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Abstract 

The failure of rolling element bearings is one of the foremost causes of breakdown in 

rotary machinery. So far, a variety of vibration-based techniques have been developed to 

monitor the condition of bearings; however, the role of vibration behavior is rarely 

considered in the proposed techniques.  

This thesis presents an analytical study of a healthy rotor-bearing system to gain an 

understanding of the different categories of bearing vibration. In this study, a two degree-

of-freedom model is employed, where the contacts between the rolling elements and 

races are considered to be nonlinear springs. The analytical investigations confirm that 

the nature of the inner ring oscillation depends on the internal clearance. A fault-free 

bearing with a small backlash exhibits periodic behavior; however, bearings categorized 

as having normal clearance oscillate chaotically. The results from the numerical 

simulations agree with those from the experiments confirming bearing’s chaotic response 

at various rotational speeds.  

Bearing faults generate periodic impacts which affect the chaotic behavior. This effect 

manifests itself in the phase plane, Poincare map, and chaotic quantifiers such as the 

Lyapunov exponent, correlation dimension, and information entropy. These quantifiers 

serve as useful indices for detecting bearing defects. To compare the sensitivity and 

robustness of chaotic indices with those of well-accepted fault detection techniques, a 

comprehensive investigation is conducted. The test results demonstrate that the 

Correlation Dimension (CD), Normalized Information Entropy (NIE), and a proposed 

time-frequency index, the Maximum Approximate Coefficient of Wavelet transform 

(MACW), are the most reliable fault indicators.   

A neuro-fuzzy diagnosis system is then developed, where the strength of the 

aforementioned indices are integrated to provide a more robust assessment of a bearing’s 

health condition. Moreover, a prognosis scheme, based on the Adaptive Neuro Fuzzy 

Inference System (ANFIS), in combination with a set of logical rules, is proposed for 

estimating the next state of a bearing’s condition. Experimental results confirm the 

viability of forecasting health condition under different speeds and loads.    
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Chapter 1  

 

Introduction 

 

 

1.1 Overview 

Rotary machines are recognized as crucial equipment in power stations, 

petrochemical plants, and automotive industry that require precise and efficient 

performance. Bearings are the most widely used mechanical parts in rotational equipment 

and are primary cause of breakdowns in machines. Such malfunctions can lead to costly 

shutdowns, lapses in production, and even human casualties. To minimize machine 

downtimes, a sensitive and robust monitoring system is needed to detect faults in their 

early stages and to provide warnings of possible malfunctions. Such a monitoring system 

can reduce maintenance costs, avoid catastrophic failures and increase machine 

availability. To develop an effective diagnostic and prognostic system, a comprehensive 

understanding of the bearing behavior is required. 

Typically, a rolling element bearing consists of two rings with a set of elements running 

in the tracks between the rings. The standard shapes of a rolling element include ball, 

cylindrical roller, tapered roller, needle, and barrel roller, encased in a cage that provides 

equal spacing and prevents internal strikes. 

Even a normally loaded, properly lubricated, and correctly assembled bearing fails due to 

material fatigue after a certain running time. This is referred as fatigue life of a bearing, 

and is calculated by the common formula 
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 [ ]10 million revolution
nCL

P
⎛ ⎞= ⎜ ⎟
⎝ ⎠

 (1.1) 

For a point contact such as a ball, n = 3, and for roller bearings, n = 10/3. P denotes the 

equivalent dynamic load, depending on geometry of the bearing, and the radial and thrust 

load components [1]. Regarding the ISO standard [2], dynamic load rating C corresponds 

to the constant load, where 90% of the identical test bearings reach a fatigue life of one 

million revolutions. 

The typical fatigue life of a bearing can be significantly shortened due to manufacturing 

defects, improper handling and installation, or lack of lubrication. The result is either a 

localized or a distributed defect in the components of the bearings. The principal bearing 

faults and their causes are briefly discussed in the following.  

 Wear 

The most common source of bearing failure is wear. It can occur as a result of material 

fatigue in a bearing’s components. Wear can also happen because of entering foreign 

particles such as dust, sand, or metal shavings due to improper sealing or contaminated 

lubricant. In the early stages, wear is usually a localized fault that is easily distributed 

throughout a bearing’s components. 

 Plastic Deformation 

A bearing, subjected to excessive load, high amplitude impact, or shock while stationary, 

can be damaged by plastic deformation at the contact surface. This type of fault is usually 

localized. 

 Corrosion   

Water entering due to sealing failure and a corrosive environment are two reasons for 

bearing corrosion damage. In a corroded bearing, the rust particles, worn off by the 

rolling elements, have an abrasive effect and generate wear. This type of damage 

commonly occurs as a distributed fault. 
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 Brinelling 

Brinell indentation marks appear in the bearing raceways from different sources. 

Indentation can result from plastic deformation, created by excessive loads. Machine 

vibration, hammering during installation, and accidental falls can also cause Brinell 

indentation. The other cause of Brinell marks is the passage of electric current due to 

motor leakage. Premature Brinelling damage is a localized defect, but can affect all the 

components. 

 Improper Mounting 

The most frequent mounting problem is excessive preloading due to improper tolerances 

which are recognized by track formation in raceways. Misaligned seats and excessive 

thrust loads can cause localized flaking. The improper use of a hammer or puller in 

mounting and dismounting a bearing can instigate lip fracture or permanent indentation in 

raceways.  

 Design and Manufacturing Problems 

Inadequate support, a loose fit, an excessive load applied by a set screw, improper load 

distribution, wavy raceways, and unequal rolling element size, all can result in localized 

wear. 

 Improper lubrication 

A lubrication problem can cause small and large welding areas or deep scratches in the 

lip and roller face area. Also color changes in the bearing components are a sign of 

lubrication problem.  

 

1.2 Bearing Condition Monitoring Techniques 

Typically, the previous defects mostly arise during the operation of a bearing. 

Therefore, the detection of these defects at an early stage without machine disassembly is 

pivotal for condition monitoring, quality inspection, and predictive maintenance. Various 
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methods are used for the diagnosis of bearing defects. The methods are broadly classified 

as acoustic measurements, current and temperature monitoring, wear debris detection, 

and vibration analysis. 

 Acoustic Measurement  

The most effective acoustic-based bearing health monitoring is acoustic emission. It is a 

transient impulse generated by the rapid release of strain energy in solid material under 

mechanical or thermal stress. The detection of cracks is the prime application of acoustic 

emission; therefore, this technique can be used as a tool for condition monitoring of 

bearing faults and shaft cracks. The measurement of a machine’s sound can also be 

employed for detecting defects in bearings. Typically, the accuracy of these methods 

depends on sound pressure and sound intensity data. 

 Temperature Monitoring  

Bearing distributed defects generate excessive heat in the rotating components. 

Monitoring the temperature of a bearing housing or lubricant is the simplest method for 

fault detection in rotary machines. 

 Electrical Motor Current Monitoring  

The operating conditions of a machine can be monitored by analyzing the spectrum of the 

motor current. The changes in the electric background noise are associated with the 

changes in the mechanical components of the machine; therefore, fault signatures can be 

detected by motor current signal processing techniques.  

 Wear Debris Analysis  

In this method, the presence of metallic particles in the lubricant is detected by sensitive 

sensors. Furthermore, the spectrographic analysis of the different metallic elements in the 

lubricant can facilitate the location of the fault. 
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 Vibration Measurement  

Since the abnormal vibration of rotary machines is the first sensory effect of rotary 

component failure, vibration analysis is widely employed in the industry. The fault 

vibration signal generated by the interaction between a damaged area and a rolling 

surface occurs regardless of the defect type. Consequently, a vibration analysis can be 

employed for the diagnosis of all types of faults, either localized or distributed. 

Furthermore, low-cost sensors, accurate results, simple setups, specific information on 

the damage location, and comparable rates of damage are other benefits of the vibration 

measurement method. 

 

1.3 Vibration Based Condition Monitoring 

Even a fault-free bearing generates vibration; thus, studying the base-line behavior of 

bearing oscillation is necessary to find the abnormality in the damaged vibration 

signature. The principal source of vibration in roller element bearings is varying 

compliance, caused by the continuous change of position and the number of load carrying 

elements. Based on this phenomenon, different models have been proposed to represent 

the periodic vibration of bearings [3, 4, 5]. The periodic vibration of bearings can be 

transformed to chaotic through a quasi-periodic [6], period doubling, and intermittency 

routes [7]. Recently, some research has been reported in the literature, regarding possible 

relation between chaotic parameters and bearing faults. For example, it has been shown 

that the correlation integral of bearing vibration data [8, 9], and the modified Poincare 

map of vibration data [10] are potential features for fault diagnosis.  

The majority of the research on the diagnosis and prognosis of bearings is based on signal 

processing techniques, independent of bearing vibration characteristics. In these works, 

first a localized or distributed defect is created on a bearing by means of grinding, acid 

etching, drilling, overloading, or over speeding to intentionally introduce defects in the 

bearing components. After a vibration signal is measured usually, by accelerometers, 
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different signal processing techniques are employed to extract the fault sensitive features 

to serve as the monitoring indices. This procedure is quite similar among the published 

literature. The reported signal processing methods are categorized as time domain, 

frequency domain, and time-frequency domain. These techniques are not totally 

independent, and in many cases, they are complementary to each other.  

Time domain analysis has been widely employed. Successful results of Root Mean 

Square (RMS) [11, 12], Kurtosis [13, 14, 15, 16], skewness, peak value [17], Crest Factor 

(CF) [18], and synchronous averaging [19, 31] have been reported in the low frequency 

range of <5 kHz. Band pass filtering has also been conducted in the time domain, it is 

based on the fact that the strike between the damage and the rotating component can 

excite high frequency resonances (10-100 kHz). The generated energy from this impact is 

not sufficient to excite the entire rotor’s assembly, but is enough to excite vibration 

sensor resonance. Monitoring the vibration amplitude at the resonant band pass filtered 

frequency is the principle of the shock pulse method [17, 20, 21, 22]. It is implemented in 

shock pulse meters which are the most accepted diagnostic instrument in the industry. 

Time domain analysis has the advantage of simple calculations, straightforward signal 

pre-processing, and speed independency. However, insensitivity to early stage faults and 

deeply distributed defects are drawbacks of this approach. 

Perhaps, frequency domain, also called spectral analysis, is the most reported signal 

processing method for bearing diagnosis. Each bearing component has a characteristic 

frequency, which is calculated from the kinematics of the rotating parts. Monitoring these 

frequencies or their harmonics at a low frequency range (<5 kHz) has been successful in 

bearing diagnosis [13, 23, 24]; however, some research draws attention to the weakness 

of this method for detecting small defects [25]. To decrease the effect of the noise level 

and frequency side bands, some researchers have adopted the amplitude demodulated or 

enveloped signal. The spectral analysis of a low and/or high frequency range enveloped 

signal is repeatedly reported as an efficient method for bearing diagnosis [26, 27, 28, 29, 

32, 34, 35, 36]. A number of frequency domain features, based on simple or complex 
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signal processing methods such as power cepstrum [11], adaptive noise cancellation [30, 

33], and denoising [37], are also proposed for bearing diagnosis. The frequency domain 

approach is sensitive and robust to detect bearing defects and to identify the localized 

damage location. However, the accuracy of this method highly depends on the bearing 

dimensions and rotational speed. In addition, all the frequency domain methods require 

an intelligent selection of the frequency band in order to be effective. 

Time-frequency methods can provide useful information regarding energy distribution 

over frequency bands. In signal processing, a number of time-frequency analysis methods 

such as the short time Fourier transform, Wigner-Ville distribution, wavelet transforms, 

and basis pursuit [39] have been proposed. Due to its flexibility and computational 

benefits, wavelet transform is widely used for bearing diagnosis and prognosis [38, 40, 

41, 43, 44, 45, 46]. Some researchers have suggested the use of diagnostic features, 

obtained from wavelet decompositions [42], and wavelet packets [47, 48]. 

In many cases, particularly in speed and load variable systems, a simple inspection of the 

monitoring index does not provide reliable information regarding the condition of the 

machine. Therefore, there is still a demand for reliable, flexible, and automated 

procedures for the diagnosis of such systems. Artificial Neural Networks (ANNs) with 

their flexibility and learning capabilities are the best candidates for a decision-making 

engine of a diagnostic scheme. The input to such a scheme is monitoring indices obtained 

from signal processing, and the output corresponds to the level of the bearing’s health. 

Different kinds of ANNs are proposed for bearing condition monitoring with time and/or 

frequency domain features. The multi-layer feed-forward [49, 50, 51, 54], radial basis 

function [52], wavelet neural networks [53], adaptive resonance theory network [54], and 

Adaptive Neuro-Fuzzy Inference System (ANFIS) [55, 77] are among the most 

referenced networks in bearing condition monitoring. Also, other types of intelligent 

systems such as automated intelligent systems [56, 57], pattern recognition models [58, 

60, 66], cascade correlation algorithms [59], automated fuzzy inference [61], support 
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vector machine [62, 63], and genetic algorithms [64, 65] have also been employed, to 

extract the condition of the bearing.   

Bearing prognosis refers to the adoption of current and previous monitoring indices to 

forecast machine’s future states. Bearing prognostic methods are either model-based life 

perdition, or intelligent systems. The first category focuses on a model to predict the 

fatigue life of a bearing [67-73], whereas the second category involves statistical or 

intelligent systems to estimates the future state of a bearing. A few prognostic methods 

are recently proposed based on Recurrent Neural Network (RNNs) [74], Multi Layer 

Perceptron (MLP) [75], and self organizing map [76] with limited applications.   

 

1.4 Motivation and Objectives 

So far, vibration-based condition monitoring of a rolling element bearing has been 

mostly studied from a signal processing point of view. Very little attention has been paid 

to the effect of the fault on the bearing’s vibration behavior. Therefore, the first step in 

successfully implementing of bearing health monitoring is to establish the base-line 

behavior of a healthy bearing. Furthermore, although a number of rotary machines 

operate under variable speed and load conditions, very few researchers have proposed 

robust techniques for the fault diagnosis and prognosis of such systems. 

In this thesis, the nonlinear dynamics of rolling element bearings are initially studied. A 

comprehensive analytical study is conducted to investigate the different categories of 

rolling element vibration and the characteristics of each class. The results of the 

analytical studies are validated by numerical simulations and experiments.  

In the next step, the effect of the bearing damage on the vibration signature is 

investigated. This study pinpoints the potential of the proposed vibration indices, 

normalized information entropy, correlation dimension, and the maximum of 

approximate coefficients of wavelet for fault diagnosis. Their sensitivity and robustness 

are then compared with those of well-accepted fault detection techniques by testing 
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various damage types and sizes. Based on the comparison, three fault features, with the 

least dependency on speed and load conditions, are selected as the bearing monitoring 

indices.  

Next, a decision-making scheme, consisting of a neural network is suggested to map the 

monitoring indices into the bearing’s health under variable speed conditions. The output 

of the neural system identifies the severity of bearing’s damage. Finally, a scheme for 

estimating the future state of a bearing’s condition for various speeds and loads is 

suggested. The proposed prognostic structure consists of monitoring indices, a 

forecasting algorithm, and decision-making rules. The performance of the diagnostic and 

prognosis schemes is studied under variable testing conditions. 

 

1.5 Thesis Outline 

This thesis consists of eight chapters. Chapter 2 consists of a series of analytical and 

numerical studies of the bearing’s nonlinear dynamic model. In this section, different 

categories of bearing vibration and the effect of the internal clearance are studied. In 

Chapter 3, the results of the numerical simulations of the model are proven to be in good 

agreement with the results of the experiments. Chapter 4 presents quantifiers to measure 

the chaotic behavior of a bearing. The stability of these measures: Lyapunov exponent, 

correlation dimension, and information entropy, are investigated at various rotational 

speeds. The sensitivity and robustness of the novel chaotic-based indicators are compared 

with that of well-accepted monitoring techniques in Chapter 5.   

A decision-making scheme, a neuro-fuzzy inference network, is employed in Chapter 6 to 

map the fault features to a bearing’s health condition. Chapter 7 presents a novel scheme 

for estimating the future state of a bearing’s condition over a range of speeds and loads. 

Lastly, Chapter 8 provides concluding remarks and recommendations for future research.  
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Chapter 2  

 

Analytical Investigation of Bearing Vibration 
 
 
 

So far, the vibration-based condition monitoring of bearings has been examined from 

the signal processing perspective without serious attention to the dynamics of bearing 

vibration. The first step in the successful implementation of a bearing condition 

monitoring system is to investigate the fundamentals of a healthy bearing’s oscillations. 

Fault-free bearings generate vibration due to the finite number of balls carrying the 

external radial load. The fundamental problem, to describe the vibration of rolling 

element bearings, has been identified, by Gustafsson and Tallian [3] and Sunnersjo [4], as 

the varying compliance of the rolling elements. These studies have demonstrated that the 

compliance variation is periodic with a period that corresponds to the ball passage 

frequency. Tallian and Gustafsson [78] have been the first to explore the role of a 

bearing’s internal clearance on vibration. Their simulation results indicate that larger 

internal clearances increase the amplitude of bearing vibration, which is also analytically 

confirmed in this chapter. Also Wardel and Poon [79] have experimentally verified that 

an increase in the internal clearance raises the level of vibration in rolling element 

bearings. 

Meyer et al. [5] first proposed a model for bearing vibration, based on the linear spring 

characteristics of the balls under axial (thrust) loads. Tandon and Choudhury have [80, 

81] developed a three Degree-of-Freedom (3 DOF) model to predict and characterize a 

bearing’s response to inner race, rolling element, and outer race defects under radial 

loads. The authors have suggested that the stiffness can be assumed, due to small 

variations of the rotor displacement under dynamic forces to be linear. Akturk et al. [82, 

83] have presented a nonlinear 3 DOF model, based on the Hertzian contact theory. 
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Numerical simulations of the model confirm that increasing the preload and/or the 

number of balls reduces the vibration amplitude. In a series of papers, Tamura and co-

workers [84, 85, 86] have numerically analyzed the stiffness characteristics and vibration 

of self-aligning ball bearings according to the Hertzian contact model for bearings with 

two, three, four, and a large number of rollers. Harsha et al. [87, 88, 89] have numerically 

investigated the effects of surface waviness and the number of balls on the generated 

vibration. The authors have verified that the frequency of vibration, due to surface 

irregularities, depends on the order of the waviness.  

Gad et al. [90] have explored the appearance of chaotic-like motions by using a nonlinear 

model, also based on the Hertzian contact. Their numerical simulations prove that the 

rotor-ball bearing system exhibits harmonic, superharmonic, subharmonic, beat, and 

chaotic oscillations. Mevel et al. [6] have used numerical simulations of a nonlinear 

model to study the dynamics of ball bearing systems. For a lightly loaded ball bearing, 

the authors have found a period-doubling route to chaos, when the ball passage frequency 

is near the first natural frequency of the system, and a quasi-periodic route to chaos when 

the ball passage frequency approaches the second natural frequency. To determine the 

effect of the internal clearance in ball bearings, Tiwari et al. [91] have reported an 

increase in the clearance results in wider chaotic regions. This fact is also observed in the 

present work and detailed in the chaos map in Figure 2.18. Their numerical experiments 

also relate that a decrease in the clearance increases the linear behavior of the system. 

This phenomenon is analytically studied in this work; also, a closed form solution for the 

vibration of bearings within a small range of radial clearance is presented. 

So far, very little research has been reported on the analytical study of bearing vibration 

models. Furthermore, the possible relation between the various vibration categories and 

the bearing parameters has not been discussed. This chapter presents analytical studies on 

a nonlinear 2 DOF model by applying the generalized averaging method. The 

investigation of the behavior of the equilibrium points in this work reveals the underlying 

source of various vibration regimes in a bearing. This research identifies different 
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categories of bearing vibrations and demonstrates the effect of the internal clearance on 

the vibration signature. 

2.1 System Modeling 

In general, a rotary machine can be simplified as a model of a rotating disc, carried by 

a central shaft, and supported by two flexible bearings represented by the axis-symmetric 

springs and dashpots in Figure  2.1. In a rotor, supported by rolling element bearings, few 

of the balls or rollers carry the dynamic load, and their elastic deformation in the load 

zone provides the stiffness of the system. When the machine rotates at a slow speed, the 

inertia force and viscous damping are negligible, and the decisive force exerted on the 

system is the rotor static weight. In this case, the total stiffness of the system varies 

periodically at a frequency equal to that of the rolling element passage. At higher speeds, 

the inertia and damping of the rotor affects the motion of the rotating ring in the vertical 

and horizontal directions, causing a nonlinear, coupled, and varying stiffness.  

 

rω

kc

kc

kc

kc

c

c

c

c

 
Figure  2.1. Simplified model of a rotor supported by two bearings 

To investigate the dynamics of ball bearings as a part of a rotor assembly, the system is 

modeled as a mass-damper-spring system, where the rotor mass is lumped at the centre of 

the inner ring, and supported by a set of identical parallel nonlinear springs representing 

the balls. This 2 DOF model, Figure  2.2, considers the inertia of the balls to be negligible, 



 13

compared with that of the rotor. The summation of the restoring forces of the balls in the 

load zone provides the excitation force, applied to the mass. 

 
Figure  2.2. Rolling element bearing 2 DOF model 

The following assumptions are made regarding the model: 

 The shaft is held at the centre of the inner ring, and the outer ring is stationary. 

 The only external force is the weight of the rotor, and the raceways are assumed to be 

fault-free. 

 The geometric parameters of the bearing: inner and outer rings radii ,i oR R , internal 

clearance e, and ball diameter bD  are considered to be constant during operation. 

In this model, the balls are equally spaced around the rotor by a cage and the angular 

location of the ith ball iθ , is given by 

 2
i

it
N
πθ ω= +  (2.1) 

where N is the number of balls, and the cage speed, ω , is proportional to the shaft speed 

sω  according to 

 i s

i o

R
R R

ωω =
+

 (2.2) 

The displacement of the inner ring from its centre causes a small deformation iδ , on each 

rolling element. The radial deformation of each roller is geometrically derived in terms of 
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the angular location of each element, the location of inner ring centre ( ,x y ), and the 

clearance between the rolling element and each raceway e, as illustrated in Figure  2.3. 

 
Figure  2.3. Radial deformation of rolling element in bearing assembly 

 
 cos sini i ix y eδ θ θ= + −  (2.3) 

If equation (2.1) is substituted into(2.3), the radial deformation of each ball is given by 

 2 2cos sini
i ix t y t e

N N
π πδ ω ω⎛ ⎞ ⎛ ⎞= + + + −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 (2.4) 

The restoring force iF , associated with each ball located in the load zone, is calculated 

based on the Hertzian contact theory such that 

 n
i iF kδ=  (2.5) 

The power n , depends on the rolling element shape; for ball elements, n = 1.5, and 

cylindrical rollers, n = 1.08. The derivations of the contact stiffness k, for the ball and the 

cylindrical roller bearing are detailed in Appendix I.  

The deformation force is generated when the rollers are under compression; in this case, 

they exhibit a nonlinear stiffness. When the radial displacement of the inner ring, relative 

to the stationary outer ring, is negative, no compression force is generated. Hence, the 

total deformation force, exerted on the inner ring, is the summation of the compression 

forces of each rolling element in the vertical and horizontal directions. These equations 

are expressed in the following coupled format: 
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∑

∑
 (2.6) 

where n depends on the shape of the rolling element. When the expression inside the 

bracket of the Heaviside step function, ( ( ) 1H x = when 0x > , and ( ) 0H x = when 0x ≤ ) is 

greater than zero, the relevant roller is under compression and applies force on the inner 

race, unless the roller is located outside the loading zone without any contribution in the 

resultant force. If the bearing contains cN elements in the load zone, the Heaviside 

function H, can be eliminated from(2.6). Consequently, the governing equations of the 

motion in the rotor-bearing system are expressed as follows:  

 

1

0

1

0

2 2 2cos sin cos

2 2 2cos sin sin

c

c

nN

x
i

nN

y
i

i i imx cx k x t y t e t Q
N N N

i i imy cy k x t y t e t W Q
N N N

π π πω ω ω

π π πω ω ω

−

=

−

=

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ + + + + − + =⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ + + + + − + = +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

∑ ∑

∑ ∑

�� �

�� �

(2.7) 

The external force Q∑ , can be the effect of imbalance, misalignment, or internal forces 

that are generated due to the wavy surfaces or damage. The rolling element bearing 

exhibits damping as well as stiffness. Typically, the internal damping c, arises from the 

lubricant with a minor effect of friction at the points of contact. The other sources of 

internal force in bearings are centrifugal and gyroscopic effects. Since the mass of the 

rolling element is very small, compared with that of the rotor’s mass m, the centrifugal 

force and the gyroscopic force are negligible.  

To solve equations(2.7), the number of balls in the load zone cN  and the location of the 

equilibrium points of the rotor are determined analytically by employing a Taylor-series 

expansion of the restoring force of the element in the load zone, (2.7) is transformed into 

a set of coupled nonlinear ordinary differential equations with periodic coefficients. A 

closed-form solution of this system of equations is then obtained by the generalized 

method of averaging. 
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2.2 Load Distribution Angle 

In the ball bearings, the rolling elements transmit the load from one ring to the other. 

The radial force is consistently distributed over a number of balls which are compressed 

between the inner and outer rings. Therefore, the radial displacement of the rotor is 

positive only for the balls within the load zone, and can be expressed as follows: 

 
0
0

i

i

δ
δ
>
≤

 (2.8) 

By applying the polar transformation, cos , sint t t tx r y rα α= = , to the location of the 

inner ring centre (Figure  2.4), equation (2.4) can be transformed in the following criteria 

for the balls in the load zone: 

 2cos t
t

i et
N r
πω α⎛ ⎞+ − ≥⎜ ⎟

⎝ ⎠
 (2.9) 

 
Figure  2.4. Load distribution angle 

The maximum value of tr  occurs when a single ball carries the weight of the rotor. In this 

case, considering Hertzian contact theory under a quasi-static condition, 0ω ≈ , results in  

 
2
3

max( )t
Wr e
k

⎛ ⎞= − − ⎜ ⎟
⎝ ⎠

 (2.10) 

Equations (2.9) and (2.10) yield the load distribution angle, φc, by computing 

 
( )

1
2/32cos

/
c

e
e W k

φ −=
+

 (2.11) 

ith ball inside the load zone
ith ball outside the load zone
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Consequently, the number of balls inside the load zone that contribute to the forcing term 

is derived from 

 
( )

1
2/3cos

/
c

N eN
e W kπ

−=
+

 (2.12) 

The number of balls, Nc, in the load zone depends on the internal clearance, radial force, 

and ball stiffness. In addition, the location and number of balls inside the load zone 

changes with time, thereby changing the number of balls contributing to the system 

stiffness. This is the underlying source of the vibration and the time varying nature of the 

system. 

 

2.3 Equilibrium Points 

The equilibrium points of the shaft, denoted ( ,e ex y ), are any set of ( , )x y  for which 

the time derivatives in (2.7) are identically zero. Therefore, for a fault-free ball bearing, 

mounted in an ideally balanced rotor, the equilibrium points satisfy the following coupled 

equations: 

 

1.51

0

1.51

0

2 2 2cos sin cos 0

2 2 2cos sin sin

c

c

N

i

N

i

i i ix t y t e t
N N N

i i i Wx t y t e t
N N N k

π π πω ω ω

π π πω ω ω

−

=

−

=

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ + + − + =⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ + + − + =⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

∑

∑
 (2.13) 

The location of the equilibrium points depends on the clearance, radial force, and the 

number of balls in the load zone. Equation (2.13) is solved numerically to obtain the 

equilibrium points of the system. The maximum number of balls, inside the load 

zone / 2cN N= , occurs for the zero internal clearance, 0e = . In a quasi-static condition 

( 0ω ≈ ), applying the polar transformation, cose e ex r ϕ=  and sine e ey r ϕ= , in (2.13) 

results in 
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 (2.14) 

In the range of 3 / 2π to 2π , it is assumed that 1.5 2 2cos cosi i
N N
π πϕ ϕ⎛ ⎞ ⎛ ⎞− ≈ −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
. The 

trigonometric combinations transform (2.14) into the following, when N = 8, 12, 16…: 

 
1.5 1.5cos sin0 and

4 4
e e e eNr Nr W

k
ϕ ϕ

= =  (2.15) 

This results in the coordination of the equilibrium points for a zero internal clearance, 

expressed as 

 ( ) ( )( )2/3

0
, 0, 4 /e e e

x y W Nk
=
= −  (2.16) 

To study the effect of the internal clearance on the position of the equilibrium points, 

(2.13) is solved numerically for the ball bearing SKF6204, with the specifications listed 

in Table  2.1. First, the equilibrium points are obtained under a quasi-static condition, 

0ω ≈ . For a positive clearance, the number of balls in the load zone is found to vary 

between four and one depending on the amount of internal clearance. Figure  2.5 reflects 

the location of the equilibrium points in the X-Y plane.  

 

Table  2.1. Specifications of ball bearing SKF6204 (www.skf.com) 

Ball diameter (mm) 7.938  Race groove radius (mm) 4.1278 

Inner race diameter (mm) 25. 5620 Number of balls 8 

Outer race diameter (mm) 41.4380 Rotor’s weight (N) 23.004 

Pitch diameter (mm) 33.5 Stiffness (N/m1.5) 9.21x109 
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Figure  2.5. Location of the equilibrium points when 0ω ≈  (o: centre, x: saddle) 

When the internal clearance is less than e < 4.5 µm, the inner ring is in contact with 3 or 4 

balls, and a single equilibrium point exists. For clearance values larger than e > 4.5 µm, 

three possible equilibrium points exist. The stability of the equilibrium points are 

characterized by evaluating the eigenvalues of the Jacobian matrix of (2.7) at the 

equilibrium point ( ,e ex y ) for the ball bearing supporting the balanced rotor as follows: 

 ( ) ( )

( ) ( )

0.5 0.52

0.5 0.5 2

0 1 0 0
1.5 1.5cos sin cos cos sin cos sin 0

0 0 0 1
1.5 1.5cos sin cos sin 0 cos sin sin

e i e i i e i e i i i

e i e i i i e i e i i

k c kx y e x y e
m m m

k k cx y e x y e
m m m

θ θ θ θ θ θ θ

θ θ θ θ θ θ θ

⎡ ⎤
⎢ ⎥− − −⎢ ⎥+ − + −
⎢ ⎥
⎢ ⎥
⎢ ⎥
− − −⎢ ⎥+ − + −⎢ ⎥⎣ ⎦

(2.17) 

When 0 4.5e mµ≤ ≤ , the Jacobian matrix generates four complex eigenvalues with 

negative real parts, confirming the stability of the equilibrium points. Further, the two-

dimensional projection of the system phase history in the X-Y plane, Figure  2.6 (a), 

obtained from the long-time integration of (2.7), shows that the equilibrium point in this 

range is indeed a centre. In the range of e > 4.5 µm, the eigenvalues of the equilibrium 

point closest to the Y-axis include a pair of real numbers with opposite signs, denoting an 

unstable saddle, as traced in Figure  2.6 (b). The equilibrium points away from the Y-axis 
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produce four eigenvalues with negative real parts, proving the stability of these points. 

The same arrangement in Figure  2.5 confirms that the inner equilibrium point is a saddle, 

whereas the outer equilibrium points are centres. The bifurcation point, e = 4.5 µm, lying 

at the intersection of the three zones, generates two real negative and two complex 

eigenvalues with negative real parts which indicates a marginally stable equilibrium 

point. 

 

Figure  2.6. Response orbits and equilibrium points at a) e=3 µm and (b) e=5 µm when 800ω = rpm; 

(o : centre, x : saddle) 

When ω ≠ 0, the solution of (2.13) is obtained at discrete points in time. For the internal 

clearance values below the bifurcation point, e = 4.5 µm, the results are unchanged with a 

single stable equilibrium point, a centre, located at the Y-axis for each value of e. When 

the internal clearance increases and passes the bifurcation point, the solution of (2.13) 

results in three equilibrium points with similar characteristics to those found in the quasi-

static case at each point in time. As a result, the locations of the three equilibrium points 

vary over time with different stretches of the same curve. This curve in Figure  2.7 is 

symmetric with respect to the Y-axis. As the shaft rotates, the saddle moves on the centre 

stretch of the curve, while each of the centres move on one of the outer stretches. Figure 

 2.7 reveals the location of the equilibrium point for a range of internal clearances and a 
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cage speed of ω = 800 rpm. A distinct curve corresponds to each value of e > 4.5 µm. The 

stability regions of these curves are identified on a map of equilibrium points. 

 

Figure  2.7. Location of the stable and unstable dynamic equilibrium points 

This analysis confirms the existence of two qualitatively different types of inner ring 

vibration, separated by a bifurcation point at e = 4.5 µm. For small internal clearances,    

e < 4.5 µm, the vibration is periodic. Beyond the bifurcation point, a “two-well potential” 

system develops [92] with two symmetric centres away from the Y-axis and a saddle 

close to the Y-axis. At a low cage speed, the motion is still periodic and confined to one 

of the two wells (occurring on one side of the Y-axis only). Once the cage speed is high 

enough to provide the necessary energy, the shaft begins to jump from one well to the 

other in a chaotic manner; that is, a periodic input at a single frequency, ω, leads to a 

random like output motions of the shaft with a broad spectrum of frequencies. 

Furthermore, the locations of the centres and saddles continue to change randomly over 

time as the shaft orbits in the phase space. At higher cage speeds, the chaos disappears 

and a periodic motion encompasses both wells. 



 22

2.4 Analytical Solution 

To obtain closed-form expressions of the response of the bearing, the ideal model, 

(2.7), is simplified for ball bearings by expanding the x- and y-components of the 

restoring force in the Taylor-series around an equilibrium point. This method is valid 

only when the motion is restricted to the neighborhood of a single equilibrium point (one 

well). Figure  2.8 and Figure  2.9 depict the steady state time-response of the original 

model, compared with first-, second-, and third-order approximations, when the internal 

clearance is equal to zero and 4 µm, respectively. 

 
Figure  2.8. Comparison of the original model (solid) and first- (dash), second- (dot), and third- 

(center) order approximations for e = 0 

For zero clearance e = 0, the errors in the response, obtained by using the approximations 

compared with the original model, are negligible for low, 7.5 rpm, and high, 750 rpm, 

cage speeds. 
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Figure  2.9. Comparison between the original model and first-, second-, and third-order 

approximations for e = 4µm 

Figure  2.9 conveys that for a higher internal clearance, 4e mµ= , the second and third-

order approximations are more accurate than those of the first-order model. However, the 

steady state error rate of the linear model, even at a high cage speed of 4800 rpm, is less 

than 0.2%. Therefore, a first-order expansion is suitable for a small internal clearance, 

4.5e mµ≤ . By employing a first-order expansion, the equations of motion are 

transformed to 
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where the parameters, , , , andmn x yf fµ α  are defined as 
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The generalized method of averaging [93] is utilized to solve the coupled linear time-

varying differential equations (2.18) for two cases:  

Case 1: ball bearings with a zero internal clearance and 

Case 2: ball bearings with a small positive radial clearance0 4.5e mµ≤ ≤ . 

2.4.1 Case 1: Zero Clearance Ball Bearings, e = 0 µm 

In this case, the load zone angle is equal to π  , and the number of loaded bearing 

elements is N/2. The curve fitting of , ,mn x yf fα  is used to further simplify the equations of 

motion by replacing the parameters in (2.19) as follows: 
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where 
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 (2.21) 

and mnc is determined through curve fitting of coefficients 11 12 22, ,  and α α α . 

Figure  2.10 illustrates the time-varying parameters of (2.19) and their approximation by 

applying the curve-fits of (2.20) for one revolution of the cage. The figures confirm that 

the curve-fitted functions and original parameters are in good agreement. 
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Figure  2.10.  Parameters , ,mn x yf fα  and their approximations 

The time, t, in (2.18) is normalized by the following parameters: 

 

1 2

1 2

1 22 2

x y

x y

x y

N N

t t t t

ω ωω ω
σ σ

σ σ

µ µξ ξ
σ σ

= =

= =

= =

 (2.22) 
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By substituting the normalized parameters in (2.18)  
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Using the method of variation of parameters, the solutions of (2.24) are given for two 

distinct situations: 

a) The cage speed in the neighbourhood of the fundamental frequency of the horizontal, 

X-direction, motion of the inner race; Nω ≈ ω1  

b) The cage speed in the neighbourhood of the fundamental frequency of the vertical, Y-

direction, motion of the inner race; Nω ≈ ω2 

By assuming that ω1 and ω2 are incommensurate, far from each other, and in the presence 

of damping, the motions can be decoupled in the horizontal and vertical directions. 

Consequently, the bearing response is represented by a single DOF in each case such that 
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Let 1 1 1tω γ ϕ+ =  and 2 2 2tω γ ψ+ = , and then the differentiation from (2.25) results in 
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By substituting (2.25) and (2.26) terms in (2.24), the simplification results in following 

set of modulation equations: 
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and 
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With the use of first order averaging method, the right-hand side of (2.27) and (2.28) are 

averaged for one period over ϕ and ψ  to produce the modulation equations of each case, 

represented as 
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and 
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To study the steady-state response of the system, the fixed points of each set of 

modulation equations are found by setting the right-hand sides of (2.29) and (2.30) to 

zero. Therefore, 
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By considering 11 1 4 xc u c<< , and squaring and summing both sides of (2.31) and(2.32), 

the frequency response relations in closed-form can be obtained from 
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and 
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Figure  2.11 compares of the results, obtained by the method of averaging, with those 

obtained numerically for the frequency response of the horizontal, u1, and the vertical, u2, 

motions of the ball bearing SKF6204. There is good agreement between the approximate 

responses, resulting from the method of averaging, in both cases. However, the quality of 

the approximation deteriorates in the neighborhood of the superharmonic resonance of 

the order two in each case, ½ω1 and ½ω2, and the quality of the vertical motion 

approximation deteriorates in the neighborhood of ω1. The reason for the former 

discrepancies is the underlying assumption, given in (2.25), that the balls are responding 

to primary-resonance excitations at Nω ≈ ω1 or Nω ≈ ω2. The reason for the latter 

discrepancy is that the approximate solution,(2.33), ignores the coupling between the 

horizontal and vertical modes of vibration. 
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Figure  2.11. The frequency-response curves for the (a) horizontal and (b) vertical motions (e = 0 µm) 

 

2.4.2 Case 2: Small Clearance Ball Bearing, Clearance Class 1 (0<e<4.5 µm) 

In this case, the number of balls in the load zone is derived from (2.12). In order to 

apply the method of averaging, the common square root term in (2.19) is approximated as 

follows: 
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Figure  2.12 shows that this approximation is valid within a specific range of the period, 

0- 2π, depending on i , and the approximation it is set equal to zero outside that range to 

match the value of the original function. 
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Figure  2.12. Valid ranges of approximation in (2.35) 
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The governing equations of motion (2.18) are normalized by the following parameters:  
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Therefore, 
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By substituting (2.36) and (2.37) in (2.18),  
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 (2.38) 

Then the solutions of (2.38) are found for two distinct cases: 

a) The cage speed in the neighborhood of the fundamental frequency of the inner race X-

direction motions Nω ≈ ω1  

b) The cage speed in the neighborhood of the fundamental frequency of the inner race Y-

direction motions Nω ≈ ω2 

By assuming that ω1 and ω2 are incommensurate, far from each other, and in the presence 

of damping, the motions in the horizontal and vertical directions are decoupled and the 

single-mode approximations are 
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As a result, the bearing response can be represented by using a single DOF in each case. 

By choosing 1 1 1tω γ ϕ+ =  and 2 2 2tω γ ψ+ = , (2.38) is transformed to a first-order form 
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and for the Y- direction 
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By averaging the right hand side of (2.40) and (2.41) over the valid ranges of the 

approximate functions for each ball, two sets of modulation equations, representing the 

decoupled response in X-, and Y-directions, are found such that 
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To find the steady-state response, the left hand side of each set of modulation equations is 

set to zero resulting in 
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By considering 3 2 4C u C<< , and squaring and summing both sides of (2.45) and (2.46), 

the two frequency response equations are 
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Figure  2.13 compares the results, computed by the method of averaging with those, 

obtained numerically for the frequency response of the horizontal and vertical motions of 

ball bearing SKF6204. Figure  2.13 (a) indicates that the agreement and quality of 

approximation of the horizontal motions is good throughout the range of frequency. 

Figure  2.13 (b) indicates that the quality of the approximation of the vertical, Y-direction, 

motion deteriorates only in the neighbourhood of the fundamental frequency of the 

horizontal motion, ω1, and its superharmonic resonance of the order two ½ω1 and 

subharmonic resonance of order 2ω1. 
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Figure  2.13.  Frequency-response curves of the (a) horizontal and (b) vertical motions (e = 4 µm) 

By comparing the frequency-response curves at zero clearance, Figure  2.11, and the 

small positive clearance, Figure  2.13, it is evident that a larger internal clearance causes 
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the higher amplitude of vibration in both the  X and Y directions, confirming the previous 

research work [79]. In addition, the frequency response plots show that increasing the 

clearance results in lowering the resonance frequencies in both directions. As a result, the 

bearings with larger internal clearances are subject to resonance at lower cage speeds. 

The reason for this softening effect is the decrease in the average number of balls, 

supporting the inner ring over a single period as the clearance increases, which decreases 

the effective stiffness of the oscillator. This effect is more pronounced in the vertical 

direction than in the horizontal one. In fact, the order of the natural frequencies of the 

bearing reverses between e = 0 and e = 4 µm. For e = 0, ω1 < ω2, while at e = 4 µm, we 

found that ω1 > ω2. At some intermediate clearance value, ω2 passes in the 

neighbourhood of ω1. As a result, the bearing undergoes auto-parametric resonance; and 

the assumption that the vertical and horizontal motions can be decoupled is then invalid. 

2.5 Chaotic Vibration of the Inner Ring 

To study the appearance of chaotic vibration, the phase history of the bearing is 

observed, when e > 4.5 µm. The periodic motions are represented by closed orbits in two-

dimensional projections of the phase history. The projections of the chaotic motions have 

wandering orbits; that is, orbits that never close or repeat and tend to fill up a limited area 

within the projection plane. Figure  2.14 compares the orbits of the inner ring motion, 

projected into the Y Y− � plane for various internal clearances, and a shaft speed of 3000 

rpm. 

 
Figure  2.14. Two-dimensional projections of the inner ring (a) e=0, (b) e=3 µm, (c) e=7µm 
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Figure  2.14 (a) and (b) portray the periodic responses of the inner ring. At a larger 

internal clearance, e =7 µm, the bearing exhibits an aperiodic response. It consists of an 

infinite number of open orbits filling a limited region of the phase plane. This type of 

phase portrait is a strong indication of the existence of chaotic vibration in ball bearings. 

To confirm the nature of these orbits, their distribution on a Poincare map is examined. A 

map with a limited number of points denotes a periodic response, whereas the existence 

of a strange attractor in the map confirms the chaotic behavior. 

(a) 

 

(b) (c) 

Figure  2.15. : Poincare maps of the inner ring motion (a) e=0, (b) e=3 µm, (c) e=7 µm 

Figure  2.15 shows the Poincare maps that correspond to the two-dimensional projections 

in Figure  2.14. The maps are constructed by sampling the Y Y− �  plane at the period of the 

ball passage 2π/Nω. The Poincare maps, Figure  2.15 (a) and (b), consist of one point, 

denoting a harmonic motion of the inner ring for e = 0 and 3 µm clearances, as it is 

expected. The strange attractor in Figure  2.15 (c) confirms the existence of chaotic 

motion, when e = 7 µm. 

To investigate the appearance of chaos and the routes to chaos when e = 7 µm, a 

corresponding bifurcation diagram is constructed, as the shaft speed, sω , is increased 

from 0 to 3000 rpm by sampling Y� at the Ball Passage Frequency (BPF). Figure  2.16 

signifies multiple regions of chaotic motions, as well as several routes to chaos. One 

route to chaos identified in the figure is period doubling. This route consists of a series of 

doublings in the period of the periodic motion, as the bifurcation parameter, sω , 

Y�  

Y
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increases. Both the period doubling and reverse period doubling are observed in the 

diagrams at the locations, indicated in the Figure  2.17. 

 
Figure  2.16. Bifurcation diagram e=7 µm 

 

Y

Y�

 
Figure  2.17.  Period doubling e=7 µm (a) period T at 2315 rpm, (b) period 2T at 2260 rpm, and (c)  

period 4T at 2225 rpm 

The chaos map in Figure  2.18 exhibits the regions of chaotic behavior in the clearance-

shaft speed plane. Each horizontal line in Figure  2.18 corresponds to a bifurcation 

diagram that is similar to that in Figure  2.16. The map is constructed by assembling lines 

that correspond to the internal clearance steps of 1 µm for each. A qualitative sense of the 

correspondence between the color grading and chaotic behavior is obtained by comparing 

the seventh line of Figure  2.18 to that in Figure  2.16. The map reflects that the inner race 

chaotic motions dominate the bearing response when the internal clearance is larger than 

5 µm, and the shaft speed is higher than 2500 rpm. 
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Figure  2.18. Chaos map ball bearing SKF 6204 

2.6 Summary 

This chapter describes a newly developed analytical method to study the dynamics of 

rolling element bearings, based on the Hertzian elastic contact model. For the 

investigated bearing, it is shown that the inner ring has either one or three equilibrium 

points, depending on the internal clearance. Bearings with a small clearance, e < 4.5 µm, 

have one stable equilibrium point and exhibit periodic vibration of the inner ring around 

this centre. For a larger clearance, e > 4.5 µm, three equilibrium points exist: an unstable 

saddle near the middle and two stable centres one either side. Two stable regions exist 

around the stable centres. As the inner ring rotates, the locations of these equilibrium 

points change randomly, over time, along an arch. If the cage speeds are high enough, the 

inner ring jumps from one of the stable regions to the other, exhibiting chaotic behavior.  

The Increase in the internal clearance has a softening effect on the bearing resulting in a 

decrease in resonance frequencies. For bearings with e > 4.5 µm, chaotic motions develop 

for specific ranges of the shaft speed. There are several routes leading to these chaotic 

regions. One route is a period-doubling route. The incidence of these chaotic regions 

increases, as the value of the internal clearance and the shaft speed increases.  
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Chapter 3  

 

Numerical Analysis and Experimental Verification  
 

 

In the previous chapter, it is found that the internal clearance plays an important role 

in the vibration behavior of a bearing. In addition, the chaos map of the sample bearing, 

Figure 2.18, shows that within the normal class of clearance (20-30 µm) the chaotic 

behavior is dominant at speed ranges higher than 1000 rpm. Since it is unfeasible to 

obtain closed form solution for chaotic systems, a numerical study is ideal to overcome 

the experimental and theoretical difficulties. Experimental problems occur due to the 

vibration of the power transmission components, high level of noise, and the 

measurement of small varying velocity and displacement. On the other hand, theoretical 

difficulties are mainly caused by the nonlinear behavior and the time varying parameters 

of the governing equations. 

A number of numerical studies have been reported in the literature to characterize bearing 

vibration. The first observation of non-periodic vibration in a fault-free roller bearing has 

been reported by Sunnersjo [4]. The primary focus of his work has been on the periodic 

vibration, caused by the varying compliance at the low speed range. He also has explored 

non-periodic vibration at higher speeds. The simulation results, generated by Fukata et al. 

[94] have showed the superharmonic, subharmonic and beat vibration synchronized with 

the BPF. Besides the periodic behavior, they have explored a random-like vibration 

which is not synchronized with the BPF. Tsuda et al. [95] have presented results of a 

numerical analysis on chaotic vibration of bearings. In this work, the chaotic 

phenomenon is identified by means of the Lyapunov exponent and bifurcation diagram. 

In addition, they have observed different kinds of subharmonic oscillations and a number 

of period doubling routes, entailed to chaotic regions.  
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Kahraman and Singh [96] have explored the existence of strange attractors in the 

simulated model of a geared rotor bearing with backlash. Also, they have also identified 

period doubling and quasi-periodic routes to chaos. Mevel et al. [6] have described the 

subharmonic route to chaos in a lightly loaded ball bearing through numerical simulations 

of a nonlinear model. In their work the system exhibits subharmonic, vibration when the 

BPF approaches the first natural frequency of the rotor system. In addition, a quasi-

periodic route to chaos has been identified and is characterized as the competition 

between the second natural frequency and the ball passage frequency. Tiwari et al. [91] 

have numerically studied the vibration of ball bearings. In this interesting work, three 

regions of high amplitude responses are identified. In the first region, a period doubling 

bifurcation, leading to chaotic response, is observed. The second region is generated by 

Hop bifurcation and quasi-periodic vibration. Finally, a superharmonic behavior at the ½ 

BPF is explored in the third region.  

In a series of papers, Harsha [87, 88, 89] has numerically investigated the vibration of 

ball bearings. All the simulations have been conducted in terms of a nonlinear Hertzian 

contact model under an artificial damping introduced into the system to eliminate the 

transient vibration. Although Harsha has not succeeded to show a clear strange attractor; 

for the existing imbalance force and race waviness, he has identified various chaotic 

regions, starting from 2050 rpm for a small internal clearance of 0.5 µm [81]. Three 

regions of dynamic responses, include periodic, quasi-periodic and chaotic are reported in 

[97]. Furthermore, a quasi-periodic route has been proposed as a leading regime from 

periodic to chaotic behavior.  Bai et al. [98] have identified three routes to chaos in the 

variation of the internal clearance: period doubling, quasi-periodic, and boundary crisis. 

The third route is a sudden creation of a chaotic attractor that occurs, as the speed passes 

through its critical value and the periodic response suddenly becomes unstable. Usually, 

the boundary crisis happens in higher range of clearance (>19 µm). Lioulios and 

Antoniadis [99] have demonstrated that even a small fluctuation in the rotor speed can 
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result in major changes of the system dynamics, from periodic to unstable periodic or 

chaotic response. 

The novel numerical analysis presented in this chapter describes the period doubling and 

quasi-periodic routes to the chaos in ball bearings, and for the first time, an intermittency 

route for cylindrical roller bearings. In addition, the experimental investigation confirms 

the chaotic behavior of ball bearings by extracting a strange attractor from the measured 

vibration data. The significant similarity between the experimental and numerical strange 

attractors validates the proposed mathematical model, and verifies the existence of broad-

band chaos in the bearing oscillation. 

 

3.1 Numerical Simulation 

To investigate the chaotic behavior of the rolling element bearings, the equations of 

motion (2.7), derived in the Chapter 2, are solved by the Rung-Kutta (4, 5) method. The 

selection of the proper step size, ∆t, is pivotal for solving nonlinear equations. On the one 

hand, a large step size results in faster computations, but can fail in following high 

frequency contents. On the other hand, a small step size requires a longer time to reach a 

steady state and increases the computational noise. In addition, further analyses, such as 

plotting Poincare maps, computing the Lyapunov exponent, and determining the 

attractor’s dimension, all require an integer delay at the dominant frequency which is a 

function of the time increment and the BPF. The time increment for all the presented 

simulations is computed from the following equation that yields a time delay at the BPF: 

 310o i

i s

R Rt
NR f

−+
∆ = ×  (3.1) 

where Ro, and Ri stand for the outer and inner ring radii, N is the number of rolling 

elements, and fs denotes the shaft rotational frequency (Hz).  

The initial conditions play an important role in the chaotic time series. In this regard, the 

following assumptions are made for the numerical simulations: 
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 The shaft is held at the centre of the bearing and all the balls are equally spaced. 

 The bearing is fault-free and the only external force is the rotor’s ideally balanced 

weight. 

 For fast convergence, the initial displacement is set at the equilibrium point, found 

from the numerical solution of (2.13).  

 The initial velocities in both directions are assumed to be zero. 

 All the results are obtained, after the system passes its transient state. 

The stiffness of each rolling element, k, depends on the geometric specifications of 

bearing components, roller shape, and material properties. This value for the ball bearing 

is calculated from (For details see Appendix I) 

 3/ 2 3/ 23 3 32

1 4 2 1 4 2 1

b m b i b m b ok D D D r D D D r
− −= Γ + − +Γ − −

− +
 (3.2) 

where bD and mD  are the ball and pitch diameters, or  and ir  are the outer and inner race 

groove radii, and the Hertzian deformation constant, Γ , is derived from 
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where /K πµ  is the Hertzian constants, ν  is Poisson’s ratio, and E  is elastic module of 

the ball. The coefficient, /K πµ , is determined by the curvature relationship in the 

contact position, and for the ball bearing SKF 6204, is equal 0.2990 [100].  

Likewise for the cylindrical roller (Appendix I), 

 ( )0.9242.6232 10 2c ck l r= × −  (3.4) 

Here cl  is the length of the roller contact line with each raceway, and cr  is the radius of 

the roller edge. 

The internal damping of the rolling element bearings arises primarily from the lubricant.  

The theoretical evaluation of the bearing’s damping, due to the effect of the lubricant 

material, viscosity, and temperature, is very difficult. Therefore, in this work, the 

damping parameter is experimentally measured by an impact test. The experimental setup 
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for the modal analysis test is illustrated in Figure  3.1. Each test is conducted, after the 

bearing has been running for 20 minutes, to reach a stable viscosity and temperature 

value.  Since the viscosity of the lubricant plays an important role in the value of the 

damping coefficient, and consequently, in the solutions of the governing equations, the 

bearings are tested while they are lubricated with standard oil (v =15 mm2/s) and high 

viscous grease (v = 110 mm2/s).  The bearing is tested in a free-free condition which is 

achieved by supporting the bearing on a light elastic band, as shown in Figure  3.1. The 

equipment utilized for this test are the data analyzer, LMS SCADAS III, including the 

data acquisition hardware and modal analysis software, LMS Test Lab, a Dytran Piezo 

accelerometer 3035AG, and a Dytran impulse hammer, Dynapulse 5850B with a 

sensitivity of 1 mV/LBF, and a 150 gram tip. The results of the impact test from the 

modal analysis software are shown in Figure  3.2. 

The first natural frequency of the ball bearing is measured at 2941 Hz with a damping 

ratio 4.15%. Therefore, the damping of the tested ball bearing can be found from the 

following: 

 2 572.4 ( / )b nc m Ns mζ ω= =  (3.5) 
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1. SCADAS III 2. Impact hammer 3. Test bearing 4. Accelerometer 

Figure  3.1. Bearing impact test 

  

 

Figure  3.2. Bearings modal impact test; ball bearing first natural frequency 2941 Hz, Roller bearing 

first natural frequency 2906 Hz 

1
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The measured value for a grease lubricated bearing is 694 Ns/m. Likewise; the impact 

test on a cylindrical roller bearing measures the first natural frequency at 2906 Hz with 

the damping ratio, 4.74%. From this, the damping coefficient is computed at 646 (Ns/m). 

The equations of motion (2.7) are solved for the deep groove ball bearing, SKF 6204, for 

the rotational speed 680 rpm, utilizing the specifications listed in Table  3.1, and using 

both measured damping coefficients. The internal clearance of both bearings is selected 

at the normal class of 20 µm. Therefore, according to the previous analytical discussion 

in the Chapter 2, there is a high possibility that chaotic behavior occurs.   

Table  3.1. Specification of ball and roller bearing 

Ball Bearing SKF 6204 Roller Bearing SKF NJ204ECP 

Ball diameter (mm) 7.938  Inner race diameter (mm) 26.500 

Inner race diameter (mm) 25. 5620 Outer race diameter (mm) 41.500 

Outer race diameter (mm) 41.4380 Pitch diameter (mm) 35.000 

Pitch diameter (mm) 33.5 Length of roller (mm) 9.000 

Race groove radius (mm) 4.1278 Radius of roller edge (mm) 0.333 

Clearance (µm) 20 Clearance (µm) 20 

Number of balls 8 Number of Rollers 11 

Rotor’s weight (N) 23.004 Rotor’s weight (N) 23.004 

Coefficient of stiffness (N/m) 9.21x109 Coefficient of stiffness (N/m) 3.21x108

 

The Poincare map is a powerful diagnosis tool for investigating chaotic systems. The map 

can be generated by crossing the trajectories of a three-dimensional phase space through 

a two-dimensional plane. When the Poincare map of a vibration signal is not in the form 

of a finite number of the points, the motion may be chaotic. The chaotic Poincare map of 

an undamped or lightly damped system appears as a cloud of points. In a chaotic damped 

system, the Poincare map contains a set of organized points, arranged in parallel lines and 

magnetized to an unknown point. The appearance of these trajectories, called the strange 

attractor, in the Poincare map is a strong indicator of the presence of chaotic motion. 
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The Poincare map, obtained from the numerical solution of the oil lubricated bearing, 

Figure  3.3 (a), indicates a noise-like response that appears as an unorganized cloud of 

points. Increasing the damping coefficient in the model to the level of the grease 

lubricated bearing reveals the existence of a strange attractor, as portrayed in Figure  3.3 

(b). 
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Figure  3.3. Poincare maps of simulation results: (a) damping 572.4 Ns/m and (b) damping 694 Ns/m 

To assess the general characteristics of the bearing vibration, a broad-band bifurcation 

diagram for the velocity in the vertical direction is plotted for both types of simulated 

bearings with an internal clearance of 20 µm. The presented bifurcation diagram, Figure 

 3.4, is similar to the 20th line of the chaos map in Figure 2.18. In the chaos map, the 

variation of the velocity at each specific speed is represented by the color format. Both 

bifurcation diagrams demonstrate that the bearings with balls or cylindrical elements, 

respectively, exhibit chaotic behavior for a wide range of shaft speeds. The vibration of 

the ball bearing in Figure  3.4 (a) begins with a regular periodic motion, as expected at 

low running speeds. When the shaft speed increases, the bearing exhibits a limited band 

chaos, immediately followed by post chaotic motion. At speeds higher than 600 rpm, the 

system frequently experiences broad-band chaos with a narrow-band periodic motion of 
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T, 2T, 3T, or 4T period in the chaotic regions. Figure  3.4 (b) confirms that the periodic 

motion exists at low shaft speeds in the investigated bearing with cylindrical elements. 

The system reveals a limited band chaos in a range of 5 to 200 rpm. Afterwards, the 

bearing exhibits a broad-band chaotic vibration. 

These simulation results confirm the previous chapter discussions, regarding the effect of 

the internal clearance in the regime of the vibration. However, the occurrence of chaotic 

behavior is more significant at a larger clearance. Even for a normal class of clearance, 

bearings exhibit periodic vibration at low speeds. 

 

Figure  3.4. Results of the numerical simulations shown for broad-band bifurcation diagrams for:  (a) 

a ball bearing, (b) a roller bearing 

As mentioned in Chapter 2, a series of the doublings in the nature of the periodic motion 

occurs in the bifurcation diagram of the bearing vibration. This period doubling usually 

exists before and/or after the chaotic boundaries in the bifurcation diagram. When this 
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phenomenon originates from a periodic region, the doubling process can be continued 

until the motion become chaotic. Vice versa, a chaotic characteristic can be transformed 

to periodic through a series of reverse period doublings. Period doubling is a well-known 

route to chaos.  Figure  3.5 shows the period doubling before and after a chaotic region 

and bubble bifurcation in the range of 440 to 520 rpm. The presented period doubling has 

a Feigenbaum number of 1.46 that expresses ratios of bifurcation diagram in Figure  3.5. 

Figure  3.4 (b) presents another route to chaos in a cylindrical roller bearing. In this 

regime, the periodic motion is influenced by transient chaotic bursts. Increasing the 

rotational speed results in chaotic bursts occur more frequent and longer. The occurrence 

of transient vibration increases, until the dynamics of system become completely chaotic. 

This route to chaos, which is observed in the bifurcation diagram of the cylindrical roller 

bearing in Figure  3.4 (b), is called intermittency. 

 

Figure  3.5. Simulation results: detailed bifurcation diagram for a ball bearing 

Further insight into the chaotic behavior in bearings is gained from the numerical 

simulations by following the “route to chaos”, for the ball bearing and roller bearing, as 

shown in Figure  3.6 and Figure  3.7, respectively.  

Figure  3.6 (a), (b), and (c) illustrate the periodic vibration of the system at the low speed 

of 98 rpm which corresponds to the BPF of 5 Hz. The distinct spectral lines in Figure  3.6 

(a), the closed orbit in the phase plane in Figure  3.6 (b), and the single point Poincare 

map in Figure  3.6 (c), all demonstrate the periodic behavior of the system. The solution 
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of the equation (2.7) based on the shaft rotational speed of 490 rpm (BPF = 25 Hz) is 

depicted in Figure  3.6 (d), (e), and (f). The signs of period doubling are observed in the 

spectrum, Figure  3.6 (d), the closed orbit in phase plane that crosses itself, Figure  3.6 (e), 

and the existing two points in the Poincare map, Figure  3.6 (f). The system exhibits 

chaotic vibration at the higher speed of 980 rpm, which corresponds to the ball passing 

frequency of 50 Hz. Besides the distinct harmonics of the BPF, the spectrum in Figure 

 3.6 (g) reflects a broad-band of frequencies. The open phase plane orbits tend to fill a 

portion of the diagram. The drifting of the phase orbits in Figure  3.6 (h) is a strong 

indicator of chaos in the system. Finally, the occurrence of a strange attractor in the 

Poincare map in Figure  3.6 (k) further validates the chaotic oscillation of the bearing. The 

change of a periodic motion to a quasi-periodic regime, and to chaos, is a common route 

to chaos called Hopf bifurcation.  

 

Figure  3.6. Route to chaos in ball bearing SKF 6204 
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Similarly, the simulations reveal the intermittency route to chaos for the cylindrical roller 

bearing for speeds of 14, 140 and 560 rpm. Figure  3.7 (a), (b), and (c) confirm the same 

phenomenon, of “periodic vibration at a low speed” also happens in cylindrical roller 

bearings (shaft speed 14 rpm; BPF = 1 Hz). Increasing the shaft speed (shaft speed 140 

rpm; BPF = 10 Hz) leads to the intermittency characteristic as shown in Figure  3.7 (d), 

(e), and (f). In this route, although the periodic vibration is dominant, chaotic bursts can 

be detected in a longer time series. This transformation from a periodic to a chaotic 

regime is intermittency route to chaos. In this regime, the chaotic effect can be observed 

as the weak broad-band frequency in the power spectrum, Figure  3.7 (d), and a slightly 

thicker phase plane in Figure  3.7 (e). A chaotic trajectory appears in the Poincare map, if 

the resolution of the solution is small enough, and the length of the data series is 

sufficiently long, as shown in Figure  3.7 (f). When the shaft speed exceeds 280 rpm, the 

bearing exhibits broad-band chaotic vibration, which is apparent in the bifurcation 

diagram. A detailed solution for the vibration of a roller bearing at a shaft speed of 560 

rpm (BPF = 40 Hz) is presented in Figure  3.7 (g), (h), and (k). Here, the strong broad-

band frequency, Figure  3.7 (g), the open orbits of the phase plane, Figure  3.7 (h), and a 

vague strange attractor in the Poincare map due to the light damping of the system, 

Figure  3.7 (k), all verify the chaotic behavior of bearing oscillation. 

 



 50

 

Figure  3.7. Route to chaos in cylindrical roller bearing SKF NJ204ECP 

 

3.2 Experimental Observations 

In the experimental setup Figure  3.8, a well-lubricated deep groove ball bearing, SKF 

6204, is inserted in the bearing housing. A flexible coupling is utilized to minimize the 

effect of the driving component vibration. In addition, particular attention is paid to the 

system’s alignment to decrease the misalignment that can add unwanted periodicity in 

vibration signature. The vibration of the bearing is measured by a Dytran 3035 AG 

accelerometer with a sensitivity of 100 mV/g. The system is driven with a 3 hp induction 

motor, equipped with an AC Tech M1230 SB speed controller, in the range of 0-1800 

rpm. A DACTRON dynamic signal analyzer, Photon 100, equipped with a low-pass anti-

aliasing filter is utilized for the data acquisition. 

The system’s chaotic characteristic is easily observed, when it is viewed from a phase 

plane or particularly from the Poincare map. Accordingly, a code in the Matlab 

environment is developed to integrate the acceleration data via the trapezoidal method to 
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obtain the velocity and displacement. To increase the number of Poincare points for the 

observation of the strange attractor, a long data series is required. In the current 

experiments, the vibration data is stored at a sampling frequency rate of 6000 Hz for 30 

minutes with the shaft rotating at 680 rpm. Then, the vibration signal is re-sampled at 250 

Hz to collect the Poincare points.  

 

 

 

Figure  3.8. Experimental test bed 

 

Figure  3.9 illustrates the extracted displacement, velocity, and related phase plane of the 

bearing vibration, obtained from integrating the measured acceleration data. 

1. Test bearing housing  3. Piezo accelerometer 5. Timing belt 7. Speed controller 

2. Balanced disk 4. Flexible coupling 6. Motor  
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Figure  3.9.  Vibration of ball bearing (experimental data) at the speed of 680 rpm and sampling 

frequency 6000 Hz (a) displacement, (b) velocity, and (c) phase plane 

The phase plane diagram in Figure  3.9 contains an infinite number of orbits that tend to 

fill a portion of the plane. It can be a strong indicator of chaotic vibration. Yet, it is the 

Poincare map that is the principal way of identifying a system’s chaos. If a system, 

however, does not have sufficient damping, the chaotic attractor appears in the form of a 

cloud of unorganized points. This type of map is shown in Figure  3.10 (a), obtained from 

the same data used in constructing the phase plane in Figure  3.9 (c).  The plotted data in 

Figure  3.9, and Figure  3.10 (a) are obtained from a ball bearing lubricated by normal oil 

(v = 15 mm2/s). To increase the damping of the bearing, the rings and balls are lubricated 

with a viscous grease (v = 110 mm2/s), which results in increasing the damping from 

572.4 to 694 (Ns/m). The procedure for the damping measurement is described in detail 

in the previous section. The constructed map in Figure  3.10 (b) reveals a strange attractor 
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with a fractal structure that validates the existence of chaos in the measured data. The 

shape of strange attractor obtained from experimental data, Figure  3.10 (b), is similar to 

the simulated map in Figure  3.3 (b), generated by solving the equation of motion (2.7) 

with similar parameters for the damping, bearing specifications, and running speed, as 

used in the experimental setup. This qualitative verification not only confirms the 

existence of chaos in the rolling element bearings, but also validates the behavior of the 

mathematical model proposed in Chapter 2. Other quantitative measures; namely, the 

Lyapunov exponent and fractal dimension will be used later to further confirm that chaos 

does indeed exist in the bearings vibration. These chaos measures also will serve to 

quantify the effect of the faults on the vibration signature of the system. 

 

Figure  3.10. Experimental Poincare map of a ball bearing at the speed of 680 rpm with (a) normal 

lubrication (c=572.4 Ns/m) and (b) grease (c=694 Ns/m) 
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3.3 Summary 

The numerical analysis of the developed nonlinear model verifies that bearings 

exhibit chaotic behavior through period doubling and intermittency routes in a wide range 

of rotational speeds. The simulation results also show the effect of damping, regarding 

the appearance of the strange attractor in the Poincare map. The experimental results in 

this thesis reveal the existence of a strange attractor, and its similarity with the simulated 

attractor. This strong evidence confirms the chaotic behavior of a healthy rolling element 

bearing, and qualitatively validates the developed model for bearing vibration. In the next 

chapter, some measures for the quantification of the chaotic behavior are introduced. 

Furthermore, the effect of the localized faults of the bearings on the chaotic parameters is 

investigated. 
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Chapter 4  

 

Fault Diagnosis and Chaotic Indicators 

 

 

In the previous chapters, it was shown that rolling element bearings exhibit chaotic 

behavior within a wide range of rotation speed. Then, it is reasonable to expect that, the 

faults in the system can affect this behavior. The propagation of damage can manifest 

itself in the phase plane or the Poincare map, or, better still, alter chaotic quantifiers such 

as the Lyapunov exponent, correlation dimension, and information entropy. 

Up to now, very little research has been reported in the literature, regarding the possible 

relation between chaotic parameters and bearing faults. Lin et al. [101] have reported that 

the faults in simple rotary machinery with gears and bearings can affect the fractal 

dimension value. Logan and Mathew [8, 9] have proposed a correlation integral for the 

assessment of a bearing’s condition. They have utilized a partial correlation integral to 

determine the dimension of the system. Their experimental results for a self-aligned 

bearing at a constant speed of 3000 rpm demonstrate a significant reduction in the 

system’s dimension for a bearing with a defect in the outer ring. However, the application 

of a low pass filter at 2000 Hz in the data acquisition process results in eliminating useful 

high frequency data (>4000 Hz) which usually contains the effect of higher harmonics of 

the inner race and ball damage effect. Consequently, the reported fault diagnosis of the 

inner race and ball damage is not notable. Choy et al. [10] have utilized a modified 

Poincare map for the damage quantification in tapered and roller bearings. Their work 

shows that the modified Poincare map, based on the cage speed, provides information on 

the damage type. Furthermore, the size of defect is corroborated by the vibration 

amplitude to provide information regarding the level of fault propagation. Recently, Li 
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and Qu [102] have proposed a new fault diagnosis scheme, based on the forward 

detecting method, for bearings.  Such a method is used to detect weak periodic signals by 

identifying the transformation of the chaotic oscillator from the chaotic state to the large-

scale periodic state, when a weak external periodic signal is applied. This method is 

successfully applied to detect the existence of a periodic signal at the bearing 

characteristic frequency, which confirms the existence of damage in the corresponding 

component.  

In the current chapter, the goal is to establish that different bearing faults directly impact 

the chaotic response of a system. Novel measures, the Lyapunov exponent, correlation 

dimension, and information entropy are utilized to quantify the effect of damages on the 

chaotic signature. Variation in these chaotic quantifiers, due to the propagation of a fault 

in the bearing components, can be employed as a diagnostic routine for rolling element 

bearings.  

 

4.1 Chaotic Indicators 

To investigate the effect of bearing faults on chaotic vibration, measures for 

determining the system’s chaos level are required. In the current study, three known 

quantifiers of chaotic systems: the Lyapunov exponent, correlation dimension, and 

information entropy are utilized to measure the changes in the chaotic state. Usually, 

these measures are used as diagnostic criteria to reveal if a system is in the state of chaos 

or not. However, in this thesis these quantifiers are utilized to diagnose a bearing heath 

condition. 
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4.1.1 Lyapunov Exponent 

The Lyapunov exponents of a map can be used as a measure of a system’s sensitivity 

to initial conditions. When a chaotic system evolves from a set of initial conditions within 

radius 0d in the phase plane, after time t, the trajectories’ divergence is characterized by 

 0 2 td d λ=  (4.1) 

where Lyapunov exponent λ, corresponds to the average rate of the divergence of the 

trajectories. When the largest Lyapunov exponent is positive, or the system contains at 

least one positive Lyapunov exponent, the system exhibits chaotic behavior. 

Different methods have been proposed for computing the Lyapunov exponents from a 

time series, categorized as direct and model based methods. The direct method is adopted 

to estimate the Lyapunov exponents of the reconstructed state without fitting a model to 

the experimental data. The common method for reconstructing the data from the 

experimental measurements or time series is the delay coordinates technique. For a given 

time series ( )x t , m-dimensional reconstructed data is in the form of 

 ( ) ( ) ( )( ), ,..., 1x t x t x t mτ τ⎡ ⎤+ + −⎣ ⎦  (4.2) 

When the reconstruction dimension, m, is large, it is expected that the noise decreases the 

density of the data that represents a strange attractor. Therefore, the small value of m 

usually results in more reliable Lyapunov exponents. When the time delay is very small, 

the reconstructed vectors do not significantly differ from each other. In this case, the 

investigation of a possible fractal structure becomes difficult. If the selected time delay is 

lengthy, the attractor may not contain sufficient data to show the fractal structure of the 

data series. In this thesis, the proper combination of reconstruction parameters for the 

bearing vibration is found by a number of experiments. The results prove that a series of 

two-dimensional vectors, reconstructed with a ball passage period delay, provides a 

stable Lyapunov exponent at each constant rotational speed. The selected computation 

process is a direct method, developed by Wolf et al. [103], to estimate the largest 
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Lyapunov exponents of the reconstructed state without fitting a model to the 

experimental data. For the current application, the Wolf method is modified to 

reconstruct a two-dimensional data series from the acceleration, measured at a sampling 

frequency of 6 kHz, and low pass filtered at 2 kHz to reduce the effect of noise. Then, the 

reconstructed time series is re-sampled with a time delay of 1.156 seconds (equal to ball 

pass period) to obtain the Poincare points. The computation stops when the results 

converge within a ±1 percent error band.  

 

Figure  4.1. Stability Lyapunov exponent at various shaft rotational speeds 

Since the Lyapunov exponent is the average of the trajectories’ divergence in the system, 

where the chaotic mechanism is unknown, the repeatability of the exponent should be 

checked. A set of experiments is conducted to investigate the repeatability of the 

Lyapunov exponent. The results, shown in Figure  4.1, demonstrate the stability of the 

measured Lyapunov exponent at different rotational speeds. Moreover, the positive value 

of all the measured Lyapunov exponents further validates the chaotic vibration of the 

system. 
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4.1.2 Correlation Dimension 

In addition to the Lyapunov exponent which is a quantitative measure of chaotic 

motion, the fractal dimension is a measure of the strangeness of the attractor. There are 

various ways to express the dimension of a fractal set. The correlation dimension is an 

efficient method to determine the dimension of experimental data [92]. To calculate the 

correlation dimension, the orbit of the phase plane needs to be digitized to a set of dN  

points, [ ]ix . Then, the distance between each pair of points is calculated. The correlation 

function is defined as 

 ( )2
1 1

1( ) lim
d d

d

N N

d i jN i jd

C H x x
N

ε ε
→∞

= =

= − −∑∑  (4.3) 

where ix and jx  are points in the data set. H is the Heaviside function (with ( ) 1H x = for 

0x > and zero elsewhere), and dN is the number of digitized data chosen from the data 

set. The Heaviside function counts the number of points within radiusε  from point ix , 

and ( )dC ε is the average fraction of the points withinε . Consequently, the correlation 

dimension is the slope of a graph of log ( )dC ε versus logε . This method of estimating the 

dimension has the advantage of requiring less computer memory and computational time 

than other methods. An important step in computing the correlation dimension from the 

experimental data is choosing the appropriate parameters for the attractor reconstruction. 

However, there are only a few guidelines for selecting the parameters for an unknown 

system, and finding the optimum values is based on a large number of experiments. 

The first step for determining the correlation dimension is data reconstruction. m - 

dimensional vectors can be constructed with delay τ and vector spacingα  from a data 

series with length M. Ruelle [104] has suggested that the length of a data series for 

calculating the correlation dimension should be selected such that 

 2
dg

M A≥  (4.4) 
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where dg is correlation dimension, and A should be at least 10. For the experimental data, 

Simm et al. [105] have recommended that the length of the reconstructed vector, m, be 

larger than the system dimension ( m d≥ ).  Time delayτ  and vector spacing α are 

defined by a number of experiments to satisfy the repeatability condition within a ±5% 

error band. Afterwards, the correlation integral is calculated in a range of different 

radiiε . Finally, the correlation dimension is obtained from the slope of a graph 

of log ( )dC ε versus logε . To compute the values of the correlation dimensions, it was 

found that the proper reconstruction parameters are as follows: vector length m = 15, 

internal vector delay 8τ = ,and vector spacing 15α = . 

 

Figure  4.2.  Experimental correlation dimension and measured error band 

These parameters are applied to compute the correlation dimension of the measured 

acceleration. The experimental results plotted in Figure  4.2 demonstrate that the 

correlation dimension is constant for a wide range of rotation speeds within an acceptable 

error band. This unique property of the correlation dimension can be applied for the fault 

diagnosis of rotary machines with variable speeds. 
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4.1.3 Information Entropy 

A chaotic system is very sensitive to the initial conditions. In such a system, although 

the initial state is known, the ability to predict future states diminishes due to the 

trajectories’ divergence. The measure for determining the diminishing rate of the 

necessary information for future state estimation is called information entropy. For 

calculation, it is necessary to count the number of points Ni which lie within a 

subinterval, N, of the data set. The probability of finding a point in that subinterval, Pi, is 

determined by 

 
0

i
i

NP
N

=  (4.5) 

where N0 is the total number of points in the reconstructed time domain data. The 

information entropy, I, is defined by 

 
1

log
N

i i
i

I P P
=

= −∑  (4.6) 

If the length of each N subinterval data set is assumed to be ε, for a small ε, the 

information entropy behaves according to:  

 1logII d
ε

⎛ ⎞≈ ⎜ ⎟
⎝ ⎠

 (4.7) 

where dI is the information dimension of the chaotic attractor. It has been reported by 

Kaplan and Yorke [106] that the information dimension, dI, is related to the Lyapunov 

exponents by  
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 (4.8) 

and j is defined by the condition 
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Equation (4.9) clearly shows that a variation in the positive Lyapunov exponents directly 

affects the information dimension, and consequently, the information entropy. This 

relationship between the positive Lyapunov exponents and the information entropy will 

be used for fault diagnosis of the bearings. 

To show the robustness of this chaotic measure, the stability of the information entropy is 

studied. Figure  4.7 shows the results of experimental information entropy at various 

running speeds. Although the level of entropy increases at higher speeds, the variation of 

this indicator remains in an acceptable error band at each constant speed. 
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Figure  4.3.  Stability information entropy at various shaft rotational speeds 

 

4.2 Effect of Machinery Faults on Chaotic Indicators 

In the previous chapters, it was demonstrated that a balanced and aligned rotor, supported 

by a healthy rolling element bearing could exhibit chaotic vibration.  Therefore, it is 

expected that the faults in the system could affect this behavior. Such a variation can 

reshape the geometric representatives or change the chaotic quantifiers. Therefore, the 
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effect of common machinery malfunctions on chaotic quantifiers is studied to assess their 

efficiency as fault indicators. 

 

4.2.1 Bearing Localized Faults 

When a defect on a raceway or rolling element strikes its mating element, a pulse of a 

short duration is produced. For a constant shaft speed, a series of such pulses is 

generated, forming a pulse train that is periodic with a frequency that depends on the 

nature and location of the fault, as well as on the geometric parameters of the bearing. It 

is reasonable to expect that this added periodicity affects the chaotic vibration of the 

bearing. In other words, the presence and severity of a fault affects the resulting phase 

diagram and Poincare map.  The visual inspection of these diagrams is certainly crucial 

for fault diagnosis. Better still are some measurable quantities such as numerical values 

that can potentially be employed in an automated fault diagnostic system. In this section, 

the Lyapunov exponent, correlation dimension, and information entropy are chosen as the 

numerical quantifiers for fault monitoring.  

To visualize the effect of a localized fault on the chaotic attractor, an impulse train that 

symbolizes the strikes between the moving component and the physical damage, is added 

to the right hand side of equation (2.7). The frequency of the impulse is set at the bearing 

fault frequencies which correspond to the location of the virtual damage. Figure  4.4 

portrays the effect of different types of virtual damage on the chaotic attractor of a 

cylindrical roller bearing. 
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Figure  4.4. Simulation results: Effect of localized faults on the chaotic attractor; (a) healthy 

cylindrical roller bearing, (b) inner race fault, (c) ball damage, and (d) outer race fault 

The simulation results in Figure  4.4 illustrate the effect of the faults on the chaotic 

attractor. The added periodicity in the equation of motion through the impulse train 

significantly reshapes the form of the strange attractor. However, the effect of the outer 

race fault, due to a smaller hitting frequency, is not as significant as that of the inner race 

and ball damage faults with higher fault frequencies.    

To evaluate the effect of bearing faults on chaotic behavior, vibration data are obtained 

from experiments for four bearing conditions: normal (fault-free), inner race fault 

(localized wear area1.6 mm2, created by grinding), ball damage (indentation 0.8 × 0.8 

mm, created by an electro discharge machine), and outer race fault (localized wear 2.8 

mm2, created by grinding). The faults are induced into the drive-end bearing of model 

SKF NJ204ECP, a cylindrical roller bearing, on the test rig in Figure 3.8. This bearing is 

chosen for the fault diagnostic experiments because of its ease in inducing the faults, as 

well as the assembling and disassembling. Before inserting the bearings inside the 

housing, each bearing is properly lubricated, and the system is run for 20 minutes prior to 

the data collection. Each bearing is tested at five rotational speeds: 600, 900, 1200, 1500, 

and 1800 rpm. 
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The numerical simulations of the mathematical model are also run to compare its results 

with the experimental results.  To simulate the effect of a fault, as described earlier, an 

impulse train at the proper fault frequency is applied, as an external excitation, to the 

governing equations of motion (2.7). The amplitude of the pulse train is assumed to be 

50% more than that of the RMS of the normal signal that presents a small damage effect. 

Then the solutions of (2.7), at different shaft speeds, are employed for computing the 

Lyapunov exponents, correlation dimensions, and information entropy. 

The fault periodic impulse leads to a greater deviation of the phase plane trajectories. 

Since the Lyapunov exponent is the average of the trajectories’ divergence, the bearing 

faults result in an increase of the Lyapunov exponent. Figure  4.5 shows the Lyapunov 

exponents, obtained experimentally and numerically. Figure  4.5 demonstrates that the 

localized faults in a bearing manifest themselves by increasing the level of the Lyapunov 

exponent, as expected. Although increasing the rotational shaft speed raises the level of 

the Lyapunov exponent in a normal bearing, the difference between the exponent of a 

healthy bearing and that of a damaged bearing remains at a distinguishable level. The 

level of the Lyapunov exponent in the experimental results, due to existing noise in the 

system, is higher than that of the simulated exponents. However, the existing similarity in 

the trend of the simulation and the experimental results also validates the behavior of the 

developed model. Furthermore, since the rolling elements bearings exhibit periodic 

behavior at low speeds (for the current test bearing <600 rpm), the effect of the fault on 

Lyapunov exponents is only visible within a medium-high shaft speeds (>600 rpm). 

The correlation dimension is very sensitive to periodic motion, and the level decreases as 

a result of any existing periodic signal. Since the effect of bearing damage appears as a 

periodic signal, any localized defect, theoretically, leads to a reduction of the correlation 

dimension. Likewise, the virtual faults are modeled as an impulse train at the related 

characteristic frequency of a fault in the governing equations of motion. 
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Figure  4.5. Effect of the localized defects on the Lyapunov exponent (experimental and simulation 

results) 

Figure  4.6 depicts the experimental and simulation results of the correlation dimension 

for different types of faults. To compare the numerical results with the experimental 

measurements the same length of reconstructed vector, delay, and vector spacing are used 

for numerical simulations. This is the reason that although the system has only five 

dimensions the simulated correlation dimension is within the range of 7 to 9. The 

correlation dimension of a normal bearing relatively remains within a constant range, 

particularly in the experimental results. An inner race fault significantly decreases the 

correlation dimensions for the measured and simulation data. The rolling element damage 

reduces the dimension of the system at all the tested speeds; however, the reduction is 

more pronounced at higher shaft speeds.  The outer race damage does not exhibit a 

significant variation in the level of the correlation dimension in the experimental results. 

Also, the weak effect of the outer race fault is due to its low frequency periodicity as 

observed in Figure  4.4.  Similarly, the results of the correlation dimension are only valid 

for the chaotic range of oscillations, for this particular bearing, higher than 600 rpm. The 

fact that the correlation dimension for a normal bearing is independent of the shaft speed 
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makes it an applicable tool for the diagnosis of localized fault of bearings in variable 

speed systems. 

 

Figure  4.6. Effect of the localized defects on the correlation dimension (experimental and simulation 

results) 

In the previous section, it was mentioned that the information entropy of a chaotic system 

is proportional to the summation of the system’s positive Lyapunov exponents. The 

above study confirms the increase of positive Lyapunov exponents due to the propagation 

of the damage in a bearing. Consequently, it is expected that the occurrence of damage in 

the bearing to increase the level of the information entropy.  

The calculation of the information entropy from the experimental data is much simpler 

and faster than computing the largest Lyapunov exponent. In addition, since the increase 

of all the exponents influences the variation of the information entropy to a larger extent, 

this feature should be more sensitive to the damage than the largest Lyapunov exponent. 

Therefore, the information entropy has the potential to be a suitable candidate for bearing 

fault indication. Figure  4.7 presents the variation of the information entropy due to the 

existence of the physical and simulated damage in the bearing’s components.   
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Figure  4.7. Effect of the localized defects on the information entropy (experimental and simulation 

results) 

As expected, existing faults in bearing components manifest themselves by raising the 

level of the information entropy. Figure  4.7 shows that the effect of the faults is more 

significant in the information entropy than the largest Lyapunov exponents due to the 

contribution of several exponents to this chaotic indicator. Once again, the results are 

valid at speeds higher than 600 rpm, and the level of the information entropy increases at 

higher speeds. 

4.2.2 Imbalance and Misalignment 

In addition to changes in chaotic indicators due to faults in bearing components, they 

also change due to improper function or mounting of the whole system, for example due 

to imbalance and misalignment. Imbalance results in sinusoidal vibration at the same 

frequency of shaft speed. This sinusoidal motion can be accompanied by low-level 

harmonics. For a large amount of imbalance, the periodic motion is dominant. The effect 

of imbalance on the chaotic attractor is presented in Figure  4.8. The imbalance adds a 

large periodicity to the system that transfers the strange attractor of Figure  4.8 (a) to the 

closed orbit of Figure  4.8 (b), which corresponds to a periodic system. 
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Figure  4.8. Effect of imbalance on the strange attractor: (a) balanced rotor, (b) imbalance rotor 

(simulation results) 

To accentuate the effect of imbalance, the measured vibration is band pass filtered with a 

centre frequency that coincides with the shaft rotational frequency and bandwidth of ±20 

Hz. Since the periodic component in this range is dominant, the value of the Lyapunov 

exponent, and consequently, the information entropy is almost zero, and thus, is useless 

as an indicator. However, the correlation dimension results are very promising for 

imbalance detection. Adding a small imbalance to the system reduces the dimension 

significantly. This reduction is proportional to the amount of imbalance. The correlation 

dimensions, computed from the experimental data, are listed in Table  4.1. The reduction 

in the correlation dimension, in direct relationship to the increase in imbalance, is quite 

clear. It is concluded that the correlation dimension of a band pass filtered signal is an 

ideal indicator for the diagnosis of imbalance, even at very small values of imbalance. 

Table  4.1. Effect of imbalance on the correlation dimension (experimental measurements) 

Imbalance (gr.m)  Correlation Dimension 

0 8.11 

1.52 5.25 

3.01 4.02 

3.55 3.57 

5.11 2.53 

 

It has been shown that the characteristic frequencies, due to misalignment occur at the 

even harmonics of the shaft rotational speed. Therefore, in case of the existing 
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misalignments, the shape of the strange attractor is affected by periodic behavior. Figure 

 4.9 shows that misalignment transfers the strange attractor, Figure  4.9 (a), to a closed 

orbit, Figure  4.9 (b), due to the dominant periodicity of the system.   

 

 

Figure  4.9. Effect of misalignment on the strange attractor: (a) aligned rotor and (b) misaligned rotor  

Since the existence of misalignment can create significant periodic motions, it is expected 

that, similar to imbalance, the level of the correlation dimension drops in proportion to 

the amount of misalignment. This is evident from the experimental results listed in Table 

4.2. Again, in these experiments, the data is band pass filtered with the centre frequency 

coinciding with the shaft speed and a bandwidth of ±20 Hz. The correlation dimension 

drops from 8.11 for a system that is normal, to 3.64 for a system with an angular 

misalignment of α=0.39º. The drastic reduction can be exploited as a feature in system 

diagnosis. 

Table  4.2. Effect of misalignment on the correlation dimension  

Fault Description Correlation Dimension 

Aligned system (fault free) 8.11 

Parallel misalignment (offset=0.5 mm) 5.69 

Angular misalignment (α=0.19º) 3.64 

Angular misalignment (α=0.39º) 3.24 
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4.3 Summary 

In this chapter three chaotic measures, the Lyapunov exponent, correlation 

dimension, and information entropy are employed as fault indicators in rotary machines. 

The common mechanical failures in rotary machines such as imbalance, misalignment, 

and bearing damage contribute periodic motions that can disturb, and ultimately, 

overwhelm, the chaotic vibration of a fault-free system. The simulation and experimental 

results show the effect of these faults on chaotic attractors and quantifiers. It was shown 

that these faults increase the level of the Lyapunov exponent and information entropy, 

while reducing the correlation dimension. This chapter demonstrated that the parameters 

that describe the chaotic behavior of a system have the potential to be adopted as indices 

for the diagnosis of faults in rotary machinery. 
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Chapter 5  

 

Assessment of Bearing Condition Monitoring Techniques 

 

 

It was shown in the previous chapter that chaotic quantifiers are sensitive to the 

existence of faults in a bearing’s components. To evaluate the diagnosis efficiency of the 

chaotic indicators, a comprehensive comparison with the most common techniques is 

conducted in the current chapter. The comparison will be limited to vibration-based 

techniques. They are the most common detection methods which are categorized as time, 

frequency, and time-frequency domain, and are briefly described next. 

 

 Time Domain Analysis 

Time domain analysis, due to its simplicity, has always been an attractive approach for 

bearing diagnosis. The simplest method is to measure the overall RMS level of the 

bearing vibration. The resultant values are compared with recommended values to 

determine the overall health of a bearing [11]; however, this technique is not sensitive to 

small or early-stage defects [12]. The Crest Factor is the ratio of the peak acceleration to 

the RMS value. Ingarashi et al. [18] have reported that the level of the crest factor for a 

normal bearing is approximately five. These authors have proven that the crest factor is a 

good indicator of small size defects; although, when localized damage propagates, the 

value of the crest factor decreases significantly due to the increasing RMS.  The vibration 

peak level can also be employed as a monitoring index; but is found to be unreliable for 

small size defects [17]. 
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The Kurtosis, the fourth normalized statistical moment, corresponds to the peakedness of 

the data. For an undamaged bearing, this amount is equal to three in the low frequency 

bands (Appendix II). Many researchers [13, 14, 15, 16] have found the Kurtosis value to 

be more useful, when it is compared with the RMS, crest factor, and peak value.  

The impulse, generated by the impact of the damage, can excite the resonant frequency of 

the sensor. This effect is studied in either the frequency domain or the time domain. The 

shock pulse method [17, 20] is based on the measurement of the maximum amplitude of 

the sensor’s resonance in the time domain. Although the shock pulse meters have been 

accepted by industry [21], their dependency on the bearing bore size and speed limits 

their application in speed variable systems. Moreover, some researchers have proven that 

the method is ineffective in detecting defects at low speeds [22]. Hemmings and Smith 

[19] have proposed a time-averaging technique to reduce the sample size and increase the 

signal to noise ratio. In this technique, a signal is obtained when the inner race and a ball 

are aligned at a specific point in the outer race. By averaging a number of samples, the 

effect of the ball size is reduced, and signal to noise ratio is increased.  

The chaos effect is categorized as time-domain analysis; however, little research has been 

reported regarding bearing diagnosis based on chaotic monitoring indices. Logan and 

Mathew [8, 9] proposed fractal dimension, Choy et al. [10] utilized the modified Poincare 

map, and Li and Qu [102] employed a new fault diagnosis scheme based on forward 

detecting method.  

 

 

 Frequency Domain Analysis 

For bearing fault diagnosis, frequency domain, or spectral analysis, is the most popular 

approach. Many researchers have reported successful results for detecting damaged 

bearings through spectral analysis. Usually, it is carried out at low-range frequencies and 

the defects are identified by the change of the spectral amplitude at each of the 
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characteristic frequencies. Taylor [24] has formulated the sequence of appearing and 

disappearing spikes in the spectrum. In addition, he has proposed a method for measuring 

the size of the defects on the raceways. Mathew and Alfredson [17] have offered the 

amplitude difference between healthy and damaged spectra as a fault diagnosis technique.  

The envelope detection is a well-defined technique for bearing fault diagnosis. The 

efficiency of this method has been evaluated by many researchers [26, 27, 28, 29, 32] and 

can also be combined with an auto detection filter band and spectrum analyzer [33]. 

Martin and Thrope [29] have suggested the use of the normalized spectral amplitude of 

an enveloped signal. Ho and Randal [30] have conducted extensive research on the 

envelope technique. Their work has demonstrated that a Self-Adaptive Noise 

Cancellation (SANC) method, in conjunction with an envelope analysis improves a 

bearing’s diagnostic results. Braun [107] has proposed a technique that includes 

decomposing the vibration signal into a generalized periodic function. The key feature of 

the technique is its insensitivity to structural parameters.  

Another approach for bearing fault diagnosis is the High Frequency Resonance 

Technique (HFRT) [34, 35, 36]. It is similar to the shock pulse method, but instead of 

measuring the resonance amplitude, the spectral of the resonant signal is examined. This 

method performs poorly at low shaft speeds.  

 

 Time-Frequency Domain Analysis 

In signal processing, a number of time-frequency analysis methods, such as the short time 

Fourier transform and wavelet transform, have been introduced. Of these methods, 

wavelets have been established as the most widely used technique due to their flexibility 

and their efficient computational process. 

The application of wavelet decomposition for bearing fault diagnosis was first suggested 

by Li and Ma [42]. Rubini and Meneghetti [44] have used the average of the wavelet 

amplitude frequencies over a selected band that is not affected by the system’s resonance. 
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Sun and Tang [45] have applied a singularity analysis on the continuous wavelet 

transform. This method identifies the lines in the wavelet map that converge to singular 

points at fine scales. Nikolaou and Antoniadis’s [48] decomposition method is based on 

the shifted Morlet wavelet, where the envelope of a signal contains the important features 

of a defect. Jing et al. [108] have developed a denoising method, derived from Morlet 

wavelet, for feature extraction that is successfully employed for inner race fault detection. 

Luo et al. [109] have proposed a fast continuous wavelet decomposition method which, 

together with autocorrelation enhancement, can be used as an on-line fault detection tool. 

The application of the discrete wavelet transform for bearing diagnosis has been reported 

by Morie et al. [46]. Their method is utilized for the detection of single bearing faults. 

Prabhakar et al. [40] have shown that the discrete wavelet transform can be used as an 

effective tool for detecting multiple faults. 

The current section presents a comprehensive comparison of a number of acceptable 

monitoring techniques in the literature. The investigation is conducted by using the same 

vibration data that are measured from different bearing conditions: inner race fault, outer 

race fault, or roller fault, under similar conditions of load and speed. The diagnosis 

methods are selected from the time domain, frequency domain, wavelets, and the chaotic 

analyses introduced in the previous chapter. All the techniques are coded in the Matlab1 

environment. Since the goal of this work is to introduce monitoring indices with a low 

speed and load dependency, the effect of load and speed variation on chosen indicators is 

also studied.   

 

5.1 Data Acquisition and Signal Pre-Processing  

The bearing test apparatus used in this investigation is similar to the one shown in 

Figure 3.8. To assess the effect of bearing faults on different fault indicators, vibration 

data are obtained from experiments by using the following seven bearing conditions:  
                                                 
1 Copyright the MathWorks Inc., Version 6.5, Release 13 
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 Normal bearing  

 Small inner race fault, dimple foot print diameter 1.1 mm (damage area 0.95 mm2, 

Figure  5.1 (b)), applied by a hardness testing machine 

 Large inner race fault, total wear area 4.1 mm2 , formed by grinding as shown in 

Figure  5.1 (a) 

 Small roller damage, dimple foot print diameter 0.95 mm (damage area 0.71 mm2, 

Figure  5.1 (d)) , applied by a hardness testing machine 

 Large roller damage, indentation diameter 2.1 mm, (area 3.46 mm2 , Figure  5.1 (c)), 

created by an electro discharge machine 

 Small outer race damage, localized wear 1.8 mm2, created by a grinding machine 

 Large outer race damage, damaged area 3.1 mm2, generated by a grinding machine, 

Figure  5.1 (e)  

 

Figure  5.1. Bearing induced localized faults 

The faults were induced at the drive-end bearing, model SKF NJ204ECP.  Before the 

bearings were inserted inside the housing, each bearing was properly cleaned of metal 

chips, well lubricated, and run for 20 minutes prior to the data collection. To compare the 

results, each bearing was tested at the same rotation speed of 1500 rpm and radial load of 
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23 N. The vibration was measured with a Dytran 3035AG accelerometer with a 

sensitivity of 100 mV/g mounted on the bearing housing. A proximity sensor mounted 

close to the rotating disk as a phasor, provided a one-pulse-per- revolution impulse for 

the signal averaging process. The accelerometer’s signal was amplified by the Dytran 

4105C, and low pass filtered. The filter cut-off frequency for the low sampling frequency 

of 6000 Hz was chosen to be high enough to capture the fifth harmonic of the inner race 

frequency at 850 Hz. For the high resonant frequency analysis, the signal was band pass 

filtered at the centre of 24 kHz. In this application, the vibration data was measured at the 

sampling frequency of 72 kHz, and the anti-aliasing filter was set at 30 kHz. 

5.2 Fault Index Extraction and Signal Processing Techniques   

From the various diagnostic techniques in the literature, the experiments conducted, here, 

are limited to the most acceptable monitoring methods. They include the Kurtosis, crest 

factor, envelope analysis, HFRT, Lyapunov exponent, correlation dimension, normalized 

information entropy, and the continuous and discrete wavelet transforms. All the 

diagnostic algorithms are coded in Matlab environment. The formulation and 

implementation of each method is briefly explained below. 

5.2.1 Kurtosis 

The different statistical moments of the vibration data, widely used as a bearing 

monitoring index, is calculated by 

 ( ) ( )k
kM x x P x dx

+∞

−∞

= −∫  (5.1) 

Mk is the k-th statistical moment of the data about the mean x , and P(x) is the probability 

distribution function. The most common form, Kurtosis, is the fourth moment of the data 

normalized by the square of variance (= RMS4 for zero mean data). This index is 

commonly used as a measure of the vibration peakedness, caused by the localized 

damage of the bearings. The vibration data of a healthy bearing exhibits a normal 
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distribution; thus, the kurtosis is equal to three (Appendix II). The propagation of damage 

in the bearing, which generates more peaks and increases the RMS, alters the Kurtosis 

level. 

To compute the Kurtosis, the vibration signal is collected at a sampling frequency of 

6000 Hz for 10 seconds. The measured data is then digitally low pass filtered at a cut-off 

frequency of 1000 Hz. The Kurtosis is obtained from 

 
4

2Kurtosis
x

σ
= ∑  (5.2) 

 where x is the zero-mean filtered vibration signal and σ is the variance. 

5.2.2 Crest Factor 

The crest factor is the ratio of the maximum amplitude to the RMS value. This 

monitoring index determines the level of energy associated with the impact of a faulty 

bearing. The crest factor is capable of detecting powerful impacts in a low energy time 

domain signal. Since the impacts appear at a high frequency range, crest factor is 

extracted from the raw vibration signal sampled at 6000 Hz by the following simple 

formulation: 

 max( )Crest factor
RMS( )

x
x

=  (5.3) 

5.2.3 Envelope Analysis 

When a rolling element strikes a localized defect, a pulse is generated, exciting the 

natural frequency of a bearing’s components, housing, and the overall assembled 

structure. The generation frequency of this pulse is called the characteristic frequency.  

Most of the defect detection techniques in the frequency domain are derived from the 

study of these frequencies, which are dependent on the location of the fault. The 

frequencies for a rolling element bearing are: 
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Db and Dm are the roller and pitch diameters, N is the number of rolling elements, α 

corresponds to the contact angle, and fs is the shaft rotational frequency.  

Monitoring the level of the vibration spectral amplitude in narrow-band characteristic 

frequencies can be an effective method to diagnose a bearing’s faults. In this analysis, 

which is conducted at low frequencies, a defect is identified through a change in the 

spectral amplitude at the defect frequencies. Raceway defects are identified in a narrow-

band spectrum at the BPF. As the defect develops, the spikes are modulated by the shaft 

frequency, and the fault is detected at the BPF accompanied by shaft frequency 

sidebands. When the damage propagates, the spikes become less pronounced. The defects 

in the inner and outer races exhibit similar behavior. The rolling element defects are 

identified at the BPF and its multiples. Usually, the characteristic frequencies are 

modulated with either a rotational frequency, or other machine frequencies; therefore, the 

spectral analysis of the amplitude demodulated signal is more efficient. An envelope 

detector is used to demodulate the signal by removing all the high frequency components.  

The envelope of signal x(t) is obtained by computing the amplitude of a complex signal, 

formed from x(t) as the real part, and its Hilbert transform as the imaginary part. The 

Hilbert transform of a time domain signal is defined as 

 ( )1Hilbert[ ( )] ( )
x

x t x t d
t
τ

τ
π τ

+∞

−∞

= =
−∫�  (5.5) 

Therefore, the envelope of signal x(t) is expressed as  
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 ( ) ( ) ( )2 2Envelope x t x t x t⎡ ⎤ = +⎣ ⎦ �  (5.6) 

The spectral analysis of the enveloped signal is widely employed for bearing fault 

diagnosis. 

 

5.2.4 High Frequency Resonant Technique (HFRT) 

Another approach for the diagnosis of rolling element bearing faults is the High 

Frequency Resonance Technique (HFRT). The impulses, created by the strikes of the 

rolling elements on the defects, have short durations with a low energy level that is 

distributed over a broad-band. However, the generated impulses have enough energy to 

excite the resonance of the vibration transducer spring-mass system. The signal of the 

resonance is amplitude modulated at the defect frequencies. 

In this method, the original signal is band pass filtered around the resonant frequency 

(20-26 kHz), and the defect frequencies are extracted by the amplitude demodulation 

technique. This process accentuates the bearing defect impulses in the time domain and 

the corresponding spectral lines at the characteristic frequencies. The amplitude 

demodulation of a digital signal is obtained through its Hilbert transform. The procedure 

is detailed in Figure  5.2. 

The high amplitude values of an envelope spectrum at a particular characteristic defect 

frequency, obtained by the previous method, indicate the occurrence of a defect. The 

location of the defect can be determined by its unique characteristic frequency. 
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Figure  5.2. HFRT signal processing flow diagram 

 

5.2.5 Lyapunov Exponent 

Due to the damping effect, the divergence of the reconstructed trajectories is only 

locally exponential. Thus, to define a measure of this divergence, the exponential growth 

is averaged at different points of the trajectories. This method, originally proposed by 

Wolf et al. [103], starts with a point on the reference trajectory and a point on a nearby 

trajectory with an initial distance of 0 0( )d t . At later time 1t , the initial distance evolves 

to 1( )d t . When 1( )d t becomes too large, a new replacement element on a nearby trajectory 

should be considered. The replaced point must satisfy two criteria: the separation distance 

0 1( )d t  and the angular separation between the evolved and replacement point should be 

small. In this case, the Lyapunov exponent is obtained from 



 82

 2
10 0 1

( )1 log
( )

M
k

kM k

d t
t t d t

λ
= −

=
− ∑  (5.7) 

where M is the total number of replacements.  

For the current application, the accelerometer signal is low pass filtered at 2000 Hz and 

recorded by an A/D data acquisition card at a sampling frequency of 6000 Hz. The 

digitized data is re-sampled at 10 Hz to obtain the Poincare points. To construct the 

trajectories, the Poincare points are organized into two-element vectors with an 

embedding dimension of 2 which results in 1190 reconstructed vectors. The largest 

Lyapunov exponent is then computed through the discussed method by assuming the 

replacement criteria listed in Table 5.1.  

Table  5.1. Replacement criteria for calculating the largest Lyapunov exponent 

Minimum separation 0.0001 

Maximum separation 0.1 

Maximum orientation angle 30° 

 

5.2.6 Continuous Wavelet Map  

The wavelet transform is a tool that splits data into different frequency components, 

and then each component can be studied with a resolution matched to its scale. The use of 

the wavelet transform is efficient for fault diagnosis, since the technique gives the 

information about the signal in the time and the frequency domains. The Continuous 

Wavelet Transform (CWT) of signal x(t) is obtained from  

 ( ) *
,

1CWT , ( ) ( )x t t dtα τα τ ψ
α

+∞

−∞

= ∫  (5.8) 

where *( )tψ denotes the complex conjugate of mother wavelet ( )tψ  such that 

 ( ),
1 ttα τ

τψ ψ
αα
−⎛ ⎞= ⎜ ⎟

⎝ ⎠
 (5.9) 
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Parameters α and τ are scale and translation indices which corresponds to mutual 

frequency and the time shifting, respectively. The crucial aspect in the calculation of the 

wavelet is to select the appropriate mother wavelet. In bearing fault diagnosis through a 

series of tests, it is found that the Morlet wavelet yields superior results. The reason is 

found in the existing similarity between the shape of this wavelet, Figure  5.3, and the 

generated signal due to the strike of damage with the rolling elements. 

 

Figure  5.3. Morlet Wavelet 

The Morlet wavelet is defined in the time domain as a sinusoidal wave, multiplied by a 

Gaussian function. The Morlet wavelet is expressed as 

 ( ) 2 2
02j f ttt ce e πσψ −=  (5.10) 

This wavelet has the shape of Gaussian window in the frequency domain, where f0 is the 

centre frequency, and σ determines its width. Parameter c is chosen as 

 c σ
π

=  (5.11) 

The wavelet amplitude map can be determined from (5.8) in the time-scale domain. In 

this investigation, to increase the signal-to-noise ratio, the time domain signal is averaged 

based on the phasor and one revolution of the cage to magnify the effect of the fault. The 

wavelet amplitude map is then calculated according to the linear scale, and displayed in 
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time-frequency plane. The wavelet amplitude map is an effective tool to visualize the 

existence of damage in bearing components. 

 

5.2.7 Discrete Wavelet Transform 

The Discrete Wavelet Transform (DWT) of a vibration signal reflects the existence of 

impulsive behavior by increasing the wavelet coefficients. Therefore, the DWT 

coefficients are suitable candidates for bearing diagnosis and prognosis. The DWT is 

derived from the discretization of the continuous wavelet, and the wavelet coefficients 

are given by 

 *1 2DWT ( , ) ( )
22

j

jj

t kj k x t dtψ
∞

−∞

⎛ ⎞−
= ⎜ ⎟

⎝ ⎠
∫  (5.12) 

where x(t) presents the time domain signal, *ψ denotes the mother wavelet complex 

conjugate, and 2 ,2j j k represent the scale and the translation, respectively. In each step of 

the wavelet decomposition, the signal is high/low pass filtered, resulting in vectors 

CA/CD. The CA vector represents the approximate coefficients, whereas CD consists of 

detailed coefficients [110]. In this work, the Maximum of Approximate Coefficients 

Wavelet (MACW), decomposed up to four levels by using the Daubechies4 wavelet 

(db4) of the measured vibration, is used as the monitoring index. The Daubechies family 

wavelets (dbN) are efficient to study impulsive and fractal systems. Figure  5.4 shows the 

scaling and wavelet function of db4. 

 

Figure  5.4. Scaling and wavelet function of db4 
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5.2.8  Correlation Dimension 

The characteristic of this chaotic monitoring index was discussed in detail in section 

4.1.2. Here, the practical calculation steps are explained. The measured vibration is 

recorded at the sampling rate of 6 kHz. The phase space vectors are then generated from 

the raw time series signal as follows: 
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where XM are reconstructed vectors from the time signal, vector length m = 15, internal 

vector delay, 8τ = ,and vector spacing 15α =  which are obtained by a number of 

experiments. The total number of reconstructed vectors, M, are found from 

 Integer 1N mM τ
α
−⎛ ⎞= −⎜ ⎟

⎝ ⎠
 (5.14) 

where N is the length of the measured data. 

After calculating all the distances between the generated vectors, j iX X− , the range 

between the longest and shortest distance is divided by 100 to determine the diameters of 

the m-dimensional spheres, ε. Subsequently, the correlation function (4.3) counts the 

number of points which exist in the constructed sphere at each point Xi. Finally, the 

results are plotted on the log ( )dC ε - logε  plane. The slope of the generated curve 

represents the correlation dimension value and can be obtained by using the least square 

method.  

 

5.2.9 Normalized Information Entropy 

It was discussed in Chapter 4 that an increase in the information entropy takes place 

in a damaged bearing. Meanwhile, it was found that this monitoring index highly depends 

on the rotating speed, as shown in Figure 4.3. 



 86

Calculating the information entropy from the experimental data is much simpler and 

faster than computing the largest Lyapunov exponent. In addition, since the increase of 

all the exponents influences the information entropy, this feature should manifest the 

presence of damage more clearly than a single Lyapunov exponent. It should be realized, 

however, that since the vibration of the bearing is more periodic than chaotic at low speed 

ranges (for the current test bearing, less than 800 rpm), the application of the information 

entropy as a fault indicator is limited to medium to high speed rotors (for the current 

research >800rpm). To decrease the speed dependency, the information entropy is 

normalized by the RMS of the signal. 

To calculate Normalized Information Entropy (NIE), the accelerometer signal is low pass 

filtered at 2 kHz and then digitized by an A/D data acquisition card at the sampling 

frequency of 6 kHz. The recorded data is reconstructed with a time delay of 0.71 seconds. 

The probability of finding a point in the subinterval, Pi, is determined by (4.5). After the 

information entropy of data series is obtained from (4.6), the resultant information 

entropy is normalized by the RMS of the vibration signal. 

 

5.3 Experimental Results and Discussions 

Tests are conducted at a constant speed of 1500 rpm and static load of 23 N. The rotor 

is very well balanced and extra care is taken to isolate the bearing signal from the 

surrounding noise. In these tests, the vibration is online monitored and the data collected 

only after passing the transient situation.  

Two quantified criteria are used for comparing the efficiency of each monitoring index. 

These criteria are computed for 35 sets of data for each bearing conditions. To compare 

the variation of indices, the value of each index is normalized before computing the 

variance. 

 The variance of the normalized computed indices for each bearing condition  
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where I is the normalized monitoring index. 

 The average ratio of each index to that of a normal bearing for various heath 

conditions 

 Small damage Large damage Large damage
1 2 3

Normal Normal Small damage

I I I
I I I

ℜ = ℜ = ℜ =  (5.16) 

The first measure, the variance, corresponds to the statistical dispersion of the computed 

index around the mean value. Low variance signifies the repeatability and robustness of 

the monitoring index. The evaluation measures, R1, and R2, correspond to the change of 

the index for a small and a large damage with respect to the normal condition. R3 reflect 

the change of the averaged index, when the level of damage increases from small to 

large. Therefore, the higher ratio reflects the sensitivity of the monitoring index. Since the 

level of the correlation dimension decreases for the faulty bearing, the associated values 

in the table are 1 1 -1
1 2 3, , and − −ℜ ℜ ℜ .  

The test results of the various bearing conditions, utilizing the preceding fault indices, are 

summarized in Table  5.2. Symbols VN, VS, and VL denote the index variance of a normal 

bearing, a bearing with small damage, and a bearing with large damage. In addition, the 

following abbreviations are used in the comparison Table 5.2. 

 

Max. Approximate Coefficient of Wavelet MACW Kurtosis K 
Crest factor CF Correlation dimension CD 
Envelope analysis EA Normalized Information Entropy NIE 
High Frequency Resonance Technique HFRT Lyapunov exponent LE 
 

The results of Table 5.2 are discussed for each type of fault, obtained at the same speed 

of 1500 rpm and radial load of 23 N. For each type of bearing fault, each figure presents 

the level of the monitoring indices, corresponding to a normal bearing (black line), a 
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bearing with a small fault (blue line), and a bearing with a large fault (red line). The 

average value of each index is shown by dotted line in the same figure. Except the EA 

and HFRT plots which are generated for one set of data from each bearing conditions, the 

other figures present the results of the related extracted fault feature for 35 sets of data. 

The wavelet amplitude map generated by CWT presents only a visual picture of the 

location of the fault.  

 

5.3.1 Inner Race Fault 

As expected, the average of the healthy bearing Kurtosis, Figure  5.5 (a), is close to 

three. The small dimple generates more peaks in the vibration signal, increasing the level 

of Kurtosis to 4.2. When the damage is excessive, the continuous generation of impulses 

in the vibration signature increases the variance of the signal, subsequently diminishing 

the pattern of peaks. In this case, the level of Kurtosis drops to one. Although the small 

values for VN, VS, and VL indicate the repeatability, the inconsistency in reflecting the 

size of the damage is the major weakness of Kurtosis. The same trend is observed in the 

CF, Figure  5.5 (b). The small damage increases the CF; however, a large damage 

produces approximately the same level of peaks, while significantly raising the level of 

the RMS. The combination of these two effects decreases the CF level.  

The envelope analysis highly depends on the running speed. Even a small variation in 

speed, caused by the motor, slippage of the belt, or backlash in the coupling, can affect 

the frequency of the fault, and hence, reduce the repeatability of the index as represented 

by high variance in Table  5.2.  Envelope analysis is successful to distinguish different 

levels of faults, Figure  5.5 (c), with the high ratios R1 and R2. The damage impacts 

generated on the inner race passes through rotating rollers. Therefore, the HFRT results 

are similar to the EA with higher sensitivity to speed which causes more dispersion in the 

results, as shown in Table  5.2, and Figure  5.5 (d).  
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The generated impulses, due to the strike of the fault and its mating surface, affect the 

vibration of the bearing and reposition the location of the Poincare points. Accordingly, 

due to this divergence of the Poincare points in the reconstructed time series, the 

deviation of the trajectories increases, resulting in higher values of the Lyapunov 

exponents, as seen in Figure  5.5 (e). Although the small variances denote the consistency 

of the index, the small difference between the damaged and the normal Lyapunov 

exponents clearly shows the insensitivity of this monitoring index. Discrete wavelet 

coefficients are very sensitive to the impacts in the vibration signal. This sensitivity is 

evident in Figure  5.5 (f), and the high values of R1, R2, and R3 listed in Table  5.2. The 

repeatability of MACW is within an acceptable range, which can be deduced from the 

low variance values. 

The correlation dimension is very sensitive to periodic motion, and the level decreases as 

a result of any existing periodic signal. Since localized defects add periodicity to the 

vibration signals, any surface damage inside the raceways can result in the reduction of 

the correlation dimension as seen in Figure  5.5 (g). The low variances of different bearing 

conditions and relatively high 1 1 -1
1 2 3, , and − −ℜ ℜ ℜ  ratios express the efficiency of the 

correlation dimension for fault detection. The NIE of a damaged bearing is higher than 

that of a fault-free bearing, according to the rise in the Lyapunov spectrum in Figure  5.5 

(h). A remarkable variation of the NIE shows the sensitivity of this monitoring index. The 

existence of a small fault is found by comparing the wavelet amplitude maps, Figure  5.5 

(J) and (k); however, due to the complexity of image processing, the wavelet amplitude 

can be employed only as a visualization tool for fault detection. 
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Table  5.2. Comparison among different techniques, speed 1500 rpm, radial load 23 N 

 VN VS VL R1 R2 R3 

Inner Race Damage 
K 0.0891 0.0371 0.0298 1.0918 - - 
CF 0.0679 0.2829 0.0509 1.2861 - - 
EA 0.2165 0.1701 0.2249 2.0635 3.4372 1.6657 
HFRT 0.2971 0.2666 0.2453 2.0244 3.7184 1.8368 
LE 0.0114 0.0113 0.0138 1.0302 1.0669 1.0356 
MACW 0.1243 0.1029 0.0488 3.5240 8.8324 2.5063 
CD 0.0234 0.0480 0.0785 1.3507 1.6167 1.1969 
NIE 0.0267 0.0128 0.0127 5.7528 9.2541 1.6086 

Outer Race Damage 
K 0.1080 0.0658 0.0189 1.8839 - - 
CF 0.0637 0.1036 0.0547 1.0096 - - 
EA 0.1487 0.2990 0.1513 2.1178 12.9380 6.1092 
HFRT 0.2424 0.2505 0.2534 0.5973 1.9102 3.1981 
LE 0.0114 0.0196 0.0178 1.0069 1.0390 1.0319 
MACW 0.1040 0.1359 0.0465 4.2146 8.7142 2.0676 
CD 0.0282 0.0981 0.0810 1.3728 2.6129 1.9033 
NIE 0.0250 0.0305 0.0123 3.7931 6.1667 1.6257 

Rolling Element Damage 
K 0.0891 0.0715 0.0993 4.9300 5.4481 1.1051 
CF 0.3679 0.2258 0.3302 0.7305 1.0728 1.4686 
EA 0.1794 0.2118 0.1893 2.9732 8.3908 2.8221 
HFRT 0.2424 0.2455 0.2210 2.4371 3.7007 1.5185 
LE 0.0114 0.0115 0.0136 1.0086 - - 
MACW 0.2243 0.0751 0.1088 3.2857 3.8571 1.1739 
CD 0.0234 0.0312 0.0423 1.3278 1.3728 1.0338 
NIE 0.0467 0.0345 0.0265 2.8174 3.2932 1.1688 
 

 

5.3.2 Outer Race Fault 

The behavior of an outer race fault is similar to that of inner race damage. Since the 

location of the defect is stationary and the probability of impact generation is high, the 

effect is more pronounced in the Kurtosis, Figure  5.6 (a), by the larger increase from 3 to 

almost 7 for small defect. For the same reason, the effect of the fault in HFRT and 

particularly in EA is more obvious, as conveyed in Figure  5.6 (c) and (d).  Figure  5.6 (b) 

exhibits the failure of CF to diagnose the outer race damage, since the level of the normal 
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and small damage CF is unrecognizable. A significant rise is present for the level of large 

damage in the MACW plot in Figure  5.6 (f), whereas acceptable results are also obtained 

for the small fault.  

Since the location of the fault is fixed, the strikes between the rolling elements and the 

damaged area are more frequent. In other words, a heavy periodicity is added to the 

vibration signal which results in a significant decrease in the correlation level, as shown 

in Figure  5.6 (g). The existence of a highly periodic signature diminishes the effect of the 

divergence of the trajectories. As a result, the presence of a fault in the outer race, 

especially for faults located in the load zone, has a small effect on the Lyapunov 

exponent in Figure  5.6 (e). On the other hand, much better results are observed in the NIE 

graphs in Figure  5.6 (h). All the variances are similar to that of the inner race fault. Again 

the wavelet amplitude map reveals the presence of the small damage in the outer race.  

 

5.3.3 Rolling Element Damage 

Sine the damage can hit either the inner or the outer ring, the probability of the generation 

of strikes for a bearing with roller damage is high, compared with that of an inner race 

fault or stationary outer race damage. As a result, random peaks with less energy happen 

more frequently in the vibration signal, which increasing the peakedness of the signal and 

its measured Kurtosis, as observed in Figure  5.7 (a). The Kurtosis level is significantly 

changed from 3 to 23 for a small damage and 25 for a large damage. Since the 

opportunity of incurring small and large peaks is similar, the level of Kurtosis for a small 

and a large defect is close. The small variances indicate the repeatability of this method. 

The level of the CF depends mostly on the efficiency of the incurred strike between the 

damage and the races. Due to this random behavior, the CF results fluctuate greatly and 

are inaccurate, as portrayed in Figure  5.7 (b). Figure  5.7 (c) illustrates the promising 

results of EA. Likewise, the effect of the faults is well pronounced in the spectrum of 

HFRT in Figure  5.7 (d).  
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The impulse generation results in the divergence of the trajectories; but, due to the 

randomness of the occurrence, the computed Lyapunov exponent is not steady in Figure 

 5.7 (e). The effect of increasing Lyapunov exponent is more visible and steadier in the 

NIE in Figure  5.7 (h); however, the data are more scattered, compared with the inner race 

and the outer race results. 

As it is expected, the periodicity added to the vibration signal, due to the unpredictability 

of the generated strikes, is less than that of the inner/outer race. Consequently, the 

decrease in the correlation dimension is low, as displayed in Figure  5.7 (g).  Due to the 

nature of fault, the wavelet amplitude map does not portray the damage; however, a trace 

of damage is visible in the Figure  5.7 (k).    

Other characteristics of the monitoring indices such as the effects of operating conditions, 

damage size, and so on can also be examined. But, what is most important is to realize 

that the MACW, CD, and NIE, for any type of damage studied here, present more 

consistent results. In the following section, the effect of the speed and load on these three 

selected indices is examined. 
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Figure  5.5. Condition monitoring of bearing with inner race fault (black: normal, blue: small 

damage, and red: large damage)  
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Figure  5.6. Condition monitoring of bearing with outer race fault ((black: normal, blue: small 

damage, and red: large damage) 
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Figure  5.7. Condition monitoring of bearing with rolling element damage (black: normal, blue: small 

damage, and red: large damage) 
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5.4 Effect of Speed and Load on Selected Monitoring Indices 

Figure  5.8 is a schematic of the test bed used for the study described in this section. 

The test bed consists of a ball bearing unit, a hydraulic cylinder, driving components (not 

shown in the schematic), accelerometer, and load cell. The ball bearing used in this 

research is NTN UC205, which is damaged by applying an excessive radial force of 8 kN 

for 825 minutes. The propagated defect is located on the outer race with a size of 0.925 

mm2. The radial load is applied by a hydraulic cylinder. The vibration of the bearing is 

measured by a Dytran 3035 AG accelerometer with a sensitivity of 100 mV/g. The shaft 

is supported by two taper roller bearings, SKF 30204 J2/Q. The system is driven by a 3 

hp induction motor, equipped with an AC Tech M1230 SB speed controller, in the speed 

range of 0-1800 rpm. The applied radial force is measured by a LC411-5K 

OMEGADYNE load cell. To examine the effect of load and speed on the monitoring 

indices, the vibration data is collected at six different speeds: 300, 600, 900, 1200, 1500, 

and 1800 rpm under load conditions of 0.08, 2, 4, and 8 kN. After 20 minutes of warming 

period, the normal bearing data is recorded. The collection of damage data begins when 

all the three diagnostic indices: NIE, CD, and MACW register significant change in our 

case from 0.6 to 3.1, 8.1 to 5.0, and 0.8 to 3.7, respectively. 

Figure  5.9 shows the measured NIE, of the normal and the damaged bearings under 

different speed and load conditions. The experimental results reveal that when the shaft 

speed is higher than 800 rpm, the NIE of the healthy bearing is relatively constant in the 

range of 0.2 to1.5, and for the damaged bearing, the NIE is between 2.5 and 4. What is 

more important in Figure  5.9 is that the NIE is independent of the speed and load in the 

speed range, where the chaotic vibration dominates (for the test bearing, the chaotic 

behavior occurs when the speed is higher than 800 rpm). This is a critical characteristic 

for a bearing fault indicator that can be utilized in the diagnosis or prognosis of variable 

condition systems. 
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1. Base plate 5. Supporting bearings, SKF 30204 J2/Q 
2. Test bearing, NTN UC205  6. Accelerometer 
3. Load cell 7. Driving shaft 
4. Hydraulic cylinder  

Figure  5.8. Schematic of load-speed test bed 

 

The experimental results in Figure  5.10 demonstrate that the reduction in the correlation 

dimension in a damaged bearing is distinguishable within a load range of 2 to 8 kN. 

However, the variation is not significant for lightly loaded systems (0.08 kN). The reason 

for this is in a lightly loaded bearing, the effect of damage on the vibration signature is 

more randomlike than periodic. As a result, a reduction in the correlation dimension is 

small. Similar to the results of NIE, the results show that the correlation dimension is 

effective as a fault indicator for speeds higher than 800 rpm. Within this range and for a 

load condition higher than 2 kN, The correlation dimension is independent of speed and 

load. 
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Figure  5.9. Variation of the Normalized Information Entropy (NIE) under different speed and load 

conditions for normal and damaged bearings 

 

Figure  5.10. Variation of correlation dimension (CD) under different speed and load conditions for 

normal and damaged bearings 
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The MACW decomposed up to 4 levels by the Daubechies4 wavelet (db4) of the 

measured vibration, is plotted in Figure  5.11. The graph shows that there is a dependency 

on speed, yet the level of the MACW in a damaged bearing is significantly higher than 

that associated with a normal bearing within a wide range of rotational speeds and loads. 

It is worth noting that an attempt was made to lessen the speed dependency by dividing 

the MACW by the RMS. The attempt was, though, unsuccessful primarily because of the 

significant difference in the slopes of the MACW and the RMS. The distinct separation, 

however, between the values of the MACW, associated with normal bearings and the 

damaged bearings, still makes it possible to use the MACW as a damage monitoring 

index. This effectiveness of the MACW, as a reliable indicator, diminishes greatly at low 

speeds, <600rpm, and lightly loaded systems >0.08 kN. 

 

 

Figure  5.11. Variation of the Maximum Approximate Coefficient of Wavelet (MACW) under 

different speed and load conditions for normal and damaged bearings  

 



 100

5.5 Summary 

From this comprehensive investigation, it is found that Normalized Information 

Entropy (NIE), Correlation Dimension (CD), and Maximum Approximated Coefficient 

of Wavelet (MACW) are reliable indices for bearing condition monitoring. It is also 

demonstrated that the variation of these indices is proportional to the damage size. In 

addition, it is experimentally confirmed that these indices have a lower sensitivity to the 

load, and speed conditions. Consequently, the indices are suitable for monitoring a 

system that is subject to load and speed fluctuation and variation. 
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Chapter 6  

 

Neuro-Fuzzy Diagnosis System 
 

 

The comprehensive study in Chapter 5 indicates that the most sensitive and robust 

methods for bearing fault diagnosis include: NIE, Correlation Dimension (CD), and 

MACW. Failure detection entails the classification of the indices into different 

categories. For this purpose, an intelligent processing tool is used to map the features into 

monitoring decisions. 

The traditional methods for fault diagnosis are categorized as pattern classification, 

knowledge-based inference, and numerical modelling. Pattern classification and 

knowledge-based inference techniques are used in the industry. In these two methods, a 

human expert looks for particular patterns in the vibration signature that might indicate 

the presence of a fault in the bearing. Alternatively, statistical analysis and ANNs are 

utilized for the automated fault detection systems. ANNs are capable of learning the 

behavior of nonlinear systems. In a fuzzy inference system, a set of logical rules is 

extracted from an expert knowledge database, independent of the system’s configuration.  

ANNs are adopted for machinery fault diagnosis and condition monitoring. One of the 

first applications of ANNs for bearing fault diagnosis has been proposed by Baillie and 

Mathew [50]. The scheme requires a collection of time series features for each class of 

bearing faults as inputs of an ANN. This time domain based model has the advantage that 

the diagnosis can be performed by using a short data length and is appropriate for slow-

speed machines. However, due to computational difficulties the model is unable to 

process a large volume of data and consequently long time monitoring. Liu et al. [61] 

have developed a fuzzy expert system for bearing diagnosis. The system employs the 
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average of the top five amplitudes of the frequency response in a high frequency region 

(5-22 kHz), as a monitoring feature. Piecewise linear membership functions are used in 

the proposed fuzzy reasoning system. Subrahmanyam and Sujatha [54] have compared 

the performance of a multilayer feed-forward with supervised training with that of an 

Adaptive Resonance Theory (ART-2) based network with an unsupervised training 

algorithm. A collection of features, including Kurtosis, RMS, peak values of time and 

high frequency domains, and peak values of autocorrelation are chosen as monitoring 

indices. The test results reveal an acceptable rate of correct classification after a long 

training process due to the large number of inputs.  

Jack et al. [52] have tested the application of a Radial Basis Function (RBF) network for 

diagnosis. The features of interest are extracted by an experimental apparatus under a 

constant load and speed for different bearing faults. The features include various 

statistical moments of vibration data, extracted from raw and demodulated vibration 

signals. Although the proposed network is unsuccessful in classifying the outer race and 

cage defects, the research demonstrates the advantage of using features, obtained from a 

demodulated signal instead of raw vibration. Samanta and Al-Balushi [51] have found 

that a feed-forward ANN with two hidden layers is sufficient for the separation of 

bearings with and without faults. The features, used as network inputs, are RMS, 

Kurtosis, skewness, and normalized sixth central moment of time domain data, extracted 

from the envelope of the signal.  

Wang et al. [111] have introduced three reference functions, based on wavelet transform, 

beta Kurtosis, and phase modulation for gear system monitoring. The developed neuro-

fuzzy classifier provides a robust diagnosis for gear systems. According to the non-

stationary characteristics of bearing fault vibration, a diagnosis method based on the 

Empirical Mode Decomposition (EMD) energy entropy, has been reported by Yang et al. 

[112]. An ANN, with the input features extracted from different frequency bands of the 

EMD, can accurately identify the localized fault pattern. 
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According to our knowledge, the application of neural networks for the fault diagnosis of 

variable speed systems has not been tested yet.  In this chapter, an intelligent neural based 

algorithm is employed to integrate the strength of the proposed monitoring indices to 

provide a more reliable assessment of bearing condition in speed varying systems. To 

select the best decision-making algorithm, the diagnosis performance of three well-

known neural networks, Multi Layer Perceptron (MLP), RBF, and Adaptive Neuro-

Fuzzy Inference System (ANFIS) are compared to verify the efficiency of each scheme.  

 

6.1 Decision-making Schemes 

Figure  6.1 illustrates the decision-making process. All the steps shown in the figure 

are off line. The features employed here are extracted from a pre-processed bearing 

vibration signal. The resultant features serve as the input to the diagnostic algorithm. The 

output of the neural-system identifies the bearing health condition and the level of 

possible damage. Here, the performance of three types of ANNs is studied as the 

decision-making algorithm. A brief description of each network follows. 

 
Figure  6.1. Bearing condition decision-making process 
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6.1.1 Multi Layer Perceptron (MLP) 

MLP is one of the most successful feed-forward neural networks for diagnosis. The 

challenges for constructing a MLP network are the determination of sufficient number of 

hidden layers, neurons within each layer, learning rate, and activation function. Although 

a formal methodology to express the number of hidden layers and neurons does not exist 

yet, the larger the number of layers and neurons, the better the classification. However, 

more neurons and layers result in a longer training period and convergence problem. By 

experimenting, the best results of a classification by MLP are obtained from a structure 

that includes three hidden layers, where each consists of 10 neurons. For the nodes in the 

hidden layers, a hyperbolic tangent sigmoid is chosen as the transfer function, whereas 

the linear function is assigned to the output node. The input vector consists of three 

monitoring indices: NIE, CD, and MACW, computed for each batch of bearing vibration 

data that are measured by an accelerometer. The numerical value of the network’s output 

corresponds to the level of the bearing health. A gradient descent algorithm with a 

learning rate of 0.25 is applied to train this network.  

6.1.2 Radial Basis Function Network (RBF) 

Radial Basis Function (RBF) networks belong to the class of feed-forward neural 

networks. Traditionally, they have been used for mapping nonlinear functions and are 

efficient for data classification. The constructed network consists of an input layer, 

including monitoring indices: a single hidden layer; and an output layer that corresponds 

to the condition of the bearing. 

The network structure utilizes a nonlinear transfer function in its hidden layer, but uses 

linear transformation between the hidden and the output layer. Unlike other types of feed-

forward networks, the connection weights between the input and the hidden layer are all 

equal to unity. The Gaussian kernel function is selected as the activation function of the 

hidden layer neurons. To train the RBF network a combination of an unsupervised 
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clustering and a supervised weight updating is required. In the first step, the self 

organizing map is employed to extract the centre and width of the radial basis function. 

Then, a supervised least mean square algorithm is used to update the connection weights 

between the hidden layer and the output layer. An important feature of RBF networks is 

their fast training compared with that of back-propagation networks. 

6.1.3 Adaptive Neuro-Fuzzy Inference System (ANFIS) 

Learning the behavior of a nonlinear numerical system is the most important feature 

of neural networks. Fuzzy-inference systems consist of rules for the system’s behavior. 

The combination of both systems, neuro-fuzzy systems, provides fuzzy inference with a 

learning capability.  

∑

 
Figure  6.2. Network structure of an ANFIS employed for bearing diagnosis 

ANFIS utilized here is a five-layer neuro-fuzzy system which maps the inputs, through 

membership functions, to the outputs. The initial membership functions and rules for a 

fuzzy inference system are designed by either human expertise or automatically. ANFIS 

can then refine the fuzzy if-then rules and the membership functions to describe the 
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input-output behavior of a complex system. Figure  6.2 reflects the five-layer ANFIS 

structure, used as the prognosis tool in this thesis.  

The input data are fuzzified in the first layer, where each neuron stores the parameter of 

the membership function (a, b, c), defined by 
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In the T-norm layer, the inputs of each neuron are the degrees of the membership 

functions which are multiplied through a T-norm operator to determine the degree of rule 

satisfaction. The output of this layer is normalized in the normalization layer. The 

neurons of the subsequent layer are then connected to the inputs and one neuron of the 

previous layer. Each neuron computes the consequence of the rule, and the output of the 

network is the summation of all the consequence layer outputs [113].  

 

6.2 Results and Discussion 

To compare the diagnostic efficiency of the selected networks, a series of tests is 

conducted by using the apparatus in Figure 3.8. The same bearing conditions, described 

in section 5.1, including a normal bearing, small and large inner race, outer race, and 

roller defects, are tested under different rotational speeds of 900, 1200, 1500, and 1800 

rpm. A total of 560 sets of data are collected to examine the diagnostic reliability. The 

test conditions and the number of each data set are listed in Table  6.1. 

Each set of data is represented by a three element array, called a monitoring vector, and 

consists of three monitoring indices: NIE, CD, and MACW. The required signal 

processing method and calculation procedure of each monitoring index is detailed in 

section 5.2. From the 560 data sets, 120 identical monitoring vectors are used for the 

training, and the remaining 440 vectors are utilized for testing. To quantify the bearing 
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health level, quantified values are assigned for different health conditions:  fault free = 1, 

small damage = 2, and large damage = 3 with a limiting range of ±0.5 for each level. 

 
Table  6.1.  Bearing condition monitoring data sets 

Bearing Condition Speed (RPM) Data sets 
900 40 

1200 40 
1500 40 Normal 
1800 40 
900 15 

1200 15 
1500 15 Small damage 
1800 15 
900 15 

1200 15 
1500 15 

Inner race 

Large damage 
1800 15 
900 15 

1200 15 
1500 15 Small damage 
1800 15 
900 15 

1200 15 
1500 15 

Outer race 

Large damage 
1800 15 
900 15 

1200 15 
1500 15 Small damage 
1800 15 
900 15 

1200 15 
1500 15 

Rolling element 

Large damage 
1800 15 

  
The MLP network is trained by a gradient descent algorithm after 200 epochs for 3.4 

seconds. Figure  6.3 shows the classification results of the MLP network. 
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Figure  6.3.  Diagnosis results of the MLP network: (o: fault-free; +: small damage; *: Large damage) 

 
Figure  6.3, illustrates that MLP has successfully detects all the fault-free and small 

damaged inner race conditions; however, the accuracy of indicating the level of small 

damage in the outer race is inadequate. Although the results of the outer and inner race 

large damage are significantly consistent, due to the low sensitivity of the monitoring 

indices to the level of roller damage, categorizing large and small damage is 

unsuccessful.  

Since the connection weights between the input and the hidden layer in RBF are all equal 

to unity, the normalization of the input data plays an important role in the performance of 

the mapping. Therefore, the elements of the monitoring vectors for both the training data 

and testing batch are normalized. The network is then trained by a hybrid method that 

consists of a supervised and an unsupervised algorithm after 200 epochs for 0.9 seconds. 

Figure  6.4 presents the classification results of the RBF network. It is evident that the 

RBF network not only fails to categorize different levels of faults, but also, is incapable 

of classifying the fault-free conditions from the damaged data sets. The low quality of the 

classification in RBF can be due to the equal connection weights between the input layer 

and the neurons of the hidden layer. The equal weights in RBF structure, affect the 

unique behavior of each fault indicator within the network. 
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Figure  6.4.  Diagnosis results of the RBF network (o: fault-free; +: small damage; *: Large damage) 

The proposed ANFIS for the bearing fault classification problem is constructed as a 

Sugeno-type inference system. Similar to the other networks, to train the model, 120 sets 

of training vectors are needed. The training process converges after only 20 epochs for 

less than 1.2 seconds. Figure  6.5 exhibits the classification results by a trained ANFIS 

network for 440 series of data for different fault categories. 

 
Figure  6.5. Diagnosis results of the ANFIS network. (o: fault-free;, +: small damage; *: Large 

damage) 

The results demonstrate the high rate of correct diagnosis by the ANFIS network. The 

noticeable classification of each fault level except the large roller damage is significant in 

ANFIS.  The incorrect diagnosis decisions by the proposed schemes are listed in Table 
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 6.2. In this table a “false alarm” is employed for any misclassification between the 

normal bearings and damaged ones, and “false grading” is assigned to any incorrect 

indication of the damage level, small and large damage.   

Table  6.2.  Diagnosis results of proposed neural networks 

Network False alarm False grading 

MLP 0 29 

RBF 36 25 

ANFIS 0 10 

 
 
 
 
 

6.3 Summary 

To enhance the bearing diagnostic efficiency, a set of different fault indicators 

extracted from the vibration data, are selected. The features include: NIE, CD, and 

MACW. Neural networks with nonlinear curve fitting and learning capability are 

potential candidates for the decision making-algorithm in a diagnostic scheme. In this 

chapter, the diagnostic efficiency of three neural networks, MLP, RBF, and ANFIS are 

compared. The experimental results indicate a high rate of correct classifications and 

damage quantification, in excess of 95%, by ANFIS.  

 

 
 

 

 

 

 

 



 111

Chapter 7  

 

Bearing Condition Prognosis 
 
 
 

In the previous chapter, it was shown that the integration of the proposed monitoring 

indices for a decision-making system increases the reliability of the diagnosis of faulty 

bearings. The same approach may be feasible for a prognostic system, a prognostic 

system capable of predicting the fault propagation trend, and providing an alarm before a 

fault reaches a critical level. The experimental results in section 6.2 demonstrate that a 

combination of a neuro-fuzzy algorithm with the monitoring indices, proposed in Chapter 

5 can provide superb diagnosis results for variable speed systems. In addition, Karray and 

Siva have shown [113] that of all the flexible forecasting models, Recurrent Neural 

Networks (RNNs) and ANFIS are the most promising methods for time series prediction. 

In this chapter, the prognostic performance of RNNs and ANFIS, are compared. Finally, 

a prognostic architecture that consists of three components: monitoring indices, a 

forecasting algorithm, and decision-making rules is proposed and its performance is 

evaluated.  

The bearing prognostic methods reported so far are classified as model based life 

prediction, and intelligent systems. The first category focuses on a model to predict the 

fatigue life of a bearing, and various models have been proposed in the literature. The 

Weibull model, based on the dispersion of fatigue life [67]; the well known Lundberg-

Palmgren model, based on surface-originated fatigue [68]; and its extended version by 

Tallian [69], and the discrete-stressed approach by Ioannides and Harris [70], are among 

the most noted models for bearing life estimation. Recently, more complex prognostic 

models, based on the bearing stiffness [71], inverse power law [72], and Hertzian contact 

theory [73], have been proposed. 



 112

The second category deals with bearing prognosis based on statistical and intelligent 

systems. The primary challenge in this category is selecting a suitable monitoring index 

or indices, and an efficient prediction scheme. Time and frequency indicators such as 

RMS, Kurtosis, crest factor, and spectral amplitudes have been widely employed for 

bearing diagnostics. However, these indices are either strongly dependent on speed and 

load, or have a low sensitivity to a bearing’s early stage faults.  

Little research has been reported on the application of neural networks for bearing 

prognosis. Malhi and Gao [74] have presented a multi-step prediction scheme, based on 

RNNs. In this scheme, the monitoring feature is the wavelet pre-filtered normalized peak 

value. Their experimental work on a bearing with an initial damage under particular test 

conditions shows an advantage of the modified RNN training method over the 

conventional incremental method. Gebraeel et al. [75] have introduced a feed-forward 

back propagation network for the prognosis of thrust bearings. In their experiments, 

failure was induced by means of a constant excessive load. The monitoring index in the 

suggested prognosis scheme is the RMS of the vibration data. The authors reported more 

than an 80% correct prediction of actual failure time. Wang et al. [114] have 

demonstrated that when a Neuro-Fuzzy (NF) system is properly trained, it performs 

better than a RNN in both estimation and training. Consequently, the prognosis results of 

a NF are found to be very reliable and robust for a gear system. However, NF has not yet 

been tested on bearings. Haung et al. [76] have proposed a prognosis structure that 

depends on a fault indicator derived from a self-organizing map that is trained by time 

and frequency features. The authors have utilized a back propagation neural network for 

the prediction of the bearing’s residual life. The results of the developed model show less 

than a 10% error which is superior compared to that of the L10 traditional formula.   

So far, only a small amount of research has been conducted on bearing prognosis under 

variable speed and load conditions which is the subject of the investigation in this thesis. 

In this chapter, ANFIS is utilized for forecasting; and it is shown that it can efficiently 

capture the dynamic behavior of fault propagation in a run-to-damage experiment. The 
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method’s effectiveness is demonstrated for bearing prognosis under different loads, 

speeds, and bore diameters. 

 

 

7.1 Experimental Setup 

The experimental setup shown in Figure  7.1 is used to perform accelerated life tests 

on the bearings. The test bed consists of a ball bearing unit, a hydraulic cylinder, driving 

components, accelerometer, and a data acquisition system. The ball bearings for this 

research are NTN UC205, and Koyo UCP206, both mounted in the pillow block cast iron 

housing. The bearings are properly lubricated by a multi purpose grease No. 630-2. The 

radial load is applied by an ENERPAC hydraulic single-acting cylinder RCH 202. To 

accelerate the defect propagation process, an excessive radial load of up to 15 kN is 

applied on the bearing.  The theoretical bearings fatigue life for NTN UC205, under the 

test condition is rated at 31, and 24 hours for Koyo UCP206 at a speed of 1500 rpm. The 

vibration of the bearing is measured by a Dytran 3035 AG accelerometer. The shaft is 

supported by two taper roller bearings, SKF 30204 J2/Q, each with a dynamic load rate 

higher than that of the tested bearing. The system is driven by a 3 hp induction motor, 

equipped with an AC Tech M1230 SB speed controller in a speed range of 0-1800 rpm. 

A DACTRON dynamic signal analyzer, Photon 100, equipped with a low-pass anti-

aliasing filter, is utilized for the data acquisition. 
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1. Hydraulic Cylinder  5. Speed controller 

2. Coupling 6. Accelerometer 

3. Belt and pulley 7. Test bearing 

4. Motor 8. Base plate 

Figure  7.1. Experimental setup 

 

7.2 Monitoring indices 

The sensitivity and robustness of the fault indicators play key roles in an automated 

prognostic system. Currently, there are many vibration-based monitoring techniques 

available for the detection of bearing faults. Usually, more than one monitoring index is 

adopted to increase the robustness of the prognostic system. In this work, three indices 

are utilized: NIE, CD, and MACW whose sensitivities and robustness were demonstrated 

in detail in section 5.4.  These monitoring indices, extracted from a measured vibration 

signal, are employed as the input to the forecasting algorithm. NIE and CD proved to be 

insensitive to speed and load. The third indicator showed some dependency on speed, yet 

there was a marked difference in the values of the normal and damaged bearing. 

 

7.3 Neural Network Predictors 

A reliable prognostic system should forecast the fault propagation, and generate an 

alarm before the fault reaches a critical level. To prognose the health condition of a 

1 2 3 4 5 

76 8
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bearing, a reasonable approach is to use the current and previous monitoring indices 

values to forecast the future state. Of the flexible forecasting approaches, neural networks 

have the most potential due to their capability of learning the behavior of nonlinear 

systems. In this section, the efficiency of bearing prognosis is evaluated by using two 

types of common predictive networks: RNN and ANFIS. These two networks are among 

the most promising intelligent systems for the prediction of random and chaotic time 

series [113]. They are briefly discussed below. 

 

7.3.1 Recurrent Neural Networks (RNN) 

In this type of feed-forward network, the current and previous states of the system are 

used for future state prediction. Feedback connections still exist within the main body of 

the network, as depicted in Figure  7.2. RNNs contain two key advantages for the 

prediction of dynamic systems. First, the network possesses an internal memory in its 

structure. Secondly, the network’s output depends on the previous state of the system. 

These properties of RNNs enable them to exhibit internal dynamic behavior, rendering 

them more suitable for the prediction of complex dynamic systems. Since the forecasting 

performance of RNNs with different architectures is mostly similar, in this work, an 

Elman structure is utilized for the prognosis. The proposed network has four layers and 

three input nodes. The input vector is in the form of, { }2t t n t n tx x x x− −= , where x is the 

monitoring index for n-step-ahead prediction. In this work the idea is to estimate the next 

state of the bearing condition through a one-step-ahead prediction of the monitoring 

index, xt+1. The nodes in the input and context layers transmit only input values to the 

hidden layers. The hyperbolic tangent sigmoid transfer function is chosen for the hidden 

layer neurons, whereas a linear function is assigned to the output node. A quasi Newton 

algorithm [113] is utilized for training RNN with a gradient learning rate of 0.2.   
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∑

[ ]tx [ ]1tx − [ ]2tx −

[ ]1tx +

 
Figure  7.2. Recurrent Neural Network (RNN) structure 

 

7.3.2 Adaptive Neuro-Fuzzy Inference System (ANFIS) 

ANFIS is a five-layer neuro-fuzzy system. The initial membership functions and rules 

for a fuzzy inference system are chosen arbitrarily. ANFIS then refines the fuzzy if–then 

rules and the membership functions through a training process. To make the ANFIS 

comparable with the aforementioned RNN, the same three input parameters are used for 

the one-step-ahead prediction.  

 

7.4 Bearing Fault State Prognosis 

To test the newly developed prognosis scheme, five accelerated life tests under 

different test conditions are conducted. In each test, a new set of bearings is mounted on 

the shaft and run for 20 minutes without an external load. After the warm-up period, the 

load is applied on the bearing and the acceleration data is collected over 10 seconds at the 

sampling frequency of 6000 Hz. The data is collected every five minutes. The tests are 

continued without interruption to the point of termination, when one or more of the 

monitoring indices increase abruptly. In addition to the three indices, NIE, CD, and 
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MACW, the Kurtosis and HFRT amplitude are also monitored. After each test, the 

bearing is removed, and the outer race cut for a visual inspection of the damage in the 

different components. The visual inspection is carried out under a microscope, where the 

projected area of damage can also be estimated. Figure  7.3 exhibits the propagated wear 

on the outer race during Test 1 and Test 3. 

 

 
Figure  7.3. Outer race damage Test 1 and Test 3 

 
Table  7.1 lists the running time of each test, type and size of damage(s), and the 

indicator(s) that lead to terminating the test. According to [115], the industry standard for 

a critically damaged area is 6.25 mm2 (0.01 in2). The recorded damage areas in Table 1 

are one order of magnitude smaller than the critical value.  In other words, the proposed 

scheme is sensitive enough to show the incipient faults clearly. The prediction of the time 

period for a small fault to develop to the critical standard size (remaining life) depends on 

the type of application and working environment, a study which is beyond the scope of 

this research. 
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Table  7.1. Test descriptions and conditions 

Change in 
indicator 

 Type 
Bearing 

Time 
span 
(min) 

Speed 
(rpm) 

Load 
(kN) 

Defect 
location 

Defect 
size 

(mm2) 
Alarm 

indicator From To 

Test 
1 NTN UC205 630 1500 8 outer race 0.614 

NIE 
CD 

MACW 

0.6 
8.2 
0.7 

2.3 
5.3 
2.4 

Test 
2 NTN UC205 130 1500 8 - - Kurtosis 3.1 14.6 

Test 
3 NTN UC205 315 1500 12 

outer race 
ball 
ball 

0.468 
0.535 
0.578 

NIE 
CD 

MACW 

0.7 
8.1 
0.6 

2.4 
5.2 
2.8 

Test 
4 NTN UC205 825 1000 8 outer race 0.925 

NIE 
CD 

MACW 

0.6 
8.1 
0.8 

3.1 
5.0 
3.7 

Test 
5 

Koyo 
UCP206 350 1500 15 outer race 

outer race 
0.791 
0.296 

NIE 
CD 

MACW 

0.7 
9.2 
0.8 

2.2 
5.9 
2.5 

 
In the first test the bearing is damaged under the load of 8 kN at the speed of 1500 rpm 

for 630 minutes. The three indicators: NIE, CD, and MACW exhibit a very large 

variation, 0.6 to 2.3, 8.2 to 5.3, and 0.7 to 2.4, respectively. In the meantime, the kurtosis 

changes only from 3.0 to 2.7. In the second test with similar conditions to those of test 1, 

it is the Kurtosis that increases drastically from the normal value of 3 to 14.6. NIE, CD, 

and MACW show negligible change. The investigation of the bearing components does 

not demonstrate any damage in the bearing elements which casts doubt on the robustness 

of the Kurtosis while lends credence to the proposed indices. In tests 3 and 4 the same 

type of bearing is tested under different speeds and load conditions. In these tests, it is the 

proposed indices that signal the occurrence of damage. In test 3, the damage is found on 

the outer race, as well as on two balls. In test 5, a larger size bearing (bore diameter 30 

mm) of a brand different from those used in tests 1-4 is tested under a load of 15 kN at a 

speed of 1500 rpm. Again it is NIE, CD, and MACW that signal the occurrence of 

damage.  In this case, the damage is found on the outer race at two locations.  
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An investigation is conducted to assess the prognosis performance of RNN and ANFIS 

when each of the monitoring indices is employed. Table  7.2 lists the different setups in 

the investigation; the first three lines, schemes 1, 2, and 3 are associated with RNN 

whereas the last, schemes 4, 5, and 6 are associated with ANFIS. In schemes 1 and 4, 

NIE is used as the monitoring index, in 2 and 5 it is CD, and in 3 and 6, it is MACW. The 

forecasting relies on finding the index xt+1 at time t+1 by using current xt and previous xt-1 

and xt-2.  In this way, the forecasting is limited to one-step-ahead. In each step, the 

forecasted value is compared with the actual measured value of the index; the difference 

between them is the “error in forecasting”. The overall error is computed by summing the 

square of the error at all steps, taking the square root of that, and dividing it by the 

average of the measured index. The result is multiplied by 100 to attain the forecasting 

error percentage. It should also be realized that the intention of the forecasting is to use 

the forecasted value in making the prognosis of the bearing health condition, healthy or 

damaged. Accordingly, another measure of the performance of the used algorithm, RNN 

or ANFIS, is established; that is, FCP, the False Condition Prediction. FCP is calculated 

by counting all the incidents in which the forecasted values give false indications, missed, 

or false alarms, when they are compared to the actual measured ones, and dividing by the 

number of all measured data in the experiment. 

The investigation is conducted for the five tests listed in Table 1. Test 1 is used for 

training the networks; Tests 2-5 are applied to assess their prognosis performance.  In 

each experiment, the “normal value” of the monitoring index is taken as the average of 

the measured values over the first 30 minutes. Based on the behavior of the indices 

observed in Figures 5.9,5.10, and 5.11, the damage threshold for each monitoring index is 

selected at: a) a value three times greater than the normal value for NIE; b) a value 

smaller than 6 for CD; c) a value three times greater than the normal value for MACW. 
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Table  7.2.  Prognostic schemes 

Scheme 
No. Network Neuron/Layer Input Monitoring Index 

1 RNN 10/4 [ ] { }1 2, ,t t tX x x x− −=  x = NIE 

2 RNN 10/4 [ ] { }1 2, ,t t tX x x x− −=  x = CD 

3 RNN 10/4 [ ] { }1 2, ,t t tX x x x− −=  x = MACW 

4 ANFIS 6/5 [ ] { }1 2, ,t t tX x x x− −=  x = NIE 

5 ANFIS 6/5 [ ] { }1 2, ,t t tX x x x− −=  x = CD 

6 ANFIS 6/5 [ ] { }1 2, ,t t tX x x x− −=  x = MACW 

 
 
The prognosis results with RNN, schemes 1, 2, and 3, for tests 3, 4, and 5 are plotted in 

Figure  7.4. The results indicate that RNN is relatively successful in accurately forecasting 

the behavior of similar bearings, in tests 3 and 4, while using speed independent inputs, 

schemes1 and 2. The prognosis of the RNN, however, with the MACW, scheme 3, at the 

lower speed in test 4, is quite unreliable due to the speed dependency of this monitoring 

index.  

Figure  7.5 presents the results of the prognosis with ANFIS, schemes 4, 5, and 6. 

Apparently, the forecasting results of the ANFIS structure are more accurate for all three 

schemes. The proposed prognostic system appears to be successful in following the 

behavior of the fault propagation very closely. The trained ANFIS can effectively 

prognose the future state of the bearing, independent of the testing conditions. 

Furthermore, the proposed scheme is even capable of predicting the condition of a 

bearing with a larger bore diameter (Koyo UCP206), while it is trained with the data 

acquired from a smaller size bearing (NTN UC205). 
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Figure  7.4.  Prediction results of schemes 1, 2, and 3: solid: measured data; dotted: network 

prediction 

 
Table  7.3 summarizes the performance efficiency of each scheme for a total of 305 data 

sets, collected under different test conditions. The results verify the accuracy of ANFIS 

for the three schemes, when compared with those of the RNN. The computation platform 

for the data processing is a Pentium (R) 3.20 GHz, 1GB RAM.  Moreover, the ANFIS 

network converges faster in the training process than RNN. By using a 3.2 GHz PC, 
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ANFIS converges in 1.5, 4.2, and 3.3 seconds for schemes 4, 5, and 6, respectively. This 

is compared with the convergence times for RNN of 18.9, 10, and 19.1 seconds for 

schemes 1, 2 and 3, respectively. 

 
Figure  7.5.  Prediction results of schemes 4, 5, and 6: solid: measured data; dotted: network 

prediction 

 



 123

 
Table  7.3.  Comparison of prognosis performance 

Scheme 1 

Test 

Scheme 2 

Test 

Scheme 3 

Test 

Scheme 4 

Test 

Scheme 5 

Test 

Scheme 6 

Test 
Comparison 

Criteria 
2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 

Forecasting 

error % 
22 24 26 35 5 8 8 10 56 67 71 47 6 11 12 12 3 5 4 4 8 9 17 12

FCP % 0 10 6 9 0 8 3 6 0 10 12 9 0 1 2 2 0 1 0 0 0 1 3 1 

 
To increase the robustness of the novel prognostic system, the condition of the bearing 

can be decided based on a combination of different prognostic indices. Since the results 

demonstrate a better prognosis performance by using the ANFIS, it is selected for 

estimating the NIE, CD, and MACW, separately, and then a logic system using following 

rules is applied  

 
Rule1: IF (NIE>TN) AND (CD<TC) AND (MACW>TM) THEN “Damage”         

Rule2: IF (NIE>TN) AND {(CD>TC) OR (MACW<TM)} THEN “Warning”         

Rule3: IF (CD<TC) AND {(NIE<TN) OR (MACW<TM)} THEN “Warning”   

Rule4: IF (MACW>TM) AND {(NIE<TN) OR (CD>TC)} THEN “Warning”    

Rule5: IF (NIE<TN) AND (CD>TC) AND (MACW<TM) THEN “Normal” 

 
Here, TN, TC, and TM are the threshold values for the NIE, CD, and MACW monitoring 

indices. For the current test results, and based on the previously described criteria, the 

following threshold values are assigned:  TN = 2.1, TC = 6 and TM = 2.4. 

The preceding inference system generates the Damage alarm when all the monitoring 

indices confirm damage and Normal when all the indices verify a healthy condition for a 

bearing. When any index exceeds the related threshold, the system produces a Warning 

alarm. Table  7.4 summarizes the prognostic performance of the proposed ANFIS-based 

predictor, when is applied for tests 2 to5 for a total of 305 prediction cases. 
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Table  7.4. Overall prognostic efficiency 

Test No. Number of 
Cases 

Missed 
Alarm False Alarm Overall 

Efficiency 

2 22 0 0 100 % 

3 56 0 1 98.4 % 

4 161 1 0 99.3 % 

5 66 0 0 100 % 

 
The results indicate a significantly enhanced performance, compared with that of a single 

indicator. Furthermore, the Warning alarms only appear a few steps before the damage is 

actually detected. The correct timing of the warning alarm is another indication of the 

sensitivity and intelligence of the proposed system. 

 

7.5 Summary 

The performance of two types of viable neural networks, RNN and ANFIS, are 

evaluated for forecasting the next state of the monitoring indicators. It is explained that 

once an ANFIS system is trained with the run-to-damage vibration data of a bearing, the 

network can capture the damage propagation behavior accurately. Such a trained network 

is utilized successfully to predict future states of the same series of the bearings under 

different speed and load conditions. The reliability of the ANFIS system is reinforced by 

a logical combination of the three proposed monitoring indices. The developed 

prognostic structure is used to evaluate the future condition of the tested bearings in 305 

cases with a success rate higher than 98 percent.  
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Chapter 8  

 

Conclusions 
 

 

 

Traditionally, the monitoring of the condition of rolling element bearings has been 

focused on vibration measurement methods. However, very few studies have been carried 

out on the effect of the damage on the nature of the resulting vibration.  

In this research, the behavior of a fault-free rolling element bearing is investigated. In the 

analyzed model, the contacts between the rolling elements and races are considered as 

Hertzian elastic contacts, assumed to be nonlinear springs. It is proven that the number of 

equilibrium points of a bearing’s motion depends on the internal clearance. Bearings with 

a small clearance exhibit periodic motion with a unique equilibrium point. For larger 

clearances three equilibrium points exist at each time frame which divides the phase 

space into one unstable region and two stable regions. For high cage speeds (>1000 rpm), 

the inner ring jumps from one of the stable regions to the other, exhibiting chaotic 

behavior. Several routes that lead from the periodic regime to chaos, including, period 

doubling, Hopf bifurcation, and intermittency are explored.  

The experimental results and numerical simulations confirm that the ball and cylindrical 

roller bearings, with a normal class of clearance, exhibit broad-band chaotic vibration at 

various rotational speeds. In addition, it is found that the bearing defects manifest 

themselves as periodic impulses, disturbing the chaotic behavior of a normal system. The 

experimental and simulation results reveal that faults significantly affect the chaotic 

quantifiers: Lyapunov exponent, correlation dimension, and information entropy. 

Therefore, they have the potential to be bearing fault indicator.  
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Consequently, the sensitivity and robustness of these quantifiers are compared by well-

known diagnostic methods. The experimental results pinpoint three indices as the most 

sensitive and robust monitoring features for fault diagnosis: Normalized Information 

Entropy (NIE), Correlation Dimension (CD), and Maximum of Approximated 

Coefficient Wavelet (MACW). Theses monitoring indices are less sensitive to load and 

shaft speed variations.   

To integrate the strengths of the three proposed monitoring indices, a neural-based 

diagnostic system is developed. The monitoring indices used as the input of the 

diagnostic scheme, and the output of the system corresponds to the level of bearing’s 

health. The comparison demonstrates that the Neuro-Fuzzy Inference System (ANFIS) is 

more efficient to map the indices into the condition of the bearings. In a number of 

experiments, the overall reliability of the newly developed diagnostic system is more than 

95%. 

A prognostic scheme can be employed to forecast the future states of the fault 

propagation, based on the previous and current state of the system. From all the flexible-

model-based forecasting approaches, the most promising methods are Recurrent Neural 

Networks (RNNs), and ANFIS. By assessing the performance of these two predictors, it 

is found that once an ANFIS system is properly trained, it performs better than RNNs in 

the one-step-ahead prediction of monitoring indices. Furthermore, it is concluded, that if 

an ANFIS system is trained with the run-to-damage vibration data of a bearing, the 

network can capture the damage propagation behavior accurately. Such trained networks 

are utilized successfully to predict the future states of the same series of bearings under 

different speed and load conditions. The reliability of the proposed system is reinforced 

by the logical combination of the three monitoring indices. The test results confirm a 

success rate greater than 98 percent.  

The proposed system, due to its high robustness and sensitivity, is suitable for condition 

monitoring of rotary machines in critical operations. The research accomplished in this 

thesis should be continued in the following directions: 
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 Integrate the other diagnostic techniques developed for the gears, shafts, and power 

transmission components with the proposed scheme to create a comprehensive 

monitoring system for rotary machinery. 

 Develop a stand-alone integrated sensor instrument to provide continuous on-line 

bearing health information. 

 Test the proposed monitoring system on large-scale rotary machines such as 

turbines, and industrial fans.  
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Appendix I 

 

To calculate the equivalent stiffness, k, for each rolling element in bearings, it is assumed 

that the contact area between the element and either ring is very small, compared with 

curvature radii. The radial deformation, δ, is obtained [100]  by applying the Hertzian 

contact theory, for two sphere bodies (ball bearings) with elastic module E, Poisson ratio 

ν, and compressing force Q such that 

 
( )2

23
2

13
3

K Q
E

ν ρ
δ

πµ

−
=

∑  (I.1) 

where Σ ρ is the summation of the curvatures between the raceways and the rolling 

elements in the principal planes. The curvatures are identified by two indices; the first 

refers to the body, and the second refers to the principal plane, as illustrated in Figure I.1. 

The element curvature is the reciprocal value of the associated radii. The sign of ρ is 

positive, when the centre lies inside the body, and negative when the centre is located 

outside.  

 

Figure I.1. Contact of two bodies with curved surfaces  
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According to the Hertzian theory definition, the coefficients, µ and K, are determined as 

the functions of ( )cos τ , as follows: 

 ( ) 11 12 21 22cos ρ ρ ρ ρτ
ρ

− + −
=

∑
 (I.2) 

Since the material properties and the geometry of a bearing are constant, (I.2) can be is 

simplified to  

 2/ 33 Qρ∆ = Γ ∑  (I.3) 

where Γ is Hertzian deformation constant. The curvature summation for each element-

ring contact is obtained from 
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where Db is the ball diameter, Dm corresponds to the pitch diameter, and ri, and ro 

represent the  inner and outer race groove radii. The ball deformation between the outer 

and inner rings can be modelled as two springs in series. Therefore, the compression 

force for each ball-ring contact is governed by 

 2/3
/ / /i o i o i oQ k δ=  (I.5) 

where indices i and o correspond to the inner and outer rings. By combining (I.4) and 

(I.5)  
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The total radial deformation for the ball element, δ, can be written in the form of   
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By considering the equal compression force i oQ Q Q= = in spring series and by 

substituting (I.6) in (I.7) results in the equation of equivalent stiffness, k (N/m1.5), of each 

rolling element in ball bearings as follows: 

 3/ 2 3/ 23 3 32

1 4 2 1 4 2 1

b m b i b m b ok D D D r D D D r
− −= Γ + − +Γ − −

− +
 (I.8) 

In the cylindrical roller bearings, the contact between the roller and rings is assumed to be 

a line that is parallel to the trust axis, as shown in Figure I.2. It is experimentally 

established [100] that the deformation δ (mm) is governed by 

 

Figure I.2. Line contact between roller and raceways 

  

 
( )

0.925
5

0.854.05 10
2c c

Q
l r

δ −= ×
−

 (I.9) 

In this equation, cl  is the length of contact, and cr  is the radius of roller edge. Since the 

deformation of two cylinders is independent of the contact body diameters, the total 

deformation of each element is written in the form of 

 1.08Q kδ=  (I.10) 

Likewise, the ball bearings, the equivalent stiffness of the element in cylindrical roller 

bearings, k (N/mm1.08) is obtained from 

 ( )0.9242.6232 10 2c ck l r= × −  (I.11)  
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Appendix II 

 

Figure II.1 shows the probability distribution of the bearing vibration data, compared 

with normal distribution. Since the distribution of data is mostly linear within the 

probability of 2% and 98%, the distribution of data can be assumed to be a normal 

distribution. 

 

Figure II.1. Probability distribution of normal bearing vibration data 

The probability function of a normal distribution is  
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where x  is the mean and 2σ  is the variance of data. Since Kurtosis is defined as the 

normalized form of the fourth central moment of the distribution, the value of Kurtosis 

for a normal distribution is calculated by 

 ( )4
4

1Kurtosis ( )x x P x dx
σ
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= −∫  (II.2) 
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By substituting (II.1) in (II.2) the value of Kurtosis for normal bearing is found by 

 ( )
( )

( )
2

224 5
4 52

1 1Kurtosis 3 2 3
22

x x

ex x dx
σ

σ π
σ σ ππσ

− −
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