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Abstract

Contrary to the Black–Scholes paradigm, an option-pricing model which incorporates the

possibility of jumps more accurately reflects the evolution of stocks in the real world. How-

ever, hedging a contingent claim in such a model is a non-trivial issue: in many cases,

an infinite number of hedging instruments are required to eliminate the risk of an option

position. This thesis develops practical techniques for hedging contingent claims in markets

with jumps.

A regime-switching model accommodates jumps in (i) the parameters of the stochastic

process that drives the underlying asset; and (ii) the price path of the underlying asset itself.

We develop numerical techniques for solving the system of partial differential equations that

yields the option values in a regime-switching model. When the possible jump sizes of the

asset price are drawn from a finite set, all sources of instantaneous risk from an option

position can be eliminated by adding a finite number of hedging instruments. We explore

a variety of dynamic hedging strategies for a market governed by such a regime-switching

process, including techniques that eliminate just some, or all, of the instantaneous risk.

The pricing and hedging methodologies are adapted to swing options, a path-dependent

derivative traded in the energy markets.

A more realistic representation of jumps in the price path of the underlying asset is

made by allowing the amplitudes to be drawn from a continuum. In this case, an infi-

nite number of hedging instruments are required to eliminate the instantaneous risk of an

option position, implying that perfect hedging is impossible, even with continuous rebal-

ancing. We demonstrate in a jump-diffusion market that, by imposing delta neutrality and

suitably bounding the jump risk and transaction costs at each instant of a continuously re-

balanced hedge, the terminal hedging error can be made arbitrarily small. This theoretical

treatment motivates a discretely rebalanced dynamic hedging strategy. Hedging examples

are considered for options with both European and American-style exercise rights, in a
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jump-diffusion market with and without transaction costs. We also investigate semi-static

hedging, a buy-and-hold strategy that attempts to replicate the value of a target option at

some future time.

Lévy processes constitute a broad class of stochastic processes that exhibit jumps—the

jump-diffusion process is a representative member of this group. However, some Lévy pro-

cesses can generate an infinite number of small jumps over any time period. We demonstrate

how our dynamic strategy for hedging under jump diffusion can be used to hedge under

any Lévy process.
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Chapter 1

Introduction

1.1 Overview

The Black–Scholes model [10] serves as the standard approach to option pricing and hedg-

ing. It furnishes a partial differential equation (PDE) whose solution yields the unique

no-arbitrage value of a contingent claim, and also provides a way to perfectly hedge an op-

tion position using just the underlying asset and a bond. However, the Black–Scholes model

is based on a number of assumptions that do not reflect the true behaviour of stocks in the

real world [22]. For one, the asset price paths generated by the governing stochastic process

are continuous—they will never experience a jump. Furthermore, the parameters that de-

scribe the stochastic process, namely the instantaneous expected return and volatility, are

constant.

A more realistic option-valuation model can be achieved by employing a stochastic

process that incorporates jumps. With a regime-switching model, the parameters that

describe the stochastic process will jump between discrete values. In addition, the price

path of the underlying asset can experience a discontinuity when the regime changes, with

the possible jump sizes typically drawn from a finite set. If the financial parameters remain

1



2 CHAPTER 1. INTRODUCTION

fixed with the jump amplitudes of the asset drawn from a continuum, a jump-diffusion model

is obtained. Empirical evidence suggests that both the regime-switching and jump-diffusion

models are an improvement over the Black–Scholes paradigm [39, 4, 23, 1]. However, option

valuation is more challenging: a system of PDEs must be solved to price contingent claims

in a regime-switching model, while the pricing equation for the jump-diffusion model is a

partial integro-differential equation (PIDE). More importantly, contingent claims can no

longer be perfectly hedged using just the underlying asset and a bond—the markets are

said to be incomplete.

A contingent claim in the regime-switching model is subject to two sources of risk:

the diffusion risk resulting from the Brownian component of the stochastic process, and

the regime-switching risk due to the changes in state that may occur. A hedge portfolio

consisting of only the underlying asset and bond is not capable of eliminating all sources of

instantaneous risk. However, when the jump sizes of the asset are drawn from a finite set,

the instantaneous risk may be removed by adding a finite number of hedging instruments.

The regime-switching model thus provides an ideal setting to investigate hedging strategies

in an incomplete market, including techniques that remove all instantaneous risk (i.e. a

perfect hedge), and those that treat only some of the risk. For example, a delta hedge

eliminates the instantaneous diffusion risk, but leaves the regime-switching risk unhedged.

One-factor mean-reverting stochastic processes are typically used to represent the spot

price in valuation models for energy derivatives, including those for natural gas [44] and

oil [28]. However, this process is not capable of capturing the long-term behaviour of the

forward curve [44]. On the other hand, a two-state regime-switching process provides a

better fit to the market [21], and solving the resulting system of PDEs is less computation-

ally intensive than treating the equations associated with a multi-factor stochastic process.

Swing options written on natural gas are a type of path-dependent derivative that provide

flexibility in the timing and amount of delivery [63]. The pricing methodology yields the
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optimal exercise strategy the holder of the option should execute. On the opposite side of

the trade, the seller of the swing option must protect their short position by hedging.

The jump behaviour of a stock’s price path is more accurately modelled by allowing

the amplitudes to be drawn from a continuum—a jump-diffusion process captures this

feature. A contingent claim in the jump-diffusion model is subject to two sources of risk:

the diffusion risk resulting from the Brownian component of the stochastic process, and the

jump risk. It is straightforward to remove the instantaneous diffusion risk by imposing delta

neutrality. However, the jump risk can only be eliminated by adding an infinite number

of hedging instruments, implying that perfect hedging is impossible in practice. Moreover,

in general a market participant only has an estimate of the risk-adjusted price dynamics,

available through calibration, with no information about the real-world properties (e.g.

arrival rate) of the jumps. Nonetheless, it is possible to treat the instantaneous jump risk

in a systematic way using a finite and practical number of hedging instruments. Such

dynamic hedging strategies are applicable to contingent claims with both European and

American-style exercise rights. In addition, since any Lévy process can be approximated as

a jump diffusion, the hedging strategies developed for hedging under jump diffusion can be

adapted to hedge under a Lévy processes.

Dynamic hedging necessitates frequent rebalancing. Since several instruments are re-

quired to hedge under jump diffusion, transaction costs may become prohibitive if they

are not accounted for within the dynamic hedging strategy. It is therefore important to

incorporate the effect of transaction costs when choosing the hedge portfolio weights that

mitigate jump risk. Another way to lessen transaction costs is through semi-static hedging,

a buy-and-hold strategy that attempts to replicate the value of a target option at some

future time.
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1.2 Contributions

The main contributions of this thesis are as follows:

• Numerical techniques are developed for solving the system of partial differential equa-

tions that yields the option prices in a regime-switching model.

• An explicit representation is derived for the instantaneous jump risk in a jump-

diffusion model. We demonstrate in a jump-diffusion market that, by imposing delta

neutrality and suitably bounding the jump risk and transaction costs at each instant

of a continuously rebalanced hedge, the terminal hedging error can be made arbitrarily

small. This theoretical treatment motivates a discretely rebalanced dynamic hedging

strategy.

• The efficacy of the dynamic hedging strategy is demonstrated for European and Amer-

ican options in a jump-diffusion market without transaction costs. The experiments

indicate that, using a pricing measure obtained from calibration and selecting the

hedge weights in a manner that uses no knowledge about the real-world behaviour

of the jumps, results in hedging error that is greatly reduced as compared to a delta

hedge.

• The dynamic hedging strategy is demonstrated for European and American options in

a jump-diffusion market where transaction costs are present in the form of a relative

bid-ask spread. The examples show that the hedge portfolio can be constructed to

keep the overall transaction costs manageable while still providing adequate protection

from jump risk.



Chapter 2

Option Pricing and Hedging

The Black–Scholes model offers a tractable framework for pricing and hedging options.

However, it is based on a number of assumptions that do not conform with what is observed

in the real world. In Section 2.1 we introduce the Black–Scholes model and discuss its

shortcomings. Some of the deficiencies with Black–Scholes can be overcome by using a

stochastic process that more accurately reflects the true behaviour of stocks in the market.

We consider two such improvements: Section 2.2 deals with regime-switching processes,

while Section 2.3 discusses jump-diffusion processes. Hedging is more involved under these

two processes than in the Black–Scholes model. Section 2.4 motivates the importance of

hedging, and introduces the general hedging framework.

2.1 The Black–Scholes Model

A contingent claim (or derivative security) is a contract whose value depends on an un-

derlying asset or factor. For example, a call option gives its holder the right, but not the

obligation, to buy some financial asset in the future for a fixed price K. The party that

purchases the option is said to hold a long position while the seller of the option is short

5
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the contract.

The seminal result in the theory of option pricing is the Black–Scholes partial differential

equation (PDE), introduced in 1973 [10]. The stochastic process governing the underlying

risky asset in the Black–Scholes model is geometric Brownian motion with drift (GBM),

represented by the stochastic differential equation (SDE)

dS = αS dt + σS dZ , (2.1)

where α is the instantaneous expected rate of return, σ is the volatility, and dZ represents

the increment of a standard Wiener process. The choice of GBM has several important

consequences: asset price paths are continuous and non-negative; asset returns (i.e. logS)

are normally distributed over any time span; and asset returns over disjoint time intervals

are independent, such that returns over non-overlapping periods are uncorrelated [23].

An arbitrage opportunity is the possibility of making an instantaneous profit without ex-

posing oneself to any risk. In a market free of arbitrage opportunities, any riskless portfolio

must earn the risk-free rate r. This fundamental hypothesis, together with other standard

assumptions (e.g. continuous trading, no transaction costs, etc.), are used in conjunction

with Itô’s lemma to derive the Black–Scholes equation: the no-arbitrage value V (S, t) of a

European1 option written on the underlying asset is found by solving

∂V

∂t
+

1
2
σ2S2∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0 , (2.2)

with the value at expiry t = T dictated by the option payoff.

The initial value V (S0, 0) of an option found by solving the PDE in (2.2) has a practical

significance apart from being the fair selling price. At time zero the option writer—who

1A European option may only be exercised at expiry, whereas an American-style contract may be exercised
at any time prior to maturity. To price an American option, a free boundary problem is solved via its linear
complementarity formulation [36].



2.1. THE BLACK–SCHOLES MODEL 7

is short the contract—establishes a hedge portfolio, at a cost of V (S0, 0), consisting of the

stock and bond. This portfolio is continuously rebalanced throughout the life of the option

such that the amount of stock held at any instant is given by the delta ∂V
∂S . This choice

totally eliminates the risk of the overall position and, furthermore, no infusion or withdrawal

of money is required during rebalancing—the delta hedge is self financing. At expiry, the

hedge portfolio’s value is exactly enough to cover the payoff if the option is exercised. Hence,

the Black–Scholes analysis provides both a way to price an option and a strategy for the

seller of the contract to perfectly hedge their short position [75].

Due to its tractability and intuitive appeal, the Black–Scholes model is the option valua-

tion archetype. Nevertheless, as with any idealization, it should be viewed as a leading-order

approximation. Assets in the Black–Scholes universe are driven by GBM, but this stochas-

tic process is not entirely consistent with the behaviour of stocks observed in the real world.

For example:

• Asset price paths are not always continuous—they may exhibit jumps;

• The distribution of returns observed in the market displays a higher degree of kurtosis

than the normal distribution. That is, the real-world density of returns has fatter tails

and is more sharply peaked [34];

• GBM implies that returns over disjoint time intervals are independent, such that

there is no autocorrelation of any type. It is indeed true that there is very little linear

autocorrelation observed in the market. However, the absolute returns

∣∣∣∣∣ log
(

St

St−1

)∣∣∣∣∣
tend to display positive autocorrelation. This manifests as ‘volatility clustering’, where

large price swings are followed by large price swings and vice versa [22]. A constant

volatility is not compatible with this phenomenon.
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The failure of the constant volatility assumption is also evident in the structure of

implied volatility2 observed in the real world (i.e. the smile/skew). According to Black–

Scholes, the volatility for calls and puts is constant across all possible strike prices K and

maturity times T . However, it is a persistent characteristic of the options market that the

volatility implied by the prices is not constant but depends on K and T [23]. The inability

of the Black–Scholes model to accommodate this feature in a substantial way is perhaps

the most obvious inadequacy it possesses.

It is clear there are deficiencies with Black–Scholes that must be rectified in order to

achieve a more realistic option-valuation model. This may be accomplished by using a

stochastic process that more accurately reflects the true evolution of stocks. We will consider

two such improvements, namely regime-switching and jump-diffusion processes. However,

option pricing under these two stochastic processes is more involved than in the Black–

Scholes model. Furthermore, unlike the Black–Scholes model, a stock and bond are not

sufficient to form a complete market whereby any contingent claim can be replicated by

dynamically trading in these two instruments.

2.2 Option Pricing under Regime-Switching Processes

Perhaps the most natural extension of the Black–Scholes model is made by allowing the

volatility to evolve randomly. For the models proposed in [43] and [41], this is achieved by

letting the asset price and variance (v = σ2) follow a bivariate diffusion

dS = αS dt +
√
vS dZ1

dv = p(S, v, t) dt + q(S, v, t) dZ2 , (2.3)

2To price a call or put in the Black–Scholes model, five inputs are required: S, K, r, T, σ. When given the
first four inputs and the price of a call or put, the implied volatility σ∗ can be imputed.
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where p(S, v, t) is often chosen so that v is mean reverting. GARCH models constitute

another class of stochastic volatility models. A simpler way to introduce another source of

randomness is for the volatility in a one-factor diffusion to assume values from a discrete set,

with shifts between these volatilities controlled by a continuous Markov chain (Appendix A

gives an overview of Markov chains). This specification yields a regime-switching model,

where each different level of volatility corresponds to a distinct regime. This model turns

out to be less computationally intensive than a two-factor model driven by (2.3).

An N -state analogue to Black–Scholes is the regime-switching model driven by the

process

dS =
(
αi − η̃i

)
S dt + σiS dZ +

N∑
j=1

S
(
ηij − 1

)
dXij . (2.4)

The value of the Markov chain X = i (i = 1, 2, . . . , N) indicates the current regime number,

and the i’s appended to the financial parameters in (2.4) denote that the instantaneous

expected return αi and volatility σi are regime dependent. The term dXij governs the

transition of the Markov chain between the current state i and the other states j, with

dXij =

 1 with probability λijdt+ δij

0 with probability 1− λijdt− δij

(2.5)

and where it is understood that there can only be one transition3 over an instant; i.e. for

l 6= k, Prob [(dXil = 1) ∩ (dXik = 1)] = 0. For i 6= j, λij ≥ 0 is the transition intensity for

state i to j, while

λii = −
N∑

j=1
j 6=i

λij .

3If the Markov chain does not change state then dXii = 1, which corresponds to the trivial transition
i → i.
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When the transition i → j occurs, the asset price experiences a deterministic jump of size

ηij , S → Sηij , where

η̃i =
N∑

j=1
j 6=i

λij

(
ηij − 1

)
=

N∑
j=1

λijη
ij

is the instantaneous expected return due to jumps out of state i. Note that ηii = 1, otherwise

a jump in the asset price will occur over any instant there is not a regime change. Jumps in

the underlying that occur without a change in regime may be incorporated by introducing

a compound Poisson process in (2.4).

In a two-state model where the underlying evolves according to GBM (i.e. process (2.4)

with N = 2 and η12 = η21 = 1), the regimes are characterized as either being of high

volatility or low volatility: this is known as a two-state regime-switching lognormal model.

For this special case there exist closed-form solutions for European option prices, due to the

unique properties of GBM and the availability of the occupation-time conditional density

for a two-state continuous Markov chain [58]. For any regime-switching market, European

options are amenable to pricing by Monte Carlo simulation.

As with any model, a PDE pricing framework is desirable; the coupled system of option-

pricing PDEs is developed in [55]. In the literature, these equations are derived using risk-

neutral valuation techniques, namely by applying Itô’s lemma to the discounted expected

payoff (i.e. the option value) and exploiting the fact that the resulting expression must be a

martingale [14, 54]. A more intuitive derivation based on a hedging argument is presented

in Appendix A. The PDEs can be solved numerically to price American options and a

variety of exotic derivatives, including Asian and lookback options [12].



2.2. OPTION PRICING UNDER REGIME-SWITCHING PROCESSES 11

For the stochastic process in (2.4), the system of option-pricing PDEs is

for i = 1, 2, . . . , N :

∂V i

∂t
+

1
2
(σi)2S2∂

2V i

∂S2
+
(
r − η̃Q

i

)
S
∂V i

∂S
− rV i +

N∑
j=1
j 6=i

λQ
ij

(
V j − V i

)
= 0 ,

(2.6)

where V k = V k(Sηik, t), such that V i = V i(Sηii, t) = V i(S, t) (since ηii = 1) and

V j = V j(Sηij , t).

There are two fundamental probability measures in mathematical finance. The P mea-

sure is the real-world measure that governs the stochastic evolution of the market, while

the Q measure is the risk-adjusted or pricing measure used for no-arbitrage valuation. The

P and Q measures are equivalent, as they have the same null sets [9]; for example, an event

with a probability of zero under P must also have a probability of zero under Q, and vice

versa. If there are no arbitrage opportunities in a market, then there exists at least one

pricing measure. Furthermore, if the market is complete, this Q measure is unique. If re-

quired, the appropriate superscript (i.e. either P or Q) is appended to the model parameters

to distinguish the measure with which it is associated.

The Black–Scholes market is complete, so the pricing measure is unique and is found by

setting αQ = r and σQ = σP. However, the base market in the regime-switching model (i.e.

underlying asset + bond) is incomplete, with the consequence that many risk adjustments

are possible. In practice, the pricing parameters are obtained by calibrating to the option

prices in the market.

The regime-switching model governed by (2.4) offers many improvements over Black–

Scholes. From an econometric viewpoint, Hardy [39] carries out a maximum likelihood

fit to North American stock indices using a two-state regime-switching lognormal process,
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Figure 2.1: Implied volatilities generated by using half-year call option values from a two-state
regime-switching lognormal model as the market prices. In the left panel, the calls are priced
assuming the current regime is the low-volatility state; the right panel assumes the current regime
is the high-volatility state. The volatilities are σL = 0.2 and σH = 0.4 with intensities λQ

LH = 3
4

and λQ
HL = 3, and interest rate r = 0.05. The dotted lines correspond to the square root of the

expected variance.

and finds it performs better than other standard processes. In addition, she demonstrates

that the tails of the underlying’s transition density are fatter than those generated by

GBM. Volatility clustering is an innate characteristic of a regime-switching model. Regime-

switching models are also capable of producing the volatility smile/skew observed in the

market: by treating the option values from a particular two-state lognormal model as the

market prices, the Black–Scholes implied volatilities are imputed, and plotted in Figure 2.1.

Furthermore, by including jumps—which introduce a correlation between changes in the

volatility and asset price—skews can be generated. The authors in [4] find such a model

performs well when calibrating to vanilla and exotic options.

The ideal option valuation model should contain jumps to capture the short-term smile

dynamics and include stochastic volatility to encapsulate the behaviour of the smile over

the longer term. The regime-switching process (2.4) incorporates these two components in

a tractable model.
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2.3 Option Pricing under the Jump-Diffusion Process

The model of the previous section may include jumps in the underlying when a regime

changes. However, as opposed to being restricted to a few discrete amplitudes as in (2.4),

the possible jump sizes in the real world will cover a continuum. By augmenting GBM so

that it includes the possibility of random jumps, the jump-diffusion process

dS =
(
α− κλ

)
S dt + σS dZ + S

(
J − 1

)
dπ (2.7)

is obtained,4 where π is a Poisson process with

dπ =

 1 with probability λdt

0 with probability 1− λdt .
(2.8)

In addition, λ > 0 is the jump intensity and J is the random variable representing the jump

sizes, with distribution g(J) and mean κ + 1. The stochastic mechanism controlling the

jumps is termed a compound Poisson process as it admits two sources of uncertainty—the

arrival of the jumps is random and when a jump does occur, the amplitude is itself an

unpredictable quantity.

Merton introduced the jump-diffusion model in 1976, and considered a normal distri-

bution for the logarithm of the jump sizes [56]. In this case, an analytical pricing formula

exists for European options. Kou [50] assumes the logarithm of jump amplitudes follows a

double exponential distribution. Again, a variety of closed-form pricing formulae exist.

Following standard arguments [e.g. 23, 1], the value of a European option is found by

4The representation (2.7) is shorthand for the more mathematically rigorous

dS =
`
α− κλ

´
S dt + σS dZ + d

 
πX

i=1

S
`
Ji − 1

´!
.
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solving the partial integro-differential equation (PIDE)

LV = 0 (2.9)

where

LV ≡ −∂V
∂t

−
(
σ2S2

2
∂2V

∂S2
+
(
r − λQκQ)S∂V

∂S
− rV + λQ

[∫ ∞

0
V (JS, τ)gQ(J) dJ − V (S, t)

])
.

To price an American-style contract, the variational inequality

min(LV, V − Ve) = 0 (2.10)

is solved [5], where Ve denotes the early exercise payoff of the claim. The market in the

jump-diffusion model is incomplete. The risk-adjusted parameters can be determined by

calibrating to observed option prices, but this calibration is an ill-posed problem, with

possibly many parameter sets fitting the option data to a high degree of accuracy [40, 24].

The use of a jump-diffusion model offers many improvements over Black–Scholes. Most

obvious is the fact that asset price paths may now contain discontinuities—the possibility of

a one-off random shock in the form of a jump is thus incorporated. The probability of a large

change in stock price is greater than under GBM, resulting in the distribution of returns

having heavier tails than the normal density. The jump-diffusion model is also capable of

generating the implied volatility structure observed in the market [23]. To demonstrate

this, the option values under a specific jump-diffusion model, with log(J) ∼ N(µQ, γQ),

are treated as market prices, and the Black–Scholes volatilities are imputed. The resulting

volatility smile and skew are clearly evident in Figure 2.2.
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Figure 2.2: Implied volatilities generated by using half-year call option values from a jump-
diffusion model as the market prices, where log(J) ∼ N(µQ, γQ). The common financial param-
eters are σ = 0.2, r = 0.05, λQ = 0.1, and γQ = 0.425. In the left panel, the calls are priced
using µQ = 0; for the right panel, µQ = −0.92. The dotted lines represent the total volatility√
σ2 + λQ

[
(µQ)2 + (γQ)2

]
[60].

2.4 Hedging

Consider two counterparties to an options trade: an investor who buys (i.e. is long) a half-

year at-the-money5 European call with strike $100, and the option writer who sells (i.e. is

short) the contract. Using the jump-diffusion parameters from the right panel of Figure 2.2,

and S0 = 100, this call will cost $8.31. Assume the investor obtains a loan to establish her

option position while, on the other hand, the option writer takes the $8.31 and invests it at

the risk-free rate. The possible outcomes for the investor and option writer after six months

are presented in Figure 2.3. A large increase in the value of the underlying will be ruinous

for the option writer. The option writer therefore has to do something more intelligent than

simply invest the option premium in a bond.

In general, hedging strategies fall into two categories:

5For call options, ‘at the money’ means S = K, ‘in the money’ means S > K, and ‘out of the money’
means S < K. The opposite terminology holds for put options.
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Figure 2.3: Terminal value of long & short positions in a half-year European call option with
strike $100, worth $8.31 at inception. Each position also includes a bond: the holder of the
option owes $8.52 at expiry of the option (i.e. t = 0.5), while the issuer has $8.52 in the bank
at this time.

1. Dynamic Hedging The hedge portfolio is frequently adjusted to minimize the in-

stantaneous risk. For example, the delta hedge in the Black–Scholes model is contin-

uously rebalanced in order to remove the diffusion risk over every instant.

2. Static Hedging This technique attempts to replicate the future value of the short

contract with a collection of other instruments. Once established, the hedge is left

alone—it is a buy-and-hold strategy. Static hedging is often used in situations where

dynamic hedging is impractical. For instance, delta hedging of barrier options in the

Black–Scholes framework is problematic since the delta becomes infinite as the spot

approaches the barrier; the use of a static hedge is suggested in [32], [15] and [2].

Static hedging is not suitable for many path-dependent contracts, such as options with

American-style exercise rights. Furthermore, with dynamic hedging the most recently cali-

brated pricing parameters can be used at each rebalance time. This thesis will concentrate
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on dynamic hedging, although Chapter 10 concerns semi-static hedging.

To hedge a target option V , a hedge portfolio is established that contains an amount B

in cash, is long e units of the underlying asset S, and long N additional hedging instruments

~I = [I1, I2, ..., IN ]T (written on the underlying) with weights ~φ = [φ1, φ2, ..., φN ]T . When

combined with the short position in the target option, the resulting overall hedged position

has value

Π = − V + eS + ~φ · ~I + B︸ ︷︷ ︸
Hedge Portfolio H

.

Let transaction costs be present in the form of a relative bid-ask spread, given by BA. If

the weight of an instrument is ρ(tn−1) before rebalancing and ρ(tn) after rebalancing, the

transaction cost is assumed to be

∣∣ρ(tn)− ρ(tn−1)
∣∣× BA

2
× Instrument Value .

At time zero the option seller receives the premium V (S0, 0), and they choose the hedge

portfolio weights e(0) and ~φ(0). These trades must be financed by the bank account, such

that

B(0) = V (S0, 0) − e(0)S0 − ~φ(0) · ~I(S0, 0)

−
∣∣e(0)

∣∣(BAS

2

)
S0 −

N∑
j=1

∣∣φj(0)
∣∣(BAj

2

)
Ij(S0, 0) ,

where BAS is the relative bid-ask spread for the underlying, and BAj is the relative bid-

ask spread for the jth hedging instrument in ~I. In addition, it is assumed the hedging

instruments have non-negative value. At each rebalance time tn the hedge portfolio weights

are recalculated. The long position in the underlying asset is updated by purchasing e(tn)−

e(tn−1) shares, where e(tn) is the new computed weight and tn−1 denotes the time of the



18 CHAPTER 2. OPTION PRICING AND HEDGING

last rebalancing. The long positions in the hedging instruments are updated similarly by

purchasing ~φ(tn) − ~φ(tn−1) units. These trades are again financed by the cash account,

which after rebalancing contains

B(tn) = exp{r(tn−tn−1)}B(tn−1)−
[
e(tn)−e(tn−1)

] [
1 + sgn

(
e(tn)− e(tn−1)

)BAS

2

]
Stn

−
N∑

j=1

[
φj(tn)− φj(tn−1)

] [
1 + sgn

(
φj(tn)− φj(tn−1)

)BAj

2

]
Ij(Stn , tn) .

The above can be written in the alternative form

B(tn) = exp{r(tn− tn−1)}B(tn−1)−
[
e(tn)− e(tn−1)

]
Stn −

[
~φ(tn)− ~φ(tn−1)

]
· ~I(Stn , tn)

−
[∣∣∣e(tn)− e(tn−1)

∣∣∣(BAS

2

)
Stn +

N∑
j=1

∣∣∣φj(tn)− φj(tn−1)
∣∣∣(BAj

2

)
Ij(Stn , tn)

]
︸ ︷︷ ︸

transaction costs

to make explicit the cost of transactions due to the bid-ask spread.

An instant after rebalancing, the overall hedged position has value

Π(tn) = − V (Stn , tn) + e(tn)Stn + ~φ(tn) · ~I(Stn , tn) + B(tn) .

The value of Π at the exercise/expiry time T ∗ of the target option indicates how well the

hedge performed: a perfect hedge will have Π(T ∗) = 0, indicating the hedge portfolio’s

terminal value exactly covers the payoff from the short position in V .

The markets in the regime-switching and jump-diffusion models are incomplete in the

sense that a perfect hedge cannot be constructed using only the stock and bond. For an

N -state regime-switching model in which the underlying is tradeable, the introduction of

an additional N −1 instruments will complete the market. The instantaneous diffusion and

regime-switching risk of an option position can be eliminated using these instruments, such
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Figure 2.4: Change in the value of a delta-hedged position due to a jump in the price of the
underlying asset. The half-year call option (K = $100) being hedged costs $8.31 at inception,
and the jump in the underlying asset is assumed to take place an instant after the option is sold.
The jump amplitudes are distributed according to log(J) ∼ N(µQ, γQ), with the parameters of
the model given by σ = 0.2, r = 0.05, λQ = 0.1, γQ = 0.425, and µQ = −0.92.

that perfect hedging is possible when rebalancing is done continuously [58]. On the other

hand, the incompleteness of the jump-diffusion model is pathological in the sense that it can

only be eliminated by introducing an infinite number of instruments [1]. The instantaneous

diffusion risk may still be eliminated by imposing delta neutrality,6 but the best that can be

hoped for in terms of the jump risk is reducing it in some way. In this case perfect hedging

is impossible, even in the theoretical limit of continuous rebalancing.

Not only is hedging more involved for the incomplete markets we are considering, but

ignoring the new sources of risk (i.e. regime-switching and jump risk) may have disastrous

consequences. For example, in the jump-diffusion model, delta hedging an option with a

convex payoff will result in a loss whenever a jump occurs [59], regardless of its size or

direction. Consider a delta hedge that is short an at-the-money, half-year European call

with strike $100, and long the underlying. This hedge eliminates the diffusion risk but

6A portfolio Π is said to be delta neutral if its delta ∂Π
∂S

is zero.
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ignores the jump risk. If a jump occurs, the loss to the position may be substantial, as is

evident in the plot contained in Figure 2.4.



Chapter 3

Implementation of the Hedging

Strategies

In this chapter, we describe the computational framework for implementing the hedging

strategies that will be considered in the sequel. We also discuss the various sources of error

that enter into the hedging experiments. The effect of these errors is explored in the context

of the most complex example in this thesis, namely hedging an American put under jump

diffusion in the presence of transaction costs.

3.1 Steps for Implementing the Hedging Strategies

We use Monte Carlo simulation to measure the effectiveness of a hedging procedure, whereby

the strategy is executed for many realizations of the underlying’s price path. For each path,

the (discounted) relative profit and loss (P&L)

e−rT ∗ Π(T ∗)
V (S0, 0)

(3.1)
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is calculated at the exercise/expiry time T ∗ of the target option V , where Π(T ∗) is the

terminal value of the overall hedged position. Statistical measures of the relative P&L,

including the mean and standard deviation, indicate how well the strategy performs (the

distribution of profit and loss for a perfect hedge is the Dirac delta function: it has a zero

mean and a zero standard deviation).

Regardless of the stochastic process governing the market, the same fundamental steps

are carried out for the hedging experiments:

1. The various quantities required for hedging, including the option values and deltas,

are precomputed and stored on a series of (S, t) grids;

2. A set of asset paths are simulated;

3. For each path, the hedge portfolio is formed at time zero and rebalanced at those times

dictated by the particular strategy; the financial details of forming and rebalancing

a hedge portfolio are discussed in Section 2.4. The relative P&L is recorded at the

exercise/expiry time of the target option.

Note that the precomputed data is used when calculating the hedge weights, which will usu-

ally entail solving a linear system1 formed through table lookup and interpolation. Since the

linear system may be poorly conditioned in certain situations, we use a Truncated Singular

Value Decomposition (TSVD) [38] to solve it: small singular values are set to zero—where

the cutoff2 is imposed via a user controlled parameter—and the modified decomposition is

used to solve the system in the standard way [65].

We now further describe the above steps and the sources of error (SoE) that are intro-

duced.

1The linear system typically results from the treatment of a constrained optimization. We also experi-
mented with NAG subroutines to solve the optimization problems directly; in most cases the results agreed.
In some cases, however, the NAG solution had a large norm (as compared to a regularized solution).

2If ωmax is the maximum singular value of the matrix, then any singular value less than cutoff×ωmax

is set to zero.
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3.1.1 Precomputing Option Data

The option values are computed by numerically solving the appropriate pricing equation.

In the case of the regime-switching model, the system of PDEs (2.6) is solved numerically

using methods developed in the next chapter. The numerical treatment of the option-

pricing PIDE (2.9) from the jump-diffusion model is based on d’Halluin et al. [34], and is

summarized in Appendix B. Once the option values are computed, the Greeks3 required

for hedging are found by numerical differentiation.

SoE.1 Due to truncation, round-off, and localization error, the option quantities found

using the numerical solution of the governing equation will not be exact.

The option pricing and Monte Carlo simulation are carried out by separate software.

As such, in order to be used in the Monte Carlo simulations, the option data calculated

by the pricer must be output onto an (S, t) grid. All times on this output data grid are

represented exactly on the mesh used in the option pricer, so no interpolation is necessary

in the t-direction. However, it will be computationally efficient to have equally-spaced asset

nodes on the data grid used by the hedging simulations, while the asset node spacing of

the pricer’s mesh is contract dependent (e.g. when pricing a call or put, the asset node

spacing is finer near the strike). Therefore, results from the pricer are interpolated (in the

S-direction) onto the output data grid using a Lagrange polynomial.

SoE.2 Due to interpolation error, the option data at a point (S, t) on the grid used in

the hedging simulations will be different from what would be calculated if (S, t)

was represented exactly on the pricer’s computational mesh.

For American options, the early exercise region to be used in the hedging simulations is

determined from the option pricer. For example, consider an American put, where V (S, t)

is the numerical solution and Ve is the payoff: if V (Si, tn) = Ve and V (Si+1, tn) > Ve, then

3This refers to the various partial derivatives of the option value, such as the delta ∂V
∂S

and gamma ∂2V
∂S2 .
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[0, Si] is treated as the early exercise region for time tn.

SoE.3 For time tn, the true upper boundary for the early exercise region of the nu-

merical solution could be anywhere in (Si, Si+1). Hence, the possible error in

the boundary point depends on the resolution of the asset node spacing of the

mesh used by the option pricer.

3.1.2 Simulating Asset Price Paths

The asset price paths are simulated using the Euler–Maruyama method for numerically

solving SDEs [48, 77] (this is the stochastic analog to the Euler forward method for ordinary

differential equations (ODE)). Algorithm 1 describes the steps for generating a sample path

from the regime-switching process (2.4), while Algorithm 2 simulates the jump-diffusion

process (2.7). The sample paths for these two processes may in fact be simulated exactly

[see, e.g., 23], but Algorithms 1 and 2 are general in the sense they can be used if the drift

and diffusion components of the SDE are more elaborate (e.g. time-dependent parameters,

mean-reverting processes).

SoE.4 The scheme for numerically solving the SDE has timestepping error, since

the Euler–Maruyama method converges strongly with O(
√

∆t) and converges

weakly with O(∆t) [49].

The hedging strategy will be executed for all asset paths, and the relative profit and

loss (3.1) recorded for each. Statistical measures of the relative P&L will be used to gauge

the efficacy of the strategy.

SoE.5 The statistical measures for the relative P&L are subject to Monte Carlo sam-

pling error, which is O
(

1√
M

)
when M paths are generated.
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Algorithm 1 Simulating a path of the N -state regime-switching process (2.4)
Given R0: Initial regime
Given S0: Initial asset price
Given ∆t: Timestep, with

(
maxi |λii|

)
∆t� 1

Given T : Length of path
for k = 0 to

(
T
∆t − 1

)
do

Generate uk from a U(0, 1) distribution
if uk ≤ |λRkRk

|∆t then {THE REGIME CHANGES—Determine a new regime}
Generate u′k from a U(0, 1) distribution
for rnum = 1 to N do

if rnum 6= Rk then

if u′k ≤
1

|λRkRk
|

rnum∑
j=1

j 6=Rk

λRkj then {THE REGIME CHANGES TO rnum}

Rk+1 = rnum
BREAK FROM INNER FOR LOOP

end if
end if

end for
end if
FIND Sk+1

//
Generate φk from a standard normal distribution
if Rk 6= Rk+1 then
Sk+1 = Sk + (αRk

− η̃Rk
)Sk∆t + σRkSk

√
∆t φk + (ηRk→Rk+1 − 1)Sk

else
Sk+1 = Sk + (αRk

− η̃Rk
)Sk∆t + σRkSk

√
∆t φk

end if
end for
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Algorithm 2 Simulating a path of the jump-diffusion process (2.7)
Given S0: Initial asset price
Given ∆t: Timestep, with λ∆t� 1
Given T : Length of path
for k = 0 to

(
T
∆t − 1

)
do

FIND Sk+1

//
Generate φk from a standard normal distribution
Generate uk from a U(0, 1) distribution
if uk ≤ λ∆t then {THERE IS A JUMP}

Generate J ′ from a distribution with density g(J)
Sk+1 = Sk + (α− κλ)Sk∆t + σSk

√
∆t φk + (J ′ − 1)Sk

else
Sk+1 = Sk + (α− κλ)Sk∆t + σSk

√
∆t φk

end if
end for

3.1.3 Executing a Hedging Simulation

The data on the output grid generated by the option pricer is used during the hedging

simulations. For European options, all rebalancing times are known beforehand, so the

grid will be constructed such that these times are represented exactly. At each rebalancing

time, the hedge weights are chosen using option data that is a function of the prevailing

asset price S: if an S value is not represented on the data grid, a Lagrange polynomial is

used to interpolate in the S-direction. Due to the early exercise feature of American-style

contracts, option data may be required for any time. If neither the asset value or time of

(S, t) is represented on the data grid, bilinear interpolation is used.

When hedging under jump diffusion, the hedge portfolio weights are computed by solving

a linear system whose entries are integrals. These integrals are precomputed on the data

grid using fast Fourier transform (FFT) techniques; the details are provided in Appendix B.

During the hedging simulations, the appropriate integral values are determined using the
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same interpolation techniques as employed for the other option data.

SoE.6 Option data used by the hedging simulations will be subject to interpolation

error. Also, there is numerical integration error when hedging under jump

diffusion due to the use of the FFT.

For an American put, the early exercise boundary is output by the option pricer as a

set of points
{
(Sn, tn)

}N
n=1

. Within the hedging simulations, the boundary is represented

as piecewise linear function based on this set. If a point (S, t) on the simulated asset path

breaches this boundary, then it is deemed optimal to exercise the put.

SoE.7 The early exercise region of an American put—which is not linear—is repre-

sented as a piecewise linear function in the hedging simulations.

3.2 The Effect of the Error Sources

Before we examine the sources of error, we demonstrate the simulation algorithms in Al-

gorithms 1 and 2 by employing them for Monte Carlo pricing.4 We value a half-year,

at-the-money European call option with a strike of $100 in both a regime-switching and

jump-diffusion market. The pricing parameters for the three-state regime-switching market

come from [4] (and are stated in Section 4.1.4), while the Q measure for the jump-diffusion

market is given in Table 3.1. The results in Table 3.2 demonstrate the Monte Carlo values

are in agreement with those prices found by solving the appropriate option-pricing equation.

To examine the effect of the error sources presented in Section 3.1, we consider a specific

hedging example. A half-year, at-the-money American put with a strike of $100 is to be

hedged over its lifetime, in a jump-diffusion market with transaction costs, using eight three-

month American calls and puts with strikes near K = $100. The P and Q measures that

4The value of a European option with payoff f(ST ) is given by e−rT EQˆf(ST )|S0

˜
, which can be estimated

via Monte Carlo simulation [11].
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Probability Measure λ µ γ σ α

Risk-adjusted (Q) 0.1000 -0.9200 0.4250 0.2000 0.0500
Real-world (P) 0.1000 -0.5588 0.4250 0.2000 0.1779

Table 3.1: The pricing Q measure and real-world P measure that characterize the jump-
diffusion model used to investigate the effect of the errors introduced into the hedging simulations,
where log(J) ∼ N(µ, γ). The dividend yield q = 0 and αQ = r = 0.05.

Jump
Diffusion

Regime Switching
Regime 1 Regime 2 Regime 3

Monte Carlo
Price

8.301 4.070 8.847 3.928

95% Confidence
Interval

±0.021 ±0.010 ±0.026 ±0.008

Exact Value 8.305 4.064 8.865 3.930

Table 3.2: Price of a half-year European call option, in both a regime-switching and jump-
diffusion market, obtained by Monte Carlo simulation. The timestep is 0.000125 years, and
1,000,000 simulations are carried out. The exact value comes from solving the corresponding
option-pricing equation. The regime-switching pricing parameters are drawn from [4], while the
Q measure for the jump-diffusion model is given in Table 3.1.
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characterize this market are given in Table 3.1. Details of the hedging strategy, and this

example in particular, are discussed in Chapter 8. In short, the hedge portfolio is scheduled

to be rebalanced twenty times, at intervals of 0.025 years. For all puts in the portfolio, the

early exercise region is monitored—since we assume there are no dividends, it will never

be optimal to exercise a call before expiry. If it is deemed optimal for a hedging put to be

exercised, it is removed from the hedge portfolio and the hedge is rebalanced. If it is ever

optimal to exercise the target put, the hedge is immediately liquidated to cover the short

position.

The base simulation set consists of 250,000 asset paths, with a Monte Carlo timestep

of ∆t = 1
12000 years—the timestep is made small to reduce the Monte Carlo timestepping

error. A linear Lagrange polynomial is used for all one-dimensional interpolation. The

option pricer employs a pre-determined number of timesteps, and the asset node spacing of

its mesh is finer around the strike. The time spacing of the data grid used for the hedging

simulations is 0.0125 years. The asset nodes on this grid extend from S = 0 to S = 1000,

with ∆S = 0.125 for S ∈ [0, 480], ∆S = 0.25 for S ∈ [480, 720], and ∆S = 0.3125 for

S ∈ [720, 1000]. Note that the hedging results for this base case, in terms of statistical

measures of the relative P&L (3.1), will be the first entry in all of the forthcoming tables.

The 0.2% quantile is a tail measure that gives an indication of the extreme losses the hedger

may be exposed to.

The sources of error SoE.1–SoE.3 and SoE.6–SoE.7 are concerned with the precom-

putation of the option data and its use in the hedging simulations. To gauge the effect of

these errors, we refine the computational mesh in the option pricer by a factor of two in

both the time and asset price direction, and double Smax (i.e. the value where the mesh is

truncated at infinity in the S-direction). The data grid used by the hedging simulations

is refined and extended in the same manner. In addition, the time spacing for the early

exercise boundary of the American puts is reduced by a factor of two. The original and new
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Refinement
& Extension

Mean Standard
Deviation

Quantiles
0.2% 99.8%

Original -0.0605 0.0215 -0.1403 -0.0144
2× -0.0604 0.0214 -0.1401 -0.0144

Table 3.3: Effect of mesh/grid refinement and extension on the hedging results, in terms of
the relative profit and loss. For both the mesh in the option pricer and the data grid used by the
hedging simulations, a new node is inserted between each pair of coarse asset value nodes, and
the timestep is halved. In addition, the maximum extent in the S-direction is doubled. For the
α% quantile, approximately α% of the 250,000 simulations resulted in a relative P&L less than
the reported amount.

Lagrange
Interpolant

Mean Standard
Deviation

Quantiles
0.2% 99.8%

Linear -0.0605 0.0215 -0.1403 -0.0144
Cubic -0.0605 0.0215 -0.1404 -0.0144

Table 3.4: Effect of the interpolation method on the hedging results, in terms of the relative
profit and loss.

results are presented in Table 3.3 for the same 250,000 paths, and are seen to be very close.

The results in Table 3.4 correspond to using a cubic Lagrange polynomial for interpolation,

with all other settings the same as in the base case. Again, with the same 250,000 asset

paths, the results are close. The use of the linear interpolator is preferred, as it is faster

and will not introduce spurious maxima or minima.

Both SoE.4 and SoE.5 are concerned with the Monte Carlo error. The effect of the

timestepping error, SoE.4, is examined by cutting the Monte Carlo timestep in half (all

other settings are the same as in the base case). The original and new results are presented

in Table 3.5, and are in good agreement. The effect of the sampling error, SoE.5, is studied

by reducing the number of asset paths to 100,000 and increasing the number to 1,000,000.

The results are given in Table 3.6, where more digits are used than before to give context

to the confidence intervals [78]. We see there is very little difference between using 100,000,

250,000, and 1,000,000 asset paths.
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Monte Carlo
Timestep

Mean Standard
Deviation

Quantiles
0.2% 99.8%

1
12000 years -0.0605 0.0215 -0.1403 -0.0144

1
24000 years -0.0604 0.0215 -0.1398 -0.0145

Table 3.5: Effect of the Monte Carlo timestep on the hedging results, in terms of the relative
profit and loss.

Number of
Simulations

Mean Standard
Deviation

Quantiles
0.2% 99.8%

100,000
-0.06051 0.02152 -0.14068 -0.01453

[-0.06065,-0.06038] [0.02143,0.02161] [-0.14285,-0.13880] [-0.01470,-0.01437]

250,000
-0.06046 0.02146 -0.14028 -0.01440

[-0.06054,-0.06037] [0.02140,0.02152] [-0.14179,-0.13941] [-0.01453,-0.01428]

1,000,000
-0.06047 0.02150 -0.14066 -0.01451

[-0.06058,-0.06042] [0.02147,0.02153] [-0.14122,-0.13992] [-0.01458,-0.01445]

Table 3.6: Effect of the number of generated price paths on the hedging results, in terms
of the relative profit and loss. The statistical measures are given with the corresponding 95%
confidence interval [78]. Each set of paths is generated using a different seed in the random
number generator.
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Mean Standard
Deviation

Quantiles
0.2% 99.8%

Original -0.0605 0.0215 -0.1403 -0.0144
Modified -0.0604 0.0215 -0.1398 -0.0146

Table 3.7: Cumulative effect of the error sources on the hedging results, in terms of the relative
profit and loss.

Finally, the results of Table 3.7 come from augmenting the base case using the mod-

ifications captured by Table 3.3 (refinement/extension), Table 3.5 (reduced Monte Carlo

timestep), and Table 3.6 (1,000,000 simulated asset paths). The statistical measures are

very close.

3.3 Summary

In this chapter, we introduced the general computational framework that will be used for

the hedging experiments of this thesis. We presented the various sources of error that enter

into the Monte Carlo simulations, and explored these errors in the context of a specific

hedging example. This example demonstrates that the typical specifications we use are

sufficient to yield accurate hedging results. The statistical measures of the relative profit

and loss give an indication of the efficacy of a hedging strategy. The forthcoming tables of

relative P&L statistics will use two decimal places which, based on the experiments of this

chapter, is a conservative estimate of the accuracy level that can be obtained due to the

sources of error.



Chapter 4

Pricing and Hedging under

Regime-Switching Processes

In this chapter, we develop techniques for numerically solving the system of option-pricing

PDEs from the regime-switching model. This pricing engine is used to investigate hedging

under regime-switching processes. The incompleteness in the base regime-switching market

(i.e. underlying asset + bond) is mild, in the sense that it can be removed by adding a finite

number of instruments. Therefore, the regime-switching model provides an ideal setting to

compare perfect1 hedging—which eliminates all instantaneous risk—with the various forms

of imperfect hedging, such as the delta hedge, that can be implemented in an incomplete

market. We will investigate various hedging strategies, in both a two-state market without

jumps in the underlying and a three-state market with jumps.

1In the rest of this thesis, a “perfect hedge” will denote a hedge that is asymptotically perfect as the
rebalancing interval tends to zero.

33
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PROCESSES

4.1 Numerical Solution of the Option-Pricing PDEs

4.1.1 The System of Option-Pricing PDEs

Consider the N -state regime-switching market introduced in Section 2.2: for regime X = i,

the evolution of the underlying asset is governed by the stochastic process

dS =
(
αP

i − η̃P
i

)
S dt + σiS dZP +

N∑
j=1

S
(
ηij − 1

)
dXP

ij , (4.1)

with ηij ≥ 0 a deterministic constant and ηii = 1. The system of option-pricing PDEs for

(S, τ) ∈ [0,∞)× [0, T ] is

for i = 1, 2, . . . , N :

∂V i

∂τ
=

1
2
(
σi
)2
S2∂

2V i

∂S2
+
(
r − η̃Q

i

)
S
∂V i

∂S
−
(
r − λQ

ii

)
V i +

N∑
j=1
j 6=i

λQ
ijV

j ,

(4.2)

with τ = T − t and V k = V k(Sηik, τ). In addition, λQ
ij ≥ 0 is the risk-adjusted intensity for

transitions from state i to j (j 6= i), and2

λQ
ii = −

N∑
j=1
j 6=i

λQ
ij . (4.3)

Furthermore,

η̃Q
i =

N∑
j=1

λQ
ijη

ij . (4.4)

2The λQ’s will typically be given in the form of an N × N rate matrix ΛQ. Condition (4.3) is satisfied,
by definition, in these matrices. See Appendix A for details.
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The initial condition V i(S, τ = 0) for the system of equations (4.2) is given by the option

payoff. As S → 0, the system of PDEs reduces to

for i = 1, 2, . . . , N :

∂V i

∂τ
= −

(
r − λQ

ii

)
V i +

N∑
j=1
j 6=i

λQ
ijV

j . (4.5)

As S →∞, we make the common assumption that, for i = 1, 2, . . . , N ,

∂2V i

∂S2
' 0 , (4.6)

which implies

V i(S, τ) ' Ai(τ)S + Bi(τ) (4.7)

as S → ∞. When (4.7) is substituted into (4.2), we obtain the systems of ordinary differ-

ential equations

d ~A

dτ
=

[
ΛQ − diag(η̃Q

1 , η̃
Q
2 , . . . , η̃

Q
N )
]
~A(τ) (4.8)

and

d ~B

dτ
=

[
ΛQ − diag(r, r, . . . , r)

]
~B(τ) , (4.9)

where ΛQ is the N ×N risk-adjusted rate matrix.
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PROCESSES

4.1.2 Discretization of the PDEs

The computational mesh is truncated in the S-direction at some large value Smax. The

existence of relative jump sizes greater than unity leads to a numerical issue, since the

system of equations (4.2) requires option values for S > Smax. To localize the problem, we

use an augmented jump amplitude near Smax,

η̄ij(S) =

 ηij 0 ≤ S ≤ Smax

ηij

Smax

S
Smax

ηij < S ≤ Smax ,
(4.10)

such that Sη̄ij is always within [0, Smax]. In addition, since the jump size is now a function

of S, the quantity η̃Q
i in (4.4) is no longer constant but is also a function of S:

η̂Q
i (S) =

N∑
j=1

λQ
ij η̄

ij(S) . (4.11)

The system (4.2), localized to [0, Smax] × [0, T ] as described above, is discretized us-

ing standard finite differences for the partial derivatives and θ-method timestepping. The

discrete option values are V i
m,n, with

i regime number (1, . . . , N)

m asset node index (1, . . . ,M)

n timestep index (1, . . . ,N ) .
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The discrete equations for regime i are

[
1 + θ∆τ

(
αi

m + βi
m + r − λQ

ii

)]
V i

m,n+1 − θ∆ταi
mV

i
m−1,n+1 − θ∆τβi

mV
i
m+1,n+1

=
[
1−

(
1− θ

)
∆τ
(
αi

m + βi
m + r − λQ

ii

)]
V i

m,n

+
(
1− θ

)
∆ταi

mV
i
m−1,n +

(
1− θ

)
∆τβi

mV
i
m+1,n

+
(
1− θ

)
∆τ

N∑
j=1
j 6=i

λQ
ijχ
(
Smη̄

ij , V j
m∗

j ,n, V
j
m∗

j +1,n

)

+ θ∆τ
N∑

j=1
j 6=i

λQ
ijχ
(
Smη̄

ij , V j
m∗

j ,n+1, V
j
m∗

j +1,n+1

)
,

(4.12)

where V j = V j(Smη̄
ij , τn) has been approximated by linearly interpolating between V j

m∗
j ,n

and V j
m∗

j +1,n, represented by

χ
(
Smη̄

ij , V j
m∗

j ,n, V
j
m∗

j +1,n

)
(4.13)

with

Sm∗
j
≤ Smη̄

ij ≤ Sm∗
j +1 . (4.14)

The spatial derivatives are discretized so that αi
m and βi

m are always positive, as this

will preclude the appearance of spurious oscillations in certain situations (e.g. with fully

implicit timestepping). Therefore either central, forward or backward differencing is used

for ∂V i

∂S , depending on the resulting sign of αi
m and βi

m: central differencing is preferred, as
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it is more accurate [33]. Therefore, αi
m and βi

m for m = 2, . . . ,M− 1 are chosen from

αi
m,central =

(σi)2S2
m

(Sm − Sm−1)(Sm+1 − Sm−1)
−
(
r − η̂Q

i (Sm)
)
Sm

Sm+1 − Sm−1

βi
m,central =

(σi)2S2
m

(Sm+1 − Sm)(Sm+1 − Sm−1)
+

(
r − η̂Q

i (Sm)
)
Sm

Sm+1 − Sm−1

αi
m,forward =

(σi)2S2
m

(Sm − Sm−1)(Sm+1 − Sm−1)

βi
m,forward =

(σi)2S2
m

(Sm+1 − Sm)(Sm+1 − Sm−1)
+

(
r − η̂Q

i (Sm)
)
Sm

Sm+1 − Sm

αi
m,backward =

(σi)2S2
m

(Sm − Sm−1)(Sm+1 − Sm−1)
−
(
r − η̂Q

i (Sm)
)
Sm

Sm − Sm−1

βi
m,backward =

(σi)2S2
m

(Sm+1 − Sm)(Sm+1 − Sm−1)
. (4.15)

For S = S1 = 0, the discrete equations (4.12) handle the reduced system (4.5), with

αi
1 = βi

1 = 0. For S = SM = Smax, the assumption in (4.6) for S →∞ leads to

V i
M,n = Ai(τn)Smax +Bi(τn) . (4.16)

The ODE systems (4.8) and (4.9) can be solved to find ~A(τn) and ~B(τn), respectively, with

the initial conditions determined from the option payoff. Therefore, V i
M,n from (4.16) is

imposed as a Dirichlet condition at S = Smax for each timestep. Note that, as an alternative

to imposing a Dirichlet condition at Smax, assumption (4.6) also leads to a discretization

of (4.2) at S = SM = Smax using backward differencing, with

αi
M = −

(
r − η̂Q

M(SM)
)
SM

SM − SM−1
and βi

M = 0 . (4.17)
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However, since η̂Q(SM) ≤ 0, the scheme can no longer be positive coefficient, although this

doesn’t tend to cause problems in practice [76].

Both the penalty method for pricing American options [36] and the computational pro-

cedure for pricing under a jump process with a continuum of possible amplitudes (within a

regime) [34] are easily incorporated into the numerical solution.

4.1.3 Stability and Convergence

Recall that αi
m and βi

m are selected so they are non-negative, while λQ
ij ≥ 0 (i 6= j), −λQ

ii ≥ 0,

and r ≥ 0. Furthermore, linear interpolation guarantees that

min
(
V j

m∗
j ,n+1, V

j
m∗

j +1,n+1

)
≤ χ

(
Smη̄

ij , V j
m∗

j ,n+1, V
j
m∗

j +1,n+1

)
≤ max

(
V j

m∗
j ,n+1, V

j
m∗

j +1,n+1

)
.

When a Dirichlet boundary condition is imposed at S = Smax, a straightforward analysis

similar to that in [34] shows that, for fully implicit timestepping (θ = 1), the discretiza-

tion (4.12) is unconditionally l∞ stable. In addition, we expect first-order convergence.

We now consider a fixed point iteration for solving the equations in (4.12) for 0 ≤ θ ≤ 1.

Let

V i
n =



V i
1,n

V i
2,n

...

V i
M,n


be the M-vector of option values in regime i at time τn. The discrete equations (4.12) for

regime i may be written in matrix form as

[
I − θM i

]
V i

n+1 =
[
I + (1− θ)M i

]
V i

n + (1− θ)∆τΞ(V i
n) + θ∆τΞ(V i

n+1)

(4.18)
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where

[
M iV i

n

]
row m

= ∆τ
[
αi

mV
i
m−1,n −

(
αi

m + βi
m + r − λQ

ii

)
V i

m,n + βi
mV

i
m+1,n

]

and

Ξ
(
V i

n

)
=



Ṽ 1
n Ṽ 2

n · · · Ṽ i
n · · · Ṽ N

n

? ? ? ?





λQ
i1

λQ
i2

...

0
...

λQ
iN


� ith Element

with the mth element of the M-vector Ṽ j
n for j = 1, . . . , N given by

χ
(
Smη̄

ij , V j
m∗

j ,n, V
j
m∗

j +1,n

)
,

defined in (4.13) and (4.14). When a Dirichlet condition is imposed at S = Smax, the last

row of (4.18) is modified to

 ...
...

. . .
...

...

0 0 · · · 0 1

V i
n+1 = ~uRHS ,

where the last element in ~uRHS is the imposed value.

At each timestep, the option values for every regime can be found by employing the

fixed point iteration of Algorithm 3. The fixed point iteration will converge under the same

restrictions that guarantee the l∞ stability of the fully implicit scheme.

Theorem 4.1 (Convergence of the Fixed Point Iteration). Assume the following
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Algorithm 3 Solve for i = 1, . . . , N[
I − θM i

]
V i

n+1 =
[
I + (1− θ)M i

]
V i

n + (1− θ)∆τΞ(V i
n) + θ∆τΞ(V i

n+1)

for i = 1 to N do
V i,0

n+1 = V i
n {Initial guess are the option values from the previous timestep, except

for any Dirichlet nodes}
end for
k = 0
while ERROR > TOL do

for i = 1 to N do
SOLVE[
I − θM i

]
V i,k+1

n+1 =
[
I + (1− θ)M i

]
V i

n + (1− θ)∆τΞ(V i
n) + θ∆τΞ(V i,k

n+1)
end for

ERROR = max
i

{
max

m

(
|V i,k+1

m,n+1 − V i,k
m,n+1|

max
(
1, |V i,k

m,n+1|, |V i
m,n|

))}
k = k + 1

end while
TERMINAL ITERATE GIVES V i

n+1 FOR i = 1, . . . , N .

hold:

• αi
m ≥ 0, βi

m ≥ 0;

• λQ
ij ≥ 0 (i 6= j);

• λQ
ii = −

N∑
j=1
j 6=i

λQ
ij

(
i.e. Condition (4.3)

)
;

• r ≥ 0;

• A Dirichlet boundary condition is imposed at S = SM = Smax.

Then, the fixed point iteration of Algorithm 3 is globally convergent. In addition, with

λQ
max = max

i
|λQ

ii |,

||ek+1||∞ ≤
(
θλQ

max∆τ +O
(
(λQ

max∆τ)
2
))
||ek||∞ . (4.19)
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Proof of Theorem 4.1. For the kth iteration, define the error as

ei,km = V i
m,n+1︸ ︷︷ ︸

Exact solution to
discrete equations

− V i,k
m,n+1︸ ︷︷ ︸

kth guess

, (4.20)

where ei,kM = 0 due to the Dirichlet condition at S = Smax. Substituting (4.20) into Algo-

rithm 3 yields

[
1 + θ∆τ

(
αi

m + βi
m + r − λQ

ii

)]
ei,k+1
m = θ∆ταi

me
i,k+1
m−1 + θ∆τβi

me
i,k+1
m+1

+ θ∆τ
N∑

j=1
j 6=i

λQ
ijχ
(
Smη̄

ij , ej,km∗
j
, ej,km∗

j +1

)
(4.21)

for m <M. Now, let ||ei,k||∞ = max
m
|ei,km |. Since (4.21) uses linear interpolation, and all

coefficients of the right-hand side are non-negative, we get for m <M

[
1 + θ∆τ

(
αi

m + βi
m + r + |λQ

ii |
)]
|ei,k+1

m | ≤ θ∆ταi
m||ei,k+1||∞

+ θ∆τβi
m||ei,k+1||∞

+ θ∆τ
N∑

j=1
j 6=i

λQ
ij ||e

j,k||∞ ,

where we have also used the fact that −λQ
ii = |λQ

ii |. In a similar fashion, defining ||ek||∞ =
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max
i
||ei,k||∞ = max

i

{
max

m
|ei,km |

}
gives

[
1 + θ∆τ

(
αi

m + βi
m + r + |λQ

ii |
)]
|ei,k+1

m | ≤ θ∆ταi
m||ek+1||∞

+ θ∆τβi
m||ek+1||∞

+ θ∆τ |λQ
ii | · ||e

k||∞ ,

where condition (4.3) has been used. The above must be true for all regimes and asset

nodes, so in particular it must be satisfied for the regime i∗ and asset node m∗ such that

|ei
∗,k+1

m∗ | = ||ek+1||∞. Therefore

[
1 + θ∆τ

(
αi∗

m∗ + βi∗
m∗ + r + |λQ

i∗i∗ |
)]
||ek+1||∞ ≤ θ∆ταi∗

m∗ ||ek+1||∞

+ θ∆τβi∗
m∗ ||ek+1||∞

+ θ∆τ |λQ
i∗i∗ | · ||e

k||∞ .

(4.22)

The expression in (4.22) implies

||ek+1||∞ ≤
θ|λQ

i∗i∗ |∆τ
1 + θ(r + |λQ

i∗i∗ |)∆τ
||ek||∞

≤ θλQ
max∆τ

1 + θ(r + λQ
max)∆τ

||ek||∞

< ||ek||∞ ,

where we have defined λQ
max = max

i
|λQ

ii |. Finally, the expression in (4.19) comes from a

Taylor expansion of the above.

It is possible to use the most up-to-date option values for regimes j < i within the inner
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loop of Algorithm 3 to compute Ξ(V i,k
n+1)—the fixed point iteration is again convergent, with

the proof following along the same lines as above.

Remark 4.1 (Solution of the Discrete Equations). It is possible, of course, to as-

semble the linear system (4.18) for each regime into a large sparse matrix and carry out a

direct solve—using modern ordering methods [68], this should not be very expensive. How-

ever, since in practice λQ
max∆τ is small, only 2–3 iterations of Algorithm 3 are required

to reduce the error by 10−6. Direct methods are therefore unlikely to produce a significant

improvement. In any event, some type of iteration is required to price American options.

4.1.4 A Numerical Example

As a specific example, we price an option in a three-state regime-switching model where the

underlying jumps during a change in regime. The market is from [4], and was obtained by

calibrating to vanilla options written on the S&P 500. The interest rate3 for this market

is r = 0.02, with diffusion volatilities ~σ = [0.0955, 0.0644, 0.0241]. The rate matrix of

risk-adjusted intensities is

ΛQ =


−3.5613 0.2405 3.3208

1.1279 −1.2008 0.0729

2.9882 0.2025 −3.1907

 (4.23)

with jump amplitudes

η =


1 0.9095 1.0279

1.2502 1 1.6512

0.9693 0.7732 1

 , (4.24)

3We use a constant interest rate for the regime-switching markets considered in this thesis. However, a
regime-dependent interest rate is easily handled.
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where the entry in row i and column j corresponds to the transition from state i to j.

Consider a European call option with T = 0.5 and a strike of $100. The system of

PDEs (4.2) is solved numerically using Algorithm 3 with fully implicit timestepping (θ = 1),

∆τ constant, and the Dirichlet condition (4.16) imposed at S = Smax. The asset node

spacing is relatively finer around the strike, and the mesh extends from S1 = 0 to Smax =

1500. The option values and deltas at inception for each regime are plotted in Figure 4.1,

and the results of a convergence study are given in Table 4.1. For each refinement in the

convergence study, new nodes are inserted between each pair of coarse mesh nodes and the

timestep size ∆τ is halved. The results indicate the asymptotic rate of convergence is linear,

as expected.

When Crank-Nicolson timestepping (θ = 1
2) is used with Rannacher smoothing4, quadratic

convergence is observed. Although the discrete equations (4.12) with θ = 1
2 are no longer

guaranteed to represent a positive-coefficient scheme, the use of Rannacher smoothing tends

to damp out the spurious oscillations that can arise due to non-smoothness [64].

To determine if Smax = 1500 is large enough to avoid localization error w.r.t. the option

values at inception, we consider the region of interest as S ∈ [0, 500]. When Smax is increased

from Smax = 1500 to Smax = 5000, the absolute change in option values is less than 10−16

for all asset nodes in [0, 500]. Therefore, Smax = 1500 is clearly sufficient. In general, the

upper limit of the computational mesh should be chosen to ensure the augmented jump

amplitude (4.10) has no discernible influence on the option values in the region of interest.

4Rannacher smoothing refers to the use of a small number of implicit timesteps before employing Crank-
Nicolson [67].
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Figure 4.1: Option value (left panel) and delta (right panel) for a half-year European call
option in the three-state regime-switching market from [4]. The strike price is $100.

Number of
Nodes

Number of
Timesteps

Regime 1 Regime 2 Regime 3
Value Ratio Value Ratio Value Ratio

213 100 4.115331 — 8.861139 — 4.020679 —
425 200 4.089879 — 8.860966 — 3.975688 —
849 400 4.063196 0.95 8.858187 0.06 3.929001 0.96
1697 800 4.063566 -72.17 8.861186 -0.93 3.929624 -74.88
3393 1600 4.063792 1.64 8.862876 1.77 3.929936 2.00
6785 3200 4.063908 1.94 8.863749 1.94 3.930088 2.05
13569 6400 4.063966 1.98 8.864193 1.97 3.930163 2.03
27137 12800 4.063996 1.99 8.864417 1.98 3.930200 2.02
54273 25600 4.064010 2.00 8.864529 1.99 3.930219 2.01

Table 4.1: Value of a half-year European call option, in each regime of the three-state market
from [4], for successive refinements of the computational mesh. Ratio is the ratio of changes
between one level of refinement and the next. Fully implicit timestepping is used. The option is
priced at S = 100, t = 0 and has a strike price of $100.
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4.2 Hedging in a Market with Shifts in Volatility

4.2.1 The Risk in a Regime-Switching Market

Consider the N -state regime-switching market (4.1). To hedge a short position in a tar-

get option V , the bond B and e units of the underlying are used in conjunction with an

additional M instruments, represented by ~F , to form the overall hedged position

Π = −V + eS + ~φ · ~F + B︸ ︷︷ ︸
Hedge Portfolio H

,

where the weights of the instruments in ~F are given by ~φ. Assume that regime i is the

current state. By applying Itô’s lemma, the change in Π over an instant dt is

dΠ = −dV + edS + ~φ · d~F + dB

=
[
−
(
∂V i

∂t
+
(
αP

i − η̃P
i

)
S
∂V i

∂S
+

1
2
(
σi
)2
S2∂

2V i

∂S2

)
+
(
αP

i − η̃P
i

)
eS

+ ~φ ·
(
∂ ~F i

∂t
+
(
αP

i − η̃P
i

)
S
∂ ~F i

∂S
+

1
2
(
σi
)2
S2∂

2 ~F i

∂S2

)
+ rB

]
dt

+ σiS

[
−∂V

i

∂S
+ e + ~φ · ∂

~F i

∂S

]
dZP

+
N∑

j=1
j 6=i

[
−∆V ij + e∆Sij + ~φ ·∆~F ij

]
dXP

ij , (4.25)

where the ∆ notation represents the change in value due to the regime change i → j:

∆Sij = S(ηij − 1), ∆V ij = V j(Sηij , t)− V i(S, t), and ∆~F ij = ~F j(Sηij , t)− ~F i(S, t).

The last two lines of (4.25) represent the random change in Π due to the Wiener process

and Markov chain, respectively. If ~F contains N − 1 instruments, then choosing hedge
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weights that satisfy the N ×N linear system



1 ∂F i
1

∂S
∂F i

2
∂S · · · ∂F i

N−1

∂S

∆Si1 ∆F i1
1 ∆F i1

2 · · · ∆F i1
N−1

∆Si2 ∆F i2
1 ∆F i2

2 · · · ∆F i2
N−1

...
...

...
. . .

...

∆Si(i−1) ∆F i(i−1)
1 ∆F i(i−1)

2 · · · ∆F i(i−1)
N−1

∆Si(i+1) ∆F i(i+1)
1 ∆F i(i+1)

2 · · · ∆F i(i+1)
N−1

...
...

...
. . .

...

∆SiN ∆F iN
1 ∆F iN

2 · · · ∆F iN
N−1


︸ ︷︷ ︸

A



e

φ1

φ2

φ3

...

φN−3

φN−2

φN−1


︸ ︷︷ ︸

x

=



∂V i

∂S

∆V i1

∆V i2

...

∆V i(i−1)

∆V i(i+1)

...

∆V iN


︸ ︷︷ ︸

b
(4.26)

will remove the instantaneous risk for state i, and therefore establish a perfect hedge.5 If A

has rank N , then a perfect hedge can be formed using ~F . If rank(A) < N , then either: (i)

no perfect hedge can be formed (b /∈ columnspace(A)); or (ii) a perfect hedge can be formed

(b ∈ columnspace(A)) and, furthermore, there are an infinite number of hedge portfolios

that constitute a perfect hedge.

For the purposes of hedging, we define a redundant instrument as follows:

Definition 4.1 (Redundant Instrument). An instrument Fm∗ in ~F is said to be redun-

dant if it can be statically replicated using the bond, underlying, and the other instruments

in ~F . That is, at time zero there exists a bond position B0 and a set of coefficients ~α such

that, for all times t and asset values S,

Fm∗(S, t) = B0ert + α0S +
M∑

m=1
m6=m∗

αmFm(S, t) ,

5The matrix in (4.26) has no row corresponding to the trivial transition i → i.
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where ~F has M instruments.

For example, put-call parity implies that a European put is redundant w.r.t. the bond,

underlying, and a European call with the same strike.

When ~F has N − 1 instruments, a redundant instrument will preclude the formation of

a perfect hedge in an N -state market.

Theorem 4.2 (Absence of a Perfect Hedge). Consider an N -state market and assume

that ~F has N − 1 instruments. If ~F contains a redundant instrument, then the N × N

matrix in (4.26) is singular. As such, a perfect hedge cannot be formed using ~F and the

underlying, unless b ∈ columnspace(A).

Proof of Theorem 4.2. Without loss of generality, assume that the last instrument in ~F (i.e.

instrument N − 1) is redundant. Consider the following set of column operations on the

N ×N matrix in (4.26), where COLk denotes the kth column of the matrix:

COLaugment
N = COLN − α0COL1 −

N−2∑
k=1

αk COLk+1 .

For the redundant instrument, we have from Definition 4.1 that

∂F i
N−1

∂S
= α0 +

N−2∑
k=1

αk
∂F i

k

∂S
,

so entry (1, N) of the column-augmented matrix is zero. The remaining entries in the last

column of the augmented matrix are equal to B0ert−B0ert = 0, which again is a consequence

of Definition 4.1. This column of zeros in the augmented matrix implies that the N × N

matrix in (4.26) is singular. Hence, the system in (4.26) will not have a solution unless

b ∈ columnspace(A).

Remark 4.2 (Knowledge of the Current Regime). We will assume throughout that

the current regime is known, e.g. from calibration. If the current regime is not known,
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then delta neutrality may be imposed for each possible regime, and the hedger can insulate

themselves against any possible regime change. However, this will require O(N2) hedging

instruments.

Imposing delta neutrality

−∂V
i

∂S
+ e + ~φ · ∂

~F i

∂S
= 0 (4.27)

in (4.25) eliminates the diffusion risk, and leads to an explicit representation of the regime-

switching risk. To this end, substituting the system of forward-time option-pricing PDEs

into (4.25), with delta neutrality imposed, gives6

dΠ = rΠ dt

+
N∑

j=1
j 6=i

λQ
ij

[
∆V ij −

(
e∆Sij + ~φ ·∆~F ij

)]
dt +

N∑
j=1
j 6=i

[
−∆V ij +

(
e∆Sij + ~φ ·∆~F ij

)]
dXP

ij

︸ ︷︷ ︸
instantaneous regime-switching risk

.

(4.28)

The first part of the regime-switching risk is a deterministic drift while the second com-

ponent is stochastic, as it depends on whether the Markov chain transitions out of state i

over dt.

4.2.2 Previous Work Related to Hedging under Regime-Switching

Naik [58] explored the initial composition of a perfect hedge under a two-state regime-

switching lognormal process; recall, this process is characterized by a low-volatility state

6In a forthcoming chapter, a detailed derivation of the jump risk for a jump-diffusion model will be
presented. Since the regime-switching risk is a discrete analogue of the jump risk, we defer details until
Chapter 6.
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and a high-volatility state (with no jumps in asset price):

dS =

 αP
LS dt + σLS dZP if the Markov chain is in its low-volatility state

αP
HS dt + σHS dZP if the Markov chain is in its high-volatility state .

(4.29)

However, Naik [58] did not carry out any simulation experiments to determine how well the

hedging strategy performs when the portfolio is discretely rebalanced.

A local risk-minimizing trading strategy,7 using just the underlying and bond, is consid-

ered in [55] for an N -state regime-switching model with no jumps in the underlying. With

this strategy, the optimal weight in the underlying is the delta of the target option, which

may seem surprising since this is nothing but a Black–Scholes-type delta hedge that simply

eliminates the diffusion risk. However, because the underlying does not change value when

the regime changes, it cannot be used to mitigate the regime-switching risk. Again, no

tests of the hedging procedure are performed. The dynamic hedging strategy for regime-

switching models discussed in [4] utilizes control theory to ensure the hedged position will

break even on average and that the standard deviation of the profit and loss is minimized.

The procedure assumes knowledge of the real-world measure, which is linked to the pricing

measure through the Sharpe ratio.

4.2.3 Hedging in a Two-State Regime-Switching Lognormal Model

We are interested in hedging under the two-state process (4.29) considered by Naik [58].

Let V be the target option and eS + φF the hedge portfolio, consisting of e units in the

underlying and φ units of the hedging option F . To establish a perfect hedge at time t and

7Such a strategy aims to minimize the mean-squared hedging error over the next instant [23].
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asset price S, the linear system (4.26) is trivially solved to yield the hedge weights

φ =
V H(S, t)− V L(S, t)
FH(S, t)− FL(S, t)

e =
∂V L

∂S

∣∣∣∣
(S,t)

− φ× ∂FL

∂S

∣∣∣∣
(S,t)

if the Markov chain is in its low-volatility state, and

φ =
V L(S, t)− V H(S, t)
FL(S, t)− FH(S, t)

e =
∂V H

∂S

∣∣∣∣
(S,t)

− φ× ∂FH

∂S

∣∣∣∣
(S,t)

if it is in the high-volatility state.

To study the behaviour of a discretely rebalanced perfect hedge, we consider the real-

world market represented by the parameters of Table 4.2. A half-year call with a strike of

$100, that is initially at the money, is to be hedged over its lifetime with the underlying

and a one-year call8 that has a strike of $110. The delta hedge

φ = 0 e =
∂V i

∂S

∣∣∣∣
(S,t)

,

which is the local risk-minimizing strategy in the incomplete market [55], is also carried

out.

As a first example, we assume there is no risk adjustment when pricing, such that the

transition intensities are the same under P and Q. The initial regime for each of the 500,000

simulations is the low-volatility state. We vary the rebalancing interval ∆t, and in Table 4.3

give the mean, standard deviation, and 99% value-at-risk (VaR) of the (discounted) relative

8It is more natural to use short-term options to hedge, as they tend to be more liquid than longer-term
contracts. Furthermore, the effect of regimes plays a diminishing role as option maturity increases. We
hedge with a longer-term contract to avoid complications due to rolling over hedging options. In subsequent
examples, short-term instruments will be used to hedge longer-term contracts.
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Parameter Low-Volatility State High-Volatility State

Volatility σL = 0.2 σH = 0.4
Expected Return αP

L = 0.14 αP
H = 0.07

Transition Intensity λP
LH = 0.5 λP

HL = 2.0
Interest Rate r = 0.05

Table 4.2: Financial parameters for a two-state regime-switching lognormal market that will
be used to study various hedging strategies.

Number of
Rebalancings

Delta Hedge Perfect Hedge
Mean StdDev 99% VaR Mean StdDev 99% VaR

5 -0.01 0.36 -1.23 0.00 0.19 -0.59
25 0.00 0.23 -0.82 0.00 0.10 -0.31
50 0.00 0.20 -0.73 0.00 0.07 -0.23
100 0.00 0.19 -0.68 0.00 0.05 -0.16
200 0.00 0.18 -0.65 0.00 0.04 -0.12

Table 4.3: Hedging results, in terms of the relative profit and loss, when hedging a half-year
European call option over its lifetime in the two-state regime-switching market of Table 4.2 (with
no risk adjustment). The initial regime is the low-volatility state. The target call has a strike
of $100, while the one-year European call used in the perfect hedge has a strike of $110. The
99% VaR is defined as the 1% quantile of the relative profit and loss.

profit and loss

e−rT Π(T )
V i(S0, 0)

. (4.30)

Note that the α% VaR is defined as the (100− α)% quantile of the relative profit and loss.

The discretely rebalanced perfect hedge behaves as expected—the mean is zero, and the

standard deviation decreases as the rebalancing becomes more frequent. The delta hedge

does not perform too badly, even though it ignores the regime-switching risk: since there are

no jumps in the underlying, the only instrument in the overall hedged position −V +eS+B

that changes value during a transition is the target option, and in this case the change tends
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not to be too large (e.g. ||V H(S, 0) − V L(S, 0)||∞ = $3.27). However, while the standard

deviation of the perfect hedge is approximately O(
√

∆t), the improvement in the standard

deviation of the delta hedge levels off as ∆t decreases. This is because the regime-switching

risk remains unhedged regardless of how often the delta hedge is rebalanced.

The results for the discretely rebalanced perfect hedge are similar regardless of the initial

state. The distribution of the relative profit and loss for both initial states is plotted in the

left panel of Figure 4.2 for the case of 100 rebalances, and are seen to be very alike. On

the other hand, the behaviour of the delta hedge is highly dependent on the initial state.

For any two-state lognormal model, the instantaneous change in the simple delta-hedged

position is, by (4.28),

dΠ =


rΠ dt + λQ

LH

(
V H − V L

)
dt −

(
V H − V L

)
dXP

LH in low-volatility state

rΠ dt + λQ
HL

(
V L − V H

)
dt −

(
V L − V H

)
dXP

HL in high-volatility state .

(4.31)

Assume the initial regime is the low-volatility state. If no regime change occurs over the life

of the option, then dΠ in (4.31) is a pure-drift process with positive drift, since V H > V L

(in general). However, if the regime changes just once, there is a single large drop in the

value of Π. These two possibilities are the major influence on the relative profit and loss

for the specific delta hedge example considered here—the distributions are plotted in the

right panel of Figure 4.2. The pronounced left tail of the density for the low-volatility

initial state is due primarily to the simulations where there are regime changes, while the

positivity of the central mass is a result of the positive drifts that accumulate when no

regime changes occur. On the other hand, when the initial regime is the high-volatility

state, there is a positive ’hump’ since regime changes are more frequent when the initial

state is the high-volatility regime.
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Figure 4.2: Distributions of relative profit and loss when hedging a half-year European call
option over its lifetime in the two-state regime-switching market of Table 4.2 (with no risk
adjustment). The left panel contains the distribution for the perfect hedge, while the right panel
is for the delta hedge. The hedge is rebalanced a total of 100 times. The target call has a strike
of $100, while the one-year European call used in the perfect hedge has a strike of $110.

By taking the P-expected value of dΠ in (4.31), an ODE for the expected value of the

simple delta-neutral position can be obtained, namely

dEP[Πt

]
dt

= rEP[Πt

]
+
(
λQ

LHEP
[
V H(St, t)− V L(St, t)

]
− λP

LHEP
[
V H(St, t)− V L(St, t)

])
P (Xt = L)

+
(
λQ

HLEP
[
V L(St, t)− V H(St, t)

]
− λP

HLEP
[
V L(St, t)− V H(St, t)

])
P (Xt = H)

(4.32)

with initial condition EP[Π0

]
= 0, where P (Xt = i) is the probability the Markov chain is

in state i at time t. If there is no risk adjustment, then the transition intensities are the

same under P and Q, and the ODE (4.32) simplifies greatly, with solution EP[Πt

]
= 0: on

average, the small ever-present drift compensates for the large changes that occur when the

regime changes. The hedging results in Table 4.3 are for a market with no risk adjustment,
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Figure 4.3: Distributions of relative profit and loss when delta hedging a half-year European
call option over its lifetime in a two-state regime-switching lognormal model, for both a risk-
adjusted market and a market with no risk adjustment. The left panel contains the distribution
for the low-volatility initial state, while the right panel is for the high-volatility initial state. The
hedge is rebalanced a total of 100 times. The target call has a strike of $100.

so a zero mean for the profit and loss of the delta hedge is the expected outcome.

In a risk-adjusted market, the ODE (4.32) will maintain its non-trivial form, such that

the mean of the delta hedge is expected to be non-zero. Consider a market where the

real-world intensities are as in Table 4.2, but the risk-adjusted intensities9 are higher, with

λQ
LH = 3

4 and λQ
HL = 3. The distributions of the relative profit and loss for the delta hedge,

in both the original and risk-adjusted pricing environments, are presented in Figure 4.3.

The mean for the delta hedge with the low-volatility initial state is now positive, while

the high-volatility initial state has a negative mean. For the discretely rebalanced perfect

hedge, the risk adjustment has little effect—the mean of the profit and loss remains zero

with a small standard deviation.

9Naik [58] provides an argument for the risk adjustment of the transition intensities in a two-state
lognormal model.
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4.2.4 Hedging in a Three-State Model with Jumps in the Underlying

Consider a situation where there are many regimes, with jumps in the underlying during

changes in regime. Since the underlying will now change value when a state transition

occurs, the delta hedge is expected to perform worse than in a market with no jumps.

However, if there is only one possible jump size per transition, the perfect hedge (which

uses the underlying and N−1 additional hedging instruments) can still be constructed, and

should continue to perform well when rebalancing is done discretely.

The specific three-state market we will consider comes from [4], and is the same as used

in Section 4.1.4 for the pricing example. Although not available from calibration, the real-

world drift rates are required to simulate the asset paths—the values ~αP = [0.05, 0.08, 0.12]

are used. Furthermore, we assume the risk adjustment is such that ΛP = 3
4ΛQ, with ΛQ the

matrix of risk-adjusted intensities in (4.23).

We consider the same target option as before, and again use the longer-dated call as a

hedging instrument. Since two hedging options are required to establish the perfect hedge,

a 1.5-year European put with strike $90 is also used. The hedge is rebalanced 100 times and

500,000 simulations are carried out. The results for the perfect and delta hedge, for each of

the initial states, is given in Table 4.4, with the distributions of profit and loss plotted in

Figure 4.4.

The perfect hedge again works well while the delta hedge remains inadequate, with tail

events that are much worse than observed for the delta hedge in the two-state lognormal

model. The distributions of the relative profit and loss for the delta hedge exhibit very rich

behaviour, with secondary tails due to multiple regime changes over the life of the option.

Due to the risk adjustment in the market, the means of the profit and loss for the delta

hedge are non-zero.

Two of the distributions in Figure 4.4 call for comment. For the delta hedge with regime

two the initial state, there is a pronounced double-hump structure: the positive hump
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Figure 4.4: Distributions of relative profit and loss when hedging a half-year European call
option over its lifetime in the three-state regime-switching market from [4]. Each initial state
is considered, and the hedge is rebalanced a total of 100 times. The target European call has a
strike of $100, the one-year European call used in the perfect hedge has a strike of $110, and
the 1.5-year European put used in the perfect hedge has a strike of $90.
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Initial
State

Delta Hedge Perfect Hedge
Mean StdDev 99% VaR Mean StdDev 99% VaR

1 0.07 0.70 -3.49 0.00 0.06 -0.16
2 0.14 0.87 -3.53 0.00 0.02 -0.05
3 0.10 0.90 -3.62 0.00 0.05 -0.14

Table 4.4: Hedging results, in terms of the relative profit and loss, when hedging a half-year
European call option over its lifetime in the three-state regime-switching market from [4]. Each
initial state is considered, and the hedge is rebalanced a total of 100 times. The target call has
a strike of $100, the one-year European call used in the perfect hedge has a strike of $110, and
the 1.5-year European put used in the perfect hedge has a strike of $90.

corresponds to those simulations where the regime does not change, while the negative

hump results from the simulations where the regime does change. Similar behaviour was

observed for the delta hedge in the two-state lognormal model—see Section 4.2.3 for the

analysis in that case. For the perfect hedge with regime three the initial state, the spike

in the density at zero corresponds to those simulations where there is no change in regime.

Since the volatility in regime three is quite small (σ3 = 0.0241), there is little diffusion risk

in this case.

4.2.5 Hedging by Local Risk Minimization

For an N -state market, the perfect hedge performs well when rebalancing is done discretely;

however, it may be prohibitively expensive to maintain due to transaction costs. On the

other hand, the delta hedge—which is relatively cheap to execute—is inadequate due to

the fact it ignores the regime-switching risk. We now consider the intermediate situation

of hedging with a total of M instruments (the underlying plus M − 1 additional hedging

instruments), where M < N . In this case, there are not enough hedging instruments to

totally eliminate the risk, but there are degrees of freedom available to reduce it.
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Imposing Delta Neutrality

Assume that regime i is the current state. The instantaneous change in the delta-neutral

hedged position, given by (4.28), may be expressed as

dΠ = a dt +
N∑

j=1
j 6=i

bij dX
P
ij

with

bij =
[
−∆V ij +

(
e∆Sij + ~φ ·∆~F ij

)]
.

The variance of dΠ is given by

Variance
[
dΠ
]
≈

N∑
j=1
j 6=i

(
λP

ij dt
)
b2ij = dt

N∑
j=1
j 6=i

λP
ij

[
−∆V ij +

(
e∆Sij + ~φ ·∆~F ij

)]2

,

(4.33)

where terms of O(dt2) have been dropped.

If there are N (non-redundant) hedging instruments (i.e. N − 1 options in ~F , plus the

underlying), the expression for Variance
[
dΠ
]

in (4.33) can be made zero by imposing

e∆Sij + ~φ ·∆~F ij = ∆V ij j = 1, 2, . . . , N
j 6= i

in addition to the delta-neutral constraint (4.27). Of course, this is nothing but the perfect

hedge found by solving the linear system (4.26). One way to choose the hedge portfolio

weights when there are only 1 < M < N total hedging instruments (i.e. the underlying plus

M − 1 hedging options in ~F ) is by minimizing the expression for Variance
[
dΠ
]

in (4.33),

while simultaneously imposing delta neutrality. However, the λP
ij ’s will generally not be
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known—recall, it is the risk-adjusted intensities λQ
ij that are available from calibration.

The above discussion motivates

Ri =
N∑

j=1
j 6=i

ζij

[
−∆V ij +

(
e∆Sij + ~φ ·∆~F ij

)]2

(4.34)

as a measure of the regime-switching risk for state i, where ζij ≥ 0 is the weighting factor

for each possible transition out of state i. With ζij = λP
ij , minimizing (4.34) is equivalent to

a local minimization of the variance. Again, we note that the real-world intensities λP
ij are

generally not available, and would have to be estimated. Another choice is to set ζij = 1,

which encapsulates a lack of information concerning which transitions out of state i are

more likely than others.

The optimality conditions for minimizing (4.34) are

∂Ri

∂e
=

N∑
j=1
j 6=i

ζij

[
−∆V ij +

(
e∆Sij + ~φ ·∆~F ij

)]
∆Sij = 0

∂Ri

∂φk
=

N∑
j=1
j 6=i

ζij

[
−∆V ij +

(
e∆Sij + ~φ ·∆~F ij

)]
∆F ij

k = 0 for k = 1, . . . ,M − 1 ,

where the underlying and the M − 1 instruments in ~F are used to hedge. Defining the
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(N − 1)×M matrix

Φ =



∆Si1 ∆F i1
1 ∆F i1

2 · · · ∆F i1
M−1

∆Si2 ∆F i2
1 ∆F i2

2 · · · ∆F i2
M−1

...
...

...
. . .

...

∆Si(i−1) ∆F i(i−1)
1 ∆F i(i−1)

2 · · · ∆F i(i−1)
M−1

∆Si(i+1) ∆F i(i+1)
1 ∆F i(i+1)

2 · · · ∆F i(i+1)
M−1

...
...

...
. . .

...

∆SiN ∆F iN
1 ∆F iN

2 · · · ∆F iN
M−1



,

the (N − 1)× 1 vector

~b =



∆V i1

...

∆V i(i−1)

∆V i(i+1)

...

∆V iN


,

and the (N − 1)× (N − 1) matrix

Ω =



ζi1 0 · · · 0 0 · · · 0

0 ζi2 · · · 0 0 · · · 0
...

...
. . .

...
...

. . .
...

0 0 · · · ζi(i−1) 0 · · · 0

0 0 · · · 0 ζi(i+1) · · · 0
...

...
. . .

...
...

. . .
...

0 0 · · · 0 0 · · · ζiN



,
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the hedge weights ~w = [e, φ1, φ2, . . . , φM−1]T that minimize (4.34) are found by solving

ΦT Ω Φ ~w = ΦT Ω~b . (4.35)

Note that neither Φ,~b or Ω have a row corresponding to the trivial transition i→ i, since this

outcome does not need to enter into the risk metric (4.34). Using the method of Lagrange

multipliers, the system (4.35) is easily augmented to impose delta neutrality. Specifically,

the linear system



ΦT Ω Φ

1
∂F i

1
∂S

∂F i
2

∂S

...
∂F i

M−1

∂S

1 ∂F i
1

∂S
∂F i

2
∂S · · · ∂F i

M−1

∂S
0





~w

Ψ



=



ΦT Ω~b

∂V i

∂S



(4.36)

is solved, where Ψ is a Lagrange multiplier.

As a specific example, we again consider hedging the half-year European call (as treated

in the previous section) in the three-state market from [4]. However, only one hedging

option is to be used along with the underlying: either the one-year call or the 1.5-year put.

Therefore, the linear system (4.36) is solved to find the optimal hedge composition, using

both ζij = λP
ij (P weighting) and ζij = 1 (uniform weighting). The hedging results with

regime one as the initial state are given in Table 4.5. The standard deviation and 99% VaR

of the relative profit and loss are much better than the results for the delta hedge, but not

as good as the perfect hedge (see the first row of Table 4.4). In this case the put appears to

be the superior hedging instrument. In Table 4.6, the hedging results are presented for each



64
CHAPTER 4. PRICING AND HEDGING UNDER REGIME-SWITCHING

PROCESSES

of the initial states, where the long-dated put is used as the hedging option. The scenario

with regime two the initial state is the hardest to hedge against. This is not surprising,

as a transition out of regime two is always accompanied by a large upwards jump in the

underlying.

Hedging
Option

P Weighting Uniform Weighting
Mean StdDev 99% VaR Mean StdDev 99% VaR

1-year call 0.01 0.23 -0.54 0.01 0.17 -0.25
1.5-year put 0.01 0.16 -0.37 0.02 0.11 -0.26

Table 4.5: Hedging results, in terms of the relative profit and loss, for the three-state regime-
switching market from [4] using the local risk minimization with delta neutrality imposed. The
target option is a half-year European call with strike $100. The hedge portfolio contains the
underlying and one option. The initial state is regime one, and the hedge is rebalanced a total
of 100 times over the lifetime of the option.

Initial
State

P Weighting Uniform Weighting
Mean StdDev 99% VaR Mean StdDev 99% VaR

1 0.01 0.16 -0.37 0.02 0.11 -0.26
2 0.07 0.43 -0.92 0.19 0.20 -0.09
3 0.02 0.14 -0.33 0.02 0.11 -0.29

Table 4.6: Hedging results, in terms of the relative profit and loss, for the three-state regime-
switching market from [4] using local risk minimization with delta neutrality imposed. The target
option is a half-year European call with strike $100. The hedge portfolio contains the underlying
and the 1.5-year put. Each initial state is considered, and the hedge is rebalanced a total of 100
times over the lifetime of the option.

The hedging results from Table 4.5 and Table 4.6 would lead us to believe that uniform

weighting is superior to P weighting in this case. However, the difference in the results is due

mainly to the Truncated Singular Value Decomposition (TSVD) [38] used to solve the linear

system (4.36) (the TSVD is introduced in Section 3.1). Numerical investigation reveals

that the results we have presented for the perfect hedges are invariant to how the linear
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system is solved (i.e. the TSVD with a cutoff parameter of 10−6 vs. an LU decomposition).

However, this is not so for the local risk minization examples of Table 4.5 and Table 4.6.

Experimentation suggests that, by employing the standard cutoff parameter of 10−6 in the

TSVD, the hedge weights determined using uniform weighting tend to not exactly satisfy

the delta-neutral constraint (which is imposed in the linear system (4.36)); instead, the

weights offer more protection against the regime-switching risk. In the case of P weighting,

the linear system (4.36) tends to be solved exactly by the TSVD. Since the hedging results

with P weighting are not as good as those for uniform weighting, expending a degree of

freedom to impose delta neutrality may not be the best approach. We explore this notion

below.

Omitting the Delta-Neutral Constraint

Motivated by the results of the previous section concerning the TSVD, it appears that,

instead of imposing delta neutrality, we should minimize an objective that captures both

the diffusion and regime-switching risk. Consider the representation of dΠ in (4.25): the

variance in this case, to O(dt2), is

Variance
[
dΠ
]
≈ dt

[(
σiS

)2
(
− ∂V i

∂S
+ e + ~φ · ∂

~F i

∂S

)2

+
N∑

j=1
j 6=i

λP
ij

[
−∆V ij +

(
e∆Sij + ~φ ·∆~F ij

)]2
]
. (4.37)
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PROCESSES

If we define a vector containing the deltas of S and ~F as

~d =



1
∂F i

1
∂S

∂F i
2

∂S

...
∂F i

M−1

∂S


,

then the expression for the variance of dΠ in (4.37) can be minimized by solving for the

hedge weights ~w = [e, φ1, φ2, . . . , φM−1]T in

[
ΦT Ω Φ +

(
σiS

)2 ~d ~d T
]
~w = ΦT Ω~b +

(
σiS

)2 ∂V i

∂S
~d , (4.38)

where the general weighting factors ζij are used in place of the transition intensities λP
ij .

The hedging simulation in the three-state market is re-run for regime two the initial

state (using the 1.5-year put as the hedging option), and the linear system (4.38) is solved

when rebalancing. The results are

Mean = 0.17, StdDev = 0.20, 99% VaR = −0.07

for P weighting and

Mean = 0.18, StdDev = 0.20, 99% VaR = −0.07

when uniform weighting is used. In the case of P weighting, the results are a clear improve-

ment over the implementation of local risk minization where delta neutrality is imposed

(see the second row in Table 4.6).
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4.3 Summary

In this chapter, we presented a stable discretization of the option-pricing PDEs for a regime-

switching market with shifts in volatility, and developed a convergent fixed point iteration

scheme for solving the associated discrete equations. This numerical treatment was required

in order to investigate hedging. For an N -state market, we derived a linear system whose

solution yields the hedge weights that eliminate the instantaneous risk. In both a two-state

model without jumps and a three-state model with jumps, the perfect hedge was found

to perform well when rebalanced at discrete times. However, the delta hedge is not an

adequate strategy due to the fact it ignores the regime-switching risk. In a many-state

market, using the perfect hedge may be prohibitively expensive due to transaction costs.

We investigated, in the context of a three-state market, two forms of hedging that use local

risk minization—the results are, in general, better than the delta hedge but not as good as

the perfect hedge. Precise knowledge of the P measure is not required for these techniques,

a fact we will exploit in subsequent chapters.





Chapter 5

Pricing and Hedging Swing

Options

In the previous chapter, we developed a numerical scheme for solving the system of option-

pricing PDEs used when the underlying is tradeable and volatility is the only regime-

dependent parameter. This chapter extends the numerical scheme to price under a stochas-

tic process where, in addition to a regime-dependent volatility, the drift is both regime and

time dependent. In particular, we consider a regime-switching process for the risk-adjusted

spot price of natural gas, where the parameters are obtained by calibrating to the derivatives

market. The corresponding PDEs are used to price swing options, a type of derivative used

by energy producers and consumers as a means of obtaining protection from both volatility

in the spot market and uncertain demand. We also investigate the hedging of swing options,

which is a more involved problem than the hedging examples from the previous chapter.

Swing options are path dependent and, in addition, because the underlying is typically not

used to hedge, forward contracts are employed when forming a hedge portfolio.

69
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5.1 Background

Swing options are a type of derivative traded in energy markets that provide flexibility in

the timing and amount of delivery [63]. They can include a variety of features, but we shall

focus on a standard contract: the holder of the swing option has a series of rights—but not

the obligation—to buy or sell, at certain discrete times, fixed quantities of the commodity

at a set price. Swing options provide a level of protection comparable to a series of calls

and puts, but at a lower cost.

Executing an up-swing allows the holder of the option to buy Vu > 0 units of the

commodity at a cost of Ku per unit. Much like a call, the payoff for an up-swing is

Vu max(S −Ku, 0) , (5.1)

where S is the spot price.1 Similar to a put, the payoff from exercising a down-swing is

Vd max(Kd − S, 0) . (5.2)

The option is endowed with a finite number of up-swing (Nu) and down-swing (Nd) rights

that may be exercised over the life of the contract. Furthermore, the opportunities to

execute these rights occur at pre-determined, discrete times (i.e. the exercise rights are

Bermudan).

Penalties may be imposed at the end of the contract if the net amount involved in the

swings is too high or too low. To avoid penalties at expiry, the holder of the swing option

1This formulation assumes that the holder of the swing option is a profit maximizing agent, in that their
consumption requirements do not play a role in the exercise decision. The seller of the option takes this
view when pricing, as they must consider the ‘worst-case scenario’ where the holder of the swing option acts
to maximize the value of the contract.



5.1. BACKGROUND 71

should ensure their consumption pattern satisfies

Vmin ≤ nuVu − ndVd ≤ Vmax , (5.3)

where nu ≤ Nu and nd ≤ Nd are the number of swing rights actually exercised over the

life of the contract, and [Vmin, Vmax] are bounds set at the beginning. Different types of

penalties can be levied at expiry: a fixed amount could be charged for any violation of the

consumption limits, or the penalty could be proportional to the number of units outside

the bounds.

Lari-Lavassani et al. [52] use a “forest” of binomial trees to compute the value of a stan-

dard swing option—their methodology accommodates both one and two-factor processes

for the spot price. A similar tree-based approach is considered in [44], where the volume

involved in a swing is not fixed but may be chosen from a finite interval. If there are no

penalties applied at expiry, then in this case the optimal strategy at each swing time is to

either buy/sell the maximum allowed amount or do nothing (i.e. bang-bang exercise). In

fact Barrera-Esteve et al. [6] show that, when Ku = Kd and the penalty function satisfies

certain conditions (of which smoothness is the most restrictive), the optimal consumption

strategy is always of bang-bang type. However, we only consider the case of buying and

selling a fixed amount of the commodity.

In general, a numerical PDE approach is to be preferred over tree methods. A PDE

framework is used in [74] to price a standard swing option, where the spot price process

is a one-factor mean-reverting diffusion with seasonality incorporated via time-dependent

parameters. Dahlgren [28] considers pricing a more exotic swing option under a similar

mean-reverting process, namely the one-factor model of Schwartz [70]. For this option,

a swing can be exercised at any time, with the proviso that a refraction time of at least

τR elapse before executing another right. The price of the swing option is found using a
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Hamilton–Jacobi–Bellman (HJB) formulation.

The uncertain nature of demand within the natural gas markets make swing options

an ideal risk-mitigating instrument in this setting [71]. To price these contracts, a real-

istic stochastic model of the underlying spot price is required. One-factor mean-reverting

diffusions, which are typically used to model the spot price of natural gas, do not capture

the long-term behaviour of the forward curve [44]. In Chen and Forsyth [21], a two-state

regime-switching GBM model (with seasonality) is calibrated to natural gas futures and

options on futures, and is found to give a good fit to the forward curve for both short

and long-term contracts. Furthermore, solving the system of pricing PDEs for this regime-

switching model is less computationally intensive than the numerical treatment required for

the multi-dimensional PDE that would result from using a two or three-factor model. As

such, we will use the regime-switching GBM model of [21] to price and hedge swing options

on natural gas.

We note that regime-switching models have also been used for the valuation of derivatives

on electrical power [see, e.g., 47], as they can capture the spiking behaviour that is common

in the electricity markets. In Davison et al. [31], the spot price of electricity is modelled as

a two-state regime-switching process in discrete time, where the price is drawn from a high-

price or low-price distribution, depending on the current state (i.e. spike vs. non-spike). The

probability of being in the ‘spike’ state at time t is a function of the demand and capacity

at t, and does not depend on the state at the previous timestep—this is in contrast to the

regime-switching processes we employ. Davison and Anderson [30] use a variant of the spot

price model in [31] to approximate the early exercise boundary for a swing option; with this

approximation, the valuation of swing options via Monte Carlo simulation is feasible.
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Parameter Description Value

A Annual constant time adjustment 0.483
SA Semi-annual constant time adjustment 0.196
λ12 Transition intensity for state 1 to 2 0.025
λ21 Transition intensity for state 2 to 1 4.840
r Risk-free rate 0.05

Regime 1 Regime 2

σi Diffusive volatility 0.160 0.799
αi Constant drift without seasonality -0.101 1.170
βi

A Annual seasonality parameter 0.663 0.400
βi

SA Semi-annual seasonality parameter 0.332 0.860

Table 5.1: Parameters and data for the two-state regime-switching process (5.4) used to model
the risk-adjusted (Q measure) spot price of natural gas [21]. The initial state is regime one.

5.2 Modelling the Spot Price for Natural Gas

Under the risk-adjusted measure, the spot price for natural gas (in $/mmBtu) is assumed

to follow the two-state regime-switching process from Chen and Forsyth [21]:

dS = µQ
i (t)S dt + σiS dZ i = 1, 2 . (5.4)

The drift coefficient

µQ
i (t) = αi + βi

A sin
(
2π(t+Dt0 +A)

)
+ βi

SA sin
(
4π(t+Dt0 + SA)

)
(5.5)

is time dependent in order to incorporate seasonality effects. The description of the pa-

rameters, plus the specific values from [21] obtained through calibration, are presented in

Table 5.1. We use the convention that Dt0 is the distance (in years) from January 1 to the

initial time, and that t ≥ 0 is measured with respect to this initial time. The drift rate (5.5)

is plotted in Figure 5.1 for both regimes, with Dt0 = 0.25.
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Figure 5.1: Time and regime-dependent drift rate (5.5) used in modelling the risk-adjusted
spot price of natural gas (5.4). The financial data from Table 5.1 is used, with Dt0 = 0.25.

Appendix A derives the system of pricing PDEs for a general one-factor regime-switching

process. For the process (5.4), the system of PDEs is

∂U1

∂τ
=

1
2
(σ1)2S2∂

2U1

∂S2
+ µQ

1 (t)S
∂U1

∂S
−
(
r + λQ

12

)
U1 + λQ

12U
2

∂U2

∂τ
=

1
2
(σ2)2S2∂

2U2

∂S2
+ µQ

2 (t)S
∂U2

∂S
−
(
r + λQ

21

)
U2 + λQ

21U
1 , (5.6)

where U1 = U1(S, τ) and U2 = U2(S, τ), with τ = T − t.

5.3 Pricing Swing Options

5.3.1 Mathematical Specification of the Contract

The swing option has a total ofNu up-swing andNd down-swing rights that may be exercised

over the lifetime T of the contract. These swing rights, whose payoffs are given by (5.1)
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and (5.2), may be executed at the discrete times

0 < t1E < t2E < t3E < . . . < tN−1
E < tNE ≤ T ,

where N is the total number of swing opportunities. Note that at most one swing right can

be exercised at each of these times.

Penalties are imposed at time T if the net consumption of the option holder does not

lie within [Vmin, Vmax]. For a charge of Au per net unit traded over Vmax and Ad per net

unit traded below Vmin, the penalty is

max
(
Au

[
{nuVu − ndVd} − Vmax

]
, 0
)

+ max
(
Ad

[
Vmin − {nuVu − ndVd}

]
, 0
)
,

(5.7)

where nu and nd are the number of up-swing and down-swing rights, respectively, actually

exercised over the lifetime of the swing option.

Let U i
{nu,nd}(S, τ) denote the swing option value for a spot price S at (backward) time τ

in regime i, where nu up-swing and nd down-swing rights have been exercised. Away from

the exercise dates, the system of PDEs (5.6) governs the swing option values—there is a

distinct system for each possible (nu, nd) pair. The initial conditions for the PDEs in (5.6)

are set according to the penalty provision (5.7), with

U i
{nu,nd}(S, τ = 0) = −

[
max

(
Au

[
{nuVu − ndVd} − Vmax

]
, 0
)

+ max
(
Ad

[
Vmin − {nuVu − ndVd}

]
, 0
)]
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for nu = 0, 1, . . . , Nu; nd = 0, 1, . . . , Nd; and i = 1, 2. As S → 0, the system (5.6) reduces to

∂U1
{nu,nd}

∂τ
= −

(
r + λQ

12

)
U1
{nu,nd} + λQ

12U
2
{nu,nd}

∂U2
{nu,nd}

∂τ
= −

(
r + λQ

21

)
U2
{nu,nd} + λQ

21U
1
{nu,nd} . (5.8)

As S →∞, we assume that

∂2U1
{nu,nd}

∂S2
' 0 and

∂2U2
{nu,nd}

∂S2
' 0 . (5.9)

Across each exercise date tE , the no-arbitrage principle establishes the jump condition

U i
{nu,nd}(S, t

−
E) = max


U i
{nu+1,nd}(S, t

+
E) + Vu max(S −Ku, 0) (swing up)

U i
{nu,nd+1}(S, t

+
E) + Vd max(Kd − S, 0) (swing down)

U i
{nu,nd}(S, t

+
E) (no swing) .

(5.10)

If nu = Nu and/or nd = Nd, then an up-swing and/or down-swing, respectively, cannot be

executed.

5.3.2 Numerical Solution

Recall from Chapter 4 that, in order to price a simple contract under an N -state regime-

switching process, N meshes with domain [0, Smax]× [0, T ] are required to numerically solve

the system of coupled PDEs—these meshes may be thought of as forming a cube with

domain [0, Smax] × [0, T ] × [1, 2, . . . , N ]. When pricing a swing option, for each possible

pair (nu, nd), there exists a computational cube corresponding to a swing option with that
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combination of exercised rights. This requires a total of

(
Nu + 1

)(
Nd + 1

)
cubes, where Nu and Nd are the total number of allowed up-swings and down-swings,

respectively.

On each (nu, nd) cube the system of PDEs (5.6) are discretized, and the boundary

conditions (5.8) and (5.9) handled, in the same manner as the PDE system (4.2) (see

Section 4.1.2). Away from the the exercise dates, the option values for each cube are found

by numerically solving the system of PDEs. This continues until τ−E (t+E)—an instant after

a swing right may have been executed—at which time the option holder has already decided

whether or not to use a permissible swing opportunity. The jump condition (5.10) is applied

at each node, relative to backward time, to yield

U i
{nu,nd}(S, τ

+
E ) = max


U i
{nu+1,nd}(S, τ

−
E ) + Vu max(S −Ku, 0) (swing up)

U i
{nu,nd+1}(S, τ

−
E ) + Vd max(Kd − S, 0) (swing down)

U i
{nu,nd}(S, τ

−
E ) (no swing) ,

(5.11)

where U i
{nu,nd}(S, τ

−
E ) denotes the value computed from solving the PDEs before the jump

condition is applied.

This process continues until τ = T (t = 0). The swing option value at inception is given

by UR0

{0,0}(S0, T ), where R0 is the initial regime and S0 is the initial spot price.

5.3.3 A Pricing Example

Using the financial data of Table 5.1, a swing option specified by the parameters in Table 5.2

is priced. Here, ∆tE = 0.05 means there are twenty equally-spaced swing opportunities
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T = 1 year ∆tE = 0.05 years Nu = 2 Nd = 2 Ku = $5 Kd = $5

Vu = 20 mmBtu Vd = 20 mmBtu Au = 0 Ad = 0

Table 5.2: Specification of a swing option contract.
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Figure 5.2: Swing option value and delta at t = 0, as a function of spot price, for the financial
data of Table 5.1 and the swing option specification in Table 5.2.

(starting at t = 0.05 and ending at t = 1.0) over the one-year life of the contract. We use

Dt0 = 0.25, which means the initial time t = 0 roughly corresponds to April 1. The option

price and delta at t = 0 for both regimes (with nu = 0 and nd = 0) are plotted in Figure 5.2.

The jump condition (5.11) yields the optimal exercise strategy. Consider the optimal

down-swing regions presented in Figure 5.3: for a given nd and exercise time, if the spot

price is within the region then the option holder should execute a down-swing. The optimal

exercise region clearly depends on the number of down-swings nd that have already been

executed; the region for nd = 0 is always at least as big as the region corresponding to

nd = 1—since the option holder has more swing rights remaining when nd = 0, they are

quicker to “pull the trigger” and swing down. The extent of the down-swing regions is
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Figure 5.3: Down-swing exercise regions for the swing option specified by the parameters of
Table 5.2—left panel: regime one, right panel: regime two. For a given nd and exercise time, if
the spot price is within the region then a down-swing should be executed. The pricing parameters
used are in Table 5.1.

correlated to the risk-adjusted drift µQ(t). By comparing Figures 5.3 and 5.1, it is seen the

troughs and peaks of the exercise boundary roughly align with the troughs and peaks of

µQ(t).

The optimal swing-up regions are presented in Figure 5.4: for a given nu and exercise

time, the option holder should execute an up-swing if the spot price is within the region (if

one exists). Note that for most exercise times it is never optimal to execute an up-swing,

regardless of the spot’s value.

Consider the delta at time zero for regime one, plotted in the right panel of Figure 5.2

as the solid curve. The irregular behaviour for small values of the spot price S is not a

numerical artefact, but is due to the application of the jump condition (5.11) during the

backward induction solution procedure. Consider the first swing opportunity at t = 0.05:

during the backward induction, this is actually the last time the jump condition (5.11)

will be applied, since it corresponds to τ = 0.95. If we assume that the option value is

continuous w.r.t. spot price before applying the jump condition (5.11), then it remains
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Figure 5.4: Up-swing exercise regions for the swing option specified by the parameters of
Table 5.2—left panel: regime one, right panel: regime two. For a given nu and exercise time, if
the spot price is within the region then an up-swing should be executed. The upper boundary of
the regions is S = ∞. The pricing parameters used are in Table 5.1.

continuous afterwards; i.e.

U regime=1
{nu=0,nd=0}(S, t = 0.05) (5.12)

is continuous w.r.t. spot price S. In general, however, the function in (5.12) will not be

smooth at the boundary S = SX-DS of the region where a down-swing is optimal; in our

example, SX-DS = 0.47 at t = 0.05 (τ = 0.95). Therefore, the first derivative of (5.12) (i.e.

the delta) will be discontinuous at S = 0.47.

Figure 5.2 plots the option value and delta at time zero (τ = 1), while the first swing

opportunity—where a discontinuity in delta occurs—is at t = 0.05 (τ = 0.95). However,

the relatively low volatility in regime one (σ1 = 0.160) means the discontinuity in delta at

τ = 0.95 (t = 0.05) will not have been substantially smoothed by the PDEs when τ = 1

(t = 0) is reached. Indeed, near S = 0.85 there is another bump in the delta evident in

Figure 5.2, which is a remnant of the discontinuity at τ = 0.9 (t = 0.1) due to the application
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of the jump condition at that time. By way of comparison, a similar discontinuity appears

in the delta at t = 0.05 (τ = 0.95) for regime two, but is quickly smoothed by the high

volatility in that regime (= 0.799), such that it is not evident at t = 0 (τ = 1).

5.4 Hedging a Swing Option

A swing option is path dependent, as the exercise decision at each swing opportunity is

contingent on the spot price at that time and the number of swing rights already executed.

We assume the seller of the option does not hedge with the underlying, so forward2 contracts

will be treated as the base security for hedging. However, since the swing option is priced

in a regime-switching market, a perfect hedge cannot be constructed using just a forward.

Let f(t0, T ) denote the forward price at time t0 for a contract with delivery at T , and

UF (S, t, f(t0, T )) be the value of a forward contact at (S, t) with forward price f(t0, T )

(where t0 ≤ t ≤ T ). From the fundamental definition of the forward price,

UF (S0, t0, f(t0, T )) = 0 .

At time tm, the hedger enters into the prevailing forward contract (at no cost). At a time

tm+1 later, she must rebalance the hedge portfolio. Consider two possible strategies:

1. Close out the position in the original forward contract, which is now worth

UF (Sm+1, tm+1, f(tm, T )), and enter into the prevailing forward contract (with forward

price f(tm+1, T )). This is essentially the mark-to-market process that occurs with

futures trading;

2A long position in a forward contract obligates the holder to buy the underlying asset or commodity
at some future delivery time T for the forward price f ; the payoff of the contract at delivery is therefore
ST − f . The forward price f is chosen at inception such that it costs nothing to enter into the contract, and
may be found using f = EQ[ST |S0]. Conceptually, a forward contract can be thought of as the combination
of a long position in a European call and a short position in a European put whose common strike f (the
forward price) is chosen such that the initial value of the net position is zero.
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2. Rebalance the position in the original forward contract.

In fact, since

ST − f(tm+1, T ) =
[
ST − f(tm, T )

]
+
[
f(tm, T )− f(tm+1, T )

]

we have that, at time tm+1 and spot price Sm+1,

New forward contract︷ ︸︸ ︷
UF

(
Sm+1, tm+1, f(tm+1, T )

)
= UF

(
Sm+1, tm+1, f(tm, T )

)︸ ︷︷ ︸
Original forward contract

+ e−r(T−tm+1)
[
f(tm, T )− f(tm+1, T )

]
︸ ︷︷ ︸

Cash

,

which means the value of the new and original forward contracts differ only by an amount

of cash. Hence, the two above strategies are the same—we will employ the second for

computational convenience. Therefore, the forward price at time zero is computed for

delivery when the swing option expires at time T , such that f0 = f(0, T ). A contract with

payoff ST − f0 is used as the base hedging instrument.

We consider hedging the swing option specified by the parameters in Table 5.2. The

initial state is regime one with S0 = 5.00, such that the forward price for delivery in one year

is f0 = $4.55. The same hedging strategies as Chapter 4 are employed: to eliminate just

the diffusion risk, the forward is used to establish a delta-neutral hedge, while a 1.5-year

European call option on the spot,3 with a strike of $5.0, is used along with the forward to

hedge both the diffusion and regime-switching risk (i.e. a perfect hedge). For each hedging

strategy, 250,000 simulations are carried out. It is assumed that the holder of the swing

option acts optimally in terms of exercising their swing rights—they use the optimal exercise

3In general, put/call options in the energy markets are written on forward/future prices. However, for a
forward contact with delivery time T , the forward price converges to the spot price as t → T . Since options
on natural gas forwards traded on the New York Mercantile Exchange expire the day before the underlying
forward contract, using a European option written on the spot is a valid approximation.
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Parameter Description Value

A Annual constant time adjustment 0.483
SA Semi-annual constant time adjustment 0.196
λ12 Transition intensity for state 1 to 2 0.5
λ21 Transition intensity for state 2 to 1 2.0
r Risk-free rate 0.05

Regime 1 Regime 2

σi Diffusive volatility 0.160 0.799
αi Constant drift without seasonality -0.040 0.268
βi

A Annual seasonality parameter 0.265 0.160
βi

SA Semi-annual seasonality parameter 0.133 0.344

Table 5.3: Parameters and data for the two-state regime-switching process used to model the
real-world (P measure) spot price of natural gas. The initial state is regime one.

strategy captured by Figures 5.3 and 5.4.

The real-world spot price of natural gas, governed by the P measure, spends more time

in the high-volatility state (regime two) than suggested by the Q measure [20]. We therefore

make transitions out of regime one more frequent, and transitions out of regime two less

frequent, under the P measure we use for simulation. To simulate the real-world spot

price, the same process as (5.4) is used with the P measure data from Table 5.3. The time-

dependent drift under the P measure, µP
i (t), has the same fundamental shape as under the Q

measure (see Figure 5.1), only it is vertically shifted and compressed. This is an admittedly

ad-hoc approach, but our goal is to simulate a real-world process that is somewhat different

from the risk-adjusted process.

The hedging results for various rebalancing frequencies are given in Table 5.4. The

regime-switching risk ignored by the delta hedge manifests as a higher standard deviation

and more negative 99% VaR than for the perfect hedge—treating the regime-switching risk

by adding the call option to the hedge portfolio leads to a marked improvement in the
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results. In addition, more frequent rebalancing leads to a lower standard deviation and

less negative 99% VaR for the perfect hedge, as opposed to the delta hedge, where the

improvement levels off.

For the case of 100 rebalancings, the distributions of profit and loss are presented in

Figure 5.5. The mean of the P&L for the delta hedge is negative, such that the positive

bias of the central mass is offset by a left tail (which is not visible); this left tail is absent

with the perfect hedge

Number of
Rebalancings

Forward Only (‘delta’ hedge) Forward + Call (‘perfect’ hedge)

Mean StdDev 99% VaR Mean StdDev 99% VaR

20 -0.40 0.75 -3.11 -0.01 0.22 -0.75

100 -0.37 0.69 -2.72 0.00 0.10 -0.33

200 -0.37 0.68 -2.66 0.00 0.07 -0.23

Table 5.4: Statistical measures of the relative profit and loss when hedging the swing option
specified by Table 5.2 under the real-world process described by the data in Table 5.3. Both
the delta hedge and perfect hedge are considered. Regime one is the initial state, and 250,000
simulations are carried out. The 99% VaR is defined as the 1% quantile of the relative profit
and loss.

Hedging by Local Risk Minimization

Recall from Chapter 4 that, in a two-state regime-switching model where the underlying

is tradeable but does not jump, the delta hedge (using the underlying asset) is the local

risk-minimizing hedging strategy, even though it only treats the diffusion risk [55]. This is

because the underlying’s price does not change when the regime changes, and hence cannot

be used to mitigate the regime-switching risk. However, the value of the forward contract

in our natural gas market will change when there is a change in regime. Therefore, if the

forward alone is used to hedge, we can consider a local risk-minimizing strategy that treats

both the diffusion and regime-switching risk simultaneously (see Section 4.2.5).
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Figure 5.5: Distributions of relative profit and loss when hedging the swing option specified in
Table 5.2 under the real-world process described by the data in Table 5.3. Both the delta hedge
and a perfect hedge are considered. The hedge is rebalanced at intervals of 0.01 years. Regime
one is the initial state, and 250,000 simulations are carried out.

Assuming the spot price is in regime i, the optimization to be solved when rebalancing

is

min
φ

((
σiS

)2
(
− ∂V i

∂S
+ φ

∂U i
F

∂S

)2

+
2∑

j=1
j 6=i

ζij

[
−∆V ij + φ∆U ij

F

)]2
)
, (5.13)

where φ is the weight in the forward contract UF , and V is the value of the swing option. We

again must choose the weighting factors ζij for the transitions out of the current regime i.

Using the P measure transition intensities λP
ij is the most natural choice, since (5.13) will

correspond to a local minimization of Variance[dΠ], where Π is the value of the overall

hedged position. Generally, however, these intensities are unknown. As before, setting

ζij = 1 encapsulates a lack of knowledge concerning the rate of regime change.

Hedging results for both P and uniform weighting are presented in Table 5.5. With

both weightings, the results are better than for the delta hedge (compare with Table 5.4),
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although there is not much improvement as the rebalancing becomes more frequent.

Number of
Rebalancings

P Weighting Uniform Weighting
Mean StdDev 99% VaR Mean StdDev 99% VaR

20 -0.09 0.55 -1.72 -0.03 0.58 -1.58

100 -0.08 0.51 -1.44 -0.02 0.52 -1.27

200 -0.08 0.50 -1.40 -0.02 0.52 -1.22

Table 5.5: Statistical measures of the relative profit and loss for the local risk-minimizing hedge
of the swing option specified by Table 5.2 under the real-world process described by the data in
Table 5.3. Regime one is the initial state, and 250,000 simulations are carried out.

5.5 Summary

In this chapter, we demonstrated how the numerical scheme for solving the option-pricing

PDEs in a regime-switching model can be used to valuate swing options in a realistic market.

The pricing procedure yields the optimal exercise strategy that the holder of such an option

should execute. On the other hand, the seller of the swing option must hedge their short

position. Using a forward contract to establish a delta-neutral hedge will not protect against

the regime-switching risk. A local risk-minimizing hedge performs somewhat better, but

the hedger is still subject to significant tail risk. However, in a two-state regime-switching

market, the forward and an additional hedging instrument are sufficient to eliminate all

sources of (instantaneous) risk. When this perfect hedge is used as the basis of a discretely

rebalanced strategy, the results are much better than a delta or local risk-minimizing hedge

that uses the forward only.



Chapter 6

Dynamic Hedging under Jump

Diffusion: Theory

In the following, we derive an expression for the instantaneous jump risk in a jump-diffusion

model. We then consider an idealized continuous trading environment and demonstrate

that, by imposing delta neutrality and suitably bounding the jump risk and transaction costs

at each instant, the variance of the terminal hedging error can be made arbitrarily small.

This continuous-time treatment motivates an objective function that can be minimized at

each rebalance time within a discrete hedging procedure.

6.1 Derivation of Jump Risk

Consider a jump-diffusion market whose evolution is governed by the stochastic process1

dS =
(
αP − λPκP)S dt + σS dZP +

(
J − 1

)
S dπP , (6.1)

1Although dividends are not treated in this thesis, their addition would not complicate the hedging
strategies.

87
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where jumps arrive with intensity λP. The jump size J is distributed according to gP(J)

and has a mean of κP + 1. The option-pricing PIDE for derivatives in this market is

∂V

∂t
+

1
2
σ2S2∂

2V

∂S2
+
(
r − λQκQ)S∂V

∂S
−
(
r + λQ)V + λQ

∫ ∞

0
V (JS, t)gQ(J) dJ = 0 .

(6.2)

To hedge a target option V , the standard hedge portfolio is used: it contains an amount

B in cash, a long position in e units of the underlying, and a long position in N additional

hedging instruments ~I with weights ~φ. The overall hedged position has value

Π = − V + eS + ~φ · ~I + B︸ ︷︷ ︸
Hedge Portfolio H

.

To represent changes in the components of Π due to a jump of size J , we use ∆V =

V (JS, t)− V (S, t), ∆S = S(J − 1), and ∆~I = ~I(JS, t)− ~I(S, t).

If a change in the short position −V is always precisely neutralized by the hedge portfolio

H, the hedge is considered perfect and Π will have zero variation over an instant dt. We must

therefore consider the infinitesimal change in the overall hedged position value Π. Since we

are concerned with the real-world evolution of this portfolio, the underlying jump-diffusion

process of interest is governed by the P measure, and is given in (6.1). We have:

dS = ξPS dt + σS dZP + ∆S dπP

dV =
[
∂V

∂t
+
σ2S2

2
∂2V

∂S2
+ ξPS

∂V

∂S

]
dt + σS

∂V

∂S
dZP + ∆V dπP

d~I =

[
∂~I

∂t
+
σ2S2

2
∂2~I

∂S2
+ ξPS

∂~I

∂S

]
dt + σS

∂~I

∂S
dZP + ∆~I dπP

dB = rB dt ,



6.1. DERIVATION OF JUMP RISK 89

where ξP = αP − λPκP and Itô’s lemma has been used to obtain dV and d~I. The above

implies that the instantaneous change in the value of the overall hedged position is

dΠ = −dV + e dS + ~φ · d~I + dB

= −
[
∂V

∂t
+
σ2S2

2
∂2V

∂S2

]
dt + ~φ ·

[
∂~I

∂t
+
σ2S2

2
∂2~I

∂S2

]
dt

+ rB dt +
[
−∆V +

(
e∆S + ~φ ·∆~I

)]
dπP

+ ξPS

[
−∂V
∂S

+ e+ ~φ · ∂
~I

∂S

]
dt + σS

[
−∂V
∂S

+ e+ ~φ · ∂
~I

∂S

]
dZP , (6.3)

where e and ~φ are regarded as constant over dt as they must be set at the beginning of this

instant.

If the portfolio is delta neutral, then

−∂V
∂S

+ e + ~φ · ∂
~I

∂S
= 0 . (6.4)

Imposing delta neutrality within equation (6.3) eliminates the final two terms in the ex-

pression for dΠ, including the one involving the Wiener process dZP. The expression for

dΠ consequently simplifies to

dΠ = −
[
∂V

∂t
+
σ2S2

2
∂2V

∂S2

]
dt + ~φ ·

[
∂~I

∂t
+
σ2S2

2
∂2~I

∂S2

]
dt

+ rB dt +
[
−∆V +

(
e∆S + ~φ ·∆~I

)]
dπP , (6.5)

indicating that dΠ is now a pure jump process with drift. Using an elementary rearrange-
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ment, the pricing PIDEs (6.2) for V and ~I may be written as

∂V

∂t
+

σ2S2

2
∂2V

∂S2
= rV +

{
λQEQ(∆S)− rS

}∂V
∂S

− λQEQ(∆V )

∂~I

∂t
+

σ2S2

2
∂2~I

∂S2
= r~I +

{
λQEQ(∆S)− rS

} ∂~I
∂S

− λQEQ(∆~I) ,
(6.6)

where EQ(∆S) = EQ(S[J − 1]
)

= S EQ(J − 1) = SκQ and

EQ(∆V ) =
∫ ∞

0

(
V (JS, t)− V (S, t)

)
gQ(J) dJ .

Substituting (6.6) into (6.5) yields

dΠ = −
[
rV +

{
λQEQ(∆S)− rS

}∂V
∂S

− λQEQ(∆V )
]
dt

+ ~φ ·

[
r~I +

{
λQEQ(∆S)− rS

} ∂~I
∂S

− λQEQ(∆~I)

]
dt

+ rB dt +
[
−∆V +

(
e∆S + ~φ ·∆~I

)]
dπP

= r

[
−V +

(
∂V

∂S
− ~φ · ∂

~I

∂S

)
S + ~φ · ~I +B

]
dt

+ λQ

[
EQ(∆V )−

(
∂V

∂S
− ~φ · ∂

~I

∂S

)
EQ(∆S)− ~φ · EQ(∆~I)

]
dt

+
[
−∆V +

(
e∆S + ~φ ·∆~I

)]
dπP . (6.7)
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Using the delta neutral constraint (6.4) in (6.7) gives

dΠ = r
[
−V + eS + ~φ · ~I +B

]
dt + λQ

[
EQ(∆V )− eEQ(∆S)− ~φ · EQ(∆~I)

]
dt

+
[
−∆V +

(
e∆S + ~φ ·∆~I

)]
dπP

= rΠ dt

+ λQ dtEQ
[
∆V −

(
e∆S + ~φ ·∆~I

)]
+ dπP

[
−∆V +

(
e∆S + ~φ ·∆~I

)]
.

(6.8)

Equation (6.8) indicates that the value of the overall hedged position grows at the risk-

free rate (as usual, if the portfolio is delta neutral), but has additional terms due to the

jump component:

λQ dt EQ
[
∆V −

(
e∆S + ~φ ·∆~I

)]
+ dπP

[
−∆V +

(
e∆S + ~φ ·∆~I

)]︸ ︷︷ ︸
instantaneous jump risk

. (6.9)

The first component of the jump risk is deterministic, while the second part is stochastic as

it depends on whether a jump occurs over the instant dt. Note that if the jump processes

under P and Q are the same, the real-world expected value of the instantaneous jump risk

is zero.

Remark 6.1 (Regime-Switching Risk vs. Jump Risk). The regime-switching risk

in (4.28) and the jump risk in (6.9) are of the same form. Since the possible states in a

regime-switching model come from a finite set, the expectation over all states involves a sum.

On the other hand, when jumps in a jump-diffusion model are drawn from a continuum,

expectations will involve an integral.
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6.2 Global Bound on the Hedging Error

Without using an infinite number of hedging instruments, it is impossible to totally elim-

inate the jump risk—and hence form a perfect hedge—in a jump-diffusion market with a

continuum of possible jump amplitudes [1]. However in this section we demonstrate that,

by forcing the jump risk and transaction costs to be sufficiently small at each instant of

a continuously rebalanced, delta-neutral hedge, the variance of the terminal hedging error

can be made arbitrarily small.

For future reference, let Es[Xt] for t ≥ s denote the expected value of Xt conditioned on

information known at time s. We define a proper weighting function in the following way:

Definition 6.1 (Proper Weighting Function). A proper weighting function W with

respect to g is such that

∫ ∞

0
f2(J)g(J) dJ ≤

∫ ∞

0
f2(J)W (J) dJ < ∞ (6.10)

for any function f satisfying
∫ ∞

0
f2(J)g(J) dJ < ∞.

Also, to avoid complication w.r.t. imposing delta neutrality, we shall assume for the purposes

of this chapter that the transaction cost for the underlying is zero.

For a hedge portfolio consisting of N instruments, the total transaction cost of rebal-

ancing at time t is

Υt =
N∑

k=1

Υk
t ≥ 0 , (6.11)

where Υk
t is the transaction cost for the kth instrument. We will construct the hedging

strategy so that the transaction cost is proportional to dt; that is,

Υt = ϑt dt , (6.12)
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with ϑt ≥ 0. This assumption is required in order to ensure finite transaction costs—we

will indicate in the next section how this can be approximated in practice.

Over an instant, the value of the overall hedged position will decrease by an amount

Υt = ϑtdt due to the transaction costs, such that the time evolution of the hedged portfolio

will be augmented by a negative drift, namely −ϑtdt. The instantaneous change in the

delta-neutral hedged position (6.8) may therefore be expressed as

dΠt =
(
rΠt + λQ EQ

t

[
−∆HJ(St, t)

]
− ϑt

)
dt + ∆HJ(St, t) dπP , (6.13)

where

∆HJ(St, t) = −
(
V (JSt, t)− V (St, t)

)
+ eSt

(
J − 1

)
+ ~φ ·

(
~I(JSt, t)− ~I(St, t)

)
(6.14)

is the random jump component. Note that, as opposed to the derivation of jump risk in

the previous section, here we make explicit the dependence on time. This allows us to more

easily consider the discounted overall hedged position Π̃t = e−rt Πt, such that

dΠ̃t = e−rt
(
− rΠt dt + dΠt

)
. (6.15)

Substituting (6.13) into (6.15) yields

dΠ̃t = e−rt

((
λQ ΘQ

t − ϑt

)
dt + ∆HJ(St, t) dπP

)
(6.16)

with

ΘQ
t = EQ

t

[
−∆HJ(St, t)

]
. (6.17)
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Our goal is to show that, by making the jump risk and transaction costs sufficiently small

at each instant, the variance of the terminal hedging error ΠT can be made arbitrarily close

to zero. To do this we will examine the expectation of (Π̃T )2, where Π̃2
t follows (by Itô’s

formula)

dΠ̃2
t = 2e−rt

(
λQ ΘQ

t − ϑt

)
Π̃t dt +

(
Π̃2

t (JSt)− Π̃2
t (St)

)
dπP . (6.18)

Here, Π̃2
t (JSt) − Π̃2

t (St) represents the change in the value of Π̃2 assuming an asset price

jump of size J occurs at time t. We will need the following result related to this and other

quantities in order to establish a bound on the hedging error.

Lemma 6.1 (Bounds on Expectations Involving Π̃t). Assume that, for time t, the

following five conditions are met:

(A1)(A1)(A1) W (J) is a proper weighting function with respect to both gP(J) and gQ(J);

(A2)(A2)(A2) Jump risk is made small: ∀St > 0 ,
∫ ∞

0

[
∆HJ(St, t)

]2
W (J) dJ < ε ;

(A3)(A3)(A3) Transaction cost is made small: ∀St > 0 ,
(
ϑt(St)

)2
< %2 ε, where % > 0 ;

(A4)(A4)(A4) The second moment of Π̃t exists: EP
0

[
Π̃2

t

]
< ∞ ;

(A5)(A5)(A5) Delta neutrality is imposed.

Then

∣∣∣∣EP
0

[
Π̃2

t (JSt)− Π̃2
t (St)

]∣∣∣∣ < ε + 2
√
εEP

0

[
Π̃2

t

]
, (6.19)

∣∣∣∣EP
0

[
ΘQ

t Π̃t

]∣∣∣∣ <

√
εEP

0

[
Π̃2

t

]
, (6.20)
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and

∣∣∣∣EP
0

[
ϑt Π̃t

]∣∣∣∣ < %

√
εEP

0

[
Π̃2

t

]
. (6.21)

Remark 6.2. Conditions (A2 ) and (A3 ) imply that, for time t, we have a well-defined

procedure for rebalancing the hedge portfolio (based on St and the existing weights) such

that our measure of jump risk and the transaction cost can be made arbitrarily small.

Remark 6.3. The expression EP
0

[
Π̃2

t

]
represents the expected squared value of the discounted

overall hedged position at time t. The expression EP
0

[
Π̃2

t (JSt) − Π̃2
t (St)

]
represents the

expected change in the value of Π̃2
t assuming a jump occurs at time t. Note that both of

these expectations are taken at time zero, such that the only information known is S0.

Proof of Lemma 6.1. The value of the discounted overall hedged position at time t (after

rebalancing) is

Π̃t(St) = e−rt
(
− V (St, t) + eSt + ~φ · ~I(St, t) + B(t)

)
, (6.22)

while after a jump at time t it has value

Π̃t(JSt) = e−rt
(
− V (JSt, t) + eJSt + ~φ · ~I(JSt, t) + B(t)

)
. (6.23)

Solving for the bank account in (6.22) and substituting into (6.23) yields

Π̃t(JSt) = Π̃t(St) + e−rt∆HJ(St, t) ,
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where the definition of ∆HJ(St, t) in (6.14) is used. Therefore, we have

∣∣∣∣EP
0

[
Π̃2

t (JSt)− Π̃2
t (St)

]∣∣∣∣ =
∣∣∣∣EP

0

[(
Π̃t(St) + e−rt∆HJ(St, t)

)2 − Π̃2
t (St)

]∣∣∣∣
=

∣∣∣∣EP
0

[(
e−rt∆HJ(St, t)

)2 + 2e−rtΠ̃t(St) ∆HJ(St, t)
]∣∣∣∣

≤ EP
0

[(
∆HJ(St, t)

)2] + 2
∣∣∣∣EP

0

[
Π̃t(St) ∆HJ(St, t)

]∣∣∣∣ .
(6.24)

Consider the first expectation on the right-hand side of (6.24), which only depends on

the asset price at time t. By conditioning on St:

EP
0

[(
∆HJ(St, t)

)2] =
∫ ∞

0

[∫ ∞

0

(
∆HJ(St, t)

)2
gP(J) dJ

]
p(St|S0) dSt

≤
∫ ∞

0

[∫ ∞

0

(
∆HJ(St, t)

)2
W (J) dJ

]
p(St|S0) dSt

(
by (A1 )

)
<

∫ ∞

0
ε p(St|S0) dSt

(
by (A2 )

)
= ε , (6.25)

where p(St|S0) is the transition density under P. For the second expectation on the right-

hand side of (6.24), since EP
0

[
Π̃2

t (St)
]
< ∞ by (A4 ) and EP

0

[(
∆HJ(St, t)

)2]
< ε by (6.25),

the Cauchy–Schwarz inequality gives

∣∣∣∣EP
0

[
Π̃t(St) ∆HJ(St, t)

]∣∣∣∣ ≤
√

EP
0

[
Π̃2

t

]
EP

0

[(
∆HJ(St, t)

)2]
<

√
εEP

0

[
Π̃2

t

]
. (6.26)
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Using the upper bounds (6.25) and (6.26) in (6.24) yields

∣∣∣∣EP
0

[
Π̃2

t (JSt)− Π̃2
t (St)

]∣∣∣∣ < ε + 2
√
εEP

0

[
Π̃2

t

]
,

which is the first implication (6.19) of this Lemma.

For the second part of the Lemma, consider

EP
0

[(
ΘQ

t

)2] = EP
0

[(
EQ

t

[
−∆HJ(St, t)

])2
] (

by def. of ΘQ
t in (6.17)

)
≤ EP

0

[
EQ

t

[(
∆HJ(St, t)

)2]] (
since E[X]2 ≤ E[X2]

)
=
∫ ∞

0

[∫ ∞

0

(
∆HJ(St, t)

)2
gQ(J) dJ

]
p(St|S0) dSt

≤
∫ ∞

0

[∫ ∞

0

(
∆HJ(St, t)

)2
W (J) dJ

]
p(St|S0) dSt

(
by (A1 )

)
<

∫ ∞

0
ε p(St|S0) dSt

(
by (A2 )

)
= ε . (6.27)

As such, EP
0

[(
ΘQ

t

)2] exists and, since EP
0

[
Π̃2

t

]
<∞ by (A4 ),

∣∣∣∣EP
0

[
ΘQ

t Π̃t

]∣∣∣∣ ≤
√

EP
0

[(
ΘQ

t

)2]EP
0

[
Π̃2

t

]
<

√
εEP

0

[
Π̃2

t

]
,

where the Cauchy–Schwarz inequality and the bound in (6.27) are employed.

Finally, condition (A3 ) guarantees that ϑ2
t is always bounded by %2 ε, which means

EP
0

[(
ϑt

)2]
< %2 ε. Similar to the above, an application of the Cauchy–Schwarz inequality

gives the result (6.21).

Before proving our main theorem, we need the following result.
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Theorem 6.1. Assume that both f(t) and g(t) are continuous, and satisfy

f ′(t) < A
√
f(t) + B

g′(t) = A
√
g(t) + B

for all t ≥ 0, with A and B positive constants. If f(0) = g(0) = 0, then g(t) > f(t) for all

t > 0.

Proof of Theorem 6.1. First, note that derivatives at t = 0 correspond to the right-hand (i.e.

a one-sided) derivative. Due to the fact g′(0) = B > f ′(0), we have that g′(0)− f ′(0) > 0.

Define h(t) = g(t) − f(t), which means h(0) = 0. Since h′(t) = g′(t) − f ′(t) implies

h′(0) = g′(0) − f ′(0) > 0, the definition of the one-sided derivative yields g(t) > f(t) for

some domain (0, tH), where tH > 0.

Now, assume that, for some t̂, f(t̂) > g(t̂). This means there exists a t∗ ∈ [tH , t̂) such

that f(t∗) = g(t∗) and f ′(t∗) > g′(t∗). However, from the assumptions of the theorem, we

have

f ′(t∗) < A
√
f(t∗) +B = A

√
g(t∗) +B = g′(t∗) ,

which leads to a contradiction. The case f(t̂) = g(t̂) is handled similarly. This implies

tH = ∞, and hence the theorem is proven.

We are now in a position to prove the main result of this section.

Theorem 6.2 (Variance of the Hedging Error Can be Made Arbitrarily Small).

If, for all times t in the investment period [0, T ] the conditions (A1 )− (A5 ) of Lemma 6.1

hold and EP
0

[
Π2

t

]
is assumed continuous, then

EP
0

[
Π2

T

]
< ε

e2rT (λP)2

4 (λP + λQ + %)2

[
W−1

(
− exp

{
−2(λP + λQ + %)2

λP T − 1
})

+ 1
]2

,

(6.28)
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where W−1(x) is the -1 branch of the Lambert W function [27].2 That is, EP
0

[
Π2

T

]
≤ Cε,

where C is a constant that only depends on λP, λQ, %, r, and T .

Proof of Theorem 6.2. The stochastic differential equation (6.18) may be used to derive an

ODE relating the moments of Π̃t, namely

dEP
0 [Π̃2

t ]
dt

= 2e−rtλQ EP
0

[
ΘQ

t Π̃t

]
− 2e−rt EP

0

[
ϑt Π̃t

]
+ λP EP

0

[
Π̃2

t (JSt)− Π̃2
t (St)

]
(6.29)

with initial condition EP
0

[
Π̃2

0

]
= 0. Equation (6.29) yields

dEP
0 [Π̃2

t ]
dt

≤ 2λQ
∣∣∣∣EP

0

[
ΘQ

t Π̃t

]∣∣∣∣ + 2
∣∣∣∣EP

0

[
ϑt Π̃t

]∣∣∣∣ + λP
∣∣∣∣EP

0

[
Π̃2

t (JSt)− Π̃2
t (St)

]∣∣∣∣ ,
which allows us to use the bounds established in Lemma 6.1 to set up the differential

inequality

dEP
0 [Π̃2

t ]
dt

< 2λQ
√
εEP

0

[
Π̃2

t

]
+ 2%

√
εEP

0

[
Π̃2

t

]
+ λP

(
ε+ 2

√
εEP

0

[
Π̃2

t

])
;

the above may be written more succinctly as

dEP
0 [Π̃2

t ]
dt

< 2
√
ε
(
λP + λQ + %

)√
EP

0

[
Π̃2

t

]
+ ε λP . (6.30)

We define a bounding function β(t), which satisfies the ODE

dβ

dt
= 2

√
ε
(
λP + λQ + %

)√
β(t) + ε λP (6.31)

2The Lambert W function is defined as the inverse of y = xex. For any y ∈ (−e−1, 0), there are two
real values x∗ such that y = x∗ex∗ , with one root x∗1 ∈ (−1, 0) and the other root x∗2 ∈ (−∞,−1). The
branch W−1 corresponds to those x∗ that are less than or equal to -1. Therefore, W−1(−e−1) = −1 and
W−1(0) = −∞.
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with initial condition β(0) = 0. This initial value problem has the exact solution

β(t) = ε
(λP)2

4 (λP + λQ + %)2

[
W−1

(
− exp

{
−2(λP + λQ + %)2

λP t − 1
})

+ 1
]2

,

(6.32)

where W−1(x) is the -1 branch of the Lambert W function. Consider the relationship

between β(t) and EP
0

[
Π̃2

t

]
. Both are non-negative quantities with an initial value of zero.

Theorem 6.1 implies EP
0 [Π̃2

t ] < β(t), which means

EP
0

[
Π̃2

t

]
< ε

(λP)2

4 (λP + λQ + %)2

[
W−1

(
− exp

{
−2(λP + λQ + %)2

λP t − 1
})

+ 1
]2

.

Using the fact that Πt = ertΠ̃t and considering the above at t = T yields the bound on

EP
0 [Π2

T ] in (6.28).

6.3 A Discrete Hedging Strategy

Theorem 6.2 formalizes the idea that, in order to make the terminal hedging error small,

the jump risk and transaction cost should be made small at each instant of a continuously

rebalanced hedge (assuming that the instantaneous diffusion risk is eliminated by imposing

delta neutrality). In practice, of course, a hedge cannot be continuously rebalanced—the

rebalancing interval ∆t will be of non-infinitesimal length. Nonetheless, our discrete hedging

strategy will treat

∫ ∞

0

[
∆HJ(St, t)

]2
W (J) dJ (6.33)

as the measure of jump risk that should be made as small as possible when the hedge is

rebalanced. Recall that Υk
t is the transaction cost for rebalancing the kth instrument at
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time t. Therefore, by minimizing

N∑
k=1

(
Υk

t

)2
, (6.34)

the total transaction cost (6.11) due to rebalancing at time t can be made small. We use

the ‘sum of squares’ representation in (6.34) for computational reasons, as the expression

can be minimized by the method of Lagrange multipliers.

Minimizing jump risk and reducing transaction costs are competing goals, so this prob-

lem falls under the rubric of multi-objective optimization. One typical way of handling such

a problem is to weight the objectives by a set of coefficients that sum to unity. If ξ is the

weight on the jump risk exposure (6.33) and 1 − ξ is the weight on the transaction cost

component (6.34), then the objective we minimize at each rebalance time is

ξ

{∫ ∞

0

[
∆HJ(St, t)

]2
W (J) dJ

}
+

(
1− ξ

) N∑
k=1

(
Υk

t

)2
, (6.35)

where ξ ∈ [0, 1]. The instantaneous diffusion risk is eliminated by simultaneously imposing

delta neutrality via a linear constraint.

The following Lemma relates a bound on the objective (6.35) to bounds required to

establish the continuous-time result in Theorem 6.2 for EP[Π2
T ], i.e. when ∆t→ 0.

Lemma 6.2 (Bounds Dictated by the Hedging Objective). Assume that, for the

current time t and asset price St, the condition

ξ

{∫ ∞

0

[
∆HJ(St, t)

]2
W (J) dJ

}
+
(
1− ξ

) N∑
k=1

(
Υk

t

)2
< ε∗∆t2 (6.36)

holds for some ξ ∈ (0, 1). In that case,
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∫ ∞

0

[
∆HJ(St, t)

]2
W (J) dJ <

ε∗∆t2

ξ
(6.37)

and

(
Υt

)2
=

[
N∑

k=1

Υk
t

]2

<
ε∗∆t2

1− ξ
N , (6.38)

where Υt the total transaction cost due to rebalancing at time t.

Proof of Lemma 6.2. The first result (6.37) is a simple consequence of the fact that both

the jump risk and transaction cost component of the objective are non-negative. Similarly

N∑
k=1

(
Υk

t

)2
<

ε∗∆t2

1− ξ
.

Now consider

[
N∑

k=1

Υk
t

]2

=
N∑

l=1

N∑
m=1

Υl
tΥ

m
t

≤
N∑

l=1

N∑
m=1

(
Υl

t

)2 + (Υm
t )2

2

=
N∑

l=1

N∑
m=1

(
Υl

t

)2
2

+
N∑

l=1

N∑
m=1

(Υm
t )2

2

=
N

2

N∑
l=1

(
Υl

t

)2
+

N

2

N∑
m=1

(Υm
t )2

≤ N

2
ε∗∆t2

1− ξ
+

N

2
ε∗∆t2

1− ξ

=
ε∗∆t2

1− ξ
N ,



6.3. A DISCRETE HEDGING STRATEGY 103

which is the desired result in (6.38).

Consider an idealized trading environment: by making the objective (6.35) arbitrarily

small (in a manner to be described below) for a discretely rebalanced hedge, the variance

of the terminal hedging error will be small as ∆t→ 0. To this end assume that, given ε, %

and ∆t, the trading environment allows ε∗, C, N and ξ to be chosen such that:

1. ε∗ = Cε in (6.36) at any rebalance time tr and for any Str , where N is the maximum

number of hedging instruments required to do this;

2. ξ = C∆t2.

In that case, the results (6.37) and (6.38) of Lemma 6.2 imply that

∫ ∞

0

[
∆HJ(St, t)

]2
W (J) dJ < ε (6.39)

and

(
Υt

)2
< N C ε∆t2 + O(∆t4)

< %2 ε∆t2 + O(∆t4)

where ρ =
√
NC, for any rebalance time tr with any Str .

This process can be carried out for any ∆t < T . Let Υt = ϑt ∆t, so that

ϑ2
t < %2 ε + O(∆t2) . (6.40)

In the limit as ∆t→ 0, conditions (A2 ) and (A3 ) of Theorem 6.2 are satisfied from (6.39)

and (6.40), respectively, and we obtain the bound (6.28) on EP[Π2
T

]
(assuming, of course,

that (A1 ), (A4 ) and (A5 ) in Theorem 6.2 also hold). Hence, in the limit, our discrete
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hedging strategy will yield a terminal hedging error whose variance can be made arbitrarily

small.

Remark 6.4 (Hedging in Practice). It is always possible to satisfy the transaction cost

objective (A3) by trading only in the underlying, although in this case the jump risk is

expected to be substantial. Indeed, we may not be able to make both the jump risk and

transaction cost small in the manner required by (6.36). As a practical matter, at each

rebalance time we simply attempt to make the objective (6.35) as small as possible for a

given ξ.

Remark 6.5 (Choice of ξ). If we fix ξ and minimize the objective (6.35), the above

analysis implies that the best choice of ξ should be O(∆t2).

Remark 6.6 (The Form of the Transaction Cost Penalty Function). If the trans-

action cost penalty function in the objective function (6.35) is of the form

[
N∑

k=1

Υk
t

]2

,

then ρ in (6.40) will be independent of N . However, this penalty function is not amenable

to minimization via Lagrange multipliers. In any event, since in practice rebalancing is

done discretely and only a small number of hedging instruments are used, the theory of this

chapter provides a justification for our real-world strategy.

6.4 Summary

In this chapter, we derived a representation of the instantaneous jump risk in a jump-

diffusion model, and defined an integral which is a measure of the exposure to this risk. We

showed that, if this measure of jump risk and the transaction cost can be made sufficiently

small at each instant of a continuously rebalanced, delta-neutral hedge, then the terminal
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hedging error can be made arbitrarily small. This analysis led to an objective function,

which is the weighted sum of a jump risk and transaction cost penalty function, that can be

minimized at each rebalancing time of discretely rebalanced hedge. We also demonstrated

that, in an idealized trading environment, the hedging error from this discrete strategy can

be made arbitrarily small as the rebalancing interval goes to zero.





Chapter 7

Dynamic Hedging under Jump

Diffusion: No Transaction Costs

In order to focus on the effect of jumps when hedging, this chapter considers a jump-diffusion

market in which there are no transaction costs. Therefore, the objective minimized at each

rebalance time consists simply of a measure of the jump risk. The analysis of Chapter 6

implies that, if the jump risk at each rebalance time is made small, then the global hedging

error should also be small. We will examine the particulars of the optimization problem in

this case, including the selection of a weighting function and the mathematical details of

its solution. Hedging simulations of the discrete strategy are then carried out for both a

European and American target option. In reality, a hedger will not have exact knowledge of

the P and Q measures that govern the market, so we investigate the effect of using estimates

of these measures.

107
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TRANSACTION COSTS

7.1 Minimizing Jump Risk

Consider the writer of an option who wants to use the hedge portfolio

H = eS + ~φ · ~I + B

to insulate their position from diffusion and jump risk over the next instant. If the jump

amplitudes are drawn from a finite set of size M , the instantaneous jump risk can be

eliminated by introducing M hedging instruments into ~I. The linear system

−
[
V (JiS, t)− V (S, t)

]
+ eS

[
Ji − 1

]
+ ~φ ·

[
~I(JiS, t)− ~I(S, t)

]
= 0 i = 1, . . . ,M

−∂V
∂S

+ e + ~φ · ∂
~I

∂S
= 0 (7.1)

ensures that, for the current time t and asset price S, the diffusion risk is removed and the

overall hedged position is invariant to jumps of size J∗ ∈ {J1, J2, . . . , JM}.

Since it is most often assumed that jumps are drawn from a continuum, the goal when

rebalancing the hedge is to minimize the jump risk using a practical number of instruments,

while simultaneously eliminating the diffusion risk. Therefore, at each rebalance time, we

compute the hedge weights {e∗, ~φ∗} that solve the constrained optimization

min
{e,~φ}

∫ ∞

0

[
−∆V +

(
e∆S + ~φ ·∆~I

)]2
W (J) dJ

subject to

e + ~φ · ∂
~I

∂S
=

∂V

∂S
. (7.2)

Other constraints may also be imposed. For example, since the hedge will in practice be
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rebalanced discretely, the gamma-neutral constraint

~φ · ∂
2~I

∂S2
=

∂2V

∂S2
(7.3)

may be added to hedge the higher orders of diffusion risk.

The weighting function W (J) in the objective of (7.2) is set by the hedger. One possible

choice corresponds to the distribution gP(J) of jump amplitudes observed in the market,

since in this case the optimization problem (7.2) is a local variance minimization of dΠ. In

a model with lognormally distributed jumps, for example, one would use the probability

density function associated with a lognormal(µP, γP) random variable. However, since this

requires knowledge of the P measure, the parameters would often have to be approximated.

In order to ensure that the jump risk can become small through bounding the integral

in (7.2), W (J) must be a proper weighting function as described in Definition 6.1. However,

since only a small number of hedging instruments are used in practice, W (J) need not be

a proper weighting function. Therefore a more practical weighting function would be a

uniform density, set to non-zero for the range of jumps deemed likely.

The numerical examples of this chapter will at times employ the uniform-like weight-

ing function plotted in Figure 7.1, which is constant between 1
5 ≤ J ≤ 9

5 and extends

linearly down to zero outside this range on either side. The triangular tails ensure that

the weighting function is continuous, which results in better numerical behaviour within

the FFT procedure we use to compute the integrals necessary for solving the optimization

(this procedure is discussed in Appendix B). This weighting function encapsulates a lack of

knowledge pertaining to the jumps under the P measure: with no information about which

jump sizes are more likely than others, broad protection is sought for J ∈ [0, 2]. In general,

when a uniform-like weighting function with support [Jmin, Jmax] is used, Jmin should be

chosen close to zero in order to protect against all downward jumps. Selecting Jmax is a
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Figure 7.1: A lognormal and uniform-like weighting function. Both functions have a unit
mass.

bit more difficult. The uniform-like weighting function of Figure 7.1 implies jumps of size

J > 2 will not be taken into consideration when the hedge portfolio is rebalanced—if it is

suspected that gP(J) has a slowly decaying right tail, a higher value of Jmax may be needed.

The objective in (7.2) may be expressed as

min
{e,~φ}

∫ ∞

0

[
1
2

(
−∆V +

{
e∆S + ~φ ·∆~I

})2
]
W (J) dJ︸ ︷︷ ︸

F (e,~φ)

. (7.4)

The objective function is quadratic in the unknowns e and ~φ; as such, optimality requires

∂F

∂e
=
∫ ∞

0

[(
−∆V +

{
e∆S + ~φ ·∆~I

}) (
∆S
)]
W (J) dJ = 0

∂F

∂φk
=
∫ ∞

0

[(
−∆V +

{
e∆S + ~φ ·∆~I

}) (
∆Ik

)]
W (J) dJ = 0 for k = 1, . . . , N ,

(7.5)
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where N is the number of hedging instruments in ~I. Any desired linear equality constraints,

such as delta neutrality, may be included via Lagrange multipliers. Therefore, the optimal

solution {e∗, ~φ∗} to the optimization problem (7.2) is found by solving the linear system



(∆S,∆S) (∆S,∆I1) · · · (∆S,∆IN ) 1

(∆I1,∆S) (∆I1,∆I1) · · · (∆I1,∆IN ) ∂I1
∂S

...
...

. . .
...

...

(∆IN ,∆S) (∆IN ,∆I1) · · · (∆IN ,∆IN ) ∂IN
∂S

1 ∂I1
∂S · · · ∂IN

∂S 0





e∗

φ∗1
...

φ∗N

Ψ


=



(∆V,∆S)

(∆V,∆I1)
...

(∆V,∆IN )

∂V
∂S


,

(7.6)

where Ψ is a Lagrange multiplier associated with the delta-neutral constraint.

The linear system entries of the form (∆X,∆Y ) arise from the optimality conditions

in (7.5), and can be expressed as

(∆X,∆Y ) =
∫ ∞

0

[
∆X∆Y

]
W (J) dJ

=
∫ ∞

0

[
X(JS, t)−X(S, t)

][
Y (JS, t)− Y (S, t)

]
W (J) dJ

= X(S, t)Y (S, t)
∫ ∞

0
W (J) dJ +

∫ ∞

0
X(JS, t)Y (JS, t)W (J) dJ

− Y (S, t)
∫ ∞

0
X(JS, t)W (J) dJ − X(S, t)

∫ ∞

0
Y (JS, t)W (J) dJ .

(7.7)

Within their numerical solution of the option-pricing PIDE (2.9), d’Halluin et al. [34] use the

FFT to efficiently compute the integral term. Appendix B gives an overview of the numerical

solution to the PIDE [34], and discusses how the integrals in (7.7) can be computed using

the same FFT techniques. The linear system (7.6) may be poorly conditioned in certain

situations so, as described in Section 3.1, we use a Truncated Singular Value Decomposition
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(TSVD) [38] to solve it.

Consider the following scenario: An option writer, who has just sold a one-year at-

the-money American straddle1 with a strike of $100, wants to form a hedge portfolio that

eliminates the instantaneous diffusion risk and reduces her exposure to jump risk. The op-

tion writer has access to a range of 90-day European call options, with strikes in increments

of $10, which may be used in ~I. The uniform-like weighting function plotted in Figure 7.1

is used for W (J), and the optimization (7.2) is solved for different compositions of ~I. The

left panel of Figure 7.2 presents the jump risk profile ∆HJ , defined in (6.14), for the op-

timized hedge portfolios resulting from various hedging strategies. These curves represent

the change in the value of the overall hedged position as a function of jump size.

There is a large potential loss to a portfolio that ignores jumps, which is evident in the

Delta Hedge Only curve. This is due to the fact that a delta hedge short a convex option

will always suffer a loss when a jump occurs [59]. The intercepts where the curves cross

the zero line are fortuitous points, as there is no change in the overall hedged position for

jumps corresponding to these amplitudes. As more hedging instruments are included, the

curves more closely hug the zero line and the number of intercepts increases. In fact, for

the case of ten hedging options, the curve remains so close to zero that its structure is not

clearly seen; an enlargement is provided in the right panel of Figure 7.2.

Minimizing the jump risk while simultaneously eliminating the instantaneous diffusion

risk is the basis of our hedging strategy. At each rebalance time, the hedge weights are

determined by solving the optimization problem (7.2), which itself entails solving the linear

system (7.6). The integrals necessary to form this linear system can be precomputed and,

during the simulations, the necessary quantities are found by table lookup and interpolation.

We refer the reader to Chapter 3 where these computational details are discussed. Before

presenting some hedging examples, we examine the existing studies related to dynamic

1A straddle is the combination of a call and put of the same strike.
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Figure 7.2: Change in the value of the overall hedged position resulting from a jump. The left
panel shows the performance of several hedging strategies, while the right panel is an enlargement
of the curve when ten options are used to hedge. The target option is a one-year American
straddle with strike $100. The jumps are lognormally distributed, with financial parameters
r = 0.05, σ = 0.2, λQ = 0.1, µQ = −0.92, and γQ = 0.425. Strikes of the European calls used
to hedge: K = 100, K = [90, 100, 110], K = [50, 60, 70, 80, 90, 100, 110, 120, 130, 140].

hedging under jump diffusion.

7.2 Dynamic Hedging: Relationship to Previous Work

Merton [56] considered the characteristics of a simple delta hedge within the context of the

jump-diffusion model. Since this strategy eliminates the diffusion risk, the return process

for the overall position is a pure jump process with drift. Consequently, most of the time

the change in the portfolio is small, but when a jump occurs, the variation can be quite

large. With Merton’s assumption of diversifiable jump risk, the jump processes under P

and Q are the same, so the real-world expected value of the instantaneous jump risk for

the delta hedge is zero: the many small changes and the infrequent large changes will, on

average, balance each other over a long time period. In this case, as noted in [23], the delta

hedge accounts for the average effect of jumps. However, in general the jump processes



114
CHAPTER 7. DYNAMIC HEDGING UNDER JUMP DIFFUSION: NO

TRANSACTION COSTS

under P and Q will not be the same, such that the mean of the delta hedge is expected to

be non-zero.

A delta hedge based on option values found by ignoring jumps (i.e. using the Black–

Scholes formula) was studied by Naik and Lee [59] in a model with lognormally distributed

amplitudes, log(J) ∼ N(µ, γ). The volatility used for pricing in the Black–Scholes formula

is initially set to σ, which comes from the diffusive component of the jump-diffusion process.

If no jump event occurs over the investment period, the continuously rebalanced delta hedge

based on these values is perfect, since the market behaves as if it exists in the Black–Scholes

universe. However, a jump will lead to failure of the hedge as cash inflow/outflow is needed

to maintain replication. The deficiencies remain when a higher value of volatility that

captures some of the added variability due to jumps is used for pricing.2

Delta hedging is clearly insufficient, so other instruments besides the underlying must

be used to hedge. The idea of using a finite number of options as part of a dynamic hedging

strategy to minimize jump risk has also been suggested by Bates [7] and Andersen and

Andreasen [1]. Note that neither of these papers provided any tests of the strategy. In

Bates [7], the hedge portfolio is selected so that (for infinitesimal hedging intervals) the

diffusion risk is identically zero and the expected value of the local jump risk is minimized.

In our notation, this amounts to

{e∗, ~φ∗} = arg min
{e,~φ}

E
[
−∆V +

(
e∆S + ~φ ·∆~I

)]2
, (7.8)

subject to the delta-neutral constraint. Bates [7] suggests that the expectation in equa-

tion (7.8) can be taken w.r.t. either P or Q. A similar procedure is suggested in Andersen

and Andreasen [1], but they recommend using EP in equation (7.8), along with the addi-

2The total volatility of a jump-diffusion process with lognormally distributed jumps is
p

σ2 + λ(γ2 + µ2).

However, Naik and Lee [59] use
p

σ2 + λγ2 in the Black–Scholes formula to capture the increased variability
due to jumps. Although Naik and Lee do not explicitly refer to this quantity as the total volatility, it is a
common error in the literature for µ to be omitted from the calculation [60].
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tional constraint

EP
[
−∆V +

(
e∆S + ~φ ·∆~I

)]
= 0 . (7.9)

Both of these approaches are similar in spirit to our strategy: the jump risk is minimized

in some sense, subject to the delta-neutral constraint that eliminates the instantaneous

diffusion risk.

Cont et al. [25] consider the quadratic program

arg min
{et,~φt,ν0}

EQ[HT − VT

]2
,

where HT is the terminal value of the hedge portfolio, VT is the payoff of the option being

hedged, and {et, ~φt} is the trading strategy over [0, T ] that minimizes the objective. Also,

ν0 is the initial capital. This program employs a global criterion, as its objective function

is an expectation involving the terminal hedging error. However, since this expectation is

taken w.r.t. the pricing measure Q, the solution reduces to a local risk minimization [23]. In

our notation (assuming finite activity jumps3), the optimal hedging weights at each instant

are given by

{e∗, ~φ∗} = arg min
{e,~φ}

λQEQ
[
−∆V +

(
e∆S + ~φ ·∆~I

)]2
+ σ2S2

[
−∂V
∂S

+ e+ ~φ · ∂
~I

∂S

]2
 ,

(7.10)

and ν0 = V (S0, 0) (the option price) [25]. Our hedging procedure is similar to that of Cont

et al. [25], except that in the optimization (7.2) the diffusion risk is explicitly eliminated and

a weighting function is employed to minimize the P measure local risk. If the delta-neutral

condition is imposed in (7.10) and the weighting function in (7.2) is set to gQ(J), then the

3With infinite activity jump processes, an infinite number of jumps with infinitesimal size can occur over
a finite time period. We will consider hedging under such processes in Chapter 9.
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two procedures are identical.

If we minimize the expression in (7.10) then, for infrequent jumps (λQ � 1), the diffusion

component in (7.10) may swamp the jump component, such that the protection against

jumps may be lacking. On the other hand, by explicitly enforcing delta neutrality in (7.2),

the jump protection is the same regardless of how often the jump events occur; no estimate

of the jump intensity is required. Furthermore, only the weighting function has to be set:

we can use gP(J), gQ(J), or even a uniform-like density as in Figure 7.1. Conversely, by

not explicitly enforcing the delta-neutral constraint in (7.10), there exists an extra degree

of freedom, which may be important if using a small number of hedging instruments. For

example, if only the underlying is used in the hedge, the optimization (7.2) will trivially yield

the delta-neutral position, while the weight in the underlying computed by solving (7.10)

will take into account both the diffusion and jump risk.

7.3 Hedging a European Option

7.3.1 The Market Setup

We will use a jump-diffusion model with lognormally distributed jump amplitudes, log(J) ∼

N(µ, γ); the values that characterize the real-world and pricing measures are reported in

Table 7.1. For the Q measure, we use values quite similar to those reported by Andersen

and Andreasen [1], which were found by calibrating to observed prices of S&P 500 index

options. To obtain the P measure parameters, we transform the Q measure using the power
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Probability Measure λ µ γ σ α

Risk-adjusted (Q) 0.1000 -0.9200 0.4250 0.2000 0.0500
Real-world (P) 0.0228 -0.5588 0.4250 0.2000 0.1779

Table 7.1: The pricing Q measure and real-world P measure that characterize the jump-
diffusion model, where log(J) ∼ N(µ, γ). The dividend yield q = 0 and αQ = r = 0.05.

utility equilibrium model of Naik and Lee [59] and Bates [8]. The relations are

σP = σQ

γP = γQ

µP = µQ + (1− β)(γQ)2

λP = λQ exp
{(

1− β
)(
µQ +

1
2
(1− β)(γQ)2

)}
αP = r + (1− β)σ2 + (κPλP − κQλQ) , (7.11)

where 1−β is the coefficient of relative risk aversion; the values in Table 7.1 are found using

1 − β = 2. This market will experience a jump event, on average, once every 43.9 years

with a mean jump size of -37.4%.

We take as the target option a one-year European straddle with strike $100. Since

this option is a combination of a call and put, the payoff is convex and a short position

will be highly sensitive to jumps of any direction. The hedging horizon is half a year, and

three-month call options with strikes in intervals of $5 are used as hedging instruments.

These options are assumed to exist for t ∈ [0.0, 0.25] and t ∈ [0.25, 0.5]. When the hedge

portfolio is rebalanced, the choice of options is based on liquidity considerations as the active

instruments should ideally have strikes in ±10% increments of the underlying’s current

value. For example, if five options are to be held in the hedge at inception, those with

strikes closest to [0.8S0, 0.9S0, 1.0S0, 1.1S0, 1.2S0] should be used. At t = 0.25, a new

collection of three-month options become available.
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7.3.2 Description of the Simulation Experiments

The hedge portfolio will contain five hedging options and the underlying. The hedge is

rebalanced once every 0.0125 years, a total of forty times over the half-year hedging horizon.

A total of 500,000 simulations are carried out: with a mean arrival rate of λP = 0.0228,

there are expected to be about 5,700 jump events.

In addition to assessing the efficacy of our hedging strategy, the simulations will also

explore the consequences of using an estimated pricing measure Q′. It is standard industry

practice to take a set of option prices quoted in the market and “back-out” the pricing

parameters for a particular model that yield the best fit to these observed market prices.

However, calibrating the pricing measure from market prices in this way is an ill-posed prob-

lem for the jump-diffusion model [40, 24]. As such, many different 4-tuples (λQ′
, µQ′

, γQ′
, σ′)

exist that, when used for pricing, produce close agreement to the values of vanilla options

generated by the Q measure of Table 7.1. In the experiments to follow, the estimated pricing

measure Q′ is set to

(λQ′
, µQ′

, γQ′
, σ′) = (0.1077,−0.8639, 0.4906, 0.1991) .

In He et al. [40], this estimate was obtained by calibrating to a synthetic market whose prices

were generated from the Q measure of Table 7.1. The associated real-world measure P′,

found using the relations in (7.11), is (λP′ , µP′ , γP′ , σ′) = (0.0310,−0.3825, 0.4906, 0.1991).

Six simulation sets are carried out. In all cases, the underlying asset evolves according

to a synthetic P measure and the market prices of options are determined by a synthetic

Q measure. These two measures are given in Table 7.1 and, in general, the hedger does

not have exact knowledge of these parameters. However, in the first set of simulations, the

hedger does have perfect knowledge of P and Q—these simulations may be regarded as the

baseline case as they only involve the true model parameters of Table 7.1. The Q measure
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is used by the hedger to compute all option quantities (e.g. prices, deltas) required to find

the hedge weights, while the real-world probability measure P is used to form the weighting

function—in this case, a lognormal density with parameters µP and γP.

The second set of simulations is almost identical to the first, only now the estimated

pricing measure Q′ is used by the hedger; that is, the option prices found from the Q′

measure are used to establish the linear system (7.6) that determines the hedge weights. It

is important to note that it is the true option values under Q that are used when rebalancing

the hedge portfolio, as these are the prices observed in the market. If Q and Q′ give similar

prices, the error introduced by using Q′ is expected to be small.

The third set of simulations gauges the effect of utilizing the estimated pricing measure

in a potentially unintelligent way. As with simulation set #2, Q′ is used by the hedger to

price the options. However, we assume the coefficient of relative risk aversion is known,

and is used in combination with Q′ to estimate the objective measure P′. This estimated

measure is in turn used to establish W (J).

The intention of the final simulation sets (#4, #5 and #6) is to explore further the choice

of weighting function used in constructing the hedge portfolio. For simulation set #4, the

true pricing measure Q is utilized for this purpose, such that the weighting function is a

lognormal density with parameters µQ and γQ. For simulation set #5, a highly unreasonable

parameter set is used as an estimate for the distribution of jump amplitudes, which in turn

is employed for W (J). The last simulation set uses the uniform-like weighting function

plotted in Figure 7.1. The simulation experiments are summarized in Table 7.2; note that

the same 500,000 paths are used for each.

7.3.3 Hedging Results

Statistical measures of the relative P&L (3.1) are provided in Table 7.3. In addition to the

simulation experiments summarized in Table 7.2, results for the delta hedge are also given.
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Measures for Determining the Hedge Portfolio
Simulation Set # Option Quantities Weighting Function

1 Q P
2 Q′ P
3 Q′ P′

4 Q Q
5 Q Lognormal (µ = 0.5, γ = 0.1)
6 Q Uniform-like density of Figure 7.1

Table 7.2: Summary of the simulation experiments. For all simulations, the real-world P
measure is used to generate asset price paths. Moreover, all observable prices in the synthetic
market are derived using the true pricing Q measure.

The outliers of the distributions are very important, as it is these potentially catastrophic

events one tries to prevent by hedging. Various outliers (in the form of the 0.2% and 99.8%

quantiles) are given in the table.

The first row of Table 7.3 gives the summary statistics for the delta hedge. The mean

of the distribution is positive, which agrees with theory: since the Q measure is more

“pessimistic” than the P measure (i.e. the Q measure parameters imply more frequent jumps

with, on average, larger drops in the underlying), the expected value of the instantaneous

jump risk (6.9) is positive. However, this positive mean is offset by the losses that result

when a jump event takes place. The corresponding outliers may be quite large: for about

20% of the jump events, the option seller loses approximately three times the value of the

initial option premium.

Simulation sets #1 through #4 demonstrate that the dynamic hedging strategy works

well for this straddle. The means are all approximately zero, with standard deviations that

are fairly small. More importantly, there are no significantly negative outliers, as was the

case with delta hedging. The use of the estimated pricing measure has little effect, as the

results for simulation sets #1 and #2 are almost identical. This is expected since both Q

and Q′ produce similar option prices.
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Simulation
Set

Mean Standard
Deviation

Quantiles
0.2% 99.8%

Delta Hedge 0.12 0.24 -2.99 0.22
1 0.00 0.05 -0.17 0.28
2 0.00 0.05 -0.17 0.27
3 0.00 0.04 -0.14 0.22
4 0.00 0.07 -0.28 0.43
5 0.08 0.16 -2.11 0.15
6 0.00 0.04 -0.13 0.20

Table 7.3: Statistical measures of the relative profit and loss when hedging a one-year Euro-
pean straddle (K = $100) under jump diffusion. The hedge is rebalanced forty times, equally
interspersed over the half-year hedging horizon. For the α% quantile, approximately α% of the
500,000 simulations resulted in a relative P&L less than the reported amount.

As for the choice of the weighting function, there appears to be a certain amount of

leeway. Using a W (J) motivated by P and P′ gives similar results, though there is a

slight degradation for the weighting function suggested by Q. The salient conclusion from

simulation set #5, which has poor summary statistics, is that the use of a totally inappro-

priate weighting function will not give good results. On the other hand, the results from

using a uniform-like weighting function (simulation set #6) are encouraging: this W (J)

encapsulates a lack of knowledge concerning the distribution of the jump amplitudes, but

nonetheless yields good results.

Imposing delta neutrality eliminates the instantaneous diffusion risk. However, because

the hedge is rebalanced discretely, the protection will degrade as time passes. We now

consider two ways to better hedge the diffusion risk within our strategy: (i) intermediate

delta rebalancing where, between the “complete” rebalances achieved by solving (7.2), the

weight of the underlying is alone adjusted to reimpose delta neutrality; and (ii) imposing

the gamma-neutral constraint (7.3) in the optimization. Simulation sets #1 (P weighting)

and #6 (uniform-like weighting) are re-run using these two strategies. For the case of
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Simulation
Set

Hedging
Strategy

Mean Standard
Deviation

Quantiles
0.2% 99.8%

Original 0.00 0.05 -0.17 0.28

P
Weighting

Intermediate
Delta Rebalancing

0.00 0.03 -0.12 0.15

Delta + Gamma
Neutral

0.00 0.01 -0.03 0.02

Original 0.00 0.04 -0.13 0.20

Uniform-like
Weighting

Intermediate
Delta Rebalancing

0.00 0.02 -0.09 0.11

Delta + Gamma
Neutral

0.00 0.01 -0.03 0.03

Table 7.4: Statistical measures of the relative profit and loss when hedging a one-year European
straddle (K = $100) under jump diffusion, using (i) the original strategy; (ii) intermediate delta
rebalancing; and (iii) the imposition of gamma neutrality. The hedge is rebalanced forty times
over the half-year hedging horizon. For intermediate delta rebalancing, the underlying is adjusted
three times between each “complete” rebalance. In the case of gamma neutrality, both delta and
gamma neutrality are imposed when the jump risk is minimized.

intermediate delta rebalancing, the underlying is adjusted three times (equally spaced)

between each of the forty complete rebalances.

The results are presented in Table 7.4. For intermediate delta rebalancing, the standard

deviation is smaller as compared to the original strategy. By adjusting only the underly-

ing between complete rebalances, the protection against the jump risk will be adversely

affected. This does not seem to have a major effect in this example, perhaps due to the in-

frequent arrival of jumps. The results when gamma neutrality is imposed exhibit a marked

improvement over the other two strategies. Even though this extra constraint will expend

an additional degree a freedom, a hedge with five options will still be able to provide ade-

quate jump protection. However, if only the underlying and one other instrument are used

to hedge under jump diffusion, the use of a delta-gamma hedge is not advisable.

Remark 7.1 (Using the TSVD). For the most part, the results of this section are in-
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variant to how the linear system (7.6) is solved (i.e. the TSVD vs. an LU decomposition).

However, if the standard TSVD cutoff of 10−6 is used in the case where gamma neutral-

ity is imposed, the results are only slightly better than the original strategy; the results in

Table 7.4 corresponding to the imposition of gamma neutrality were found using an LU

decomposition. Furthermore, using a cutoff of 10−8 in the TSVD for this delta-gamma–

neutral example yields the same results as the LU decomposition. This demonstrates that

the cutoff parameter used in the TSVD should be chosen with care and via experimentation,

as suggested in Press et al. [65].

7.4 Hedging an American Option

This section applies the hedging strategy to an option with American-style early exercise

features. The target contract to be hedged is an American put with a half-year maturity.

The hedging horizon is three months, and American puts and calls are used as the hedging

instruments (these all have the same maturity as the hedging horizon). Similar hedge

portfolio selection rules apply as in the European case, only now out-of-the-money options

are (ideally) used, as well as the underlying asset. For instance, if five options are to be held

in the hedge portfolio at inception, those puts with strikes closest to [0.8S0, 0.9S0, 1.0S0]

and calls with strikes nearest [1.1S0, 1.2S0] are used.

An American put in the hedge portfolio may be optimally exercised before the end of

the hedging horizon. Therefore, the early exercise regions of all active American puts are

monitored, and if the asset price path enters such a region, it is assumed both long and

short positions in the corresponding put are exercised optimally. In this case, the hedging

option is suitably replaced with a put of lower strike, and the hedge is rebalanced. If the

target half-year put is exercised early, the hedge portfolio is immediately liquidated to cover

the payoff.
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Figure 7.3: Distributions of the relative profit and loss when hedging a half-year American put
under jump diffusion. Left panel: twenty rebalances, right panel: five rebalances. The put has a
strike of $100, and the hedging horizon is three months.

The same market parameters as in the European case are used, except that the mean

arrival rate of jumps in the market is set about four times higher, to λP = 0.1. The uniform-

like weighting function of Figure 7.1 is used, and the number of hedging instruments and

rebalancing frequency is varied. Table 7.5 provides statistics for the distributions of relative

P&L. Figure 7.3 plots the distributions for the cases of twenty and five rebalances.

The results are consistent with the European case. When a simple delta hedge is em-

ployed, the seller of the put makes money both most of the time and on average. However,

this strategy may again result in catastrophic losses when a jump occurs. The use of other

instruments within our dynamic hedge mitigates this jump risk, as is evident with the 0.2%

quantile. The use of more options in the hedge portfolio leads to better performance, which

is not surprising. Note that the standard deviation and negative outlier for the case of delta

hedging are essentially the same, regardless of the rebalancing frequency. This should rein-

force the idea that the ignored jump risk inherent to the simple delta hedge will manifest

itself regardless of the frequency of rebalancing.
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Number of
Rebalances

Hedging
Options

Mean Standard
Deviation

Quantiles
0.2% 99.8%

20

Delta
Hedge

0.04 0.69 -7.18 0.30

3 0.00 0.08 -0.49 0.31
5 0.00 0.02 -0.07 0.08

10

Delta
Hedge

0.04 0.69 -7.12 0.34

3 0.00 0.10 -0.64 0.37
5 0.00 0.02 -0.09 0.11

5

Delta
Hedge

0.04 0.69 -6.95 0.38

3 0.00 0.12 -0.75 0.46
5 0.00 0.03 -0.13 0.14

3

Delta
Hedge

0.03 0.69 -6.80 0.39

3 0.00 0.12 -0.69 0.57
5 0.00 0.04 -0.17 0.16

Table 7.5: Statistical measures of the relative profit and loss when hedging a half-year American
put under jump diffusion. The put has a strike of $100, and the hedging horizon is three months.
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7.5 Summary

A delta hedge, which only treats the diffusion risk, will often experience a large loss if a

jump occurs. In this chapter, we investigated a dynamic hedging strategy that, at each

rebalance time, removes the instantaneous diffusion risk and minimizes a measure of the

jump risk. A hedge portfolio consisting of five options and the underlying, whose weights

are chosen in this way, is effective in reducing the exposure to jump risk. In addition, we

demonstrated that the strategy is able to handle both European and American-style claims.

The experiments included an investigation of estimation errors in the parameters, assuming

that a hedger would clearly not use the exact Q and P parameters. Using a pricing measure

obtained from calibration, and a uniform-like weighting function that encapsulates a lack

of knowledge about the jumps, leads to good results.



Chapter 8

Dynamic Hedging under Jump

Diffusion in the Presence of

Transaction Costs

This chapter considers a jump-diffusion market where transaction costs are present in the

form of a relative bid-ask spread. We develop an optimization problem that selects the hedge

portfolio to simultaneously (i) eliminate the instantaneous diffusion risk by imposing delta

neutrality; and (ii) minimize an objective function that is a linear combination of a jump risk

and transaction cost penalty function. The properties of this optimization are investigated,

including how to appropriately weight the jump risk and transaction cost components of the

objective function. Hedging simulations are carried out for both European and American-

style claims, using a constant relative bid-ask spread and a more realistic bid-ask model

drawn from market data.

127
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8.1 Transaction Costs: Relationship to Previous Work

In the previous chapter, the discretely-rebalanced dynamic strategy represented by the

optimization (7.2) was shown to provide good results when hedging a longer term European

straddle and American put using short-term calls and puts. However, no consideration was

given to the effect of transaction costs, as they were assumed absent. For the frequent

rebalancing necessitated by dynamic hedging, these costs need to be taken into account,

otherwise they can make the procedure prohibitively expensive.

For one-factor diffusion models where the underlying is the only traded instrument,

there is an extensive body of literature that incorporates transaction costs into the pricing

and hedging framework. When the underlying asset evolves according to GBM and transac-

tion costs are proportional to the value of the transaction in the asset, a (discrete) hedging

argument similar to that used for deriving the Black–Scholes equation yields a nonlinear

option-pricing PDE [42]. When pricing individual calls and puts, the nonlinearity is ab-

sent due to the single-signed gamma, such that only a volatility adjustment is required in

the Black–Scholes PDE. Leland [53] considers this problem, and develops a delta hedging

strategy based on the delta ∂V̂
∂S of the option values V̂ found using the augmented volatility:

the hedge is rebalanced at intervals of ∆t so that the amount of stock in the hedge after

rebalancing is ∂V̂
∂S . The hedging error in Leland’s model as ∆t→ 0 is a non-trivial function,

and almost surely negative [45, 37].

For Merton’s original jump-diffusion model (i.e. lognormally distributed jumps with no

risk adjustment), Mocioalca [57] derives a volatility adjustment for pricing calls and puts

that is analogous to Leland’s. However, the delta hedge motivated by this analysis has

the same drawback as in a jump model with no transaction costs, namely that it does not

provide adequate protection against jump risk.

The hedging approach motivated by a nonlinear pricing equation, as outlined above,
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is local in time. Global-in-time methods that use utility indifference pricing can also be

employed. Davis et al. [29] consider a GBM model (with proportional transaction costs)

where the underlying can be traded continuously. Within this utility framework, a HJB

system can be solved to establish the optimal hedging strategy. The solution defines a buy,

sell and no-trade region: when the underlying enters either the buy or sell region, the hedger

performs the necessary transaction that brings the position in the underlying back onto the

boundary of the no-trade region.

An analogous stochastic control program could be set up when hedging under jump

diffusion with transaction costs. In this case, more than the underlying is needed to hedge,

so the solution would define a complex set of trading regions. Keppo and Peura [46] consider

a problem similar to this (i.e. where more than one hedging instrument is used), only within

a GBM model. The authors use approximations to yield an augmented formulation, not

involving HJB equations, that can be treated numerically. The system of HJB equations

would involve the values of the target option and hedging instruments, as well as the controls

that yield the optimal hedging strategy. For example, a hedge portfolio which consists of

the underlying and L additional instruments would result in a (L + 1)-dimensional HJB–

PIDE system. Clearly, any numerical solution of these equations would be computationally

intractable for any more than a few hedging instruments.

8.2 Incorporating Transaction Costs

The hedging strategy represented by the optimization (7.2) does not take into account

transaction costs, so it may yield hedge portfolio weights that require expensive trading to

implement. In this section we show how the objective function in (7.2) can be modified so

that these costs are taken into consideration when rebalancing. For our purposes, transac-

tion costs refer to the difference between the bid/ask price and the theoretical value of the
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security (underlying asset or option). Brokerage commissions and other fees are ignored.

We assume the following scenario: using the linear pricing equation (2.9), a hedger fits

option pricing parameters to the midpoint option values observed in the market. Then,

a hedging strategy is constructed using a simple market model of bid-ask spreads. This

approach preserves the property that the prices are linear in the numbers bought/sold, and

it makes minimal assumptions about a model of bid-ask spreads. In contrast, a nonlinear

pricing equation [e.g. 42, 57] in effect attempts to predict the bid-ask spread for options.

Furthermore, for nonlinear pricing equations, the value of the overall hedged position −V +

eS+ ~φ · ~I+B is not the same as the sum of the values of the individual components. Linear

pricing rules are the market standard for the simple contracts we use for hedging [23].

We incorporate transaction costs using a relative bid-ask spread. We will assume that

the options to be used for hedging can be characterized by a single strike price K—this

will include vanilla puts and calls. This assumption will allow the relative bid-ask spread

for a range of options to be modelled as a function of moneyness K/S. The dollar spread

is assumed to be symmetric around the theoretical option value found using the pricing

equation (2.9). Furthermore, the (relative) bid-ask spread will be quoted as a fraction of

the option price. For example, with a relative bid-ask spread of 0.10 on an option with

theoretical value $5.00, the bid price is $4.75 and the ask price is $5.25. In other words,

the hedger will have to pay $5.25 to purchase the option with theoretical value $5.00, and

would receive $4.75 if the option were to be sold. If the weight of an instrument is ρ(tn−1)

before rebalancing and ρ(tn) after rebalancing, the total cost of the transaction is

∣∣ρ(tn)− ρ(tn−1)
∣∣× BA

2
× Instrument Value ,

where BA denotes the relative bid-ask spread.
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The objective function

∫ ∞

0

[
−∆V +

(
e∆S + ~φ ·∆~I

)]2
W (J) dJ (8.1)

from the optimization problem (7.2) is a measure of the exposure to jump risk. Since

it is quadratic in the hedge weights {e, ~φ}, it facilitates a straightforward application of

Lagrange multipliers (see Section 7.1). Therefore, a similar quadratic representation for

handling transaction costs is desirable. One suitable candidate is the sum of the squares of

transaction costs

[(
e(tn)− e(tn−1)

)
× BAS

2
× S

]2

+
N∑

j=1

[(
φj(tn)− φj(tn−1)

)
× BAj

2
× OptValj

]2

,

(8.2)

where BAS is the relative bid-ask spread for the underlying, and φj is the weight in the jth

hedging option, which has value OptValj and relative bid-ask spread BAj .

Consider an optimization problem whose objective function is a linear combination of

the jump risk measure (8.1) and the transaction cost penalty function (8.2), and which

eliminates the instantaneous diffusion risk via a linear constraint. The resulting program is

min
{e(tn),~φ(tn)}

ξ

{∫ ∞

0

[
−∆V +

(
e(tn)∆S + ~φ(tn) ·∆~I

)]2
W (J) dJ

}

+ (1− ξ)

{[(
e(tn)− e(tn−1)

)
× BAS

2
× S

]2

+
N∑

j=1

[(
φj(tn)− φj(tn−1)

)
× BAj

2
×OptValj

]2


subject to

e(tn) + ~φ(tn) · ∂
~I

∂S
=
∂V

∂S
, (8.3)
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where 0 ≤ ξ ≤ 1 is an influence parameter that determines the weighting of the two

components in the objective.

In Section 6.3 we showed that, for an idealized trading environment, by making the

objective function in (8.3) sufficiently small for a delta-neutral and discretely rebalanced

hedge, the variance of the terminal hedging error can be made arbitrarily small as the

rebalancing interval ∆t → 0. Since it may not be possible to make the objective function

small, and because continuous rebalancing is impossible in practice, our aim is to make the

objective function as small as possible at each rebalancing time. The analysis in Chapter 6

also showed that, under ideal conditions, ξ should be O(∆t2). The optimization problem

and the associated hedging simulations will be considered for a range of ξ values.

With the influence parameter ξ and the weighting functionW (J) specified by the hedger,

the optimization problem (8.3) may be solved using Lagrange multipliers. Indeed, the form

for the transaction cost penalty function (8.2) was chosen because it is amenable to this

treatment. At each hedge rebalance time, the linear system is established using table lookup

and interpolation of the precomputed data, and will yield e(tn) and ~φ(tn), the positions

that the hedge portfolio should have after rebalancing at tn. Before considering the hedging

simulations, we will investigate the behaviour of the optimization problem (8.3) that lies at

the heart of the strategy.

8.3 A Representative Optimization Problem

At each rebalance time, our goal is simple: choose hedge portfolio weights that impose delta

neutrality and reduce the jump risk, while keeping transaction costs as small as possible.

The tradeoff between the minimization of jump risk and the reduction of transaction costs

is controlled by the influence parameter ξ: for ξ = 1 we are only concerned with jump risk,

while ξ = 0 corresponds to total concentration on transaction costs. A solution x∗ to a
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Instrument
Initial

Maturity
Strike Value at

t = 0, S = 100

Weight at
t = 0, S = 100

Value at
t = 0.05, S = 106.5

Straddle 1 year $100.00 $21.41 -1.00 $24.05
Underlying n.a. n.a. $100.00 -0.64 $106.50

Put 0.25 years $80.00 $0.91 1.29 $0.67
Put 0.25 years $90.00 $1.53 -0.94 $0.91
Call 0.25 years $100.00 $5.34 1.92 $9.38
Call 0.25 years $110.00 $1.50 -0.93 $3.23
Call 0.25 years $120.00 $0.28 0.60 $0.69

Table 8.1: Instruments in the overall hedged position used to investigate the optimization
problem (8.3) that considers both jump risk and transaction costs. All options have European-
style exercise rights.

multi-objective optimization problem is said to be Pareto optimal if any perturbation of x∗

required to improve one of the component objectives can only be made at the expense of

another objective. The collection of all such solutions is the Pareto optimal set, and the

associated set of component objective values ~F (x∗) is the Pareto front. The most well-known

example of a Pareto front in finance is the efficient frontier of the Markowitz model.

We consider a specific rebalancing example as a means to study the behaviour of the

objective function in (8.3) for different values of the influence parameter ξ. Assume a

financial institution has sold a one-year, at-the-money European straddle, where S0 = 100.

To hedge its exposure, positions are taken in the underlying and five put and call options

with three months until expiry—the instruments in the overall hedged position are given

in Table 8.1. We use the Q measure from Table 7.1 for pricing. The initial hedge portfolio

weights are found by solving (8.3) with ξ = 1. At t = 0.05 with the underlying at S = 106.5,

the hedge portfolio is to be rebalanced: the optimization problem (8.3) is solved for the

range of influence parameter values ξ ∈ [0, 1]. The relative bid-ask spread is fixed at 0.10 for

all hedging options and 0.002 for the underlying, and the uniform-like weighting function

in Figure 7.1 is used for W (J).
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Figure 8.1: The Pareto optimal front for the optimization (8.3) when the hedge is rebalanced
at t = 0.05, S = 106.5. The target option is a one-year European straddle, and the instruments
used in the hedge portfolio are given in Table 8.1.

The hedge portfolio weights at t = 0.05 found from solving the optimization problem

with varying ξ are used to compute the jump risk objective function (8.1) and the transaction

cost objective function (8.2), and these are plotted together in Figure 8.1. The exposure to

jump risk is smallest for ξ = 1, but gets larger as the influence parameter decreases. The

opposite behaviour is observed for the transaction cost objective. This curve displays how

the “best” solution is subjective: the interested party should opt for a solution from the

Pareto optimal set, but the specific choice will be based on other considerations.

The value from the jump risk objective function (8.1) is a rather blunt statistic, as it

condenses the risk from a continuum of possible jumps into a single number. Nonetheless,

the protection afforded against jump risk by a hedge portfolio may be visualized by con-

sidering a plot of ∆HJ . Recall that ∆HJ in (6.14) represents the change in the overall

hedged position due to a jump of size J . Figure 8.2 presents the jump risk profiles for the

hedge portfolios found at t = 0.05 using three values of the influence parameter ξ. The

best possible curve in terms of minimizing jump risk is for ξ = 1, but the associated hedge
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Figure 8.2: Change in the value of the overall hedged position due to a jump, assuming
the jump occurs an instant after rebalancing at t = 0.05, S = 106.5. The curves correspond
to the hedge portfolio weights found using three different values of the influence parameter ξ.
The rebalancing cost of forming the hedge portfolio associated with each profile is given by
“Transaction Cost”. The target option is a one-year European straddle (K = $100), and the
instruments used in the hedge portfolio are given in Table 8.1.

portfolio weights are selected in a manner that ignores transaction costs. For ξ = 0 only

transaction costs are considered; these costs are quite low, but the protection against jumps

is not very good. The third curve, corresponding to ξ = 0.01, offers the middle ground

we seek, namely low transaction costs with good protection against jumps. The conclusion

that may be drawn from Figure 8.2 is that hedge portfolio weights can be found which do

a good job of adequately satisfying both objectives.

8.4 Hedging Simulations

The hedge portfolio is formed and rebalanced using the general procedure outlined in Sec-

tion 2.4, with the weights chosen by solving the optimization (8.3). The relative profit and

loss (3.1) at exercise/expiry T ∗ is again used as our metric for the hedging error. When

liquidating the hedge portfolio to cover the short position −V , we must take into account
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transaction costs. The value of the overall hedged position at exercise/expiry T ∗ is given

by

Π(T ∗) = −V (ST ∗ , T ∗) +B(t′)er(T ∗−t′) + e(t′)ST ∗ + ~φ(t′) · ~I(ST ∗ , T ∗)

−
∣∣∣e(t′)∣∣∣(BAS

2

)
ST ∗ −

N∑
j=1

∣∣∣φj(t′)
∣∣∣(BAj

2

)
Ij(ST ∗ , T ∗) ,

where t′ is the time of the last rebalancing. When hedging a European option, this liq-

uidation will most likely coincide with the expiry of shorter term options, such that the

transaction costs will usually only come from disposing of the underlying.

When using a model of bid and ask prices, one must be cognizant of arbitrage opportu-

nities that can arise through violations of put-call parity, especially when using an idealized

trading environment that does not encompass any frictions that tend to damp these out.

However, our bid and ask prices are determined by adding a proportional transaction cost

to the values obtained by solving the option-pricing PIDE (2.9) (for European options) or

the variational inequality (2.10) (for American options). Since these option values obey a

put-call parity relationship, and the transaction costs always act as a sink, there will never

be any arbitrage opportunities.

To illustrate this point, we consider a European call and put of the same strike K and

expiry T , and assume no dividends are paid by the stock. We take a long position in the

call and hold cash of amount Ke−rT , while shorting the put and underlying asset—this is

one of the two standard portfolios used to take advantage of violations to put-call parity.

The money needed to form this portfolio is Cask − P bid − Sbid + Ke−rT , such that it will

offer an instantaneous risk-free profit if

Cask − P bid − Sbid +Ke−rT < 0 (8.4)
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since the net payoff at expiry is zero (ignoring the liquidation costs). Now, the bid and ask

prices can be expressed as

Cask = VC +
BAC

2
VC , P bid = VP −

BAP

2
VP , Sbid = S − BAS

2
S ,

where VC and VP are the option values obtained from solving the PIDE (2.9), and BAj are

the associated relative bid-ask spreads. By substituting the above into (8.4), an arbitrage

opportunity will result if

VC +
BAC

2
VC −

(
VP −

BAP

2
VP

)
−
(
S − BAS

2
S

)
+Ke−rT < 0

−→ BAC

2
VC +

BAP

2
VP +

BAS

2
S < 0 ,

where put-call parity

VC − VP − S + Ke−rT = 0

has been employed in the simplification. Therefore, provided the relative bid-ask spreads

are non-negative, there will never be any arbitrage opportunities. If the opposite position

is considered (i.e. −Cbid + P ask + Sask −Ke−rT ), the same result is obtained.

We now consider a variety of hedging experiments for target contracts with European

and American-style exercise rights, using both a constant relative bid-ask spread and a

model of bid-ask spreads drawn from market data.

8.4.1 A Simple Hedging Example: Five Hedging Options

To provide a simple illustration of the hedging strategy, we extend the example of Sec-

tion 8.3. A one-year European straddle is to be hedged over its lifetime. Initially, the

underlying along with puts of strike K = [80, 90] and calls with strike K = [100, 110, 120]



138
CHAPTER 8. DYNAMIC HEDGING UNDER JUMP DIFFUSION IN THE

PRESENCE OF TRANSACTION COSTS

Hedging
Strategy

Mean Standard
Deviation

Quantiles
0.2% 99.8%

Delta hedge 0.25 0.38 -3.89 0.55

Five hedging
options

0.00 0.02 -0.06 0.05

Table 8.2: Hedging results, in terms of the relative profit and loss, for the European example
when there are no transaction costs. The hedge weights are chosen by solving the optimiza-
tion (7.2). The target option is a one-year European straddle (K = $100), and the instruments
used to establish the hedge are given in Table 8.1. The hedge is rebalanced every 0.025 years.
For the α% quantile, approximately α% of the 250,000 simulations resulted in a relative P&L
less than the reported amount.

are used, where all of the hedging options have three months until maturity. These options

are traded until they expire, at which time new options are purchased, and these new op-

tions have the same strikes and time to maturity as the initial set. The P and Q measures

employed are in Table 7.1. Each simulation set consists of 250,000 individual simulations,

meaning a total of about 5,700 jumps are expected over each set.

No Transaction Costs. We first investigate a hedging example in which financial instru-

ments may be traded without incurring transaction costs. Consider the case where only

the underlying is used in a delta hedge, which is rebalanced every 0.025 years. The results,

in the form of statistical measures for the relative P&L, are contained in the first row of

Table 8.2. The 0.2% quantile is very negative in this case, corresponding to the large losses

that often result when a jump occurs. When five options are included in the hedge along

with the underlying, the weights are chosen using the hedging strategy represented by the

optimization in (7.2) that is employed when transaction costs are absent. Compared to the

delta hedge, this procedure dramatically reduces the exposure to jump risk, as demonstrated

by the results in the second row of Table 8.2.

Transaction Costs Present, but Ignored. We next consider a set of simulations where

transaction costs are present, with a constant relative bid-ask spread of 0.10 for the hedging
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Hedging
Strategy

Mean Standard
Deviation

Quantiles
0.2% 99.8%

Delta hedge 0.22 0.38 -3.90 0.53

Five hedging
options

-0.38 0.27 -1.41 -0.06

Table 8.3: Hedging results, in terms of the relative profit and loss, for the European example
when transaction costs are present but ignored. The hedge weights are chosen by solving the
optimization (8.3) with ξ = 1. The target option is a one-year European straddle (K = $100),
and the instruments used to establish the hedge are given in Table 8.1. The hedge is rebalanced
every 0.025 years.

options and 0.002 for the underlying. The results for the delta hedge, presented in the first

row of Table 8.3, are very similar to those when no transaction costs are incurred (see the

first row of Table 8.2), although there is a small negative change in the mean due to the cost

of trading. This negative shift is also evident in the distribution of relative P&L presented

in the left panel of Figure 8.3.

When five options are included in the hedge along with the underlying, the weights are

chosen in a manner that ignores transaction costs (i.e. solving (7.2) or, equivalently, (8.3)

with ξ = 1). This strategy of using five hedging options yields results that are very poor—it

could be argued the delta hedge is better in this instance, as indicated by the statistics in

Table 8.3. Even though the five-option hedge will help protect the overall position when a

jump occurs, the cost of the required transactions tends to be high. For this example, our

original hedging strategy with five options performs quite well until transaction costs are

introduced, at which point it becomes essentially useless.

Transaction Costs Present, and Taken into Account. We now carry out the simu-

lations again, only this time using the optimization problem (8.3) that takes into account

both jump risk and transaction costs. The simulations are performed using the influence
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Relative P&L : Delta Hedge Only
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Figure 8.3: Distributions of the relative profit and loss for the European hedging example.
When ξ = 1.0, the transaction costs are ignored in the optimization (8.3), while for ξ = 0.001
both transaction costs and jump risk are taken into account. The target option is a one-year
European straddle (K = $100), and the instruments used to establish the hedge are given in
Table 8.1. The hedge is rebalanced every 0.025 years.

parameters

ξ ∈
[
0, 10−6, 10−5, 10−4, 10−3, 0.0025, 0.005, 0.0075, 0.01, 0.02, 0.03, 0.04, 0.05,

0.1, 0.2, 0.3, 0.4, 0.5, 0.75, 0.9, 0.95, 1
]
. (8.5)

For each of the 250,000 simulations, the same value of the influence parameter will be

used throughout; for example, if forty rebalances are carried out over the entire hedging

horizon, the same value of ξ is used for each of the forty individual optimization problems.

The criteria used for deciding which ξ is best for hedging will be the mean and standard

deviation of the relative P&L.

For each value of the influence parameter ξ in (8.5), the mean and standard deviation

of the relative P&L is plotted in Figure 8.4. The results for the extreme values of ξ = 0

and ξ = 1 are poor. If the standard deviation is used as the sole criterion to select the best
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Figure 8.4: Mean and standard deviation of the relative profit and loss, with varying ξ, for
the European hedging example. When ξ = 1, the transaction costs are ignored in the opti-
mization (8.3), while for ξ = 0 the jump risk is ignored. When 0 < ξ < 1, both transaction
costs and jump risk are taken into account. The target option is a one-year European straddle
(K = $100), and the instruments used to establish the hedge are given in Table 8.1. The hedge
is rebalanced every 0.025 years.

value of the influence parameter, the choice is ξ = 0.0075. This corresponds to a standard

deviation of 0.0384 and a mean of -0.0843. However, for ξ = 0.001 the standard deviation is

only slightly higher at 0.0429, while the mean of -0.0632 is much better. The distribution of

the relative P&L for this case is the middle density in the right panel of Figure 8.3. A mean

of -0.0632 translates to $1.35 in monetary terms: if the hedger charges this as a premium

over and above the theoretical option price of $21.41, the simulations will have a zero mean.

This is slightly higher than the 5% premium (i.e. half of the relative bid-ask spread of 10%)

assumed for quarter-year vanilla options in the hedging portfolio.

In many cases, only a small amount of buying and selling occurs when the hedge is

rebalanced. The left panel of Figure 8.5 presents a sample price path over the first quarter

year (right axis), and the corresponding evolution of the position in the short-term hedging
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Figure 8.5: Characteristics of the hedge portfolio for a specific asset price path and differing
values of the influence parameter ξ. The left panel depicts the sample price path over the first
quarter year (right axis), and the corresponding evolution of the position in the short-term
hedging call option with a strike of $100 (left axis). The right panel is a plot of the jump risk
measure (8.1) after each rebalance.

call option with strike $100 (left axis). Since the value of the stock is above S = 100 for

most of the time, this hedging option is predominantly in the money, with its value at

rebalancing times ranging between $3.92 and $15.57. When transaction costs are ignored

(ξ = 1), the initial position and the subsequent changes can be significant, resulting in large

transaction costs. On the other hand, when transaction costs are taken into account (e.g.

ξ = 0.001), the option position remains small. Although we are controlling for transaction

costs, the exposure to jump risk, as represented by the objective function (8.1), is not much

greater than the minimum value corresponding to ξ = 1. This is demonstrated in the right

panel of Figure 8.5.

We may conclude that, for the hedging example explored in this section, it is possible to

select hedge weights that provide sufficient protection against jump risk while not incurring

large transaction costs.

Remark 8.1 (Using the TSVD). If a relatively high cutoff (e.g. 10−3) is used within
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the TSVD when ξ = 1, the strategy may produce reasonable results, even though transaction

costs are not taken into account when choosing the hedge weights. In this case, the TSVD

solution procedure returns a vector of weights with a small norm—an ideal way to keep

transaction costs down—while still providing adequate protection against jump risk. In gen-

eral, any strategy which uses a regularization method for determining the portfolio weights

will tend to keep transaction costs under control (e.g. the strategy in Cont et al. [25]).

8.4.2 Varying the Rebalancing Frequency and Number of Options

Up to this point the hedge portfolio has consisted of five options and the underlying, and

has been rebalanced every 0.025 years. We now vary the hedge portfolio composition—using

three, five and seven options—and the frequency of rebalancing. When seven options are

employed, those with strikes K = [70, 80, 90, 100, 110, 120, 130] are used, while the three-

option portfolio utilizes the middle strikes. The hedge is rebalanced a total of twenty, forty

and eighty times over the one-year investment horizon. The hedging simulations are carried

out under the same guidelines as before, and the results are presented in Table 8.4.

The “best” value of the influence parameter indicated in Table 8.4 comes from the

simulation set that yields the smallest standard deviation. Consider a fixed number of

hedging options: we find (i) the best (i.e. lowest) standard deviation gets smaller as the

rebalancing becomes more frequent, and the mean does not become considerably more

negative; and (ii) in general, as the rebalancing becomes more frequent, the best result is

achieved by putting more weight on the transaction cost component of the objective (i.e. ξ

gets smaller).

In Chapter 6, we examined an idealized continuous trading environment and demon-

strated that, by making the jump risk objective function (8.1) and transaction cost objective

function (8.2) sufficiently small at each instant, the variance of the terminal hedging error

may be made small. In relation to the discrete framework, the bound on the transaction
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No. of Hedging
Options

Rebalance
Interval

Best ξ
Standard
Deviation

Mean

3
0.0125 0.001 0.05 -0.10
0.025 0.001 0.05 -0.08
0.05 0.0025 0.06 -0.07

5
0.0125 0.0025 0.03 -0.09
0.025 0.0075 0.04 -0.08
0.05 0.05 0.05 -0.09

7
0.0125 0.005 0.04 -0.10
0.025 0.02 0.04 -0.10
0.05 0.1 0.05 -0.10

Table 8.4: Hedging results, in terms of the relative profit and loss, for the European example
with different rebalancing frequencies and a varying number of options in the hedge portfolio.
The influence parameter from the discrete set (8.5) that yields the lowest standard deviation is
termed the best ξ. The target option is a one-year European straddle (K = $100).

cost objective should be O(∆t2) as ∆t → 0 in order to ensure finite transaction costs.

Within our objective function in (8.3), the appropriate tradeoff between the jump risk and

transaction cost can be achieved with an influence parameter ξ that is O(∆t2). In other

words, as the rebalancing becomes more frequent, more and more weight should be put

on the transaction cost component of the objective function. The results of Table 8.4 are

generally consistent with the theory. For example in the case of seven hedging options,

which is our closest approximation to an idealized trading environment, the best value of

the influence parameter is approximately O(∆t2).

8.4.3 Using Calls and Puts with the Same Strike

For a given strike price, both calls and puts are typically available in the market, so limiting

the hedge portfolio to holding either one or the other is not realistic. We therefore consider

an augmented version of the example in Section 8.4.1 by doubling the number of available

hedging options, such that there is now access to all European calls and puts of strike



8.4. HEDGING SIMULATIONS 145

K = [80, 90, 100, 110, 120]. Note that all other settings, such as the constant relative bid-

ask spread of 0.10 for options, remain the same.

When only jump risk is considered (ξ = 1), the linear system resulting from the appli-

cation of Lagrange multipliers is singular. This is due to put-call parity, as the redundancy

inherent in this relationship manifests as a rank-deficient matrix. For ξ close to unity, we

expect the matrix to be ill conditioned. As noted before, using a TSVD is a common way to

deal with an ill-conditioned linear system. Nonetheless, the (usually low) range of influence

parameters that give the best hedging results tend to quell the ill conditioning. This is due

to the fact the transaction cost component of the objective is not susceptible to degeneracy

problems resulting from put-call parity.

For hedging with the ten options above, the influence parameter value ξ = 0.0025 yields

a mean of -0.0581 and a standard deviation of 0.0228, which are better results than can be

achieved when only the five original options are used. In this case, put-call parity implies

that anything achievable with the put, call and underlying can be accomplished with any

two of these three instruments. Consequently, the hedger should include both puts and

calls of similar strikes in the hedge portfolio, as this will tend to reduce transaction costs.

8.4.4 Utilizing a More Realistic Model of Bid-Ask Spreads

The constant relative bid-ask spread assumption is clearly deficient: out-of-the-money op-

tions tend to have higher relative bid-ask spreads than in-the-money options. Consider, for

example, the 22Oct2005 option prices for Amazon.com, Inc. (AMZN) taken during trading

on August 10, 2005; this data is presented in Table 8.5. We use this Amazon.com op-

tion data to create a representative model of the relative bid-ask spread as a function of

moneyness. The relative bid-ask spread for the puts and calls is found via

Relative Bid-Ask Spread =
Dollar Spread
Midpoint Price

= 2× Ask - Bid
Bid + Ask

.
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Strike
Moneyness Calls Puts

K
S Bid Ask Relative Spread Bid Ask Relative Spread

$20.00 0.4437 $25.10 $25.30 0.0079 $ 0.05 $ 0.05 0.0000
$22.50 0.4991 $22.70 $22.80 0.0044 $ 0.05 $ 0.05 0.0000
$25.00 0.5546 $20.20 $20.30 0.0049 $ 0.05 $ 0.05 0.0000
$27.50 0.6100 $17.70 $17.80 0.0056 $ 0.05 $ 0.05 0.0000
$30.00 0.6655 $15.30 $15.40 0.0065 $ 0.05 $ 0.10 0.6667
$32.50 0.7209 $12.80 $13.00 0.0155 $ 0.10 $ 0.15 0.4000
$35.00 0.7764 $10.40 $10.50 0.0096 $ 0.15 $ 0.20 0.2857
$37.50 0.8319 $ 8.10 $ 8.20 0.0123 $ 0.35 $ 0.40 0.1333
$40.00 0.8873 $ 6.00 $ 6.20 0.0328 $ 0.70 $ 0.75 0.0690
$42.50 0.9428 $ 4.10 $ 4.30 0.0476 $ 1.30 $ 1.35 0.0377
$45.00 0.9982 $ 2.60 $ 2.65 0.0190 $ 2.20 $ 2.30 0.0444
$47.50 1.0537 $ 1.50 $ 1.55 0.0328 $ 3.60 $ 3.70 0.0274
$50.00 1.1091 $ 0.75 $ 0.85 0.1250 $ 5.40 $ 5.50 0.0183
$55.00 1.2201 $ 0.20 $ 0.25 0.2222 $ 9.90 $10.00 0.0101
$60.00 1.3310 $ 0.05 $ 0.10 0.6667 $14.80 $15.00 0.0134

Table 8.5: Option price data used to generate the relative bid-ask spread curves of Figure 8.6.
The data is for 22Oct2005 puts and calls on Amazon.com, Inc. (AMZN), taken during trading
on August 10, 2005. The spot value of the underlying is $45.08.

The discrete data is first smoothed using a simple moving average method, and the complete

relative bid-ask spread curves for the calls and puts in Figure 8.6 are formed by linear

interpolation and nearest neighbour extrapolation of this smoothed data. Note that the

first four data points for the puts are discarded.

We have flat-topped the curves of Figure 8.6 in order to avoid unrealistically large values

for the relative bid-ask spread. Options with large spreads will not be selected for the hedge

portfolio (or will have very small weights), so as long as the transaction costs are included

in the objective function, the precise form of the bid-ask spread for far out-of-the-money

options should not be very important.

Up to this point, only options of strike K = [70, 80, 90, 100, 110, 120, 130] have been
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Figure 8.6: Relative bid-ask spread curves drawn from market data. The option price data
used to generate the curves is for 22Oct2005 puts and calls on Amazon.com, Inc. (AMZN),
taken during trading on August 10, 2005. This data is in Table 8.5.

used to hedge the one-year European straddle, regardless of the value of the underlying.

More realistically, a wide range of options may be available for hedging. Of course, some

of these will not contribute to a significant reduction of jump risk, and so will not be used

in substantial amounts. Furthermore, the transaction costs associated with certain option

positions may be prohibitive, and consequently these would be avoided. The objective in

our optimization problem is designed to deal with these two facets of hedging.

Consider the following scenario: in addition to using the relative bid-ask curves of

Figure 8.6, access to a wider range of options is allowed, namely all puts and calls with

strikes from $10 to $200 in increments of $10 are available. As such, the linear system

used to determine the hedge portfolio weights has dimension 42 × 42. Table 8.6 contains

representative results for different numbers of options in the hedging portfolio. Note that six

hedging options corresponds to puts and calls of strike [90, 100, 110], ten represents strikes of

[80, 90, 100, 110, 120], while fourteen represents [70, 80, 90, 100, 110, 120, 130]. We find that
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No. of Hedging
Options

Influence
Parameter ξ

Mean Standard
Deviation

Quantiles
0.2% 99.8%

6 0.0001 -0.06 0.05 -0.22 0.21
10 0.001 -0.06 0.02 -0.13 0.02
14 0.0075 -0.07 0.02 -0.12 -0.01
40 0.02 -0.08 0.02 -0.13 -0.02

Table 8.6: Hedging results, in terms of the relative profit and loss, for the European example
with the relative bid-ask curves of Figure 8.6. The hedge weights are chosen by solving the
optimization (8.3) for the given ξ. The target option is a one-year European straddle. The
hedge is rebalanced every 0.025 years.

a portfolio with a large number of hedging instruments does not outperform a hedge with

a smaller number, as long as the smaller hedge contains those short-term options that are

best at replicating the target straddle position, i.e. calls and puts with strikes near $100.

The hedging results of Table 8.6 indicate our procedure can indeed successfully handle a

more realistic model of bid-ask spreads.

8.4.5 An American Example

To demonstrate the applicability of our proposed technique to path-dependent options, we

consider hedging an American put over its lifetime. The same P and Q parameters as in

Table 7.1 are employed, except that a higher jump arrival rate of λP = 0.1 is used in the

simulations. The American put to be hedged has a strike of $100, a half-year maturity,

and is initially at the money. American calls, with an initial maturity of three months

and strikes from K = $10 to K = $200 in increments of $10, are available as hedging

instruments. Quarter-year American puts, with strikes from K = $10 to K = $100 in

increments of $10, are also used. At t = 0.25 all hedging options are replaced. As with the

American hedging example from the previous chapter, we must be mindful of the possibility

of early exercise for the American puts.

A total of 250,000 simulations are carried out. The hedge is regularly rebalanced at
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No. of Hedging
Options

Influence
Parameter ξ

Mean Standard
Deviation

Quantiles
0.2% 99.8%

0 (delta hedge) n.a. 0.05 1.05 -8.94 0.71
5 0.0075 -0.06 0.02 -0.14 0.03
8 0.03 -0.06 0.02 -0.14 -0.01
11 0.2 -0.07 0.02 -0.14 -0.02
30 0.05 -0.08 0.02 -0.16 -0.02

Table 8.7: Hedging results, in terms of the relative profit and loss, when hedging a half-year
American put (K = $100) over its lifetime. The hedge is rebalanced every 0.025 years, with
weights that are chosen by solving the optimization (8.3) for the given ξ. The relative bid-ask
curves of Figure 8.6 are used to set the transaction costs.

intervals of 0.025 years, and is also rebalanced if a hedging put is removed due to early

exercise. To incorporate transaction costs, the bid-ask spread model of Figure 8.6 is used.

Some representative results are presented in Table 8.7. Similar to the previous example, us-

ing all thirty available options does not outperform a hedge that contains fewer instruments.

Note the hedge compositions are the same as in Table 8.6, only now puts with strikes above

$100 are excluded due to early exercise provisions. For the case of eight hedging options,

the distribution of the relative P&L is presented in Figure 8.7.

The hedging results demonstrate that, for this American put, we can simultaneously

protect our position from jumps without incurring prohibitive transaction costs.

Remark 8.2 (Optimality of the Hedging Strategy). Our hedging strategy is local in

time, as it is only concerned with the instantaneous state of the overall hedged position.

In general, it will not be globally optimal. As noted previously, though, solving the full

stochastic control problem would be computationally infeasible. We expect that our hedging

results can certainly be improved upon. However, even our (non-optimal) hedging results

clearly demonstrate that the use of a dynamic hedge containing traded options is a viable

technique for minimizing jump risk.
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Figure 8.7: Distribution of the relative profit and loss for the American hedging example when
eight options are used to hedge the half-year American put over its lifetime. The influence
parameter ξ = 0.03, and the hedge is rebalanced every 0.025 years. The relative bid-ask curves
of Figure 8.6 are used to set the transaction costs.

8.5 Summary

We solve an optimization problem at each hedge rebalance time to minimize a linear combi-

nation of a jump risk and transaction cost penalty function, while simultaneously imposing

delta neutrality. Under our assumptions, simulations of our dynamic hedging strategy show

the following:

• If the hedge portfolio is determined solely on the basis of minimizing jump risk (and

ignoring transaction costs), the results are worse than simple delta hedging (which is

itself quite poor). This is in accordance with conventional wisdom, which states that

hedging with options is too expensive.

• On the other hand, if both jump risk and transaction costs are included in the objective

function, our dynamic strategy is effective. In many cases only a small amount of

buying and selling takes place while, at the same time, the overall position is protected
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against jumps. The standard deviation of the relative P&L is much reduced compared

to simple delta hedging.

Using a bid-ask spread model which captures the gross features of observed market prices

(i.e. out-of-the-money options have larger relative spreads than near-the-money options)

forces our strategy to reduce trading costs, while still minimizing jump risk.





Chapter 9

Hedging under a Lévy Process

In this chapter, we show how our dynamic procedure for hedging under jump diffusion may

be extended to a more general Lévy process: imposing delta neutrality will eliminate the

instantaneous diffusion risk and hedge the small jumps, while the large jumps are treated

as before by minimizing an integral.

9.1 Introduction

Over the course of the last three chapters we have been concerned with hedging under the

jump-diffusion process, where the return on the underlying asset is the superposition of a

deterministic drift, Brownian motion, and compound Poisson process. Although this is con-

sidered a representative stochastic process for finance applications, it is merely one member

of a broader class of stochastic processes called Lévy processes. The defining characteristic

of a Lévy process is that they have independent and identically distributed increments.

While Brownian motion and the Poisson process are the most well-known examples, other

stochastic processes that have recently been employed in a financial setting, such as in the

CGMY [16, 73] and log stable [18] models, are also Lévy processes.

153
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Some Lévy processes exhibit an infinite number of jumps over every time period (al-

most surely). It is therefore not clear if our hedging method developed for use with jump

diffusion—where the number of jumps in any time interval is finite—can be adapted for

hedging under such a process. However, Lévy processes may be accurately approximated

by a jump diffusion [3], which suggests our hedging strategy may be applicable. This chapter

will demonstrate that this is indeed the case.

We will first introduce the main concepts associated with Lévy processes; two of the

fundamental results, namely the Lévy-Itô Decomposition and Itô’s formula, are covered in

Appendix C. Next, assuming the return of the underlying asset follows a Lévy process,

we will derive a representation of the instantaneous risk for a hedged position. Using this

representation, the mean-variance hedging procedure developed by Cont et al. [26] will

be derived. Finally, we demonstrate how our dynamic strategy for hedging under jump

diffusion may be adapted to hedge under any Lévy process.

9.2 Background on Lévy Processes

In finance applications, the return on an asset is often modelled as a Lévy process Xt, such

that

St = S0eXt . (9.1)

In this section, we present the fundamentals of Lévy processes that will be needed to develop

a dynamic hedging strategy based on an underlying that evolves according to (9.1). This

material is drawn from Cont and Tankov [23], Protter [66], Sato [69], and Papapantoleon

[62].

Lévy processes are stochastic processes whose increments are independent and identi-

cally distributed. This specification is made more precise with the following definition.
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Definition 9.1. (Lévy Process) A real-valued stochastic process
{
Xt : t ≥ 0

}
with X0 = 0

is referred to as a Lévy process if:

1. It has independent increments: for all n ≥ 1 with 0 ≤ t0 < t1 < t2 < . . . < tn, the

random variables Xt0, Xt1 −Xt0 , Xt2 −Xt1 , . . . , Xtn −Xtn−1 are independent;

2. It has identically distributed (stationary) increments: the distribution of

{Xs+t −Xs : t ≥ 0} does not depend on s;

3. It is stochastically continuous (discontinuities are not predictable): for all ε > 0,

P
[
|Xt+s −Xs| > ε

]
→ 0 as t→ 0;

4. It is càdlàg: right-continuous with left limits;

Although a Lévy process can assume values in Rd, we shall only be concerned with

one-dimensional processes. Every Lévy process is the superposition of a linear drift, Brow-

nian motion and jump component (formally stated as the Lévy–Itô Decomposition; see

Appendix C), and is identified by its characteristic triplet (ψ, σ, ν). The deterministic drift

is given by ψt, while σZt represents the Brownian motion. The Lévy measure ν governs

the distribution of jumps.

Definition 9.2. (Lévy Measure) For a Lévy process Xt, the Lévy measure ν(·) ∈ R is

defined as

ν(A) = E
[
#
{
t ∈ [0, 1] such that ∆Xt ∈ A and ∆Xt 6= 0

}]
,

where A ⊂ R and ∆Xt represents the jump size.

The Lévy measure gives the average number of jumps over unit time whose amplitudes

are in A, where A is a subset of the real line. The condition ν(R) <∞ characterizes a Lévy
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process as having finite activity, and in this case

g(y) =
ν(y)
ν(R)

is the probability density of the jump amplitudes. If ν(R) = ∞, the Lévy process exhibits

infinite activity: there are expected to be an infinite number of infinitesimally small jumps

(and a finite number of non-infinitesimal jumps) over any time interval. The Lévy measure

must satisfy1

∫
|y|≤1

y2ν(y) dy < ∞ and
∫
|y|≥1

ν(y) dy < ∞ . (9.2)

The conditions in (9.2) are important for many theoretical results, such as the Lévy-Itô

Decomposition.

Each realized path of a Lévy process may be considered as an event ω drawn from the

set of all possible events Ω. The Lévy measure ν encapsulates the average behaviour of

jumps over many realized paths. For example, after many simulations of a finite activity

Lévy process, the average number of observed jumps per unit time will approach ν(R). On

the other hand, the jump measure JX(ω,A × [0, t]) is a random measure, as it depends

on the specific realization ω from Ω. For a given ω ∈ Ω (which corresponds to a specific

path X), JX(ω,A× [0, t]) provides the number of jumps that occur between [0, t] whose size

is in A. Furthermore, quantities involving jumps may be represented by integrating against

the jump measure. For instance, consider the following example from Cont and Tankov

1The cutoff value Υ = 1 is arbitrary, and may in fact be set to any Υ ∈ (0,∞). The first condition
ensures that a singularity at y = 0 will nonetheless integrate y2. The second condition guarantees that, over
any finite time period, the Lévy process does not exhibit an infinite number of jumps of non-infinitesimal
size.
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[23]: the expression

[X,X]dc
T =

∑
t∈[0,T ]

[∆Xt]
2 (9.3)

represents the sum of the squared jump sizes (known as the discontinuous quadratic vari-

ation) over [0, T ] for a specific path. With respect to the jump measure, (9.3) can be

expressed as

∫ T

0

∫
R
y2 JX(dydt) , (9.4)

where reference to ω is dropped in the interest of notational simplicity. The integral in (9.4)

gives the discontinuous quadratic variation for one specific path, while

∫ T

0

∫
R
y2 ν(y)dydt

gives the average over many paths. As stated in [23], the jump measure JX : “contains all

information about the discontinuities (jumps) of the process X: it tells when the jumps

occur and how big they are.”

The compensated jump measure along a specific path ω,

J̃X(dydt) = JX(dydt)− ν(y)dydt ,

is important for infinite activity processes, due to the fact that the sum of the infinitely many

small jumps may not converge. By integrating against the compensated jump measure,

convergence is obtained. Note that if the jump process is of finite variation, i.e.

∫
|y|≤1

|y| ν(y)dy <∞ ,
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the use of the compensated measure is not required.

9.3 The Instantaneous Risk of a Hedged Position

The asset price is assumed to follow

St = S0eXt , (9.5)

where the return Xt is a Lévy process. If we assume that E[Xt] < ∞, then, using the

Lévy–Itô Decomposition from Theorem C.1 in Appendix C, dXt may be expressed as

dXt = ψdt + σdZt +
∫

R
y J̃X(dydt) ,

where (ψ, σ, ν) is the characteristic triplet associated with this decomposition.

We will assume that

∫
|y|≥1

e2y ν(y)dy < ∞ , (9.6)

which is equivalent to assuming E
[
S2

t

]
<∞ [23]. Applying Itô’s formula from Theorem C.2

in Appendix C to (9.5) gives2

dSt = σSt− dZt +
∫

R
St−(ey − 1) J̃X(dydt)︸ ︷︷ ︸

martingale: E[·]=0

+ ψ̂St− dt︸ ︷︷ ︸
continuous, finite
variation process

, (9.7)

where t− is the instant immediately before time t, and y is the size of a jump in the return.

2Condition (9.6) allows us to express the jump component of St in terms of the compensated jump
measure only. This is known as the martingale-drift decomposition [23].
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The deterministic constant

ψ̂ = ψ +
σ2

2
+
∫

R

(
ey − 1− y

)
ν(y)dy , (9.8)

is associated with the drift, where ψ comes from the characteristic triplet of the Lévy process

Xt.

To derive the instantaneous risk under a Lévy process, we proceed as in Section 6.1

when a jump diffusion was treated, only now the more general jump measure is used.

Again consider the overall hedged position

Π = −V (S, t) + eS + ~φ · ~I(S, t) + B(t) , (9.9)

where S = S0eXt is the asset price at time t; therefore, both V and ~I are functions of the

return Xt. We assume that all payoff functions h(ST ) are Lipschitz, which means there

exists a C > 0 such that |h(x)− h(y)| ≤ C|x− y| for all x, y.

The instantaneous change of Π w.r.t. the P measure is

dΠ = −dV + edS + ~φ · d~I + dB . (9.10)

We assume that V is twice differentiable in S and once differentiable in t, and apply Itô’s

formula from Theorem C.2 of Appendix C to obtain

dV =
[
∂V

∂t
+
σ2S2

2
∂2V

∂S2

]
dt +

[
ψ̂PS

∂V

∂S
+
∫

R

(
∆V −∆S

∂V

∂S

)
νP(y)dy

]
dt

+ σS
∂V

∂S
dZP +

∫
R

∆V J̃P
X(dydt) . (9.11)

where ∆S = S(ey − 1) and ∆V = V (Sey, t)− V (S, t), with S the current asset price and y

the jump in the return.
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The pricing PIDE for a European option under a Lévy process [23]

∂V

∂t
+

σ2S2

2
∂2V

∂S2
= rV − rS

∂V

∂S
−
∫

R

[
∆V −∆S

∂V

∂S

]
νQ(y)dy

can be substituted into (9.11) to yield

dV =
[
rV − rS

∂V

∂S
−
∫

R

(
∆V −∆S

∂V

∂S

)
νQ(y)dy

]
dt

+
[
ψ̂PS

∂V

∂S
+
∫

R

(
∆V −∆S

∂V

∂S

)
νP(y)dy

]
dt

+ σS
∂V

∂S
dZP +

∫
R

∆V J̃P
X(dydt) . (9.12)

When condition (9.6) holds and the payoff function g(ST ) of the option is Lipschitz, Cont

and Tankov [23] show that

(
σS

∂V

∂S

)2

< ∞ (9.13)

and

∫
R

∣∣∆V ∣∣2 νP(y)dy =
∫

R

∣∣V (Sey, t)− V (S, t)
∣∣2 νP(y)dy < ∞ , (9.14)

which implies both processes in the last line of (9.12) are martingales. Furthermore, condi-

tions (9.13) and (9.14) also imply these processes satisfy the isometry relations [23]

EP

[(
σS

∂V

∂S
dZP

)2
]

=
(
σS

∂V

∂S

)2

dt (9.15)

and

EP

[∣∣∣∣∫
R

∆V J̃P
X(dydt)

∣∣∣∣2
]

= dt

∫
R

∣∣∆V ∣∣2 νP(y)dy . (9.16)
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A representation similar to (9.12) holds for all of the hedging options in ~I. Substituting

the expressions for dV , d~I, and the martingale-drift decomposition of dS into (9.10) gives

dΠ = rdt
[
−V + ~φ · ~I +B

]
+ rSdt

[
∂V

∂S
− ~φ · ∂

~I

∂S

]

+ dt

∫
R

[
−∆V +

(
∂V

∂S
− ~φ · ∂

~I

∂S

)
∆S + ~φ ·∆~I

](
νP(y)− νQ(y)

)
dy

+ σSdZP

[
−∂V
∂S

+ e+ ~φ · ∂
~I

∂S

]
+ ψ̂PSdt

[
−∂V
∂S

+ e+ ~φ · ∂
~I

∂S

]

+
∫

R

[
−∆V +

(
e∆S + ~φ ·∆~I

)]
J̃P

X(dydt) . (9.17)

The above is the instantaneous change of the overall hedged position, and thus represents

the instantaneous risk of the position.

9.4 Mean-Variance Hedging with EP = EQ

The goal of mean-variance hedging is to solve

min
{et,~φt,v0}

EP[HT − VT

]2
, (9.18)

where HT is the terminal value of the hedge portfolio, VT is the payoff of the option being

hedged, and {et, ~φt} is the trading strategy over [0, T ] that minimizes the objective function.

Also, v0 is the initial capital. In general, mean-variance hedging is a difficult mathemati-

cal problem, as its objective is a global criterion achieved through continuous rebalancing.

However, if we minimize the objective function in (9.18) w.r.t. EQ instead of EP, this proce-

dure simplifies to a local risk minimization, where the expected square of the instantaneous

(i.e. local) hedging error is minimized. This case was considered by Cont et al. [26], who

show that, when the expectation is taken w.r.t. EQ, solving (9.18) is equivalent to solving
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the local optimization

{e∗, ~φ∗} = arg min
{e,~φ}

σ2S2

[
−∂V
∂S

+ e+ ~φ · ∂
~I

∂S

]2

+
∫

R

[
−∆V +

(
e∆S + ~φ ·∆~I

)]2
νQ(y)dy

}
(9.19)

at each instant. Furthermore, the initial capital

v0 = e−rT EQ[VT |S0

]
,

which is the option price V (S0, 0).

We now show that the objective in (9.19) can be obtained by minimizing the variance

of dΠ in (9.17) w.r.t. EQ. If P = Q in (9.17), then the integral in the second line of (9.17)

immediately vanishes. Also, since e−rtSt is a martingale under Q, the constant ψ̂ from (9.8)

must be equal to the risk-free rate, i.e. ψ̂P = ψ̂Q = r. Consequently, the instantaneous

change in the overall hedged position (9.17) may be expressed in the simplified form

dΠ̃ = σS

[
−∂V
∂S

+ e+ ~φ · ∂
~I

∂S

]
dZQ +

∫
R

[
−∆V +

(
e∆S + ~φ ·∆~I

)]
J̃Q

X(dydt) ,

(9.20)

where the discounted portfolio value Π̃ = e−rtΠ is used. Note our hedging procedure always

assumes the initial capital is V (S0, 0), as this ensures the starting value of the overall hedged

position is zero.

By assuming that all option payoffs are Lipschitz and (9.6) holds, it is straightforward

to show (see [23])

σ2S2

[
−∂V
∂S

+ e+ ~φ · ∂
~I

∂S

]2

<∞ and
∫

R

[
−∆V +

(
e∆S + ~φ ·∆~I

)]2
νQ(y)dy <∞ ,
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which implies that both processes in (9.20) are martingales and, furthermore, obey isometry

relations analogous to (9.15) and (9.16). Note that

VARIANCEQ[dΠ̃] = EQ[dΠ̃2
]
−
(
EQ[dΠ̃])2

︸ ︷︷ ︸
=0

= EQ[dΠ̃2
]
.

Now, consider

VARIANCEQ[dΠ̃] = EQ[dΠ̃2
]

= 2EQ

[(
σS

[
−∂V
∂S

+ e+ ~φ · ∂
~I

∂S

]
dZQ

)(∫
R

[
−∆V +

(
e∆S + ~φ ·∆~I

)]
J̃Q

X(dydt)
)]

+ EQ

[(
σS

[
−∂V
∂S

+ e+ ~φ · ~IS
]
dZQ

)2
]

+ EQ

[(∫
R

[
−∆V +

(
e∆S + ~φ ·∆~I

)]
J̃Q

X(dydt)
)2
]
. (9.21)

The cross term in (9.21) is zero since the components are independent and both martingales.

Therefore, using the appropriate isometry relations, we get

VARIANCEQ[dΠ̃] = dt

σ2S2

[
−∂V
∂S

+ e+ ~φ · ∂
~I

∂S

]2

+

∫
R

[
−∆V +

(
e∆S + ~φ ·∆~I

)]2
νQ(y)dy

)
.

One can minimize VARIANCEQ[dΠ̃] over the next instant by a suitable choice of hedge

weights {e, ~φ}, as in [26]. The optimal weights can be found by solving a linear system.
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9.5 Hedging a Finite Activity Lévy Process

Assume the return process Xt for the asset has a diffusive component (σ > 0) and finite

activity jumps (ν(R) < ∞). This process is a jump diffusion (as we have used the term),

since the Lévy measure provides the intensity λ = ν(R) and distribution of amplitudes

g(y) = ν(y)
ν(R) that govern the compound Poisson process. We will show that, in this case, the

instantaneous change in the overall hedged position (9.17) can be made equivalent to dΠ

in (6.8), which was derived for a jump-diffusion process. As such, the procedure developed

in Chapter 6 to hedge under jump diffusion may be used, without alteration, for any finite

activity Lévy process.

We first impose delta neutrality to eliminate the instantaneous diffusion risk. Therefore,

substituting the delta-neutral condition

−∂V
∂S

+ e + ~φ · ∂
~I

∂S
= 0 (9.22)

into (9.17) eliminates both terms in the third line. Furthermore, the delta-neutral condition

implies

rSdt

(
∂V

∂S
− ~φ · ∂

~I

∂S

)
= reSdt ,

which simplifies the first line of (9.17) to rΠdt. A similar substitution within the integral

of the second line yields dt
∫

R
[
−∆V +

(
e∆S + ~φ ·∆~I

)](
νP(y)− νQ(y)

)
dy. Consequently,

the instantaneous change in the value of the delta-neutral overall hedged position may now

be expressed as

dΠ = rΠdt + dt

∫
R

[
−∆V +

(
e∆S + ~φ ·∆~I

)](
νP(y)− νQ(y)

)
dy

+
∫

R

[
−∆V +

(
e∆S + ~φ ·∆~I

)]
J̃P

X(dydt) . (9.23)
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Since the jump component has finite activity (and hence finite variation), the com-

pensated jump measure is not required. Substituting J̃P
X(dydt) = JP

X(dydt) − νP(y)dydt

into (9.23) gives

dΠ = rΠdt + dt

∫
R

[
∆V −

(
e∆S + ~φ ·∆~I

)]
νQ(y)dy

+
∫

R

[
−∆V +

(
e∆S + ~φ ·∆~I

)]
JP

X(dydt) .

Furthermore, νQ(R) = λQ and νQ(y) = λQgQ(y), where λQ is the risk-adjusted jump

intensity and gQ is the risk-adjusted distribution of jump amplitudes. Therefore

dΠ = rΠdt + λQ dtEQ
[
∆V −

(
e∆S + ~φ ·∆~I

)]
+
∫

R

[
−∆V +

(
e∆S + ~φ ·∆~I

)]
JP

X(dydt) . (9.24)

We may interpret JP
X as the random measure that governs the compound Poisson process

controlling the arrival time of the jumps in the return and their associated size. Using the

shorthand notation introduced in Section 2.3, dΠ in (9.24) may be expressed as

dΠ = rΠdt

+ λQ dtEQ
[
∆V −

(
e∆S + ~φ ·∆~I

)]
+ dπP

[
−∆V +

(
e∆S + ~φ ·∆~I

)]
, (9.25)

which is clearly the same expression as dΠ in (6.8), namely the instantaneous change in the

overall hedged position under a jump-diffusion process.

A finite activity Lévy process may be hedged using the same procedure as developed in

Chapter 6: delta neutrality is imposed to eliminate the diffusion risk, while the integral

∫
R

[
−∆V +

(
e∆S + ~φ ·∆~I

)]2
w(y)dy

is minimized at each rebalance time, where w(y) is a weighting function.
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9.6 Hedging an Infinite Activity Lévy Process

9.6.1 A Measure of the Jump Risk

Let Xt be an infinite activity Lévy process with triplet (ψ, σ, ν), where St = S0eXt . We

denote the change in portfolio value due to a jump S → Sey at time t as

~{S,t}(y) = −∆V + e∆S + ~φ ·∆~I

= −
(
V (Sey, t)− V (S, t)

)
+ eS

(
ey − 1

)
+ ~φ ·

(
~I(Sey, t)− ~I(S, t)

)
,

where S is the current asset price and y is the jump in the return. Let w(y) be a

proper weighting function w.r.t. both νP(y) and νQ(y) (as defined in Definition 6.1 with

y = log(J)), and assume that

σ2
w(δ) =

∫ δ

−δ
y2w(y)dy < ∞ (9.26)

for 0 < δ <∞.

We consider the expression

∫
R

[
−∆V +

(
e∆S + ~φ ·∆~I

)]2
w(y)dy =

∫
R

[
~{S,t}(y)

]2
w(y)dy . (9.27)

Analogous to the jump-diffusion case, the integral in (9.27) is a measure of the jump risk:

forcing it to be zero will eliminate this risk. In most cases, however, this will be impossible,

so the goal is to minimize it. To this end, the expression in (9.27) is broken up into the sum
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of two integrals:

∫
R

[
−∆V +

(
e∆S + ~φ ·∆~I

)]2
w(y)dy =

∫
|y|>δ

[
~{S,t}(y)

]2
w(y)dy

+
∫ δ

−δ

[
~{S,t}(y)

]2
w(y)dy . (9.28)

The first integral on the right-hand side of (9.28), which can be expressed in terms of

the truncated weighting function as

∫
R

[
~{S,t}(y)

]2
w(y)1|y|>δ dy , (9.29)

is a measure of the risk associated with the non-infinitesimal jumps (of which there are a

finite number over any instant). These jumps arrive at a rate of

λP
trun = νP((−∞,−δ) ∪ (δ,∞)

)
(9.30)

with amplitudes distributed according to

fP
trun(y) =

1
λP

trun

νP(y)1|y|>δ . (9.31)

Therefore, as with any jump diffusion, the “large” jumps are hedged by minimizing the

integral in (9.29).

The second integral on the right-hand side of (9.28),

∫ δ

−δ

[
~{S,t}(y)

]2
w(y)dy , (9.32)

is a measure of the risk associated with the small jumps (of which there are infinitely many
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over any instant). The Maclaurin polynomial for ~{S,t}(y) on [−δ, δ] is

~{S,t}(y) = ~{S,t}(0) + ~′{S,t}(0) · y +
1
2

~′′{S,t}(ξ) · y
2

= S

(
−∂V
∂S

∣∣∣∣
S

+ e+ ~φ · ∂
~I

∂S

∣∣∣∣
S

)
y +

1
2

~′′{S,t}(ξ) · y
2 , (9.33)

where ξ is a function of y, with |ξ| < |y|. By imposing the delta-neutral condition

−∂V
∂S

∣∣∣∣
S

+ e + ~φ · ∂
~I

∂S

∣∣∣∣
S

= 0

in (9.33) and substituting the resulting Maclaurin polynomial

~{S,t}(y) =
1
2

~′′{S,t}(ξ) · y
2 (9.34)

into (9.32), we get

∫ δ

−δ

[
~{S,t}(y)

]2
w(y)dy =

1
4

∫ δ

−δ

(
~′′{S,t}(ξ)

)2
y4w(y)dy . (9.35)

The second derivative of ~{S,t}(y) is

~′′{S,t}(y) = (Sey)

(
−∂V
∂S

∣∣∣∣
Sey

+ e + ~φ · ∂
~I

∂S

∣∣∣∣
Sey

)

+ (Sey)2
(
−∂

2V

∂S2

∣∣∣∣
Sey

+ ~φ · ∂
2~I

∂S2

∣∣∣∣
Sey

)
. (9.36)

We have already assumed that ∂V
∂S , ∂~I

∂S , ∂2V
∂S2 and ∂2~I

∂S2 are continuous (when Itô’s formula

was used to derive (9.17)). Therefore, since any continuous function on a closed interval is

bounded, |~′′{S,t}(y)| will be bounded on [−δ, δ]; we denote this upper bound as H{S,t}(δ).

Using the fact that y2 ≤ δ2 on [−δ, δ], a bound may be established for the integral in (9.35),



9.6. HEDGING AN INFINITE ACTIVITY LÉVY PROCESS 169

namely

∫ δ

−δ

[
~{S,t}(y)

]2
w(y)dy ≤ 1

4
δ2H2

{S,t}(δ)
∫ δ

−δ
y2w(y)dy

=
1
4
δ2H2

{S,t}(δ) · σ
2
w(δ) . (9.37)

Thus, assuming delta neutrality is imposed, the second integral on the right-hand side

of (9.28) can be made small by an appropriate choice of δ > 0.

The Lévy–Itô Decomposition tells us that the processes controlling the small jumps and

large jumps are independent—imposing delta neutrality will hedge the small jumps (and

eliminate the instantaneous diffusion risk), while the integral in (9.29) is minimized directly

to hedge the large jumps.

9.6.2 Global Bound on the Hedging Error

Assume there are no transaction costs present. By imposing delta neutrality and making

the jump risk sufficiently small at each instant, the terminal hedging error can be made

arbitrarily small. The steps for establishing this global bound are analogous to those in

Section 6.2, where a bound was established for the variance of the terminal hedging error

under jump diffusion. Therefore, after stating the theorem, we will only outline the proof.

Theorem 9.1 (Variance of the Hedging Error Can be Made Arbitrarily Small).

Assume there exists a δ∗ > 0 such that, for all times t and all possible asset values S, the

hedge portfolio weights {e, ~φ} can be chosen to satisfy:

(B1)(B1)(B1) w(y) is a proper weighting function with respect to both νP(y) and νQ(y);

(B2)(B2)(B2) The function ~′′{S,t}(y) in (9.36) is bounded: ~′′{S,t}(y) < H{S,t}(δ∗) < H∗ <∞

for y ∈ [−δ∗, δ∗];

(B3)(B3)(B3) σ2
w(δ∗) =

∫ δ∗

−δ∗
y2w(y)dy < ε1;
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(B4)(B4)(B4) The “large” jump risk is made small:
∫

R

[
~{S,t}(y)

]2
w(y)1|y|>δ∗ dy < ε2;

(B5)(B5)(B5) The moments EP
0

[
Π̃4

t

]
and EP

0

[
S6

t

]
exist;

(B6)(B6)(B6) All option payoffs are Lipschitz;

(B7)(B7)(B7) Delta neutrality is imposed;

Then, E
[
Π̃2

T

]
can be made small, i.e. E

[
Π̃2

T

]
= O(ε1 + ε2).

Outline of Proof for Theorem 9.1. Itô’s formula (in its integral form) applied to
(
Π̃t

)2 yields

Π̃2
t = 2

∫ t

0
e−ruΘQ

u Π̃u du +
∫ t

0

∫
R

(
Π̃2

u(Sue
y)− Π̃2

u(Su)
)
νP(y)dy du

+
∫ t

0

∫
R

(
Π̃2

u(Sue
y)− Π̃2

u(Su)
)
J̃P

X(dydu) , (9.38)

with

ΘQ
u =

∫
R
−~{S,t}(y) ν

Q(y)dy (9.39)

and

Π̃2
u(Sue

y)− Π̃2
u(Su) = e−2ru

[
~{S,t}(y)

]2
+ 2e−ruΠ̃u(Su)~{S,t}(y) ; (9.40)

imposing delta neutrality has eliminated the diffusion term. Now, using assumptions (B5 )

and (B6 ), we can show

EP
0

[∫ t

0

∫
R

(
Π̃2

u(Sue
y)− Π̃2

u(Su)
)2
νP(y)dy du

]
< ∞ ,

which means that the last term in (9.38) is a martingale. In this case, the differential
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equation

dEP
0

[
Π̃2

t

]
dt

= 2e−rtEP
0

[
ΘQ

t Π̃t

]
+ EP

0

[∫
R

(
Π̃2

t (Ste
y)− Π̃2

t (St)
)
νP(y)dy

]
(9.41)

can be obtained.

As in Section 6.2, we can establish upper bounds on the expectations in (9.41). First,

consider

EP
0

[(
ΘQ

t

)2
]

= EP
0

[(∫
R
−~{S,t}(y) ν

Q(y)dy
)2
]

= EP
0

(∫ δ∗

−δ∗
~{S,t}(y) ν

Q(y)dy +
∫

R
~{S,t}(y)ν

Q(y)1|y|>δ∗ dy

)2


= EP
0

(∫ δ∗

−δ∗
~{S,t}(y) ν

Q(y)dy

)2
 + EP

0

[(∫
R

~{S,t}(y)ν
Q(y)1|y|>δ∗ dy

)2
]

+ 2EP
0

[(∫ δ∗

−δ∗
~{S,t}(y) ν

Q(y)dy

)(∫
R

~{S,t}(y)ν
Q(y)1|y|>δ∗ dy

)]
.

(9.42)

For the first expectation in (9.42), we use the Maclaurin polynomial (9.34) for ~{S,t}(y):

EP
0

(∫ δ∗

−δ∗
~{S,t}(y) ν

Q(y)dy

)2
 = EP

0

(1
2

∫ δ∗

−δ∗
~′′{S,t}(ξ)y

2 νQ(y)dy

)2


Bound on |~′′{S,t}(y)| −→ ≤ EP
0

1
4
H2
{S,t}(δ

∗)

(∫ δ∗

−δ∗
y2 νQ(y)dy

)2


w(y) a proper weighting function, (B1 ) −→ ≤ EP
0

1
4
H2
{S,t}(δ

∗)

(∫ δ∗

−δ∗
y2w(y)dy

)2


Definition of σ2
w in (9.26) −→ = EP

0

[
1
4
(
H{S,t}(δ

∗)σ2
w(δ∗)

)2]
Conditioning on S

and assumptions (B2) and (B3)
−→ ≤ 1

4
(H∗ε1)

2 . (9.43)
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For the second expectation in (9.42), we recognize 1

λQ
trun

νQ(y)1|y|>δ∗ as a probably density,

with λQ
trun = νQ((−∞,−δ∗) ∪ (δ∗,∞)

)
. Therefore

EP
0

[(∫
R

~{S,t}(y)ν
Q(y)1|y|>δ∗ dy

)2
]

= EP
0

(λQ
trun

∫
R

~{S,t}(y)

{
1

λQ
trun

νQ(y)1|y|>δ∗

}
dy

)2


E[X]2 ≤ E[X2] −→ ≤ EP
0

[
(λQ

trun)
2

∫
R

(
~{S,t}(y)

)2{ 1

λQ
trun

νQ(y)1|y|>δ∗

}
dy

]

= EP
0

[
λQ

trun

∫
R

(
~{S,t}(y)

)2
νQ(y)1|y|>δ∗ dy

]
w(y) a proper

weighting function, (B1)
−→ ≤ EP

0

[
λQ

trun

∫
R

(
~{S,t}(y)

)2
w(y)1|y|>δ∗ dy

]

Conditioning on S
and assumption (B4)

−→ ≤ λQ
trunε2 . (9.44)

The results (9.43) and (9.44) can be used in (9.42), along with the Cauchy–Schwarz

inequality, to yield

EP
0

[(
ΘQ

t

)2
]
≤ 1

4
(H∗ε1)

2 + λQ
trunε2 + H∗ε1

√
λQ

trunε2 .

Hence, the first expectation in the differential equation (9.41) is bounded by

2e−rtEP
0

[
ΘQ

t Π̃t

]
≤ 2

√
EP

0

[(
ΘQ

t

)2
]

EP
0

[
Π̃2

t

]
≤ 2

√
1
4

(H∗ε1)
2 + λQ

trunε2 + H∗ε1

√
λQ

trunε2 ·
√

EP
0

[
Π̃2

t

]
. (9.45)

A similar analysis can be carried out on the second term in the differential equa-
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tion (9.41), where

EP
0

[∫
R

(
Π̃2

t (Ste
y)− Π̃2

t (St)
)
νP(y)dy

]
= EP

0

[∫
R

(
e−rt~{S,t}(y)

)2
νP(y)dy

]
+ EP

0

[
2e−rtΠ̃t(St)

∫
R

~{S,t}(y)ν
P(y)dy

]
,

(9.46)

is obtained using the representation in (9.40). For the first integral on the right-hand side

of (9.46):

EP
0

[∫
R

(
e−rt~{S,t}(y)

)2
νP(y)dy

]
≤ EP

0

[∫
R

[
~{S,t}(y)

]2
w(y)dy

]
Break integral into two −→ = EP

0

[∫ δ∗

−δ∗

[
~{S,t}(y)

]2
w(y)dy

]

+ EP
0

[∫
R

[
~{S,t}(y)

]2
w(y)1|y|>δ∗ dy

]
By bound in (9.37)

and assumption (B4)
−→ ≤ EP

0

[
1
4
(δ∗)2H2

{S,t}(δ
∗)σ2

w(δ∗) + ε2

]

Conditioning on S

and assumptions (B2) and (B3)
−→ ≤ 1

4
(δ∗)2(H∗)2ε1 + ε2 .

(9.47)

For the second integral on the right-hand side of (9.46), the bound is established exactly as

for the first expectation in the differential equation (9.41):

EP
0

[
2e−rtΠ̃u(St)

∫
R

~{S,t}(y)ν
P(y)dy

]
≤

2

√
1
4

(H∗ε1)
2 + λP

trunε2 + H∗ε1

√
λP

trunε2 ·
√

EP
0

[
Π̃2

t

]
(9.48)
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Therefore, the second term in the differential equation (9.41) is bounded by

EP
0

[∫
R

(
Π̃2

t (Ste
y)− Π̃2(St)

)
νP(y)dy

]
≤ 1

4
(δ∗)2(H∗)2ε1 + ε2

+ 2

√
1
4

(H∗ε1)
2 + λP

trunε2 + H∗ε1

√
λP

trunε2 ·
√

EP
0

[
Π̃2

t

]
(9.49)

The bounds (9.45) and (9.49) can be used in the differential equation (9.41) to yield a

differential inequality. We can then proceed as in Section (6.2) to show the variance of ΠT

can be made arbitrarily small.

9.7 Summary

In this chapter, we have laid down the theoretical framework for hedging under any Lévy

process. Finite activity processes are essentially jump diffusions, and hence may be hedged

using the dynamic strategy developed in Chapter 6. For infinite activity processes, imposing

delta neutrality will not only eliminate the diffusion risk, but also hedge the risk associated

with small jumps. The larger jumps, which are governed by a truncated Lévy measure

of the form νP(x)1|x|>δ, are handled in a similar way as the jumps in the jump-diffusion

model. This means that, essentially, the same procedure can be used to hedge both finite

and infinite activity processes. This result is not surprising, since infinite activity jump

processes can be approximated to arbitrary precision as the sum of a finite activity jump

process and a diffusion [3].



Chapter 10

Semi-Static Hedging Under Jump

Diffusion

With semi-static hedging, the hedge portfolio weights are chosen with the goal of replicating

the value of the target option at a future time (which usually corresponds to the expiry

of the shorter term options used for hedging). It is a buy-and-hold strategy that requires

infrequent rebalancing. In this chapter, we motivate the optimization that is performed at

each rebalance time of the semi-static procedure, and show how the objective function to

be minimized is a simple modification of the objective function that lies at the heart of

our dynamic strategy for hedging under jump diffusion. We carry out simulations of the

semi-static strategy for a European option, and investigate the use of different weighting

functions within the optimization.

175
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10.1 The Semi-Static Objective Function

If an option V (S, t) and the portfolio H(S, t) have the same value in all future states at

time T , i.e.

∀ST V (ST , T ) = H(ST , T ) ,

then the no-arbitrage principle implies that the two positions will have the same value for

all times before T and, as such, are indistinguishable: H(S, t) is said to replicate V (S, t).

Semi-static hedging is based on the principle that a continuum of calls and puts may be

used to replicate a more complex or longer-dated option [13, 17], and hence form a perfect

hedge. Since the use of a continuum of options is clearly impossible, the idea is to choose a

finite number of option positions that match the contract being hedged in some best sense.

With semi-static hedging, positions are updated infrequently.

Carr and Wu [19] derive a relationship in which a long-term European option may be

replicated by holding a continuum of shorter-term options of the same type. For European

call options, this spanning relationship is

C∗(S, t;K,T )︸ ︷︷ ︸
Long-term call
with strike K

=
∫ ∞

0
w(κ)C(S, t;κ, u)︸ ︷︷ ︸

Short-term
call with
strike κ

dκ , (10.1)

where C∗ and C are the respective time-t option values corresponding to asset price S,

T ≥ t0 is the maturity of the long-term call option C∗, and u ∈ [t0, T ] is the expiry of the

short-term call options. The relationship between the various times is represented in the

following schematic:

?

t0 Tu

t
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The required weight to hold in each of the short-term options is given by

w(κ) =
∂2

∂S2
C∗(S, u;K,T )

∣∣∣∣
S=κ

,

which is the gamma of the long-term call option C∗ at time u; these weights are independent

of t and hence may be readily calculated at some initial time t0. Furthermore, with these

weights the spanning relation (10.1) holds for all times in the interval t ∈ [t0, u], such that

at time u the gamma-weighted portfolio of short-term options completely replicates the

European call C∗. Therefore, to hedge the long-term call option C∗ over the time period

[t0, u], the gamma weighted portfolio of shorter-term calls is formed at time t0 and held

until they expire at u. To hedge beyond time u, a new set of short-term options should be

used to form the replicating portfolio. Note the spanning relationship (10.1) holds for any

Markovian pricing model (i.e. where dS only depends on the current value of S), as it is

derived from the Breeden–Litzenberger result [13]

pQ(ST |St) = e−r(T−t) ∂
2C

∂K2
(St, t;K,T )

that links the risk-adjusted transition density pQ to the partial derivatives of the call value.

A continuum of options obviously cannot be employed, so the authors appeal to Gauss-

Hermite quadrature to find the hedge portfolio weights ωj and strikes κj that allow a

finite number N of short-term call options to approximate the replicating portfolio. This

quadrature rule is

C∗(S, t;K,T ) =
∫ ∞

0
w(κ)C(S, t;κ, u) dκ ≈

N∑
j=1

ωjC(S, t;κj , u) ,

where an explicit relationship exists between the weights and strikes {ωj , κj}N
j=1 and the
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standard Gauss-Hermite quadrature weights and nodes {vj , xj}N
j=1 from the canonical form

∫ ∞

−∞
f(x)e−x2

dx ≈
N∑

j=1

vjf(xj) .

Carr and Wu [19] provide evidence supporting the efficacy of this method for hedging under

jump diffusion.

For a fixed number of hedging options N , the procedure of Carr and Wu [19] has

2N degrees of freedom, as both the strikes and corresponding weights of these hedging

options are set by the quadrature rule. However, since only a finite number of call options

are available in the market, the procedure may compute required strikes that cannot be

purchased. As such, it is more practical to impose the strikes that can be used, and then

calculate the associated hedge weights that best replicate—according to some criterion—the

contract being hedged. We consider this variant of semi-static hedging.

We assume the target option V (S, t) is European, and consider a market with no trans-

action costs. The hedge portfolio again consists of a cash component B(t), e units in the

underlying, and ~φ units in N hedging options ~I whose characteristics (e.g. strikes) are com-

pletely specified beforehand. The value of the overall hedged position at time t for an asset

value of St is

Π(St, t) = − V (St, t) + eSt + ~φ · ~I(St, t) + B(t) .

The cost of establishing the overall hedged position time at t is

B(t) = V (St, t) − eSt − ~φ · ~I(St, t) , (10.2)

which is invested (B(t) > 0) or borrowed (B(t) < 0) at the risk-free rate r. At a time t+ δt

in the future, where δt is a non-infinitesimal amount of time, the value of the overall hedged
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position is

Π(St+δt, t+ δt) = −V (St+δt, t+ δt) + eSt+δt + ~φ · ~I(St+δt, t+ δt) + erδtB(t) .

(10.3)

Now, we would like Π(St+δt, t + δt) to be zero for all possible future states St+δt, as this

signifies a perfect hedge exists over δt. This will most likely be impossible, so

min
{e,~φ}

EP
[(

Π(St+δt, t+ δt)
)2] (10.4)

is solved. When the expression for B(t) in (10.2) is substituted into (10.3), the optimization

problem (10.4) may be expressed as

min
{e,~φ}

EP
[
F (e, ~φ)2

]
(10.5)

with

F (e, ~φ) = −
(
V (St+δt, t+ δt)− erδtV (St, t)

)
+ e

(
St+δt − erδtSt

)
+ ~φ ·

(
~I(St+δt, t+ δt)− erδt~I(St, t)

)
. (10.6)

The expectation in (10.5) is taken with respect to the transition probability density

p(St+δt|St) under the P measure. He et al. [40] explore this strategy, and show it is effective

for hedging under a jump-diffusion model with lognormally distributed jumps. In this case,

the transition density can be expressed in closed form [51] as

p(ST |S0) =
e−λPT

√
2πST

∞∑
n=0

(
λPT

)n exp

{
−

“
log

“
ST
S0

”
−

“
αP−σ2

2
−λPκP

”
T−nµP

”2

2(σ2T+n(γP)2)

}
n!
√
σ2T + n (γP)2

; (10.7)
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this is referred to as Merton’s transition density. When λP = 0 (no jumps), the distribution

in (10.7) collapses to the lognormal density that characterizes the Black–Scholes model.

The expectation in (10.5) effectively enters into the optimization as a weighting function.

Analogous to the dynamic hedging strategy, lack of knowledge pertaining to the P measure

will often make it impossible to use the associated transition density as the weighting

function.

10.2 The Link Between the Dynamic and Semi-Static Strate-

gies

Recall that the objective for our dynamic hedging procedure may be written as

min
{e,~φ}

∫ ∞

0

[
−∆V +

(
e∆S + ~φ ·∆~I

)]2
W (J) dJ , (10.8)

where ∆V = V (JS) − V (S), ∆~I = ~I(JS) − ~I(S) and ∆S = S(J − 1) represent the

changes due to a jump of size J . Since the goal of the dynamic procedure is to minimize the

instantaneous jump risk, all option values in (10.8) come from the time of the rebalance. The

weighting function W (J) is tied to our knowledge (or lack of knowledge) of the distribution

of jump sizes under the P measure.

Instead of considering J as the instantaneous jump size, for the purposes of semi-static

hedging we define it as the relative change of the asset price between times t and t + δt;

that is

J =
St+δt

St
.

This new interpretation of J allows the function (10.6) used in the semi-static procedure

to be expressed in the same form as in (10.8), such that the optimization to be solved at a
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rebalance time t is

min
{e,~φ}

∫ ∞

0

[
−∆V +

(
e∆S + ~φ ·∆~I

)]2
Wse(J) dJ (10.9)

with

∆V = Vt+δt(JSt)− erδtVt(St), ∆~I = ~It+δt(JSt)− erδt~It(St), ∆S = St(J − erδt)

(10.10)

and Wse(J) the weighting function. Note the presence of the subscripts related to time

in (10.10): since a semi-static hedge is concerned with instrument values both now and

in the future, this time-stamp is necessary. The role of the weighting function Wse(J)

in (10.9) is now (ideally) played by the transition density from St to St+δt (defined in terms

of J = St+δt

St
) under the P measure.

As illustrated above, it is essentially the same optimization problem that is the basis for

both the dynamic and semi-static hedging procedures. As such, the technology developed

to implement the dynamic hedging strategy may be used, with only minor changes, for the

semi-static procedure. To this end, the method of Lagrange multipliers is employed to find

the optimal solution to (10.9), although this usually will be an unconstrained optimization

since linear equality constraints, such as the imposition of delta neutrality, are generally not

present. Analogous to the dynamic strategy (see (7.6)), the linear system resulting from
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the application of Lagrange multipliers will have entries of the form (∆X,∆Y ), given by

(∆X,∆Y ) =
∫ ∞

0

[
∆X∆Y

]
Wse(J) dJ

=
∫ ∞

0

[
Xt+δt(JSt)− erδtXt(St)

][
Yt+δt(JSt)− erδtYt(St)

]
Wse(J) dJ

= e2rδtXt(St)Yt(St)
∫ ∞

0
Wse(J) dJ +

precomputed for time t+δt︷ ︸︸ ︷∫ ∞

0
Xt+δt(JSt)Yt+δt(JSt)Wse(J) dJ

− erδtYt(St)
∫ ∞

0
Xt+δt(JSt)Wse(J) dJ︸ ︷︷ ︸

precomputed for time t+δt

− erδtXt(St)
∫ ∞

0
Yt+δt(JSt)Wse(J) dJ︸ ︷︷ ︸

precomputed for time t+δt

.

The correlation-type integrals are precomputed as before (see Appendix B); this should

entail considerably less work as compared to the dynamic strategy, since the integrals need

only be calculated for the typically infrequent times when the semi-static hedge is to be

rolled over.

When computing the semi-static hedge weights at the rebalance time t, it is simply a

matter of forming the linear system in the same fashion as for the dynamic hedge. The only

differences are: (i) the correlation-type integrals come from the time t + δt in the future;

(ii) the hedging instrument values from time t are adjusted by the exponential factor erδt;

and (iii) the delta-neutral constraint is not imposed

10.3 Hedging Simulations

To illustrate the semi-static procedure, the same hedging example as in Section 7.3 is

considered: the target option is a one-year European straddle with strike $100 that exists

in a jump-diffusion market with lognormally distributed jumps. The pricing Q measure
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Semi-static
Hedging Test

Mean Standard
Deviation

Quantiles

0.2% 99.8%

Augmented Dynamic (A) 0.00 0.01 -0.05 0.06
Augmented Dynamic (B) 0.00 0.01 -0.05 0.06

He et al. [40] 0.00 0.01 -0.05 0.05

Table 10.1: Statistical measures of the relative profit and loss when hedging a one-year Euro-
pean straddle (K = $100) under jump diffusion using the semi-static procedure. The weighting
function used in the optimization (10.9) is the transition density under P, given in (10.7). The
hedge is formed at t = 0 and then rolled over at t = 0.25; the hedging horizon is half a year.
The results corresponding to (A) and (B) are found using two different sets of 500,000 paths.
For the α% quantile, approximately α% of the 500,000 simulations resulted in a relative P&L
less than the reported amount.

and real-world P measure that characterize the market are given in Table 7.1. The target

option is initially at the money (i.e. S0 = 100), and is to be hedged over a half-year time

horizon. The underlying, plus three-month call options with strikes in intervals of $5, are

used as the hedging instruments. At each rebalance/rollover time t, the call options with

strikes closest to [0.8, 0.9, 1.0, 1.1, 1.2]St are considered as the most liquid and thus used in

the hedge. The hedge is formed at t0 = 0 by solving (10.9) with t = 0 and t + δt = 0.25.

This hedge portfolio is held until t1 = 0.25, at which point it is rolled over: the hedge

weights for the new three-month options are computed by solving (10.9) with t = 0.25 and

t+ δt = 0.5.

This example is the same as the semi-static test case considered in He et al. [40]; their

simulation set #1 corresponds to using the transition density (10.7) as the weighting func-

tion Wse(J). Our first goal is to carry out this specific hedging experiment in order to

confirm that our dynamic hedging framework can indeed accommodate the semi-static pro-

cedure. We execute our “augmented dynamic” version of semi-static hedging twice, using

two different sets of 500,000 paths. The results, along with those for simulation set #1 from

He et al. [40], are presented in Table 10.1 in the form of statistical measures of the relative

profit and loss.
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The results in Table 10.1 are very close to each other, indicating that the technology

developed for the dynamic procedure can indeed be used to carry out semi-static hedging.

Now, to investigate the effect of the weighting function on the profit & loss, we consider

hedging the straddle over the same 500,000 asset paths, with the only difference being

the Wse(J) employed in the optimization (10.9). The six simulation experiments are sum-

marized in Table 10.2 and the results are presented in Table 10.3. Note that plots of the

various weighting functions can be found in the bottom graph of each panel in Figure 10.1—

interpreting the top graph of these panels is the subject of the following section.

The hedging results for the first three cases are quite similar, which is not surprising

since the weighting functions are much alike—the volatility is the primary influence on the

shape of these transition densities, and this value is close for all three cases, i.e.

(1)σP = 0.2, (2)σ = 0.226, (3)σQ = 0.2 .

The hedging results for the first three tests are quite good, exhibiting a zero mean and small

standard deviation. The Black–Scholes transition density used as the weighting function in

the fourth test case is totally inappropriate for our market, as the drift is set unreasonably

high and the extremely low volatility leads to a highly peaked weighting function. The

results are very poor for this case, as protection is only afforded for a relatively narrow

band of future asset prices.

If the weighting function utilized in the fourth test case was our best guess for the tran-

sition density under the P measure, we may pay a significant price for being wrong, as losses

from the left tail of the P&L distribution are substantial (e.g. the 0.2% quantile is -2.08).

As with the dynamic strategy, using a uniform-like weighting function encapsulates a lack of

knowledge pertaining to the P measure; an example of a uniform-like weighting function is

plotted in Figure 7.1. In the case of semi-static hedging, the uniform-like weighting function
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Test
Number

Weighting Function Summary

(1) Merton Transition Density Under P

The transition density from St

to St+δt for a jump-diffusion
model with lognormally distributed
jumps, under the P measure. The
density is given by (10.7) with
J = log

(
St+δt

St

)
.

(2) Black–Scholes Transition Density

The transition density from St to
St+δt for the Black–Scholes model
(i.e. the density in (10.7) with
λP = 0). The drift αP = 0.18
and volatility σ = 0.226 come from
the P measure (see caption).

(3) Merton Transition Density Under Q

The transition density from St

to St+δt for a jump-diffusion
model with lognormally distributed
jumps, under the Q measure.

(4) BAD Black–Scholes Transition Density

The transition density from St to
St+δt for the Black–Scholes model.
The drift is set to α = 1.0 and the
volatility is σ = 0.05.

(5) Uniform-like Density

90% of the mass is uniformly dis-
tributed between J = 0.3 and
J = 1.7. The remaining 10% is
in triangular tails that extend lin-
early down to zero.

(6) BAD Uniform-like Density

90% of the mass is uniformly dis-
tributed between J = 0.7 and
J = 0.8. The remaining 10% is
in triangular tails that extend lin-
early down to zero.

Table 10.2: Description of the different weighting functions used in the semi-static hedg-
ing experiments. The target option is a one-year European straddle with strike $100. The
value used as σ in test number (2) is the total volatility of the jump-diffusion process under P:√

(σP)2 + λP((γP)2 + (µP)2).
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Test
Number

Weighting Function Mean Standard
Deviation

Quantiles

0.2% 99.8%

(1) Transition Density Under P 0.00 0.01 -0.05 0.06

(2) Black–Scholes Transition Density 0.00 0.01 -0.05 0.05

(3) Transition Density Under Q 0.00 0.01 -0.06 0.06

(4) BAD Black–Scholes Transition Density 0.09 0.18 -2.08 0.20

(5) Uniform-like Density 0.00 0.02 -0.18 0.08

(6) BAD Uniform-like Density -0.03 0.23 -1.20 0.35

Table 10.3: Statistical measure of the relative profit and loss for hedging a one-year European
straddle (K = $100) under jump diffusion using the semi-static procedure. A variety of weighting
functions are used, and are summarized in Table 10.2. The hedge is formed at t = 0 and then
rolled over at t = 0.25; the hedging horizon is half a year.

is set to non-zero for those future asset prices deemed plausible. Such a density is used for

the fifth test case and the hedging results are good, especially given the fact this weighting

function represents no knowledge of the real-world measure. The final test case employs

a highly peaked uniform-like density and, similar to the use of the “bad” Black–Scholes

transition density, the results are poor. The use of a highly-peaked weighting function is

a not advisable unless one is sure it accurately captures the dynamics of the market: it is

better to be over-cautious than over-confident.

10.4 Analysis of the Overall Hedged Position Value

For each of the 500,000 simulations, the same hedge portfolio is used for the first three

months. It is therefore instructive to examine the value of the overall hedged position at

t = 0.25 as a function of the relative change in the asset price J = S0.25
100 , as these plots

provide a graphical representation of the protection against movements in the underlying.

These plots also furnish us with a tangible way of viewing the effect of the various weighting

functions. Six dual-plots are presented in Figure 10.1, corresponding to the simulation

experiments summarized in Table 10.2. The top graph of each panel represents the value of
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the overall hedged position at t = 0.25 as a function of J = S0.25
100 , while the bottom graph

is the associated weighting function. The desired behaviour of the future value profile (i.e.

the curve in the top graph) is for it to closely hug the zero-line.

The most striking characteristic of the top three panels is how similar the weighting

functions—and hence the future value profiles—are. This is because the effect of the log-

normal jumps on Merton’s transition density, for both the P and Q measures we use, is

small compared to the influence of the drift α and diffusive volatility σ. The left tail of

the density corresponding to the Q measure is visible due to the more severe jump param-

eters (e.g. λQ = 0.1 vs. λP = 0.023), but is still insignificant compared to the central mass.

Nonetheless, this more massive tail does provide somewhat better protection against down-

ward jumps than is admitted by the P measure, as the jump-to-ruin (i.e. when S0.25 = 0)

under P is a loss of $3 while under Q it is approximately $2.

For each of the first three cases, the protection for future asset values falling within

the central mass of the weighting functions, approximately 75 ≤ S0.25 ≤ 135, is very good.

Furthermore, this protection persists for asset values assigned a weight close to zero. The

fourth panel corresponds to a weighting function of similar shape, only it is more highly

peaked with considerably less breadth. There is good protection for future asset values that

lie within the central mass of the density, but this protection rapidly deteriorates.

If sufficient breadth of the weighting function is a desired characteristic, then a uniform-

like weighting function can be used. Furthermore, detailed knowledge of the P measure is

not required to construct such a weighting function. The future value profile in the fifth

panel demonstrates the overall protection is quite good. There is more protection for the

extreme values of S0.25 than in cases (1), (2), and (3); however, this comes at the expense of

a deterioration in the protection for the most likely asset values, 75 ≤ S0.25 ≤ 135. The sixth

panel demonstrates how the use of a narrow uniform-like density has the same pernicious

effect as the highly-peaked lognormal density treated in the fourth panel.
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Figure 10.1: TOP: Value of the overall hedged position at time t = 0.25 as a function of the
relative change in the asset price J = S0.25

100 . BOTTOM: Associated weighting function. All six
of the weighting functions have the properties of a probability density.
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10.5 Summary

In this chapter, we demonstrated how the optimization problem for a particular imple-

mentation of semi-static hedging is a modification of the optimization that is solved by our

dynamic procedure for hedging under jump diffusion. This semi-static procedure was shown

to be effective when hedging a one-year European straddle in a jump-diffusion market with

lognormally distributed jumps. Furthermore, the hedging results are good for a variety of

reasonable weighting functions, including a uniform-like density that assumes no knowledge

of the P measure.





Chapter 11

Conclusions

The seller of a contingent claim must hedge the risk associated with their short position.

In a market with jumps, delta hedging is not an adequate strategy for managing this risk:

although a delta hedge will eliminate the diffusion risk related to the Brownian component

of the underlying asset, it ignores the risk due to jumps. Moreover, this risk is often

substantial, with the hedger subject to large losses if a jump occurs. In this thesis we have

demonstrated that, to properly hedge a contingent claim in a market with jumps, more

than the underlying asset must be used. In particular:

• For a regime-switching market, a finite number of hedging instruments are sufficient

to eliminate all instantaneous risk from an option position—this perfect hedge leads

to small hedging error when used as the basis of a discretely rebalanced strategy.

• In a jump-diffusion market, the continuum of possible jump sizes means the instanta-

neous risk can only be eliminated by using an infinite number of hedging instruments.

Nonetheless, the jump risk can be treated in a systematic way, using a finite and

practical number of hedging instruments: at each rebalance time, the hedge portfolio

weights are chosen to simultaneously (i) eliminate the instantaneous diffusion risk by
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imposing delta neutrality; and (ii) minimize an objective that is a linear combination

of a jump risk and transaction cost penalty function. Hedging simulations indicate

that this strategy provides sufficient protection against the diffusion and jump risk

while not incurring large transaction costs.

• Our dynamic strategy for hedging under jump diffusion possesses many positive at-

tributes, including:

– It is easily applied to options with path-dependent features, including those with

American-style early exercise provisions;

– Exact knowledge of the Q and P measures is not required. In particular, we can

use an estimate of the pricing measure obtained through calibration, and the

weighting function employed to minimize the jump risk need not depend on the

distributional properties of jump amplitudes under the real-world measure;

– It can be used to hedge under any Lévy process.

Due to the transaction costs associated with a hedge portfolio containing several hedging

options, it is a common belief that jumps cannot be dynamically hedged in practice. We

hope that our results concerning a jump-diffusion market with transaction costs helps dispel

the notion that hedging contingent claims with other options, as a means to treat the jump

risk, is too expensive.

11.1 Future Work

Some directions for future research are:

• The unification of the regime-switching and jump-diffusion models considered in this

thesis would be a stochastic volatility model where both the underlying asset and
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volatility can jump, with the amplitudes for both jump types drawn from a continuum.

It would be of interest to extend our hedging methodology to such a model.

• Since our hedging strategy treats the instantaneous risk, it is local in time. It would

be desirable to develop globally optimal strategies by employing stochastic control

theory.





Appendix A

Derivation of the Option Pricing

PDEs for a Regime-Switching

Model

A.1 Continuous Markov Chains

Consider a continuous-time stochastic process Xt that may assume values in the state space

{1, 2, 3, . . . , N}. The process Xt is said to be a continuous N -state Markov chain if it obeys

the Markov property; i.e.

Prob
[
Xt+s = n|Ft

]
= Prob

[
Xt+s = n|Xt

]
for s > t ,

where Ft is the filtration (history) of the process. For every pair of states (i, j), there exists

a transition probability

pij(t) = Prob
[
Xt = j|X0 = i

]
,
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such that pij(t) is the probability the Markov chain is in state j at time t given it is initially in

state i. If the Markov chain is homogeneous in time, then Prob
[
Xt+s = j|Xt = i

]
= pij(s).

The continuous N -state Markov chain Xt is completely specified by its N × N rate

matrix (generator) Q; we will treat the entries as independent of time [72]. All off-diagonal

entries of Q, known as the transition intensities, are greater than or equal to zero, while the

diagonal entries are given by

qii = −
N∑

j=1
j 6=i

qij .

For each state i, the transition probabilities ~pi(t) =
[
pi1(t), pi2(t), . . . , piN (t)

]T obey the

system of differential equations

d~pi

dt
= Q~pi

~pi(0) = êi , (A.1)

where êi is the ith Euclidean basis vector. The solution to (A.1) is given by

~pi(t) =
[
exp(Qt)

]T
êi =

[
I +

∞∑
n=1

(Qt)n

n!

]
ith row

.

For small time ∆t the infinite series may be truncated, yielding

pij(∆t) =

 qij∆t+O(∆t2) i 6= j

1 + qii∆t+O(∆t2) i = j

 .

If the Markov chain is in state i, the probability of a transition to a new state occurring

over time ∆t is vi∆t+O(∆t2), where vi = −qii. If a transition does occur, the probability

of it taking place from state i to j is qij

vi
. These facts may be used to simulate a continuous

Markov chain.
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The increment of the Markov chain, dXt = Xt+dt − Xt, will be a non-zero integer if

there is a change in state over dt, and zero otherwise. For ease of exposition, we will use

the term dXij to indicate the transition of the Markov chain over an instant dt, with

dXij =

 1 If the Markov chain transitions from state i to j over dt

0 Otherwise

and

dXij =

 1 with probability qijdt+ δij

0 with probability 1− qijdt− δij ,

with the understanding that there can be only one transition over an instant; i.e.

Prob
[
(dXil = 1) ∩ (dXik = 1)

]
= 0 l 6= k .

A.2 Pricing in a Regime-Switching Market

A.2.1 Jumps May Only Occur with a Change in Regime

To derive the system of PDEs, we will consider the general N -state process

dS = ai(S, t) dt + bi(S, t) dZ +
N∑

j=1

S
(
ηij − 1

)
dXij , (A.2)

where the superscripts denote that the drift and diffusion coefficients are regime dependent.

In addition, ηij is the size of the jump in the underlying S → Sηij that occurs when the

Markov chain transitions from state i to state j, and is assumed to be a deterministic

constant. It is also assumed that ηii = 1, such that the asset price can only jump when

there is a change in regime. Jumps in the underlying that occur without a change in regime
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are easily incorporated by including a compound Poisson process in (A.2)—the system of

pricing PDEs for such an example is developed in the following section.

A target option V is to be hedged with a portfolio of N instruments {Fn}N
n=1 whose

values depend on the underlying S, where the underlying may not be tradeable. A bank

account B that grows at the risk-free rate r is also available. Consequently, the overall

hedged position has value

Π = − V +
N∑

n=1

wnFn + B , (A.3)

where wn is the weight in each of the hedging instruments. Assuming the Markov chain is

in state i, the instantaneous change in the value of the target option over an instant dt is

found using Itô’s lemma:

dV = µ̂i dt + σ̂i dZ +
N∑

j=1
j 6=i

∆V ij dXij (A.4)

where

µ̂i =
[
∂V i

∂t
+ ai∂V

i

∂S
+

1
2
(bi)2

∂2V i

∂S2

]
, σ̂i = bi

∂V i

∂S
, ∆V ij = V j − V i (A.5)

and V k = V k(Sηik, t). Similarly for each of the hedging instruments:

dFn = µ̄i
n dt + σ̄i

n dZ +
N∑

j=1
j 6=i

∆F ij
n dXij (A.6)

with

µ̄i
n =

[
∂F i

n

∂t
+ ai∂F

i
n

∂S
+

1
2
(bi)2

∂2F i
n

∂S2

]
, σ̄i

n = bi
∂F i

n

∂S
, ∆F ij

n = F j
n − F i

n (A.7)
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and F k
n = F k

n (Sηik, t).

Using the expressions for dV in (A.4) and dFn in (A.6), the instantaneous change in the

overall hedged position is

dΠ = −dV +
N∑

n=1

wn dFn + dB

=

[
−µ̂i +

N∑
n=1

wnµ̄
i
n + rB

]
dt +

[
−σ̂i +

N∑
n=1

wnσ̄
i
n

]
dZ

+
N∑

j=1
j 6=i

[
−∆V ij +

N∑
n=1

wn∆F ij
n

]
dXij .

(A.8)

To eliminate the diffusion risk and the regime-switching risk from (A.8), a total of N linear

equations need to be satisfied, namely

N∑
n=1

wnσ̄
i
n = σ̂i

}
One Equation

(Diffusion Risk)

N∑
n=1

wn∆F ij
n = ∆V ij j = 1, 2, . . . , N

j 6= i

}
N − 1 Equations

(Regime-Switching Risk) .

Since all the risk has been eliminated from the overall hedged position, its value must grow

at the risk-free rate, implying dΠ = rΠdt. Using the (deterministic) dΠ obtained from (A.8)

and the expression for Π in (A.3), the linear equation

N∑
n=1

wn

(
µ̄i

n − rF i
n

)
=
(
µ̂i − rV i

) }
One Equation

(No-Arbitrage Condition)

must be satisfied in order to prevent the existence of arbitrage opportunities. As such, we
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have a linear system consisting of N + 1 equations in N unknowns:



σ̄i
1 σ̄i

2 σ̄i
3 · · · σ̄i

N

∆F i1
1 ∆F i1

2 ∆F i1
3 · · · ∆F i1

N

∆F i2
1 ∆F i2

2 ∆F i2
3 · · · ∆F i2

N

...
...

...
. . .

...

∆F i(i−1)
1 ∆F i(i−1)

2 ∆F i(i−1)
3 · · · ∆F i(i−1)

N

∆F i(i+1)
1 ∆F i(i+1)

2 ∆F i(i+1)
3 · · · ∆F i(i+1)

N

...
...

...
. . .

...

∆F iN
1 ∆F iN

2 ∆F iN
3 · · · ∆F iN

N

µ̄i
1 − rF i

1 µ̄i
2 − rF i

2 µ̄i
3 − rF i

3 · · · µ̄i
N − rF i

N





w1

w2

w3

w4

...

wN−3

wN−2

wN−1

wN



=



σ̂i

∆V i1

∆V i2

...

∆V i(i−1)

∆V i(i+1)

...

∆V iN

µ̂i − rV i



(A.9)

The system in (A.9) is over specified: in order for it to have a solution, the equations

must be linearly dependent. Consider the linear combination

Λi × EQ1 − λQ
i1 × EQ2 − λQ

i2 × EQ3 − . . . − λQ
iN × EQN − EQN+1 , (A.10)

where EQj refers to the jth row of the matrix in (A.9). The expression in (A.10) must be

zero component-wise for some choice of Λi and {λQ
ij}N

j=1,j 6=i. This gives rise to a new linear
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system:



σ̄i
1 ∆F i1

1 ∆F i2
1 · · · ∆F i(i−1)

1 ∆F i(i+1)
1 · · · ∆F iN

1

σ̄i
2 ∆F i1

2 ∆F i2
2 · · · ∆F i(i−1)

2 ∆F i(i+1)
2 · · · ∆F iN

2

σ̄i
3 ∆F i1

3 ∆F i2
3 · · · ∆F i(i−1)

3 ∆F i(i+1)
3 · · · ∆F iN

3

...
...

...
. . .

...
...

. . .
...

σ̄i
N ∆F i1

N ∆F i2
N · · · ∆F i(i−1)

N ∆F i(i+1)
N · · · ∆F iN

N

σ̂i ∆V i1 ∆V i2 · · · ∆V i(i−1) ∆V i(i+1) · · · ∆V iN





Λi

−λQ
i1

−λQ
i2

...

−λQ
i(i−1)

−λQ
i(i+1)

...

−λQ
i(N−1)

−λQ
iN



=



µ̄i
1 − rF i

1

µ̄i
2 − rF i

2

µ̄i
3 − rF i

3

...

µ̄i
N − rF i

N

µ̂i − rV i



(A.11)

Each linear equation in (A.11) is independent of the other instruments; without loss of

generality, consider the last one:

Λiσ̂i −
N∑

j=1
j 6=i

λQ
ij∆V

ij = µ̂i − rV i .

Using the known expressions for µ̂i, σ̂i and ∆V ij from (A.5) yields

∂V i

∂t
+

1
2
(bi)2

∂2V i

∂S2
+
(
ai − Λibi

)∂V i

∂S
− rV i +

N∑
j=1
j 6=i

λQ
ij

(
V j − V i

)
= 0 .
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The system of PDEs is therefore

for i = 1, 2, . . . , N :

∂V i

∂t
+

1
2
(bi)2

∂2V i

∂S2
+
(
ai − Λibi

)∂V i

∂S
−
(
r − λQ

ii

)
V i +

N∑
j=1
j 6=i

λQ
ijV

j = 0

(A.12)

where

λQ
ii = −

N∑
j=1
j 6=i

λQ
ij . (A.13)

The Λi term is a market price of risk, with ai − Λibi the risk-adjusted drift. A simple

no-arbitrage argument shows that the λQ
ij ’s must be non-negative [35]. The λQ

ij (j 6= i)

term can be interpreted as a risk-adjusted transition intensity of the Markov chain. If the

regime-switching risk is diversifiable, then the λQ
ij ’s are equal to the real-world intensities

(i.e. the λP
ij ’s) of the Markov chain—that is, there is no risk adjustment. In general, this

will not be the case. On the other hand, the jumps ηij in the pricing equations are those

that would be observed in the real world. By definition, the P and Q measures must have

the same null and almost-sure events. It is therefore impossible for a jump amplitude to

exist under one measure and not the other.

If the underlying is tradeable, the market price of risk Λi may be eliminated from the

system of PDEs in (A.12). Assume that F1 is the underlying: in this case F1 = S, µ̄i
1 = ai,
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σ̄i
1 = bi, and ∆F ij

1 = S(ηij − 1). The first equation from the system in (A.11) becomes

Λib
i −

N∑
j=1
j 6=i

λQ
ijS
(
ηij − 1

)
= ai − rS −→ Λib

i − Sη̃Q
i = ai − rS

−→ ai − Λib
i = (r − η̃Q

i )S , (A.14)

with

η̃Q
i =

N∑
j=1
j 6=i

λQ
ij

(
ηij − 1

)
=

N∑
j=1

λQ
ijη

ij

obtained using (A.13) and the fact ηii = 1. Hence, by substituting (A.14) into (A.12), the

PDE for regime i may be written as

∂V i

∂t
+

1
2
(bi)2

∂2V i

∂S2
+
(
r − η̃Q

i

)
S
∂V i

∂S
−
(
r − λQ

ii

)
V i +

N∑
j=1
j 6=i

λQ
ijV

j = 0 . (A.15)

A.2.2 Jumps May Occur without a Change in Regime

The above derivations assume that the asset price can only jump when there is a regime

change. We now relax this assumption by allowing jumps in the underlying that can occur

without a change of state. Within each of the N regimes, a jump of deterministic size ϑi

may occur, with the arrival of this jump governed by the Poisson process πi. The stochastic

differential equation for the evolution of the underlying asset is now

dS = ai(S, t) dt + bi(S, t) dZ + S(ϑi − 1) dπi +
N∑

j=1

S
(
ηij − 1

)
dXij .

The possibility of a jump absent a regime change adds another random factor, and as

such a new hedging instrument FN+1 is required to eliminate the associated risk. In this
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case, the instantaneous change in the overall hedged position, with regime i the current

state, is

dΠ =

[
−µ̂i +

N+1∑
n=1

wnµ̄
i
n + rB

]
dt +

[
−σ̂i +

N+1∑
n=1

wnσ̄
i
n

]
dZ

+

[
−∆V i +

N+1∑
n=1

wn∆F i
n

]
dπi +

N∑
j=1
j 6=i

[
−∆V ij +

N+1∑
n=1

wn∆F ij
n

]
dXij ,

where ∆V i = V i(Sϑi, t)− V i(S, t), ∆F i
n = F i

n(Sϑi, t)− F i
n(S, t), and all other notations as

before.

Following the same risk-elimination and no-arbitrage arguments as in the previous sec-

tion, we arrive at the system of pricing PDEs, which contains new terms:

for i = 1, 2, . . . , N :

∂V i

∂t
+

1
2
(bi)2

∂2V i

∂S2
+
(
ai − Λibi

)∂V i

∂S
−
(
r − λQ

ii + λQ
i

)
V i

+ λQ
i V

i(Sϑi, t) +
N∑

j=1
j 6=i

λQ
ijV

j(Sηij , t) = 0 .

Here, V i = V i(S, t) and λQ
i is the risk-adjusted intensity corresponding to the jump S → ϑiS

in regime i. If F1 is the underlying and is tradeable, then the pricing PDE for regime i is

∂V i

∂t
+

1
2
(bi)2

∂2V i

∂S2
+
(
r − η̃Q

i − ϑ̃Q
i

)
S
∂V i

∂S
−
(
r − λQ

ii + λQ
i

)
V i

+ λQ
i V

i(Sϑi, t) +
N∑

j=1
j 6=i

λQ
ijV

j(Sηij , t) = 0 ,

with ϑ̃Q
i = λQ

i (ϑi − 1).



Appendix B

Numerical Implementation when

Hedging Under Jump Diffusion

B.1 Numerical Solution of the Option-Pricing PIDE

An efficient numerical solution of the option-pricing PIDE

∂V

∂τ
=

1
2
σ2S2∂

2V

∂S2
+
(
r − λQκQ)S∂V

∂S
−
(
r + λQ)V + λQ

∫ ∞

0
V (JS, τ)gQ(J) dJ

(B.1)

was developed in [34]; here, we provide a brief overview. The partial derivatives are dis-

cretized in the same manner as the derivatives in the system of PDEs for the regime-

switching model (see Section 4.1.2). As for the integral term

∫ ∞

0
V (JS, τ)gQ(J) dJ , (B.2)
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DIFFUSION

by applying the change of variables

y = log(JS) ,

it is transformed to

∫ ∞

−∞
V (ey, τ)f

(
ey

S

)
dy , (B.3)

where the shorthand notation f(u) = u.gQ(u) has been introduced.

When the further change of variables

x = log(S), V̄ (x, τ) = V (ex, τ) = V (S, τ), f̄
(
log(y)

)
= f(y)

is established, the integral in (B.3) becomes

I(x) =
∫ ∞

−∞
V̄ (x+ y)f̄(y) dy , (B.4)

which is a correlation integral. In discrete form, the correlation integral (B.4) is

I(xi) =
j=N

2∑
j=−N

2
+1

V̄i+j f̄j∆y + O(∆y2) , (B.5)

where xi = i∆x, V̄j = V̄ (j∆x), f̄j = f̄(j∆x), and ∆x = ∆y. Furthermore, N is chosen such

that contributions to the sum are negligible for nodes outside the index set of summation.

The discrete correlation integral (B.5) involves an equally spaced grid in x = log(S)

space. As such, the option values V (S, τ) are interpolated onto this equally spaced log(S)

grid to yield V̄ . The FFT is then employed to efficiently compute (B.5) for all nodes on

the x-grid, and interpolation is used to relate these values to the integral term (B.2) of the
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PIDE. d’Halluin et al. [34] also develop techniques for dealing with the problem of FFT

wrap-around effects by suitably extending the x-grid used in (B.5).

To numerically solve the PIDE, a fixed point iteration is employed which uses option

values from a previous iteration to compute the correlation integrals. Under several standard

assumptions, the discretization of the PIDE is unconditionally stable and the fixed point

iteration will converge [34]. Furthermore, with Crank–Nicolson timestepping, the numerical

procedure should yield quadratic convergence. The penalty method for pricing American

options can also be incorporated [33].

B.2 Precomputing Quantities Required for Hedging

Consider the hedge portfolio

H = eS + ~φ · ~I + B .

The quantities required for determining the hedge weights {e, ~φ}, given in Table B.1, are

precomputed and stored in a series of S-t grids. When ~I has N hedging instruments, O(N2)

grids of precomputed data will be needed. First, the option values V and ~I are found by

numerically solving the PIDE (B.1), where the mesh used within the option pricer will

generally be finer than the grid for the precomputed data. Once the option values are

determined, the deltas ∂V
∂S and ∂~I

∂S are calculated via numerical differentiation.

The other required quantities are the integrals (involving V and ~I) necessary to compute

the entries of the linear system (7.6). These integrals, given in Table B.1, are calculated

using the techniques explained above for treating the integral term (B.2) of the PIDE

[34]. Therefore, during the hedging simulations, the linear system (7.6) used to solve the

optimization problem is formed by table lookup and interpolation.
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Type of Data Representation
Number of

Grids Required

Option Values V and ~I N + 1

Option Deltas ∂V
∂S and ∂~I

∂S N + 1

Integrals
∫ ∞

0
V (JS)Ij(JS)W (J) dJ j = 1, . . . , N N

Integrals
∫ ∞

0
Ij(JS)W (J) dJ j = 1, . . . , N N

Integrals
∫ ∞

0
V (JS)W (J) dJ 1

Integrals
∫ ∞

0
Ij(JS)Ik(JS)W (J) dJ (j, k) = 1, . . . , N 1

2N(N + 1)

Integrals
∫ ∞

0

[
JS
]
Ij(JS)W (J) dJ j = 1, . . . , N N

Integrals
∫ ∞

0

[
JS
]
V (JS)W (J) dJ 1

Integrals
∫ ∞

0

[
JS
]
W (J) dJ 1

Integrals
∫ ∞

0

[
JS
]2
W (J) dJ 1

Integrals
∫ ∞

0
W (J) dJ 1

Table B.1: The number and type of precomputed grids required for calculating the hedge port-
folio weights when ~I contains N instruments. Note that full grids are not required for the final
three quantities, as there is an absence of time and/or asset price dependence.



Appendix C

Standard Results for Lévy

Processes

C.1 Lévy–Itô Decomposition

The characteristic triplet (ψ, σ, ν) of a Lévy process is intimately linked to the Lévy–Itô

Decomposition, which formally states that any Lévy process is the superposition of a drift,

Brownian motion and jump component [23].

Theorem C.1. (Lévy–Itô Decomposition) Consider a Lévy process Xt with Lévy mea-

sure ν satisfying
∫
|y|≤Υ y

2 ν(dy) < ∞ and
∫
|y|≥Υ ν(dy) < ∞, where Υ ∈ (0,∞). Further-

more, let JX be the associated jump measure and J̃X the compensated jump measure. Then,

the increment of the Lévy process may be written as

dXt = ψ dt + σ dZt +
∫
|y|≥Υ

y JX(dydt) + lim
ε→0

∫
ε≤|y|<Υ

y J̃X(dydt) , (C.1)

where ψ ∈ R and σ ∈ R. Each of the four components are independent.

The first two terms in (C.1) represent the drift and Brownian motion, respectively. The
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third term is a compound Poisson process with arrival rate

λ∗ = ν
(
(−∞,−Υ] ∪ [Υ,∞)

)
and jump amplitude distribution

ν(y)
λ∗

1|y|≥Υ .

The final term is a pure jump martingale, where the compensated jump measure is required

to obtain convergence.

The Lévy–Itô Decomposition in Theorem C.1 may be written in a more succinct form

as [61]

dXt = ψ dt + σ dZt +
∫

R
y J̄X(dydt) , (C.2)

where

J̄X(dydt) =

 J̃X(dydt) if |y| < Υ

JX(dydt) if |y| ≥ Υ .
(C.3)

The diffusion coefficient σ and Lévy measure ν are invariants of the decomposition, while

the drift coefficient ψ is not, as it depends on the cutoff parameter Υ. This cutoff parameter

can assume any value in (0,∞), but typically it is set to unity. If E[Xt] <∞, then we can

use Υ = ∞. If the jump process is of finite variation, i.e.
∫
|y|≤1 |y| ν(dy) <∞, then Υ may

be chosen as zero. Setting Υ � 1 is the basis of the procedure for approximating an infinite

activity Lévy process as a jump diffusion [3]: the first three terms of (C.1) already comprise

a jump diffusion, while the pure jump martingale is approximated as a Brownian motion.

There are two salient points that deserve to be stressed:

1. The Lévy–Itô Decomposition determines the characteristic triplet, as opposed to the
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triplet specifying the decomposition. For Lévy processes whose characteristic triplet

is not explicit (e.g. those obtained through subordinating a Brownian motion), The-

orem C.1 guarantees such a triplet exists;

2. It is implicit in the fundamental structure of a Lévy process that small jumps are

compensated. This will sometimes manifest as seemingly spurious terms.

C.2 Itô’s Formula

Itô’s formula provides the change of variables formula [61].

Theorem C.2. (Itô’s formula) Consider a process Ut which may be written as

dUt = α(Ut, t)dt + β(Ut, t)dZt +
∫

R
γ(Ut, t, y)J̄X(dydt) ,

where J̄X is the jump measure (C.3) for some underlying Lévy process with cutoff parameter

Υ ∈ [0,∞]. For a function f(u, t) such that f ,∂f
∂t ,

∂f
∂u ,∂2f

∂u2 are all continuous,

df =
∂f

∂t
(Ut, t) dt +

∂f

∂u
(Ut, t)

[
αdt+ βdZt

]
+

1
2
β2∂

2f

∂u2
(Ut, t) dt

+ dt

∫
|y|<Υ

[
f(Ut− + γ, t)− f(Ut− , t)− γ

∂f

∂u
(Ut− , t)

]
ν(y)dy

+
∫

R

[
f(Ut− + γ, t)− f(Ut− , t)

]
J̄X(dydt) , (C.4)

where y represents a jump in the underlying Lévy process.
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