization of the sum of the

squared orthogonal distances of the n points to the sub-space defined by t;,...,t, leads

to the following optimization problem

P /xTtitlx; d
arg max ZZ( R ) = arg max Zt}XXTt,- (3.1.1)

Tt

From ordinary matrix optimization theory and by the Courant-Fischer theorem (e.g. Mag-
nus and Neudecker (1988)), it is easy to see that the optimal t; must be eigen-vectors of
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XXT, that is it must be XX"t; = t;A2. From this it follows that each t; is the linear
combination of X with coefficients a; proportional to the j-th eigen-vector of the sample
covariance matrix S = X"X. Following Hotelling’s definition, the principal components
are usually taken to be scaled such that their squared length is equal to the corresponding
eigen-value, thus linear combinations of the X variables with coefficients a; of unit length.
Sometimes it is convenient to think in terms of the principal components scaled to unit
length. We call these the principal directions, maintaining the ordering induced by the
corresponding eigen-values. Since the orthogonal projections are invariant to the scale of

the axis, we can take, without loss of generality, tJt; =1,:=1,... ,p.

The principal components are usually defined as the set of orthogonal linear combi-
nations of the x variables that sequentially have maximum variance. This definition is
due to Hotelling (1936), who defined it over the population. If X is a set of n observa-
tions on p variables, column mean centered, we seek the p independent linear combinations
t; = Xa;, : =1:,...,p with maximum variance t]t;. Adding the constraints aja; = 1 the

Principal Component Analysis objective function becomes

arg max Z‘;:l ajSa; d=1,...,p
llajll=1 (3.1.2)

alSa; =0, j #4

It is easy to see that the solutions in terms of the coefficients A are the eigen-vectors of S
SA = AA?
and the optimal value of the objective function is

ATSA = A2 (3.1.3)
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This derivation is based only on a property of the latent variables t; and it can be justified
from the knowledge of variance as “information” contained in a variable. Together with
these two optimal properties the principal components enjoy several others. In the next
section we will give a review of the most important ones. We find it necessary to explicitly
describe the functions that can be optimized because these properties pertain to the eigen-
vectors of a covariance matrix and we will deal with these quantities often. Also we will

generalize some of these properties to more than one set of variables later.

3.1.1 Optimality of Principal Components

Principal Component Analysis is intimately related to singular value decomposition of real
matrices. The principal components are the left singular vectors of the matrix X and the
loading vectors the right ones. The extensive optimality of the principal components is
connected with the optimal properties of the svd (and of the spectral decomposition of
symmetric matrices). The general conditions under which the principal components are
optimal are given by Okamoto and Kanazawa (1968). Given the p-dimensional random
variable x = (X — E(X)) with mean zero and variance X, let t = A"x be any d-dimensional,
d < p, linear transformation of rank d and assume, without loss of generality, that Cov(t) =
AT A = I;. Consider the covariance matrix M = E(x — P"t)(x — P"t)" defined for
all (d x p) matrices P of rank d and let {f € F} be the class of positive real valued
functions defined on the set of positive semidefinite (psd) matrices of order p, strictly
increasing in the argument, that is f(M;) > f(M,) iff M; > Mo, and invariant under
orthogonal transformations, that is f(M) = f(O™™O) for all orthogonal matrices O.
Then Okamoto and Kanazawa show that f(M) is minimized for all f € F and all P of
rank d when Pt is the orthogonal projection of x onto the first d eigen-vectors of X, that
is the principal components of x. Note that the class F contains the UIN and the the
determinant. Okamoto (1968) shows that the same optimality is enjoyed by the sample
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principal components. with respect to the matrix of observations X.

In synthesis, these two results say that any measure of the dispersion (viewed as a
measure of loss of information) that is strictly increasing in the argument and invariant
under orthogonal transformations is minimized by the sample principal components. The
importance of this result lies in its generality. In fact. most derivations in the literature
could be proved by invoking these two theorems.

However, the generality of the optimality properties of principal components cannot be
always applied to other models involving other sets of variables or other loss functions. In
order to be able to generalize some of the properties of the principal components to more
than one group of variables, we will look in more detail into the measures of information
that are optimized by these. Let X = UAVT be the singular value decomposition of X and
T=XAwithAcA={MecR>*: MM =, M'X"XM = diag, d = 1.... .p}, then
substituting the first d principal components the following optimal values are obtained

d
T —_ T _ 2
max tr(T"T) = max tr(A"SxA) = z_; A

this is the property used by Hotelling. It consists of maximizing the total variance

of the latent variables.

d
T _ T _ 2
max |(T"T)| = max|(A"SxA)| = [] X

i=1
This is the multiplicative version of (i). It consists of maximizing the generalized

variance of the latent variables.

iii) We could consider maximizing the sum of the squared Euclidian distances in the



56 CHAPTER 3. DIMENSIONALITY REDUCTION METHODS FOR PREDICTION

latent space of each point to each other, Y 7, 3 .. (t] — t])(t; — t;), that is

d
~Trp=) _ T _ 2
rilgictr(T T") = xfg}ntr(A SA)=n Z Aj

=1

where T~ is the ('—'—(-"—;—1—) x p) matrix containing all the distinct differences (t] — t])
as rows. In terms of population quantities this is justified by the hypothesis that the

observations are independent.

iv)
d
max |T""T"| = maxn?|ATSA| = n? [ \?
AeA i=1
All the previous properties are concerned with the maximization of the information con-
tained in the latent space. that is measures of association of the variables in the latent
space. The following are concerned with minimizing the information lost by reducing the
dimension. hence they are measures of goodness-of-fit. Let X(T) = T(T"T)"'T"X be the
orthogonal projections of X onto any rank d linear combination of X. Then by taking T
to be the first d principal components we have the following optimal values

v)

P
min ||Sx — Sgpl? = > A

i=d+1
. p
min ||X — X(T)|* = mintr(Sx — Sg(p) = > A
t=d+1

vii) Let R?(x;. T) = X '1:‘:’;‘_‘“‘) be the squared multiple correlation coefficient between the

i-th x-variable and the latent variables, then Okamoto (1968) considers the following
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measure

4 P d
max Y _ xx:R*(x;, T) = max ) _ #(T)"%:(T) = ) _ M
=1

=1 =1

viii) The principal components can also be obtained from the maximization of the RV

coefficient (see Equation 2.3.28) between X and T

o (TXXT) i A2
[tr(XTX)2tr(TTT)2]): Yooy A2

3.1.2 Principal Component Regression

Principal Component Regression (PCR) consists of regressing the observations on q re-
sponses y on a subset of principal components of X. This means that Y is predicted with

the model
Yy = Tx)Bk) + Ew) (3.1.4)

where Ty is a set of k principal components, not necessarily the first k as we will briefly
discuss later.

Fitting model (3.1.4) leads to the solution:
B(k) = (T4 Tw) 'TiyY = A(‘,:)U{,C)XTY (3.1.5)
and
Y = TwBuw = X(UwBw) (3.1.6)

where UAV7 is the svd of X. Equation (3.1.6) shows how the rank deficient matrix of
regression coefficients for PCR is built; we will indicate these as pcaﬁ(k). When all the

principal components are used, pcaB(p) are the OLS estimates.
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The problem of choosing the best subset of principal components for estimating B is
not a trivial one. One may be tempted to include the first & principal components (for
1 < k < p). In fact, there is no reason why the first k& principal components should form
the best subset for predicting Y. One reasonable thing to do is to look at the correlation
between the principal components and the Y variables (e.g. Mardia et al. (1982), Jackson
(1993)) or use other techniques for variable selection for multiple regression. However,
it can be shown (Jolliffe (1986)) that, for each y;, the variance of the estimated B x)

coefficients is

R 2
Var(bi ) = disg{} (3.1.7)

where 0? = Var(y;). Therefore the inclusion of principal components corresponding to
small eigen-values can increase the variance of the estimates. This and other problems
connected with PCR are discussed in Jackson (1993) and Jolliffe (1986) at length where
detailed references are also provided.

In reference to section 2.3 we can say that PCR addresses model (2.3.20) with respect
to minimizing the Residual Sum of Squares (RSS) of the Y in a suboptimal way. We might
think of PCR as a two-step optimization:

Step 1  Find the t; such that ||X — X(T)|| is minimized
Step 2  Calculate Y(T) such that ||[Y — Y(T)|| is minimized (OLS solution).

Therefore, the first d principal components are optimal for predicting X but sub-optimal
for the whole model 3.

3.2 Multivariate Principal Component Regression

Multivariate Principal Component Regression (MPCR) has been proposed recently by
Jinguo Sun (1995b). The method, as proposed in the paper, is “empirical”. In fact, there



3.2. MULTIVARIATE PRINCIPAL COMPONENT REGRESSION 59

are no proofs of any optimal properties or hints about the reasons why this method should
perform better than others. MPCR has been developed in order to deal with near-infrared
(NIR) data, which are characterized by small sample number, very large number of highly
correlated explanatory variables and a smaller number of respoase variables, also highly
correlated. Sun (1995a) developed MPCR after having tried unsuccessfully other DRM
techniques such as PCR and PLS to predict some NIR data.

The method addresses Model (2.3.19), that is it seeks for linear components in the X
space that can well predict components in the Y space. MPCR. consists of the following

steps:

1. Obtain the principal components of X, T, = XU, where X = VAU" is the svd of
X, and the principal components of Y, P = YS, where Y = RI'S is the svd of Y.

2. For given a and band each 1 < k < a < p,1 < j < b < qconsider the sets of the
first 7 and k principal components and fit the model
P; = TiB,j) + Ew.j
which gives the estimated coefficient E(k',-) = AD?UIX'YS;.

3. Estimate the regression coefficient in Y = XB(;; + E as Mpcgﬁ(k §) = UkB(k'j)S;-
Hence the predicted values for Y are

mpcrY (k) = XupciBrj) = TkB(k,j)S} =P

For choosing the most parsimonious parametrization, that is smallest a and b, that achieves
a “satisfactory” fit, the cross-validation approach (Stone (1974) and Wold (1978)) is sug-
gested. Clearly, if all principal components are used the solution is that of OLS.

In comparing MPCR to PCR, Sun (1995b) states: “the difference between PCR and
MPCR is that PCR works on the predictor variables while MPCR. works on both predictor
and response variables. Also, in MPCR one more parameter is introduced, which makes

MPCR more flexible than PCR and allows MPCR to be used to compare response vari-



60 CHAPTER 3. DIMENSIONALITY REDUCTION METHODS FOR PREDICTION

ables directly. [.....] the advantage of MPCR occurs if the response variables are highly
correlated...”.

In summary, MPCR is a sub-optimal method for Model (2.3.19). It is a two step

optimization:

Step 1  Find the sets of components T, and P, that sequentially fit best X and Y, respec-
tively.

Step 2  Determine the sets T, and P; that best fit P, to T,.

3.3 Canonical Correlation Analysis

Canonical Correlation Analysis (CCA) was proposed by Hotelling (1936) as a method for
finding relationships between two sets of variables. This technique is generally applied
in exploratory data analysis and it is generally considered able to detect spurious linear
relationships between sets of variables, due to outliers or clustering of data (Seber (1984)).
The Canonical Correlation coefficients play a very important role in testing the hypothesis
of independence between two sets of variables. CCA was later generalized to more than
two sets of variables by Carroll (1968).

In CCA the two spaces are treated symmetrically, that is the role of the two can be
exchanged without changing the result. The idea behind CCA, as proposed by Hotelling,
is to express the association between two spaces in terms of the highest possible squared
correlation between two vectors in the two spaces. Hence CCA maximizes the squared
correlation between pairs of vectors belonging to mutually orthogonal sets. However, the
solutions can be obtained as maximum likelihood estimates under the assumption of nor-
mality. Also it is related to most of the DRMs commonly used.

As usual, let X be an (n x p) and Y an (n x ¢) matrices with columns mean centered,

t; = Xa; and r; = Yd; generic linear combinations. Assume, for now, that Sx and Sy are
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non singular. The mathematical derivation of the Canonical Correlation vectors, known
simply as canonical variates or variables, is a straight forward constrained optimization.
We will just outline the derivations, details can be found in the literature (e.g. Mardia,
Kent and Bibby (1982) or Anderson (1958)). The objective function is.

max 4T

t;.r; Litir; (3.3.1)
tityj=rr;=0 i#j

Note that the objective function is invariant to the length of r and t. The problem is
simplified requiring that ||t;|| = ||r;|| = 1 but this is not necessary. If we require that the
r; and the t; are of unit length, we can write Q = S;%S xys;%, and solve for a; = Sia,-
and d; = S]%,d,-. In the case where Sy or Sy is singular, the inverse square roots can be

substituted by Gramian square roots of a generalized inverse. Then (3.3.1) can be written

as
max(a]Qd;)?
a;,d;
] . Lif i=j (3.3.2)
ala; =dJd; =
{ 0if ¢2#3
or , more compactly, in matrix form. as
maxtr(ATQD)(DQA)

(3.3.3)
ATA = ]-)Tf) =1

The theory of matrix optimization (specifically the maximization of bilinear forms, e.g. see

Magnus et al. (1988)) tells us that the the optimal solutions are the first d = min{p, ¢}
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left and right singular vectors of Q
Q = APD (3.3.4)

where P, (capital rho), is the diagonal matrix of ordered singular values p; > pz > --- > 0,

that for simplicity we take to be distinct and positive. Then

I
o
-]

QD
QA =

(3.3.5)

w]
g*]

(3.3.6)

Hence, by substituting back A and D we have that the solutions are, in standard eigen-

value notation,

Sx'SxySy'Syxa: = a;p? (3.3.7)

Sy SyxSx'Sxrd: = dip? (3.3.8)

where the eigen-decomposition is real because it concerns the product of symmetric ma-

trices (e.g. Golub and Van Loan (1983)). The latent variables are given by

XS}ISxyS;IYt,‘ = PxPt; = t,'p? (3.3.9)
YS;‘SYXS}IXr,- = 'Py'er{ = r,-pf (3310)

Magnus and Neudecker (1988) point out that the constraints in Equation (3.3.1) are redun-
dant and that only one of the orthogonality conditions is sufficient to identify the solution.
In fact, the first pair of CC solutions (51,611) are the first singular vectors of Q, which

solution is obtained only requiring that ||t,|| = ||r1]| = 1. Consider then requiring only




3.3. CANONICAL CORRELATION ANALYSIS 63

aja, = 0 for the second pair of solutions. such that

4

ma.x(é;QElz)z
{ ala,=did; =1 (3.3.11)
ala; =0

from equality (3.3.5) it follows that aja; = 0 implies
alQd, = tir; =0 (3.3.12)
If we let the Lagrangian function of the maximization problem (3.3.11) be
$(a.d, s, par, p22) = (3]Qd;)* — a]8zp3; — fa1p — djdap, (3.3.13)

then, by equating to zero the partial derivatives with respect to a, and d, we have
a¢ TN A = 2 =
-de( Qd;) —azp3, —a1p =0 (3.3.14)

545

—Q'ag - d2p22 =0 (3315)
ad,

Pre-multiplying < 84’ by d} gives (a]Qd;)? = p2, , hence d, = &2
—‘2- gives

QQ'a; — ayp3;, = a1p

where p2, = p2, = p2 is the function to maximize. From the theory of matrix optimization

it follows that 4, and d must be the second singular values of Q. But then Qd, = a,p2
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which substituted in Equation (3.3.12) gives
0 - 5;Qal = &;a, = t;tl

which is the third orthogonality constraint. The same results can be shown for the subse-
quent CCA variables for which p; # 0 by recursive arguments.

Although CCA is not meant for prediction it can be cast into a predictive framework.
Consider the problem of determining the matrices A (p x d), D (¢ x d) and C (d x q) such
that ATSxA =1 and DSy D = I for which

YD — XAC|| (3.3.16)

is minimized for all UIN. Rao (1979) shows that the optimal solution are the CCA coefficient
vectors A and D with C = A'SxyD = P. Hence, under the above orthonormality

constraints, we have

min{p.q}
i — 2 = - R|]? = 2 3.17
Zin |[YD — XAC|” = ||R - TT'R|| ,-_El;d P} (3:3.17)

where R = YD. That is the best prediction of orthonormal linear combinations of Y by
orthonormal linear combinations of X, w.r.t. any UIN, is given by the projection of the
CCA variates in the Y-space on those on the X-space. It is then proved that the CCA
variates are the optimal solutions to Model (2.3.19) of the previous Chapter with respect
to the UINs of the residuals, defined above.

The CCA variates are optimal also with respect to the RV coefficient (2.3.28) of the
two d dimensional latent spaces spanned by T = XA and R = YD(). Under the
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orthonormality constraints T'T = R'R = L),
RV(XA,YD) = trf[(A'X"YD)(D'Y'XA)] (3.3.18)

which, as shown above, is maximized by the CCA solutions.

3.3.1 Properties of the Canonical Latent Variables

The canonical variables in one space are definable on the OLS sub-space relative to the

other set of variables. In fact from Equation (3.3.4) we have that

Sy'SxyD = AP (3.3.19)
S;ISYxA =DP (3.3.20)
from which follows
XS3'SxyD = PxYD = Y(X)D = TP (3.3.21)
YS;'SyxA = v XA = X(Y)A = RP (3.3.22)

Therefore each canonical variate t; can be expressed as a vector of the OLS sub-space of X
and vice-versa. Also, each canonical variate is collinear to its projection on the other space.
Equations (3.3.21) and (3.3.22) are very important to understand the connection between
OLS and CCA. They show that the CCA variates in each space are an orthonormal basis
of the sub-spaces defined by the orthogonal projections of the other set of variables. These

axes can be paired to achieve maximum predictability. They also show that it must be

0=tir;=¢t;Pxrjpi#J,p; #0 (3.3.23)
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Hence the pairs of canonical variates are orthogonal to all other pairs. The squared cor-
relations between the vectors in the i-th pair is the corresponding eigen-value p? and is

called z-th canonmical correlation.

So far we have considered the dispersion matrices Sx and Sy to have full rank and that
the singular values p; were all distinct and positive. In this situation each CCA solution is
unique (apart for the sign, which is irrelevant in our context). If some singular values are
equal, then the solutions are not unique. However, if the desired dimension is d the solutions
are unique if pg > pas1- The existence of one or more zero singular values indicates that
there exist directions of the reciprocal OLS sub-spaces that are orthogonal, i.e. have zero
correlation. If one or both the dispersion matrices are singular, then the canonical variates
(in the number of min{rank(Sx),rank(Sy)}) are unique but the coefficients A and D are
not. In fact, any generalized inverse of them would produce a solution. Muller (1982)
suggests adopting the Moore-Penrose inverse. This procedure is equivalent to performing

CCA on the Principal Components corresponding to non zero eigen-values.

Another way of obtaining the CCA variates is presented by Cramer and Nicewan-
der (1982). The authors note that the canonical variates in the Y space, r;, are mutually
orthogonal linear combinations of the Y variables that are best predicted by the x vari-
ables. In fact, we know from the theory of Least Squares that the orthogonal projection of

a vector r; on the X space maximizes the squared multiple correlation coefficient

r; Pxr;
l‘{ r;

From Equation (3.3.10) we have that the CC solutions are such that

T .
nPX (3.3.24)

T
l‘i I‘,'

where y; is, by definition, the maximum value of the ratio under the required orthogonality
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constraints.

3.3.2 Generalized Canonical Correlation Analysis

Carroll (1968) proposed to generalize CCA to more than two groups of variables. Related
work is present in the collection of articles edited by Coppi and Bolasco (1989). Also
Rao (1979) derived the same solutions for the case for » = 2 from a different approach.
We present Generalized Canonical Correlation Analysis, GCCA, to illustrate an unusual
derivation of CCA, from its natural generalization.

Given r sets of variables X;, ¢ = 1,...,r, we consider a generic vector, such that
llz}| = 1, and require that the sum of the squared correlations between its projections on
X and Y is maximal, that is we solve

max[cor®(z, Pxz) +cor’(z, Prz]) = max,r,_, (= Pas)? + ':::::)2

xTz=1 sPxs

= max,r,-; (2" (Px + B )z) (3.3.25)

The solution to this problem is the first eigen-vector of (Px + B). By imposing that the
next solutions are orthogonal to the previous ones we obtain the subsequent eigen-vectors

as solutions, that is the vectors z; that satisfy
(Px + Pr)z: = zips (3.3.26)

where u; are the ordered eigen-values. Pre-multiplying equation (3.3.26) by Px and P

gives

Pxz; + PxPrzi = Pxzip; (3.3.27)
Prz; + PrPxzi = Przips (3.3.28)
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Letting t; = Pxz; and F; = Brz; we can write

PxPrz = Pxii = ti(p: — 1) (3.3.29)
RePxz = Prb; = Fa(pi — 1) (3.3.30)

which are analogous to Equations (3.3.9) and (3.3.10). Hence. (u; —1) = p? and %{E{ =t;

and 1—%;1"’,- = r;. The geometrical relationship between z; and the pair (t;,r;) is that z is

the bisection line of t; and r;. This derivation is useful because it can be generalized to

more than two sets of variables. X, ... , X, say, by maximizing
max cor’(z, Pyx,z) (3.3.31)

=1

which has as solutions the first eigen-vectors z; satisfying

Z Px

=1

Z; = Zilg (3332)

We summarize as follows:

1) The CCA variates have sequentially maximum squared correlation, which is equal to

p?

i) The set of the first + = rank(X*Y) CCA variates in one space is an orthonormal
basis of the OLS sub-space for the other variable space. The CCA variates can be
written in terms of the OLS solutions Y (X) and X(Y) as T = Y(X)D(,) and
Py = X(Y)Aq).

iii) The CCA variates are the projections of the orthogonal vectors that bisect the small-

est angles between the X and Y spaces.
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iv) The CCA variates in the Y space are the most predictable linear combinations of

the y variables in the X space.

3.3.3 Canonical Correlation Regression

Although CCA is not intended for predictive purposes, it can be used to predict the y
variables as linear functions of a subset of the canonical components in the X space. That

is, we consider the reduced rank regression model
Y = TdQ(d) + E(d) (3.3.33)
for which the OLS solutions are

d
ccr¥d = TaQua) = T)T (5 Y = Z tit]Y (3.3.34)
=1
From equation (3.3.4) it follows that T{;,Y = PD"Y"Y. Thus the CCR solution (3.3.34)

can be also written as
cen¥a = TP gDy Y'Y =o1s YD D[, Y'Y (3.3.35)

which expresses the CCR solutions in terms of the OLS solutions. Although this procedure
is addressing Model (2.2.3), the canonical components are not optimal with respect to
that model but rather to Model (2.3.19). There might be cases in which few canonical
components of the X space predict well few canonical components of the Y space but not
the y variables themselves. In fact, there is no guarantee that the Y's can be well predicted
by the r;’s. We will consider this problem later in this chapter.

A more justifiable approach to using the CC decouposition to predict Y from T, is
that proposed by Glahn (1968). He suggests the following procedure for predicting the y
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variables using d pairs of canonical variates. Let R = T4 Q + E with Q (d x q), be the
model we want to fit. Then, since Ry = YD(q) = T(,,)E_fq). if ¢ < p. we can set

- ~ 2 _
Y = XAuP D (3.3.36)

=2 . . . . .
where P, is the (d x d) diagonal matrix made up of d squared Canonical Correlation
coefficients with the elements corresponding to the missing variates set equal to zero. Of
course this can be done only if ¢ < p so that D is a square. invertible, matrix. In case

there are more responses than predictors, one must use the above Equation (3.3.34).

Both methods outlined for CCR yield the OLS solutions when all the canonical variates
are used. This has the implication that the CCA components on the X space form an

orthonormal base for the ¢g-dimensional sub-space of X spanned by the OLS solutions.

Glahn's CCR is really addressing Model (2.3.19) since it is rebuilding the Y’s from the
prediction of few components of them. However, when Y is rebuilt from the estimated R’s,
there is no guarantee of optimality. As before it might be the case that some of the Y’s are
not well represented in the canonical components considered in CCR and therefore cannot
be rebuilt from them. For consistency with the notion of prediction obtained from latent
spaces as the orthogonal projections of the responses, we will refer to the first approach as
CCR. In terms of the norm of the residual matrix (Y —Y) it can be easily shown that CCR
dominates Glahn’s method, when the same number of components is considered. However,
Glahn’s method can be linked to the method of Curds and Whey, recently proposed by
Breiman and Friedman (1997), which was derived from a totally different approach. We
will discuss this method in the next Chapter.
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3.4 Reduced Rank Regression

Reduced Rank Regression (RRR) was introduced with this name by Izenman (1975) as
multiple regression with rank constraint on the coefficient matrix. However, Rao (1964a)
had already derived the solutions from a generalization of principal component analysis
that he called Principal components of instrumental variables. The solutions are some-
times also referred to as the principal components of Y relative to X. RRR addresses
model (2.2.3) directly. The latent variables are the principal components of the OLS sub-
space M(OLSY), therefore widely optimal. It is not a surprise then that the solutions have
been “re-discovered” a third time as the solutions which maximize the Redundancy Index
(RI) (see Equation (2.3.29)) between vectors in the space of X and in the space of Y.
This derivation, known as Maximum Redundancy (MR) is due to Van den Wollenberg
(1977). The derivations of the RRR. solutions mentioned above are all very different in
spirit. Rao’s idea was to obtain the principal components of a matrix of data that would
minimize the covariance matrix conditional on the instrumental variables. Van den Wol-
lenberg’s derivation was in the spirit of finding an alternative to CCA that considered the
linear relationship between the two sets. Izenman’s derivation was the only one in which
prediction was the objective. Izenman considered a regression model with random predic-
tors and rank constraints on the matrix of coefficients. He also derived some asymptotic
approximations for the covariance matrix of the restricted regression coefficients under
joint normal assumptions, using the Delta method. Although RRR is the optimal solution
for the prediction of a multivariate set of responses by a set of latent variables, it does
not seem to have been employed much in applications, where heuristic techniques such as
PCR are preferred. This fact is probably due to the poor performance in predicting yet
to be observed values. We mentioned applications of this technique for the prediction of
QSAR data (Schmidli (1995)) in Chapter 1. It does not seem to have been applied much
in Industrial Quality Control or in Chemometrics.
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One way of deriving RRR is to determine the set of orthogonal components in the X
space which, sequentially, minimize the Loss function (2.3.30), that is the sum of squared
residuals ¢ n

L(T) =) ) [y — 95(T)? = ex[Y — Y(T)'((Y — Y(T)] (3.4.1)

j=1 i=1
Adding the condition that T = XA are d orthogonal latent vectors, the RRR components

are given by the solutions of

min |[Y — Y,,|[?
T=XA (3.4.2)
TT=1I

In terms of the coefficients, it is easy to see that

min [[Y — Y,|? = mintr(Y — t;(t]t:)"47Y)(Y — t:(t]t;) " t]Y)
= min tr(Y"Y — Y t;(t7t;)"¢]Y) = max trY Xa;(a] X Xt;)"'a]X"Y)
= max a!X YY" Xa;(a] X "Xa;)™! (3.4.3)

Using a Lagrange multiplier to include the constraint, the objective function (3.4.3) be-

comes
max a] XYY " Xa;(alX"Xa;)"! — (a]X"Xa; — 1) (3.4.4)

Taking derivatives and equating them to zero gives

al XTXa; (al XTXa;)?

XTYY'Xa; _ X'XaalXTYY"Xa; — yXTXa;
ajX'Xa; =1

Multiplying by a; gives u = 0. Therefore, the i-th vector of coefficients a; is the solution
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to the RRR normal equations
XYY Xa; = X"Xa;¢; (3.4.5)

that is the :-th generalized eigen-vector. The a; vectors can be taken to be of unit length
but then the latent variable needs to be rescaled in order to satisfy the constraints. How-
ever, this is not strictly necessary for the prediction of Y. For (X"X) non singular, a; is
proportional to the eigen-vectors defined by

(X™X)'X'YY"Xa; = a;¢; (3.4.6)
In terms of the latent variable t; = Xa; it becomes,
XX X)"X'YY't; = t;¢; (3.4.7)

where the solution is unique for any choice of the generalized inverse (X*X)~. The orthog-
onal latent variables in the X space that are sequentially optimal for predicting Y are then
given by the above eigen-vectors. A more meaningful expression for the RRR variables can

be given by looking at the OLS solutions o1sY. Let Py = X(X"X)~!X" be the projector
on the X space, then the solutions of Equation (3.4.7) are

PrYY Prt; = YY't; = ti; (3.4.8)

since Pxt; = t;. This shows that the RRR solutions are the principal components of
OLS sub-space of the X space. Expressing the solutions (3.4.7) in matrix form and pre-
multiplying by Y™, we have

Y'Y(Y'T)=S; W =Wé
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where W is the matrix of eigen-vectors of Sy. Then the RRR latent vectors can be

expressed in terms of the OLS solutions Y as
T(d) o W(d) (34.9)

Another way of getting at this result is that suggested by Davies and Tso (1982). Let the
OLS solutions be OLS&' = XX+Y = XB which is obtained as the solation of min HY —
XB||[?. Suppose that we require the rank of B(4) to be at most d, then we can write

min ||Y — XB(g[*> = min ||Y — osY|]? + llors¥ — XBg)[? = const + |JosY — XB(g)]/?
(3.4.10)

It is straightforward to see from the definition of PCA that T4 = XB(4) must be the first
d principal components of Y. Furthermore, in virtue of the properties of the singular value

decomposition (Eckart and Young (1936))

q
Y —ern Y@l ? = 1Y — Y|P + ) ¢ (3.4.11)

J=d+1

From this derivation it is clear that RRR is optimal for Model (2.2.3). If instead of the
unweighted Loss function (3.4.1) we had adopted a weighted version of it,

Ly(T) = |[(Y — XB) W3]’ (3.4.12)

the same results given for the unweighted Loss would apply but with the matrix of responses
substituted by Y, = YW3. Hence the solutions for the weighted Loss would be (e.g.
Izenman (1975))

X'Y,Y]Xa; = X"Xa;¢; (3.4.13)
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and the latent variables are the principal componentsof YW. Rao (1979) points out that
the result given by Izenman (1975) that the RRR solutions are optimal for any UIN of L,
does not seem to be correct. By choosing W = (Y"Y)~! the RRR solutions are the CC
variates, as can be easily proved (Izenman (1975)). In this case the solutions are optimal
for any UIN of the Loss (Rao (1979)).

RRR can also be obtained with respect to the maximization of the RV coefficient
between the latent space and the Y space. Recall that the RV coefficient (2.3.28) is

tr(A™X'YY'XA)

RV(XA,Y) = - (3.4.14)
[tr(A™XTXA)2tr(Y'Y)?]3

Then maximizing this quantity is equivalent to minimizing the Loss (3.4.1), as Robert and
Escoufier (1976) show. Note that we could have considered the RV coefficient between the
latent space and the OLS sub space, since T*Y = T"Y and tr(Y"Y)? and tr(Y7Y)? are not
part of the optimization. If all RRR components are used we obtain the OLS solutions. The
RRR variables are an orthonormal basis for the OLS sub-space (the principal components,
in fact). RRR is invariant to changes of scale of the x variables but not of the individual

y variables.

3.5 Partial Least Squares

Partial Least Squares (PLS), sometimes called Projection to Latent Structure, has been
proposed by H. Wold ((1982) and (1984)) as a modification of NIPALS (Non-linear It-
erative Partial Least Squares), an algorithm based on the power method for calculating
principal components. In his review for the Encyclopedia of Statistical Sciences, Wold
(1984) put forward as merits of the PLS method the fact that it does not require distri-
butional assumptions nor the specification beforehand of the number of latent variables in

the model. He describes PLS in terms of latent path modelling. Latent path modelling is a
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suggestive description of modelling observed variables (called manifest variables) in a lower
dimensional space of unobservable variables (called latent). Figure 3.1 shows the path for
simple and multiple regression. Models (a) are the models on manifest variables, denoted
with squares and Latin characters, and models (b) are those on latent variables, denoted
with circles and Greek letters. Model (Ia) is the classical univariate simple regression and
model (Ib) is the regression of the latent variable 7, representative of the y variables on
§, representative of the x variables. Models (Ila) and (IIb) are analogous to models (Ia)
and (Ib) applied in a multiple regression context. More complex paths are possible and
are illustrated in the paper, where further references are given. Latent path modelling
has been used mainly by psychometricians who have developed a specific jargon. We will
not adopt that terminology nor the path modelling techniques because they are hard to
cast into a more rigorous statistical framework. Latent path modelling has led to methods
(such as PLS) that although cannot be justified through standard linear modelling, have
proved themselves quite powerful in practice. As can be seen in the latent paths, the la-
tent variables are used for rebuilding the manifest variables. This implies that behind PLS
there is the idea that both the response and the predictor spaces must be explained. PLS
can be used for univariate and multivariate regression models. Sometimes the multivariate
algorithm is labelled PLS2 or called two-block PLS to distinguish it from the univariate
one. We will refer to the method simply as PLS, since the univariate case will only be
considered marginally here.

PLS has been applied to a number of analyses in econometrics and chemistry. The
method was further developed and applied by a group of chemometricians, later it was
applied to multivariate SPC (see section 2 of Chapter 1).
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Figure 3.1: Latent path modelling. (Ia) simple univariate regression on manifest variables.
(Ib) simple univariate regression on latent variables, (IIa) multiple regression on manifest

variables and (IIb) multiple regression on latent variables.

PLS is still not thoroughly understood. It has been primarily used for prediction in a
regression context, however its similarity with Canonical Correlation Analysis has led some
to use it as an exploratory method as well. In a recent paper (Durand and Sabatier (1997))
it is defined as mid way between CCA and PCA, which shows how the functioning of this
method is still only vaguely understood. Theoretical works on PLS are those by Hoskuldson
(1988), Lorber et al. (1987) Helland (1988), Gelaldi and Kowalski (1986b) , de Jong (1993),
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Garterwhite (1994), Burnham et al. (1995) and Phatak, Reilly and Penlidis (1992)) who
have studied the numerical and geometrical properties of the algorithm. Martens and
Naes (1989) and Frank et al. (1993) studied the method from a statistical point of view.
The method is presented in Jackson (1993) as well. For applications other than those in
SPC. cited in chapter 1. see Bookstein (1994) and Gelaldi and Kowalski (1986a).

PLS addresses model (2.3.20). that is

Y =T;B;+E4
X=T;Cs+Fy
T}Td = dia.g{r,-}

where the subscript d is the number of components considered in the model. The latent
components are not derived from an explicit optimization of the residuals E; and F4 but
from maximizing the covariance between pairs of latent variables in the two spaces. The
solutions are derived iteratively and the orthogonality of the latent variables in the X space
is obtained at each step by deflating the X space of the solutions previously found. The
latent variables in the X space are then used as linear regressors for the Y variables. One
of the reasons for the difficulty in understanding PLS is that the solutions are not derived
from a predictive model. Also, its iterative nature makes it difficult to relate it to standard

multivariate methods and to express the outcome in terms of the original variables X.

3.6 Algorithms

In the literature there exist different versions of the multivariate PLS algorithm. These
algorithms are inefficient, some more than others. In fact, several suggestions for improv-
ing the computational complexity have been made, some of which are extremely simple

and evident, as we will see later. A particularly unpleasant feature of the algorithms,
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that renders them also very demanding in terms of CPU time, is what we call the while
loop. This corresponds to iterations of the Power method for computing eigen-vectors and
it is well known that it converges very slowly when the eigen-values are not well sepa-
rated. There exist more efficient routines for the computation of the eigen-vectors. There
are also a number of improvements that can be done on the algorithms to speed up the
computation and to avoid redundant operations. Even with the modern computers, when
the method is applied to large sets of data, the removal of one operation can significantly
decrease the computational time. We will not consider the efficient routines for performing
eigen-decompositions or computing matrix operations because these are available in most
statistical packages or libraries. However, we will consider some simple issues that can
help increase PLS computing efficiency. We will present the algorithms in pseudo-code
without any reference to the language or programming style with which they are going to
be implemented.

Due to its intricate nature, the functioning of the PLS algorithm has been partially ex-
plained by several different authors. Among these are Hoskuldsson (1988), Helland (1988),
Frank and Friedman (1993), Naes and Martens (1989), Garthwaite (1994), de Jong (1993)
and Phatak (1993). Research has been mainly focussed on explaining the numerical prop-
erties of the univariate version of this method. However, the rationale for its usage for
linear prediction has not been explained (e.g. Helland in the discussion to Breiman and
Friedman (1997)) and also the statistical pruperties remain unexplained.

In order to gain a better understanding of PLS, we first outline the NIPALS algorithm,
which is the starting point for the PLS algorithm. NIPALS is an algorithm that calculates
iteratively the principal components of the matrix X, here we give the version of Gelaldi
and Kowalski (1986b). The matrix X is reconstructed as the sum of rank 1 matrices defined
by t;a] where t; and a; are calculated with the algorithm NIPALS, shown in Table 3.1.
Note that in pseudo-code notation the equality sign refers to the storage of a value and
not to the mathematical equality. Hence, the notation a; = a;/||a;|| stands for “substitute
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Table 3.1 NIPALS algorithm.

0) E; =X T

1 i t; = e; where e; is any column of E; } Initialization
2 ) a = Egt;(t{tg)-l

2 ; :‘;E"Qla'” While loop
5 ) continue 2-5 until convergence

6) Eiy=E;—tal =E; - X; Deflation

7) if E;y; = 0 stop; else go to 1. Stopping

the current value of a with its value scaled to unit length”.

It can be shown that NIPALS is equivalent to a sequence of Power method iterations
for calculating the eigen-vectors of X"X. The Power method is not considered a very
efficient routine for computing eigen-vectors. Routines like Lanchoz tridiagonalization or
Givens rotations are considered more efficient (e.g. Golub and Van Loan (1983)). The
popularity of the Power method is due to its simplicity. By substituting steps (2) and
(3) into step (4), it is easy to see that t; must satisfy E;Elt; = t,—(t{E;E{t;)%. Hence,
t; is an eigen-vector of E;E] and, by the properties of the Power method, the while loop
2-5 converges to the first principal component of E;E!. The convergence is ensured if the
eigen-values of E;E] are distinct. Substituting step (2) into step (6) the residual equation
becomes E;;; = E; — t;(t]t;)"'t]E;. Each step determines the rank 1 matrix X; = t;a].
Denoting by 5([4] the reconstructed matrix after d iterations, this is given by the sum
X = 3%, X:. As in MPCR (cf 3.2) one can perform two independent NIPALS on the
X and the Y matrices obtaining the pc’s t; = Xa; and r; = Yd; respectively. But, as
pointed out earlier, there is be no guarantee that the principal components of X are good
predictors of those of Y. The idea behind PLS is to perform two simultaneous NIPALS
on the two matrices with the latent variates in step (2) exchanged. The modified steps
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become:

a; = Elry(rir;)™!

for the X loadings and
d; = Flt(t;t])™!

for the Y loadings. To obtain orthogonality for the t components the residuals for Y are not
calculated from the r; variables but from their projections on t;, &; = t;(t7t;)~t]r; = t;h;.

Therefore the Y residuals in PLS are the orthogonal residuals given by
Fiq1 = F; — t;hid; (3.6.1)

This will be explained more clearly in the next section.

3.6.1 The PLS Algorithm

The earliest version of the PLS algorithm is due to H. Wold (1982), a later one is due
to Gelaldi and Kowalski (1985). The equivalence between these two algorithms has been
proved by Helland (1988). Hoskuldsson (1988) and Nomikos and MacGregor (1993) present
slightly modified versions of Wold’s algorithm and it can be shown that these also yield
the same final solutions as the others. Therefore the unigue PLS solutions can be obtained
with any of these algorithms. Here we compare the algorithms as given by Nomikos and
MacGregor (1993), Hoskuldsson (1988) and Gelaldi and Kowalski (1986b), explaining the
operations. Then we present a more efficient algorithm for computing the PLS solutions,
and finally we discuss the alternative method of SIMPLS proposed by de J ong (1993) that
yields slightly different results, although very similar, and it is based on more sound opti-
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Table 3.2 Generic iteration of the PLS algorithm as given by Hoskuldsson

HOSKULDSSON
Hi) a=F'r(r'r)! )
H2) a=a/lla
H3) t=Fa
H4) d=E"t(t"t)"! % While loop
H5) d=d/||d]|
H6) r=Ed
H7 ) continue 1-7 unti convergence |

H8) p =Ft(t"t)? .
H9) q=E'r(r'r)"! Loadings

H10) h =rTt(t"t)! Regression coefficients
Hll) F«F—tp’=F-X }

. Deflati
H12) E«E—htd" =E—-Y eflation

mization arguments. We assume that the matrices have been column centered. Wold (1984)
suggests that the columns should always be normalized to unit length for modelling reasons
but it is not necessary for the algorithm. To simplify the presentation of the different al-
gorithms we consider a generic i-th iteration, without indexing the quantities with respect
to the iteration. An indexed version of the PLS algorithm will be given later for the more

efficient one.

Table 3.2 shows the PLS as given by Hoskuldsson (1988). Hoskuldsson (1988) showed
that steps (1)-(7) correspond to a series of iterations of the power method for computing

eigen-vectors (e.g. Golub and Van Loan (1983)). Therefore, at each iteration the PLS
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solutions are given by the following eigen-vectors:

FIE.E[F:a; = a;¢; (3.6.2)
F.F'E:E't; = t:¢; (3.6.3)
E[F.FEid; = d;¢; (3.6.4)
E:EF;Fir; = ri¢; (3.6.5)

where F; and E; are the residual matrices computed in steps (11) and (12) of the previous
iteration (i-1) and ¢; is the largest eigen-value, common to all the matrices considered. At
each iteration the loadings for the latent variables in the X and Y spaces are computed
in steps (8) and (9). These are the coefficients of the regression of F and E onto the
corresponding latent variables t and r. Step (10) computes the coefficient of the regression
of r on t. Finally in steps (11) and (12) the matrix F is substituted with the residuals
of its orthogonal projection onto t and the matrix E with the residuals of its orthogonal
projection onto the projection of r onto t. Obviously, regressing E upon the projection
of r onto t is equivalent to regressing E directly onto t. These last two steps are called
deflation because the matrices are deflated of the direction spanned by t. The deflation
enforces the orthogonality among the t score vectors by constraining them to lie in the
subspace of X orthogonal to the previous ones. As we will show later the deflation of the
Y matrix is not necessary for the algorithm or for predictions. Also the r vectors are not,

in general, orthogonal to each other.

In synthesis, each PLS iteration, after determining the latent vectors t and r as the first
eigen-vectors of F and E, computes the coefficients of the regression of p and h, respectively
of F and r onto t and computes the rank 1 estimates for that iteration as X; = t;p! and
Y; = h:it;q] = £(t;)q;. The residual matrices F;, = F; — X; and E;., =E; - Y; are then
the residuals of the regression of X and Y on the latent components Ty = (t1,. .-, t:),
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to which are thus orthogonal. F;,; and E;,, are used in the next iteration in place of the
previous matrices. The matrices Yig =Y —Eq4=3¢, Yiand Xg =X -Fa =30, X
are the data matrices fitted with the first d latent components t;.... , ty.

In the while loop only the vectors a and d are normalized to unit length. Substituting
the steps (3)-(4) in step (5) we have

ETt(t7t)"! N S
= = = 3.6.6
d TEE e E't(a"F'EE'Fa)"7 = ¢ E"t (3.6.6)
Therefore
r't =d"E"t = ¢ 7t"EE"t = ¢~ 7(a’F'EE"Fa) = ¢
Hence

h =rTt(t7t)" = $7(£7t) ! (3.6.7)
Substituting equations (3.6.6) and (3.6.7) in step (12) we have
Vi = 67 (t78:) " ted] = 7 (£76:) " i) THTE; = t:(£76:) T E; (3.6.8)

The orthogonality among the t; vectors leads to the equalities t/E; = t]Y and t]F; = t]X.

Then we can express the fitted matrices X[d] and Y[d] as a sum of rank 1 matrices as

X[d] = (tltI + e + tdt})x = (H1 +---+ Hd)x = H[dlx (3'6‘9)
Y[d] = (tltI + -4+ tdtZ)Y =H; +---+Ha)Y = H[d]Y (3.6.10)

where H; = t;(t]t;) !t} is the projection (hat) matrix on the direction of t;. As we observed
before, the deflation step comes from the power method. However, in PLS the deflation of

the X matrix not only achieves orthogonality with the previous components but also gives
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Table 3.3 Generic iteration of the PLS algorithm as given by Burnham et al.

BURNHAM-VIVEROS-MACGREGOR

BMV1) a=F'r(r'r)! )
BMV2) a=a/llal|

BMV3) t=Fa

BMV4) d=E"t(t"t)?

BMV5) r=Ed(d'd)™!

BMV6 ) continue 1-7 until convergence |
BMV7) p=FTt{t"t)! .
BMVS) q= E*r(rfr))—1 } Loadings

BMV9) h=r"t(t"t)! Regression coefficients
BMV10) F«F—-tp'=F-X }

BMV1l) E«E-htd"=E-Y

> While loop

Deflation

nearly optimal solutions to the maximization of the squared covariance between the latent
vector, under the orthogonality constraint t]t; = 0, as shown by Hoskuldsson (1988). The
proof is based on the inequality (Rao (1964b))

0i(M - N) > 0;4x(M) for any ¢

where M is any matrix of rank r, N is any matrix of rank k < r and o0;(-) the i-th singular

value of the argument indexed in non increasing order. For the PLS solutions we have
tir, =0,
but for the second solution
tir; = o1 (XT(I = ¢, (t7t1) 71t1)Y) = o (XY — Xt (t1t1) 7', Y) > 0o(XTY)

Table 3.3 shows the algorithm as given in Burnham, Viveros and MacGregor (1995). The
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only difference with that of Hoskuldsson is that the vector d is not normalized, that is step
(H5) is skipped and step (H6) becomes
(BMV35) r=Ed(d'd)™!

Then we have

d'd = (E"t(t"t) )" (ETt(t"t)"!) = t"EETt(t"t)"2 = ¢(t"t)? (3.6.11)
Thus
r = EETt(t7t) "} (¢(t7t) %) ! = gEE"t(t"t)
and
r't = t"EE"t(t't)¢™! = (t"t)
50

h=rTt(t't) =1 (3.6.12)
Hence the step (BMVY) is redundant because k; = 1 Vi and the projection of the r scores
are the t scores themselves. Therefore the estimates of Y at iteration (i) are

Y;: = At d] = 1-t;t](t]t;) " E; = H;Y

which is the same as the estimates obtained with Hoskuldsson’s algorithm. Since p is
unchanged, also X‘ will be the same as that of Hoskuldsson. We note that the vectors r
obtained with this algorithm are proportional to those of Hoskuldsson.

The algorithm given by Gelaldi and Kowalski (1986b) (see Table 3.4) is particularly

intricate and obscure. Remarkably, the authors in their “tutorial” state that “There are
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Table 3.4 Generic iteration of the PLS algorithm as given by Gelaldi and Kowalsky

GELALDI-KOWALSKI

GK1) a=F"r(r'r)! )

GK2) a=a/lla|

GK3) t=Fa

GK4) d=E"t(t"t)! % While loop

GK5) d=d/||d|

GK6) r=Ed

GK7 ) continue 1-7 until convergence |

GK8 ) p =FTt(t"t)! Computation of X loadings.

GK10) t= = t||p|| Normalizations

GK11) p"=p/||pl|
GK12) h =r"t"(t"Tt")! Regression coefficients
GK13) F«F—tpT=F-X

GK14) E«E—htd"=E-Y

GK9) a” =a/||pl| }

Deflation

also other PLS algorithms. Each may have some advantage in a particular application.
The algorithm given here is one of the most complete and elegant ones when prediction is
important.” (emphasis added). We note that the paper was published in the early days of
PLS but the above assertion indicates how little PLS was then understood.

The while loop of this version is the same as that of Hoskuldsson, hence the eigen-
vectors a, t, d, r and p are the same. The scaled vectors a*, t~ and p* are proportional

to those of the other algorithms. We have
Xi — t'plT = tupT = tpT
lipll
as before. Also

h = c"t|[p|| |p||"2(t7t) ! = rTE(t7t) ! |p]|



88 CHAPTER 3. DIMENSIONALITY REDUCTION METHODS FOR PREDICTION
Therefore we have
Y = At"d™ = rTt(t76) Y pl| " tllplld” = (¢ T

where the last equality was proved in equation (3.6.8). It is unclear why Gelaldi and
Kowalski adopt the normalizations (GK9)-(GK11). Given that the solutions are the same

as (or proportional to) the others, they do not seem to have a justification.

All the PLS algorithms given above can, obviously, be improved by computing at each
iteration just one of the eigen-vectors 3.6.2-3.6.5 by some efficient routine and then obtain
the others by multiplication. Even better, the coefficient vectors a and d can be obtained
from the svd of ETF. Instead of normalizing to unit length the vectors of coefficients a; and
d;, we could normalize the score vectors t; and r; without altering the outcome. In this
case. step (9) becomes unnecessary because. as it is easy to see, h; =1Vi=1,...,p. At
any rate. this step is redundant because the orthogonal residuals can be obtained directly
from the regression on t. In particular the scaling of the score vectors at unit length is
convenient because it saves the division by t't and the projection matrix on the t; variables
can be readily obtained as H; = t;t]. The convergence at step (8) can be tested on any of
the eigen-vectors by defining a stopping rule ||my., — muy4|| < €, with € arbitrarily small;
for computational efficiency it is better to test on the “shortest” one. The deflation of Y is
irrelevant for the computation of the t;’s, thus for the algorithm. In fact, H; is a projector
matrix, thus symmetric and idempotent of rank 1. It follows that

EIF;'FIE{ = EI 1Hi-1Hi-1YYTHi—1Hi—1Ei-1

(3.6.13)
=E!

-1

.1 YY'H;_,E;_, = EIYY'E;

The deflation of the Y matrix is necessary only for the computation of the r scores which

are never used for prediction. Therefore, if one is not interested in them at all, the algorithm
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Table 3.5 Generic iteration of a more efficient PLS algorithm

PLS
0) E;=YF, =X Initialization
1) Compute svd(E]F;) = D®AT
:2; ; :‘: 1“‘}; (a,l)}ﬁ‘F:.lll)(l) Computation of coefficients and scores
4°) r; = Eidi/||Edi]
5) H;=t;t] Projection matrix

) Xa = H,'X
) Y:=HY . .
2 t
8) FineF.-X, Estimates and deflation
) Ein <« E;-Y;
) if ||Eig1]] > € go to 2; else exit Stopping rule

could be reduced to finding a; as the first eigen-vector of FTYY'F;, t; as F;a; and deflate
F; by Fiy1 = (In — H;)F;. The algorithm ends when E; = 0, this happens for z < p.

In Table 3.5 we sketch an algorithm for computing PLS that is more efficient than those
given before. The steps marked with a star are not necessary for prediction and can be
omitted, if prediction is the only interest. This algorithm only requires one singular value
decomposition which is a big improvement. The scores are scaled to unit length and so
are the loadings a and d, hence if the exact loadings are required they must be obtained
by dividing by the norms of the corresponding scores, ||F;a;|| and ||E;d;}|-

Among the properties of the PLS solutions, Hoskuldsson (1988) proved that the coeffi-
cients a; are mutually orthogonal and so are the t; scores. We add that the r; score vectors
are orthogonal to the t; scores for i > 7. In fact we can write

-1

r; = (I- Hp_y)Yd: = (I- ) _ titf)Yd;

k=1
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and, since t}tk =0, t £k,

tir; =t (I— i te(tete) " tL)Yd; = (£; — t;)'Ydi =0
k=1
Clearly, the result does not hold for j > ¢. Although each t; scores are defined as linear
combinations of the deflated matrix F;, they lie in the column space of X. This can be
deduced from noting that, since the matrix F; is obtained by depleting the matrix X with
vectors lying in its own space. T = (Xa,.F,a,,... ,F,a,) lies in the space of X. It follows
then that the t vectors are linear combinations of the X matrix, hence can be expressed as

t = Xa* for some a". Since the data matrices X and Y have been column-mean centered,

that is 1]X =0 and 1]Y =0, then
17t = 17Xa" = 0

and
i-1
e =17Yd; — 15D _ tit[)Yd: =0
k=1
One drawback of the algorithm is that the coefficient vectors a; are expressed with
respect to the deflated variables F;, hence they are not easily interpretable in terms of the
original variables X. de Jong (1993) gives the transition formulae for expressing t; = Xa;.
The matrix A", such that T = X A", can be obtained from the regression of T on X, that
is
A"=X'T=(XX)X'T = (X'X)"P(T'T) (3.6.14)
where X* is the Moore-Penrose generalized inverse of X and (X'X)~ is any generalized

inverse of X"X. A better expression for A" can be obtained from noting that, since

(X,F,,... ,F,)A = XA", A and A~ share the same column space. Also from Equation
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(3.6.14) we have that
PA" = (T'T)'"T'X(X'X) " X'T = (T"T)"'TT =1
Then we can express A* = AK and it follows that
A" = A(PA)! (3.6.15)

Unfortunately, this expression for the coefficients A" still requires that the solutions are
computed iteratively. But it allows to easily compute the PLS reduced rank regression
coefficients as p.sB = A*(TTT) !T"Y which are to be used for the prediction of future
observations (X,,¥Yn) as

PLSS’new = XpewrLsB (3.616)

de Jong (1993) proposes SIMPLS as an alternative to PLS. Contrary to what is commonly
believed, the PLS solutions do not exactly maximize cov?(t'r;) under the constraint of
orthogonality among the t variables and unit length of the coefficients. de Jong’s method

is based on the exact solution of that problem, and it can be formalized as follows:

4

{ai,d;} = arg max a]X"Yd;
{ala; =did; = 1 (3.6.17)

tht;=0,i>j
\

Now, the first solutions are given, as in PLS, by the singular vectors of X*Y. By writing
Pp; = X"(ty,. .. , t;) we have that the succeeding solutions are given by the singular vectors
of the matrix

I- P[J](PEﬂPm)‘IPEﬂ)XTY (3.6.18)
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(for a proof see e.g. Rao (1964b)).

Table 3.6 SIMPLS algorithm

SIMPLS
0) S=X"Y Initialization
1) compute svd(S) = DA’
2) a;i=Aq Computation of coefficients and scores
3) t:=Xa;/|[Xa|
4 ) pPi = XTt,' -

Computation of loadings

5) Pu = (Pu-1),pi)

6) S« (I-Pu(P[Puy)'P)S Updating

7) smeusBp = AT Y Regression coeflicients

The SIMPLS solution are equivalent to those of PLS for univariate response and very
similar to those of PLS in the multivariate case. In our numerical studies it turns out
that in most cases the SIMPLS solutions are the same as the PLS ones up to 3 or 4
significant digits, as was also confirmed by Burnham (1997). In fact, de Jong (1993)
says “[...]|Generally these differences are not large. For this reason, and also because the
SIMPLS algorithm is so close in spirit to PLS, we regard the SIMPLS approach merely
as a novel interpretation, and as 2 modified algorithmic implementation of essentially the
PLS method as it exists.”

The number d of components to include in the model is an unknown parameter that
lies between 1 and p. It is usually chosen by Cross Validation, following Wold (1978).
Recall that the primary purpose of PLS in many applications is indeed the prediction of
the responses, hence it is under this point of view that the method should be considered.

The value of d is chosen by minimizing the Prediction Error Sum of Squares (PRESS)
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obtained by Cross Validation with respect to the number of components used.

The PLS method can be summarized as follows. At each iteration the latent variable
in the space of X is determined as the linear combination with unit norm coefficients of
the residuals F that has maximal covariance with a linear combination with unit norm co-
efficients of the y variables. The space of X is then deflated in the direction of this latent
variables. The process is iterated until the X space is exhausted. The latent variables detr-
mined by PLS are close to the orthogonal linear combinations with unitary coefficients that
have sequentially maximal covariance with the latent variables in the Y space. The exact
solutions are the SIMPLS latent variables. When PLS is used exclusively for prediction.

the latent variables in the Y space can be ignored.

3.7 Interpretation of the PLS objective function

As we said before, the reasons why PLS yields good predictions have not been yet under-
stood. In fact, the optimality of the PLS solutions is not related to the minimization of the
Residual Sum of Squares in the sample. In this section we provide some novel interpreta-
tions that makes PLS better understood. At each step PLS generates the coefficients for
the latent vectors in a way analogous to Canonical Correlation Analysis apparently under
different constraints. We saw before that PLS maximizes the squared covariance between
subsequent pairs of latent vectors under the constraint of orthogonality among the latent
vectors in the X space, where as CCA maximizes the squared correlation. The fact that
in PLS the latent components in the Y space are not required to be orthogonal does not
constitute a difference with the CCA constraints, as in Section 3.3 we showed how these
constraints are not essential for determining the solutions. Hence, the only difference in
the two methods is in the objective function. In fact, Stone and Brooks (1990) call the
PLS variates canonical covariance variables (and the principal components the canonical

variance). Another way of describing the difference between PLS and CCA is to observe




94 CHAPTER 3. DIMENSIONALITY REDUCTION METHODS FOR PREDICTION

that both methods maximize the covariance of pairs latent variables, PLS requiring that
the coefficients have unit norm and CCA requiring that the variables have unit norms.
Looking at PLS from this point of view makes it easier to understand. At each iteration
PLS determines the latent variate that maximizes the squared partial covariance between
Y and X conditional on the previous components t;. Hoskuldsson (1988) gives different
explanations of why the maximization of the covariance is a good objective function. One
of them. although not very convincing, is the following: “Consider the two components

f = Xd and g = Ye with ||d|| = ||le]] = 1. The sample covariance between the two

components is given by

Cov(f.g) = ng

If one is searching for two components in X and Y space, it is always a good choice to
choose two that have maximal covariance among all components in X and Y space. The
PLS algorithm does this.” In our view. the maximization of the covariance can be justified
heuristically as a way of compromising between PCA and RRR. We will discuss this point

in the next section.

Hoskuldsson gives another reason for optimizing the covariance in terms of minimizing
the distance between orthogonal rotations of two matrices of the same dimension. The
solution to such a problem was proposed by Sibson (1978), and it is known as Procustes
Analysis (Procustes is a mythological character who stretched his victims to have them
fit in a bed). Hoskuldsson proposes applying this procedure to X and Y adding enough
columns of zero’s to the matrix with fewer variables to achieve equality of dimension.
Assume without loss of generality that ¢ < p and let Y = [Y : O, (p—q))] be the (n x p)

matrix made up of Y inflated with n — p columns of zero’s. Then we can apply Procustes
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Analysis to Y and X, that is solve the problem

o.min_ [[¥0, —XO,| = tr(¥"¥) + &x(X"X) — 2(X"¥0,0,) (3.7.1)
z,Uy P

where O, is the set of (p x p) orthogonal matrices. One optimal solution to this problem
is given by O,0, = DA where AI'D" is the svd of X"Y. The expedient of adding the
columns of zero's is somewhat arbitrary. The above argument still does not explain why
the PLS latent variables in the X space should be good predictors of the Y variables in
a regression context, however it does address the problem of finding a real linear estimate
of the prediction in the sample, as opposed to the orthogonal projection, which are non

linear in the X variables as we showed in Section 2.4.

Since in PLS the latent components t; are used to predict both sets of variables, we
conclude that this method addresses model (2.3.19). In many of the published applications,
it turns out that the PLS components do a good job at predicting the y variables and at
retaining “informaticn” of the x variables. Clearly, within the sample, the PLS predictions
of the y variables cannot be as good as those obtained with RRR and the prediction of
x variables cannot be as good as those obtained with PCA, in terms of residual sum of

squares.

Phatak (1993) shows that for univariate PLS, the PLS latent variates are proportional
to the OLS solution pre-multiplied by the matrix (EJE;)~!. This pre-multiplication has
the effect of rotating o .y towards the first principal component. The same cannot be
said about multivariate PLS but the rotation takes a more elaborate form. In the next
section we will elaborate more on this. Also later, we will show how PLS can be related
to other DRMs. We leave this short commentary noting that, even in the univariate case,
the rotation of the OLS solution does not answer the question of why>or when PLS gives

good predictions.
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3.8 A General Framework for DRMs

Burnham et al. (1995) have cast PLS and the other DRM’s in a framework based on the
optimization of objective functions. This is done by considering different metric spaces for
the X and Y variables. It must be stressed that the choice of the metrics has not been
justified by any criterion, hence the result is purely descriptive and taxonomic. It turns
out that a common objective function for CCR, RRR, SIMPLS and PLS can be expressed

as a bilinear form with quadratic constraints

T, ie1 (A]XTXp ) (uTXTYd))
max [a,-x Yd - 3200, ,‘,TxTxl,‘,

aiM,a; =d/Mad; =1 (3.8.1)
ajMza; =0 j<i

where the vectors Xu; are defined as orthogonal basis vectors for the space generated by
(Xay,... .Xa;) using the Gram-Schmidt method. Different choices of the matrices My
distinguish different methods, as given in Table 3.7. Although for comparative purposes

[ ] CCR [RRR | SIMPLS | PLS |
M, | XX | XX]| 1 I
M, | Y'Y ]| 1 I 1
M, | XX | XX | XX | 1

Table 3.7: Choice of the matrices for the objective function framework

it is important to derive the methods from a common objective function, the above is
very general and does not help much in understanding the differences among the DRMs
considered with respect to the prediction of the y responses. One further development
of such a framework might be the introduction of different matrices M. The choice of
the matrices M; can be regarded as the choice of the metrics on the X and Y spaces,

provided that they are chosen to be metrics. In this case, the diagonal elements of M,
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would correspond to the weights on each x variable and the off diagonal elements would
correspond to weights to pairs of variables. correspondingly M, for the y variables. The
matrix M would define an orthogonality constraint on the latent variables. A choice of
a metric for the variables space is already made by deciding to autoscale the variables. It
is more interesting to analyze the objective function associated with DRMs to understand

how they build the latent spaces.

3.8.1 Interpretation of Dimensionality Reduction in p Dimen-

sions

In this section we will address some issues concerning the mechanism that generates the
latent variables in the different DRMs and provide a new interpretation to understand
them better. The above discussion shows how the DRMs we presented can all be derived
from the optimization of bilinear forms. Since we are not interested in the latent space
in the range of Y. we limit the discussion to the latent variables of the X space. The
geometrical aspect of PLS has been treated by Lorber, Wangen and Kowalski (1987).
Helland (1988), de Jong (1993) and Phatak (1993). The main work has focussed on the
univariate algorithm. Our interest is in the multivariate algorithm. but we will report on
some results for the univariate case that will be useful for understanding the multivariate
case. Assume as usual that X, the n observations on the p explanatory variables. has
been column mean centered, and has svd X = UAV". In what follows we will refer to
the left singular vectors of X, uy, ... ,u,, as principal directions. These are the principal
components scaled to unit length and their order corresponds to that of the singular values
Xi. A better insight of the transformations involved in the different DRMs can be gained
by taking as reference the orthogonal basis defined by the principal components of X.
The set of n points on p variables lies in a p-dimensional hyper-plane and any set of p
orthogonal variables T = XA, forms an orthogonal basis of this subspace. This space is
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the column space of X. Any vector v = Xa € M(X) can be expressed as v =TV = ) _ t;9;
where Vv are the coordinates of v in the basis T. The length of the axis t; is not relevant,
in fact v can be rescaled. What is relevant is their direction. Having defined a basis T,
that we assume without loss of generality to be orthonormal, the n points can be mapped
into RP by the transformation v = T'v. The orthonormal basis defined by the principal
directions U has particular relevance for studying the DRMs. We denote the image of
any vector y € R" as y = Uy which will be called the principal coordinates of y. If the
vector belongs to the column space of X. that is t = Xa, then t = Ut = AVTa. The
principal components XV = UA are the semi-axis of the ellipsoid £(A?) € R? defined by

the equation
t'"A %t =1 (3.8.2)

The axis of an ellipsoid are the points for which the tangent is perpendicular to the gradient.
That is the gradient must be proportional to the point itself. Let p be a point on E(A?Y),

then the axis must satisfy

VE(AY) = A %p x p (3.8.3)

where V stands for the gradient. .Since A is diagonal, the only vectors that satisfy (3.8.3)
must have one element non-null and the rest equal to zero. Let p; be such a vector with
elements 5; = B and i = O for [ # j. By requiring that p; lies on (A?), that is it satisfies
(3.8.2). we have 8 = A;. Hence in the coordinates of X, p; = Up; = u;A;, which is the
j-th principal component of X. All linear combinations t = Xa with ||a]| = 1 lie on this

ellipsoid. This can be seen by writing
t'A’t=a"VAA?AVTa=a"a=1

One property of the ellipsoid that will become useful later is that, given a vector t € R?, the
image of the vector A%t on the ellipsoid £(A?) is the point of tangency of the perpendicular
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to t. Figure 3.2 shows such a rotation in two dimensions.

second
principal|comp.

ot

first principal comp. L=

Ve(a)oc p

Figure 3.2: Rotation of the vector p by pre-multiplying by AZ.

This can be seen by looking again at the gradient of the ellipsoid. Let to be a vector in ®?
and t the point on the ellipsoid £(A?) where the tangent is perpendicular to to. Then it
must be VE(A?)|; « to. Hence

A—zi = an, a e §R1
(3.8.4)

tTA 2t =1

By requiring that t € £(A?) we have o = (toA%to)"% = \/Zt.o,v\ﬁ. Therefore

A%,

t= ———
(tTA%)z
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Such a construction is also shown in Figure 3.2. The vector t can also be looked at in the
light of a constrained optimization problem. Consider the problem
m?.X(ETEo)z
t

(3.8.5)
tTA %t =1

That is we seek the maximum of t"t over all vectors t lying on the ellipsoid £(AZ?). The
solution is readily obtained by including a Lagrange multiplier for the constraint in the

objective function
g(t) =tTto — ('A%t - 1)
Then equating the derivatives with respect to t and a to zero yields

to = A %ta
(3.8.6)
tTA %t =1

which is equivalent to Equation (3.8.4). We can express this rotation in the original coor-
dinates X by writing
t = Ut = UA?U"Ut, = XXt (3.8.7)

Hence the same rotation is carried out by pre-multiplying by XX a vector expressed in the
original coordinates. This rotation is strictly related to the Krylov sequences and with the
Power method for calculating eijzen-vectors. A cycle of the Power method can be described

as follows
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(

t(g) arbitrary

t = XXty
I =l (3.8.8)

ty = t/ max{ty}

| continue until [[tg — ta_yl| < €

After convergence the solution is stored as the eigen-vector of XX" corresponding to the
iteration and the next eigen-vector is found applying the same cycle to the deflated matriz
X « X — tt"X. Hence iterating the pre-multiplication by XX creates a sequence of
vectors which converges to the eigen-vector corresponding to the largest eigen-value. Note
that the solution can be written as t & lim,_,o(XX")"ty. The convergence is ensured as
long as the largest eigen-value has multiplicity 1. The reason why the algorithm converges
slowly (or not at all) if the first two larger eigen-values are very close (or equal) can be
easily seen from the geometry of the rotation described before. In approaching the first
eigen-vector, the surface spanned by the first two eigen-vectors will be close to a circle and
the sequence will move very slowly (or not at all) in the direction of the first eigen-vector,

since the gradient of a sphere is perpendicular to the tangent at any point.

In brief, a pre-multiplication of a vector y in RP by XX consists in rotating the vector
in the direction of the first eigen-vectors of the matrix X"X. Such rotation is the solution
of the optimization problem (3.8.5). Iterating this rotation eventually produces the first

eigen-vector, if the first two eigen-values are distinct.

We now proceed to describe the DRMs expressing the X space with respect to the

principal directions.
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Ordinary Least Squares

The OLS solutions Y = PxY consist of the projections of the g responses y onto the space
M(X). The projection matrix can be written as Px = UU", hence the image of Y is

-

Y=U'Y=UY

The image of Y on &(A?) is the same as that of Y. When dealing with orthogonal
projections from the Y space onto M(X), the OLS subspace M(Y) can be taken as the
reference space. If we let WI'Z™ be the svd of Y and Y = W'Y be its representation in

the column space of Y, then
PxY = PxWY =WY

where W are the pi‘bjections of the principal directions of the Y space on M(X). Therefore
the projection of the Y variables can be expressed in terms of the same coordinates of the
original space but with respect to the new basis W, which is no longer orthonormal, in
general. In fact, it could even have different rank. The basic vectors w; do not represent
anymore the ordered directions of maximal variance, or spread, for the Y variables, which
are the RRR latent variables (cf. Section 3.4). Each vector W; is still associated with the
eigen-value 47, that is the variance explained by w;. It could happen that w, is orthogonal
to M(X) and therefore w; = 0. The sum of the squared correlations between each w; and
a principal direction u; is
P P
E cor’(u;, w;) = (w;UUTw;) = Wiw; = Xz(w;u,-)2 (3.8.9)
i=1 i=1

This gives the proportion of total variance of the Y associated with wj, 7}, that can be
explained by the i-th principal direction of X. Each term of the sum, cor?(w;,u;) is the
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proportion of the variance of the y variables contained in the direction w;, that can be
explained by the x variables. Hence cor?(w;, u; )y is the amount of variance inherent to w;
that can be explained by the X variables. In terms of regression analysis cor?(w;, u;) is the
coefficient of determination and cor?(u;, w;)7? the Regression Sum of Squares (RegSS) of
the regression of the j —th principal component of Y on u;. In geometric terms cor?(w;, u;)
is the squared cosine of the angle between the two vectors. The total RegSS of Y on X
is then expressible in terms of the regression of the principal components of Y on the

principal components of X. We have

i(i,-jr_.,—) =tr(Y'Y) = tr(Y'UU"Y) = tr(UTWI?W'U)
. . . s (38.10)
=D Wiwi =) D (Wiw)'af =33 cor’(w;,uiy
i=1 o g=1i=l j=1 i=1
This breakdown could have been based on any other orthogonal sets of variates of the two
spaces. We show the one based on the principal components for the importance that these
have with respect to the space they span. For later discussion it is important to note that
the the eigen-values associated with the principal directions of X do not have any role
neither in the OLS solution Y nor in the Regression Sum of Squares. RegSS can be taken
to be the objective function maximized by the OLS solutions.

Principal Component Regression

In terms of predictive Dimensionality Reduction Models, if the principal components chosen
are the first d, as often is the case, PCR addresses sub-optimally model (2.3.20). The latent
components are chosen minimizing ||X — X(T)|[?> and then these are used for predicting Y
minimizing ||Y —TQ)||2. The projector matrix on the chosen set of principal directions, U.
say, is Py, = U.UT. Hence, the loss in Residual Sum of Squares (RSS) is readily computed
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llows¥ —rca¥I? =) u]YY ;=) i(ufyj)z =) i(u}w,-)z‘y}
igle igle j=1 igl j=1
where I~ is the set of indices of the chosen U.. As shown in the previous Section the eigen-
value associated with each principal direction, that gives the ordering of the principal
components, does not have any role in determining the goodness of the fit on the reduced
space. In order to minimize the RSS of the prediction, the set I* of principal directions to
be included in PCR should be chosen so that

I"= argmin ) Zq:(u;-'wj)z'yf (3.8.11)
I={ky.... ka} 51 =1

for a given number of components. Such a procedure, also suggested by Jackson (1993),
for PCR is somehow contradictory. It consists of determining the latent variables with
respect to the reconstruction of the X variables and choosing a subset of them without
reference to their optimality with respect to the x variables. Also some care is needed
with this procedure, in fact we have seen in Section 3.1.2 how the inclusion of principal
directions corresponding to small eigen-values makes the estimated regression coefficients

numerically unstable.

Reduced Rank Regression

Recall from Equation (3.4.8) that the Reduced Rank Regression latent variables satisfy

YY'T = T®?
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with T"T = I. This can be written in the principal coordinates as
U'YY'UT = T®? (3.8.12)

Hence we have that each RRR solution is the latent variable t, orthogonal to the others,

that maximizes
- Y S L
t'U'YY'Ut=t"YY ¢

Since t'Y = (f'ﬁl, ceey ET):'Q), the objective function can be also written as

q
tUYY'Ut = ) cov¥(t,5;) (3.8.13)

j=1

or, by writing YY™ = WI?*W?", this can also be written as
U'WI*W'UT = T#?,

whence,

q q
TUWD?WTUE = ) (t7w;)%07 = Y (W;(t)W;(£)? (3.8.14)

i=1 i=1
Note that (t"w;)?y? is the RegSS of the regression of the j-th principal component of
Y on the latent variable t. Hence the RRR solutions maximize the sum of variance of
each principal component of the y variables explained by each latent variable, under the
constraint of being mutually orthogonal. The RRR solutions maximize the sum of squared

correlations with the principal components of Y, weighted with the length of the principal
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component. In fact, the objective function (3.8.14) can be equivalently written as

q q
TUWD?WUE = ) cor?(t, w;)y} = ) cov?(E, w;)v? (3.8.15)

Jj=1 =1
where the last identity comes from
cor(t,w;) = t'w; = t'U"w; = t"(U'U)U"w;
=t'U"W; = t"W; = cov(t, w;).
By letting ;, ¢ = 1,...,p be the elements of the principal coordinates of t, we can

also express the objective function (3.8.14) in terms of the regression of the principal

components of Y on each principal component of X. In fact, in virtue of the mutual

orthogonality of each principal direction, we can write

w;i(X) = wji(m) + -+ + Wi(up) = mpuiw; + - + upu w; (3.8.16)
so that
w; = wi(uy) + - + wj(up) (3.8.17)
Then
cor(t,w;) = t'w; = (f1uy,... ,tpup,)" Z t‘w,(u,

=1

Whence we can rewrite (3.8.14) as

TUWD*WUE = Y [Z E;v%j(m)] r=) [Z f,-i',-(ua)]

j=1 =1 Li=1
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where the last equality comes from
- 2 2T -, 2 2T 2 .
tWW E=EYY t =) (i'y;)°
i=1

and Equation (3.8.10). Therefore, by looking at the vector t as a vector of weights for
expressing the latent variable as linear combinations of the principal directions of X, we
have that each element £; is weighted with the Regression sum of Squares of the y variables
explained by the corresponding principal direction. Each element of the weight vector t is

associated with the predictive power that the corresponding component has.

A geometrical interpretation of the RRR latent variables is that these are the principal
components of the OLS sub-space M(?) fé2>-.> ¢§ then the difference between the
OLS Residual Sum of Squares and that obtained with the first d RRR latent variables is

simply

2
[lorsY ‘mYHZ = Z 433

j=d+1

Canonical Correlation Regression

By writing the canonical correlation solutions
(X'X)'X'Y(Y'Y)'Y'XT = TP?
in terms of the principal coordinates we have

U'WWT'UT = TP?
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Thus the objective function of CCA can be written as

q q q
tWWTt = (tTw;)? =) cor’(t, w;) = Y cov’(t, w;)
Jj=1

ij=1 =1

Then the CCA solutions maximize the sum of squared correlations between the latent
variables and the principal components of M(Y) without taking into consideration the
corresponding eigen-values. Therefore in CCA the latent variables are determined simply
with respect to the angles between the principal components of Y and X. This can also

be written in terms of the principal coordinates by writing

q 4 2
tUWWUE =) (Z Qv%j(u,-)) (3.8.18)

J=1 =1

It is then clear why CCR performs poorly for the prediction of the y variables. The
direction of the latent variables are determined only with respect to the angles between
the spaces. Therefore a low principal component of Y that is well predicted by the X
variables but that has small variance, can have a higher weight than say the first principal

component.

Recall from the previous section that both the RRR and the CCA latent variates are
expressible as linear combinations of the Y solutions, see Equations (3.3.21) and (3.4.9).
We can write each set of g latent components in terms of the other set by inverting the
transformations. Let P®QT be the svd of Y, then arsT = P. The CCA latent variables

in the X space can be expressed as

ceal = YDE_I
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Substituting gprl = P, it follows that
ccaT =ars TEQ'DP™!

and vice-versa we can express gral in terms of ¢c,T. It should be noted that this equiva-

lence requires the full set of g latent variables.

Partial Least Squares

Phatak (1993) shows how the first latent variable of the univariate PLS algorithm can be

written as
t1 = Azi

Therefore it is a rotation of the OLS solution towards the highest principal components of
X, as shown above. This is not surprising since the first latent component of the univariate

PLS is t,, solution to

max £7yy ¢
t

tTA %t =1

which is, as shown in Equation (3.8.6), A%y. The successive latent components are rota-
tions of y on the lower dimensional ellipsoids orthogonal to the latent variables previously
determined. These rotations are not easy to describe but they consist of rotating the OLS
solution towards the directions of greater variance in the residual space of X. For the
multivariate PLS the solutions are not as simple as for the univariate case. In fact there
is a double rotation in each iteration. This interpretation is given by Phatak (1993) but
we prefer to give a, shorter, alternative proof. From equation (3.6.2) the first PLS latent
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variable t, satisfies
XXTYYTtl = t¢1 (3.8.19)

where ¢, is the largest eigen-value. Pre-multiplying by UT and substituting for Y gives
that its image, t,, satisfies

2 2T, -
AzYY tl = t1¢1 (3.820)

If we let 2, = A™'t; then this is such that aja =1 and
2 27
AYY Aa; =a; ¢, (3.8.21)

Hence a; is the first principal direction of A\:( and t, = Aa,;. A pre-multiplication by A is
a rotation over the ellipsoid E(A) of the same kind as the rotation carried out over £(A?)

pre-multiplying by AZ.

second
principal
Axl

A>1
1

first principal comp.

Figure 3.3: Rotations of the vector OLS solution by pre-multiplying by A? and by A.
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The difference is that £(A) has axis closer to the unity, hence it is closer to the unit hyper-
sphere. The rotation will then have less effect. An example of the difference between the
two rotations is shown in Figure 3.3. Therefore, the first PLS latent component consists
of the principal component of the rotated OLS subspace rotated again. Phatak (1993)
suggests interpreting the PLS solutions by looking at the while loop of one of the PLS
algorithms, for instance (3.2). Note that in the PLS objective function, maxa"X"YY"Xa,
Y can be substituted by Y without changing the solutions. By writing X for F and Y
for E in steps (H1)-(H7) of the Algorithm 3.2 and adding indices in square bracket with
reference to the iteration of the while loop, we have, for a generic i-th iteration, that the

latent components are

th o< XXTr[,-_l] (3.8.22)

Iy o< ??Tt[q

From this it is clear that PLS tries to adjust on the two spaces rotating each time the
solution on the other space towards the directions of largest spread until convergence is

achieved. With respect to the first latent variable t; we have
tl[;] x XXTYY.'TtI[;_II

This shows how the latent variable t is rotated in the two spaces, before getting to the
point of equilibrium. In this light PLS is a compromise between PCA and RRR and
not between PCA and CCA, as the objective function may induce one to believe. The
successive dimensions are found by iterating the same procedure over the X space deflated
of the previous latent variables. These rotations make the PLS sub-space(s) closer to

the space of the first principal components than the RRR sub-space. Furthermore, the
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rotations have the effect of bringing the PLS solutions outside of the OLS sub-space. The
origins of the double rotation on the ellipsoid £(A) can be found in the origins of the PLS
algorithm, that is a combination of two algorithms. The geometrical interpretation gives a
suggestive description of the PLS algorithm, however it still does not give an explanation
of the reason why PLS performs, sometimes, better than other methods. The rotations
that lead to the PLS variables can be explained by looking at the optimization problem of
which they are solutions. The covariance between two vectors is determined by the angle

between them and by the length of the vectors. In fact
cov?(t,r) = [|t]]?]|r]|? cos*(O..,) (3.8.23)

where O, is the angle subtended by t and r. The principal components are the semi-
axis (hence the longest mutually orthogonal vectors) of the ellipsoids. Their length is
equal to the square root of the corresponding eigen-vector. The CCA variates are the
pairs that subtend the smallest angle, whose squared cosines are the squared canonical
correlation. It is then clear that the PLS solutions are a “compromise” between the first
principal components and the first RRR variates. It does not seem possible to establish
geometrical relationships with the RRR solutions other than trivial ones. We will elaborate
more about the connection between PCR, CCA and PLS in the next Section. From the
solutions (3.8.19) we can write the objective function in terms of a standard optimization
problem on the unit sphere as

max a'AUTYY " UA3a = max a' AUTWI?W'UAa

llafl=1 llaj|=1

This can be rewritten as

q 2
Z (i a,-w,'-u,-/\nj) (3.8.24)

i=1 =1
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Turning the PLS objective function into a standard optimization problem with weights
normalized to unit length, reveals that each principal direction is weighed with the product
of the corresponding eigen-value and the RegSS it explains. Clearly. expanding the squared
sum it turns out that the actual weighting is quadratic. An intuitive understanding of
the difference between the two procedures can be obtained by comparing (3.8.24) with
(3.8.14). The PLS solutions (a similar decomposition can be written for the following PLS
components but it is complicated by the deflation) are closer to the principal components
of X because they account for the variability of the X variables. as well as that of the Y
solutions. At this point we can put together what we said in this section for the different

methods and derive a common objective function.

3.8.2 Common Objective Function

In this section we introduce a common objective function from which the objective functions
of the various DRMs can be obtained as special cases. We now look at the derivation of
pairs of latent variables in the two spaces. Let r = Yd and t = Xa be generic latent
variables always constrained to be orthogonal to the ones already obtained. The CC

variates can be obtained as the solution of the objective function

TyT
(aTX7Yd)? max cor>(t,r)

maX ETX Xa)(d Y Yd) = (3.8.25)
ala=d'd=1 ala=d'd=1

Van den Wollenberg (1977) derivation of RRR as Maximum Redundancy considers orthog-

onal pairs of latent vectors (t,r) solutions to

(agXTYdi)z _ 2 2
R e & it T (38:29)
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It is easy to see that the solutions are

(XTX)"'X"YY " Xa; = ;s

(3.8.27)
Y™ Xa; « d;.
which are the same as those obtained in Section (3.4).
The PLS weights can be obtained as the solutions of
max(a'X"Yd)? max cor?(t.r)||t]]? ||r]|?
= (3.8.28)

ala=d'd=1 ala=d'd=1

All of these objective functions can be written in terms of the correlation between the two
vectors in the two spaces and the length of these. We propose to consider the maximization

of the following generic form of an objective function:

g(t.r.a.B) = cor*(t.r)||r||* [|t[|** (3.8.29)

a’la=d'd=1

Table 3.8 shows how the different methods correspond to different choices of the parameters
as dicotomic values a = {0,1} and 8 = {0,1} and for a tending to infinity, as we shall

show later.

CCA | RRR | SIMPLS | PCA
a 0 0 1 co
B 0 1 1

Table 3.8: DRMs corresponding to different values of the parameters a and 8. SIMPLS is

approximately the same as PLS.
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t and r: a measure of their linear dependence, cor?(t,r), which lies between zero and one,
and the measures of the variances explained by the latent variables in the respective spaces
raised to the powers a and 3. If we are not interested in determining a latent space for the
y variables, as often is the case when the interest is in the prediction of the y variables,
we can discard the coefficient 8. By setting 8 = 1, Equation (3.8.29) simplifies to

__cov?(t.r)

gt.,r,a,f=1) = T l1t1]2= (3.8.30)

By letting o take values between zero and co we have a continuum of solutions between
RRR (a = 0) and PCR (a = o), passing through SIMPLS (a = 1). However, this
objective function does not yield CCA. The role of a in this objective function is that
of giving a weight to the variance of the X space explained by the latent variables. We
have seen that in RRR the latent variables are obtained by giving weights on the principal
directions of X regardless of the corresponding eigen-value. Vice-versa, in PCR the latent
space is that which explain most of the variability of the X space regardless of their linear
relationship with the y variables. An interesting property of the objective function (3.8.30)
is that its solution does not require solving for r. In fact, let £ = 2(a — 1), u, and p; be
two Lagrange multipliers for the constraints in (3.8.30) then, equating the derivatives with

respect to d and a to zero gives

g2 : XTYd(t™r)(t7t)* + k(X X)a(tt)*(tr)* = ap, (3.8.31)

%2 : Y™Xa(t'r)(tt)~* = dp,

Pre-multiplying -gﬁ- by d' gives

p2 = (tTr)*(t7t)*
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Hence, we can simplify the second normal equation of (3.8.31) as
Y Xa(t'r)"'=d (3.8.32)

The parameters d are not of interest for the prediction and can be eliminated from the
solution. By substituting the expression of d into the first normal equation in (3.8.31) we

have

XYY" Xa(t™t)* + &(X"X)a(t"t)*V(t'r)? = ay, (3.8.33)

Hence the solutions to (3.8.30) can be simplified as
XYY 'Xa(t"t) + &(X"X)a(t'r)? = au (3.8.34)

As required, for £ = 0, (3.8.34) is the PLS solution equation and for k = —1 it is the RRR
solutions, since in-this case 4 = 0. It is interesting to observe that for & = 1, (3.8.30) is the

product of the RegSS of r on t and the variance explained by t. The solution becomes
XYY "Xa(t"t) + (X"X)a(t'r)? = ay, (3.8.35)

that is, the sum of the matrices that generates the PLS and the PCR solutions. It must be
noted, however, that the matrix defining the solutions for & # 0 and k£ # —1 depend on a
and must be found numerically. Also note that after the first latent variable is determined,
the subsequent ones must be obtained under the constraint of being orthogonal to the
previous ones. For k = —1 this constraint is automatically satisfied (as ¢ = 0) but for
other values of k this requirement must be imposed. It can be enforced, either by the usual
“brute force” projection of the solution matrix in the space orthogonal to the previous
solutions (as in SIMPLS) or by the approximation deflating the X matrix (as in PLS). The
quantity maximized by the solutions 3.8.34 can be obtained pre-multiplying by a’, which
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gives

q P 2/
(L+ k) Z (Z u;-‘wn,v\,-éi> (Z A,?a,?) (3.8.36)

j=1 =1 =1

Stone and Brooks (1990) proposed Continuum Regression (CR), a univariate predictive

DRM in which the objective function is defined as
(y"t)3(t7t)T=="" (3.8.37)

where t = Xa with ||al| =1 and 0 < a < 1. The solutions of CR are RRR, PLS and PCA

for a equal to 0, % and 1, respectively. If we let v = {Z-, these values correspond to v equal
to 0, 1 and co. When a is treated as an unknown parameter, the first order conditions are
not easily treatable and the exponent is present as a linear factor in the solutions. The
solutions are rather messy and unpractical and we will not discuss them here. However,
Stone and Brooks (1990) propose using a grid search and Cross Validation to determine the
optimal value of @. CR is the univariate analogue of the objective function 3.8.30. Another
method also known as CR was earlier proposed by Lorber, Wangen and Kowalski (1987).
The method is proposed as a compromise between PCR and OLS, the latent variables are

obtained algorithmically. The first latent variable is determined as
t; = X(X'X)* X"y

for k = 0,1,...,00 integer. By writing the CR solution (3.8.2) in its p dimensional

representation, we have
t, = (AY*y

By recalling that the pre-multiplication by A? corresponds to a rotation towards the first
y g

principal component, it is easy to see how letting & — oo the CR solution converges to
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this solution. For £ = 0 we have the OLS solution and for & = 2 the PLS solution. The
subsequent components are obtained by requiring orthogonality with the previous ones.
Expression (3.8.2) can be modified by substituting the continuous parameter a in place of

the discrete k. In the principal coordinates of X, these become
t = (AY)=="ly (3.8.38)

The univariate objective function of CR leads to a multivariate version of it in which the

objective function is defined as

g(a,d) = cov?(t,r)(a"(X"X) (e a)~! (3.8.39)

llafl = [|d[] =1

with t = Xa, r =Yd, 0 < o < 1. Let m stand for {2~ —1 and g, and p; be two Lagrange
multipliers for the constraints. Then, equating the derivatives of the Lagrangian function

with respect to d and a to zero gives

% . X"Yd(t'r)(a"(X"X)™a)! — (X'X) ™a(a”(X"X) ™a)"%(t'r)? = ap,
% . Y"Xa(t'r)(a"(X"X) ™a)"! = du,
(3.8.40)

Pre-multiplying gg- by dT gives
p2 = (E'r)(a(X7X) ™a) "
Hence, we can simplify the second normal equation in (3.8.40) as

Y Xa(t'r)"' =d (3.8.41)
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The parameters d are not of interest for the prediction and can be eliminated from the
solution. By substituting the expression of d into the first equation of (3.8.40) we have

XYY Xa(t'r) ! (t'r)(a"(X"X)™a)™! — (X'X) ™a(a"(X"X) ™a)"%(t'r)? = ay,
(3.8.42)
which, after a slight adjustment, gives
XYY Xa(a"(X"'X)™a) — (X"X)™a(t'r)? = au (3.8.43)
where g = (a"(X"X) ™a)"2y;. Pre-multiplying (3.8.43) by a” gives
a’X'YY Xa(a"(X'X) ™a) —a"(X'X) ™a(t'r)’ = =0

since a'a =1 and a"™X"YY"Xa = (£'r)?, as can be seen from pre-multiplying (3.8.41) by
(Y™Xa)". Then pre-multiplying by a"(X"X) ™a and substituting for a in (3.8.43), the

solutions for the first vector of weights a are given by the eigen-equation
(X'X)=="'X'YY Xa = a¢ (3.8.44)

where ¢ = (t'r)?(a"(X"X) ™a)~! = g is the objective function we wanted to maximize.
Therefore, the solution is the eigen-vector corresponding to the largest eigen-value. We

can write this in terms of the principal coordinates,
2 2T
AT IYY a=a¢ (3.8.45)

which is the multivariate analogue of CR. The objective function (3.8.39) does not have a
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real justification, except that it is a generalization from the univariate case.

The matrix defining the solutions (3.8.34) is a linear combinations of the matrices
defining the solutions of PLS and PCA. In the next Chapter we will take this approach to
determine a general method for dimensionality reduction.

One conclusion that we can draw from the representation of the objective functions
of the various DRMs is that the methods that include the singular-values of X in their
objective function are those that, in practice, are considered to yield the best predictions.
One possible explanation of this can be found in the random nature of the explanatory
variables. When the regressors are random, it is customary to condition on the observed
values. Methods like OLS and RRR are derived under this conditioning. PCA achieves a
reduction of the X space in which the residuals are minimized. In practice we can consider
the PCA residuals as the best estimate of the noise in the x variables. In case the regressors
are very noisy PCR can give much better predictions. Methods like PLS are a compromise
between the necessity to separate the X space with respect to the internal noise and with
respect to the prediction of the y variables.

When the observed data are such that the OLS sub-space and the sub-space spanned by
the first principal components are not close or have a different orientation, PLS can build
a better predictive sub-space than PCR because it can include principal components with
low variance in it. This is to say that the use of PLS is advisable when the X variables are
noisy and the principal components with lower variance are correlated with the y variables.
Methods like CCA and RRR, in which the separation of the signal from the noise in the

X space is never considered are likely to capture noisy directions in the Y space.



Chapter 4

Alternative DRMs for Multivariate

Prediction

The traditional methods used for multivariate linear modelling often fail to give good
predictions of points that are not in the sample used for the estimation of the parameters.
DRMs sometimes give better predictive performance than the full rank OLS. Methods like
PLS and PCR which are not derived from the optimization of a measure of goodness of fit
often have proven to be good prediction tools. One way of explaining why this happens is
by observing that only in these two methods are the latent variables allowed to be outside
the sample OLS sub-space. Hence they include terms that are more “sensitive” to changes
in the values of the X variables. Often PLS and PCR are regarded as heuristic prediction
methods (Schmidli (1995)). We now look at the problem of Reduced Rank Regression from
the novel perspective of requiring that the latent space must be a good representation of
the X space, as well as a good predictive sub-space for the Y variables. We also propose an
iterative weighting system for RRR motivated from the same idea of keeping an eye on the
representation of the X space while building the orthogonal basis for the predictive latent

space. After this we will consider some issues regarding maximum-likelihood estimation
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under the hypothesis that the data are normally distributed.

4.1 Maximum Overall Redundancy

In this section we introduce an alternative DRM for predicting a set of response variables.
This method is derived from the simultaneous minimization of the Euclidian norm of the
residuals of the X matrix and the residuals of the Y matrix. In the previous chapter we
saw that if we require the d latent variables in the X space to be the best representation of
the X space, with respect to the Euclidian distance, we would choose the first d principal
components: if the objective function is the Euclidian distance of the y variables from the
latent space, we would choose the first d RRR latent variables. Clearly there is a trade off
between the two objectives and we saw how PLS represents a compromise between these
two. Let us consider the general RRR model (2.3.20) with orthonormality constraints on

the latent variables

X=TP+F
Y=XC+&=TQ+E (4.1.1)
T"T=I,, TE=0 TF=0

One straightforward way of approaching this problem is to require that the residual terms
E and F are simultaneously minimized. To do this we can simply aggregate the two sets

of data as

Z = (Y,X)
T'T = I, T'(E,F) =0
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and write model (4.1.1) as

Z=T(Q,P) + (E,F)
T'T =L, T(E,F) =0

with T € M(X). This last constraint is enforced simply by writing T = XA, with A
(p x d). If we choose the unweighted Euclidian norm of the residuals as a loss function,

the objective function becomes

min ||Z — XA(Q, P)|?

(4.1.2)
AXTXA =1,
From least squares theory, we have that the values of P and Q must be
(Q,P) =T(T'T)'X'Z = (XAA'X'X,XAA'X"Y)
By substituting these expressions and expanding the norm, (4.1.2) becomes
min tr{Z'Z — Z'XAA'X"Z} max tr{ATX"ZZ"XA}
or equivalently (4.1.3)
AX’XA =1 AX'XA =1
Observing that ZZ™ = (XX + YY), the optimization problem is reduced to
max tr{ A" X"XX"'XA + ATX"YY"XA} (4.1.4)

AXTXA =1,
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Adding a symmetric matrix of Lagrangian multipliers A? for the constraints and equating

the derivatives to zero, the normal equations are
(XYY'X +X'XX"X)A = X"XAA? (4.1.5)

where A is a diagonal matrix. Hence the solutions A are generalized eigen-vectors. As-
suming that (X"X)~! exists, the solutions A to (4.1.5) are uniquely determined by
X'X)'(X'YY'X+X'XX'X)A = (4.16)
(XTX)'X"YY™XA + X'XA = AA?
The solutions A are real because these are eigen-vectors of the sum of products of sym-
metric matrices, as it can be easily proved by using Choleski decompositions (Golub and
Van Loan (1983)). If (X"X) is singular, then the solutions would be. non uniquely, deter-
mined by using any choice of g-inverse (X*X)~ in place of the inverse in (4.1.6). Since we
are dealing with dimensional reduction we suggest using the Moore-Penrose generalized
inverse (X"X)* which excludes the null space, which has variance zero. An approximate
Moore-Penrose g-inverse would also be appropriate to stabilize the results, when (X"X) is
ill-conditioned. Also note that the solutions would not be unique if some of the eigen-values
6% are equal for 7 < d, however the latent sub-space would still be uniquely determined. In

fact the latent variables are the eigen-solutions to
X(X'X)" X" (YY" +XX")T = TA? (4.1.7)

and X(X"X)~X" = Px is independent of the choice of the g-inverse. The solutions T can

also be expressed as
(YY" +XX")T = TA? (4.1.8)
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since Y'X = Y'X and PxX = X. The latent variables T are free to span the whole space
M(X). In the case 83 = 3., not even the latent space would be uniquely determined. We
would have to specify another criterion for the choice of the last direction of the space. We
ignore this case for simplicity. We refer to this method as Maximum Overall Redundancy
(MOR) We were recently made aware of some similar results obtained by de Jong ((1992))
under the name of Principal Covariates Regression. The MOR solutions are generated by
the sum of the matrices that generate PCA and RRR. This fact allows us to find some
connections between MOR. and PLS. The PLS solution matrix is the product of the PCA
and RRR generating matrices. In other words in PLS the requirement that the latent
variables are also a good representation of the X space is brought in the objective function
by multiplication, in MOR by summation. It is not an easy task to say which of the two
methods is better. One point in favour of MOR is that the solutions are derived from
the optimization of the orthogonal distances of the two spaces from the latent space while
in PLS the solution is determined with a plug-in expression that has nothing to do with
projections or predictions. On the other hand, the prediction of points outside the observed
sample has nothing to do with orthogonal projections either. Another issue regarding the
the MOR solutions concerns the appropriateness of the sum of two covariance matrices,
especially when the variables are measured in different units. In fact we can write the

quantity maximized in the objective function (4.1.4) as
tr(T"XX'T) + tr(T"YY'T)

Hence the set of variables with higher variance will be more influential. Note that even
standardizing the variables to constant length would not entirely solve this problem since
there would still be the asymmetry due to the different ranks. In fact we would have
tr(X'X) = p # tr(Y'Y) = g. Hence the matrix with larger number of variables will
be more influential, typically X. In order to get around this problem and to render the
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method more flexible, we propose to adopt a weighted version of the solution matrix, that

is the coeflicients A would be the solutions to
(W,,(XTX)'IXTYYTX + W.X"X)A = AA? (4.1.9)

where W, and W are diagonal matrices made up of non negative weights, wy,; and wz;,
scaled so that W, + W, = L, for consistency with the unweighted form. We call these
solutions the Weighted MOR (WMOR). As a first choice of the weights we may take

we=al, wy=(1-a)l,aeR'0<a<1

In this case the matrix generating the solutions is a convex combination of the matrices

generating the PCA and RRR solutions. That is
1-a)(X'X)"'X'YY'X +aX'X (4.1.10)

By choosing a = 0, % and 1 we have the RRR, MOR and PCR solutions, respectively.
Hence, using scalar weights, WMOR represents a flexible tool that goes between the two
extremes, RRR and PCR, addressing the trade-off between the prediction of Y and X.
Note that the requirement that the weights have unit sum could be removed and replaced
simply by the requirement that the weights are finite (and positive). In fact, for any such
weights we could reduce the sum to a convex combination by dividing by their sum, without
changing the direction of the solutions. Hence only a change in the ratio o would change
the solutions. It seems convenient, however, to specify the constraints as we did. The
choice of the weight a is not a trivial matter. In fact, the largest eigen-value of a convex

combination of p.s.d. matrices is a concave function (e.g. Horn and Johnson (1987)) such
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that

0 < sup A (aA + (1 — a)B) = max{\;(A), A (B)}

0<a<l1

where A and B are p.s.d. matrices and A; stands for the “largest eigen-value”. Hence
the maximal eigen-value of the matrix in (4.1.10) is obtained when either a =0 or a = 1,
that is either for RRR or PCA. One obvious way of choosing the weight would be to
use Cross Validation. However, even restricting the space of a to a discrete subset, e.g.
a€ {0,0+e¢,...,1—¢1}, 0 <e <1, the lack of updating formulae for Cross Validating
eigen-vectors would render the search very demanding in terms of CPU time. We propose to
choose the weight a by considering a different objective function than the Euclidian norm
of the residuals (4.1.2); we would maximize a linear combination of the RV coefficients
between the latent vectors and the matrices Y and X. Recall that the RV coefficient
between T and X is defined in Equation (2.3.28) as

_ tr{T"XX"T}
RV(T,X) = \/tr{(xrx)z}tr{(TTT)z}

Since T'T = I, we have

o TXX'T) | g, SETYY T}
VE{XTX)T e {(YTY)?)

where (3; are constants needed to obtain convexity. By requiring this, we would take the

BLRV(T,X) + B RV(T,Y) =5 (4.1.11)

weight a to be

Ve YY'Y}

T VXX + V(YY)

(4.1.12)
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This can be expressed in terms of the singular-values of X, (A1,... ., Ap),and Y. (71,... ,7,),

as
T 4
e
o = il (4.1.13)
Alternatively, we could simply take
t{Y"Y} N
a; y=" 3 (4.1.14)

T XX} e YY) S N+

i=1 ¢

If the variables have been autoscaled then we just have a; = q—i;. The difference between
these two systems of weights can be better appreciated by considering that tr{Y Y} is
the sum of the variances of the y variables, while tr{Y"YY'Y} is the sum of squared
variances and squared covariances of the y variables and analogously for the terms in x.
Hence. the RV coeflicient takes into consideration the covariances as well as the variances.
However by looking at the expression of the weights in terms of the singular-values of the
matrices. both quantities are functions of the singular values only. An alternate approach
to derive the weights for WMOR. would be to consider the RV coefficient with respect to
the OLS solutions Y instead of the Y variables as before. That is, we would take

tr{T"XX"T} + 8 tr{T"YY"T}
tr{(X*X)?} /tr{(Y*?)z}

as the objective function. The choice of RV (T, Y) seems to be a better one. In fact, the
RV(T,Y) is bounded by

BLRV(T,X) + BRV(T,Y) = (4.1.15)

i= zp;u—l # y
(T <RV(T,Y)<RV(T,Y)<1



4.1. MAXIMUM OVERALL REDUNDANCY 129

where ¢; are the singular-values of the matrix XY Y'X. This implies that the RV co-
efficient concerning the y variables gives a higher weight to the prediction of Y. It also

has the actual maximum at the denominator and unity can be achieved with ¢ latent vari-

ables if these recover completely M(Y). From (4.1.15). by requiring that ﬁ +

—e{_(\/%—TT} = 1 we obtain as weight for the X block

Ve YYTy)
as = — (4.1.16)
tr{(X"X)?} + \/tr{(YTY)z}
and the simplified one
te{Y"Y
H{YTY} (4.1.17)

Qg = ==
T XX} + te{Y"Y}

The choice of this objective function is unusual, but is very much in the spirit of trying to
compromise between latent variables in the OLS sub-space and the principal components.
Also, the weights are defined in terms of the variance explained by the OLS estimates of Y.
which is the maximum possible. This would avoid having high weights on RV(T.Y) due
to high variance of some y variables that cannot be explained by projection on the space
of X. By adopting the RV coefficient between the latent space and the OLS solutions we
take into consideration the fact that these are the “best” full rank solutions in terms of
Euclidian distance of the space M(Y) from the space M(X). Hence we take a measure of

distance, or better of “vicinity”, from those.

We defined WMOR to have diagonal weights, in general. Defining such weights is not
equivalent to adopting a weighted norm for the residuals. In fact suppose we wanted to

define our loss function as a weighted sum of squares. Then we would have

1

(Z - Z)WZ,,II?
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where W, is a (¢ + p) diagonal matrix made up of the ¢ weights w,; and the p weights
w.;- Then we would have q weights on the y residuals and p on the x residuals and the
matrix W, would appear in the solution as YW Y. Instead. in WMOR we assign the
weights to the x variables in order to change their “importance™ in the prediction of Y or
X. In fact assigning W, and W, to be diagonal means that the function we maximize,

for each component t being orthogonal to the preceding ones. is
tTXW, (X'X) XYYt + t'XW._ X"t (4.1.18)
Let
-~ p -~
;= XW,(X'X)'X"y; = XW.b; = ) x:biwy,
=1

where b; is the column of regression coefficients of y; on X and w,, is the i-th element on

the diagonal of W,. Then

tTXW,(X'X) XYY"t = Zt* ATy = Z Z txibijwy: ) Zt,y, (4.1.19)

i=1 =1 =1 =1

and
P
XWXt = ) (t7%:) wa
i=1
where w,; is the i-th element on the diagonal of W.. Therefore the weights w,; are linear,

in the sense that they enter the sum of squares linearly. In fact the generic terms in

equation (4.1.19) are

(£7%:bi;)?wys and (€7x:bi5t™xibys) (wys + wy)




4.1. MAXIMUM OVERALL REDUNDANCY 131

The same can be said for the weights on the sum of squares and products of the x variables.
This is different from assigning weights to each variable. In this case the weights would
enter quadratically, in the sense that the product of two terms would have as weight the
product of the weights and not the sum. At any rate, the method is derived on heuristic
arguments and not on a weighting system. Notice that in WMOR. the reference to the
principal directions of the X space is lost. In fact if we express the objective function

(4.1.9) for a generic latent variable t in terms of the principal coordinates we have
- 2 2T_ - -
tT(XW,(X'X)' XYY" + XW. X"t = tTAVIW, VA~IYY t + tTAVTW_VAL

This shows that the weights now act on the coordinates V. Therefore, it is very difficult
to interpret and compare this expression with those given for the other methods in the
previous chapter. Apart from these considerations, it is not clear how these weights can
be chosen and what the effect on the solutions is going to be. One problem is that the
latent components are not necessarily orthogonal and therefore some kind of algorithmic
adjustment would be necessary to obtain orthogonality. In any case, one of the problems
in the MOR approach is that if one x variable has high variance but is not correlated with
other variables, the solutions will always “try” to explain it, with little gain for the overall
prediction. One approach to getting rid of this risk is to consider the predictive power of
each x variable. Let x;(x;) be the projection of x; onto x;, then we could define the weight

wz; to be proportional to

é:_ X3 (i )%5(x:)

F#

wy; o< (4.1.20)
jz:#x}x_.,-

that is the Redundancy Index for the regression of the other x variables on x;. We can
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also express these weights explicitly in terms of the x variables by writing

> (xIx;)?
J#L
- 4.1.21
Y= % ) S xix; (4.121)
F#s

As before we could define the weights as measures of “vicinity” by using the RV coefficient
between x; and the other x variables. In fact, let X\; be the X matrix with the i-th column

removed. then
b X Xix) (xix;)?
x! Xi4 /tr(X{iX\,-)2 x! X4 / l:r(X{iX\,-)2

The RV coefficient could then be substituted for w;. In an analogous way as we did for

RV (x;, X)) =

(4.1.22)

the prediction of the x variables, we can define the w,; to be proportional to

q
5 F10x)F5(x:)
w; o T (4.1.23)
PIRZ,
=1

where ¥; 1s the OLS prediction obtained with all the x variables and y;(x;) is the OLS
prediction obtained regressing y; only on x;. We can then adjust each couple of weights

w,; and w,; to have sum 1 in which case we have

’

=T - 3 =Ta
T %I (xi)%j(xi) 3 ¥19;
J#s J=1

W =
T ] (xi)%j(x;) f: ¥19i+ T xIx; fj T (xi)¥5 (i)
J# j=1 J#s =1 (4.1.24)

q

T xIx; 3 ¥ (xi)y;(x:)

J#i j=1

S &7 (xi)%;(x:) 3o, 9795+ 55, xTx; 3 9T (xa)¥(xi)
J#F J=1 J#i J=1

Wy

\

Although such weights are intuitively appealing, they do not really fit in a multiple regres-
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sion context. In fact, the effect of each regressor in multiple regression should be considered
conditionally on the presence of the other regressors. Also, the constraint of orthogonality
among the latent variables needs to be enforced after each component is derived, which
means that the solutions must be obtained algorithmically. This can be done as in SIM-
PLS, that is projecting the solution matrix onto the space orthogonal to the latent variables

already determined.

Iterative Weighting

One of the features unique to PLS is the deflation of the X matrix at each iteration. In the
other DRMs we considered, including MOR and WMOR with scalar weights, it is possible
to obtain the solutions simultaneously because the constraints can be reduced to the form
T™T = I. In PLS the deflation of the X matrix is possible because it is not necessary to
invert the covariance matrix of the residuals, FjjF, which is singular of rank not greater
than p — k. It is possible to deflate the X matrix also in PCA, in fact this is done in the
Power method; it would not be possible in RRR, MOR and CCA because the inversion of
(X™X) is required. Analyzing the objective function of RRR we saw that it does not take
into account the variance explained by the principal components of the X matrix. On the
other hand the objective function of PLS can be seen as the pre-multiplication of the RRR
solution matrix by X"X, after deflating the space of X of the previous solutions. The idea
of deflating the X space after each latent component is determined can be exploited for
assigning weights iteratively to the RRR solution matrix. We think of assigning a matrix
of diagonal weights to the matrix generating the RRR solutions

(X'X)'X'YY'X
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in the same way we did for WMOR. In this case, however, the weights would represent the
relative “importance” of each x variable. Consider assigning a matrix of diagonal weights
Wi in which each weight w;p) expresses the proportion of x; that still remains to be
explained. We suggest taking

X1%; — X Xifk]

T (4.1.25)

Wifk+1] =

where X;j; is the rank k reconstruction of x; obtained with the first k£ latent variables. For
k=1welet X;00 =0, Vi=1....p, hence Wi = I,. The weights w;j; all converge to zero
when X;x; = x;, which happens for & < p. When this happens the variable x; is deleted

from the objective function. To obtain orthogonal solutions we take the solutions to be
tk = F[k]ak (4126)

where F = X — X(T(k)) is the X matrix deflated of the previous components. Hence the
k-th latent component is the projection of Xa, onto the space orthogonal to the previous
components t,, ... ,ti_;. In other words we take a Gram-Schmidt orthogonalization of the
matrix XA. We will refer to this method as Iteratively Weighted Reduced Rank Regression
(IWRRR). This way of proceeding is heuristic and hard to justify on rigorous optimization
arguments, however the success of PLS and PCR together with the little popularity of RRR
in some applications show that the rigorous minimization of the sample Residual Sum of
Squares does not lead to superior predictive techniques. In the following chapters we will
show that this method’s performance is comparable to that of PLS and other methods.
Table 4.1 gives a summary of the algorithm for IWRRR.  IWRRR has two interesting

features. One is that the weights might help reduce the ill-conditioning of the covariance
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Table 4.1 Generic iteration of the Iteratively Weighted Reduced Rank Regression algo-
rithm

IWRRR
0) W;=LF, =X Initialization
1) Compute svd W (FIF;)"'FIYY'F;)
2) aa=Aq } Computation of coefficients and scores
3) ti=Fa/||F:ai
5) H;=tt] Projection matrix

Estimates and deflation

6) X:=HX }
8) Fiu«F.-X;
9) Wy = diag{F],,F;, }diag{X"X}]™* } Computation of the weights and
10) if ||[Wiigyl| > € go to 2; else exit stopping rule

matrix of X. We can write

Wiy(X'X)™! = (XTXW)™ (4.1.27)

It is difficult to say how the weights change the eigen-structure of the covariance matrix.
However their introduction is likely to improve the numerical stability of the inversion. In
fact, let wipy = 1 — ;%) so that Wy = I — Ay, then we can expand W[;]l) in power series,
which gives

(XTXWA[;]l) =X"X (I + i AE;:]) (4.1.28)

n=1

This shows that the complete set of IWRRR solutions can be thought as a biased shrinkage
estimate of the OLS solutions. Clearly it is very different from the Ridge estimator (Hoerl
and Kennard (1970)) and the use of diagonal weights is unusual, howéver (4.1.28) could
be a further justification for introducing the weights as we did.
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4.2 Some Inference Related to Dimensionality Reduc-

tion

In multivariate analysis it is often difficult to make credible assumptions about the distribu-
tion of the observed variables. Even when this can be done, the transformations involved
in deriving the test statistics are such that their exact distribution is often intractable
and asymptotic approximations are required. Sometimes even the asymptotic results are
very poor approximations. Maximum Likelihood Estimates play a fundamental role in
hypothesis testing because of their consistency and asymptotic normality. Many MLEs
and related inferential results have been derived under the assumption that the elements
of each vector of observations are jointly multinormal. In many applications of multivari-
ate techniques, however, the observed variables are mean centered and standardized to
common length. In this case the sample is no longer normally distributed but has von
Mises-Fisher distribution (e.g. Mardia, Kent and Bibby (1982)); that is the distribution
of n p-dimensional multinormal variables projected onto an (n — 1)-dimensional sphere of
fixed radius. This fact renders all the asymptotic results proposed incorrect. Then ro-
bustness to departure from normality becomes an important feature of inferential results.
Some results for multivariate inference have been derived under the class of elliptical dis-
tribution, Muirhead (1982) and Gupta and Varga (1993). In this thesis we do not devote
much attention to inferential aspects of estimation, preferring to focus on geometric prop-
erties of the sample quantities. We will, however, briefly summarize some results related to
Maximum Likelihood estimation of the variance and covariance matrix, for completeness
and because some are needed further on for the DRMs. The notation A ~ Wj(Z,n — 1)
stands for vec(A) ~ Winxp)(I® X, n — 1) and analogously whenever we state that a matrix
has a certain distribution. In what follows we assume that a sample of n independent

observations x; ~ Np(u,X) is available. u and ¥ are unknown but X is positive definite.
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Then the sample average, X* = 117X and covariance matrix, § = 1(X - 1,x")"(X - 1.X"),
are the maximum likelihood estimates (MLE) of the population means and covariances;

nS has a Wishart distribution W,(2,n — 1).

Estimates of the covariance matrix under constraints can be readily obtained from the

unconstrained estimate (e.g. Muirhead (1982)). The most important of which are:

¥ = o2I: Covariance proportional to the identity matrix

In this case the MLE is s2I

1 P
82 = - Si: (421)
>

=1

where s;; are the diagonal elements of S.

¥ = diag{s?}: Diagonal Covariance
In this case the MLE is given by the diagonal elements of S

833 (422)

Predictive problems deal with variables partitioned into explanatory variables and re-
sponses. In most cases, the explanatory variables are taken to be deterministic, however
there are situations in which these variables are stochastic as well. Suppose now that we

partition z ~ Ny4p(s, 2) into two sub-vectors, y and x, q and p dimensional, then

3, X
(}'T, xT)T ~ (,-‘:p "‘;)Tv v =
2., 3.

The MLE:s of (s, . ) are (X, ¥) and those of each element of ¥ are obtained by partitioning
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the MLE for the full model,S, in the same way as X
S, S,
Szy Sz

i) The marginal distributions of the MLEs are still Wisharts, S, ~ W,(2,,n — 1) and

Then the following results hold:

S, ~ W,(X,,n — 1). In general they are not independent.

1) The MLE of the conditional covariance Cov(y|x) is still Wishart
Syiz = Sy — S$4=S7 'Sy ~ Wy(Bye,n —p— 1)

and it is independent of S, and S,. Note that S_! exists because S, is non singular
with probability one for the hypothesis that X is of full rank. If we drop this condition,
the expression of the conditional variance is still valid but requires a generalized
inverse S7 in place of the ordinary inverse. If 3, = 0 then

Sy — Sylz = 54287 'Sy ~ We(2y, p)

and S, S, and S,.S_!S,, are jointly independent.

4.3 MLE’s of Parameters for DRMs

We now consider the problem of obtaining Maximum Likelihood Estimates of the latent
variables for different Dimensionality Reduction Methods. We assume that the sample
consists of n independent observations, with identical normal distribution. By writing
X ~ Np(u, 3) we mean that vec(X) ~ N(vec(1u), [,®X). When considering the likelihood

only the part relevant for the estimation will be written out, that is constant terms will
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be neglected. The likelihood of a set of parameters © will be denoted with L(®) and its
natural logarithm (In) with {(®). In previous sections the symbol * "7 denoted orthognal
projections, here this symbol above a parameter will denote its MLE. The assumption
that the observations are independent, identically normally distributed is affected by the

autoscaling. In what follows we will assume that the observations have not been scaled.

4.3.1 Principal Components

The MLEs of the principal components under Normal assumptions can be easily obtained

from the MLE of the covariance matrix. Let X be a sample of n independent observations

(X-11T2T)(X-11Tx")T
n

be the MLE of 3. If n > p then with probability 1 ¥ is p.d. with distinct eigen-values

from a p-dimensional Normal with mean g and variance X. Let ¥ =

(e.g. Seber (1984)). Let the spectral decomposition of ¥ be
Y =WI'W’

which, for ¥ p.d., is unique. By the invariance properties of the MLEs it follows that the
MLEs of W and T are given by the spectral decomposition of S. Muirhead (1982) gives
an alternative proof based on the Wishart distribution of 3, which is sufficient for . The
likelihood is maximized without taking derivatives.

4.3.2 Canonical Correlation

If the variables x and y are normally distributed, then the sample variance and covariance
matrices are the maximum likelihood estimates of the corresponding population quantities.
By applying to the population the same algebra we applied to the sample covariance
matrix in section (3.3), we obtain the same solutions with the sample variance matrices >

replaced by the corresponding population variance matrices 3J,. Again from the invariance
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properties of the MLEs Anderson (1958) argues that the sample CC solutions are MLEs.

4.3.3 Reduced Rank Regression

The estimates for RRR are not as straightforward as the one above. For the case of X
fixed, i.e. non stochastic, we discuss the ML estimation under different assumptions on the
covariance matrix of the y variables, denoted by X, which we take to be p.d. Following

Schmidli (1995) we give the estimates for the constraints T™T = I. Under model (2.3.20)
E(Y) =XAQ
Disregarding the constant terms, the log-likelihood is
(Z,A,Q) =T —tr{Z1(Y - XAQ)"(Y —XAQ)} (4.3.1)

By writing Y — XAQ = (Y - XAA™X"Y) + XA(A'X"Y — Q) and letting Q@ = A™X"Y

we have
I(Z,A,Q)=1(3.A,Q)
since ¥ is p.d. Hence we can take Q = Q. The log-likelihood than can be expressed as
(Z,A,40) =2 —tr{ZH(Y - XAA'X"Y)(Y - XAA'X"Y)} (4.3.2)

We now consider the following assumptions on the covariance matrix .

¥, = o, known
In this case the MLE are obtained by minimizing

I(A) = tr{(Y — XAA'X"Y)Z; (Y — XAA'X'Y)"} (4.3.3)
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or, equivalently, maximizing
tr{XAA'X'YS;'Y'XAA'X"}

under the constraints ATX"XA = I. Letting Yo = Y, ;_. the solutions A are given
by the first eigen-vectors (e.g. Schmidli (1995))

XY YIXA = X"XA®?
If X'X is non singular we get the familiar expression
(X™X)"'X"Y, YIXA = A$?

Hence the MLE of the RRR parameters are equivalent to the sample based estimates

for the objective function

(Y - XAATX"Y)S; 7|2 = [|(Yo — XAATX"Y,)

= gl Error Covariance matrix proportional to the Identity matrix
In this case the MLEs, conditional on &, given in (4.2.2) of the previous section, are

given by the minimization of
l(A) = ltr{(Y - XAAX'Y)(Y -XAA'XY)}
o

under the constraints ATX"XA = I, hence we have the RRR solutions of previous

chapter

X'YY'XA = X'XA®?
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3, diagonal

The MLEs under the assumption that the y variables are independent with equal
variance (which is justifiable when the errors are due to measurements) are given by

the minimization of
[(A) = [diag{(Y — XAA™X"Y)(Y - XAA'X"Y)}

under the constraints ATX"XA = I. Unfortunately , there is no closed form solution
to this optimization problem. Schmidli (1995) proposes to use the Gauss-Seidel
algorithm to determine an optimum. The Gauss-Seidel algorithm for this problem

would consist in iterating the following steps until convergence:

i}(i) = diag{(Y - XA(i—l)A(i—l)TXTY)f(Y - XA(i‘l)A(i—l)rxTY)}
(xTX)—leY(i)Y(i)TxA(i) = A(:)®2

. L
where Y® = YE®? apd A® is an arbitrary initial value. Upon convergence, the

solution might not be a global minimum.

For the unstructured covariance matrix, we give the full derivation along the lines of
Tso (1981) who obtained the CC variables as the MLEs for this Reduced Rank Regression
problem. The log-likelihood is

I(A,2) = |5 - tr{Z"'Y(I- XAATX")Y}

and it needs to be maximized under the constraints ATX"XA = I. By substituting
3 = Y"(I - XAA™X")Y, the likelihood is maximized by A for which

I(A,2) = |Y(I-XAA'X)Y| = [YY|I- (YY) I Y'XAA'X'Y(Y'Y) 5| (4.3.4)
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is a minimum. By writing A = (X’X)%A, the constraints become ATA = I and (4.3.4)

can be rewritten as
I(A) = [Y'Y|I— (YY) FY'X(X'X) FAAT(X'X) " XY(Y'Y) 3| (4.3.5)

Now by observing that |[I — C| = [J(1 — A:i(C)). where \;(C) are the eigen-values of C.

and that [Y'Y]| is a positive constant, we have

h(A)=]] {1 - ,\,-[(Y*Y)-%YTX(x*x)-é-AAT(XTX)-‘sx*y(yfy)-%)]}

ij=1
d
=] {1 - ,\,-[AT(XTX)-%x*Y(Y*Y)-lYTX(x’X)-%A]} (4.3.6)
Jj=1
d
=[I{t-sD)
Jj=1
where p?,¢ = 1,...,q are the squared Canonical Correlation coefficients. Since 0 <

(1 — p2) <1, h(A) is minimized by taking A to be the first d eigen-vectors of
AT(X™X):X"Y(Y'Y) 'Y'X(X"X)"7A. Trasforming this solution back into the origi-

nal parameters gives

A = A (4.3.7)
ﬁ = CCAACCATTY (4~3-8)

which is the regression coefficient obtained with the Canonical Correlation variables in
Equation (3.3.34). That is the MLEs of the Reduced Rank Regression coefficients are the

coefficients of Canonical Correlation Regression. Izenman (1975) noted that this solution
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is equivalent to the sample based solution of the RRR with objective function
(Y — XAA'X"Y)L#|}?

where I is either S, or (OLSY;LSY).

4.3.4 Maximum Overall Redundancy

Under the assumption that the latent components are fixed unknown parameters (that is a
functional model (see Section 2.3) and that the errors in the x are uncorrelated with those
on the y’s and that the covariance matrices are known, it is possible to obtain Maximum
Likelihood Estimates of the parameters for the Maximum Overall Redundancy method.
Burnham (1997) considered some similar results. If the variance matrix of the x variables is
not assumed known, then the model is unidentified and the parameters cannot be estimated
unless replicated observations are available (Anderson (1984)). Let the underlying model

on x and y be

x = Pt+f (4.3.9)
y = Qt+e
(4.3.10)

We assume that the errors on each observations are independently distributed as

e; ~ MN,(0,%.) and f; ~ MN,(0,Z¢), where I, and ¢ are known full rank matrices,
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and Cov(e,f) = 0. Then the likelihood is given by the joint distribution of E and F

QIH

L(T.P.Q) =K

P
exp {-ltr[(Y _TQ),(X - TP)] ( e O ) ( (Y -TQr ) }
2 0 = (X — TP

where K is a constant independent of the parameters. Since the variance matrices are

known the logarithm of the relevant part of the likelihood reduces to
(T,P,Q) = -—;—ltr{(Y —TQ)Z;H(Y -TQ)" + (X -TP)E/ /(X -TP)"} (43.11)

By assumption both ¥, and X¢ are positive definite and of full rank, therefore also their

inverses are p.d. Under the constraint T'T = I we write the orthogonal decompositions

(Y-TQ) = (Y-TTY)+T(T'Y-Q)=(Y-TQ) + T(Q- Q)
(X - TT'X) + T(T'X — P) = (X - TP) + T(P — P)

(X -TP)
where Q = T'Y and P = T"X . Substituting these in the log-likelihood (4.3.11) leads to

(T,Q.P) = —er{(¥ - TQ)ZIHY — TQ)" + (Y - TQ)Z;(Q - Q'T”
+T(Q - Q)TH(Q - Q)T+ (X - TR)Z; (X - TP)T  (43.12)
+(X - TP)S;'(P - P)'T" + T(P - P)3;}(P — P)"T"}
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Since T(Y — TQ) =0 and T(X - TP) =0

I(T,Q.P) = -% tr{(Y - TQ)Z;Y(Y - TQ)" + (X - TP)Z; /(X - TP)”
+T(Q-Q)Z;'(Q-Q)'T"+ T(P - P)=;'(P - P)"T"} (4.3.13)
< —% tre{Z;1(Y - TQ) (Y — TQ) + =;'(X - TP)"(X - TP)

where the inequality derives from the positive definiteness of the inverse variance matrices.

Equality is attained for

P = P=TX (4.3.14)

Q Q=TY (4.3.15)

Substituting these in the likelihood and adding a symmetric matrix of Lagrangian multi-
pliers, M, for the orthogonality constraints on the T, the function we need to minimize

becomes
g(T) =tr {E:YT(I -TTHY + E,TIXT(I -TT)X -M(T'T - I)} (4.3.16)

Taking derivatives with respect to T and equating them to zero gives

dg(T)
dT

=YS'Y'T+XE/'X'T-TM =0 (4.3.17)

From the orthogonality constraints on the t;’s we see that M must be diagonal. Thus the
MLE:s are the d eigen-vectors T(q) that satisfy

(YEI'YT + X3 X)) T = Tl (4.3.18)
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where v; > . .- > 44 are the d largest eigen-values. However, this solution T is such that
M(T) € M(Y : X). This solution corresponds to the Weighted Total Least Squares
solution (Van Huffel and Vandewalle (1991)) and the Error in Variables Regression MLE
(e.g. Seber (1984)). If we require that M(T) C M(X), then we can express T as a linear
combination of the X variables, that is T = XA, where A is a (p x d) matrix such that
A'X"XA = 1;. Substituting this expression for T in Equation(4.3.18) (this is allowed
since T = XA i1s a linear transformation) the MLEs of the coeflicients A are given by the

solutions of the generalized eigen-equation
(X'YSI'Y" + XX X)X Ay = X' XA A (4.3.19)

corresponding to the d largest eigen-values A; > --- > Ay. By the assumption that ¥ x is
p.d. X'X is p.d. with probability 1 and we can write the solutions for A as

(X'X)'X'YS'Y'X + B X XA g = Ag A (4.3.20)

Under the assumption that the errors ¥¢ = I, and ¥, = I, that is all errors are
independent and have equal variance, these solutions become the sample based MOR
solutions. If it is assumed that B¢ = w'I, and ¥, = w;'L,, with w, not necessarily
equal to w,, the MLEs become the WMOR solutions. It is not required that the inverse
variances have sum 1, as we pointed out that the constraint wy +w. = 1 was not necessary
for identifying the solutions. This last assumption is more general than the previous one.
It is assumed that the errors are all mutually independent and that they have the same
variance in each block. If we take ¢ = iX’X, that is we condition on the observed
regressors, the MLEs of MOR are simply the MLEs of the RRR model with (I — A) being
the matrix of eigen-values. We have seen that if the covariance matrix of the y variables

is totally unknown, the MLEs of RRR, and hence of MOR conditional on X, are the CCA



148 CHAPTER 4. ALTERNATIVE DRMS FOR MULTIVARIATE PREDICTION

solutions. These special cases are interesting per se but they also show how MOR can be
generalized to other solutions, under the hypothesis that the errors on the two blocks of

variables are independent.

4.4 Curds and Whey

The Curds and Whey (CW) method has been recently proposed by Breiman and Fried-
man (1997) for improving the OLS prediction in multivariate regression with random ex-
planatory variables. This method is not derived under rank constraints. However, it turns
out that it is closely connected with CC decomposition of the OLS sub-space. The idea of
improving the prediction of values external to the sample and of correcting for the positive
bias in the sample canonical correlation coefficients lead to solutions that are likely to lay
in a sub-space of the first CC variates. The authors never explain what the name of the
method means. personally we think it is connected with the idea of separating the true
Canonical Correlation from the biased sample estimate. We discuss this method as pre-
sented by Breiman and Friedman (1997) and give some additional comments. We change
slightly the notation used in the paper in order to keep it consistent with that of this
thesis. Also, we explicitly state whether we are considering an observation of the sample
used to obtain the Ordinary Least Squares estimates (the training sample) or a new in-
dependent observation. Breiman and Friedman only imply the difference, which is crucial
(e.g. Copas (1983)).

The CW method can be included in the class of “shrinkage estimators” of the regression
coefficients, introduced by Hoerl and Kennard (1970). The best known estimator in this
class is the Ridge estimator B = (X'X + AI)~!X"y. It was introduced to overcome
the problem of multicolinearity and the choice of the parameter A has been then object
of numerous studies; however, a definite optimal solution has not yet been found. The

Ridge estimator is biased but it has lower variance than the unbiased OLS estimator (the
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parameter \ shrinks the variance). However, the derivation of this estimator is not based
on improving the OLS estimates over the sampling distribution but over that of unknown
future observations, and can be treated just as a prediction based regression estimator,
without reference to the inherent bias and reduction of variance. This method is not
based on dimensionality reduction, however it can fit well in that framework because the
solutions are expressed in terms of the Canonical Correlation coordinates. The idea of
the authors is that such an approach should improve the prediction by exploiting the
existing correlation among the response variables. This is done by taking the predictions
to be linear combinations of the OLS predictions. For ease of exposition, in what follows
we shall denote the random and the observed vectors as row vectors. Let y... be a ¢-
dimensional row vector and x,.. the corresponding p-dimensional row of regressors, also let

the CW prediction be y =, s yC. C is determined as the solution of

é = argénin Etr((ynev - &nevC)T(Ynev - ?nevc) = argcfnin E(ynev - ine\vc)(yne- - ?ne\'c).r

(4.4.1)

-

where ¥,.. = X...B are the OLS predictions of y,...

The theory behind the method is straightforward, after some simplifying assumptions
have been taken. Let Y and X be the training sample, consisting of » independent observa-
tions on the g response variables yy, ... ,y, and the corresponding p explanatory z,,... , Zp.

Assume that the underlying model, in terms of the random vectors x C R? and y C R4, is

y=xB+e

F(x,€) = Fx(x)Fe(e)

E(x) =0, E(e)=0

Var(x) =V,  Var(e) = 3 (4.4.2)
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where F.(-) denotes the distribution function. Another necessary assumption is that x; = 0
and X'X = V and that the same is true for the future observations, i.e. x__x,.. = V. This
can be justified as a simplifying assumption or on the grounds of conditional arguments.
Let B = (X'X)"!X"Y = V-!X"Y be the OLS estimates of the regression coefficients
obtained from the training sample. Given a new observation (X,..,¥Yn.~). from the least

squares theory, the solution to (4.4.1) is
C = E(F Fuer) E(FL. Yoeu) (4.4.3)

Denoting the “signal” covariance matrix F = BT"VB, where B is the matrix of true regres-

sion coefficients, we have, from Equation (2.4.6),

E(yu¥nee) = E(BX. X..B)=F+rZ (4.4.4)
E(y..Yuw) = F (4.4.5)

where r = 2 so that C = (F + r2)"!F = (I, + rR)"! where R = F~!X. The solution
is then derived by observing that. under model (4.4.2), the matrix defining the coefficient

vectors of the canonical covariates in the Y-space (cfr Equation 3.3.8)
QD = E(y'y) ' E(y"x)E(x"x) ' E(y"y)D = DP? (4.4.6)
Hence Q can be written in terms of R as
Q=FF+2)'=(L+R")!'=DP*D! (4.4.7)

whence

C=[1-rI+7QY (4.4.8)
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Thus € must be “diagonal” in the canonical coordinates D:

¥ =oLs ¥C =oLs yDLD ™! (4.4.9)
where L is a diagonal matrix and

yD =, yDL (4.4.10)

The diagonal elements are called shrinkage factors because they determine a “shrinkage”
in the regression coefficient, in the James-Stein sense of diminishing their variance. The

diagonal elements {l;}] of L are given by

p?
AT et

1

The plot at the top of Figure 4.1 shows the values of ; as a function of the squared
canonical correlation coefficient for different values of r and the plot at the bottom shows
l; as a function of r for different values of p?>. The shrinkage factors increase monotonically
in p? and each [; is always greater than or equal to p?. For large r, I; tends to grow linearly
while for smaller values of r the growth is convex. Hence when the ratio of variables to
observations is low the population shrinkage factors tend to give more weight to the CC

variables corresponding to low canonical correlations.

The authors observe that the values p? based on the sample CCA represent over-
estimates of the true values. If the ratio r is low the OLS solutions may represent an
“overfit” only due to the fact that the points lay in an hyperplane of about the same
dimension as the explanatory space. The bias of the CC coefficient is the multivariate
analogoue of the bias of the coefficient of determination in univariate regression. If r=1,

ther Y = Y and pr =1, Vi =1,...,p. The use of Cross-Validation is proposed for
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Shrinking values in sample based Curd-Whey
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Figure 4.1: Values of the population “shrinkage” factor [;., (top), vs. the squared canonical
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the estimation of the “shrinkage” factors as an approximation to the true distribution of

unobserved values. Considering CV in the objective function this becomes
Cov = argmintr(Y — YevrC) (Y — YerC) (4.4.12)

where ch are the leave-one-out CV OLS predictions, ¥,;. From the standard CV theory
we have that y/,; = (1 — g:)y: + ¢:;¥: where y; is the OLS estimate of y;, g; = (1 — ki)™ !
with h;; being the diagonal elements of the projection matrix Px. If we let G = diag{¢:}

equation (4.4.12) becomes
Cov =argmin tr{Y — [(I - G)Y + GY|C}{Y - [(I- G)Y + GY|C}  (4.4.13)
which has normal equations
[GY +(I-G)Y]{Y-[(I-G)Y + GY]|Ccv} =0 (4.4.14)

Since the X variables are assumed to be random, the observed g; do not represent a
reliable estimate of the true values. As a first approximation Breiman and Friedman (1997)
consider the Generalized Cross-validation approach in which the values of h;; are taken to
be hy = p/n = h the average of the hy's. Hence g; = g = 1= Substituting this value into
the normal equations (4.4.14) gives

YY+(1-g)Y'Y=[2-g)g¥YY+YY+(1-g)?YY|Cacv (4.4.15)
or, pre-multiplying by (Y"Y)™!, it can be written in terms of the matrix Q (4.4.6)

9Q+(1-g)I=[(2-9)9Q + (1 —9)’I|]Csev (4.4.16)
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Hence, Cgcyv is also diagonal in the CC co-ordinates D. As before we write

Cgecv = DMD™! (4.4.17)

Actual values of the shrinkage factors for CV-CW

0.0 0.2 0.4 0.6 o.8 1.0
squarad canonical correiation

Non-negative values of the shrinkage factors for CV-CW

0.0 0.2 0.4 0.6 o.8 1.0
squared canonical correlation
Figure 4.2: Actual values (cut-off at -2) (top) and non-negative values (bottom) of the
Generalized CV “shrinkage” factor m; vs. the squared canonical correlation coefficient p?,
for different values of » = p/n.
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where

1—7)(p? -

since the value of m; obtained with this approximation is negative for r > p?, the values

are set to non negative values by taking
m; = max{0,m;}

Figure 4.2 shows the behaviour of the coefficients m; as a function of the squared Canonical
Correlation coefficient for different values of the ratio ». The GVC shrinkage factors are
smaller than the population ones, this effect increases with r. Actually for large r, say
> 0.75, there is an inversion in the curvature of m(p?) from convex to concave, which
implies that the coefficients are inflated for small values of r and deflated for large ones.
By observing the curves, it is interesting to note how for low variable to observation ratio
r the coefficients corresponding to small Canonical Correlation are “boosted” while for
r > .5 the coefficients corresponding to small p? are zero. This feature is desirable, since it
contrasts the over-estimation due to the geometrical links on the observations. However,
we could easily conceive applications with a small number of observations and p? < .7V ¢
so that m; =0V :and ¥ =0, and later we will give an example in which this happens.
Also unclear, is the rationale for which the larger the value of r the fewer directions are
likely to be included in the prediction, that is the rank of the regression matrix decreases.
In order to have better estimates of the shrinkage factors, the authors consider the Fully
Cross-Validated (FCV) estimation. This consists of applying CV, either leave-one-out or

multi-fold, to the canonical correlation analysis and determining the coefficients m; as

arg min tr(Y — YovyDevMD3E ) (Y — Yoy Doy MDY, (4.4.19)
M=diag .

where the subscript (CV) now refers to the quantities computed with either one or more
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observations removed. Suppose now, without loss of generality, that the estimation is
to be done with the leave-one-out CV. If we let m = (m,,m,,..,m,) be the g-vector of
the diagonal elements of M, R\; = diag{y\;(D\;);}] the diagonal matrix made up of the
products of the j-th column of the matrix D\;, that is the matrix D computed with the

i-th observation removed, then (4.4.19) can be rewritten as

m =arg min Y (v: — (§WDWMD{!))(y: - (7\:DuMD))"
i-,_-‘l (4.4.20)
= arg min Z(y; - mT(R;D(-,-)I)(Yi - IIlTl"\'-\iD(:-)l)T

1=1

Then the problem becomes a least square problem with solution

d= (Z R\.'D\-il(D(T;))’l)RTi) (Z R\,-D(“.)ly}> (4.4.21)

=1 i=1

Here we have indexed the equations for the leave-one-out CV, for the multi-fold the index
1 = 1,...,n must be replaced by k = 1,... , K were K is the number of subgroups of
observations used for the CV. This solution has been derived by substituting the general
expression of the GCV-solution into a fully CV equation and not from Equation (4.4.12),
that is assuming that Cpcy = DMD™!, which may not be true. In order to make this
solution consistent with the others, the authors suggest “replacing the elements of D, {d;}{,
by the closest fit to those values that are monotone in the sample canonical correlations.”
This seemingly means that they take the OLS fit of d to the GCV shrinking factors, and this
is what we have done for our computations. Surely this is not the only way monotonicity
can be achieved. In fact, one may want to use any other monotonic function of p?, for

instance exp{1}. Positivity is again achieved by taking

d; + max{0,d;}
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The FCV approach can be quite expensive in term of computational time. However, it
might correct severe problems due to the approximations taken in the GCV approach.
Breiman and Friedman have run extensive simulations to compare their method with oth-

ers, among which PLS and RRR.

4.4.1 Discussion of Curds and Whey

The simulations presented in the original paper show that CW performs well in prediction.
CW is not a projection method because the solutions are not obtained by minimizing the
variance of the prediction residuals. However it is intimately connected to CCR.

One interpretation of this method in terms of the CC variates can be obtained by
recalling Glahn’s method for Canonical Correlation Regression (see section 3.3.3). When
q < p in Glahn’s method the Y matrix is recovered by using Equation (3.3.21)

Y(X)D = TP as

Y = YDP3. D!

where P, is the matrix P with the last (g — p) diagonal elements set equal to zero. By
substituting o, .y = tPD™! in the population expression for the CW solutions (4.4.11)

¥ =ors Y DLD™! = tPD"'DLD! = tPLD™!

It consists of augmenting the weights of the canonical correlation coordinates in the OLS

solutions. If we retransform the solutions back into the canonical variables we have
t= ?DE._I =oLs yDB_lLE-l = tB”L (4.4.22)

which can be seen as a rescaling of the CC latent variables in the X space, with weights
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f_: = 7’?;(11?«7 The weights are between 0 and 1. In Figure 4.3 the population values of
the rescaling weights are shown.

Rescaling weights in CW, 0<r< 0.3

©
— r_.

20 = &3
fm --- r=0.
]
<

]

0.0 0.2 04 0.6 0.8 1.0

rho2
Rescaling weights in CW, 0.3 <r< 1

1.8 22

weights

14

1.0

rho2

Figure 4.3: Population rescaling weights vs. the squared Canonical Correlation coefficient
p?, for different values of r = p/n.

The weights are higher for low values of p? and increase as r decreases. The rescaling
has the effect of distorting the p-dimensional hypersphere defined by the CC variates. It is
not possible to establish the effects of this distorsion a priori, however it is clear that the
CC variates associated with the lowest Canonical Correlations are extended the most for

small values of r. By looking at the first derivative of ! with respect to p? which is

al r
92~ [p?+r(1-p?)P
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we see that the slope goes from 0 to 1 as r goes from zero to 1 and it is quadratic in
p®. The behaviour of the GCV shrinkage factors is more complex, see Figure 4.2, the
curvature changes for = close to 0.5. this means that the CC coordinates corresponding
to low value of the squared CC coefficients receive more importance for a low regressor to
observations ratio, while for high values of this ratio the coordinates are not included unless
the corresponding squared CC coefficient is very high. Indeed. this behaviour agrees with
the intention of “deflating” the positive bias off the CC coefficients. However, we believe
that it could be too severe. We illustrate through an example with an artificial data set.
how the CW predictions can all be null. We have included CW in this thesis because it
seems to us that this method achieves Reduced Rank estimates of the regression coefficients
as a correction to the OLS estimates with improved predictive accuracy. CW does not seek

parsimony, in fact there are many parameters to be estimated.

4.4.2 Example for which Curds and Whey yields null predictions

In order to show that it is indeed possible that CW yields null predictions. we construct an
example with 15 explanatory variables, 5 responses and 25 observations (r = 0.6) and pi<
0.6. The data are given in Table 4.9, 4.10 and 4.11. The squared Canonical Correlation
coefficients for these data are (0.5616,0.4000, 0.3761,0.2086,0.1202): since r > pi , from
Equation (4.4.18) it follows that the non negative shrinkage factors will all be zero, thus
the matrix Cgcy will also be. For this example GCV-CW gives null predictions. Given
that the highest Canonical Correlation coefficient is less than 0.6 and the observation to
variable ratio is 0.6, we have a strong indication that the linear relationship between these
two sets of data is low. It is also possible that the best predictions are just the mean
value of y (in this case it is 0 because the data had been centered). The OLS regression

coefficients are given in Table 4.2
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OLS {| Y, Y. Y; Y, Ys

X, 037 | 033 | 037 0.43 | -0.51
X, 0.09 | 0.18 (-0.21 | -0.30 | 0.15
Xs -0.25 | -0.34 | -0.21 | -0.30 | -0.07
X, -0.11 | -0.34 | -0.35 | -0.14 | 0.00
Xs -0.37 [ -0.17 | 0.46 | 0.09 | -0.08
Xe 044 | 039 (-0.25 | 0.04 | 0.15
X~ -0.07 | -0.07 | -0.17 | -0.15 | 0.18
Xs -0.03 | -0.15 | 0.20 | 0.27 | -0.32
Xy 0.10 | 0.08 {-0.16 | -0.13 | 0.03
Xy || -0.43|-0.34 |-0.15 | -0.37 | 0.32
X, |/ -0.14 | -0.02 | -0.27 | -0.41 | 0.37
X2 || -0.14 | -0.07 | 0.15| 0.15 | 0.17
Xis || -0.09 | -0.04 | 0.02 ] 0.00 | 0.15
X1 0.13 { 0.15 | -0.08 | -0.10 | 0.00
X;s || -0.34|-0.29 | 0.10 | -0.12 | -0.02

Table 4.2: OLS Regression coefficient estimates when the CW estimates are null.

The regression coefficients are very different from zero, of course one must take into
consideration the low number of observations in this example.

We also consider another set of 5 responses, given in Table 4.12 in the Appendix, with
squared Canonical Correlation coefficients equal to (0.7802,0.6078,0.4126,0.3696, 0.2793).

The OLS regression coefficients are shown in Table 4.3
The GCV estimates of the shrinkage factors are mgcyv = (0.01461,0,0,0,0) so that the

matrix of the coefficients Cgcv, given by Ceov = 0.01461d,d], is as shown in Table 4.4.

The CW regression coefficients have, in this case, rank 1.
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Bors Y1 Y2 Y3 Y4 Y5

X1 0.024 | 0.106 | -0.061 | -0.052 | 0.245
X2 0.183 { 0.170 | 0.016 | 0.025 | -0.163
X3 -0.370 | -0.445 | -0.390 | -0.521 | 0.119
X4 -0.379 | -0.326 | -0.130 | -0.353 | 0.154
X5 0.549 | 0.619 | 0.295 [ 0.359 | -0.295
X6 -0.023 | -0.012 | -0.400 | -0.411 | 0.281
X7 -0.034 | -0.068 | -0.085 | -0.093 | -0.019
X8 0.030 | 0.063 | 0.037 | 0.057 | 0.070
X9 -0.070 | -0.042 | 0.054 | -0.012 | -0.013
X10 0.109 | 0.181 | -0.267 | -0.196 | 0.381
X11 -0.328 | -0.286 | -0.262 | -0.416 | 0.274
X12 0.056 | 0.112 | 0.146 [ 0.132 | -0.009
X13 0.052 | 0.042 | 0.121 | 0.152 | -0.095
X14 -0.108 | -0.082 | -0.200 | -0.289 | 0.139
X15 0.117 | 0.052 | -0.042 | 0.027 | -0.121

Table 4.3: OLS Regression coeflicients estimates.

0.09815

-0.07260

CGCV = 0.06684
-0.04480

0.02498

0.08883
-0.06571
0.06050
-0.04055
0.02261

0.11053
-0.08176
0.07527
-0.05046
0.02813

0.12485 -0.14186
-0.09235 0.10494
0.08502 -0.09661
-0.05699 0.06476
0.03177 -0.03610

Table 4.4: Estimated Coeflicients CGCV.

The “shrunk” GCV-CW regression coeflicients are shown in Table 4.5

161



162 CHAPTER 4. ALTERNATIVE DRMS FOR MULTIVARIATE PREDICTION

Beev Y1 Y2 Y3 Y4 Y5

w1 -0.0009 | -0.0008 | -0.0010 | -0.0011 | 0.0013
w2 0.0016 | 0.0014 | 0.0018 | 0.0020 | -0.0023
w3 -0.0037 | -0.0034 | -0.0042 | -0.0048 | 0.0054
w4 -0.0025 | -0.0023 | -0.0029 | -0.0032 | 0.0037
W5 0.0051 | 0.0047 | 0.0058 | 0.0065 | -0.0074
w6 -0.0027 | -0.0024 | -0.0030 | -0.0034 | 0.0038
W7 -0.0005 | -0.0004 | -0.0005 | -0.0006 { 0.0007
w8 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000
W9 0.0000 | 0.0000 | 0.0001 | 0.0001 | -0.0001
W10 ([ -0.0019 | -0.0018 | -0.0022 | -0.0025 | 0.0028
W11 |} -0.0034 | -0.0031 | -0.0038 | -0.0043 | 0.0049
wi2 0.0010 { 0.0009 | 0.0011 | 0.0013 | -0.0015
W13 0.0010 { 0.0009 | 0.0011 | 0.0013 | -0.0015
W14 || -0.0016 | -0.0015 | -0.0018 | -0.0021 | 0.0024
W15 0.0007 | 0.0006 | 0.0007 | 0.0008 | -0.0010

Table 4.5: Estimated Regression coefficients Beev.

The regression coefficients are not null but, if compared with the OLS estimates, they
appear to be much smaller, that is “shrinked”. Tables 4.6, 4.7 and 4.8 give the rank 1
regression coefficients estimated with PLS, MOR. and PCR respectively. The different
rank 1 regression coefficients show that also the DRMs shrink the estimated coefficients,
however, we note that the estimates of CW and PCR are quite smaller than those of MOR
and PLS.
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Bprs || Y: Y, Ys Y, Ys

X, -0.140 | -0.126 | -0.148 | -0.162 | 0.208
X, 0.092 | 0.083 | 0.097 | 0.107 | -0.137
X3 -0.117 | -0.105 | -0.123 | -0.135 | 0.174
X4 0.011 | 0.010| 0.012 | 0.013 | -0.017
X5 0.076 | 0.068 ; 0.080 | 0.088 | -0.113
Xe -0.007 | -0.006 | -0.007 | -0.008 | 0.010
X7 0.047 | 0.042 | 0.050 | 0.055 | -0.070
Xs 0.013 | 0.012 | 0.014 | 0.015 | -0.020
X 0.012 | 0.011 | 0.013 | 0.014 | -0.018
X0 -0.068 | -0.061 | -0.072 | -0.078 | 0.101
X1 -0.068 | -0.061 | -0.071 | -0.078 | 0.101
X2 -0.093 | -0.084 | -0.098 | -0.108 | 0.139
X3 0.011 | 0.010 | 0.012 | 0.013 | -0.017
X4 -0.034 | -0.031 | -0.036 | -0.039 | 0.051
Xis -0.023 | -0.021 | -0.025 | -0.027 | 0.035

Table 4.6: PLS rank

1 estimate of the regression coefficients

Bumor Y, Y, Ys Y, Ys

X, -0.029 | -0.034 | -0.010 | -0.013 | 0.009
X, -0.005 | -0.006 | -0.002 | -0.002 { 0.002
X3 -0.104 | -0.122 | -0.035 | -0.045 | 0.032
X4 -0.068 | -0.081 | -0.023 | -0.030 | 0.021
X5 0.188 | 0.222 | 0.064 | 0.082 | -0.058
X6 0.040 | 0.047 | 0.014 | 0.017 | -0.012
X, 0.036 | 0.042 ! 0.012 } 0.015 | -0.011
Xs 0.019 | 0.022 | 0.006 | 0.008 | -0.006
X 0.063 | 0.075 | 0.021 | 0.027 | -0.019
X0 0.000 | 0.000 [ 0.000 | 0.000 [ 0.000
X1 -0.050 | -0.059 | -0.017 | -0.022 | 0.015
X2 -0.079 | -0.093 | -0.027 | -0.034 | 0.024
X3 0.054 | 0.063 | 0.018 | 0.023 | -0.017
X4 -0.006 | -0.007 | -0.002 | -0.002 { 0.002
X5 -0.073 | -0.086 | -0.025 | -0.032 | 0.023

Table 4.7: MOR rank 1 Estimate of the Regression coefficients
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Bpcr Y, Y. Y Y, Ys

X, -0.004 | -0.006 | 0.000 | 0.000 | 0.000
X, -0.026 | -0.037 | -0.003 | 0.002 | 0.002
X3 -0.001 | -0.002 | 0.000 | 0.000 | 0.000
X, -0.017 | -0.023 | -0.002 | 0.001 | 0.001
Xs 0.071 | 0.098 | 0.008 | -0.006 | -0.005
Xs 0.035 | 0.048 | 0.004 | -0.003 | -0.003
Xz 0.027 { 0.037 | 0.003 | -0.002 | -0.002
Xs 0.017 | 0.024 | 0.002 | -0.001 | -0.001
X5 0.040 | 0.055 | 0.005 { -0.003 | -0.003

X0 -0.013 { -0.018 | -0.001 | 0.001 | 0.001
X1 0.022 | 0.031 | 0.003 | -0.002 | -0.002
X2 -0.049 | -0.067 | -0.006 | 0.004 | 0.004
X3 0.029 | 0.040 | 0.003 | -0.002 | -0.002
X4 0.021 | 0.029 | 0.002 | -0.002 | -0.002
X5 -0.058 | -0.081 | -0.007 | 0.005 | 0.004

Table 4.8: PCR rank 1 Estimate of the Regression coefficients
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4.5 Appendix

Obs. X1 X2 X3 X4 X5 X6 X7 X8
1 | -0.121 | -0.064 | -0.190 | -0.366 | -0.014 | -0.055 | 0.430 | 0.143
2 | -0.235 | -0.107 | -0.158 | 0.178 | 0.167 | 0.199 | 0.082 | 0.034
3 | -0.134 | -0.260 | -0.127 | -0.039 | 0.260 | 0.494 | -0.068 | 0.068
4 0.222 | 0.221| 0.205 | -0.109 | -0.348 | -0.308 | -0.417 | 0.098
5 | -0.160 | -0.109 | 0.148 | 0.025 | 0.189 | 0.116 | -0.239 | 0.093
6 | -0.046 | 0.176 | -0.058 | -0.068 | 0.269 | 0.324 | 0.118 | 0.003
7 | -0353 | 0427 | 0.006 | 0.016 | -0.004 | -0.363 | -0.275 | 0.279
8 | -0.037 | 0.265| 0.019| 0.056 | 0.019 | 0.129 | -0.122 | -0.009
9 | -0.189 | 0.008 | 0.355| -0.065| 0.073 | -0.014 | 0.069 | -0.155
10 | -0.334 | 0.039 | -0.414 | -0.114 | -0.231 | 0.183 | -0.047 | -0.012
11 0.140 | -0.250 | 0.168 | -0.036 | -0.214 | 0.040 | -0.364 | -0.293
12 0.037 | 0.008 | -0.096 | 0.064 | -0.380 | -0.123 | -0.132 | -0.211
13 | -0.037 | -0.174 | 0.418 | -0.139 | 0.117 | -0.186 | 0.056 | -0.122
14 0.254 | -0.380 | 0.091 | -0.084 | 0.188 | 0.212 | -0.071 [ 0.543
15 0.069 ( 0.212 | -0.446 | 0.631 | 0.096 | -0.310 | 0.010 | -0.127
16 | -0.128 | 0.303 | 0.192 | -0.296 | -0.085 | 0.042 | 0.002 | 0.256
17 0.036 { 0.206 | 0.111 | 0.068 | -0.301 | -0.225 | 0.255 | 0.112
18 | -0.019 | 0.096 | -0.145 | 0.012 } 0.131 | -0.043 | 0.211{ -0.122
19 0.504 | -0.217 { 0.046 | -0.088 | 0.198 | 0.059 | 0.258 | -0.238
20 0.025 | -0.112 | -0.191{ 0.019 | -0.364 | 0.106 | 0.057 [ 0.057
21 0324 | -0.075 | 0.149 | 0.262 | 0.002 | 0.043 0 -0.332
22 0.167 | 0.159 | 0.019| 0.031 | -0.101 ;| -0.108 | 0.180 | 0.158
23 | -0.200 | -0.198 | 0.011 | 0.372 | 0.256 { -0.006 | -0.196 | 0.048
24 0.082 | -0.069 | -0.037 | -0.205 | 0.069 | -0.208 | 0.228 | 0.050
25 0.130 | -0.104 | -0.076 | -0.124 | 0.010 | 0.002 | -0.027 | -0.323

Table 4.9: First 8 X variables for the examples of CW in Section 4.4.2
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Obs. X9 X10 X11 X12 X13 X14 X15
1 0.203 | 0.020 | -0.046 | -0.041 | -0.058 | 0.146 | -0.110
2 | -0.284 | -0.200 | 0.450 | 0.125 | -0.261 | -0.127 | 0.308
3 | -0.261 ] -0.022 | -0.237 | -0.347 | 0.045 | -0.106 | -0.091
4 0.042 | 0.111| 0.066 | -0.015 | 0.160 | 0.098 | -0.107
) 0.267 | 0.124 | -0.320 { -0.145 | -0.212 | -0.097 | 0.047
6 0.208 | -0.042 | -0.105 | -0.193 | 0.510 | 0.252 | -0.013
7T | -0.211 | -0.109 { -0.090 | -0.309 | -0.153 | 0.453 | -0.020
8 | -0.123 | -0.227 | -0.151 | 0.140 | -0.272 | -0.236 | 0.133
9 | -0436 | -0.365 | 0.171 | 0.025 | 0.186 | -0.071 | 0.058
10 0.305 | 0.501{ 0.050 ; 0.007 | 0.021 | -0.191 | -0.008
11 0.066 | 0.244 | -0.207 | 0.225 | 0.012 | -0.063 | 0.201
12 | -0.084 | 0.131| -0.241 | -0.015 | 0.120 | 0.001 { 0.518
13 | -0.035 | 0.102| -0.119 | 0.069 | 0.156 | 0.052 | -0.119
14 0.058 | -0.201 | 0.327 [ 0.233 | -0.072 | 0.469 | -0.014
15 | -0.035 | -0.123 | 0.075 | 0.244 | 0.108 | 0.149 | 0.014
16 0.176 | -0.254 | 0.292 | 0.319 | -0.102 | 0.076 [ -0.158
17 | -0.117 | 0.067 | -0.231{ 0.074 | -0.335 | -0.210 | 0.092
18 0.336 | 0.043 | -0.098 | -0.299 | 0.031 | 0.129 | -0.526
19 0.167 | 0.296 | 0.187 | -0.107 | 0.159 | -0.104 | -0.183
20 | -0.253 [ 0.136 | -0.172 | 0.391 | -0.074 | -0.040 | 0.087
21 0.013 | 0.268 | -0.132 | -0.086 | -0.045 | 0.175 | -0.052
22 0.027 | -0.139 | 0.063 | 0.166 | 0.226 | -0.010 | 0.257
23 0.226 | -0.254 | 0.092 | -0.336 | 0.297 | -0.130 | -0.052
24 | -0.110 | -0.061 | 0.283 | -0.096 | -0.301 | -0.340 | -0.317
25 | -0.144 | -0.049 | 0.094 | -0.029 | -0.146 | -0.276 | 0.058

Table 4.10: Last 7 X variables for the examples of CW in Section 4.4.2
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Obs. Y1 Y2 Y3 Y4 Y5
1 -0.075 | 0.048 | 0.140 | -0.066 | -0.027
2 | -0.230 | -0.243 | -0.144 | -0.203 | 0.131
3 | -0.052 | -0.112 | 0.089 | 0.093 | -0.173
4 | -0.136 | -0.165 | 0.155 | 0.029 | -0.263
5 | -0.396 | -0.388 | 0.240 | 0.060 | -0.121
6 0.181 | 0.264 | 0.124 | 0.139 | 0.032
7 0.127 | 0.082 | -0.326 | -0.347 | -0.032
8 0.402 | 0.451 | 0.040 | 0.190 | 0.040
9 | -0.369 | -0.186 | 0.174 | 0.013 | 0.385

10 | -0.002 | 0.092 | -0.149 | -0.033 | 0.512
11 | -0.142 | -0.112 | -0.089 | -0.111 | 0.203
12 | -0.058 | 0.001 | 0.011 | -0.051 | 0.094
13 | -0.023 | -0.109 | 0.019 | 0.026 | -0.209
14 0.226 | 0.217 | 0.379 | 0.556 | -0.159
15 | -0.289 | -0.263 | 0.105 | 0.011 | 0.066
16 0.071 | 0.075 | -0.267 | -0.380 | -0.037
17 | -0.060 | -0.230 | -0.141 | 0.004 | -0.093
18 0.231 | 0.205 | -0.239 | -0.018 | 0.252
19 0.170 | 0.272 | -0.312 | -0.398 | 0.215
20 0.298 | 0.197 | -0.177 | 0.050 | -0.019
21 | -0.021 | -0.052 | 0.147 | 0.063 | -0.282
22 | -0.132 | -0.217 | 0.019 | 0.056 | -0.082
23 0.177 | 0.048 | -0.244 | -0.143 | -0.153
24 | -0.059 | 0.141 | 0.414 | 0.238} 0.034
25 0.162 | -0.017 | 0.033 | 0.223 | -0.315

Table 4.11: Y variables for the example in which CW gives null coefficients in Section 4.4.2
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Obs. Y1 Y2 Y3 Y4 Y5
1 -0.102 { -0.132 | 0.231| 0.176 | -0.234
2 0.043 | -0.149 | -0.273 | -0.188 | -0.230
3 0.343 | 0.263 | -0.044 | 0.131 [ -0.159
4 -0.095 | -0.184 | -0.183 | -0.121 { 0.043
5 0.274 | 0.191 | -0.163 | 0.096 | 0.082
6 0.346 | 0.340 | -0.141 | -0.173 | -0.214
7 -0.164 | -0.172 | 0.214 | 0.099 | -0.214
8 -0.217 { -0.129 | 0.263 | 0.091 | -0.043
9 -0.301 | -0.253 | 0.115 | 0.022 | 0.127

10 0.033 | 0.230 | 0.232| 0.227 | 0.332
11 | -0.343 | -0.389 | 0.094 | -0.032 | -0.124
12 0.214 | 0.136 | -0.379 | -0.201 | 0.152
13 0.201 | 0.158 | -0.117 | -0.044 | -0.071
14 | -0.093 | 0.145 | -0.062 | -0.217 | 0.491
15 0.075 | 0.167 | 0.199 ( 0.100 | -0.088
16 0.080 | -0.016 | -0.258 | -0.247 | -0.124
17 | -0.011 | 0.048 | -0.075 | -0.192 } 0.033
18 0.149 | 0.127 | 0.008 | 0.177 | 0.083
19 | -0.239 | -0.142 | -0.254 | -0.363 | 0.419
20 | -0.092 | -0.160 | -0.178 | -0.077 | 0.153
21 | -0.139 | -0.107 | -0.010 | -0.083 | 0.081
22 | -0.062 | -0.159 | 0.423 | 0.599 | -0.214
23 | -0.270 | -0.226 | 0.183 | -0.075 | -0.197
24 0.079 { 0.031| 0.049 ( 0.079 | -0.165
25 0293} 0.381 | 0.124 | 0.218 | 0.082

Table 4.12: Y variables for the example in which CW gives rank 1 regression coefficients
estimates.



Chapter 5

Two Applications of DRMs for

Prediction

In this chapter we consider applications of the DRMs for prediction of two sets of data.
Both sets deal with chemical reactors. The first set has been taken from the literature.
These data consist of two distinct samples of observations, the training sample, reproducing
different in-control conditions and the test sample, representing uncontrolled values with
some out-of-control conditions. These data do not represent a real production process
since the observations are not successive measurements on the same reaction that has
to be monitored, but rather observations on different settings of a reactor. The second
set of data comes from a simulator we had available. We have tried to reproduce the in-
control conditions of a chemical reaction on which to implement a quality control procedure
by taking sequential observations on the reaction. The responses show a strong auto-
correlation and hence a different approach is needed for their prediction. We will compare
the performance of the different DRMs in estimating the linear model and in predicting

the responses.

169
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5.1 Poly-Ethylene Data

In this section we compare some of the dimensionality reduction techniques we discussed
on a set of data published in Skagerberg, MacGregor and Kiparissides (1992). The data
consist of a simulation of a Low-Density Poly-Ethylene (LDPE) production process. The
training sample consists of 32 observations reproducing different in-control conditions. The
test sample consists of 24 observations obtained by letting the inputs vary freely with the
addition of some impurities. These data were used by Skagerberg et al. (1992) to exem-
plify the implementation of multivariate control charts. In that application the authors
considered only PLS which, they claim, provides good predictions. The same data were
used by Breiman and Friedman (1997) for comparing CW with PLS. However, in this
application the responses have been transformed to logarithms and the two samples were
considered as a whole set of observations. The peculiarity of this data is that the noises
on the input and the output have been added after the measurements were taken, that is
they consist of independent measurement errors and there is no transmission of the error
from the explanatory variables to the responses. The data for the training sample were
generated setting 4 input variables according to a central composite design around nominal

conditions. The input variables are:

X2;: wall temperature

X22: solvent flow rate
heat transfer coefficient
initial initiator concentration

Of these input variables, only variables x;; and x3, were used as explanatory variables
and reported in the paper, the heat transfer coefficient and the initial initiator concentra-
tion. Additional readings were taken on 20 temperatures, (Xy,... ,X20), at equally spaced
intervals along the wall of the reactor (which is tubular). The logarithm of the difference
of these measurements from the nominal value of 100°C were used to characterize the

temperature profile of the polymerization reactor. The 22 x variables are thus used to
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describe the functioning of the process and to explain the properties of the output. The

measurements on 6 properties of the polymer were used as responses. These were

A A1
Y2
ys
Y4
ys
Ye

: number-average molecular weight

: weight-average molecular weight

: frequency of long chain branching
: frequency of short chain branching
: content of vinyl groups in the polymer chain

: content of vinyldilene groups in the polymer chain

Uniform noises within +1% of the ranges have been added to all temperatures and

correspondingly uniform noises within +10% of the ranges were added to X, and all the

y variables.

mean s.d. mean s.d.

X1 0.85099 0.12239 || Y; x 107 3.34823 0.63315
X, 1.12042 0.12453 || Y> x 108 7.35386 2.96495
X3 1.27390 0.13055 || Y3 x 102 0.19283 0.02298
Xs 1.38733 0.14294 || Yz x 10% | 32.82039 2.00408
X5 1.49721 0.18016 (| Yz x 102 0.01772 0.00081
Xe 1.64264 0.27861 || Ys x 10? 0.15592 0.00770
X7 1.73956 0.27660
Xs 1.85818 0.28347
Xo 1.86827 0.24223
X0 1.86985 0.20204
X111 1.86419 0.15140
X2 1.87716 0.14375
X13 1.85933 0.11895
X4 1.83630 0.09518
Xis 1.82111 0.10199
Xie 1.79439 0.09357
X7 1.77387 0.11024
Xis 1.74239 0.10407
X9 1.71200 0.09623
Xa0 1.68393 0.08747

21 | 400.25121 7.54430

22 0.06081 0.09019

Table 5.1: Means and standard deviations for the variables in the training sample. The
original units of measure have been changed for typographical reasons.

A total of 56 observations were generated. The 32 observations in the training sample
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are used for the estimation of the parameters of the model and the 24 in the test sample
for prediction and monitoring. The variables in the training sample were autoscaled, the
means and standard deviations are shown in Table 5.1. Table 5.2 shows the correlations

among the x variables.
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Table 5.2: Correlations among the process variables in the training sample. The symbol 1
means that the value is higher than 0.9, the symbol X is for correlations greater than 0.7
and lower than 0.9, the symbol M for correlations greater than 0.5 and lower than 0.7, the
symbol L for correlations greater than 0.1 and lower than 0.5 and 0 for correlations lower
than 0.1. All symbols are referred to the absolute values of the correlation.

The symbols in this table refer to the absolute value of the correlations and are explained
in the caption. The wall temperatures x;-x;o are generally highly or medium correlated

with each other except for x;,, X;3 and x4 that are highly correlated with each other but
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not with the other wall temperatures. In particular, x;, is the only additional temperature
to have medium correlation with the preceding measurement and to be uncorrelated with

most of the other temperatures.

Y1 Y2 Y3 Ya Ys Ys

Y1 1.00 0.93 -0.10 036 0.33 0.39
y2 || 093 1.00 -0.30 037 031 0.36
ys || -0.10 -0.30 1.00 -0.74 -0.71 -0.70
yaf 036 037 -0.74 100 096 0.97
ys || 033 031 -0.71 096 1.00 0.97
ye || 0.39 036 -0.70 097 097 1.00

Table 5.3: Correlations between the y variables in the training sample

X1 X2 X3 X4 Xs Xe X7 Xsg Xo X10 X1
Min. 0.623 | 0.896 | 1.05 | 1.15 | 1.23 | 1.29{1.35 | 1.40 | 1.44 1.48 1.2
1st Qu. j| 0.75 101 (1.151{1.24 | 1.32|1.38}1.44| 149 | 1.56 1.67 1.84
Median || 0.865 | 1.14 | 1.29 | 1.40 | 1.50 | 1.59 | 1.72 | 2.01 { 1.99 1.97 1.92
Mean 0851 1.12 |1.27 ({139 (150 | 1.64 | 1.74 | 1.86 | 1.87 1.87 1.86
3rd Qu. || 0933 | 1.20 | 1.36 | 1.49 | 1.61 | 1.76 | 2.06 | 2.10 | 2.06 2.01 1.96
Max. 1.05 1.32 (148 | 1.63 | 1.88 | 2.15 | 2.12 | 2.12 | 2.10 2.11 2.060
X12 X13 X143 | X15 | X186 | X17 | X318 | X39 | X20 X2 X22
Min. 1.55 1.60 | 1.64 [ 1.70 | 1.68 | 1.66 | 1.63 | 1.60 | 1.58 | 388.00 | -0.02
1st Qu. 1.82 1.82 (1.80(1.76 | 1.73 | 1.70 | 1.67 | 1.65 | 1.63 | 392.00 | -0.00
Median || 1.90 1.86 | 1.83 {1.79 | 1.76 | 1.73 | 1.71 | 1.68 | 1.66 | 400.00 0.01
Mean 1.88 1.86 | 1.84 (1.82]1.79 | 1.77 | 1.74 | 1.71 | 1.68 | 400.00 0.06
3rd Qu. || 1.93 190 [ 1.86(1.84 }1.83|183|1.78|1.73 |1.70 | 409.00 { 0.19
Max. 2.12 | 2.08 | 2.06 | 2.07 | 2.03 | 2.05 | 2.01 | 1.96 | 1.92 | 412.00 0.21

Table 5.4: Marginal Summary Statistics for the x variables.
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The two controlled inputs, X,; and X3, are uncorrelated with each other (this is due to
the nature of the central composite design). The solvent flow rate is uncorrelated with all
temperatures but xs-x;, with which it has low correlation. The wall temperature is highly
correlated with all temperatures but x;2, x;3 and x;4. This group of temperatures seem
to have a different behaviour from the others. Table 5.3 gives the correlations between
the y variables. y; and y, are highly correlated with each other but not with the other
responses. The last four responses are generally highly correlated with each other. Figure

5.1 shows the box-plots of the individual standardized responses in the training sample.

Distribution of the Responses in the Training Sample

f_s—'ﬁ
Db ; ;
) ! ! !
o
Yt Y2 Y3 Y4 Y5 Y6

Figure 5.1: Boxplots of the responses in the training sample.

All variables are fairly skewed, particularly y;,y2 and y; in the upper part of the
distribution. For all variables these plots show that the tails contain a sizable portion
of the observations. This is to be expected since the errors are uniform. Since the x

variables have been generated according to an experimental design with controlled noise
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added, the only possible errors are typographical errors. The presence of clusters is to be
expected because of the nature of the central composite design (for a second order one, each
variable is taken at three different nominal levels {-1.0,+1}). Table 5.4 shows the summary
marginal statistics for the x variables. None of these values seem discordant with the others.
However, in multivariate analysis the detection of outliers through the analysis of marginal
plots is known to be misleading. Apart from numerical procedures for investigating the
presence of outliers in a multivariate set of data (see Seber (1984) for a review), the
exploration of latent spaces is often suggested (e.g. Gnanadesikan (1977), Seber (1984) and
Jackson (1993)). Since we are concerned with linear relationships between the explanatory
variables and the responses, we consider the Canonical Correlation structure. The squared
Canonical Correlation coefficients are given in Table 5.5. These show a strong linear
dependence between the two data sets. However the number of observations is fairly small
compared to the number of variables, hence the Canonical Correlation coefficients represent

an over-estimate of the population values.

[ 2 ] 0.9984 | 0.9950 | 0.9768 | 0.8282 | 0.7251 | 0.6031 |

Table 5.5: Squared Canonical Correlation coefficients

Figure 5.2 shows the plot of the first four pairs of Canonical Correlation variables,
which do not show any outlying point or clusters with respect to the linear relationship.
The rank of the X matrix can be taken to be 5 or 6. This can be decided based on the plot
of the ordered eigen-values of the covariance matrix, the Scree Plot, in Figure 5.3 which
shows an “elbow” at the third and at the fifth eigen-value.
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Figure 5.2: First four pairs of Canonical Correlation variables for the training sample.

Scree Plot
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Index

Figure 5.3: Scree-plot for the x variables standardized in the training sample.
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Burnaham et al. (discussion to Breiman and Friedman (1997)) suggest taking the rank

to be 5 because the first 5 principal components explain more than 95% of the total variance
of X, as shown in Table 5.6.

| 1 2 3 | 4 5 6
Cum.%var. || 0.6654 | 0.8489 [0.9042 [ 0.9480 | 0.9672 | 0.9817
eig — val 14.6399 | 4.0353 | 1.2172 | 0.9641 | 0.4215 | 0.3185

7 8 9 10 11 12
eig — val 0.1514 | 0.0967 | 0.0620 | 0.0343 | 0.0210 | 0.0170
Cum.%var. || 0.9885 |0.9929 | 0.9958 | 0.9973 | 0.9983 | 0.999

Table 5.6: Eigenvalues of X"X and proportion of variance of X explained by the principal
components. '

However, we are concerned with determining the rank of the matrix prior to the analysis
only for numerical reasons because the dimension of the regression model is going to be
chosen by Cross-Validation. Even if it is numerically feasible to invert a nearly singular
matrix, the result can be severely affected by rounding error. Since the error depends on
the ill-conditioning index, we put an upper bound on this error. In our routines. if the
rank k is less than the number of variables, then the inverse of X" X is substituted with an
approximate Moore-Penrose g-inverse. obtained by excluding the eigen-vectors with index
larger than k.

The plot of all 56 observations on the y variables including the test sample of the
additional 24 points, given in Figure 5.4 shows some outlying points in some plots. The
full size plot of y, versus y; in Figure 5.5 shows that the last seven observations of the test
sample constitute the set of outliers clearly detectable in the direction of y; and y,. Note
that the plot of y; versus y, in Figure 5.4 is perfectly linear in the highest values, showing
that these points are the outliers in both directions. The plot of y3 versus y4 in Figure 5.5
(note that the vertical scale is larger than the horizontal) shows that points 44-49 have a

different correlation pattern than those in the training sample. Also the sequence of points
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33-37 is outside the range of the points in the training sample.

00 02 04 06 03 01 01 03 03 01 01 03
N ; L 3 " - s P S A et s
. . . . . <
. . [ . . o
Y1 . ' .o : o. o. Lo
o S ¢ ’ e °
. * . e % ! 1 " .: .l LI *03e ...o o % 0._Q
f .p'm':... . . '.‘”..~. ‘..'m'* . oo .‘.”‘.0. [~}
g gl g . g g
< . . . . .
o] . . ] . .
o . . Y2 o. : .- .c
e o % s 4 ® .
es O L] oo .
gi "v*.‘: ® offe o ...00' o« s 0 et e . .‘cl'
'S -,  |lge 0, 3 IOV . '.Q}ﬂ o, .o'ﬂ «
* .- ° .c : . I . T . S
. . . . . o~
1 ..0'0 '.‘o 4 [ 1Y . . o tO° . . et ® . s o
e . s . TR oe *a, 0" s lo
.5-."on . .“h . Y3 . ... oo . ..o.ﬁ“. ...o' e € f=]
I &3 e o, ‘s e, _l ae Jg
(4] . . g g g
o . . . . o [
[ * L) . e« L
; ..‘.: ‘ .- -. :0 c. n."‘ 0.0.0’ 3
5P IR |7 SASRRTE (el S v4 P o |
o . . ] o . XY g
oE ) Do % s
? ) les s . o0 {o_o loe -m
: . o: [ A4 . e ¢ L] ..d
}.: ‘ . .o. ; :. ....V" .a“. -;
| AR | f SO R » Y5 -
o Lo e LI Y « ® e b
P NI . o . 8 X o.
]‘ . A H . o lleom® ste’e "
s (X} [ sjls (2 'd
. g
4 . . g g *] L
O- ‘.o‘ ’?‘ o.. . . (R ‘.. L3
ot s . *e g R (
f‘ ‘ et e, 200t e, "i‘. . #'- l#‘o Y6
o1l e P e ® ‘e X -
¢4 hd ? 3 - *, ‘e
NI * o'. * * . o'. 0‘
oL 2. ——————r— e

0 02 04 02 00 02 04 03 01 01 03

(=3

Figure 5.4: Paired scatter plots of the responses for the complete set of 56 simulated

observations.
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Figure 5.5: Two scatter plots of the responses, using all 56 simulated observations.

In order to examine these points with respect to the linear relationship between the x
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variables and the y variables, it is convenient to look at the Canonical Correlation structure
of the complete data-set. Figure 5.6 shows the first four pairs of Canonical Correlation
variables for the combined sets. The last 7 points are well inside the linear tendency.
We conclude that these points do not represent a departure from the linear relationships
existing between the two sets of data. We expect these points to be well described by a
linear model. Thus, the responses should be well predicted (i.e. low PRESS) with values
falling outside the values of the normal operating conditions (training sample).

1st Canonical variates 2nd Canonical variates
cNS 1Y 2
° o~ 19
[72] d [42] d 5
[+¥] [+o]
2 3 52 83
> 53 >
S 54 S 34
v 55 v 363
a6
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Xscores Xscores
3rd Canonical variates 4th Canonical variates
g 4445 8
N
3 - W o S 26 49
8 o 42 S ~ “:3'_ '
> o §§7 > S 3 )
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< o| 7
o" 49 < |19 36
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Xscores Xscores

Figure 5.6: First four pairs of canonical correlation variables for the complete set of 56

simulated observations.
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5.1.1 Dimensionality Reduction and Predictions

The 32 observations in the training sample are used to determine the latent space and
the predictive model for the different DRMs we discussed in the previous chapters. We
consider PLS. MOR, WMOR2, RRR, PCA, CCA and IWRRR. We only consider WMOR2
because the different possible weights a;, given in section 4.1 are so close that we would

observe almost identical results. In fact, the weights are
a; = 0.2177, az = 0.2143, a3 = 0.2121, a4 = 0.2167

We will omit the index referring to WMOR since the weight will always be a,. Table 5.7
gives the correlation between the principal components of X and the y variables, the 7th
column being the percentage of total variance of Y explained by each principal component
and the last column being the RI (Redundancy Index), that is the cumulative percentage of
variance explained. By looking at these indices for the principal components, it is evident
that PCR is going to yield good predictions of the responses. In fact the first 4 principal
components explain almost 83% of the total variance of the y variables, and the first 6
87% of it. Also PLS should give good predictions, since its latent space is close to the PC
space. Table 5.8 gives the correlation between the principal components of X and Y and
the corresponding singular values. These are the elements of the generic objective function
3.8.36. The correlation between w, and bu; is .85 and that between w, and uy is .78.
The other correlations are lower that 0.5 (in absolute value). We expect the first latent
variables to be close to the first principal component for all methods. The different roles
of the eigenvectors in the objective functions are going to change the correlations between
the latent variables and the principal components for the other dimensions. Tables 5.9 and
5.10 give the weight vectors, which are the coefficients of the latent variables scaled to unit
length, for the first two latent variables in the X space for the different DRMs.




182 CHAPTER 5. TWO APPLICATIONS OF DRMs FOR PREDICTION

Cor 1 Y2 Y3 Y Ys ve | % RSS expl. RI

1st comp 0.22 0.32 | -0.87 0.85 0.84 0.81 49.86 0.499
2nd comp 0.06 0.13 0.03 ] -0.18 | -0.14 | -0.17 1.73 0.516
3rd comp -0.61 | -0.57 0.05| -0.25 | -0.25 | -0.32 15.32 0.669
4th comp -0.66 | -0.66 | -0.15 0.10 0.19 0.15 16.00 0.829
S5th comp -0.14 | -0.27 0.33 | -0.07 | -0.04 | -0.08 3.93 0.864
6th comp -0.09 | -0.12 0.04 | -0.08 [ -0.06 | -0.04 0.60 0.870
7th comp -0.06 | -0.03 | -0.09 0.03 | -0.08 0.03 0.35 0.874
8th comp -0.10 0.05 { -0.11 | -0.20 { -0.18 | -0.21 2.38 0.898
9th comp 0.23 0.05 0.16 0.18 0.19 0.26 3.66 0.934
10th comp || -0.11 | -0.05 | -0.03 | -0.10 | -0.08 | -0.08 0.63 0.941
11th comp || -0.08 | -0.06 0.06 | -0.15 | -0.17 | -0.15 1.51 0.956
12th comp 0.08 | -0.06 0.11 0.10 0.13 0.11 1.00 0.966
13th comp || -0.06 0.05 | -0.04 0.13 0.01 0.03 0.43 0.970
14th comp 0.04 0.02 0.11 0.07 0.09 0.04 0.48 0.975
15th comp 0.01 | -0.01 0.12 0.05 | -0.04 | -0.01 0.31 0.978
16th comp || -0.01 | -0.08 0.02 | -0.02 | -0.01} -0.09 0.24 0.980
17th comp || -0.04 0.00 0.03 0.03 0.04 0.02 0.09 0.981
18th comp || -0.05 | -0.06 | -0.08 0.05 | -0.01 0.01 0.24 0.984
19th comp 0.03 0.01 | -0.01 | -0.01 0.01 | -0.04 0.05 0.984
20th comp 0.05 0.04 0.01) -0.01 0.02 0.01 0.08 0.985
21th comp 0.03 | -0.03 0.03 0.03 0.01{ -0.01 0.07 0.986
22th comp || -0.04 0.01 0.02 0.06 { -0.01 | -0.04 0.14 0.987

Table 5.7: Correlation between the responses and the principal components of X, percent-
age of total variance of the responses explained by each principal component and RI of
PCR.
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Ai Wi W2 W3 Wy Ws Wg

v; 1105 690| 366 | 114 099 | 0.76

u; 21.30 0.85 029| 022 o001 010 0.08
u; 11.18 || -0.10 | -0.18 { 0.19 | 0.15] 0.16 | -0.14
us 6.14 || -0.38 047] 0.15| -009| 0.13 ] 0.21
uy 5.47 || -0.06 0.78 -0.13 | 0.15| -0.06 | -0.20
us 3.61 || -0.17 011} -042 | -0.06 | 0.12| 0.00
ug 3.14 || -0.08 007} -001 | 0.09| -0.17| 0.04
uz 2.17 0.00 0.06 | 0.13 | -0.27 | -0.42 | 0.09
ug 1.73 || -0.13 | -0.04 | 042 0.11| 0.14| -0.13
ug 1.39 0.16 | -0.09 | -0.48| 0.04; -0.25 | 0.02
) 30 1.03 || -0.08 0.05| 014} 0.09| -0.05 | -0.14
uy, 081 | -0.15| -0.01| 0.11| -0.03| -0.09 | 0.02
u;2 0.73 0.06 0.02| -0.32| 0.08| 0.00] 0.22
u;3 0.64 0.05 0.04| 0.03| -0.54| 0.13| -0.18
U4 0.35 0.04 | -0.02 | -022| -0.09 | 0.26 | -0.15
s 0.27 || -0.03 { -0.03 | -0.15 | -0.37 | 0.01| 0.01
Uje 0.16 || -0.04 002| -001| 004| 025| 0.48
u;7 0.10 0.01 0.03 | -0.06 | -0.09 [ 0.17 | -0.25
u;g 0.07 0.01 0.08| 0.07| -0.14 | -0.12 | 0.23
U9 0.07 000 | -002| 0.02| 0.08; 0.18| 0.21
Uzo 0.06 0.02 | -0.04| -0.03! 0.10| 0.04 | -0.01
uy; 0.05 0.00 0.00 | -0.07{ -0.03| 0.05| 0.32
22 0.03 || -0.01 0.02| -0.01 | -0.38] 0.23] -0.03

Table 5.8: Correlation between the principal components u; of X and w; of Y and the
corresponding singular-values A; and 7;.
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PLS | MOR | WMOR RRR PCA| CCA|IWRRR
X, 0.235 0.300 0.419 0.498 0.249 | —-0.173 0.498
X, 0.243 | —0.221 | -0.161 | —0.120 0.251 | —0.254 —0.120
X3 0.249 | —0.115| —-0.045 0.001 0.251 0.253 0.001
X, 0.255 0.160 0.164 0.036 0.249 0.515 0.036
X5 0.258 | —0.455 | —0.412 | —0.349 0.240 | —0.285 —0.349
Xs 0.251 | —0.145 | —0.100 | —0.079 0.220 | —-0.012 -0.079
X7 0.257 | —0.202 | —0.150 | —0.113 0.235 | —0.076 -0.113
Xs 0.236 | —0.094 | —0.042 | —0.027 0.241 | —0.009 —-0.027
X 0.227 | —-0.131 [ -0.072 | —0.038 0.238 | —0.055 —0.038
X0 0.208 | —0.031 0.011 0.006 0.222 0.163 0.006
X1 0.201 | —0.089 | —0.026 0.023 0.193 | —0.193 0.023
X2 0.102 | —0.017 | -0.007 | —0.011 0.064 0.081 —0.011
X3 0.033 | —0.268 | —0.289 | —0.277 | —0.014 | —0.242 -0.277
X4 | —0.043 0.348 0.345 0.321 | —-0.102 0.343 0.321
X,s | —0.140 | —0.027 | -0.073 | —0.076 | —0.197 | —0.188 -0.076
X6 | —0.210 { —0.007 | —0.066 | —0.077 | —0.244 0.011 —-0.077
X7 | —0.253 0.307 0.255 0.209 | —0.245 | —0.009 0.209
X8 | —0.247 0.388 0.354 0.318 | —0.238 0.250 0.318
X | —0.238 0.096 |  0.091 0.176 | —0.231 | —0.343 0.176
X | —0.226 | —0.264 | —0.375 | —0.459 | —0.220 0.136 —0.459
X 0.249 0.009 0.077 0.106 0.234 0.014 0.106
X2 0.017 | —0.023 | -—0.040 | —0.060 | —0.025 0.074 —0.060

Table 5.9: Weights for the first latent variables in the X space for different methods. The
data refers to the training sample with both Y and X centered and autoscaled.

As expected the weights of RRR and IWRRR for the first latent variable are identical.
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In all methods the weight for x;; in the first latent variable is low, compared with the
others. The weights for the other input variable, x3,, are low compared with others except
for PLS and PCA, while the lowest are those of RRR and CCA, implying that this variable
is not very important in OLS subspace but has some importance in the whole X-space.
The weights on the temperatures of the first principal component are similar, with the
exception of those for x;3,X;3 and X4, which we have already noted behave differently.
Then the first principal component can be seen as an average temperature. PLS can be
interpreted in the same way. For the other methods the interpretation of the first variables
is not so clear. However, the second component of MOR is highly correlated with the
second principal component while those of PLS and WMOR are highly correlated with
the third principal component. For the third components we observe the same behaviours
although the correlations are milder now and spread over more dimensions. The weights
for the second latent component are different for PLS from those of the other methods. In
PLS a large part of the second component (88.3% ) is represented by x,,. For all other
methods the importance of this variable (measured by the squared weights) in the second
latent component is fairly low. For all methods but PLS and PCA the second variables
are made up principally of X209, X;9 and one or two of the first 5 x-variables. That is to say
that they are mainly indicating temperature. Although the weights for the solvent flow
rate (X;) are never high, the second latent variables of PLS, WMOR, RRR and CCR are
highly correlated with this variable.
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PLS| MOR|WMOR | RRR PC| CCA|IWRRR
X, 0.048 0.104 0.373 0.287 0.114 0.610 0.523
X, 0.037 | —0.245 | -0.036 | —0.023 0.109 | —-0.371 —-0.097
X 0.018 | —0.082 0.073 0.073 0.107 0.237 0.025
X, | —0.010 | —0.417 | —0.563 | —0.600 0.110 | —-0.702 0.061
Xs | —0.064 0.232 0.130 0.216 0.125 0.132 —-0.326
Xe | —0.122 | —-0.043 | -0.014 | 0.004 0.144 | —-0.023 —0.055
X7 | —0.049 0.013 0.036 0.062 0.101 0.045 —0.089
Xs 0.084 0.025 | -0.012 | —0.010 | —0.018 | —0.037 —0.004
Xy 0.170 0.054 0.044 | 0.047 | —0.081 0.047 —0.016
X0 0.228 0.123 | -0.045 | —0.052 | —0.165 0.004 0.026
X1 0.166 0.083 0.086 0.074 | —0.287 0.013 0.043
X2 0.003 0.249 | -0.021 | —0.019 | —0.441 | —0.004 0.000
X3 0.044 0.358 0.003 0.063 | —0.458 | —0.097 -0.274
X4 0.042 0.053 | —0.022 | —0.095 | —0.414 0.105 0.319
Xis 0.008 0.141 0.024 0.043 | —0.195 | —0.084 —0.090
X6 0.041 0.064 0.016 0.036 | —0.048 0.080 —0.098
X7 0.069 | —0.166 | —0.050 | —0.093 0.146 | —0.225 0.185
Xis 0.061 | —0.366 | —0.060 | —0.136 0.176 0.072 0.296
Xyo 0.061 0.418 0.561 0.570 0.200 0.719 0.154
X20 0.062 | —0.279 | —0.403 | —0.329 0.233 | —0.532 —0.483
X2 0.017 | —0.078 0.051 0.029 0.118 0.076 0.130
X2 | —0.915 | —0.175 | -0.138 | —0.114 0.109 | —0.150 —-0.059

Table 5.10: Weights of the second latent variables in the X space for different methods.
The data refers to the training sample with both Y and X centered and autoscaled.

The third components of MOR and IWRRR are highly correlated with this input, as




5.1. POLY-ETHYLENE DATA 187

can be seen from Table 5.11.

cor? PLS | MOR | WMOR | RRR| PCR| CCR | IWRRR
1st comp || —0.09 | —0.06 -0.01 | —0.18 | —0.10 0.49 0.09
2nd comp || —0.95 0.31 -0.97 | —0.96 0.22 | —-0.84 -0.33
3rd comp || —0.08 | —0.90 0.08 0.12 | —0.54 0.16 0.93
4th comp || —0.26 | —0.27 0.18 0.04 | —0.79 0.03 0.05
5th comp || —0.09 | —0.04 -0.03 0.00 | —0.14 0.08 0.10

Table 5.11: Correlations of the first 5 latent variables with the solvent flow rate

In Figure 5.7 the images of the first latent components determined with the various
DRMs are represented on the section of the (semi) ellipse spanned by the first two principal
components. In Figure 5.8 the second components with respect to the section of the ellipse
£(A?) spanned by the second and third principal components are shown. A numerical
summary of the closeness of the latent components to the principal components is given by
the correlations in Table 5.12. The first latent components determined by MOR and PLS
are the closest to the first principal component (slightly closer for MOR), while the first
Canonical Correlation variable is the farthest of all. The second component of MOR is very
close to the second principal component while all others are close to the third principal
component. This can be explained by the different role that the singular-values of the X
matrix have in the objective functions. Evidently, in MOR the second singular value of
X dominates the sum of the matrices. For the other methods the solutions are shifted

towards the third principal component because it explains more of the y variables than

the second (Table 5.7).
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Images of the first latent variables

=3

m-
a
E
O
0
= O
Q b
he}
-
o |

u?_

=

0 5 10 15 20
1st pr. comp.

Figure 5.7: First latent variables in the space of the first two principal components.
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Images of the second latent variables
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Figure 5.8: Second latent variables in the space of the second and third principal compo-

nents.
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Corr Ist PC ] 2nd PC | 3rd PC [ 4th PC | oth PC | 6th PC
PLS
Ist comp 1.00 -U0.04 -0.U03 0.00 -0.01 0.00

2nd comp | 0.01 -0.36 0.71 0.60 0.08 0.03
3rd comp | 0.04 0.91 0.40 0.07 0.07 0.04
4th comp | -0.01 0.20 -0.57 0.79 -0.07 -0.03
5th comp | 0.00 -0.03 -0.14 0.00 0.97 0.20
6th comp | 0.00 -0.02 -0.06 0.03 -0.09 0.50
MOR
Ist comp | -1.00 0.0s V.07 -0.01 0.0 0.01
2nd comp | -0.03 -0.99 0.03 0.10 0.01 0.00
3rd comp | -0.07 -0.08 -0.74 -0.61 -0.15 -0.09
4th comp | 0.06 -0.07 0.59 -0.77 0.02 0.02
5th comp | 0.02 0.01 -0.07 -0.09 0.93 0.08
6th comp | -0.03 0.03 0.31 -0.03 -0.21 -0.36
WMOR
Ist comp | -0.97 0.06 U.13 0.00 0.09 0.04
2nd comp | 0.14 -0.20 0.62 0.70 0.16 0.09
3rd comp | 0.14 0.94 0.23 -0.02 0.01 0.03
4th comp | 0.13 -0.28 0.46 -0.61 -0.09 0.04
5th comp | 0.07 0.02 0.31 -0.32 0.67 0.06
6th comp | -0.05 0.04 0.47 -0.10 -0.62 -0.23
RRR

Ist comp | -0.80 0.10 U.38 U.0o 0.17 0.Us
2nd comp | 0.29 -0.18 0.48 0.78 0.11 0.07
3rd comp | 0.21 0.20 0.16 -0.13 -0.43 -0.01
4th comp | 0.01 -0.13 0.12 -0.18 0.06 -0.13
5th comp | 0.13 0.20 0.13 -0.04 0.17 -0.19
6th comp | 0.08 -0.16 0.26 -0.26 -0.03 0.05
CCA
Ist comp [ -0.85 0.18 -0.Uo -0.45 0.10 0.01
2nd comp | -0.34 -0.06 0.61 0.63 0.20 0.10

3rd comp | 0.13 0.28 0.09 -0.10 -0.39 -0.03

4th comp | 0.03 -0.03 -0.01 -0.05 0.07 -0.16

5th comp | 0.12 -0.06 0.33 -0.35 -0.01 -0.08

6th comp | -0.08 -0.21 0.03 -0.10 -0.23 0.16

IWRRR
Ist comp | -U.30 0.10 U.00 U.uo 0.17 0.08
2nd comp | 0.52 0.09 0.60 0.11 0.29 0.14
3rd comp | -0.03 -0.85 0.18 0.46 0.06 -0.03
4th comp | -0.02 -0.47 -0.25 -0.68 0.37 0.04
5th comp | 0.01 -0.13 0.61 -0.54 -0.42 -0.17
6th comp [ -0.01 -0.14 -0.09 0.00 -0.58 0.73

Table 5.12: Correlations between the first six latent variables obtained from different
DRM’s and the first 6 principal components.

The first latent components of PLS, MOR and WMOR are highly correlated with the
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first principal component while for RRR, IWRRR and CCA the correlation is slightly
weaker, being -0.85. The only first latent variable that is significantly correlated with
the 4-th principal component is that of CCA. This can be explained by the fact that
this principal component has high correlation with the second principal component of Y
(Table 5.8). In CCA the latent variables are built only with respect to the correlation
between principal components, in the other methods these correlations are multiplied by
the corresponding singular-values and therefore, this high correlation is “down-weighted”.
MOR behaves differently than the other methods, with respect to the second principal
component. For this method only the second latent variable is strongly correlated with the
second principal component. While the third latent variables of PLS, WMOR and IWRRR
are highly correlated with the second principal component. Excluding the first two, none
of the other latent variables of RRR and CCA show a high correlation with a particular

principal component.

Within the training sample, the Average Residual Sum of Squares (ARSS) are defined

6 32

1 .
ARSS,(k,m) = o DD v = Giilm T

i=1 j=1

for the y variables and

] 22
ARSS(k,m) = 35 [z:5 — 2i5(m Ty )]
=1 j=1
for the x variables. Tables 5.13 and 5.15 give the ARSS for the responses and for the
explanatory variables, respectively. In these tables each column corresponds to a method
m and the entry of the k-th row gives the ARSS obtained using the corresponding number
of components. Only the first 6 components are considered. ARSS, is proportional to
the RRR objective function and, as expected, RRR achieves the lowest ARSS,, for all &,
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ARSS: is proportional to the PCA objective function and PCR has the lowest ARSS; for
all k. The Residual Sum of Squares for each variable (RSS,) and the ARSS, for the OLS

estimates are given in Table 5.14.

ARSS, PLS | MOR| WMOR | RRR | PCR | CCR | IWRRR
1 comps | 2.917 | 2.721 2.356 | 2.081 | 3.009 | 3.147 2.081
2 comps || 1.400 | 2.574 0.749 | 0.551 { 2.905 | 0.590 1.524
3 comps |} 1.161 | 0.905 0.612 | 0.144 | 1.986 | 0.195 0.938
4 comps | 0.896 | 0.581 0.353 { 0.111 | 1.026 | 0.157 0.523
5 comps || 0.737 | 0.387 0.162 | 0.091 | 0.814 | 0.120 0.468
6 comps | 0.414 | 0.187 0.144 | 0.077 | 0.778 | 0.077 0.409

7 comps || 0.332 | 0.169 0.141 0.757 0.290
8 comps || 0.282 | 0.153 0.124 0.614 0.281
9 comps (| 0.253 | 0.149 0.102 0.394 0.261
10 comps || 0.212 | 0.128 0.099 0.357 0.246

Table 5.13: ARRS, obtained employing up to 10 latent variables in the various DRMs.

OLS | wn Y2 Y3 Ya ¥s Ys Average
RSS, | 0.00653 | 0.0081 | 0.0122 | 0.00907 | 0.0272 | 0.0139 | 0.077

Table 5.14: RSS, of the OLS Estimates

The RSS, of the OLS are low for all variables. However, for such a low ratio of the
number of variables to the number of observations we expect a good fit. The ARSS, of
RRR and CCR decrease quickly with the number of components while those of the others,
especially for PCR, decrease more slowly. The ARSS, of PLS is high compared with the
others, except those of PCR and CCR. The addition of the second component of MOR does
not decrease ARSS, by much but the addition of the third component makes the ARSS,
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lower than the corresponding value of PLS, IWRRR and PCR. IWRRR has a fairly high
ARSS, when compared with RRR and it is also always higher than those of MOR and
WMOR. The ARSS. of CCR and RRR are very high, (see Table 5.15). They only decrease
to the value of 6.923 (which is the value of tr(X(Y)"X(Y)), that is the projection of the
X variables onto the Y space). This shows that over 30% of the variability of the X space
lies outside the OLS sub-space. IWRRR has among the highest ARSS; for every number

of components included and PLS instead among the lowest.

ARSS: PLS | MOR| WMOR | RRR| PCR| CCR | IWRRR
1 comps 7385 | 7.494 8.256 | 11.128 | 7.360 | 11.113 11.128
2 comps 5.902 | 3.488 6.851 | 8.930 ; 3.325 | 8.533 6.616
3 comps 2.328 | 2.359 2976 | 7.935 | 2.108 | 7.823 3.453
4 comps 1.167 | 1.298 1.765 | 7.799 | 1.143 | T7.785 1.974
5 comps 0.734 | 0.903 1.263 | 7.293 | 0.722 | 7.308 1.082
6 comps 0.584 | 0.664 0.735 | 6.923 | 0.403 | 6.923 0.678

7 comps 0.333 | 0.366 0.419 0.252 0.439
8 comps 0.233 | 0.215 0.272 0.155 0.409
9 comps 0.113 | 0.130 0.231 0.093 0.226
10 comps |{ 0.073 | 0.095 0.156 0.059 0.147

Table 5.15: ARRS. values using up to 10 latent variables in the various DRMs.

Table 5.16 gives the sum of the ARSS per variable, ARSSt, in the training sample.
That is the entry of row k of the column corresponding to the method m is given by

ARSSs(k,m) | ARSS,(k,m)

ARSSr(k,m) = = 2

As expected, WMOR has the lowest Total Average RSS. The values for MOR are not the

lowest because the objective function for this method is the sum of the Residual Sum of
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Squares. Since we standardized each variable to unit variance, the sum of the variances in
each block is equal to the number of variables in the block. Hence, WMOR is minimizing
ARSSrt.

ARSST PLS | MOR | WMOR | RRR | PCR | CCR | IWRRR
1 comps || 0.822 { 0.794 0.768 | 0.853 | 0.836 | 1.030 0.853
2 comps | 0.502 | 0.588 0.436 | 0.498 | 0.635 | 0.486 0.555
3 comps | 0.299 | 0.258 0.237 | 0.385 | 0.427 | 0.388 0.313
4 comps [{ 0.202 | 0.156 0.139 | 0.373 | 0.223 | 0.380 0.177
5 comps || 0.156 | 0.106 0.084 | 0.347 | 0.168 | 0.352 0.127
6 comps | 0.096 | 0.061 0.057 | 0.328 | 0.148 | 0.328 0.099

7 comps | 0.070 { 0.045 0.043 0.138 0.068
8 comps | 0.058 | 0.035 0.033 0.109 0.066
9 comps | 0.047 | 0.031 0.028 0.070 0.054
10 comps || 0.039 | 0.026 0.024 0.062 0.048

Table 5.16: ARRSt values using up to 10 latent variables in the various DRMs.

The plots in Figure 5.9 give a graphical summary of the ARSS values for the different
methods. Figures 5.10 and 5.11 give the leave-one-out Cross-validated ARSS indices. The
values of the Cross-validated ARSS of X for CCR and RRR have been excluded from
the plot since their values were so much higher than the others that it would have been
necessary to diminish the scale much, loosing in definition for the other methods. The
plots show how CCR and RRR give the worst predictions also for the responses. For this
example, MOR and WMOR do not give good predictions while the remaining methods all
seem to behave similarly.
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Figure 5.9: Plots of ARSSy (top) and ARSSz (bottom) in the training sample.
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Cross-Validated ARSSYy in the training sample
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Figure 5.10: Cross-Validated ARSSy and ARSSz in the training sample.
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Figure 5.11: Plots of the Cross-Validated ARSS;, in the training sample.
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Even though the variables have been standardized, hence are comparable, the Average

RSS does not give any insight on the prediction of the individual variables. In particular,
sometimes, predictive methods suffer from the Robin Hood effect, that is the effect for
which responses that are well predicted by OLS are made substantially worse to achieve

modest improvement in those that are poorly predicted (Breiman and Friedman (1997)).
The ratio of the RSS of each variable with the corresponding RSS obtained with OLS

estimates (which is the minimum) provides a way of studying the Robin Hood effect. That
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1s we consider the indices

32
e e NP - 2
1 6 ;(YU y‘J(k’m)) 1 6 RSS(y_j,k.,m)

Ia(k, m) = - 32 I :
i g(}'ﬁ — ¥:i;(OLS))? 6 ;5 RSS(y; OLS)
and
32 o (ks 5
In(k,m) = max i'_'z:l()’ij ~ystkm) = max RSS(y;, k., m)
T mre &2 ~ J=16 RSS(y;, OLS)

> (vii — ¥i;(OLS))?

=1

where m stands for method m and y;j(k,m) for the prediction of y;; with to k latent

variables obtained with method m.

Ia(k,m)|| PLS { MOR | WMOR | RRR | PCR | CCR | IWRRR
1 comps | 55.776 | 52.928 | 47.137 | 40.374 | 57.072 | 60.283 | 40.374
2 comps | 20.953 | 50.377 | 10.281 7.864 | 55.527 | 8.188 | 28.926
3 comps | 16.958 | 12.615 8.338 2.032 | 36.772 | 2.525 | 16.880
4 comps | 13.438 | 8.553 5.150 1.466 | 15.737 | 1.764 8.116
5 comps | 10.890 | 5.792 2.334 1.276 | 12.116 | 1.347 7.109
6 comps 6.156 | 3.061 2.069 1.000 | 11.427 | 1.000 6.296

Table 5.17: Ia(k,m) Indices for the training sample.

The larger the values of the [ indices, the larger the Robin Hood effect. Ia(k, m) gives
a measure of the average effect and Im(k,m) the worst case for the variables. The average
and the maximum values of these ratios for each method are given in Tables 5.17 and 5.18.
The Ia indices show that PCR suffers from the Robin Hood Effect more than the other
methods and that RRR and CCR. which have the best performance with respect to these
index. Of the other methods WMOR has the lowest Im indices.
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Im(k, m) PLS MOR |{ WMOR | RRR PCR CCR | IWRRR
1 comps || 144.658 | 141.545 | 132.140 | 105.645 | 145.687 | 150.846 | 105.645
2 comps 29.877 | 138.295 | 17.807 | 23.284 | 145.104 | 16.857 | 67.099
3 comps 21.374 | 18.435 | 16.650 3.325 | 88.742 3.810 37.960
4 comps 17.847 | 18.101 | 14.540 1.820 | 21.981 2.924 16.881
9 comps 17.050 9.771 4.198 1.726 | 18.884 2.223 16.826
6 comps 8.883 4.072 3.264 1.000 | 17.662 1.000 13.626

Table 5.18: Im(k, m) Indices for the training sample.

For values corresponding to more than 2 components PLS and IWRRR have consis-
tently higher /a index. The Im indices agree with the Ia’s

Multivariate Control Charts

As mentioned before, the data are used to illustrate the implementation of multivariate
Control Charts on the latent space. Figures 5.12-5.16 give a comparison of the two di-
mensional representation of these data on different latent spaces. Following Skagerberg,
MacGregor and Kiparissides (1992)) we use six dimensions as the optimal number of la-
tent predictors. Each control chart consists of four plots. The two plots at the top are the
sequence of Prediction Error Sum of Squares, one for the y variables and one for the x
variables. The plot on the left bottom corner gives the scatter of the observed values of the
first two latent variables. The contribution plot in the bottom right corner shows the con-

tribution of each x variable to the determination of a score value of a specific observation.

The values are defined as
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where X; is the average of x; in the training sample and q; is the l-element of the vector

of weights a. In the plots there are shown the contribution plots of the second latent

component for the 53-rd observation.
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Figure 5.12: Multivariate control chart built on the latent space of PLS. The PRESS
corresponding to 6 latent variables in the model.

The score of the j-th latent variable for the n-th observation can be decomposed in the

sum of the contributions as
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Figure 5.13: 13 cm Multivariate control charts built on the latent space of MOR. The
PRESS corresponding to 6 latent variables in the model.
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Figure 5.14: Multivariate control charts built on the latent space of WMOR. PRESS
corresponding to 6 latent variables in the model
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Figure 5.15: Multivariate control charts built on the latent space of RRR. PRESS corre-
sponding to 6 latent variables in the model

The points in the test sample from 34 to 37 were generated under reactor wall fouling
conditions, the points from 38 to 40 were generated under coolant over heating and the
last seven, 50 to 56 adding increasing quantities of impurity. We saw from the scatter plots
of the canonical variates that these points all agree with the general linear relationship
underlying the data. That is to say that none of these points has been determined by a
malfunctioning of the reactor, but rather by abnormal values of the input variables. We
therefore expect to observe a low PRESS on the y variables and a high PRESS on the x
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variables.
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Figure 5.16: Multivariate control charts built on the latent space of WMOR and of RRR.
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The PRESS is the one corresponding to 6 latent variables in the model

All charts shown seem to agree that points 35-37 are “out of control” both for the
y values and for the x predictions. The presence of impurities in observations 50-56 is
detected by all methods on the t; — t, plane, maybe less clearly by MOR. It does not seem
that PLS is doing a particularly better job than any other of the methods we consider. We
chose the 53-rd observation for a diagnostic check using a contribution plot. Recall that

the contribution of each variable is its contribution to the score under investigation. For

the 53-rd observation the shift is more pronounced on the £, axis.
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Figure 5.17: Contribution plots for the 37-th observation for different DRMs. The problem

is caused by over heating.
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That is we consider the contribution of each x variable to that score as (z;s53 — Xi)a:.2
where a; 5 is the weight of x; in the latent variable t,. All methods detect easily that the
problem is caused by the solvent flow rate, x;2. Another point that is highly out of control is
the 37-th observation. Figure 5.17 shows the contribution plots related to t; for 4 methods.
While PLS and PCR indicate the wall temperature x;; as most contributing input to that
score, together with the first temperatures, all other methods with the exception of CCA,
indicate the first temperature as the main cause. The plots of x; and x,;, given in Figure
5.18. show that observation 37 is outside the region spanned by the observations of the
training sample with respect to both variables. Figures 5.19, 5.20 and 5.21 show the
3-dimensional control charts obtained, respectively, with PLS, MOR and WMOR.
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Figure 5.18: Plots of x;; and X3, in the test sample.

We know that the variable causing the problem for this observation is the temperature
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Xa1, however, since the other wall temperatures are also used as explanatory variables,
all methods are indicating that the cause of the abnormal value is connected with the
temperature of the reactor. These plots do not seem to be very helpful when printed on
paper. If instead, there is the possibility of plotting them on a high resolution momnitor
with a graphic interface that allows spinning and zooming, then these can be more helpful
in investigating the plot from different perspectives. In conclusion, in this example all the
DRMs detected the main “out-of-control” points. It is however hard to draw conclusions
as to which of them performs the best. In fact, the test sample represents out-of-control
situations, which are not comparable with each other. A better approach for this sort of
comparison is to look at the behaviour under in-control conditions, which we will consider

in the next Chapter through simulations.
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3D control chart: PLS
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Figure 5.19: 3-dimensional control charts on the PLS latent space. The horizontal plane
represents the t1-t2 plane and the vertical axis the prediction error on the quality variables.
The points marked with an “x” belong to the training sample, the points marked with a

circle to the test sample.
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3D control chart: WMOR
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Figure 5.20: 3-dimensional control charts on the MOR latent space.
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3D control chart: WMOR
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Figure 5.21: 3-dimensional control charts on the WMOR latent space.

5.2 Analysis of the Co-poly Data

We had available a simulator for a co-polymer reactor. The program, kindly made available
by A. Penlidis, simulates a chemical reaction taking 5 process variables as inputs:
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x1 : MMA, first polymer, in flow rate
x2 : STY. second polymer, in flow rate
x3 : INI, initiator, in flow rate

x4 : TOL. solvent in flow rate

xs : TEMP, temperature in degrees Kelvin
Such a chemical reaction requires a certain amount of time to stabilize from the time it is

started. Figure 5.22 shows the dynamics of two of the responses from the start to the end

of the simulation.
We considered the problem of monitoring such a process after it reaches equilibrium.

The simulator gives measures on 9 different responses. We chose to monitor 5 of these

y1 : CPC. copolymer composition

y2 : CR, radical concentration

ys : RMW, accumulated molecular weight
Ya : RP, length of the polymer chain

ys : X, weight conversion
The process was activated following the prescription given in Table 5.19.

NAME || VALUE { TOLERANCE

MMA || 0.08725 | + 0.008725
STY 0.08170 | £ 0.00817
INI 0.02 + 0.002
TOL 0.1758 | £ 0.0175
TEMP | 333.0 + 0.1

Table 5.19: Specification of the simulated reaction.

These specifications represent the process under “normal” operating conditions. The

simulator reads the values of the 5 input variables at specified times and gives the corre-
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Dynamics of CR and X
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Figure 5.22: Dynamic of responses CR and X, over the whole simulation time. Readings
taken every 2 minutes.
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sponding readings of responses.

5.2.1 Data Generation

The process was simulated by letting the recipe specified in Table 5.19 run for 200 minutes
to reach stability, after that pseudo-random noises were added to the 5 input variables ac-
cording to the tolerances, also shown in Table 5.19. The noises were added every 8 minutes
and the output was measured correspondingly. The noises were generated as multinormal.
each with mean zero and standard deviation equal to ; of the tolerance interval shown
in the third column of Table 5.19. Since it was only possible to input 50 different val-
ues of the x variables per each simulation, we ran the process three times with the same
specifications, obtaining 150 observations. In each run independent noises with the same
covariance structure was added to the inputs. Therefore, we had available 150 observations
of the process under random fluctuations of the inputs, with the same error structure. Two
different correlation structures for the noises were considered. mildly correlated and very
correlated. The mildly correlated situation is the most realistic situation when the noises
are theoretically uncorrelated. In fact, some random correlation is to be taken always into
account when simulating a small number of independent variables. Here we report the

results only for this case because the other case has essentially led to similar results. The

correlations among the x variables is given in Table 5.20.

COR X || MMA | STY | INI | TOL | TEMP
MMA 1.00 | 0.24 | -0.12 | -0.10 { -0.01

STY 0.24 | 1.00{-0.25 | 0.10 | -0.09
INI -0.12 | -0.25 | 1.00 | -0.07 | -0.25
TOL -0.10 | 0.10 | -0.07 | 1.00 0.13

TEMP | -0.01 |-0.09 |-0.25 | 0.13 1.00

Table 5.20: Correlation between the x variables
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The means and variances of the simulated variables are given in Table 5.21.

X1 X2 X3 X4 Xs

mean || 0.08723 0.08166 0.02 0.1758 333
var 8.152e-06 | 7.202e-06 | 4.028e-07 | 3.2e-05 0.106

¥y y2 Ys Y4 Ys

mean 0.5018 | 2.253e-07 16474 0.02153 0.1272
var | 2.656e-06 | 1.784e-17 22634 3.712e-07 | 3.914e-06

Table 5.21: Means and Variances of the observed variables

Prior to any analysis. the variables have been mean centered. that is the mean has been

subtracted from each column.
Table 5.22 gives the eigen-values of the covariance matrix of the x variables and the
cumulative proportion of variance explained. These summaries are shown for both the

unscaled variables and the variables scaled to unit length.

eigval X | Cum. var. | eigval X scaled | Cum. var.
15.91 0.99 1.450 0.29
0.0048 0.99 1.230 0.53
0.0014 0.99 0.988 0.73
0.0008 1 0.767 0.88
0.0000 1 0.564 1

Table 5.22: Eigen-values and cumulative variance explained for the X matrix. The first two
columns correspond to the unscaled variables, the second two correspond to the variables

scaled to unit length.
The eigen-analysis of the X matrix shows the effect of standardization. The value and
the separation between eigen-values changes dramatically. If one were to decide on the rank

of X based upon the eigen-values of X one would be lead to consider it, being conservative,
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to be 3 or at most 4. Such a judgment could be based on any of the possible techniques.
For instance one could consider the ill-conditioning indices. then the rank would be taken
to be the largest index for which the square root of the ratio of largest eigen-value to the
corresponding eigen-value is close to 100 (in this case \/i——sl = 105.1). The eigen-values of
the correlation matrix instead, lead to concluding that the matrix has full rank. as it is
the case here. The difference is due to the fact that some of the input variables have small
readings compared to the units they are measured in. The Principal Component Analysis
of the X matrix can be synthesized by the squared correlations between the principal
components and the x variables. Tables 5.23 and 5.24 show these correlations for the

unscaled and the scaled variables.

cor? st pc | 2nd pc | 3rd pc | 4th pc | 5th pc
MMA 0.00 0.01 0.74 0.25 0.00
STY 0.01 0.02 0.50 0.48 0.00
INI 0.06 0.00 0.06 0.02 0.85
TOL 0.02 0.98 0.00 0.00 0.00
TEMP 1.00 0.00 0.00 0.00 0.00

Table 5.23: Squared correlations between the unscaled x variables and the principal com-
ponents of the corresponding matrix.

cor? Ist pc | 2nd pc | 3rd pc | 4th pc | 5th pc
MMA 0.26 0.28 0.07 0.36 0.03
STY 0.46 0.14 0.15 0.04 0.20
INI 0.55 0.05 0.05 0.20 0.15
TOL 0.07 0.27 0.50 0.12 0.04
TEMP 0.11 0.49 0.20 0.05 0.14

Table 5.24: Squared correlations between the scaled x variables and the principal compo-
nents of the corresponding matrix.
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For the unscaled variables the first principal component consists of the temperature.
This is to be expected since this variable has the largest variance. For the same reason the
solvent (TOL) corresponds to the second principal component and the initiator (INT) to the
last. The third and fourth principal components are combinations of the two monomers,
that have. roughly, the same variance. PCA on the scaled variables gives a completely

different set up. The principal components for the scaled variables cannot be identified

with any of the original variables.

corY [CPC| CR | RMW | RP X

CPC 1.00 | -0.09 | 0.08 | -0.01 | 0.24
CR -0.09 | 1.00 | -0.29 | 0.92 | 0.35
RMW | 0.08 | -0.29 | 1.00 | -0.03 | -0.68
RP -0.01 | 092 -0.03 | 1.00| 0.16
X 024 | 035 -0.68 | 0.16 | 1.00

Table 5.25: Correlation matrix of the y variables

cor XY ||CPC| CR | RMW | RP X

MMA -0.18 | -0.09 | 0.15 | 0.02 | -0.38
STY -0.08 | -0.09 | 0.03 |-0.10 | -0.30
INI 0.05 | -0.16 0.02 |-0.20 | 0.04
TOL -0.02 | 0.09| 0.00 | 0.03 | 0.03
TEMP | -0.05| 093] -0.14 | 0.94 | 0.19

Table 5.26: Correlation matrix of the y with the x variables

Tables 5.25 and Table 5.26 give the correlations among the responses y and those
between response and explanatory variables. Figures 5.23, 5.24 and 5.25 show the paired
scatter plots between the x, between the y and between the two sets of variables. The
responses CR and RP are highly correlated between themselves. Also RMW and X are
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correlated. The only explanatory variable that has high correlation with a response is

TEMP which has correlation 0.93 and 0.94 with CR and RP respectively.
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Scatter plots of the Y variables

Figure 5.24
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Figure 5.25: Scatter plots of the explanatory variables versus the responses

Canonical Correlation Analysis

We consider Canonical Correlation Analysis (CCA) to describe the linear relationships
between the explanatory variables and the responses. CCA is particularly powerful for
detecting outliers with respect to linear dependences between the two spaces (e.g. Se-
ber (1984)). Since CCA is invariant to changes of scale, we perform the analysis on the

variables standardized to unit length. This choice seems better because the elements of the




220 CHAPTER 5. TWO APPLICATIONS OF DRMs FOR PREDICTION

coefficient vectors are comparable among themselves. The squared Canonical Correlation

coefficients are the following:

p? = 0.95865, p2 = 0.52679. p2 = 0.34474. p; = 0.11830, p; = 0.01782

These show that there is only one very highly collinear direction common to the two sets of
data while the other dimensions are not very much related. Figures 5.26 and 5.27 show the
scatter plots of the first three canonical variates. in the second and third plot the points are
labeled for ease of identification. There does not seem to be outliers or influential points
in the first direction (that is. the highly related one) or in the other two directions. The
weights (that is. the coefficients of the latent variables standardized to unit length) for the

canonical variates in the X space are given in Table 5.27.
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Figure 5.26: Third pair of Canonical Correlation variables.
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Figure 5.27: Plots of the first and second pairs of Canonical Correlation of variables.
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weights || cc.varl | cc.var2 | cc.vard | cc.var4 | cc.vard

MMA 0.000 | 0.868 | -0.327 | 0.493 | -0.127

STY 0.049 0.444 | 0.795 | -0.394 | -0.058
INI 0.055 | -0.062 0.373 0.224 | -0.899
TOL -0.076 | -0.213 0.331 0.742 0.359

TEMP 0.994 0.026 0.112 | -0.026 | -0.208

Table 5.27: Weights of the Canonical Correlation variates in the X space. The weights are
the coefficients standardized to unit length.

From Table 5.27 it is evident that the first Canonical Correlation variate in the X
space is practically the temperature. The second variate is highly correlated with the
MMA component, uncorrelated with the temperature and somewhat correlated with the
other 3 components. To see this we note that the correlation between x; and (x;,x3,x4)
is (0.24,—0.12, —0.10) while between the second canonical variate and these variables is
(.58, —0.25, —0.22), that is more than double. Also the correlations between the x variables
and the canonical variates, given in Table 5.28 are informative. These confirm that the

first canonical latent variable consists of the temperature.

Cor X cc.x || cc.varl | cc.var2 | cc.vard | cc.var4 | cc.vard
MMA 0.00 0.91 -0.24 0.34 -0.07
STY -0.07 0.58 0.73 -0.29 0.20
INI -0.20 -0.25 0.18 0.25 -0.90
TOL 0.06 -0.22 0.49 0.73 0.43
TEMP 1.00 -0.03 -0.01 0.06 0.07

Table 5.28: Correlation between the original X variables and the canonical variates in the
X space

The correlations between responses and CC variates in the X space, given in Table

5.29, help understand which responses are best explained by the CC latent variates
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COR (Y) cc(X) || cc.varl | cc.var2 | cc.vard | cc.vard | cc.vard
CPC -0.05 -0.17 0.00 | -0.06 -0.01
CR 0.93 -0.10 0.04 0.00 0.00
RMW -0.14 0.13 -0.04 0.08 -0.01
RP 0.94 0.01 -0.05 0.01 0.00
X 0.18 -0.43 -0.08 -0.05 0.01

Table 5.29: Correlation between y variables and the canonical variates in the X space

The first canonical variate in the X space is highly correlated with the responses CR
and RP (which are highly correlated between themselves) while the second is only mildly
correlated with the conversion weight X. The last three components are almost uncorrelated
with all y variables. This confirms that the linear relationship between the x and y variables
is one or at most two dimensional, as the Canonical Correlation coefficients showed. We
could also deduce that the responses CR and RP can be very well predicted by the first
canonical component (that is by the temperature) but y;,ys and ys do not seem to have

a strong linear dependence from any of the x variables.

5.2.2 Data Analysis

Regression Analysis

We perform a regression on the variables standardized to unit length. This choice allows to
avoid numerical errors in the inversion of the covariance matrix (X"X) and also to compare

the regression coefficients corresponding to each variable. The regression coefficients are

given in Table 5.30.
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Coeft CPC CR RMW RP X

MMA || -0.1715319 | -0.0897142 | 0.1604456 | 0.0260694 | -0.3339005
STY -0.0406237 | 0.0416887 | -0.0269643 | 0.0041984 | -0.2073481
INI 0.0049988 | 0.0711813 | 0.0003919 | 0.0365184 | -0.0151590
TOL -0.0200712 | -0.0412257 { 0.0361818 | -0.0885720 | 0.0000000
TEMP || -0.0532178 | 0.9538708 | -0.1488054 | 0.9605733 | 0.1684121

Table 5.30: Regression coefficients for the x variables standardized to unit length

The coefficients of determination R? are given in Table 5.31.

CpPC CR |RMW | RP X

R? || 0.03744 | 0.874 | 0.0447 | 0.8922 | 0.2228

Table 5.31: R? coefficients for the OLS fits.

The regression coefficients and the R? indices confirm that only CR and RP are well
predicted by the inputs and that the temperature alone is significantly linearly correlated
with these outputs. Figures 5.28-5.30 show the fitted values versus the observed. It is
evident that variables CPC, RMW and X are not predicted at all, since the predictions
are almost horizontal
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Figure 5.30: Fitted versus observed values for the response X

As a further confirmation of the inability of the first 4 input variables to predict the

responses we perform a regression on the temperature alone. The R? coefficients are the

following:

CPC CR RMW RP X
R* ]| 0.02699 | 0.8606 | 0.02041 | 0.8823 | 0.0377

Table 5.32: R? coeflicients using only the temperature as explanatory variable.

Figure 5.31 shows how the fitted values are very similar in both regressions. The



228 CHAPTER 5. TWO APPLICATIONS OF DRMs FOR PREDICTION

results so far presented provide overwhelming evidence to the fact that the only significant
regressions are those of CR and RP on the temperature. It should be also clear that a linear
multivariate approach for this kind of data is redundant. Different modeling approaches
may be tried to explain the relationships existing between these two sets of data. However,

we proceed to compare the results from different DRMs in this particular set up.

fitted values of CR, full model vs only temperature
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Figure 5.31: Comparison of fitted values for CR and RP using all X’s and using only

Temperature.
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Dimensionality Reduction Methods

We consider different DRMs for the prediction of the y variables namely Partial Least
Squares (PLS), Maximum Overall Redundancy (MOR), Weighted MOR (WMOR) with
different choices of the weight, Reduced Rank Regression (RRR), Iteratively Weighted RRR
(IWRRR), Canonical Correlation Regression (CCR) and Principal Component Regression
(PCR). WMOR has been indexed from 1 to 4 correspondingly to the four different choices
of weights given by equations (4.1.12)-(4.1.17). The methods have been applied both on
the raw data and on the data standardized to unit length. We report only the analysis
performed on the standardized data for which the different methods are better compared.
Also, the variables are measured in different units and difference in the variance of the errors
renders the unscaled X matrix almost rank deficient, with the first dimension (principal
component) dominated by the temperature. In this case the standardization of the variables
seems appropriate. We do not adopt different symbols for the scaled variables. The last
and the second last columns of Table 5.22 give summaries of the variance decomposition
corresponding to the principal component decomposition on the X matrix. Table 5.24
gives the correlation between the principal components and the x variables. The variance

decomposition of PCA for the Y matrix is given in Table 5.33

eigval (Y) || 2.24833 | 1.42814 | 1.047 | 0.24061 | 0.03592
Cum. var. || 0.4497 | 0.7353 | 0.9447 | 0.9928 | 1.0000

Table 5.33: Variance decomposition for the principal components of Y standardized to
unit length.

The correlation between the principal components in the two sets of variables are given
in Table 5.34. Apart from the first principal component of Y that has a correlation of .63
with the third principal component of X, the other correlations are all below 0.5. There

does not seem to be a dominant direction
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COR ([ pcY1|pcY2|pcY3|pcY4|pcYH
pcX1| 0.11 | -0.34 | 0.08 | -0.29 | 0.07
pcX2| -063 | 0.19 | 0.14 | -0.15 [ 0.14
pcX 3| 0.36 | -0.28 | -0.05 | -0.02 | 0.29
pcX4 | -0.09 | 026 | -0.04 | 0.05 | -0.05
pcX5( 034 | -023 | -0.04 | -0.19 | -0.15

Table 5.34: Correlation between the principal components of X and the principal compo-
nents of Y.

In order to compare the latent components we report the correlations among the X

variables and the first two latent components obtained with different methods. Table 5.35

shows the correlations of the x variables with the first latent variables and Table 5.36 shows

the same correlations for the second latent components.

COR PLS | MOR | WMOR1 | WMOR3 | WMOR4 | RRR | IWRRR | CCR | PCR
MMA 0.11 | -0.10 -0.09 -0.10 -0.10 -0.09 | -0.10 0.00 | 0.51
STY 0.19 | -0.15 -0.12 -0.15 -0.14 -0.14 | -0.18 | -0.07 | 0.68
INI 0.35 | -0.28 -0.37 -0.22 -0.33 -0.18 | -0.36 |-0.20 | -0.74
TOL -0.19 | 0.14 0.21 0.10 0.18 0.07 0.19 0.06 | 0.26
TEMP | -0.98 | 0.99 0.98 0.99 0.99 0.99 0.98 1.00 | 0.33

Table 5.35: Correlations between the x variables

with different DRMs

and the first latent variables obtained

COR PLS | MOR | WMOR1 | WMOR3 | WMOR4 | RRR | IWRRR | CCR | PCR
MMA 0.86 | 0.73 -0.69 -0.81 -0.70 -0.92 | -0.86 091 0.53
STY 0.66 | 0.75 -0.77 -0.70 -0.76 -0.57 | -0.67 0.58 | 0.38
INI -0.38 | -0.56 0.57 0.46 0.58 0.19 0.39 |-0.25 | 0.22
TOL -0.03 | 0.07 -0.09 -0.02 -0.09 0.03 0.02 |-0.22 | -0.52
TEMP || 0.11 ] 0.07 0.00 -0.09 -0.04 -0.08 | -0.09 |-0.03 |-0.70

Table 5.36: Correlations between the x variables and the second latent variables obtained

with different DRMs
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Note that we do not report for WMORZ2, that is with weight a; = Wf%%fy—} =
= = %, because p = ¢ = 5, and the method gives the same results as the unweighted

MOR. The different weights for WMOR, defined in Equations (4.1.12) to (4.1.17), are
given in Table 5.37.

Qay Q2 Q3 (2 77

0.5505 | 0.5 | 0.4401 | 0.7071

Table 5.37: Weights for WMOR.

Among the different weightings of WMOR. we expect WMORA4 to give results closer to
PCR than the others. All the first latent variables but the first principal component have
similar correlation pattern with the x variables, and are dominated by the temperature.
With the exception of the second principal component, all other second latent variables
are uncorrelated with the temperature. Only the second principal component and the
second CC variate have correlation greater than 0.1 (in absolute value) with the solvent,
TOL. All second latent variates, but the second principal component, have high correlation
with the two monomers. Note that the WMOR latent variables corresponding to different
weights are similar to those of the other predictive methods, thus different from principal

components.

Tables 5.38 to 5.46 give R? and the Redundancy Indices for the y variables employing

up to six latent components for the different methods.
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PLS CPC| CR |RMW | RP X RI

1 comp | 0.001 | 0.813 | 0.023 | 0.819 | 0.061 | 0.453
2 comps {| 0.034 | 0.814 | 0.034 | 0.833 | 0.221 | 0.489
3 comps {| 0.034 | 0.861 | 0.034 | 0.892 | 0.221 | 0.507
4 comps || 0.036 | 0.872 | 0.043 | 0.892 | 0.221 | 0.511
5 comps || 0.037 | 0.874 | 0.045 | 0.892 | 0.223 | 0.512

Table 5.38: R? indices and Redundancy Index for the y variables for PLS

MOR CPC| CR |RMW | RP X RI

1 comp || 0.001 | 0.855 | 0.024 | 0.862 | 0.056 | 0.466
2 comps || 0.028 | 0.855 | 0.032 | 0.865 { 0.199 | 0.497
3 comps || 0.031 | 0.857 | 0.034 | 0.885 | 0.207 | 0.502
4 comps || 0.037 | 0.861 | 0.039 | 0.889 | 0.222 | 0.508
5 comps || 0.037 | 0.874 | 0.045 | 0.892 | 0.223 | 0.512

Table 5.39: R? indices and Redundancy Index for MOR

WMOR1 || CPC | CR |RMW | RP X RI

1 comp 0.001 | 0.855 | 0.024 | 0.862 | 0.056 | 0.466
2 comps | 0.028 | 0.855 | 0.032 | 0.865 | 0.199 | 0.497
3 comps | 0.031 | 0.857 | 0.034 | 0.885 | 0.207 | 0.502
4 comps |l 0.037 | 0.861 | 0.039 | 0.889 | 0.222 | 0.508
5 comps | 0.037 | 0.874 | 0.045 | 0.892 | 0.223 | 0.512

Table 5.40: R? indices and Redundancy Index for WMORI1, weight a; = 0.3324.
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WMOR3 || CPC| CR | RMW | RP X RI

1 comp 0.001 | 0.868 | 0.024 | 0.875 | 0.055 | 0.470
2 comps | 0.032 | 0.868 | 0.034 | 0.884 { 0.211 | 0.505
3 comps || 0.033 | 0.868 | 0.036 | 0.891 | 0.215 | 0.507
4 comps | 0.036 | 0.869 | 0.040 | 0.892 | 0.222 | 0.510
5 comps | 0.037 | 0.874 | 0.045 | 0.892 | 0.223 | 0.512

Table 5.41: R? indices and Redundancy Index for WMOR3,weight a3 = 0.3891.

WMOR4 || CPC| CR | RMW | RP X RI

1 comp 0.001 | 0.861 | 0.024 | 0.867 | 0.056 | 0.468
2 comps || 0.029 | 0.861 | 0.033 | 0.873 | 0.202 | 0.499
3 comps || 0.031 | 0.861 | 0.034 | 0.888 | 0.209 | 0.504
4 comps || 0.036 | 0.864 | 0.039 | 0.891 | 0.222 | 0.509
5 comps || 0.037 | 0.874 | 0.045 | 0.892 { 0.223 | 0.512

Table 5.42: R? indices and Redundancy Index for WMOR4, weight ay = 0.7071.

RRR CPC| CR |RMW | RP X RI

1 comp | 0.001 | 0.872 | 0.024 | 0.879 | 0.052 | 0.471
2 comps || 0.036 | 0.872 | 0.039 | 0.890 | 0.221 | 0.510
3 comps || 0.037 | 0.873 | 0.044 | 0.891 | 0.223 | 0.511
4 comps | 0.037 | 0.874 | 0.045 | 0.892 | 0.223 | 0.512
5 comps || 0.037 | 0.874 | 0.045 | 0.892 | 0.223 | 0.512

Table 5.43: R? indices and Redundancy Index for RRR
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IWRRR || CPC | CR |RMW | RP X RI

1 comp | 0.001 | 0.872 | 0.024 | 0.879 | 0.052 | 0.471
2 comps ([ 0.032 | 0.872 | 0.035 | 0.889 | 0.221 | 0.508
3 comps || 0.034 | 0.872 | 0.036 | 0.889 | 0.221 | 0.509
4 comps || 0.034 | 0.874 | 0.037 | 0.892 | 0.222 | 0.510
5 comps | 0.037 | 0.874 | 0.045 | 0.892 | 0.223 | 0.512

Table 5.44: R? indices and Redundancy Index for IWRRR

CCR CPC| CR |RMW | RP X RI

1 comp || 0.003 | 0.864 | 0.021 | 0.890 | 0.034 | 0.471
2 comps || 0.033 | 0.873 | 0.037 | 0.890 | 0.215 | 0.508
3 comps || 0.033 | 0.874 | 0.038 | 0.892 | 0.220 | 0.509
4 comps ({ 0.037 | 0.874 | 0.045 | 0.892 | 0.223 | 0.510
5 comps || 0.037 | 0.874 | 0.045 | 0.892 | 0.223 | 0.512

Table 5.45: R? indices and Redundancy Index for CCR

PCRR*||CPC| CR |RMW | RP X RI

1 comp || 0.020 | 0.055 | 0.001 | 0.081 | 0.060 | 0.203
2 comps || 0.023 | 0.497 | 0.026 | 0.447 | 0.201 | 0.366
3 comps || 0.025 | 0.660 | 0.028 | 0.692 | 0.206 | 0.435
4 comps || 0.037 | 0.692 | 0.034 | 0.742 | 0.222 | 0.455
5 comps || 0.037 | 0.874 | 0.045 | 0.892 | 0.223 | 0.512

Table 5.46: R? indices and Redundancy Index for PCR

For all predictive DRMs but PCR the first latent component corresponds to the tem-
perature, which explains most of the linear relationships between the x and the y variables.
Also the second components are similar but their addition in the predictive model gives

only modest increases in the overall RI.
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Redundancy Indices for the y variables
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Figure 5.32: Redundancy indices for the y variables.

However, we note that the inclusion of the second component increases by a factor as
high as 30 the R? of CPC, RMW and X, which is very low in any case. The different
behaviour of PCR is easily explained by the different nature of the PCA decomposition,
which does not depend on the y variables. The performance of PCR in this example is
quite poor, compared with the other methods. Figure 5.32 shows the RI indices of the y
variables for different number of components included in the model. The RI for to PCR
is not included in the plot because it is much lower than the others, as can be seen from
the tables. The increase in RI follows a similar pattern for all methods but PLS. The
value of RI for PLS prediction of the y variables is lower than the others for the first two
components, but after the third component is added to the model the RI indices for this
method become larger than those of others. For the x variables we note that the RI's
are between those of PCR and RRR which are the lowest and highest for all number of



236 CHAPTER 5. TWO APPLICATIONS OF DRMs FOR PREDICTION

components.

Redundancy Indices for the x variables
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Figure 5.33: Redundancy indices for the x variables.

In summary, we can predict only CR and RP through a linear model. All DRMs
clearly indicate that the only variable that is linearly related to these two responses is
Temperature. The others (CPC,RMW and X) do not seem to be linearly related to the
x variables. However, we might be able to exploit the autocorrelation existing in these

variables and predict them using past values. We consider this next.

Time Series Analysis

One explanation of the poor performance of the linear prediction models can be found
in the time correlation among the responses. When analyzing the time structure of the

Y variables it is evident that CPC, RMW and X have strong correlation with their past
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realizations. The analysis of the sample autocorrelation and partial autocorrelation of each
y variable individually leads to the following Autoregressive Integrated Moving Average
(ARIMA) models:

e CPC: ARIMA(2.1.0). ar, = 1.04, ar, = —0.47

Note: non stationary
e CR, WHITE NOISE
e RMW, ARIMA(1,0.1), ar; = 0.85, ma; = —-0.538
e RP. WHITE NOISE
e X. ARIMA(1.0.1), ar, = 0.766. ma, = —0.775

Here ar;. i = 1,2 stands for autoregressive coeflicients and ma, for the moving average

coeflicient.
The correlation of the filtered series, that is the residuals of the ARIMA fitting, with
the x variables. given in Table 5.47. remains substantially the same as that of the original

variables (cf Table 5.26).

CORXY|CPC| CR { RMW | RP X

MMA 0.17 {-0.09 | -0.05 | 0.03 | 0.00
STY -0.01 | -0.08 | -0.08 {-0.09 | 0.05
INI -0.24 | -0.16 | 0.00 |-0.20 | -0.16
TOL 0.06 | 0.10 | -0.03 | 0.04 | 0.14
TEMP 0.00 | 0.93 | -0.08 | 0.94 | 0.17

Table 5.47: Correlation between X and the filtered y variables.
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However, the variances of the y variables are substantially reduced when the time series

models are used and the R? indices are fairly high, as shown in Table 5.48.

CpPC | RMW X
Var filtered || 0.0484 | 0.1222 | 0.1479
R? filtered || 0.9516 | 0.8778 | 0.8521
R? OLS fit || 0.03744 | 0.0447 | 0.2228

Table 5.48: Variance and R? indices of the filtered y series. Also shown are the R? indices
for the OLS fits.

The Canonical correlations between the y residuals and the x variables are the following
p? = 0.95806. p2 = 0.41035. p3 = 0.32615. p2 = 0.10510. p = 0.01238

By comparison with the Canonical Correlation before the filtering it is clear that the
residuals maintained pretty much the same linear dependence with the x variables. The
regression of the filtered series on the 5 explanatory variables confirms this conclusion. in

fact the R? indices are

CPC CR RMW RP X
R? || 0.10157 | 0.87404 | 0.01825 | 0.89256 | 0.05719

Table 5.49: R? coefficients.

The plots of the first four canonical variates for X and the filtered values of Y is shown

in Figure 5.34.
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Conclusions
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Figure 5.34: First 4 pairs of Canonical Correlation variates relative to the X variables and
the whitened Y variables.

e Responses CR and RP are strongly correlated with Temperature and not correlated
at all with the other input variables. This can be evinced from Table 5.26. The R?
coefficients shown in Tables 5.31 and 5.32 show that almost 90% of the variability of
the two variables is explained by Temperature alone. Adding the other variables to

the linear model does not improve the R? coefficient.
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o The other responses, CPC, RMW and X, show a strong time dependence with the
previous values and are not predicted well by the x variables. Instead, these variables
are well explained by their previous values. After filtering the time correlation in the
responses through an ARIMA model, the residuals are still not explained by the
input variables. However, these series are well fitted by the ARIMA model.

It is clear that if the full regression model is not capable of explaining the output well,
then any of the Dimensionality Reduction Methods that we considered will not give good
predictions, hence good monitoring.

The conclusion we draw from the analysis is that once the co-polymer process has
reached its steady state it is very semsitive to changes in the temperature and not in
changes of the other variables. Of course this conclusion is only valid within the specified
tolerance region shown in Table 5.19. Also, for some variables, in fact those that are not

governed by temperature, it seems that the process flows depend on the changes observed

at previous values.




Chapter 6

Simulation Study

We compure the performance of different DRMs in prediction through simulations. We
consider different multivariate linear models with underlying latent structure of reduced
rank on the x and on the y variables. The performance of the methods in predicting
the response variables is measured through the prediction of independent observations
in a test sample corresponding to each training sample. Each simulation corresponds to
generating (n+3) independent observations of the x and y variables. n of these observations
constitute the training sample with which the parameters of the models are determined
and s the test sample used for prediction. For a given a structure of the data a number R of
pseudo-random samples are generated following the prescription. Different DRMs are then
performed on each sample and the distributions of the results over the repetitions is used for
comparison. For the comparison of the performance over the training sample we consider
the measure of goodness-of-fit Average Residual Sum of Squares (ARSS) introduced in the
previous chapter. The ARSS for the responses is defined by

ARSSy(k,m) = =33l ~ is(n T (6.0.1)

=1 j=1
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where k = 1,... ,p is the number of latent components used, p the number of x variables,
m the method and g is the number of responses. For the fit of the explanatory variables

the ARSS takes the form

ARSSz(k,m) = ZZ[z,, 2:i(mTry)]? (6.0.2)

1_1 =1
A measure of joint goodness-of-fit is given by

ARSSz(k.m) | ARSSy(k,m)

ARSSy(k,m) =
P q

(6.0.3)

ARSST 1s the sum of the objective functions minimized by univariate OLS estimates and

it is the objective function of the OLS method.

In some cases predictive DRMs suffer from the Robin Hood effect, that is the effect for
which responses that are well predicted by OLS are made substantially worse to achieve
modest improvement in those that are poorly predicted. We use the ratio of the RSS the
individual responses fitted with each method and the corresponding RSS of the OLS fits.
We consider two summaries of these ratios, also introduced in the previous chapter. the

average and the maximum over the ¢ responses. These are defined by

. D(¥is = Fis(k,m))? RSS(y;, k,m)

1K &
Ia(k,m) = Z = = Z (6.0.4)
155 $(ys5 — §3(OLS))? RSS(y;, OLS)

=1

for the average. For the maximum it takes the form

n o - 2
i§=:l(ytj y‘J(k’ m)) — max RSS(YJ, k m)
j=14q i(y;'j _ ?{J‘(OLS)) i=lq RSS(yJ, OLS)

=1

(6.0.5)
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These indices measure the extent of the Robin Hood (RH) effect on each method, the
higher these are the worse the method is affected.

As measures of predictive efficiency we consider the average Prediction Error Sum of
Squares (PRESS) for the indices over the test sample. These are defined in a way analogous
to the ARSS indices. The average value of the quantities defined above (ARSS, PRESS,

Ia and Im) over the R simulations is then used for comparing the different methods.

CCR is not included for it is known to have a poor predictive performance. CW has

been included only in some of the simulations.

We consider simulations of lower dimensional datasets with different covariance struc-
ture. The random variables are all generated as pseudo-random Normal variables using the
linear congruential generator built in the Splus 3.4 package. In Tables and Figures we will
denote the WMORIi methods as WMRI for ease of representation. Also the name IWRRR
will be sometimes shortened to IWRR.

6.1 Independent Errors

We first consider a reduced rank model in which both sets of variables consist of linear
combinations of common latent variables with added independent noises. The model is

given below

X=TP+F
(6.1.1)

Y=TQ+E

where T is the matrix of latent variables, P and Q the matrices of loadings and E and F

the matrices of errors.
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Study 1

The first simulation consists of 3 responses and 6 explanatory variables generated from 2
latent variables. The Signal to Noise Ratio (SNR) was chosen to be 3 for both sets of data.
The matrices of loadings P and Q are given in Tables 6.1 and 6.2. E and F are random

noises with diagonal covariance matrices so that the SNR is 3 for every variable.

P X, X2 X3 X4 X5 Xs
t, || -0.241 | 0.958 | 0.008 | -0.749 | -0.351 | -0.931
t, || -0.099 | 0.182 | 0.125 | -0.016 | -0.814 | -0.653

Table 6.1: Loadings for the x variables

Q Y1 Y2 Y3
t, || 0.610 | 0.822 | -0.665
t, || 0.272 | 0.104 | 0.461

Table 6.2: Loadings for the y variables

The correlations between the x and the y variables are given in Table 6.3

Cor Y1 Y2 Ys
x; |{[-1.001}-0.97 | 0.54
X2 0.97 | 1.00 | -0.70
X3 0.46 | 0.19 | 0.52
x; || -0.92 | -0.99 | 0.81
xs || -0.74 | -0.51 | -0.20
xs || -0.98 | -0.88 | 0.35

Table 6.3: Correlation between the x and y variables.

The squared Canonical Correlation coefficients for this covariance structure are given

in Table 6.4
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[o7 ][ 0.95070405 | 0.8619951 | 0.0000644 |

Table 6.4: Squared Canonical Correlation coefficients

As expected, there are two common directions of high correlation and an almost or-
thogonal one. The simulation consists of 50 observations for the training sample and 10
for the test sample replicated 400 times. Tables 6.5 and 6.6 give the average values of the
ARSS indices.

ARSSy PLS | MOR | WMR1 | WMR2 | WMR3 | WMR4 | RRR | IWRRR | PCR

1 comps || 0.579 | 0.585 | 0.535 0.541 0.520 0.529 | 0.495 | 0.495 | 0.665
2 comps || 0.375 | 0.371 | 0.366 0.367 0.365 0.366 | 0.360 | 0.375 0.380
3 comps || 0.359 | 0.363 | 0.358 0.359 0.356 0.357 [0.352 | 0.360 | 0.374
4 comps || 0.353 | 0.359 | 0.355 0.355 0.354 0.355 | 0.495 | 0.354¢ | 0.367
5 comps || 0.352 | 0.354 [ 0.353 0.353 0.353 0.353 | 0.360 | 0.352 | 0.359
6 comps || 0.352 | 0.352 | 0.352 0.352 0.352 0.352 |0.352 | 0.352 | 0.352

Table 6.5: Average ARSSy in the training sample

With respect to the average ARSSy, RRR dominates all other methods and PCR is
always higher than all others. PLS and IWRRR have very close values, with the exception
of the first, are always slightly higher than the values of the WMORs. MOR has a slight
edge over these two methods but for two components, that is for the right number of
components. It is interesting to note the effect of the weighting and of the deflation of the
X matrix on the solution determined by IWRRR. After the first compohent is determined,

its fitting power on the y variables is decreased resembling the behaviour of PLS.
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ARSSx || PLS | MOR | WMRI1 | WMR2 | WMR3 | WMR4 | RRR | IWRRR | PCR
1 comps || 1.169 | 1.159 | 1.242 1.228 1.288 1.258 | 1.499 | 1.499 | 1.124
2 comps ([ 0.477 | 0.480 | 0.487 0.486 0.492 0.489 | 0.560 | 0.477 | 0.476
3 comps ([ 0.354 | 0.338 | 0.346 0.345 0.351 0348 | 0419 0.354 | 0.334
4 comps | 0.233 | 0.209 | 0.215 0.214 0.218 0216 | 1499 0.234 | 0.206
5 comps || 0.116 | 0.096 | 0.099 0.098 0.100 0.099 | 0560 | 0.116 | 0.095
6 comps || 0.000 | 0.000 | 0.000 0.000 0.000 0.000 | 0.419 | 0.000 | 0.000

Table 6.6: Average ARSSx in the training sample

The Average ARS St is given in Table 6.7. All methods but RRR show nearly the same

values of the Average Residual Sum of Squares per variable.

ARSST || PLS | MOR | WMRI1 | WMR2 | WMR3 | WMR4 | RRR | IWRRR | PCR
1 comp | 0.388 | 0.388 | 0.385 0.385 0.388 0.386 | 0.415| 0.415 | 0.409
2 comps [ 0.205 | 0.204 | 0.203 0.203 0.204 0.203 {0213 | 0.205 | 0.206
3 comps il 0.179 | 0.177 | 0.177 0.177 0.177 0.177 |0.187 | 0.179 | 0.180
4 comps || 0.157 | 0.154 | 0.154 0.154 0.154 0.154 | 0.415 | 0.157 | 0.157
5 comps |l 0.137 | 0.134 | 0.134 0.134 0.134 0.134 | 0213 0.137 | 0.135
6 comps || 0.117 | 0.117 | 0.117 0.117 0.117 0.117 |0.187 { 0.117 | 0.117

Table 6.7: Average ARSST in the training sample

The average weights for the WMOR methods are given in Table 6.8

Table 6.8: Weights a; for WMOR. (Their expressions are in section 4.1).

ay

a2

3

ay

0.2831

0.3095

0.2159

0.2591

As expected all the weights for WMOR give a ‘preference’ to the prediction of the y

variables, the weights a; and a4 are lower than the first two. The distributions of the

ARSS over the simulated samples for 2 latent variables are given in Figures 6.1, 6.2 and

6.3
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ARSSYy: 2 latent components, SNRy=SNRx=3 noises uncor.
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Figure 6.1: Distribution of ARSSy.
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ARSSt: 2 components, SNRy=SNRx=3 noises uncor.
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Figure 6.3: Distribution of ARSSr.

Also by looking at the distribution of the ARSS values over the simulated samples we
conclude that all methods give almost the same results. RRR has a slight edge over
the other methods for ARSSy. However its ARSS<z is higher than the others leading to a
higher overall ARSST As expected, the WMOR methods have the lowest values of ARS St

It has been observed that PLS often suffers from the Robin Hood effect (Breiman and
Friedman (1997)). In this study, fitting with two latent variables gives almost the same [a
values for every method, as shown in Figure 6.4, but when “over-fitting” with three latent
variables we notice from Figure 6.5 that the Ia for PCR, MOR and PLS are larger than
the WMOR methods. This implies that the addition of the third latent variable in WMOR
decreases proportionally all RSS of the responses while in PCR, PLS IWRRR and MOR

there are some responses that are not well fitted with respect to the OLS “best” fits.
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la: 2 components, SNRy=SNRx=3, noise uncor.
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Figure 6.4: Ia indices for the y variables in the training sample for rank two fits.
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Tables 6.9, 6.10 and 6.11 give the average PRESS values. All methods but RRR prac-

tically give the same PRES Sy for the predictions obtained with two latent components. It
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is enlightening to see how the method that minimizes ARS Sy performs worse with respect
to PRESSy. even in a situation in which the data are extremely well behaved and follow

a latent model.

PRESSy || PLS | MOR | WMRI1 | WMR2 | WMR3 | WMR4 | RRR | IWRR | PCR
1 comp | 1.680 | 1.709 | 1.590 1.601 1.560 1.576 | 1.539 | 1.539 | 1.896
2 comps | 1.150 | 1.157 | 1.169 1.167 1.176 1.171 | 1.225 | 1.150 | 1.147
3 comps || 1.203 | 1.176 | 1.190 1.188 1.196 1.191 | 1.238 | 1.200 | 1.158

4 comps || 1.225 | 1.189 | 1.204 1.201 1.211 1.207 1.224 | 1.170
5 comps | 1.234 | 1.213 | 1.223 1.222 1.226 1.224 1.235 | 1.198
6 comps || 1.238 | 1.238 | 1.238 1.238 1.238 1.238 1.238 | 1.238

Table 6.9: Average PRESS for the y variables

PRESSx || PLS | MOR | WMRI1 | WMR2 [ WMR3 | WMR4 | RRR [ IWRR | PCR
1 comp || 2.547 | 2.530 | 2.717 2.681 2.820 2.749 |3.294 | 3.294 | 2.439
2 comps || 1.060 | 1.067 | 1.085 1.081 1.097 1.088 | 1.274 | 1.060 | 1.059
3 comps (| 0.821 | 0.903 | 0.889 0.891 0.881 0.887 |0.963 | 0.826 | 0.905

4 comps || 0.561 | 0.696 | 0.673 0.676 0.661 0.669 0.558 | 0.702
5 comps || 0.286 | 0.410 | 0.400 0.401 0.396 0.399 0.287 | 0.413
6 comps | 0.000 | 0.000 | 0.000 0.000 0.000 0.000 0.000 | 0.000

Table 6.10: Average PRESS for the x variables

PRESSt || PLS | MOR | WMR1 | WMR2 | WMR3 | WMR4 | RRR [ IWRR | PCR
1 comp | 0.985 [ 0.991 [ 0.983 0.981 0.990 0.983 |1.062 [ 1.062 | 1.038
2 comps || 0.560 | 0.564 | 0.571 0.569 0.575 0.572 | 0.621 | 0.560 | 0.559
3 comps || 0.538 | 0.542 | 0.545 0.544 0.545 0.545 | 0.573 | 0.538 | 0.537

4 comps || 0.502 | 0.512 | 0.514 0.513 0.514 0.514 0.501 | 0.507
5 comps || 0.459 | 0.473 | 0.474 0.474 0.475 0.475 0.459 | 0.468
6 comps || 0.413 | 0.413 | 0.413 0.413 0.413 0.413 0.413 | 0.413

Table 6.11: Average Total PRESS.

Note that for all methods the PRESSy increases when the model is over-fitted. Such
increase is more marked for PLS and IWRRR. The methods that give the best “predictions”
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of the x variables are PLS and PCR, IWRRR again behaves similarly to PLS. Also the
WMOR methods give good reconstructions of the explanatory variables while the values
of RRR stand out for being worse than the others. For PRESSt all methods but RRR
give very close results.

Study 2

As a second set of simulations for uncorrelated errors, we compare the different DRMs
applied to a sequence of matrices of explanatory variables of the form UAMV™ where
UAV7 is the svd of X. We consider 8 values h = {0.2,0.4,0.7,1,1.3,1.5,2,4}. Recall that
in Chapter 3 we described the objective functions of the DRM:s in terms of the eigen-values
of the matrices Y and X and of the correlation between the principal directions of the two
spaces. These simulations show the effect of a change in the eigen-values of the matrix
X, keeping everything else fixed. The data are generated according to model 6.1.1 still
with 2 latent components, 6 explanatory variables and 3 responses. Independent normal
errors with SNR of 3 are added to each variable x and y. We repeat the procedure on 150
different data matrices, each time choosing the elements of the coefficient matrices P and
Q as independent random U(—1,1). The whole simulation consists of 1200 runs, that is
150 repetitions for the 8 different values of k. Both matrices X and Y were mean centered
and autoscaled. The autoscaling changes the principal directions of X, however it does not
change the orientation of the ellipsoid spanned by the principal components. In section
3.8.2 we mentioned how the decomposition of the regression of the y variables onto the x
space into a sum of regressions could have been done on any set of p orthogonal vectors
of the X space. Then we could still write the objective function for the modified matrices
UAPV™ in terms of the u vectors. This means that the latent components derived with
methods in which the eigen-values of the X matrix are not present in the objective function

such as RRR and CCA, are constant for all values of A.
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We choose to autoscale the variables in order to simulate the results that would be
obtained in practice. That is to simulate the effect of a change in the volume of the X
space, keeping the principal directions constant. Raising the singular-values to a fraction
deforms the ellipsoid £(A?) towards an hyper-sphere, while raising them to a power greater
than one increases the elongation of the ellipsoid. The role of the first principal components
in explaining the variance of X becomes more important as the value of  increases. If we
let h increase enough we would have that all methods would give the principal components

as solutions (assuming that X"X is still invertible).

In order to shorten the simulation time we did not consider WMOR1 and WMORS3, but
we consider CW as well. Tables 6.12, 6.13 and 6.14 give the average squared correlations

among the variables in the training samples.

cor® || x; X2 X3 X4 Xs Xg
X1 1.00 | 0.53 | 0.55 | 0.54 | 0.51 | 0.51
x; || 0.53 | 1.00 | 0.51 { 0.51 | 0.49 | 0.52
X3 0.55 (051 [1.00(0.55! 056 | 0.43
X4 0.54 | 051 {0551 1.00§0.49 | 0.45
Xs 0.51 [ 0.49 | 0.56 | 0.49 | 1.00 | 0.55
Xg 0.51 | 052 | 0.43 | 0.45} 0.55 | 1.00

Table 6.12: Average squared correlation among the x variables.

cor* Y1 Y2 Y3

y. | 1.00 | 0.49 | 0.56
y2 | 0.49 | 1.00 | 0.39
ya || 0.56 | 0.39 | 1.00

Table 6.13: Average squared correlation among the y variables.
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cor*]l vi | y2 ] ¥

X1 0.50 | 0.45 | 0.46
X2 0.45 | 0.47 | 0.45
X3 0.51 [ 0.49 | 0.49
X4 0.47 1 0.52 | 0.48
Xs 0.56 | 0.51 | 0.51
Xs 0.42 | 0.51 | 0.46

Table 6.14: Average squared correlation among the x and y variables.

The average eigen-values of the sample correlation matrices X for h = 0.2, h = 1 and

h = 4 are given in Table 6.15

A% A2 A3 A4 As | A
2 1.663 1.516 | 1.317 | 1.264 | 1.205 | 1.077 |
12.647 8.063 | 3974 | 3.252 | 2.592 | 1.633
30212.22 | 5859.45 | 271.16 | 130.34 | 60.94 | 19.26

Saaby
wpnn
| = O

Table 6.15: Average eigen-values of the correlation matrix of the explanatory variables for
different values of A.

The average eigen-values for h = 1 show that the standardized X matrices are non
singular. The average eigen-values for A = 4 show that X matrices are likely to be ill-
conditioned while for A = 0.2 the average eigen-values are close to one, that is the principal
components ellipsoid tends to the hyper-sphere of radius 1. Figures 6.6 to 6.11 compare
the values of ARSSy for different values of h for the various DRMs. The ARSSy for
RRR is not shown because it is constant. In fact, the transformation UA®VT™ leaves
the orientation of the X space unchanged, hence the projection of the Y matrix and its
principal components. Instead, the principal components of the X space change because of
the standardization. Then the results of RRR, CW and OLS are unaltered by raising the
eigen-values to a power. The fact that the X matrices are ill-conditioned for large values

of h can, however, cause numerical errors.
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Table 6.16 gives the values of ARSSy obtained with the first two components in various

DRMs and with CW and OLS.

The ARSSy changes non-linearly with A. For PLS
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ARSSy | h=02 | h=04 |h=0.7|{h=1 |h=13 |h=1.7 | h=2 | h=4
PLS
1 comps || 1.481 | 1.509 | 1.558 | 1.612 | 1.663 | 1.693 | 1.750 | 1.894
2 comps || 0.978 | 0.989 | 1.000 | 1.006 | 1.020 | 1.031 | 1.057 | 1.099
MOR
1 comps || 1.479 | 1.511 | 1.626 | 1.747 | 1.793 | 1.813 | 1.843 | 1.913
2 comps || 0.979 | 0.986 | 0.990 | 0.992 | 0.997 | 1.002 | 1.011 | 1.064
WMOR2
1 comps || 1.469 | 1.481 | 1.513 | 1.574 | 1.623 | 1.648 | 1.727 | 1.825
2 comps || 0.974 | 0.978 | 0.982 | 0.984 | 0.989 | 0.992 | 0.998 | 1.057
WMOR4
1 comps || 1.447 | 1.473 | 1.490 | 1.488 | 1.557 | 1.578 | 1.615 | 1.753
2 comps || 0.992 | 0.976 | 0.979 | 0.976 | 0.984 | 0.987 | 0.991 | 1.054
IWRRR
1 comps || 1.466 | 1.466 1.466 | 1.466 | 1.466 1.466 | 1.466 | 1.466
2 comps || 0.978 | 0.989 | 1.000 | 1.006 | 1.020 | 1.032 | 1.057 | 1.099
RRR
1 comps || 1.466 | 1.466 | 1.466 | 1.466 | 1.466 | 1.466 | 1.466 | 1.466
2 comps || 0.971 | 0.971 | 0.971 | 0.971 | 0.971 | 0.971 | 0.971 | 0.971
PCR
1 comps || 1.986 | 1.974 | 1.959 | 1.949 | 1.963 | 1.972 | 1.991 | 2.011
2 comps || 1.047 { 1.040 | 1.028 | 1.017 | 1.027 | 1.037 | 1.060 | 1.103
Cw
0.979 | 0.979 | 0.979 |0.979 { 0.979 | 0.979 | 0.979 | 0.979
OLS
0.952 | 0.952 | 0.952 | 0.952 | 0.952 | 0.952 | 0.952 | 0.952

Table 6.16: ARSSy values using up to two components.
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it increases almost linearly for the first 3 components, showing an increasingly sharper
“elbow” at A = 1.7 as the number of components included in the model increases. The
values of ARS Sy for PCR and, less evidently, for WMOR4 show a decrease corresponding
to h = 1, which is the “true” value of the linear model. Figures 6.12 to 6.17 show the
change in ARSSz as h varies. In all methods, for the first four components, the ARSSz
decreases as h increases. This shows that the latent components get closer to the principal
components explaining increasingly more variance of X as h increases (recall that the total
variance of the X matrix is constant because of the autoscaling). The effect of increasing

the elongation of the ellipsoid can also be seen from Table 6.17.

ARS8z [h=02 |h=04 [h=07]h=1]|h=13 |h=1.7] h=2 | h=4
PLS

T comps || 4.508 | 4.217 | 3.663 | 2.870 | 2.394 | 2.170 | 1.814 | 0.997 |
2 comps || 3.369 | 2.740 | 1.777 | 0.968 | 0.476 | 0.292 | 0.086 | 0.001
MOR
T comps || 4500 | 4.211 | 3.460 | 2.691 | 2.188 | 1.965 | 1.615 | 0.953
2 comps || 3.363 | 2.737 | 1.782 | 0.975 | 0.486 | 0.304 |0.102 | 0.011
WMOR2
T comps || 4.611 | 4.251 | 3.615 | 2.031 | 2.441 | 2.221 | 1.791 | 1.082
2 comps || 3.369 | 2.747 | 1.793 | 0.986 | 0.499 | 0.319 |0.121 | 0.021
WMOR4
1 comps || 4.605 | 4.272 | 3.670 | 3.069 | 2.601 | 2.392 | 2.061 | 1.262
2 comps || 3.371 | 2.754 | 1.801 | 1.003 | 0.509 | 0.331 |0.136 | 0.029
IWRRR
T comps || 4.731 | 4.310 | 3.836 | 3.419 | 3.184 | 3.108 | 3.042 | 3.048
2 comps || 3.369 | 2.739 | 1.777 | 0.968 | 0.476 | 0.292 | 0.086 | 0.001

1 comps || 4.731 | 4.319 | 3.836 | 3.419 | 3.184 | 3.108 | 3.042 | 3.048
2 comps || 3.574 | 2.809 1911 | 1.153 | 0.725 | 0.584 | 0.455 | 0.450
PCR
1 comps | 4.511 | 4.055 3.275 | 2.600 | 2.112 1.893 | 1.546 | 0.903
2 comps || 3.349 | 2.722 1.745 | 0.966 | 0.476 | 0.292 | 0.086 | 0.001

Table 6.17: ARSSz values employing up to two components.
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Figure 6.18 shows the distribution of the Ia values for PLS and Figure 6.19 the distri-

bution of the Ia values for MOR. In both cases the values increase in magnitude with h
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and the values are in the same range.
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Figure 6.19: Ia values for MOR corresponding to 1 (top) and 2 (bottom) components.

Figure 6.20 shows the Ia values for the different methods, fitting 2 and 3 latent compo-
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nents when A = 1, that is for the true value. All values are very close to one, however PCR
shows the highest average Robin Hood effect for both fits. PLS, IWRR, and to a lesser
extent MOR, show some Robin Hood effect. CW and WMOR2 and WMORA4 have low /a
values. The average Ia values for h = 1.7, shown in Figure 6.21, indicate more clearly the
pattern mentioned above. When the model is over-fitted with three latent variables PLS
has a number of outlying Ia values. We consider outlying any point whose distance from

a quartile is greater than 1.5 times the inter-quartile range.

la, 2 latent variables, h=1

w

= p— p— —_

a — = _

s B mm - = —
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jla, 3 latent variables, h=1
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Figure 6.20: Ia values for different methods when k = 1. Using 2 (top) and 3 (bottom)
components.

This simulation indicates that PLS and PCR yield increased Robin Hood effect when
the singular-values of the explanatory variable are inflated. Figures 6.22 to 6.27 show the
change in PRESSy due to change in the value of A.
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Figure 6.21: Ia values for different methods when h = 1.7 . Using 2 (top) and 3 (bottom)
components.

aprosny
18 20 22 24 26 28 20

120 L 30

ey i

sproaygl |

Pressy, PLS 1 components Prassy, PLS 2 components

°
~
€
[:
<
2
0.8 o s 20 2.5 30 38 4.0 os 10 s 20" 25 30 ES Y 40
n
Pressy. PLS 3 components Praessy. PLS 4 components
-
—
E
~
0.5 10 S 20'. 2.5 30 38 4.0 as "0 1% 10“ 2% 30 ES 4.0
Pressy, PLS 5 components g Pressy, PLS 8 components
if
°§
\ -
o5 1.0 1.8 20 25 30 as 4.0 as 1.0 18 20 2% 30 3s 40

Figure 6.22: PRESSy for PLS at different values of h.




6.1. INDEPENDENT ERRORS

spromymh |
20 22 24 20 20 38

'M':l
10 15 20 25 30 38 40

oLy
)

Pressy. MOR 1 components

Pressy, MOR 2 components

os 10 "8 20 28 30 25 .

L)
Pressy. MOR 3 components

as 10 "8

Pressy. MOR 4 components

[
2°

28 30 s Y

os 10 8

~
Pressy. MOR S components

»
o

28 ao s A

»
,O
~
»
M
o
M
»
»
°

Y.
- -
-
- —
e
L 3
[-
~
-
~ -
o To e 20 28 30 38 a0 s 1o TS 2.0 28 30 s a0

spomy i |
1820 22 24 26 28 30

spmmy ik |
)

Figure 6.23: PRESSy for MOR at different values of h.
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Figure 6.27: PRESSy for PCR at different values of k.

The plots of the Average PRESSy against h show that for all methods this quantity
is convex and is minimal for the true value k = 1. We conclude that studying the effect of
a power transformation of the singular-values of the explanatory matrix is an exploratory
technique worth consideration before applying DRMs in prediction. It could reveal non-
linearities and give an indication of the rank of the model.

6.2 Dependent Errors

The hypothesis that the errors on the y variables are independent from those on the
x variables does not seem realistic. Cox (discussion to Breiman and Friedman (1997))
considers the procedure of adding noises to a deterministic set of variables artificial. In
this section we consider a simulation study in which some dependency between the two
sets of errors is entertained. Since many published applications in which DRMs have been
applied successfully, consist of large number of explanatory variables, we consider now a

reduced rank model on 6 responses and 15 explanatory variables. The 15 x variables consist
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of linear combinations of three latent components and added independent random noises

with SNR 3. The y variables are linear combinations of the x variables with additional

noise with SNR 5. The model is given below:

where T is a rank 3 matrix of independent latent variables with unit variance, E and F
independent errors with diagonal covariance matrices. The matrices of coefficients P and

B where generated as independent U(—1,1) variables and are given in Tables 6.18 and

6.19.

X=TP+F

Y=XB+E

CHAPTER 6. SIMULATION STUDY

P t %, ta
x: || 0.83 |-0.49 | -0.94
x2 || -0.46 | -1.00 | -0.44
x; || 0.91| 0.08| 0.41
xs || 0.98 -0.69 | 0.50
xs || 0.77 |-0.10 | -0.38
xs || -0.66 | -0.83 | -0.04
X7 0.31 | -0.39 | -0.88
xs || 0.41| 0.12 | 0.72
xo || -0.66 | 0.95 | 0.44
X0 || -0.34 | 0.15 | -0.72
x1: || 0.62 | 0.41 | -0.65
x;2 || 0.93 | 0.70 | -0.54
x;3 || -0.93 | -0.89 | 0.62
x4 || -0.61 | 0.83 | 0.24
x5 | 0.41 |-0.80 | -0.98

Table 6.18: Loading matrix P. Values rounded to two decimal figures.
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B U Y2 Y3 Ya Ys Ye

X -0.16 | 0.42 | 0.73 | 0.54 | -0.39 | -0.43
X2 082 059 | 0.34|-0.97 | 0.92 ] -0.95
X3 -0.07| 0.18{ 0.88|-0.58 | 0.66 | -0.78
X4 -0.60 | -0.40 | -0.49 { 0.82 | -0.48 | -0.30
X5 090 068} 052 0.08] 0.17 | -0.55
Xe 0.201 0.321-0.32 | 0.94|-0.39 | 0.31
X7 -0.49 | -044 | 024 | -0.271-0.71 ( 0.02
Xg -0.84 | 056 1{-030{ 0.071{ 0.02} 0.30
Xg -0.61 | -0.46 | -0.77 | -0.28 | -0.69 | -0.61
X10 0.76 | -0.81 | -0.84 | 0.22 | -0.48 | 0.61
x;: || -0.80 | 0.32 | 0.52]-0.84 | -0.10 | 0.50
Xi12 0.057] 050 0.94|-0.01 | 0.04 | 0.49
X13 092 ]-0.16 | 056 0.74 | 0.19 | -0.03
X4 || -0.52 | -0.78 | -0.26 | -0.32 | -0.54 | -0.49
x5 || -0.75 | 0.37 | -0.99 | 0.80 | -0.05 { 0.78

Table 6.19: Matrix B of regression coefficients. Values rounded to two decimal figures.

In this model the errors on the y variables are no longer independent. In fact the

variance takes the form

SB+e = BT(SI')B + Se

where the symbol S stands for the covariance matrix. The correlation matrix for the y

variables is given in Table 6.20.

Y1 y: ys Y4 Ys Ys

Y1 1.000 | -0.194 | -0.502 | 0.543 { 0.372 | 0.101
y2 |l| -0.194 | 1.000 | 0.800 | 0.416 | 0.409 | 0.364
ys ||l -0.502 | 0.800 | 1.000 | -0.033 [ 0.187 | 0.131
Ya 0.543 | 0.416 | -0.033 | 1.000 | 0.543 | 0.127
Ys 0.372 | 0.409 | 0.187 | 0.543 | 1.000 | -0.311
Ys 0.101 | 0.364 | 0.131 | 0.127 | -0.311 | 1.000

Table 6.20: Correlation matrix for the y variables.
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For this reduced rank model we run a series of 500 simulations with 50 observations for
the training sample and 10 for the test sample. The matrices of explanatory and response
variables are centered and standardized prior to the analysis. As before we do not consider
CCR, WMORI1 and WMORS3 but we consider CW. The values of the ARSSz, ARSSy and
ARS St are given in Tables 6.21. 6.22 and 6.23. The ARSS values are as expected. RRR
and PCR minimize ARSSy and ARSS<z respectively, however yielding the highest values
for the ARSSz and ARS Sy, respectively. PLS, IWRRR and MOR show values of ARSSy
higher than the Weighted MORs. For 10 components all methods with the exception of
PCR have ARSSy close to the minimum 0.405. Again we notice an abrupt change in the
ARSS values of IWRRR when the second component is added to the model. It should be
noted that ARSSy modestly decreases when more than three components are used, and

the values of ARSSz are very high even when all 6 components are used.

ARSSy PLS | MOR | WMR2 | WMR4 | RRR | IWRRR | PCR
1 comp 2.057 | 2.062 | 2.013 2.004 |1.955 | 1.955 | 2.136
2 comps 1.324 | 1.333 | 1.228 1.215 | 1.152 | 1.332 | 1.494
3 comps | 0.890 | 0.814 | 0.753 0.744 | 0.679 | 0.891 | 0.908
4 comps || 0.678 | 0.618 | 0.574 0.567 | 0.517 | 0.692 | 0.854
5 comps | 0.564 | 0.519 | 0.486 0.481 | 0.437 | 0.571 | 0.804
6 comps | 0.494 | 0.464 | 0.440 0.436 | 0.405 | 0.498 | 0.756

7 comps || 0.454 | 0.440 | 0.422 0.420 0.456 | 0.710
8 comps || 0.431 | 0.429 | 0.413 0.412 0.432 | 0.664
9 comps || 0.417 | 0.423 | 0.410 0.409 0.418 | 0.617
10 comps || 0.411 | 0.419 | 0.409 0.408 0.411 | 0.5977

Table 6.21: ARSS, for different DRMs
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ARSSz PLS | MOR | WMR2 | WMR4 | RRR | IWRRR | PCR
1 comp 4.647 | 4.615 | 4.695 4.718 | 5.139 5.139 4.582
2 comps 2.570 | 2.506 | 2.676 2.711 | 3.163 2.568 2.431
3 comps 0.936 | 0.975 | 1.074 1.099 | 1.671 0.936 0.934
4 comps 0.845 | 0.875 | 0.947 0.965 | 1.429 0.844 0.827
5 comps 0.756 | 0.779 | 0.833 0.847 | 1.266 0.756 0.725
6 comps 0.671 | 0.685 | 0.724 0.733 | 1.091 0.670 0.628
7 comps 0.588 | 0.589 | 0.618 0.623 0.587 0.536
8 comps 0.508 | 0.494 | 0.518 0.521 0.507 0.448
9 comps 0.434 | 0.404 | 0.424 0.427 0.432 0.364
10 comps || 0.364 | 0.318 | 0.334 0.336 0.363 0.286
Table 6.22: ARSS<z for different DRMs
ARS ST "PLS [ MOR | WMR2 | WMR4 | RRR | IWRRR | PCR
1 comps 0.653 | 0.651 | 0.648 0.649 | 0.668 0.668 0.661
2 comps 0.392 | 0.389 | 0.383 0.383 | 0.403 0.393 0.411
3 comps 0.211 | 0.201 | 0.197 0.197 | 0.225 0.211 0.214
4 comps 0.169 | 0.161 | 0.159 0.159 | 0.181 0.172 0.198
5 comps 0.144 | 0.138 | 0.137 0.137 | 0.157 0.146 0.182
6 comps 0.127 | 0.123 | 0.122 0.122 | 0.140 0.128 0.168
7 comps 0.115 | 0.113 | 0.112 0.112 0.115 0.154
8 comps 0.106 | 0.104 | 0.103 0.103 0.106 0.140
9 comps 0.098 | 0.097 | 0.097 0.097 0.098 0.127
10 comps || 0.093 | 0.091 | 0.090 0.090 0.093 0.115

Table 6.23: ARS St for different DRMs
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Figures 6.28 and 6.29 show the distributioas of ARS Sy and ARS Sz for two components
over the simulated samples. As expected RRR has the lowest ARSSy and highest ARSSz,
viceversa for PCR. The other methods give intermediate results, WMOR2 and WMOR4 are
quite similar and have lower ARSSy than PCR, PLS and IWRRR. The Average Residual
Sum of Squares obtained with 2 latent variables are quite similar for PLS and IWRRR.
The ARSSy yielded by WMOR2 is lower than that of the unweighted MOR because the

weight on the covariance matrix of the x variables is a; =

I -
p+e

.02857 , hence the latent

variables will be closer to the directions of maximum spread of the Y sub-space, the same
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happens for WMORA4.
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Figure 6.28: ARSSy with two components
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Figure 6.29: ARSSz with two components.

The distributions of the Average Residual Sum of Squares obtained with three latent
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variables over the runs, given in Figures 6.30 and 6.31
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Figure 6.30: ARSSz (top) and ARSSy (bottom) with three components
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Figure 6.31: ARSSt with three components.

for PLS, PCR and IWRRR are very similar. Also for the fits with three components
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we note that RRR has the lowest ARSSy but the highest ARSSz and ARSSt values.
The distributions for PLS, PCR and IWRRR are very similar and MOR and the two
WMOR considered achieve the lowest values of ARSSt. As a measure of distance of
the latent spaces determined by the different methods we consider the squared correlation
between the latent variables and the principal directions of X and that between the latent
components and the RRR variates, that are the principal axis of the space M(Y). Table
6.24 gives the squared correlations between the first four latent variables of each method

and the principal components.

cor* 1st pr. comp. | 2nd pr. comp. | 3rd pr. comp. | 4th pr. comp.
PLS 0.894 0.738 0.788 0.167
MOR 0.965 0.901 0.904 0.134
WMOR2 0.886 0.727 0.728 0.119
WMOR4 0.860 0.692 0.697 0.118
RRR 0.544 0.432 0.372 0.103
IWRRR 0.544 0.754 0.775 0.183

Table 6.24: Squared correlation between latent variables and principal components.

From the squared correlations we see how the MOR variates are always closer than the
PLS ones to the principal components. The RRR variables are the most distant of all.
Although this is only a simulation on one fixed model, this confirms that the latent spaces
determined by the methods that are claimed to give better predictions than RRR tend to
be closer to the principal components space.

The PRESSy and PRESSz for this model, are summarized in the plots in Figures
6.32 and 6.33, respectively fitting with 2 and 3 latent variables. PRESSy of CW is
lower than the corresponding quantities for both rank 2 and rank 3 fits. PCR yields the
highest PRESSy for both fits. The distribution of PRES Sy values of PLS, IWRRR and
RRR with three latent variables are similar although for RRR the inter-quartile range is
wider and and the median lower. MOR and the two WMORSs seem to give equally good
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predictions of the y variables. The values of PRESSz for three latent variables show that
PLS, PCR and IWRRR yield similar results, lower than the others. RRR stands out for
giving the highest PRESSz. Figure 6.34 shows the distributions of the Total PRESS.
For both fits the results are comparable. For the fit with two components, RRR and PCR
have the highest ARSST values and the widest inter-quartile ranges. For the fit with three
components, RRR stands out again for having the highest and most spread out values of
Total Prediction Sum of Squares. MOR, WMOR2, WMOR4, and IWRRR perform very
well with results very close to those of PLS.

PRESSYy, 2 components
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Figure 6.32: PRESSy and PRESSz for two latent variables.
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PRESSy, 3 components
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Figure 6.33: PRESSy and PRESSz for three latent variables.
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Figure 6.34: PRESSy for two and three latent variables.

Figures 6.35 to 6.41 compare the fitted ARSS values with those of the predictions. For
this example we see that these values agree for all methods, however only for PCR the
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ARSSy and PRESSy indicate clearly three as the optimal number of components; for
RRR. WMORJ and PLS an elbow can be seen for the ARSSz variables corresponding to
three components. The PRESSz of WMOR2 does not indicate 3 as the optimal number

of components.

ARSSy and PRESSy of PLS
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Figure 6.35: ARSS (solid line) and PRESS (broken line) for PLS
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Figure 6.36: ARSS (solid line) and PRESS (broken line) for MOR.
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Figure 6.37: ARSS (solid line) and PRESS (broken line) for WMOR2.
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Figure 6.38: ARSS (solid line) and PRESS (broken line) for WMOR4.
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Figure 6.39: Fitted (solid line) and predicted (broken line) average sum of squares for
RRR.
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Figure 6.40: ARSS (solid line) and PRESS (broken line) for IWRRR.
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Figure 6.41: ARSS (solid line) and PRESS (broken line) for PCR.
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6.3 Conclusions

The above simulations show that when the data follow a truly lower dimensional model,
most methods do a good job at predicting the y variables. PLS did not stand out for
being better than the other methods in general. We note a similarity of behaviour between
PLS and IWRRR. RRR seems to perform poorly in terms of predictions, in fact it always
shows higher values of the Prediction Error Sum of Squares. All the methods that have the
prediction of the x variables somehow built in the objective function seem to yield better
predictions of the y variables. The method of Curds and Whey seems to perform very well
in predicting the y variables. Of course, it is not possible to compare its performances in
reconstructing the original x values and hence in giving diagnostic information. The lack
of statistical reference distributions renders the whole analysis very descriptive in a way.
In fact it becomes difficult to justify the conclusions on inferential grounds. However, the
empirical evidence tells that when the interest is the actual prediction of future results,

the heuristic methods often achieve better results.
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Chapter 7

Summary and Future Research

The estimation of a predictive model for multivariate responses requires the estimation of
several parameters. In the presence of several correlated explanatory variables it might
be convenient to require that the rank of the estimated matrix of regression coefficients
is less than full. This is equivalent to considering the predictions from a sub-space of the
space spanned by the whole set of predictors. This dimensionality reduction decreases the
number of parameters to be estimated and may increase the precision of the predictions.
In many situations the sample based optimal Least Squares solutions have been proved
to yield worse predictions than those obtained with heuristic dimensionality reduction
methods. We give a common representation of the objective function that is maximized

by these methods as
g(t,r, @, B) = cor’(t,r)|[c]|* ||t[[**

where a,8 > 0 and t = Xa and r = Yd are linear combinations with unitary norm

coefficients, ||a]| = [|d|] = 1. A more convenient objective function for determining a
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predictive latent sub-space is to consider just the maximization of
g(t, @) = cov?(tr)(t7t)*="1

with 0 < a. This objective function contains the parameter a that can be determined either
by Cross-Validation or by other techniques, such as the use of a test sample of independent
observations. By setting arbitrarily @ = 0 and 1 we obtain RRR and PLS, respectively. By
letting a take large values, @ — 0o, we obtain PCA. The solution of this objective function
does not require solving explicitly for d, which can always be obtained as d o« Y'Xa. The
advantage of the inclusion of the parameter a in the objective function is that we can
adjust the variability of the original explanatory space retained by the latent sub-space.
The larger the value of a the better the latent sub-space reconstructs the original X space.
Choosing a to be positive can be seen as a safeguard against departures of the future x
variables in directions not contained in the OLS sub-space M(?) The common objective

function shows that methods like PCR and PLS assign positive value to the parameter .

We suggest determining the solutions by maximizing simultaneously the variance ex-
plained in both the predictive and the explanatory space. We call this method Maximum
Overall Redundancy and a weighted version of it, WMOR, for which the solutions are

given by the first eigen-vectors of the matrix
(1-a)X™X) XYY X +aX'X

where 0 < @ < 1. The matrix solution of this method is made up of a convex linear
combination of the matrix that generates the principal components and the matrix that
generates the RRR solutions. Letting o vary in its range of definition we obtain a contin-
uum of solutions from PCA to RRR. The parameter a can be determined by maximizing

the RV coefficients between the Y space and the latent space and that between the X
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space and the latent space. Another way of obtaining latent spaces that retain a good
portion of the variance of the original X space is to assign weights iteratively to the RRR.
solution matrix and deflating the space X of the directions previously determined. This
method gives good results, similar to those of PLS in fact, but it is very costly in terms of
computation time.

The classical MLE approach based on multinormal assumptions does not seem to pro-
vide estimates that are more useful than the sample based ones. In fact, for the Reduced
Rank Regression model, these turn out to be the Canonical Correlation solutions and the
RRR solutions, which have been out-performed in many applications by other methods. In
the thesis we did not address the issue of determining an approximation for the variance of
the solutions, however in most of the published applications results based on reference sets
have often been preferred to others based on asymptotic variances. We obtained the MLE
estimates for the joint reduction of the predictive and response spaces, that is for MOR.
By choosing the variances of the errors to take special forms, we can obtain the sample
based MOR and WMOR solutions.

We conducted some simulations for comparing these methods. It turned out that, when
the data follow a true latent model in the x variables, PLS, MOR, WMOR, IWRRR and
PCR all give comparable predictions of the responses. RRR yields worse predictions of the
y variables and it is unable to retain the structure of the X space.

We see as possible future research in this field the study of methods based on the
minimization of the variance of the predictions (as opposed to the variance of the fitted
responses) taking into comsideration random explanatory variables. In particular sensi-
tivity studies on the effect of departures of the explanatory variables from the in-control
conditions may suggest better criteria for the estimation of the predictive latent sub-space.

Maximum Likelihood estimates based on more general distributions than the Normal
may also be worth studying. Often Normal assumptions are justified by assuming that the

observations are affected only by measurement error. There may be instances in which the
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errors follow a different distribution because of other sources of variability, inherent to the
process.

When dealing with complex systems the use of a linear transfer function may be im-
proper or insufficient. The inclusion of non-linear terms in DRMs can lead to more parsi-
monious models with increased predictive precision. Another issue that does not seem to
have been satisfactorily solved is the use of DRMs on correlated observations. Together
with non-linearities, data coming from complex systems are likely to be serially correlated.
This correlation could be taken into account for determining the predictive sub-space.

In the absence of reliable distributional hypothesis on the observations and of the dis-
tribution of the estimates, the use of reference sets of historical data has been suggested for
determining control limits. A more rigorous approach may be the study of non-parametric
confidence intervals, based on the quantiles of the observed score values and PRESS. This

may lead to robust test procedures worthy of consideration.
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