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We are not seeking simplicity in art.

but we usually arrve at it as we approach the true nature of things.

Constantin Brancusi. 1876-1957
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Abstract

This thesis proposes process spaces. a simple and unified treatment for concurrency
issues such as parallel composition. refinement. deadlock. livelock. and starvation.
Processes are modeled as contracts over which executions may occur. The main
innovation is that executions are abstract: this leads to a very general model. For
trace-based executions. process spaces relate closely to trace theory and CSP. except

that we do not attach alphabets or connectivity restrictions to processes.

We revise several algebraic properties of process compositions and comparisons
that are commonly known from concurrency theory. A novel transform reveals

symmetries among usual process operations.

For finite-trace processes. we have a tool that uses a public-domain BDD library.
This tool fully supports modular and hierarchical verification. and draws on the
flexibility of the underlying formalism to address several niche applications. One
application is to detect switch-level faults in asynchronous MOS circuits. Another
is to verify sufficiency of relative delay constraints by handling them as metric-free

processes. without requiring post-layout numerical information on delays.

By comparing processes for liveness and progress. we obtain a classification of
concurrency faults. We also determine links among implicit liveness. progress. and
safety properties. so one can specify just the simpler safety properties. and then
assume typical liveness and progress properties. We briefly discuss some promising

applications that involve analog trajectories and true concurrency.

To handle relabelings. hidings. and derivatives. we construct them as process
maps arising from relations on execution sets. We obtain several algebraic proper-
ties. including criteria for performing verifications on images of processes by over-

approximation. under-approximation. and independence with respect to such maps.
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Chapter 1

Introduction

Discrete-state systems are practically everywhere: some examples are digital cir-
cuits (synchronous and asynchronous). programs and data structures. communica-
tion protocols. and work flows mn a factory. Discrete-state systems have finite or
countable state spaces. Because such systems may consist of several interacting
parts. they are sometimes referred to as concurrent systems: however. sequential
programs are also important members of this class. Discrete-state systems are ex-
posed to diverse modes of failure. including illegal inputs and outputs. deadlock.
livelock. unfairness. and performance faults. Many models have been proposed to
capture these diverse phenomena in research areas such as software engineering.

digital circuits. and distributed systems.

Despite their diversity. discrete-state systems have several common aspects. The
fact that their state spaces are finite or countable is essential for their analysis. but it
is not the main unifying aspect. More importantly, there are common mechanisms
by which such systems can be composed and compared. and these compositions

and comparisons satisfy several common properties that are basic and useful.
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For an example of common properties of discrete-state systems. consider the
phrase ‘implementation r satisfies specification q': that is. r can replace ¢q in a
system. without introducing new dangers of incorrect operation in that system.
Furthermore. the specification ¢ may be an implementation for a higher-level speci-
fication p. (This viewpoint tacitly assumes that the specification and the implemen-
tation are represented by formal objects of the same nature. although implemen-
tation models typically contain more details than the higher-level specifications.)
Then. a common-sense property is that. if ¢ satisfies p and r satisfies ¢q. then r
satisfies p. and this can be applied for several levels of specifications. This property

is known as successive refinement or hierarchical verification.

The discussion of hierarchical verification above is not tied to particular models
or their levels of detail. and not even to the criteria for comparison. On the basis
of this observation. we believe it is beneficial to keep such discussions simple and
general. by postponing. as much as possible. references to modeling details or spe-
cific correctness concerns. We propose to study discrete-state systems by means
of abstract executions. that is. without referring to the form or structure of the
executions. Executions can be finite sequences. infinite sequences. time-stamped

sequences. etc.. but we consider them to be just elements of an arbitrary set.

Just as concepts from Newtonian mechanics are modeled by numbers. properties
of discrete-state systems can be modeled by sets of abstract executions. Then.
common-sense laws like hierarchical verification can be studied by elementary set
calculus. It may be non-trivial to relate abstract executions to real systems. just
as it is non-trivial to explain to a novice what force is: however. the modeling
disciplines should become easy with practice. The eventual benefit of such an
approach is that one could apply generic laws. like F = ma. for very diverse systems

and at all levels of analysis where the general paradigm applies.
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1.1 Objectives of the Thesis

The purpose of this thesis is to take steps towards a general theory of discrete-
state systems along the lines suggested above. while making sure that sufficiently
many practical applications exast to serve as proofs of concept. This often involves
reworking some operations and properties from previous theories of concurrency
(which will be discussed below). but some novel operations and properties are
introduced as well. More importantly. we adopt an original viewpoint that regards
executions as an abstract notion. and makes no references to states. variables.
events. ports. or actions: this results in some distinguishing aspects of the proposed

approach.

In terms of theory. two main steps are taken. One is a general formalism that
models processes by means of abstract executions. that is. without references to
structural details of the executions. We call this formalism process spaces. The
other step is a study of maps between processes by means of relations between

executions: we call the mappings in this study process abstractions.

We give examples from several fields. ranging from concurrent programs to
electrical networks. For in-depth applications. we focus on formal verification tech-
niques for asynchronous circuits. Asynchronous circuits are designed without the
assumption of a global clock. and can be viewed as networks of digital components
that operate in parallel and synchronize on voltage transitions of the interconnect-
ing wires. For this reason. asynchronous circuits make good test-benches for any
theories that deal with concurrency issues in general discrete-state systems. For-
mal verification aims to search exhaustively for flaws of certain types in a given
system. which might be composed of several parts and compared to a specifica-

tion. Thus. formal verification of asynchronous circuits offers a practical setting for
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experimenting with correctness concerns and operations on discrete-state systems.

After establishing the basis for verifying asynchronous circuits in process spaces.
we develop two niche applications that are of practical interest. and we illustrate
them on published designs. We needed a high-performance tool to allow us to study
non-trivial examples. We have implemented the process space operations and con-
ditions for execution sets that are regular languages of finite words. BDDs (binary
decision diagrams) are data structures and algorithms for manipulating Boolean
functions. Many verification problems are computationally intensive. and this ap-
plies for BDD-based algorithms too in the worst cases: however. in typical cases
BDDs are known to increase performance by many orders of magnitude compared
to traditional algorithms for these problems. Our tool represents large state spaces
by characteristic functions of sets. and uses a public-domain BDD library for the

routine operations on large Boolean functions.

Many recent asynchronous designs tend to rely on timing to achieve speed
(see {MJCLOT7]) or energy and area savings (see 'BHP95| and Pee96!). In the
VLSI design of asynchronous circuits. the numerical bounds on component delays
are not known with sufficient precision until after setting the layout. transistor
sizes. and wire lengths. On the other hand. the effort for optimizing the layout
is substantial. and thus it is important to verify a circuit. as much as possible.
before layout. We model relative delay constraints of a certain form as metric-free
processes that simply ensure orderings of events: this way. the verification does not
refer to numerical bounds on delays. can be performed before layout. and all the

generic laws deduced for processes fully apply.
Another problem we address is the detection of switch-level faults in MOS tran-

sistor networks. At the switch level. the behavior of MOS transistor networks 1s

approximated by on/off switches. Depending on the design style and local op-
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timizations. switch-level faults include floating states. collisions. and shorts. In
floating states. certain circuit nodes are disconnected from both ground and power
supply: in collisions and shorts. certain circuit nodes are connected to both ground
and power supply. with the additional problem that the connections are of roughly
equal strengths in the case of collisions. We propose a verification technique that

detects such switch-level faults in asynchronous circuits.

Given the generality of process spaces. one may wonder what non-trivial prop-
erties of discrete-state systems can be captured. It turns out that many important
parts of the theory of concurrency can be adapted to abstract executions. Also.
we have found some new properties. Certain things are lost or gained. however.
in this generalization. Properties like hierarchical verification were usually given 1n
previous formalisms under various restrictions pertaining to connectivity: no two
outputs can be connected. only processes with the same inputs and outputs can be
compared. etc. Since we do not refer to structural detail of executions. we do not
impose similar restrictions. This generalization is done not by extending existing
models with new features. but rather by removing existing features. Using case
studies. we confirm that the unrestricted properties do apply and are sufficient at
least for our formal verification applications. In addition. we have indications that

the generalized properties apply to other systems and types of analysis as well.

Our investigation was started as a study of correctness concerns for asyn-
chronous circuits. Finitary descriptions are regarded as insufficiently powerful for
various correctness concerns. like liveness. which are treated by means of infinite
words (see for instance [AS85] and [Dil89] for two prominent treatments of live-
ness): [Bla86] even gives an argument that general liveness properties cannot be
captured by finite traces. On the other hand. many of the common descriptions of

circuits available in practice are equivalent in power to such finitary descriptions.
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Accordingly. we had undertaken to define and study whatever correctness concerns
we can in terms of finitary descriptions only. Although we do not challenge the ar-
gument of [Bla86]. we have noticed that default liveness properties can be uniquely
associated to such descriptions in a way that does correspond to our expectations
for liveness properties in many asynchronous circuits. The same holds for a slightly

different class of properties. known as progress properties.

We also study the algebraic properties of liveness and progress representations.
and we propose a classification of liveness and progress faults that matches our
intuitive notions of deadlock. livelock. and starvation: we call them collectively lock
faults. For these purposes. we found it more natural to refer to infinite traces rather
than to finitary descriptions. Nevertheless. users can still apply finitary descriptions
for ease of specification. extract the default liveness and progress properties mechan-
ically from such descriptions. and then apply the generic properties of processes or
the classification of lock faults on the resulting processes. also mechanically. This
way. users can have the best of both worlds. Finally. there are strong indications
that our treatment of liveness and progress applies to other types of discrete-state

systems as well: we point that out with small examples.

We continue the general theory of process spaces by a study of maps that pre-
serve binary operations: these maps (called process abstractions) generalize other
process operations. and allow for reduced verifications of processes. Some important
operations in concurrency theory take as arguments not just processes. but also sets
or sequences of actions: some examples are projections and hidings. where certain
actions are deleted from executions. and derivatives. where an initial part of an
execution is deleted. Is it possible to study all these operations without referring to
the structure of executions? It turns out that projections. hidings. derivatives. and

several other operations are just particular cases of process abstractions: as such. we
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could indeed assimilate these operations within the abstract execution framework.
At the same time. general process abstractions capture many properties of practical
interest. We give particular emphasis to criteria that authorize us to perform veri-
fications on images of processes through a process abstraction rather than directly
on the original processes. These criteria and other generic algebraic properties we
study for process abstractions are inherited by projections. relabelings. derivatives.

and other operations. as particular cases of process abstractions.

1.2 Previous Work

The literature on process modeling is vast. and unfortunately we cannot do justice
to all of it within the scope of this thesis. We therefore restrict our survey to some

of the better-known approaches from the asynchronous community and elsewhere.

1.2.1 Models of Concurrency

Process spaces are closely related to several previous treatments of concurrency
that model discrete-state systems essentially by their finite or infinite sequences of
events: let us refer to models of this type as language-oriented models. Some of
these related models are: the prefix-closed and complete trace theories in [Dil89].
the trace theory used in [Ebe9la]. the trace. failure. and divergence semantics
in [Hoa85]. the receptive process theory in [Jos92]. the CFFD (chaos-free failures
divergences) model in [VK98. VT95]. and the theory of delay-insemsitive systems
in [Ver94b].

Our model for a process consists of two sets of abstract executions. representing

an assumption/guarantee specification: one set represents guarantees about the be-
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havior of the device. and the other set represents assumptions about the behavior
of the environment. Assumption/guarantee specifications are a natural idea. which
can be traced as far back as [Pnu77] and even Hoare's triples {Hoa69]. In CSP
(communicating sequential processes) Hoa85]. non-deterministic processes are for-
malized essentially by two sets of behaviors (failures and divergences). In (Dil89].
the two sets contain behaviors of the same type (sequences of symbols). and the
idea is applied at two different levels of detail. using finite and infinite sequences.
The processes of the extended DI (extended delay-insensitive) model in [Ver94b|
also introduce assumptions and guarantees regarding two correctness issues (safety
and deadlock). resulting in specifications with several sets of finite sequences of
symbols. A separate development regarding assumption/guarantee specifications

has been proposed in [AL95]. using temporal logic [Lam94].

Although several theories of concurrency cited above use more than one type
of sequence of events to describe the behaviors of their systems. they have made
no proposals to use abstract executions. This is an important difference between
process spaces and the theories cited above. Even for those process spaces that use
sequences of events as executions. there are further differences regarding unusual
connectivity cases. We discuss the impact of these differences on our niche appli-
cations. where we exploit precisely these connectivity cases that are ruled out by
other models. We do not aim to prove that any of these models. including ours. is
right or wrong: we only argue that our model is useful. because it fits naturally at
least some applications that might contort other models. and because our model

captures credible algebraic properties for these applications.

Although there are some differences on connectivity restrictions and other tech-
nicalities. we believe there is a basic agreement between particular instances of

process spaces and the theories cited above. and among the theories above. In
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particular. several of the generic properties of processes. such as hierarchical ver-
ification. have been known in many of these previous theories: our contribution.
nevertheless. is to generalize them for arbitrary types of executions. without major
modifications. In addition. we have found several new properties. mostly referring

to maps between processes and to symmetries of process spaces.

Several of the theories above have a reflection or mirroring operation that in-
duces a duality between devices and their environments: [Ver94b| even employs a
symmetric notation. However. we are the first to complete this duality and to state
it formally. Also. we propose a rotation operation that induces a ternary symmetry
between common process operations. J. A. Brzozowski was the first to notice that
process spaces are particular cases of ternary algebras [BLN96}. However. the rota-
tion operation. the principle of ternary symmetry. and the resulting links between
common process operations are our contribution and do not exist in general ternary

algebras as presented for instance in BS95; and {BLN96!.

Since the early days of concurrency theory. there have been extensive efforts
to establish an abstract view of discrete-state systems by axiomatic approaches.
The resulting models. to which we refer as process algebras. define processes by
the laws they satisfy. CSP. for instance. combines a process algebra viewpoint
with the language-oriented viewpoint. Other algebraic approaches include. but
are not limited to. the algebraic theory of processes of [Hen88]. ACP (algebra of
communicating processes) of [BK85]. the laws of CCS (calculus of communicating
systems) [Mil89]. Circal [Mil94]. and. for asynchronous circuits. the algebraic model
of [BC88] and the algebra for delay-insensitive circuits of [JU90]. Term algebras
have been used to describe general concurrent systems in [Hen88] and VLSI circuits

in [Car82]. subsuming both the behavior and the connectivity of such systems.

Process algebras have captured many of the generic properties of processes. like
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hierarchical verification. but those process algebras known to us also include laws
that refer to structural details of executions. Some examples are laws for occurrence
of individual events. laws for sequential composition (which assume that executions
can be concatenated). and references to alphabets of actions. In our opinion. such
references to structure have prevented the development of a general theory that

would be truly independent of the level of analysis of a discrete-state system.

Other main approaches to the verifications of discrete-state systems are based on
Petri nets. temporal and modal logics. and various types of automata ( “operational
semantics”). These formalisms provide data structures and algorithms for handling
languages of finite or infinite words. but they are not concerned with reasoning
in terms of abstract (structure-less) executions. relying instead on occurrences of

events. Still. a discussion of modeling paradigms is in order.

It has been noted that the CCS notion of correctness relative to a specifica-
tion. called “observation equivalence”. makes finer distinctions than some language-
oriented models: see for instance [Mil90]. On the other hand. a notion of relative
correctness based on equivalence between specification and implementation is not
very meaningful for our verification problems. because typically an implementation
corresponds to just one of many behavior cases permitted by a specification: what
we need is a directed (one-way) notion of relative correctness which allows an 1m-
plementation to fill in some of the ~don’'t care” parts of the specification. Consider
for instance a circuit with two data outputs a and b specified to switch from low to
high concurrently. Let at and b1 be rising transitions on the voltage signals a and
b. and consider that the specification permits these transitions to occur in either
order: that is. both atht and btaf are legal behaviors. However. due to relative
timing. the implementation might always issue the a? transition first. that is. bta?

might never happen. This is a common situation in many real-life systems. but
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the “observation equivalence” viewpoint would consider it incorrect. because the
behavior bta? cannot be observed in the implementation. By contrast. unless the
specification imposes some fairness constraints. we would consider that this circuit
meets this specification. (Fairness constraints can also be specified in our model
and in some of the language-oriented models above. simply by ruling out certain
infinite executions: see Chapter 6.) This is not to say that CCS cannot be used
in other manners to fit our problems or other problems. but just to explain our
basic reason for adopting a language-oriented modeling paradigm in spite of the
differences from CCS. We demonstrate in applications how our paradigm works. A

critique of CCS is beyond the scope of this thesis.

The language-oriented models cited above represent situations where two events
occur at the same time by considering that the two events may occur in both orders.
although not precisely at the same time: this viewpoint is known as “interleaving se-
mantics”. A different paradigm. known as “true concurrency . is offered by models
such as [Maz86] that distinguish between two events occurring at the same time and
two events that may occur in either order. Although the usual interleaving seman-
tics lose some information regarding causal dependences between events. they are
often more tractable than the true concurrency models. For convenience. we adopt
interleaving semantics in most of our treatment. but we briefly show in Chapter 7

how a true concurrency viewpoint can also be accommodated in process spaces.

1.2.2 Methods for Asynchronous Circuit Verification

Our technique for including relative delay constraints in a metric-free analysis of

asynchronous circuits appears to be novel. Previous timing analysis methods for

asynchronous circuits from [ACD*92]. [AD94]. [CDYC97]. [LMBSV92]. [MD92].
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[Mye95]. or [RM94]. allow one to perform a more detailed analysis than we do here.
but they require numerical bounds on individual delays. whereas in our case studies
such bounds were not even available. The timing-reliability problems in [KN94] are
related to the problem we are studying. but [KN94] focuses on quantitative analysis
for known delay constraints. rather than on finding and verifying the constraints.
In [BY75] and [BY76]. almost-equal-delay models were proposed to analyze a cir-
cuit in a metric-free way under the assumption that the gate delays are roughly
equal: however. [BY75] and (BY76] do not address our problems because their delay

constraints are fixed (always a triangle inequality).

Switch-level analysis methods have been proposed in [BCDMS86!. [Bry87'. [BS95!.
[KS95]. [KSL95]. and {ZH92]. among others. However. except for BS95!. these
methods have focused only on steady-state or synchronous behavior. The technique
we propose here aims to complement the methods above and to provide additional
flexibility. Our analysis is event-driven. in the sense that it focuses on signal tran-
sitions rather than signal levels and does not assume (nor forbid) synchrony or

stabilization of voltage signals.

1.2.3 Liveness and Progress

The complete trace structures of [Dil89] can be used to capture both liveness and
progress properties. and the differences between our general liveness and progress
processes and [Dil89] have to do mainly with connectivity restrictions and other
technicalities. The models of [Ver94b| also capture some progress and liveness
faults. in the form of global deadlock. where everything may stop in a system while
some events are demanded. We use related finalization processes that differ from

[Ver94b] mainly on connectivity and other technicalities.
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On the other hand. our idea of liveness properties implicitly attached to finitary
specifications appears to be new. Without challenging the argument of [Bla86]
that finitary specifications are insufficiently powerful to capture arbitrary liveness
properties. we point out that in many discrete-state systems the liveness properties
are not arbitrary. but they are correlated to safety properties. and we demonstrate
this on the main example from [Bla86]. In [AS85]. an exhaustive characterization
of liveness properties has been proposed. However. nothing is said about which of
the properties in the class defined by [AS85] should be used for a liveness condition.
The models of [LT87] provide more insight in this respect. but their condition for
liveness fails to detect certain cases of unfairness [Neg95. p. 30]. The condition
for ~completeness with respect to specification” in [Ebe9la] prescribes essentially
that every specified behavior must have a counterpart in the implementation. This
condition does not seem very meaningful for our problems. for reasons similar to
those mentioned in regards to process equivalences: besides. many of the Liveness

and progress faults we study are outside the scope of [Ebe9la].

Our models of default progress processes that capture progress properties implic-
itly attached to finitary specifications appear to be related to a “finitary fairness”
type of assumption recommended in [AH94] and [VK98]. However. [AH94] does
not investigate the algebraic properties of finitary fairness specifications. focusing
instead on modeling issues and case studies. A notion of ‘an implementation satis-
fies a specification’ is given in [VT95]. and it is shown in [VK98] that it can capture

finitary fairness. but there connectivity restrictions play an important role.

Our general liveness and progress processes induce a formal classification of live-
ness and progress faults into deadlock. livelock. and starvation. This classification
appears to capture common intuition as expressed for instance in certain examples

from [Dil89] and [Ver94b]. Although diverse formalizations have been proposed
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for deadlock or other lock faults. (see for instance [BS95]. [Hoa85]. [Sme90]. and

[Ver94b]). we are not aware of a formal classification related to ours.

1.2.4 Process Abstractions

Most of the theories of concurrency mentioned above incorporate some notion of
hiding internal events of a system from an externally visible interface. Also. most
of these previous theories have some notion of derivative of a process. representing
the behavior of a system after certain events have occurred. However. structural
details. such as occurrences of actions. have been given key roles in studying such
maps between processes. By contrast. we unify these concepts and investigate
them on the basis of abstract executions. Besides. in process spaces we impose
no restrictions on actions. and we do not even distinguish between input. output.
internal. and external actions: instead. we rely on different effects of such actions

on the legality of executions.

Reduced representation of systems is also a natural idea. which has received a
lot of attention in previous treatments of concurrency. Using reduced representa-
tions. one can verify circuits at lower levels of modeling [KMO1]. or of larger sizes
[CGL92]. The criterion for exact approximation in [CGL92] is related to a partic-
ular case of a criterion for independence that we propose: these criteria determine
cases where verifications on images of processes through a map are equivalent to
direct verifications on the original processes. Also. abstractions have been studied
by means of Galois connections in [LGS*95] and [Sif83]. and we also give Galois
connection properties that correlate orders in different process domains. However.
none of the methods above has been aimed towards abstract executions: in fact.

[CGL92]. [LGS*95]. and [Sif83] take an operational viewpoint based on transi-
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tion systems. Moreover. [KM91] does not allow for uncertainty of representations
because their maps attach exactly one image to each execution or trajectory of
a system. Methods that approximate state sets have been used. for instance. in

[CDYC97]. [DWTY5]. and {SYP*97]. but they are also based on an operational
approach.

1.3 Notes on Terminology

From our introduction of process spaces in [Neg95]. we have changed some inap-
propriate terms. The "goal” executions used to be called "contract’ executions. but
that label could be confused with the idea of a contract between environment and
device. to which we refer frequently. More importantly. "escape’ executions were
called “error’ executions. We have changed this term because of possible confusion
with the idea of an error state of a computer program or a pocket calculator. that
may be reached following illegal inputs: such error states should normally be related

to our ‘reject’ executions rather than to "escape’ executions.

We use double quotes =~ for citations. and single quotes -* for some informal or

undefined terms.

Also. we do not include within quotes punctuation from the surrounding text.
We follow the advice of P. R. Halmos in [SHSJ73] that “the comma or period should
come where the logic of the situation forces it to come. although. as P. R. Halmos
also mentions. ~There appears to be an international typographical decree that a

period or a comma immediately to the right of a quotation is "ugly ..




Chapter 2

Process Spaces

We introduce process spaces. a formalism that deals with the idea of a contract
between a device and its environment in a general manner. Such contracts specify
the device-environment interface in terms of allowed executions. but we build cur
formalism without reference to a particular type or interpretation for executions.
Executions can be sequences of events. functions of time. etc.. but we consider them
to be just elements of an arbitrary set £. In fact. we postpone the decision of whar
the executions are until after determining the algebraic structure of our theory. In
this sense. our approach is based on abstract executions. This approach permits
the users to choose the levels of complexity and precision of a particular application

by varying the amount of detail contained in the executions.

We generalize several operations on processes and notions of correctness that
form the core of concurrency theory. such as relative and absolute correctness. par-
allel composition. and non-deterministic choice. (Process abstractions are discussed
in a later chapter, also at a general level. but as a separate development.) We also

discuss several algebraic properties of these conditions and operations. as well as

16
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their use for handling processes in a structured manner.

The correctness conditions of process spaces are abstract patterns for particular
correctness concerns. such as safety. liveness. progress. and deadlock-freedom. By
this. we obtain a unified theory for all particular concerns that can be cast into the

general patterns.

Because we make no assumptions about the structure of the elements of £.
the algebraic structure of process spaces boils down to elementary set calculus on
subsets of £: this facilitates the proofs of algebraic properties for our processes. In
other words. not only do we capture several correctness concerns for the price of

one. but also the price we pay is not very high.

The process operations naturally extend to infinite families of processes. Cer-
tain process properties can also be taken to the Limit. in the sense that they are

generalized for infinite families of processes.

The operations and conditions of process spaces are linked by six-way symme-
tries. We formalize an environment-device symmetry as a duality principle. and

also we formulate a ternary symmetry principle based on a “rotation’ transform.

2.1 The Model

Let £ be an arbitrary set. whose elements are called ezecutions.

Definition 2.1 A process over set £ is a pair (X.Y) of subsets of € such that
XuY=¢. (2.1)

The process space of €. denoted by Sg. is the set of all processes over £.
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In the remainder of this chapter. we consider all processes to be defined over
the same execution set £: we simply say “a process” instead of ~a process over £

The set £. however. may vary among applications.

Notation Name Set
: X
£ atp = Y asp accessible
: atp acceptable Y
l'p\Lgp ep) rp reject Y

\/ gp goal XnY

asp=X v —
p p ep escape X

vp violation X UY

Figure 2.1: Execution sets of a process p = (X.Y).

A process (X.Y') represents a contract between a device and its environment:
the device guarantees that only executions from X may occur. whereas the envi-
ronment guarantees that only executions from Y may occur. Executions from X
are called accessible and those from Y are called acceptable—the device can "access’
and -accept” them. respectively. Thus. a process can be regarded as an assump-
tion/guarantee specification: assuming that only executions from Y may occur. it

guarantees that only executions from X may occur.

Our model of processes is closely related to several previous theories of con-
currency. mentioned in Section 1.2. The main distinguishing aspect is that our
executions are abstract: there are no notions of inputs. outputs. actions. states. or
variables involved in a process or its executions. This holds throughout the devel-
opment of the process space theory in this chapter: many of the operations and
properties are similar to usual notions from concurrency theory, and we generalize

them for abstract executions. In particular. this generalization requires elimination
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of connectivity restrictions from process operations. correctness conditions. and
their algebraic properties. by making no references to inputs. outputs. etc. Nev-
ertheless. we show in examples how to use our processes to handle discrete-state
systems with states and actions: other interpretations for processes are discussed

in later chapters.

A process (X.Y') partitions £ into three disjoint subsets. as in Figure 2.1. Exe-
utions from Y are called rejects and must be avoided by the environment: execu-
tions from X are called escapes and must be avoided by the device: executions from
X NY are called goals and are legal for both device and environment. Executions
from X U Y. called violations. are illegal either for the device or the environment.
The accessible. acceptable. escape. reject. goal. and violation sets of process p are

denoted by asp. at p. e p. rp. gp. v p. respectively.

Equation (2.1). written equivalently X NY = 0. formalizes a separation of
responsibilities between device and environment: none of the executions needs to
be avoided by both device and environment. For this reason. the fourth intersection

(X NY) is absent from the Venn diagram in Figure 2.1.

l How do you do? l
‘ How are you? i D D

Environment <

Machine

Figure 2.2: Etiquette machine.
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Example 2.1 Imagine a simple etiquette machine. Proper etiquette is defined as a
conversation containing any number of the phrases “How do you do” and “How are
you". The conversation can be arbitrarily long. but finite. However. the available
vocabulary includes another phrase. “XXX". that nobody wants to hear. If our
machine hears “How do you do” or “How are you™. it responds by “How do you
do™ or “How are you™. If it hears XXX . the machine might become out of order

and may produce an arbitrary response or no response at all.

To model this machine in process spaces. we represent conversations as execu-
tions. consisting of strings of greetings between the machine and the environment.
For instance. (Environment: How are you) (Machine: XXX) (Machine: How are
you) is in £. but (Environment: How do you do XXX) is not in £ because ~How
do you do XXX is not one of the available greetings. In this example we indicate

in each greeting who delivered it. because it does matter who says "XXX". for

instance.
~— -~
! XXX How do vou do’ | How do voudo? '
y___J
. ‘/_____W i
; i\ How are you? | ! How are vou’ 1
| kit Y
; ogl . ool N oo
i £y << <
reject goal escape

Figure 2.3: Watch your mouth!

Figure 2.3 gives examples of goals. rejects. and escapes for the etiquette machine.
In a goal execution. everybody behaves and everybody is content. In a reject

execution. the environment behaves improperly and violates the requirements of
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the machine. whereas in an escape execution. the machine behaves improperly and

violates the requirements of the environment.

ml, m2. mx. el. e2. ex

Greeting Shorthand
Machine: How do vou do ml
Machine: How are you m2
Machine: XXX mx
Environment: How do you do el
Environment: iiow are you e2
Environment: XXX ex

ml, m2, mx, el. e2. ex

(a) (b)
Figure 2.4: Process of the etiquette machine: (a) actions: (b) process.

Figure 2.4 shows in full detail a process for the etiquette machine. as a state
machine. The edges are labeled with greetings. To reduce clutter. we use short-
hands for the greetings. and we sometimes put several greetings on a single edge.
The shorthands are listed in Figure 2.4 (a). The state markings r. g. and e in
Figure 2.4 (b) stand for reject. goal. and escape. respectively. The initial state
is marked with an incoming arrowhead. A string of greetings is a reject. goal. or
escape for this process if that string is spelled by a path starting at the initial
state and ending at a state marked r. g. or e. respectively. Since every greeting
is possible in every state. and thus every string in £ is on a path starting at the
initial state. the rejects. goals. and escapes cover all of £. Any conversations are
considered possible. because we don't know what the environment or the machine
would do. However, we forbid the environment or the machine from doing certain

things by qualifying those things as rejects or escapes.
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The formal representation requires us to classify every string of greetings. includ-
ing some which were more or less hand-waved in the informal descriptions above.
This way we obtain a formal description of the interface between the etiquette ma-
chine and its environment. For instance. (Environment: XXX) (Machine: XXX)
is a reject. because the environment violated the contract first: (Machine: How
do you do) (Environment: XXX) (Machine: How are you) is an escape. because
the machine is not allowed to speak out of turn: (Environment: How do you do)
(Environment: How do you do) (Machine: How are you) is a reject. because the
environment is not allowed to speak out of turn. either: the empty string is a goal.
because neither the environment nor the machine have done anything wrong: and.
the execution consisting of just (Environment: How are you) is an escape. because
it would be impolite for the machine not to respond to the greeting. Notice that
the machine must leave the escape state on the right by a polite greeting in order

to reach a goal state.

Note that. in this example. not only do we forbid undesired greetings to occur.
but also we force desired greetings to occur by forbidding stopping at certain states.
Although these two types of interdictions are of different nature. they both amount
to imposing that certain executions be avoided. More complex properties can be
specified by the same mechanism if one uses infinite-word executions or other more

detailed types of executions. a

2.2 Correctness Conditions

We use an absolute correctness condition. that a process has all by itself. and a
relative correctness condition, by which an ‘implementation’ process is compared

to a “specification’ process.
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The property of absolute correctness in process spaces formalizes that a device
operates correctly all by itself. that is. the device imposes no requirements upon
the environment: in this sense the device is said to be robust. In terms of avoided
executions. this property amounts to an empty reject set of the corresponding
process. as in the definition below. A symmetric property (albeit not a desirable
one) is that a device offers no guarantees to the environment as to which executions
are avoided: in this sense the device is said to be chaotic. This amounts to an empty

escape set.

Definition 2.2 Process p is robust if

rp = 0.

Process p ts chaotic if

ep = 0.

The sets of robust and chaotic processes are denoted by Re and Cg. respectively.

Example 2.2 The process in Figure 2.4 is not robust. because the executions

beginning with (Environment: XXX) are rejects for that process. a

The only process that is both robust and chaotic has the accessible and accept-

able sets equal to £.

Definition 2.3 The process void. denoted by ®. is (£.£).

Void has no escapes and no rejects; thus it neither offers guarantees nor imposes

requirements upon the environment. Its behavior reminds one of vacuum.
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The property of relative correctness in process spaces formalizes that a process
q is a satisfactory substitute for a process p. For this. g should impose fewer
requirements and offer more guarantees than p does. In terms of avoided executions.

this means that g has a larger acceptable set and a smaller accessible set.

Definition 2.4 Process p is refined by process q. written p C q. if
(atp Catg)A(asp 2 asq) .

Why is it undesirable to have many accessible executions? If the set of accessible
executions is smaller. the behavior of the device is more specified. in the sense that

the device has less freedom and obeys tighter constraints.'

ml.m2. mx.el. el ex
ml.m2. mx.el. 2. ex

ml.m2, mx.el.e2. ex
ml.m2, mx.el. e, ex

(a) (b)

Figure 2.5: Examples for refinement: (a) repeat machine: (b) quiet machine.

Example 2.3 A ‘repeat machine’ behaves similarly to the etiquette machine. ex-
cept that. after a polite greeting by the environment. the repeat machine responds

LThis notion should not be confused with that of "determinism™: we can. for instance. constrain

an arbiter device to behave fairly. but for that we use infinite words as executions. in later chapters.
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with the same greeting. The process in Figure 2.5 (a) for the repeat machine was
obtained from the process in Figure 2.4 (b) by splitting the rightmost state. to
remember the particular greeting used by the environment. Now. observe that the
repeat machine is not refined by the etiquette machine. since execution el m2 is
accessible for the etiquette machine but not for the repeat machine. In other words.
the etiquette machine is not a good substitute for the repeat machine. since the
etiquette machine might commit a gaffe if the environment is stiff enough to require

identical responses. -

Example 2.4 A "quiet machine’ imposes upon the environment the same require-
ments as the original etiquette machine. but does not respond to greetings. The
process for such a machine is shown in Figure 2.5 (b). Execution el is accessible
because it is legal for the quiet machine to stop after el. However. execution el is
not accessible for the etiquette machine. The quiet machine is not a good substitute
for the etiquette machine. because of stopping after el: the fault is detected as an

extraneous accessible execution.

The repeat machine does refine the etiquette machine. as is easily verified. How-
ever. it might be considered unfair to respond always by the same greeting. Such
unfairness faults are ignored by the process space over finite strings that we use In
this example: still. such faults can be detected by a process space that uses infinite

words for executions. as will be discussed in later chapters.

One can also verify that neither the repeat machine nor the etiquette machine
refines the quiet machine. and the quiet machine does not refine the repeat machine.

We perform such verifications by a tool. =

The following property shows that refinement is a partial order.
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Proposition 2.1 For processes p. q and r.

(a) pCp. (reflezivnity)
(b) pCqAgCr=pLr . (transitivity)
(c) pEqghqCp=>p=q . (antisymmetry)

Proof This follows from Definition 2.4 by reflexivity. transitivity. and antisymme-

try of the subset relationship. a

Reflexivity and transitivity are common-sense properties that one would expect
from a "worse-than-or-as-good-as’ relationship. The antisymmetry property above
(Proposition 2.1) concerns the level of abstraction of the model. A model is fully
abstract if it makes no irrelevant distinctions among its objects (see for instance
[Hen88]). where irrelevance is defined by some equivalence relationship. and distinc-
tions are defined by the formal features of the model. In our case. the objects are
processes as constructed in Definition 2.1. and they are distinguished or identified
by their execution sets. Irrelevance is with respect to an equivalence relationship
derived from the relative correctness condition: two processes are equivalent if they
refine each other. Proposition 2.1 (c) determines that process spaces are fully ab-

stract. referring to this equivalence.

The following statement determines that robustness as a predicate on processes

is monotonic with respect to refinement.

Proposition 2.2 For processes p and q.

pERe N pCq = q € Re .

Proof From the hypothesis. we have:
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E=atpandatpC atg:

thus. at ¢ = £. meaning that g is robust. -

If p is “correct by itself” and q is "at least as good as” p. then one would expect

q to be ‘correct by itself” as well.

The void process gives another connection between robustness and refinement.
Proposition 2.3 For process p.
pERe & ¢Cp.

Proof By the definitions of the refinement relationship and the void process.

dPCp & aspC &€ Natp2D&.

Since asp C £ is trivially satisfied. we have

PCp @ atp2 € & p=Re. -
In words. p is “correct by itself” iff p is "at least as good as’ a process that 1s so
indifferent to its environment that can be regarded as ‘vacuum .
Refinement admits the following extremal elements.

Definition 2.5 The process (0.£) is called top and is denoted by 7. The process
(£.0) is called bottom and is denoted by L.

Proposition 2.4 For every process p.
1CpCT.

Proof We have
asl =fDasp2DP = asT .
at Ll =0 CatpC & = atT . i

Notice that top is robust and bottom is chaotic.
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2.3 Operations

For dealing with concurrency. it is important to handle a system of interacting
processes as a single process that represents their joint behavior. As we shall see.
however. there is a difference in whether we consider the devices or the environments
of these processes to be interacting. We define two operations for computing joint
behaviors: product can be regarded as the law of composition for devices. while

exclusive sum can be regarded as the law of composition for environments.

Definition 2.6 The product of processes p and q i3 a process p X gq such that

as(pxq) = aspfasg

at(pxq) = (atpnatq)Uaspfiasg

and the exclusive sum of p and q is a process p % q such that

as(p&q) = (aspiasq) Um
at(p$q) = atpnaty
€ atp
as(pxq) '/‘-_ ------------- \‘—
] ' :
:\. ............. . '
-1 : 1 atg
1 t
asq ¢ ﬁ L
—--\\ . ! E\

at(pxq)

Figure 2.6: The product operation.
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To interpret the formal definitions of product and exclusive sum, notice that
executions that are accessible to both participating devices are accessible for the
system, and executions that are acceptable to both devices are acceptable for the
system. However, these two intersections do not cover the entire execution set £:

the executions marked ‘!’ in Figure 2.6 have not been accounted for so far.

The ‘!’ executions are escapes for one of the operand processes and rejects for
the other. They are violations for the resulting system too, but the question is
whether they should be escapes or rejects. If we consider devices to be interacting,
we take the position that the system device avoids all executions that are avoided
by at least one of the component devices. Accordingly. we define the acceptable
set of the product by augmenting at p N at ¢ by the executions marked ‘!". (Notice
that at (p x q) = (atpNatq)U(rpNeq)U(epNrgq) . )

The exclusive sum operation is similar to the product, except that the I’ exe-
cutions are rejects, rather than escapes, for the exclusive sum process. This way, if
an execution is avoided by the environment of either one of the operand processes.

that execution is avoided by the environment of the exclusive sum process too.

Favironment Speaker

<

Figure 2.7: Listener and Speaker.
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Example 2.5 Consider an etiquette machine which is realized as a system of two
parts. call them Listener and Speaker. Listener emits a “beep” each time it hears
a greeting from the environment. provided that the greeting is not out of turn and
not an “XXX". Speaker delivers a polite greeting each time it hears a “beep”.

el.e2. ex. beep beep. ml, m2. mx

el. el. ex. beep beep. ml. m2. mx
(self-loops on m1. m2. mx) (self-loops on el. €2. ex)
(a) (b)

Figure 2.8: Example for product: (a) Listener: (b) Speaker.

The processes for Listener and Speaker are shown in Figure 2.8. These processes
are over the execution set £ = {el. e2. ez. ml. m2. mz. beep}" . using the shorthands
from Figure 2.4 (a) and a new beep action. These processes are similar to the
process in Figure 2.4. except that certain actions have been omitted from the state
machines. We normally omit those actions that are ignored by a device. in the
sense that they do not change the state of the device. More precisely. at every state
there should be self-loops labeled with those actions. For instance. ml, m2. mz are
ignored by Listener and are omitted from Figure 2.8 (a): these actions would only

produce self-loops at every state of Listener.

Now. let us discuss some of the executions of the product of Listener and

Speaker. Execution e2 beep ml is accessible and acceptable for both Listener and
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Speaker. since it leads each of them to a goal state. By the definition of product
and Figure 2.6. this execution is acceptable and accessible for the product process
as well. Execution el e2 is accessible and not acceptable for Listener and it is
accessible and acceptable for Speaker. since the environment has spoken too fast
for Listener. but Speaker has stayed in its initial state. which is a goal state: this

execution is accessible and not acceptable for the product process.

An execution corresponding to a square marked *!" in Fignre 2.6 is el beep beep:
this execution is acceptable and not accessible for Listener and it 1s accessible and
not acceptable for Speaker: thus this execution is acceptable and not accessible
for the product process. If a participating device guarantees to avoid a certain

execution. the system of devices also guarantees to avoid that execution. d

Example 2.6 The omission of actions that produce self-loops at every state per-
mits us to specify the same machine over different execution sets. The process
in Figure 2.4 (b) looks the same if the executions can have action beep. One can
verify that the process in Figure 2.4 (b) (considered over {el. e2. ex. ml. m2. mz.
beep}) is refined by the product of Listener and Speaker. As will be discussed in

Chapter 3. we perform such verifications by a tool. 0

Some basic properties of product and exclusive sum are established in the fol-
lowing statement. These operations are idempotent. associative. commutative. and

admit the void process as the identity element.

Proposition 2.5 For processes p. ¢ and r. we have:

(a) pxp=p. (a’) p®p=p. (idempotency)
(b) (pxq)xr=px(gxr). (b’) (p@gST=pS(¢®T). (associativity)
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(c) pxg=gxp. (c’) p®gq=q®p. (commutatinty)
(d) px®=p. (d’) ppd®=p. (identity element)

Proof sketch We only consider properties for x: those for & follow by symmetry.

as will be discussed later in this chapter.
(a) By idempotency of N.

(b) Equality of the accessible sets follows immediately from associativity of 7.
To show equality of the acceptable sets. we simplify at ((p x q) x r) by routine

calculations. obtaining:

at((p x q) xr)

= (atpNatgnatr)Uaspfiasgnasr.

Noting that the final form is symmetric in p. ¢. and r. we also have:

(atpnatgnatr)Uaspiasgfasr

at ((g x r) x p)
= at(px(gxr)). (by commutativity of x (Part (c) below))

(c) By commutativity of N.

(d) Routine. |

Informally speaking, the identity element properties above ensure that intro-

ducing a void process in a system does not alter the behavior of the system.

A process represents a contract between a device and its environment from the
device’s point of view; we sometimes need to “turn the table’ by referring to a

process that represents the environment’s point of view in the same contract.
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Definition 2.7 The reflection of process p is a process —p such that

—p = (atp.asp) .

In defining reflection. we simply swap the acceptable and accessible sets of the

original process.

Reflection is its own inverse. it inverts refinement. and it swaps R¢ and Ce.

Proposition 2.6 For processes p and q.

(@) p=—-—-p.
(b) pCq & —qE -p.
(/) peERee -p€ls

Proof This follows directly from the definitions of —. Z. R¢. and Ce.

@]

Situations where we do not have complete information about the behavior of
a device or environment can be regarded as choices between behavior alternatives.
Such situations are modeled by two operations on processes: one operation for

choice between devices. and the other for choice between environments.

Definition 2.8 The meet of processes p and q is a process p [ q such that
pMqg = (aspUasgq. atpNatgq) .
and the join of p and q is a process p Ui q such that

plg = (aspNasq. atpUatgq) .
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Given two alternative processes. the meet and join processes can behave like

either of the alternatives. and this behavior choice is made for each execution.

Meet models a choice between devices. If an execution is accessible for either of
the alternative devices. the meet device will not guarantee to avoid that execution.
since we don't know which device was chosen. If an execution is a reject for one of
the alternative devices. the meet device will also require its environment to avoid
that execution. to forestall the possibility of choosing a device that rejects that
execution. Meet can be viewed as an adversary situation.’ in which we choose the
execution and then an adversary chooses a device so as to maximize the possibility

of occurrence of faults in a system consisting of the device and its environment.

Dually. join models a non-deterministic choice between environments. The de-
vice of pLi ¢ has an acceptable set just large enough and an accessible set just small
enough to accommodate an environment that can choose to behave either like —p

or like —q.

Top and bottom have several notable properties.

Proposition 2.7 For process p.

(a) pT=p. (a’) pu~-=p. (identity elements for T and U/
(b) UT=T. (b)) priiL=_. (dominant elements for U and )
(¢) pxT=7T. (¢’ pei=1. (dominant elements for < and ©/
(d -T=1.

Proof This follows directly from the definitions. m|

2We thank D. L. Dill for suggesting this interpretation.
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Top. a fictitious process, has the miraculous property that all possible flaws in
a system of processes are eliminated if top is inserted in that system. Proposi-
tion 2.7 (c) indicates that inserting a top process in an arbitrary system will make

that system a top too. thus making the system robust.

Figure 2.9 gives a pictorial representation for process spaces. Figure 2.9 (a)
indicates the conventions for the diagrams in this figure. Figure 2.9 (b) illustrates
a general process space with distinguished processes and the refinement relation.

and Figure 2.9 (c) illustrates a process space over a three-element execution set.

In these diagrams. the subsets of £ are represented by disjoint segments on the
coordinate axes. Every subset has two segments. one on each axis. equidistant from
the origin: notice the positions of Z on the two axes in Figure 2.9 (a). Comple-
mentary subsets are represented by segments equidistant from the middle of an
axis: notice the segments for Z and Z in Figure 2.9 (a). Each pair of subsets of £
is represented by a square whose projections on the axes are the segments of the

subsets in the pair: notice the positions of p. asp. and at p in Figure 2.9 (a).

With these conventions. a process space Sg is represented in Figure 2.9 (b):
Sg contains none of the pairs in the heavily shaded area. some of the pairs in the
lightly shaded area. and all the pairs in the delimited blank area of Figure 2.9 (b).
The upper and right borders in Figure 2.9 (b) are the sets of robust and chaotic
processes. denoted by Rg and Cg. respectively, since the processes on the upper
border have the set of acceptable executions equal to £, and the processes on the
right border have the set of accessible processes equal to E. The set D¢ contains the
pairs of the form (Z, Z), called diagonal processes (just because of their position).

The C signs indicate the direction of the refinement order on sets R¢. Ce and De.
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Figure 2.9: Charting a process space: (a) drawing convention: (b) chart: (c) process

space over {e. f.g}.
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Figure 2.9 (c) represents Sy sq) by the conventions above. Notice that there
are 27 processes in this process space: in general. the cardinality of a finite process
space is 3!, where £ is the execution set. also finite.> This is because each process

assigns one of three designations (reject. goal. escape) to each execution in £

Throughout our presentation of process spaces. we have mentioned symmetries

between environment and device. We formalize these symmetries as follows.

Proposition 2.8 (de Morgan’s laws) For processes p and q.

(a) —(pxq)=-p®—q. (') -(p®g)=-p<x—q.
(b) —(pMgq)=-puU-—q. (b’) —-(pug)=-pfi—q.

Proof This follows immediately from the definitions of the process space operators

involved. -

Together. Propositions 2.6 and 2.8 essentially say that reflection is an isomor-
phism of process spaces. On the basis of these statements. we formulate a duality

principle for process spaces.

Remark (duality) Let S be a statement about process spaces. The dual of S is
a statement S2 obtained by replacing in S every occurrence of £ by . of U by M.
of x by ®. of Re by Ce. of as by at. of r by e. and vice versa. (. —. g. V. E.
Se. and D¢ are their own duals.) Notice that 5§99 = §. If statement S holds. then
5% holds. too.

In fact, the meet and join operations endow process spaces with a lattice struc-

ture, as will be discussed later.

3We thank J. A. Brzozowski for these observations.
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2.4 Manipulation of Processes

The complexity of manipulating processes grows very rapidly with the sizes of their
representations. Therefore. a key idea is to divide a problem into parts. treat the
parts separately. and combine the results. We discuss several algebraic properties

that support such approaches.
Theorem 2.9 (monotonicity) For processes p. q. and r.
pCq = pxrCgxr.

Proof First. we show inclusion of the accessible sets.

as(pxr)Das(g xr)

& aspfasr Dasqliasr

aspNasq=10

& (aspNasr)N(asqgnasr) =10

<« (aspuasr)N(asgnasr)=10

< (aspnasqNasr)uU(astnasqgnasr) =0 (distributivity)
< aspNasqNasr =10 (since asT Nasr = 0)
—

=

asp D asq .

Similarly. we derive

atpnatr CatgnNatr.

Since aspNasr D asqNasr, we obtain

(atpNatr)U(aspNasr) C (atgNatr)U(asgNasr)
& at(pxr)Cat(gxr). a
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If ¢ is ‘at least as good as’ p. one would expect that coupling the same r to both
p and g wouldn't change the situation. However. the fact that r is arbitrary. not
related in any ways to p or q. is handy and rather surprising. For instance. nothing
prevents us from taking r = p. which leads to the following corollary. which tells us
that inserting a ‘better’ part (represented by process q) in a system (represented

by process p) can only make the system ‘better .

Corollary 2.10 For processes p and q.

pCq = pEpxgq. (2.2)

p = Jo

=
i Cy X cy X = S,;

= = =

r

| (dinXdip X)) X (dyXdnX-+) X =+ = S

c

q = Sn

Figure 2.10: Modular and hierarchical verification.

In conjunction with transitivity of refinement (Proposition 2.1 (b)) and commu-
tativity of product (Proposition 2.5 (c)). the monotonicity property of Theorem 2.9

allows for modular and hierarchical verification. as follows.

The problem is to determine whether p C q. where p represents a specification
and g an implementation. Typically. one devises a chain of intermediate specifi-

cations Sg. 81 .... Sn such that so = p and s, = ¢. as in Figure 2.10. Consecutive



CHAPTER 2. PROCESS SPACES 10

specifications (including p and g) may be broken into components: s; = ¢} xCa X -+
and siy; = (dyy X diz x -+-) X (day < daa x -++) x ---. One verifies. for each j. that
¢; = djy xdjp x---. By monotonicity of x with respect to C. one obtains $; = Sis1-
By the same procedure. one obtains si T $gs; for each k in {0.....n}. By transi-

tivity. p C q is established.

By combining the modular and hierarchical verification approach above with
the idempotency property (Proposition 2.5 (a)). we also allow the components
of consecutive specifications to overlap. For mstance. one may verify refinement
between p and ¢ by breaking p into several parts p = p; xp2 < -~ and by comparing
each part to . The parts might stand for independent properties to be verified

individually. If. for each i. p; T q. then p T ¢ too.

For finitely many specification levels and finitely many components at each level.
the modular and hierarchical verification techniques described above are justified
by the following property. (Cases of systems that have infinitely many components

will be discussed in Section 2.5.)

Corollary 2.11 For processes py. p2. qi. q2. and q.

(a) pCq A pEqg = L xp2l @ xqa.
(b)) pmEqA ppEqg = ppxp2q.

Proof

(a) By Theorem 2.9. we deduce

nCq =pxp2Eq1 Xp2
RE@E=2>pxal @xaq
=> @ xpeL @1 X (by commutativity of x)
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The conclusion follows by transitivity of refinement:

X xprEq1 X qz-

(b) This follows by idempotency of x. by substituting g for ¢ and for ¢, in

™
-

Part (a) above.

An alternative definition of refinement is to say that an ‘implementation’ q 18
correct with respect to a “specification’ p if ¢ operates correctly in the environment
of p. The question arises whether this alternative definition is equivalent to that in
Definition 2.4. The following property answers this question. and. by that. connects

our relative and absolute notions of correctness.

Theorem 2.12 (verification) For processes p and q.
pEq & —-pxq€Re.

Proof Let p = (X;.Y;) and q = (X2.Y2). We have:

—-pxq€Re
at(—-pxgq)=¢&
X\ nYhuYinX.=¢€
(X, NY2)uY ,uX,=¢
(X, UY1UX2)N(Y2UuY,UX,) = € (by distributivity of U through 1)
(X1 U_X_g)ﬂ(Y}U?l)zg (since?ngl and X, C Y»)
XiUX,=€E A YhuY, =€
X1 22X, A CY,
rCgq. a

$ ¢ ¢ ¢ ¢ ¢ 08
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Theorem 2.12 permits us to verify whether an implementation satisfies a speci-
fication by placing the implementation in the environment of the specification. and

then checking an absolute correctness condition on their product. Such approaches

were taken in [Ebe89. Ebe9la| and further developed in [Dil89] and [Ver94b).

Another alternative definition of refinement uses a testing point of view: g
is ‘better than or as good as' p if g passes all tests that p passes. Passing a
test r can be viewed as the absence of rejects when the device is coupled with
r. Theorem 2.13 shows that this testing definition of refinement is equivalent to
Definition 2.4. and thereby provides another link between the absolute and relative

notions of correctness in process spaces.
Theorem 2.13 (testing) For processes p and q.
pCq © VreSe:(rxpeRe=>1xq€ Re) .

Proof By Theorem 2.12 and Proposition 2.6 (a). we have r x p € Re & —r Cp
and 7 x ¢ € Re & —r C g . Thus. it is sufficient to prove

pCq & VreSe: (-rCp=>-rCq).

(=) By transitivity of refinement (Proposition 2.1 (b)).

pCgn—-rCp=>-rlLgq.

(«<) Let r = —p. By Proposition 2.6 (a). —7 = p. By reflexivity of refinement
(Proposition 2.1 (a)). —r T p. By hypothesis. —r C q. Finally. since —r = p. we
have p C gq. 0

Theorem 2.13 refers to the “testing paradigm”. which is commonplace in con-

currency theory (see e.g. [DNH83]).

The design inequality is
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pCgxr.

where process p represents a known specification. process g represents a known part
of the implementation. and process r represents the unknown remaining part of the
implementation. Theorem 2.14 solves the design inequality by characterizing its

solutions as those processes that refine a minimal solution.

Theorem 2.14 (design inequality) For processesp. q. andr.

pCgxr & p®d—qLr.

Proof
pCgxr
&  —pxgxT&Re (by Theorem 2.12)
& —(p&®—-q)xreRe (by Proposition 2.6 (a) and (c’))
< p&—qLT. (by Theorem 2.12) o

Solutions to the design inequality have been proposed previously in [Prad91} and
[Ver94b]. The design inequality also relates to the “supervisory control problem”™
in [RW87]. [WR87]. and [Sme89)].

Example 2.7 In Example 2.5. let p be the process for the etiquette machine. g the
process for Speaker. and r the process for Listener. One can verify that p& —q & 7.

thus pC g xr. a

Example 2.8 One possible application of the design inequality may be the design
of software for embedded systems. In that case. p can be the (known) specification

of the embedded system, g the (known) description of the underlying machine.
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and r the (unknown) specification for the software. Another possible application
is the design of interface circuitry for communication protocols: p and g are two

interfaces. and r is the specification for a "glue’ circuit. a

Although the design inequality holds promise for applications to synthesis prob-
lems (to derive an implementation from a higher-level specification). an inconve-
nience is that its minimal solution provided by Theorem 2.14 is not necessarily the
simplest solution in terms of the number of states. The minimal solution can be
simplified by using the process abstractions discussed in Chapter 8. However. we
do not pursue this issue further in this thesis. concentrating instead on verification

applications.

Off-the-shelf parts and subsystems are often intended to be fool-proof and to
have a defined behavior in any environment. For instance. voltage regulated sources
would often have overload protection. Such features are modeled in process spaces
by the robustness property: the device specified by a process accepts every execu-
tion. regardless of how the environment behaves in that execution. At the same
time. the environments (e.g. users) should ideally be assumed to be completely
unpredictable. in the sense that they offer no guarantees in terms of avoided ex-
ecutions: in process spaces. such unpredictable behaviors are modeled by chaotic
processes. This provides motivation for mentioning the following property. which

shows how to split a process into a robust and a chaotic part.

Theorem 2.15 (RC decomposition)
For process p.

(a) pU @ is robust,

(b) pn & is chaotic,

() p=(pu®)x(pne).
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Proof

(a) pud® = (aspné&.atpU€f) = (asp.€) € Re .

(b) pn® = (aspuUf.atpn&) = (£.atp) € Ce.
(c) (pU®)x(pn @)
= (asp.£) x (€.atp)
= (asp.atp U asp)
= p. (since asp = ep C at p) c

Robust processes can be regarded as pure guarantees. and chaotic processes as
pure requirements. Theorem 2.15 shows that every process is the product of a pure

guarantee and a pure requirement. and provides a way to compute the factors.

If all components of a system are robust. is the system itself robust? Propo-
sition 2.16 implies that the product of two robust devices or environments 1s also
robust. and also indicates some other closure properties of the set of robust pro-

cesses. (The infinite case is also treated. in Section 2.5.)
Proposition 2.16 R¢ is closed under «. &. L. and ™.

Proof Routine. If we let p and g be robust processes. the property follows when

we compute the accessible sets of p x q. p & q. etc. O

2.5 Sets of Processes

The product and exclusive sum operators extend naturally to sets of processes of
arbitrary cardinality. These extended operators obey certain algebraic properties
that permit simplified checks of refinement and robustness for possibly infinite

systems of processes.
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Definition 2.9 For subset B of Se. let the product of B and the exclusive sum of
B be. respectively.

<B = (ﬂpea as p. npes atpu anB asp) .

@B = ([,esasp U M,es atp. Nyecsatp) -

The extended and the binary forms of product and exclusive sum are equivalent.

Proposition 2.17 For processes p and q.

pxq= x{p.q} .
p®q=&{p.q} -

3

Proof This follows immediately from the definitions.

The following property provides a criterion for relative correctness (refinement )

between products of sets of processes.

Lemma 2.18 (system refinement) For process sets B and C.

(MNyezasp 2 Ngecasa) A (ﬂpeaatpgﬂqecatq) = xBZ «C.

Proof We have:

ﬂpea asp D ﬂqec asq & ﬂpesaSp C ﬂqec asq
anB atp g nqec atq

= at(xB) C at(xC)

and

Npesasp 2 Ngecasgqg & as(xB) D as(xC) .
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@

Thus. xBC xC .

Remark A -nasty technical problem”™ regarding systems of infinitely many pro-
cesses was mentioned in [Ver94b. p. 111]. If we have p; C ¢; for every ¢ £ N. where
N is the set of natural numbers. do we also have x{p;li € N} C x{git € N}? In
our model the answer is yes. even for uncountable process sets: for such sets. we

replace N by an arbitrary index set [.

For all i € I. p; C ¢ implies asp; 2 asgq and atp; C atgq;. Therefore.
Nicraspi 2 [ierasq and Nicratpi € Nierate. By Lemma 2.18. we have
x{pili € I} T x{qiit € I}. =

The converse of Lemma 2.18 does not hold. Take. for instance. B = { T} and C
= {T.L}. Although xB = xC = T. we have Nyesatp =& & 0 =ecatp

On the other hand. the following property provides a necessary and sufficient

criterion for absolute correctness (robustness) of products of sets of processes.

Lemma 2.19 (system robustness) For set B of processes.

xB€Re & [Nepasp C[epatp -

Proof
xB € Re & ﬂpegatpuﬂpesas;J:E < ﬂpeaaspgﬂpesatp. C
2.6 Lattice Properties

The terminology and notation for meet and join suggest the following connections

to the refinement relationship.
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Proposition 2.20 (connecting lemma) For processes p and q.

pCq ©® pug=q & plig=p.

Proof This follows immediately from definitions. by using the similar properties

of C. U. and N for the accessible and acceptable sets of p and gq. a

The meet and join operators can be extended to sets of arbitrary cardinality.
endowing process spaces with a lattice structure. The following property shows

that a process space Sg with the refinement partial order is a complete lattice.

Proposition 2.21
For every subset B of Sg. there ezist unique processes UB (called the join of B and

MB (called the meet of B) such that. for every process p.

(Vg=B:qCp) ® UBZp. /the least upper bound of B
(vgeB:pCq) e pENB. /the greatest lower bound of B

Proof idea The operators above have the following forms:

UB = (N,es 35 9-Uges at @) -
MB = (U,e5259-MNeesat a) - 3

In particular. the construction in the proof of Proposition 2.21 establishes the

correspondence between the extended and the binary forms of meet and join:

pNg="{p.q}.
pug=U{p.q}.

The following statement shows that a process space with the refinement partial

order is also a distributive lattice.
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Proposition 2.22 For processes p. q. and 7.

(a) pN(gur)=(pTq)U(pnr). (distributinity of 71 through U)
(a’) pU(grr) =(pUg)T(pUr). { distributivity of U through M)
Proof Use the distributivity properties of union and intersection. d

Refinement and reflection do not induce a Boolean algebra structure upon pro-
cess spaces. since ® U —® = & but & # T whenever & # 0. thus in general we
do not have ® L —® = T. However. refinement and reflection do induce a ternary

algebra structure {BLN96].

2.7 Symmetries of Process Spaces

In Section 2.3. we stated a duality principle for process spaces. to help organize
their algebraic structure. For instance. a property like Theorem 2.12 needs only be
stated for x. Re. and C. and the duality principle entails a similar property for %.
Ce. and Z. Process spaces also have a ternary symmetry and two other dualities.

obtained by applying the rotation operators below.

Definition 2.10 The forward rotation of process p s a process
/p = (aspUatp.asp) .

and the backward rotation of p is a process

\p = (atp.aspUatp) .
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rp | gp | €p
A\ A A
<

Figure 2.11: Forward rotation.

One car visualize forward rotation as moving the contents of the reject. goal.
and escape sets of a process as shown in Figure 2.11. Other substitutions performed

by rotation are listed in Table 2.1.

Forward and backward rotations are duals. and also they are related as follows.

Proposition 2.23 For process p.

(ay ///ip = p.
(b) 'p = //p.

Proof

(a) ,//p = /,(asp.atp.asp) = //(vp.asp) = Avp.-asp.vp)
= /(atp.vp) = (atpuVp.atp) = (asp.atp) = p

(b) Asin Part (a).

//p = (atp.vp) = \p. -

It follows that forward and backward rotations are inverses of each other: thus
they are bijective functions.
Rotations link the top. bottom. and void in a process space. and the robust.

chaotic. and diagonal processes.

Proposition 2.24

(a) For process p.
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pERe © [ peDe & //psCe.

(b)
® = /1L = //T

Proof This follows immediately from definitions. =

The binary operators of process spaces are also linked by rotations. In particular.
rotations can be viewed as transforming product into a non-deterministic choice:
rotate the operand processes. apply meet. and then rotate the result back. to obtain
the product of the original operands. Similarly. meet can be transformed into
product. By duality. similar relationships can be established between join and

exclusive sumi.

Theorem 2.25 (rotation) For processes p and q.

p<qg="(/pT/q).

Proof
as\(/pT/jq) = at/prat/q = asplasq = as(p <q):
at\(/p™/q)
= v(/ph/q) (by definition of /)
= r/pur/qu(e/pne/q (sincev(/pT/q)=r(/pT/q)we(/pT /q))
= epUeqU(gpngyq)
= at(pxgq)-. (see the Venn diagram in Figure 2.6) a

To complete the ternary symmetry. we need to introduce two binary operators
on processes. in addition to the previously defined ones. It is remarkable that only
two new binary operators suffice. given that four binary operators were defined

previously: some links already exist among the previous operators.
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Definition 2.11 The exclusive product and the sum of processes p and q are the

following processes. respectively:

p®q=\(/px/q).
p+qa=/(\p®\q) -

Sum and exclusive product extend to sets of processes in a2 manner similar to

Definition 2.9 and Proposition 2.21.

Sum and exclusive product can be connected by some other transformation laws
to the previously defined binary operators of process spaces. Sum and exclusive

product are duals. so we only give the law for exclusive product.

Proposition 2.26 For processes p and q.

p®q = /(\p7\q) .

Proof
(/p < /9)
= \W\(//pTi//q) (cf. Theorem 2.25)
= /(\pM\g) (by Proposition 2.23 (a) and (b)) =

In a similar manner. we can transform the reflection operator to obtain two new
unary operators on processes. These operators have their own de Morgan’s laws

and duality principles.

Definition 2.12 For process p. let

sp=\-/p,
ep=/-\p-
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We can also transform the refinement relationship to obtain two new partial
orders. One of these new orders. suggested by J. A. Brzozowski. has an interesting
meaning.

Definition 2.13 Process q is transparent for process p. written p < q. if
P =pPXxq-

Thus. ¢ does not affect the operation of p in a joint behavior. Void 1s the

most transparent process: in a system. it does not affect the operation of other

processes. Top is the least transparent process: in a system. it masks everything

else by making the entire system a top.

Proposition 2.27 For process p.

T<ps @

Proof For every process p.

p,<(§= p-
Txp: T . a

The transparency order can be obtained by ‘rotating the refinement order.

Proposition 2.28 For processes p and q.

pr<qg e /pC/q.

Proof By Theorem 2.25 and Proposition 2.23. we obtain

p<q e p=pxqg e p=\(/pN/9) & /p=/p0/q.
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By Proposition 2.20.
/p=/pT/q & /pC/q.

L

Another order can be obtained by further rotating transparency.

Definition 2.14 Process q is more sensitive than process p. written p 4. if

/p</q.

The order < is the dual of >.

as at — Vv — as

1

Cg Rg - Dg — Cg
T 5 4 = % - 7
—1 ey 4 ® — X — -
C - < = < - =

- =

)
|
l
!
|

Table 2.1: Substitutions made by the ternary symmetry principle.

On account of Theorem 2.25 (a). Propositions 2.23. 2.24. 2.26 and 2.28. and
Definitions 2.11. 2.12. and 2.14. we formulate a ternary symmetry principle for

process spaces.

Remark (ternary symmetry) Let S be a statement about process spaces. The
forward ternary correspondent of S is a statement ST obtained by the substitu-
tions in Figure 2.1. (The rotation operators and the sets £ and Sg are their own

substitutes.) Notice that S777 = §. If statement S holds. then S7 holds. too.
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Example 2.9 The forward ternary correspondent of Proposition 2.7 (b) is Propo-

sition 2.7 (c¢). a

The duality and ternary symmetry of process spaces can be summarized into a
six-way symmetry based on the group of permutations of three elements. Let us
call x. M. ®. @. +. and U process compositions. and T. 4. <. d. B. > process
comparisons. Process compositions and comparisons correspond to the six possible
orderings of set {r.g.e}. as follows. We associate C and U to ordering (r.g.e).
and we apply the replacements prescribed by the duality or ternary symmetry
principles to the comparison. composition. and ordering above. any number of
times but simultaneously to these three objects. Then. we obtain that each process
composition and each process comparison will be associated invariantly with an
ordering of {r.g.e}. These correspondences also extend to the unary operators
—. 5. and =: however. each of these unary operators has two attached orderings.

derived from associating (r.g.e) and (e.g.r) to —.

Although at the moment we do not have direct practical applications for the
symmetries above. the duality and ternary symmetry principles are useful because
they help us to keep track of the properties of many process space operations.
without having to prove each algebraic property separately for every combination

of operations.




Chapter 3

Handling Safety and Finalization

In this chapter we use processes over finite words for studying two important cor-
rectness concerns: safety and finalization. For many applications. the execution
sets are regular languages of finite words and can be represented by a type of finite
automaton. Certain aspects of modeling of systems by state machines over finite
executions have already been illustrated in the examples of Chapter 2. and will be
demonstrated again in the application to circuit verification: here. we briefly discuss

the basics of such modeling.

An obstacle to the verification of discrete-state systems is state explosion. that
is. the fact that the number of states of such a system can grow exponentially with
the number of components. Our basic verification problems are computationally

intractable in the worst cases.

On the other hand. there are algorithms that perform well on typical cases
of practical interest. even though the worst cases are still intractable. We have

implemented operations on finite automata in a tool called FIREMAPS. The label
FIREMAPS stands for finitary and regular manipulation of processes and systems.
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For efficiency. FIREMAPS uses a package of BDD routines obtained from the Model
Checking Group at Carnegie Mellon University [BRB90]. BDDs (binary decision
diagrams) are data structures for representing Boolean functions [Bry86]. Extensive
experimental evidence indicates that. in many cases. the efficiency of BDD-based
algorithms can be better by orders of magnitude than the traditional representations
of Boolean functions (see for instance [Bry86] and {BRB90]): this observation is

confirmed for typical cases of our applications too.

3.1 Safety and Finalization

Safety can be regarded as avoidance of illegal incidents. and finalization can be
regarded as avoidance of global deadlock. In Example 2.1. we don't want ~"XXX"
greetings. and we don’t want the machine to have the right to remain silent after
a polite. timely greeting from the environment. Following an informal description
from [LL90:. safety imposes that -something bad does not happen’. Also. let us refer
to avoidance of global deadlock as finalization. describing it informally as ‘something
good does happen’. An example of what we call the finalization correctness concern
is the termination property for sequential programs. which essentially says that
a program does not loop forever and will eventually produce results. However.
finalization is more general than termination. because finalization also applies to
cases where inputs continue to be fed in after the results are produced. and to cases
where several devices operate in parallel. Also. finalization relates to the more

general correctness concerns of ‘liveness” and “progress’. discussed in Chapter 6.

In our main applications. we take an event-oriented point of view. Events are
atomic changes of state. possibly occurring simultaneously in several processes. like

the greetings in the environment-machine examples in Chapter 2. In this inter-
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pretation. the expressions ‘something bad’ and ‘something good’ above refer to

undesired and desired events. respectively.

To model synchronization of state changes in different processes. events bear
labels called actions. In the Chapter 2 examples. the actions are el. .... beep. One
way to study discrete-state systems is to take executions to be strings of actions.
which can be finite or infinite. These strings can be interpreted as partial or total
observations of a system’s behavior: in the context of such an interpretation. we refer
to strings as traces. Formally. the terms "string’. ‘word’. and "trace’ are synonymous:
however. ‘trace carries the connotation of being interpreted as a recording of events

that actually occur in a system.

In this chapter. we use finite traces only. An observation of the behavior at a
device-environment interface can be interpreted as a partial observation represent-
ing the behavior since the time the system was started until a certain moment in
time. or as a total observation representing the entire operation of a system until
it comes to a stop (i.e.. until it ceases to issue new events). Correspondingly. we

call a finite trace partial or total in the context of these interpretations.

Total finite traces deal only with situations where a system does come to a {legal
or illegal) stop: if no-stop situations are of interest. one can use a different type

(infinite words) or interpretation for executions. as discussed in Chapter 6.

The interpretations above as partial and total observations amount to two ways
of describing a system s by a process over finite traces. These are two different ways
of classifying finite strings of actions as accessible and/or acceptable. For dealing
with partial finite traces. we construct the safety process of the system. a process
os over U=: for total finite traces. we construct the finalization process. a process

ps over U~.
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ml.m2.mx el, el ex

ml. m2, mx, el, e2. ex

Figure 3.1: Safety process of the etiquette machine.

Example 3.1 For the etiquette machine in Example 2.1. execution (Environment:
How are you?) is an escape of the finalization process. since it is the responsibility
of the machine to respond to the greeting. thereby ensuring that this execution
may not occur as a total finite trace of the system. At the same time. this exe-
cution is a goal of the safety process. since it is a partial observation of the legal
behavior (Environment: How are you?) (Machine: How are you?). The process in
Figure 2.4 is the finalization process of the etiquette machine. whereas Figure 3.1

here represents its safety process. =

Often. there is a tradeoff between the effort for analysis and the number of cor-
rectness issues that we care to specify and verify. Although safety and finalization
are different correctness concerns and should be verified individually. for many real-
life systems there are relationships between safety and finalization similar to those
occurring in Example 3.1, in the sense that safety flaws are usually also finalization
flaws. This is because, after a safety flaw. some systems might deadlock. producing
a finalization flaw. For example, execution elmz is an escape both for the safety

process in Figure 3.1 and for the finalization process in Figure 2.4 (b). For this
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reason. we usually verify finalization only.

Example 3.2 In Example 2.3. we noted that the etiquette machine does not sat-
isfy the repeat machine specification. because execution el m2 is not accessible
for the latter. This mismatch is a safety fault since the undesired event m2 hap-
pens: nevertheless. it is also a finalization flaw. because execution el m2 leads the

specification to an illegal stopping point. 3

The algebraic structure of Chapter 2 is inherited by the safety and finality

processes by simply taking the execution set to be U~.

3.2 Process Automata

If its execution sets are regular languages. a (safety or finalization) process over U~
can be represented as a finite automaton. To specify the effects of all actions of
U. we specify individually the effects of actions from a subset ¥ of Y. called the
alphabet of the automaton. and we let actions from outside the alphabet to occur
arbitrarily without changing state. However. it is important to keep in mind that
our safety and finalization processes are all over the same set of executions ({~) and
do not have individually designated alphabets: finite automata with alphabets are
only a means to specify processes for which only finitely many actions can induce
changes of state. as opposed to self-loops at every state. Also. for general processes
the execution sets might not be regular: finite automata are just a means to specify

processes whose execution sets are actually regular.

Definition 3.1 A process automaton over Y s a tuple P = (£.Q. 1. E. Qus. Qac)-

where
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1. $ is a finite subset of U. called the alphabet of P.
2. Q is a finite set of states.
3. I C Q is a set of initial states.

4. Qas and Qa whose elements are called accessible and acceptable. respectively.

are subsets of Q such that @ = Qas U Qat-

5. ECQ x X xQ is a set of edges.

ml, m2. mx. el. e2, ex

Figure 3.2: Example of a process automaton.

Example 3.3 The automaton in Figure 3.2 is the same as that in Figure 3.1.
except that we have given labels to states for easy reference. This automaton has
alphabet {el. e2. ez. ml. m2. mz}. state set {qo. @1 Q2. gs}- set {go} of inmitial
states. set {qo.q;.qs} of accessible states. set {qo. q1- g2} of acceptable states. and a

set of 24 edges (4 states times 6 labels). including (go-€l.q1) and (g3.mz.qa). but

not (gi.€ez.qz). a



CHAPTER 3. HANDLING SAFETY AND FINALIZATION 62

To specify a process by a process automaton. we need to classify each sequence
of actions from I{~ as accessible or acceptable for the process. For this. we handle
actions from ¥ in the usual way. and we let actions from U\X to occur arbitrarily

without changing state.

Definition 3.2 For process automaton P with alphabet £. a path of P 1s a finite
sequence ¢ = (go-01.q1) --- (Qk-1-Ok- Qi) of consecutive edges: the length of this
path is k. Word 1 ... yn of U™ 1s spelled by the path c if. by deleting from y1...Tn
all symbols from outside the alphabet of P. one obtains word oy ...0k. Path c s a

run zf g € 1.

Example 3.4 For the process automaton in Figure 3.2. if U = {el. e2. ex. ml.

m2. mz. a. b} then the path (go.€l.q1) (q1. mZ. ¢2) is a run and spells el b mz and

—
—

el mz. but not el e2 mz.

Definition 3.3 With each process automaton P = (3.Q.[. E. Qus. Qar; we asso-

ciate a pair pr'P = (X.Y) of subsets of U™. as follows. For every word w < U".
1. w € X if and only if there ezists a run in P that spells w and ends in Qas-
2. w € Y if and only if there are no runs in P that spell w and end in Q\Qa:-

Proposition 3.1 For every process automaton P over U. pr'P 1s a process over

u-.

Proof Let P. X. and Y be as in Definition 3.3. For arbitrary word w € u-.
let §*(I.w) be the set of end states of all runs spelling w. We have two cases for
0~ (I, w).
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If 6*(I.w) N Qas # 0. then. by Part 1 of Definition 3.3. we have w < X.

If 6*(I.w) N Qus = 0. then §*([.w) T Q\Qas T Qac. by Part 4 of Definition 3.1.
In this case. we have by Part 2 of Definition 3.3 that w € Y. !

Note that Proposition 3.1 does not assume that the automaton is complete:
that is. there might be no initial states. some states might not have successors by

certain actions. and. for some w. §"(/.w) might be empty.

We normally work with deterministic process automata. defined below. Non-
deterministic process automata arise. for instance. as a result of hiding internal
actions. but in those cases we prefer to determinize them before performing any

other operations.

Definition 3.4 A process automaton is deterministic if it has ezactly one initial

state. and for each q € Q and o = T there s ezactly one edge of the form (q.0.q').

Example 3.5 The automaton in Figure 3.2 is deterministic. =

Note that. in a deterministic process automaton. for each word there exists
exactly one run spelling that word. Also notice that Conditions 1 and 2 in Defini-
tion 3.3 are symmetric if the process automaton is deterministic: if exactly one run
in P spells word w. the statement “there are no runs in P that spell w and end in

Q\Qa." is equivalent to “there exists a run in P that spells w and ends in Qa: -

3.3 A BDD-Based Implementation

Our basic verification problems are to decide robustness for systems of finitely many

processes. as in Lemma 2.19. or refinement between a single specification process
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and the product of a system of finitely many processes. By Theorem 2.12. this
refinement problem can be reduced to the robustness problem above by taking the

reflection of the specification process.

As in most verification problems. for checking robustness of a system of processes
we have to deal with state explosion. that is. with the fact that the number of states
of the product of n processes may grow exponentially with n in the worst case. We
show below that. unless new algorithms are found that can solve the worst cases
of PSPACE-hard problems efficiently. the problem of deciding robustness of the

product of many process automata is intractable in the worst case.

Proposition 3.2 Deciding robustness of the product of a variable number n of

process automata is PSPACE-hard.

Proof We use reduction from the -finite state automata intersection” problem.
which is to decide emptiness of the intersection of the languages accepted by finitely
many deterministic finite automata M. .... M, that have the same alphabet Z.
The finite state automata intersection problem is known to be PSPACE-hard |GJ79.
p. 266].! Here we have referred to the usual notion of finite automata which clas-
sify each word as accepted or rejected. whereas a process classifies each word as

accessible or escape. as acceptable or reject. and as violation or goal.

Let L; be the language accepted by M;. We have that MNicqr....n} L; is empty if
and only if (ic(2. a3 Li I,. and thus. by Lemma 2.19. if and only if (z=. L) x
(xief2..np(Li, E7)) € Re-.

By altering M;, one can construct a process automaton for (L;. ") by labeling

the accepting states of M; as accessible and by labeling all states of M; as acceptable

I1We thank J. O. Shallit for this reference.
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in the resulting process automaton. Similarly. one obtains a process automaton for
(£-.L;) by labeling the non-accepting states of M, as acceptable and by labeling

all states of M, as accessible in the resulting process automaton. -

Since the proof above used deterministic automata only. the problem of deciding
robustness of the product of a variable number of deterministic process automata
is also PSPACE-hard. A similar problem involving automata on infinite words is
mentioned in [Kur94] to be PSPACE-complete.

The state explosion problem is partly alleviated by using a modular and hierar-
chical verification approach as discussed in Section 2.4. This way. one can break an
overall refinement or robustness problem into subproblems. each involving a smaller

number of automata. so that the subproblems are more tractable.

Another way to tame state explosion on typical cases is offered by BDDs.
We have implemented various operations on process automata in a tool. called
FIREMAPS. that uses a public-domain BDD library [BRB9O0] for the basic rou-

tines for manipulating large Boolean functions.

FIREMAPS has over one hundred operators. including all process space opera-
tions and conditions mentioned in Chapter 2. and also certain process maps like the
projections and derivatives that will be discussed in Chapter 8. The main usage
in the current applications is to verify robustness and refinement for systems of
processes as described above. If the verified system is not robust. the tool can find
a shortest reject trace and then simulate its effects on the processes in the system.
These features are important for finding and diagnosing flaws. Also. FIREMAPS
has capabilities for reading and writing processes as process automata. several op-
erators for constructing frequently used process models for circuit components and

delay constraints. and a front-end for reading and writing AND/IF (Andover inter-
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change format) specifications (see [Ver]).

FIREMAPS has a script language which uses the prefix (a.k.a. Polish) nota-
tion for commands and expressions. where the operator comes first and then the
operands: in turn. the operands can be other prefix expressions or constants. For
instance. a A (—bV ¢) can be written A aV — b cin Polish notation. This way. pars-
ing is made trivial and expressions have less clutter. because there is no need for
parentheses. Also. very importantly. the users do not need to memorize operator
precedences. The script language of FIREMAPS supports variable assignment and
several types of data: process. list of processes. list of actions. integer. list of inte-
gers. and bit. (Condition operators. like robustness. return bits.) Using the prefix
notation. we found it easy to extend the script language whenever new operators

were needed.

The standard BDDs (used in FIREMAPS) express Boolean functions of the
form f : {0.1}V — {0.1}. where V is a finite set. whose elements are referred to
as Boolean variables. This formalization follows loosely the treatment of symbolic
analysis in {BS95]. except that for us it is important to know which variables are
used in a particular Boolean function. not just to know how many arguments that
function has: hence we refer to {0.1}" instead of {0.1}" for a number n. The
elements of {0.1}V are called valuations for V and are functions of the form z :
V — {0.1}. assigning a Boolean value to each variable. A valuation can also be
regarded as a binary vector with [V| bits, where |.| denotes the cardinality of a set.
except that at some points we refer to the elements of V. not just to the cardinality

of V.

To manipulate automata by Boolean functions. one can encode the actions.
states, and edges as binary vectors over some of the Boolean variables available. and

represent the finite sets of actions, states, and edges by characteristic functions of
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sets of binary vectors. Given a finite set D, we encode it by an injective function 7p :
D — {0,1}"?, where Wp C V. Under this encoding, the set D is represented by a
function xp : {0,1}Y — {0.1} such that xp(z) = 1if and only if the components
of = corresponding to Wp are the code-word of an element of D. That is. yp(z) =1
if and only if 3d € D : z|lw, = np(d). where -|. denotes restriction of a function to

a sub-domain.

Notice that the function xp depends only on the variables in Wp. However. we
defined xp over all variables in V rather than just Wp for two reasons: to follow
closely the BDD implementation. and because we need conjunctions or disjunctions

of functions that may depend on different variable sets.

In FIREMAPS. all actions are encoded over a set Wy of Boolean variables.
Alphabets are represented by the corresponding characteristic functions. For sim-

plicity, we take the characteristic function of U to be constant 1.

The states of a process automaton (£.Q.[.E, Qas. Qa:) are represented over a
set Wy of variables, where 2Wal > |Q| and Wy is disjoint from Wy. To each process
automaton, we associate functions for Q. I, Qas. and Q.- all these functions being

from {0,1}"< to {0,1}.

By inserting at every state self-loops on actions from outside the alphabet of a
process automaton, the edge set of that process automaton is a subset of Q@ xU < Q.
The edges are represented over the variable set Wqo U Wy U W, where the variables
in Wy encode the next state, those in Wy encode the current state. and those in
Wy encode the action of an edge. The set Wy is disjoint from Weo and Wy. and
there is a bijective function s : Wg — W, that defines the next state encoding
as the function 7g : @ — {0, l}wé that satisfies Vg € @, n € Wy : (wp(q))(n) =
(rq(9))(s™*(n))-
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The product operation is implemented as follows. If P! and P? are the operands

and P is the result. then:

L. xg =xs V xz2

to

VE € Wi = s(€) = s*(€) and V€ € Wg2 = s(§) = 5*(€)
3. XQ = x¢' N X@®

4. xr=xn ANxr

5. XE = XE' N XE?

6. XQ. = Xqi, N Xa3,

7. Xau = Xo A ~((xqi, N ~xqz) V (X, A Xez2,))

This implementation of product follows the definition closely. except that the
sets of state variables of P! and P? are not necessarily disjoint. Sharing of state
variables among different process automata can provide substantial savings for the
BDD routines. while leaving the reachable part of the resulting state spaces un-
changed. Sharing of state variables requires certain compatibility conditions among
the process automata involved and among their Boolean function representations.
We do not go deeper into this issue. but we note that the product automaton is
compatible in this sense with the factors, justifying variable sharing between the
product and each of the factors. The same holds for the result and the operand of
reflection for deterministic process automata. The idea of sharing state variables is

not new; see e.g. [NS95].

Reflection is implemented by simply swapping the functions for Qas and Qa:-

This operation requires the argument to be a deterministic process automaton.
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For general process automata. we apply a determinization operation first. The
current FIREMAPS implementation for determinization is much less efficient than
the FIREMAPS implementations for product or robustness. For this reason. we try
not to use non-deterministic automata in practical applications at all. although the
current performance of determinization was sufficient to enable experimentation
with the model. (As usual. arbiters and other non-deterministic systems can be
modeled by deterministic automata by simply assigning different actions to the

options of a non-deterministic choice: examples will be given in later chapters.)

Other binary process space operations are implemented similarly to the product.

except for Steps 6 and 7. that have to be adjusted to correspond to the operation.

Robustness is verified by variations of the common reachability analysis algo-
rithm. which determines whether at least one reject state is reachable from the
initial states. Savings of several orders of magnitude are obtained if we eliminate
from xr all transitions to permanent-escape states right at the start. that is. when
we compute xr to states from which only escape states are reachable. Additional

savings are obtained by other optimizations.

Dynamical variable reordering is known to produce more compact BDDs and
thus to reduce the memory requirements of the routines. but in our experience
this comes at large penalties in response time. For this reason. we are not using

dynamical variable reordering.

For process automata P! and P?. we check refinement by checking robustness of
_P! x P?. Thus refinement is also checked by reachability analysis. and it requires

P! to be a deterministic process automaton.

With minor modifications. the algorithm above is used to find and return a

reject execution for a process, if that process is not robust.
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Figure 3.3: Basic micropipeline control circuit.

To evaluate the performance of FIREMAPS. we have used as a benchmark the
basic micropipeline control circuit from [Sut89]. For details of the operation of
this circuit. we refer the reader to [Sut89]: however. we show the schematics of
three stages of this circuit in Figure 3.3 to help in discussing the complexity of the

benchmark.

On this benchmark. we compare the results of FIREMAPS with those of VERDECT.
a tool based on explicit state exploration. For a description of VERDECT and some
non-benchmark demonstration circuits for that tool. see [EB95]. VERDECT was

previously used to verify circuits related to this benchmark. in [Sid95] for instance.

Using FIREMAPS. we have checked refinement between the finalization process
for an overall specification and the product of finalization processes given as models
of the stages. Each stage was represented by a deterministic process automaton
having 10 states. Our specifications were deterministic process automata having

4n + 6 states. where n is the number of stages of the circuit.

The circuit passed our verifications when the numbers of stages of the specifica-
tion and the implementation were the same. The number of states of the resulting
system for a micropipeline control with n stages and the reflection of the specifi-

cation process was (4n + 6)10”. but only very few of these states were reachable.
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Figure 3.4: Performance plot for the micropipeline benchmark.

Still. the number of states that were actually reached grew exponentially with the
number of stages. as shown by the straight line plotted with a dotted line on the
logarithmic scale in Figure 3.4. For 9 stages or less, FIREMAPS and VERDECT
reached precisely the same numbers of states. For 10 stages or more. we could not
perform a comparison because VERDECT exhausted the memory of the worksta-
tion: FIREMAPS reached the RAM limit and started swapping only at 24 stages.
For 6 and 7 stages. our run-times were larger than VERDECTs, but they were
smaller than one minute. Our run-times were smaller than VERDECT's for 8 and
9 stages. The time taken by our tool for this circuit is indicated by a plain line in
Figure 3.4, and for this case, it appears to be sub-exponential. These tasks were

performed on a Sun Sparc 10/30 workstation with 96 Mbytes of RAM.

It may be objected that we should not compare verification methods for a circuit
that is known to be correct and can be verified by hand by using algebraic tech-
niques. However, for the sizes of the circuits that both VERDECT and FIREMAPS

could handle, these tools reached the same numbers of states; this tells us that the
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comparison was done on similar state spaces. rather than taking shortcuts.

Nevertheless. in fairness to methods based on explicit state representations. it
must be pointed out that BDDs are known to have exponential growth for some
verification problems [Bry86]. similar to the exponential growth of explicit state
representations. Other techniques. such as those in [McM92]. can be used in com-
bination with BDDs to reduce further the computational effort for verification. We

do not address the question of which problems may or may not produce exponential

growth of BDDs.

Also. these benchmark verifications were brute-force: both VERDECT and
FIREMAPS can deal with larger circuits by applying modular and hierarchical
verification. In particular. modular and hierarchical verification works well for the

micropipeline circuit: see [DNS92].

We have also had the opportunity to compare FIREMAPS against the results
of another explicit state exploration tool used in [NS95]. This time we compared to
the performance reported by [NS95] for a non-benchmark circuit with a less regular
structure. FIREMAPS performed better by orders of magnitude: the details are

given in Chapter 5.

As a sanity check for our verifications of the micropipeline control circuit. we
also have altered the specification process to correspond to a different number of
stages than actually present in the implementation, and in those situations we have

obtained counter-example traces, as expected.

Our verifications of the micropipeline control circuit from [Sut89] did not include
relative timing for the “DELAY” elements; on the other hand, we have verified other

micropipeline control circuits under relative timing assumptions [MJ CL97].



Chapter 4

Relative Delay Assumptions

A way to reduce the area or increase the performance of asynchronous circuits
is to make timing assumptions. Such assumptions often boil down to imposing
that. of two circuit paths that start at the same point. one path is faster than the
other. Such assumptions are used for instance in circuits from [BHP95]. [MJCLIT]|.
[PDF*98]. and [Pee96]. We call speed-dependences of this form chain constraints.

To verify a circuit that relies on chain constraints. one might (i) size the com-
ponent delays to meet the delay constraints and then verify the circuit with known
bounds on component delays. or (ii) verify the circuit solely on the basis of given
delay constraints. then size the component delay bounds to meet the delay con-
straints. Precise bounds on individual component delays can be calculated only
after knowing transistor sizes and wire lengths: for this reason, let us call these
approaches post-layout and pre-layout verification. respectively. Pre-layout verifi-
cation can speed up the design by avoiding optimizing delays in an incorrect circuit.
by allowing migration to another implementation technology for a verified circuit.

and by keeping the verification simple because a minimum of information is used.

73
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In this chapter. we discuss the basics of asynchronous circuit modeling by means
of finalization processes. Then. we show how to incorporate chain constraints in
the analysis by formalizing them as finalization processes as well. Chain constraint
processes can be coupled and compared to other processes representing circuit spec-
ifications or components. leading to a flexible technique that is applicable before

layout.

Previous timing analysis methods for asynchronous circuits such as [ACD*92],
[AD94]. [CDYC97]. [LMBSV92]. [MD92]. [Mye95]. or [RM94] allow for a more
detailed analysis than we do here. but they require numerical bounds on individual
delays. whereas in our case studies such bounds are not even available. Also. the
absence of numeric information in our finalization models can simplify the analysis.
making it more tractable and more suitable for BDD algorithms. On the other
hand. we do not address performance concerns such as the response time and the

throughput of a circuit.

Other approaches for non-numeric analysis of circuits under relative delay con-
straints have been proposed in [BY75] and [BY76]. but their delay constraints are
always of the form that the delay of one gate is less than the sum of the delays of
two other gates. In our problems. however. we encounter more diverse constraints
and we try to avoid imposing unnecessary constraints: this requires a more versa-
tile technique. In addition. we can use algebraic properties from the underlying

formalism. such as the properties for modular and hierarchical verification.

We show on case studies how to use our technique to verify single-rail hand-
shake circuits from [Pee96], a class of asynchronous circuits with provable industrial
viability. We also report our experience with the following problems, which are en-

countered in these case studies:
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e significance of hazards (are they true faults? can they be ignored?):
e models for the behavior of certain CMOS cells in the presence of hazards:

e comparisons to Spice-like. analog simulations of dynamical system circuit

models;

e extraction of chain constraints from timing assumption of the type described

in [BHP95]. called extended isochronic forks:
e interpretations of delay constraints on analog waveforms:

e importance of uncertainty in the switching thresholds of CMOS cells (‘thresh-

old spreads’) for the implementation of chain constraints:

e assessment of tolerance of delay fluctuations for an asynchronous circuit that

uses chain constraints.

Also see [NP98], [Neg97a], and [Neg97b]; this chapter is based on [NP98].

4.1 Cell Models

To model digital circuits in an asynchronous, event-oriented manner. we represent
their waveforms by traces. Events are associated to signal transitions in the circuit.
We do not make a formal distinction between rising and falling transitions. which

are distinguished anyway by their effects on the state of the circuit.

Example 4.1 The waveform in Figure 4.1 (b) may be produced by a buffer com-
ponent, shown in Figure 4.1 (a), which repeats at the output the logical level of the

input signal. This waveform is represented by trace ababab. a
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(a) (b)
Figure 4.1: Waveform of a buffer.

In this section we discuss process space models of Boolean gates and some other
circuit components. such as C-elements. (The basic C-element has two inputs and
one output. If the inputs signal have the same logical value. the output reproduces
that value: otherwise. the output is constant. Thus. C-elements are not combina-
tional gates.) Such digital components can be modeled by finite state machines:
however. there are some subtleties. because the behavior of a gate is not fully

standardized in the presence of hazards.

We are mostly interested in components that have a single output and whose
behavior is described by a Boolean function of the inputs and the output: we call
this function the instability function. The instability function specifies when the
output value does not correspond to the input values. and thus the output signal
is about to undergo a transition. We refer to all such components as CMOS cells.
For example. consider an AND gate having inputs a. b. and c. and output d. The
instability function is (a AbAc) ® d. where & is exclusive-or. (Although we use the
same sign for exclusive sum and exclusive-or. it will be clear from the context which
of these operators is used.) Noting that exclusive-or is the negation of equivalence.
we see that the AND is unstable whenever d is different from the conjunction of
a, b, and ¢. For another example, consider a C-element with inputs a and b and
output c. The instability function is (a AbAT)V (@AbAc). In words. the C-element

is unstable whenever a and b are high and c is low, or a and b are low and c is high.
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In general. a CMOS cell that has output b and realizes the Boolean function
F(a;.a,....) has the instability function b & F'(a;.as....). and a CMOS cell that
realizes Martin's production rules [Mar90] U(a;.as....) = b 1 and D(a;.as....) =
b | has the instability function (U(a;.az....) A b) vV (D(ay.as....) A b).

(a) (b) (c)

Figure 4.2: Responses to a short pulse: (a) gate and signals: (b) incomplete tran-

sition: (c) delayed pulse.

The behavior of 2 CMOS cell is to a large extent standardized. but still there
are some situations where the behavior depends on the particular implementation.
For example. consider the AND gate in Figure 1.2 (a). Suppose input b is high and
input a is low. Suppose a rises and then falls again before the output gets a chance
to rise. What happens next? Depending on the implementation and timing, the
output signal might stay low. as in Figure 4.2 (b). or it might have a delayed pulse.
as in Figure 4.2 (c). CMOS cell models where an output transition is canceled
upon retraction of the input excitation. as in Figure 1.2 (b). are called inertial
models. This matches the traditional definition of inertial models (see e.g. [BS95])
except for not specifying numerical bounds on the delay of the inertial cell. Also.
models where the gate can ‘store’ up to k output transitions and deliver them after
the input excitation has been retracted, as in Figure 4.2 (c) for k > 2. are called

k-bounded [LMBSV92).
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Let us refer to situations where a CMOS cell becomes unstable and then stable
again before completing an output transition. as in Figure 4.2. as hazards. The

usual dynamic and static hazards (see e.g. [BS95]) are subcases of this definition.

We use finalization processes to specify the behaviors of CMOS cells of the types
described above. Since several behaviors of a cell may be expected in a hazard
situation. we need to know whether hazards may occur and. if so. for which cells.
For this purpose. one can simply forbid hazards at first by using cell specifications
that declare hazards illegal. We call such CMOS cell specifications hazard-intolerant
models. Then. any hazards will be detected as violations of the cell specifications.
Should any hazards occur. one can use more detailed specifications to model the

particular behaviors of the cells exposed to hazards.

a
e
C

(a) (b) (c)

Figure 4.3: Hazard-intolerant model: (a) gate and signals: (b) execution abcac: (c)

process.

For an example of a finalization process for a hazard-intolerant model. consider
the AND gate in Figure 4.3 (a). The corresponding process automaton is shown
as a state machine in Figure 4.3 (c). The state machine has ten states: eight
states for the eight possible combinations of logic levels of the signals of the gate.

one permanent-escape state for executions containing an illegal output. and one
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permanent-reject state for executions containing an illegal nput. Unless otherwise
specified, we assume that in the initial state all signals are low. Then. in the
neighboring state after an a transition. the signal values become a high. b low. ¢
low: and so on. For instance. execution abcac is a goal because it leads to a state
where a and ¢ are low and b is high. Execution abcb is an escape. since the gate
should continue by issuing another c event. Infinite executions like abcbbb. .. are
beyond the scope of finalization processes. which classify finite traces only: infinite

traces will be discussed in Chapter 6.

Figure 4.4: Process for the inertial model of the gate in Figure 4.3 (a).

For an example of a finalization process for an inertial model. consider the pro-
cess in Figure 4.4. representing the inertial model of the AND gate in Figure 4.3 (a).
This process is similar to the hazard-intolerant model, except that input transitions
from an unstable state to a stable state are permitted. For instance. execution abb
represents a hazard as described above, but it leads to a goal state of the inertial
model in Figure 4.4. This amounts to assuming that hazards are ignored, and so
are runt pulses at the input. One cannot rely on this assumption in general. but
this assumption does hold for certain gates, depending on their layout parameters.
Inertial models have to be validated by other means, such as analog simulations for

the individual gates involved.
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The hazard-intolerant models extend to arbitrary CMOS cells the asynchronous
models used e.g. in [Dil89] for Boolean gates. while the inertial models correspond

to the widely known inertial delay models described e.g. in [BS95].

FIREMAPS provides operators for building CMOS cell models directly from
the instability functions of the cells. Currently there are operators only for hazard-
intolerant and inertial models. but one can easily build k-bounded models for even
k by attaching buffers at the output of a cell. Ideal-delay models. which can store

arbitrarily many output transitions, are not finite-state and are not supported.

4.2 Chain Constraints

(a) (b)

Figure 4.5: Is the waveform (a) realized by the circuit (b)?

Consider the problem of designing a circuit that responds to a rising input transition
by issuing an output pulse. as in Figure 4.5 (a). A straightforward implementation
would be that in Figure 4.5 (b): from an initial stable state where a is low, the
rising transition on a causes falling transitions on b and d, then e rises, after which

c rises and e falls.

If INV1 and INV?2 are quicker than INV3 and NOR. it is possible that the output
pulse will never occur or will be corrupted, since c might rise and pull e down before

e completes the upgoing transition. To prevent this problem, one may introduce
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Figure 4.6: Ensuring correct behavior: (a) by extra circuitry: (b) by relative delays.

extra circuitry (a C-element). as in Figure 4.6 (a). However. the extra circuitry
increases the area. delay. and power consumption of the circuit. Fortunately. a
cheaper and more efficient solution is available. One can size the component delays

in such a way that

DaTbl, T DblcT > DaTcLL + DzLLeT (41)

where D’s represent gate delays. and T and | refer to rising or falling transitions

on output signals. The two chains of delays involved are shown in Figure 4.6 (b).
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Figure 4.7: General form of competing delay chains.

At this point we can define chain constraints more precisely, as relative delay

assumptions of the form

Dblb'.' + -+ Dbn_lbn > Dala-_v + -+ Dam_lam (42)
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that ensure that a,, will occur before b,. where a,. . ... am. by. .. .. b, are events such
that @, is the same as b,. and the D’s are delays between events: see Figure 1.7.

Instead of the expression in equation (4.2). we often use the shorthand
Dy, .bn > Day.om - (+.3)

Such delay inequalities are conditional upon the actual occurrence of the chains
of events involved. In many systems. however. it is possible that the chains are
disrupted by events occurring out of order. and that the chain that is supposed to
take a shorter time actually stops midway. Thus. an analysis of chain constraints
based on linear programming may encounter difficulties regarding deadlock and
non-determinism: instead of taking that approach. we model chain constraints by
processes like any other components in a discrete-state system. Also. a constraint of
the form (4.2) is in general different from the simple delay inequality Ds,s, > Dajam:
we shall discuss this point on an example at the end of this section. This further
motivates the handling of chain constraints by means of processes rather than linear

programming.

We propose a technique for verifying whether a given set of chain constraints
ensures correctness of a circuit. Additionally. this technique can assist in find-
ing sufficient chain constraints for a given circuit and specification. by indicating

potential flaws and executions where the flaws are manifest.

For example. consider again the circuit in Figure 4.5 (b). The pulse specification
in Figure 4.5 (a) is represented by the finite-state process in Figure 4.8. From the
initial state. a is supposed to switch. then e. and then e again. Illegal inputs lead
to a reject state. and illegal outputs to an escape state. To simplify this example,
we have chosen to disallow cyclic operation of the circuit and specifying only a

one-time use. by making a second a event illegal; in general. our technique does
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Figure 4.8: Specification process.

apply for cyclic operation as well. as demonstrated by the case studies later in this
chapter. Stopping before two e transitions is also illegal. and the corresponding
states are escape states. Stopping is legal after two e transitions. and before the
first @ transition. Note that the circuit does not actually have to be used: the
environment is allowed to stay in the initial state and never do anything. Events
other than a and e are ignored by this interface specification. meaning that they
do not change the state of the process. The problem is to determine whether the
specification process is refined by the product of the component processes. In this
case. the component processes are hazard-intolerant models of the behaviors of
the cells in Figure 4.5 (b). which are mechanically extracted from standard cell

descriptions as discussed in Section +.1.

FIREMAPS reported that refinement does not hold and produced counter-
example execution abed. indicating a hazard at the NOR gate. This execution
shows that the circuit might end up in a stable state where signals a and c are high
and signals b. d. and e are low. while an e transition is expected. Thus. in absence

of delay constraints. the circuit might not behave as specified.

To deal with the flaw without introducing new cells. we impose constraint (4.1).

To verify the circuit with the constraint. we model constraint (4.1) as a process that
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forbids certain executions by declaring them to be escapes. It is the responsibility
of an imaginary constraint device to avoid executions such as abed. abdc. abd.
FIREMAPS reported that refinement holds between the specification process in

Figure 4.8 and the product of the new constraint process and the cell processes.

Figure 4.9: Process for chain constraint D:TaJ, > DzTyl‘ assuming a and : start

low and y starts high.

To illustrate the chain constraint processes. we use a chain constraint which
is simpler than that in (4.1) and that actually arose in one of our case studies.
Consider the process automaton in Figure 4.9 representing the (rather simplistic)
chain constraint D.-.Ta 1> D+, under the assumption that. in the initial state. a
and z are low and y is high. (In applications. we often change the initial states of
process automata. to correspond to the actual initial values of signals in a circuit.)
Here the direction of signal transitions is meaningful. indicating that the constraint
applies from a state where z is low and a and y are high. This state. called the base
state of the constraint. needs not be the initial state of the system: in Figure +.9.
the base state is reached by a from the initial state. A cube-like set of states keeps
track of the levels of the three signals involved. Execution atztalzl violates the
constraint and is declared to be an escape. thereby making it the responsibility of an

imaginary constraint device to avoid such executions. (In execution atztalzl. the
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event al is illegal because a y| should have occurred before al.) Executions such as
atztyl. which obey the constraint. or atztz|. which disrupt the chains (meaning
that the ordering of the events in the execution does not match the orderings in the

chains). are not restricted by the constraint process. which classifies them as goals.

The constraint process is built automatically by FIREMAPS from the lists of
actions involved. a trace leading to the base state where the race starts. and the
two competing delay chains. For the chain constraint in (4.1). the actions involved
in the constraint are a. b. c. d. and e: the competing chains start at the initial state:
the chain with the longer delay is abc: and. the chain with the shorter delay is ade.
For the chain constraint in Figure 4.9. the actions involved in the constraint are a.

y. and z. the base state is reached by a. and the chains are z @ and z y.

As we have mentioned. we do not deal with chain constraints as linear inequal-
ities. The question arises whether one can simply sum up the delays in a chain

constraint and use a simpler constraint. For instance. would the chain constraint

DaTcT > DaTeT (44)

have the same effect on the circuit in Figure 4.5 (b) as the constraint (4.1)? The
answer is no. because chain constraint (4.1) turns out to be too strong. as we now

show.

We used FIREMAPS to find counter-examples to refinement between the circuit
with chain constraint (4.4) and the circuit with chain constraint (4.1). The tool has
produced execution abaadc. which is allowed by (4.1), but is inappropriately ruled
out by (4.4), for the following reasons. Notice that the first a in abaadc matches
both the @ in (4.1) and the @ in (4.4). However, the chain abc in (4.1) is disrupted

by the second a of abaadc; thus, the constraint in (4.1) does not apply to abaadc.
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On the other hand. the constraint in (+.4) does rule out abaadc. because the third
a in abaadc also matches the a in (4.4). Thus. (4.4) should not be used instead of
(4.1).

In general. one must be careful when deciding to simplify a chain constraint.
because a simpler delay inequality such as (4.4) may inappropriately guarantee to
avoid some potentially dangerous executions. and thus may mask bugs if it is used
instead of the more detailed constraint. Nevertheless. one may use a simplified
constraint if one checks that a subcircuit with a simplified constraint is equivalent

to that subcircuit with the original constraint. in the sense of double refinement.

4.2.1 Extended Isochronic Fork Assumptions

An extended isochronic fork assumption of depth n [BHP95] involves the delays in
two paths that start at the same circuit node and go through n gates each. In a
first approximation. let us ignore wire delays and rise and fall times. An extended

isochronic fork assumption can be symmetric or asymmetric.

An asymmetric fork assumes that one of the paths always takes longer than the

other. This amounts to an inequality of the form:

Di+---+D,>Dy+---+ D, (4.3)

n

where | - | denotes the absolute value, and D;..... D, and Dj,....D; are the gate
delays in the two paths. To put (4.5) into a chain constraint form. we need to trans-
late the gate delays into delays between events. This can be done in several ways.
depending on whether events represent rising or falling signal transitions, thus pro-
ducing chain constraints with different base states. Furthermore. one might insert

extra delays in the right-hand sides to constrain events that are not consecutive;
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such an example was encountered in [Neg97a]. This might seem complicated. but
usually it is quite clear which chain constraints need to be selected. by examining
the counter-example executions that are produced by the tool when checking the
circuit without the respective constraints. Moreover. in most cases. just a few of the
constituent chain constraints of each fork suffice to guarantee correctness. and we
can ignore the rest of them. facilitating both the analysis and the implementation

of the circuit.

A symmetric extended isochronic fork assumes that the difference of the delays
of the two circuit paths involved is smaller than the delay of any gate that has
at least one input connected at the end of either path. A symmetric extended

isochronic fork assumption can be split into inequalities of the form:

(Dy+---+ Dn) = (D} +---+ D)l < D” (+.6)

where D;..... D, and Di..... D', are the gate delays in the two paths. and D" is
the delay of any gate that has at least one input connected at the end of one of the

paths. Further. inequality (4.6) splits into:

Di+---+D,<D;+---+D,+D" (4.7)

and D, +---+D,<Dy+---+ Do+ D" (4.8)

One can extract chain constrains from inequalities (4.7) and (4.8), just like from

an asymmetric extended isochronic fork.

One way to handle the genuine isochronic forks from [Mar90] is as depth-one

extended isochronic forks. modeling the branch delays by inertial buffers.
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4.2.2 Thresholds and Constraint Interpretations

Chain constraints were defined in Subsection 4.2 under a discrete-state assumption.
but. to implement them in a circuit. one needs to translate them into constraints on
the dynamical-system parameters of the circuit. Aiming for a safe implementation.

we propose a translation which is always pessimistic.
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Figure 4.10: Meaning of delay constraint DzT ol ~ DzTy 1 and simulation of a failure

mode prevented by this constraint.

Links between the discrete-state and dynamical system viewpoints have been
extensively studied, for instance, in [GC94] and [KM91]; however, we need to discuss
the issue from a different perspective. The intention of [GC94] is to rely solely
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on topological features of the phase spaces. whereas. to define delays. we associate
events to crossings of voltage thresholds. In [KM91] the phase spaces are partitioned
into fixed boxes corresponding to discrete states. whereas we need to allow some
uncertainty for the thresholds. We sometimes associate more than one discrete
execution to each analog trajectory: for example. the waveform in Figure 4.10 can

be represented by either one of the executions

atbtzlztalrtzlatzlztylalzTat or
atbtzcialztrtzlatzlzTylalctal

since the first al and =7 transitions cross their thresholds concurrently.

cell a b c
INV 1.55 V
NOR2 |161V 173V
NOR3 |1.60V 168V 178V
NAND2 | 146 V 136V
NAND3 1140V 135V 126V

Table 4.1: Simulated logic thresholds. per input. for cells from a 0.5u CMOS library.
operated at 3.3 V.

We consider two logical thresholds. Tiow and Thigh, that enclose the range of
gate thresholds that are physically possible, and maybe some extra margins to
account for luctuations. Due to dependences on transistor widths and other effects.
the physical thresholds for a given technology differ among gates and even among
inputs of the same gate. As in [Ber92], we define physical thresholds by matching

saturation currents through the pull-down and pull-up networks of a cell. Some
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other definitions of physical thresholds can also be accommodated in our method.
as long as they allow for the variation in threshold values. (However. a definition
based on unit gain points would make the threshold ranges unnecessarily wide.) In
[NP98]. such threshold values were determined by analog simulations. and we list
them in Table 4.1. As in [NP98], we use a logical threshold range 1.16-1.88 V for
the circuits we analyze. to cover the simulated threshold values plus and munus a

margin of 0.1 V. chosen arbitrarily.

The purpose of a chain constraint of the form (4.2) is to ensure that event (signal
transition) am occurs before b,. We take this to mean that the signal of a,, leaves

the logical threshold range before the signal of b, enters the range.

The meaning of a chain constraint DzTal > D:Tyl is illustrated in Figure 1.10.
This constraint is applied twice. corresponding to two different ways of matching
events zT. al. and y| with the actual waveform. This constraint is first interpreted
as D.,, > D.,. where z can be a point on the time axis situated between z; and za.
In this first interpretation. the constraint is clearly violated. A second interpretation

is Dyg, > D..,. where 2’ is a point between z3 and z4: here. the constraint is obeyed.
2 y p y

A consequence of the proposed interpretations for chain constraints is that. if
a wider threshold range is used. the chain constraints become stricter and harder
to implement. This observation agrees with the concern expressed in (BHP95]
and [Ber92] for reducing the possible variation of the thresholds. In our method.
however, threshold spreads are not crucial. If the chain constraints themselves are
not very tight (if their safety margin is high—see Subsection 4.2.3) then we might
afford large threshold spreads. Note however that this observation applies to the
implementation of chain constraints and affects their verification only indirectly. by

guiding the choice of the constraints we care to verify.
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4.2.3 Safety Margins

To estimate how hard it is to implement chain constraints. one can use the safety
margin measure from [KN94]. which evaluates the timing reliability of a circuit in
the presence of delay fluctuations. This is a side issue that does not directly regard
verification. but provides a way to use the results of our technique in a practical

setting.

Given a constraint of the form (4.2). its safety margin can be defined as the ratio
i/j. where i and j are the numbers of inversions on the greater and smaller sides of
the inequality sign. respectively. Note that we count CMOS inversions rather than
gates. A larger ratio grants more leeway for the delays involved. presumably making
the constraints easier to implement. Larger ¢ and j with a constant ¢ — j difference
produce higher ratios and thus constraints that may be harder to implement. As
in [KN94]. the safety margin of a set of chain constraints is the smallest of the
safety margins of the chain constraints in the set. In general. a circuit may admit
multiple sets of chain constraints so that each set of constraints alone suffices to
guarantee correctness. The safety margin of a circuit can be defined as the largest

of the safety margins of these sets.

The number of CMOS inversions is an oversimplification of the delay of a gate.
although it does serve as a first-order approximation. More detailed models can be
ased as well. for instance models that take the capacitive load into account as in

[SS91]: such extensions. however. are not pursued further in this thesis.

4.2.4 Case Studies: Handshake Circuits

In [Pee96], the implementation of handshake circuits [Ber93] in a generic standard-

cell library (containing no dedicated asynchronous cells like C-elements) is de-
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scribed. The time dependences in these circuit implementations generally take
the form of chain constraints. The analysis technique described above is applied to

specify these timing assumptions precisely and to verify them.

C-Element with Delay Constraints

Figure 4.11 shows a circuit from [Pee96] that implements a three-input C-element
in a speed-dependent manner. The "==" sign denotes an extended isochronic fork
of depth one. as defined in [BHP95]. and an extra gate with input z is assumed to
intervene in the environment delay from z to each of a. b. and c. Following [Pee96.

p. 70]. this fork assumption is taken to be asymmetric.

-
)

3=

(5]

a
b= )~

Figure 4.11: Symbol and implementation for a three-input C-element{Pee96. p. 70].

First. we check whether the circuit satisfies its specification in the absence of
delay assumptions. The specification is the hazard-intolerant model of a three-input
C-element. The circuit is modeled as the product of hazard-intolerant models of the
circuit gates (extracted from standard cell descriptions as discussed in Section 4.1)
assuming that a. b. c. and z are initially low and z and y are initially high. To check
whether the circuit satisfies the specification without delay assumptions. we verify

by FIREMAPS the refinement relationship between the specification process and
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the circuit model. The answer is that refinement does not hold. and the counter-
example that is produced is execution ctbtatziztalatyl. This execution is a
reject for the NAND with output z. and a goal for all other gate processes and the
specification process. The smallest reject prefix is ctbtatzlztalat. indicating that
a hazard may occur at the NAND. although it is not a hazard for the specification.
To see whether this hazard may produce a fault that is externally visible. we replace
the circuit gate models by inertial models. and we obtain ctbtatzlztalztzl. which
is an escape for the specification and a goal for the circuit gates. This execution
contains an illegal z| transition.

An execution similar to the counter-example to refinement above was obtained

by the analog simulation in Figure 4.10. confirming that the fault detected by the

discrete-state analysis without delay constraints is realistic for the actual circuit.

To avoid the danger above. [Pee96] uses the delay assumption of an asymimetric
extended isochronic fork (denoted by *=="in Figure +.11). To avoid the illegal z|
in ctbtatzlztaleTz). we only need to ensure that after =% the internal signal y has
enough time to stabilize before the next input transition. Thus we only impose the
following chain constraints. which derive from the fork assumption for the delay

introduced by the extra environment gate mentioned above:

D’-T‘LL > D’-T!Il (49)
Dszl > D’-T!Ilr (4.10)
Dgel > Dituy (4.11)

Chain constraint (4.9) was illustrated in Figure 4.9 and Figure 4.10. Actions other
than a. y. and z do not change the state of the chain constraint process and are
omitted from Figure 4.9. This chain constraint guarantees avoidance of the execu-

tion cbazzazz above by making it an escape of its process.
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Figure 4.12: Simulated response to an input pulse. for a NAND gate with output
z (dotted line) and negative pulses of varying lengths on input a (solid line): (a)
an output pulse is produced. but it overlaps the input pulse: (b) the output spike

becomes too small.

Still. the product of chain constraint processes and the hazard-intolerant pro-
cesses of the circuit gates do not refine the specification. a counter-example execu-
tion being ctbtatzlztylalat. This execution shows a hazard caused by at at the
NAND gate that drives z. although this behavior is legal for the environment. We
need to determine whether this hazard can lead to a “true’ fault (externally visible).

or whether it can be ignored.

Under an inertial model for this NAND gate and hazard-intolerant models for
all other gates. the circuit with the chain constraints above does satisfy the hazard-
intolerant three-input C-element specification. But is an inertial model appropriate

for this gate?

Since the NAND gate that drives z is an inverting gate and its load is not
abnormally small, one may expect that an inertial model will be appropriate for

this gate. The verification procedure can exhaustively compare the discrete-state
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models of the components and the specification. but other methods have to be
employed to determine whether these discrete-state models properly describe the
actual. physical behavior of the system. To validate the model for this NAND gate.
we have simulated negative pulses of varying durations on input signal a. while
keeping b and c high. We have made the input transitions abrupt. to make it easier
for the output pulse to be delayed beyond the input pulse and expose non-inertial
behavior. if any. The gate parameters and the load had typical values currently used
for this circuit. (This load was the capacitance of an internal node.) The response
of the gate was indeed inertial: either the output pulse overlapped the input pulse.
as in Figure 4.12 (a). or the output spike was too small to be perceived as a pulse
by other gates. as in Figure 4.12 (b). That is. no output pulses were started after
the input pulse vanished. In other words. if the input pulse is too short. it will be
ignored rather than causing a delayed output pulse: these simulations agree with

the inertial assumption for this gate.

Maultiplexer Control

Figure 4.13 shows a multiplexer component taken from [BHP95. Pee96]. The en-
vironment of this component is assumed to guarantee mutual exclusion between
handshakes on two handshake channels @ and b that transmit data and control
signals. This component will forward incoming data from a or b along c and. when
acknowledged through c. send an acknowledgement along a or b. depending on the
origin of the data. This component thus multiplexes data from a and b onto channel

C.

In the single-rail implementation of this component. data and control are treated
separately. A control circuit (shown in Figure 4.13) connects to the control wires of

each handshake channel (denoted by subscripts r for request and a for acknowledge)
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Figure 4.13: Multiplexer comporent and control circuit [Pee96. p. 96].

and from this generates select wires (denoted by subscript s). The select wires
connect to the data part of the circuit. which for each bit i implements function
¢ = (ai Aa,) vV (b; A b,). The data on output ¢ should be valid at least from c.|

until c,}. given that the input also guarantees this late data-valid scheme [Pee96).

The specification of the multiplexer control circuit is given by the following

command [Pee96]:

* ( brT : (a:LH baT” ch : caT . baT : bri«) Y AN Cad : baL
| a1 (@t] badll Tt cat: aal: arl) il s cal i Gal)

In the command. operator "+ is used for repetition. " for concatenation. || for
parallel composition. and °|" for choice. They are listed here in decreasing order of

precedence.

Transitions on a, and b, are conditional, that is. they will be ignored if their
corresponding signals already have the targeted levels. For instance. a,Ta,T is legal.
but the second a,? has no effect. In the verification we used a more complex but
equivalent command. with unconditional transitions. in which an initial state for
these signals is assumed. We assumed that signals y. z. and a, start high and all
the other signals start low. The analysis would be symmetric for an initial state

where only z, z. and b, are high.



CHAPTER 4. RELATIVE DELAY ASSUMPTIONS 97

First. we check whether the circuit satisfies the specification under the following

delay assumptions indicated in [Pee96], and hazard-intolerant models for all cells:

D, teteatel > Patzlant (4.12)
Dy terteatsl = Doctulnnt (4.13)

and we obtain an execution

b-te.teaTylbsTzlaata, That

that contravenes the specification because a,1 inappropriately occurs in response
to b,1. (Notice that a,T does not constitute a violation of the mutual exclusion

requirement by the environment. since the device faulted first by issuing a,T.)

To avoid this danger we need to force an zT event to occur before z|. Thus we

introduce by hand two new constraints for a,] and b,} similar to those for a,t and

b.1:

Dy teteatzt > Doctyletand (4.14)
Da.-Tc.-Tc.,TzJ, > Da.-T:x:lyTb,.L (415)

With chain constraints (4.12). (4.13). (4.14). and (4.15). the circuit satisfies the

specification.

Let us compute the safety margin for constraints (4.12)-(4.15). Assuming
DCrTcaT is larger than two inversion delays. we obtain a safety margin of 5/3. We
have not verified the datapath. but it may add two extra inversion delays to the
delay of the inverters that control a, and b,. With these extra delays. the safety

margin becomes 5/5. If we also worry that DCrTCaT might be smaller than two
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inversion delays. which could happen. for instance. if there are extended isochronic

forks in the environment. the safety margin is 3/5. which is unacceptably small.

Fortunately. the constraints above could be split up and relaxed. by binding
only £ and y to z{. and a, and b, only to c,§. This results in the following set of

constraints:

4.16)
4.17)

D, teteatsbaatarterl ™ Pactelast (

Dy teteatslbatordert > Pootyinit (

D, teteatelaatarterd ™ Partzlutonl (4.18)
(
(

Dy terteatelbatsrbert > Dotylatanl 1.19)
D, teteatsl > Partalyt 4.20)
Dy tecteatst > Dotydat (4.21)

With the relaxed constraints (4.16)—(4.21). the circuit also satisfies the specification.

Assuming two inversion delays in the datapath and in D __ eal and one inversion
delay in DaaTari‘ the safety margins are 9/4 for (4.16) and (4.17). 9/5 for (4.18)
and (4.19). and 5/2 for (4.20) and (4.21). These constraints are thus very weak
and should be easy to implement. Even if no environment delays can be reliably
assumed and if there are additional datapath inversion delays. the safety margins
are 6/4 for (4.16) and (4.17). 6/5 for (4.18) and (4.19). and 3/2 for (4.20) and (4.21).
which are still quite good.

None of chain constraints (4.16)—(4.21) are made redundant by the others. If

only some of these constraints are used. we obtain violations of the specification.

Using only (4.18)-(4.21), ¢} comes before 6,1 in

b te TeatylztzibaTaslbr e lb,T




CHAPTER 4. RELATIVE DELAY ASSUMPTIONS 99
a 35 — — —= \ ———
ar__. p S AR SR SRS e
$78 — — —
05 __/ YA N A NS
ba 35 —
e S A A
11 ! 4 ' " bt ‘, “ . " 7
s N N ANEWARY
ca 3.5 .r————-\ ; —/r————" T - ;f——‘\ T—
e ;.7‘ ;] Y L L / L . :
G T S N Sy
B 35 SN PR : - FPEEEE - \-
\:“__ ;7 \ ,.l - S //’-_- _ /’_" : ' -
------- O O S N
18.0n 22.0n 26.0n
20.0n 24.0n 28.0n 32.00
Figure 4.14: Simulation of the failure mode of execution (4.22).
Using only (4.16). (4.17). (4.20). and (4.21). c.| comes before a, In
bete,teatylztzlbath,thrlerla,l
Using only (4.16)-(4.19). a,T inadvertently responds to b.t in
b.te,featzlasTa Tbel . (4.22)

To show the importance of these constraints. we have reproduced here a sim-

ulation from [NP98] of the failure mode of execution (4.22). This simulation was

performed by adding extra load to the cross-coupled NOR gates. so that the delays

of these gates violate constraints (4.20) and (4.21). Constraint (4.20) would impose

that z| enter the threshold range after y1 leaves the range. which does not happen

for the simulation in Figure 4.14: y and z are on the bottom plot. and the first

z| actually leaves the range before the first y1 even enters the range. Also. notice

this is not a case of disrupting the chains, since the other events in (4.20) occur
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as specified, following the first a.1 in the top plot. If the constraint were complied

with. the erroneous pulses would not appear on b,.

DO-Component

The DO-component. which is shown in Figure 4.15 (a). is used to implement repeti-
tion [Ber93|. When activated along passive handshake port a. it evaluates the guard
connected to b, and depending on the outcome, either performs a handshake along
c and evaluates again, or completes the handshake along a. A precise specification

of the four-phase behavior is in Figure 4.16 as a finalization process.

Further we note that the by guard can only be changed after the handshake on

a has been completed; thus. by will be stable at least till agd.

The specification is shown in Figure 4.16 as a process automaton for finalization.
To reduce clutter. we often omit some illegal transitions from our state machines.
in addition to the transitions that produce self-loops at every state: whenever we
do so. we indicate the omissions in notes. Also. we assigned labels to two of the
states in Figure 4.16. to avoid fully drawing certain incoming edges: see labels "0
and ‘1" for the states on the left. and "to 0" and “to 1 for some edges on the right
side of Figure 4.16. This process automaton has two main cycles. one for by low
and one for by high, which communicate via edges labeled bo. Notice that signal by

is supposed to be constant from bgl till agl or c 1.

A possible gate realization of the DO component (taken from [Pee96. p. 79]) is
shown in Figure 4.15 (b). The component marked "C’ and having a *+ sign for one

of the inputs is a generalized C-element [Mar90], given by the following production
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Figure 4.15: DO-component: (a) symbol: (b) circuit [Pee96|: (c) S-element imple-

mentation.

rules:

bO/\da - CrT
ﬁda - cr~L

The box marked 'S’ is an S-element!. whose implementation is shown in Fig-

ure 4.15 (c). The S-element is specified by the following command ([Pee96. p. 75]):

«(dy Tb, 1, by Lbaddatdr dal)

To start. we have verified that the S-element specification is refined by the product

of hazard-intolerant models of the gates in Figure 4.15 (c).

In the analysis below. we assume the circuit in 4.15 (b) starts at a state where
signals z and y are high and all other signals are low. If all inputs are held low, the

circuit does indeed stabilize at this state.

In [Pee96], it was also assumed that the delay from a d,| event to a c.| event

through the C-element (two inversions) is larger than the delay from d,! to yt (one

1The S-element is also called ‘Q’ in [Mar90]
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to0

to2

to3

NOTES
e illegal b,, c,. a, events lead to a permanent-escape state
o illegal b,. bo. Cq. a, to a permanent-reject

e all actions that are not shown produce self-loops at every state

Figure 4.16: Finalization process for the DO-component specification.

inversion), which translates into the chain constraint

Ddalcrl > DdaJ,yT' (4.23)

With constraint (4.23) and hazard-intolerant models of all gates. we obtained the
following counter-example to refinement. indicating a hazard by da| at the inverter

whose output is y:

a,1zld, 1b, Thotbathr Lbaldater TeaTdr Ldalerl

Is this hazard a true danger of violating the specification? Using an inertial
model for the inverter and hazard-intolerant models for all other gates. the circuit

with constraint (4.23) does refine the DO-component specification above.

Better yet, we do not need to rely on an inertial model for the mverter. With

constraint (4.23) and the additional constraint

DdaTCrT > DdaTyl (4.24)
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10 hazards occur: under hazard-intolerant models for all gates. the circuit with
constraints (4.23) and (4.24) refines the DO-component specification above. The
circuit works fine under the (rather weak) chain constraints (4.23) and (4.24). which

imply a safety margin of at least 2/1.

4.3 Stocktaking

We have verified three circuits from [Pee96] as case studies for the analysis technique
of [Neg97b]. This exercise has pointed to several problems at the border between
discrete and analog viewpoints on circuit behavior. We have given an account
of these problems and the way we dealt with them. The circuits were found to
be correct. and in one case a notable relaxation of the delay constraints could be
obtained. The three analysis sessions in Section 4.2.4 took 7. 48. and 8 seconds on
a Sun Sparc 5/110 to perform 4. 6. and 4 verifications or diagnoses. respectively.
including the delay constraints. Also. we have performed analog simulations for the
circuits under study. and the simulations have been consistent with the discrete-

state analysis.

As mentioned in Section 1.2. process spaces are closely related to several previ-
ous language-oriented treatments of concurrency. Although maybe we could have
performed our discrete-state analysis using one of these previous formalisms. note
that. in their present forms. [Dil89]. [Jos92]. and [Ver94b] forbid connecting out-
puts by parallel composition. whereas in our analysis we need to take the product
of chain constraint processes and gate processes that share control over certain ac-
tions. and we need the structured verification properties to cover this connectivity

case too. CSP. [Ebe9lb], and [VK98. VT95] do allow shared outputs in parallel

composition. but they have, for instance. restrictions on the processes that can
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participate in comparisons. The connectivity restrictions in CSP are less limiting
than those of other models: on the other hand, CSP handles deadlock by a rather
complicated with explicit representations of the events that may be refused at the

end of each trace.

Because chain constraints provide for the cases where the involved signal transi-
tions occur out of order or do not occur at all, we did not treat them as simple linear
inequalities on delays. On the other hand, chain constraints are easy to handle as
processes. and as such they can deal with deadlock, hazards. and non-determinism.

The safety margin measure from [KN94] could also be applied for chain constraints.




Chapter 5

Switch-Level Correctness

Concerns

Switch-level models [Bry87] offer a viable trade-off between accuracy and efficiency
of the analysis of digital MOS circuits. Such models approximate an MOS transistor
as an on/off switch. and simplify charge sharing and path strength calculations to
the extreme. Nevertheless. such models can capture logical behavior that can be
used further for gate-level analysis. and can deal with specific correctness concerns

for MOS transistor networks. such as floating states. collisions. and shorts.

In a floating state. a circuit wire is isolated both from ground and from the power
supply. A collision occurs if a wire is connected both to ground and to the power
supply through transistor channel networks of commensurate strengths. A short is
similar to a collision, except that the connections to ground and power supply may
be of different strengths. If any of these situations occur in stable states. we call
them persistent; otherwise we call them transient. Floating states. collisions, and

shorts do not necessarily constitute malfunctions, especially if they are transient:

105
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in fact. floating states and transient non-collision shorts are routinely put to use
in certain design styles. Still. floating states and collisions may be undesirable
in other designs. because the respective wire voltages can decay to an unknown
intermediate value: also. non-collision shorts may be undesirable because of undue
power dissipation. To accommodate all these cases. our technique permits us both

to detect and to ignore such situations.

Switch-level analysis methods have been proposed in [(BCDMS6]. [Bry87]. [BS95].
(KS95], [KSL95]. and [ZH92|. among others. However. except for [BS95]. these

methods have focused only on steady-state or synchronous behavior.

The methods in [Bry87] and [KSL95] extract the steady-state response of switch-
level networks. characterizing signal relationships in stable states. The result can be
used further in gate-level analysis. and [ZH92| and [KS95] also apply it to sequential.
synchronous circuits that stabilize over a clock period. The method in (BCDMS6]
extracts a state graph from a transistor netlist directly. assuming all gates in a
circuit have the same delay. The framework for MOS circuit analysis in [BS95]
can be used for various checks of asynchronous behavior and can even incorporate

timing information. but the subsequent timed analysis is only for stable outcome.

The technique we propose here aims to complement the methods above and
to provide additional flexibility. We do not extract the behavior of a switch-level
network. but we perform computationally-intensive verifications of switch-level cor-
rectness concerns. as well as gate-level analysis. Our analysis is event-driven. in the
sense that it focuses on signal transitions rather than signal levels and does not
assume (nor forbid) synchrony. The event-driven approach permits us to use cer-
tain processes that are not easy to cast in a Boolean framework. Notably. these
processes can model several assumptions regarding the behavior of charge-retaining

circuit nodes. diverse switch-level correctness concerns. and even relative speeds of
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the components. As in Chapter 4. these speed assumptions do not require knowl-
edge of numerical bounds on component delays. thus. very importantly. the circuit

can be analyzed before sizing its transistors and wires. Also see [Neg98|.

We tour the features of the technique by means of a case study. a self-timed
RAM circuit from [NS95|. Previous verification of this circuit was reported in
[NS95]. but it did not address the switch-level correctness concerns. and it did not

cover parts of the design where the delay constraints intervene.

5.1 Switch-Level Correctness Concerns

We start our analysis by dividing an MOS transistor network into channel-connected
subnetworks [Bry87]. determined by the absence of gate-drain and gate-source con-
nections. This split depends only on the circuit configuration. not its operation.
and stays the same throughout the analysis. The reason for this split is that gate
capacitances usually introduce comparatively large delays that need to be modeled

separately. We refer to such large-load circuit nodes as charge-retaining nodes.
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Figure 5.1: Modeling a switch-level network: (a) MOS transistor network split into

channel-connected subnetworks: (b) replacement network.
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Normally. each channel-connected subnetwork contains an N-transistor network
and a P-transistor network. adjacent to ground and power. respectively. called the

pull-down and the pull-up networks.

As was done in previous switch-level analysis techniques. we use Boolean vari-
ables to indicate the presence of conducting paths. We associate two such variables.
call them path signals. to each charge-retaining node: one for a path to ground and
one for a path to the power supply. For now. we assume the paths have equal

strengths: we deal with differing strengths later.

For example. consider the network in Figure 5.1 (a). We introduce the following

path signals:

sl: there is a conducting path from z4 to power supply:
s2: there is a conducting path from z4 to ground:
$3: there is a conducting path from z5 to power supply:

s4: there is a conducting path from z5 to ground.

The pull-down and pull-up networks. controlling the path signals. are modeled
by processes which turn out to be similar to Boolean gates. This is not surprising.
since such processes emulate the logical relationships between voltage signals and
path signals. In Figure 5.1 (b). we actually use Boolean gate symbols for such

processes.

In the following, we discuss the particular finalization processes we used to
model the components of a replacement network like that in Figure 5.1 (b). These
processes are our main mechanism for dealing with various switch-level correctness
concerns and peculiarities of behavior. We also discuss certain modeling options

that we later discard. but this does not mean that the same faux pas have to be
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taken every time the technique is applied: the purpose of the discarded options is

to help explain and justify the option we consider appropriate.

The NODE component in Figure 5.1 (b) represents charge retention in the pres-
ence or absence of conducting paths. We have several options in modeling a node
by a finalization process. depending on the correctness concerns and behavior as-
sumptions that are commonly used in a given design style. For the design style of
the circuit at hand. we use the process in Figure 5.2. A node component controls
a voltage signal according to two path signals. representing conducting paths to
ground and the power supply. In Figure 5.2. these signals are z. up. and dn respec-
tively. In state 0. the initial state. there are no conducting paths and the voltage
is low. (In applications. we change the initial state as needed.) To help interpret
the model. notice that: z is always high in states 4. 5. 6. 7. regardless of how the
states were reached. and it is always low in 0. 1. 2. 3: up is high in 2. 3. 6. 7 and low
elsewhere: dn is high in 1. 3. 5. 7 and low elsewhere. As in Chapter 4. some events

and the permanent escape states are omitted from the figures for node processes.

0
(r)

up
I 1 2
+
NODE |— . - 5
| 5 6
dn NOTES

G o illegal z to permanent-escape
7

e self-loops on other actions

Figure 5.2: Node icon and possible node process.
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Figure 5.3: Alternate node processes: do we forbid collisions?

For the model in Figure 5.2. we forbid persistent collisions by taking states 3
and 7 to be rejects. It is the responsibility of the environment to avoid stopping
in such a state. where both path signals are high at the same time. Alternately.
we could consider collisions to be legal. as in Figure 5.3 (a). In Figure 5.2. we
allow transient collisions: for instance. execution up z dn up z is a goal. despite
passing through state 7. Another alternative would be to make transient collisions
illegal by taking all executions that pass through a collision state to be rejects. as

in Figure 5.3 (b); there. states 3 and 7 have been merged.

For the model in Figure 5.2. we assumed that. when both paths are conducting.
we don't know whether the voltage is driven high. low. or close enough to a threshold
level for the neighboring gates to sense small fluctuations as signal transitions.
Accordingly. in Figure 5.2 we allow the node voltage to switch arbitrarily during a
collision, following the cycle between states 3 and 7. Alternately. we could assume
the node voltage constant during collisions. to model. for instance. that a feedback
inverter pair introduces a hysteresis (as in many of the cells in Figure 5.7). For
that. we could take the z edges that leave states 3 or 7 to lead to a permanent-
escape state instead, as in Figure 5.4 (a). Another alternative would be that the

voltage might fall but never rise during a collision. for a case where thresholds of
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Figure 5.4: Additional alternatives for node processes: do we forbid switching

during collisions?
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subsequent gates are higher than the intermediate level where the node voltage
stabilizes during a collision. For that. we could allow a z edge from state 7 to state
3. but take the z edge that leaves state 3 to lead to a permanent escape. as n
Figure 5.4 (b). Symmetrically, we could consider instead that the voltage may rise
but never fall during a collision. as in Figure 5.4 (c). Yet another alternative would
be to consider that the voltage either never rises or never falls during a collision.
but it may always undergo the opposite transition during a collision. For this. we

could take the meet of the models in Figure 5.4 (b) and Figure 5.4 (c).

Symmetric alternatives can be obtained for floating states. and the modifications
can be combined to obtain a family of node models for diverse assumptions and cor-
rectness concerns. In this case study we settled for the model in Figure 5.2. which
forbids persistent collisions and persistent floating states. permits transient colli-
sions and transient floating states. and accounts for switching of the node voltage
both while floating and during collisions. Nevertheless. the alternatives discussed

above can be used for analyzing circuits designed under different conventions.

So far we have only considered paths of equal strengths. For differing path
strengths. approximated by integers as in [Bry87]. the function realized by the

Boolean model of a pull-down network is as follows:

[ a conducting path to ground of strength n]
V ( [3 conducting path to ground of strength n — 1]

A = [3 conducting path stronger than n — 1 leading to the power supply] )
V ( [3 conducting path to ground of strength n — 2]

A= (3 conducting path stronger than n — 2 leading to the power supply] )

AV

The model for a pull-up network is symmetric.




CHAPTER 5. SWITCH-LEVEL CORRECTNESS CONCERNS 113

sel _ack E sel _ack — PULL-UP _} pl
_oUJXZ *' i |
g o | NODE | >¢, :
op ! xl | — - 'prech~
J prech~ 5 é
1 PULL-DN || PO |
(a) (b) —

Figure 5.5: Modeling paths in a CMOS cell (the precharge control cell from [NS95]:

(a) circuit and signals: (b) replacement network.

For example. the precharge control cell from [NS95] shown in Figure 5.5 (a)
(with some new signal labels) is modeled by the network in Figure 5.5 (b). which
includes two channel-connected subnetworks: one for the strong inverter and one for
the rest of the cell. For the latter subnetwork. the pull-up and pull-down networks
are modeled by complex Boolean gates. represented by the boxes in Figure 5.5 (b)
that control the path signals pl and p0. The function realized by the complex-gate

model of the PULL-UP subnetwork in Figure 5.5 (b) is
pl = (—sel_.ack A —op) V (—prech™ A —op} .

where the first disjunct indicates the presence of a strong conducting path to the
power supply, while the second indicates there is a weak conducting path to the
power supply and there are no strong conducting paths to ground. The function

realized by PULL-DN is. similarly.

p0 = opV (prech™ A =(—sel_ack A —op)) .
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5.2 Local Isochrony

For the strong inverter in the precharge control cell. we use an inertial model.
as justified later. Now. we check refinement between the formal interface for the
precharge control cell and the replacement network in Figure 5.5 (b). The formal
interface is a hazard-intolerant model (Section 4.1) of the following production rules

from [NS95].

Precharge control cell:

op — prech™T
-op A —sel_ack — prech™|

The hazard-intolerant model is our default model for cell interfaces. and assumes
the cells are operated without hazards. (We verify later that the precharge control
cell is indeed operated without hazards.) For the initial state. we assume that the
signals sel,ck. op. and prech™ are low. We obtam the following counter-example

execution:
opt p0T r1} prech™1 z171 prech™| opl pOl (5.1)

which wrongly indicates that prech™ may switch! This switching is because a
path to ground seems to start conducting at p0T as the path to the power supply

continues to conduct. as in the initial state. despite opT .

We would expect. however. that in reality prech™ does not have time to charge
and discharge before the path to the power supply is terminated. and that the
transistors "open’ and “close’ much quicker than the voltage signals rise or fall. If so.
the execution in (5.1) would be avoided. because. by the time prech™1 occurs. the

path to the power supply will have been terminated by a pl| event. To introduce
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this assumption, we modify the finalization processes for the "gates’ that control
path signals in the replacement network. We start with inertial models. justified
by the assumption that paths are formed and interrupted very quickly after an
input signal undergoes a transition. Then. we modify the process by taking the
slower transitions of the node voltage to lead to a permanent-escape state from any
unstable states of the replacement gate. We refer to the gate processes modified

this way as quickened models.

a. b, c@

L

c
<) c
ay b
NOTE |
(a) ‘Q self-loops on other actions i
c

Figure 5.6: Obtaining a quickened model from an inertial model: (a) inertial model:

(b) quickened model.

For example. the process automaton in Figure 5.6 (a) represents the finalization
process of an inertial buffer with input a and output b. Action c is external to the
buffer and thus c events do not affect the state of the buffer. Assuming c transitions
are slow. we take in Figure 5.6 (b) the c events from the unstable state to lead to
a permanent-escape state, making it the responsibility of the device to avoid such
events. How can the buffer physically avoid these external events? By being "quick’

to leave its unstable state.

Incidentally, the transformation in Figure 5.6 can also be obtained by chain
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constraints.! The product of the process in Figure 5.6 (a) with the processes for
chain constraints DaTbT < DaTcT’ DaTbT < DaTcl' Dalbl < DalCT' and Dalbi <
D, led is precisely the process represented by the process automaton of Figure 5.6 (b).
Since the levels of signals are irrelevant here, one can also replace the chain con-
straints above by a single constraint Dy < Dgc having as the base state (where the

race between ab and ac starts) the initial state of the process in Figure 5.6 (a).

Note that none of these assumptions is intrinsic to our technique. and other as-
sumptions might be used to fit a particular application. For example. the problem
pointed to by the execution in (5.1) would also be avoided by an assumption that
the node does not switch voltage while floating or during collisions. instead of using
quickened models. This alternate assumption can be justified, say. if the hysteresis
of the output inverter pairs keeps the node voltages constant during collisions. and
if the weak inverters ensure that the respective nodes are never floating. However.
we use quickened models because they provide local compatibility with [Bry87] and
other switch-level analysis methods: if we assume that the path signals stabilize
much quicker than the voltage signals. it suffices to consider the steady-state be-
havior of the N and P subnetworks. which can be extracted. say. by [Bry87| from
a transistor netlist. Note. nevertheless. that the transient behavior of the nodes is
not hindered by this assumption. which refers to the N and P subnetworks but not

to entire cells.

Finally, we find that refinement holds between the hazard-intolerant interface
of the precharge control cell and the new replacement network. For the reasons
discussed above, we settled for quickened inertial models for the gates and a node
of the type in Figure 5.2. It follows, under these assumptions, that there are no

persistent floating states and no persistent collisions for this cell.

1We thank D. L. Dill for this observation.
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The inertial model for the strong inverter is justified by checking refinement
of this model by a replacement network for the inverter. consisting of quickened

inertial models and a node of the type in Figure 5.2.

5.3 Case Study: A Self-Timed RAM

We analyze a self-timed RAM circuit from {NS95]. intended to operate as follows.
Signals read and write are control signals: adr is used as a select signal: dit and
dif are data inputs. for “true’ and “false’. and they are mutually exclusive: dot and
dof are data outputs. with a similar encoding: arw.ack is an acknowledge signal
for read and write operations. Initially. all these signals are low. A read cycle
starts with the environment raising read and adr: then. the circuit responds by
raising arw_ack and either dot or dof: the environment lowers read and adr: the
circuit lowers arw_ack and either dot or dof . completing the cycle. A write cycle
starts with the environment raising write. adr. and either dif or dit: the circuit
raises arw_ack: the environment lowers write. adr. and either dif or dit: finally. the
circuit lowers arw_ack. completing the cycle. These cycles have four phases: the
signals involved are initially low. then some input signals rise. some output signals

rise in response. all input signals return to low. and all output signals return to low.

The schematic of the circuit we analyze is given in Figure 5.7. after a figure from
[NS95]. We have introduced some new signal labels. The ™ signs are part of the
signal labels and stand for active low. The specification of the circuit is given by
a finalization process in Figure 5.8. As mentioned in Chapter 4. to reduce clutter.
we often omit some illegal transitions from our state machines. in addition to the
transitions that produce self-loops at every state: whenever we do so. we indicate

the omissions in notes. Also. we assigned labels to two of the states in Figure 5.8.
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Figure 5.7: Schematic of the self-timed RAM circuit of [NS95]. with adjusted par-

tition into cells.
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to avoid drawing fully certain incoming edges: see labels "0’ and "1’ for the states

on the left. and "to 0’ and "to 1" for some edges on the right side of Figure 5.8.

For initial conditions. we assume signals mm. dof ~. and dot™ in Figure 5.7 are
high. and all other labeled signals of Figure 5.7 are low. By taking mm to start
high. we consider that a zero is initially stored in the memory cell. Symmetric

results would be obtained by assuming a one is stored initially.

Various problems may occur if the circuit is used immediately after power-up.
before m and mm stabilize to opposite levels. However. in practice it is often
assumed that a circuit is not used before it stabilizes in a desired state after power-
up. One can easily check that the circuit under study will stabilize in the initial
state or in the symmetric state described above if all its inputs are held low. as in
the initial state of the formal specification. Thus. while noting the danger. we limit

our analysis to the initial conditions where m is low and mm is high.

Apart from the overall specification and the low-level implementation. we use
interface specifications for individual cells to divide the analysis problem into sub-
problems. Following [NS95]. we represent cell interfaces by production rules [Mar90].
Essentially. these descriptions amount to specifying the instability functions of the
cells. as discussed in Section 4.1. As such. these descriptions can be automat-
ically translated by FIREMAPS into finalization processes. By default. we use
hazard-intolerant processes for all cell interfaces. to detect hazards as safety vio-
lations: later. we use other models for those cells where hazards are tolerated. In
Section 5.2. we have given the formal interface for the precharge control cell: the

interface specifications for the other cells are as follows.
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Figure 5.8: Circuit specification.
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Select control cell (as given in [NS95]; we correct it later):

{ adr A —prech™ — selt

—-adr — sell

The multiple-input select OR gate becomes just a wire if there is only one cell:

{ sel — sel_ackt

-sel — sel_ack]

Acknowledge control cell. if there is just one cell:

{ rw_ack N sel_ack — arw_ack?t

-rw_ack A —sel_ack — arw_ackl

The original memory cell interface from [NS95] assumes that. in a write op-
eration. m and mm are assigned simultaneously. In the circuit. however. these
assignments are causally related and must occur one after the other. To follow the

implementation more closely. we split the cell interface into two parts. one that

drives m and one that drives mm. as follows.

{-«(mmv(dif/\sel)) - mt {*(mv(dit/\sel)) — mm?

mm V (dif A sel) — ml m vV (dit A sel) — mm,

Memory output cells (we discuss some changes later):

{ selAm — dott {sel/\mm — dof T

-prech™ — dotl —prech™ — dof|

Data-path acknowledge cell:

((dit V read) A dot) V ((dif V read) A dof ) — rw_ack?
—(dit V dif V dotV dof) — rw._ack|



CHAPTER 5. SWITCH-LEVEL CORRECTNESS CONCERNS 122

After a refinement check fails for the select control cell under the currently used

models established above. we obtain the following counter-example execution:
adr?t (5.2)

The execution in (5.2) indicates a false deadlock: the original interface from [NS95]
expects a self to occur in response to adrt . whereas the actual CMOS gate does
not raise its output signal. since prech™ is still low. This points to a flaw in that

interface. which should be instead:

{ adr A prech™ —  selt

—adr — sell

For this new cell interface. refinement holds.

The prech™ signal was not shown in the schematic in [NS95]: however. from the
precharge control cell interface in [NS95]. one deduces that prech™ is the output
of the precharge control cell. active low. Regardless of how prech™ is interpreted.
the original cell interfaces do not correspond to the transistor schematic. More

comments about this are given in Section 5.5.

m
i
sel o
.

dif - I

Figure 5.9: Part of memory cell.
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The memory cell circuit splits into two channel-connected subnetworks. The
part that drives m is shown in Figure 5.9: the weak transistors are drawn smaller.
We find that refinement holds between the memory cell interface that drives m and
the network in Figure 5.9, and between the memory cell interface that drives mm

and the remaining part of the memory cell (for models as above).

The memory output cells are symmetric and we only discuss here the cell that

drives dot. We obtain the following execution as a counter-example to refinement:
selt mt p8t (5.3)

where p8 is the path signal of the pull-down subnetwork. and p8T indicates that
a path is formed to ground. Since initially prech™ is low. the pull-up network is
conducting too. and the execution in (5.3) leaves the cell in a persistent collision.
The environment and the rest of the circuit should avoid this danger by interrupting
the path to the power supply before the pull-down network starts conducting. and

we check later whether or not they avoid this danger.

For the data path acknowledge cell. verification was straightforward and refine-

ment does indeed hold between the cell interface and the replacement network.

As the circuit is not completely speed-independent. we use chain constraints
to model its relative delay assumptions. Finding the chain constraints typically
requires several verifications: to shortcut this procedure. we use gate-level cell in-
terfaces instead of the larger replacement networks of the switch-level cells. We
check later that the chain constraints we find this way do suffice for switch-level
correctness as well. In the final verification. after finding candidate chain con-
straints, we use the replacement networks of the memory output cells. and the
interface specifications of all other cells. since the replacement networks of all other

cells did refine their interface specifications.
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Using hazard-intolerant models for all cells and the corrected interface for the

select control cell. we obtain the following counter-example execution:

write? din_t1 ditt adrt op? prech™? selt mm}
m?t dot? sel_ackt rw_ackt arw_ackt (5.4)

The mm] event causes a hazard for the memory output cell that drives dof . since

dof + was enabled after selt . but dof t did not occur and was disabled by mm]| .

The presence of this hazard is mentioned in [NS95]. where it is indicated that
this hazard is tolerated for the sake of efficiency. Thus. in the following. we use
inertial models for the parts of the memory output cells that drive dof ~ and dot™ .
followed by hazard-intolerant models for the inverter cells that drive dof and dot.
This way. we model the storage of a logical value on the capacitances of dot™ and
dof ~. since the internal data bus normally has a large capacitance. This amounts
to replacing the hazard-intolerant model of the memory output by a 2-bounded

model.
The new interfaces are as follows.
Memory output cells:

sel A\mm — dof ™|

—prech™ — dot™7T -prech™ — dof~1
selAm — dot~]

Data-path inversions:

-dot™ — dott -dof~ — dof?
dot~ — dotl dof~ — dofl
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With the new interfaces, refinement still doesn’t hold. We obtained the following

counter-example execution:

writet opt prech™1 adrt selt din_t1 ditt dof ™|
mm) mt dot™ | dott sel_ackt rw_ackt
arw_ack?t adr| write] opl sell sel_ack] prech™]
dof ~1 dot™ 1 dotl (5.5)

which shows a hazard at the data path inversion cell that drives dof . The hazard
is caused by dof ~1 . which disables a dof | transition that was enabled by dof ™}

but never occurred.

The hazard of (5.5) was mentioned in [NS95|. which indicated that it will not
actually occur because “the inverter is the fastest gate in a CMOS circuit”. Ac-
cordingly. we can assume that the data path inverters will switch before arw_ack?

is issued.
This assumption is too general: we actually impose some weaker chain con-
straints that are easier to model and that follow from the assumption above:
D(dof~| rw_ack? arw_ackt ) > D(dof™] dof 1)
D(dot™ | rw_ackt arw_ack? ) > D(dot™ ] dotT )
Under these chain constraints and models for the memory output cell. refinement
holds at the gate level.

To obtain speed-independence. [NS95] proposes an alternate design for the mem-
ory cell and the memory output cells. reproduced here in Figure 5.10 and repre-

sented by the interfaces:

{ -m A —=(dif A write) — mmt
(

=(-m A =(dif A write)) — mml
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Figure 5.10: Speed-independent RAM design from [NS95]. plus transistor labels for

reference.

{ —mm A —{dit A write) — mT

-(~mm A ~(dit A write)) — ml

—-prech™ — dof ™%
sel Adif Amm — dof ™|

—prech™ — dot™1
selAndit Am — dot™]

In Figure 5.10. transistors N1. N2. N3 and the two inverters form a single channel-
connected network. However. signals dit and dif are mutually exclusive: thus. no
conducting paths can be formed through both transistors N1 and N2. Following

this observation. we split the memory cell into two cells. to simplify the analysis.
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One of the new cells is as shown in Figure 5.9: the other new cell is symmetric to

this one.

At this point we check refinement using the alternate cell interfaces and no

constraints. We obtain the following counter-example execution:

read? adrt opt prech™1 selt sel_ackt (5.6)

which indicates that the circuit may deadlock in the middle of a read cycle. while
the specification expects data output and acknowledge events. The problem is
that one of the memory output cells should have discharged dof ~ after prech™1
and selt . but its pull-down network was not conducting. The schematic of the
alternate. speed-independent circuit from [NS95] is thus wrong. More comments

about this are given in Section 3.5.

The text in [NS95]. however. does hint that the newly added transistors should
be enabled during a read operation. i.e.. N5 and N8 are enabled whenever read is
high. On the other hand. in the given schematic. this hint implies that a conducting
path will be formed through N1 and N2 whenever read is high. thus shorting the

inverter outputs and endangering the stored data.

A way to fix this problem is to control N1. N2. N5. and N8 by dif. dit.
dit V read. and dif V read. respectively. but this requires disconnecting the gates
of N1 and N8. and of N2 and N5. which were shown connected in [NS95]. We
verified that refinement holds for the schematic modified this way.

Since the memory output cells do not refine their interfaces. we re-do the ver-
ification using their replacement networks instead of their formalized interfaces.
Refinement does hold between the overall circuit specification and the product of

processes for the following items: hazard-intolerant gate-level interface specifica-
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tions for all cells except the memory output cells. the chain constraints. the quick-
ened models of the pull-down and pull-up networks of the memory output cells. the
inertial models of the strong inverters of the memory output cells. and the nodes of
the memory output cells (of the type in Figure 5.2). (The reasons for using these
particular models were discussed above.) Since we had checked these cell interfaces
against the switch-level networks. it follows that the overall circuit specification
is refined by the product of the switch-level replacement networks. In particular.
it follows that none of the node models stabilizes in a reject state. Thus. there
are no persistent collisions and no persistent floating states under the assumptions

discussed above.

5.4 Detecting Persistent Shorts

So far we have ignored persistent shorts except for the case where they are persistent
collisions. (Recall that shorts occur when there are conducting paths from a circuit
node both to ground and to the power supply. and collisions are particular cases of
shorts where the connections to ground and power have roughly the same strengths.)
In most applications we do not care about shorts that involve paths of differing
strengths. thus detection of collisions would suffice. In fact. transient shorts are
widely used in feedback loops with weak inverters. However. persistent shorts are

sometimes undesirable because they lead to excessive power consumption.

To detect persistent shorts (not transient shorts). we forbid them altogether
by means of imaginary cells that duplicate the replacement cells. The genuine
replacement cells are also kept in the verified network. The duplicate cells use
simplified nodes and modified path strength schemes. The process for a duplicate

node is shown in Figure 5.11 (a): it does not control a voltage signal. but it forbids
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Figure 5.11: Model for detecting persistent shorts in the channel-connected subnet-

work in Figure 5.9: (a) duplicate node; (b) short-detecting replacement network.
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persistent collisions by declaring collisions to be rejects. A duplicate cell permits
us to detect shorts as collisions at the duplicate node by declaring all paths to be

of equal strength: for the pull-down network of such a cell. the path signal is thus:

[3 a conducting path to ground of strength n]
Vv [3 a conducting path to ground of strength n — 1]
Vv [3 a conducting path to ground of strength n — 2]

V.

and the pull-up network is determined by a similar formula in terms of paths to

the power supply instead of paths to ground.

For the memory cell in Figure 5.9. the short-detecting replacement network in

shown in Figure 5.11 (b). The Boolean functions the path signals are. respectively.

Fi(sel.m.mm) = (sel A dif ) Vv mm

Fa(sel, m.mm) = —=((sel A dif } Vv mm) A ~mm = =((sel A dif ) V¥ mm)
Fi(sel. m.mm) = (sel A dif ) V mm
(

Fy(sel.m.mm) = ~mm

The short-detecting replacement network above does not refine its cell interface:
if for instance sel and dif were kept high and mm kept low. a persistent short
would occur. But can such situations happen in the context of the circuit and
specified environment? We re-run the verification with respect to the overall circuit
specification. after including the duplicates of the memory output cells. as well as
all other cells without duplicates. and we find that refinement holds. It is not
necessary to include duplicates for the other cells because their weak paths are
only through the weak feedback inverters. and, due to the strong inverters. they

will agree with the strong paths in any stable states. Thus. persistent shorts at
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these other cells can only be through strong paths. and would have been detected
as persistent collisions, which. we have already verified. do not occur in the given
circuit and environment. It follows there are no persistent shorts either. under the

assumptions discussed.

5.5 Stocktaking

Switch-level analysis proved to be an interesting exercise for event-driven discrete-
state modeling. Our main mechanism for handling diverse switch-level correctness
concerns and behavior assumptions is by the family of models for charge-retaining
nodes in Section 5.1: these assumptions and conditions can be strengthened or
weakened in several ways. To justify our choices. we also discussed certain modeling
options which we have later discarded. A promising direction for further work may

be to provide a guide to which models apply for other MOS design styles.

One notable assumption was that replacement gates are much quicker than the
transitions of an external signal. The quickened models in Section 5.2 incorporate
this assumption. making it the responsibility of the replacement gates to avoid.

through timing, these external transitions while these gates are unstable.

It was not obvious beforehand that these assumptions and conditions can be
incorporated in an analysis based on concurrent processes. Notice for instance that
the quickened models introduce control over actions that are external to their de-
vices. and chain constraint processes bring additional control over actions that are
controlled by cell processes. In the analysis. we often compute product and decide
refinement using such models, and we use the algebraic properties for hierarchical
and modular verification. which, in process spaces. do apply for these unusual con-

nectivity cases too. For the reasons mentioned in Sections 1.2 and 4.3. we believe
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analysis of this kind would be more difficult to do in other models of concurrency.
Due to abstract executions and absence of connectivity restrictions. we expect pro-

cess spaces will provide sufficient flexibility for many such niche applications.

In our case study the cells were rather small. and we found it easier to feed in the
Boolean functions of channel-connected N and P subnetworks than to describe each
transistor individually and to extract such functions from a full transistor netlist.
If needed, one can use the specialized method of [Bry87| to extract the behavior
of the N and P subnetworks from transistor netlists. then input the results into
our technique. Alternately. our technique can be extended to work directly from
the transistor netlists. by using a separate process for each transistor. However. we
expect our technique to find sufficient applications to circuits that have small but
numerous cells. as in the case study. and we leave for future work the connections

to [Bry87] and the other extensions mentioned above.

The circuit in [NS95] was verified previously. but only for a stability protocol
at the gate level. and excluding the speed-dependent part: [NS95| reports almost
1/2 hour on a standard workstation for these verifications. For comparison. a
FIREMAPS session for gate-level verifications covering hazard-freedom. deadlock-
freedom. etc.. took only 32 seconds on a Sun Sparc 5/110 workstation. A full
session spanning the verifications reported in this paper both at gate-level and
switch-level took just over 3 minutes (182 s) in FIREMAPS on the Sun Sparc
5/110, reaching almost 10! states during the largest task (the test for persistent

shorts in Section 5.4).

We found some minor flaws in the original cell interfaces (the execution in (5.2))
and in the schematic of an alternate circuit from [NS95] (the execution in (5.6)).
According to [Sta97], the cell interface flaw from [NS95] was not present in the

files that were originally verified. while the alternate memory design should be
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used with control signals different from those in Figure 5.7; for more details, see
Section 5.3 above. Also, a corrected version of the cell interface for (5.2) appears
in [Nie97, p. 44]. Anyway, the case study shows that our technique could detect
these problems. As for the main circuit from [NS95] (not the cell interfaces or
the alternate circuit), under the initial stable state assumption. the switch-level

behavior assumptions, and the delay constraints above, it passed our verifications.



Chapter 6

Handling Liveness and Progress

In Chapter 3. we described finalization properties that are determined by finite total
traces. which represent the entire operation of a system until it comes to a stop.
Some systems. however. might never stop operating. in the sense that it is a legal
behavior for them to issue new events forever. Such infinite operation is exposed to
pathologies that are more subtle than illegal events or global deadlock. Accordingly.
if infinite operation is of interest. one needs to impose correctness concerns that are
more elaborate than safety or finalization. One of these correctness concerns. called
liveness. is described informally in [LLI0] as "good things eventually do happen'.
Let us modify this quote to describe informally another correctness concern. called

progress, as "good things do happen within a bounded time’.

In an event-oriented viewpoint, the "good things in the informal descriptions
above refer to desired events. Liveness avoids that a desired event is postponed
forever, and progress avoids that a desired event is postponed for an unbounded
time. For instance, we might impose a fairness condition on the behavior of the eti-

quette machine in Example 2.1. to ensure that the machine chooses fairly between

134
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the reply greetings “How are you” and “How do you do”: this condition would be
violated if the machine always responds by “How are you”. Also. we might impose
that the machine replies within a bounded time, which may not happen if the com-
munication between Listener and Speaker in Example 2.5 were implemented. say.
by a lossy channel over which a message is retransmitted until it is received. There
may not exist any bounds on how many times a message has to be retransmitted
until it gets through the channel. so such communications may have unbounded
delays. Note that progress does not refer to the numerical values of bounds on de-
lays between events. but just to the existence of such bounds: as a result. progress
is a metric-free correctness concern, just like safety. finalization. and liveness. More

details and examples will be provided in the following sections.

In modeling real-life systems by formal objects. a subjective step always inter-
venes. and. in asynchronous circuits, the problem is compounded by the absence
of a standard for the behavior of common gates under hazards. For these reasons.
we do not offer firm universal rules of how to attach safety. finalization. liveness.
or progress specifications to real-life systems: we only provide guidelines. examples.
and some applications. This means that we do not define the liveness and progress
processes of a discrete-state system, because of the absence of a generally accepted
model of a discrete-state system and the absence of generally accepted model of the
behavior of a circuit under hazards. Instead. we introduce liveness and progress
processes by examples in Sections 6.1 and 6.2. we propose a classification of live-
ness and progress faults in Section 6.3. Moreover, in Section 6.4 we attach default
liveness and progress processes to simpler finitary specifications by guessing what
their liveness and progress properties might be. as these simpler specifications do
not explicitly determine such properties. However, although our default processes

appear to correspond to our intuition of liveness and progress properties for many
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asynchronous circuits and other discrete-state systems. this is not always the case.
as we discuss in Subsection 6.4.4. Where these default processes are not appropri-
ate. one may employ the more general liveness and progress processes we discuss
first: hence the label "default’ for the processes we later extract from the simpler

specifications.

In Chapter 3. we studied processes that use only finite traces as executions.
Here. we also include infinite traces in execution sets along with finite traces. and

this permits us to study both liveness and progress.

For language L C U". we denote by L“ the set of sequences obtained by concate-
nating infinitely many words from L \ {¢}. and by L™ the set of sequences obtained
by concatenating finitely or infinitely many words from L. Thus. L> = L* U L¥.

This notation for L= and L¥ is the usual: see for instance {Tho90].

For sequence u € U language L C U>. and alphabet ' C U. let the projection
of u on T be a sequence ull' € U™ obtained by deleting from u all occurrences of
symbols from outside ['. and let the projection and eztension of L on I" be languages

LiT C U™ and LTT C U™ . as follows:

LT = {uiT {ve L}. and
LT ={ueclU=|uil€L}.

For example, if i« = {a.b.c} then abba“|{a.c} = a*. ababl{c} = ¢. abbat{a.b} =
cracbcberac™. and abbat{a.c} = 0. (A word u is sometimes used to denote the
language {u}. Unary operators. like Kleene star and w-closure. bind more strongly

than binary operators. such as concatenation.)

For sequences t and e, we write t < e if ¢ is a finite prefix of e (i.e.. any prefix
of e except, if e is infinite, e itself). We refer to finite prefixes as just prefixes. The
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prefiz-closure of language L is the set pref L of all prefixes of words from L. A
limit of a language L is a sequence e such that for every prefix of e. there is a longer
prefix of e that is in L. The set of limits of a language L is denoted by lim L. which
is{ecU®|Vu<Le:Jvel:usv < e}; that is. finite limits are words from
L. and infinite limits have infinitely many prefixes from L. Also see sets of infinite

Limits in [Tho90].

6.1 Liveness

In Chapter 3. we used finite total traces to represent the operation of a system
from the time when the system starts to operate until it comes to a legal or illegal
stop. In general. we say a (finite or infinite) trace is complete if it represents an
observation of the entire operation of a system since start. regardless of whether the
system stops or not. For studying liveness. we consider that a discrete-state system
s is represented by its liveness process over U™. denoted by convention as As. that
classifies each trace as accessible or acceptable according to whether it may occur
as a complete trace of a system. Note that all operators and algebraic properties

of process spaces are inherited for liveness processes. by taking the execution set to

be U™.

Example 6.1 The refinement relationship on liveness processes can be used to
detect faults such as deadlock and unfairness in a digital circuit. In this example.
we check whether the circuit in Figure 6.1 (2) is a correct implementation of the
AND gate in Figure 6.1 (b). Clearly. the C-element does not implement an AND
gate. but there is a catch. Notice that the circuit also includes an oscillating loop

of a buffer and an inverter, which means that the operation of the circuit never
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1O
y . e

(a) (b)

Figure 6.1: Example circuit and gate.

stops. and recall that finalization processes handle only cases where the systems do
come to a stop. Thus. we need to use processes that make finer distinctions than

the finalization processes: in this example. we use liveness processes.

Let C (a C-element). BUF (a buffer). and INV (an inverter) denote the three
components in Figure 6.1 (a) (from top to bottom). In determining the liveness
processes we will consider the liveness properties of the components. as explained

below.

Let U = {a.b.c.d.e}. We take

as ABUF = ((de)™ U (de)"dd{d.e}*) T {d.e} .

at ABUF = ((de)= U (de)*d U (de)"e{d.e}™) T {d.e}.

Notice that A BUF is quite similar to a finalization process. The finite words in (de)”
are goals of ABUF because. at any time. the environment of BUF may stop producing
d events. The infinite word (de)” is a goal of ABUF because the environment and
BUF need not stop at all. The words in (de) dd{d.e}> are rejects and are accessible
to BUF. After two consecutive d events. which are not expected. BUF may stop at

any time or may not stop at all. The fact that subsequent d or e events may
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come in any order means that this particular BUF contract does not care about
what might happen after a hazard: in this particular case. a hazard is qualified
as the fault of the environment no matter what happens afterwards. The words
in (de)~d are escapes. since BUF should eventually produce an e after receiving a
d. The words in (de)"e{d,e}> are also escapes. since the environment does not
expect two consecutive e events. Notice that the escapes in (de)"e{d.e}> are not
only safety faults. but also liveness faults. because. after two consecutive e events.
the environment may demand. for instance. events that BUF cannot guarantee to

produce (e.g.. events whose actions are not in the output alphabet of BUF).

By similar considerations. we take

as AINV = ((de)*d U (de)* U (de)"e{d.e}>) 1 {d.e} .
at AINV = (pref (de)™ U (de)"dd{d.e}>) 1 {d.e} .

For the C-element. we use the following liveness process:

as AC = ((aa U bbU abc U bac)” U (aa U bbU abc U bac)™ - (e U al b)
U (aa U bb U abe U bac)” - (abU ba) - (a U b)({a.b.c}™) 1 {a.b. c} .
at A\c = (pref (aa U bb U abc U bac)™
U (aa U bb U abc U bac)” - (c U acU be)({a.b.c}*)) T {a.b.c} .

This liveness process is quite similar to that of the buffer: the words in ((abUu
ba)c)" are goals for AC. because the environment may stop producing a or b events:
the words in ((abU ba)c)* also are goals. since the communication between the

environment and the C-element needs not stop at all: etc.

Let u = abca(de)”. We have u € as A\C N as ABUF N as AINV. On the other

hand, u ¢ as AAND because AND should eventually produce a second c after the
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second a (the a signal becomes low. thus the c signal should eventually become
low). Thus, we have as (AC x ABUF x AINV) € as AAND. and. therefore. AAND IZ

AC x ABUF x AINV.

The violation can be interpreted as follows. Word u appears to cause a deadlock.
since a ‘wait-for cycle’ occurs. involving C and the environment of AND. After
abca. C waits for the environment of AND to send another input event. while the

environment of AND requires C to produce an output event.

Note that deadlock occurs in parts of the system despite the fact that some
other parts never stop producing events d and e. Although the liveness processes
in this example were quite similar to the hazard-intolerant finalization processes
described in Section 4.1. notice that this fault would not be detected by checking
robustness or refinement on the finalization processes of the entire system: every
finite word over {a. b. c. d. e} is either an escape of pBUF or an escape of pINV.
and thus an escape for the product of the finalization processes in the system. In
this sense. finalization processes would not be helpful for examining the system
altogether. because they only deal with situations where the system comes to a
stop. whereas a part of this system never comes to a stop. For this reason. we
resort to infinite traces and liveness processes to detect such local deadlock in a

non-stopping system.

To detect the deadlock above. one may alternately apply a finalization analysis
for part of the system only (note that ¢C Z pAND), but that is difficult to generalize
for arbitrary systems where the deadlocked part may not be so clearly isolated from
the rest of the system. By contrast, the liveness approach taken above does not

rely on the structural peculiarities of this system. and can be applied in general. O
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task body PO is
begin
loop
select
Critical Sectioni;
or
Critical Section2;
end select;
end loop;
end PO;

Figure 6.2: Specification for starvation example.

Example 6.2 Let us consider a classical example of starvation adapted from [BA90.
p. 35]. The concurrent program in Figure 6.3 attempts to ensure mutual exclusion
between the critical sections of tasks P1 and P2 by using variables C1 and C2. C1
and C2 are initially set at 1. We state the specification as the task PO in Figure 6.2.

Let the actions be

rzy: = Pz reads from Cy value z .

Wzy: = Pz writes in Cy value z .

ecsy = enter Critical Section_r .

lcs; = leave Critical Section_r .

encs; = enter Non Critical Section.r .

Incs, = leave Non Critical Section._r .
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Ci, C2: Integer range

task body P1 is
begin
loop
Non Critical Section.i;
Ci1 := 0;
loop
exit if C2 = 1;
ct := 1;
Ci1 := 0;
end loop;

Critical Section_1;

end loop;
end P1;

task body P2 is
begin

loop

Non Critical Section.2;
C2 := 0;

loop

exit if C1 = 1;

c2 = 1;

end loop;

Critical Section.2;

end loop;
end P2;

Figure 6.3: Implementation for starvation example.
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Consider infinite trace
u= encszlncsz(encsllncslwlmrlglwggorgwecsllcslwulwgn)“’ .

Word u is an accessible complete trace for P1. because P1 executes its main loop.
in which it can stay forever. Word u is also an accessible complete trace for P2.
because P2 executes its inner loop and reads C1 = 1 at every iteration. and thus
can stay in its inner loop forever. On the other hand. we take u not to be an
accessible complete trace for PO. because PO executes a non-deterministic choice in
its loop (between ecs; and ecs,). and. for any non-zero probability of ecs,. PO should
eventually choose ecss. Thus. u € as (AP1 x AP2) and u € as APO. Consequently.
we have as APO 2 Aas (AP1 x AP2) and thus APO Z AP1 x AP2.

The violation can be interpreted as follows. Word u causes starvation because
it never allows P2 to enter its critical section. Starvation is also widely known as

unfairness. 3

6.2 Progress

In Section 6.1. we interpret a finite or infinite complete trace as the entire operation
of a system since start. For studying progress. we use a finite or infinite trace to
represent partial observations of a system from start until arbitrarily late moments
of time. but not necessarily the entire operation of the system. In the context of this
interpretation. we refer to traces as unbounded. Loosely speaking, an unbounded
execution will be considered ‘legal’ if. for any time bound. that executions has a

prefix that is a legal partial execution and that can take longer than the bound.

Example 6.3 To illustrate unbounded traces by contrast to complete traces. con-

sider the etiquette machine of Example 2.1 with an additional fairness stipulation
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that the machine should choose fairly between the two polite reply greetings m1l
and m2. using the shorthands in Figure 2.4 (a). Execution (elm1)® should be an
escape for the liveness process. since the machine should reply with m2 from time to
time. On the other hand. this execution should be a goal for the progress process.
because partial observations of legal behavior until arbitrarily late moments in time

are represented by finite prefixes (elm1)” or (elm1l)=el of this execution. a

For studying progress. we consider that a discrete-state system s is represented
by its progress process. over U™. denoted by convention as 7s. that qualifies each
trace as accessible or acceptable according to whether it may occur as an unbounded
trace of a system. The main usage of such specifications is to ensure that certain
events will occur within a bounded time. whatever the bound may be. This way.
we can reason about the existence of upper bounds on certain delays. but we do
not need to know what the bounds are. Consequently. progress processes do not
incorporate numerical information. and progress is a metric-free. behavior concern.
Also note that all operators and algebraic properties of process spaces are inherited

for progress processes. by taking the execution set to be U™ . as we did for liveness.

n
BUFFER

out

(a)

Figure 6.4: Communication protocol for livelock example.
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Example 6.4 Consider the following communication protocol. The specification
is a buffer. as in Figure 6.4 (a). After an input message in. an output message out
follows within a bounded delay. and then the operation may be repeated indefinitely.
The implementation uses a lossy channel with two interfaces. as in Figure 6.4 (b).
After in. SENDER starts sending messages so. Some of these messages may be lost.
causing lo events which reset CHANNEL and are not seen by RECEIVER. (The g
events are not used by the system: they only model the loss of a message.) Some
messages may get through. causing ro events to occur. After an 7o. RECEIVER issues
out. According to the specification. another in is now allowed (there exists some
feedback from out to in in the environment). The operation is then repeated. with

1. ;. and 7, instead of so. lg. and ro. and so on.

Consider u = in(solo)*. Word u is an accessible unbounded trace of SENDER.
because the environment is under no obligation to provide another :n. It is also
an accessible unbounded trace of CHANNEL: although. presumably. CHANNEL can-
not choose Iy over rqg infinitely many times. CHANNEL can choose [y any finite
number of times. Thus. CHANNEL can follow u for an unbounded time. Word
u is also an accessible unbounded trace of RECEIVER. since RECEIVER remains
in its initial state. where it is not expected to issue an output event. Since
u € as TSENDER N as TCHANNEL N as TRECEIVER. we have u € as(7SENDER X
XCHANNEL x TRECEIVER). On the other hand. u is not an accessible unbounded
trace of BUFFER. because an out event must follow in within a bounded time.
Hence. v ¢ as tBUFFER. Therefore. TBUFFER [Z as(7SENDER X mCHANNEL X

wRECEIVER).

The violation can be interpreted as follows. Word u causes a livelock. After in.
SENDER starts producing so events. For fairness. CHANNEL will eventually choose

ro; however. this choice can be delayed for any amount of time. On the other hand.
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the specification demands an out within a bounded delay. which cannot be granted.

regardless of the value of the bound. a

Example 6.5 The deadlock fault in Example 6.1 also constitutes a violation of
progress. The progress processes of the components in Example 6.1 are exactly the
same as their liveness processes.! Hence. the fault in Example 6.1 can be detected

with progress processes in the same manner as with liveness processes. a

6.3 A Taxonomy of Lock Faults

The fact that the progress execution set is the same as the liveness execution set
(namely. 4*) invites a comparison between liveness and progress. By this compari-
son. we obtain a classification of liveness and progress faults (call them lock faults).
in absolute and relative versions. which appears to generalize intuitive notions of
deadlock. starvation. and livelock. Although these notions are not disputed in the
literature at an informal level. the formalizations proposed previously are often re-
stricted to particular cases. and we are not aware of a formal classification related

to ours. First. we describe informally these notions.

A widespread view of deadlock is the following definition from [Tan92. p. 242|:

A set of processes is deadlocked if each process in the set is waiting for

an event that only another process in the set can cause.

This definition refers to a particular notion of processes. as software entities that

run in an operating system. In more general settings where processes are formal

1This does not always hold for other components. For instance. execution u from Example 6.4

is in as TCHANNEL but not in as ACHANNEL.
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objects. deadlock is considered to be a state from which no further action is possible
(see for instance [Hoa85], [Mil89]. or (BS95]) or a state where all processes can stop
but some processes demand further actions [Ver94b}. On the other hand. deadlock
detection in a system of processes involves not only detecting situations where
all processes come to a stop. but also situations where only a subset of processes
are deadlocked. Moreover. the deadlocked processes might perform some other
actions while waiting: they may have internal clocks. or they may conduct external
communications with operating system processes. Therefore. formalizing deadlock
as a single state can detect global deadlocks where an entire system comes to a
grinding stop. but is not convenient for detecting deadlocks that involve only part
of a system while other actions can happen indefinitely: see Example 6.1. Although
such localized deadlock is sometimes given other names (such as ~livedeadlock™
in [Sme90]). it does make the object of well-known deadlock detection algorithms

(see for instance [Tan92. p. 247]) and for us it is just a particular case of deadlock.

A typical starvation situation (also called “infinite overtaking” in [Hoa85. p. 80])
is where a process chooses among several options infinitely many times. but at least
one of the available options is never taken. Starvation is usually formalized by
fairness properties: see [Dil89. p. 138] for an example. As in [Dil89], we can detect
both deadlock and starvation by means of liveness processes: see Example 6.2. In
addition. we propose to distinguish between starvation and deadlock by means of

progress processes.

A typical livelock situation is the possibility of an action occurring arbitrarily
late. whereas that action is expected to occur "reliably’ within some bounded delay.
Livelock is often caused by unbounded internal communication (see Example 6.4)
but not every case of unbounded internal communication fits our notion of livelock.

In fact. we do not consider unbounded internal communication to be a fault by
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itself. For example. in many digital circuits an internal clock may tick an unbounded
number of times while waiting for an input: this is not a faulty behavior. because
the circuit is not expected to ensure that input events occur at all. Both livelock
and deadlock can be detected by progress processes. However. we do not agree
with [BA90. p. 34] that livelock is a form of deadlock. and we distinguish between

livelock and deadlock by means of liveness processes.

U atAs

II atTTs

I [1I

Figure 6.5: Absolute lock faults.

Let s be a discrete-state system. For robustness. we require that. for all w = U™>.
we have u© € at As and u € atws. This condition can be violated in three ways:
(i) v € at As and u ¢ atws: (i) u £ atAs but » € atws: and (iii) v £ at As but
u & at rs. We call these situations deadlock. starvation. and lLivelock. respectively.
In the Venn diagram in Figure 6.5 (a). they correspond to the regions marked T".
‘IT". and °III". respectively. In this formalization. there are no other liveness or

progress faults.

Lock faults can also be considered in a relative sense. whereby two discrete-state
systems s, and s, are compared. System s; can be thought to be a specification.
and s, an implementation. For s, to be better or as good as s, with respect to
liveness and progress. we require As; £ As2 and ws; C msa, le.. asAsy D as Ass.

asws; D aswsy, at As; C at As,. and atws; C atws,. A word can be in sixteen
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as\s 1 at\s b
m | m 1| I
- asTrs» - at7ts,
oI I II or 1 I
asls ) - at\s 1 -
nmi I oo
asTTs, at7rs-

(a) (b)
Figure 6.6: Relative lock faults.

positions with respect to as As;. as As;. ass;. and as 7s,. as shown in the diagram
in Figure 6.6 (a). (Figure 6.6 (b) is similar to Figure 6.6 (a). except that s, and s,
have been swapped.) We define relative deadlock. relative starvation. and relative
livelock as the existence of a word in a region marked I'. "II'. and "TIT". respectively.

in either Figure 6.6 (a) or (b).

For instance. the fault in Example 6.1 and Example 6.5 is a relative deadlock:
the fault in Example 6.2 is relative starvation: and. the fault in Example 6.4 is
a relative livelock. Denoting by s, the respective specifications and by s, the
respective implementations. we have: in Example 6.1 and Example 6.5. u < as Asa.
u € asmss. u & asAs;. and u £ asws;: in Example 6.2. u € as ASa2. U S as Tsa.
u ¢ as As,. and u € as ws; (we consider that the execution point of the specification
can follow u for an unbounded time because the option ecs; can be chosen by task
PO any finite number of times in a row): and. in Example 6.4. u € as As». u € as wsa.

u & as As,. and u & as ws;.

Relationships between relative and absolute lock faults follow from the relation-

ship between refinement and robustness in Theorem 2.12. For example. a relative
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specification implementation
stops stops stops livelock

\ \ /

\

deadlock

traps specification implementation
(a) raps (b) traps ()

starvation

Figure 6.7: Aspirins for lock headaches: relative lock faults revisited.

deadlock can be viewed as a deadlock between an implementation and the environ-

ment of a specification.

In many discrete-state systems. every complete trace is also an unbounded trace.
Therefore. we often have. for discrete-state system s. asAs C asws and at As C
at ws. In such situations. the shaded areas in Figure 6.6 (a) and (b) are empty. and

the figure can be redrawn in a more suggestive manner.

Let us call traps the accessible complete traces of a system. and stops the ac-
cessible unbounded traces. The aspirin-shaped diagram in Figure 6.7 (a) illustrates
a subset relationship that usually holds between traps and stops. Figure 6.7 (b)
illustrates a situation without such lock faults. where all implementation traps are
specification traps as well, and all implementation stops are specification stops too.
This is a re-drawn version of the diagrams in Figure 6.6. omitting the shaded areas
and the intersections marked I'. ‘II". and 'III’. Figure 6.7 (c) illustrates the general

case. where there may be lock faults: this corresponds to the diagrams in Figure 6.6.
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without the shaded areas but including areas "I'. "II'. and “IIT".

6.4 Implicit Liveness and Progress Properties

A major obstacle to verifying liveness or progress is the amount of information
needed by the verification procedure. The difficulty is that common descriptions
of discrete-state systems. such as finite automata. Petri nets. or digital circuit
schematics together with. say. logic relationships between the inputs and outputs
of each component. specify only the finite traces of the systems to verify. while two

systems with different liveness properties can have the same finite traces.

In this situation it may seem natural to extend the model with some repre-
sentation of infinite traces. and to ask the users to specify the liveness or progress
properties of their systems explicitly. as done for the liveness and progress processes
above. Such user-directed approaches have a high degree of generality. because they
allow many types of properties to be specified. However. such an approach can be
tedious and error-prone. and provides no indications of appropriateness and com-
pleteness of a specification. In other words. such approaches do not address the
problems whether the liveness or progress properties specified by the users. are nec-
essary. and whether they are sufficient to forbid. say. the danger of starvation in a

particular implementation. (This stumbling point is also mentioned in [CMP92].)

To illustrate how liveness and progress properties are easy to overlook and hard
to specify explicitly. let us consider a gate specified by a Boolean function. Even
if we remember to specify that the output of the gate should eventually respond
to an input excitation, we might forget to specify that the response should occur
within a bounded time. Also. consider a mutual exclusion element which ensures

that two processors do not access the same resource at the same time. Trivial




CHAPTER 6. HANDLING LIVENESS AND PROGRESS 152

implementations are an arbiter that serves none of the processes [CMP92] and an

arbiter that always favors one of the processes.

In this section. we consider a different approach to resolve the ambiguity of finite-
trace models. Often. liveness and progress properties seem to be implicitly assumed.
like bounded-time response and fairness in the examples above: we don’t normally
use Boolean gates that can have unbounded delays or arbiters that can be unfair.
Accordingly. one can attach unique liveness and progress properties to a finite-
trace description. to match these implicitly assumed properties. If these attached
properties do indeed correspond to the intended liveness and progress properties of
a class of systems. then the users need only to provide finite-trace descriptions for
systems in that class. and we can extract implicitly assumed liveness and progress
properties to check freedom from deadlock. starvation. and livelock solely on the

basis of finite-trace descriptions.

Also see [NB95| and [NB98].

6.4.1 Finite-Trace Structures

We extract the implicit liveness and progress properties from a particular form of
finite-trace descriptions. called trace structures. We use trace structures instead of
safety and finalization processes because of some particular features (input and out-
put alphabets) that are instrumental in defining the implicit properties in question.
Future research. however. should eliminate this dependence on particular features
and extend the definition of implicit properties to other types of systems. such as
ones that have bi-directional ports (i.e.. ports that are sometimes inputs and other

times outputs).

A trace structure is a triple P = (iP.oP.1gP) of two disjoint alphabets iP and
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oP and a prefix-closed. non-empty language lgP over iP U oP. The words of lgP
are called traces of P. The alphabet of P. denoted by aP.is iP UoP. The symbols
in aP are called actions of P. For sequence e € U™ and trace structure P. ep is a

shorthand for ela P.

A trace structure P can represent a process in the following manner. Symbols
in aP stand for ports. Symbols in oP. called outputs. are ports controlled by the
process: they include the internal ports and the genuine output ports. Symbols
in iP. called inputs. represent ports controlled by the environment. Traces in
lgP stand for finite sequences of events that may have occurred in the modeled
process up to a certain time. thus they correspond to goals of safety processes. This
interpretation led to the restriction that lgP be prefix-closed. which we take for
trace structures in order to facilitate the definitions of default liveness and progress
processes. However. for general safety processes we do not impose this restriction.
since we do not need it in the algebraic treatment. and it is always possible that
new systems or viewpoints may be discovered where the safety goal sets should not

be prefix-closed.

Example 6.6 The trace structure for the C-element in Example 6.1 is

({a.b}.{c}.((abU ba)c)* (e U a U b))

A lLimit of trace structure P is a limit of lg P. For trace structure P. let lim P
be the set of limits of lg P. We have lg P C im P.

Although trace structures can model non-deterministic processes as illustrated
in Subsection 6.4.2. trace structures that have regular languages can be repre-

sented by deterministic automata as follows. A behavior automaton is a tuple
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b!
unused: ¢!

Figure 6.8: A behavior automaton.

A = (iA.0A.stA.edA.initA) such that iA and oA are finite and disjoint subsets
of U. stA is a finite and non-empty set of states. init4 € stA is the initial state.
and edA C stA x (1IAU 0A) x stA is a (finite) set of labelled edges such that no
two edges leaving the same state have the same label. If (g.b.q') is an edge. then
b is its label. Note that some symbols of 14 or oA might not actually appear on

edges.

In figures. behavior automata have an initial state marked with an incoming
arrow. and edges marked with actions. Inputs have a -7’ sign and outputs have a
‘' sign. Inputs or outputs that do not appear on any edges are listed below the

automaton. with the annotation "unused’.

The language of a behavior automaton is the set of all traces spelled by finite
paths that start at the initial state. Note that the language of a behavior automaton
is always prefix-closed and contains ¢. For example. the language of the behavior

automaton Figure 6.8 is and pref(ab”).

6.4.2 Implicit Liveness Properties

In formalizing the implicitly assumed complete traces of a discrete-state system. we
have obtained a property that unifies a strong fairness property of infinite traces
(e.g.. see [Fra86]) with a quiescence property of finite traces (e.g.. see [Jon87]). The

property is formally the same for infinite and finite sequences. but. for clarity. the
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Figure 6.9: Recurrently enabled and fired symbols.

intuitive explanations are given separately for the two cases.

Symbol a is recurrently enabled by sequence e with respect to language L if
Vt <e Ju:tu < eA tua € L. The set of recurrently enabled symbols of e
with respect to L is denoted by renpe. Finite sequence ¢ immediately enables
a symbol a in language L if ta € L. Note that. if e is infinite. the recurrently
enabled symbols of e with respect to L are those symbols that are immediately
enabled in L by infinitely many prefixes of e. See Figure 6.9 (a). If e is finite. the
recurrently enabled symbols of e with respect to L are the symbols immediately
enabled by e in L. See Figure 6.9 (c). For example. reNprer ((ab)ec)(ad)” = = {a.b.c}
and renprer ((ab)*c)ab = {a. c}.

Symbol a is fired by sequence e if a appears in e at least once. Symbol a is
recurrently fired by eif V¢t <e. Ju:tua<e. The set of recurrently fired symbols
of e is denoted by rfie. Note that the recurrently fired symbols are exactly the
symbols fired infinitely often. See Figure 6.9 (b). For every finite sequence e.
rfie = 0. ie.. e has no recurrently fired symbols. For example. rfiac(ab)” = = {a.b}

and rfi abe = 0.

For alphabet ¥ and language L. limit e of L is strongly live with respect to &

and L if e recurrently fires all symbols from ¥ that e recurrently enables in L. i.e..
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if renze NS C rfie. For infinite e. strong liveness is the same as strong fairness.

For finite e. strong liveness means ‘no symbols from I are enabled at the end of e’

Limit e of trace structure P is an output trap of P if e is strongly live with respect
to o P and lg P. The set of output traps of P is denoted by otp P. (Note that
otp P C lim P. and that the set of output traps of a trace structure is uniquely
determined by its language and alphabets.) Output traps formalize our idea of
implicitly assumed accessible complete traces of a system. For an intuitive picture.
consider that the execution point of a system follows limit e. The recurrently
enabled output symbols can be viewed as exerting a pressure to be fired by the
process: that pressure is relieved for recurrently fired symbols only. If an output
symbol a is recurrently enabled but is not recurrently fired by e. the pressure builds

up and e is not complete because an a event is due to be fired by the process.

Example 6.7 Consider an elementary arbitration element called SELECTOR In
[Ebe91b]: ({a}. {b.c}. pref (a(bUc))"). The set of output traps is (a(bU ¢))"
U {e € {ab.ac}* | e fires b infinitely many times and e fires ¢ infinitely many
times}. The finite limits from (a(b U c))” are output traps because they do not
immediately enable any output symbols. The infinite limits that fire both b and ¢
infinitely many times are output traps because b and c are the only outputs and are
recurrently fired. The remaining finite limits. those in (a(bU c))"a. are not output
traps because they immediately enable b and c¢. The remaining infinite limits are
not output traps because they cease to fire one of the outputs after some finite
prefix, but they recurrently enable both outputs. Intuitively. the remaining finite
limits owe an output event and the remaining infinite limits are unfair to either b

or cC. d

The following definition associates our implicitly assumed liveness properties to
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a trace structure.

Definition 6.1 The default liveness process of trace structure P is a process AqP

over U™ such that

as \gP = (otpPU ((IgP-iP)\lg P)-(aP)>)taP
at \¢P = (lim PuU ((IgP-o P)\lgP)-(aP)*)taP .

The goal set of A4P is thus (otp P)Ta P: output traps are both accessible and
acceptable as complete traces. Limits of lg P that are not output traps are escapes
for A;P. meaning that the device is supposed to ensure that every recurrently
enabled output of P is recurrently fired: in other words. the device should not stop in
a state where an output is due. and. if there are infinitely many opportunities to fire
an output. the device should not ignore that output forever. (These implicit liveness
properties appear to fit well many practical systems. but there is no guarantee that
they would always hold: where the implicit liveness properties are inappropriate.
the general liveness process from Section 6.1 have to be used instead of A¢P.) Since
Ig P is prefix-closed and non-empty. it contains ¢. Every finite or infinite word
e from outside lim P has a maximal prefix ¢ in lg P. and thus can be written as
e = tau. where a is an action and u is a finite or infinite word. such that te & lg P.
If a is an input. then e should have been avoided by the environment. This 1s a
safety violation, but it is also a liveness violation. since. after the illegal input a.
the device may require the environment to ensure occurrence of actions that are
not in e. Thus, such e is a reject for the default liveness process. Symmetrically. if

a is an output. then e is an escape for A;P. An example will be provided shortly.

By applying refinement to default liveness processes. we obtain a relative liveness

condition in which a trace-structure specification is compared to a trace-structure



CHAPTER 6. HANDLING LIVENESS AND PROGRESS 158

implementation for liveness faults. Although this condition refers to implicitly as-
sumed liveness properties. the verdict of this condition depends exclusively on the
finite-trace descriptions given in the form of trace-structures. This does not con-
tradict the point made in [Bla86] that finite traces do not have sufficient modeling
power to specify arbitrary liveness properties. In our case. trace structures spec-
ify just these implicitly assumed liveness properties. Nevertheless. our approach
appears to work well in many situations. including the following example adapted

from [Bla86].

Example 6.8 The circuit in Figure 6.10 (a) represents an unfair implementation
for an arbiter. The implementation uses two mutual exclusion elements. or mutex
for short. whose trace structures are shown by the automaton in Figure 6.10 (b). A
typical application of a mutex is to arbitrate the exclusive access of two independent
clients to a shared resource. Each of the two clients sees an input and an output of
the mutex. A client requests the resource by raising the corresponding input. and
the mutex grants the resource by raising the corresponding output in response to a
raised input. The resource is released by the client by lowering the corresponding
input. after which the mutex lowers the corresponding output. Mutual exclusion is
realized by ensuring that the two outputs are not both high at any particular time.
The specification is also a mutex. whose terminals are labelled as in Figure 6.10 (c).
The implementation also contains several delay elements. a flip-flop. which we as-
sume to start in the state where Q is high. and two forks. The behavior antomata
in Figure 6.10 (d). (f). and (e) represent the trace structure of a delay element with
input I and output O. the trace structure of the flip-flop (starting with Q high) and
the trace structure of a fork with input I and outputs 00 and 01. The Q output of
the flip-flop may change when S or R are high: it is reset when R is high and it is

set when s is high and R is low. In the circuit in Figure 6.10 (a). we assume that
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Figure 6.10: Unfair implementation of mutual exclusion.
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n is initially high and all other signals are initially low.

The second MUTEX has the inputs wired together so that it enters a metastable
state when a rising edge is applied. If the G1 branch wins, then the flip-flop is reset.
After that. any c request is retracted and no further c requests are taken by the
first MUTEX. because of the AND gate. Because of this danger. the implementation
is unfair. Moreover. this implementation has several hazards. but they can be
avoided by sizing the relative delays of the components and are not relevant for our

discussion.

This unfairness is detected as a counter-example to the refinement condition
on default liveness processes. Consider the infinite trace e = afBb(yydd)¥. where
a = adfghjlrmnop. 3 = adfghjlrmop. v = adfghikop. and d = adfghjlmrop.
The word « raises the outputs d of MO and j of ML. resetting the flip-flop: [}
brings MO and M1 back to their initial states. The word y7 represents a cycle
of operation where outputs d of M0 and ¢ of M1 are turned on and off: there are
identical sequences of rising and falling transitions. The word Jd represents a cycle
of operation where outputs d of MO and j of M1 are turned on and off. Thus. e
formalizes the danger described above: it resets the flip-flop and then never grants
a q in response to the b event. even though M0 and M1 behave ‘fairly” (since ¢ does
not rise. MO does not have to raise e either). Let [ = {M0. M1. DO. D1. D2. D3. D4.
FF. AND. OR}. One verifies that. for each element P of I. we have ela P € otpP.
In particular. note that ey g = adad(adadadad)” = (ad)”. renjgpgem0 = {a.c.d}.
and rfieyyg = {a.d} 2 {a.c.d} N {d.e} = renjgygepo N oMO. Thus. one verifies
that VP € I : e € asA\gP. Thus. e € as xper A¢P. However. let Q be the
specification of the circuit. which is the mutex shown in Figure 6.10 (c). We have
that eq = abpap(apapapap)” = abp(ap)”. and rfieq = {a.p}. while renjg,eq =
{a.b,p.q} and thus rfieq 2 renjg,eq N 0Q = {p.q}. Thus. eq € otpQ. Also. one
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verifies that eg € lim IgQ thus e € as A;Q. By the counter-example of e. we have
/\dQ Z Xpe[/\dp.

In words, although MO and M1 behave fairly towards their choices. the overall

implementation ignores the request b.

Assuming the default progress process for the specification (that is. assuming
that 1Q = 74 Q). the unfairness fault above fits into our classification of relative
lock faults (Section 6.3) as a case of starvation. because e is an accessible execution
for the m4Q: since rfieg = {a.p}. cenjgoeq = {b}. thus cenjgoeq M 0Q =0 C
rfieg = {a.p}. and thus eq € ospQ. a

6.4.3 Implicit Progress Properties

Implicitly assumed unbounded traces can be associated to finitary representations
by a property similar to that for complete traces. To formalize that property. we

introduce the notion of weak liveness which unifies weak fairness and quiescence.

The approach in [CMP92| classifies liveness properties in a finer manner than
[AS85]; apparently. it does not relate to our notion of progress. The liveness con-
dition in [LT87] is close in form to our weak liveness formalization: however. the
condition in [LT87] is not a condition for progress because [LT87] take infinite se-
quences to represent complete sequences. not unbounded sequences. On the other
hand, our notion of progress. proposed in [Neg93] and [Neg95]. does relate to the
“finitary fairness” assumption recommended in [AH94] and [VK98|.

In formalizing a notion of implicitly assumed unbounded traces of a discrete-
state system, we have obtained a property that unifies a weak fairness property of

infinite traces (e.g.. see [Fra86]) with a quiescence property of finite traces (e.g..
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Figure 6.11: Continuously enabled symbols.

see [Jon87]). The property is formally the same for infinite and finite sequences.

but, for clarity. the intuitive explanations are given separately for the two cases.

Symbol a is continuously enabled by sequence e with respect to language L if
3t < e such that ¥ u such that tu < e. we have tua € L. The set of continuously
enabled symbols of e with respect to L is denoted by cenge. Note that. if e is
infinite, the continuously enabled symbols of e with respect to L are those symbols
that are immediately enabled in L by all prefixes of e larger than some prefix ¢t. See
Figure 6.9 (b). If e is finite, the continuously enabled symbols of e with respect to
L are the symbols immediately enabled by e in L. See Figure 6.9 (a). For example.

ceNpref (abec)a(b*) = {b.c} and CeNprer((ab)-c)ab = {a.c}.

For alphabet ¥ and language L. limit e of L is weahly live with respect to ¥
and L if e recurrently fires all symbols from £ that e continuously enables in L.
ie..if cenze N T C rfie. For infinite e. weak liveness is the same as weak fairness.
For finite e. weak liveness means that no symbols from ¥ are enabled at the end of

e—the same as quiescence and the same as strong liveness.

Limit e of trace structure P is an output stop of P if e is weakly live with respect
to o P and lg P. The set of output stops of P is denoted by osp P. (Note that

osp P C lim P. and that the set of output stops of a trace structure 1s uniquely
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determined by its language and alphabets.) Output stops formalize our idea of im-
plicitly assumed accessible unbounded traces of a system. For an intuitive picture.
consider that the execution point of a system follows limit e. The continuously
enabled output symbols can be viewed as exerting a pressure to be fired by the
device; if the symbol cannot be fired. it will have to be disabled. Otherwise. there

usually are upper bounds on delays.

Example 6.9 Consider a SELECTOR ({a}. {b.c}. pref (a(bU c))?). The set of
output stops is (a(bU c))” U {ab. ac}*. The finite limits from (a(bUc))" are output
stops because they do not immediately enable any output symbols. All infinite
limits in this example are output stops because no outputs are continuously enabled:
the outputs in this case are disabled periodically after words of the form (a(bic))".
The remaining finite limits. those in (a(bUc))"a. are not output stops because they

immediately enable b and c. O

The following definition associates our implicitly assumed progress properties

to a trace structure.

Definition 6.2 The default progress process of trace structure P is a process wq P

over U™ such that

asmyP = (osp PU((IgP -iP)\lgP)-(aP)*)TaP
atmgP = (lim PU ((lgP -oP)\lg P)-(aP)™)TaP .

The goal set of 74P is thus (osp P)Ta P: output stops are both accessible and ac-
ceptable as unbounded traces. Limits of lg P that are not output stops are escapes
for 74P, meaning that the device is supposed to ensure that every continuously

enabled output of P is recurrently fired: in other words. the device should not stop
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in a state or a group of states where an output is due. This means that outputs are
expected to be fired within some bounded time. unless they are disabled by some
other events. (These implicit progress properties appear to fit well many practical
systems. but there is no guarantee that they would always hold: where the implicit
progress properties are inappropriate. the general progress process from Section 6.2
have to be used instead of mqP.) The other escapes and rejects of m P are as

explained for A¢P in Subsection 6.4.2. An example will be provided shortly.

By applying refinement to default progress processes. we obtain a relative progress
condition in which a trace-structure specification is compared to a trace-structure
implementation for progress faults. Although this condition refers to implicitly
assumed progress properties. the verdict of this condition depends exclusively on
the finite-trace descriptions given in the form of trace-structures. Trace structures
specify just the implicitly assumed progress properties. not arbitrary progress prop-

erties: nevertheless. our approach appears to work well in many situations.

Example 6.10 Informally speaking. we consider that progress violations are caused
by limits that are "bounded’ for the specification. but are ‘unbounded’ for the im-
plementation. In Example 6.4. execution z is accessible for T;SENDER. m4CHANNEL.
and T4RECEIVER. but not for m;BUFFER because u does not contain an illegal input
event for the BUFFER. and because u is not an output stop for the BUFFER since it

continuously enables out. d

6.4.4 Limitations of the Default Processes

As part of the representation discipline. the users should ensure that default Liveness
and progress processes capture the properties of their systems: otherwise. general

liveness and progress processes should be employed. For instance. default liveness
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and progress processes do not seem to be appropriate for the switch-level node

models in Chapter 5.

Example 6.11 Some of the node models of Section 5.1 (a) forbid persistent col-
lisions by requiring their environments to eventually leave a collision state. For
instance., state 3 of the process automaton in Figure 5.2 is a reject state. mak-
ing up dn a finalization reject. Also. up dn should be a liveness reject. since it 1s
the environment's fault if this is a complete operation of the device-environment

system.

On the other hand. a trace structure for the node in Figure 5.2 should normally
have up dn in its language and as a limit. because this trace is legal as a partial
observation of the behavior of this device-environment system. By the construction
of Ay. this trace is acceptable for the default liveness process. while. as pointed
above. it should be a reject of the liveness process of the node. In this case. the

implicit liveness properties did not correspond to the actual ones. a

Example 6.12 One may want to require that the collision state of the node in
Example 6.11 be left within a bounded time. not just eventually. If so. up dn
should be a reject of the progress process of that node. but one can check that it 1s
not a reject of the default progress process of the node. In this case. the implicit

progress properties did not correspond to the actual ones. a

Note, however. that Examples 6.11 and 6.12 are not a limitation of the general
liveness and progress processes from Sections 6.1. 6.2. and 6.3. but only of the
default liveness processes introduced in this section. In these examples. the general
liveness and progress processes are used to model our intended properties of the

nodes, and to determine the limitations of the default processes by comparison.



CHAPTER 6. HANDLING LIVENESS AND PROGRESS 166

On the other hand, we believe that the advantages offered by the possibility
to extract default processes from finitary descriptions. and a good match to the
intended liveness and progress properties for most systems. can outweight the fact
that there are few cases in which the default processes do not properly capture the

intuition.



Chapter 7

Beyond Trace-Based Applications

In previous chapters. we have applied the general process space formalism by tak-
ing executions to be finite or infinite sequences of events. While these have been
our main applications so far. process spaces can address a much larger range of
problems. In this chapter we briefly discuss some other ways to apply the general
process space theory by using different types of executions. Although these addi-
tional discussions cannot be very involved. their purpose is two-fold: to take steps
towards some applications of promising practical value. and. at the same time. to
illustrate the power and usage of the general theory by indicating some unusual

applications.

7.1 Steady-State Networks

In this section we consider an application that does not refer to the behavior of
a system in time, but rather to the stable states of a system. Also. the systems

considered in this section are not discrete-state systems: their state spaces are

167
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parameterized by state variables that take values from the set of reals. Moreover.
as is often the case in practice. there may be some uncertainty in values of the
parameters (coefficients) for which only ranges are given. An example of such
systems are electrical networks. If there are n real state variables of interest in the
network. one may take the execution set to be R™. The processes corresponding to
parts or sub-networks are determined according to the contract paradigm described

in Chapter 2.

Vi R Vs
S1 I I S2
T =

Figure 7.1: Electrical network for steady-state parameter example.

Example 7.1 Figure 7.1 represents a steady-state network (a DC circuit). The
outputs of two voltage sources S1 and S2 are connected by a resistor R. There are
four variables of interest: V. I;. Va. and [,. the output voltages and currents of the
two sources: correspondingly. we take the executions to be vectors (Vi.[.Va. [3)
from R* (the units are in the international system). We assume that source Sz
delivers an electromotive force between Vi min and Vimax as long as [ 1s between
I min a0d Iz max- Accordingly. we represent source S1 by a process nS1 over R* such

that

gnst={(Vi.1,Vs, I5) € R | Vimin < Vi € Vimax A Nmin € It € Limax) -
atnSl = {(“.IIVng) € R4 | [Imin S [1 S [Imax} .

(Recall that g denotes the goal set of a process.) Notice for instance that an

execution with I; > I max and Vi < Vi min is made a reject for nS1. This execution
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is clearly not an intended behavior: thus it should not be a goal. Because the
source does not guarantee a voltage within the range if the current is outside the
range. this execution should not be an escape. Source S2 is represented by a similar

process 1S2.

We also assume that the resistance of R is 7 and that R can operate under all

voltages. Accordingly.
m = ({Vi.L . Vo) ER [ [+ L=0 A r[=Vi = V3} . RY ).

Now. we assume that Vi min = Vomin = 4-9V. Vimax = Vamax = 5.2V, i max = [2max =
5mA. I} min = lomin = -25mA. and r = 10Q2. Robustness of product is not satisfied
for parameters in these ranges. For execution =z = (5.2.0.03.+.9. —0.03). we have

z € asnS1NasnS2MasnR. but = € at7S1. It follows that nS1 < nS2 x 7R € RR"

The violation can be interpreted as follows. Due to slack in the values of the
electromotive forces. a current larger than 25mA may occur. which may damage

the sources. c

7.2 Dynamical Systems

Process spaces may be useful in the study of dynamical systems. If there are n
real state variables of interest (counting derivatives as well). one may take the
execution set to be the set of functions from R (the time domain') to R™. Some
simplifications are possible for particular types of dynamical systems. For instance.
the execution set can be taken to contain only continuous functions or can be

taken to contain distributions whose Laplace transforms are ratios of polynomials.

10ther time domains. such as the set of integers. can be also be used instead of X.
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The processes corresponding to dynamical systems are determined according to the

contract paradigm described in Chapter 2.

dvid
A r

—
S/

[

Figure 7.2: Requirement of Brockett ring type.

One possible use for process spaces in dynamical systems may be to set proof
obligations sufficient to allow for a simpler paradigm. such as the discrete-state
modeling. [GC94] demonstrates several difficulties with a toggle element at very
high and very low switch frequencies. However. [GC94] uses a sine wave for input.
Some of these difficulties may turn out to be avoidable if all voltages in the circuit
are restricted to be either low. high. or changing quickly. This requirement (a
Brockett ring requirement [Bro89]) amounts to restricting the phase trajectories
for each variable (i.e.. the possible sets of pairs (V.dV/dt)) to be within a region
of the phase plane such as the shaded area in Figure 7.2 (a region topologically
isomorphic to an annulus. meaning that there exists a continuous bijective mapping
of the phase plane to itself that transforms that region into a ring-shaped region).
under appropriate differentiability assumptions. Accordingly. one can restrict the
goal sets to comprise only functions that satisfy such a requirement. If an execution
violates this requirement on an input variable of a dynamical system. that execution
will be considered a reject for the process representing that system. If an execution
violates the requirement on an output variable, that execution will be considered

an escape. The refinement condition may be used to prove that. for each cell in a
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circuit. if the input signals of that cell satisfy the Brockett ring requirement. then
that cell operates according to a discrete-state model. and moreover. its output
signals also satisfy the Brockett ring requirement. The robustness condition will
tell whether the Brockett ring requirement is satisfied by the inputs of all cells. to

ensure that the discrete-state approximation can be used without bad effects.

7.3 Input Control

By input control we mean absence of dangling (unconnected) inputs in a digital
circuit: this is a connectivity correctness concern. Dangling inputs are sometimes
regarded as dangerous because their voltages may fluctuate excessively in the pres-
ence of electromagnetic interference.

In [Dil89] a “circuit algebra’ was proposed. to justify certain algebraic prop-
erties of processes by their relevance for connectivity concerns. Also. in [Ver%4aj.
studies of various connectivity concerns are proposed. on the basis of the testing
paradigm. These treatments of connectivity concerns have many similarities to
studies of behavior: however. it is not clear whether these treatments as originally

presented can be viewed as instances of a theory based on abstract executions.

For studying input control. we consider that each discrete-state system s is
represented by its uncontrolled action process. a process vs over U. For a circuit
component. we say an action from i is uncontrolled if that action does not represent
an output of that component. The uncontrolled action processes are determined by
the contract paradigm described in Chapter 2. applied to uncontrolled actions. We
do not offer a general recipe of how to attach uncontrolled action processes to an
arbitrary circuit component. since this would have to refer to a definition of what it

means for a component port to be an input. However. in the vast majority of digital
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circuits. one can distinguish inputs from outputs easily by their impedances. Then.
regarding the actions as executions. an uncontrolled action process classifies actions
as rejects. goals. or escapes according to whether they may "occur’ as uncontrolled
actions of a given system: usually. this means that outputs are escapes (the device
should make sure they may not "occur’ as uncontrolled actions). inputs are rejects
(the environment should make sure they are not uncontrolled). and all other actions
in U are goals (as far as the device and environment are concerned. those actions can
be uncontrolled). The following examples illustrate uncontrolled action processes

and meanings of robustness and product in this interpretation.

Example 7.2 Let the components of the circuit in Figure 6.1 (a) be c. BUF. and
INV. from top to bottom. We check whether the circuit is a "good substitute” for

the AND gate with respect to input control.

Letting 4 = {a.b.c.d.e}. we have (after some straightforward manipulations):

vC X UBUF x UINV
- ({a.b.de}{cde}) x ({ab.cd}{abeel) < ({abee}{abed)
= ({a.b}.{c}u{a.8})
= ({a.8}.{c.d.e})
Riabcde} -

Note that r (vC x UBUF x vINV) = {a.b} indicates precisely the two dangling inputs

in the circuit. a

Example 7.3 Input control can also be considered in a relative sense. Let us check
whether the circuit in Figure 6.1 (a) is a correct implementation of the AND gate

in Figure 6.1 (b). with respect to input control. For that. we demand vAND C
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vC x UBUF x vINV. The uncontrolled action processes of the components are as in

Example 7.2. We have

as (vC x UBUF x UINV)
= {a.b} (as in Example 7.2)
C {a.b.d.e}

as vAND

and

at (uC x UBUF x UINV)
= {c.d.e} (as in Example 7.2)

at vAND

The refinement condition is thus satisfied. Informally speaking. the two dangling

inputs of the circuit are controlled by the environment of the AND gate. 3

7.4 Timing

Timing properties can be determined on the basis of time-stamped partial traces of
a discrete-state system. i.e.. the finite or infinite sequences of pairs of actions and
time-stamps representing events that occur up to a certain time. Here. we take the

time domain to be [0. o). the set of non-negative real numbers.?

For pair (a.t) € U x [0.0). let a(a.t) = a and t(a.t) =t For finite sequence
z, let d z be the domain of indices of z. which is the set {f € Z {0 <: < [}. where

Z is the set of integer numbers and [ is the length of z. Let the elements of z be

20Other time domains can also be used.
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Zo. - .., Ti-,. For example. the domain of indices of aba is {0.1.2}. (aba), is b. and

the domain of indices of € is 0.

With this notation. we take the execution set to be
F={zeUx[0.00) |Vi.jedz: (<] =tz <tzj;)}.

In words. the executions for timing are the finite sequences of pairs of an action
and a time-stamp such that time-stamps are in increasing order. For instance.
(a.0.4)(b.0.4)(c.2) € F. but (a.1)(5.0.7) ¢ F. For studying timing. one can for
instance represent a discrete-state system by a process over F. as prescribed by the
contract paradigm described in Chapter 2. applied to time-stamped partial traces.
Under this representation. timing faults such as excessive worst-case delays can be

detected as violations of refinement or robustness.

7.5 True Concurrency

In Chapters 3. 4, and 6. we have assumed that events are instantaneous. Simulta-
neous occurrence of two events was modeled as two possible interleavings of those
events. In the “true concurrency” paradigm. simultaneous occurrence of two atomic
events is different from the possibility of both interleavings. which is perhaps a more

accurate but a more complicated point of view.

For a “true concurrency” model. one can consider actions to be elements of
p(U) (subsets of U), as opposed to atomic actions. which are elements of /{. Then.
events are occurrences of actions. and atomic events are occurrences of atomic
actions. The execution sets are determined by the contract paradigm in Chapter 2.

applied to sequences over p(U). Determining the goal. reject. and escape sets
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for true concurrency processes is roughly similar to determining such sets for the
safety. finalization. liveness. or progress processes in previous chapters. although
goals are now sequences over p(U{) instead of sequences over i. Determining reject
and escape sets has a subtlety, however, if an illegal event contains both an illegal
input event and an illegal output event. In such situations. the resulting execution

is typically an escape rather than a reject.

Figure 7.3: Goal set for multiple-winner example: all sequences of sets of actions

that are spelled by a path starting at the initial state.

Example 7.4 Consider a component TOGGLE with input a and outputs b and
c. which repeatedly inputs an a event and outputs either a b event or a c event.
alternating b and c. For illustrative purposes. assume there also exists an atomic
action d which is not seen by the TOGGLE. The true concurrency safety process of
TOGGLE is a process ¢’TOGGLE over p(U)". The goal set of ¢’TOGGLE is as shown
in Figure 7.3 by an informal state graph (not a process automaton or a behavior
automaton) where true concurrency events, that is sets of atomic events from .
are represented as lists of atomic events within square brackets. Note that d atomic
events may occur arbitrarily. Execution [a][a.b] is a reject of 0’TOGGLE. because
TOGGLE may issue a b after the first a. but a second a is not expected until an

output atomic event of TOGGLE. On the other hand. execution [a][a. c] is an escape
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of 0'TOGGLE. because [a. c] contains both an illegal input atomic event (no a events
are expected until an output atomic event) and an illegal output atomic event (it

is not the turn of c). 7



Chapter 8

Process Abstractions

In Chapter 6. we have used a projection operation that deletes certain events from
traces. and a related extension operation that inserts events arbitrarily in traces.
Also. in Section 4.2 we have noted that. in applications. we often change the initial
states of process automata. to correspond to the actual initial values of signals in
a circuit: such operations of re-initializing a process are known as derivatives or as

~after”-operations.

At first sight. it may seem that. since process spaces do not refer to the structure
of executions. they would not be able to capture projections or derivatives. [t turns
out that significant properties of these operations can be obtained from binary re-
lations between sets of abstract executions. without any references to alphabets
or other structural details of executions. Moreover. other operations. such as re-
labeling, reflection. rotation. and process compositions. can be built from binary

relations between executions as well, thus inheriting these properties.

The algebraic properties mentioned above include monotonicity with respect

to process comparisons. laws for composition, Galois connection properties. and.

177
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very importantly, criteria that authorize us to perform verifications on images of
processes through such maps instead of directly on the original processes. Certain
classes of systems are shown to allow for equivalent verifications on images through
a given map, and certain classes of maps are shown to always produce pessimistic

or optimistic approximations of all processes.

A benefit of studying these properties in a unified framework is that we capture
the algebraic structure of several process maps for the price of one. We start with
mathematical preliminaries regarding maps between sets. which may be of inde-
pendent theoretical interest because they generalize certain properties of language
homomorphisms. We then present our mathematical treatment of maps between
processes. followed by a more intuitive section on criteria for verifications on 1m-
ages of processes through such maps. After presenting this theory. we demonstrate
the concepts on applications to the operations mentioned above and to some other

operations as well.

The research in this chapter was tentatively started together with J.A. Brzo-
sowski and J. C. Ebergen in [BEN96]. Although the joint work was interrupted
shortly thereafter. we would like to acknowledge their feedback. as well as Ebergen’s

formalization of projection operations for processes with alphabets.

8.1 Preliminaries

As a first step towards building a theory of process transforms. we first consider

maps between power sets of two arbitrary sets £, and &s.

In the mathematical notation and terminology, we follow {Bir67]. [DP90]. or

introduce our own.
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The converse of a relation p C & x &; is a relation p~ C & x & such that,
for every u € & and v € &, upv < vp~u. (The sign x is used both for Cartesian
product and the process product, but it will be clear from the context which of
these two operations is used.) The composite of relations p; C & x & and p; C
E x & is a relation p, o p; C & x & such that, for every u € £ and w € &,
u(py 0 p2)w © Fv € & : upv A vpow. The image of set X C &, through relation
p C € x & is the set Im,(X) = {v € & | Fu € X : upv}. For functions h, : B-C
and hy : A = B. (hy 0 hy)(z) = hi(ha(z)).!

A poset is a pair (P. <) consisting of a set P and a partial order relation =
on P. A Galois connection between posets (A.<4) and (B.=<p) is a pair (a.f)
of maps @ : A — B and B : B — A such that, for every v € Aand v € B.
u <4 Bv) © v < a(u). Map v : A = B is order-reversing if Vu.us € A:

uy < up = y(ur) = y{us).

Figure 8.1: Example of a Galois connection.

Example 8.1 The continuous lines in Figure 8.1 represent the Hasse diagrams of

1As usual, the notation for composition of relations is in reverse order from composition of
functions, as follows. The graph of a function k : C = D is a relation n C C x D such that unv &

h(z) = v. If 7, and 72 are the graphs of functions hl and A2, then the graph of hs o hy is 71 0 72.
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two posets A and B. The dotted lines represent a map o : A — B. and the dashed

lines represent a map 3 : B — A. These two maps form a Galois connection. O

A Galois connection correlates the orders in two posets in a particular manner.
as described by some algebraic properties mentioned in [Bir67] and [DP90]. given

below.

Proposition 8.1 For posets (A.=4) and (B. <g) and mapsa: A — B and 3 :

B — A. we have:

(a) (a,B) is @ Galois connection if and only if
(i) VYue Ave B:u=,pP(a(u)) and v <g a(B(v)). and
(ii) «a and B are order-reversing.

(b) If (a.B) is a Galots connection then
(ili) Yu€ A.ve B:a(B(a(u)) = a(u) and B(a(B(v)) = B(v).

Example 8.2 One verifies that the maps in Figure 8.1 satisfy properties (i). (i1).
and (iii) of Proposition 8.1, in addition to the defining property of Galois connec-

tions above. o

As we will show. the process transforms that are of interest to us can be obtained

from maps between sets of executions that satisfy the following laws.

Lemma 8.2 For map f : p(&1) = p(&:). the following properties are equivalent.
(a)  There ezists a map f : p(&) — p(&1) such that

VXCEYCE: XNf (Y)=0 & YNfX)=0:

(b)  For every set M of subsets of &.
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f(UXeMX) = Uxer(X)?

(c)  There exists a relation p C & x & such that

f=Im,.

For map h : p(C) — p(D). let k be a map from p(C) to o(D) that satisfies
VX CC:h(X)= h(—Xj Noting that two sets A and B are disjeint if and only
if A C B. Property (a) above is the same as saying that the maps f and f~ form
a Galois connection between (p(&;).C) and (p(€2). C). This shows how the maps
in question keep consistency of the subset orders in the two power sets. Prop-
erty (b) characterizes such maps as those maps that preserve union. Property (c)
provides a representation for such maps. showing they can be constructed from

binary relations.

Example 8.3 The maps that satisfy the properties in Lemma 8.2 generalize lan-

guage homomorphisms.

Our definitions of language homomorphisms are adapted from [HU79|. For finite
sets £, and ., a language homomorphism is a map h: &, — %3 extended to I

and p(X]) by the following laws:

h(e) =€,
Y up,up € B7 ¢ h(uius) = h(ur)h(uz) ,
VLC3Z;: k(L) =U,er hl) -

Consider, for instance, the deletion map from [Dil89]. For finite sets I' and &
such that ' C , del(T)(+) : £ — I~ satisfies



CHAPTER 8. PROCESS ABSTRACTIONS 182

Yac X \T:del(T')(a) =a,and
YaeTl:del(I')(a) =¢.

The resulting language homomorphism del(T)(-) : p(£") — p(Z7) deletes from the

argument words all occurrences of symbols from I'.

Note that the third law in the definition of language homomorphims above is
equivalent to Property (c) of Lemma 8.2. if we take p C 2" x X° so that upv &
v = h(u). (i-e.. so that p is the graph of k). Also. it is noted in {HU79] that language
homomorphims commute with finite union: this property can easily be extended to

infinite unions as in Lemma 8.2. Property (b).
For language homomorphism h. the inverse homomorphic image of a language
L'CX¥iis

h~Y (L) ={u|h(u)e L'}.

Despite this notation and terminology. which are standard in language theory. At
is not the inverse of function h. In fact. language homomorphisms need not be
bijective. thus they might not admit inverses: deletion. for instance. is not injective

since two symbols from I’ have the same image. €.

On the other hand. inverse homomorphic images do correspond to converses of

maps as in Property (a) of Lemma 8.2. For all L C £} and L’ C X3.

LNRYL)=0 & -3uecl: h(u)e L' & A(L)NL' =0.

Proof of Lemma 8.2

((b)=>(a)) For an arbitrary subset Y of &,. let
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ff)y={ue& | f{uhnY #0}.

Then. for arbitrary subset X of &;.

XNf(Y)#0
Xn{ue& | f{u})nY #0} #0
Jue X: f{u})NY #0
Y NUuex f({u}) #0
YO f(Uyex{uh #0 . (cf. Property (b))

L

((c)=(b)) For arbitrary M C p(&).

fUxem X)
= {ve&|FuelUyepm X :upv}
= {ve&|IXeM:Jue X upv}
= {ve&|IXeM:ve f(X)}

= UXer(X) .

((a)=(c)) Letp={(v.v)e&i x& |VE f({u})}. and consider arbitrary subset
X of €. We prove that f(X) = {v | 3u € X : upv}. For arbitrary v = Er. we

have

v € f(X)
F(X) N {w} # 0
Xnf ({v})#0 (by (a))
Jue X:{u}nf ({v}) #0
Jue X f({uh) 0 {v} #0 (by (a) again)
Jue X:ve f({u})
JueX:upv. a

¢ 0 ¢ 0T
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A representation property similar to (a) < (c) is a previous result mentioned

in [Bir67].

Definition 8.1 Function f between the power sets of sets & and £ is a union-

preserving map (UPM for short) if it satisfies the properties from Lemma 8.2.

By definition. UPMs preserve unions. Are there similar properties with respect

to other set operaiors?

Lemma 8.3 For UPM f between power sets p(&,) and p(&€2). for subsets X and
Y of &. and for family M C p(&1) of subsets of €;. we have

(a) XCY = f(X)Cf(Y): (monotonicity)
() fNxermX) € Nxem f(X) ¢
(c) f(@)=0. (strictness)

Proof For Part (a). note

XCY = XuY=Y = f(X)Uf(Y)=flY) = f(X)C f(Y).

(Alternately. Part (a) can be proven by using the continuity of f. which results
from Property (b) in Lemma 8.2 by taking M to be a directed set: see e.g. DP90]
for definitions of directed sets and continuity of maps between posets.)

Part (b) follows from Part (a) by noting VX € M : Nzem Z S X. thus.
VX €M: f(Nzem?) S FIX).

Part (c) results from Property (b) in Lemma 8.2 by taking M = 0. a
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Note that. in general. we do not have f((Nxcr X) = Nxead f(X). Take. for
instance. UPM f : p({1.2}) — o({3}) such that f({1}) = f({2}) = {3}: we have
f{1yn{2}) = £(0) = 0. but f({1}) N f({2}) = {3}

In Lemma 8.2. Parts (a) and (c) refer to the existence of other objects (a Galois
connection and a binary relation) that have certain properties in combination with
the UPM being defined. The relation in Part (c) is unique. by the way it is defined
through its image. The following lemma shows the Galois connection is unique too.

and indicates how to comstruct it.

Lemma 8.4 For UPM f. Galois connection (F.f7). and relation p.

f=Im, & f =Im,-.

Proof For all « and Y. we have

ue f(Y)
(w0 f7(¥) #0
YNf({u})#0 (by Lemma 8.2 since f is a UPM)
JveY:ve f{u})
JveY :upv
dJveY:vp~u
ve Im,-(Y). a

¢t ¢ ¢ ¢ 0O

The construction in Lemma 8.4 also serves as a definition.

Definition 8.2 For UPM f between p(&;) and p(&,). the underlying relation of f
is the (unique) relation py C & x &, that satisfies f =Im,,. and the converse of f

is the (unique) map f : p(&:) — (&) for which (f.f7) is a Galois connection.
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Example 8.4 An interesting UPM that is neither a language homomorphism nor
the converse of a language homomorphism is prefix closure pref: this map was
used in Chapter 6. The underlying relation is >. the converse of the prefix relation
< on strings. Thus. not only pref is not a language homomorphism. but also its

unique underlying relation is not a function.

Both the prefix closure of languages of finite words and the prefix closure for
languages of finite and infinite words are UPMs. It follows that these maps between

languages inherit all the properties we prove for UPMs. a

Converses and compositions of UPMs correspond to converses and compositions

of underlying relations.

Lemma 8.5 For UPMs f : p(&1) — o(&2) and g : p(&:) — p(&s).
(a) f~ isa UPM and ps-) = (ps) " :
(b) go fisa UPM and pgos = psopg -

(c) (gof) " =f og

Proof
(a) This is a re-statement of Lemma 8.4.

(b) Let X be an arbitrary subset of £;. Then.,
go f(X)
= {we&|3Ive f(X):vpw}
= {we&|IueXveb upsv A vp,w}
= {weé&|IJue X u(psop)w}.
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Figure 8.2: Example relation.
(¢) Trivial. a

In general. the converses of UPMs. derived from relations. are not the same as
inverses of these functions. That is, we may have f~ (f(X)) # X. Take for instance
X = {1} in Figure 8.2; we have f (f({1})) = {1.2}. Also see Example 8.3.

Example 8.5 The converse of the deletion UPM del({beep}) : p(&1) — (&)
from Example 8.3 is a map del ™' ({beep}) : p(&:) — p(&1). called inverse deletion
in [Dil89], which inserts beep actions arbitrarily in the words of a sublanguage of

&,. For instance. del™({beep})({el m2. €}) = beep" el beep™ m2 beep™ U beep”.

The term “inverse deletion” in [Dil89] refers to the inverse homomorphic images.

and not to the inverse of a function of languages: see Example 8.3. a

The following lemma shows that taking the converse of a UPM is an involution

and preserves a subset relation extended to UPMs.
Lemma 8.6 For UPMs f and g between power sets p(€;) and p(€2). we have

(@) (f) =f;
(b) VXC&:f(X)C9(X) @ VY C&:f (Y)Cg (V).

Proof

(a) By Lemma 8.5, we have
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Thus.

Py = (ps=))~ = ps) ™) = ps -

(b) Due to Part (a). we only need to show (=). Let Y C &, arbitrary. We have

([

N

8.2

f

(Y)
{ue&|3veY jvps—u}
{uc & |3veY v(ps) u}t (Lemma 8.5 (b))

{uc& |FveY rupsv}
{fue&FveYn f({u})}
{fue & |3veY ng({u})}
(by the hypothesis that 7 X C & : f(X) C g(X))
g (Y). (as shown above for f) a

Process Abstractions

In this section we discuss maps between two process spaces. Sg, and Sg, (the domain

and the co-domain). We define the maps that are of interest to us by a commutative

diagram involving two of the process composition operators. These operators can

be any of U. . +. M. ®. and x: call them * and ®.

Definition 8.3 Map F between process spaces Sg, and Sg, is a *@-PA (for "process

abstraction’) if

VB C S¢, : F(*peBp) = OpesF(p) -
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Definition 8.3 is for arbitrary * and ®. but most applications use only MM-PAs.
which are defined by taking * = ® = M. In the following, we focus on maps of this
type. Other process abstractions. when needed, can be obtained by applying the

duality and ternary symmetry principles from Chapter 2.

We have mentioned process abstractions are constructed from UPMs. which. in

turn. are represented by relations on execution sets. Our construction is as follows.

Theorem 8.7 (representation) For MM-PA F between Sg, and Sg,. there enst
UPMs f, g. h. and i from p(€;) to p(&;) such that. for all p from Sg, .

F(p) = (f(asp) U h(rp), g(asp) Ui(rp)) - (8.1)

Proof We construct the UPMs in question from the images through F of two
special processes that depend on a subset X C & (X.&) and (X.X).

Let f, g, h. and i be maps between power sets (&) and p(&,) such that

f(X) =asF((X.&)) . (8.2)
9(X) =r F((X.&)) . (8.3)
h(X) = as F((X. X)) . (8.4)
(X)) =r F(X.X)) . (8.5)
To show f, g, k. and i are UPMs. we show they preserve union.
FUxerm X)
= asF((UXeMX,&)) (by choice of f)
= asF(Mxem(X,&1))
= as(MxemF{X.&))) (Definition 8.3 for * = @ =)
= Uxemas F((X,&))

=  Uxem f(X) . (by choice of f)
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Thus. f is a UPM. The proofs for g. h. i are similar.

Now. we compute F(p) for an arbitrary process p.
F((asp.Tp))
F((asp,& )N (rp.tp))
= F((asp.&)) N F((rp.TP))
= (f(asp).g(asp)) M (h(rp).i(rp))
= (f(asp) Uh(rp).g(asp) Ui(rp)) . =

From Definition 8.3. one can immediately deduce two structure-preserving prop-
erties of a MM-PA. Monotonicity with respect to refinement is particularly important

in applications.

Theorem 8.8 For MM-PA F between the process spaces over sets & and &, and
for processes p and q over £, we have

(a) pCgq = F(p)C Fl(q) - (monotonicity)
(b) F(T)y=T.

Proof

(a) For any processes p and q.

pCqe pNg=p= F(pNgq)= F(p)
& F(p)M F(q) = F(p) (since F is a MM-PA)
& F(p) CE F(q) -

(b) Take B in Definition 8.3 to be empty. O

Although Theorem 8.7 permits us to choose a MM-PA and its four UPMs in
many ways, not all the choices are needed in applications. In the following, we

focus on a simpler type of MM-PAs.
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Definition 8.4 ForMN-PA F and UPMs f. g, h. and i that satisfy equation (8.1)
from Theorem 8.7. we write F = (f.g.h.i)™". We say such F is simple (F is a
AM-SPA for short), and we write f*" = F and f = Frn, if f =1 and for all X we
have g(X) = h(X) = 0.

The notation f = Frn in Definition 8.4 is well-defined because f is unique for
a given MM-SPA F': observe that. for any subset X from the domain of f. we have
f(X) = as F(X).

Simple MM-PAs preserve accessible and reject sets.

Lemma 8.9 For UPM f between power sets p(&;) and p(&2) and for process p

over &,

as f""(p) = f(asp) .
rf"(p) = f(rp) -

Proof Replace g. h. and i in Theorem 8.7 by 0. 0. and f. respectively. a

Informally speaking. the idea for PAs is to ensure consistency between the ex-
ecution sets of a process and their images through the map. However. a map may
create ambiguity when the images of disjoint sets. such as the accessible and the
escape sets of a process, are not disjoint. This ambiguity can be resolved in several
ways by assigning the co-domain executions in question to one or another execu-
tion set of the image process. Maps of the MMN-SPA type are particularly important.
because they resolve such ambiguity pessimistically, in favor of the accessible and

reject sets of the image process, as in Lemma 8.9.

Example 8.6 The product of Listener and Speaker in Example 2.5 refines the

etiquette machine of Chapter 2 if the latter is considered over execution set {el.
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€2, ex, ml, m2, mz. beep} as in Example 2.6. but the etiquette machine i1s not
refined by this product. The reason is that the etiquette machine does not “control’
action beep. For instance, execution u = beep el beep ml beep is accessible for the

etiquette machine but not for Listener x Speaker. since u is an escape for Listener.

What if we delete action beep from Listener x Speaker. using the deletion UPM
of Example 8.37 Letting F = (del({beep}))™". we have that F(Listener x Speaker)
is refined by the etiquette machine. if the latter is considered over execution set
{el. €2. ez, m1, m2. mz} as in Example 2.1. In particular. execution v = elml.
obtained by deleting all beeps from u. is accessible for F'(Listener xSpeaker). even
though u is an escape for Listener x Speaker. This is because we can also obtain v by

deleting all beeps from v’ = el beep m1. while u' is accessible for Listener x Speaker.

Notice that. in deciding that v will be accessible for the image process. we
take the position that we do not care about ‘happy ending” cases where the original
process actually avoids u. as long as there exist ‘sad ending’ cases where the original

process does not avoid w’. This is the effect of using a MM-SPA. |

A key question regarding process abstractions is how they correlate the notions

of correctness in two process spaces.

Theorem 8.10 (reciprocity) ForMM-SPA F between the process spaces over sets
& and &, let F~ be the MM-SPA ((Frn) )™ (call it the converse of F). Then. for

all processes p over Sg, and q over Sg,.

px F7(q) € Rey, & F(p) xqE R, -

Proof Let f = Fan. We have

px F(q) € Re,
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aspNrF (g =rpnasF (q)=0
(calculus. from definitions of x and R)

¢

aspNf (rq)=rpN f (asq) =0 (Lemma 8.9 and choice of F ™)
flasp)Nrq= f(rp)Nasq=10 (Lemma 8.2. Property (a))
asF(p)Nrq=rF(p)Nasq=0

t 8¢ ¢

F(p) x ¢ € Re, - (calculus. from definitions of x and R) a

Together with Theorem 2.12 from Chapter 2. Theorem 8.10 shows that the pair

of maps (—F. —F ) is a Galois connection with respect to the converse of reflection:
pl-F(q) & qI -Flp).

This shows how a MM-SPA keeps consistency of the refinement relations of S¢, and

Se, .

We now show that compositions of MM-SPAs correspond to compositions of
UPMs. This property is important for determining transitivity properties for pro-

cess maps. as will be illustrated for instance in Subsection 8.4.4.

Lemma 8.11 For MM-SPAs F and G between process spaces Sg, and Sg,. we have

GoF = (Gnn o Frln)nn .

Proof For any process p over ;.

(Grn o Fan) ™ (p)
=  ((Gan o Frn)(asp).(Gan © Frn)(rp))
= (Grn(as F(p)). Gan(r F(p))) (Lemma 8.9)
= (asG(F(p)),r G(F(p))) (Lemma 8.9 again)

= G(F(p)) . o
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The process abstractions described so far, namely MM-PAs, can be reflected
and rotated in both domain and co-domain. to obtain thirty-five other types of
process abstractions. In most applications. only MMN-PAs are used: however. in
some applications we have also encountered process abstractions of other types. As
an example. we indicate here how to handle Lix-PAs, which are defined by taking
* = LU and ® = x in Definition 8.3.

Proposition 8.12 For Ux-PA F between S¢, and Sg,. there ezist UPMs f. g. h.
and i from p(&) to p(&,;), such that. for every process p over &,

v F(p) = f(atp) Ug(ep) . (8.6)
e F(p) = h(atp) Ui(ep) . (8.7)

For F. f. g, h. and i that satisfy (8.6) and (8.7), we write F = (f.g.h.2)“*. Then.

for every process p over &,

(f.g.h.0)"*(p) = \(f. g, h.0)"(—p) .

Thus. one can deal with a Lix-PA just by rotations and reflections applied to
the result and argument of a MM-PA. It follows by duality and ternary symmetry
that the properties shown so far for MM-PAs apply to tUx-PAs and to the other

types of process abstractions as well.

8.3 Verifications on Images

The basic verification problem is to determine robustness of a product of processes:
the verification of refinement can be reduced to this basic problem by using Theo-

rem 2.12. We are aiming to study relationships between robustness of Xpesp and
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robustness of x,esF (p): under which properties of maps or processes does one of

these robustness conditions imply the other?

Two properties which are relevant for verification on images happen to hold for

all processes and MM-SPAs.

Lemma 8.13 For MM-SPA F between the process spaces over sets & and &;. for

processes p and q over £;. and for set B C S¢, of processes. we have

(a)  xpesF(p) T F(xpesp) -
(b) peERe = F(p)€Re, .

Proof Let UPM f be such that FF = f™.
(a) We have

F(xpesp)
=  F(( ﬂpes asp . anB atpuﬁqe—gas—q ) ) (Definition 2.9)
= P((Nyesa5p - Upeo3P) " Nyepsd ) )
(De Morgan's laws for U and M)
F((Nyesasp - (UpesTp) NMNgesasq))
F(( ﬂpGB asp . Upea((ﬂqesasq) Nrp)) ) (distributivity of N through U)
( f(N,es2asp). f(Upes((MNyesasa) Nrp))) (Lemma 8.9)

( Npes f(asp). Upes((MNyes flasg)) N f(rp)) )
(Lemma 8.2 (Property (b)) and Lemma 8.3 (b).

I

since now the accessible and the reject sets of the process in question
are both larger than they were in the previous step)

= xpes(f(asp). f(rp))
(by rephrasing Definition 2.9 as done above for x,esp)

=  xXpesF(p) - (Lemma 8.9)
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(b) Since f(@) =0 (Lemma 8.3). we have

p € Re, @rp:@ﬁf(rp):@@rF(p)z@@F’(p)ERgz. a

Certain simple properties of an underlying relation entail several additional

properties for the corresponding UPMs and MM-SPAs.

Definition 8.5 Let p C & x & be a relation. We say that p s surjective if
Im,(&;) = &: that p is injective if. for all uy.us € &, and v € & such that u,pv
and u,pv. we have u; = u»; that p is co-surjective if p~ is surjective: and that p i3

co-injective if p~ is injective.

Observe that a relation p C & x & is a partial function from &) to &, if and only
if p is co-injective: relation p C & x & 1s a function from &, to &, iff p is co-injective

and co-surjective. A function is bijective Mff it is injective and surjective.

8.3.1 Optimistic Approximations

Injective relations generate optimistic approximations of processes. in the sense that
verifications of robustness of product on image processes may yield false positives

but never false negatives.

Example 8.7 Suppose we try to check robustness of the product of Listener and
Speaker from Example 2.5 by examining all executions that have exactly four ac-
tions. (The number four was chosen arbitrarily.) For this. we can use as underlying
relation the identity relation of set B. where B = AAAA and A = {el. €2. ex. ml.
m2, mz. beep}. The identity relation of set B is idp = {(u.u) | v € B}. and can
be used as a relation on A" as well. since B C A". Let F be the corresponding

MN-SPA, that is. F = (Im;q, )™
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We observe that execution v = el el beep ml is a reject for F'(Listener) x
F(Speaker). Since idp is injective, we know this execution corresponds to a reject
of the product of the original processes. since there is only one domain execution.
call it u. that is in relation to the reject we have found. and u must be a reject for
Listener and a goal for Speaker. since v is a reject for F'(Listener) and a goal for
F(Speaker). Incidentally, » = v in this example. but this needs not be the case for

other injective relations. 3

We are interested not just in injective relations. but also in processes for which
a given MrM-SPA behaves as if it were based on an injective relation in the sense

described above.

Definition 8.6 Let f be a UPM between power sets p(€1) and (&), and let F
be a NM-PA between process spaces Sg, and Sg,. Subset X of & s f-subfixed
if f7(f(X)) € X. Process p over & is optimistically approximated by F (p i
F-optimistic for short) if F~ (F(p)) = p-

Proposition 8.14 For MN-SPA F = f™". process p s F-optimistic if and only if

asp and rp are f-subfized.

]

Proof This follows immediately from definitions.

Lemma 8.15 For UPM f between power sets p(&;) and p(&2). and for set M of
f-subfized sets from &,. we have

f(nxeMX) = nxemf(X) .

Proof The (C) part is Lemma 8.3 (b). For showing (2). assume for the sake of

contradiction that
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3v € (Nxea FXD \ F(Nxema X) -

If M = 0. the assumption is trivially contradicted. If M # 0. let X; € M and
u; € X, such that u;ppv. For arbitrary X in M. by our assumption there exists
w € X : upsv. Since uypypv and uw € X. uy € f(f(X)). Since X is f-subfixed.
u; € X. Thus. u; € Ny X Since uipsv. it follows that v € f([Nyxea X)-

contradicting the assumption. G

Theorem 8.16 (optimistic approximation) ForMM-SPA F between process spaces

Se, and Sg,. and for set B of F-optimistic processes from Sg, .
xpcBP € Re, = xpeF(p) € Re, -

Proof Let f = Frn. We have

xpeBp € Re,
=  F(xpesp) € Re, (Lemma 8.13 (b))
& f(Upes((Ngegasq) Nrp)) =0 (Definitions 2.9 and 2.2)
< Upea f((ﬂqeg asq)Nrp) =0 (Property (b) in Lemma 8.2)
Aad UpGB((ﬂquf(aSQ))nf(rp)) =0 (Lemma 8.15)
= Upea((nqes as F(q))NrF(p)) =0 (Lemma 8.9)
& xpesF(p) € Re, (Definitions 2.9 and 2.2) a

Theorem 8.16 tells us that verifications of robustness of product (our basic
verification problem) on images produce no false negatives (no false flaws) for op-

timistically approximated processes: hence the term “optimistic’.
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Now we characterize relations whose MM-SPAs approximate all processes opti-
mistically. The benefit of knowing that a relation has this property is that verifi-
cations on images with no false negatives can be performed for all processes rather

than just for a restricted class.

Theorem 8.17 (injective reduction) For MN-SPA F = f™ between process

spaces Sg, and Sg, . the following properties are equivalent:
(a) relation py is injective:
(b) every set X C & is f-subfized:

(c) every process p over &, is F-optimistic.

Proof
((a) = (b)) For arbitrary w from f (f(X)). we have

dJve f(X).ue X :upsv AN wpygv .

Since py is injective. u = w and thus w € X. Since w € fT(f(X)) was arbitrary.

we have f~ (f(X)) C X. that is X is subfixed.

((b) = (a)) For w.w € & and v € &. if upsv and wpyv then v & f({u})
and w € f ({v}). thus w € f~(f({u})). Since all subsets of &, are f-subfixed.
FT(f({u})) C {u} and thus w € {u} and w = u. Thus. py is injective.

((b) = (c)) Let p € S¢, arbitrary.

F~(F(p))
= (f (f(asp)).f (f(rp))) (Definition of F~ and Lemma 3.9)
J (asp.Tp) (since as p and rp are f-subfixed)

D -
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((b) = (c)) Let X C &, arbitrary.

f(f(X)

as F~ (F((X.&)))
C as(X.&) (since (X.&;) is F-optimistic)
X . a

8.3.2 Pessimistic Approximations

Co-surjective relations generate pessimistic approximations of processes. in the
sense that verifications of robustness of product on image processes may yield false

negatives but never false positives.

Example 8.8 Applying the deletion operation for the product of Listener and
Speaker in Example 8.6 will make execution el el ml ml a reject for the image
process. since it is in relation with the reject execution el el beep ml beep ml of

the original product process.

Notice that executions el beep el m1 beep ml and el el ml ml beep are also in
the deletion relation with el el m1 ml. although the first is a goal and the second
an escape for the original product process. In words. by what we can tell without
seeing beep. the original product process might tolerate el el ml ml from time
to time: however. we don't care about that possibility if we know that it is also

possible to have a reject.

In this sense. although some information may be lost by a relation that is co-
surjective but not injective. the verifications of robustness of product on the image
processes are sufficient to guarantee correctness of the original processes. Some

information is lost by allowing common images for "good’ executions like el beep
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el m1 beep ml and ‘bad’ executions like el el beep m1 beep ml. but the image

execution will be qualified as "bad’ as long as it has at least one "bad’ original. O

We are interested not just in co-surjective relations. but also in processes for
which a given MM-SPA behaves as if it were based on an co-surjective relation in

the sense described above.

Definition 8.7 Let f be a UPM between power sets p(&1) and p(&,). and let F
be a MM-PA between process spaces Sg, and Sg,. Subset X of & s f-superfixed
if fT(f(X)) 2 X. Process p over £ tis pessimistically approximated by F (p s
F-pessimistic for short) if F~ (F(p)) E p-

Proposition 8.18 For MM-SPA F = f™. process p s F-pessimistic if and only if

asp and rp are f-superfized.

]

Proof This follows immediately from definitions.

Lemma 8.19 For UPM f between power sets p(&) and p(&,). and for f-superfized
subset X of £,. we have

f(X)y=0=>X=0.

Proof We have

f(X)=0
= [ (fiX)=0 (since f is also a UPM)
= X=0. (since X C f(f(X))) a

Theorem 8.20 (pessimistic approximation) For MM-SPA F' between process

spaces Sg, and Sg,, and for set B of F-pessimustic processes from Sg,.
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xpe8P € Re, < xpesF(p) € Re, -

Proof Let f = Fqn. We have

% pe8F (p) € Re,

= F(xpesp) € Re, (Lemma 8.13 (a))
&  f(r xpes p) =0

= r Xpegp =10 (Lemma 8.9)
=  xpeBP € Ry, - (Lemma 8.19) a

Theorem 8.20 tells us that verifications of robustness of product (our basic
verification problem) on images produce no false positives (no false passes) for

pessimistically approximated processes: hence the term ‘pessimistic .

Now we characterize relations whose MM-SPAs approximate all processes pes-
simistically. The benefit of knowing that a relation has this property is that verifi-
cations on images with no false positives can be performed for all processes rather

than just for a restricted class.

Theorem 8.21 (co-surjective reduction) For MM-SPA F' = 7 between pro-

cess spaces Sg, and Sg,. the following properties are equivalent:
(a) relation pg is co-surjective:
(b) every set X C & is f-superfized:

(c) every process p over £ is F-pessimistic.

Proof

((a) = (b)) For arbitrary u from X. we have
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Jv:upsv (ps is co-surjective)
Jv:uppw Avps-u (Lemma 8.5 (a))
psu A vps
3v:u(psops-)u

w € f(f(X)).

Since u € X was arbitrary. we have X C f (f(X)).

((b)

= (a)) Let u € & arbitrary. Since {u} C fT(f({u})). there exists v

f({n}) such that upsv. Since u was arbitrary. ps is co-surjective.

((b) = (c)) Let p € Sg, arbitrary.

in

((b)

2

il

F~(F(p))
(f " (f(asp)). F~ (f(rp)))
(asp.Tp)
p.

= (c)) Let X C & arbitrary.

f(F(X)
as F~ (F((X.&1)))
as(X.&;)
X . g

8.3.3 Independence

One can combine optimistic and pessimistic approximations to achieve verifications

on images that are equivalent to verifications of robustness of products of original

processes. Our notion of independence of a process from a MM-PA is simply the

conjunction of optimistic and pessimistic approximations.
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Definition 8.8 Let f be a UPM between power sets p(&,) and p(Es), and let F
be a MMN-SPA between process spaces Sg, and Sg,. Subset X of &, is f-fixed if
FT(f(X)) = X. Process p over & s F-independent if F~(F(p)) =p-

It follows from Theorems 8.16 and 8.20 that verifications of robustness of prod-
uct on images of F-independent processes through F are equivalent to verifications
of robustness of product directly on the original processes. Furthermore. the con-
dition for independence of all processes from a given M-SPA F is injectivity and
co-surjectivity of the underlying relation. This can be proved by combining The-
orems 8.17 and 8.21. or directly as follows. Underlying relations that are both
injective and co-surjective are sometimes encountered in applications. such as re-
labeling of a process automata: these relations are characterized by the property
that they admit a right-inverse. Using the right-inverse. one may reconstruct an
original process from an image process. so no information is lost. Recall that. when

composing relations. the relation on the right applies last.

Theorem 8.22 For relation p on sets £ and &,. the following properties are equiv-

alent.

(a)  p is injective and co-surjective:
(b) pol(p™) = ide, :

(¢)  all processes over & are (Im,)""-independent.

Proof Let n=p~ and f = Im,.

((a)=(b)) Assuming p is injective and co-surjective. we show u (pon) w iff u = w.

Since p is co-surjective, there exists a v in &; such that « p v. By the definition

of converse relations. we have v n u as well. Thus. u (p on) u.
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By the definitions of converse and composite relations. if u (pon) w then there

exists v such that u p v and w p v. Since p is injective. u = w.

((b)=(a)) Assuming u (pon) wiff u = w. we show p is co-surjective and injective.

Let u € &. Since u (pon) u. there exists. by the definition of composite relations.

avin & such that w p v (and v 7 u). Since u was arbitrary. p is co-surjective.

Let u,.us € & and v € & such that u; p v and uz p v. By the definitions of
converse and composite relations. we have u; (p o n) u2. By the assumption that

u (pon) wiff u=w. it follows that u; = ua.

((b)=(c)) For every subset X of £;. we have fT(f(X)) = X. Applying this to

the execution sets of an arbitrary process p. we obtain that p is f™"-independent.

((c)=(b)) For every subset X of &. let px be the process (X.&;). Since by
hypothesis (f7)™(f™(px)) = px and by Lemmas 8.9 and 8.11. f (flaspx)) =

as f~(f(px)). we have f~(f(X)) = f~ (f(aspx)) = aspx = X. a

8.4 Examples of Applications

Process abstractions can model a surprisingly large variety of maps between pro-
cesses. Here we list several such maps. give illustrative examples. and discuss the
meaning of some of the general algebraic properties of process abstractions in the

particular applications.

Where relevant. we indicate the conditions under which one can perform verifi-
cations on images of processes through process abstractions instead of verifications

of the original processes. In particular. where relevant we indicate what are the
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converse maps and the independent processes of a certain map. and whether the

underlying relation is injective or co-surjective.

8.4.1 Relabeling of Actions

Relabeling operators simply replace the names of some of the actions or ports in
a system by the names of other actions or ports. To model relabelings. we use a
substitution function h : Uy — Us. which is an injective function between two sets
U, and U, of actions. The replacements occur simultaneously for all actions in U .

and the injectivity condition ensures that there are no labeling conflicts.

The execution sets are £ = (U, )" and & = (U)". The underlying relationship is
a function. which is also denoted by k because it naturally extends the substitution

function as follows:

h{e) = €. and
Yu€&.aclU :h(ua) = h(u)h(a) .

Since the underlying relation is an injective function. it 1s an injective and co-
surjective relation. Thus. by Theorems 8.17 and 8.21. verifications on the relabeled
processes are equivalent to verifications on the original processes: by Theorem 8.22.
all processes are independent for the corresponding MM-SPA (Ims)"". It follows

from Theorem 8.8 that relabeling is monotonic with respect to refinement.

Example 8.9 For the etiquette machine of Example 2.1. if the substitution func-
tion replaces m1 by mz and mz by ml. then the resulting machine does not refine
the original: el mz is an escape for the original process and a goal for the image
process. However, if we apply the same substitution to the environment process as

well. the product of the environment's image and the machine’s image (through the
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corresponding MM-SPA) is robust. just like the product of the original environment

and machine processes. G

The concepts and properties above extend naturally to infinite traces and other

types of executions that rely on action sets.

8.4.2 Restricted Execution Sets

Sometimes it is convenient to analyze a system by examining only some of its
executions. For studying restrictions of execution sets. we use identity relations on

subsets.

For set £. let the identity relation on € be idg = {(u.u) | v € £}. For sets &;.
. and A such that A C & and A C &,. id 4 is also a binary relation between N
and gg.

For instance. when simulating a process. only one execution is considered: let
that execution be denoted by u. The behavior under simulation can be represented
by another process. which is the image of the original process through the M-
SPA corresponding to relation id,;. Due to the injectivity of id¢,}. verifications
performed on simulated processes will not produce false negatives (false flaws).
Since there is at most one non-escape execution in the co-domain. verifications
in the co-domain consist of checking that that execution is not a reject for the

respective processes.

8.4.3 Process Derivatives

Derivatives of formal expressions were introduced by J.A. Brzozowski in [Brz64].

Similar operators have been applied to various types of processes in [Hoa85] (the
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“after” operator) and other theories of concurrency. For language L C U~ and word

weUs.

DyL={vel |wvel}.

Process derivatives result from a binary relation d,, on U~ such that v d,, v iff

v = wu. Then. D,, = Imy, is the corresponding UPM.

Definition 8.9 For process p over U™ and word w € U". the derivative of p by w

ts the process

(Dw)™(p) -

Monotonicity of process derivatives with respect to refinement. as well as other
commutative diagram properties. follows from Theorem 3.8. Using Lemma 8.11.
composition properties such as DS’:(DZ‘:(p)) = D™ (p) follow from the corre-

wy we

sponding properties of d,, on single executions.

Derivatives can be used to re-initialize a process.

Example 8.10 Suppose we run a plant producing etiquette machines like that in
Example 2.1, but some of the buyers would only use them in their reject states.
Then we might as well deliver pre-annoyed etiquette machines: we can set up a
derivative shop that applies DII' to an etiquette machine. thereby changing its

initial state to a reject state. a

Since relation d,, is injective, verifications of robustness of product on derivative
processes yield no false negatives. This amounts to checking the behavior after w;.

ws. etc.: if flaws are discovered. they are also flaws of the original process p.
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8.4.4 Deletion, Hiding, and Projection

Projections, hidings, and deletions have underlying relations of the form described
in Example 8.3. These relations are co-surjective. so verifications of robustness of

product on image processes through MM-SPAs yield no false positives.

By Propositions 8.14 and 8.18. the independent processes of deletion. hiding.
or projection are those processes whose accessible and reject execution sets are

invariant to deleting and then inserting arbitrarily actions from a given alphabet.

Monotonicity of these operations (with respect to refinement) follows from The-
orem 8.8 (a). Also. Lemma 8.11 enables us to study properties for compositions
of projections by considering just the underlying relationships instead of mappings
between processes. For example. let U and U, be subsets of U . One ob-
tains the same results if one deletes from an execution u all actions of U, and
then all actions of s . or if one deletes from u directly all actions of Ui N U, .

From Lemma 8.11 it follows that. for process p. we have plU;|lU> = pl(Uh N U-) .
plUh \Us = plihp iy . plli UL = plly . etc.

The concepts and properties above extend naturally to infinite traces and other

types of executions that involve action sets.

8.4.5 Reflection and Rotations

Unary process space operators. such as reflection. forward rotation. and backward

rotation. can also be studied as process abstractions.

Proposition 8.23 In process space Sg¢. reflection is (Im;q, )™ forward rotation is

(Imiq, ) *"(p). and backward rotation is (Im;a, )®"(p)-
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Since the underlying relationships of these PAs are injective and co-surjective.

all processes are independent for these PAs.

8.4.6 Process Compositions

A Galois connection between two functions that derive from a parallel composition
operator was noticed in [Ver94b. p. 49]. although that observation was not carried

any further.

We show here that binary process space operators. such as product and meet.
can be regarded as process abstractions that derive from relations. Product corre-

sponds to a ++-PA and meet corresponds to a UU-PA as follows.

Proposition 8.24 For processes p and q over £.
p x q = (idasq - empty.empty.idg,)** (p) . and
pTq = (idat, . empty.empty.ideg)=" (p) .

where empty denotes a UPM that always returns the empty set.

Since we have restricted our treatment to MM-SPAs. while the MM-PAs in Propo-
sition 8.24 are not MM-SPAs. we do not generalize here the observation of [Ver94b|.
That observation may be an indication that some of the properties we have shown
for MM-SPAs can be extended to general MM-PAs: however. we leave such extensions

for further work.

8.4.7 Divergence

One of the influential trends in concurrency theory is to model the behavior after

an undesirable input by allowing any actions to occur: see for instance [Hoa85]
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and [Jos92]. We can capture this viewpoint in process spaces by declaring that a
reject manifests itself just by being accessible: for that. we can transform the rejects

of a process into goals.

Definition 8.10 Let r2g (for rejects-to-goals) be a map between processes over the

same ezecution set. such that. for any process p.

as r2g(p) = asp
r r2g(p) =0 .

Example 8.11 After hearing an “XXX" or an environment greeting out of turn.
the etiquette machine of Example 2.1 may lose its composure and start babbling
anything. although in this case it does not become unhappy. The r2g map applied
to the original etiquette machine process yields a process for which executions like

el ml ez ml ml ml are not rejects. but are accessible. a
The rejects-to-goals map is also a MM-PA. although not a MM-SPA.

Proposition 8.25 [n process space Se¢. r2g = (id¢.0.0.0)™.

8.5 Further Applications

We have demonstrated the applicability of process abstractions to several types of
maps between processes. One immediate benefit is that the operations of relabel-
ing. projection. derivatives. restriction. etc.. are shown to satisfy several algebraic
properties. such as properties of composition. criteria for verifications of images.

etc.
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More importantly. since our process maps are derived from a mathematical
construct as basic as binary relations. we expect that many other maps of practical
interest can be studied this way. It may be feasible. for instance. to use the prefix
closure (see Example 8.4) or similar operations for studying links among default
processes for liveness and progress and perhaps new default processes for safety
and finalization. Relations between analog and digital models along the lines in
Chapter 4 and Chapter 7 are also within reach: the problem of modeling these
analog-digital relations is reduced to that of choosing appropriate relations between

analog trajectories and sequences of events.



Chapter 9

Concluding Remarks

For a large part. process spaces constitute a reworking. simplification. or general-
ization of previous theories of concurrency. In doing this reworking. however. we
depart from the usual approach of extending previous models by additional features
such as timing. infinite traces. etc. We take the opposite approach. which is to take
things out of previous formalisms. take them apart. and show that what is left
allows for further applications. In particular. we consider connectivity restrictions

undesirable. and we eliminate them entirely.

At the same time. there is a fair number of new applications and new algebraic
properties that do not seem to overlap with previously known results. While we
generalize our theory as much as possible. we ensure that sufficient new applications
exist to the formal verification of asynchronous circuits to motivate by themselves

the existence of the new theory.

In addition. we illustrate by examples that process spaces hold promise of future
applications to other types of systems and correctness concerns. and we also mention

some clues that invite further development of the theory.

213
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As a separate development. an extension of process spaces has been used to

obtain representation theorems for ternary algebras [BLN97. Esi97].

9.1 Contributions of the Thesis

We formalize the basics of a general theory of processes that relies on abstract
executions. Like several previous treatments of concurrency. process spaces have
operators for parallel composition. non-deterministic choice. mirroring. hiding of
actions. and process derivatives. and conditions for satisfaction of a specification
and for autonomous operation. The algebraic structure obeys a duality principle.

and captures generic properties for verification.

In addition. process spaces have several new operations and properties. among
which we highlight a ternary symmetry principle based on a rotation operation.
criteria for pessimistic approximation and optimistic approximation in terms of
underlying binary relations on executions. and a notion of independence from an
arbitrary process abstraction. Our properties work for finite and infinite families
of processes as well. and have no connectivity restrictions. The results for infinite
families of processes answer a challenge from [Ver94b. p. 111] regarding infinite

substitutions: see Section 2.3.

Diverse types of executions have been used in previous models (see Section 1.2),
and there are substantial similarities among treatments of various correctness con-
cerns in CSP and trace theory. On the other hand. abstract executions are a novel
approach. and this generalization required elimination of notions such as actions.
ports. variables. states. or events. which, in one form or another. stand at the basis
of previous theories of concurrency. In particular. the process space operations. cor-

rectness conditions. and their algebraic properties are studied without restrictions
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regarding inputs. outputs. or alphabets of actions. Although parallel composition
and refinement have been defined in CSP and trace theory essentially by set in-
tersections and subset relationships on trace sets. those operations had restrictions
on the actions of the processes involved. and it was not obvious beforehand that
the algebraic properties for structured verification could be extended. with minor

modifications. beyond these restrictions.

Even less predictable was that projections. hidings. and relabelings could be
formalized and handled by means abstract executions as well. Not only does this
formalization capture many of their algebraic properties. but it also points out that
these operations have a lot in common with process derivatives. reflection. and even
parallel composition. Although related to previous results studied by [CGL92],
[LGS*95]. and [Sif83] in an operational setting, our criteria for reduced verification
and our reciprocity theorem in terms of abstract executions are new and more
general. The methods in [CDYC97]. [DWT95]. and [SYP+97] are directed towards

particular applications. and are less general than the above.

At the same time. we carry out two niche applications for the verification of
asynchronous circuits. which. we believe. demonstrate some advantages of process
spaces over previous treatments of discrete-state systems. by exploiting the ab-
sence of connectivity restrictions in process spaces. We use a BDD-based tool to
verify published asynchronous circuits. The performance for flat verification (see
Chapter 3) is not top-of-the-line among BDD-based tools. but it does bring many
practical designs within our striking distance. In addition. the tool provides sup-
port for modular and hierarchical verification without any connectivity restrictions.

This flexibility is useful for verifying larger designs.

The chain constraint approach permits us to use relative delay constraints. while

keeping the advantages of metric-free analysis. Relative delay constraints can re-
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place certain circuit components to reduce area, power consumption. and latency.
Metric-free analysis enables pre-layout verification. because numerical bounds on
component and wire delays are not known with sufficient precision until after the
transistor sizes and wire lengths are set. Our approach differs from previous meth-
ods for handling delay constraints for asynchronous circuits by not requiring knowl-

edge of numerical bounds on component delays.

The generality of the theory is illustrated by guidelines and examples of mod-
eling several types of systems. ranging from concurrent programs to steady-state
linear electrical networks. and of handling various correctness conceras for discrete-

state systems.

Previous attempts to extract liveness properties from finitary specifications have
concluded that finitary descriptions are insufficiently powerful. However. many de-
signers have not rushed to embrace infinitary formalisms that have been proposed
to address this shortcoming: for instance. Petri nets (which essentially specify fini-
tary languages) are massively used to this day to specify systems that involve
arbitration and deadlock concerns. While we agree that general liveness properties
are not captured by finitary specifications. it turns out that default liveness and
progress properties can be attached to finitary specifications in a way that suits

many applications.

At the same time. we provide the possibility for specifying general liveness
properties with infinitary specifications. to accommodate systems that might not
fit our default liveness properties. and to present our algebraic treatment of liveness
and progress as instances of process spaces by using infinite sequences of actions as

executions.

Our formal classification of lock faults appears to be new. although the proposed
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formalizations for deadlock. livelock. and starvation match informal examples in

[Ver94b. p. 66] and [Dil89. p. 138]. for instance.

9.2 Current Limitations and Further Work

The performance. interface. and application areas of FIREMAPS can be greatly
enhanced. On the immediate wish-list. there is an update of the BDD engines
to use partitioned transition relations. zero-suppressed BDDs. dynamical variable
ordering, etc. Also. the criteria for optimistic and pessimistic approximation and
independence should be implemented. to provide other instruments for taming state
explosion. A graphical user interface needs to be designed. and the present script
language of the tool should be extended to allow input in the form of signal transi-
tion graphs or Petri nets. Infinitary language specifications and timed specifications

should eventually be incorporated.

The applications to concurrent programs. protocols. and dynamical systems
should be carried further to actual verification techniques. Also. we expect applica-
tions to other types of systems. such as verification of data integrity and data-base

operations. to be within reach.

For the chain constraint application. we should do more to actually find the
chain constraints that would suffice to guarantee a system is correct. rather than
just providing hints in counter-example executions. Moreover. although we are
doing well without using numerical timing properties. in the future they may be
needed. Also, the analysis of switch-level correctness concerns should be extended
to MOS transistor networks that are not necessarily partitioned into P and N
networks adjacent to the power and ground supplies. respectively. Good targets

for additional applications to asynchronous circuit verification are any circuits that
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use unusual design tricks. For example. circuits with bi-directional ports. such
as the single-track handshake circuits [BB96]. could exploit the absence of formal

distinctions between inputs and outputs in process spaces.

The theoretical story is not over either. A lot work needs to be done to extend
our approximation. independence. and reciprocity results to process abstractions
that are not SPAs: however. the relationship between such process maps and the
product operator hints that interesting results can be obtained. The relationships
between delay-insensitivity and our notion of independence should also be investi-

gated.

Finally. we would like to recommend that process maps be used for building
formal bridges between existing models of discrete-state systems. in the hope that
the various viewpoints in circulation will converge towards a unified theory of con-

currency.
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