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Abstract

The facility location problem is the task of optimally placing a given number
of facilities in a certain subset of the plane. In this thesis, we present various
mathematical programming formulations of the planar facility location problem,
where potential facility locations are not specified. We first consider mixed-
integer programming formulations of the planar facility locations problems with
squared Euclidean and rectangular distance metrics to solve this problem to
provable optimality. We also investigate a heuristic approach to solving the
problem by extending the K-means clustering algorithm and formulating the
facility location problem as a variant of a semidefinite programming problem,
leading to a relaxation algorithm. We present computational results for the
mixed-integer formulations, as well as compare the objective values resulting
from the relaxation algorithm and the modified K-means heuristic. In addition,
we briefly discuss some of the practical issues related to the facility location
model under the continuous customer distribution.
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Chapter 1

Introduction

The facility location problem is the task of optimally placing a predetermined
number of facilities to satisfy the demand of a given number of clients. In more
detail, suppose customers are located in a region Ω ⊆ R2. Let cj = (cj1, cj2)
represent location of customer j, and the variable fi = (fi1, fi2) represent lo-
cation of facility i. Let d : Ω × Ω → R be a metric. Suppose we are given a
demand function D : Ω → R as well as the number of facilities to be opened,
k. The facility location problem aims to find the placement of facilities fi, for
i = 1, . . . , k and connect them to customers in a way to minimize the associated
transportation costs and satisfy the demand of each customer i = 1, . . . , n. The
transportation costs will be measured by the distance metric d(·, ·). Throughout
our analysis we will deal with the uncapacitated facility location problem, mean-
ing that each facility has no demand limit. In addition, we make an assumption
that there are no fixed costs associated with opening a facility.

In this chapter, we introduce several formulations of the facility location
problem as well as review some of the progress that has been made over the years.
Considering the interdisciplinary nature of the problem, it is important to reflect
in our discussions the wide spectrum of influences and recognize contributions
from different areas like data mining, operations research and others.

We begin our discussion with the assumption that the number of customers
in the region n is finite, which implies that the associated demand function D is a
discrete function D : {c1, . . . , cn} → R. The facility locations fi will be specified
to be continuous or discrete variables, resulting in different formulations of the
problem.

1.1 Discrete Formulation

In the discrete version of the facility location problem the task is to choose the
best subset of a given set of potential location cites which satisfies the demand of
customers and minimizes associated costs. The problem was first formulated by
Hakimi [6] in 1964. Soon after, ReVelle and Swain [11] constructed the following
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integer programming formulation of the problem:

minimize
n∑

i=1

n∑

j=1

Djdijxij

subject to:
n∑

i=1

xij = 1,

n∑

i=1

xii = k,

xij ≤ xii, xij ∈ {0, 1}.

where xij = 1 if customer j is served by facility i, 0 otherwise, and xii = 1 if
facility is opened at location i and 0 otherwise, and the constraints are defined
for all i, j = 1, . . . , n.

Even though the formulation can be seen as restrictive due to the limited
location possibilities, it provides a realistic model. Companies often perform so-
called solution space aggregation by considering a short list of potential facility
sites due to limited resources, as mentioned by the authors in [5]. It is also worth
pointing out that the resulting integer programming problem can be solved in
a time efficient manner, allowing for the possibility of improving the accuracy
of the model by expanding the set of potential facility locations.

1.2 The Planar Facility Location Problem

Next we consider the facility locations as continuous variables with domain Ω,
while keeping the number of customers finite. The resulting problem, which will
be referred to as the planar facility location problem, has a long history, which
we briefly discuss below.

1.2.1 Single Facility: the Weber Problem

In this simple case we are to locate a single facility, given a finite number of
clients in the region, along with associated demand values. Hence, the problem
is to find the point f∗ ∈ Ω which minimizes the sum of weighted Euclidean
distances from itself to n customers at locations c1, . . . , cn with corresponding
demand values D1, . . . , Dn. The problem can be stated as:

min
f∈Ω

n∑

j=1

Djd(f, cj)

Drezner,Klamroth, Schöbel, and Wesolowsky in [4] present a complete historical
overview of the problem. Many credit Pierre de Fermat for its original formula-
tion, but a variety of mathematicians including Torricelli, Cavalieri, Viviani and
Roberval worked on the problem at the time so it is not known who proposed
the problem first [4].
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Several solutions to the planar facility location problem have been proposed.
Torricelli is usually credited with a geometric solution to the unweighed problem
with 3 customers, resulting in the spatial median point often called “Torricelli
point” or “Fermat point”. Another creative solution is due to Varignon. It came
in the form of a device, called a Varignon Frame, which under certain physical
assumptions, located the centre of mass of the given set of points. The simplest
and most often used procedure, however, is called ”Weiszfeld Algorithm” is
based on calculation of partial derivatives of the objective function.

The Weber Problem has been well studied for a variety of different metrics
and numerous approximations and iterative methods have been proposed over
the years. We now consider the planar facility location problem with more than
one facility.

1.2.2 Multiple Facilities

A more realistic situation arises when the task is to place more than one facility.
One way to accommodate for multiple facilities is to adopt Location-Allocation
model, which introduces a variable describing which customer is to be served
by which facility. In more detail, let Dij be amount shipped from facility i
to customer j. The problem of finding k facility locations f1, . . . , fk to service
customers c1, . . . , cn with demand values D1, . . . , Dn can be described as:

minfj ,Dij

∑k
i=1

∑n
j=1 Dijd(fi, cj)

subject to ∑k
i=1 Dij = Dj for i = 1, . . . , k,

Dij ≥ 0, for i = 1, . . . , k, j = 1, . . . , n.

The above problem is NP-hard. It is particularly difficult to solve as the objec-
tive function is neither convex nor concave and can have multiple local minima.
Many heuristic procedures have been proposed over the years. Bozkaya, Zhang
and Erkut [2] applied a Genetic Algorithm, a random search technique, to the
p-median problem with promising results. Arora, Raghavan, Rao [1] discuss a
quadtree-based approximation algorithm, implemented with dynamic program-
ming. Other heuristic methods included sequential location-allocation proce-
dure, local search methods, modifications of the objective function, clustering
methods, projection methods, Tabu search and p-Median plus Weber heuristic.
An extensive summary of heuristic and exact solution methods can be found in
[4].

There are numerous other extensions and generalizations of the planar fa-
cility location problem, including objective function modifications due to more
general transportation costs, introduction of stochastic elements, introduction
of various barriers and forbidden regions and others.

We will formulate the planar facility location problem as a mixed-integer
programming problem with quadratic and linear objective functions, depending
on the metric used. The resulting formulations will allow us to obtain exact so-

3



lutions, although practical computational considerations will impose restrictions
on the size of the problems.

We will now briefly discuss contributions to the planar facility location prob-
lem from the area of data mining and semidefinite programming.

1.2.3 Connection to Data Mining

Data mining is a tool for organizing, classifying and extracting patterns from
large sets of data. Clustering, or grouping data based on similarity, is one of the
most important parts of data mining, with numerous applications in a variety
of disciplines [7].

The planar facility location problem can be considered a clustering problem,
adopting the minimization of the sum of squared distances from each data point
to its cluster centre as the clustering criterion. The task of locating k facilities
then becomes the task of grouping customers into k clusters. In other words,
given n customers in the plane c1, . . . , cn the goal of the clustering algorithm is
to divide these data points into k groups, assigning each data entry to exactly
one cluster. After the clusters have been formed, it is a simple task to find the
cluster centre, and hence establish the locations of the facilities.

One of the most popular and widely used clustering algorithms is the K-
means algorithm, an iterative descent method for grouping data points in the
plane. The authors in [10] provide a concise summary of the algorithm. Since
the K-means algorithm attributes equal weight to every data point it is not
immediately applicable to the planar facility location problem. We will extend
the well-known K-means clustering heuristic to take into account the demand
associated with each customer.

We begin by considering n points in the plane {cj | j = 1, . . . , n} and cor-
responding weights {Dj | Dj ∈ R+, j = 1, . . . , n}. Our goal is to divide the
points into k clusters so as to minimize the sum of weighted squared Euclidian
distances from each point to the corresponding cluster centre. Each data point
is assigned to one of k clusters, giving rise to the cluster assignment function

C : {1, . . . , n} → {1, . . . , k}.

Let µi be the centre of ith cluster, our goal is to find C∗ and {µi}k
i=1 that

minimize

W (C, {µi}k
i=1) =

k∑

i=1

∑

C(j)=i

Dj ‖ cj − µi ‖2 (1.2.1)

Weighted K-means algorithm is an iterative procedure used to find the optimal
assignment function and cluster centres, which works by minimizing (1.2.1)
alternately with respect to C and {µi}k

i=1 until a convergence criterion is met.
The iterative method is based on the following observations.

First we notice that for a fixed assignment function Ĉ we can easily find
the set of cluster centres {µi}k

i=1 minimizing W . In more detail, if data points
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indexed by set S belong to some cluster i the task of minimizing W with respect
to µi is equivalent to solving

min
µi

∑

j∈S

Dj ‖ cj − µi ‖2

which can be done using elementary calculus by setting the partial derivative
∂W
∂µi

equal to zero and solving for µi. In other words, we solve the equation

∂W

∂µi
=

∑

j∈S

2Dj(cj − µi) = 0

to obtain the optimal cluster centre

µi =

∑
j∈S Djcj∑
j∈S Dj

which is simply the centre of mass of the data points in the ith cluster. Repeating
the same process for the remaining clusters we can minimize W with respect to
{µi}k

i=1.
Next, we observe that for a fixed set of cluster centres {µi}k

i=1 minimizing
W with respect to the assignment function C simply involves associating each
data point with the closest cluster centre.

These two ideas form the basis for the weighted K-means algorithm, which
starts by randomly partitioning data points into k initial sets and then re-
peatedly performs the optimization subroutines discussed above. At each step
the objective function is reduced, guaranteeing convergence in a finite number
of iterations. The algorithm terminates when no further improvement in the
objective function W can be achieved by reassigning data points to different
clusters.

We summarize the above ideas by the following algorithm:

Weighted K-means Clustering

1. Given cluster assignment C, minimize (1.2.1) with respect to {µ}k
i=1

obtaining centres of mass of current clusters
µi = arg minµ

∑
C(j)=i Dj ‖ cj − µ ‖2.

2. Given {µ}k
i=1, minimize (1.2.1) with respect to C

by assigning each observation to the closest centre of mass.
C(j) = arg min1≤i≤k ‖ cj − µi ‖2.

3. Repeat 1. and 2. until the assignments do not change.
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The algorithm often converges to a local minimum and in those cases does
not result in an optimal clustering assignment. In practice, however, the heuris-
tic has been observed to converge quickly, allowing for the possibility to perform
multiple runs with different initial cluster assignments, and choose the best so-
lution.

1.2.4 Connection to Semidefinite Programming

Recall that Semidefinite Programming problem refers to an optimization prob-
lems of the following form:

minimize Tr(WZ)
subject to

Tr(BiZ) = bi for i = 1, . . . ,m

Z º 0

where variable Z and data matrices Bi and W are real symmetric n×n matrices,
and b ∈ Rm. Tr(·) denotes the trace of the matrix and the inequality Z º 0
means that the matrix Z is positive semidefinite.

Peng and Wei in [10] established the equivalence between the classical K-
means clustering problem and the following optimization problem:

minimize Tr(WWT (I − Z))
subject to

Ze = e, Tr(Z) = k,

Z ≥ 0, ZT = Z, Z2 = Z.

where W ∈ Rn×m denotes the matrix whose jth row contains coordinates of the
jth data point cj . We will refer to the above problem as Projective Semidefinite
Programming problem (PSDP), reflecting the fact that the solution of the above
problem is an orthogonal projection matrix.

In chapter 3 we will show that the planar facility location problem can
also be formulated as a PSDP problem as well as discuss a possible relaxation
algorithm. We will then demonstrate on a small example a procedure to obtain
an exact solution to the above programming problem, based on its geometrical
properties.

1.3 Extending the Planar Facility Location Prob-
lem

Continuous facility location problem attempts to find the optimal placement of
facility locations in some region Ω ∈ R2, assuming that customers are spread
continuously over the entire region, which results in the continuous demand
function D : Ω → R.
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We will demonstrate on an illustrative example one way in which data ag-
gregation can be used on some real-life data to obtain a continuous demand
function reflecting population density and find an approximate solution to the
problem using the discrete formulation of the facility location problem discussed
in Section 1.1.
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Chapter 2

Mixed-Integer
Programming Formulations

In this chapter, we explore mixed-integer programming formulations for the
planar facility location problem. As before, suppose there are n customers,
with given locations {cj | j = 1, . . . , n} located in some subset of R2. Without
loss of generality, we will assume that cj ≥ 0, for all j = 1, . . . , n. We denote the
associated customer demand values by D1, . . . , Dn. We also assume, without the
loss of generality, that each demand value Dj is strictly positive, for a customer
with zero demand can be excluded from our analysis without any impact.

Our task is to find k facility locations, where k is a predefined positive integer,
that minimizes the total transportation cost. We define the transportation cost
to be the distance between a customer and its assigned facility multiplied by
the total demand of the customer. The facility locations to be found will be
denoted by {fi | i = 1, . . . , k}. Let d(·, ·) be our distance metric and let us also
assume without loss of generality that each customer is served by exactly one
facility, which is motivated by the fact that facilities have unlimited capacity.
Thus, if customer j is serviced by facility i, the corresponding transportation
cost is Djd(fi, cj).

To describe the model in more detail, we begin by letting

a1 = min
j=1,...,n

cj1, a2 = min
j=1,...,n

cj2

b1 = max
j=1,...,n

cj1 b2 = max
j=1,...,n

cj2

and conclude that the customers are located in the following region

Ω := {(x, y) | a1 ≤ x ≤ b1, a2 ≤ y ≤ b2 } .

It follows that fi ∈ Ω, for all values of i.
For all of our formulations, we will us the following binary assignment vari-

able:

xij =
{

1 if customer j is seviced by facility i
0 otherwise

9



The planar facility location problem aims to find fi and xij that solves

minimize
∑k

i=1

∑n
j=1 Djd(cj , fi)xij (2.0.1)

subject to :
fi ∈ Ω,∑k

i=1 xij = 1,

xij ∈ {0, 1},

for all values of i = 1, . . . , k, j = 1, . . . , n.
Before we take a closer look at the above model, we point out that a stronger

statement can be made about the optimal facility locations in the case when
the Euclidean metric is used. With the above assumption we can conclude that
fi will be located in the convex hull of the set of customer locations. Thus, the
new demand Ω can be described as:

Ω = conv {cj | j = 1, . . . , n}

=





n∑

j=1

αijcj

∣∣∣∣∣∣

n∑

j=1

αij = 1, αij ≥ 0 for all j = 1, . . . n



 .

Although the above definition of Ω results in a tighter convex relaxation of
the problem, it increases the per-node computation time, and for that reason
will not be presented in the computational results at the end of the chapter.
Thus, throughout our discussion we will consider Ω to be the rectangular region
described in the beginning of the section.

We present models where d(·, ·) is the squared Euclidean distance in Section
2.1 and rectangular or Manhattan distance in Section 2.2.

2.1 Squared Euclidean Distance

Using the squared Euclidean metric, the objective function can be written as

k∑

i=1

n∑

j=1

Dj‖fi − cj‖2xij ,

which can be equivalently modeled as

k∑

i=1

n∑

j=1

Dj‖fixij − cjxij‖2.

Now to transform the objective function into a convex quadratic, we introduce
the following auxiliary variables:

zij1 := fi1xij , zij2 := fi2xij

10



along with the following constraints defined for all i = 1, . . . , k, j = 1, . . . , n:

0 ≤ zij1 ≤ b1xij , 0 ≤ zij2 ≤ b2xij ,

fi1 − b1(1− xij) ≤ zij1, fi2 − b2(1− xij) ≤ zij2.

It is possible to obtain a stronger formulation of the problem by adding the
following constraints:

a1xij ≤ zij1 ≤ fi1 − a1(1− xij),
a2xij ≤ zij2 ≤ fi2 − a2(1− xij).

However, the preliminary computational experiments indicate that the above
constraints increase the per-node computation time, and for this reason will not
be included in our further discussion.

Using the new variables we can write the objective function as

k∑

i=1

n∑

j=1

Dj‖fixij − cjxij‖2 =
k∑

i=1

n∑

j=1

Dj((fi1xij − cj1xij)2 + (fi2xij − cj2xij)2)

=
k∑

i=1

n∑

j=1

Dj((zij1 − cj1xij)2 + (zij2 − cj2xij)2).

Incorporating the new constraints we obtain a mixed-integer quadratic program-
ming formulation of the facility location problem.

Formulation 1. Given c1, . . . , cn, D1, . . . , Dn, k, and d(·, ·) as the squared
Euclidean metric, the planar facility location problem can be formulated as:

minimize
k∑

i=1

n∑

j=1

Dj((zij1 − cj1xij)2 + (zij2 − cj2xij)2)

subject to
0 ≤ zij1 ≤ b1xij ,

0 ≤ zij2 ≤ b2xij ,

fi1 − b1(1− xij) ≤ zij1,

fi2 − b2(1− xij) ≤ zij2,

a1 ≤ fi1 ≤ b1,

a2 ≤ fi2 ≤ b2,

k∑

i=1

xij = 1,

xij ∈ {0, 1}

where the above constraints are defined for i = 1, . . . , k and j = 1, . . . , n.
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Next, by reorganizing the terms in the objective function and introducing
additional variables, we can reformulate the planar facility location problem
(2.0.1) as a mixed-integer linear programming problem.

We first point out that based on the discussion in Section 1.2.3 we can
conclude that given an optimal assignment {xij}, we can write the resulting
optimal facility locations fi as

fi =

∑n
j=1 Djcjxij∑n
j=1 Djxij

,

together with the assumption that each facility will serve at least one customer,
which can be expressed as the constraint

∑n
j=1 xij ≥ 1 for all values of i =

i, . . . , k. Then, the objective function using the squared Euclidean metric can
be expanded as follows

k∑

i=1

n∑

j=1

Djxij‖fi − cj‖2 (2.1.1)

=
k∑

i=1

n∑

j=1

xijDj

∥∥∥∥∥cj −
∑n

q=1 xiqDqcq∑n
q=1 xiqDq

∥∥∥∥∥

2

=
k∑

i=1

n∑

j=1

xijDj


‖cj‖2 − 2 (cj)

T

(∑n
q=1 xiqDqcq∑n
p=1 xipDp

)
+

∥∥∥∥∥

∑n
q=1 xiqDqcq∑n
p=1 xipDp

∥∥∥∥∥

2



=
n∑

j=1

Dj ‖cj‖2
(

k∑

i=1

xij

)
− 2

k∑

i=1




n∑

j=1

xijDjcj




T (∑n
q=1 xiqDqcq∑n
p=1 xipDp

)

+
k∑

i=1




n∑

j=1

xijDj




∥∥∥∑n
q=1 xiqDqcq

∥∥∥
2

(∑n
p=1 xipDp

)2

=
n∑

j=1

Dj ‖cj‖2
(

k∑

i=1

xij

)
− 2

k∑

i=1

∥∥∥∑n
q=1 xiqDqcq

∥∥∥
2

(∑n
p=1 xipDp

) +
k∑

i=1

∥∥∥∑n
q=1 xiqDqcq

∥∥∥
2

(∑n
p=1 xipDp

)

=
n∑

j=1

Dj ‖cj‖2
(

k∑

i=1

xij

)
−

k∑

i=1

∥∥∥∑n
q=1 xiqDqcq

∥∥∥
2

(∑n
p=1 xipDp

)
(

since
k∑

i=1

xij = 1

)

=
n∑

j=1

Dj ‖cj‖2 −
k∑

i=1

∥∥∥∑n
q=1 xiqDqcq

∥∥∥
2

(∑n
p=1 xipDp

) . (2.1.2)

Using the new expression for the objective function we note that Formulation 1

12



is equivalent to the following optimization problem

maximize
k∑

i=1

‖∑n
l=1 xilDlcl‖2∑n

l=1 xilDl
(2.1.3)

subject to :
k∑

i=1

xij = 1,

n∑

j=1

xij ≥ 1

xij ∈ {0, 1},

where the constraints are defined for all values of i = 1, . . . , k and j = 1, . . . , k.
Next we let

ti :=
‖∑n

l=1 xilDlcl‖2∑n
l=1 xilDl

and consider the problem of maximizing
∑k

i=1 ti subject to

ti ≤ ‖∑n
l=1 xilDlcl‖2∑n

l=1 xilDl
, for all i = 1, . . . , k

which can also be expressed as

n∑

j=1

tixijDj ≤ ‖
n∑

l=1

xilDlcl‖2 =
n∑

j=1

xijD
2
j‖cj‖2 + 2

∑

j,l:j<l

DjDlc
T
j clxijxil.

To linearize this constraint, let

zijl := xijxil for j < l and uij := tixij ,

and observe that as a product of two binary 0-1 variables zijl should satisfy the
following constraints for all i = 1, . . . , k, and j, l = 1, . . . , n such that j 6= l:

zijl ≤ xij , zijl ≤ xil, zijl ≥ xij + xil − 1,

and similarly the variable uij satisfies

uij ≤ ti, uij ≤ Mxij , uij ≥ ti −M(1− xij)

for all values of i = 1, . . . , k, j = 1, . . . , n. Combining above observations we
can formulate (2.1.3) as a mixed-integer linear programming problem.

13



Formulation 2. Given c1, . . . , cn, D1, . . . , Dn, k, and d(·, ·) as the squared
Euclidean metric, the planar facility location problem can be formulated as:

maximize
k∑

i=1

ti (2.1.4)

subject to :
n∑

j=1

Djuij ≤
n∑

j=1

xijD
2
j‖cj‖2 + 2

∑

j,l:j<l

DjDlc
T
j clzijl,

zijl ≤ xij , zijl ≤ xil

zijl ≥ xij + xil − 1,

0 ≤ uij ≤ ti,

uij ≤ Mxij ,

uij ≥ ti −M(1− xij)
zijl ≥ 0

k∑

i=1

xij = 1,

n∑

j=1

xij ≥ 1, xij ∈ {0, 1}

where M is a sufficiently large positive constant and all constraints are defined
for all values of i = 1, . . . , k, and j, l = 1, . . . , n such that j 6= l.

To find appropriate values for M , we need to find a valid upper-bound for
optimal values of ti. From (2.1.2), we see that

n∑

j=1

Dj‖cj‖2 −
k∑

i=1

ti =
k∑

i=1

n∑

j=1

Dj‖fi − cj‖2xij ≥ 0.

Thus, a simple upper-bound for ti is
∑n

j=1 Dj‖cj‖2. This upper-bound can be
tightened if we find a stronger lower-bound for the optimal objective value of
Formulation 1 by solving the relaxation of that problem.

2.2 Rectangular Metric

Let dr : Ω×Ω → R be a metric defined as follows: if x1 = (a1, b1), x2 = (a2, b2)
are two points in R2, then dr(x1, x2) = |a1 − a2|+ |b1 − b2|. With this so-called
rectangular metric, we can write the objective function in (2.0.1) as:

k∑

i=1

n∑

j=1

Djdr(cj , fi)xij =
k∑

i=1

n∑

j=1

Dj(|cj1 − fi1|+ |cj2 − fi1|)xij .

14



Using the variables tij1, tij2 to model the absolute values |cj1− fi1|, |cj2− fi1|,
the planar facility location problem can be stated as:

minimize
k∑

i=1

n∑

j=1

Dj(tij1 + tij2)xij

subject to:
tij1 ≥ cj1 − fi1, tij1 ≥ fi1 − cj1,

tij2 ≥ cj2 − fi2, tij2 ≥ fi2 − cj2,

k∑

i=1

xij = 1,

xij ∈ {0, 1},

where the constraints are defined for all i = 1, . . . , k and j = 1, . . . , n.
Now to linearize the objective function, we introduce the following auxiliary

variables:
zij1 := tij1xij , zij2 := tij2xij

along with the constraints defined for all i = 1, . . . , k and all j = 1, . . . , n:

0 ≤ zij1 ≤ M1xij ,

0 ≤ zij2 ≤ M2xij ,

tij1 −M1(1− xij) ≤ zij1,

tij2 −M2(1− xij) ≤ zij2,

zij1 ≤ tij1,

zij2 ≤ tij2,

where Mp = max{cjp, bp − cjp} for p = 1, 2.
As a result we obtain a mixed-integer linear programming formulation of the

Facility Location problem:
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Formulation 3. Given c1, . . . , cn, D1, . . . , Dn, k, and d(·, ·) as the rectangular
metric, the planar facility location problem can be formulated as:

minimize
k∑

i=1

n∑

j=1

Dj(zij1 + zij2) (2.2.1)

subject to
tij1 ≥ cj1 − fi1, tij1 ≥ fi1 − cj1,

tij2 ≥ cj2 − fi1, tij1 ≥ fi1 − cj1,

0 ≤ zij1 ≤ M1xij , 0 ≤ zij2 ≤ M2xij ,

tij1 −M1(1− xij) ≤ zij1, tij2 −M2(1− xij) ≤ zij2,

zij1 ≤ tij1, zij2 ≤ tij2,

k∑

i=1

xij = 1, fj ∈ Ω, xij ∈ {0, 1},

where Mp = max{cjp, bp − cjp} for p = 1, 2 and i = 1, . . . , k and j = 1, . . . , k.

We will now introduce an alternative formulation, which uses the following
constraints

tijp ≥ cjpxij − fipxij , tij1 ≥ fipxij − cjpxij ,

where all the variables are the same as before. Further, letting vijp := fipxij ,
we linearize the constraints to

tijp ≥ cjpxij − vijp, tij1 ≥ vijp − cjpxij ,

vijp ≤ bpxij , vijp ≤ fip,

vijp ≥ fip − bp(1− xij)

and obtain the following formulation of the planar facility location problem:

Formulation 4. Given c1, . . . , cn, D1, . . . , Dn, k, the planar facility location
problem can be formulated as:

minimize
k∑

i=1

n∑

j=1

Dj(tij1 + tij2) (2.2.2)

subject to
tij1 ≥ cj1xij − vij1, tij1 ≥ vij1 − cj1xij ,

tij2 ≥ cj2xij − vij1, tij1 ≥ vij2 − cj2xij ,

0 ≤ vij1 ≤ b1xij , 0 ≤ zij2 ≤ b2xij ,

fj1 − b1(1− xij) ≤ vij1, fj2 − b2(1− xij) ≤ vij2,

vij1 ≤ fj1, vij2 ≤ fj2,

k∑

i=1

xij = 1, fj ∈ Ω, xij ∈ {0, 1}

with the constraints defined as usual for all i = 1, . . . , k and j = 1, . . . , n.
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2.3 Symmetry Breaking Constraints

All of the above mixed-integer formulations are highly symmetric, in that we can
renumber the facility labels without changing the problem. Such problems lead
to unnecessarily many subproblems in the branch-and-bound setting [12, 8]. In
this section, we propose some symmetry breaking constraints that impose some
artificial ordering of the facilities.

In our first proposal, we arbitrarily assigned customer 1 to facility 1, i.e., we
include the constraint

x11 = 1. (2.3.1)

Unfortunately, the labeling for facilities 2, . . . , k can still be rearranged. One
possibility of imposing an ordering for the facilities is to order them according
to their first coordinates:

f11 ≤ f21 ≤ · · · ≤ fk1. (2.3.2)

Another ordering possibility is by the total number of customers assigned to
each facility:

n∑

j=1

x1j ≤
n∑

j=1

x2j ≤ · · · ≤
n∑

j=1

xkj . (2.3.3)

These are clearly just a few of the possible symmetry breaking constraints,
but from preliminary computation, they are effective in decreasing the total
number of nodes explored. Also, it appears that (2.3.1) and (2.3.2) are more
effective than (2.3.3). We illustrate the effectiveness of the symmetry breaking
constraints (2.3.1) and (2.3.2) in Section 2.4.

2.4 Computational Experiments

We illustrate the computational properties of Formulations 1 – 4 using CPLEX
10.1, run with default parameter values except for a two hour time limit. All
computations are made on an SGI Altix 3800 with 64 Intel Itanium-2 processors
each running at 1.3GHz and 122GB of RAM running SuSE Linux with SGI
ProPack 4. No parallelization is used. We generated customer location and
demand data from a uniform distribution.

Tables 2.1 through 2.4 present the computational results. In these tables,
“n” is the number of customers, “k” is the number of facilities, “symmetry”
is the type of symmetry breaking constraint from Section 2.3 added, “time” is
the CPU seconds required to solve to optimality up to 2 hours, “node” is the
number of nodes explored, “bestnode” is the incumbent node, and “gap” is the
final optimality gap in percentages.

Formulation 2 is significantly slower than Formulation 1 in solving the squared
Euclidean metric. The relaxation of Formulation 2 seems much weaker than that
of Formulation 1, perhaps due to the so called “big-M” constant and the larger
number of variables. The larger problem size also leads to longer per-node com-
putation time. Thus, the mixed-integer quadratic programming formulation
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of this problem appears to perform significantly better than its mixed-integer
linear programming reformulation.

Tables 2.3 and 2.4 also show that Formulation 1 solves faster than Formula-
tion 3 and 4 for the same problem instance. This was initially surprising, since
the latter two formulations have linear objective functions with only slightly
more variables than Formulation 1. It again appears that the continuous relax-
ation of Formulation 1 is stronger. However, surprisingly, the per-node compu-
tation time also seems faster for Formulation 1 than the last two formulations.
There are no significant computational differences between Formulation 3 and
4.

All of the formulations could only solve small problem instances to prov-
able optimality within the time limit. The key cause seems to be the weakness
of the continuous relaxation. For example, for Formulation 1, 3, and 4, the
continuous relaxations gave a trivial lower-bound of zero at the root node for
all instances. The symmetry breaking constraints seem to help in general, but
neither one dominated the other for any of the models. In an attempt to speed
up computation time of the first two formulations, a feasible solution was ob-
tained using weighted K-means algorithm and provided as a starting point for
CPLEX. However, the preliminary computational results suggest that provid-
ing a feasible solution produced by the algorithm did not improve computation
time. Moreover, CPLEX was able to find good feasible solutions quickly, thus
strengthening the formulations and/or introducing valid inequalities would be
the apparent next step in speeding up the solution time.
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n k symmetry time nodes bestnode gap
16 2 none 0.39 275 128 0.00

(2.3.1) 0.19 121 0 0.00
(2.3.2) 0.28 206 0 0.00

16 3 none 2.65 2314 129 0.00
(2.3.1) 1.18 1007 234 0.00
(2.3.2) 3.12 2835 739 0.00

25 2 none 5.43 5151 4431 0.00
(2.3.1) 2.38 2288 10 0.00
(2.3.2) 3.38 2944 0 0.00

25 3 none 104.72 75761 61728 0.01
(2.3.1) 45.45 38466 37238 0.01
(2.3.2) 27.90 19306 18815 0.00

36 2 none 63.39 46490 450 0.01
(2.3.1) 34.56 27597 14878 0.00
(2.3.2) 38.09 27088 190 0.00

36 3 none 962.17 523298 11900 0.01
(2.3.1) 432.97 253270 205306 0.01
(2.3.2) 326.22 177278 64586 0.01

49 2 none 208.46 105327 180 0.01
(2.3.1) 95.46 48558 0 0.01
(2.3.2) 138.56 68639 0 0.01

49 3 none 7200 2528991 1637260 15.61
(2.3.1) 3781.10 1510325 1502770 0.01
(2.3.2) 5686.92 2138032 2126017 0.01

64 2 none 4908.32 1993068 50 0.01
(2.3.1) 4233.89 1732198 1483115 0.01
(2.3.2) 3095.94 1226247 94 0.01

64 3 none 7200 1680601 1631500 37.36
(2.3.1) 7200 1782901 1731100 39.29
(2.3.2) 7200 1963501 1914400 27.85

81 2 none 7200 2062401 130 15.64
(2.3.1) 7200 2108282 0 9.65
(2.3.2) 7200 1974601 0 13.17

81 3 none 7200 1138501 1107500 45.34
(2.3.1) 7200 1244201 1208100 48.05
(2.3.2) 7200 1206418 1166900 47.52

100 2 none 7200 1656501 1623600 40.60
(2.3.1) 7200 1700701 1669100 39.12
(2.3.2) 7200 1591401 1558400 42.28

100 3 none 7200 935357 905300 66.97
(2.3.1) 7200 974701 949700 68.64
(2.3.2) 7200 1069901 1043400 58.16

Table 2.1: Form. 1. “n”:num. customers,“k” :num. facilities,“symmetry”:symmetry

breaking constraint, “time”:CPU sec. to solve to optimality up to 2 hrs, “node”:num.

of nodes explored, “bestnode”:incumbent node, “gap”:final optimality gap (%).
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n k symmetry time nodes bestnode gap
16 2 none 9.22 4164 2487 0.00

(2.3.1) 4.76 2335 2295 0.00
16 3 none 1185.42 461905 459064 0.01

(2.3.1) 1139.33 553872 544825 0.01
25 2 none 7200 1749601 1663200 10.83

(2.3.1) 7200 2122468 1752445 4.49
25 3 none 7200 510937 492000 135.35

(2.3.1) 7200 649809 606300 132.68
36 2 none 7200 779095 739200 60.48

(2.3.1) 7200 738801 702000 47.55
36 3 none 7200 197501 186400 171.50

(2.3.1) 7200 202242 189000 168.60
49 2 none 7200 211001 201100 78.19

(2.3.1) 7200 255201 243200 72.82
49 3 none 7200 71354 67400 188.64

(2.3.1) 7200 94759 91400 196.47
64 2 none 7200 83053 81200 94.29

(2.3.1) 7200 78429 76100 93.88
64 3 none 7200 20239 20200 200.85

(2.3.1) 7200 24065 24000 215.26
81 2 none 7200 26856 26500 97.09

(2.3.1) 7200 30427 30100 99.82
81 3 none 7200 5067 5000 237.08

(2.3.1) 7200 7399 7300 235.00
100 2 none 7200 10089 10000 118.20

(2.3.1) 7200 12357 12200 106.12
100 3 none 7200 969 900 256.77

(2.3.1) 7200 943 900 252.07

Table 2.2: Formulation 2. “n”:number of customers, “k”:number facilities, “symme-

try”:symmetry breaking constraint added, “time” :CPU seconds required to solve to

optimality up to 2 hours, “node”:number of nodes explored, “bestnode” : incumbent

node, “gap” : final optimality gap (%).
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n k symmetry time nodes bestnode gap
16 2 none 0.50 335 0 0.00

(2.3.1) 0.30 168 157 0.00
(2.3.2) 0.38 252 0 0.00

16 3 none 4.59 4250 300 0.00
(2.3.1) 1.42 749 280 0.00
(2.3.2) 4.00 4396 280 0.00

25 2 none 83.16 52278 46880 0.01
(2.3.1) 31.32 26933 26610 0.01
(2.3.2) 42.90 37474 27950 0.01

25 3 none 7200 2959301 4230 15.42
(2.3.1) 638.63 297289 119019 0.01
(2.3.2) 3032.50 2430585 2392010 0.01

36 2 none 2835.42 1300984 261021 0.01
(2.3.1) 1443.08 654736 515139 0.01
(2.3.2) 2095.55 1089697 242226 0.01

36 3 none 7200 2366401 2352900 35.51
(2.3.1) 7200 1939202 1878500 20.47
(2.3.2) 7200 2222909 1150610 31.06

49 2 none 7200 1251501 11565 15.11
x11 7200 2020704 480 3.43
(2.3.2) 7200 1136949 1123600 10.16

49 3 none 7200 1593901 1582300 57.38
(2.3.1) 7200 819101 810600 46.54
(2.3.2) 7200 1009701 1002600 54.15

64 2 none 7200 757801 750400 33.37
(2.3.1) 7200 778301 769200 30.43
(2.3.2) 7200 659301 652300 33.63

64 3 none 7200 894201 889000 64.75
(2.3.1) 7200 770501 765500 66.43
(2.3.2) 7200 1094601 1090200 61.12

81 2 none 7200 503101 1280 49.95
(2.3.1) 7200 492901 78820 43.02
(2.3.2) 7200 586601 4020 42.85

81 3 none 7200 780601 774700 73.73
(2.3.1) 7200 541013 536800 71.36
(2.3.2) 7200 712001 706800 70.17

100 2 none 7200 368301 365700 60.06
(2.3.1) 7200 489101 485200 56.09
(2.3.2) 7200 461165 459800 55.58

100 3 none 7200 699401 699300 82.06
(2.3.1) 7200 338201 336300 86.01
(2.3.2) 7200 549501 546700 79.62

Table 2.3: Form 3. “n”:num. customers, “k”:num. facilities, “symmetry” :symmetry

breaking constraint, “time”:CPU sec. to solve to optimality up to 2 hrs, “node”: num.

of nodes explored,“bestnode”:incumbent node,“gap”:final optimality gap (%).
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n k symmetry time nodes bestnode gap
16 2 none 0.57 434 0 0.00

(2.3.1) 0.38 212 50 0.00
(2.3.2) 0.45 348 10 0.00

16 3 none 10.55 8540 440 0.00
(2.3.1) 2.18 1261 490 0.00
(2.3.2) 6.39 4441 1900 0.00

25 2 none 100.54 106882 105954 0.01
(2.3.1) 43.44 47916 40758 0.00
(2.3.2) 64.51 67882 50049 0.01

25 3 none 7200 5463600 4947100 8.75
(2.3.1) 1647.18 1070358 1033410 0.01
(2.3.2) 2466.52 1881502 22940 0.01

36 2 none 5523.62 3553487 3169994 0.01
(2.3.1) 2718.60 1688680 43498 0.01
(2.3.2) 2633.38 2033689 41553 0.01

36 3 none 7200 2220801 2208700 34.76
(2.3.1) 7200 1559301 3720 20.96
(2.3.2) 7200 2321901 2310200 33.11

49 2 none 7200 2039701 10 15.02
(2.3.1) 7200 3213850 80 4.48
(2.3.2) 7200 2064301 20 13.92

49 3 none 7200 1134949 996930 59.20
(2.3.1) 7200 789601 783500 48.91
(2.3.2) 7200 1179433 1170600 56.74

64 2 none 7200 932201 925200 32.54
(2.3.1) 7200 1078101 1070400 33.64
(2.3.2) 7200 1097501 70 30.55

64 3 none 7200 860801 858200 67.78
(2.3.1) 7200 731401 725800 64.17
(2.3.2) 7200 834601 830100 64.26

81 2 none 7200 832601 100 42.41
(2.3.1) 7200 877101 0 41.70
(2.3.2) 7200 780001 20 40.44

81 3 none 7200 510701 505900 72.96
(2.3.1) 7200 605201 604800 69.81
(2.3.2) 7200 679201 674700 72.71

100 2 none 7200 890301 885600 57.75
(2.3.1) 7200 852201 848800 58.44
(2.3.2) 7200 885701 883300 55.41

100 3 none 7200 646901 644600 84.05
(2.3.1) 7200 588901 586500 81.35
(2.3.2) 7200 662401 658200 81.42

Table 2.4: Form 4.“n”:num.customers, “k”:num. facilities, “symmetry”:symmetry

breaking constraint, “time”:CPU sec.to solve to optimality up to 2 hrs, “node”:number

of nodes explored, “bestnode”:incumbent node, “gap”:final optimality gap (%).
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Chapter 3

Facility Location as PSDP

In this chapter we will extend the work of authors in [10] and show that solving
the planar facility location is equivalent to solving a projective semidefinite
programming problem. In the last section we will consider an algorithm to
solve a relaxation of the resulting PSDP problem.

We have mentioned before that there is an alternative way of modeling the
weighted clustering problem using the assignment matrix

X = {xij} ∈ {0, 1}k×n

where

xij =
{

1, if point j is assigned to cluster i,
0, othewise.

As was pointed out in Section 2.1, we have the following mathematical program-
ming formulation of the planar facility location problem

min
xij

imize
k∑

i=1

n∑

j=1

xijDj

∥∥∥∥∥cj −
∑n

q=1 xiqDqcq∑n
q=1 xiqDq

∥∥∥∥∥

2

(3.0.1)

subject to
k∑

i=1

xij = 1,

n∑

j=1

xij ≥ 1,

xij ∈ {0, 1},
where the constraints are defined for all i = 1, . . . , k and j = 1, . . . , n. Note that
the constraint

∑n
j=1 xij ≥ 1 simply states that each facility is to serve at least

one customer.
Since the problem above is equivalent to the weighted K-means problem , it

is possible to use the weighted K-means heuristic to obtain a feasible solution
to the planar facility location problem with squared Euclidean distance.
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3.1 PSDP Formulation of the Planar Facility Lo-
cation Problem

In this section, we describe the process of formulating the weighted K-means
clustering problem as PSDP. Recall that projective semidefinite programming
problem has the following form

minimize Tr(WZ)
subject to

Tr(BiZ) = bi for i = 1, . . . ,m

Z2 = Z, Z = ZT , Z º 0.

To formulate our problem as a PSDP we begin by working on the objective
function (3.0.1) to express it as a trace of a matrix, and then we concentrate
on the constraints. Recall from Section 2.1 that the objective function can be
written as

k∑

i=1

n∑

j=1

xijDj

∥∥∥∥∥cj −
∑n

q=1 xiqDqcq∑n
q=1 xiqDq

∥∥∥∥∥

2

=
n∑

j=1

Dj ‖cj‖2 −
k∑

i=1

∥∥∥∑n
q=1 xiqDqcq

∥∥∥
2

(∑n
p=1 xipDp

) .

(3.1.1)
Next we need to find matrices which will allow us to write the above expression
in the compact trace form. We begin by considering the first term in (3.1.1) and
defining C ∈ Rn×2 to be the matrix whose jth row represents coordinates of the
jth customer cj and D = diag(D1, . . . , Dn) ∈ Rn×n to be the matrix containing
customer demand values in its diagonal. It follows that the first term in (3.1.1)
can be written as

n∑

j=1

Dj ‖cj‖2 = Tr
(
(D

1
2 C)(D

1
2 C)T

)
. (3.1.2)

Further, to express the second term of the objective function in the desired form
we use the assignment matrix X = {xij} ∈ {0, 1}k×n to let Y := XD

1
2 and to

define
Z := Y T

(
Y Y T

)−1
Y ∈ Rn×n. (3.1.3)

Using above definition of Z we can write the second term in (3.1.1) as

k∑

i=1

∥∥∥∑n
q=1 xiqDqcq

∥∥∥
2

(∑n
q=1 xiqDq

) = Tr
(
(D

1
2 C)(D

1
2 C)T Z

)
. (3.1.4)

Indeed, we observe that

{Y Y T }ij =
n∑

l=1

xilD
1
2
l xjlD

1
2
l

=
{ ∑n

l=1 xilDl if i = j
0 othewise, since xilxjl = 0 for i 6= j,
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to conclude that

Y Y T = diag

(
n∑

l=1

x1lDl, . . . ,

n∑

l=1

xklDl

)
,

which in turn implies (3.1.4). We point out that the constraint
∑n

j=1 xij ≥ 1
together with the assumption that each demand value is positive guarantees
that the matrix Y Y T is invertible.

Combining (3.1.2) and (3.1.4) we conclude that the objective function (3.1.1)
can be written as

Tr
(
(D

1
2 C)(D

1
2 C)T (I − Z)

)
. (3.1.5)

Now we shift the focus to the constraints in (3.0.1). The first constraint,
which states that each customer can be assigned to only one facility, can be
written in matrix form as follows

ekX = en, where er = (1, . . . , 1) ∈ Rr.

In order to capture the effect of the above constraint on Z we observe that

enD
1
2 Z = ekXD

1
2 Z = ekY Y T

(
Y Y T

)−1
Y = ekY = ekXD

1
2 = enD

1
2 . (3.1.6)

In addition, we note that matrix Z is symmetric, as can be seen from:

Z2 = Y T
(
Y Y T

)−1
Y Y T

(
Y Y T

)−1
Y = Y T

(
Y Y T

)−1
Y = Z.

Now to simplify notation, we let

d = (enD
1
2 )T ,

and conclude that the restriction that each customer is to be served by one
facility imposes the following constraint on Z

Zd = d.

Next, we note that since the ijth entry of Z is of the form

Zij =
k∑

r=1

xriD
1
2
i xrjD

1
2
j∑n

m=1 xrmDm
, (3.1.7)

the trace of Z is equal to the number of facilities, since

Tr(Z) =
n∑

q=1

Zqq =
n∑

q=1

k∑
r=1

xrqDq∑n
m=1 xrmDm

=
k∑

r=1

∑n
q=1 xrqDq∑n

m=1 xrmDm
=

k∑
r=1

1 = k.

Further investigating the effect of the constraints of X on Z, from (3.1.7) we see
that since each entry of X is either 0 or 1 and

∑n
j=1 xij ≥ 1, thus each entry of

Z must be nonnegative.
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In summary, based on the definition of Z (3.1.3) we have translated the con-
straints on the assignment matrix X into statements about Z as well as deduced
several properties about its trace, symmetry and nonnegativity. Now declaring
Z to be the variable matrix and putting together the desired properties of Z
as constraints, we consider the following Projective Semidefinite Programming
problem.

minimize Tr
(
(D

1
2 C)(D

1
2 C)T (I − Z)

)

subject to
Z2 = Z, ZT = Z,
Tr(Z) = k, Zd = d
Z ≥ 0.

(3.1.8)

Here Z ≥ 0 means that Z is a matrix with nonnegative entries.

Remark 1. Recall that an orthogonal projection matrix A is a symmetric matrix
satisfying A2 = A. Thus, the constraints of the above optimization problem in-
dicate that its feasible solutions are orthogonal projection matrices. Moreover,
the constraint Zd = d indicates that d = enD

1
2 is an eigenvector of Z corre-

sponding to its largest eigenvalue 1.

Even though the constraints on Z in (3.1.8) were deduced from the properties
of the assignment matrix X, it is not obvious that the PSDP (3.1.8) is equivalent
to the planar facility location problem (3.0.1). In the next section we will show
that the two problems are in fact equivalent.

3.2 Equivalence of PSDP and MIP

In this section we prove that the PSDP formulation of the planar facility location
problem is in fact equivalent to the planar facility location problem. We begin
by stating a well-known lemma which will be used at a later stage.

Lemma 1. For any positive semidefinite matrix A there exists an index k ∈
{1, . . . , n} such that

Akk = max
i,j

|Aij |

The lemma simply states that the largest entry of a positive semidefinite
matrix will always occur on the diagonal. We now state a standard proof of the
lemma.

Proof. Suppose A is positive semidefinite, and there exist i, j such that i 6= j

and |Aij | > |Apq| for all values of p, q. Consider 2× 2 submatrix
[

Aii Aij

Aij Ajj

]
.

By assumption, AiiAjj − A2
ij < 0, which implies that the above submatrix is

not positive definite, contradicting the assumption that A is and implying the
statement of the lemma.
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Next, we will take a closer look at the set of feasible solution to (3.1.8). We
will investigate the constraints in the PSDP and show that they enforce a special
structure on the feasible solutions, which will be instrumental in establishing
the equivalence of the two optimization problems. We will prove the following
important lemma.

Lemma 2. Let Z be a feasible solution to PSDP (3.1.8). By rearranging rows
and columns of Z we can obtain a block diagonal matrix of the form

Zk = diag (ZJ1J1 . . . ZJkJk
) , (3.2.1)

where each ZJiJi
is a square submatrix of Z indexed by sets Ji for each i =

1, . . . , k. Moreover, each submatrix ZJiJi
is an orthogonal projection matrix

with trace 1.

Proof. Let Z be a feasible solution to PSDP (3.1.8). It follows from the con-
straints that D− 1

2 ZD− 1
2 is positive semidefinite. Indeed, for any y ∈ Rn we

have

yT D− 1
2 ZD− 1

2 y = yT D− 1
2 ZZD− 1

2 y = (ZD− 1
2 y)T (ZD− 1

2 y) =‖ ZD− 1
2 y ‖2≥ 0.

Using Lemma 1 we conclude that there exist an index i1 ∈ {1, . . . , n} such that

(D− 1
2 ZD− 1

2 )i1i1 = max
i,j

(D− 1
2 ZD− 1

2 )ij > 0, (3.2.2)

or simply

(Di1)
− 1

2 Zi1i1(Di1)
− 1

2 ≥ (Di)−
1
2 Zij(Dj)−

1
2 for all i, j ∈ {1, . . . , n}. (3.2.3)

We next consider the following index set, locating all the positive entries in the
i1th row of Z

J1 = {j| Zi1j > 0}.
Our goal now is to find an explicit expression for the entries in the submatrix
ZJ1J1 = (Zij)i,j∈J1

, which will form the first block in (3.2.1). We will show
that each element of the above submatrix is positive, and all entries Zij such
that i ∈ J1, j 6∈ J1 and j ∈ J1, i 6∈ J1 are equal to zero, which will guarantee
the desired block structure.

We begin by noting that from Z2 = Z, ZT = Z and from the definition of
J1 we have

∑

j∈J1

(Zi1j)2 =
n∑

j=1

Zi1jZji1 = Zi1i1 ,

which implies that
∑

j∈J1

(
Zi1j

Zi1i1

)
Zi1j = 1.
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Above expression can also be written as

∑

j∈J1

(Di1)
1
2 Zi1j

D
1
2
j Zi1i1

D
1
2
j

(Di1)
1
2
Zi1j = 1 (3.2.4)

Furthermore, the constraints Zd = d and ZT = Z imply that
∑

j∈J1

D
1
2
j Zi1j = (Di1)

1
2 ,

which in turn gives
∑

j∈J1

D
1
2
j

(Di1)
1
2
Zi1j = 1. (3.2.5)

From (3.2.3) we deduce that

(Di1)
1
2 Zi1j

D
1
2
j Zi1i1

≤ 1 for all j ∈ J1.

Since all demand values are positive and all entries in Z are nonnegative, com-
bining above inequality with equations (3.2.4) and (3.2.5) we conclude that

(Di1)
1
2 Zi1j

D
1
2
j Zi1i1

= 1 for all j ∈ J1,

which implies that

Zi1j =
D

1
2
j

(Di1)
1
2
Zi1i1 for all j ∈ J1. (3.2.6)

Now from (3.2.5) we obtain

Zi1i1 =
Di1∑

p∈J1
Dp

, (3.2.7)

and finally arrive at the following description of all nonzero elements in iith row
of Z

Zi1j =
(Di1)

1
2 D

1
2
j∑

p∈J1
Dp

for all j ∈ J1. (3.2.8)

We will use the above result to obtain a similar expression for the remaining
elements of the submatrix ZJ1J1 , starting with the entries in the diagonal.

Consider 2× 2 submatrix
(

Zi1i1 Zi1j

Zji1 Zjj

)
where j ∈ J1 and j 6= i1.
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Being a submatrix of a positive semidefinite matrix Z it is also positive semidef-
inite with a nonnegative determinant. In other words

Zi1i1Zjj − Zi1jZi1j ≥ 0

which implies that

Zjj ≥
Z2

i1j

Zi1i1

=
Dj∑

p∈J1
Dp

.

On the other hand, from (3.2.3) we know that

Zjj ≤ Dj

Di1

Zi1i1 =
Dj∑

p∈J1
Dp

.

Combining the two inequalities we conclude that

Zjj =
Dj∑

p∈J1
Dp

for all j ∈ J1. (3.2.9)

Finally, using the information about the diagonal elements in ZJ1J1 and the
elements in the i1th row, we will obtain an expression for the remaining terms
in the submatrix.

To find Zij , where i, j ∈ J1 such that i, j 6= i1 and i 6= j we will consider
the following 3× 3 submatrix




Zi1i1 Zi1i Zi1j

Zii1 Zii Zij

Zji1 Zji Zjj


 .

The above matrix is positive semidefinite, since Z is, and hence has a nonnega-
tive determinant. Therefore,

−Zi1i1Z
2
ij + 2Zi1jZi1iZij + Zi1i1ZiiZjj − Z2

i1iZjj − Z2
i1jZii ≥ 0;

substituting expressions for Zi1i, Zi1j , Zii, Zjj from (3.2.9) and (3.2.8) we
obtain

Di1∑
p∈J1

Dp


Zij −

D
1
2
i D

1
2
j∑

p∈J1
Dp




2

≤ 0,

which implies that

Zij =
D

1
2
i D

1
2
j∑

p∈J1
Dp

, i, j ∈ J1.

In summary, from the constraints in (3.1.8) we have found explicit expression
for positive elements in i1th row of Z, which we then used to establish the
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diagonal and later all other entries in the symmetric submatrix ZJ1J1 , which
can be described by

(ZJ1J1)ij =
D

1
2
i D

1
2
j∑

p∈J1
Dp

i, j ∈ J1. (3.2.10)

Recall that our goal was to use matrix ZJ1J1 as a first block in the block
diagonal matrix Zk obtained from Z by rearranging its entries. Thus, it is
remains to show that

Zij = 0 for all i ∈ J1, j 6∈ J1 (3.2.11)

To arrive at the above result we first notice that for each i ∈ J1 we have

∑

j∈J1

D
1
2
j Zij =

∑

j∈J1

D
1
2
j

D
1
2
i D

1
2
j∑

p∈J1
Dp

= D
1
2
i .

On the other hand, the constraint Zd = d indicates that for all i ∈ J1

k∑

j=1

D
1
2
j Zij = D

1
2
i ,

From above equations along with the positivity of each demand value and non-
negativity of Z we conclude that Zij = 0 for i ∈ J1, j 6∈ J1, as desired.

We will now point out some properties of the resulting submatrix ZJ1J1 .
First, from (3.2.10) we see that ZJ1J1 is a symmetric matrix. Second, its trace
is equal to 1, indeed

Tr(ZJ1J1) =
∑

j∈J1

D
1
2
j D

1
2
j∑

p∈J1
Dp

= 1.

And finally by noting that

(ZJ1J1)
2
ij =

∑

k∈J1

(ZJ1J1)ik(ZJ1J1)kj =
∑

j∈J1

D
1
2
i (Dkk)

1
2 (Dkk)

1
2 D

1
2
j∑

p∈J1
Dp

∑
p∈J1

Dp
= (ZJ1J1)ij ,

we conclude that (ZJ1J1)
2 = ZJ1J1 . In other words we have shown that ZJ1J1

is an orthogonal projection matrix whose trace is equal to 1.
We now rearrange the elements in Z to obtain

Z1 =
(

ZJ1J1 0
0 ZJ 1J 1

)
,

where J 1 = {j|j 6∈ J1}. Now setting aside ZJ1J1 and repeating this process
with ZJ 1J 1

, we form ZJ1 , . . . ,Jk each with trace equal to one. Hence we obtain
the following block diagonal matrix

Zk = diag (ZJ1J1 . . . ZJkJk
) ,

which completes the proof of the lemma.
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Notice that in the process of proving Lemma 3.2 we have associated each
nonzero entry of Z with some set Jk. Thus, we are now able to provide a better
description of the feasible solution to the PSDP (3.1.8), whose entries have the
following form

Zpq =





D
1
2
p D

1
2
q∑

m∈Jr∗
Dm

if there exists r∗ ∈ {1, . . . , k} such that p, q ∈ Jr∗

0 otherwise

Armed with the knowledge about the structure and properties of the feasible
solution to the Projective Semidefinite Programming problem (3.1.8) we are
ready to state the main theorem of this chapter, which will rely strongly on the
previous lemma.

Theorem 1. Given C ∈ Rn×2, a matrix containing the coordinates of n cus-
tomers in R2, and D ∈ Rn×n a diagonal matrix containing demand values for
each customer, solving the planar facility location problem (3.0.1) is equivalent
to solving Projective Semidefinite Programming Problem (3.1.8).

Proof. To establish equivalence between the two optimization problems we begin
by showing that a feasible solution for (3.1.8) can be obtained from a feasible
solution for (3.0.1), and vice versa.

It follow immediately from the construction of (3.1.8) that if X is an assign-
ment matrix satisfying the constraints in (3.0.1), then by defining

Z := Y T
(
Y Y T

)−1
Y, where Y = XD

1
2 , (3.2.12)

we obtain a feasible solution to the PSDP (3.1.8). Moreover, it is important
to point out that if X and Z are related by the relationship above, then the
objective value of the clustering problem evaluated at X is equal to the ob-
jective value of the PSDP evaluated at Z, as can be seen from (3.1.5). Thus,
to establish the equivalence between the two problems, it remains to show that
given a feasible solution Z to (3.1.8) it is always possible to construct an feasible
assignment matrix X satisfying (3.2.12) with matching objective values. Next
we will describe the process of extracting such feasible X from matrix Z.

Let Z be a feasible solution to the PSDP. From Lemma 3.2 it follow that by
rearranging rows and columns of Z we can obtain a block diagonal matrix

Zk = diag (ZJ1J1 . . . ZJkJk
) .

Next we define the assignment matrix X as follows

X = {xij} =
{

1 if j ∈ Ji

0 othewise. (3.2.13)

To see that the resulting assignment matrix is feasible to (3.0.1) we can think of
the resulting k sets Ji, i = 1, . . . k, as k facilities, and the indices they contain
can be seen as customers serviced by that facility. Since after assigning an index
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jp to a set Jp it is removed and a smaller submatrix ZJ pJ p
is considered, we are

guaranteed that each customer will only be assigned to one facility, as required
to satisfy the feasibility conditions in (3.0.1).

It remains to show that if we let Y := XD
1
2 , where X is a feasible assignment

matrix obtained from feasible Z, then Z = Y T
(
Y Y T

)−1
Y . Indeed, we have

that (
Y T

(
Y Y T

)−1
Y

)
pq

=
k∑

r=1

xrpD
1
2
p xrqD

1
2
qq∑n

m=1 xrmDm
. (3.2.14)

To have a better idea what the above expression represents, we can think of the
outer summation as going thought each set Jr for r = 1, . . . , k. Using definition
of X we see that (3.2.14) will be equal to zero, unless both p and q belong to
some Jr∗ , in which case both xr∗p and xr∗q will be equal to one, indicating that
customer cp and cq are assigned to facility fr∗ . From the discussion above we
know that the resulting assignment matrix X is feasible, hence each customer
is served by only one facility, this implies that all the other elements in the
summation will be zero. Thus, we have

(Y T
(
Y Y T

)−1Y )pq =



D
1
2
p D

1
2
qq∑

m∈Jr∗
Dm

if there exists r∗ ∈ {1, . . . , k} such that p, q ∈ Jr∗

0 otherwise,

which is precisely the definition of Zpq, supporting the claim that the assignment
matrix X obtained from Z satisfies (3.2.12).

In summary, from the construction of (3.1.8) we know that given a feasible
solution X to the weighted clustering problem (3.0.1), we can obtain a feasible
solution to (3.1.8) by letting Z := Y T (Y Y T )−1Y , where Y = XD

1
2 . Later

we have shown that given a feasible solution Z for PSDP problem (3.1.8) we
can obtain a feasible solution X for the clustering problem, satisfying Z =
Y T (Y Y T )−1Y , where Y is defined as above. In addition, it follows from (3.1.5)
that at the corresponding feasible points Z and X the objective function values
coincide. Combining these observations we conclude that solving Projective
Semidefininte Programming problem is equivalent to solving the weighted K-
means clustering problem, which completes the proof.

Although the resulting PSDP problem (3.1.8) is difficult to solve exactly,
various relaxations of the problem can be solved to obtain a lower bound on the
optimal value. We will discuss a relaxation algorithm in a later section, but first
we demonstrate a method of obtaining exact solutions to the above problem of
a small size.

3.3 Solving SDP : n = 3, k = 2

In this section we demonstrate a way to solve a small instance of the problem
discussed in the previous section. Although the method amounts to complete
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enumeration, it is motivated by the geometrical properties of the PSDP and
highlights several interesting properties of the feasible solutions of the problem.

Let us take a closer look the constraints in (3.1.8). As was mentioned before,
the constraints Z2 = Z, ZT = Z indicate that Z is an orthogonal projection
matrix, which implies that it has eigenvalues equal to 0 or 1. Moreover, the
eigenspace of Z corresponding to zero eigenvalue is the null space of the projec-
tion, and eigenspace corresponding to 1 is the range of the projection. Hence,
the constraints Tr(Z) = k, Zd = d together with the fact that trace of a matrix
is equal to the sum of its eigenvalues imply that the range of the projection
induced by Z is a subspace of Rn of dimension k containing vector d = (eD

1
2 )T .

And finally to satisfy feasibility we need to select projection matrices with non-
negative entries, as required by the constraint Z ≥ 0.

Above observations suggest a possible approach for solving (3.1.8) numer-
ically. The goal is to find an appropriate basis for the range of the projec-
tion. Since we know that it must contain vector d, as dictated by the fea-
sibility requirement, it remains to find other k − 1 linearly independent vec-
tors, v1, . . . , vk−1. We then let A ∈ Rk×n be a matrix containing basis vectors
{d, v1, . . . vk−1} as rows, and define the projection matrix Z := AT (AAT )−1A.
If all entries in Z are positive, we have constructed a feasible solution to (3.1.8).
To illustrate the ideas discussed above consider the following example:

Let n = 3, k = 2, D =




1 0 0
0 100 0
0 0 9


, C =




1 6
3 1
5 5


.

The problem becomes:

minimize Tr







37 90 105
90 1000 600
105 600 450


 (I − Z)




subject to

Z2 = Z, ZT = Z,

Z




1
10
3


 =




1
10
3


 , Tr(Z) = 2, Z ≥ 0.

We will proceed to construct the globally optimal solution Z by the method
discussed above. We will show that there is a small number of feasible solutions
to the problem above, which will make the task of finding the global optimum
trivial.

We begin by relaxing the nonnegativity constraint Z ≥ 0. Choosing the
basis for R3

B = {(1 10 3), (0 1 0), (0 0 1)}
we would like to find a basis for the two dimensional subspace (since k=2)
containing the demand vector d = (1 10 3), which will result in a feasible
projection matrix Z. In other words, our goal is to find a vector of the form

v = a(0 1 0) + b(0 0 1)
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to form a basis {d, v} of the desired subspace. Hence, the problem is reduced
to a two dimensional problem of finding feasible (a, b). Without any regard for
the magnitude of v but encompassing all the possible directions we will consider
all points (a, b) on the unit circle. Using the polar coordinates we obtain the
standard parametrization of the unit circle

a = cosθ, b = sinθ θ ∈ [0, 2π]

and use it to write
v = (0 cosθ sinθ), θ ∈ [0, 2π].

We now consider the following matrix, containing the basis vectors as rows

A =
(

1 10 3
0 cosθ sinθ

)

for all θ ∈ [0, 2π]. The problem is further reduced to finding θ that will result in
a feasible projection matrix Z := AT (AAT )−1A. Note that from the definition
of A we see that for any value of θ all but one constraint (Z ≥ 0) are satisfied.
Hence it remains to find those values of θ which will make all the entries of Z
nonegative.

We start by observing that

AAT =
(

110 10cosθ + 3sinθ
10cosθ + 3sinθ 1

)

which gives

(AAT )−1 =
1

det(AAT )

(
1 −10cosθ − 3sinθ

−10cosθ − 3sinθ −110

)
,

where det(AAT ) = 110 − 100cos2θ − 60cosθsinθ − 9sin2θ, which can be shown
to be positive for all θ ∈ [0, 2π] Hence to simplify the calculations it suffices
to find all values of θ for which each entry of the projection matrix Z modulo
det(AAT ) is positive. We begin by computing the above matrix

det(AAT )Z =



1 10 + cosθ(−10cosθ − 3sinθ) 3 + sinθ(−10cosθ − 3sinθ)

10 + cosθ(−10cosθ − 3sinθ) 100− 90cos2θ − 60sinθcosθ cosθsinθ

3 + sinθ(−10cosθ − 3sinθ) cosθsinθ 9 + 92sin2θ − 60cosθsinθ)




and plot each entry to find the values of θ satisfying the positivity constraint.
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Figure 3.1: Left: Z12 = Z21, Right: Z13 = Z31
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Figure 3.2: Left:Z22, Right: Z32 = Z23
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Figure 3.3: Z33

By superimposing the above graphs we conclude that each entry in Z is non-
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negative for the following values of θ

θ1 = 0, θ2 = arctan
(

3
10

)
, θ3 =

π

2
, θ4 = π, θ5 = arctan

(
3
10

)
+ π, θ6 =

3π

2
.

Using above values we obtain the complete list of feasible solutions with corre-
sponding objective values:

θ Z Objective value

0




0.1 0 0.3
0 1 0

0.3 0 0.9


 15.3

arctan( 3
10 )




1 0 0
0 0.9174 0.2752
0 0.2752 0.0826


 165.1376

π
2




0.0099 0.0990 0
0.0990 0.9901 0

0 0 1


 28.7129

π




0.1 0 0.3
0 1 0

0.3 0 0.9


 15.3

arctan( 3
10 ) + π




1 0 0
0 0.9174 0.2752
0 0.2752 0.0826


 165.1376

3π
2




0.0099 0.0990 0
0.0990 0.9901 0

0 0 1


 28.7129

Table 3.1: Angle θ, resulting feasible solution Z and corresponding objective
values
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From the above table we see that the global minimum 15.3 occurs at

Z =




0.1 0 0.3
0 1 0

0.3 0 0.9




Interestingly, there are only 6 values of θ satisfying the nonnegativity require-
ment, and surprisingly there is no interval satisfying the condition.

Although we have found the optimal solution to the PSDP problem, in order
to emphasize the connection with the planar facility location problem we will
proceed to extract the optimal facility locations using the method presented
in the proof of Theorem 1. We begin by constructing the index sets J1 =
{1, 3}, J2 = {2} and the resulting block diagonal matrix

Z1 =




0.1 0.3 0
0.3 0.9 0
0 0 1


 .

Finally from (3.2.13) we obtain the following assignment matrix

X =
(

1 0 1
0 1 0

)
. (3.3.1)

As was discussed in the context of the weighted K-means algorithm, knowing
the assignment matrix allows us to calculate the optimal facility location by
simply defining them to be the centre of mass of each cluster. Thus, we obtain
the following optimal facility locations:

f1 = (4.6, 5.1), f2 = (3, 1).

We illustrate the solution to the planar facility location problem below.
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Figure 3.4: Customers : x; Facilities : o.
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It is worth mentioning that the procedure for finding exact solution to the
PSDP problem (3.1.8) discussed in this section can only be applied to very small
problems. Consider increasing the number of customers from 3 to 4. The task is
now to find a suitable two dimensional subspace of R4, assuming k = 2. Taking
into account that the basis must contain the demand vector d and to guarantee
linear independence we are to find

v = a(0 1 0 0) + b(0 0 1 0) + c(0 0 0 1)

which involves considering all points (a, b, c) on the unit sphere. As a result
of using spherical coordinates the problem is reduced to finding θ and φ re-
sulting in positive entries in the corresponding projection matrix Z. Although
algebraically complicated, with enough effort the problem can be solved using
procedure analogous to the one used for n = 3.

We conclude that although the method for obtaining exact solution to the
Projective Semidefinite Programming problem (3.1.8) discussed in this section
highlights geometrical aspect of the problem, it is not applicable to problems
of higher dimension due to high computational difficulty. Next we discuss a
method for obtaining a solution to a relaxation of the given problem.

3.4 Relaxation Algorithm for PSDP

In this section we briefly describe an algorithm for solving a relaxation of (3.1.8).
It is worth pointing out, however, that even though the algorithm will not
generally provide a solution to (3.1.8), it will certainly be useful in establishing
a lower bound on the optimal value of the Projective Semidefinite Programming
problem. It follows that if the algorithm produces a feasible solution to (3.1.8)
it must be the optimal one. If the relaxation solution is not feasible, a rounding
procedure can be used to extract a feasible solution, which will not be a part of
our current discussion.

We begin by replacing the constraint Z2 = Z with I º Z º 0, where as
before the relation A º B means that A − B is positive semidefinite. Lastly,
dropping the nonnegativity constraint Z ≥ 0 we obtain the following relaxation
of the original problem (3.1.8)

minimize Tr
(
(D

1
2 C)(D

1
2 C)T (I − Z)

)

subject to
Tr(Z) = k, Zd = d
ZT = Z, I º Z º 0.

(3.4.1)

We notice that any feasible solution for (3.4.1) satisfies

1
‖d‖Zd =

1
‖d‖d

which simply implies that 1
‖d‖d is a unit eigenvector of Z corresponding to its

largest eigenvalue 1. Next we will further reduce (3.4.1) to a simpler semidefinite
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programming problem by projecting it to the orthogonal complement of the unit
eigenvector. The resulting formulation will be much easier to deal with than
the original problem due to the absence of the constraint Zd = d.

We define the following orthogonal projection matrix

P⊥ = I − 1
‖d‖2 ddT

and recalling that Zd = d observe that

Z? := P⊥Z = Z − 1
‖d‖2 ddT Z = Z − 1

‖d‖2 ddT = P⊥ZP⊥. (3.4.2)

The last equality is obtained using the fact that P⊥Z = Z − 1
‖d‖2 ddT is sym-

metric along with the properties of projection matrices in the following way:

P⊥ZP⊥ = P⊥(ZP⊥)T = P⊥P⊥Z = P⊥Z.

Remark 2. Above matrix Z? represents an orthogonal projection of columns of
Z onto the orthogonal complement of d

‖d‖ . Indeed, denoting jth column of Z?

by (Z?)j we see that

(Z?)j = Zj − (dT Zj)d
‖d‖2 ,

supporting our observation.

Using (3.4.2) we notice that

Tr(Z?) = Tr(Z)− Tr(
1

‖d‖2 ddT ) = k − 1.

Finally, projecting data matrix (D
1
2 C)(D

1
2 C)T onto the orthogonal complement

of d we define
((D

1
2 C)(D

1
2 C)T )? := P⊥(D

1
2 C)(D

1
2 C)T

and reduce problem (3.4.1) to the following simpler semidefinite programming
problem

minimize Tr
(
((D

1
2 C)(D

1
2 C)T )?(I − Z?)

)

subject to
Tr(Z?) = k − 1,
I º Z? º 0.

(3.4.3)

Remark 3. It is important to note that solving (3.4.3) is equivalent to solving
(3.4.1). Indeed, let Z? be the optimum solution to (3.4.3). It follows from (3.4.2)
that Z = Z? + 1

‖d‖2 ddT is a feasible solution to (3.4.1). Moreover, from (3.4.2)
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we observe that the objective functions of the two problems are the same, as
can be seen from

Tr
(
((D

1
2 C)(D

1
2 C)T )?(I − Z?)

)
(3.4.4)

= Tr
(
((D

1
2 C)(D

1
2 C)T )?

)
− Tr

(
((D

1
2 C)(D

1
2 C)T )?Z?

)

= Tr
(
((D

1
2 C)(D

1
2 C)T )?

)
− Tr

(
(I − 1

‖d‖2 ddT )Z(I − 1
‖d‖2 ddT )(D

1
2 C)(D

1
2 C)T )

)

= Tr
(
((D

1
2 C)(D

1
2 C)T )?

)
− Tr

(
(I − 1

‖d‖2 ddT )Z(D
1
2 C)(D

1
2 C)T )

)

= Tr
(
((D

1
2 C)(D

1
2 C)T )?

)
− Tr

(
Z(D

1
2 C)(D

1
2 C)T )

)
− 1
‖d‖2 Tr

(
ddT Z(D

1
2 C)(D

1
2 C)T )

)

= Tr
(

(I − ddT

‖d‖2 )(D
1
2 C)(D

1
2 C)T

)
− Tr

(
Z(D

1
2 C)(D

1
2 C)T )

)
− 1
‖d‖2 Tr

(
ddT Z(D

1
2 C)(D

1
2 C)T )

)

= Tr
(
(D

1
2 C)(D

1
2 C)T (I − Z)

)
.

Above observations suggest that Z? is an optimal solution of (3.4.3) if and only
if Z is an optimal solution of (3.4.1).

We have mentioned before that projecting the relaxed semidefinite program-
ming problem onto the orthogonal complement of the unit eigenvector 1

‖d‖2 d will
result in a more manageable problem. We will now state a theorem [9] which
will allow us to obtain the solution for (3.4.3).

Theorem 2. Let Sn denote the space of n by n symmetric matrices, and let
Φn,k = {U ∈ Sn | 0 ¹ U ¹ I, T r(U) = k}. Let A ∈ Sn have eigenvalues λ1 ≥
. . . ≥ λn. Then

max
U∈Φn,k

Tr(AU) =
k∑

i=1

λi.

At this point it is important to point out that adding the constraint Z º
Z2 to (3.4.1) would improve the relaxation, but the resulting problem would
be significantly more difficult to solve than (3.4.1), consequently, the tighter
relaxation will not be considered in our discussion and will be left for future
investigation.

We are now ready to apply the above result to our problem. Let λ1, . . . , λk−1

denote k− 1 largest eigenvalues of ((D
1
2 C)(D

1
2 C)T )? in decreasing order. Not-

ing that minimizing Tr
(
((D

1
2 C)(D

1
2 C)T )?(I − Z?)

)
is equivalent to maximiz-

ing Tr
(
((D

1
2 C)(D

1
2 C)T )?Z?

)
, and applying Theorem 2 we conclude that the

optimal solution of (3.4.3) is achieved if and only if

Tr
(
((D

1
2 C)(D

1
2 C)T )?Z?

)
=

k−1∑

i=1

λi. (3.4.5)
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It is easy to verify that the solution to the above equation is given by

Z? =
k−1∑

i=1

viv
T
i ,

where vi is the unit eigenvector corresponding to eigenvalue λi. Indeed,

Tr

(
((D

1
2 C)(D

1
2 C)T )?

k−1∑

i=1

viv
T
i

)
= Tr

(
k−1∑

i=1

((D
1
2 C)(D

1
2 C)T )?viv

T
i

)

= Tr

(
k−1∑

i=1

λiviv
T
i

)

=
k−1∑

i=1

λi‖vi‖2 =
k−1∑

i=1

λi.

We can summarize the above discussion with the following algorithm for solving
(3.4.3) and the relaxation of the semidefinite programming formulation of the
planar facility location problem:

Relaxation Algorithm

1. Calculate ((D
1
2 C)(D

1
2 C)T )?.

2. Compute the first k − 1 largest eigenvalues of ((D
1
2 C)(D

1
2 C)T )?

and corresponding unit eigenvectors v1, . . . , vk−1.
3. Set Z = 1

‖d‖2 ddT +
∑k−1

i=1 viv
T
i .

We have mentioned before that the solution to the relaxed problem (3.4.1)
provides a lower bound on the optimal value of (3.1.8). At this point it is
important to note that the above relaxation algorithm will provide a meaning-
ful lower bound only for k ≤ 2. This follows from the fact that the matrix
((D

1
2 C)(D

1
2 C)T )? has rank equal to 2, since C does. This implies that it has 2

nonzero eigenvalues. Thus, for k ≥ 3 the optimal Z will result in the objective
value equal to 0, as can be seen from (3.4.4) and (3.4.5).

In the previous section we considered a method of solving (3.1.8) for n = 3
and k = 2, by constructing a set of feasible solutions from which the opti-
mal solution was chosen. We pointed out that the resulting feasible set was
small enough to make the above approach effective, and that the nonnegativ-
ity requirement Z ≥ 0 proved to be the most restrictive. The results of the
implementation of the above relaxation algorithm with k = 2 support our ear-
lier observations. In majority of cases the optimal solutions to (3.4.1) obtained
from the algorithm violated the feasibility requirements of (3.1.8) by containing
negative entries. It is worth mentioning, however, that in some cases, especially
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for small problem sizes, the algorithm produced optimal solution to (3.1.8). We
include several examples below.

Demand matrix D Customer locations C Optimal solution Z




1 0 0
0 4 0
0 0 9







3 10
5 6
1 5







0.2 0.4 0
0.4 0.8 0
0 0 1







1 0 0
0 4 0
0 0 9







4 5
10 8
8 3







0.1 0 0.3
0 1 0

0.3 0 0.9







1 0 0 0
0 4 0 0
0 0 9 0
0 0 0 10







1 8
1 3
7 4
1 4







0.0667 0.1333 0 0.2108
0.1333 0.2667 0 0.4216

0 0 1 0
0.2108 0.4216 0 0.6667







1 0 0 0 0
0 4 0 0 0
0 0 9 0 0
0 0 0 16 0
0 0 0 0 25







5 1
3 10
2 1
9 10
10 1







0.0286 0 0.0857 0 0.1429
0 0.2 0 0.4 0

0.0857 0 0.2571 0 0.4286
0 0.4 0 0.8 0

0.1429 0 0.4286 0 0.7143




Table 3.2: Examples of optimal solutions Z obtained from the relaxation algo-
rithm with k = 2 and data matrices D and C, which are also optimal to the
PSDP.

In conclusion, we will compare the performance of the mixed integer pro-
gramming formulations discussed in the earlier chapter, weighted K-means
heuristic and PSDP relaxation algorithm in solving the planar facility location
problem with k = 2. We will consider best lower bound and best upper bound
produced by the mixed integer program in 2 hour time limit, best objective
value found by weighted K-means algorithm starting with 1000 random initial-
izations, and the solution of the PSDP relaxation algorithm. We demonstrate
the results in Table 3.3.
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Number of Weighted MIP MIP PSDP
Customers n K-means best LB best UB Relaxation

16 8953.26 6034.4 6034.4 4374.6

25 12434.6 11164.6 11164.6 8498.2

36 16309.1 16309.1 16309.1 11891

49 31257.5 23612.9 23614.4 19046

64 36025.2 32676.3 32679.5 25702

81 47571.9 34863 38587.2 31903

100 50579.8 30779.2 50557.3 38572

Table 3.3: Comparing optimal solutions to the planar facility location prob-
lem with k = 2. Objective values obtained by solving mixed integer program,
applying weighted K-means algorithm and PSDP relaxation algorithm.
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In this chapter we extended the classical K-means heuristic to take into
account demands associated with each customer, which made it applicable to the
planar facility location problem. We then showed that solving the planar facility
location problem is equivalent to solving a projective semidefinite programming
problem and briefly discussed a relaxation algorithm, which provides a nontrivial
lower bound on the total costs for small values of k. This suggests the need to
explore tighter relaxations, which may result in more meaningful lower bounds
for k ≥ 3, or investigate rounding techniques to extract a feasible solution
from optimal Z, which can be used to improve the computational efficiency
of the mixed-integer programming formulations of the planar facility location
problems.
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Chapter 4

A Preliminary Look at
Continuous Demand in
Facility Location Problem

In this chapter we extend the planar facility location problem discussed in the
previous chapters. The new framework will be characterized by the assumption
that customers are spread over some region Ω ∈ R2, resulting in a continuous
demand function D : Ω → R describing customer demand distribution.

As pointed out by the authors in [3], continuous facility location models
are applicable to large scale problems, provide a more accurate closed form
solution, and have lesser data requirements in contrast to the discrete models,
where a demand value has to be obtained for each customer. As a result, when
dealing with discrete models, an aggregation of customers into a smaller set is
often performed to reduce the problem to a manageable size and reduce costs
associated with data collection at the cost of accuracy. It is often the case,
however, that discrete models are easier to solve, once all the necessary data
has been obtained.

To avoid the confusion, recall that we have discussed two different discrete
facility location models; one with discrete customer locations and continuous
facility locations, which has been referred to as the planar facility location model,
and the other where both customer locations and facility locations are discrete.
The second formulation is referred to as the discrete formulation of the facility
location model and it was briefly discussed in Section 1.1.

In this chapter, using an illustrative example, we will address some of the
practical issues companies have to deal with when choosing optimal facility
locations under the continuous customer distribution model. To combine the
strengths of discrete and continuous approaches, we will begin by describing
the process of obtaining an approximation of the continuous demand function.
Then, to take advantage of the fast computational time of the discrete formula-
tion of the facility location problem discussed in Section 1.1, we will discretize
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the customers in Ω by splitting the region into an n × n grid for increasingly
large values of n in an attempt to approximate the continuous distribution
model. Note that in our setup, the discrete formulation is a better candidate
than the planar facility location problem due to its faster computation time and
ability to deal with larger data sets. Even though the discrete model results in
an approximate solution due to the fact that the facility locations are chosen
from a predetermined set, the availability of the continuous demand function
will allow us to increase number of customers and potential facility locations,
thereby improving the accuracy while retaining fast computational time.

4.1 Gaussian Demand Function

To set up the stage, we suppose that company X is planning to expand its
services into southern Ontario by opening 5 new facilities which will service
customers in the area. In this section, we demonstrate the process of data
aggregation as a means of acquiring an approximation of the continuous de-
mand function D : Ω → R, where the region of interest Ω contains Toronto,
Mississauga, Scarborough, Brampton, Hamilton, Oshawa and Waterloo.

We begin by aggregating all the customers in Ω into 7 largest cities in that
area. Due to the fact that information about customer demand is costly and
difficult to obtain, our goal is to use population density as well as the area of of
each city as an estimate of the demand for the product. To achieve this, we make
a simplifying assumption that each city is circular and use the two-dimensional
Gaussian function

Dj(x, y) = He
−((x−p1)2+(y−p2)2)

σ2 (4.1.1)

where (p1, p2) is the centre of the distribution, σ is standard deviation and H is
the height of the function at the centre. After constructing Gaussian demand
function for each aggregate consumer, we will disaggregate by defining the total
demand function to be the sum of the individual functions Dj .

We begin by listing the location of each customer enumerated by an integer
j = 1, . . . , 7, which will be the centre of the demand distribution for correspond-
ing city.

City Coordinates of Centre
1. Toronto (90, 50)
2. Mississauga (74, 40)
3. Scarborough (132,59)
4. Brampton (75,70)
5. Oshawa (175,74)
6. Hamilton (60,4)
7. Waterloo (7,26)

Table 4.1: Aggregate customer locations in Ω.
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The above coordinates were obtained using latitude and longitude measure-
ments to calculate horizontal and vertical distances between the cities and by
choosing an origin of convenience. Thus, we have the following domain Ω:
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Figure 4.1: Ω = {(x, y) |0 ≤ x ≤ 180, 0 ≤ y ≤ 80} and customer locations.

We obtain population size and area of each city and display the data in the
table below.

City Population(Pj) Area(Aj)

1. Toronto 2503281 630
2. Mississauga 668549 288
3. Scarborough 593297 188
4. Brampton 433806 267
5. Oshawa 14150 146
6. Hamilton 504559 138
7. Waterloo 97475 64

Table 4.2: Population and area of cities in Ω.

Next we will discuss how the data from Table 4.2 will be used to obtain
approximation of standard deviation σj and height Hj for each city j = 1, . . . , 7.

We begin by using the information about population size to obtain the height
of the distribution Hj for city i. Since the Gaussian function describes the
population distribution, we know that

Total Population of city j = Pj =
∫

He
−((x−p1)2+(y−p2)2)

σ2
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where (p1, p2) and σ are coordinates of the centre and radius of city i, respec-
tively. Therefore we obtain the following equation for the height Hj :

Pj = Hjσj

√
2π. (4.1.2)

We will use the area measure Aj to obtain an approximation of the standard
deviation σj for each customer j = 1, . . . , 7. We will apply so called ”68-95-99.7
rule” or the ”empirical rule”, which states that about 99.7% of values drawn
from a standard normal distribution are within 3 standard deviations away from
the mean. Assuming that each city is circular, the rule simply states that 99.7%
of people live within the radius of 3σ from the centre of the city. As a result we
obtain the following approximation:

σj ≈ 1
3
Rj . (4.1.3)

Using the formula for the area of the circle Aj = πR2
j , we obtain the value

of the radius Rj for each city, then using (4.1.3) we find the values of σj , and
finally using (4.1.2) and values of σj we find Hj for each i. We summarize our
findings in the following table.

City σj Hj

1. Toronto 4.7203 211570
2. Mississauga 3.1915 83569
3. Scarborough 2.5786 91791
4. Brampton 3.0730 56318
5. Oshawa 2.2724 2484.2
6. Hamilton 2.2092 91113
7. Waterloo 1.5045 25847

Table 4.3: Standard deviation σj and height Hj for each customer j = 1, . . . , 7.

Now using the data from Table 4.3 and equation (4.1.1) we obtain demand
function for each city j = i, . . . , 7, which we then sum together to obtain the
continuous demand function:

D(x, y) =211570e
−((x−90)2+(y−50)2)

4.72032 + 83569e
−((x−74)2+(y−40)2)

3.19152

+ 91791e
−((x−132)2+(y−59)2)

2.57862 + 56318e
−((x−75)2+(y−70)2)

3.07302

+ 2484.2e
−((x−175)2+(y−74)2)

2.27242 + 91113e
−((x−60)2+(y−4)2)

2.20922

+ 25847e
−((x−7)2+(y−26)2)

1.50452 .
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Figure 4.2: Gaussian demand function D : Ω → R.

In the next section we will use the continuous demand function to solve the
problem stated in the beginning of this section.

4.2 Discrete Facility Location Model

In the previous section, we pointed out the benefits and downsides of the con-
tinuous and discrete approaches to the facility location model. The continuous
formulation requires one continuous demand function, in contrast to the discrete
formulation, which in order to produce results of comparable accuracy relies on
a large number of demand values.

Since the continuous facility location is very difficult to solve directly, we will
obtain an approximate solution to the problem by solving the discrete model.
Note that by increasing the number of aggregate customers and the set of po-
tential facility locations we increase the accuracy of the approximate solution,
while still having high computational efficiency.

Recall that in the discrete version of the facility location problem the set
of customer locations is finite and optimal locations are chosen from a set of
predetermined potential sites. Therefore we will aggregate the customers in Ω
by dividing the region into n×n grid and placing a representative customer and
a potential facility location into the centre of each square. We obtain the asso-
ciated demand values for each aggregate customer in the grid by evaluating the
integral of the continuous demand function D : Ω → R over the corresponding
square of the grid, as a result keeping the total population constant.

Starting with n = 20 we refine the grid by increasing n to 30 and later 40,
obtaining a more accurate solution to our problem. We illustrate the outcome in
the figures below, where customers and potential outlet locations are represented
by points, and cities are marked by an x, the lines indicate the assignment of
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customers with facilities. Customers with zero demand are not served by any
facility. Along with each figure we display the computational time, total costs
and list optimal facility locations.
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Figure 4.3: 400 customers, 5 Facilities

Computational time 45.9 seconds
Total costs C400 = 1.0008× 108

Facility Locations Φ400 = {(58.5, 6), (85.5, 50), (94.5, 50), (130.5, 58), (76.5, 70)}
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Figure 4.4: 900 customers, 5 Facilities

Computational time 647.9 seconds
Total costs C900 = 1.1114× 108

Facility Locations Φ900 = {(57, 4), (75, 41.33), (93, 49.33), (135, 60), (75, 70.67)}
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Figure 4.5: 1600 customers, 5 facilities

Computational time 5709.44 seconds
Total costs C1600 = 1.0313× 108

Facility Locations Φ1600 = (60.75, 5), (74.25, 41), (92.25, 51), (132.75, 59), (74.25, 69)
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It is important to point out that as the number of potential facility loca-
tions and the number of aggregate customers increase, there are several factors
affecting the total cost.

First, as was mentioned by the authors in [13], one of the customer aggrega-
tion errors results in underestimation of the total costs. This follows from the
fact that when the facility is located at an aggregate demand point, the resulting
cost of transportation to the customers belonging to this aggregate point is zero,
when in reality it is not. Thus, as number of aggregate data points increases,
so do the total costs.

On the other hand, as the number of potential facility locations increases, the
model produces a more accurate optimal solution due to the higher availability
of location possibilities. As a result, as the number of potential facility sites
increases, the total costs decrease.

Since in the discrete version of the facility location model the set of aggregate
customers coincides with the set of potential facility locations, the two effects
discussed above offset each other, as can be seen by considering total costs
for the above solutions. Comparing the costs we see that in the case of 900
customers, the total costs are C900 = 1.1114× 108, and for 1600 customers the
total costs are C1600 = 1.0313× 108. In this case, the improved accuracy of the
optimal solution due to enlarged potential facility set had a larger effect on the
total costs than the increase in number of customers.

To demonstrate the relationship between the two factors, we will first find
the total cost of 900 customer model using optimal facility locations Φ1600.
Based on the discussion above, we expect it to be lower than C900, due to
higher accuracy of the solutions produced by the model with 1600 potential
facility location. Using the new facility locations we find the total cost to be
1.0262 × 108 < C900 = 1.1114 × 108, indicating the accuracy effect. Similarly,
we observe that the new cost is lower than C1600 = 1.0313× 108 demonstrating
the presence of the aggregation error.

To conclude the discussion we recall that in this chapter we addressed some of
the practical issues related to data mining. By aggregating customers into cities
we have constructed an approximate continuous demand function, reflecting
population density and area of the major cities in the region. After obtaining
the continuous demand function, we solved the problem of locating 5 facilities
under the assumption that the customers are spread over the entire region, using
the discrete version of the facility location problem.
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Chapter 5

Concluding Remarks

In this thesis, we present various mathematical programming formulations of the
planar facility location problem. In addition, we extended the classical K-means
clustering algorithm to take into account the demand values associated with
each customer, which made it applicable to the planar facility location problem
and provided a fast way of obtaining approximate solutions. We shifted into an
alternative framework by showing that solving the facility location problem is
equivalent to finding a solution to a projective semidefinite programming prob-
lem and discussed a possible relaxation algorithm. In addition, we discussed
some of the practical issues related to the facility location problem under the
continuous customer distribution model. We first constructed an approxima-
tion of the continuous demand function, which we then discretized to obtain
demand values for a finite number of aggregate consumers to apply the discrete
formulation of the facility location model.

The preliminary computational results suggest we need to improve mixed
integer formulations of the facility location problem. Introduction of strong
valid inequalities can result in tighter linear programming relaxations and faster
computational time. An alternative approach may use tailored branch and
bound algorithms, which may prove to be effective in solving the problem.

Formulating the planar facility location as a projective semidefinite program-
ming problem offers interesting directions in research. Investigating alternative
relaxations of the PSDP may result in more meaningful lower bounds on the
optimal value and developing new approximation algorithms has a potential to
yield nontrivial bounds for problems of larger size.

Accurate closed form solutions and lesser reliance on data are just some of
the benefits offered by the continuous facility location model, where customers
are assumed to be spread over some region in the plane. The problem, however,
is difficult to solve directly. We hope to explore approaches that deal directly
with the continuous demand function and offer new insight into the facility
location problem.
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