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Abstract

Traditional, general-purpose operating systems strictly separate user processes

from the kernel. Processes can only communicate with the kernel through system

calls. As a means to ensure system security, system calls inevitably involve perfor-

mance overhead. Direct User Callback from the Kernel, or DUCK, is a framework

that improves the performance of network-centric applications by executing a part

of application code directly from inside the kernel. Because the code runs in kernel

mode and can access kernel memory directly, DUCK is able to eliminate two im-

portant sources of system call overhead, namely mode switches and data copying.

One issue with DUCK is how to design an application programming interface

(API) that is general, efficient, and easy to use. In this thesis, we present the design

of the DUCK API, which includes functions for both direct user code execution and

zero-copy buffer management. We have implemented DUCK prototypes on the So-

laris/SPARC platform. An efficient way to implement direct user code invocation is

through memory sharing between the kernel and user processes. However, because

Solaris/SPARC separates the user and kernel address spaces, achieving memory

sharing is difficult. In the thesis, we study the SPARC architecture and the So-

laris virtual memory subsystem, and discuss three potential approaches to support

memory sharing required by DUCK. We proceed to present micro-benchmark ex-

periments demonstrating that our DUCK prototype implementation is capable of

improving the peak throughput of a simple UDP forwarder by 28% to 44%.
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Chapter 1

Introduction

General-purpose operating systems perform tasks such as concurrent process ex-

ecution, resource control, and user management through a common kernel. User

processes are strictly separated from the kernel and can only communicate with

the kernel using well-defined system call interfaces1. A well-known fact is that

system calls inevitably trade off performance for system safety. In this thesis, we

examine two sources of system call overhead, namely mode switching overhead and

data copying overhead, and argue that for a class of applications where users only

run a single dominant service on one computer system, safety can be traded for

better performance. In the framework that we propose, a portion of the appli-

cation code resides in user space but is executed directly from inside the kernel.

When requesting kernel services, the code running in kernel mode can use mere

function invocations instead of expensive system calls, and can therefore eliminate

mode switches as well as provide opportunities to bypass data copying. We call

this framework Direct User Callback from the Kernel, or DUCK.

An important aspect of DUCK is the way in which it interacts with the ap-

plication, specifically, the design of DUCK’s application programming interface

(API). Generally speaking, a good API design features generality, imposes as few

constraints to the applications as possible, and supports as many platforms as pos-

1While some operating systems such as Linux provide other interfaces such as the /proc file
system, only system calls are common to all operating systems.
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sible. It is efficient, allowing implementations with small performance overhead.

Moreover, a good API design is easy to comprehend even without the manual. In

our work, we strive to design an API according to these criteria. The resulting

interface consists of two parts: one to avoid mode switches by executing user code

from inside the kernel, and the other to avoid data copying by enabling zero-copy

buffer management. The API design is a key component of this thesis.

A second challenge is how to implement DUCK with minimum alteration to

existing operating systems. As will be discussed in detail in Chapter 2, although

several schemes have been proposed with goals similar to our work, many of them

require massive modifications or even reconstruction of the operating system. Be-

cause commercial, off-the-shelf operating systems are widely adopted today, a more

attractive solution might be a less intrusive one that requires minimal modifica-

tions to both the kernel and the application, and that can be easily added to a

stock operating system. This is an important goal as well as a contribution of our

work.

We have implemented DUCK prototypes on two mainstream operating system

and processor combinations, namely Linux over a 32-bit Intel Architecture (i.e.

IA-32) and Solaris over a 64-bit SPARC. (Throughout this thesis, SPARC refers

to the SPARC specification version 9 [6].) The IA-32 implementation is straight-

forward. Because operating systems on IA-32 including Linux usually have address

spaces shared by both the kernel and the user process, the kernel can access and

execute user memory in the same way as it accesses and executes kernel memory.

On Solaris/SPARC however, the kernel and process address spaces are separate,

making DUCK non-trivial to implement. The focus of this thesis is on the Solaris

virtual memory subsystem and how DUCK is implemented on Solaris/SPARC.

This thesis makes the following contributions:

1. The design of the DUCK API, which is general, efficient, and easy to use.

2. A study of the SPARC architecture and Solaris virtual memory subsystem,

and an analysis of candidate approaches to implementing DUCK on So-

laris/SPARC.
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3. A prototype implementation of DUCK on Solaris/SPARC which only re-

quires several lines of changes to the existing Solaris kernel code.

4. Micro-benchmark results to validate the design and performance of the So-

laris/SPARC implementation.

The outline of the remainder of the thesis is as follows. We present background

information and related work in Chapter 2. In Chapter 3, we discuss the design

of the DUCK API, followed by some examples using the API and a discussion of

emulating DUCK in user space. DUCK’s implementation on Solaris/SPARC is

presented in Chapter 4, where we discuss three different techniques for direct user

code invocation, and discuss the zero-copy implementation on Solaris. We present

micro-benchmark experiments and results in Chapter 5. The thesis is concluded

and future work is described in Chapter 6.
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Chapter 2

Background and Related Work

Contemporary operating systems strictly separate the operating system kernel and

user processes running on it. Because the kernel contains critical procedures and

data structures for process and resource management, it has to be protected against

arbitrary access by unprivileged users. In addition, multiprogramming operating

systems prevent one process from accessing memory belonging to others in order

to enforce program isolation [24].

A virtual address space, or address space, is a range of virtual addresses asso-

ciated with each process. All the virtual memory of a process is contained in its

address space. A special address space called the kernel address space is associated

with the operating system kernel, containing all the virtual memory belonging to

the kernel. The memory management unit (MMU) is a hardware module that

can be found in many modern processors. It provides mappings from virtual to

physical addresses as well as sophisticated mechanisms for address space man-

agement. The data structure of the mappings is defined by the MMU, but the

mappings themselves are usually manipulated by the operating system and stored

in main memory. Complex data structures are used for compact and efficient rep-

resentations of the mappings. For example, the Intel IA-32 adopts a multi-level

hierarchical data structure called a page table [9]. After the operating system sets

up these data structures properly and tells the MMU where they are located in

main memory, the MMU then automatically performs virtual-to-physical address
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translations using the contents of these data structures. The operating system may

modify the data structures dynamically to reflect changes in the system state. The

operating system can also enforce access control policies with the MMU’s help. For

example, the MMU translates all memory references using the context of the cur-

rent address space. The operating system may limit a process’s memory accesses

to its own address space by setting this address space as the MMU’s current one.

In this way memory in other address spaces cannot be accessed by the current

process.

Virtual-to-physical address translations can be done using different techniques.

In the commonly adopted paging system, a virtual address space is logically divided

into fixed-length ranges called virtual pages or simply pages, which is the minimum

unit by which address mappings can be defined. A virtual page is mapped to a

physical frame (or simply frame), or to nothing, to indicate the page is inaccessible.

These mappings are maintained by the operating system kernel and referenced by

the MMU when performing address translations. Certain protection policies can

be specified when defining each mapping. For instance, the operating system may

mark a page as accessible only when the processor is in kernel mode. Therefore,

accessing it from user mode triggers the MMU to generate a page fault, causing the

operating system to identify and terminate the faulting process. In this way, the

operating system can apply fine-grained access control within an address space.

Because user processes are strictly separated from the kernel, they have to

use a set of well-defined system calls in order to interact with the kernel and to

request operating system services. System calls are designed so that no process

can affect the operating system in faulty or malicious ways. All requests and

information passed through system calls are scrutinized before further processing

by the kernel, and any illegal access will be rejected. While system calls guarantee

system integrity, doing so inevitably introduces performance overhead, including:

• Mode switching overhead. One system call involves two mode switches,

one from user mode to kernel mode when entering the kernel at the start

of the system call, and the other when the system call returns from kernel

to user mode. This incurs non-negligible hardware overhead. For example,
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Intel processors provide the sysenter instruction to trap into kernel mode.

It contains 28 micro-operations such as loading segment registers, updating

state registers, changing the privilege level of the processor, among others.

In addition, the operating system needs to maintain software state as well:

general registers and kernel data structures reflecting the current context

need to be saved when entering the kernel, and restored when returning to

user mode. This is done by the processor copying them into and out of main

memory.

• Data copying overhead. Many system calls trigger the asynchronous exe-

cution of tasks. For example, to transmit data through a network interface,

a process calls the send system call along with a pointer to a data buffer

prepared in the application’s address space. When the system call returns,

the data might be queued in the system but not actually transmitted. The

kernel continues working after the system call to drain all the data to be

sent. Because the process might alter its user-space buffer after the system

call, the kernel has to make its own copy of the data before returning to

user mode, and must use this in-kernel copy afterwards. Memory copying

consumes a significant number of CPU cycles, and performance overhead is

roughly proportional to the size of data being copied.

Our goal is to reduce both mode switching and data copying overhead for one

class of applications which we call dedicated servers. We discuss these applica-

tions in Section 2.1, followed by a summary of related work in Section 2.2 and an

introduction of our proposed framework in Section 2.3.

2.1 Motivation: Dedicated Servers

Because of a steady decrease in hardware prices and the rapid development of

virtualization technologies, more organizations choose to use a single computer

system, or a single virtual machine, to run one primary network service in user

space, such as a Web server, an application server, a streaming server, a proxy
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server, or an accounting and monitoring server. In such a configuration, which we

call dedicated servers, the fate of the overall system is tightly coupled with a few

user-level processes, where the failure or malicious behaviour of the primary service

is functionally equivalent to a failure of the overall system. If the primary service

becomes unavailable, the whole system loses its value even though the underlying

operating system may still be intact. Although off-the-shelf, kernel-based operating

systems are often used, the strict separation of processes and the kernel in these

operating systems is less relevant, and we argue that safety and protection may

be reduced to provide better performance. In particular, user processes directly

exchanging information with the kernel without system calls may help reduce or

eliminate mode switching and data copying overhead, especially for I/O centric

services which intensively involve system calls.

One potential approach to eliminate system calls is to move the entire appli-

cation into the kernel. However, there are several issues preventing this approach

from being widely adopted:

• Safety and error recovery. Although safety is no longer our primary

concern, we still want to isolate the application and the kernel as much as

possible for a minimum compromise on safety and resilience to faults. As the

80-20 rule states, most performance overhead is caused by a small fraction of

application code [20]. Only this fraction but not the entire application needs

to be moved into the kernel; errors by the code remaining in user space can

be identified and recovered by the operating system, instead of potentially

crashing the kernel.

• Programming limitations. There are constraints for programs running

in kernel mode, such as limited stack and heap sizes, disabled floating point

arithmetic [16], and reduced capability of dynamic linking, making entirely

in-kernel programs less flexible than user-space applications.

• Development costs. Developing kernel programs is notoriously difficult.

Limited features and programming support make developing and debugging
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in-kernel applications nontrivial even for experienced developers. Also, be-

cause the full set of user-level libraries are not available for the kernel, when

writing the entire application in the kernel, developers have to build most

required libraries from scratch, which is usually not practical.

• Maintenance costs. System calls are not available for kernel programs. In-

kernel applications have to use private kernel functions to request operating

system services. Unlike system call and library interfaces, kernel functions are

not standardized, and they change rapidly as the operating system evolves.

This introduces significant overhead for maintaining in-kernel applications

across different operating systems or for maintaining different versions of

one operating system.

Another approach to reduce system calls is to write most application code as

usual but move critical parts of the code into a kernel module. Although this limits

the amount of the code running in the kernel when compared with the previous

approach, this approach splits an application into physically segregated parts. It

is also difficult to implement arbitrary communications between the kernel module

and the user-level part as there is no existing way of doing this on most operating

systems. Ad hoc methods have to be devised for such communications.

Instead, in the design that we propose, the entire application is developed

as usual and executed as a normal user process. At run-time, a portion of the

application code is directly executed by a kernel thread from inside the kernel. The

code running in the kernel can access operating system services without system

calls. This scheme addresses the above issues from two perspectives. First, because

developers can freely choose a portion of the application to be executed in the kernel

without physically splitting the program, this approach provides much flexibility.

Second, because the code is compiled as a part of the user program, developers can

use the full range of libraries and development tools available in user space, working

naturally in a programming environment that they are familiar with throughout

development and maintenance cycles. Besides system call avoidance, our proposed

framework also provides zero-copy facilities for the code running in the kernel to
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perform network I/O. This is based on the fact that in-kernel code has the privilege

to access kernel buffers directly.

2.2 Related Work

We focus on reducing the overhead caused by mode switches and data copying.

Although both of these issues have been extensively studied, almost all previous

projects only focus on one of them. As a major advantage of our work, DUCK

eliminates both mode switches and data copying using a single framework. In the

following two subsections, we classify related projects into two categories according

to the primary issues they address, and discuss them separately.

2.2.1 Mode Switch Avoidance

A straightforward approach to limiting the number of mode switches is to develop

the whole application inside the kernel, as adopted by the TUX web server [3] and

the kHTTPd Linux HTTP Accelerator [26]. However, as discussed in Section 2.1,

kernel development is difficult and prohibitive for application developers. Several

projects have been proposed to allow code to be written as user-level programs but

to be executed in the kernel.

Kernel Mode Linux [17] is one such project. It allows the entire user-space

application to execute in kernel mode while the kernel is protected using type

theory. Applications are written in a typed assembly language (TAL) and the

kernel performs type-checking before executing the program. Using a type theory

based on the TAL, the kernel can ensure that the typed-checked programs can

never perform an illegal access to its memory. When the program executes in

the kernel, system calls become plain function calls and can be invoked with little

overhead. A drawback of this solution is inflexibility to execute only a part of an

application in the kernel. In addition, the entire application must be written in

the TAL, and the run-time overhead of such a language might offset the gains of

avoiding system calls.
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In contrast, Cosy [28] allows applications to execute manually designated por-

tions of user code in the kernel. By using a custom C compiler, Cosy compiles the

specified code segments into an intermediate representation called compounds. At

runtime, compounds are safely executed in the kernel by an interpreter. In addi-

tion to performance overhead of the interpreter, Cosy’s compounds are written in

a highly restricted programming environment with limited features and language

support. For example, only C statements and library functions that are supported

by Cosy can be used in compounds. Our solution, by relaxing safety assumptions,

allows programs to be compiled into native machine code and therefore does not

limit the language features available to the applications.

Singularity [11] is a new operating system that uses software-based type check-

ing to enforce process isolation. It significantly reduces performance costs by avoid-

ing hardware protection and putting all processes, including the kernel, into one

or only a few address spaces. Unfortunately, while stock operating systems are

widely used in dedicated servers, Singularity is a completely new operating system

written in a special language, Sing#. This makes it prohibitively difficult to port

existing applications to the operating systems. Nevertheless, Singularity’s static

verification mechanism is of interest to DUCK, especially the use of safe high-level

languages and the signing of approved applications. Such a scheme offers bet-

ter safety than does DUCK, without introducing performance overhead after the

application is loaded.

Single address space operating systems [15] are a class of operating systems

that have only one global virtual address space; protection is provided through

protection domains that control which pages a process can reference. While these

operating systems are designed mainly to support 64-bit address spaces, their archi-

tectures usually provide additional benefits such as reduced mode switch overhead

(because of no address space switches) and lightweight data sharing between user

processes and the kernel. With the help of memory management units, we should

be able to adopt protection domains as well as other techniques in those operat-

ing systems to the DUCK framework to enforce access control policies within one

address space to the user code running inside the kernel.
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Several projects have been proposed to reduce the number of kernel/user cross-

ings without major changes to the operating system architecture. For example, as

an improvement to the traditional UNIX event mechanisms, Scalable Event No-

tification Delivery [18] stores recent events into a user-space ring buffer providing

users with events without the cost of system calls. Our approach is a step towards

generalizing such mechanisms, with the hope that users can devise similar, efficient

techniques with the DUCK framework.

2.2.2 Data Copying Avoidance

Several projects have been proposed to reduce data copying between user and

kernel space. IO-Lite [19] is a unified zero-copy buffering and caching framework.

It encapsulates non-contiguous data buffers in buffer aggregates and passes their

pointers among different operating system components. All buffer operations are

performed using these aggregates. Protection and security are maintained through

access control and read-only sharing. As complete and ingenious a solution as it is,

IO-Lite requires rewriting a substantial part of the kernel and the device drivers, as

well as the applications, making porting to existing operating systems prohibitively

difficult. The framework proposed [25] is also based on buffer exchange, which

shares similar ideas and suffers from the same problem as IO-Lite.

Zero-copy TCP in Solaris [14] maps kernel buffers to user space allowing user

processes to access them directly. Copy-on-write is used at the transmit side so that

the copy semantics of the traditional socket interface are preserved. One major

shortcoming of this approach is the difficulty of dealing with unused areas within

a page, making the implementation of this approach nontrivial, and rendering

it dependent on particular hardware platforms. Also, frequent virtual memory

operations can be expensive when compared to conventional data copying.

Data-stream splicing [21] is a mechanism to reduce data copying for a class

of servers such as Web proxies that forward data. Applications invoke the ioctl

system call to instruct the system to “splice” two network sockets. After splicing,

data received from one socket is automatically sent to the other and no data

copying is involved during the process. However, because no application logic can
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be inserted between the two spliced sockets, the application still needs to copy

the data to the user address space to read or to modify the data. In contrast,

our approach allows in-place data access from within the kernel and thus supports

a much larger spectrum of applications. For example, packet monitoring services

such as intrusion detection systems may examine certain fields of each packet before

forwarding it to the next host and packet transcoding services such as network

address translation (NAT) need to modify the content of forwarded packets. The

ability to support in-place access to transmitted data is crucial for these types of

applications.

The U-Net communication architecture [27] allows user processes to communi-

cate with network interfaces directly without involving the kernel in the communi-

cation path. The architecture virtualizes the network interface in such a way that

every process has the illusion of owning the physical interface. The role of U-Net in-

cludes multiplexing the actual interface and enforcing protection as well as resource

allocation policies. A process has control over message buffers and over sending

and receiving queues corresponding to the virtual interface it owns. Depending on

the operating system structure and hardware mechanisms, the U-Net implemen-

tation may differ drastically. Among three operation modes, direct-access U-Net

implements zero-copy data transfer. Application data structures are transmitted

to or from the network interface without any data copying. By redesigning the

network processing architecture from scratch, U-Net takes a different, bottom-up

approach from our work to achieve zero-copy.

In practise, a zero-copy facility for file-to-socket data transfer has long existed

in UNIX systems. The sendfile system call is used to copy data from one file

to a socket. This copying is done within the kernel and no user-space buffers are

required. Data is fed directly from file caches to the network interface. Because the

applications have no method for accessing kernel data buffers, there is no opportu-

nity for them to examine or modify the data being sent. The Linux kernel recently

added a splice system call (in version 2.6.17) with the hope of offering a more

general zero-copy framework for data transfer between any types of files [1]. How-

ever, the current implementation in version 2.6.17 only supports transferring from
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a regular file to a socket. This system call accepts two file descriptors and a length

as parameters. Once invoked, it reads length bytes from the first descriptor and

writes them to the other without copying the data to user space. Like sendfile,

splice does not allow the application to access the data being transmitted.

Finally, we note that the exokernel [13] and kernel extensions like VINO [22]

and SPIN [12] are related to our work. These projects are mainly focused on aug-

menting the kernel and exposing lower-level sub-systems to interested applications.

Our work, however, concentrates on improving application performance, although

it also “augments” the kernel by “sinking” application logic into it.

2.3 An Introduction to DUCK

In this section, we introduce Direct User Callback from the Kernek (DUCK) to

provide more background for this thesis. As described in Chapter 1, the main con-

tributions of the thesis are the DUCK API design and the DUCK implementation

on Solaris/SPARC.

The DUCK framework consists of three parts: 1) a kernel module that installs

a new system call into the operating system that permits user code to execute

from inside the kernel, 2) a user-space library to help invoke the system call and

to perform housekeeping tasks, and 3) the application itself. To use DUCK, the

developer first identifies a critical execution path, or a function, in the application

code which frequently invokes system calls and can benefit most from reduced

mode switching and data copying overhead. Next, instead of calling this function

directly the application invokes the system call provided by the kernel module with

the pointer to the function as a parameter. After entering the kernel the system

call invokes the function even though the function body resides in user space. This

requires memory sharing between the kernel and the user process, which may be

implemented differently on different platforms. A drawback of this approach is that

code running in the kernel may be subject to platform-specific restrictions, such

as limited stack sizes and disabled floating point arithmetic. However, because the

execution path critical to application performance is expected to be short, these
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restrictions should not create significant problems for most server applications.

When the specified user function is executed in the kernel, all system calls it

invokes are automatically replaced with direct calls to appropriate kernel functions.

Because system call entries in user space are functions provided by a shared library,

we can achieve system call replacement through dynamic linking. For example,

when a normal user program written in C calls gettimeofday, a function named

gettimeofday in the C standard library will be invoked, which is responsible

for performing the actual system call. To replace gettimeofday, we define a

function in the DUCK library that invokes the kernel function corresponding to

the gettimeofday system call if the processor is in kernel mode, otherwise the

function behaves the same as the user-space gettimeofday library function. The

DUCK library function is also named gettimeofday, so that the dynamic linker

can automatically “override” the original library function with the new function

that we provide.

In addition to the new system call the DUCK kernel module also provides in-

kernel services for zero-copy buffer management that can be used by user code

when executing in kernel mode. Because the user code has kernel privileges, it can

access kernel services and memory. Data copies are avoided in DUCK by directly

accessing kernel memory. For example, when the application performs network I/O

the user code running in the kernel can operate on buffers allocated from the kernel

instead of requiring its own buffers in the user address space, thereby eliminating

the data copying incurred by system calls. Because this requires different interfaces

from traditional system calls, the user code may need modifications to avoid data

copying. In the next chapter, we introduce the design of the DUCK application

programming interfaces, including the interface for direct user code invocation and

zero-copy buffer management.

2.4 Summary

In this chapter, we first identify two types of overhead involved in system call invo-

cation, namely mode switching and data copying overhead. DUCK aims to reduce
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both overheads for a class of applications we call dedicated servers. Because the

fate of a dedicated server is tightly coupled with the primary application running

on it, the security concerns of traditional operating systems can be traded for bet-

ter performance of the primary application. To achieve this, we execute a part of

the application code from within the kernel, so that system calls become function

invocations and the application can access in-kernel data directly without copying

the data to or from the user address space. Previous and related projects have

been presented. Although other work has similar goals to DUCK, DUCK reduces

both overheads within a single flexible framework. More importantly, DUCK is

the only project that can execute arbitrary parts of application code in the kernel

without altering the overall operating system architecture. This is important for

an increasing number of organizations that deploy off-the-shelf operating systems

as their strategy to reduce operational costs.
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Chapter 3

DUCK API Design

In this chapter we present our design of the DUCK API through which applications

interact with the underlying DUCK system. As discussed in Section 2.3, DUCK

has two closely related goals: to reduce mode switches by executing user code

from inside the kernel, and to avoid copying by allowing the user code to access

and manipulate kernel buffers directly. Therefore, we divide the API into two

logical parts to reflect these goals, and discuss them in the first two sections of this

chapter. In Section 3.3 we provide a few examples showing how applications can

use these two parts together; we discuss DUCK emulation in Section 3.4.

3.1 Direct User Code Invocation

When the DUCK system is initialized it dynamically installs a new system call.

The application can use this system call to interact with the kernel. We define the

system call as follows:

typedef int (* user callback)(void * opaque);

int duck syscall(user callback cb, void * opaque);

The application invokes the system call with two parameters: the pointer to a

function and an opaque value. We call this function a user callback. It contains

the code to be executed in the kernel and can be compiled and linked in normal

16



ways with other parts of the application. The in-kernel function that implements

the system call invokes the user callback from the kernel, passing the opaque value

to the callback as the sole parameter, and returns to user space after the callback

returns. This implementation is as simple as:

int duck_impl(user_callback cb, void * opaque)

{

return cb(opaque);

}

From the user’s perspective duck syscall is a thin wrapper around the call-

back function doing nothing but switching into the kernel before invoking the

callback and switching back afterwards. The application can use the opaque value

to exchange information with the callback function.

Finally, the system calls duck init and duck fini are provided to setup and

cleanup DUCK. The duck init function may return an error code if initialization

fails:

int duck init();

void duck fini();

Once duck init successfully returns, the cleanup procedure must be performed

even if the program terminates abnormally. This can be done by forcing the kernel’s

function that cleans up a terminated process to call duck fini for that process.

This is not difficult to implement.

3.2 Zero-copy Buffer Management

To perform actual work, the user callbacks need to interact with kernel services.

Sending and receiving network packets are two important services on which most

network-centric applications depend. The conventional method for using these

services is to invoke recv or send system calls or equivalents with user-provided

buffers. These system calls are responsible for copying data from the buffer into
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a kernel buffer and vice versa. User callbacks, however, execute in kernel mode

and therefore can access kernel buffers directly. To receive packets, a callback

can obtain the kernel buffer and directly examine the data in the buffer; to send

packets, the callback allocates a new kernel buffer, fills the buffer with data to be

sent, and passes it to the kernel for further processing. In this way performance

overhead caused by data copying can be completely avoided.

Designing an API for direct kernel buffer access is challenging because differ-

ent operating systems take different approaches to implementing kernel buffers.

However, the API must provide a single interface for portability and ease of use.

Next, we describe an abstract model for in-kernel network processing and buffer

management which can be found in many mainstream operating systems, and then

introduce our API design which is based on this model.

Figure 3.1 (left) illustrates the typical model for in-kernel network protocol

processing, where the protocol stack is composed of several logical layers (the

three layers in the figure are illustrative only). The user process interacts with the

topmost layer through recv/send system calls, which in turn interacts with lower

layers on the process’s behalf. Network packets are encapsulated in message buffers

(or buffers for short), and transmitted between layers through queues (arrows in

the figure). On the receiving side, messages are constructed in the bottom layer,

filled with the received data, pushed upward, processed by intermediate layers,

and finally destroyed by the top layer after the data is consumed by recv. On the

sending side, messages traverse in the reverse order: they are constructed at the

top by send and destroyed at the bottom after the data is transmitted. Figure 3.1

(right) shows the abstract data structure for a message buffer. It has a buffer head,

which contains nothing but a linked list of one or more buffer blocks. A buffer block

corresponds to a contiguous data area where the actual data resides. In addition

to the range of data areas buffer blocks also record the range of the actual data

within the area (dashed arrows in the figure) to accommodate unused buffer spaces

before and after the actual data. Buffer blocks provide flexibility and efficiency for

buffer memory management. For example, protocol layers may dynamically insert

new data areas to a buffer as a prefix or suffix of the data without copying existing
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Figure 3.1: Network protocol stack and buffer management

Our API design is based on the above model. We provide five functions to access

a buffer once the user callback obtains the pointer to the buffer head. Although

the buffer resides in the kernel, and only code running in the kernel shall call these

functions, it is not difficult to augment these functions so that when the application

invokes them from user mode, a new buffer is constructed and buffer data is copied

into the user address space. While this scheme introduces data copying, it provides

transparency in using these functions, enabling the application to invoke them

regardless of whether it is executing in kernel or user mode.

These five functions include duck blk first, which returns the pointer to the

first buffer block for a given buffer head (buffer heads can be obtained by calling

functions that will be introduced later). Given a buffer block, duck blk next re-

turns the next buffer block. Functions duck blk get data and duck blk get len

retrieve the starting point and the length of the actual data in a block, respec-

tively. In addition, duck blk adjust allows the application to adjust the range of

the actual data in a block. The function prototypes below summarize these five
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functions. In the code we define the type of the pointer to a buffer head as duck sb

(meaning “DUCK socket buffer”) and the pointer to buffer blocks as duck blk.

They are defined as void * because operating systems may implement buffers in

different ways; the user shall treat these pointers as opaque values and not operate

on them directly.

typedef void * duck sb;

typedef void * duck blk;

duck blk duck blk first(duck sb sb);

duck blk duck blk next(duck blk blk);

void * duck blk get data(duck blk blk);

size t duck blk get len(duck blk blk);

void duck blk adjust(duck blk blk, void * begin, void * end);

Next, we need to specify functions for user callbacks to exchange message

buffers with the kernel. The traditional recv system call implementation involves

two steps when receiving network data; it first requests one or more message buffers

from the underlying protocol stack, and then copies the data to a user-provided

buffer and destroys the message buffers afterward. We provide a function called

duck recv in the API, which requests a kernel buffer filled with received data and

returns a pointer to the buffer. The function duck recv requires the file descriptor

of a socket as a parameter. It requests exactly one message buffer from the proto-

col stack corresponding to the file descriptor before returning to the caller. Unlike

recv, duck recv users cannot specify the data length they expect, as the amount of

data a buffer holds is predetermined by the kernel. The duck sb get len function

can be used to retrieve the data length of a given buffer.

The duck sb alloc function allocates a new buffer from the kernel. Its sole

parameter is the preferred maximum data length of the buffer. The actual length

might differ because of differences among implementations. For the same reason,

the returned buffer may have one or more buffer blocks. There are two functions
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that dispose of a buffer: duck sb free destroys a buffer, and all memory associated

with it, and duck send transmits a buffer through a socket. The buffer is freed

automatically after the sending operation completes. The function prototypes

below summarize the functions described above:

int duck recv(int fd, duck sb * sb);

int duck send(int fd, duck sb sb);

duck sb duck sb alloc(size t preferred len);

void duck sb free(duck sb sb);

size t duck sb get len(duck sb sb);

3.3 Examples Using the API

In this section, we give two simplified examples to illustrate how the API can be

used in real applications. The first example sends an increasing integer to another

host once per second; the second forwards any packets it receives from a sender to

a third host.

The pseudo code of the first example is listed below. Details such as error

handling are omitted. The function main initializes the file descriptor of the des-

tination socket and passes it to the user callback through the opaque argument.

The callback function will be executed in the kernel as user callback. It allocates

a message buffer, initializes the buffer with an integer value, and then sends the

buffer out in an infinite loop. The sleep call is made to insert one-second pause

between iterations.

int callback(void * opaque) {

int fd = *(int *)opaque;

int cnt = 0;

while (1) {

duck_sb sb = duck_sb_alloc(sizeof(cnt));

void * data = duck_blk_get_data(duck_blk_first(sb));

*(int *)data = cnt++;

duck_send(fd, sb);
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sleep(1);

}

return 0;

}

main() {

int fd;

// initialize fd as the file descriptor of a socket.

// fd = ...

duck_syscall(callback, &fd);

}

The second example is also quite simple. Instead of one file descriptor, however,

main passes two file descriptors to the callback, one for receiving and one for

sending data, this is done using a structure called arg t.

struct arg_t {

int fdin;

int fdout;

};

int callback(void * opaque) {

arg_t * args = (arg_t *)opaque;

while (1) {

duck_sb sb;

duck_recv(args->fdin, &sb);

duck_send(args->fdout, sb);

}

return 0;

}

main() {

struct arg_t args;

// initialize input and output file descriptors
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// args.fdin = ...

// args.fdout = ...

duck_syscall(callback, &args);

}

3.4 Emulation

The platform-independent property of the API enables the implementation of a

DUCK emulator, although an actual implementation is left for future work. We

briefly describe how it would operate. Users may use the emulator to test their

applications in user space without endangering the kernel because of faulty or

malicious behaviour. The emulator can be replaced with a real implementation

after the application is fully tested or verified. With proper design and imple-

mentation of the emulator, the replacement can be done dynamically, requiring no

modification or recompilation of the application code.

In the emulator, the call to duck syscall is reduced to a plain function call

to the callback instead of trapping into the kernel and executing the callback from

there. To emulate buffer management, buffers are constructed in the user address

space and traditional system calls are used to copy data between the user and

kernel address spaces. From the user’s perspective callbacks still have access to

DUCK “kernel” functions that are explicitly specified by the API, and despite

some performance degradation because of copying, these functions behave exactly

the same as a real implementation. Another minor drawback of the emulator is

that there is no access to other kernel functions that could be used to further

improve the application’s performance.

Furthermore, to verify that the application is able to handle various message

buffers, the emulator’s duc recv and duck alloc may randomize the number of

buffer blocks as well as their data lengths contained by one message buffer. A cor-

rectly implemented application should ensure that it can handle these variations.
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Chapter 4

DUCK Implementation on

Solaris/SPARC

In this chapter, we discuss issues related to DUCK’s implementation in Solaris

on the SPARC (Solaris/SPARC). We first describe our approach for invoking user

callbacks from the kernel in Section 4.1, and then discuss the implementation of

zero-copy buffer management in Section 4.2.

4.1 Implementing Direct User Code Invocation

An efficient way to invoke user code from the kernel is through memory sharing

between the kernel and user address space. The kernel may execute a user callback

using conventional function calls if user memory can be accessed and executed in

kernel mode. Similarly, the callback may reference global variables in the user

address space if it has access to user memory while it runs in the kernel.

For a number of operating systems running on processors like the IA-32 family,

memory sharing is inherent. As illustrated in Figure 4.1 (left), each address space

in these operating systems typically includes both virtual memory belonging to the

process and belonging to the kernel. While user threads running in this address

space can only access the portion of the address space designated as user space,

kernel threads have the full privilege to read, write, and execute memory in either
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user or kernel address space. As a result, direct user code invocation can be

implemented easily on these platforms.� �
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Figure 4.1: Address Space: Intel (left) vs. SPARC (right)

However, Solaris on SPARC separates user and kernel address spaces to allow

both of them to span the whole address range. The operating system switches

from the user to the kernel address space every time a user process traps into the

kernel and switches back on returning. A thread only sees one address space at

any time. This makes implementing memory sharing non-trivial. In the following

subsections we discuss the Solaris virtual memory system in greater detail and

present several approaches to implementing memory sharing. These include:

• Address space switching. Switch the current address space to the user address

space before invoking the callback from inside the kernel, and switch back

afterwards.

• Combining address spaces. Combine user and kernel address spaces into one

as many operating systems do on IA-32.
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• Address space duplication. Copy address mapping information from the user

address space into the kernel.

Although not all these approaches work, they are helpful in understanding how

the Solaris kernel works and why we chose the approach used in our prototype.

4.1.1 Address Space Switching

For instructions to reference address spaces other than the current one, the SPARC

processor associates an address space identifier (ASI), a numerical value, with every

data load/store instruction [6]. There are two important ASIs: the primary ASI

(0x80) and the secondary ASI (0x81). When a load/store instruction does not

specify an ASI explicitly, the primary ASI is used by default. For example, the

instruction

LOAD 1234, reg

loads the data from virtual address 1234 to register reg using the primary ASI,

whereas

LOAD 0x81:1234, reg

does the same thing but uses the secondary ASI as specified in the instruction. Note

that control flow instructions such as CALL and JUMP do not support explicit

ASIs. They are hard-coded to use the primary ASI.

ASIs point to address spaces, and each load/store instruction operates in the

address space identified by the associated ASI. It is the kernel’s responsibility to

maintain the mapping from ASIs to address spaces, and the mechanism to manage

this mapping depends on the specific processor. For example, Sun’s UltraSPARC

III [8] processor has two special registers named context registers, used to store

the identifiers of address spaces mapped to the primary and secondary ASIs, re-

spectively. Threads running in user mode do not have permission to modify these
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registers.

On Solaris, when the processor executes in user mode, both primary and sec-

ondary ASIs point to the current process’s user address space. When the processor

traps into the kernel, the kernel changes the primary ASI to point to the kernel

address space, so that subsequent load/store instructions refer to kernel memory

by default. These instructions can refer to user memory at any time by using the

secondary ASI explicitly. This is necessary because the kernel needs to copy data

between user and kernel address spaces as a part of many system calls.

In short, primary and secondary ASIs enable access to both address spaces at

the same time while in the kernel. DUCK could simply use this technique to access

user memory while executing a callback from within the kernel. However, because

control flow instructions that are required by function invocations do not support

explicit ASIs, this technique cannot be used to execute callback functions from

within the kernel. As a result, we next explore alternative solutions to execute the

callback.

One idea is to set the primary ASI to point to the user address space before

invoking the callback and switch it back afterward. This is difficult to achieve

because, first of all, other methods are still required to implement memory sharing

between the two address spaces. Second, this technique involves three steps: 1)

switch to the user address space, 2) invoke the callback, and 3) switch to the original

address space. However, as soon as the first step is executed, the processor flushes

its instruction prefetch queue and immediately fetches the next instruction from

the new address space. As a result, the second step can never take place and

the processor fetches incorrect instructions. There are two possible workarounds.

First, one could duplicate all the instructions in step two and three into the user

address space and place them into the same virtual address where they are located

in the kernel. Thus, the processor will be able to fetch proper instructions from

the new address space. However, this may require dynamic code relocation if the

user-space address has already been occupied.

The second workaround is to mimic the behaviour of system calls as they return

to user mode. System calls on the SPARC use the DONE instruction to restore the
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primary ASI and to continue execution from a specified user-space address in one

atomic operation. Similarly, DUCK could use DONE to switch the address space

and jump to the user callback in one instruction. The problem is that DONE also

brings the processor into user mode, which is contrary to our goal of direct user

code execution from inside the kernel to avoid mode switches.

4.1.2 Combining Address Spaces

Since address space switching is not feasible, we have explored other approaches.

One idea is to mimic combined address spaces as in many operating systems on

Intel platforms, so that a kernel thread can “see” user-space memory of the current

process. To achieve this, we can combine the address space of the DUCK process

(“DUCK process” refers to the process using DUCK) into the kernel, and use

this combined address space as the new kernel address space. When the DUCK

process is running, either in user mode or kernel mode, we let the primary and

secondary ASIs point to this combined address space. It is notable that because

page mapping entries are associated with protection bits, and kernel pages are

marked using these bits as unaccessible from user mode, the combination will not

expose kernel memory to unprivileged user threads.

How to merge the two address spaces? Fortunately, with the 64-bit address

space on the SPARC, the kernel and most applications will leave a significant pro-

portion of the address space unused. This offers ample space to import one address

space into the other. The layout of one address space may need adjustments to

avoid overlapping with the other. This is not a problem, because on most operat-

ing systems including Solaris, the layout of user address spaces may be adjusted at

compile-time or at run-time if the program is compiled using position-independent

code. As mainstream compile-time and run-time linkers support layout customiza-

tion by using command line arguments or configuration files, the adjustment can be

done easily. The next step after layout adjustment is to combine the user address

space into the kernel. Before we explain how this is accomplished, we provide

a brief overview of the Solaris virtual memory subsystem, with many technical

details omitted. Please refer to [6] and [10] for detailed lower-level descriptions.
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Solaris Virtual Memory Management

Figure 4.2 illustrates the kernel data structures used by Solaris for address space

management. The right half of the figure shows the kernel data structures used for

managing a user address space. The variable curproc is a per-processor pointer in

the kernel, pointing to the process control block (struct proc t) of the current

process. Each process control block points to an object of type struct as a data

structure containing all the information about an address space. Address spaces

are logically divided into memory regions, such as heaps, stacks, and data areas.

They are called segment in Solaris and each of them is managed by a segment object

in the kernel (struct seg). The as object maintains an AVL tree containing all

segment objects belonging to it. Each segment object also contains a list of all

virtual pages in the corresponding region. The left side of the figure shows the

data structures for kernel address space management which is almost identical to

the right side. The only difference is that the as object is referenced by a global

pointer called kas, instead of a process control block.

Each as object is also associated with an object of type struct hat (Hardware

Address Translation). It stores virtual-to-physical address translation information

for the address space. On Intel platforms, the hat includes a page table. On So-

laris/SPARC systems a data structure similar to page tables is used called HPT,

or hashed page table, which as the name implies uses a hash table to store map-

ping entries. Both the page table and HPT are used by the MMU to translate

virtual into physical addresses. Solaris provides a set of kernel functions to allow

other parts of the kernel to manipulate translation information in the same way

across different hardware platforms. For example, the function hat memload maps

a virtual page to a frame by adding a new mapping entry to a given hat object.

Similarly, hat unload removes the mapping entry for a given page. These func-

tions have the same signature but have different implementations across different

platforms.

Most processors including Intel and SPARC use a hardware translation looka-

side buffer (TLB) to cache mapping entries. The SPARC uses an additional per

address space software cache called a translation storage buffer (TSB). While the
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Figure 4.2: Solaris data structures for address space management
(gray boxes are SPARC specific data structures)

TLB is specialized hardware in the MMU, the TSB is an in-memory table main-

tained by the operating system. As mentioned earlier, the primary and secondary

ASIs on the SPARC point to address spaces. In the implementation, they actually

point to the identifiers of the TSBs corresponding to these address spaces (see Fig-

ure 4.2). To perform address translation the MMU searches for the mapping entry

in the TLB and invokes the page fault handler if the entry is not found. Because

the structure of the TSB is dictated by the hardware, when a page fault happens

the hardware can compute the in-memory address of the TSB entry based on the

current ASI value and the faulting address and provide this address as a hint to the

page fault handler. The handler can then quickly determine whether the desired

entry exists at the given location by examining entry flags at that location. If it

does exist the handler manually injects the entry into the TLB (called software

TLB replacement) and instructs the processor to retry the faulting instruction.

Otherwise, the page fault handler resorts to the address space’s HPT for further

lookup, which involves more overhead than the TSB lookup.
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Solaris Page Fault Handling

Next, we present a typical page fault handling scenario to illustrate how the kernel

interacts with these data structures. Suppose the current thread executes in user

mode and references a virtual address in the current process’s heap and there is no

physical memory mapped to that address, which triggers a page fault. This may

happen when the virtual page is accessed for the first time or the physical frame has

been paged out. Because the entry for the referenced address does not exist in the

TLB, the TSB, or the HPT, the page fault handler needs to build a new entry. It

first locates the as object of the current process through curproc and searches the

object for the segment object in charge of the faulting address. Because segment

objects have different ways of managing virtual memory in their own ranges, the

fault handler passes control to a function registered with the segment object to

perform actual the work.

The function registered with segment objects in charge of the user heap resolves

page faults in two steps. First, it calls the physical memory management subsystem

to allocate a new frame or reloads the frame from the swap space, depending on

the situation. Next, it maps the faulting virtual page to the new frame by calling

hat memload. This fills the HPT, as well as the TSB and the TLB, with a new

translation entry, so that the processor will find the appropriate mapping when

retrying.

Combining Address Spaces

Now we describe how to merge a user address space into the kernel’s address space

after layout adjustment is done by the linker. Since any program wishing to use

DUCK must call duck init (Section 3.1), this system call merges its address space

into the kernel’s. The duck init system call iterates through all the existing pages

of the current process by examining its as and segment objects and duplicates the

page translation information into the kernel’s address space by calling hat memload

on the kernel’s hat object. The duck init system call then modifies the current

process’s as object, forcing it to point to the kernel’s hat object instead of its own.

These steps are expected to alter the operating system’s behaviour in the following
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ways:

• Because the kernel’s HPT has included translation information for the DUCK

process, the operating system can now translate addresses properly when a

thread executes code from user-space memory while inside the kernel.

• Both the kernel and DUCK process now share the same hat so address space

updates from either side can be reflected to the other. In particular, when

the DUCK process maps a new page in the user address space, the kernel

can see and use the page immediately without manual duplication.

Unfortunately, the current implementation for combining address spaces crashes

the kernel whenever stack growth in the DUCK process crosses page boundaries.

We suspect this is related to the way the SPARC register window spill exception

[6] is handled in Solaris. Future work is required before this approach can be

implemented reliably.

4.1.3 Address Space Duplication

In this section we describe the approach used in our prototype implementation for

direct user code invocation, which we call address space duplication. This approach

also adjusts the memory layout of the DUCK process as well as duplicates address

translation information into the kernel’s hat during initialization. However, we no

longer share the kernel’s hat with the DUCK process. Instead, we insert a few

lines of code to the function body of hat memload and hat unload, so that every

time the DUCK process updates its hat, the same change will be applied to the

kernel’s hat. We show the pseudo code of the new implementation of hat memload

below:

void hat_memload(hat, va, pa) {

if (duck_proc && hat == duck_proc->as->hat) {

hat_memload(kas->hat, va, pa);

}

/* hat_memload’s original code goes here */
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}

Its first parameter points to the hat object the function operates on; parame-

ters va and pa are the virtual and physical addresses to be mapped (the actual

implementation has more parameters which are omitted here). The duck proc

variable is global and points to a process control block. Its value is initialized to

zero when the kernel boots, but duck init sets it to the DUCK process’s control

block, and duck fini resets it to zero1.

The function hat unload is modified similarly. Both hat memload and hat unload

monitor activities on the DUCK process’s hat and repeat them on the kernel’s hat

after the process starts. Monitoring stops when the process terminates. In this

way the process’s address space can be precisely mirrored into the kernel address

space.

There is one remaining issue. Normally, if a page has not been mapped to

a physical frame when it is referenced, the page fault handler is responsible for

loading the frame and setting up the mapping (Section 4.1.2). The handler as-

sumes that only threads in user mode reference user-space pages and relies on this

assumption to resolve page faults. Therefore, referencing these pages by a ker-

nel thread prevents the handler from working properly. A solution is to pre-load

all pages of the DUCK process and disable paging for these pages by calling the

mlockall system call during initialization. Because all the pages are locked into

physical memory, referencing them later will not trigger the page fault handler.

Although such locking may interfere with the kernel’s paging algorithms, doing

this should not impose significant side-effects on overall system performance as

the process should be the dominant application on a dedicated server.

4.1.4 Summary

In this section, we discuss why direct user code invocation is not as easily achieved

on Solaris/SPARC as on other platforms. Address space switching, combining ad-

1For simplicity, in this prototype implementation, any calls to duck init fail if duck proc is
non-zero. This means only one DUCK process is allowed to run at any time. However, we do
not see any obstacles that prevent running multiple DUCK processes.
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dress spaces, and address space duplication, are then discussed as three possible ap-

proaches. Our prototype uses address space duplication which monitors activities

on the process’s hat and replays them on the kernel’s hat. As the only approach

that provides a complete solution among all the methods we explored, address

space duplication is efficient as well. First of all, it does not involve per-callback-

invocation overhead. Second, although extra work is required when updating the

process’s hat, it should not introduce significant overhead since updates are ex-

pected to be infrequent. Finally, hat updates are relatively inexpensive when

compared with operations associated with updates such as paging and physical

memory management.

4.2 Implementing Zero-copy Buffer Management

In this section, we discuss the implementation of zero-copy buffer management on

Solaris. Figure 4.3 depicts the components of a Solaris protocol stack and data

structures used for buffer management, from which we can see a close resemblance

with Figure 3.1. Solaris organizes protocol stacks into streams. A stream head

is always put at the top of a protocol stack and is responsible for constructing

message buffers to be sent and for consuming buffers being received, as well as

for interacting with the user processes. A device driver usually sits at the bottom

end of a protocol stack, controlling the network interface card associated with the

stack.

On Solaris each message buffer is represented by one or more objects of type

mblk. The cont field of the object points to the next mblk in the same message

buffer or to NULL if it is the last one in the buffer. Each mblk contains a pointer

named datap pointing to a dblk object, which in turn contains the base address

and the length of a data area. In addition, two fields in the mblk, rptr and wptr,

record the beginning and the end of the payload in the data area held by its dblk

object (not shown in the figure). This organization provides significant flexibility.

For instance, because several mblks can refer to the same dblk, and each dblk has

an additional field recording the number of mblks referring to it, data areas can be
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Figure 4.3: Solaris network protocol stack and buffer management

shared and reused without copying data.

Implementing the DUCK buffer management interface with these data struc-

tures is straightforward. We specify mblk as the implementation type of both

DUCK buffer heads and buffer blocks and implement most DUCK functions with

a single line of code. They are listed below and should be self explanatory (the

code checking for invalid pointers is omitted):

mblk * duck_blk_first(mblk * sb) { return sb; }

mblk * duck_blk_next(mblk * blk) { return blk->cont; }

void * duck_blk_get_data(mblk * blk) { return blk->rptr; }

size_t duck_blk_get_len(mblk * blk)

{ return blk->wptr - blk->rptr; }

void duck_blk_adjust(mblk * blk, void * begin, void * end)

{ blk->rptr = begin; blk->wptr = end; }

To calculate the total data length of a message buffer, duck sb get len loops
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over all mblks and returns the sum of the data length of all mblks. The functions

duck sb alloc and duck sb free are easy to implement, too, because the kernel

already provides functions for buffer allocation and destruction.

The implementation of duck recv and duck send is almost identical to recv

and send, except that the code that copies data between user and kernel address

spaces needs to be modified to avoid copying data. To modify recv, we find the

code that copies the mblk’s payload data into the user address space and destroys

the mblk. Instead of doing this, duck recv passes the buffers and delivers their

pointers to the function that calls duck recv. Similarly, instead of constructing

new message buffers and copying data into these buffers, duck send directly con-

sumes the message buffer provided by the caller function. Meanwhile, all other

logic for both send and recv such as flow control and control message handling is

unmodified. On Solaris data copying is only performed by the stream head and

therefore no layers below it need to be modified. In the actual implementation

we duplicate the code of the stream head to duck recv and duck send and make

changes there to reduce modifications to existing kernel code.
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Chapter 5

Performance Evaluation

Micro-benchmarks are used to compare the performance of DUCK against tradi-

tional methods of performing network I/O. We use a simple UDP packet forwarder

in the experiments. It is a user-level program written in C++ and compiled by

GCC. This program is similar to the second example discussed in Section 3.3. It

receives UDP packets from one network interface and immediately forwards them

to another. When using traditional system calls, two system calls and therefore

four mode switches and two data copies are required for each packet being for-

warded. Because the main loop does nothing but calls send and recv, this simple

forwarder helps us to understand the maximum benefit DUCK can provide for

network-centric applications.

The forwarder runs on a Sun Blade 1500 workstation [5] with one single-core 1

GHz UltraSPARC IIIi processor, 2 GB of RAM, and an Intel PRO/1000 Ethernet

NIC with two 1 Gigabit interfaces. We use a snapshot of the OpenSolaris [4] source

code with timestamp “20060918,” and modify the kernel functions hat memload

and hat memunload as described in Section 4.1.3 to enable address space dupli-

cation. We then compile the snapshot using default configuration flags, install

the compiled kernel to the machine, and use it throughout the experiments. All

DUCK functionality is encapsulated in a Solaris kernel module [7]. Once loaded,

the module inserts a new system call and links several new kernel functions into

the running system. A user library is also provided to facilitate the user’s inter-
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action with the kernel module for DUCK initialization, user callback invocation,

and kernel function calling from the callback.

A client machine is used to run a sender program which transmits packets to

the forwarder at a specified rate, as well as to run a receiver program that receives

and discards packets from the forwarder. Figure 5.1 illustrates this configuration.

This machine has four Intel Xeon 2.8 GHz processors and 4 GB of RAM. It is

chosen to be powerful enough so that it will not be overloaded before the SPARC

machine. There are also two 1 Gigabit Ethernet interfaces on this machine. They

are connected to the SPARC machine through a 1 Gigabit switch. The IP addresses

of the four interfaces are deliberately assigned so that one interface on each machine

belongs to one network, and the other belongs to another. The client machine sends

packets to the forwarder through the first network, and the server in turn reflects

them back to the receiver through the second network. The switch isolates two

networks through VLANs. Because it can provide 1 Gigabit of throughput for each

network, we can ensure that the network does not throttle system performance.

This is important because DUCK may show little performance improvement if

components other than the processor are the bottleneck (the maximum sending

rate in our experiments is 80,000 1000-byte packets per second as shown in Figure

5.5, which corresponds to 80, 000 × (1, 000 + 66) × 8 = 682.24 Mbps bandwidth

on the links, where 66 is the total per-packet overhead including UDP headers, IP

headers, and Ethernet overhead [23]).

Both small and large UDP message sizes are used to study the performance

under different circumstances. The maximum message size used is 1000 bytes

per packet. For each message size we vary the output rate of the sender and

measure the input rate of the receiver. Because there is no packet loss between the

forwarder and the receiver, we can regard the forwarder’s output rate as equal to

the receiver’s input rate.

There are several considerations in the design of the experiments. First, we

use UDP instead of TCP as UDP is not congestion controlled. One purpose of the

experiments is to analyze the server’s overloading behavior, but TCP automatically

reduces sending rates on packet losses, preventing the client from offering rates
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Boxes represent machines; rounded boxes are programs running on the machine; solid
bars with arrows indicate network connections and the directions of data flow.

beyond the server’s capability. We choose UDP also because we hope to study

the performance gain by reducing mode switching and data copying overhead,

and UDP involves less other overhead than TCP. Additionally, we perform all

measurements on the client machine to avoid affecting the server and the results.

5.1 Evaluation Results

We compare performance among the following four schemes:

• User-RS. The forwarder invokes recv and send system calls in user mode, as

traditional applications do with this scheme. There are four mode switches

and two data copies required for each forwarded message.

• Kernel-RS. The forwarder uses a DUCK user callback to forward packets

from inside the kernel. It calls the in-kernel implementations of recv and

send system calls to receive and send data. Therefore, two data copies but

no mode switches are required per packet.

• Zero-copy. The DUCK user callback forwards packets using duck recv and

duck send.
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• IP-forwarding. In this scheme packets are forwarded using the Solaris kernel’s

built-in packet forwarder [2]. Because it works at the IP layer and runs inside

the kernel, it should be the fastest among all the four schemes. We include

this scheme because it help us ensure the network is not a bottleneck for

the other three schemes as long as their throughput does not exceed that of

IP-forwarding. It can also be used as an upper bound on performance.

We plot the performance results of these schemes in Figures 5.2 through 5.5.

The figures show the results for packet sizes 10, 100, 500, and 1000. For each

data point we repeat a 20-second experiment three times. Because we observe

little fluctuation in the results, it is not necessary to execute longer experiments or

more iterations. The average output rates are reported with standard deviations

shown as error bars.

From these figures we can see consistent performance improvements from both

mode switching and data copying avoidance, although their absolute throughput

in packets per second decreases as packet sizes increase. When the packet size is

10 bytes, the peak throughput of kernel-RS is 15.5% higher than that of user-space

forwarding; zero-copy provides an extra 12.6% improvement as compared to user-

RS, leading to a total gain in peak throughput of 28.1%. Table 5.1 summarizes the

individual as well as total improvement under different packet sizes. Also listed in

the table is the ratio of zero-copy improvement over kernel-RS improvement. We

notice a rise in this ratio as the packet size increases. This is expected, because

data copying introduces more overhead when the packet size is larger, which leads

to better results for copying avoidance. Meanwhile, the overhead of mode switches

remains constant regardless of packet sizes, causing the absolute gain using kernel-

RS to be steady.

After the peak all curves decline due to overloading. We can see from all the

figures that both kernel-RS and zero-copy decline steadily with a rate close to

user-RS. This indicates that kernel-RS and zero-copy behave well under overload.

In summary, the experimental results show the performance improvements that

mode switching and data copying avoidance can offer. The total gain in peak

throughput ranges from 28.1% to 43.8% across the examined packet sizes.
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Figure 5.2: Throughput for 10 bytes per packet
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Figure 5.3: Throughput for 100 bytes per packet
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Figure 5.4: Throughput for 500 bytes per packet
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Figure 5.5: Throughput for 1000 bytes per packet
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packet size kernel-RS zero-copy total zero-copy
kernel-RS

10 15.5% 12.6% 28.1% 0.8
100 13.3% 21.5% 34.8% 1.6
500 10.6% 26.8% 37.3% 2.5
1000 11.5% 32.3% 43.8% 2.8

Table 5.1: Peak throughput improvement under different packet sizes
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Chapter 6

Conclusion and Future Work

Security concerns for conventional kernel-based operating systems are less relevant

for dedicated servers where only one dominant service runs on a computer system.

We argue that for such configurations security can be relaxed to obtain better

performance. We are particularly interested in reducing system call overheads by

executing a part of the primary application from inside the kernel. The code can

then use plain function calls to request operating system services when running in

the kernel, thereby reducing or even eliminating mode switching and data copying

overheads.

One challenge with the proposed DUCK framework is how to design an appli-

cation programming interface that is general, efficient, and easy to use. In this

thesis, we present the design of the DUCK API, which includes functions for both

direct user code execution and zero-copy buffer management. An abstract model

adapted by many operating systems for network buffer management is given, based

on which the buffer management interface is designed.

We have implemented DUCK prototypes on Solaris/SPARC. An efficient way

to implement direct user code invocation is through memory sharing between the

kernel and user processes. However, because Solaris/SPARC uses separate address

spaces, achieving memory sharing is difficult. In this thesis, we study the SPARC

architecture and the Solaris virtual memory subsystem, and discuss three potential

techniques to enable memory sharing: address space switching, combining, and
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duplication. Although address space duplication is the only complete solution we

have explored so far, it is efficient as well. To share memory between the user and

kernel address spaces, it first adjusts the memory layout of the DUCK process,

removing all conflicting areas of the two address spaces. The process’s address

translation information is then duplicated into the kernel. When the process is

running, any change to its hat data structure is replayed into the kernel’s hat. By

using this method we implement the DUCK prototype by changing only a few lines

of code in the stock Solaris kernel. We also discuss zero-copy buffer management

for Solaris, which is straightforward to implement.

Finally, experiments are conducted using the DUCK prototype on Solaris/

SPARC. A simple UDP forwarder is developed for the purpose of micro-benchmarks.

The results show 28.1% to 43.8% peak throughput improvement when compared

to conventional system call invocations.

Some possible areas for future work are:

• In the current approach, we modify hat memload and hat unload so that

they can trace updates on the DUCK process’s hat to ensure the kernel

maps to the same pages (Section 4.1.3). However, when the callback running

within the kernel is about to allocate a new virtual page in the user address

space, the new hat memload implementation might operate on the kernel’s

hat and not duplicate the update to the process’s hat. This is because in this

situation the hat object passed to hat memload might be the kernel’s but

not the process’s. Solutions to this problem are difficult and left as future

work. Our current prototype works properly as long as the callback does not

request new virtual pages in the user address space.

• We hope to compare the performance of DUCK with other approaches de-

scribed in Chapter 2.

• In addition to micro-benchmarks presented in Chapter 5, macro-benchmarks

are necessary to evaluate the performance benefits of DUCK under realistic

settings.
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• Along with the prototype implementation on Solaris/SPARC, we have also

investigated Solaris/IA-32, FreeBSD/IA-32, Linux/IA-32, Linux/IA-64 (i.e.

64-bit Intel Architecture), and Linux/PowerPC, by examining their abilities

to support DUCK. We believe DUCK can be implemented on these plat-

forms easily. However, more operating systems and processors need to be

investigated to verify the general applicability of DUCK.

• We are interested in integrating DUCK with complementary techniques. For

example, Singularity’s static verification and application signing [11] might

be useful in reinforcing security without significantly hampering the system’s

run-time performance.

• Aspects other than performance should be qualitatively analyzed. We hope

to deploy the DUCK framework into real applications and receive feedback

from developers, to confirm DUCK’s usability, effectiveness, and flexibility

under different circumstances.
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