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Abstract

To solve the challenging pattern classification problem, machine learning re-

searchers have extensively studied Multiple Classifier Systems (MCSs). The mo-

tivations for combining classifiers are found in the literature from the statistical,

computational and representational perspectives. Although the results of classifier

combination does not always outperform the best individual classifier in the ensem-

ble, empirical studies have demonstrated its superiority for various applications.

A number of viable methods to design MCSs have been developed including

bagging, adaboost, rotation forest, and random subspace. They have been suc-

cessfully applied to solve various tasks. Currently, most of the research is being

conducted on the behavior patterns of the base classifiers in the ensemble. How-

ever, a discussion from the learning point of view may provide insights into the

robust design of MCSs. In this thesis, Generalized Exhaustive Search and Ag-

gregation (GESA) method is developed for this objective. Robust performance is

achieved using GESA by dynamically adjusting the trade-off between fitting the

training data adequately and reducing the risk of overfitting. Besides its learning

algorithm, GESA is also distinguished from traditional designs by its architecture

and level of decision-making. GESA generates a collection of ensembles and dy-

namically selects the most appropriate ensemble for decision-making at the local

level.

Although GESA provides a good improvement over traditional approaches, it is

not very data-adaptive. A data-adaptive design of MCSs demands that the system

can adaptively select representations and classifiers to generate effective decisions

for aggregation. Another weakness of GESA is its high computation cost which

prevents it from being scaled to large ensembles. Generalized Adaptive Ensem-

ble Generation and Aggregation (GAEGA) is an extension of GESA to overcome

these two difficulties. GAEGA employs a greedy algorithm to adaptively select

the most effective representations and classifiers while excluding the noise ones as

much as possible. Consequently, GAEGA can generate fewer ensembles and signifi-

cantly reduce the computation cost. Bootstrapped Adaptive Ensemble Generation

and Aggregation (BAEGA) is another extension of GESA, which is similar with
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GAEGA in the ensemble generation and decision aggregation. BAEGA adopts

a different data manipulation strategy to improve the diversity of the generated

ensembles and utilize the information in the data more effectively.

As a specific application, the classification of time series data is chosen for the

research reported in this thesis. This type of data contains dynamic information and

proves to be more complex than others. Multiple Input Representation-Adaptive

Ensemble Generation and Aggregation (MIR-AEGA) is derived from GAEGA for

the classification of time series data. MIR-AEGA involves some novel representation

methods that proved to be effective for time series data.

All the proposed methods including GESA, GAEGA, MIR-AEGA, and BAEGA

are tested on simulated and benchmark data sets from popular data repositories.

The experimental results confirm that the newly developed methods are effective

and efficient.
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Chapter 1

Introduction

1.1 Preface

To solve the challenging pattern classification problems, machine learning researchers

have extensively studied Multiple Classifier Systems (MCSs) [17, 42]. The interest

in classifier combination is evident in the literature [27, 45, 64, 68]. Kittler et al.

[49] have identified two reasons for using combination of classifiers: efficiency and

accuracy. It is observed that different classifiers do not necessarily misclassify the

patterns simultaneously. It is this information that is exploited to improve clas-

sification performance. MCSs have also been preferred for practical reasons. For

example, the combination of simple classifiers (e.g. linear classifier) can achieve

a similar performance as that of a more complicated classifier (e.g. Neural Net-

work (NN)) and significantly reduce the computation cost. Several researchers

have demonstrated the motivation to combine classifiers from the perspectives of

expected errors, bias and variance [33, 92]. In addition, Dietterich [22] has in-

vestigated the possible advantages of using a combination of classifiers from the

statistical, computational and representational aspects of the learning algorithms.

Finally, MCSs have less stringent demands on the initial condition and the parame-

ter tuning for the classifiers, which simplifies the model selection process. Although

the results of classifier combination does not always outperform the best individ-

ual classifier in the ensemble, empirical studies have demonstrated its superiority
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for various applications, including handwriting recognition [104], speaker recogni-

tion [65], face recognition [15], signature verification [7] and finger-print verification

[72, 89].

1.2 Motivation

Most of the current research on MCSs are conducted by studying the behavior pat-

terns of the base classifiers in the ensemble [26, 94, 101]. For example, Majority

Voting (MV) assumes that a decision made by the majority of the classifiers in the

ensemble is more likely to be correct. Therefore, aggregating the classifiers with MV

helps to achieve a better performance [102]. Unlike MV, more advanced techniques

[99] adaptively learn the relative importance of each base classifier and label the

data with the most appropriate classifier or combinations of them. However, MCSs

have seldom been discussed from the learning point of view. Theoretical and empir-

ical studies demonstrate that the success of a supervised learning method heavily

depends on how to appropriately tweak the trade-off between fitting the training

data adequately and reducing the risk of overfitting, or, more mathematically, the

balance between the bias and variance.

For instance, it is well known that the linear classifier and nearest neighbor

classifier are not very effective although the reasons for their ineffectiveness vary.

For the linear classifier, since the decision boundary must be a linear function and is

not very adaptive, the data cannot be fitted adequately; that is, the learning of the

data is not sufficient. In contrast, the nearest neighbor classifier does not appear to

rely on any stringent assumption about the underlying data, and can adapt to any

situation to fit the data well. However, the overfitting problem is easily incurred.

Any particular subregion of the decision boundary depends on a handful of input

points and their particular positions and is thus wiggly and unstable [42]. Similarly,

since MCS is a type of the supervised learning methods, it also needs to balance the

goodness of fit on the training data and the risk of overfitting to achieve a robust

and good performance, even if the design of MSCs is very different from that of

individual classifiers in terms of architecture, topology, and the level of decision

making.
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A number of methods, including bagging [17], adaboost [43], rotation forest

[83] and random forest [10], have been developed. These algorithms are based

on different learning methods and have been successfully applied to various tasks.

However, traditional MCSs are not designed to adapt the data very well. Typically,

the data can be represented in multiple ways, each of which extracts a certain type of

information. Obviously, the classification system can benefit from aggregating the

decisions based on different representations. However, methods such as adaboost

and bagging are limited to only one of the representations, although any of them

is available. Since it is difficult to know which representation is effective without

prior knowledge, the information in the data might be distorted or not sufficiently

utilized for the classification purpose.

Although other methods [19] can assume multiple representations, these tech-

niques are still not completely data-adaptive. It is true that those approaches can

employ all the possible representations and let the learning algorithm to assign

the weights to the decisions based on the effective representations. However, these

effective representations are only part of the possible representations and the rest

act as noise representations, which can provide false information about the data.

It is reasonable to assume that the bigger the portion of noise representations, the

more likely the learning algorithm is distracted by the false information and as-

sign inappropriate weights to the decisions based on the different representations.

The inability of traditional approaches to discern the noise representations, some-

how, limits the application of the traditional approaches to real problems. On one

hand, it is desirable to employ different representations of the data to cover all the

possibilities. On the other hand, it is likely that some noise representations will

be introduced, degrading the classification performance. In short, a data-adaptive

design should not only be able to select effective representations, but also exclude

noise representations as much as possible. As it is known, the performances of the

classifiers are usually data-dependent. Similar discussions can be applied to the

selection of the base classifiers in the ensemble. A data-adaptive design should be

able to select the effective classifiers and exclude the noise classifiers.

As a specific application, the classification of time series data is chosen for the

research reported in this thesis. The sources of time series data includes finance,
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medicine, biometrics, chemistry and speech. There is extensive work on the classi-

fication of time series data in the machine learning and data mining communities.

Keogh et al. [55] have conducted empirical studies on the time series data mining

which shows that nearest neighbor classifier gives an impressive performance for

time series data. Povinelli et al. [71] have proposed Gaussian mixture models for

the classification of time series data. Other classification methods for time series

data are found in the literature [19, 31, 32, 90]. Such type of data is known for its

high dimensionality and complicated underlying model. The success of the classi-

fication task is determined by how well the temporal information is extracted and

utilized for the classification purpose. Chen et al. [14] have experimentally shown

that different representations of the time series data can provide complementary

information, which helps to enhance the classification performance. MCSs have a

unique advantage for the classification of time series data. A successful design en-

ables the classification system to adaptively determine the effective representation

and base classifiers for the classification purpose, thus achieving a reliable perfor-

mance. Although the classification of time series data with MCSs is not new, an

adaptive and robust design of MCSs for this task is absent due to the previous

problems.

1.3 Objective

The objectives and the investigation described in this thesis are to propose a robust

and data-adaptive design of MCS as well as its application to the classification of

time series data. The focus is not on the superiority of a certain representation,

or similarity measure, or individual classifier because that they have already been

available for the design of the new MCS. By appropriately aggregating their deci-

sions, the newly devised MCS performs well for classifying data.

Unlike the design of other MCSs, the proposed Generalized Exhaustive Search

and Aggregation (GESA) approach generates a collection of different ensembles of

classifiers which are the power set of all the available classifiers, excluding the null

set. A score function, employed to select the appropriate ensemble for classification

at the local level, is composed of two parts. One measures the goodness of fit of
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the ensemble. The other measures the risk of overfitting. It is anticipated that

GESA can achieve a good and robust performance by dynamically balancing the

trade-off between fitting the data adequately and reducing the risk of overfitting.

In addition, it is shown that GESA is asymptotically optimal, given the ensemble

of available classifiers.

The discussion of GESA is theoretically interesting, but it is not very practi-

cal due to its high computation cost to generate and search for the appropriate

ensemble. Also, GESA is not completely data-adaptive, since the noise representa-

tions and classifiers still exist in some of the generated ensembles. The Generalized

Adaptive Ensemble Generation and Aggregation (GAEGA) approach is proposed

to overcome these difficulties. In GAEGA, only the effective representations and

classifiers are selected to build the ensemble. In addition, the computation cost to

generate and search for the appropriate ensemble is in the polynomial order of all

the available classifiers.

Multiple Input Representation-Adaptive Ensemble Generation and Aggregation

(MIR-AEGA) is derived from GAEGA, applying for the classification of time series

data. MIR-AEGA adopts some special representation techniques which are effective

for time series data. In addition, based on the conclusion from previous studies [55],

the emphasis should be on the base classifiers such as nearest neighbor classifier

and Dynamic Time Warping (DTW).

Bootstrapped-Adaptive Ensemble Generation and Aggregation (BAEGA) is an-

other extension of GESA. Unlike GAEGA, BAEGA adopts the bootstrapped sam-

ple to train the base classifiers, and the entire training data set to train the aggre-

gation rule. The purpose of BAEGA is to first avoid a fixed split of the training

data to train the base classifier and aggregation rule separately, which needs to be

pre-determined. Therefore, the performance of BAEGA is more general. Secondly,

BAEGA aims to improve the diversity of the generated ensembles and utilize the

information in the data more effectively.
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1.4 Contributions

The principal contribution of this thesis is the development of the robust and

data-adaptive MCS. Another main contribution is the application of the proposed

method to the classification of time series data. The contributions have been real-

ized through the following steps.

• Propose a measure to evaluate the goodness of fit of MCSs.

• Propose an Adaptive Aggregation approach for the decision combination.

• Propose GESA as a robust design of MCSs.

• Propose GAEGA to reduce the computation cost and achieve a data-adaptive

performance.

• Develop MIR-AEGA to classify time series data.

• Propose BAEGA to utilize the information in the data more effectively and

achieve a more general performance.

1.5 Organization of the Thesis

The organization of the thesis is as follows: the literature on MCSs and the clas-

sification of time series data are reviewed in Chapter 2. Chapter 3 discusses the

GESA approach. In Chapter 4, the GAEGA approach, which is more practical

than GESA, is proposed. In addition, the application of the proposed approach to

classify time series data is discussed. In Chapter 5, the BAEGA approach is intro-

duced as another extension of GESA. After the experimental results are discussed

in Chapter 6, some conclusions and suggestions are presented for future research.
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Chapter 2

Background

In the machine learning research, the decision aggregation has proved to be effec-

tive for improving the performance of various multiagent systems [1, 30, 37, 46].

Among them, MCS may be one of the most well-studied. In the literature, terms

such as combination of multiple classifier, classifier fusion, and divide and conquer

classifiers have been used interchangeably in MCSs [47]. The validity of MCSs is

based on the observation that the sets of patterns misclassified by the different

classifiers do not necessarily overlap. This indicates that different classifiers, when

combined, provide complementary information about the patterns to be classified.

In addition, the use of MCSs increases the reliability, since each base classifier pro-

vides redundant information for the whole system. Consequently, the failure of one

base classifier does not necessarily cause the failure of the entire.

In this chapter, the current progress in MCSs is first reviewed. Then, the related

techniques for the classification of time series data is discussed. In particular, the

focus is on the available MCSs techniques for this task.

2.1 Multiple Classifier Systems

Many MCSs are reported in the literature. The approaches are distinguished by

their structure, topology, aggregation strategy, aggregation procedure, and ensem-
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ble generation. From these perspectives, the current research on MCSs is reviewed

in the following sections.

2.1.1 Diversity

Diversity is regarded as the ability of the base learners in MCSs to exhibit different

local behaviors to a given problem. Kuncheva claimed that the concept of diversity

is one of the cornerstones in the study of MCSs.

“There is consensus among the researchers in classifier combination that the

major factor for a better accuracy is the diversity in the classifier team ...” [52].

Previous researches have reported that the performances of most classifiers are

ad hoc; that is, they outperform others only for a specific problem or for a specific

subset of the input data. It is difficult to find a single expert for achieving the best

results in the overall problem domain [97]. However, several independent classifiers

seldom fail on a certain input coincidentally. Therefore, it is possible to enhance

the accuracy and reliability by combining a set of classifiers, each of which performs

differently for a given problem. Clearly there is no advantage to combine identical

classifiers, and the performances of MCSs heavily depend on the diversity of the

base classifiers.

Types of Diversity

Sharkey and Sharkey [92] have identified four types of diversity for the combination

of NN classifiers in terms of the extent to which members of the ensemble exhibit

the coincidental failure and function coverage. A function is covered if at least one

classifier produces the correct output for each input that is tested.

• Type 1 Diversity: There are no coincidental failures and the function is cov-

ered. Type 1 diversity achieves an ideal performance for the ensemble on

a test set. For any input, there is, at most, one classifier that produces an

incorrect output.
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• Type 2 Diversity: There are some coincidental failures, but the majority are

correct, and the function is covered. Type 2 diversity does not meet all the

criteria of Type 1. However, for any input, the majority of the classifiers

produce the correct answer. In this situation, an aggregation strategy such

as MV can still work effectively.

• Type 3 Diversity: The majority of the classifiers do not consistently give the

correct answer; however, the classifiers in the ensemble still cover the function

such that the correct output for each input pattern is consistently produced

by at least one classifier. Obviously, MV does not work and more complex

aggregation methods are expected.

• Type 4 Diversity: The test set is not entirely covered by the ensemble of classi-

fiers. In this situation, the performance of MCSs can be unreliable. However,

they can still be used to improve generalization, provided the aggregation

methods are appropriately designed.

Sharkey and Sharkey [92] claim that such an assessment of the diversity indicates

the best way of combining classifiers, and provide an upper bound on the level of

generalization performance that can be expected from an ensemble.

Evaluation of Diversity

In the section, several popular methods are reviewed to measure the diversity of

the base classifiers.

Within-Set Generalization Diversity (GD) Partridge and Yates [75] have pro-

posed the GD method to measure the diversity of classifiers. This measure is

computed as follows:

GD = 1− p(A)

p(B)
, (2.1)

where p(A) indicates the probability that any two classifiers which are ran-

domly selected from set C will both fail on a randomly selected input, and
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p(B) indicates the probability that one randomly selected classifier will fail

on a randomly selected input. GD takes values in the range [0,1]. Clearly,

the larger GD is , the more diversity the selected classifiers exhibit.

Q-Statistics Kuncheva et al. [57] have proposed the Q-statistics to assess the

pairwise similarity of the classifiers. For classifiers ca and cb. Q-Statistics is

defined as follows:

Qab =
N11N00 −N01N10

N11N00 + N01N10
, (2.2)

where N11 is the number of times both classifiers are correct, N00 is the

number of times both classifiers are incorrect, N10 is the number of times

that classifier ca is correct and cb is incorrect, and N01 is the number of times

that classifier ca is incorrect and cb is correct. Qab varies between [-1,1].

Compound Diversity (CD) Giacinto and Roli [36] have developed the Com-

pound Diversity (CD) based on the compound error probability for two clas-

sifiers ca and cb. The equation is as follows:

CD = 1− p(A), (2.3)

where p(A) is the probability that ca and cb will both fail on a randomly

selected input. CD takes values in the range [0,1]. Clearly, the larger the CD

is, the greater diversity of the selected classifiers.

Mutual Information (MI) Kang and Lee [53] have suggested that the pairwise

mutual information can be used as a measure of the diversity between classi-

fiers ca and cb such that

MI(a, b) =
L∑

i=1

n∑
j=1

p(ωi, ωj)log
p(ωi, ωj)

pa(ωi)pb(ωj)
, (2.4)

where L is the total number of classes and ωi, i = 1...L are the class labels.

It is evident that the larger MI(a, b) is, the more the diversity for classifiers

ca and cb have.
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Correlation between Errors (CE) The correlation of the errors for the member

classifiers is also a good choice for a measure of the diversity. Aksela [4]

has introduced the CE method, represented by ρij, to measure the diversity

between classifiers ci and cj. It is calculated by

ρij =
Cov[vi

e, v
j
e]√

V ar[vi
e]V ar[vj

e]
, (2.5)

where vi
e and vj

e are the vector of the error occurrence in classifiers ci and cj

respectively. Cov and V ar refer to the covariance and the variance, respec-

tively.

Other diversity measures include the Ratio between Different and Same Errors

(RDSE), Weighted Count of Errors and Correct Results (WCEC), Exponential

Error Count (EEC), Measure of Closeness (MC) and Conditional Entropy (CE)

[4, 48, 106], each conveying strength in certain applications.

Diversity Approaches

Once the diversity has been assessed, approaches to produce diversity among the

base classifiers are considered. Windeatt and Ardeshir [98] have identified four

categories of approaches. The first category includes the methods that reduce the

dimension of the training set to attain different feature sets. Oza and Tumer [70]

have proposed the input decimation approach which decouples the base classifiers

by training them with different subsets of the input features. Thus, the correlation

among the classifiers is significantly reduced. A possible weakness of the approaches

in this category is that the decomposition of the feature space might conceal some

high-dimensional patterns, degrading the performance of the entire system.

The second category includes methods that incorporate an ensemble of hetero-

geneous or homogeneous classifiers with different parameters. In these approaches,

it is assumed that each base classifier tends to identify different discriminating

patterns for the same input. Therefore, the performance of the entire system is

enhanced through aggregation. However, the work of Valentini and Masulli [97]

11



has demonstrated a tradeoff between the accuracy and the independence of the

base classifiers; that is, it is difficult to guarantee the accuracy and independence of

the base classifiers at the same time. Therefore, the capability of MCSs to achieve

diversity at the training level seems to be limited.

The third category includes techniques that resample the training set, and

thereby, specifically apply each classifier on a different subset of data. The pop-

ular resampling techniques include bagging and boosting [17, 69]. The common

weakness of the approaches in this category is that the decomposition of the input

space reduces the available information for the individual classifiers. As a result,

the classifiers might not be well trained.

Finally, the fourth category includes the output coding methods that create

complementary two-class problems from MCSs. The most popular output coding

approach is the Error-Correcting Output Coding (ECOC) [67, 74]. The appropriate

design of the coding matrix is one of the most important issues for the output coding

approach.

2.1.2 Architectures

From the architecture perspective, MCSs are divided into the modular and ensemble

systems, depending on whether or not the tasks are decomposed [88].

Modular Systems

In modular systems, the problem is decomposed into a series of sub-problems. Each

base classifier focuses on one of the sub-problems, and the solution to the entire

task can not be provided by any individual member. The complete solution requires

the coordination of all of the modules. Typically, the combination of the modular

system relies on some switching mechanism, in which the output for each input

data is taken from the most relevant component, or even the most relevant blend

of modules.

The Hierarchical Mixture of Experts (HME) [44] is a popular modular system.

Its architecture is a tree structure in which the classifier selection is conducted
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according to a pre-defined distribution, as described in Fig. 2.1. Each of the base

classifiers is an expert in the local area of the feature space. The outputs of the

experts go up and are mixed by the gating network.
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Figure 2.1: Two-level hierarchical mixture of experts architecture

Ensemble Systems

In an ensemble system, several redundant approximations to the same function are

combined to yield a single unified outcome. In contrast to the modular system,

each component of the ensemble system can provide a solution to the entire task,

although it may not as good as the solution achieved by the ensemble. The com-

bination of the ensemble system takes all the outputs of the base classifier in some

forms such as the voting and averaging.

2.1.3 Ensemble Generation

Ensemble generation is crucial for the design of MCSs. There are various ways

to generate the classifier ensemble. Wanas and Kamel [100] have summarized the

methods for generating an ensemble of NN classifiers as follows.
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• Varying the Initial Condition: A set of networks is created by varying the

initial conditions such as the initial weights.

• Varying the Network Topology: Various network topologies and architectures

can be used. These variations are in the number of hidden layers or nodes.

• Varying the Training Algorithm: Various algorithms, including the Back

Propagation (BP) and the Radial Basis Function (RBF), are chosen to train

each network.

• Varying the Training Data: The training data, presented to each member

of the ensemble, can differ. Several alternative methods can be carried out.

These alterations can be done by resampling, decomposing the feature space,

varying the data sources or pre-processing methods. One example is bag-

ging. Bagging is a “bootstrap” ensemble method that creates the ensemble

by training each classifier on a random redistribution of the training set. Each

classifier’s training set is generated by randomly drawing, with replacement,

N examples, where N is the size of the original training set. Then, the deci-

sions of the base classifiers are combined by MV.

In order to overcome the problem of the over-generation of the ensemble, ap-

proaches such as test and select and overproduce and choose [38, 93] have been

proposed in previous research. The selection criteria and search strategy are piv-

otal in deciding the optimal subset of classifiers. The selection criteria include the

maximization of diversity, maximization of accuracy, and minimization of mean

squared error [38, 80, 93]. The search strategies include the exhaustive search,

forward search, backward search, tabu search, genetic algorithm, population-based

incremental learning, and clustering and search [38, 79, 93].

2.1.4 Topology and Structure

Lam [61] has categorized MCSs in terms of their topologies or structures. Four

different topologies are recognized in Lam’s work.
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Conditional Typology

In conditional topology, a series of classifiers are sequentially applied to the data set,

until satisfying results are achieved. Usually, the system begins with the primary

classifier. Therefore, this structure has the advantage of computational efficiency

when the primary classifier is a fast one, as it processes most of the easily recog-

nizable patterns.

Hierarchical (Serial) Topology

In the hierarchical topology, the classifiers are applied in succession such that each

classifier produces a reduced set of possible classes for each pattern. The distinction

between this topology and the previous one is that the former stops applying the

classifier to the data set, once the satisfying results are obtained, whereas the latter

must apply all the designed classifiers to the data set.

Hybrid Topology

Certain classifiers will be more effective on particular patterns. This information is

used to select the classifiers which are appropriate to identify the given patterns. In

the hybrid topology, the selection strategies are driven by various criteria, including

reliability, classifier agreement (obtained from the results on a training set), and

the features or parameters of the patterns.

Multiple (Parallel) Topology

For multiple topology, multiple classifiers first operate in parallel to produce the

classification results of a given pattern, and the decisions are combined to yield a

final decision. The additional computational cost for the individual classifier in this

architecture can be reduced by using a parallel hardware architecture. In addition,

the operation of each classifier allows for the development and introduction of new

classifiers without requiring major modifications to the fusion process.
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2.1.5 Aggregation Strategy

Although the previous research on MCSs has focused on combining different classi-

fiers, the current interest has shifted to finding the appropriate aggregation strate-

gies. Woods et al. [101] have categorized combination approaches into two groups:

dynamic classifier selection and classifier fusion. This scheme has been further de-

veloped by Kuncheva et al. [47], in which the difference between static selection

and dynamic selection are distinguished. This categorization is further extended

into the selection-fusion scheme [51]. In the following section, several well known

aggregation strategies are discussed.

Selection

The classifiers in the selection approach are regarded as complementary and each

classifier is an expert in some local regions of the feature space. Kuncheva [51]

further divided the selection scheme into the static and dynamic structure. The sub-

division depends on whether the selection is made upon statically or dynamically.

• Static Selection

In a static selection system, feature regions are specified during a training

phase. Two possible training approaches are specified by Kuncheva [51]: (1)

specify the regions and then assign a responsible classifier for each region (2)

given the data set, find the region where each classifier is the best. The second

approach might be more effective, but it is difficult to implement.

• Dynamic Selection

Dynamic selection systems predict which single classifier is most likely to be

correct for a given sample. Only the output of the selected classifier is consid-

ered in the final decision [101]. In dynamic selection systems, the selection of

the classifier to label the data is made during the operation phase. Typically,

this choice is based on the certainty of the current decision. The advantage of

the dynamic selection system is that the error-dependency can be eliminated.
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Woods et al. [101] have proposed the Dynamic Classifier Selection by Local

Accuracy (DCS-LA). In this research, “local regions” are defined as the K-

nearest neighbors in the training data. The idea is to estimate each classifier’s

accuracy in the local regions of the feature space, surrounding an unknown

test sample; then, the decision is made on the most locally accurate classifier.

Two methods for estimating the local accuracy are also proposed in this re-

search. One is simply the percentage of training samples in the region that are

correctly classified which is referred as the “overall local accuracy”. Another

possibility is to estimate the local accuracy with respect to some output class,

which is referred to as the “local class accuracy”. Other dynamic selection

approaches including the prior selection method, posterior selection method,

and Dynamic Classifier Selection based on Multiple Classifier Behavior (DCS-

MCB), are reported in the literature [36, 37, 38].

Fusion

Instead of a search for the most appropriate classifier for the local regions, the fusion

approaches assume that all the classifiers are equally experienced, and the decisions

of all of the classifiers are taken into account. Sharkey [88] further divided the fusion

scheme into fixed and trained methods. The sub-division depends on whether the

weight for the combination of the multiple classifiers is fixed or dynamically trained.

• Fixed Fusion

In the fixed fusion systems, the weight for the combination of the multiple

classifiers is fixed. There is no learning process for the system to learn the

weight for each classifier.

The most simple combination strategy is to apply simple operators such as

sum, simple average, product, and min-max to the outputs of all the base

classifiers. Then, the decision is based on the max or min value of the final

results. Another important fixed fusion approach is MV, in which the final

decision is made by selecting the label that is most represented by the indi-

vidual classifiers. The advantage of the fixed fusion approach is its simplicity
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and lower computational cost; the disadvantage is the lack of flexibility in the

combination process.

• Trained Fusion

In the trained fusion system, the weight for the combination of the multiple

classifiers is learned through training. Usually, there is a learning process for

the system to learn the weights of each classifier.

Unlike simple averaging and MV, the Weighted Aggregation approaches such

as Weighted Averaging (WA) and Weighted Majority Voting (WMV) adap-

tively assign the weights to the base classifiers. Clearly, the performances

of WA depend on the way that the weights are learned. Wanas and Kamel

[58] have developed a novel scheme for decision aggregation. A detector is

employed to estimate the weights for the base classifiers. The weight factor

represents the confidence in the output of each classifier. These confidences

are then aggregated by using fixed classifier-combining methods.

Stacked Generalization (SG) [95] requires a higher level classifier to learn the

error of the base classifiers as described in Fig. 2.2. The outputs of the base

classifiers are used as the training data for the stacked classifier at the higher

level. The purpose of this approach is to minimize the generalization of the

errors of the base classifiers. Obviously, the performance of this aggregation

approach heavily depends on the decision distribution of the base classifiers

and the choice of the stacked classifier at the higher level.

In the Naive Bayesian Fusion (NBF) approach [104], the independence of

the base classifiers is assumed. For each classifier, a confusion matrix is

learned from a validation data set, representing the decision distribution of

each classifier. For the given test data, a soft label vector, which represents

the support for each category, is generated by each classifier. The final label

is obtained by applying the max-sum or max-product operator to these soft

label vectors. This approach is built on the bayesian theory. However, an

assumption about the independence of the base classifiers is too strong and

can not be satisfied in many applications.

Behavior Knowledge Space (BKS) combines the decision of the multiple clas-
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Figure 2.2: Stack Generalization (SG)

sifiers by building a lookup table for each candidate. The lookup table com-

prises all possible combinations of the class labels, and each cell of the table

is one possible combination. The final decision is reached by applying a max-

imum operator on the set of class label in each cell. Unlike NBF, BKS does

not assume the independence of the base classifiers. However, large set of

training data is required [41].

Decision Template (DT) [47] is similar to BKS. For any input, DT builds a

profile table from the ensemble of the classifiers. For each class, there is a

desirable decision template. Then, the profile table is compared with each

decision template. Finally, the decision is made by applying a maximum

operator on the set of similarity measures. DT does not assume the indepen-

dence of the base classifiers either. Compared to BKS, DT does not require

such a large amount of training data. The empirical research has proven that

DT generally has a better performance compared to that of other methods.

However, DT estimates the joint decision distribution of the base classifiers

based on the average performance. It can be ineffective in some situations
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such as the decision XOR problem, discussed in Chapter 6.

Other aggregation approaches include the Dempster-Shafer (DS) and Fuzzy In-

tegral (FI) [6, 13].

2.2 Methods for the Classification of Time Series

Data

The progress in MCSs continues to bring new ideas for traditional problems such as

the classification of time series data, which is challenging but motivating. Although

the classification of time series data is not a discipline in its own right, it has been

extensively explored in many fields such as statistics, signal processing, control

theory, and machine learning. Several traditional techniques have been employed

for classifying time series data including Hidden Markov Model (HMM), Recurrent

Neural Network (RNN), and Dynamic Time Warping (DTW).

Hidden Markov Model (HMM) It has been mostly used for problems such as

speech recognition, gesture recognition, and handwriting recognition. An

HMM is a statistical model in which the system being modelled is assumed

to be a Markov process with unknown parameters. In a standard Markov

model, the state is directly visible, and the state transition probabilities are

the only parameters. In HMM, the state is not directly visible. However,

the variables that are influenced by the state are visible. Each state has

a probability distribution over the possible output tokens. Therefore the

sequence of tokens generated by a HMM gives some information about the

sequence of states. The major task for the use of HMM is to determine the

unknown parameters [17]. Fig. 2.3 dipicts an HMM. wi is the hidden units,

aij is the transition probability, and bij is the probability of the emission of a

visible state.

Recurrent Neural Network (RNN) Unlike the feedforward NN, an RNN forms

directed cycles among the neurons. In principle, an RNN can exhibit almost
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Figure 2.3: Example of Hidden Markov Model (HMM)

arbitrary sequential behavior, which makes it promising for adaptive robotics,

speech recognition, music composition, attentive vision, and many other appli-

cations. Fig 2.4 illustrates an example of an RNN. The output unit values are

fed back as auxiliary inputs. During the classification, pattern x is presented

to the input units. The feedforward flow is computed and the outputs are fed

back as auxiliary inputs. This leads to a different set of hidden unit activa-

tions, new output activations, and so on. Ultimately, the activations stabilize,

and the final output values are used for classification. RNNs have been proven

effective in learning short time-dependent signals. However, RNNs are less

successful for long time-dependent signals because of the diluted effects [17].

The application of RNNs on the classification of time series data is found in

literature [34, 40].

Dynamic Time Warping (DTW) It is a traditional algorithm for measuring

the similarity among the sequences of time series data. Its many applications

include speech recognition and word recognition. Unlike the simple Eucledian

distance measure, the match of the sequences of time series data is not always
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Figure 2.4: Example of Recurrent Neural Network (RNN)

linear in DTW. It allows the sequences to be warped non-linearly in the time

dimension to find an optimal match for the given sequences. Fig.2.5 illustrates

an example of DTW as the similarity measure for the sequences of time series

data.

Keogh et al. [50, 55] have conducted empirical studies on time series data

mining which shows that the Euclidean distance and DTW outperform many

other similarity measures. With the nearest neighbor classifier, the classi-

fication performances are impressive for time series data. Kadous [54] has

summarized a few weaknesses when DTW is applied as the similarity mea-

sure for the classification of time series data. One of the fundamental issues

for DTW is that this similarity measure might not be very reliable. In the

following chapter, an example is introduced to show how DTW fails to solve

an easy problem for time series classification.

One of the common weaknesses of traditional approaches is that they can only

be applied to certain types of time series data. However, the sources and underlying

models of time series data are very diversified. Therefore, the performance of those
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Figure 2.5: Example of Dynamic Time Warping (DTW) and euclidian distance

traditional methods are data-dependent, and are difficult to apply. MCSs have an

unique advantage in classifying time series data, since MCSs allow the data to be

modelled in different ways. By adaptively selecting the most appropriate method or

combinations of them, a good and reliable performance can be achieved. With the

recent advances in this area, many MCSs have been proposed for the classification

of time series data.

Sanchos et al. [90] have employed an ensemble of five base classifiers, each

of which is either Self-Organizing Mapping (SOM) or Multiple Layer Perceptron

(MLP) for the classification of time series data. Each SOM or MLP shares the

same architecture, but has different initial weights. For MLP, the outputs of the

net are considered as an estimation of the posteriori probability of the categories.

For SOM, the Euclidian distance between the input vector and the weight vector of

each node is first computed. For each category Li, the corresponding winner node

has the minimum Euclidean distance for all the nodes which belong to Li. Then, the

posterior probability of each category is estimated by applying a softmax function

on the Euclidean distance between the input vector and the weight vector of the

winner node of each category. Finally, the category which has the maximum average

posterior probability is assigned to the input data.
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Although it is quite innovative to combine supervised and unsupervised learning

in Sanchos’ research, there are several weaknesses. At first, the Euclidean distance

is used to calculate the posteriori probability of each class in the SOM classifiers.

However, it is known that the Euclidean distance is not very reliable for measuring

the similarities of time-dependent data. Therefore, it is questionable to adopt this

method to generate the posteriori probability. In addition, the mapping between

the cluster and the class label might not be a one-to-one or many-to-one mapping

which is assumed implicitly by the authors.

Ghosh et al. [29, 32] have employed an ensemble of NNs with the WA fusion

technique to identify and classify underwater acoustic signals. The feature space of

the input data is composed of a 25-dimensional feature vector extracted from the

raw signals. In the feature vectors, there are 16 wavelet coefficients, 1 value denoting

the signal duration, and 8 other temporal descriptors and spectral measurements.

One of the weaknesses for this approach is that the feature extraction is ad hoc.

The number and type of the features might be optimal for only certain applications

such as oceanic signal data.

González et al. [31] and Diez et al. [16] have proposed a classification system for

time series data which is based on the boosting technique. The base classifiers are

very simple classifiers which consists of only one literal. The background temporal

predicates can be interval-based, point-based, or distance-based. Each time series

data is represented by a set of literals, and the final classification results are obtained

according to the weighted average of the outcomes of the base classifiers. The

objective of this approach, as claimed by the authors, is to find a non-domain

specific temporal classification technique. However, the selection and definition of

the temporal predicates are themselves ad hoc. In addition, the boosting technique

is sensitive to the noisy data, limiting its performance in real applications.

Dietrich et al. [19, 21] have developed three architectures for the fusion of

decisions based on the local features of time series data: Classification, Decision

Fusion and Temporal Fusion (CDT), Decision Fusion, Classification and Temporal

Fusion (DCT) and Classification, and Temporal Fusion, Decision Fusion (CTD). A

set of the local features for time series is calculated within a local sliding window

W t(t = 1..T ) which covers a small part of the time series and moved over it. From
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each window, W t, a set of p features are extracted: F t= (F t
1,F

t
2,... F t

p). CDT and

CTD adopt the hierarchical fusion architecture. They differ from each other by

firstly fusing the decisions of the base classifiers on different types of features in

the same window or the same type of features over various windows. DCT first

connects the p features in each window to a vector. The final decision is made,

based on the fusion of the decisions of the base classifiers on the p-feature vector in

each window. Dietrich et al. [20] further proposed three other architectures for the

fusion of decisions: Multiple Decision Template (MDT), Decision Template (DT)

and Clustered Multiple Decision Template (CMDT). MDT and DT are similar to

CDT and DCT, respectively. CMDT improves MDT by assigning a set of multiple

templates {DT 1
i ,DT 2

i , ..., DT k
i } to each class wi. There are weaknesses to this

approach. First, the determination of the parameters such as the size of the sliding

window is data-dependent. Secondly, the sliding window method can cause the loss

of information for high dimension temporal patterns.

Hsu et al. [40] have devised an hierarchical mixture model, called the specialist-

moderator network for the classification of time series data. This method combines

RNNs in a bottom-up way. The primary contribution of this work is the model’s

ability to identify the intermediate targets, based on a partition of the input chan-

nels. One drawback of the hierarchical classifier system, such as the hierarchical

mixture of experts, is that the system is not robust and the failure of one base

classifier immediately affects the performance of the entire system.

2.3 Summary

In this chapter, the MCSs in the literature are first presented from different perspec-

tives, including diversity, architecture, ensemble generation, and aggregation. Also,

various methods for the classification of time series data were reviewed. Compared

with traditional methods such as HMMs, RNNs and DTWs, MCSs have specific ad-

vantages and can achieve a better and more reliable performance. In the following

chapters, a new design of the MCS and its application to the classification of time

series data are introduced. The motivation to develop such a design is examined,

and the results of the empirical study on benchmark data sets are presented.
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Chapter 3

Generalized Exhaustive Search

and Aggregation (GESA)

Approach

3.1 Motivation

3.1.1 General Principles of Supervised Learning

Although MCS is a special type of classification system in terms of the architecture,

topology, and level of decision making, the design should still follow some general

principles of the supervised learning methods. Therefore, it makes sense to review

the supervised learning from the machine learning point of view.

Supervised learning is an attempt to learn model f by example through a

teacher, which observes the system under study, and assembles a training set of

observations (xi, yi), i = 1, ..., N . The observed input values xi are also sent to

an artificial system, known as the learning algorithm. It produces outputs f̂(x) in

response to the inputs. The learning algorithm can modify the input and output

relationship f̂ in response to the differences between Y and f̂(x), which are defined

by a loss function. This process is known as learning by example. After the learning

process is finished, it is anticipated that the artificial and real outputs will be close
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enough in value to be useful for all the sets of inputs likely to be encountered in

practice [42].

3.1.2 Overview of Overfitting Problem

Numerous empirical and theoretical studies have confirmed that it is also critical to

reduce the risk of overfitting in the learning process. Overfitting, a major concern

in machine learning, is recognized as a violation of Occam’s razor [17]. Usually a

learning algorithm is trained by using some set of training samples, in which the

desired output is known. The learner is assumed to reach a state where it can also

predict the correct output for the other samples such that the learner can be gener-

alized for situations not presented during training. However, the learner can adjust

to very specific random features of the training data that have no causal relation to

the target function. In this process of overfitting, the performance on the training

samples still increases, whereas the performance on the test data worsens. Overfit-

ting occurs, for example, because the model is too complicated, the training sample

is too small or its dimension is too high, and the learning process is too long. It is

somewhat suspicious that a learning method, without any mechanism to reduce the

risk of overfitting, can achieve a robust performance. For example, linear regression

is usually considered as a robust supervised learning method. However, empirical

studies have shown that this conclusion is valid only when the dimensions of the

data are relatively low. In a typical case, methods such as stepwise regression,

lasso regression and ridge regression are preferred. Various regularization methods

such as penalization, selection and shrinkage can be employed to reduce the risk of

overfitting [42]. Although there is no proof that certain loss functions or regular-

ization methods are superior to others, an explicit discussion from this perspective

provides some insight into a robust design of the supervised learning algorithm.

3.1.3 Understanding MCSs from the Learning Perspective

Boosting is one of the well studied MCSs. Hastie et al. [42] have discussed this

method from the learning point of view. They have concluded that adaboost is
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equivalent to the forward stage-wise additive modelling, based on the exponential

loss function. The relative good performance of adaboost is partly explained by

the robustness of the exponential loss function, compared with that of other types.

However, it does not mean that adaboost could completely avoid the overfitting

problem. Hastie et al. [42] have also discussed several ways to reduce the risk of

overfitting when training a more generalized version of boosted trees: use a small-

size tree as the base learner to reduce the model complexity and use the shrinkage

method to reduce the learning speed. For other MCSs, there are few explanations

by the designers from the learning perspective. It is likely that these designed

MCSs are not robust. Compared with the individual classifiers, MCSs succumb to

the overfitting problem more easily, since they are more complex and have a higher

degree of freedom.

In the proposed Generalized Exhaustive Search and Aggregation (GESA) ap-

proach, the “over-generation and selection” strategy is adopted. A collection of

various ensembles of classifiers are first generated, each of which fits the valida-

tion data with different degrees1. The test data are then classified by each of the

generated ensembles. The final decision is made by taking into consideration the

ability of each ensemble to fit the validation data locally and reducing the risk of

overfitting. By appropriately balancing the trade-off between these two parts, it is

expected that the performance of this newly devised method is robust over general

situations.

3.2 Details of GESA

To simplify the discussion, a set of heterogeneous classifiers, each of which takes the

raw input representations, is considered. The architecture of GESA is exhibited in

Fig. 3.1. The knowledge space Ω is defined as all the available classifiers. GESA

first generates a collection of different ensembles. This motivation is based on the

observation that each ensemble has a different capability to fit the data. Each

ensemble makes a decision from the data. Then, the most appropriate decision is

1The validation data set denotes the data which are used to train the aggregation rule
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Figure 3.1: Architecture of GESA

selected to label the data by maximizing the proposed score function. The score

function is composed of two parts. One measures the goodness of fit of the ensemble,

and the other measures the risk of overfitting.

3.2.1 Loss Function

In this section, a loss function is defined to measure the goodness of fit on the

validation data by the ensemble. In this thesis, the decision boundary of the base

classifiers in the ensemble represents a partition on the data space X into a collection

of disjoint local regions {Xi}. Each of the local regions is determined by the decision

boundary of the base classifiers in the ensemble. Fig. 3.2 gives an example in which

the data space is partitioned by 3 linear classifiers into 7 disjoint local regions. In

Fig. 3.2, it is noted that the data in some local regions come from several categories

and the decision boundary doesn’t separate the data accurately. However, since

each local region could be labeled with only one category in the end, some data in

these local regions are unavoidably misclassified.
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Let L = {l1, l2..., lr} be the categories of the data. Given an ensemble φ (φ =

{c1, c2, ..., ch}), θ̂φ(Xi) is adopted to measure the goodness of fit of ensemble φ on

the validation data in the local region Xi. The definition of θ̂φ(Xi) is as follows.

Let pj
i be the probability of the data with category j in Xi and p̂j

i is the estimation

of pj
i . The most frequent category lmi is the category with the highest probability

in local region Xi, which is defined as follows.

lmi = lki k = arg max
j

pj
i .

Consequently, l̂mi is used to denote the estimation of lmi and defined as

l̂mi = lki k = arg max
j

p̂j
i .

Suppose Xi is labelled with lmi, the loss function for x ∈ Xi is defined as

I(ω(x), lmi) =





1 ω(x) = lmi;

0 Otherwise,
(3.1)

where ω(x) is the actual label of x. It is readily shown that

E(I(ω(x), lmi)) = pm
i ,

where pm
i is the probability of the data with label lmi in Xi. θφ(Xi) is therefore

defined by calculating.

θφ(Xi) = 1− E(I(ω(x), lmi)) x ∈ Xi

= 1− pm
i .

A straightforward estimator for pm
i is p̂m

i where p̂m
i is the frequency of the

validation data from l̂mi in Xi. The estimation of θφ(Xi) is computed by
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θ̂φ(Xi) = 1− p̂m
i .

The goodness of fit of ensemble φ on the entire validation data set is then

measured by Θ̂φ. It is the weighted average of θ̂φ(Xi) over all the local regions.

Therefore,

Θ̂φ =
∑

i

θ̂φ(Xi)× ni

N
, (3.2)

where ni is the number of observations in the local region Xi and N is the

total number of observations in the validation data set. The larger the value of Θ̂φ

indicates that the validation data is less fitted by ensemble φ.
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Figure 3.2: Partitioning of the data space by an ensemble of 3 classifiers

3.2.2 Ensemble Generation

To simplify the discussion, a set of heterogeneous classifiers, each of which takes the

raw input representation, is firstly considered in GESA. The ensemble generation

of GESA is straightforward. In the previous section, how to measure the goodness

of fit of the ensemble on the validation data set is established. It is desirable that
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the ensembles that are generated differ as much as possible. The advantage is that

GESA can explore the different levels of goodness of fit on the validation data set

by the ensembles. Given the knowledge space Ω, all of the possible subsets are

2Ω. Evidently, null set ∅ is not useful. So, the collection of ensembles F , which is

generated in GESA, is

F = 2Ω − ∅. (3.3)

3.2.3 Decision Aggregation

The proposed GESA adopts the novel Adaptive Aggregation (AA) approach for

the decision aggregation. After the reasons for using the AA approach are given,

its major developing steps are discussed.

Goal for the Proposed AA Approach

In the ensemble generation layer, a collection of ensembles F is generated with

different ability to fit the validation data. For the test data x, each ensemble

accordingly has a local region which contains x. Given the collection of generated

ensembles F = {φi}(i = 1...n), suppose Hx = {Xi}(i = 1...n) is all the local

regions which contain x. Clearly, for each local region Xi in Hx, there is x∈ Xi. As

discussed in Section 3.2.1, the goodness of fit of each ensemble for the local region

is measured by θ̂φ(Xi). The AA approach labels the test data x by balancing

the trade-off between fitting the validation data in local region adequately and

reducing the risk of overfitting. The key is to decide which ensemble is appropriate

for the decision-making for test data x. Let’s further elaborate on this idea with

the examples in Fig. 3.3. To simplify the discussion, without the loss of generality,

a subset of the collection of generated ensembles F ′ = {φ1, φ2, φ3} is considered,

where φ1 = {c1}, φ2 = {c1, c2} and φ3 = {c1, c2, c3}. If the principle to select the

appropriate ensemble from F ′ is clarified, it is easy to extend the principle to F . If

the test data x locates inside the region X2,1,2, how should it be labelled? In this

situation, Hx = {X2, X2,1, X2,1,2} where X2,1 = X2,1,1

⋃
X2,1,2 and X2 = X2,1

⋃
X2,2.
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Figure 3.3: Partitioning of the data space by φ1, φ2, φ3

A straightforward way is to first label x with the estimated most frequent cat-

egory of each local region in Hx and select the most appropriate one from them as

the final decision. For example, when using φ3, the local region is X2,1,2. When

using φ2, the local region is X2,1. Suppose that it is more appropriate to make the

decision with φ2. Then x is finally labelled with the category, say l1. Obviously, the

final decision of x depends on how to determine the most appropriate ensemble.

From Fig. 3.3, there is less percentage of data to be mis-classified in X2,1,2 than

X2,1 in the in-sample test. It indicates that φ3 fits the validation data better than

φ2 locally. Normally, it seems to be advantageous to select φ3 to label x since it fits

the data better at the local level. However, it is likely that φ3 may over-fit the data

in the local region X2,1,2, which makes the inference on the label of x unreliable. In

contrast, if the ensemble φ2 is selected, the in-sample fitting may not be adequate

and the final outcome can be poor. Therefore, there should be a mechanism to

adaptively balance the trade-off between fitting the validation data adequately and

reducing the risk of overfitting. The basic idea of the AA approach is examined as

follows.
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• If the value of pm
i is known for each Xi in Hx, we claim that the following

aggregation strategy provides an optimal performance: (1) among all the local

regions Xk ∈ Hx, find the local region Xi which has the maximum value of pm
i ;

(2) label x with the category lmi which has the probability pm
i in Xi. In (1),

this aggregation strategy searches for an ensemble that has the best fit for the

local region which contains x. The decision-making in (2) is actually based

on the real probability distribution of the data in the local region. Therefore,

this decision should be optimal. However, in most of the situations, pm
i is

not known and can only be estimated through p̂m
i . According to the law of

the large number, p̂m
i converges to pm

i when the sample size is large enough.

In this situation, l̂mi is exactly the category lmi. Therefore, in the above

aggregation strategy, if pm
i is replaced by p̂m

i , the decision aggregation should

still be optimal given the sample size is large enough.

• When the sample size in the local region Xi is small, p̂m
i can significantly

deviate from pm
i . In this situation, the previous aggregation strategy is un-

reliable since l̂mi is less likely the same with the category lmi. To solve this

problem, we consider the hypothesis test

H0 : pm
i = p̂m

i

H1 : pm
i 6= p̂m

i

and intend to determine how confident it is to estimate pm
i by p̂m

i . This estima-

tor is denoted as G(pm
i , p̂m

i , ni), where ni is the number of sample observations

in local region Xi. Since each hypothesis test is associated with type I and II

errors, G(pm
i , p̂m

i , ni) is evaluated by the probability that both type I and II

errors are controlled under a pre-determined threshold. There is a reason for

choosing this method. When type I and II errors of the hypothesis test are

within the threshold, the null hypothesis is more likely to be valid. Therefore,

it is less risky to estimate pm
i by p̂m

i .

• Finally, for each local region Xi, the estimator is computed by

Si = p̂m
i G(pm

i , p̂m
i , ni). (3.4)
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The ensemble for labelling test data x is selected by finding the one such that

Si is the highest value in the local region which contains x. This score function

can be understood from two different perspectives. From the estimation point

of view, it is desirable to have a bigger value of p̂m
i and G(pm

i , p̂m
i , ni) at the

same time. It can be shown that the range of G(pm
i , p̂m

i , ni) is [0,1]. When

G(pm
i , p̂m

i , ni) → 1, it is less risky to estimate pm
i with p̂m

i . Also, the ensemble

with a larger value of p̂m
i is more likely to be the most appropriate one.

From the learning point of view, p̂m
i determines the estimation of θφ(Xi) and

measures the goodness of fit on the validation data in Xi. It can be shown that

G(pm
i , p̂m

i , ni) is positively correlated to ni. Consequently, the larger value of

G(pm
i , p̂m

i , ni) favors the local region with a larger number of observations.

Therefore, the risk of overfitting can be reduced.

Adaptive Aggregation (AA) Approach

In this section, we provide a detailed description of the AA approach. In the

training phase, a lookup table is built for each ensemble φi in collection F . The

decisions of the base classifiers in cell (entry) ei determine a local region Xi. Each

ei records a score and the label of the estimated most frequent category l̂mi for the

local region Xi. Table 3.1 is an example of the lookup table in the AA approach,

where ĉi is the estimation from classifier ci. In the test phase, for input vector

x, the corresponding cell e in each lookup table is checked. The cell with the

maximum score is the winner, and x is labelled with the label of the winner cell.

Given F = {φ1, φ2, φ3}(φ1 = {c1, c2, c3}, φ2 = {c2, c3}, φ3 = {c2}), the decision

aggregation with the AA approach is demonstrated in Fig. 3.4.

For local region Xi, suppose that lmi denotes the most frequent category and

ni denotes the total number of samples. Suppose that the probability of the data

from lmi in Xi is pm
i , and p̂m

i is the estimation of pm
i . Then, the score function for

cell ei is evaluated by computing.

S(ei) = p̂m
i G(pm

i , p̂m
i , ni), (3.5)

35



Table 3.1: Example of the lookup table for the AA approach

Local Region ĉ1, ĉ2, ĉ3 Score of the Estimated Most Frequent Category Cell Label

X1,2 l1,l1, l1 0.8 l1

X2,2,1 l1,l1, l2 0.6 l2

X2,2,2 l1,l2, l2 0.5 l1

X2,1,2 l2,l2, l2 0.7 l2

X2,1,1 l1,l2, l1 0.2 l2

X1,1,2 l2,l2, l1 0.1 l1

X1,2,1 l2,l1, l1 0.9 l2
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Figure 3.4: Example of the AA approach

where G(pm
i , p̂m

i , ni) evaluates the confidence to estimate pi by p̂m
i . To estimate

G(pm
i , p̂m

i , ni), a hypothesis test is constructed as follows:

H0 : pm
i = p̂m

i

H1 : pm
i 6= p̂m

i
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Then, G(pm
i , p̂m

i , ni) is estimated by the possibility that both type I and II errors

of this test are below the thresholds α and ε (e.g. α = 0.05, ε = 0.05), respectively.

For the estimation, the size of the test α, which is the lowest upper bound of type I

error, is first fixed. Then, power function β(θ) for the test is constructed2. Finally,

the probability that type II error is below threshold ε is estimated according to the

power function of this hypothesis test. The power function is estimated as follows.

β(θ) = P (W1 > a +
√

nib) + P (W2 < −a +
√

nib), (3.6)

Where

a = 1.96

√
p̂m

i (1− p̂m
i )

pm
i (1− pm

i )
b =

p̂m
i − pm

i√
pm

i (1− pm
i )

and

W1 ∼ N(0, 1) W2 ∼ N(0, 1)

The proof is given as follows. Let ω(x) represent the label of x. For any x ∈ Xi,

we define the indicator function

I(ω(x) = lmi) =





1 ω(x) = lmi

0 Otherwise.
(3.7)

and the sum of the indicator functions

Y m
i =

ni∑

k=1

I(ω(xk) = lmi).

Suppose that the probability of the data from lmi in Xi is pm
i . There is

Y m
i ∼ BIN(ni, p

m
i )

Consider the following test:

2θ is used to denote the unknown parameter in the model. For the specific problem in this
thesis, θ is parameter pm

i
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H0 : pm
i = p̂m

i

H1 : pm
i = p̂m′

i (p̂m′
i > p̂m

i )

According to Neyman-Pearson Lemma, for a constant c, the critical region is

defined by:

R1 = {Y m
i :

(
ni

Y m
i

)
(p̂m′

i )Y m
i (1− p̂m′

i )ni−Y m
i

(
ni

Y m
i

)
(p̂m

i )Y m
i (1− p̂m

i )ni−Y m
i

> c}

= {Y m
i :

(
p̂m′

i (1− p̂m
i )

(1− p̂m′
i )p̂m

i

)Y m
i

>
c(1− p̂m

i )ni

(1− p̂m′
i )ni

}
= {Y m

i : Y m
i > k}( k is some constants).

Under H0 hypothesis and the given test of size α1, there is:

α1 = P (Y m
i > k)

= P

(
Y m

i − nip̂
m
i√

nip̂m
i (1− p̂m

i )
>

k − nip̂
m
i√

nip̂m
i (1− p̂m

i )

)
.

According to the normal approximation to the binomial distribution, there is

Y m
i − nip

m
i√

nipm
i (1− pm

i )
→ W ∼ N(0, 1).

Given the H0 hypothesis, there is

Y m
i − nip̂

m
i√

nip̂m
i (1− p̂m

i )
→ W ∼ N(0, 1).

We set α1 = 0.025. Therefore, the value of k can be solved as

k = 1.96
√

nip̂m
i (1− p̂m

i ) + nip̂
m
i .

Therefore, the most powerful critical region for this test is
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R1 = {Y m
i : Y m

i > 1.96
√

nip̂m
i (1− p̂m

i ) + nip̂
m
i }.

Since this conclusion holds for any p̂m′
i > p̂m

i , we further claim that R is also the

most powerful critical region for the test

H0 : pm
i = p̂m

i

H1 : pm
i > p̂m

i

Therefore the power function of the test is as follows:

β1(θ) = Pθ(Y
m
i ∈ R1)

= P (Y m
i > 1.96

√
nip̂m

i (1− p̂m
i ) + nip̂

m
i )

= P

(
Y m

i − nip
m
i√

nipm
i (1− pm

i )
> a +

√
nib

)

= P (W1 > a +
√

nib) (W1 ∼ N(0, 1)),

where

a = 1.96

√
p̂m

i (1− p̂m
i )

pm
i (1− pm

i )
b =

p̂m
i − pm

i√
pm

i (1− pm
i )

Similarly, we can get the most powerful critical region R2 for the test

H0 : pm
ij = p̂m

ij

H1 : pm
ij < p̂m

ij

Given the size of test α2 = 0.025, R2 is given as follows:

R2 = {Y m
i : Y m

i < −1.96
√

nip̂m
i (1− p̂m

i ) + nip̂
m
i }.

and the power function is

β2(θ) = Pθ(Y
m
i ∈ R2)

= P (W2 < −a +
√

nib) (W2 ∼ N(0, 1)).
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Finally, let us consider the most powerful critical region and the power function

for the hypothesis

H0 : pm
i = p̂m

i

H1 : pm
i 6= p̂m

i

Unfortunately, since R1

⋂
R2 = φ, there is no uniformly most powerful test for

the hypothesis above. Instead, we construct a reasonable test for the hypothesis

with the most powerful critical region R and the power function β as follows:

R = R1 ∪R2.

Then the power function β(θ) could be estimated as:

β(θ) = β1(θ) + β2(θ)

= P (W1 > a +
√

nib) + P (W2 < −a +
√

nib).
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Figure 3.5: Example of power function

Type II error is evaluated by 1 − β(θ). It is noted that the value of β(θ) is a

function of pm
i , p̂m

i , and ni. In a specific test, p̂m
i and ni are known. Therefore, the
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value of β(θ) is a function of pm
i . Fig. 3.5 shows an example of power function,

given p̂m
i = 0.5, α = 0.05, ε = 0.05, and ni = 1000. Obviously, when pm

i ∈ [a, b],

type II error is higher than the threshold. It is noteworthy that the range of pm
i

is [0, 1]3. If the value of pm
i is considered as a random variable, the estimation of

how likely type II error is below the threshold equals estimating how likely pm
i is

outside of [a, b]. Since there is no information about the distribution of pm
i , it can

be simply assumed that pm
i follows a uniform distribution ( pm

i ∼ UNIF (0, 1)).

Now, the explicit equation for G(pm
i , p̂m

i , ni) is given as:

G(pm
i , p̂m

i , ni) = 1− |ab|, (3.8)

where |ab| is the length of segment ab. It is not difficult to show that |ab| decreases,

when ni increases. Therefore, when there are more observations, the estimation

of pm
i by p̂m

i is more likely to be correct. Finally, the detail of estimating |ab| is

explained. First, set a large number Ng (e.g., Ng is set to 10000 by default). Then,

set pm
i = j

Ng
(j = 1, ..., Ng−1), and the value of β(θ) for each pm

i can be obtained.

Finally, the ratio of pm
i , whose corresponding value of β(θ) is bigger than 1 − ε is

computed. |ab| is estimated by this ratio.

|ab| = #{pm
i : β(θ) > 1− ε}

#{pm
i : 0 ≤ pm

i ≤ 1} . (3.9)

An algorithm for the AA approach can be described as follows:

—————————————————————————————————-

Algorithm: AA Approach

—————————————————————————————————-

Input: F = {φ1, φ2, ..., φn}
lm = -1;

Temp = -1;

For i =1 to n

Build the lookup table for φi

Given the input vector x, find the corresponding cell ei

3Since the data may be noisy, it is likely that the value of pm
i can be very small in certain

situations
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in the lookup table of φi

For the cell ei, identify its label l̂mi and calculate the score S(ei)

If S(ei) > Temp

Temp = S(ei)

lm = l̂mi

End

End

Label the input vector x with lm

Output: class label of x

—————————————————————————————————-

Extension of the Score Function

Now, more general ways are examined to construct the score function for the pro-

posed AA approach.

Multiplication Rule In Eq. 3.5, the score function is constructed as the mul-

tiplication of p̂m
i and G(pm

i , p̂m
i , ni), and can be extended to a more general

case,

S(ei) = p̂m
i Gk(pm

i , p̂m
i , ni) (k > 0). (3.10)

In Eq. 3.10, k is regarded as the weight that is assigned to control the risk of

overfitting. Since G(pm
i , p̂m

i , ni) ∈ [0, 1], the larger the k value is, the weaker

the system is for reducing the risk of overfitting. It is clear that Eq. 3.5 is a

special case of Eq. 3.10 when k = 1.

Addition Rule Similarly, the score function can be constructed by the addition

rule as follows.

S(ei) = p̂m
i + k ×G(pm

i , p̂m
i , ni) (k > 0). (3.11)

In Eq. 3.11, k is also the weight to control the risk of overfitting. The larger

the k value is, the better the system can reduce the risk of overfitting.
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The score functions that are built with the multiplication and addition rules

might exhibit different properties. For example, the score function with the mul-

tiplication rule is less sensitive to the change of p̂m
i and G(pm

i , p̂m
i , ni). The reason

is that both p̂m
i and G(pm

i , p̂m
i , ni) are in the range of [0,1]. A change in either of

them is mitigated by the other part through multiplication. However, both of these

two rules can effectively reduce the risk of overfitting through G(pm
i , p̂m

i , ni). There-

fore, the score function, built with either of them, should help the whole system to

achieve a robust performance.

GESA with Multiple Representations

Feature Space
 Data Space


Figure 3.6: Decision boundary in feature and data space

In the previous discussion, GESA is assumed to takes the raw representation

of the data. Also, GESA can be easily extended to incorporate multiple represen-

tations. When multiple representations of the data are used, the base classifiers

of GESA conduct the classification in the feature space. However, the decision

boundary in the feature space can be mapped into the original data space. The

decision of the base classifiers in GESA can still be regarded as a partition of the

data space as described in Fig. 3.6. Therefore, the previous conclusions on GESA

are still valid with multiple representations. The architecture of GESA with mul-

tiple representations is demonstrated in Fig. 3.7. In this situation, the concept of

the knowledge space Ω should also be extended. The classifiers in the knowledge
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space Ω are not only distinguished by the training algorithm, initial conditions, and

parameters but also by the input representations they take.

Knowledge


Space


Ensemble 1


Ensemble 2


Ensemble n


Max


Ensemble


Generation


Decision


Aggregation


Multiple


Representation


Figure 3.7: Architecture of GESA with multiple representations

3.3 Discussion on the Properties of GESA

3.3.1 Capability to Reduce the Risk of Overfitting

GESA reduces the risk of overfitting by dynamically selecting an appropriate en-

semble of classifiers. The score function S(ei) in Eq. 3.5 is composed of two parts:

p̂m
i and G(pm

i , p̂m
i , ni). A larger ensemble partitions the data space finer, which

might lead to a better fit of the data and favors the value of p̂m
i . However, each

local region Xi has fewer observations for the finer partition. It is noticed that

G(pm
i , p̂m

i , ni) is a function of ni, but their relationship is not very evident. First,

consider the relation between ni and type II error. The conclusion that type II error
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Figure 3.8: Relationship between type II error and the number of observations ni

is reduced when ni increases is intuitive. When pm
i is given (assume p̂m

i > pm
i ), the

relation between ni and type II error is shown in Fig. 3.8 (Z1 = −a +
√

nib and

Z2 = a +
√

nib). Type II error is represented by the shaded area in Fig. 3.8. When

ni increases, the shaded area moves to the right, along the axis. Since the interval

between Z1 and Z2 is always 2a, the shaded area decreases when the area moves to

the right, along the axis; that is, type II error monotonically decreases with the value

of ni. The same conclusion is obtained by assuming p̂m
i < pm

i . Since G(pm
i , p̂m

i , ni)

is calculated by the probability that type II error is below the threshold given α is

fixed, it is conclude that G(pm
i , p̂m

i , ni) monotonically increases with ni. Obviously,

the larger value of G(pm
i , p̂m

i , ni) demands a coarser partition of the data space.

Recall that the maximum value of S(ei) must be achieved by establishing a balance

between p̂m
i and G(pm

i , p̂m
i , ni). Therefore, the term G(pm

i , p̂m
i , ni) ensures that the

data space will not be partitioned too fine by the classifier ensembles, reducing the

risk of overfitting.

3.3.2 Asymptotic Performance

Another issue is the asymptotic performance of the proposed GESA. The pre-

vious discussion shows that the value of ni is positively correlated with that of
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G(pm
i , p̂m

i , ni). In fact, when ni →∞,

β(θ) = P (W1 > +∞) + P (W2 < +∞)

or

β(θ) = P (W1 > −∞) + P (W2 < −∞),

where W1, W2 ∼ N(0, 1). In both situations, there is

β(θ) = 1. (3.12)

Therefore, when ni →∞, the probability that type II error is above the thresh-

old is 0, which indicates that G(pm
i , p̂m

i , ni) = 1. At the same time, when ni →∞,

p̂m
i → pm

i . Then, the score function is reduced to

S(ei) = pm
i . (3.13)

Consistently, the AA approach chooses the ensemble which generates the local

region with the highest value of p̂m
i . In addition, p̂m

i converges to the real probabil-

ity pm
i . From the the discussion in Section 3.2.3, it is concluded that the decision

aggregation is asymptotically optimal over all the ensembles generated in F . Since

F contains all the possible subsets of Ω, it is safe to conclude that GESA is asymp-

totically optimal over any subsets in Ω. In other words, given Ω, the newly devised

GESA is one of the asymptotically optimal MCSs.

3.4 Summary

In this chapter, the objective is to understand MCSs from the learning point of

view. It is also crucial for MCSs to follow some general principles of the supervised

learning methods. Although there is no general conclusion on the superiority of the

loss function and the regularization method, such a discussion is still beneficial to

design a robust MCS. In this thesis, the claim is that GESA achieves a reliable and

46



good performance, since it can dynamically tweak the trade-off between the ability

to fit the data adequately and reducing the risk of overfitting at the local level.

Also, the discussion demonstrates that GESA is asymptotically optimal. However,

it is not very data-adaptive and its computation cost is high. In Chapter 4 and

5, some more practical designs of MCSs, which are regarded as the extension of

GESA, are elaborated.
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Chapter 4

Generalized Adaptive Ensemble

Generation and Aggregation

(GAEGA) Approach

4.1 Objective

The focus of GESA is on the robustness of the classification system. Other impor-

tant factors, which can also affect the performance of the classification system, are

overlooked. It is known that the effectiveness of the input representation and type

of classifiers is data dependent. Duda et al. [17] have reported the No Free Lunch

Theorem and Ugly Duckling Theorem which shows that no one representation and

classifier is universally better than any other one. One advantage of the use of MCSs

for pattern classification is that the system is able to dynamically select the effec-

tive representations and classifiers for the classification purpose. However, many

approaches, including the proposed GESA, are not completely data-adaptive. For

methods such as adaboost, Random Subspace (RS), and bagging, only one type of

representation and classifier is allowed to build the classification system. It seems

that the data-adaptiveness is not fully explored in this type of design. It is true

that there are many designs which take multiple representations and heterogeneous

classifiers. However, they are still not completely data-adaptive.
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In this thesis, it is proposed that the data-adaptive design of MCSs should not

only generate and select the effective decisions by correctly recognizing the effec-

tive representations and classifiers, but also exclude the noise representations and

classifiers as much as possible. One the one hand, it is more likely that an ensem-

ble can generate the effective decisions, when there are more representations and

classifiers available. Therefore, the odds that the classification system can label the

data correctly is better. On the other hand, it is also more likely that the noise

representations and classifiers which generate the noise decisions are introduced.

Of course, it can be argued that many aggregation methods are able to adaptively

learn the weight of the decisions and select the appropriate classifier or combina-

tions of them to label the data. However, the learning algorithms themselves might

not be perfect. When there are more noise decisions, the algorithm’s performances

can worsen. To clarify this point, consider the analogy between the decision ag-

gregation and classification by the individual classifiers. The decision aggregation

can be regarded as a special type of classification task, in which the decisions of

the base classifiers act as the input data and the aggregation method works as a

special type of classifier. Table 4.1 indicates that the error rate of the Support Vec-

tor Machine (SVM) increases, after the six noise features are introduced [42]. The

argument is that the noise decisions play the same role for the decision aggregation

method as the noise features do for the SVM classifier in the example. Obviously,

the data-adaptive design can improve the performance of MCSs significantly. An-

other difficulty of the newly developed GESA is its high computation cost. Again,

for simplicity, consider the case in which MCSs take a heterogeneous ensemble of

classifiers with the raw input representation. Let h denote the size of the knowledge

space Ω. For GESA, the computation costs for creating and searching the ensemble

are O(2h). Obviously, GESA is time consuming and not scalable to a large set of

Ω.

To overcome the difficulty of GESA, the Generalized Adaptive Ensemble Gen-

eration and Aggregation (GAEGA) approach is further proposed for the design of

MCSs. Compared with GESA, GAEGA still achieves a robust performance while

having a less expensive computation cost and being data-adaptive.
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Table 4.1: Effects of noise feature (from Table 12.2 in Page 385 in [42])

Test Error (SE)

Methods No Noise Features Six Noise Features

1 SV Classifier 0.450(0.003) 0.472(0.003)

2 SVM/poly 2 0.078(0.003) 0.152(0.004)

3 SVM/poly 5 0.180(0.004) 0.370(0.004)

4 SVM/poly 10 0.230(0.003) 0.434(0.002)

Bayes 0.029 0.029

4.2 Details of GAEGA

4.2.1 Basic Assumption and Design Concept

To simplify the discussion, we first focus on designing MCSs with a set of heteroge-

neous classifiers, each of which takes the raw input representation. As we discussed

previously, it is advantageous to combine the decisions of the classifiers by varying

the input representations, initial condition of the architecture, the training algo-

rithm of the classifiers etc. GAEGA doesn’t put any constraints on the way to

process the input and generate the classifiers. The goodness of fit of the ensemble

on the validation data, measured by criteria Θ̂φ in this thesis, is used to deter-

mine which classifier or the combination of them are effective. Then, a collection

of different ensembles are generated, each of which fits the validation data with a

different degree.

A test data point x is classified by all the generated ensembles. GAEGA adap-

tively selects the decision of the most appropriate ensemble to label the data point,

which is determined by two factors: (1) how well the ensemble fits the data in

the local region which contains x. The local region is determined by the decision

boundaries of the base classifiers in the ensemble. (2) how likely the ensemble

over-fits the data in the local region.
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4.2.2 Ensemble Generation

GESA simply generates all the possible subsets of Ω. Therefore, the computation

costs for generating and searching the ensemble is in the exponential order of h1.

For GAEGA, the ensemble generation needs to fulfill two requirements: (1) the

computation cost to generate the ensemble must be reasonable. For example, the

computation cost with O(hk) (k = 1, 2, 3 ..) is acceptable . The computation cost

for searching the decisions among the ensembles must also be in the polynomial

order of h. This property allows GAEGA to be scalable to the large set of Ω. (2)

The generated ensembles must fit the validation data set with different degrees as

much as possible. At least one of the ensembles must minimize Θ̂φ. In addition,

each ensemble needs to include the effective classifiers adequately, and exclude the

noise classifiers as much as possible. The purpose is to help the whole system to

achieve the desired data-adaptive performance. Consider the following proposition

Proposition 1 Given two ensembles φi and φj, if φi ⊆ φj, then Θ̂φi
≥ Θ̂φj

.

If the ensemble consists of more base classifiers, the data space has the poten-

tial to have more partitions. From the definition of Θ̂φ, it is not difficult to prove

the above proposition with some simple algebra. This proposition indicates that

larger ensemble tends to fit the validation data better. As we discussed in the pre-

vious section, GAEGA generates a collection of different ensembles, each of which

fits the validation data globally with a different degree. We want the collection of

ensembles F = {φi} to have the property that

φ1 ⊆ φ2... ⊆ φn,

Where n ≤ h. Then, from Proposition 1,

Θ̂φ1 ≥ Θ̂φ2 ... ≥ Θ̂φn .

In addition, GAEGA demands that φn is large enough to minimize Θ̂φn as

1h is the size of the Ω
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much as possible. The collection F is generated iteratively in the training phase by

a greedy algorithm. In the kth iteration, a new ensemble φk is generated by adding

a classifier cj (cj ∈ Ω, Ω is a pool of available classifiers) to ensemble φk−1, which

is generated in the (k − 1)th iteration. That is,

φk = φk−1 ∪ cj.

The classifier cj is selected to minimize Θ̂φk
. There are two stopping criteria

in the training phase: (1) Θ̂φ is reduced to zero, or (2) Θ̂φ could not be further

decreased. In both of these two situations, Θ̂φ is minimized. The algorithm for the

ensemble generation is summarized as follows.

———————————————————————

Algorithm: Greedy Search

———————————————————————

Ω: all the available classifiers, each of which is trained on a certain input represen-

tation

cj: the jth classifier

φi: the ith ensemble

F : the collection of the ensembles

Θ̂φk
: the value of Θ̂φ for ensemble φk

Input: Ω = {c1, ....ch}
φ0 = NULL

Θ̂φ0 = LargeNumber

F = NULL

k = 0

Do

k = k + 1

Find the classifier cj such that φj
k = φk−1 ∪ cj (cj ∈ Ω)

and Θ̂φj
k

is minimized

φk = φj
k

F = F ∪ φk

Θ̂φk
= Θ̂φj

k
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While (Θ̂φk
> 0 and Θ̂φk

< Θ̂φk−1
)

Output: collection of ensembles F

———————————————————————–

After explaining the ensemble generation, several architectures of GAEGA are

examined.

4.2.3 Architecture of GAEGA

The architecture of the proposed GAEGA consists of two layers, where the data

is sequentially processed. In the ensemble generation layer, a set of heterogeneous

classifiers is applied on the data, and a greedy algorithm is proposed to adaptively

generate a collection of possible ensembles of classifiers. In the decision aggregation

layer, the AA approach is employed to compare the decisions of all the generated

ensembles, and reach the final decision, based on the proposed score function.
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Figure 4.1: Architecture of GAEGA

The architecture of GAEGA is signified in Fig. 4.1. The dash lines denote the

53



data flow in the training phase and the solid lines indicate the data flow in the test

phase. The numbers on the lines represent the steps in the process. The data is

forwarded to the knowledge space Ω, which is a pool of available classifiers (step 1).

A greedy algorithm is applied to iteratively generate a collection of possible ensem-

bles (step 2 and 3). In addition, the information about the process of the ensemble

generation is sent to the decision aggregation layer for the decision combination

(step 5). The test data is fed into the generated ensembles (step 4). The multiple

decisions are generated by all the ensembles, which are created in the ensemble

generation layer (step 6). The final decision is made by combining this information

using the AA approach (step 7).

4.3 Discussion on the Properties of GAEGA

There is a concern about the following properties of GAEGA: (1) how does it reduce

the risk of overfitting? (2) what is the asymptotical performance? (3) what is the

computation cost for creating and searching the ensemble?

Since GAEGA also adopts the AA approach for the decision aggregation, the

mechanism for GAEGA to reduce the risk of overfitting is similar to that for GESA.

Also, like the discussion in Section 3.3.2, it is readily shown that GAEGA is asymp-

totically optimal over all the ensemble generated in F . However, since the ensembles

in F does not cover all the local regions which can be generated by the subsets of

Ω, GAEGA is not asymptotically optimal over the knowledge space Ω. The reason

for such a design is to balance the performance and the computation cost. If all

the local regions are generated, the computation cost for the ensemble generation is

O(2h). In contrast, the computation cost for the ensemble generation in GAEGA is

only O(h2). In addition, the computation cost to search the ensemble in GAEGA

is O(h). Since both the computation cost for generating and searching the ensem-

ble is in polynomial order of h, significantly lower than GESA, it is expected that

GAEGA is much faster than GESA.
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4.4 GAEGA with Multiple Representations

In the previous discussion, it is assumed that MCSs take the raw data as the input.

Similar to GESA, GAEGA can also be easily extended to incorporate multiple

input representations.

4.4.1 Architecture

We first extend the concept of knowledge space Ω. In the extended knowledge

space Ω, the classifiers are distinguished by the training algorithm, as well as the

input representations, initial conditions, and parameters. The architecture of the

extended GAEGA consists of three layers, in which the data is sequentially pro-

cessed. In the input representation layer, the raw data is preprocessed by various

representation methods. Then, the transformed data is fed into the ensemble gen-

eration layer. In this layer, a set of heterogeneous classifiers is applied on different

representations and a greedy algorithm is proposed to adaptively generate a col-

lection of possible ensembles of classifiers. Since each base classifier takes a certain

representation, the selection of the base classifiers is also the selection of the useful

input representations. Finally, in the decision aggregation layer, the AA approach

is employed to compare the decisions of all the generated ensembles and make the

final decision.

The architecture of GAEGA is conveyed in Fig. 4.2. The dash lines denote

the data flow in the training phase and the solid lines indicate the data flow in

the test phase. The number on the lines represent the steps in the process. Each

Input Representation Processor (IRP) is an expert to process a certain type of

input information. After the training data is fed into various IRPs (step 1), various

representations of the data are forwarded to the knowledge space Ω (step 2). The

greedy algorithm is applied to iteratively generate a collection of possible ensembles

(step 3 and 4)2. The information about the selected input representations is fed

2Strictly speaking, the base classifiers of GAEGA conduct the classification in the feature space.
However, the decision boundary in the feature space can always be mapped into the original data
space. Therefore, the decision of the base classifiers in GAEGA is still be regarded as a partition
of the data space
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Figure 4.2: Architecture of GAEGA with multiple representations

back to the input representation layer to process the test data (step 5). In addition,

the information about the process of the ensemble generation is sent to the decision

aggregation layer for the decision combination (step 6). Test data is first processed

by the selected representation methods (step 7), and then fed into the generated

ensembles (step 8). Multiple decisions are generated by all the ensembles, which

are created in the ensemble generation layer (step 9). The final decision is made

by combining these information using the AA approach (step 10).

4.4.2 Application of GAEGA to the Classification of Time

Series Data

Motivation

One applications of GAEGA with multiple representations is to classify time series

data. MCSs have unique advantages for this task. Time series data contains dy-

namic information and its underlying models vary from one application to another.

There are two disadvantages in regarding time series data as the general type of
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data: (1) the temporal information can not be fully utilized for the classification

purpose, (2) time series data is usually high dimensional. In this situation, the

dimension reduction is necessary, since it can cause the overfitting problem, and

render the computation cost unacceptably high. However, it is difficult to build

an individual representation to handle all kinds of time series data due to its ex-

tremely diversified sources. Therefore, it makes sense to adopt a strategy, where

time series data is represented in several ways and all the decisions of the classifiers

are aggregated in the final stage. With this strategy, the complete information of

the temporal patterns can be well identified by the aggregation of the classifiers

trained on different representations of the input data. Most importantly, this strat-

egy does not assume the comprehensiveness of any one representation; that is, each

representation processes only part of the temporal information. Consequently, the

complexity of the design of the representation method is significantly reduced. It is

noteworthy that certain representations do not seem to be useful or reasonable for

some problems. However, a data-adaptive design of the MCS enable it to consis-

tently select the effective representations and filter the noise ones. Multiple Input

Representation-Adaptive Ensemble Generation and Aggregation (MIR-AEGA) is

used to denote the classification of time series data with GAEGA, since it involves

those special input representations for the time series data.

Discussion on the Representation Methods for Time Series Data

In the following, several popular representation techniques for time series data are

discussed.

Piecewise Approximation Representation The idea of piecewise approxima-

tion representation is to partition the initial sequence into several segments.

In each segment, the subsequence is represented by a linear function or a

constant. Then, the overall sequence is represented by a collection of linear

functions or constants. The most popular piecewise approximation represen-

tations are the Piecewise Linear Approximation (PLA) [66] and Piecewise

Aggregate Approximation (PAA) [105]. In PAA, the series is represented as

a sequence of box basis functions. Each of the box the is same length. Then,
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the subsequence in the box is represented by its mean value. In PLA, time

series data is segmented into a collection of straight lines. Then, the sequence

is represented by their lengths and slopes. In this thesis, the original PLA is

slightly revised so that the lengths of all the straight lines are equal. After a

linear regression is applied for each interval to generate a straight line func-

tion, time series data is represented by the slopes of these straight lines. One

advantage of the piecewise approximation representations is that they can

significantly reduce the dimensionality of the time series data. The weakness

is that some important local information might be missing.

PAA
 PLA


t


f(t)


t


f(t)


Figure 4.3: PAA and PLA

Simple Preprocessing Representation One possible solution is to use the data,

with only minimal transformation to obtain manageable sequences. Keogh

and Pazzani [56] have identified six types of distortions in time series data,

including linear drift, noise, offset translation, and amplitude scaling. To ob-

tain more manageable sequences for traditional classifiers, it is necessary to

remove one or more of the distortions from the original data. In this thesis,

three techniques are adopted to remove the possible distortions. The first

method is used to remove the distortion of offset translation. Let X represent

the original time series such that processed series Y is obtained as follows:

Y = X −X,
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where X is the mean value of series X. The second method is employed to

remove the linear trend in the series. First, a linear regression between X and

T (T is the variable for time) is constructed. Let X̂ represent the regressor.

Y is obtained as follows.

Y = X − X̂.

The third technique removes the noise in the data and represents the data

by its derivatives. How to represent time series data with the combination

of the Double Exponential Smoothing (DES) and Differentiation Generator

(DG) has been discussed in the literature [14]. Among the popular schemes

to produce a smoothed time series is the exponential smoothing scheme which

weights past observations using exponentially decreasing weights. The family

of the exponential smoothing schemes includes Single Exponential Smooth-

ing (SES), Double Exponential Smoothing (DES) and Triple Exponential

Smoothing (TES). Their difference lies in the number of parameters that

are used to represent the trend and seasonal information in the time series

data. For example, the function of DES is given as.

yt = αfc(t) + (1− α)(yt−1 + bt−1)

bt = γ(yt − yt−1) + (1− γ)bt−1

b0 =
(fc(t2)− fc(t1)) + (fc(t3)− fc(t2)) + (fc(t4)− fc(t3))

3
,

where, yi is the estimated value space, fc is the input time series data, and α

is the smoothing rate in the interval [0,1]. When α → 1, the smoothed data

is exactly the same as the original data. γ is the learning rate. The larger the

value of γ is, the more the estimated data is affected by the previous learning.

Obviously, different combinations of the parameters generate different series

of temporal data. The DES(α, γ) denotes for the algorithm with parameters

α and γ. Another simple processing technique involves mapping the original

sequences into their first derivative spaces [28]. This approach is further

extended by introducing the DG [14]. DG(p, q) has two parameters: order
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and distance, represented by p and q, respectively. DG is mathematically

expressed as

DGt(p, q) = DGq+t(p− 1, q)−DGt(p− 1, q).

The DG has several functionalities. It can remove the effects of the initial

values. For example, the effects of the shift can be eliminated by DG(1,1).

In addition, DG can remove the trend information in the time series data by

differentiating the given temporal data, until it becomes stationary. This is

helpful to focus on the stationary information in the time series data. The

advantage of the simple preprocessing techniques is their simplicity and effec-

tiveness in correcting certain types of distortions.

Transformation-Based Representation The idea behind transformation-based

representations is to map the initial sequences from the time domain to an-

other domain which is more manageable, and then represent each original

sequence with a point in the new space [5].

One of the most widely used techniques is the Fourier Transformation (FT).

It is based on the principle that any time series data can be represented by

combining a collection of sine and cosine functions. In the FT, time series data

is mapped from the time domain to the frequency domain. FT provides the

periodicity information for the data, and is effective in analyzing the periodic,

time-invariant, and stationary time series data.

The Wavelet Transformation (WT) is another important transformation-based

representation. It expands the function by a series of more generalized base

functions, other than the sine and cosine functions, called wavelets. The lo-

calizing property of wavelets makes it possible to model the transient event

with a small number of coefficients by the wavelet expansion. The wavelet

systems, which form a complete orthogonal system for L2(R), are generated

from a single scaling function or wavelet by simple scaling and translation as

follows [9]:

ψj,k(t) = 2
j
2 ψ(2jt− k) j, k ∈ Z,
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where Z is the set of all integers and factor 2
j
2 maintains a constant norm

independent of scale j. Wavelet systems are distinguished from others by

their different base functions. One of the most popular systems is the Haar

wavelet system which expands function f(t) with a series of scaling functions

ϕ(t) and wavelet functions ψ(t) such that

f(t) =
∞∑

k=−∞
ckϕ(t− k) +

∞∑

k=−∞

∞∑
j=0

dj,kψ(2jt− k),

where

ϕ(t) =





1 t ∈ [0, 1)

0 otherwise

and

ψ(t) =





1 t ∈ [0, 1
2
)

−1 t ∈ [1
2
, 1)

0 otherwise.

Both of the FT and WT have been widely applied in processing time series

data including, indexing, retrieval, and classification [12, 73, 76, 103].

Finally, one of the vital representations for time series data is the Autore-

gressive Moving Average (ARMA) model which represents a potentially long

time series by a limited dimensional vector [18]. Generally, time series data

represented by ARMA(p,q) is written as

xt = α1xt−1 + α2xt−2 + ... + αpxt−p + β1ζt−1 + β2ζt−2 + ... + βqζt−q + ζt,

where ζk(k = 1, ..q) is the noise of the time series data. A similar repre-

sentation is the coefficient of the Linear Predictive Coding (LPC), which is

computed by minimizing the difference between linear auto regressive model

and the actual time series data [81].
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Subspace Projection Representation Also, time series data can be simply re-

garded as high dimensional data. In this situation, it is beneficial to reduce

the dimensionality of the data by projecting it into a subspace with a lower

dimension, as observed in Fig. 4.4. Statistically, it is optimal to project the

data into an orthogonal subspace that captures as much of the variations in

the data as possible. One of the most popular methods is the Karhunen Loeve

(KL) transformation [25]. The axis of the space are represented by the eigen-

vectors of the covariance matrix of the data, whose corresponding eigenvalues

are above a certain threshold. In the random projection, the original high

dimensional data is projected into a lower dimensional subspace by using a

random matrix [11]. Achlioptas [2] has shown that jth element of ith axis rij

can be generated with a very simple distribution as follows

rij =





√
3 with probability 1

6

0 with probability 2
3
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Figure 4.4: Subspace projection representation

Discussion of the Classifiers for Time Series Data

Although MIR-AEGA emphasizes the importance of the input representation for

the classification of time series data, it is also crucial to pre-select the appropriate

62



base classifiers. Keogh et al. [55] have conducted empirical studies on time series

data mining. The results indicate that the nearest neighbor classifier gives an im-

pressive performance for time series data. Although the nearest neighbor classifier

by itself is not robust for classifying time series data, it might be a good candi-

date for the base classifier in MIR-AEGA. Another criterion for the base classifier

in MIR-AEGA is the computation cost. Since time series data are usually high

dimensional, it seems impractical to use the classifiers that are computationally

complex. For example, although DTW is also effective, its computation cost is

O(nd3) 3. Moreover, the empirical study shows that DTW is very time-consuming.

Architecture and Working Procedures

Similar to that of GAEGA, the architecture of MIR-AEGA consists of three layers,

in which the data is sequentially processed. MIR-AEGA is characterized by the

design of the input representation layer. It is composed of a collection of Temporal

Representation Processors (TRPs), each of which is an expert in a certain type

of temporal information. Any of the representation methods for time series data

or their combinations can be used to design TPR, including FT, smoothing, and

random projection.

4.5 Summary

In this chapter, the weakness of GESA is identified and GAEGA is proposed to

overcome the recognized difficulties. GAEGA is designed to take into account

the robustness, data-adaptiveness, and computation cost of the system. There-

fore, GAEGA is more practical. In addition, as an application of GAEGA to the

classification of time series data, MIR-AEGA is also discussed. In Chapter 6, the

strengths of GAEGA and MIR-AEGA are exhibited by conducting the experiments

on the benchmark data sets.

3n is the number of the training data and d is the dimension of the data
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Chapter 5

Bootstrapped Adaptive Ensemble

Generation and Aggregation

(BAEGA) Approach

5.1 Motivation

Bootstrap is a general purpose approach to statistical inference, falling within a

broader class of resampling methods. Bootstrap is used for estimating the sam-

pling distribution of an estimator by resampling with replacement from the origi-

nal sample. Usually, the purpose is to derive estimates of the standard errors and

confidence intervals of a population parameter such as a mean, median, proportion,

odds ratio, correlation coefficient, and regression coefficient. The bootstrap method

has also been widely applied in the design of MCSs. In bagging, one of the simplest

examples, each bootstrapped data set is used to train a different base classifier,

and the final classification decision is established by the vote of each base classi-

fier. Similarly, the bootstrap method can also be used to improve the classification

performance of our proposed methods, but in a different way. The most straightfor-

ward way is to bootstrap the training data, which is used to train the base classifier.

Then, the base classifier of GESA is trained by the bootstrapped sample. However,

the information might not be fully utilized in this way. In each round, there are
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observations which are left out of the bootstrapped samples. Clearly, those obser-

vations can help the aggregation of the decisions of the base classifiers. Rao and

Tibshirani [86] have discussed a similar idea in the out of bootstrap. Therefore, it

is not very appropriate to directly apply the bootstrap method to GESA.

In this section, the Bootstrapped Adaptive Ensemble Generation and Aggre-

gation (BAEGA) approach is proposed for the design of MCSs. BAEGA is an

alternative improvement of GESA. Although BAEGA shares characteristics with

GAEGA, there is a fundamental difference between them in how the data is ma-

nipulated.

5.2 Background of Bootstrap Methods

The bootstrap method is a general tool for assessing statistical accuracy. The idea

is to randomly draw the data N times with replacement from the sample, where N

is the sample size. This is done B times, producing B bootstrap data sets. Then,

the statistical model is examined with each of the B data sets [17]. Fig. 5.1 is

a schematic diagram of the bootstrap method from [24]. On the left is the real

world. An unknown distribution F generates the observed data X = (x1,x2, ..xn)

by random sampling. A statistic of interest from x could be computed, say, the

standard deviation of x. On the right side of the diagram is the bootstrap world.

In the bootstrap world, the empirical distribution F ′ generates bootstrap samples

X* = (x*1,x*2, ..x*n) by random sampling, from which the bootstrap replications

of the statistic interest can be computed. According to [24], the advantage of the

bootstrap world is that the replication of the statistic interest can continuously be

computed many times. Consequently, the probabilistic calculation is done directly.

One of the examples is to use the observed variability of the replication of the statis-

tic interest to estimate its standard deviation. There are two practical problems in

the bootstrap analysis: (1) The entire probability mechanism P needs to be esti-

mated from the data. In the diagram, it is the step indicated by X → P ′ (2) The

bootstrap data is simulated from P ′, according to the relevant data structure. In

the diagram, it is the step indicated by P ′ → X* [24]. Besides the resampling with

replacement, other bootstrap schemes have also been reported in the literature, in-
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cluding the smooth bootstrap, parametric bootstrap, case resampling, resampling

residuals, and wild bootstrap [17].
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Figure 5.1: Schema of bootstrap method [24]

5.3 Details of BAEGA

With BAEGA, the goal is to achieve a data-adaptive and robust design of MCSs

with a reasonable computation cost. BAEGA adopts the same ensemble selec-

tion and decision aggregation methods as GAEGA. However, BAEGA employs a

different way to manipulate the data to train the base classifiers and aggregation

rule.

5.3.1 Data Manipulation

Training the Base Classifiers

BAEGA does not split the training data to train the base classifier and aggregation

rule separately. Instead, BAEGA re-samples the training data with replacement
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Figure 5.2: Train base classifiers with bootstrap samples [42]

and generates B set of bootstrap samples. Each set of the bootstrapped sample is

used to train a base classifier, as illustrated in Fig. 5.2.

The probability that observation xi is in the set of bootstrapped sample X∗j is

calculated as follows [42]:

Pr[xi ∈ X∗j] = 1− (1− 1

N
)N

≈ 1− 1

e
= 0.632,

where N is the size of the training data set. In other words, for any X∗j, it is

expected that there are 0.632N different observations in the bootstrapped sample

to train each base classifier.
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Training Aggregation Rule

Like GAEGA, BAEGA still adopts the AA approach for the decision aggregation.

However, instead of using a separate data set to train the aggregation rule, all the

training data are employed in BAEGA. The data flow of BAEGA is demonstrated

in Fig. 5.3.
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Figure 5.3: Data flow of BAEGA

The motivation to use the entire training data to train the aggregation rule is

explained as follows. The previous discussion shows that only around 0.632N of the

training data are used to train each base classifier. Obviously, the remaining data

can be utilized for other training purposes, say, the aggregation rule. However, the

AA approach requires the same set of validation data to evaluate the performance
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of each generated ensemble. Since each bootstrap sample has a different set of

remaining data, it is difficult to directly apply the remaining data to train the AA

approach. The solution of BAEGA is to use the entire training data. Consequently,

the goodness of fit of each generated ensemble is evaluated over the entire training

data instead of over a separated validation data. A possible criticism for this

approach is that the training data might be overfitted by BAEGA. It is true that

BAEGA may use the same subset of the training data to train both the base

classifier and aggregation rule, causing the overfitting problem. However, the AA

approach is able to take care of this issue by dynamically tweaking the balance of

the goodness of fit and the risk of overfitting. Therefore, it is expected that the

performance of BAEGA will not be hurt by the overfitting problem. In Chapter 6,

the experimental results prove the robustness of BAEGA.

5.3.2 Architecture of BAEGA

In this section, several architectures of BAEGA are examined. First, BAEGA is

constructed with a set of homogeneous classifiers, each of which takes the raw input

representation. Then, this architecture is extended to incorporate heterogeneous

classifiers. Finally, a more general architecture in which BAEGA takes heteroge-

neous classifiers with multiple representations is presented.

BAEGA with Homogeneous Classifiers

Fig. 4.2 reflects the simplest architecture of BAEGA. There are three layers, con-

sisting of the input processing layer, ensemble generation layer, and decision aggre-

gation layer. In the input processing layer, a collection of Bootstrap Sample (BS)

are generated by resampling the training data with replacement. Then, a set of

homogeneous classifiers are applied on the bootstrapped samples, which generate

a set of diverse decisions. The ensemble generation layer and decision aggregation

layer are close to those of GAEGA.
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Figure 5.4: Architecture of BAEGA with homogeneous classifiers
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Figure 5.5: Architecture of BAEGA with heterogeneous classifiers
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BAEGA with Heterogeneous Classifiers

The architecture in Fig. 5.5 is an extension of Fig. 5.4 where heterogeneous classi-

fiers are employed in BAEGA. The definition of the knowledge space Ω is extended

such that the classifiers are distinguished not only by the training algorithm and in-

put representations, but also by the different bootstrap samples. In the knowledge

space Ω, the classifiers are created by varying the learning algorithm, the initial

conditions, and the parameters. The rules to combine the bootstrapped sample

and the base classifiers are a little tricky. For example, the full combination in-

creases the probability that the effective decisions are generated. However, the

computation cost is also higher in this case. Therefore, the trade-off between the

performance and the computation cost needs to be determined in terms of specific

applications.

BAEGA with Multiple Representations
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Figure 5.6: Architecture of BAEGA with multiple representations

Fig. 5.6 offers an even more general architecture, which allows BAEGA to
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incorporate heterogeneous classifiers and multiple representations. Since this ar-

chitecture exploits different strengths of the representations and classifiers to build

the MCSs, it appears to be more powerful. Similarly, the rules to combine the

bootstrapped sample and the input representations, and the input representations

and the base classifiers need to be determined to balance the performance and

computation cost.

5.4 Summary

In this section, BAEGA is presented as an alternative improvement of GESA.

BAEGA incorporates the bootstrap method in the ensemble generation. In addi-

tion, BAEGA does not require a fixed split of the training data to train the base

classifiers and the aggregation rules separately. Instead, it adopts a similar idea

to that of the out of bootstrap method. BAEGA employs the bootstrap sample to

train the base classifiers, and the entire training data set to train the aggregation

rules. Several possible architectures of BAEGA are discussed to exploit the strength

of the bootstrap method, as well as the heterogeneous classifiers and multiple in-

put representations for the ensemble generation. In Chapter 6, the experiments

are designed to compare the proposed approaches with the popular MCSs on the

benchmark data sets.
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Chapter 6

Experimental Results and

Discussion

6.1 Introduction

In the previous chapters, the robust and data-adaptive designs for MCSs and the

application of the proposed approach to classify time series data are presented. In

this chapter, the performances of the proposed methods are empirically examined

with the benchmark data sets. The experiments are organized as follows. Section

6.2 discusses the data sets which are used in the experiments of this thesis. In

Section 6.3, the robustness of the proposed GESA is examined by varying the size

of the training data set. It is expected that the performance of GESA should

be reliable in various situations. Section 6.4 compares MIR-AEGA with other

approaches on the benchmark time series data. In Section 6.5, the performances of

GAEGA and BAEGA are tested on general types of data1.

1All the classifiers used can be found in the classification toolbox version 2.0 of Matlab [17].
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Table 6.1: Characteristics of time series data sets
Data Set Source Classes Instances Frames

CBF [96] 3 600 200

Control Chart (CC) [96] 6 600 60

Waveform (WF) [8] 3 600 21

WF+Data Noise (WF+DN) [8] 3 600 40

Two Patterns (TP) [55] 4 5000 128

Gun Point (GP) [55] 2 200 150

Trace (TR) [55] 4 200 275

simu Eq. 6.5 2 402 60

6.2 Data Description

The experiments are conducted on 2 synthetic and 15 benchmark data sets, which

have been used by previous researchers and are available from the UCI repository

or other related references [23, 55, 96]. According to the characteristics of the data,

the data sets are categorized as time series data sets and non-time series data sets.

6.2.1 Time Series Data Sets

The characteristics of time series data sets are summarized in Table 6.1.

CBF The CBF data has been introduced by Saito [87] as an artificial problem.

The learning task is to distinguish the data from the three classes, including

cylinder(c), bell(b) and funnel(f). The models of the three classes are

c(t) = (6 + η) · χ[a,b](t) + ε(t)

b(t) = (6 + η) · χ[a,b](t) · t− a

b− a
+ ε(t)

f(t) = (6 + η) · χ[a,b](t) · b− t

b− a
+ ε(t).
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η and ε(t) are obtained from the standard normal distribution N(0, 1), a is an

integer obtained from the uniform distribution in [16,32], c is another integer

obtained from the uniform distribution in [32,96]. b is an integer that is the

sum of a and c, and χ[a,b] = 1 if t ∈ [a, b]. Otherwise, χ[a,b] = 0.

Control Chart The CC data contains 600 examples of control charts which are

synthetically generated. There are six different classes of control charts, in-

cluding decreasing trend, cyclic, normal, upward shift, increasing trend, and

downward shift.

Waveform Breiman et al. [8] have introduced the waveform data. The purpose

is to identify three classes, defined by the evaluation in the time frames t =

1, 2...21, of the following models:

x1(t) = uh1(t) + (1− u)h2(t) + ε(t)

x2(t) = uh1(t) + (1− u)h3(t) + ε(t)

x3(t) = uh2(t) + (1− u)h3(t) + ε(t),

where h1(t) = max(6− |i− 7|, 0), h2(t) = h1(t− 8), h3(t) = h1(t− 4). u is a

random variable with a uniform distribution in (0,1), and ε(t) is the standard

normal distribution.

Waveform+Data Noise The Waveform+Data Noise (WF+DN) [31] is gener-

ated in the same way as the previous models, except that 19 frames are

added to the end of each time series. The value of the 19 frames follows the

standard normal distribution N(0, 1). This data set is used to test the per-

formance of the proposed approach in the presence of data noise in the data

set.

Tow Patterns The two pattern problem is designed by Geurts [35]. In this prob-

lem, each scenario is described by a single temporal input attribute A which

is defined on the integer time axis 0, 1, ..., 127 by the following function:
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A(o, t) =





ε(t) if 0 ≤ t < t1

s1(t− t1, I1) if t1 ≤ t < t1 + I1

ε(t) if t1 + I1 ≤ t < t2

s2(t− t2, I2) if t2 ≤ t < t2 + I2

ε(t) t2 + I2 ≤ t < 128.

(6.1)

where time functions s1 and s2 are defining the patterns of respective lengths

I1 and I2. ε(t) is some noise surrounding the patterns, drawn from a standard

normal distribution N(0,1). I1 and I2 are integers uniformly drawn in [16,32],

and t1 and t2 are integers randomly drawn in [0,127] such that the two patterns

are not overlapping each other, and are fully restricted in the interval [0,127]

(i.e., mathematically, such that t1 + I1 < t2 and t2 + I2 < 128). As possible

instances for s1 and s2, the simple upward and downward steps are defined

by the following time function, where I is the length of the pattern:

us(t, l) =




−5 if 0 ≤ t < l

2

5 if l
2
≤ t < l.

(6.2)

and

ds(t, l) =





5 if 0 ≤ t < l
2

−5 if l
2
≤ t < l.

(6.3)

s1 and s2 are independently chosen as either us or ds (each one with the

probability 0.5). According to this random choice, the classification of a

scenario in one of the four classes is defined as follows

c(o) =





uu if s1 = s2 = us

ud if s1 = us and s2 = ds

du if s1 = ds and s2 = us

dd if s1 = s2 = ds.

(6.4)
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As a result, the four classes are equiprobable.

Gun Point The gun point data set contains the time series data that are extracted

from video of an actor, either aiming a gun or simply pointing to a garget

[82]. The data records the movement of the actor’s right hand.

Trace The trace data is the simulated data on the PWR 900 MW nuclear plant,

corresponding to various occurrences of anomalous rapid load rejection events

[77]. The data consists of a normal reference case and three anomalies, in-

cluding component failures, control function failures, and sensor failures.

Simu The simu data is generated in this research with the underlying model as

follows:

Class1 : y = 0.01sin(t) + 2k (6.5)

Class2 : y = 0.01sin(10t) + 2k + 1,

where t =1,2,3,...60; and k = -100, -99,..., 0, ... 99,100. The purpose of the

tests on the simu data is to illustrate certain critical issues related to methods

such as nearest neighbor classifier and DTW.

6.2.2 Non-Time Series Data Sets

Clouds The clouds data [23] is selected to study the behavior for the heavy inter-

section of the class distribution for a high degree of nonlinearity of the class

boundaries. The data exhibits bi-dimensional distribution. Class 0 is sum of

three different Gaussian distributions with Pw0 = 0.5, and

p(x|w0) =
1

2
(
p1(x)

2
+

p2(x)

2
+ p3(x))

with

pj(x) =
1

2π

1

σjxσjy

e
−(

(x−mjx)2

2σ2
jx

+
(y−mjy)2

2σ2
jy

)
,
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Table 6.2: Characteristics of non-time series data sets
Data Set Source Classes Instances Dimension

Clouds [23] 2 987 2

WDBC [96] 2 569 30

WPBC [96] 2 198 32

Glass [96] 7 214 10

Concentric [23] 2 2500 2

Ionosphere [96] 2 351 34

BCW [96] 2 699 10

German [96] 2 1000 24

XOR Synthesized 2 500 2

where mjx and mjy are the x and y means of the jth distribution, and σjx and

σjy are x and y’s standard deviations. Class 1 is a single normal distribution

with Pw1 = 0.5 and

p(x|w1) =
1

2π
e−

x2+y2

2 .

Figure 6.1: Example of clouds data [23]

WDBC The Wisconsin Diagnostic Breast Cancer (WDBC) data is used to iden-

tify malignant and benign symptoms. They contains ten real-valued features,
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which are computed for each cell nucleus, including radius, texture, texture,

perimeter, area, smoothness, compactness, concavity, concave points, sym-

metry and fractal dimension. The features are computed from a digitized

image of a Fine Needle Aspirate (FNA) of a breast mass, and describe the

characteristics of the cell nuclei in the image.

WPBC The Wisconsin Prognostic Breast Cancer (WPBC) data is similar to the

WDBC data except that the WPBC data has two more features: tumor size

and lymph node status. The data are used to predict recurrent and non-

recurrent symptoms.

Glass The glass data is used to distinguish seven different glasses by the chemical

elements such as aluminum, silicon, calcium, and iron. The class type includes

building-windows-float-processed, building-windows-non-float-processed, vehicle-

windows-float-processed, vehicle-windows-non-float-processed (none in the database),

containers, tableware, and headlamps.

Concentric Concentric data is the simulated data, which has a bi-dimensional

uniform concentric circular distribution [23]. The purpose is to study the

linear separability of the classifier when some classes are nested in others

without overlapping. The database is entirely contained in the square (0,0),

(1,1). The points of class 0 are uniformity distributed into a circle of radius

0.3 centered on (0.5,0.5), and the points of class 1 are uniformly distributed

into a ring centered on (0.5,0.5) with the internal and external radius equal

to 0.3 and 0.5 respectively.

Ionoshpere The ionosphere is the radar data, collected by a system in Goose

Bay, Labrador. The targets are free electrons in the ionosphere. Good radar

returns are those showing evidence of some type of structure in the ionosphere,

whereas Bad returns are those that do not. The received signals are processed

by using an autocorrelation function whose parameters are the time of a pulse

and pulse number. There are seventeen pulse numbers for the Goose Bay

system. Instances in this database are described by two attributes per pulse

number, corresponding to the complex values returned by the function that

results from the complex electromagnetic signal [96].
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Figure 6.2: Example of concentric data [23]

BCW The Breast-Cancer-Wisconsin (BCW) data is the medical data which are

used to recognize benign and malignant symptoms. The data attributes

include clump thickness, uniformity of cell size, uniformity of cell shape,

marginal adhesion, single epithelial cell size, bare nuclei, bland chromatin,

normal nucleoli, and mitoses.

German This data set classifies people who are described by a set of attributes

as good or bad credit risks. The original data set contains both qualitative

and numeric attributes, including the status of existing checking accounts,

duration in months, and credit history. In this thesis, the data set that is

used contains only the numeric attributes.

XOR The data distribution of XOR data is depicted in Fig. 6.3. The boundaries

for these two categories are aod and boc. Two linear classifiers, XLinear and

Ylinear, are introduced for this problem. The decision rule for XLinear is

simple. It projects the data to the X axis and finds the split point along the

X axis by minimizing the overall error rate. The decision rule for Ylinear is

similar. If there is a tie among all the points, the cut point is set to 0.5. For

instance, in Fig. 6.3, the decision boundary of XLinear and Ylinear are aob

and cod, respectively. This problem is denoted as decision XOR problem and

used to test the performance of various MCSs.

80



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

X

Y

a b 

c 

d 

o 

Figure 6.3: Decision XOR problem

6.3 Experiments on GESA

In Chapter 3, GESA is proposed as a robust design of MCSs by dynamically tweak-

ing the trade-off between the goodness of fit and the risk of overfitting. The purpose

of this test is to empirically examine the performance of GESA. In the experiment,

GESA and the benchmark methods are trained on the data set with the different

sizes. If GESA can not control the overfitting, its performance is expected to be

significantly worse than that of other methods, when the size of the training data

set is small.

6.3.1 Experimental Setup

There are two well-known ways to generate an ensemble: vary the input data and

vary the training algorithm and its parameters. The performances of GESA are

examined in both situations. Five data sets are adopted for this test, including

CBF, clouds, WPBC, WDBC, and glass. Among them, CBF is used for the test

in the first case. A set of four homogeneous Probabilistic Neural Networks (PNNs)

[91] are employed as the base classifiers. The diverse decisions are generated by

varying the representation of the input data and the parameters of the represen-

tation methods. One of the base classifiers takes the raw data as the input, and
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another takes the coefficient of the Discrete Fourier Transformation (DFT) as the

input. The remaining classifiers take the data which is processed by the Double

Exponential Smoothing and Differentiation Generation (DES+DG) with different

parameters [14]. The remaining data sets, including clouds, WPBC, WDBC, and

glass are chosen for the test purpose in the second case. A set of heterogeneous

classifiers are employed, including PNN, K-Nearest Neighbor (KNN), Decision Tree,

and Perceptron. The parameter setting for each classifier is as follows. For PNN,

the Gaussian width is set to 0.1. For KNN, k is set to 1. For the decision tree, the

CART (Classification And Regression Tree) model is used, in which the evaluation

criteria is set as ‘Entropy’ and the incorrect ratio is set to 0.1. For Perceptron, the

Perceptron-BVI model is chosen. The number of iterations is set to 500 and the

convergence rate is set to 0.1. There is no specific reason to set the ensemble size

to four. It is understood that the ensemble size can significantly affect the outcome

of the methods. However, in this experiment, the focus is on the identified factors,

leaving the issue of ensemble size for future research.

In this test, DT, BKS, NBF, and MV are selected as the baseline of comparison,

since they have similar properties to those of GESA. For example, all can take

multiple representations or heterogenous ensembles. The size of the whole training

data set is varied between 45% and 80%. For GESA, DT, BKS, and NBF, since they

require that the training data is split to train the base classifiers and the aggregation

rule separately, 40% of the data are allocated to train the base classifiers and the

rest of the training data are used to train the aggregation rule; that is, the size of

the validation data ranges from 5% to 40% of the entire data set. The choice of

data partitioning is completely random and class distribution is not considered.

6.3.2 Experimental Results and Discussion

Table 6.3 and 6.4 report the test results from 10 rounds of independent tests which

are in the format of the average accuracy and its standard error. MV is one extreme

example. It seems that MV does not incur the overfitting problem easily. The

evidence is that MV is relatively insensitive to the size of the training data. The

average accuracy does not differ much when the size of the training data ranges
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Table 6.3: Accuracy (in %)of GESA and other benchmark methods (1)

Data Size DT NBF BKS MV GESA

45% 90.9±7.60 88.1±9.81 74.6±7.20 88.4±4.23 86.6±6.94

50% 94.9±2.06 87.6±13.10 82.0±3.75 87.5±2.42 94.0±1.91

55% 95.1±1.93 94.7±2.34 85.2±4.08 87.0±2.33 93.1±4.23

CBF 60% 94.3±1.94 94.5±2.43 89.1±2.03 86.1±5.66 94.9±2.03

65% 95.1±2.34 94.7±2.26 90.1±2.22 89.2±4.98 94.9±2.22

70% 94.8±1.56 95.2±1.62 91.4±2.17 91.9±1.91 94.6±2.17

75% 94.4±2.06 94.4±2.27 92.1±2.21 90.0±2.79 94.7±2.21

80% 94.0±2.86 94.5±3.15 92.6±1.69 90.8±2.64 95.8±1.69

45% 85.3±6.73 82.5±8.31 69.3±10.39 76.1±13.03 86.0±11.6

50% 90.2±5.36 87.3±7.92 78.7±8.11 73.0±9.31 87.7±10.8

55% 91.3±4.69 88.3±4.57 82.0±5.03 76.0±6.45 91.6±5.07

Glass 60% 93.1±4.72 90.0±6.71 84.4±4.77 79.1±7.29 94.0±4.50

65% 94.1±4.78 90.7±4.99 87.8±3.93 77.5±8.91 94.5±4.14

70% 95.8±3.13 90.2±4.83 89.5±4.17 78.4±5.23 94.6±4.66

75% 95.7±2.82 90.6±5.63 88.9±5.07 77.9±4.51 94.6±5.23

80% 96.4±3.59 90.2±4.95 89.8±4.50 78.8±1.03 94.2±4.88

45% 85.3±1.53 85.2±1.08 85.3±2.21 82.3±1.96 86.6±1.34

50% 85.2±1.47 85.2±1.47 86.0±1.21 82.6±2.62 86.1±1.05

55% 85.1±1.50 85.2±1.36 86.0±1.42 78.9±6.99 86.4±0.89

Clouds 60% 85.2±1.35 85.1±1.29 86.3±1.48 80.3±4.64 85.9±0.68

65% 85.1±1.44 85.1±1.44 86.4±1.53 81.8±1.88 85.8±0.64

70% 84.8±1.34 84.7±1.42 86.1±1.50 82.7±2.43 85.6±0.70

75% 85.0±1.36 85.1±1.26 86.4±1.96 81.1±2.77 86.2±1.29

80% 85.4±1.50 85.5±1.36 86.7±1.76 83.3±2.76 86.1±1.85

83



Table 6.4: Accuracy (in %)of GESA and other benchmark methods (2)

Data Size DT NBF BKS MV GESA

45% 70.2±17.3 79.1±15.0 77.5±14.7 74.7±2.80 86.2±3.05

50% 74.3±12.6 84.0±3.74 82.9±4.11 71.3±3.11 85.6±3.56

55% 76.3±11.5 84.4±4.34 83.2±4.98 71.9±3.31 85.8±4.79

WPBC 60% 72.4±15.3 84.0±5.24 84.0±5.24 72.4±1.06 85.7±5.31

65% 72.9±16.1 85.3±4.64 85.3±4.64 71.9±4.23 85.8±4.83

70% 73.3±17.7 85.2±5.27 85.2±5.27 76.6±2.84 86.5±4.81

75% 73.2±17.2 83.6±5.56 83.6±5.56 73.9±3.35 85.6±5.95

80% 72.5±16.7 83.0±6.77 83.0±6.77 77.0±4.87 85.3±7.12

45% 92.1±1.07 82.2±11.56 92.2±0.99 90.4±0.55 89.5±4.86

50% 92.1±1.16 82.5±9.45 92.2±1.10 92.0±1.38 88.1±6.04

55% 92.3±1.52 81.6±9.23 92.4±1.50 91.0±1.35 90.8±1.54

WDBC 60% 92.3±1.95 82.4±9.67 92.4±1.86 91.8±1.71 89.7±5.75

65% 92.2±1.63 82.2±9.94 92.2±1.56 92.0±1.70 89.5±5.78

70% 91.9±1.59 79.1±9.37 92.1±1.67 93.6±2.45 90.8±3.06

75% 91.9±2.00 78.5±8.91 92.1±2.12 92.1±1.04 91.1±3.50

80% 92.8±1.89 81.7±9.28 92.8±1.89 91.6±2.88 91.3±3.75
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Figure 6.4: Average accuracy of GESA and other benchmark methods

from 40% to 80% of the whole data set. However, MV is not flexible enough to fit

the training data. For the glass and WPBC data, MV exhibits a relatively inferior

performance due to the inability to learn from the data adequately. In contrast,

BKS is another extreme example. It is more flexible to fit the training data, more

specifically the validation data. Given that the size of the training data is 80%,

the performance of BKS is good for different problems on average. However, the

overfitting problem readily occurs. For the CBF and glass data, it is observed that

the difference of the average accuracy is as high as 20%, when the sizes are 40% and

80% of the whole data set respectively. It is evident that both MV and BKS are

not robust designs of MCSs. DT and NBF are methods which exist between those

two extremes as seen in Fig. 6.5. Compared to that of BKS, their performances

are not that significantly affected by the size of the training data, which indicates

that DT and NBF do not get into the overfitting problem easily. Compared with

MV, they are more flexible to fit the data. The evidence suggests that the data are

less difficult for them. However, DT and NBF are still not ideal designs of MCSs.

Compared with other methods, DT and NBF have difficulty in the WPBC and

WDBC data, respectively. GESA is a better design of MCSs. Its performance is

robust over different sizes, as well as over different problems. Fig. 6.4 summarizes
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the average performances of all the approaches over various data sets. Although

GESA might not always be the best for a specific problem, GESA outperforms other

methods for different sizes of the training data in terms of the average accuracy.

Prevent the


overfitting


problem


Fit the data


adequately


Majority voting
 BKS
DT, NBF,CESA


Figure 6.5: Relation between different approaches

6.4 Experiments on the Classification of Time

Series Data

6.4.1 Experimental Setup

The purpose of this experiment is to test the performance of MIR-AEGA. Eight

time series data sets are chosen for the test purpose, including CBF, CC, WF,

WF+DN, GP, TR, TP, and simu. The methods, including adaboost, bagging, RS,

DT, NBF , and BKS as well as the individual classifiers are employed as the baseline

for the comparison.

Theoretically, MIR-AEGA can work with any base classifier. In this experi-

ment, KNN, DTW, and PNN are selected for the demonstration purpose. For the

classification of time series data, PNN gives a relatively weak performance. There-

fore, PNN is used as the example of weak classifier. Keogh et al. [55] have reported

a relatively good performance for KNN (K=1) and DWT. However, the study in

this thesis shows that these techniques might not be robust and can fail in certain

situations (e.g., simu data). The purpose is to show that an improved and more

reliable performance can be achieved with MIR-AEGA by appropriately selecting

the input representations, and aggregating the decisions of the weak classifiers.

The parameter settings for each classifier in this experiment is as follows. For

PNN, the Gaussian width is set to 0.1. For KNN, k is 1. In all of the experiments,
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the data sets are randomly separated into 60% training and 40% testing. For DT,

NBF, BKS, and MIR-AEGA methods, 66.7% of the training data are assigned to

train the base classifiers, and the remaining 33.3% are used as a validation set to

train the aggregation rule. The representation techniques for the input representa-

tion layer are the Raw data (Raw), DFT, Discrete Wavelet Transformation (DWT),

DES+DG, Random Feature Selection (RFS), ARMA, PLA, PAA, KL Transforma-

tion, LPC, Random Projection (RP), Remove Linear Trend of data (RLT), and

Remove Offset Translation (ROT) [14, 43]. In addition, the parameters of these

methods are varied to generate 20 different representations in total. PNN and

KNN take each of the representations, whereas DTW takes only the raw data as

the input. It should be emphasized here that the representation techniques are not

limited to the ones previously listed. In this experiment, they are employed only

as examples to test the idea of MIR-AEGA. To make a fair comparison with the

benchmark classification system, including adaboost and individual classifiers, the

data is processed by the various representation methods just discussed, and the

processed data are applied to those methods. Due to the limitation of the length

of the thesis, only the relatively significant results are reported.

The performances of MIR-AEGA are examined with both the heterogeneous

ensemble and homogeneous ensemble. The test results are reported in Table 6.5 -

6.8, which summarize the average accuracy and its standard error (in %) for the

different approaches from the 10 rounds of independent tests. The methods’ name

is signified, as well as the base classifier and the representation of the data for

that approach in the form: method(representation, base classifier). For example,

Ind(Raw,PNN) denotes the individual PNN classifier which takes the raw data and

AdaBoost(DFT,PNN) to denote the adaboost which takes the DFT coefficient as

the input and PNN as the base classifier. The results of four versions of MIR-

AEGA are reported. MIR-AEGA(All) denotes that MIR-AEGA takes KNN, PNN

and DTW as base classifiers, and MIR-AEGA(PNN,KNN) takes PNN and KNN as

base classifiers. The reason is that DTW is very time-consuming compared to KNN

and PNN. So, the intension is to compare the performance of MIR-AEGA(All)

and MIR-AEGA(PNN,KNN) to see the trade-off between the performance and

time complexity. In addition, the intension is to examine whether the perfor-
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mance of MIR-AEGA heavily depends on the choice of the classifier. Both MIR-

AEGA(PNN,100) and MIR-AEGA(PNN,10000) denote MIR-AEGA which takes a

set of homogeneous PNN as base classifiers. 100 and 10000 are the value of Ng

when G(pm
i , p̂m

i , ni) is estimated in the score function (Ng is set to 10000 in the

other tests by default). When Ng is larger, it is anticipated that the estimation is

more accurate, but the computation cost is also higher. In this test, the intension

is also to examine this conclusion empirically.

6.4.2 Experimental Results and Discussion
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Figure 6.6: Average accuracy of the methods over different data sets excluding simu

(1)

Table 6.5 - 6.6 list the results of the MCSs with the homogeneous ensembles.

PNN is employed as the base classifier, since it is relatively weak for time series

data. The purpose is to examine the effects of the input representations. The

experimental results relate that the selection of the input representation is crucial

for the classification performance. Take Ind(ARMA,PNN) as an example, ARMA

is not good for representing data such as CBF, CC, WF, and WF+DN. The possible

2In order to make Adaboost work for this case, the number of iterations is set to 1
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Table 6.5: Average test accuracy (in %) for MIR-AEGA and other methods (1)

Methods Data Sets

CBF CC WF WF+DN

Ind(Raw,PNN) 72.5±3.15 81.0±4.14 93.4±0.91 90.2±1.71

Ind(DFT,PNN) 84.2±1.92 74.2±3.96 86.4±1.38 83.9±2.23

Ind(DWT,PNN) 71.7±2.21 80.6±3.77 93.5±0.91 91.1±1.32

Ind(PAA,PNN) 99.5±0.39 82.8±5.42 94.0±0.91 92.6±1.69

Ind(ARMA,PNN) 38.0±3.26 49.4±2.38 47.1±1.91 54.9±2.92

Ind(PLA,PNN) 100.0±0.00 76.7±5.28 98.7±0.16 99.6±0.07

Ind(LPC,PNN) 41.7±4.79 38.4±1.92 63.8±2.79 69.1±2.22

Ind(RP,PNN) 61.8±9.59 59.0±7.13 82.3±3.97 79.6±4.83

Ind(ROT,PNN) 84.6±1.69 91.4±2.17 93.4±1.32 90.5±1.36

Bagging(Raw,PNN) 72.3±2.74 80.8±4.02 94.5±0.91 90.8±1.37

RS(Raw,PNN) 80.5±3.37 82.2±2.99 96.7±0.98 93.1±1.38

AdaBoost(Raw,PNN) 92.8±2.16 86.1±8.65 93.0±0.93 91.6±1.35

AdaBoost(DFT,PNN) 93.1±0.99 75.1±5.95 84.1±3.21 86.8±2.77

AdaBoost(DWT,PNN) 90.3±1.72 90.1±1.93 92.5±1.33 92.0±1.34

AdaBoost(PAA,PNN) 99.7±0.94 91.8±5.41 98.6±0.42 98.0±0.96

AdaBoost(ARMA,PNN) 35.0±3.55 48.2±1.94 42.5±2.44 52.3±2.78

AdaBoost(LPC,PNN) 46.5±4.07 32.3±2.97 61.3±3.52 70.6±2.15

AdaBoost(PLA,PNN) 99.9±0.10 87.6±4.62 98.2±0.93 99.0±0.99

AdaBoost(RP,PNN) 51.3±6.16 57.4±6.73 75.0±5.22 75.0±4.98

AdaBoost(ROT,PNN) 90.6±1.97 93.7±1.35 92.3±1.33 90.3±1.66

DT(PNN) 98.5±0.77 91.6±1.68 96.5±1.39 93.9±0.90

NBF(PNN) 97.1±2.39 89.0±3.54 96.3±0.97 94.3±0.91

BKS(PNN) 72.8±4.74 60.7±4.94 73.3±4.73 70.8±6.12

MIR-AEGA(PNN,100) 99.8±0.20 90.1±3.09 99.0±0.38 99.1±0.44

MIR-AEGA(PNN,10000) 99.3±0.56 97.4±1.73 98.8±0.66 99.4±0.63
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Table 6.6: Average test accuracy (in %) for MIR-AEGA and other methods (2)

Methods Data Sets

TP GP TR simu

Ind(Raw,PNN) 94.0±0.52 86.4±6.86 70.0±1.95 44.3±1.34

Ind(DFT,PNN) 51.5±2.44 82.4±6.49 67.0±2.18 47.5±1.35

Ind(DWT,PNN) 94.2±0.90 86.5±5.14 70.9±3.78 45.0±3.55

Ind(PAA,PNN) 97.1±3.39 86.4±5.93 69.6±5.57 45.5±1.93

Ind(ARMA,PNN) 45.2±3.07 65.8±4.75 77.5±3.23 100.0±0.00

Ind(PLA,PNN) 47.8±3.84 62.5±15.0 53.9±9.38 40.5±2.88

Ind(LPC,PNN) 45.4±3.72 50.4±6.10 72.8±7.48 100.0±0.00

Ind(RP,PNN) 35.8±2.96 85.0±6.39 65.9±5.59 47.0±2.59

Ind(ROT,PNN) 94.3±0.68 86.9±4.16 70.6±5.81 99.8±0.23

Bagging(Raw,PNN) 94.1±0.99 88.1±6.45 70.5±5.92 45.3±2.37

RS(Raw,PNN) 95.4±0.77 88.1±4.98 72.5±4.04 44.5±1.94

AdaBoost(Raw,PNN) 88.7±0.97 94.3±2.20 80.3±4.74 44.5±2.17

AdaBoost(DFT,PNN) 46.4±0.98 96.3±1.32 81.1±3.71 47.0±2.15

AdaBoost(DWT,PNN) 89.0±0.58 94.5±2.76 76.1±7.73 44.6±2.95

AdaBoost(PAA,PNN) 92.9±0.35 94.0±2.61 73.8±10.1 39.3±8.41

AdaBoost(ARMA,PNN) 50.7±2.73 60.4±2.55 80.1±12.9 100.0±0.002

AdaBoost(PLA,PNN) 49.9±3.67 84.9±3.92 69.4±3.92 32.5±4.15

AdaBoost(LPC,PNN) 48.2±3.45 47.9±8.07 84.0±5.15 100.0±0.002

AdaBoost(RP,PNN) 36.2±3.27 85.6±5.16 74.3±2.72 42.5±9.23

AdaBoost(ROT,PNN) 89.1±0.95 93.9±2.16 80.1±4.40 63.3±4.86

DT(PNN) 90.1±0.87 85.3±6.24 87.1±6.50 94.3±12.70

NBF(PNN) 90.2±0.69 85.3±6.39 73.9±10.1 95.2±11.06

BKS(PNN) 64.0±3.98 64.4±9.30 69.1±8.71 98.8±2.14

MIR-AEGA(PNN,100) 94.3±0.98 85.8±6.91 97.1±2.19 100.0±0.00

MIR-AEGA(PNN,10000) 93.9±0.22 88.0±6.03 98.5±0.56 100.0±0.00
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Table 6.7: Average test accuracy (in %) for MIR-AEGA and other methods (3)

Methods Data Sets

CBF CC WF WF+DN

Ind(Raw,KNN) 97.6±0.71 98.2±0.55 98.0±0.77 98.7±0.83

Ind(DFT,KNN) 90.6±1.94 94.1±1.33 96.5±0.77 96.6±0.54

Ind(PAA,KNN) 100.0±0.00 97.4±0.38 99.2±0.70 99.3±0.62

Ind(Raw,DTW) 100.0±0.00 99.3±0.38 98.1±0.43 98.7±0.97

Bagging(Raw,KNN) 98.6±0.92 98.0±0.25 98.3±0.57 98.6±0.17

RS(Raw,KNN) 99.1±0.67 97.8±0.62 99.8±0.27 99.6±0.02

AdaBoost(Raw,KNN) 64.6±4.04 60.4±9.51 62.8±3.39 76.7±5.97

DT(All) 99.9±0.17 99.0±0.21 100.0±0.00 99.6±0.39

NBF(All) 100.0±0.00 99.1±0.21 99.7±0.20 99.4±0.69

BKS(All) 70.6±2.78 68.9±2.39 81.7±2.78 75.9±1.92

MIR-AEGA(All) 100.0±0.00 99.5±0.23 99.2±0.29 99.0±0.47

MIR-AEGA(PNN,KNN) 100.0±0.00 98.4±1.03 98.6±0.53 98.8±0.79

Table 6.8: Average test accuracy (in %) for MIR-AEGA and other methods (4)

Methods Data Sets

TP GP TR simu

Ind(Raw,KNN) 93.6±0.84 91.9±1.92 83.3±4.84 12.3±1.39

Ind(DFT,KNN) 51.0±0.99 95.9±1.69 86.3±3.25 59.9±4.22

Ind(PAA,KNN) 97.0±0.42 94.3±2.14 83.4±2.44 15.4±2.56

Ind(Raw,DTW) 99.0±0.54 92.2±2.59 99.9±0.05 16.1±0.92

Bagging(Raw,KNN) 89.9±0.93 93.3±3.58 83.8±3.50 16.3±4.15

RS(Raw,KNN) 91.6±0.87 95.3±1.66 85.3±4.09 12.8±3.69

AdaBoost(Raw,KNN) 87.1±1.34 91.7±0.63 80.8±3.53 17.3±1.37

DT(All) 92.4±0.27 95.6±2.74 89.6±6.15 95.3±3.44

NBF(All) 93.5±0.35 93.3±2.42 78.5±9.68 83.9±2.60

BKS(All) 79.8±0.99 68.2±6.60 71.2±6.52 91.2±5.14

MIR-AEGA(All) 99.5±0.44 96.5±0.94 99.7±0.76 100.0±0.00

MIR-AEGA(PNN,KNN) 96.6±0.90 96.4±1.69 97.3±1.31 100.0±0.00
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Figure 6.7: Average accuracy of the methods over different data sets excluding simu

(2)

reason is that the underlying model of these data sets is neither an autoregressive

nor a moving average process. In contrast, PAA representation is very effective

for these data sets. However, from the experimental results, no one representation

method is consistently dominant. A representation method such as PAA can still

have difficulties with data sets such as TR.

Obviously, without prior knowledge, it is difficult to determine the appropriate

representation for the given time series data in advance. In addition, the ensem-

ble approaches such as adaboost, bagging, and RS can not help much, since the

important information in the data may is already distorted or removed by the in-

appropriate representations. The experimental results indicate that such methods

themselves also strongly depend on the representation of the data. For example, Ad-

aBoost(PAA,PNN) is significantly better than AdaBoost(ARMA,PNN). Although

those methods can take any input representation, they still face similar problems

such as how to dynamically determine the appropriate representations for the given

time series data. A straightforward solution is to represent time series data in mul-

tiple ways, and dynamically aggregate the decisions of the base classifiers which

take different representations. Several MCSs, including DT, NBF and MIR-AEGA
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adopt this strategy and achieve relatively good performances on average. In par-

ticular, MIR-AEGA gives consideration into the robustness and data-daptiveness

in the design of MCSs. Therefore, its performance is on average superior to other

MCSs such as DT, NBF, as well as other benchmark methods over different data

sets as denoted in Fig. 6.63.

Table 6.7 - 6.8 report the results of the MCSs with the heterogeneous ensembles.

This test is designed to examine the edge of MIR-AEGA over the claimed strong

classifiers for time series data such as KNN (K=1) and DTW [55]. The experimental

results confirm that DTW is effective for many data sets such as CBF, CC, WF,

and WF+DN. However, by exploiting the advantage of multiple representations

and heterogeneous classifiers, MIR-AEGA can still significantly outperform DTW

in the data set such as GP. Under the significance level α = 5%, the results of the

t-test show that both MIR-AEGA(PNN,KNN) and MIR-AEGA(All) outperform

other methods significantly. Although MIR-AEGA(All) is not consistently the best

one (e.g., on the data sets such as WF, WF+DN, and TR), its performance is very

close to the best one. Also the t-test shows that the difference is not significant in

most of the cases. The test results demonstrate that MIR-AEGA(All) has better

and more reliable performances on average as recorded in Fig. 6.73.

In addition, other MCSs, which also have the advantage of multiple input repre-

sentations and aggregate the decisions of the different classifiers, can achieve good

performances on average. Of course, the performance of these MCSs strongly de-

pends on the aggregation strategy. For example, the performance of BKS(All) is

not acceptable. In contrast, the ensemble approaches such as RS, bagging, and ad-

aboost, do not use the temporal information in the time series data very effectively.

Although these approaches can take any input representation and classifier, they

can not take all of them simultaneously. Therefore, boosting KNN and PNN does

not improve the performance significantly nor overcome their difficulty with the

simu data. Finally, there is the significant overfitting problem for adaboost, when

KNN is chosen as the base classifier for CBF, CC, WF, and WF+DN.

The simu data provides the opportunity to test the robustness of the distance-

3Since MIR-AEGA has the advantage in the simu data, which is simulated in this research, it
is excluded, when computing the average accuracy, to avoid favoring MIR-AEGA inappropriately.
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based classifiers such as KNN and DTW. The experimental results show that KNN

and DTW completely fail on this test. This test raises some questions on classifying

time series data with KNN and DTW. First, they differ from each other in the

similarity measure. KNN adopts the Euclidian distance measure and DTW adopts

the edit distance measure. There is an analogy between the effects of the similarity

measure and the input representations. The experimental results show that no

input representation can be consistently dominant. Similarly, it is not convincing

to claim that either Euclidian distance or DTW is the best similarity measure.

Although this thesis does not investigate this topic, it is still safe to conclude that

individual similarity measure might not be reliable for time series data given its

extremely diversified sources. The simu data is an example in such cases. In

addition, both DTW and KNN adopt the same learning algorithm, which labels

the test data according to the nearest neighbor in the training data. As discussed

in Chapter 1, this approach is very local and can easily leads to the overfitting

problems, in particular for time series data which are high dimensional.

The design of a MCS requires the determination of the trade-off between the

performance and computation cost. Also, there are two such design considera-

tions for MIR-AEGA. One of them is the value of Ng. The larger the value of

Ng, the more accurate estimation, improving the classification accuracy. However,

the computation cost increases. This point is empirically examined by comparing

the performances of MIR-AEGA(PNN,100) and MIR-AEGA(PNN,10000). From

the experimental results, MIR-AEGA(PNN,10000) significantly outperforms MIR-

AEGA(PNN,100) in CC and GP. As expected, MIR-AEGA(PNN,10000) consumes

a much longer time than MIR-AEGA(PNN,100) in the experiments. Another de-

sign consideration is components of the knowledge space Ω. For example, DTW is

very time-consuming, compared with KNN and PNN although DTW has a higher

accuracy. In the experiments, MIR-AEGA(PNN,KNN) is found to be much faster

on average than MIR-AEGA(All). Therefore, it has advantages for some time-

critical applications. On the other hand, the average accuracy of MIR-AEGA(All)

is higher than that of MIR-AEGA(PNN,KNN) over all the test data sets(excluding

the simu data), which are 99.0% and 98.0%, respectively. The t-test shows that

the difference is not significant under the significance level α = 5%, indicating that
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the performance of MIR-AEGA does not heavily depends on DTW. Typically, it is

expected that MIR-AEGA has better performances, when there are more represen-

tation methods and base classifiers for selection. Accordingly, the computation cost

is much higher. These tests demonstrate that MIR-AEGA is flexible, and the users

can work out a balance between the accuracy and computation cost for specific

problems.

Finally, MIR-AEGA provides some insight into the data; that is, MIR-AEGA

does not classify the data in a black-box style. For example, DFT or DWT seem

to be the best representations for the simu data, when the KNN classifier is used.

However, it turns out that MIR-AEGA actually selects the representations ROT

and LPC that give a more superior performance with the KNN classifier. Therefore,

besides good and reliable performances, MIR-AEGE automatically identifies the

effective input representations and classifiers for the given time series data. This

helps in understanding the internal structure of the data better.

6.5 Experiments on the Classification of General

Data Type

6.5.1 Experimental Setup

The purpose of this experiment is to test the performances of GAEGA and BAEGA.

Several popular methods are selected as the baseline of the comparison including

MV, adaboost, RS, DT, NBF, and BKS. For GAEGA/BAEGA, both the addi-

tion rule and multiplication rule are used to build the score function, denoted by

GAEGA(addition)/BAEGA(addition) and GAEGA(multi)/BAEGA(multi). For

GAEGA, k is set to 1. For BAEGA, k is set to 2. There are two well known ways

to generate the classifier ensembles: vary the representation of the input data, and

vary the learning algorithm and the model parameters. In this experiment, the

performances of GAEGA and BAEGA are tested for both of cases.

All the time series data (excluding the simu data set) are employed to test the

performances of different approaches in the first case. This provides more options
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to vary the input representation of the data. According to the empirical study of

Keogh et al. [55], the KNN(K=1) classifier is adopted as the base classifier for

speed and accuracy. There are 20 representation techniques which are employed

by varying the representation methods and their parameters. The settings are the

same as those in the previous experiment. Adaboost, RS, and bagging take the raw

data as the input.

The data sets, including the clouds, WDBC, WPBC, phoneme, concentric, in-

onosphere, BCW, german and XOR, are adopted for the test purpose in the second

case. A set of heterogeneous ensembles are employed. They are PNN, KNN, and

Decision Tree (CART). In addition, the parameters of these classifiers are varied to

generate the knowledge space Ω with 15 members. There is no requirement that

GAEGA must take a specific type of classifier. These classifiers are used as an

example for examining the performance of GAEGA and BAEGA. For adaboost,

RS and bagging, since they can only take a certain type of classifier, CART is cho-

sen as the base classifier, according to the related study in the literature [42]. For

the test on the XOR data, MV, DT, NBF, GAEGA, BAEGA, and BKS take the

XLinear and YLinear classifiers. For adaboost, RS and bagging, without loss of

generalization, XLinear is used as the base classifier.

In all of the experiments, the data sets are randomly separated into training and

testing sets. For the trained fusion approach such as DT, BF, BKS, or GAEGA,

66.7% of the training data are used to train the base classifiers, and the remaining

33.3% serve as a validation set to train the aggregation rule.

6.5.2 Experimental Results and Discussion

Table 6.9-6.12 report the average accuracy and standard error of all the methods

for each of the 16 data sets. From the results, there are several observations.

The decision XOR is an interesting problem to study the performance of different

MCSs. The methods, including the adaboost, bagging, RS, NBF, and DT, all

failed to solve this problem. However, the reasons for their failure differ. For the

adaboost, bagging, and RS, they can take only one of the classifiers. However,

it is obvious that both the XLinear and YLinear classifiers are needed to solve
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Table 6.9: Accuracy (in %) of different methods (1)

Methods Data Sets

CBF CC WF WF+DN

MV 97.3±0.70 96.7±0.69 98.7±0.74 98.9±0.71

AdaBoost 64.4±4.04 60.4±9.51 62.8±3.39 76.7±5.97

Bagging 98.6±0.92 98.0±0.25 98.3±0.57 98.6±0.17

RS 99.1±0.67 97.8±0.62 99.8±0.27 99.6±0.02

DT 99.4±0.60 98.8±0.76 98.9±0.94 98.9±0.86

NBF 99.6±0.44 98.6±0.71 98.8±0.41 98.8±0.65

BKS 60.8±4.55 60.5±2.10 66.0±5.25 64.0±4.55

GAEGA(multi) 99.8±0.55 98.8±0.63 99.3±0.77 98.9±0.55

GAEGA(addition) 99.4±0.70 95.1±1.43 98.0±1.46 99.2±0.59

BAEGA(multi) 100.0±0.00 99.2±0.51 98.9±1.24 99.2±0.80

BAEGA(addition) 99.1±2.05 98.9±0.56 98.5±1.00 98.7±1.30

Table 6.10: Accuracy (in %) of different methods (2)

Methods Data Sets

GP TR TP Clouds

MV 90.6±2.66 79.4±3.61 81.0±0.58 82.8±2.37

AdaBoost 91.7±0.63 80.8±3.53 87.1±1.34 88.2±0.94

Bagging 93.3±3.58 83.8±3.50 89.9±0.93 74.8±2.42

RS 95.3±1.66 85.3±4.09 91.6±0.87 75.3±1.11

DT 90.8±3.96 81.5±6.03 86.2±1.01 87.9±0.40

NBF 90.9±4.00 81.6±6.40 86.1±1.17 89.0±0.54

BKS 70.4±4.79 61.8±4.83 73.2±1.63 79.2±0.36

GAEGA(multi) 96.5±2.02 95.3±4.24 97.2±0.84 86.8±1.72

GAEGA(addition) 92.8±1.37 98.0±1.12 93.8±1.11 87.7±1.05

BAEGA(multi) 95.8±2.40 97.8±1.05 94.6±1.56 85.9±1.07

BAEGA(addition) 95.0±1.53 96.8±1.68 94.5±1.08 84.7±2.60
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Table 6.11: Accuracy (in %) of different methods (3)

Methods Data Sets

WDBC WPBC Phoneme XOR

MV 77.0±2.85 72.2±3.82 75.9±2.10 48.4±7.11

AdaBoost 88.6±2.31 76.4±2.77 80.9±1.57 52.8±2.30

Bagging 75.4±6.75 74.5±3.87 75.5±1.94 51.2±1.65

RS 76.3±7.15 78.4±2.37 77.9±2.68 49.5±2.25

DT 93.0±0.79 63.8±4.53 82.8±1.04 54.2±6.13

NBF 93.2±3.43 77.7±4.06 76.1±1.52 47.7±7.24

BKS 92.5±1.25 77.0±3.94 72.9±0.44 97.8±4.80

GAEGA(multi) 92.7±0.67 72.9±3.65 81.9±2.60 97.6±4.82

GAEGA(addition) 92.3±1.86 72.6±6.73 80.9±3.46 97.9±4.13

BAEGA(multi) 92.0±1.01 73.4±6.29 82.1±1.60 97.3±3.34

BAEGA(addition) 91.9±1.90 71.8±3.84 81.1±2.44 97.5±3.79

Table 6.12: Accuracy (in %) of different methods (4)

Methods Data Sets

Concentric Ionosphere BCW German

MV 95.1±1.40 75.6±4.36 95.1±1.30 70.4±1.54

AdaBoost 78.8±2.71 78.7±3.93 95.4±1.04 64.1±2.40

Bagging 67.0±1.37 64.0±3.22 91.2±1.74 70.7±1.41

RS 69.7±1.82 64.6±3.73 92.4±1.90 70.8±1.39

DT 95.4±0.72 84.1±7.21 96.5±1.33 65.5±2.54

NBF 95.1±0.87 82.1±2.90 95.4±1.03 70.2±2.15

BKS 92.7±2.58 75.7±8.60 92.3±0.97 67.3±1.93

GAEGA(multi) 95.8±0.54 89.1±2.82 96.4±1.21 69.8±2.40

GAEGA(addition) 95.4±1.55 88.8±2.53 95.2±1.20 69.4±1.42

BAEGA(multi) 95.7±0.52 86.9±3.70 95.8±2.13 66.9±2.38

BAEGA(addition) 96.1±1.34 85.7±1.82 94.2±0.85 68.0±1.27
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Figure 6.8: Average accuracy of GAEGA and BAEGA over different data sets

this problem. Therefore, the failure of adaboost, bagging, and RS is due to the

insufficient representation capability of the ensemble. In contrast, NBF and DT

can utilize both of the XLinear and YLinear classifiers. Their failures come from

the ineffectiveness of the aggregation methods for the Decision XOR problem.

Each MCS has its own advantage in certain situations. None is universally

better in all the tests. For example, RS outperforms the other methods in the WF,

WF+DN, WPBC, and german data sets. NBF achieves the highest accuracy in the

clouds and WDBC data sets. However, many methods are not very robust. For

instance, MV, RS, and bagging are not good with the WDBC data. Adaboost has a

severe overfitting problem on time series data such as CBF, CC, WF, and WF+DN.

The performance of BKS is not reliable in many of the tests. The accuracy of

DT and NBF is not satisfying in GP, TR and TP data sets. In contrast, the

performances of GAEGA and BAEGA prove to be more robust. For each test,

their performances are either the best or very close to the best. From Fig. 6.84,

BAEGA and GAEGA are superior to the other methods over different data sets on

4Since the test on XOR data set is special and shows the advantage of GAEGA and BAEGA,
this data set is excluded, when computing the average accuracy, to make the comparison as fair
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average (XOR data is excluded).

There is no evidence to indicate whether GAEGA or BAEGA is stronger. Since

their principles are similar, it is not surprising that their performances are close.

In addition, the results show that both GAEGA and BAEGA with the multipli-

cation rule are somewhat stronger than the ones with the addition rule. However,

these differences are very small and stronger evidence is needed to support such a

conclusion.

6.6 Discussion on the Computation Cost of Dif-

ferent MCSs

Besides the accuracy, the computation cost is another important criterion to evalu-

ate the performance of MCSs. In this section, a rough estimation of the computation

cost of different MCSs is conducted. The task for the analysis of the computation

cost of MCSs is relatively difficult since the structures of MCSs are complex and it

is involved in many other factors such as the computation cost of the base classifier.

For simplicity, it is assumed that the computation cost of each base classifier in the

ensemble is a constant t. In the analysis, the interest is to explore the relation be-

tween the computation cost and the number of used base classifiers h, the number

of categories r and the number of training data N . Other computation costs are

assumed to be trivial and negligible.

Assume the size of the validation data set is always a fixed portion of the total

training data set. For the bootstrap method, B denotes the number of bootstrapped

samples. For RS method, K denotes the number of generated subsets of features.

Suppose that adaboost specifies the total number of iterations and denote this

number with L. For BAEGA, it is assumed that the homogeneous ensemble is

adopted. The estimated computation costs for different MCSs in the training and

test phases are reported in Table 6.13. The results show that GESA is very time

consuming. Its performance is in the exponential order of the number of available

classifiers. In contrast, MV has the advantage in achieving the small computation

as possible
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Table 6.13: Estimation of the Computation Cost of Different MCSs

Method Training Testing

MV O(ht) O(h)

AdaBoost O(LNt) O(L)

Bagging O(BNt) O(B)

RS O(KNt) O(K)

DT O(ht + hN) O(hr)

NBF O(ht + hN) O(hr)

BKS O(ht + hrN) O(hr)

GESA O(ht + 2hhrN) O(2hhr)

GAEGA O(ht + h2+rN) O(h1+r)

BAEGA O(ht + B2+rN) O(B1+r)

cost. For adaboost, bagging and RS, the computation cost depends on the number

of generated classifiers. The computation costs for DT and NBF are modest. In the

worst case, the computation cost for BKS could also be very high. Finally, although

the average accuracy of GAEGA and BAEGA outperforms other methods, their

computation costs in the worst case can be significantly higher than the methods

such as MV, NBF, DT and so on. Therefore, the improvements on the average

accuracy achieved by GAEGA and GEAGA are not cost-free.
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

The design of Multiple Classifier Systems (MCSs) is a challenging but promising

research topic in machine learning, pattern recognition and data mining. In this

thesis, MCSs are studied from the learning point of view. One premise is that a

robust design of MCSs should follow some general principles of the supervised learn-

ing. One of the fundamental issues in designing the supervised learning algorithm

is to fit the training data adequately and reducing the risk of overfitting.

In this thesis, the first objective is to propose the Generalized Exhaustive Search

and Aggregation (GESA) approach as a robust design of MCSs. GESA achieves

this objective through the development of a score function that is composed of two

parts. One measures the goodness of fit of the ensemble on the data to training the

aggregation rule. The other part measures the risk of overfitting. By maximizing

the score function, a reasonable balance is achieved between these two parts. In

the experimental results, the performances of GESA and other measurements are

assessed by varying the size of the training data set. The traditional methods such

as Behavior Knowledge Space (BKS) easily lead to the overfitting problem, and

exhibits an unreliable performance for a small training data set. The learning pro-

cedures of other methods such as Majority Voting (MV), Decision Template (DT)

and Naive Bayesian Fusion (NBF) are not very adaptive. Therefore, these methods

102



can not adequately learn the data in some cases. The results are quite similar to the

ones of the nearest neighbor classifier and linear classifier. The empirical studies

prove that the novel GESA exhibits a robust performance compared with the other

methods. GESA achieves the highest average accuracy over all the test data sets,

although it might not always provide the best accuracy in individual tests. Also,

GESA is readily distinguished from other MCSs by the architecture and the level

of the decision-making. It aggregates the decisions of a collection of ensembles,

instead of the decisions from an ensemble of base classifiers.

The focus of GESA is on the robustness of the MCSs. GESA does not take into

account other design issues, which renders it not to be very practical to solve real

problems. Generalized Adaptive Ensemble Generation and Aggregation (GAEGA)

and Bootstrapped Adaptive Ensemble Generation and Aggregation (BAEGA) are

two extensions of GESA in order to provide a data-adaptive design and to reduce the

computation cost. The investigation, described in this thesis, confirms that a data-

adaptive design should select only those representations and classifiers that generate

the effective decisions. Other representations and classifiers act as the noise ones

and tend to generate the noise decisions. It is true that many aggregation methods

can dynamically discern the effective decisions from the noise ones at the decision

aggregation layer. However, learning such knowledge is not cost-free. Given that

the training data set fixed, it is reasonable to assume that the performance of

the decision aggregation worsens when there are more noise decisions. The newly

developed GAEGA and BAEGA can be readily adopted to identify the ensemble

of effective representations and classifiers by maximizing the goodness of fit to the

training data. The logic is that the representations and classifiers are regarded as

effective if the ensemble, generated by them, fits the data well.

In addition, GAEGA and BAEGA reduce the computation cost by generating

and searching the ensemble in a polynomial order of the size of the knowledge

space Ω. Therefore, GAEGA and BAEGA tend to be more practical than GESA.

Although they are similar in the ensemble generation and decision aggregation,

they manipulate the data in a completely different manner. BAEGA does not split

the training data to train the base classifier and the aggregation rule separately in

a pre-determined way. Instead, BAEGA relies on the bootstrap sample to train the
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base classifiers. The idea to use the entire training data for the aggregation rule is

partial derived from the out of bootstrap method. The empirical studies in Chapter

6 prove that GAEGA and BAEGA are robust and outperform the methods that

are tested.

Multiple Input Representation-Adaptive Ensemble Generation and Aggregation

(MIR-AEGA) is derived from GAEGA, applying for the classification of time se-

ries data. Although the empirical studies of Keogh et al. [55] are extensive, their

conclusions can not be generalized. The performances of the nearest neighbor clas-

sifier, with either the Eucledian distance or Dynamic Time Warping (DTW), are

quite local. These methods can not prevent the overfitting problem effectively. In

addition, the claim that a certain similarity measure can adequately model the

temporal information in the data is not very convincing. The simu data set is an

artificial counter-example to show how both of them can fail in some situations.

The experimental results relate that the novel MIR-AEGA can handle the classi-

fication of time series data effectively. The success of MIR-AEGA is attributed to

the following three reasons. The dynamic information in the time series data is ad-

equately represented in a multiple-representation manner, MIR-AEGA adaptively

selects the effective representations and classifiers and filters others as noise, and

MIR-AEGA dynamically tweaks the trade-off between the goodness of fit and the

risk of overfitting. Therefore, MIR-AEGA is an effective and efficient approach for

the classification of time series data.

7.2 Future Work

Although the proposed MCSs approaches are successfully applied to a number of

tasks, their performances can be further improved in several ways.

• Develop a More Effective Score Function

The addition and multiplication rules are employed in this research to build

the score function for the Adaptive Aggregation (AA) approach. In fact,

the way to balance the goodness of fit to the training data and the risk of

overfitting is an open problem. Also, other rules can be employed for the AA
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approach in the future study. Moreover, other measures for the goodness of

fit and the risk of overfitting can be investigated and employed.

• Generate an Ensemble More Efficiently

Although both BAEGA and GAEGA significantly reduce the computation

cost, compared with GESA, they are still in the polynomial order of the size

of the knowledge space Ω. For some time critical applications such as the

online classification, a more efficient method is desirable.

• Tune the Parameters of the AA Approach Automatically

There are a few pre-determined parameters in the AA approach. For example,

k controls the weight of Gk(pm
i , p̂m

i , ni), and affects the accuracy of the entire

system. Ng controls the accuracy of the numerical estimation, and determines

the trade-off between the accuracy and computation cost of the whole system.

More advanced algorithms can be designed to adaptively learn the values of

the parameters to enhance the performance of the AA approach.

• Learn to Split Training Data Set Adaptively for GAEGA

GAEGA adopts a fixed split of the training data to train the base classifiers

and aggregation rule, separately. It is likely that the base classifiers demand

more data in some cases, whereas the aggregation rules needs more data in

other cases. Therefore, an adaptive split of the training data might improve

the performance of GAEGA.

• Extend MIR-AEGA to Handle Multivariate Time Series Data

Within the current discussion of MIR-AEGA, the focus is on univariate time

series data. In future studies, MIR-AEGA can be extended to handle multi-

variate time series data.

• Apply the Proposed Approach to Other Applications

In this thesis, the application of the proposed GAEGA is to classify time

series data. GAEGA can also be applied to more specific applications such

as speech recognition, text classification, and image recognition in the future

research.
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