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Abstract

In many scenarios, side information naturally exists in point-to-point communications.

Although side information can be present in the encoder and/or decoder and thus yield

several cases, the most important case that worths particular attention is source coding

with side information at the decoder (Wyner-Ziv coding) which requires different design

strategies compared to the the conventional source coding problem. Due to the difficulty

caused by the joint design of random variable and reconstruction function, a common ap-

proach to this lossy source coding problem is to apply conventional vector quantization

followed by Slepian-Wolf coding. In this thesis, we investigate the best rate-distortion per-

formance achievable asymptotically by practical Wyner-Ziv coding schemes of the above

approach from an information theoretic viewpoint and a numerical computation viewpoint

respectively.

From the information theoretic viewpoint, we establish the corresponding rate-distortion

function R̂WZ(D) for any memoryless pair (X, Y ) and any distortion measure. Given

an arbitrary single letter distortion measure d, it is shown that the best rate achievable

asymptotically under the constraint that X is recovered with distortion level no greater

than D ≥ 0 is R̂WZ(D) = minX̂ [I(X; X̂)− I(Y ; X̂)], where the minimum is taken over all

auxiliary random variables X̂ such that Ed(X, X̂) ≤ D and X̂ → X → Y is a Markov

chain.

Further, we are interested in designing practical Wyner-Ziv coding. With the char-

acterization at R̂WZ(D), this reduces to investigating X̂. Then from the viewpoint of

numerical computation, the extended Blahut-Arimoto algorithm is proposed to study the

rate-distortion performance, as well as determine the random variable X̂ that achieves

R̂WZ(D) which provids guidelines for designing practical Wyner-Ziv coding.

In most cases, the random variable X̂ that achieves R̂WZ(D) is different from the ran-

dom variable X̂ ′ that achieves the classical rate-distortion R(D) without side information

at the decoder. Interestingly, the extended Blahut-Arimoto algorithm allows us to observe

an interesting phenomenon, that is, there are indeed cases where X̂ = X̂ ′. To gain deep
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insights of the quantizer’s design problem between practical Wyner-Ziv coding and classic

rate-distortion coding schemes, we give a mathematic proof to show under what conditions

the two random quantizers are equivalent or distinct. We completely settle this problem

for the case where X , Y , and X̂ are all binary with Hamming distortion measure. We

also determine sufficient conditions (equivalent condition) for non-binary alphabets with

Hamming distortion measure case and Gaussian source with mean-squared error distortion

measure case respectively.
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Chapter 1

Introduction

1.1 Distributed Source Coding

Source coding is a way to remove the uncontrolled redundancy occurring in the original

information source so as to reduce the bandwidth of signal for it to be accommodated in

the channel. For example, we hardly see the difference of consecutive frames in a slowly

varying video sequence. Therefore, we can predict most pixels in the next frame by ob-

serving the first frame, such that the most pixels in next frame are redundant which can

be removed hence “compresses” the source. Source coding can be either lossless or lossy.

Lossless source coding is the compression of a signal where the decompression gives back

to the original signal. Slepian-Wolf coding is a case of lossless coding. Lossy source coding

achieves greater compression by throwing away some information of the signal that doesn’t

matter. Wyner-Ziv coding is a case of lossy coding.

Distributed source coding of correlated sources, refers to the compression of the outputs

of two or more physically separated correlated sources which do not communicate with each

other (hence distributed coding)([16], [17]). These sources send their compressed outputs

to a central point (e.g., the base station) for joint decoding (See Fig 1.1).

Distributed source coding is a new coding paradigm based on two information theoretic

results: Slepian-Wolf and Wyner-Ziv theorems which will be introduced in latter sections.
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Figure 1.1: Distributed source coding with separated encoding and joint decoding

Based on the distributed source coding independent encoding and joint decoding config-

uration, many applications involves distributed source coding, such as data compression

for network communications, sensor networks, upgrading of existing schemes and video

compression comes.

1.1.1 Distributed Source Coding in Lossless Case

In this section, we are considering the case that the sources X and Y are recovered perfectly

at the decoder in Fig 1.1 which is called Slepian-Wolf coding. The problem of lossless

compression of finite alphabet sources takes its roots from the fundamental paper of Slepian

and Wolf [4]. The Slepian-Wolf theorem shows that the output of two correlated sources

can be compressed to the same extent without loss. Consider two correlated independent

identically distributed (i.i.d.) finite-alphabet random sequences X and Y . With separate

conventional entropy encoders and decoders, one can achieve RX ≥ H(X) and RY ≥ H(Y )

[2], where H(X) and H(Y ) are the entropies of X and Y , respectively. Interestingly, we

can do better with joint decoding. In this case, the Slepian-Wolf theorem establishes the

rate region (Fig 1.2) which is bounded by the following inequalities.

RX ≥ H(X|Y ), RY ≥ H(Y |X)

RX + RY ≥ H(X,Y ) (1.1)

Surprisingly, just as joint encoding of X and Y , the sum of rates RX + RY can achieve
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Figure 1.3: Lossless coding with side information

H(X,Y ), despite encoding X, Y separately. Compression with side information at the

decoder (Fig 1.3) is a special case of the distributed coding problem in Fig 1.1. The

source produces a sequence X with correlated side information Y , and at the decoder only

X is recovered with an arbitrarily small probability of error. Since RY is achievable for

conventional encoding, compression with receiver side information corresponds to one of

the corners of the rate region in Fig 1.2, hence RX ≥ H(X|Y ).

1.1.2 Distributed Source Coding in Lossy Case

Consider again the problem of Fig 1.1. If there exists some distortion criterion between

the sources and reconstruction outputs, i.e., lossy distributed source coding, the general

problem is still open, although Gaussian case has been solved by Aaron, Saurabha, and
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Figure 1.4: Rate distortion with side information

Pramod recently [5].

One special lossy case that has been discussed a lot is Wyner-Ziv coding (Fig 1.4).

Shortly after Slepian-Wolf theorem, Wyner and Ziv have extended their work to establish

information theoretic bounds for lossy compression with side information at the decoder.

In [3], the Wyner-Ziv rate distortion function RWZ(D) gives the minimum rate necessary

to reconstruct the source X with distortion constraint Ed(X, X̂) ≤ D,

RWZ(D) = inf
p(z|x)

inf
f(y,z):Ed(x,f(y,z))≤D

I(X; Z)− I(Y ; Z) (1.2)

where the minimization is taken over all p(z|x) and all reconstruction functions f(y, z)

satisfying fidelity constraints. Z is an auxiliary random variable such that Y → X → Z

forms a Markov chain.

1.1.3 Practical Wyner-Ziv Coding and its Application

With the characterization of RWZ(D) in (1.2), we see that in order to achieve the best

rate, one has to jointly design the auxiliary random variable and the reconstruction function

with the given distortion measure. In general, this joint design problem is hard to solve. A

simpler and more practically relevant problem is to design the auxiliary random variable for

a fixed reconstruction function. In this thesis, we are focus on the commonly used practical

Wyner-Ziv coding schemes comprising of conventional vector quantization followed by

Slepian-Wolf coding (Fig 1.5).
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Figure 1.5: Practical W-Z system comprising of vector quantization and S-W coding

In this approach, it is implicitly assumed that Z = X̂ , and the reconstruction function

is fixed as f(Y, Z) = Z, where Z can be regarded as the reconstructed output of a vector

quantizer in response to input X.

In late chapters, we show that the minimum rate in bits per letter achievable asymptot-

ically for (X,Y ) under the constraint that X is recovered with distortion level no greater

than D ≥ 0 is given by

R̂WZ(D)
∆
= min

X̂
[I(X; X̂)− I(Y ; X̂)] (1.3)

where the minimum is taken over all auxiliary random variables X̂ from X̂ such that

X̂ → X → Y is a Markov chain, and Ed(X, X̂) ≤ D. A detailed explanation of this

system and its actual implementation is explained in Chapter 3.

In the study of distributed source coding, it was considered to use the quantization

at the encoder, thus practical Wyner-Ziv coding schemes provide practical solutions for

designing the encoders and the decoders, for implementation of the source coding schemes.

A source data observation is simply quantization-based encoded, and transmitted to a de-

coder. The decoder, with the help of an available uncoded source data correlated to the

source, attempts to obtain the original source data.

Practical Wyner-Ziv coding, i.e., lossy compression with decoder side information, en-

ables low-complexity video encoding where the bulk of the computation is shifted to the

decoder. This idea is widely used in distributed video coding schemes, which is a new

coding paradigm described by a configuration where the encoder has low-complexity at
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the expense of a higher decoder complexity ([6], [7]).

1.2 Research Problems and Motivations

In this thesis, we are interested in the rate-distortion performance achievable asymptotically

by practical Wyner-Ziv coding schemes comprising of conventional vector quantization fol-

lowed by Slepian-Wolf coding.

The research problems to be investigated in this thesis are:

1. “From the viewpoint of information theory, for practical Wyner-Ziv coding schemes

that referred to above, what is the best rate R̂WZ(D) achievable asymptotically by this

approach? Or what is the minimum rate in bits per letter under the given distortion con-

straint between the source and reconstruction output?”

2. “From the viewpoint of computation, how to calculate R̂WZ(D) efficiently?”

3. “How to design practical Wyner-Ziv coding?”

4. “Under what conditions is the quantizer achieving R̂WZ(D) the same as or different

from the quantizer achieving the classical rate-distortion function? Equivalently, under

what conditions should the design of conventional quantization in the case of side infor-

mation be different from the case of no side information?”

The motivations for above research problems are three-fold. First, in existing infor-

mation theoretic works on Wyner-Ziv coding, in order to achieve (1.2), one has to jointly

design an auxiliary random variable and a reconstruction function with the given distortion

measure. In general, this joint design problem is hard to solve, such that we investigate a

commonly used approach to apply conventional vector quantization followed by Slepian-

Wolf coding. To study the rate-distortion performance achievable asymptotically by this

approach, we are naturally led to the first question.
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Second, although the derived rate-distortion function R̂WZ(D) can be characterized as

optimization problem, the characterization does not mean that it can be calculated eas-

ily. Indeed, the closed forms of R̂WZ(D) are known only to very few cases, such as the

case when X,Y jointly Gaussian which will be discussed in Chapter 4. Generally, such

optimization problem is difficult to solve. At the same time, how to provide guidelines for

designing practical Wyner-Ziv coding is another key problem. With the characterization of

R̂WZ(D) in (1.3), this reduces to investigate X̂. Therefore, it is important and necessary

to propose an efficient algorithm (extended Blahut-Arimoto algorithm) for numerically

computing the rate-distortion function, as well as determining the random variable X̂ that

achieves R̂WZ(D).

Third, comparing with the classic rate-distortion function R(D) ([2]) without side infor-

mation at the decoder, the random variable X̂ that achieves R̂WZ(D) should be generally

different from the random variable X̂ ′ that achieves R(D), due to the presence of decoder

only side information Y in practical Wyner-Ziv coding schemes. Interestingly, the extended

Blahut-Arimoto algorithm allows us to observe that there are indeed cases where X̂ ′ = X̂.

To fully understand and characterize this important and rather surprising phenomenon,

we are led to the fourth question which provides guidelines to design practical Wyner-Ziv

coding and classic lossy coding.

1.3 Organization of Thesis and Contribution

This thesis is organized as follows.

In Chapter 2, we give a quick review of the background knowledge on conventional

vector quantization and source coding techniques. Some previous theoretical results are

presented such as classic rate-distortion function, Slepian-Wolf coding and Wyner-Ziv cod-

ing.

In chapter 3, we study the problem of practical Wyner-Ziv coding comprising of con-
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ventional vector quantization followed by Slepian-Wolf coding. Given an arbitrary single

letter distortion measure, the best rate-distortion function achievable asymptotically by

this approach has been characterized. Next, we obtain a computationally efficient algo-

rithm (extended Blahut-Arimoto algorithm) for this problem. The algorithm allows us

to numerically calculate R̂WZ(D), as well as compare the random variable X̂ achieving

R̂WZ(D) and the random variable X̂ ′ achieving the classical rate-distortion function, and

thus observe an interesting phenomenon that in some cases these two random variables are

exactly the same.

To fully understand and characterize this important and rather surprising phenomenon,

in Chapter 4, we deal with the problem “under what conditions is the quantizer achieving

R̂WZ(D) the same as or different from the quantizer achieving the classical rate-distortion

function?” Finally, the conclusion of this thesis is in Chapter 5, including some future

works.

Now we summarize the contributions of this thesis. It characterizes the rate-distortion

function of practical Wyner-Ziv coding comprising of conventional vector quantization and

Slepian-Wolf coding. It proposes an extended Blahut-Arimoto algorithm to study the

performance of practical Wyner-Ziv coding schemes, as well as provides guidelines for de-

signing it. Although the presence of decoder only side information in practical Wyner-Ziv

coding makes the quantization design generally different from the classic rate-distortion

function without side information at the decoder, we give a mathematical proof to answer

Question 4 raised in last section for binary alphabets with Hamming distortion measure.

Furthermore, we determine sufficient conditions (equivalent condition) for non-binary al-

phabets with Hamming distortion measure case and Gaussian source with mean-squared

error distortion measure case respectively.

1.4 Notations

Throughout the thesis, the following notations are adopted. We use capital letter to denote

random variable, lowercase letter for its realization, and script letter for its alphabet. For



Introduction 9

instance, X is a random variable over its alphabet X and x ∈ X is a realization. We use

pX(x) to denote the probability distribution of a discrete random variables X taking values

over its alphabet X , and also to denote the probability density function of a continuous

random variable X. If there is no ambiguity, sometimes pX(x) is omitted and we write

p(x) instead. Furthermore, E denote the expectation operator, H(X) is the entropy of X,

and I(X; Y ) denote the mutual information between X and Y .



Chapter 2

Theory for Source Coding

In this thesis, the investigated practical Wyner-Ziv coding uses the system model of source

coding with side information comprising of conventional vector quantization followed by

Slepian-Wolf coding. Before describing the detailed framework of practical Wyner-Ziv cod-

ing in Chapter 3, we present some of the required background knowledge on conventional

vector quantization and source coding in this chapter, as well as the preliminaries on typ-

icality which is an important tool in proving coding theorems. We reviewed the classic

source coding and source coding with side-information including both the lossless case

(Slepian-Wolf coding) and the lossy case with distortion constraint (Wyner-Ziv coding).

2.1 Conventional Vector Quantization Review

Quantization is one of the most common and direct techniques to achieve data compression.

There are two basic quantization types: scalar and vector. Scalar quantization encodes

data points individually, while vector quantization groups input data into vectors, each of

which is encoded as a whole. Vector quantization typically searches a codebook (a col-

lection of vectors) for the closest match to an input vector, yielding an output index. A

dequantizer simply performs a table lookup in an identical codebook to reconstruct the

original vector.

10
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Generally, a vector quantization encoder or a vector quantization decoder has a single

codebook containing a plurality of code vectors with indices. According to the indices,

encoding and decoding processes are carried out. By increasing the quantity of the code

vectors stored in the codebook, the quality of the reproduced signal may be improved.

The conventional vector quantization technique has only one codebook which stores a

plurality of code vectors C1 to Cn that are selectively output according to input indices.

To accurately reproduce an encoded signal wave shape with such a conventional vector

quantization encoder or decoder, it is necessary to reduce quantization distortion. To do

so, the number of code vectors stored in the codebook must be increased. To increase the

number of code vectors, it is necessary to increase the memory size of the codebook.

2.2 Preliminaries of Typicality

Typicality is an important tool to prove coding theorems in information theory. In this

section we review the definition of typicality and some basic properties ([2], [15]) needed

in the latter proofs.

Definition 1 A sequence xn ∈ X n is said to be ε-strongly typical with respect to a distri-

bution p(x) on X if

1 for all a ∈ X with p(a) > 0, we have

‖ 1

n
N(a|xn)− p(a)‖ <

ε

|X | ; (2.1)

2 and for all a ∈ X with p(a) = 0, N(a|xn) = 0,

where N(a|xn) is the number of occurrences of the symbol a in the sequence xn.

Definition 2 A pair of sequences (xn, yn) ∈ X̂ n × Ŷn is said to be ε-strongly typical with

respect to a distribution p(x, y) on X × Y if
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1 for all (a, b) ∈ X × Y with p(a, b) > 0, we have

‖ 1

n
N(a, b|xn, yn)− p(a, b)‖ <

ε

|X ||Y| ; (2.2)

2 and for all (a, b) ∈ X × Y with p(a, b) = 0, N(a, b|xn, yn) = 0.

whereN(a, b|xn, yn) is the number of occurrences of the symbol (a, b) in the sequence

(xn, yn).

The set of all ε-strongly typical sequences xn ∈ X n with respect to p(x) is denoted by

A
∗(n)
ε (X), and the set of all jointly ε-strongly typical sequences (xn, yn) ∈ X̂ n × Ŷn with

respect to p(x, y) is denoted by A
∗(n)
ε (X, Y ).

Lemma 1 Let Xi be drawn i.i.d. ∼ p(x). Then Pr(A
∗(n)
ε (X)) → 1 as n →∞.

Lemma 2 Let (Xi, Yi) be drawn i.i.d. ∼ p(x, y). Then Pr(A
∗(n)
ε (X, Y )) → 1 as n →∞.

Lemma 3 Let Y1, Y2, ..., Yn be drawn i.i.d. ∼ ∏
p(y). For xn ∈ A

∗(n)
ε (X), the probability

that (xn, Y n) ∈ A
∗(n)
ε is bounded by

2−n(I(X;Y )+ε1) ≤ Pr((xn, Y n) ∈ A∗(n)
ε ) ≤ 2−n(I(X;Y )−ε1) (2.3)

where ε1 goes to 0 as ε → 0 and n →∞.

Lemma 4 Let (X,Y, Z) form a Markov chain X → Y → Z, i.e., p(x, y, z) = p(x, y)p(z|y).

If for a given (yn, zn) ∈ A
∗(n)
ε (Y, Z), Xn is drawn ∼ ∏n

i=1 p(xi|yi), then Pr{(Xn, yn, zn) ∈
A
∗(n)
ε (X, Y, Z)} > 1− ε for n sufficiently large.

2.3 Source Coding Background Review

The function of the source code (consisting of the source encoder and source decoder) is to

remove the uncontrolled redundancy naturally occuring in the original information sources

so as to provide an efficient representation for the source output. The primary benefit
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Encoder
 Decoder


n
X
 n
X
ˆ


Figure 2.1: Source Coding

gained from the application of source coding is a reduced symbol throughput requirement

and thus a better bandwidth efficiency.

Depending on the nature of the source output, source codes can be either lossless or

lossy. In this section, we review source coding including lossless coding and coding with a

distortion constraint.

2.3.1 Source Coding without Side Information

Before discussing source coding with side-information, we review basic source coding as

shown in Fig 2.1.

Lossless Encoding

Let X be a discrete random variable taking values in a finite set X , and {Xi}n
i=1 be an i.i.d.

sequence drawn according to distribution p(x). The encoding and decoding mappings with

block length n are:

f : X n → {0, 1}∗ (2.4)

g : {0, 1}∗ → X n (2.5)

The decoder is interested in recovering {Xi}n
i=1 (which we write as Xn) with high

probability, i.e.

P (n)
e = P (g(f(Xn)) 6= Xn) → 0 as n →∞ (2.6)



14

and we define its average transmission rate in bits per symbol as:

R =
1

n
E|f(Xn)|

=
1

n

∑
xn∈Xn

p(xn)|f(xn)| (2.7)

where |b| denotes the length of a binary string b.

The set of representation codewords (gn(1), gn(2), ..., gn(2|f(xn)|)) constitutes the code-

book corresponding to xn. The source is mapped to one of the codewords in the codebook

and the index of that codeword is made available to the decoder. R bits per symbol on

average is required. We are interested in designing the mappings f and g so as to minimize

the average transmission rate R in order for the receiver to recover the original source Xn

perfectly. Information theory states that the rate region here is:

R ≥ H(X) (2.8)

Encoding with a distortion criterion

The description of an arbitrary real number requires an infinite number of bits, so a finite

representation of a continuous random variable can never be perfect. Hence, after defining

a distortion measure which is a measure of distance between the random variable and its

reproduction, we remove the constraint on X to be discrete and allow it to be both discrete

and continuous.

Consider again the problem of Fig 2.1. We are now interested in recovering Xn at the

decoder within a distortion constraint D for some distortion measure d(x, x̂).

Definition 3 A distortion measure is a mapping

d : X × X̂ → R+ (2.9)

from the set of source alphabet-reproduction alphabet pairs into the set of non-negative real

numbers. The distortion d(x, x̂) is a measure of the cost of representing the symbol x by

the symbol x̂.
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Definition 4 A distortion measure is said to be bounded if

dmax
∆
= sup

x∈X ,x̂∈X̂
d(x, x̂) < ∞ (2.10)

The distortion measure is defined on a symbol-to-symbol basis. We extend the definition

to sequences by using the additive distortion measure:

d(xn, x̂n) =
1

n

n∑
i=1

d(xi, x̂i) (2.11)

The following distortion measures are widely used in practice.

Hamming (probability of error) distortion: The Hamming distortion is given by

d(x, x̂) =

{
0 if x = x̂

1 if x 6= x̂
, (2.12)

which results in a probability of error distortion, since Ed(X, X̂) = Pr(X 6= X̂). This

distortion measure is usually used for discrete alphabets.

Squared error distortion: The squared error distortion,

d(x, x̂) = (x− x̂)2, (2.13)

is a popular distortion measure used for continuous alphabets. In latter chapters, we bring

in these two common used distortion measures to discuss the optimum conventional quan-

tization for discrete and Gaussian cases separately.

Definition 5 A (2nR, n) rate distortion code consists of an encoding function,

fn : X n → {0, 1}∗, (2.14)

and a decoding(reproduction) function,

gn : {0, 1}∗ → X̂ n. (2.15)
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The average transmission rate R in bits per symbol is defined as

R =
1

n
E|fn(Xn)|

=
1

n

∑
xn∈Xn

p(xn)|fn(xn)| (2.16)

where |b| denotes the length of a binary string b.

The distortion associated with the (2nR, n) code is defined as

D = Ed(Xn, gn(fn(Xn))), (2.17)

where the expectation is with respect to the probability distribution on X, i.e.,

D =
∑
xn

p(xn)d(xn, gn(fn(xn))). (2.18)

Thus the input source space X n is first partitioned into 2|fn(Xn)| disjoint regions through

the mapping fn. Each region in the partition is associated with a reconstruction codeword.

The set of n-tuples (gn(1), gn(2), ..., gn(2|fn(xn)|), denoted by X̂n(1), X̂n(2), ...X̂n(2|fn(xn)|),

constitutes the codebook corresponding to xn. The source is quantized to one of the code-

words in the corresponding codebook and the index of that codeword is made available to

the decoder. This requires R bits per symbol on average. The problem is to design the

mappings fn and gn so as to minimize the average transmission rate R in order for the

receiver to recover the original source Xn such that the distortion level is no greater than

a given distortion constraint D.

We have the following definitions[2].

Definition 6 A rate distortion pair (R, D) is said to be achievable if there exists a sequence

of (2nR, n) rate distortion codes (fn, gn) with limn→∞ Ed(Xn, gn(fn(Xn))) ≤ D.

Definition 7 The rate distortion region for a source is the closure of the set of achievable

pairs (R, D).
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Figure 2.2: Source coding with side information only to the decoder
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Figure 2.3: Source coding with side information to both the encoder and decoder

Definition 8 The rate distortion function R(D) is the infimum of rates R such that (R,D)

is in the rate distortion region of the source for a given distortion D.

We thus have the following theorem [2],[15]:

Theorem 1 The rate distortion function for an i.i.d. source X with distribution p(x) and

bounded distortion function d(x, x̂) is

R(D) = inf
p(x̂|x):

∑
(x,x̂) p(x)p(x̂|x)d(x,x̂)≤D

I(X; X̂) (2.19)

2.3.2 Source Coding with Side Information

In this section, we review the concepts of source coding with side-information, also known

as Distributed Source Coding. We consider two scenarios: one is that the side-information

Y n is available only to the decoder (see Fig 2.2), while the other one is that the side-

information presents at both encoder and decoder (see Fig 2.3).
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Lossless Encoding

In both cases of Fig 2.2 and Fig 2.3 , let X and Y be two random variables taking values

in finite sets X and Y , respectively. Let {(Xi, Yi)}∞i=1 be a sequence of independent copies

of (X,Y ). The decoder is interested in recovering Xn perfectly with high probability, i.e.,

P (n)
e = P (X̂n 6= Xn) → 0 as n →∞ (2.20)

When the side-information is available to both encoder and decoder(Fig 2.3), then the

problem of compressing X is well-understood: one can compress X at a theoretical rate of

its conditional entropy given Y , H(X|Y ). Surprisingly, Slepian and Wolf [4] showed that,

if Y were known only at the decoder for X and not at the encoder (see Fig 2.2 ), one can

still compress X using only H(X|Y ) bits, the same as the case where the encoder does

know Y . That is , by just knowing the joint distribution of X and Y , without explicitly

knowing Y , the encoder of X can perform as well as an encoder which explicitly knows Y .

Typicality was used in [2] to encode and decode Xn to achieve the minimum rate

H(X|Y ), which can be described as follows.

Generation of codebooks. Randomly bin all the sequences xn into 2nR bins by indepen-

dently generating an index b uniformly distributed on {1, 2, ..., 2nR} for each xn. Let B(i)

denote the set of sequences xn allotted to bin i.

Encoding. The sender sends the index i of the bin in which xn falls.

Decoding. The receiver looks for a unique xn ∈ B(i) such that (xn, yn) ∈ A
∗(n)
ε (X, Y ).

If there is none or more than one, it declares an error.

Analysis of the probability of error.

1 The pair (Xn, Y n) generated by the source is not typical. The probability of this is

small if n is large.
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2 There exists another typical xn ∈ B(i) which is jointly typical with yn. The proba-

bility that any other xn is jointly typical with yn is less than 2−n(I(X;Y )−3ε), and therefore

the probability of this kind of error is bounded above by

E[|B(i)
⋂

A∗(n)
ε (X)|2−n(I(X;Y )−3ε)] ≤ 2n(H(X)+ε)2−nR2−n(I(X;Y )−3ε), (2.21)

which goes to 0 if R > H(X|Y ) + 2ε.

Later in 1999, Pradhan and Ramchandran’s work [1] provided a constructive practi-

cal framework based on algebraic trellis codes dubbed as Distributed source coding using

syndromes that can be applicable in a variety of settings. It is instructive to examine the

following example from [1] inspired by Wyner’s idea in 1974 [8].

Assume X and Y are equiprobable binary triplets with X, Y ∈ {0, 1}3 and they differ

in at most one position. Then H(X) = H(Y ) = 3 bits. Because the Hamming distance

between X and Y is dH(X, Y ) ≤ 1, for a given Y (e.g., [101]), then X is either the same

as Y ([101]) or differ in one position such as [001], [111], [100]. Hence H(X|Y ) = 2 bits.

We will see how to describe X with the same compression rate H(X|Y ) so that it can be

perfectly reconstructed at the decoder in the above two scenarios.

Scenario 1: In this scenario, the side-information Y is available at both encoder and

decoder. Clearly X can be predicted from Y . There are only 4 possibilities for the modulo-

two binary sum of X and Y and hence X can be encoded with 2 bits given Y .

Scenario 2: In this scenario, Y is only revealed to the decoder but not the encoder.

However, the encoder does know the correlation structure and also knows that the de-

coder has access to Y . By the Slepian-Wolf theorem, it is still possible to describe X

with just 2 bits and decode it without loss at the joint decoder. This can be done by first

partitioning the set of all possible outcomes of X into four bins, Z00 = {000, 111}, Z01 =

{001, 110}, Z10 = {010, 101} and Z11 = {011, 100}. The encoder for X identifies the set

containing the codeword for X and sends the index for the set (which can be done in 2

bits) instead of the individual codeword. In forming the bins Zs, we make sure that each

of them has two elements with Hamming distance dH = 3. On the decoder side, on the
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reception of the coset index, with the help of side information Y , we pick in bin Zs the X

with dH(X, Y ) ≤ 1. Unique decoding is guaranteed because the two elements in each bin

Zs have Hamming distance dH = 3.

In channel coding terminology, each coset is associated with a unique syndrome [14].

Since the encoder send the syndrome for the coset containing the codeword for X to the

decoder, we refer to this operation as Syndrome Coding.

Encoding with a distortion criterion

Consider the problem of Fig 2.2. Wyner and Ziv [3] studied this system for lossy com-

pression with side information at the decoder. Here, the constraint on X and Y to be

discrete can be removed, and we allow them to be continuous random variables as well.

The source X is encoded without access to the side information Y . The decoder, however,

has access to Y , and must recover Xn within a distortion constraint D for some distor-

tion measure d(x, x̂). Let {Xi, Yi}n
i=1 be i.i.d. ∼ p(x, y) and let the distortion measure

be d(xn, x̂n) = 1
n

∑n
i=1 d(xi, x̂i). Then the Wyner-Ziv theorem ([2],[3]) states that the rate

distortion function for this problem is

RWZ(D) = inf
p(z|x)

inf
f(y,z)

I(X; Z)− I(Y ; Z) (2.22)

where the minimization is under the distortion constraint

∑
x

∑
z

∑
y

p(x, y)p(z|x)d(x, f(y, z)) ≤ D (2.23)

where the minimization is taken over all p(z|x) and all reconstruction functions f(y, z)

satisfying fidelity constraints, and Z is the active source codeword and the term I(Y ; Z)

is the rate rebate due to the presence of the side-information at the decoder. We denote

by R′
WZ(D) the rate required if the side information were available at the encoder as well.

Wyner and Ziv proved that, a rate loss RWZ(D)−R′
WZ(D) ≥ 0 is generally incurred when

the encoder does not have access to the side information. Surprisingly, for the case when

X and Y are jointly Gaussian and the mean squared error is the distortion measure, [3]
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showed that RWZ(D)− R′
WZ(D) = 0. Later in [10] it was shown that this also holds true

for the case of X = Y + N , where N is independent and identically distributed Gaussian,

and the distortion measure is mean squared error.

For encoding and decoding using typicality to achieve the rate-distortion function

(2.22), one can refer to [2] for detailed steps.

In practice, due to the difficulty caused by the joint design of random variable and re-

construction function, a common approach to this lossy source coding problem is to apply

conventional vector quantization followed by Slepian-Wolf coding. In the next chapter,

we investigate the best rate-distortion performance achievable asymptotically by practical

Wyner-Ziv coding schemes of the above approach from an information theoretic viewpoint

and a numerical computation viewpoint respectively.



Chapter 3

Practical Wyner-Ziv Coding and its

Rate-Distortion Function R̂WZ

As alluded to in Chapter 2, a typical approach of practical Wyner-Ziv coding is to apply

conventional vector quantization followed by Slepian-Wolf coding. In this chapter we first

determine the best rate-distortion performance R̂WZ(D) achievable asymptotically by this

approach for memoryless source-side information pair (X,Y ) with alphabet X × Y and

any distortion measure d. Then, we extend the well-known Blahut-Arimoto algorithm to

calculate the rate-distortion function R̂WZ(D) and determine the random variable X̂ that

achieves R̂WZ(D). Finally, we observe an interesting phenomenon from the simulation

results which will be justified mathematically in the next chapter.

3.1 The Rate-Distortion Function R̂WZ(D)

In view of (2.22), we see that in order to achieve RWZ(D), one has to jointly design Z and

the reconstruction function f for (X,Y ) and the given distortion measure d. In general

this joint design problem is hard to solve. A simpler and more practically relevant problem

is to design Z for a fixed reconstruction function f . Indeed, in the practice of Wyner-Ziv

coding, a common approach is to use conventional vector quantization followed by Slepian-

Wolf coding [4](See Fig 1.5).

22
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Figure 3.1: The architecture of practical W-Z system

In this approach, it is implicitly assumed that Z = X̂ , and the reconstruction function

is fixed as f(Y, Z) = Z, where Z can be regarded as the reconstructed output of a vector

quantizer in response to input X.

As shown in Fig 1.5, we are interested in the rate-distortion performance achievable

asymptotically by the above approach, i.e., conventional vector quantization followed by

Slepian-Wolf coding. The main result in this section is the determination of the minimum

rate in bits per letter achievable asymptotically for (X,Y ) under the constraint that X is

recovered with distortion level no greater than D ≥ 0.

Define, for D ≥ 0, the quantity

R̂WZ(D)
∆
= min

X̂
[I(X; X̂)− I(Y ; X̂)] (3.1)

where the minimum is taken over all auxiliary random variables X̂ from X̂ such that

X̂ → X → Y is a Markov chain, and Ed(X, X̂) ≤ D.

To facilitate our discussion, let Cn = (φn ◦ψn, gn) denote an order-n code where φn de-

notes a mapping from X n to X̂ n, ψn denotes a mapping from φn(X n), the range of φn, to a

prefix subset of {0, 1}∗ of finite binary strings, and gn denotes a mapping from Yn×{0, 1}∗
to φn(X n).

As shown in Fig 3.1 , to encode and decode a sequence xn ∈ X n with decoder side

information yn, Cn works as follows: on the encoder side, xn is mapped to x̂n = φn(xn)

from X̂ , and then x̂n is encoded into a binary string ψn(x̂n); on the decoder side, Cn decodes



24

x̂n as gn(yn, ψn(x̂n)). In view of the above process, we see that if φn(Xn) is denoted by

X̂n, then one can regard X̂n as the reconstructed output of a vector quantizer in response

to input Xn, and (ψn, gn) as an order-n Slepian-Wolf code to encode X̂n with decoder only

side information Y n. When (ψn, gn) satisfies

lim sup
n→∞

Pr{gn(Y n, ψn(X̂n)) 6= X̂n} = 0,

the operational rate-distortion performance of Cn is characterized by

RCn

∆
=

1

n
E|ψn(X̂n)|, (3.2)

where |b| denotes the length of a binary string b, and

DCn

∆
=

1

n
E

n∑
i=1

d(Xi, X̂i). (3.3)

Using the terminology similar to that in [3], we say that a rate distortion pair (R,D)

is achievable if, for arbitrary ε > 0, there exists a code Cn = (φn ◦ ψn, gn) such that

RCn ≤ R + ε, and DCn ≤ D + ε. (3.4)

Let R̂ denote the set of achievable (R,D) pairs, and define

R∗(D)
∆
= inf

(R,D)∈R̂
R. (3.5)

The following theorem shows that our information theoretic function R̂WZ(D) defined

in (3.1) is indeed equal to the rate-distortion function R∗(D) defined in (3.5) above.

Theorem 2 For any D ≥ 0, R̂∗(D) = R̂WZ(D).

Proof of Theorem 2: We first prove the converse of this theorem.

Consider any rate distortion code with side information. Let the encoding function

be fn = (φn ◦ ψn) : X n → {0, 1}∗ and let gni : Yn × {0, 1}∗ → X̂ n denote the ith

symbol produced by the decoding function. Let T = fn(Xn) denote the correspond-

ing encoded version of Xn. We must show that if Ed(Xn, gn(Y n, fn(Xn))) ≤ D, then
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RCn = 1
n
E|ψn(X̂n)| ≥ R̂WZ(D).

Similar to the converse part proof of rate distortion with side information in [2], the

following chain of inequalities comes:
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|ψn(X̂n)| ≥ H(T )

≥ H(T |Y n)

≥ I(Xn; T |Y n)

=
n∑

i=1

I(Xi; T |Y n, X i−1)

=
n∑

i=1

H(Xi|Y n, X i−1)−H(Xi|T, Y n, X i−1)

=
n∑

i=1

H(Xi|Yi)−H(Xi|T, Yi, Y
i−1, Y n

i+1, X
i−1)

≥
n∑

i=1

H(Xi|Yi)−H(Xi|T, Yi)

1)
=

n∑
i=1

H(Xi|Yi)−H(Xi|T, Yi, X̂i)

2)

≥
n∑

i=1

H(Xi|Yi)−H(Xi|Yi, X̂i)

=
n∑

i=1

I(Xi, X̂i|Yi)

3)
=

n∑
i=1

I(Xi, X̂i)− I(Yi, X̂i)

≥
n∑

i=1

R̂WZ(Ed(Xi, gni(X̂i, Yi)))

= n
1

n

n∑
i=1

R̂WZ(Ed(Xi, g
′
ni(X̂i, Yi)))

4)

≥ nR̂WZ(E
1

n

n∑
i=1

d(Xi, g
′
ni(X̂i, Yi)))

≥ nR̂WZ(D)

where 1) follows from the fact that Xi → (T, Yi) → X̂i forms a Markov chain; 2) fol-
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lows from that conditioning reduces entropy; 3) follows from that Yi → Xi → X̂i forms a

Markov chain; and 4) follows from Jensen’s inequality and the convexity of R̂WZ(D) (See

Proposition 1 in the next section).

Therefore, we have,

RCn =
1

n
E|ψn(X̂n)|

=
1

n

∑

x̂n

p(x̂n)|ψn(x̂n)|

≥ R̂WZ(D)
∑

x̂n

p(x̂n)

= R̂WZ(D)

Next, we prove the achievability of this theorem.

Fix QX̂|X(x̂|x). Calculate qX̂(x̂) =
∑

x pX(x)QX̂|X(x̂|x).

Generation of codebook. Let R1 = I(X; X̂)+ ε. Generate 2nR1 i.i.d codewords X̂n(s) ∼∏n
i=1 qX̂(x̂i), and index them by s ∈ {1, 2, ..., 2nR1}.

Let R2 = I(X; X̂) − I(Y ; X̂) + 5ε. Randomly assign the indices s ∈ {1, 2, ..., 2nR1} to

one of 2nR2 bins using a uniform distribution over the bins. Let B(i) denote the indices

assigned to bin i. There are approximately 2n(R1−R2) indices in each bin.

Encoding. Given a source sequence xn, the encoder looks for a codeword x̂n(s) such

that (xn, x̂n(s)) ∈ A
∗(n)
ε . If there is no such x̂n, the encoder sets s = 1. If there is more

than one such s, the encoder uses the lowest s. The encoder sends the index of the bin in

which s belongs.

Decoding. The decoder looks for a x̂n such that s ∈ B(i) and (x̂n(s), yn) ∈ A
∗(n)
ε . If it

finds a unique s, it then gets the decoder output x̂i = x̂(s). If it doesn’t find any such s or

more than one such s, it sets x̂n as an arbitrary sequence in X̂ n.
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Analysis of the probability of error.

1. The pair (xn, yn) 6∈ A
∗(n)
ε . The probability of this event is small for large enough n by

the weak law of large numbers.

2. The sequence xn is typical, but there does not exit an s such that (xn, x̂n(s)) ∈ A
∗(n)
ε .

The probability of this event is small if R1 > I(X; X̂).

3. The pair of sequences (xn, x̂n(s)) ∈ A
∗(n)
ε but (x̂n(s), yn) 6∈ A

∗(n)
ε . By the Markov

Lemma (See Lemma 4), the probability of this event is small if n is large enough.

4. There exists another s′ with the same bin index such that (x̂n(s′), yn) ∈ A
∗(n)
ε . The

probability of this event is:

Pr(∃s′ ∈ B(i) : (x̂n(s′), yn) ∈ A∗(n)
ε ) ≤ 2R1−R22−n(I(X̂;Y )−3ε) (3.6)

which goes to 0 since R1 −R2 < I(X̂; Y )− 3ε.

3.2 The Extended Blahut-Arimoto Algorithm

In this section, we extend the well-known Blahut-Arimoto algorithm [2], [13] to calculate

the rate distortion function R̂WZ(D) for any memoryless pair (X, Y ) and any distortion

measure d. Our extension is similar to that used to calculate RWZ(D) in [9], which has a

more complicated objective function. Specifically, our extended Blahut-Arimoto algorithm

is to compute minQX̂|X :Ed(X̂;X)≤D I(X; X̂|Y ), while the Blahut-Arimoto algorithm is to

calculate minQX̂|X :Ed(X̂;X)≤D I(X; X̂). This extended algorithm serves two purposes in this

thesis: first it allows us to study the rate performance of R̂WZ(D); and second it provides

guidelines for designing practical Wyner-Ziv coding. Before describing the algorithm and

showing its convergence, some properties are given.
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3.2.1 Properties of R̂WZ(D)

Proposition 1 R̂WZ(D) = minQX̂|X :Ed(X̂;X)≤D I(X; X̂|Y ) is a non-increasing continuous

convex function of D ≥ 0.

Proof of Proposition 1: Since Y → X → X̂ forms a Markov chain,

R̂WZ(D) = min
QX̂|X :Ed(X̂;X)≤D

[I(X; X̂)− I(Y ; X̂)] = min
QX̂|X :Ed(X̂;X)≤D

I(X; X̂|Y ) (3.7)

The monotonicity of R̂WZ(D) follows immediately from the fact that the domain of mini-

mization in the definition of R̂WZ(D) increases with D. Thus, R̂WZ(D) is non-increasing

of D.

Consider two rate distortion pairs (R̂WZ(D1), D1) and (R̂WZ(D2), D2) which lie on the

rate-distortion curve given by R̂WZ(D). Let the joint distributions that achieve these pairs

be p1(x, y, x̂) = p(y)p(x|y)Q1(x̂|x) and p2(x, y, x̂) = p(y)p(x|y)Q2(x̂|x), respectively.

Let the conditional probabilities Q1 and Q2 achieve the points (Q1, IQ1(X; X̂|Y )) and

(Q2, IQ2(X; X̂|Y )). Consider the distribution Qλ = λQ1+(1−λ)Q2 that achieve the points

(Qλ, IQλ
(X; X̂|Y )). Since the distortion

D(Q) =
∑

x

∑
y

∑

x̂

p(y)p(x|y)Q(x̂|x)d(x, x̂) (3.8)

is a linear function of the distribution Q, we have D(Qλ) = λD1 + (1 − λ)D2. Next, we

show that I(X; X̂|Y ) is a convex function of the conditional distribution Q(x̂|x).

I(X; X̂|Y ) =
∑

x

∑
y

∑

x̂

p(y)p(x|y)Q(x̂|x) log
Q(x̂|x)∑

x p(x|y)Q(x̂|x)

=
∑

x

∑
y

p(y)p(x|y)
∑

x̂

Q(x̂|x) log
Q(x̂|x)∑

x p(x|y)Q(x̂|x)

=
∑

x

∑
y

p(y)p(x|y)D(Q(x̂|x)||
∑

x

p(x|y)Q(x̂|x))

=
∑

x

∑
y

p(y)p(x|y)D(Q(x̂|x)||p(x̂|y)) (3.9)
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Since the relative entropy D(Q(x̂|x)||p(x̂|y)) is a convex function of (Q(x̂|x), p(x̂|y))

(Theorem 2.7.2, [2]), and I(X; X̂|Y ) is a linear function of D(p||q), it follows that I(X; X̂|Y )

is a convex function of the condition distribution Q.

Because of the convexity of I(X; X̂|Y ), we have,

IQλ
(X; X̂|Y ) ≤ λIQ1(X; X̂|Y ) + (1− λ)IQ2(X; X̂|Y ) (3.10)

Hence, by the definition of R̂WZ(D),

R̂WZ(Dλ) ≤ IQλ
(X; X̂|Y )

≤ λIQ1(X; X̂|Y ) + (1− λ)IQ2(X; X̂|Y )

= λR̂WZ(D1) + (1− λ)R̂WZ(D2) (3.11)

where Dλ = λD1 + (1− λ)D2. This proves that R̂WZ(D) is a convex function of D.

Proposition 2

R̂WZ(D) = sD + min
QX̂|X

[I(X; X̂)− I(Y ; X̂)− sEd(X, X̂)] (3.12)

for s ≤ 0, where D =
∑

x

∑
x̂ pX(x)Q∗

X̂|X(x̂|x)d(x, x̂) and Q∗
X̂|X(x̂|x) achieves the minimum

in (3.12).

Proposition 3 For s ≤ 0 and two probability distributions QX̂|X , pX̂|Y > 0, define

Fs(QX̂|X , pX̂|Y ) =
∑

x

∑
y

∑

x̂

pX(x)pY |X(y|x)QX̂|X(x̂|x) log
QX̂|X(x̂|x)

pX̂|Y (x̂|y)

−s
∑

x

∑

x̂

pX(x)QX̂|X(x̂|x)d(x, x̂) (3.13)

Then (a),

R̂WZ(D) = sD + min
QX̂|X ,pX̂|Y

Fs(QX̂|X , pX̂|Y ) (3.14)

where D =
∑

x

∑
x̂ pX(x)Q∗

X̂|X(x̂|x)d(x, x̂) and Q∗
X̂|X(x̂|x) achieves the minimum in (3.14).
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(b), For fixed QX̂|X(x̂|x), the optimal probability distribution p∗
X̂|Y (x̂|y) to minimize

Fs(QX̂|X , pX̂|Y ) is given by

p∗
X̂|Y (x̂|y) =

∑
x

pX|Y (x|y)QX̂|X(x̂|x) (3.15)

(c), For fixed pX̂|Y (x̂|y), the optimal probability distribution Q∗
X̂|X(x̂|x) to minimize

Fs(QX̂|X , pX̂|Y ) is given by

Q∗
X̂|X(x̂|x) =

g(x, x̂)esd(x,x̂)

∑
x̂′ g(x, x̂′)esd(x,x̂′)

(3.16)

where, g(x, x̂) = e
∑

y pY |X(y|x) log pX̂|Y (x̂|y)

Proof of Proposition 3:(a), For a given probability distribution QX̂|X(x̂|x), let

p∗
X̂|Y (x̂|y) =

∑
x

pX|Y (x|y)QX̂|X(x̂|x) (3.17)

Then, for any probability pX̂|Y (x̂|y),

Fs(QX̂|X , p∗
X̂|Y )− Fs(QX̂|X , pX̂|Y )

=
∑

x

∑
y

∑

x̂

pX(x)pY |X(y|x)QX̂|X(x̂|x)[log
QX̂|X(x̂|x)

p∗
X̂|Y (x̂|y)

− log
QX̂|X(x̂|x)

pX̂|Y (x̂|y)
]

= −
∑

y

pY (y)
∑

x

∑

x̂

pX|Y (x|y)QX̂|X(x̂|x) log
p∗

X̂|Y (x̂|y)

pX̂|Y (x̂|y)

= −
∑

y

pY (y)D(p∗
X̂|Y (x̂|y)||pX̂|Y (x̂|y))

≤ 0 (3.18)

So by proposition 2,

R̂WZ(D) = sD + min
QX̂|X ,pX̂|Y

Fs(QX̂|X , pX̂|Y ) (3.19)

(b), is obvious from (a);
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(c), Using the Lagrange multipliers ν(x), we define Gs(QX̂|X , pX̂|Y ) as follows:

Gs(QX̂|X , pX̂|Y ) = Fs(QX̂|X , pX̂|Y ) +
∑

x

ν(x)
∑

x̂

QX̂|X(x̂|x) (3.20)

Now note that Gs(QX̂|X , pX̂|Y ) is a convex function of QX̂|X(x̂|x). For fixed pX̂|Y (x̂|y),

one has

∂Gs(QX̂|X , pX̂|Y )

∂QX̂|X(x̂|x)
=

∑
y

∂(
∑

x

∑
x̂ pX(x)pY |X(y|x)QX̂|X(x̂|x) log

QX̂|X(x̂|x)

pX̂|Y (x̂|y)
)

∂QX̂|X(x̂|x)

− s
∑

x

∑

x̂

∂pX(x)QX̂|X(x̂|x)d(x, x̂)

∂QX̂|X(x̂|x)
+

∂
∑

x ν(x)
∑

x̂ QX̂|X(x̂|x)

∂QX̂|X(x̂|x)

=
∂

∂QX̂|X(x̂|x)
[
∑

y

pY (y)
∑

x

∑

x̂

pX|Y (x|y)QX̂|X(x̂|x) log
QX̂|X(x̂|x)

pX̂|Y (x̂|y)esd(x,x̂)

+
∑

x

ν(x)
∑

x̂

QX̂|X(x̂|x)]

=
∂

∂QX̂|X(x̂|x)
[
∑

x

∑

x̂

pX(x)QX̂|X(x̂|x)(log
QX̂|X(x̂|x)

esd(x,x̂)

−
∑

y

pY |X(y|x) log pX̂|Y (x̂|y)) +
∑

x

ν(x)
∑

x̂

QX̂|X(x̂|x)]

=
∂

∂QX̂|X(x̂|x)
[
∑

x

∑

x̂

pX(x)QX̂|X(x̂|x) log
QX̂|X(x̂|x)

e
∑

y pY |X(y|x) log pX̂|Y (x̂|y)+sd(x,x̂)

+
∑

x

ν(x)
∑

x̂

QX̂|X(x̂|x)]

= pX(x) log
QX̂|X(x̂|x)

e
∑

y pY |X(y|x) log pX̂|Y (x̂|y)+sd(x,x̂)
+ ν(x) (3.21)

The derivative is equal to zero if the minimum is achieved. Assume pX(x) > 0 for all x.

By the Karush-Kuhn-Tucker (KKT) conditions and
∑

x̂ QX̂|X(x̂|x) = 1, if Q∗
X̂|X(x̂|x) > 0,

then it is not hard to get,

Q∗
X̂|X(x̂|x) =

g(x, x̂)esd(x,x̂)

∑
x̂′ g(x, x̂′)esd(x,x̂′)

(3.22)
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where, g(x, x̂) = e
∑

y pY |X(y|x) log pX̂|Y (x̂|y), which is optimal to minimize Fs(QX̂|X , pX̂|Y ) for

fixed pX̂|Y (x̂|y).

Proposition 4 Probability distributions QX̂|X(x̂|x) and pX̂|Y (x̂|y) achieve the rate-distortion

function R̂WZ(D) in (3.14) if and only if they satisfy

pX̂|Y (x̂|y) =
∑

x

pX|Y (x|y)QX̂|X(x̂|x), QX̂|X(x̂|x) =
g(x, x̂)esd(x,x̂)

∑
x̂′ g(x, x̂′)esd(x,x̂′)

(3.23)

where, g(x, x̂) = e
∑

y pY |X(y|x) log pX̂|Y (x̂|y).

3.2.2 The Extended Blahut-Arimoto Algorithm

The extended Blahut-Arimoto algorithm, as the standard Blahut-Arimoto algorithm, is

an iterative algorithm, and works as follows. Starting with an initial guess p
(0)

X̂|Y , we

first find Q
(1)

X̂|X that minimizes Fs(QX̂|X , p
(0)

X̂|Y ). Then we fix Q
(1)

X̂|X , and find p
(1)

X̂|Y that

minimizes Fs(Q
(1)

X̂|X , pX̂|Y ). Iteratively doing so, we then have a sequence of distribution

pairs {(Q(i)

X̂|X , p
(i−1)

X̂|Y ); i ≥ 1} such that

Q
(i)

X̂|X(x̂|x) =
g(x, x̂)esd(x,x̂)

∑
x̂′∈X̂ g(x, x̂′)esd(x,x̂′) (3.24)

where g(x, x̂) = e
∑

y∈Y pY |X(y|x) log p
(i−1)

X̂|Y (x̂|y)
, and for any (x̂, y) ∈ X̂ × Y ,

p
(i)

X̂|Y (x̂|y) =
∑
x∈X

pX|Y (x|y)Q
(i)

X̂|X(x̂|x). (3.25)

Using an idea similar to [11], the following theorem shows that the sequence

{(Q(i)

X̂|X , p
(i−1)

X̂|Y ); i ≥ 1} obtained by our extended Blahut-Arimoto algorithm converges to a

pair of distributions that achieves Fs
∆
= infQX̂|X ,pX̂|Y Fs(QX̂|X , pX̂|Y ). Here, the infimum is

taken over all possible pairs of transition probability distributions from X to X̂ and from

Y to X̂ (Note that since X̂ and Y are assumed to be finite, the infimum is achievable). For

brevity, let QX̂|X(pX̂|Y ) denote the transition probability function from X to X̂ obtained

from pX̂|Y through (3.24).
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Theorem 3 If the side information alphabet and the reproducing alphabet are finite and

pY (y) > 0 for any y ∈ Y, there exists a p∗
X̂|Y such that p

(n)

X̂|Y → p∗
X̂|Y , Q

(n)

X̂|X → Q∗
X̂|X =

QX̂|Y (p∗
X̂|Y ), and Fs(Q

∗
X̂|X , p∗

X̂|Y ) = Fs as n →∞.

Proof of Theorem 3: From the algorithm, starting from an arbitrary p
(0)

X̂|Y > 0, set recur-

sively generate Q
(n)

X̂|X = Q(p
(n−1)

X̂|Y ), p
(n)

X̂|Y = p(Q
(n)

X̂|X), n = 1, 2, 3.... Then by (3.18), clearly,

Fs(Q
(1)

X̂|X , p
(0)

X̂|Y ) ≥ Fs(Q
(1)

X̂|X , p
(1)

X̂|Y ) ≥ Fs(Q
(2)

X̂|X , p
(1)

X̂|Y ) ≥ ... (3.26)

Since Y → X → X̂ forms a Markov chain, then QX̂|X = QX̂|X,Y . For arbitrary

QX̂|X , pX̂|Y , consider the ”backward probability”,

LX|X̂,Y (x|x̂, y) =
QX̂|X,Y (x̂|x, y)pX|Y (x|y)

pX̂|Y (x̂|y)
(3.27)

=
pX|Y (x|y)QX̂|X(x̂|x)

pX̂|Y (x̂|y)
(3.28)

and let Lyx̂ denote the corresponding distribution for fixed y and x̂.

From the easily checked identity

Fs(Q
(n)

X̂|X , p
(n−1)

X̂|Y ) +
∑

y

pY (y)
∑

x̂

pX̂|Y (x̂|y)D(Lyx̂(x|y, x̂)||L(n)
yx̂ (x|y, x̂))

−Fs(QX̂|X , pX̂|Y ) =
∑

y

pY (y)
∑

x̂

pX̂|Y (x̂|y) log
p

(n)

X̂|Y (x̂|y)

p
(n−1)

X̂|Y (x̂|y)
(3.29)

where L
(n)

X|X̂,Y
(x|y, x̂) is defined as:

L
(n)

X|X̂,Y
(x|y, x̂) =

pX|Y (x|y)g(n−1)(x, x̂)esd(x,x̂)

p
(n)

X̂|Y (x̂|y)
∑

x̂′ g
(n−1)(x, x̂′)esd(x,x̂′)

, (3.30)

where g(n−1)(x, x̂′) = e
∑

y pY |X(y|x) log p
(n−1)

X̂|Y (x̂′|y)
.
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Supposing

Fs(QX̂|X , pX̂|Y ) ≤ lim
n→∞

Fs(Q
(n)

X̂|X , p
(n)

X̂|Y ) (3.31)

= lim
n→∞

Fs(Q
(n)

X̂|X , p
(n−1)

X̂|Y ) (3.32)

(3.29) implies, for any N ≥ M ≥ 1,

0 ≤
N∑

n=M+1

[Fs(Q
(n)

X̂|X , p
(n−1)

X̂|Y )− Fs(QX̂|X , pX̂|Y )]

=
N∑

n=M+1

[
∑

y

p(y)
∑

x̂

pX̂|Y (x̂|y) log
p

(n)

X̂|Y (x̂|y)

p
(n−1)

X̂|Y (x̂|y)

−
∑

y

pY (y)
∑

x̂

pX̂|Y (x̂|y)D(Lyx̂(x|y, x̂)||L(n)
yx̂ (x|y, x̂))]

≤
N∑

n=M+1

∑
y

p(y)
∑

x̂

pX̂|Y (x̂|y) log
p

(n)

X̂|Y (x̂|y)

p
(n−1)

X̂|Y (x̂|y)

=
∑

y

p(y)
∑

x̂

pX̂|Y (x̂|y) log
p

(N)

X̂|Y (x̂|y)

p
(M)

X̂|Y (x̂|y)

=
∑

y

p(y)[I(pX̂|Y ||p(M)

X̂|Y )− I(pX̂|Y ||p(N)

X̂|Y )] (3.33)

If the side information alphabet is finite, this shows, the series
∑

n[Fs(Q
(n)

X̂|X , p
(n−1)

X̂|Y )−
Fs(QX̂|X , pX̂|Y )] converges; thus

lim
n→∞

[Fs(Q
(n)

X̂|X , p
(n−1)

X̂|Y )− Fs(QX̂|X , pX̂|Y )] = 0 (3.34)

We are saying that,

lim
n→∞

[Fs(Q
(n)

X̂|X , p
(n)

X̂|Y )] = lim
n→∞

[Fs(Q
(n)

X̂|X , p
(n−1)

X̂|Y )]

= inf Fs(QX̂|X , pX̂|Y )

= Fs (3.35)
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The infinum can be approached by pX̂|Y with I(pX̂|Y ||p(1)

X̂|Y ) < ∞. If the reproduction

alphabet is finite, the condition I(pX̂|Y ||p(1)

X̂|Y ) < ∞ is satisfied; if it is countable, the

sufficient condition is

d∗ = dmax = min
x̂

∑
x

p(x)d(x, x̂) < ∞ (3.36)

Pick a convergent subsequence p
(ni)

X̂|Y → p∗
X̂|Y , say, of p

(n)

X̂|Y . Then, Q
(ni+1)

X̂|X = Q(p
(ni)

X̂|Y ) →
Q(p∗

X̂|Y ) = Q∗
X̂|X and

Fs(Q
(ni+1)

X̂|X , p
(ni)

X̂|Y ) → Fs(Q
∗
X̂|X , p∗

X̂|Y ) (3.37)

In view of (3.35), we have Fs(Q
∗
X̂|X , p∗

X̂|Y ) = Fs, thus p∗
X̂|Y = p(Q∗

X̂|X).

Since Fs(Q
∗
X̂|X , p∗

X̂|Y ) = Fs = inf Fs(QX̂|X , pX̂|Y ), then for every Fs(Q
(n)

X̂|X , p
(n−1)

X̂|Y ), we

have Fs(Q
(n)

X̂|X , p
(n−1)

X̂|Y ) ≥ Fs(Q
∗
X̂|X , p∗

X̂|Y ).

Apply (3.33) for Q∗
X̂|X and p∗

X̂|Y ,

0 ≤
N∑

n=M+1

[Fs(Q
(n)

X̂|X , p
(n−1)

X̂|Y )− Fs(Q
∗
X̂|X , p∗

X̂|Y )]

≤
∑

y

p(y)[I(p∗
X̂|Y ||p

(M)

X̂|Y )− I(p∗
X̂|Y ||p

(N)

X̂|Y )] (3.38)

is always true for any N ≥ M ≥ 1. Then we are saying that I(p∗
X̂|Y ||p

(n)

X̂|Y ) is a nonincreas-

ing sequence. By p
(ni)

X̂|Y → p∗
X̂|Y , we have p

(ni)

X̂|Y → p∗
X̂|Y for each y with pY (y) > 0, which

implies I(p∗
X̂|Y ||p

(ni)

X̂|Y ) → 0. Hence, I(p∗
X̂|Y ||p

(n)

X̂|Y ) → 0 which means I(p∗
X̂|y||p

(n)

X̂|y) → 0 for

each y, thus p
(n)

X̂|Y → p∗
X̂|Y .
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Figure 3.2: Comparison of RWZ(D), R̂WZ(D), and R(D)

3.2.3 An Interesting Phenomenon Observed

The extended Blahut-Arimoto algorithm allows us to observe some interesting phenomena.

One is naturally derived by computing the rate-distortion function R̂WZ(D). Comparing

with the rate performance RWZ(D) in (2.22) and R(D) in (2.19), we see that for the case

of unbiased input to a binary symmetric channel from the source X to side information Y

with crossover probability p0 = 1
3
, RWZ(D) < R̂WZ(D) < R(D) (Fig 3.2).

As expected, since the reconstruction function in practical Wyner-Ziv system has been

fixed, the rate-performance R̂WZ(D) is not as good as RWZ(D). Furthermore, with the

help of side information Y , R̂WZ(D) outperforms R(D). From Fig 3.2, we see that the gap

between R̂WZ(D) and RWZ(D) is small. However, the deep insights of the gap should be

mathematically discussed, which is referred to the future work in Chapter 5.

Another more interesting phenomenon is that, in most cases, the random variable X̂

that achieves R̂WZ(D) is different from the random variable X̂ ′ that achieves the classical

rate-distortion R(D) in (2.19). Interestingly, there are indeed cases where X̂ = X̂ ′. To put
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this into perspective, let us look at an example.

Example 1: Suppose that X = Y = X̂ = {0, 1}, and that the Hamming distortion

measure is used. We consider two cases.

Case 1: pY |X(0|1) = pY |X(1|0) = 0.25

Case 2: pY |X(0|1) = 0.45, pY |X(1|0) = 0.05.

In Case 1, it is observed that regardless the marginal distribution pX , the transition prob-

ability distribution QX̂′|X achieving R(D) for X always achieves R̂WZ(D) for (X, Y ). The

above observation, however, does not hold in Case 2. For example, when pX(0) = 1/3,

and D = 0.01, the optimum QX̂′|X for R(D) and the optimum QX̂|X for R̂WZ(D) are as

follows:
QX̂′|X(0|1) ∼ 0.005, QX̂′|X(1|0) ∼ 0.02.

QX̂|X(0|1) ∼ 0.0038, QX̂|X(1|0) ∼ 0.0225.

To fully understand and characterize this important and rather surprising phenomenon,

we are led to the following questions:

Q1: Under what conditions is X̂ achieving R̂WZ(D) the same as X̂ ′ achieving R(D)?

Equivalently, under what conditions should the design of conventional quantization

in the case of side information be the same as the case of no side information?

Q2: Under what conditions is X̂ achieving R̂WZ(D) different from X̂ ′ achieving R(D)?

Equivalently, under what conditions should the design of conventional quantization

in the case of side information be different from the case of no side information?

Example 1 above seems to suggest that pY |X being symmetric be the answer to above

questions for binary alphabets and Hamming distortion measure. This is indeed proved in

the next chapter. Note that due to finite precision in computation, running the extended

Blahut-Arimoto algorithm is not a mathematical proof.



Chapter 4

Optimum Conventional Quantization

In this chapter, we settle Question Q1 raised at the end of Chapter 3 for the following cases:

1, X , Y , and X̂ are all binary alphabets, and the distortion measure d is the Hamming

distortion measure;

2, X , Y , and X̂ are all discrete non-binary alphabets, where X̂ ∈ the optimum interior set V

[12], and the distortion measure d is the Hamming distortion measure;

3, X ∼ N (0, σ2
x), while the side information Y = X+N with X and N independent and

EN = 0, EN2 = σN
2, and the distortion measure d is the mean-squared error distortion

measure.

We also settle Question Q2 completely for the binary case with Hamming distortion

measure.

4.1 Binary Case

Throughout this section, we assume that X = Y = X̂ = {0, 1}, and d denotes the Hamming

distortion measure. With these assumptions, we settle Question Q1 and Q2 completely in

Theorems 4 and 5 [21].

39
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Definition 9 A binary memoryless channel pY |X with input X and output Y is said to be

symmetric if and only if the input and output relationship can be expressed as Y = X⊕N ,

where N is independent of X. Throughout this thesis, ⊕ denotes modulo-2 addition. The

probability of the event N = 1 is called the crossover probability of the symmetric channel.

Theorem 4 Let X denote a binary random variable with pX(0) = p ∈ (0, 0.5]. If the

channel pY |X from X to Y is symmetric with crossover probability 0 ≤ q ≤ 1, then for

any D ≥ 0, the random variable X̂ ′ that achieves R(D) for X also achieves R̂WZ(D) for

(X,Y ).

Proof of Theorem 4: Theorem 4 obviously holds when D ≥ p or D = 0. Assume now that

D ∈ (0, p). Observe that

I(X; X̂) = H(X)−H(X|X̂)

≥ H(X)−H(X ⊕ X̂) (4.1)

It follows from (4.1) that if I(X; X̂) were to be minimized subject to a Hamming distortion

constraint, one should look for X̂ such that pX|X̂ is symmetric, if such X̂ exists. Inter-

estingly, with 0 < D < p, one can always find such a random variable X̂ ′ with marginal

distribution qX̂′

qX̂′(0) = 1− qX̂′(1) =
p−D

1− 2D
(4.2)

such that the conditional probability distribution pX|X̂′ of X given X̂ ′ (also called the test

channel) is given by

pX|X̂′(x|x̂) =

{
D x 6= x̂

1−D otherwise
, (4.3)

where x, x̂ ∈ {0, 1}.
Let us look at the case where the side information Y is available only at the decoder.

Then

I(X; X̂)− I(Y ; X̂)

= H(X)−H(Y ) + [H(Y |X̂)−H(X|X̂)]. (4.4)
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In view of (4.4), we see that the presence of Y complicates the problem of minimizing

I(X; X̂)−I(Y ; X̂) subject to Ed(X, X̂) ≤ D. More specifically, it is no longer clear that in

order to minimize I(X; X̂)−I(Y ; X̂) under the distortion constraint, one should look for a

symmetric test channel pX|X̂ . In the following, we shall argue that the optimum test channel

pX|X̂ (in the sense of minimizingI(X; X̂) − I(Y ; X̂) under the constraint Ed(X, X̂) ≤ D)

is not only symmetric but also equal to pX|X̂′ in (4.3).

For brevity, let r0 = pX|X̂(1|0), and r1 = pX|X̂(0|1). Let qX̂ denote the marginal

distribution of X̂. Then

H(Y |X̂)−H(X|X̂)

= H(Y ⊕ X̂|X̂)−H(X ⊕ X̂|X̂)

= qX̂(0)[H(r0 ∗ q)−H(r0)] +

qX̂(1)[H(r1 ∗ q)−H(r1)]
1)

≥ H(r ∗ q)−H(r)
2)

≥ H(D ∗ q)−H(D), (4.5)

where r = qX̂(0)r0 + qX̂(1)r1, and for two real numbers a, b, a ∗ b
∆
=a(1− b) + (1− a)b. In

the above, the inequality 1) follows from Lemma 5 after Theorem 5; and the inequality 2)

is due to the constraint r = Ed(X, X̂) ≤ D and Lemma 5. Combining (4.4) and (4.5), we

have

I(X; X̂)− I(Y ; X̂)

≥ H(X)−H(Y ) + [H(D ∗ q)−H(D)]. (4.6)

It is thus clear that the right-hand-side of (4.6) is indeed achievable with the random

variable X̂ ′ satisfying (4.2) and (4.3). This completes the proof of Theorem 4.

Theorem 5 Let X denote a binary random variable with pX(0) = p ∈ (0, 0.5]. If the

channel pY |X from X to Y is asymmetric with pY |X(1|0) 6= pY |X(0|1) and pY |X(1|0) +

pY |X(0|1) 6= 1, then for 0 < D < p, the random variable X̂ ′ that achieves R(D) for X

cannot achieve R̂WZ(D) for (X,Y ).
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Proof of Theorem 5: For brevity, denote pY |X(1|0) and pY |X(0|1) by q0 and q1, respec-

tively. Without loss of generality, we assume that q0 < q1. Note that from our assumptions,

q0 + q1 6= 1. For 0 < D < p, let us assume that X̂ ′ is a random variable achieving R(D)

for X, i.e., X̂ ′ satisfies (4.2) and (4.3). We prove Theorem 5 by contradiction.

Suppose that X̂ ′ achieves R̂WZ(D). Let QX̂′|X and pX̂′|Y denote the conditional prob-

ability distribution of X̂ ′ given X and Y , respectively. In view of (3.13), we see that

Fs(QX̂′|X , pX̂′|Y ) = Fs. For fixed qX̂′ , take the first derivative of Fs(pX̂′|X , pX̂′|Y ) over pX|X̂′ ,

and set it to be 0. This implies that

∑

y∈{0,1}
pY |X(y|1) log

pX|X̂′(1|0)

pY |X̂′(y|0)

=
∑

y∈{0,1}
pY |X(y|0) log

pX|X̂′(0|1)

pY |X̂′(y|1)
, (4.7)

where pX|X̂′ and pY |X̂′ denote the conditional probability distribution of X given X̂ ′ and

Y given X̂ ′, respectively.

Let δ = q1 − q0. Then the left-hand-side of (4.7) can be written as

(q0 + δ) log
D

1−D ∗ q0 + Dδ
+

(1− q0 − δ) log
D

D ∗ q0 −Dδ
. (4.8)

Similarly, the right-hand-side of (4.7) can be written as

(1− q0) log
D

D ∗ q0 + (1−D)δ
+

q0 log
D

1−D ∗ q0 − (1−D)δ
. (4.9)

Let F (D, δ) denote the result of subtracting (4.9) from (4.8). It is easy to verify that

F (0.5, δ) = (1− 2q0 − δ) log
1 + δ

1− δ
(4.10)

When q0 + q1 < 1, since δ > 0, we have that for any D ∈ (0, p),

∂F (D, δ)

∂D
< 0, and F (D, δ) > F (0.5, δ) > 0. (4.11)
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Similarly, when q0 + q1 > 1, we have that for any D ∈ (0, p)

∂F (D, δ)

∂D
> 0, and F (D, δ) < F (0.5, δ) < 0 (4.12)

Remark 1 Proof of (4.11):

Denote the sum in (4.8) by F1(D, δ), and the sum in (4.9) by F2(D, δ), so F (D, δ) =

F1(D, δ)− F2(D, δ). We have

∂F (D, δ)

∂D
=

∂F1(D, δ)

∂D
− ∂F2(D, δ)

∂D
(4.13)

F1(D, δ) = (q0 + δ)(log D − log(1−D ∗ q0 + Dδ)) +

(1− q0 − δ)(log D − log(D ∗ q0 −Dδ)) (4.14)

F2(D, δ) = (1− q0)(log D − log(D ∗ q0 + (1−D)δ)) +

q0(log D − log(1−D ∗ q0 − (1−D)δ)) (4.15)

And we can easily derive,

∂F1(D, δ)

∂D
=

1

D
− (q0 + δ)(−1 + 2q0 + δ)

1−D ∗ q0 + Dδ

−1− q0 − δ)(1− 2q0 − δ)

D ∗ q0 −Dδ

=
1

D
− (1− δ − 2q0)(1− q0 −D ∗ q0 − (1−D)δ)

(D ∗ q0 −Dδ)(1−D ∗ q0 + Dδ)
(4.16)

∂F2(D, δ)

∂D
=

1

D
− q0(−1 + 2q0 + δ)

1−D ∗ q0 − (1−D)δ

−1− q0)(1− 2q0 − δ)

D ∗ q0 + (1−D)δ

=
1

D
− (1− δ − 2q0)(1− q0 −D ∗ q0 − (1−D)δ)

(D ∗ q0 + (1−D)δ)(1−D ∗ q0 − (1−D)δ)
(4.17)

Observing the right-hand-side of (4.16)and (4.17), the only difference is the denomina-

tor of the second item. Let A = D∗q0−Dδ, B = D∗q0+(1−D)δ, and B(1−B)−A(1−A)
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denote the difference of the two denominators. We can easily check that B = A + δ, and

B(1−B)− A(1− A) = δ(1− 2A− δ). With q0 + q1 < 1, we have

2A + δ = 2(D ∗ q0 −Dδ) + δ

= 2[D + (1− 2D)q0 −Dδ] + δ

= 2[D + (1− 2D)q0] + δ(1− 2D)

= 2[D + (1− 2D)q0] + (q1 − q0)(1− 2D)

= 2D + (q0 + q1)(1− 2D)

< 2D + 1− 2D

= 1 (4.18)

For fixed δ > 0, and q0 + q1 < 1, (4.18) implies that B(1 − B) − A(1 − A) > 0, and

further implies

∂F1(D, δ)

∂D
<

∂F2(D, δ)

∂D
(4.19)

(4.13) and (4.19) together imply that for any δ > 0, q0 + q1 < 1,

∂F (D, δ)

∂D
< 0, 0 < D < p (4.20)

Lemma 5 Let r, q be two real numbers such that 0 ≤ r, q ≤ 1. Then H(r ∗ q) − H(r)

is convex with respect to r. Furthermore, H(r ∗ q) − H(r) is a monotonically decreasing

function of r when r ≤ 0.5.

Proof of Lemma 5: For brevity, we assume natural logarithm in this proof. Taking the

first order derivative of H(r ∗ q)−H(r) with respect to r, we get

d[H(r ∗ q)−H(r)]

dr
= (1− 2q) log

1− r ∗ q

r ∗ q
− log

1− r

r
. (4.21)

The convexity of H(r ∗ q)−H(r) with respect to r can then be verified by checking that

d2[H(r ∗ q)−H(r)]

dr2
= − (1− 2q)2

(1− r ∗ q)(r ∗ q)
+

1

r(1− r)
≥ 0.

Observe that |0.5 − r ∗ q| = |0.5 − r||1 − 2q| ≤ |0.5 − r|. This, together with (4.21),

implies that H(r ∗ q) − H(r) is a monotonically decreasing function of r when r ≤ 0.5.

This concludes the proof of Lemma 5.
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4.2 Non-Binary Case

Throughout this section, we assume that X = Y = X̂ = {0, 1, 2, ..., n − 1}, n ≥ 2, and

d denotes the Hamming distortion measure. With these assumptions, we determine the

sufficient condition to answer Question Q1 in Theorems 6.

Definition 10 For a given matrix P with the following structure,

P =




p0 p1 ... p1

p1 p0 ... p1

.

.

p1 p1 ... p0




(4.22)

let Pp denote the set of all matrices obtained from P by finite numbers of permutation over

rows and columns, and the sum of each row and each column is 1.

Theorem 6 Let X denote a random variable taking values from {0, 1, 2, ..., n− 1}, n ≥ 2.

We index the source letters in order of decreasing probability, P0 ≥ P1 ≥ ... ≥ Pn−1, then

for any D ∈ [0, (n− 1)Pn−1], if the channel pY |X from X to Y is in the set Pp, the random

variable X̂ ′ that achieves R(D) for X also achieves R̂WZ(D) for (X, Y ).

Proof of Theorem 6: For brevity, let qij = qX|X̂(i|j), Ed(X, X̂) = d. Observe the classic

rate-distortion function,

R(D) = I(X; X̂) = H(X)−H(X|X̂)

≥ H(X)−H(X − X̂) (4.23)

For Hamming distortion measure, interestingly, for any D ∈ [0, (n−1)Pn−1], which implies

that X̂ ∈ the optimum interior set V [12], one can always find such a random variable X̂ ′

with the conditional probability distribution pX|X̂′ of X given X̂ ′ (test channel) given by,

Q =




q00 q10 ... q(n−1)0

q01 q11 ... q(n−1)1

.

.

q0(n−1) q1(n−1) ... q(n−1)(n−1)




=




1−D D
n−1

... D
n−1

D
n−1

1−D ... D
n−1

.

.
D

n−1
D

n−1
... 1−D




(4.24)
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Let us look at the case where the side information available only at the decoder. Then

I(X; X̂)− I(Y ; X̂)

= H(X)−H(Y ) + [H(Y |X̂)−H(X|X̂)]. (4.25)

In the following, we would argue that if the channel pY |X from X to Y is in the set Pp, de-

noted by P for brevity, the optimum test channel pX|X̂ (in the sense of minimizingI(X; X̂)−
I(Y ; X̂) under the constraint Ed(X, X̂) ≤ D) is equal to pX|X̂′ in (4.24).

Let qX̂ denote the marginal distribution of X̂. Then,

H(Y |X̂)−H(X|X̂)

=
n−1∑
i=0

qX̂(i)[H(
(

q0i q1i ... q(n−1)i

)
P )−H

(
q0i q1i ... q(n−1)i

)
]

1)
=

n−1∑
i=0

qX̂(i)[H(
(

qii q(i+1)i ... q(i−1)i

)
P )−H

(
qii q(i+1)i ... q(i−1)i

)
]

2)

≥ H(
(

q0 q1 ... qn−1

)
P )−H

(
q0 q1 ... qn−1

)

3)

≥ H
((

1− d d
n−1

... d
n−1

)
P

)
−H

(
1− d d

n−1
... d

n−1

)

4)

≥ H(
(

1−D D
n−1

... D
n−1

)
P )−H

(
1−D D

n−1
... D

n−1

)

(4.26)

where q0 =
∑n−1

i=0 qX̂(i)qX|X̂(i|i) = 1 − d. The equality 1) holds regardless of the per-

mutation of qij due to the special structure of P ; the inequalities 2) and 3) follow from

Lemma 6 and Lemma 7 below separately; and the inequality 4) is due to the constraint

d = Ed(X, X̂) ≤ D and Lemma 7.

Lemma 6 H(Y |X̂)−H(X|X̂) is a convex function of qX|X̂ for fixed qX̂ .

Proof of Lemma 6: Denote J(qX|X̂) = H(Y |X̂) − H(X|X̂). Let the conditional proba-

bility assignments q′
X|X̂ and q′′

X|X̂ achieve the points (q′
X|X̂ , J(q′

X|X̂)) and (q′′
X|X̂ , J(q′′

X|X̂)),

respectively. Note that

q∗
X|X̂ = λq′

X|X̂ + (1− λ)q′′
X|X̂ (4.27)
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is also a conditional probability assignment, then for fixed qX̂ ,

J(q∗
X|X̂) =

∑
x

∑
y

pY |X
∑

x̂

q∗
X|X̂qX̂ log

q∗
X|X̂

p∗
Y |X̂

=
∑

x

∑
y

pY |X
∑

x̂

(λq′
X|X̂ + (1− λ)q′′

X|X̂)qX̂ log
(λq′

X|X̂ + (1− λ)q′′
X|X̂)qX̂∑

x′(λq′
X′|X̂ + (1− λ)q′′

X′|X̂)pY |X′qX̂

1)

≤ λ
∑

x

∑
y

pY |X
∑

x̂

q′
X|X̂qX̂ log

q′
X|X̂qX̂∑

x′ q
′
X′|X̂pY |X′qX̂

+ (1− λ)
∑

x

∑
y

pY |X
∑

x̂

q′′
X|X̂qX̂ log

q′′
X|X̂qX̂∑

x′ q
′′
X′|X̂pY |X′qX̂

= λJ(q′
X|X̂) + (1− λ)J(q′′

X|X̂) (4.28)

In the above, the inequality 1) is due to log sum inequality [2]. Therefore, the lemma

follows, and H(Y |X̂)−H(X|X̂) is a convex function of qX|X̂ for fixed qX̂ .

Lemma 7 Let D ∈ [0, (n− 1)Pn−1], qi ∈ [0, 1], and
∑n−1

i=0 qi = d ≤ D. P is in the set Pp

by Definition 10. Then,

H
((

1− d q1 ... qn−1

)
P

)
−H

(
1− d q1 ... qn−1

)

is minimized by qi = d
n−1

. Furthermore,

H
((

1− d d
n−1

... d
n−1

)
P

)
−H

(
1− d d

n−1
... d

n−1

)

is a monotonically decreasing function of d when d ∈ (0, D].

Proof of Lemma 7: For brevity, we let

f(qi) = H
((

1− d q1 ... qn−1

)
P

)
−H

(
1− d q1 ... qn−1

)

By taking the first order derivative of f(qi) with respect to qi, one can check that df(qi)
dqi

= 0

when qi = d
n−1

. Since f(qi) is a convex function of qi by lemma 6, we see that f(qi) is

minimized by qi = d
n−1

.
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Let

g(d) = H
((

1− d d
n−1

... d
n−1

)
P

)
−H

(
1− d d

n−1
... d

n−1

)

Taking the first order derivative of g(d) with respect to d, we get,

dg(d)

dd
= (p1 − p0)(− log W0 − 1) + (p0 − p1)(− log W1 − 1)− [log(1− d)− log

d

n− 1
]

= (p1 − p0)(log W1 − log W0) + log
d

n− 1
− log(1− d), (4.29)

where W0 = (1− d)p0 + dp1, and W1 = d
n−1

p0 + (1− d
n−1

)p1.

Let δ = p1 − p0. Then the right-hand-side of (4.29) can be written as

F (d, δ) =
dg(d)

dd
= δ log

(1− d
n−1

)δ + p0

dδ + p0

+ log
d

n− 1
− log(1− d) (4.30)

When δ > 0, since p0 + (n − 1)p1 = 1, and p0, p1 > 0, then δ ∈ (0, 1
n−1

). It is easy to

verify both

∂F (d, δ)

∂δ
≥ 0, δ ∈ (0,

1

n− 1
) (4.31)

and

F (d,
1

n− 1
) < 0 (4.32)

(4.31) and (4.32) together imply that for any δ ∈ (0, 1
n−1

), and any d ∈ (0, D],

F (d, δ) < F (d,
1

n− 1
) < 0 (4.33)

When δ ≤ 0,since p0 +(n−1)p1 = 1, andp0, p1 > 0, then δ ∈ (−1, 0). It is easy to verify

that

∂F (d, δ)

∂δ
≤ 0, δ ∈ (−1, 0) (4.34)

Further verify that

F (d,−1) < 0 (4.35)
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(4.34) and (4.35) together imply that for any δ ∈ (−1, 0), and any d ∈ (0, D],

F (d, δ) < F (d,−1) < 0 (4.36)

Thus, (4.33) and (4.36) constitute the desired result that g(d) is a monotonically de-

creasing function of d when d ∈ (0, D].

4.3 Gaussian Case

Assume now the source X ∼ N (0, σ2
x), and side information Y is a continuous random

variable. In practical use, we generally assume that Y is a noisy version of X, such that

Y = X + N2 (4.37)

where X, N2 are independent random variables with EN2 = 0, and EN2
2 = σ2

2.

The random variable X̂ which would achieve R̂WZ(D) can be written as,

X = X̂ + N1 (4.38)

where EN1 = 0, EN2
1 = σ2

1, and Y → X → X̂ forms a Markov chain. We use mean-

squared error distortion measure with the constraint Ed(X − X̂) = σ2
1 ≤ D, and assume

N1, N2 independent.

It is well known that, in the classic rate-distortion system, for a N (0, σ2
x) source, if

D ≤ σ2
x, the probability density pX|X̂′ that governs the additive noise N ′

1 = X − X̂ ′ in the

“backward channel” is

N ′
1 ∼ N (0, D), and independent of X̂ ′. (4.39)

Theorem 7 Let the source X ∼ N (0, σ2
x), and side information Y be continuous. For

any D ≥ 0, the quantizer X̂ ′ that achieves R(D) for X also achieves R̂WZ(D) for (X,Y ),

if X and Y are jointly Gaussian.
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Proof of Theorem 7: Theorem 7 obviously holds when D > σ2
x or D = 0. Assume that

D ∈ (0, σ2
x]. Since X, Y are jointly Gaussian, without loss of generality, we can always

write Y as (4.37), where X,N2 are two independent Gaussian variables.

Observe that

I(X; X̂)− I(Y ; X̂)

= h(X)− h(Y ) + [h(Y |X̂)− h(X|X̂)] (4.40)

In order to minimize I(X; X̂)− I(Y ; X̂) subject to Ed(X, X̂) ≤ D, one should look for

a Gaussian test channel N1 ∼ N (0, D) which is equal to the optimum test channel of the

classic rate distortion system in (4.39).

h(Y |X̂)− h(X|X̂) = h(Y − X̂|X̂)− h(X − X̂|X̂)

= h(N1 + N2|X̂)− h(N1|X̂)

=

∫

x̂

pX̂(x̂)[h(pN1|X̂(x|x̂) ∗ pN2(x))− h(pN1|X̂(x|x̂))]dx̂

1)

≥ h(

∫

x̂

pX̂(x̂)pN1|X̂(x|x̂)dx̂ ∗ pN2(x))− h(

∫

x̂

pX̂(x̂)pN1|X̂(x|x̂)dx̂)

= h(pN1(x) ∗ pN2(x))− h(pN1(x))

= h(N1 + N2)− h(N1)
2)

≥ 1

2
log

σ2
1 + σ2

2

σ2
1

3)

≥ 1

2
log(1 +

σ2
2

D
) (4.41)

where p∗q =
∫

x1
p(x1)q(x−x1)dx1. In the above, the inequality 1) follows from Jensen’s

inequality and Lemma 8, the inequality 2) follows from Lemma 9, and the inequality 3) is

due to the constraint σ2
1 ≤ D.

Combining (4.40) and (4.41), we have
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I(X; X̂)− I(Y ; X̂)

≥ h(X)− h(Y ) +
1

2
log(1 +

σ2
2

D
)

=
1

2
log

σ2
x(D + σ2

2)

(σ2
x + σ2

2)D
, 0 < D ≤ σ2

x (4.42)

If D > σ2
x, we choose X̂ = 0 with probability 1, achieving R̂WZ(D) = 0. Hence, we

conclude that for X, Y jointly Gaussian,

R̂WZ(D) =

{
1
2
log

σ2
x(D+σ2

2)

(σ2
x+σ2

2)D
0 < D ≤ σ2

x

0 D > σ2
x

, (4.43)

The right-hand-side of (4.42) is indeed achievable with the random variable X̂ ′ that

achieve R(D).

In (4.43), we derived a lower bound of R̂WZ(D), which is called the generalized Shannon

lower bound for Gaussian source X with square error criterion. For non-Gaussian channel

from X to Y , however, this lower bound is not achievable, which provides the following

useful upper bound to R̂WZ(D) when X is Gaussian.

Theorem 8 : Let X ∼ N (0, σ2
x), and pN2 be any probability density with mean zero and

variance σ2
2. That is, suppose

∫

x

xpN2(x)dx = 0 (4.44)

and
∫

x

x2pN2(x)dx = σ2
2 (4.45)

let Y = X + N2 with X,N2 independent, and pN1 of (4.39) governs the transition from

X̂ to X where X = X̂ + N1. Then,
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R̂WZ(D) ≤ 1

2
log

σ2
x

D
− I(Y ; X̂) ≤ 1

2
log

σ2
x(D + σ2

2)

(σ2
x + σ2

2)D
(4.46)

with equality iff p(N2) is N (0, σ2
2).

Proof of Theorem 8: By the definition of R̂WZ(D), X ∼ N(0, σ2
x) and (4.39), we have,

R̂WZ(D) ≤ I(X; X̂)− I(Y ; X̂)

= h(X)− h(X|X̂)− I(Y ; X̂)

=
1

2
log

σ2
x

D
− I(Y ; X̂) (4.47)

This establishes the left side of inequality (4.46). In order to obtain the right side, we

try to minimize I(Y ; X̂).

By (4.39), we see that X̂ ∼ N (0, σ2
x − D) is independent of N1 ∼ N (0, D), also

independent of N2. Let N = N1 + N2 with EN = 0, EN2 = D + σ2
2, we have

I(X̂; Y ) = I(X̂; X + N2)

= I(X̂; X̂ + N1 + N2)

= I(X̂; X̂ + N)
1)

≥ I(X̂; X̂ + N∗)

=
1

2
log

σ2
2 + σ2

x

σ2
2 + D

(4.48)

In the above, N∗ ∼ N (0, D +σ2
2). 1) follows from Lemma II.2 in [20], with the equality

holds iff N = N∗. Combine (4.47) and (4.48), the theorem follows, that is,

R̂WZ(D) ≤ I(X; X̂)− I(Y ; X̂)

=
1

2
log

σ2
x

D
− 1

2
log

σ2
2 + σ2

x

σ2
2 + D

=
1

2
log

σ2
x(D + σ2

2)

(σ2
x + σ2

2)D
, 0 < D ≤ σ2

x (4.49)
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where the equality holds iff N ∼ N (0, D + σ2
2). By Cramer’s theorem, N1 + N2 ∼

N (0, D + σ2
2) iff N1, N2 are both Gaussian, hence N2 ∼ N (0, σ2

2).

Lemma 8 For the continuous alphabet, if Y → X → X̂ forms a Markov chain, then

fp = h(Y |X̂)− h(X|X̂) is a convex function with respect to pX|X̂ for fixed pX̂ .

Proof of Lemma 8: Let the conditional probability assignments p′
X|X̂ and p′′

X|X̂ achieve

the points (p′
X|X̂ , f ′p) and (p′′

X|X̂ , f ′′p ), respectively, and note that

p∗
X|X̂ = λp′

X|X̂ + (1− λ)p′′
X|X̂ (4.50)

is also a conditional probability assignment. We employ the well-known inequality

log x ≤ x− 1 (4.51)

in order to complete the following proof.
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fp∗ =

∫

x

∫

y

∫

x̂

p∗
X|X̂pX̂qY |X log

p∗
X|X̂

p∗
Y |X̂

dxdydx̂

= λ

∫

x

∫

y

∫

x̂

p′
X|X̂pX̂qY |X log

p′
X|X̂p∗

X|X̂p′
Y |X̂

p′
Y |X̂p∗

Y |X̂p′
X|X̂

dxdydx̂

+ (1− λ)

∫

x

∫

y

∫

x̂

p′′
X|X̂pX̂qY |X log

p′′
X|X̂p∗

X|X̂p′′
Y |X̂

p′′
Y |X̂p∗

Y |X̂p′′
X|X̂

dxdydx̂

≤ λ

∫

x

∫

y

∫

x̂

p′
X|X̂pX̂qY |X [log

p′
X|X̂

p′
Y |X̂

+
p∗

X|X̂p′
Y |X̂

p∗
Y |X̂p′

X|X̂
− 1]dxdydx̂

+ (1− λ)

∫

x

∫

y

∫

x̂

p′′
X|X̂pX̂qY |X [log

p′′
X|X̂

p′′
Y |X̂

+
p∗

X|X̂p′′
Y |X̂

p∗
Y |X̂p′′

X|X̂
− 1]dxdydx̂

= λ[fp′ − 1 +

∫

x̂

∫

y

p′
Y |X̂pX̂

p∗
Y |X̂

(

∫

x

qY |Xp∗
X|X̂dx)dydx̂]

+ (1− λ)[fp′′ − 1 +

∫

x̂

∫

y

p′′
Y |X̂pX̂

p∗
Y |X̂

(

∫

x

qY |Xp∗
X|X̂dx)dydx̂]

= λ[fp′ − 1 +

∫

x̂

∫

y

p′
Y,X̂

p∗
Y |X̂

p∗
Y |X̂dydx̂]

+ (1− λ)[fp′′ − 1 +

∫

x̂

∫

y

p′′
Y,X̂

p∗
Y |X̂

p∗
Y |X̂dydx̂]

= λfp′ + (1− λ)fp′′ (4.52)

Combining (4.50) and (4.52) yields the desired result.

Lemma 9 Let Y ∗ ∼ N (0, σ2
y), and X is a continuous random variable independent of Y

with mean zero and variance σ2
x, then

h(X + Y ∗)− h(X) ≥ h(X∗ + Y ∗)− h(X∗) (4.53)

where X∗ ∼ N (0, σ2
x), and equality holds iff X = X∗.
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Proof of Lemma 9: By the Entropy-Power Inequality, we have,

h(X + Y ∗)− h(X) ≥ 1

2
ln(e2h(X) + e2h(Y ∗))− h(X) (4.54)

where the equality holds iff X = X∗.

Observe that, the right-hand-side of (4.54) is a monotonically decreasing function of

h(X). Since with fixed variance, normal distribution maximizes the differential entropy,

thus we have,

h(X + Y ∗)− h(X) ≥ h(X∗ + Y ∗)− h(X∗) (4.55)

where equality holds iff X = X∗.



Chapter 5

Conclusions and Future Work

5.1 Conclusions

In point-to-point communication, side information gives some extra information about the

source and channel to the transmitter and/or the receiver. For instance, the side informa-

tion can be the nature and the format of the source. Although side information can be

present in the encoder and/or the decoder and yields several cases, the most important

case that is worth particular attention is source coding with side information at the decoder

(Wyner-Ziv coding) which requires different design strategies from the conventional source

coding problem. Due to the difficulty caused by the joint design of the random variable

and reconstruction function, a common approach to this lossy source coding problem is

to apply conventional vector quantization followed by Slepian-Wolf coding. In this thesis,

we investigated the best rate-distortion performance achievable asymptotically by practical

Wyner-Ziv coding schemes of above approach from an information theoretic viewpoint and

a numerical computation viewpoint respectively.

From the information theoretic viewpoint, we established the corresponding rate-distortion

function R̂WZ(D) for any memoryless (X, Y ) and any distortion measure. We proved the

achievability and converse of the derived rate-distortion function, and the convexity prop-

erty was also shown.
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To gain deep insights on R̂WZ(D), on the other hand, from the viewpoint of numerical

computation, we focus on the algorithm development to study the rate-distortion perfor-

mance and provide guidelines for designing practical Wyner-Ziv coding which reduces to

investigating X̂. Based on the iteration idea of the Blahut-Arimoto algorithm for com-

puting the classic rate-distortion function, an extended Blahut-Arimoto algorithm was

proposed, and the convergence of the algorithm was also proved.

Interestingly, the extended Blahut-Arimoto algorithm allows us to observe an important

phenomenon where the random variable X̂ that achieves R̂WZ(D) is generally different

from the random variable X̂ ′ that achieves the classical rate-distortion R(D) in (2.19).

Surpringly, there are indeed cases where X̂ = X̂ ′. To fully understand and characterize

this important and rather surprising phenomenon, we are led to the question that under

what conditions are the two random variables equivalent or distinct. We completely settle

this problem for the case where X , Y , and X̂ are all binary, the two random variables are

the same if and only if the channel from source X to side information Y is symmetric.

Furthermore, we also determine the sufficient condition (equivalent condition) for non-

binary alphabets case with Hamming distortion measure case, and the case of Gaussian

source with mean-squared error distortion measure case respectviely.

5.2 Future Work

Practical Wyner-Ziv problem has been recently an active research field in information the-

ory. From the viewpoint of information theory, there remains many open problems.

1. In Chapter 4, for non-binary alphabets with Hamming distortion measure case and

Gaussian source with mean-squared error distortion measure case, only sufficient conditions

are determined, i.e., only the conditions under which the quantizer that achieves R̂WZ(D)

is the same as quantizer that achieves the classical rate-distortion R(D) are proved. How-

ever, we don’t know whether the conditions are necessary or not. It is valuable to find

sufficient and necessary conditions similar to that of the binary case.
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2. What’s the performance gap between the traditional Wyner-Ziv system and prac-

tical Wyner-Ziv system by our approach? We ran some simulations on binary symmetric

source for the two cases (See Fig 3.2), and the gap is minor. Is the gap still acceptable for

arbitrary cases? Mathematic proof should be given to gain deep insights.

3. After finish the above open problems, it should be interesting to investigate some

other practical Wyner-Ziv schemes which might be more complicated.
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