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Abstract

This thesis presents a model of Quantum Cellular Automata (QCA). The presented

formalism is a natural quantization of the classical Cellular Automata (CA). It is

based on a lattice of qudits, and an update rule consisting of local unitary opera-

tors that commute with their own lattice translations. One purpose of this model

is to act as a theoretical model of quantum computation, similar to the quantum

circuit model. The main advantage that QCA have over quantum circuits is that

QCA make considerably fewer demands on the underlying hardware. In particu-

lar, as opposed to direct implementations of quantum circuits, the global evolution

of the lattice in the QCA model does not assume independent control over indi-

vidual qudits. Rather, all qudits are to be addressed collectively in parallel. The

QCA model is also shown to be an appropriate abstraction for space-homogeneous

quantum phenomena, such as quantum lattice gases, spin chains and others. Some

results that show the benefits of basing the model on local unitary operators are

shown: computational universality, strong connections to the circuit model, simple

implementation on quantum hardware, and a series of applications. A detailed

discussion will be given on one particular application of QCA that lies outside ei-

ther computation or simulation: single-spin measurement. This algorithm uses the

techniques developed in this thesis to achieve a result normally considered hard in

physics. It serves well as an example of why QCA are interesting in their own right.
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Chapter 1

Introduction

This thesis presents the theory and applications of Quantum Cellular Automata

(QCA). One of the main contributions presented here is the introduction of a new

model of QCA, the local unitary QCA or LUQCA for short.

The Cellular Automaton (CA) is a computational model that has been studied

for many decades [vN51,vN66]. It is a fairly simple, yet powerful model of compu-

tation that has been shown to be Turing complete [vN66]. It is based on massive

parallelism and simple, locally constrained instructions, making it ideal for various

applications. Although usually simulated in software, CA hardware implementa-

tions have also been developed [OMH87,OTM88]. This is due to the fact that CA

are very effective at simulating many classical physical systems, including gas dis-

persion, fluids dynamics, ice formation, and even biological colony growth [CD98].

All of these characteristics make CA a very strong tool for going from a physical

system in nature, to a mathematical model, to an implemented physical simulation.

More recently, the idea of Quantum Cellular Automata (QCA) has emerged.

Several theoretical mathematical models have been proposed [SW04,vD96,Wat95,

PDC05]. However, there is a lack of applications developed within these models.

On the other hand, ad hoc models for specific applications like quantum lattice

gases [Mey96a,BT98], among others [FKK07], have been developed. Several pro-

posals for scalable quantum computation (QC) have been developed that use ideas

and tools related to QCA [FXBJ07,FT06,VC06,Ben00,BB03,Llo93].

1



2 CHAPTER 1. INTRODUCTION

Also, several QCA constructs have been shown to be capable of universal quan-

tum computation [Rau05, SFW06]. Finally, QCA tools have been used to solve,

or propose solutions to, particular problems in physics [ICJ+06, KBST05, LK05,

PDMCC06,WJ06,LB06].

However, there does not exist a comprehensive model of QCA that encompasses

these different views and techniques. Rather, each set of authors defines QCA

in their own particular fashion. In short, there is a lack of a generally accepted

QCA model that has all the attributes of the CA model mentioned above: sim-

ple to describe; computationally powerful and expressive; efficiently implementable

in quantum software and hardware; and able to efficiently and effectively model

appropriate physical phenomena.

The purpose of this thesis is to provide such a model.

1.1 Summary of Results

The model of QCA we present here is based on intuitive and well-established ideas:

qudits as the basic building blocks (cells), and local unitary operators as the basic

evolution device (local update rule).

The choice of local unitary operators as the basic evolution operator ensures

that the model is simple and easily explained to anyone familiar with the field of

quantum information. However, the choice is not made merely for sake of simplicity:

it provides us with an efficient implementation of QCA on quantum hardware, while

still enjoying an expressive richness strong enough to simulate any appropriate

physical system.

Formally, what we mean by efficient implementation, is that there exists a uni-

form family of quantum circuits that can simulate the evolution of finite regions of

the QCA, for a specified number of steps. Furthermore, we require that the depth

of each circuit be linear in the number of steps, and independent of the size of the

region being simulated. This last requirement is to ensure that the QCA retains

the quintessential quality of CA: massive parallelism.

While this notion of physical simulatability is quite clearly a desirable feature
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Result Section
LUQCA is defined. 3.1.
LUQCA is universal for quantum computation. 4.2.
LUQCA can be simulated by low-depth quantum circuits. 4.1.
LUQCA can simulate Watrous-van Dam QCA. 5.1.
LUQCA can simulate Schumacher-Werner QCA. 5.2.
One dimensional LUQCA are universal for quantum computation. 6.2.
LUQCA can model spin-chains. 7.1.
LUQCA can model quantum lattice gasses. 7.2.
Pyramid scheme state amplification algorithm is presented. 9.2.
Pyramid scheme algorithm is correct. 9.3.
Pyramid scheme algorithm shown to be robust to limited errors. 9.3.
Pyramid scheme algorithm implementation in NMR. 9.4.

Table 1.1: Summary of Results

in a model of computation, particularly one based on a particular physical theory

(quantum mechanics in this case), previously defined QCA models do not have this

feature.

It could be interpreted that since LUQCA are, in a sense, a restricted version

of previous QCA models, that it is less general. This thesis presents results that

counter this intuition. First, it is shown that any QCA defined in previous models

can be simulated by a LUQCA. Also, a LUQCA Qu that is capable of efficient

universal quantum computation is shown. In other words, for any quantum circuit

C there exists an initial configuration of the lattice such that Qu simulates C

efficiently.

The notion of simulatability is also well defined by giving a concrete example

of a physical device that could potentially implement LUQCA. This is done in two

steps.

First, we introduce a restricted form of LUQCA, a partitioned style QCA which

we call Coloured QCA, or CQCA for short. We then show how any LUQCA can

be re-written as a CQCA.

Second we show how any CQCA can be implemented on a pulse-driven quantum
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computer, as introduced by Lloyd [Llo93], and further refined by Benjamin [Ben00,

BB04] among others.

Another important series of results presented in this thesis pertain to the ap-

plication value of QCA in general, and LUQCA in particular. In particular, there

is an emphasis on modelling quantum physical systems with repetitive structure

using LUQCA.

These results, together with those mentioned above about the implementability

of LUQCA, provide a constructive method for actually simulating physical systems

of particular type.

Finally, we present one application of QCA in great detail. We present a problem

of great interest to be solved, namely the measurement of a single spin in the context

of NMR QIP. Then, we set out to solve this problem using the theory of QCA.

This application of QCA is interesting and important in its own right, as it

describes a procedure for achieving a goal that is considered hard in experimental

physics. The solution given also provides a prime example of the expressive powers

of QCA. The problem is abstracted in the QCA model, allowing us to work with it

without referring to any actual underlying physical systems, until necessary.

We start with a description of the problem, give an abstraction based on QCA,

provide an algorithm to solve this problem within the abstraction, and then use

the tools we have developed to transform the theoretical model into a proposed

physical implementation.

This showcases the ultimate raison d’être of QCA: providing an easy to use,

yet powerful, abstraction for working with molecular scale spatially homogeneous

systems.

Table 1.1 presents a summary of the results presented in this thesis.

1.2 What QCA Are Not

It is important to remark that QCA are not Globally Controlled Quantum Arrays

(GCQA).

In this thesis we will be discussing GCQA, or pulse-driven quantum comput-
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ers [Llo93, Ben00], inter alia, as a possible implementation of QCA on quantum

hardware. However, this should not be taken to mean that the two paradigms are

equivalent.

A GCQA is centred around the idea of doing computation on large arrays of

simple quantum systems, without locally addressing them. GCQA divide their

lattice of cells, or qudits, into subsets each of which can be addressed collectively.

The canonical example, due to Lloyd [Llo93], is a chain of three species of qudits

A, B, and C, arranged in a repeating fashion,

. . .− A− B − C −A− B − C − A− B − C −A− B − C − A− B − C − . . .

The first major distinction with QCA comes from the fact that sequence of

pulses applied to these subsets of qudits are arbitrary, and do not necessarily follow

a time-homogenous pattern.

The second, is that although Lloyd’s construction is space homogenous, GCQA

are not constrained in such a fashion. More recently, GCQA have been proposed

that have less spatially homogenous structures [FT07]. For instance,

. . .−A−B −A−B − A− A− B − B − B − B −B −B − . . .

As a model of computation one can say that QCA are more restricted than

GCQA. At the same time, QCA are more than just a model of computation. They

serve also as models of physical phenomena. It can be argued that QCA are, in a

sense, a more fundamental construct.

There is one last concept that needs to be addressed here. In a series of papers,

Lent et. al.—see, e.g. [LTPB93]—develop a method for doing classical computation

by using the ground state of a system consisting of a series of quantum dots. They

call this proposal a ‘quantum cellular automata’.

While it is true that the dots interact with each other through magnetic cou-

plings, the manner of the computation in no way resembles what is the accepted

definition of a cellular automata. Rather, energy is delivered to the quantum dot

lattice through its boundaries, so that the ground state of the system yields the
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computational result. While this paradigm is no doubt innovative, using the term

‘quantum cellular automata’ to describe it is misleading, and even incorrect. The

term ‘ground state computing’ is perhaps more appropriate.

1.3 Organization and Layout

This thesis is organized into two main parts: Theory and Applications. In Part I,

we will provide the major theoretical results of this thesis, outlined before. There is

also a short introductory chapter to the theory of classical Cellular Automata. Part

II deals with applications of QCA, from modelling physical systems in Chapter 7,

to single-spin metrology in Chapter 9. Most of the results contained in this thesis

have been presented in the literature. In Figure 1.1 we present a schematic view of

the results presented in this thesis. The shaded areas represent results that have

been presented together in refereed publications.

1. Many of the results in Part I: Theory are either presented for the first time,

or referenced and summarized, in [PDC07]. This paper introduces LUQCA,

compares it with previous models, and gives results pertaining to its expressive

power and applicability.

2. Preliminary results about the QCA model were given in [PDC05]. This paper

introduces the idea of Coloured QCA, and gives some criteria that any QCA

model should address.

3. The presentation and discussion of the ‘pyramid scheme’ single spin measure-

ment algorithm is covered mostly in [PDMCC06], with some details covered

in [PDCM+06]. This thesis presents many details previously unpublished,

particularly detailing the classical simulation data and analysis of the algo-

rithm.

Chapter 6 presents a result that is unpublished elsewhere. The result, while a

simple consequence of previously known results, is important in that it completes

the picture on computability with the QCA model herein presented.
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General QCA Model

Single-Spin 

Metrology 

Algorithm

Quantum Walks on 

Lattices; Quantum 

Lattice Gases

Spin Chains

Simulation of Physical 

Systems

Quantum 

Algorithms

Modelling Quantum 

Computation 

Systems

Partitioned QCA

Physical 

Implementation of 

Quantum Algorithms

(1)

(2)

(3)

Figure 1.1: Thesis Organization Chart
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Chapter 10 collects and presents all the avenues of research that have been

opened by the results from the previous chapters. Any results presented there

should be taken to represent work in progress at the time of this writing.

All of the work presented in this thesis has been done under the supervision of

Prof. Michele Mosca. Chapter 9 presents work done in collaboration with Prof.

David G. Cory, and Paola Cappellaro at MIT. Chapter 7 presents work developed

during an author’s visit to MIT, and was inspired in part by conversation with

Zhiying Chen. Some of the ideas in Chapter 10 about QCA models of nature are

inspired by conversations with Prof. Fay Dowker. The work presented in Part I of

this thesis is joint work with Donny Cheung.

1.4 A Note on Notation

In this thesis we will be adopting the following notation.

The letters j, k, ℓ,m will be reserved for indices. The letter i will be used

exclusively to denote the square root of −1. Functions will be denoted by lowercase

Latin letters f, g, h.

Alphabets will be denoted by the uppercase Greek letters Σ,Γ, etc. Symbols in

an alphabet will be denoted with the appropriate lowercase Greek letter, indexed

as necessary. For instance, σ1, σ2, . . . , σk ∈ Σ.

Sometimes we will refer to a classical physical system that can be in any one of

N states, each labelled by an element of Σ. In such cases we will not distinguish

between the state and the label. For instance, we can say that the system is in

state σj ∈ Σ.

When referring to a quantum system, with states labelled by Σ we will denote

the actual states by |σ〉, to make a distinction from classical systems. The state

space of such a quantum system is the complex Euclidean space, sometimes referred

to as a finite Hilbert space, spanned by the states {|σ〉}σ∈Σ. We shall call this space

the Hilbert space of the system,

HΣ = span ({|σ〉}σ∈Σ) .
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Arbitrary states in such a Hilbert space will be denoted |ψ〉 , |φ〉 etc.

In the latter part of this thesis we will be discussing Hamiltonians of different

systems. We will also use H to denote Hamiltonians. This will not be a cause of

confusion as we will never use H to denote both Hamiltonians and Hilbert spaces

at the same time.

We will denote the set of all unitary operators acting on a space HΣ as U (HΣ).

Unitary operators will be denoted by uppercase slanted Latin letters U, V , sub-

indexed as necessary.

The set of density operators over a Hilbert space HΣ will be denoted as D (HΣ).

Individual density operators will be denoted as ρ, ρ0, ρ1 etc.

The set of completely positive trace preserving (CPTP) maps over a Hilbert

space will be denoted as A (HΣ). We will denote particular CPTP maps with

uppercase Greek letters Φ, Ξ, sub-indexed as needed.

This thesis is intended for a wide audience: computer scientists, mathemati-

cians, physicists, quantum chemists, etc. As such the decision to use the Dirac

notation may be slightly controversial. While it is almost universally used within

the quantum mechanics, and quantum information, communities it almost as uni-

versally ignored outside of it. The choice to use the Dirac notation is based on its

elegance, ease of use, and expressive abilities.

A ket |ψ〉 can be simply regarded as a column vector, with the corresponding

bra, 〈ψ| its conjugate transpose. Everything else easily follows: 〈φ| |ψ〉 abbreviated

〈φ|ψ〉 is simply the inner product of |ψ〉 and |φ〉. The outer product of the two

is simply |ψ〉 〈φ|. The tensor product of two states |ψ〉 ⊗ |φ〉, can sometimes be

abbreviated as |ψ, φ〉.





Part I

Theory
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Chapter 2

Cellular Automata

In this chapter we give a brief introduction to the classical theory of cellular au-

tomata. We will first present the model intuitively, and then give a more formal

definition. We will need the definitions and results presented in this chapter later

on in this thesis.

In the most simple terms, a cellular automaton is a lattice of cells, each of which

is in one of a finite set of states, at any one moment in time. At each discrete time

step the state of each and every cell cell is updated according to some local transition

function. The input of this function is the current state of the corresponding cell,

and the states of the cells in a finite sized neighbourhood around this cell.

Figures 2.1 and 2.2 illustrate a simple cellular automaton as presented in [Wol02].

The lattice of this CA is the set of integers Z, i.e., the CA is one-dimensional. The

neighbourhood of each cell consists of the cell itself, along with its two nearest

neighbours, one to each side. The cells, represented by boxes, have two possible

states, in this case represented by the box being either black or white. Figure

2.1 shows a pictorial representation of the CA transition function, as presented

in [Wol02]. Figure 2.2 gives a pictorial description of the automaton’s evolution in

time.

While the CA presented in the aforementioned figures is one-dimensional, in

general CA can have lattices of any dimension. Also, the lattice is usually taken to

be infinite, even though only a finite region is usually of interest, and is ever shown.

13



14 CHAPTER 2. CELLULAR AUTOMATA

Figure 2.1: The first row represents the current state of the cell, as well as that
of its nearest neighbours on either side. This is the input to the transition function.
The possible states are either white or black. The second row represents the output
of the transition function, i.e., the state of the cell after the transition function has
been applied. Reading the diagram from the left, if the cell is in the state black and
both neighbours are black as well, then the cell will be coloured white in the next
time step. If however the right neighbour is white, then the cell will remain black,
and so forth [Wol02].

Formally, we define CA in the following way:

Definition 2.1 (CA). A Cellular Automaton is a 4-tuple (L,Σ,N , f) consisting

of a d-dimensional lattice of cells indexed by integers, L = Zd, a finite set Σ of

cell states, a finite neighborhood scheme N ⊆ Zd, and a local transition function

f : ΣN → Σ.

The transition function f simply takes, for each lattice cell position, x ∈ L, the

states of the neighbours of x, which are the cells indexed by the set x + N at the

current time step, t ∈ Z to determine the state of cell x at time t+1. There are two

important properties of cellular automata that should be noted. Firstly, cellular

automata are space-homogeneous, in that the local transition function performs the

same function at each cell. Also, cellular automata are time-homogeneous, in that

the local transition function does not depend on the time step t.

We may also view the transition function as one which acts on the entire lattice,

rather than on individual cells. In this view, we denote the state of the entire CA

as a configuration C ∈ ΣL which gives the state of each individual cell. This gives

us a global transition function which is simply a function that maps F : ΣL → ΣL.

2.1 Reversible, Block, and Partitioned CA

As presented, cellular automata are, in general, not reversible. A trivial counterex-

ample would be a CA which simply overwrites the entire lattice with one particular
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Figure 2.2: From top to bottom, left to right, the figures represent the evolution
in time of the CA described in Figure 2.1. The initial configuration, shown in the
top left image, is a single cell coloured black, while all others are white. Time flows
downwards. Each subsequent image depicts the current state of the automaton, and
all stages since the initial one [Wol02].

symbol.

A CA is reversible if for any configuration C ∈ ΣL, and time step t ∈ Z there

exists a unique predecessor configuration C ′ such that C = F (C ′, t). It is known

that any Turing machine can be simulated using a reversible CA [Tof77], so no

computational power is lost by this restriction.

One method that is used to construct reversible cellular automata is that of

blocks and partitioning. In a block CA, the transition function is composed of local

operations on individual units blocks of the lattice. If each of these local operations

is reversible, then the evolution of the CA as a whole is also guaranteed to be

reversible.

In order to formally define the block CA, we must expand the definition of cellu-

lar automata, as block CA are neither time-homogeneous nor space-homogeneous in

general. They are, however, periodic in both space and time, and thus we set both

a time period, T ∈ Z, with T ≥ 1 and a space period, given as a d-dimensional sub-

lattice, S of L = Zd. The sublattice S can be defined using a set {vk : k = 1, . . . , d}
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of d linearly independent vectors from L = Zd as:

S =

{
d∑

k=1

akvk : ak ∈ Z

}

.

Definition 2.2. For a given fixed sublattice S ⊆ Zd, we define a block, B ⊆ Zd

as a finite subset of Zd such that (B + s1) ∩ (B + s2) = ∅ for any s1, s2 ∈ S with

s1 6= s2, and such that ⋃

s∈S

(B + s) = Z
d.

The main idea of the block CA is that at different time steps, we act on a

different block partitioning of the lattice. We are now ready to formally define the

block CA.

Definition 2.3. A Block CA is a 6-tuple (L, S, T,Σ,B,F) consisting of

1. a d-dimensional lattice of cells indexed by integers, L = Zd;

2. a d-dimensional sublattice S ⊆ L;

3. a time period T ≥ 1;

4. a finite set Σ of cell states;

5. a block scheme B, which is a sequence {B0, B1, . . . , BT−1} consisting of T

blocks relative to the sublattice S; and

6. a local transition function scheme F , which is a set {f0, f1, . . . , fT−1} of re-

versible local transition functions which map ft : ΣBt → ΣBt .

At time step t + kT for 0 ≤ t < T and k ∈ Z, we perform ft on every block

Bt + s, where s ∈ S.

If every fi ∈ F is reversible, then the CA is reversible. In order to find the reverse

of the CA, we simply give the reverse block scheme, B = {BT−1, . . . , B1, B0}, and

the reverse function scheme, F = {f−1
T−1, . . . , f

−1
1 , f−1

0 }.
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Update Rule

g

f f f

g gUpdate Rule

Figure 2.3: A Margolus-type block CA with update steps f and g occurring at
odd and even timesteps respectively. Note that if both f and g are reversible, then
the CA is reversible.

Although the block CA is not time- or space-homogeneous, it can be converted

into a regular CA, on the lattice S (which is isomorphic to Zd), with cell states ΣB,

where the new local transition function simulates T time steps of the block CA in

one time step.

In the original block CA scheme as described by Margolus [TM87], the sublattice

was fixed as S = 2Zd, and the block scheme was fixed with two partitionings:

B0 = {(x1, x2 . . . , xd) : 0 ≤ xj ≤ 1} and B1 = {(x1, x2 . . . , xd) : 1 ≤ xj ≤ 2}.

Partitioned CA is similarly another way to construct reversible CA. In this

scheme each cell is subdivided into three separate partitions or registers, left, centre,

and right. The time evolution operator of consists first of exchanging or permuting

the values of the left and right registers with the left register of the right neighbour,

and the right register of the left neighbour respectively. After this permutation, an

arbitrary function f acting on the whole cell is applied. If f is reversible, then the

CA update as a whole is reversible. See Fig. 2.4.

The advantage of both partitioned and block CA is that it is an easy procedure

to check the reversibility of their update rules.
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f f f

Figure 2.4: This figure presents the partitioned CA. Each block of three boxes
represents a single cell; each box represents one of its three registers, or cell parti-
tions: left, centre, and right. Time flows downwards. As can be observed, first a
permutation of cell’s registers with that of its neighbours is performed, and then an
a function f is applied to each individual cell. When f is reversible, then so is the
whole evolution of the CA.

2.2 Totalistic CA

Another very important class of CA for our purposes is the totalistic CA.

The term ‘totalistic’ was introduced by Wolfram in 1983 [Wol83]. However,

totalistic CA had been discussed in the literature for a while even before that (an

example is given below).

In a totalistic CA, the transition rule is restricted so that each cell cannot

distinguish its neighbours. For instance, in a one-dimensional CA, with two states

and with a neighbourhood of size two, the transition function can have one output

value for both neighbours being in the state 1, another one for both neighbours

being in the state 0, and a third one for both neighbours being in opposite states.

However, the transition function must have the same output regardless of whether

it is the right neighbour that is in the state 0, or the left one.

We can say that the transition function depends not on the actual values of the

neighbours, but on the total field induced by said values, where the field is simply

the sum of the states of all cells in the neighbour set. As with reversible CA in the
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previous section, it can be shown that putting such restriction on the transition

function do not limit its computational power (see below).

A very famous example of a totalisitc CA is Game of Life. Game of Life was

created by mathematician John Horton Conway in 1970. It is a 2D totalistic CA.

Each cell has two states: dead and alive. The transition function can be quite easily

described in plain English:

1. Any live cell with fewer than two live neighbours dies of loneliness.

2. Any live cell with more than three live neighbours dies by overcrowding.

3. Any live cell with two or three live neighbours lives, unchanged and happy,

to the next generation.

4. Any dead cell with exactly three live neighbours comes to life, thanks to

reproduction.

Although extremely simple, and seemingly limited due its totalistic rule, this

CA is extremely interesting. It can be shown, inter alia, that it is Turing complete.

Much study has gone into the many patterns that can evolve from such automata.

In general, classical CA are very interesting and powerful constructs, in their

elegance, simplicity, expressive powers, and even artistic beauty. A complete dis-

cussion of this field is beyond the scope of this chapter. Instead, we will turn to

the quantum analogue of this mathematical abstraction in the next chapter.





Chapter 3

Quantum Cellular Automata

In this chapter we will present the model of Quantum Cellular Automata that we

will use in this thesis. We call it the Local Unitary Quantum Cellular Automata

model because it is based on local unitary operators acting on qudits. We will

abbreviate this name to LUQCA, or just QCA when the context makes it clear we

are referring to the model herein presented.

In Chapter 4 we will show that our model is sound and complete. By complete-

ness we mean that LUQCA can achieve universal quantum computation. We will

show this by giving a QCA simulation of a quantum circuit.

By soundness we mean that the there exists an efficient simulation of every

QCA described in our model, by a quantum circuit. Formally, what we mean by

efficient simulation is that there exists a uniform family of quantum circuits that

can each simulate the evolution of a finite region of the QCA, for a specified number

of steps. Furthermore, we require that the depth of each circuit be linear in the

number of steps, and independent of the size of the region being simulated. This

last requirement is to ensure that the QCA retains the quintessential quality of CA:

massive parallelism.

The fact that there is such a guarantee, without any further restraints, is one of

the strongest virtues of the model herein presented. In Section 5 we will see that in

general, previous models cannot make such a guarantee. We will also discuss what

methods (if any) can be used to ensure efficient simulation in these models.

21
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3.1 Local Unitary QCA

Now, with a formal notion of CA, we can proceed to give a quantization. As

mentioned earlier, we will have very specific goals in mind.

3.1.1 Model Requirements

First, we want develop an intuitive model that is both simple to work with, and

to develop algorithms for. At the same time we want this model to be an obvious

extension of classical CA, and limit to classical CA behaviour under reasonable

assumptions.

Also, we want to keep our model grounded in physical realities. This has strong

consequences. Namely, we approach CA, even classical CA, not as abstract math-

ematical structures, but as models representing real physical systems.

A final, and perhaps more important consequence for quantum information sci-

entists, is that we expect our model to reliably describe quantum systems with

appropriate behaviour, acting as direct mathematical abstraction of these systems,

such as spin chains. An algorithm described in our model should be easily trans-

latable to an actual physical implementation on such quantum systems. We will

show in Chapter 8 that this is so.

3.1.2 A First Approach

The first step in our quantization of CA is to change the state space of a cell to

reflect a quantum system. There are several methods for doing so, however we

believe that the most natural way to approach this is to convert the alphabet of

the cellular automaton, Σ, into orthogonal basis states of a Hilbert space, HΣ.

Formally, every cell x ∈ L is assigned a qudit, |x〉 ∈ HΣ. This gives us a strong

intuitive tool, as the notion of a lattice of qudits should be familiar to anyone

working in quantum information theory.

It is also physically reasonable. As an example, spin chains can be directly

described by such mathematical constructions. Lattice gases, though not originally
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modelled in this way, can also be easily described by such mathematical constructs.

Perhaps the most obvious physical example is the pulse-driven quantum computer.

We also wish to quantize the standard classical CA update rule. However, this

process cannot necessarily proceed in the most obvious manner. In a classical CA,

every cell is instantaneously updated in parallel. We wish to replace this classical

cell update rule with a quantum analogue that acts appropriately on the qudit

lattice described above. For a quantum unitary operation to act as a quantum cell

update rule, this operator needs to fulfill the following two restrictions:

1. The operator must act on a finite subset of the lattice. Precisely Ux :

H(Nx) → H(Nx) where Nx = N + x ⊆ L is the finite neighbourhood about

the cell x.

2. The operator must commute with lattice translations of itself. Precisely, we

require that [Ux, Uy] = 0 for all x, y ∈ Zn.

The first condition is an immediate condition for any rule, quantum or otherwise, to

qualify as a CA update rule. The second condition allows the operators Ux, x ∈ Zn

to be applied in parallel without the need to consider ordering of the operators, or

the need to apply them simultaneously.

It should be clear that any evolution defined in such manner represents a valid

quantum evolution which can be ascribed to some physical system. The global

evolution can be described as

U =
∏

x

Ux,

whose action on the lattice is well-defined, due to the two conditions given above

(see Section 3.1.4).

The question that remains is whether this model properly describes what we

intuitively would regard as QCA. Properly, these are two questions:

1. Can all entities described by the model above be properly classified as QCA?

2. Can all systems that are identified as QCA be properly described in the model

above?
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The answer to the first question is yes, since the update rules are local and can be

applied in unison throughout the lattice. Also, the global unitary operator for the

evolution of the lattice properly defined, and is space-homogeneous, as desired.

The answer to the second question is, unfortunately, no. We present a simple

system that one might consider to be a valid QCA, but cannot be described in the

above model.

The counterexample is as follows. We start with a 1-dimensional lattice of

qudits. For each lattice cell x ∈ L, we associate with it a quantum state |ψx〉 ∈ HΣ.

Although in general, the configuration of a QCA may not be separable with respect

to each cell, the configuration can still be described in terms of a linear superposition

of these separable configurations. Thus, it suffices to consider such configurations.

At each time step we wish to have every value shifted one cell to the right. In

other words, after the first update each cell x should now store the state |ψx−1〉.
After k steps each cell x should contain the state |ψx−k〉. In fact, such a transition

function cannot be implemented by any local unitary process.

To see why this is so, consider the most general procedure on the lattice imple-

mented using only local unitary operators. Such a procedure should take a finite

number of steps, say n. At each time step i, 1 ≤ i ≤ n, we may apply any series

of unitary operators on disjoint sets of lattice points. See Fig. 3.1. In that figure

n = 3, and all the unitary operators act on sets of three lattice sites, but in general

both n and the size of the sets acted on by the unitary operators are arbitrary, and

not necessarily equal.

Suppose such a procedure implements the shift-right operation as described

above. Now, consider one particular lattice cell, call it x0. Now, we will construct

a unitary U . Consider the (only) unitary operator that acts on it in the n’th step.

Call this unitary U0. Now, consider all the lattice points that are acted upon by

U0, and take all the unitary operators that act on any of these lattice sites. Call

these unitary operators U
(1)
1 , . . . , U

(s)
1 . Consider all the lattice acted upon by these

unitary operators, and all the unitary operators on step n− 2 that act upon these

sites. Call these operators U
(1)
2 , . . . , U

(t)
2 , and so on, until reaching step 1 of the

update rule. In a sense we have constructed the past light cone of the cell site x0.
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Lattice before

update 

Lattice after

update 

Timestep 1

Timestep 2

Timestep 3

Region R

Figure 3.1: This figure is meant to provide intuition into the proof that shift-right
is an impossible operation within the context of QCA. In this case we have a finite
depth procedure of n = 3. Also, the local unitary operators are acting on three
cells. The grey region represents the unitary operator U , as described in the main
text. Notice how U is constructed so that it can be applied before any other unitary
operators in the update rule. After U has been applied the two regions of the lattice
to the left and right of cell x0 can no longer swap information. This has the direct
consequence that the region R is forced to store r + 1 qubits of information in only
r ‘physical’ qubits.

This set of unitary operators is the region shaded in grey in Fig. 3.1. Let

U = U0 · U (1)
1 · . . . · U (s)

1 · U (1)
2 · . . . · U (t)

2 · . . . · U1
n−1 · . . . · Uk

n−1.

We have constructed U in such a way that we are allowed to apply U before

applying any other unitary operators of the lattice update rule. Now, after applying

the unitary U , the lattice cell x0 must have the correct value, since after applying

U no other unitary operator acts on this cell.

Notice that after applying U all unitary operators acting on the lattice must

either act only cells to the left of x0 or only on cells to the right of x0. This is

because all operators that act on both sides of x0 are part of U , by construction.

This implies, that all information on one side of x0 after applying U will remain

there.

Consider the region R of r cells x1, . . . , xr to the right of x0 that were acted on
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by U . Every cell, after the complete update rule has been applied, must contain

the state that was in the cell directly to the left of it before the update was applied.

This means that, after U has been applied, cell x0 contains what used to be in cell

x−1. Furthermore, the r cells in region R must contain the information that must

ultimately be in the r + 1 cells x1, . . . , xr+1. The information for these r + 1 cells

cannot be to the right of the cell xr because U did not affect any cells beyond cell

xr. Furthermore, if U stored this information to the left of the region r, there would

be no way to move it to the appropriate cells after U had been applied. Hence,

it is necessary for r qudits to store r + 1 qudits of information, which is clearly

impossible. A contradiction is arrived, and we conclude that it is impossible to

shift right all information in the lattice using only local unitary evolution.

While this argument is directed at infinite lattices, a similar argument holds

for finite—possibly cyclic—lattices. Here, clearly, the conclusion is not that it is

impossible to (cyclically) shift information, but rather that doing so requires a

complexity depth that is Ω(N) where N is the size of the lattice. This implies that

this is not a parallel operation, and hence not a cellular automata.

In order to resolve this issue, we need to analyse the classical CA parallel update

rules more closely. In the classical CA, the local update rule for a given cell reads the

value of the cell, and the values of its neighbouring cells. It performs a computation

based on these values, and then updates the cell’s value accordingly. Herein lies the

problem: read and update are modelled in a classical CA as a single atomic action

that can be applied throughout the lattice in parallel simultaneously. However, in

a physical setting, these two operations cannot be implemented in this manner.

When simulating CA in classical computer architectures, the canonical solution is

to use two lattices in memory: one to store the current value, and one to store the

computed updated value. Even if we consider hardware implementations of CA,

these need to keep the values of the inputs to the transition function while this

function is being calculated.

The formal CA model does not need to consider this implementation detail. It

can be argued that the classical CA tacitly calls for the information in each cell to

be cloned and stored, previous to each update rule.
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However, due to the laws of quantum mechanics, we cannot take the same

liberties here.

3.1.3 A New Approach

We can now make an adjustment to our QCA model, given the importance of

maintaining independent read and update operations. Instead of having one unitary

operator replacing the single atomic operation in the CA model, we define our QCA

update rule as consisting of two unitary operators. The first operator, corresponding

to the read operation, will be as defined above: a unitary operator Ux, x ∈ L acting

on the neighbourhood Nx, which commutes with all lattice translations of itself,

Uy, y ∈ L. The second operator, Vx, x ∈ L, corresponds to the update operation,

and will only act on the single cell x itself.

The intuition is as follows: in our physical model, instead of having separate

lattices for the read and update functions, we expand each lattice cell to also con-

tain any space resources necessary for computing the updated value of the cell.

The operator Ux reads the values of the neighbourhood Nx, performs a computa-

tion, and stores the new value in such a way that does not prevent neighbouring

operators Uy from correctly reading its own input values. This allows each cell to

be operated upon independently, in parallel, without any underlying assumptions

of synchronization. After all the operations Ux have been performed, the second

unitary Vx performs the actual update of the lattice cell.

With this new model for the update operation, we can again approach the two

questions given above as to whether this model adequately describes what we might

intuitively regard as QCA.

First, it is clear that all entities described by this updated model can still be

properly classified as QCA. The local update rule Rx = VxUx is still a valid quantum

unitary operation, and the global update rule

R = V U =

(
⊗

x

Vx

)(
∏

x

Ux

)
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is space-homogeneous and has a well-defined action on the lattice.

Now, in order to properly investigate whether all physical systems which can be

described as QCA can be described within this new model, it is necessary to verify

the following:

We must first compare our model to existing CA models, both classical and

quantum, in order to ensure that our model subsumes all proper CA described

in these models. Secondly, we must also show that any known physical system

which behaves according to quantum mechanics and satisfies the CA preconditions

of being driven by a local, space-homogeneous interaction can be described by our

model.

As an example, the qubit shift-right QCA mentioned above can now be described

in this model, by including ancillary computation space with each lattice cell.

We will tackle this question in more depth in the upcoming sections. First, we

present a formal definition of the QCA model which we will adopt, as described in

this section.

Definition 3.1 (QCA). A Quantum Cellular Automaton is a 5-tuple (L,Σ,N , U0, V0)

consisting of:

1. a d-dimensional lattice of cells indexed by integers, L = Zd,

2. a finite set Σ of orthogonal basis states,

3. a finite neighbourhood scheme N ⊆ Zd that includes the point at the origin,

4. a local read function U0 ∈ U (HΣ)⊗N , and

5. a local update function V0 ∈ U(HΣ).

The read operation carries the further restriction that any two lattice translations

Ux and Uy must commute for all x, y ∈ L.

Each cell has a finite Hilbert space associated with it HΣ = span ({|σ〉}σ∈Σ).

The reduced state of each cell x ∈ L is a density operator over this Hilbert space

ρx ∈ D (HΣ).
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The initial state of the QCA is defined in the following way. Let f be any

computable function that maps lattice vectors to pure quantum states in (HΣ)⊗kd

,

where d is the dimension of the QCA lattice, and k is the block size of the ini-

tial state. Then for any lattice vector z = (z1k, z2k, . . . , zdk) ∈ Zd the initial

state of the lattice hypercube delimited by (z1k, z2k, . . . , zdk) and ((z1 + 1)k − 1,

(z2 + 1)k − 1, . . . , (zd + 1)k − 1) is set to f(z).

In particular f can have a block size of one cell, initializing every cell in a region

to the same state in Σ. It can also have more complicated forms like initializing

pairs of cells in a one dimensional QCA to some maximally entangled state. Finally,

we require that every f initialize all but a finite set of cells to a some quiescent

state (see next section).

The local update rule acting on a cell x consists of the operation Ux followed

by the single-cell operation Vx, where Ux (Vx) is simply the appropriate lattice

translation of U0 (V0). The global evolution operator R is as previously defined.

3.1.4 Quiescent States

Our QCA definition follows the classical CA convention in defining the model over

an infinite lattice. However, we will often be concerned only with finite regions

of the QCA. For example, any physical implementation of a QCA using quantum

hardware will, by necessity, simulate only a finite region of the QCA. Another

reason is for simulating physical phenomena. For instance, in Chapter 7, we will

be interested in simulating finite size chains of spin-1
2

particles.

Sometimes, it can be appropriate to simply use finite QCA with cyclic boundary

conditions. In this case, we envision the lattice as a closed torus. This is a standard

and well-known practice with CA. For example, we can use this technique if the

spin chain we wish to simulate is closed, that is, it itself wraps around. For other

applications, this will not be appropriate, for example, when trying to simulate an

open spin chain, which is a chain that does not wrap around, but rather has two

distinct end points. Another example will be the spin-signal amplification algorithm

in Chapter 9, which uses a finite size cube ancilla system.

In such cases, the most appropriate way to proceed is to make use of a quiescent
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state. A quiescent state |e〉 for a QCA with update operators U0 ∈ U (HΣ)⊗N , and

V0 ∈ U (HΣ), is such that

1. Vx |e〉 = |e〉

2. Ux

(
|e〉⊗N

)
= |e〉⊗N

3. For all cells y in the neighbourhood of x other than the cell x itself,

trHN (x)\Hy
U0 (|ey〉 〈ey| ⊗ ρ)U †

0 = |ey〉 〈ey| ,

where HN (x) is the Hilbert space of the neighbourhood of x and Hy is the

Hilbert space of the cell y.

In simple terms, what rules 1 and 2 say is that the the update rule of a cell

is not allowed to move that cell out of a quiescent state if all its neighbours are

also quiescent. Rule 3 adds the constraint that the update rule of a cell y is never

allowed to move a cell x 6= y out of a quiescent state. Together, these rules ensure

that our notion of quiescent is the same as that for classical cellular automata.

Namely, that a cell that is in a quiescent state, and whose neighbours are all also

in that quiescent state at time step t, will remain quiescent at time step t+ 1.

It may seem that the definition is very restrictive on what type of update op-

erators U0 and V0 admit quiescent states. This is not the case. Any unitary V

and lattice commuting unitary U of some QCA Q can be made to accommodate a

quiescent state by simply extending the alphabet of Q with a quiescent state, and

setting U0 and V0 to act trivially on this state.

As an example, in the case of the finite spin-1
2

chains, we can use three state

cells. We use the state labels |+1〉 and |−1〉 to refer to the presence of a spin-1
2

particle in a given cell position in the states 1
2
(1l + σz) and 1

2
(1l − σz) respectively.

A third state, labelled |0〉 denotes the absence of any particle in that cell location.

One needs then only ensure that the update rule correctly acts on states |+1〉 and

|−1〉, while leaving state |0〉 unaffected.

Quiescent states are also very useful for the purposes of simulation, and physical

implementation. Normally, if one is interested in the state of a region S of the lattice
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Trace out Trace out

Unitary Evolution

Figure 3.2: This represents a one-dimensional local unitary QCA. In order to
obtain the state of the region of interest, the dark region at the bottom, one must
consider not just the region itself, but anything that might affect the state of the
region with the course of the simulation: its past lightcone. One may then trace out
the unneeded regions.

after k steps of the QCA update rule, one would need to look at the past lightcone

of S. If the local update rule has a neighbourhood of radius r, then one needs to

include kr additional cells in each direction beyond the border of S. This is because

any information in the past lightcone of S has the ability to affect cells with S, as

shown in Figure 3.2. Note that since the size of the region needed by the simulation

is determined by the number of time steps of the QCA we wish to simulate, one

needs to fix the number of steps in the simulation beforehand. However, if a given

QCA has a quiescent state, and all cells outside the finite region being considered

is initialized in this quiescent state, then the simulation of this QCA need only

include this region for any number of simulated time steps.

Finally, quiescent states are important in that our requirement to initialize

all but a finite set of cells of the lattice to a quiescent state allows us to avoid

potential pitfalls related to the convergence of infinite tensor products. Specifically,

the infinite tensor product of the Hilbert spaces of the individual cells forms a

non-separable infinite dimensional Hilbert space—and any global update rule is by

necessity an operator acting on this space. While there has been a lot mathematical

machinery developed for dealing with Hilbert spaces arising from infinite tensor
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product of finite spaces [Thi83], we can completely sidestep the issue, by restricting

our attention to initial states with only finitely many non-quiescent states. First,

we can always restrict our attention to the subspace of the lattice that is the tensor

of all lattice points with non-quiescent states, and those lattice points in their

neighbourhoods. This is always a finite-dimensional Hilbert space. Then, the

global operator U can be now properly defined as an operator acting on this finite

dimensional Hilbert space.

There are three important observations regarding this approach. First, this

does not limit the computation power of the QCA model. In particular, this does

not imply that this is a bounded computation model. The set of cells in non-

quiescent states can increase as time moves forward. This does imply that the

global operator U can act on increasingly larger spaces, as times goes on. This

is in not a problem, as U can always be extended uniquely to the larger space,

by appropriately using the local update functions U0 and V0. Finally, while it

may be possible and theoretically interesting to do away with this quiescent state

requirement, there is little motivation to do so in terms of computational and

physical simulation applications, which is our prime interest in this thesis.



Chapter 4

Quantum Circuits and

Universality

In this chapter we explore two important aspects of the QCA model we introduced

in Section 3.1. These aspects relate to QCA as a model of computation. First,

it is important to show that QCA are capable of universal quantum computation.

We demonstrate this using a simulation of an arbitrary quantum circuit using a

2-dimensional QCA.

We also show that any QCA can be simulated using families of quantum circuits.

A quantum circuit is defined as a finite set of gates acting on a finite input. One can

then define a uniform family of quantum circuits, with parameters S and t, such

that each circuit simulates the finite region S of the QCA for t update steps. By

uniformity we mean that that there exists an effective procedure, such as a Turing

machine, that on input (S, t) outputs the correct circuit.

We will show that our simulation is efficient, as defined previously. Specifically,

in order to simulate a QCA on a given region, for a fixed number of time steps, we

give a quantum circuit simulation with a depth which is linear with respect to the

number of time steps, and independent of the size of the simulated region.
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4.1 Simulation of QCA by Quantum Circuits

We begin by showing the latter of the two results described above. We proceed

incrementally, showing first how to produce a quantum circuit that can simulate a

single update step of a simple QCA.

Lemma 4.1. Any finite region of a 1-dimensional QCA with a symmetric neigh-

bourhood of radius one, where cells are individual qubits, can be simulated by a

quantum circuit.

Proof. The simulation of an individual update step of this QCA is simple. Re-

call that the operators Ux, each acting on 3 qubits, all commute with each other.

Therefore, the Ux operators may be applied in an arbitrary order. The operators

Vx can all be applied to their respective qubits once all Ux operators have been

applied. Figure 4.1 gives a visual representation of this construction. In order to

simulate an arbitrary number of steps, we simply need to repeatedly apply the

above construction. Since a QCA is allowed to begin in an arbitrary state, and a

quantum circuit is usually expected to have all wires initialized with the state |0〉,
we begin the simulation by applying a quantum circuit which prepares the desired

initial state of the QCA. Finally, although we represented the operators U in our

diagram as single, three-qubit operators, to complete the simulation we decompose

U into an appropriate series of one and two qubit gates from a universal gate set.

In order to generalize the above result to arbitrary QCA, we need to make

a few observations. First, the same construction technique works for arbitrary

dimensions, and arbitrary cell neighbourhood sizes. The read operators Ux simply

operate on more qubits, and no longer act on neighbouring qudits as in the one-

dimensional case. The U operators can act on any number of qubits, in the end

they are decomposed into a series of one and two-qubit gates.

In order to extend the construction to allow cells with qudits of |Σ| orthogonal

states, we simply use ⌈log |Σ|⌉ qubit wires to represent each cell. The size of the

read operators Ux grow, as appropriate. Also, the size of the update operators Vx
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Figure 4.1: The image shows the quantum circuit simulation of a QCA Update step.
The dotted area represents the read phase. An read operator U must be applied to
each qubit, and its two neighbours. Since U commutes with its translations, we are
at liberty to apply the U operators in any order. The update phase consists of the
operator V being applied to every qubit.

must grow as well. Again, both of these operators need to be decomposed into one

and two-qubit gates to complete the simulation.

As our simulation above does not set a region size to be simulated, any region

size can be simulated with an appropriate construction. An arbitrary number of

time steps can be simulated by simply iterating the above construction. With this

in mind, as well as the previous lemma, we can now state the following:

Theorem I. For every QCA Q there exists a family of quantum circuits, param-

eterized by (S, t), each acting on O(m log |Σ|) inputs, and with circuit depth O(t)

which simulates a finite region of S of Q consisting of |S| = m cells, for t time

steps

This is a very important result, as it demonstrates that the local unitary QCA

model does not admit automata which are somehow “not physical”. More precisely,

any behaviour that can be described by a QCA can be described by the more
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traditional quantum circuit model. Furthermore, such descriptions retain the high

parallelism inherent to QCA.

4.2 Simulation of Quantum Circuits by QCA

Next, we show the converse result from the one above, thus showing that local

unitary QCA are capable of efficient universal quantum computation.

Theorem II. There exists a universal QCA Qu that can simulate any quantum

circuit by using an appropriately encoded initial state.

Proof. We proceed by constructing the QCA Qu over a 2-dimensional lattice. We

will basically ‘draw’ the circuit onto the lattice. The qubits will be arranged top

to bottom, and the wires will be visualized as going from left to right.

Each cell will consist of a number of fields, or registers. The cell itself can

be thought of as the tensor product of quantum systems corresponding to these

registers. The first register, the State register, consists of a single qubit which

corresponds directly to the value on one of the wires of the quantum circuit at a

particular point in the computation. This value will be shifted towards the right

as time moves forward. Next is the Gate register. This register will be initialized

to a value corresponding to a gate that is to be applied to the state register, at

the appropriate time. There is a clock register, which will keep track the current

time step of the simulation. This clock register is in reality just a qubit, and keeps

track of which of the two phases we are currently in. There are two phases to

the simulation, an ‘operate’ and a ‘carry’. There is finally a single qubit Active

register, that keeps a record of which cells are currently actively involved in the

computation. This register is either set to true or false.

The local read operator Ux proceeds as follows. The neighbourhood scheme

is the von Neumann neighbourhood of radius one, i.e. the cells directly above,

below and to either side of the cell. The read operator acts non-trivially only on

the one cell directly above, and the one directly to the left. However, the bigger

neighbourhood is needed to ensure unitary evolution, and translation invariance.
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If the clock register is set to operate, then a quantum gate is applied to the state

register of the current cell (and possibly the state register of the upwards neighbour).

For this, we fix a finite set of universal gates consisting of the controlled phase gate

and some set of single-qubit operators. The choice of the controlled phase gate, as

opposed to say controlled not, is to ensure that Ux commutes with translations of

itself. Any one-qubit unitary gates that form a universal set will work.

If the clock register is set to carry, then the state register will be swapped with

the state register of the left neighbour if and only if the following conditions occur:

the active register is set to true on the left neighbour, and set to false on the current

cell, and the clock register is set to carry on all the neighbours (above, below, and

to either side). These extra checks are required to ensure the operator Ux commutes

with translations of itself.

Figure 4.2 gives a visual representation of the update rule operator Ux. Operator

Vx simply updates the clock register, applying a NOT gate at each time step.

Finally, the initial state is set as follows. There is one horizontal row for each

wire in the quantum circuit. Every column represents a time step in the quantum

circuit. The cells are initialized to have their gate registers set to the appropriate

gate, if there is a gate, in the wire corresponding to its row, and in the time step

corresponding to its column. The clock register is set to operate, and the state

register is set |0〉 initially on all cells. The first column of the quantum circuit is

set to active, all other cells are set to inactive.

This construction can only natively simulate circuits with nearest-neighbour

gates. In order to encode arbitrary circuits, it is necessary to translate the circuit

into one using only nearest-neighbour gates by adding swap gates where needed.

This is the cause of the worst-case linear slowdown, mentioned in the statement of

this theorem.

The previous result is important in that it proves that the QCA model is com-

putationally complete. It also gives a recipe for implementing quantum circuit al-

gorithms on 2-dimensional QCA. In the following sections, by showing how physical

systems can “implement” QCA, we complete a formula for implementing quantum

algorithms on physical systems using QCA methods. We will see, however, that
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Clock Register

Active Register

Gate Register

State 

Register

If Clock Register = 0

and Active Register = 1

Apply Gate to State Register 

Dependant on Gate Register

If Clock Register =1

and Active Register = 0

and Active Register 
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Swap State Registers
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Figure 4.2: This figure shows in a succinct fashion, the update rule U of the universal
QCA described in the main text of this section. The cell and the set of neighbours
upon which U acts non-trivially—the left and top ones—are shown. The registers of
the cell are shown: State, Clock, Active and Gate. Finally, a schematic view of how
the update rule U proceed is portrayed in a flow-chart fashion.

the strongest virtue of this QCA model lies not in its ability to simulate quantum

circuits. Rather, it lies in the algorithms that take natural advantage of the QCA

structure.



Chapter 5

Previous QCA Models

In this chapter, we will present a number of other models of QCA that have been

developed, and we will relate them to our proposed model.

5.1 Watrous-van Dam QCA

The first attempt to define a quantized version of cellular automata was made by

Watrous [Wat95], whose ideas were further explored by van Dam [vD96], and by

Dürr, LêThanh and Santha [DS96,DLS97]. The model considers a one-dimensional

lattice of cells and a finite set of basis states Σ for each individual cell, and features

a transition function which maps a neighbourhood of cells to a single quantum state

instantaneously and simultaneously. Watrous also introduces a model of partitioned

QCA in which each cell contains a triplet of quantum states, and a permutation is

applied to each cell neighbourhood before the transition function is applied.

Formally, a Watrous-van Dam QCA, acting on a one-dimensional lattice indexed

by Z, consists of a 3-tuple (Σ,N , f) consisting of a finite set Σ of cell states, a finite

neighbourhood scheme N , and a local transition function f : ΣN → HΣ.

This model can be viewed as a direct quantization of the classical cellular au-

tomata model, where the set of possible configurations of the CA is extended to

include all linear superpositions of the classical cell configurations, and the local

transition function now maps the cell configurations of a given neighbourhood to
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a quantum state. In the case that a neighbourhood is in a linear superposition of

configurations, f simply acts linearly. Also note that in this model, at each time

step, each cell is updated with its new value simultaneously, as in the classical

model.

Unfortunately, this definition allows for non-physical behaviour. It is possible to

define transition functions which do not represent unitary evolution of the cell tape,

either by producing superpositions of configurations which do not have norm 1, or

by not being injective, giving configurations which are not reachable by evolution

from some other configuration. In order to help resolve this problem, Watrous

restricts the set of permissible local transition functions by introducing the notion

of well-formed QCA. A local transition function is well-formed simply if it maps

any configuration to a properly normalized linear superposition of configurations.

Because the set of configurations is infinite, this condition is usually expressed in

terms of the ℓ2 norm of the complex amplitudes associated with each configuration.

In order to describe QCA which undergo unitary evolution, Watrous also intro-

duces the idea of a quiescent state, which is a distinguished element ǫ ∈ Σ which

has the property that f : ǫN 7→ ǫN . We can then define a quiescent QCA as a

QCA with a distinguished quiescent state which acts only on finite configurations,

which are configurations consisting of finitely many non-quiescent states. It can be

shown that a quiescent QCA which is well-formed and injective represents unitary

evolution on the lattice. Also, note that this notion of a quiescent state is slightly

different than the one introduced in Section 3.1.

Given the difficulty of ascertaining the well-formedness of general Watrous-van

Dam QCA [DS96,DLS97,Wat95] Watrous also introduces a model of partitioned

QCA, or PQCA.

A PQCA Qp is a tuple (Σ,N , f) where Σ and f are further constrained. In

this model each cell consists of three quantum states, so that the set of finite states

can be subdivided as Σ = Σl × Σc × Σr. Given a configuration in which each cell,

indexed by k ∈ Z, is in the state (q
(l)
k , q

(c)
k , q

(r)
k ), the transition function of the PQCA

consists first of a permutation which brings the state of cell k to (q
(l)
k−1, q

(c)
k , q

(r)
k+1) for

each k ∈ Z, then performs a local update function f ∈ U (HΣ) on each cell. Notice
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f f f

Figure 5.1: This figure presents the partitioned QCA developed by Watrous. Each
block of three boxes represents a single cell; each box represents one of its three
registers, or cell partitions: left, centre, and right. Time flows downwards. As can
be observed, first a permutation of cell’s registers with that of its neighbours is
performed, and then a unitary operator f is applied to each individual cell.

that, unlike general Watrous-van Dam QCA, the update function f is constrained

to be a unitary operation.

An important result in this thesis is that the PQCA model given by Watrous

can be expressed as Local Unitary QCA.

Theorem III. Given any Qp ∈ 1d-PQCA there exists a one dimensional local

unitary QCA Ql ∈ 1d-LUQCA that simulates Qp with no slowdown.

Proof. Let Qp = (Σ,N , f), where Σ = Σl×Σc×Σr. Suppose that |Σl| = |Σr|. If this

is not the case pad either Σl or Σr with extra unused symbols so that |Σl| = |Σr|.
Now, we separate the permutation of Qp into an operation P1 which operates

on two consecutive cells, mapping

P1 : (q
(l)
k , q

(c)
k , q

(r)
k ), (q

(l)
k+1, q

(c)
k+1, q

(r)
k+1) 7→ (q

(l)
k , q

(c)
k , q

(l)
k+1), (q

(r)
k , q

(c)
k+1, q

(r)
k+1)

followed by an operation P2 which operates on a single cell, mapping

P2 : (q
(l)
k , q

(c)
k , q

(r)
k ) 7→ (q

(r)
k , q

(c)
k , q

(l)
k ).
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U

V

f f f

Figure 5.2: This figure presents a schematic view of a Watrous partitioned QCA as
it is expressed within the LUQCA model. As in Figure 5.1, each block of three boxes
represents a single cell. Each box represents a register within a cell: left, centre, and
right. As before, time flow downwards. We see one application of the update rule.
First, U , consists of applying a permutation among each cell’s registers with those of
their neighbours. Then V consists of applying another permutation with the registers
of each individual cell, followed by the application of the unitary operator f .

Note that P2P1 performs the desired permutation. Also we have that P1 commutes

with any lattice translation of itself. Now, define Ql = (L,Σ,N , U, V ), where

U = P1 and V = f · P2. This construction is shown in Figure 5.2.

5.2 Schumacher-Werner QCA

Schumacher and Werner [SW04] take a different approach in the definition of their

model of QCA, working in the Heisenberg picture rather than the Schrödinger pic-

ture. They introduce a comprehensive model of QCA in which they consider only

the evolution of the algebra of observables on the lattice, rather than states of the
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cell lattice itself. By extending local observables of the cell lattice into an closed

observable algebra, the Schumacher-Werner model has a number of useful algebraic

properties. In this model, the transition function is simply a homomorphism of the

observable algebra which satisfies a locality condition. Schumacher and Werner also

introduce a model of partitioned QCA called the Generalized Margolus Partitioned

QCA, in which the observable algebra is partitioned into subalgebras. This gener-

alizes the Margolus scheme, previously described, in which the cell lattice itself is

partitioned.

In order to avoid problematic issues dealing with observables over an infinite

lattices, Schumacher and Werner make use of the quasi-local algebra. In order to

construct this algebra, we first start with the set of all observables on finite subsets

S ⊆ L of the lattice, denoted A(S), and extend them appropriately into observables

of the entire lattice by taking a tensor product with the identity operator over the

rest of the lattice. The completion of this set forms the quasi-local algebra.

In this setting, the global transition operator of a QCA is simply defined as a ho-

momorphism T : A(L) → A(L) over the quasi-local algebra which satisfies two spe-

cific properties. First, a locality condition must be satisfied: T (A(S)) ⊆ A(S+N )

for all finite S ⊆ L. Secondly, T must commute with lattice translation operators,

so that the QCA is space-homogeneous. Now, the QCA can be defined in terms of

the lattice L, the neighbourhood scheme N , the single-cell observable algebra, A0,

which takes the place of the alphabet, and the global transition operator T .

The local transition operator of a QCA is simply a homomorphism T0 : A0 →
A(N ) from the observable algebra of a single distinguished cell 0 ∈ L to the ob-

servable algebra of the neighbourhood of that cell. Schumacher and Werner show

that a local homomorphism T0 will correspond uniquely to a global transition oper-

ator T if and only if for each x ∈ L, the algebras T0(A0) and τx(T0(A0)) commute

element-wise. Here, τx is a lattice translation by x. The global transition operator

T given by T0 is defined by

T (A(S)) =
∏

x∈S

Tx(Ax).
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Next, we will describe the Generalized Margolus Partitioned QCA. Schumacher

and Werner present this model as a method of producing valid reversible QCA

in their model. In order to describe this model, we will proceed according to the

definition of a classical partitioned CA, as given in Chapter 2.

We start with the d-dimensional lattice L = Zd, and we fix the sublattice

S = 2Zd as the set of cells of L with all even co-ordinates. We also fix the time

period as T = 2. The block scheme, B is simply {B0, B1}. Where B0 is defined as

B0 = {(x1, x2, . . . , xd) ∈ L : 0 ≤ xj ≤ 1, 1 ≤ j ≤ d},

which is simply a cube of size 2d with corners at cells 0 = (0, 0, . . . , 0) and 1 =

(1, 1, . . . , 1); and B1 is defined similarly as

B1 = B0 + 1,

which is simply a translation of the cube B0.

Now, as in the regular Schumacher-Werner QCA model, we proceed in the

Heisenberg picture. For any block B0 + s, s ∈ S, we have 2d intersecting blocks

from the partition B1 + S. For each block B1 + s′ which intersects with B0 + s,

there is a vector v ∈ Zd representing the translation taking B0 + s to B1 + s′, so

that B1 + s′ = B0 + s+ v. Indeed, these 2d intersecting blocks may be indexed by

the vectors v, which are simply all vectors of Zd whose entries are each ±1. Hence,

we will set B
(s)
v = B0 + s+ v.

For each block B
(0)
v , we will fix an observable algebra B(0)

v as a subalgebra of

the observable algebra A(B
(0)
v ) for the entire block. Then, for each block B

(s)
v , the

observable algebra B(s)
v is simply the appropriate translation of B(0)

v . Note that, in

particular, the observable algebra for the block B1 + s = B
(s)
1

, A(B
(s)
1

), contains

each of the observable algebras B(s+1−v)
v . In order for an assignment of subalgebras

to be considered valid, these subalgebras B(s+1−v)
v must commute and span A(B

(s)
1

).

This occurs if and only if the product of the dimensions of these algebras is |Σ|2d

.
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The transition function then consists first of a isomorphism

T
(s)
0 : A(B

(s)
0

) →
∏

v

B(s)
v ,

followed by the isomorphism

T
(s)
1 :

∏

v

B(s+1−v)
v → A(B

(s)
1

).

Note that since T0 and T1 are isomorphisms between observable algebras of equal

dimension, with an appropriate choice of basis, they can be represented by unitary

operators U0 and U1 which map vectors from a complex vector space to another

complex vector space of equal dimension. However, they do not represent local uni-

tary evolution, since these complex vector spaces are used to describe two different

quantum systems.

For example, the Shift-Right QCA, which was shown in Section 3.1 to not

be implementable using only local unitary operations, can be constructed in the

Generalized Margolus Partitioning QCA model. A consequence of this, inter alia, is

that there exist Schumacher-Werner QCA that cannot be implemented as quantum

circuits using the approach used in Chapter 4.

However, it is possible to implement the Generalized Margolus Partitioning

QCA model within the Local Unitary QCA model:

Theorem IV. Given a QCA Qs in the Werner-Schumacher Generalized Margolus

QCA model, there exists an LUQCA Ql that simulates it with at most constant

slowdown.

Proof. We start by adding 2d memory registers to each cell corresponding to the

subalgebras Bv in addition to a clock register indicating which of the two stages

of the transition function is being performed. The transition function of the Local

Unitary QCA simply swaps the contents of the data registers of each cell with the

appropriate memory registers before applying the unitary operations corresponding

to the desired isomorphisms.



46 CHAPTER 5. PREVIOUS QCA MODELS

5.3 Other Models

Meyer [Mey96a,Mey96b] explored the idea of using QCA as a model for simulating

quantum lattice gases. As classical CA are used to model classical physical systems,

it is natural to develop QCA models which are capable of modelling quantum

physical systems. In order to simulate lattice gases, Meyer uses a model of QCA

in which each lattice cell is represented by a computational basis state in a Hilbert

space, and the set of states which a given cell can take is replaced with a complex

number representing the amplitude of the basis state corresponding to that cell.

In this regard, Meyer’s QCA modelling of lattice gases greatly differs from the one

presented here.

Lloyd [Llo93] introduced a model of physical computation based on a chain

consisting of a repeating sequence of a fixed number of distinguishable states. In

this model, pulses are programmed which are capable of distinguishing the states

and performing nearest-neighbour unitary operations. This model has been further

developed by others [Ben00, BB04, Ben04]. It has been shown that this model is

sufficient for implementing universal quantum computation.

The model, sometimes referred to as ‘pulse-driven quantum computers’, is dif-

ferent from QCA in that it allows for time-dependent evolution. Still, they are

closely related in their use of only space-homogeneous update rules. For the sake

of applying results pertaining to one model to the other, it is also possible to argue

that a pulse-driven quantum computer is a degenerate case of a QCA where the

update rule is applied once. Also, this physical scheme provides a natural platform

for implementing QCA.



Chapter 6

Universality of 1d LUQCA

In Chapter 5 we gave a proof of universality of LUQCA. The proof provided was

constructive in nature. In essence, it describes an efficient algorithm for trans-

forming any algorithm stated in the quantum circuit model into an initial state

configuration for a particular universal LUQCA.

While effective, the proof of universality of LUQCA does have one shortcoming:

it makes use of two-dimensional LUQCA.

This is problematic, in that it only proves universality of LUQCA of dimen-

sion strictly higher than one. It would seem to be that the universality of one-

dimensional QCA remains an open problem.

Fortunately, this is not the case. The universality of 1D LUQCA is an easy

consequence of previous results. One result needed is Theorem III in Chapter 5,

the others are given in [Wat95] and [BV97]. While the result itself is easy to state,

it is necessary to provide some background information not previously discussed in

order to properly address it.

While, strictly speaking, the proof given here does provide a method for con-

structing a 1d LUQCA that is universal, such construction is highly unlikely to be

used in practice. The proof here is provided mostly for the sake of completeness.

Before stating the actual proof we will need to review the theory of Quantum

Turing Machines (QTM).
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Figure 6.1: This figure shows a conceptual visualization of a Turing machine.
Intuitively, we can picture a Turing machine to be a box, in one of a finite possible
set of states. The box can move up and down an infinite tape, which is divided into
discrete cells. Each cell has a single symbol printed on it. At each time step, the box
reads the the symbol directly below it, and depending on that symbol and its internal
state can update the symbol on the tape, update its own internal state, and/or move
either to the left or right. In this case, the head is in state s4, and it is currently
reading the symbol 1 on the tape.

6.1 Quantum Turing Machines

Quantum Turing Machines, or QTM for short, were first formally introduced by

Deutsch [Deu85], though they were alluded to much earlier [Fey82]. The QTM

was the first model of quantum computation to be formalized. Quantum circuits,

the current de facto model of quantum computing, was not introduced until much

later [Yao93]. In fact, the universality of quantum circuits is done by providing a

simulation of a QTM by a quantum circuit. This is actually the same method we

will use here, if, albeit, indirectly.

Informally, a QTM is the quantum analogue of the Turing Machine, or TM,

model of computation. Like the classical Turing machine, it consists of a doubly

infinite tape divided into cells indexed by the integers. Each cell contains some

symbol taken from the alphabet of the TM. The TM also has a tape head. This

head can be in any of several states, and is considered to be at a certain tape cell

at any one given time. At each time step the tape head reads the symbol under
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its current position, and depending on what symbol it reads and its current state,

it can decide to update the symbol currently being read on the tape, change its

current state, and/or move either to the left or to the right along the tape. See

Figure 6.1.

As opposed to classical deterministic Turing machines, where this decision is

made deterministically, or probabilistic Turing machines that can choose one of

many options probabilistically, the quantum Turing machine can choose to take

any subset of choices, all with predetermined amplitudes, in superposition.

The formalization of the QTM we will follow here is given by Bernstein and

Vazirani, in their seminal paper on quantum complexity theory [BV97,BV93].

Formally, a QTM M is defined as a triplet (Σ, S, δ), where Σ is a finite alphabet

with an identified blank symbol b, S is a finite set of states with an identified initial

state s0, and final state sf 6= s0 , and δ is a function

δ : S × Σ → Ĉ
S×Σ×{L,R},

which is referred to as the the quantum transition function. Here, Ĉ is defined to

be the set consisting of all c ∈ C such that there exists a deterministic algorithm

that computes the real and imaginary parts of c to within accuracy 2−n in time

polynomial in n.

The QTM has a two-way infinite tape of cells indexed by Z and a single

read/write tape head that moves along the tape.

A configuration, also known as an instantaneous description of the QTM, is a

description of the contents of the tape, the location of the tape head, and the state

s ∈ S of the finite control. At any time only a finite number of tape cells may

contain nonblank symbols.

Given a TM M , and a configuration c of M , the successor configuration c′ is

defined by applying the transition function to the current state s and currently

scanned symbol σ. We use c
M→ c′ to denote that c′ follows from c in one step.

The convention is to require that the initial configuration of M satisfies the

following conditions:
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1. The tape head is in the cell indexed by the integer 0 (zero). This cell is called

the start cell.

2. The machine is in state s0.

We say that the QTM has input x ∈ (Σ − {b})∗, if the symbol at position j

of the tape is xj for all 0 ≤ j ≤ |x| − 1, and equal to the blank tape symbol b

everywhere else.

Define HC to be the space of finite linear combinations of configurations of M .

Each element ψ ∈ HC is a possible superposition of M .

The QTM M defines a linear operator

UM : HC → HC ,

called the time evolution operator of M , in the following way: if M starts in

configuration c with current state p and scanned symbol σ, then after one step M

will be in the superposition of configurations

ψ =
∑

j

αjcj,

where each nonzero αj corresponds to a transition δ(p, σ, τ, q, d), and cj is the new

configuration that results from applying this transition to c . Extending this map

to the entire space HS through linearity gives the linear time evolution operator

UM .

As with some previously defined QCA, a problem with the definition of the QTM

as described so far, is that there exist QTM with evolution that is not unitary, and

hence not physical. Again, following Bernstein and Vazirani [BV97] we will say

that M is well formed if its time evolution operator UM preserves Euclidean length.

In their paper, Bernstein and Vazirani show that being well formed is equivalent

to having unitary evolution in accordance with quantum mechanics.

Another important detail of quantum Turing machines refers to measurement.
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Suppose that M ∈ QTM is in superposition

ψ =
∑

j

αjcj.

If it is then measured configuration cj will be seen with probability |αj|2. Immedi-

ately after the measurement, the state of M will be cj with amplitude one.

6.2 Proof of Universality

We are now in a position to put together a proof of the universality of 1d-LUQCA.

We will start with the notion of universal quantum Turing machines.

Following [BV97], given quantum Turing machines M and M ′, suppose the

following holds: let D be the distribution obtained from repeatedly measuring

M on input x after T steps. Similarly, let D′ be the distribution obtained from

repeatedly measuring M ′ on input x after f(T ) steps for some function f . Then we

will say that M ′ simulates M with slowdown f and with accuracy ǫ if |D−D′| ≤ ǫ.

The following theorem from [BV97], which we state without proof, provides a

universal QTM:

Lemma 6.1 ( [BV97, Theorem 7.1]). There is a QTM Mu such that for any well-

formed QTM M , any ǫ > 0, and any T , Mu can simulate M with accuracy ǫ for T

steps with slowdown polynomial in T and 1
ǫ
.

We also need to introduce the notion of unidirectionality. A QTM M = (Σ, S, δ)

is said to be unidirectional if each state can be entered from at most one direction.

Formally, if 〈sj, σj , d1| δ |sk, σk〉 > 0 and 〈sj , σj, d2| δ |sk, σk〉 > 0 then d1 = d2.

We will need the following lemma from [BV97],

Lemma 6.2 ( [BV97, Lemma 5.5]). For every well-formed QTM M there is a

well-formed unidirectional QTM M ′ that simulates M , with constant slowdown.

Both of these results together imply that there is a QTM Mu that is both

universal, and unidirectional. We will need this fact later on.
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Lemma 6.3 ( [Wat95, Theorem 5.1]). Given any M ∈ QTM there exists a Q ∈ 1d-

PQCA which simulates M with constant slowdown.

Proof. Let M = (Γ, S, δ). Suppose, that M is unidirectional. If it is not, let M ′ be

a unidirectional QTM that simulates M . Let M ′ be the new M .

Now, let S = Sl ∪Sr where Sl (Sr) is the set off all states of M that are entered

only from the left (right).

Then, let Q = (Σ, f), where Σ = Σl × Σc × Σr such that,

Σl = Sl ∪ {#}
Σc = Γ

Σr = Sr ∪ {#}

The quiescent state of Q is set to (#, b,#), where b is the blank tape cell of M .

Define f in the following way:

1. for each (sj , γj), (sk, γk) ∈ Sl × Γ let

〈sk, γk,#| f |sj , γj,#〉 = 〈sk, γk, L| δ |sj , γj〉

2. for each (sj , γj), (sk, γk) ∈ Sr × Γ let

〈#, γk, sk| f |#, γj, sj〉 = 〈sk, γk, R| δ |sj, γj〉

3. for each (sj , γj) ∈ Sl × Γ and (sk, γk) ∈ Sr × Γ let

〈#, sk, γk| f |sj, γj,#〉 = 〈sk, γk, R| δ |sj, γj〉
〈sj, γj,#| f |#, sk, γk〉 = 〈sj , γj, L| δ |sk, γk〉

4. For all σj , σk ∈ Σ such that 〈σk| f |σj〉 is not defined by 1. - 3., let

〈σk| f |σj〉 =





1 if σj = σk,

0 otherwise.
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If M is well-formed then f is a unitary operator. It is easy to verify from the

construction of f that Q does indeed simulate M .

Now, we can state the main result of this chapter.

Theorem V. There exists a 1d LUQCA which is universal for quantum computa-

tion.

Proof. From Lemma 6.1 we know that there exists a QTM Mu which is universal

for quantum computation. From Lemma 6.3 we know that there exists a 1d-PQCA

Qp which simulates Mu with at most constant slowdown. From Theorem III there

exists a 1d-LUQCA Ql that can simulate Qp with no slowdown. By construction,

Ql is a 1d-LUQCA that is universal for quantum computation.

Alternately, we can prove Theorem V in a more direct way. We take the same

construction as in Lemma 6.3 and apply the transformation described in the proof

of Theorem III. This would give us a construction of a universal QCA directly

within the LUQCA model.

This result concludes our discussion on the theory of QCA. In the following we

will shift our focus to the applications of this mathematical construction.





Part II

Applications
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Chapter 7

Modelling Physical Systems

We stated before that one of our goals in developing a QCA formalism is to create a

powerful modelling tool for quantum systems. Classical CA are used for simulating

various phenomena based on classical information, such as sea ice formation, fluid

dynamics, or voter systems [TM87,CD98]. Similarly, we expect QCA to be able

to model different types of physical systems based on quantum information, with

dynamics which are based on time and space homogeneous local interactions.

Physical systems that fall in this category include Ising and Heisenberg interac-

tion Spin Chains, solid state NMR, and quantum lattice gases. We will be looking

at some of these systems in this section.

7.1 Spin Chains

Spin chains are perhaps the most obvious candidate for physical systems being

modelled with QCA. Indeed, Ising interaction spin chains, and in general, any spin

chain with a coupling Hamiltonian which commutes with its own lattice translations

can be implemented easily.

Suppose we have a linear spin chain of length N , indexed by n ∈ Z. Each spin n

is coupled to its nearest neighbour n+ 1, with a coupling Hamiltonian Jσ
(n)
z σ

(n+1)
z ,

where J is the coupling strength constant. Note that the coupling Hamiltonian

does commute with its lattice translations. The Hamiltonian for the entire spin
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chain is:

HI =
N−1∑

n=1

Jσ(n)
z σ(n+1)

z .

It is a simple matter to give a discrete time approximation to such a spin chain.

First, we fix a time step interval ∆t. Our QCA model will allow for simulation of

the spin chain for time steps in multiples of ∆t. Hence, while the choice of ∆t is

arbitrary, it is important in determining the resolution of the simulation.

For a simulation of the Ising spin chain, the QCA lattice consists of a 1-

dimensional array, where each cell is a single qubit. The neighbourhood of each cell

n simply consists of the cell and its right neighbour n+ 1. The local rule operator

Un is given as:

Un = e−iJσ
(n)
z σ

(n+1)
z ∆t.

The operator Vn is simply the identity operator. Note that the operator Un

commutes with its translations, that is, [Un, Um] = 0, for all n,m ∈ Z. Furthermore,

the global operator

U =

N−1∏

n=1

Un

satisfies

U = e−iHI∆t.

Hence, the QCA construction faithfully simulates the Ising spin chain on times

that are integer multiples of ∆t, as we desired.

A more complicated endeavor is to construct a QCA simulation of a spin chain

whose coupling Hamiltonians do not commute with each other. In particular we

examine the Heisenberg spin chain as an example. Let the coupling Hamiltonian

between spins n and n+ 1 be

H(n,n+1)
H = J(σ(n)

x σ(n+1)
x + σ(n)

y σ(n+1)
y + σ(n)

z σ(n+1)
z − 1l ⊗ 1l).

Here, note that H(n,n+1)
H does not commute with all of its translations H(m,m+1)

H .
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The Hamiltonian of the total system is

HH =
N−1∑

n=1

H(n,n+1)
H .

A QCA simulation of the Heisenberg spin chain presented above is still possible,

however, with the help of two powerful tools: Trotterization, and cell colouring.

The first technique is well known in physics, the second is a tool developed for

QCA. Together, they allow for simulation of complicated and almost arbitrary

Hamiltonians by QCA.

Trotterization is a technique by which a Hamiltonian is approximated using a

combination of non-commuting Hamiltonians whose sum adds up to the original

Hamiltonian. In other words, it is possible to approximate with bounded error the

evolution due to the Hamiltonian H = Ha +Hb by alternately evolving the system

under the Hamiltonians Ha and Hb even if these two do not commute. Precisely,

we can give a first-order approximation

e−i(Ha+Hb)∆t =
(
e−iHa∆t/ke−iHb∆t/k

)k
+ δ.

In the case that ‖[Ha,Hb]‖∆t2 ≪ 1, the error δ is O(∆t2/k). Higher order

techniques can achieve error rates of O(∆tm + 1/km) at the cost of using O(2m)

gates. Though the number of gates increases exponentially, the time required for

each gate decreases exponentially as well.

In the case of our QCA simulation of the Heisenberg spin chain Hamiltonian

HH above, we have:

Ha =

⌈N−1
2 ⌉∑

n=1

H(2n−1,2n)
H ,

and

Hb =

⌊N−1
2 ⌋∑

n=1

H(2n,2n+1)
H .

Note that HH = Ha +Hb. The Hamiltonians Ha and Hb consist of the couplings
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from the even spins to their right neighbours and left neighbours respectively.

Our QCA evolution will consist of alternately evolving under Ha and Hb, using

a technique called cell colouring. Each cell will have two fields. The first field

is a state register, consisting of one qubit, which will hold the state of the spin

represented by the cell. The second field, called the active colour register, will also

consist of a single qubit. Initially, the colour register of each cell n is set to the

value n mod 2.

The QCA lattice used in this simulation is also one-dimensional, and the neigh-

bour set of each cell includes both the cell to the immediate right, and the immediate

left of the given cell. Let, U ′
n be the Trotter step acting on the current cell state

register and the right neighbour state register. Using the first order approximation,

we have

U ′
n = e−iH(n,n+1)∆t/k

for an appropriate value k. It is also possible to use higher order approximations.

The local update rule operator Un then consists of applying the operator U ′
n if

and only if the current cell’s active colour register is set to one, and both left and

right neighbours have their colour registers set to zero. Operator Vn simply toggles

the active colour register.

It should be clear that this QCA construction simulates the Heisenberg spin

chain. Moreover, by using an appropriate operator U ′
n, it is possible to simulate

any Hamiltonian with nearest neighbour couplings with this technique.

7.2 Quantum Lattice Gases

Quantum lattice gases have been studied for over a decade now [Bog98, BT98,

Mey96a,Yep98,LB05,LBM04]. In essence, they are the quantum analogue of clas-

sical lattice gases. The basic principles are the same in both the classical and

quantum cases: one starts with a discrete CA-based model that describes particles

on the lattice, and their movement. One can then take the continuous limit of

such CA and show that in this limit, the behavior of the CA mimics a well-known

differential equation.
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Figure 7.1: In subfigure (a) we see one of several possible Feynman paths for a
particle moving up/down a one-dimensional lattice. The coherent sum of the ampli-
tudes for all possible paths from the original position of the particle to a particular
cell x at time t, gives us the propagator, or the total amplitude, for a cell being in
that position at that time. For one time step, the propagator is simply the sum of the
amplitudes of a particle entering the cell from either direction, as seen in subfigure
(b).

Taking the continuous limit of a classical CA is a well known procedure. It

involves giving the lattice a physical interpretation, where each cell is thought to

represent a point in space. The distance between two adjacent cells is taken to be

∆x and each time step of the CA is assumed to take ∆t time. One then takes

the limit, in a well prescribed manner, where ∆x → 0 and ∆t → 0. There exist

classical CA whose continuous limit represent gas diffusion, as well as various other

fluid dynamics [CD98].

In the quantum case, Meyer [Mey96a], and Boghosian and Taylor [BT98] give

a construction of a quantum lattice gas whose continuous limit corresponds to free

particles governed by the Schrödinger equation. We now show how any type of
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lattice gas can be represented under the local unitary QCA model.

We begin by introducing the Quantum Walk QCA QW . This QCA models

multi-particle quantum walks on a lattice. The lattice can have any number of

particles in total.

Consider a single particle moving up/down a one dimensional lattice. The

amplitude of Ψ(x, t) of the particle being at position x at time t is the propagator

of the evolution. This is the Feynman path sum, or the sum of the amplitudes of

all possible paths from the initial position. See Fig. 7.1 (a). Looking at a single

time step of the evolution operator, the total amplitude at a site x is then simply

Ψ(x, t) = Ψu(x, t) + Ψd(x, t), where Ψu(x, t) and Ψd(x, t) are the amplitudes for a

particle to enter cell x from above and below respectively. See Fig. 7.1 (b).

The QCA construction is as follows. The QCAQW is one-dimensional. Each cell

has two single-qubit registers, called Up and Down, each representing one possible

direction from which a particle can enter that particular cell. A particle entering a

site from a particular direction is represented by the appropriate register being in

the state |1〉, and the absence of a particle by the appropriate qubit being in the

state |0〉.
The local update operator Ux acts on the Down register of the current cell, and

Up register of the right neighbour, swapping the two values.

Operator V operates on both fields of the cell with operator

Vx =





1 0 0 0

0 q p 0

0 p q 0

0 0 0 φ





where p, q ∈ C satisfying |p|2 + |q|2 = 1, pq̄ + p̄q = 0 and |φ|2 = 1.

The update rule is summarized in figure 7.2.

The dynamics of this QCA is the same as the lattice gas described by Boghosian

and Taylor in [BT98].

Let Ψu(x, t) and Ψd(x, t), as before, be the amplitude corresponding to a particle

entering cell x, from above and below respectively, at time t. Let Ψ(x, t) be the
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V U

x x+1 x+2 x+3 x+4x-1x-2x-3

Up Register Down Register

Figure 7.2: This figure gives a visual representation of the quantum walk QCA.
The cells are arranged from left to right, with the two registers of each cell—Up and
Down—stacked vertically. The update rule for a single cell—the one with a black
border—can be seen. It consists of the operator U acting on it and the only cell in
its neighbourhood: the one directly to the right, shown with a grey outline. The
operator V acts on both registers of the cell.

total amplitude corresponding to the presence of a particle in cell x at time t, that

is Ψ(x, t) = Ψu(x, t) + Ψd(x, t).

Then, we have that

Ψu(x, t+ ∆t) = qΨu(x− ∆x, t) + pΨd(x+ ∆x, t)

Ψd(x, t+ ∆t) = qΨd(x+ ∆x, t) + pΨu(x− ∆x, t)

We can proceed according to Boghosian and Taylor [BT98], and take the con-

tinuous limit of our QCA ∆x2 → 0 and ∆t → 0, using the Chapman-Enskog

method [CD98]. Doing so reveals that Ψ(x, t) obeys the equation:

∂

∂t
Ψ(x, t) =

i

2m

∂2

∂x2
Ψ(x, t),

which is the equation for a freely moving particle of massm = ip/q in one dimension.

Using the same construction techniques, we can also describe a freely moving

particle in two or three dimensions. We can construct QCA that simulate other

quantum lattice gases like the ones proposed in [Mey96a]. Most, if not all, quantum

lattice gases, whether single or multi-particle, can be described as local unitary

QCA.

We now finish our discussion on the expressive powers of the QCA model here



64 CHAPTER 7. MODELLING PHYSICAL SYSTEMS

presented. In the next chapter we continue with a discussion of how to take these

mathematical models and implement them in quantum hardware.



Chapter 8

Quantum Computation

In previous chapters, we discussed how our unitary QCA can be used to model

physical systems. We also studied how universal quantum computation can be

accomplished using only QCA primitives.

In this chapter we will look into bridging the gap by using QCA as a theoretical

framework for implementing quantum computation.

A clear advantage of working in the QCA model over quantum circuits, in re-

gards to physical implementations of quantum computation, is that QCA have con-

siderably fewer restrictions on the underlying hardware. In particular, as opposed

to direct implementations of quantum circuits, the QCA model does not assume

independent control over qudits. Rather, all qudits are to be addressed collectively

in parallel. While a priori the latter requirement might not be any easier than the

former, in some experimental setups, we argue below, global control is simpler to

implement than individual addressability.

The QCA model also more closely resembles what is currently achievable in

several current quantum computer implementations. For example, if qudits are

represented by physical spins, and the control of such spins is achieved through the

use of magnetic pulses, as is the case in NMR or ESR, then it may be more reason-

able to consider all spins as being subjected to the same pulse sequences, rather than

having the ability to address spins individually. This is because in these schemes,

the spins are addressed via magnetic pulses that target their particular resonant
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frequencies. In a highly regular molecule like a nanotube, all spins are of the same

species—carbons in this instance—and they all have similar chemical shifts. Hence,

distinguishing them is not possible. In order to have individual addressability usu-

ally requires a highly asymmetric molecule, with possibly many different species of

atoms. Other techniques for differentiation might include gradient fields. In short,

global control generally is a less difficult constraint than individual control over

qubits is.

The same can be said about many other physical quantum computer proposals.

In this section we will concentrate on implementing QCA on NMR, since most of

the groundwork for this implementation has already been laid out.

8.1 Coloured QCA

In Chapter 7, we considered cell colouring as a useful QCA programming technique.

As with other computation models, where a programming technique can formalized

into its own subset model, and then shown to be equivalent to the general model

(such as multi-track Turing machines), we can do the same with coloured QCA.

First, we will define the notion of a totalistic transition function for QCA. It

is the quantum analog of totalistic CA, in which the transition function depends

only on the total number of neighbouring cells in each of the possible cell states.

Essentially, a transition update function is totalistic when it affects only the value of

the target cell in a manner which depends only on how many of the cell’s neighbours

are in particular states, rather than on which state any particular neighbour is in.

Definition 8.1. Given a QCA Q = (L,Σ,N , U0, V0), we call the update function

U0 : (HΣ)⊗N → (HΣ)⊗N totalistic if it can be expressed as a collection of single-cell

operations on cell 0 controlled by the computational basis states of the neighbour-

hood N \{0}, and U0 commutes with every operator SWAP x,y, which simply swaps

the contents of cells x and y, where x, y ∈ N \ {0}. If Q has a totalistic update

function, then we call Q a totalistic QCA.

Next, we wish to formalize the notion of a coloured QCA. For this model, we

will fix the neighbourhood scheme to include only directly adjacent cells. That is,
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N = {x ∈ Zd : ‖x‖1 ≤ 1}. However, first we will define the set of permissible

colourings of a lattice.

Definition 8.2. Given a lattice L = Zd and a neighbourhood scheme N , we define

a correct k-colouring for a lattice as a periodic mapping C : L→ {0, 1, . . . , k − 1},
such that no two neighbouring cells in L are assigned the same colour.

We may think of cell colour as an inherent property of each cell. However, it

may also be helpful to consider cell colour as classical information which is being

stored with each cell in such a way that the local transition function does not alter

this information. We can now finally give a definition for the coloured QCA. Recall

that the neighbourhood scheme N is fixed.

Definition 8.3 (CQCA). A Colored QCA or CQCA is a 5-tuple (L,C,Σ,U , c)
consisting of a lattice L = Z

d, a correct k-colouring C, a finite set Σ of cell states,

a sequence of T totalistic unitary operators U =
(
U

(0)
0 , U

(1)
0 , . . . , U

(T−1)
0

)
, with

U
(j)
0 : (HΣ)⊗N → (HΣ)⊗N , and a sequence of T colours c = (c0, c1, . . . , c(T−1)),

labeled by integers 0 ≤ cj < k.

The local transition operation consists of applying U
(j)
x to each cell x with colour

C(x) = cj at time step t = j + nT , where 0 ≤ j < T and n ∈ Z.

Note that since C is a correct k-colouring, any two operators U
(j)
x acting non-

trivially on two cells of the same colour at the same time will commute.

CQCA can be simply considered as a shorthand for the cell colouring technique

we introduced in Chapter 7. As such, it should be clear that CQCA are a subset

of unitary QCA.

Theorem VI. For every CQCA Q there is a QCA Q′ that simulates the same

evolution exactly.

Proof. We may incorporate the colour information of each cell of the CQCA Q

within an additional colour register for each cell of the QCA Q′. Now, it suffices

to add one extra clock register to each cell, initialized to 0. The update operator

Ux simply applies U
(j)
x conditional on both C(x) and the clock register of cell x
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being set to j. In order to ensure that Ux commutes with its translations, we must

ensure that the colours of all the neighbours of x are consistent with the colouring C

before applying the appropriate operator. Otherwise, Ux should act as the identity

operator. The read operator Vx simply increments the clock register, modulo T . �

What is more surprising is the converse result; that all unitary QCA can be

rephrased in the CQCA formalism.

Theorem VII. For every QCA Q there is a CQCA Q′ that simulates the same

evolution exactly.

Proof. Given the QCA Q = (L,Σ,N , U0, V0), we will use the same lattice L and

alphabet Σ. The neighbourhood scheme for the CQCA, N ′ is fixed by definition.

We also need to provide a correct k-colouring of the lattice. To this end, it suffices

to provide a colouring C with the property that that no neighbourhood Nx of Q or

N ′
x of Q′ contains two cells with the same colour. Now, we need to construct a se-

quence U of update operators. Note that conditional on a cell x having a particular

colour, single-qudit operations on x, and the controlled-NOT operation targetting

x are colour-totalistic operations. Because we insisted on a colouring such that

no neighbourhood N ′
x contains two cells of the same colour, such controlled-NOT

operations can always be controlled by a single neighbouring qubit. Now, given

an implementation of the unitary update operation U0 of Q using single-qudit and

nearest-neighbour controlled-NOT operations, we can give a sequence of colour-

totalistic operations which perform U0 on a neighbourhood Nx of a cell x of a

specific colour. By performing a similar sequence of operations for each colour in

our colouring C, we effectively perform Ux for each cell x. Since each update oper-

ation Ux commutes with the other update operations, we have effectively simulated

the update transition operation of Q. Finally, we can perform the single-qudit

operations Vx for each cell colour. �

This last result is of major importance as it allows us to implement any uni-

tary QCA algorithm on a pulse-driven quantum computer, as proposed by Seth

Lloyd [Llo93], and further developed by Simon Benjamin [Ben00,BB03] and oth-

ers [BW03]. The scheme involves using large molecules comprised of two or more
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different species of spin- 1
2

particles, arranged in repetitive structures, such as crys-

tals or polymers, to store the quantum data. It then evolves the system using series

of magnetic pulses that address of all spins of any one particular species.

In order to implement a given QCA in the pulse-driven computation model, we

first convert the QCA into one which uses a two-state alphabet. This can be done

by expanding each cell into ⌈log |Σ|⌉ cells to encode the states of Σ with a binary

alphabet, then adjusting the neighbourhood scheme N accordingly. We then apply

the construction in Theorem VII. With this, and the techniques of Lloyd et. al., it

would be possible to implement any QCA algorithm using NMR and an appropriate

molecule.

We choose NMR and pulse driven quantum computing devices to show a phys-

ical implementation of local unitary QCA. However, this should not be taken to

be the only possible implementation of QCA. There are many other physical sys-

tems, like optical lattices [BLR04], cavity QED, among others [Kan98, KBST06],

that seem better suited to implementing QCA, rather than the more traditional

quantum circuits.





Chapter 9

Single Spin Measurement

In this chapter we will present a very interesting application of the QCA framework

we have developed so far. This application of QCA is interesting for several rea-

sons. First and foremost, it tackles a problem of significant importance in Physics,

specifically, in metrology. The solution developed here is the most efficient method

put forth so far. Also, the solution showcases several QCA techniques, and how

QCA can be applied to real-world Physics.

We will begin this chapter by introducing the problem we wish to solve, in

its full context. Next we will develop the algorithm, in a completely theoretical

fashion, i.e. completely in the abstract without referring to any actual physical

system, using our QCA framework. We will then analyse the algorithm in this

abstract framework: we will find runtimes, error robustness, and scaling. Finally,

after the algorithm has been fully developed in the abstract, we will show how to

implement it using a real world physical system, and its Hamiltonians.

The layout of this chapter also showcases the power of our QCA framework.

Thanks to it, we are able to abstract away the details of the actual physical system.

We can then develop and study our algorithm in the abstract without being bogged

down by implementation details. We only re-introduce these physical details at

the end, when we wish to actually take the fully developed algorithm study its

implementation in a laboratory setting.

We now begin by introducing the problem we wish to solve. We will assume

71
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basic knowledge of NMR QIP.

9.1 Problem Description

We present the description of the problem in simple abstract terms. Suppose we

want to amplify the signal from a single spin-1
2

particle. That is, we have a single

spin-1
2

particle, and we want to create a large ensemble of spins whose bulk angular

momentum resembles the original spin in a particular basis. Note that this is not

cloning, since a basis needs to be set beforehand. Succinctly, we want a unitary

procedure U that maps the state

(α|0〉 + β|1〉)︸ ︷︷ ︸
Amplified Spin

⊗ |0〉⊗N

︸ ︷︷ ︸
Ancillae

to the state

α|0〉⊗(N+1) + β|1〉⊗(N+1),

where |0〉 and |1〉 form the basis in which we wish to amplify. The main application

of such algorithm is to perform a measurement in situations where bulk magneti-

zation is needed in order to achieve a detectable signal, such as with NMR. Hence,

the algorithm needs to be extremely efficient: the whole procedure needs to be

completed before decoherence can destroy the desired value. The value N will also

tend to be reasonably large, in the order of 107 or 108, in order to get a reasonable

signal in NMR.

Figure 9.1 shows a simple quantum circuit solution.

However, this circuit approach does have several shortcomings. First and fore-

most, it requires individually addressing N different spins. For large N , in most

laboratory conditions, this is not feasible. Supposing that one could get around this

first hurdle, one would still need to perform N individual gates before decoherence

destroys the data. Again, this is not likely to be feasible in most experimental

settings.

A plausible experimental setup is the following. We use a crystal as a probe,
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|ψ〉 • • • • • . . . •
|0〉 �������� . . .

|0〉 �������� . . .

|0〉 �������� . . .

|0〉 �������� . . .

|0〉 �������� . . .
...

...
...

...
|0〉 . . . ��������

Figure 9.1: A simple quantum circuit that implements spin amplification.

and its nuclear spins as the ancillae system. A tip of the crystal is put in proximity

with the spin to be measured. The nuclear spin at this tip is then made to interact

with the target spin. This interaction should have the effect of initializing the

amplitude of the tip spin to that of the measured spin. This can be achieved by

either swapping the values of the two spins, or performing a controlled-NOT gate.

Once the tip spin has been initialized, the operator U is performed on a portion

of the crystal affecting at least N spins. Individual control of the nuclear spins

cannot be achieved. However, we are at liberty to assume certain periodic structures

in the crystal that would allow us to differentiate sub-lattices. For instance, one

can assume that the crystal consists of two or more different nuclear species, each

species with its own distinguishable resonant frequency. The more different nuclear

species, however, the harder it would be to find or manufacture an appropriate

crystal.

The operator U needs to be performed very efficiently. In particular, performing

the algorithm cannot take longer than the decoherence times of the ancillae system.

Preferably, the algorithm should not assume perfect quantum control, nor perfect

polarization of the ancillary system. In other words, the algorithm should be robust

to errors. The problem, as described, seems to be a perfect fit for a solution devised

using QCA. In the following section we will describe our proposed algorithm to solve

the described problem.
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Figure 9.2: In this figure we can see what the lattice system for spin amplification
looks like. Basically, it is a finite three dimensional grid. Every cell, or spin, has as
neighbours those cells that are at Manhattan distance one from it. The white cell in
the corner represents the target spin: the one that is to be amplified. The dark grey
cells are part of the ancillary system used for the spin amplification process.

9.2 Algorithm Development

In order to tackle the problem systematically, we start by describing the problem

in our QCA formalism.

The first step is to define the lattice. We will require a three dimensional lattice.

Cells will be representing spin-1
2

particles. We will be using the same technique

described in Chapter 3 for describing finite systems. We will use |+1〉 and |−1〉
to represent spins in the states 1

2
(1l + σz) and 1

2
(1l − σz) respectively. A third,

quiescent state, |0〉, represents the absence of any spin in that cell site.

The QCA lattice is initialized with all cells in the state |0〉, except for a finite,

cubic, region about the origin. Every spin in this cubic region will be initialized to

the state |−1〉 except for the corner spin in the all positive quadrant. This corner

spin is initialized to the state |φ〉 = α |+1〉 + β |−1〉. This state, |φ〉 is that which

we ultimately want to amplify.
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Now, we want to design a proper update rule for the evolution we desire. Basi-

cally, what the algorithm should accomplish is to create a large region in this cube

sub-lattice where all the cells are flipped to the |+1〉 state, if the amplified spin

had a state |φ〉 = |+1〉, and this same region to remain invariant if the state was

|φ〉 = |−1〉. The outcome for all other possible input states |φ〉 are determined by

linearity.

We will, for now, impose a neighbourhood scheme consisting of those cells at

Manhattan distance one. Each cell then has exactly six neighbours, one for each

direction along each axis. Although, some of these neighbouring cells might be

in the quiescent state |0〉, meaning that each cell representing a spin will have

anywhere between three and six neighbours also representing spins.

Imposing a nearest neighbour scheme simplifies the search for an algorithm

within these bounds. We make the imposition with the understanding that we may

need to address it, or rescind it, as we move forward.

With the restriction of the neighbourhood scheme made, we insure that the

information about |φ〉 will spread locally throughout the ancilla region. That is, we

can assume that the algorithm will first convert the spins closest to the corner to

the correct state, then the second closest, and so on. We can envision a wavefront

ocuring between the spins that have been set to the correct state, and those that

have yet to be affected by the algorithm.

We can make a couple of direct observations. First we do not want cells that

we have already flipped to flip back, nor do we want cells to flip before their turn.

In other words, only cells at the wavefront should be affected by the update rule,

everything behind or in front of it should remain invariant under its evolution.

We can visualize the the cube lattice in the following way. We envision slicing

the cube into layers, such that the first layer is the corner lattice site that contains

the state to |φ〉 be measured. Layer two contains all the sites that represent spins,

that are neighbours of spins in layer one. Layer three contains all spins coupled to

spins in layer two which are not in layer one, and so on. We will also, at this point,

limit our ancilla to the top, front half of the cube, so that each layer in the pyramid

is actually strictly larger than the layer above it.
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Layer 1

Layer 2

Layer 3

Layer 4

Figure 9.3: A different view on the same structure as fig. 9.2. The top sphere
is layer 1 and corresponds to the top-left vertex spin in fig. 9.2. The three spheres
directly below it are layer two, and so on. The lines connecting the spheres represent
the nearest neighbour couplings, and are exactly the same as in fig. 9.2.

This is illustrated in Figure 9.3.

It is clear that if a cell is surrounded by all cells in the state |+1〉, or all cells

in the state |−1〉 then the cell should remain invariant under our update rule.

The update rule should flip the value of a cell only if it has both |+1〉 and |−1〉
neighbours. Furthermore we can restrict exactly how many neighbours a cell should

have with each value in order for it to switch.

Looking at the picture in figure 9.3 we can see that in order for a cell to switch

value it needs to have exactly three spin down neighbours and between one and

three spin up neighbours.

Now, we are interested in designing a QCA update rule that we can implement

with resources available to us in the regime of solid-state NMR. It is natural to

assume that if all the spin in the cube ancilla system are of the same species, then

a spin cannot distinguish between its neighbours. This would mean that we would

need a totalistic update rule.

It is not hard to see that a simple totalistic rule is not able to perform the

desired operation.

The update rule has to somehow distinguish between a cell at the boundary that
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Figure 9.4: A crystal with two types of nuclei A and B, one represented as light gray
spheres, the other dark grey. Each species A is neighboured by only B type nuclei
and vice-versa. The lines connecting the spheres represent the nearest neighbour
couplings. The white sphere represents the spin we wish to measure. This spin is
coupled to the dark grey nucleus in the top-left vertex.

requires to be flipped on this iteration, and one that was flipped on the last iteration

and hence needs to stay unchanged. Unfortunately, given only the information that

we are currently holding in our lattice, both types of cell are indistinguishable.

Fortunately, as described in Section 9.1, we are at liberty to use a crystal struc-

ture with more species of spin. We can therefore use a Coloured QCA, as defined

in Chapter 8. The update rule would then be colour totalistic.

We only need two colours to achieve our purpose. We redefine our lattice to

split lattice sites into two colours, say black and white. Each black cell is connected

to white cells only and vice versa. See figure 9.4 for details.

As before, in order to more easily illustrate our algorithm it is best to visualize

the cube lattice as a pyramid, as illustrated in fig. 9.5.

Each layer includes spins of only one species, layer one being all A, layer two all

B, layer three all A again and so on. We envision taking only half the cube lattice,

so that each layer is larger than the previous one. Layer i has i more spins than

layer i− 1.
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Layer 1

Layer 2

Layer 3

Layer 4

Figure 9.5: A different view on the same structure as Figure 9.4. The top gray
sphere is layer 1 and corresponds to the top-left vertex spin in fig. 9.4. The three
light gray spheres directly below it are layer two, and so on.
The lines connecting the spheres represent the nearest neighbour couplings, and are
exactly the same as in Figure 9.4.

Now, at each time step there is exactly one layer at the wavefront of each colour.

Thus we can specifically the layer at the wavefront that needs to be updated.

The CQCA steps are the following. On odd steps—we will call them A-stages—

apply a NOT gate to the white cells conditioned on their neighbour field k being

either −2, −1, or 0. On even steps—B stages—apply the same update rule to the

black cells.

Suppose that |ψ〉 = |−1〉. Then absolutely nothing happens to the lattice

(ignoring errors), and so it remains in the all |−1〉 state. To see this, note that all

lattice points have at least three neighbours, all in the |−1〉 state. Hence the field

k of every cell is at most −3. Since we are only doing flips on k = 0,−1,−2 this

does not affect the lattice at all.

Suppose now that α = 1, i.e. the top cell of the pyramid is initialized to the

state |+1〉. Then, all B neighbours of this vertex (those in layer 2) will have field

value −2: −3 from three downward neighbours each in state |−1〉 and a +1 from

the upward neighbour in state |+1〉. Therefore they will be flipped by the update

rule. No other nuclear spins will be affected. In the next A stage, all A cells in
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layer 3 will be flipped, and so on. In n stages all cells in the first n layers will be

flipped to |+1〉.
After n stages there will be N = 1

6
(n + 1)n(n − 1) nuclear spins pointing up.

This shows that only O( 3
√
N) stages are required to obtain a total of N cells in

the proper state. In a physical implementation scenario one would then be able to

perform a measurement. Before getting into the physical details, we can further

analyse the algorithm in the abstract, and test its performance.

9.3 Algorithm Analysis

In the last section we developed and presented an algorithm that seems to solve

the problem we set up to do at the beginning of this chapter. However, we do not

know yet if it trully complies with all the criteria we established.

Let us start by discussing run times vs. decoherence times. Ultimately, this

question cannot be answered fully until an actual physical implementation and its

details are discussed. However, we can easily see that we are in a very good position,

time-complexity-wise. The algorithm runs in O( 3
√
N), as discussed before. If we

assume that any algorithm can do only nearest neighbour interactions, and that

any lattice used is at most three-dimensional, then our algorithm is optimal in run

time.

In other words, regardless of implementation details, no other algorithm can

hope to perform better asymptotically. This seems to put us in a very good position

indeed.

We are even in a better position. Another observation we can make without

knowing the physical implementation details is that the update rules are ‘phase

oblivious’. What we mean by this is that in between each update rule we can

subject all our cells to any sort of dephasing channel, and this would not affect

the ultimate outcome. In a sense, our CQCA is a classical CA built to run on a

quantum a system.

We do not know, at this stage, how the update rule itself is implemented. It may

very well be that major phase errors during the application of the rule itself, may



80 CHAPTER 9. SINGLE SPIN MEASUREMENT

cause the update to fail. However, we need only concern ourselves that the phase

error rate is low enough at the time-scale of a single update rule implementation,

and not at the time-scale of the whole algorithm completion.

Recall that there are two important parameters when discussing decoherence in

this scenario: t1 and t2 times. The latter describes how long it takes the system

to lose its phase information, the former its amplitude information. It is the case

that t2 times always considerably much shorter than t1. Fortunately, the t2 of the

ancillae system used, as expressed above, need only be longer than the time required

to implement the pulse sequence for a single update phase. Since the update phase

consists of a constant, and likely small, number of magnetic pulses it is reasonable

to assume that it can be achieved in under the t2 times. Regardless, this is an

implementation detail and lies outside the purview of this section.

We can now safely ignore phase errors for the rest of this section, since we have

now shown that they only concern the implementer of the actual update rule. What

we may not ignore is bit flip errors.

A single bit-flip error in the cube lattice by itself does not drastically change

the overall field, however, if this bit flips during the running of the algorithm it has

the potential to influence all lattice points in a radius around it, by changing their

neighbour fields during the pulse sequence.

The first fact to notice is that errors inside the pyramid are less critical than

errors on the faces, or worse, edges, of the pyramid. The reason for this is that inside

the pyramid all lattice points have exactly 6 neighbours. If one flips erroneously its

neighbours still have 5 neighbours each in the correct state.

Take an interior lattice point that is in the state |−1〉 and should be flipped to

|+1〉 in the next pulse sequence. Since it is supposed to flip it should have three

positive neighbours and three negative ones. Suppose that an upward neighbour

has an error, then it will have two positive and four negative. This is, however, not

a problem. The lattice point in question will have a field value k = −2, instead of

k = 0, but will still be flipped correctly.

Contrast this to the case where a bit flip occurs along the edge of the pyramid.

In this case the field of the lower neighbours to a lattice point with error will go
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from having a field of −2 to a field of −4 and will no longer be correctly flipped at

all. The error will then propagate downwards.

We need to better understand how our algorithm copes with errors in general.

We want to know how large the bit flip error rate can be, and have our algorithm

still achieve its goal. We would like to know how the error scales with lattice size,

and how the field scales with the error rate.

Now, unfortunately, in order to fully understand our algorithm behaviour under

all sorts of different conditions we would need a working a quantum computer, to

do a fully coherent, quantum mechanical, simulation of the system under different

error conditions.

Since we cannot do that, we proceed by creating a model of a model, essentially.

We start by recalling that we built our algorithm ‘phase oblivious.’ Hence, we con-

veniently ignore the phase of qubit in the cell lattice. Without phase information,

we can view each cell as having a probability of being in either state |+1〉 or |−1〉.
Instead of probabilities, we can instead use actual values, chosen at random with

the right probabilities, and average over many samples. Essentially, we are creating

a Monte Carlo model of our CQCA model in order to be able to simulate on current

computer hardware and obtain meaningful results.

Our purpose in numerically simulating the system is to inform future engineering

studies of single spin detection. At this time we will explore the scalability and

error propagation. There remain serious technical challenges before any realistic

experimental study can be attempted.

Essentially, we are interested in knowing how well the algorithm performs under

various error models.

There are essentially two sources of error. There are the errors in pre-existing

in the lattice, due to imperfect polarization of the crystal used as our ancillary

measurement system. We will call ǫ0 the deficiency in polarization. For instance,

in a crystal with 90% polarization, we will have ǫ0 = 0.1. Small lattice defects,

like impurities, are also modelled in this way, since they represent errors that are

there to begin with, rather than being introduced by the faulty application of the

algorithm itself. Larger lattice defects, like dislocations, were not modelled. These
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are most likely to be fatal to the success of the algorithm.

The second source of errors will be the application of the update rule itself.

We can expect the quantum control to be imperfect, introducing errors with each

application of magnetic pulse sequences designed to drive the update rule. We will

call errors of this kind gate errors.

Gate errors can be further divided into wavefront errors, and non-wavefront

errors. Wavefront errors are those happening to spins on the wavefront. Specifically,

we will say a wavefront error has occurred if a spin that was supposed to be flipped

during the current update phase failed to flip.

Whenever a spin that was not supposed to flip during the current update phase

does flip, we will say a non-wavefront error has occurred.

It is already evident that non-wavefront errors are considerably more destructive

than wavefront errors.

Any physical implementation of the update rule would necessarily have to favour

magnetic pulse sequences that minimize at all costs non-wavefront errors, at the cost

even of increasing the wavefront errors. We will let ǫ1 represent the probability of a

wavefront error occurring and ǫ2 the probability of a non-wavefront error occurring.

Since we are interested in the scaling of our algorithm with lattice size, we will

have a further input parameter to our simulations: n the number of layers in our

pyramid, and consequently, the number of times the update rule must be iterated.

We then have that N = 1
6
(n+1)n(n−1) is the total number of spins in our ancillae

system.

There are two measures of success of a signal amplification algorithm The first,

contrast, is defined in [CEB+05] as

C =
M0

z −M1
z

Mz(0)
,

where M0
z and M1

z are the magnetizations obtained when the target spin is in the

states |−1〉 and |1〉 respectively, and the initial magnetization is Mz(0)

This measure gives a number between 0 and 2, and provides a picture of how

well the method is at differentiating both states.
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A second more natural measure of the algorithm’s success is the total difference

in signal strengths between a pyramid that started with input |+1〉 and one that

started with the input |−1〉. We call this the signal gap, G = C ·N .

We are interested in describing G as a function of the various error rates, and

the lattice size N . As we have already mentioned it is unlikely that we can achieve

a closed formula for the asymptotic value of G(N, ǫ0, ǫ1, ǫ2). We can however use

numerical Monte Carlo simulations to give a picture of this function.

Formally, our Monte Carlo simulation works as follows. We begin with a three

dimensional array, each array point having a value in {1,−1}, representing the

states |+1〉 and |−1〉 respectively.

In order to simulate an initial polarization of 1− ǫ0 we then flip the sign of each

byte with probability ǫ0. Each pulse is simulated in a similar fashion. A gate error

ǫ1 is simulated by failing to flip bytes with probability ǫ1, and flipping any other

spin with probability ǫ2.

The output is the average signal strength difference between a |−1〉 and a |+1〉
input, i.e. the signal gap G as previously defined. The graphs presented to not

include error bars. Given the fact that all of them are log-log graphs the error bars

would not be particularly helpful. The the numbers shown should be understood to

be obtained with very high probability. See the end of this section for an in-depth

discussion of our methodology, and bounds on these probabilities.

Intuitively, we expect non-wavefront errors to be much more catastrophic than

wavefront errors. This is because the wave front is typically much smaller than the

entire lattice, being as it is, a two dimensional slice of a three dimensional object.

Figures 9.6 and 9.7 confirm this intuition. In the first figure we have set ǫ2 to a

constant value of 10−4, and plotted the signal power G as a function of the other

parameters ǫ0 and ǫ1. In the second figure, we let ǫ2 = ǫ1. In both plots N = 106.

From the data presented in these two figures it is patently clear that it is an

extremely beneficial design decision to favor gates with low non-wavefront error

rates, even at the expense of introducing more wavefront errors.

Another scenario is a gate implementation where non-wavefront errors occur

with a probability that is a function of the wavefront error rate. In figure 9.8 we let
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Figure 9.6: This figure shows the signal power, measured in nuclear spins, that
one can expect to observe in the spectrometer, as a function of error parameters ǫ0

and ǫ1, when running the spin-amplification procedure on an ancilla system of 106

spins. There are 16 data points plotted. Each one represents the average value of
over 10,000 Monte Carlo simulation trials with the appropriate error parameters. The
parameter ǫ2 is set constant at 10−4. From this graph we can conclude that ǫ0 is a
lot more critical than ǫ1 to the success of the algorithm.

ǫ2 = ǫ21. As can be seen from the graph, an implementation with this sort of error

model is superior to one where both wavefront and non-wavefront errors occur with

the same probability.

From this series of plots we can conclude that of all the parameters that lower

the performance of the algorithm, the one that has the biggest impact is ǫ2. Any

physical implementation of the update rule will have to take this fact into consid-

eration, and minimize this value, almost at the expense of all else.

Next in order of significance is ǫ0, the initial polarization parameter. As dis-

cussed earlier in this section polarization errors at the surface of the cube are much
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Figure 9.7: This figure shows the signal power, measured in nuclear spins, that
one can expect to observe in the spectrometer, as a function of error parameters ǫ0

and ǫ1, when running the spin-amplification procedure on an ancilla system of 106

spins. There are 16 data points plotted. Each one represents the average value of
over 10,000 Monte Carlo simulation trials with the appropriate error parameters. The
parameter ǫ2 is set to equal ǫ1 on all data points. Comparing this graph with the
one in Fig. 9.6 we can conclude that requiring the non-wavefront error rate ǫ2 to be
lower than the wavefront error rate is beneficial to the output of the algorithm.

more critical than errors within the interior.

Let us suppose that there is a way to reduce polarization errors on the surface,

at the expense perhaps, of introducing more errors with the cube. Intuitively, this

should help the algorithm’s performance. In figures 9.9 and 9.10 we have again

plotted the value of G as a function of ǫ0 and ǫ2. This time, we have constrained

polarization errors to occur mostly in the interior of the cube. Polarization errors

on the surface of the cube are one percent as likely as to occur than those in the

interior.

Compare the graphs in figures 9.9 and 9.10 to those in 9.6 and 9.8. The contrast
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Figure 9.8: This figure shows the signal power, measured in nuclear spins, that
one can expect to observe in the spectrometer, as a function of error parameters ǫ0

and ǫ1, when running the spin-amplification procedure on an ancilla system of 106

spins. There are 16 data points plotted. Each one represents the average value of
over 10,000 Monte Carlo simulation trials with the appropriate error parameters. The
parameter ǫ2 is set to equal ǫ2

1 on all data points. The choice of ǫ2 provides a middle
point between the choices in Figures 9.6 and 9.7. This plot provides further evidence
that requiring the non-wavefront error rate ǫ2 to be lower than the wavefront error
rate is beneficial to the output of the algorithm.

in results is dramatic. It is patently clear that any procedure that can help push

polarization errors towards the interior of the cube will have a major impact on the

performance of the algorithm. For instance, at ninety percent initial polarization

and ninety percent gate efficiency (ǫ0 = ǫ1 = 0.1), the plot in figure 9.9 shows

a sizeable output signal. In contrast, the plots in figures 9.6 and 9.8 both show

negligible signal strength at polarization levels of ninety-nine percent.

We have concluded on the optimal strategy for designing the gate pulse se-

quences, i.e. favor very small non-wavefront errors, at the expense of larger wave-
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Figure 9.9: This figure shows the signal power, measured in nuclear spins, that
one can expect to observe in the spectrometer, as a function of error parameters ǫ0

and ǫ1, when running the spin-amplification procedure on an ancilla system of 106

spins. In this simulation the polarization errors were constrained to appear mostly in
the interior of the cube. There are 16 data points plotted. Each one represents the
average value of over 10,000 Monte Carlo simulation trials with the appropriate error
parameters. The parameter ǫ2 is set to equal 10−4 on all data points. Comparing
with the plot in Fig. 9.6 we can conclude that constraining errors on the surface have
a large impact on the success of the algorithm.

front errors, and decreasing the polarization inside the cube in favor of better

polarization on the surface

The next step is to understand the scaling of the algorithm, with lattice size.

In particular, we are interested in a very concrete number.

With current day NMR spectrometer technology, the minimum number of cor-

related spins that generate a strong enough magnetic signal to be measurable, is

about 106.

Also, currently, the highest polarization achieved in solid state NMR is in the
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Figure 9.10: This figure shows the signal power, measured in nuclear spins, that
one can expect to observe in the spectrometer, as a function of error parameters ǫ0

and ǫ1, when running the spin-amplification procedure on an ancilla system of 106

spins. In this simulation the polarization errors were constrained to appear mostly
in the interior of the cube. There are 16 data points plotted. Each one represents
the average value of over 10,000 Monte Carlo simulation trials with the appropriate
error parameters. The parameter ǫ2 is set to equal ǫ2

1 on all data points. This plot
provides a comparison with Fig. 9.8. Comparing these two plots we find further
evidence that constraining errors on the surface have a large impact on the success
of the algorithm.

order of ninety percent.

We wish to know how large an ancilla lattice is needed, and how many steps

are needed, to achieve a magnetic signal in the order of 106 nuclear spins, with an

initial polarization of ninety percent.

In figure 9.11, we have plotted the signal output strength as a function of ancilla

size N . The initial ancilla polarization was set at ninety percent. Also, a pulse-

sequence with the above criteria is assumed: wavefront errors occur with ten percent
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Figure 9.11: This figure shows the signal power, measured in nuclear spins, that
one can expect to observe in the spectrometer, as a function of the ancilla size N . In
this plot the fixed values are ǫ0 = ǫ1 = 0.1 and ǫ2 = 10−4. Furthermore, polarization
errors are constrained to appear mostly in the interior of the cube. Each plotted
point represents the average value of over 10,000 Monte Carlo simulation trials with
the appropriate ancilla size parameter.

probability, while non-wavefront errors occur with probability of only 10−4. As can

be seen from the plot, an ancilla lattice size of about 108 spins is needed to achieved

the desired magnetic signal. The number of gates needed would be roughly 800.

9.3.1 Methodology

An important point deferred so far is exactly what is the probability of obtaining

each expected result presented so far. In particular, the important question is, given

input parameters ǫ0, ǫ1, ǫ2, and N , what is the probability that we will obtain an

output signal strength in the order of magnitude expected.

In order to clearly answer this question we will look at the case of ǫ0 = 0.1,
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Figure 9.12: This figure shows a histogram of the signal power gap, measured
in nuclear spins, obtained from 10, 000 trials with the input paramaters ǫ0 = 0.1,
ǫ1 = 0.001, ǫ2 = 10−4, N = 106, and keeping polarization errors constrained to
appear mostly in the interior of the cube. The bin size is set to 50. The best-fit curve
is a Normal distribution with mean value 10482.87 and standard distribution 442.35,
renormalized for number of trials and bucket size.

ǫ1 = 0.001, ǫ2 = 0.0001, and N = 106.

From the previous discussion, we know that the expected gap strength is roughly

104.

Figure 9.12 presents a histogram of the simulation outputs. There were 104

trials. The bucket size is set to 50. From the graph we can quite thoroughly conclude

that we have a normal distribution. From the actual data we have calculated that

the mean value is 10482.87 and the standard deviation is 442.35.

Using standard statistical bounds we know that the probability that we obtain

a value k standard deviations away from the mean goes to zero exponentially in k.

In particular, for this case, we can see that with probability over 0.99 we will have
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signal power of over nine thousand.

Although the numbers are not precisely the same, similar results hold for every

other data point shown in previous graphs. In short, the probability that the

output of the algorithm given a certain set of parameters is close to the output

value calculated, is very close to one for all input parameters.

9.4 Physical Implementation

In this section we will study how to implement the algorithm developed so far in

this chapter, in an actual laboratory setting.

The setting described here is solid state NMR. In this regime, each cell will be

physically represented by a spin-1
2

nucleus in a crystal. Different coloured cells will

be represented by different species nuclei.

The transition update rule is implemented via radio frequency magnetic pulses.

A magnetic pulse at a certain frequency will affect all spins that are currently

rotating at that, or near that, same frequency.

The rotating frequency—also called Larmor frequency—of a a spin is dictated

by its species, the state of the spins to which is coupled, and by the strength of the

background magnetic field.

Ideally, we would wish to have each spin coupled to another spin if and only

if they represent nearest neighbour cells in our QCA model. Also, the coupling

between any two neighbours would be the same strength. Such strength should be

strong enough to shift the Larmor frequency of each spin, according to its neighbour

field, far enough to be addressable via NMR magnetic pulses.

For example, suppose that these ideal assumptions are true. Every spin in the

system is coupled only to spins at Manhattan distance one, with equal coupling

strengths that give a chemical shift of 500Hz

A spin in the second layer of the pyramid has four neighbours. If all four

neighbouring spins are in the state |+1〉, then its rotating frequency would be

2000Hz above the reference frequency for that spin species. If all four neighbours

were in the |−1〉 state, then its frequency would be 2000Hz below the reference
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Figure 9.13: This is the ideal spectrum for a spin on the second layer. There are
5 distinct peaks, one for each of the five neighbour field values. Having a spectra of
this type implies we can selectively update the desired spins without inadvertently
changing the state of spins that should remain unchanged.

frequency. With equal neighbours pointing up and down, the spin would resonate

at exactly the reference frequency, and so on.

One way to graphically present this information is by giving a spin’s spectrum.

In this case we will give a simulated spectrum. We take a spin, with four neighbours,

in the conditions outlined above. We put the neighbours in the completely mixed

state. If we were to measure magnetic signals at and around the reference frequency,

we would see five peaks: one for each of the conditions outlined above. Figure 9.13

showcases this simulated spectrum.

This is an ideal situation. Each neighbour field gives one distinct frequency peak,

clearly defined and separated from the other peaks. Also, we have the advantage

that the neighbour fields we wish to affect, namely −2, −1 and 0, are all packed

together.

Unfortunately, we do not get to choose the Hamiltonian of our system. In our

case, we are constrained to using the Dipole-Dipole coupling Hamiltinian:

H =
∑

i<j

di,j

[
σi

zσ
j
z − ki,j

(
σi

+σ
j
− + σi

−σ
j
+

)]
, (9.1)
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where ki,j equals one if i, j are of the same species and zero otherwise;

di,j =
gi,j

r3
i,j

1

2

(
3 cos2 Θi,j − 1

)
= ωd

r3
i,i+1

r3
i,j

, (9.2)

where ri,j is the distance between the two nuclei, Θi,j is the angle between the

vector connecting the two nuclei and the z- axis (determined by the magnetic field)

and gi,j is a simple constant that depends only on the nuclear types of i and j.

There are two obvious obstacles we need to address before we can attempt to

use a system with this Hamiltonian as our spin signal amplification ancilla.

The first thing to note is that the Hamiltonian is not nearest neighbour coupling

only. Essentially, every spin is coupled to every other spin in the crystal. The state

of every single spin has the propensity to shift the rotating frequency of every other

spin in the system.

The second obstacle is that a priori there is no guarantee that the couplings be-

tween nearest neighbours will all be of the same strength. Notice that the coupling

strength depends on two factors: the distance r between the two spins, and the

angle Θ between the vector that joins them, and the z-axis of the strong magnetic

field.

The solution to this second problem is easier, so we will tackle it first. We can

orient the crystal inside the NMR probe in any fashion we see fit. By orienting the

crystal so that the top layer is pointing up, we can guarantee that the angle Θ is

equal for all neighbours in our scheme. This however, means that we cannot use a

cubic crystal. The reason for this is that if we orient a perfect cube in such fashion

then the angle Θ for nearest neighbours becomes arctan
√

2, a number known as the

magic angle. It is known as such for its property, that if substituted into equation

9.2 above, it makes the coupling strength equal to zero.

This in itself is not a major roadblock, but rather just something we need to

keep in mind. It is possible to use different crystal structures. About any crystal

structure will work well, as long as the Bravais angles, the angles formed edges of

the crystal, are significantly different from ninety degrees. For our purposes we will

from now assume a rombohedral crystal with Bravais angles of sixty degrees.
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Figure 9.14: This is the spectrum for a spin on the second layer of a rhombohedral
lattice with angles α = β = γ = π/3, under the full dipole-dipole coupling Hamilto-
nian. Notice that it is very unlike the ideal spectrum presented in Fig. 9.13. This is
because the coupling between spins in the same layer has a strong influence on the
spin’s precession frequency. In this scenario it is unlikely to be possible to address
the desired spins, without affecting unwanted spins.

The problem remains of dealing with all the couplings between spins that are

not nearest neighbours.

It would seem that it would hopeless to expect a clean spectrum with well

defined and separated frequencies as in the ideal case. Indeed, if we were to graph

the spectrum of a spin in the second layer, as above, but now with the full dipole-

dipole Hamiltonian, it would look like Figure 9.14.

The situation does have a solution. First, we observe that the coupling strength

decreases as the cube of the distance between two spins. Hence, spins that are very

far away are not the real problem, but rather the spins that are very close by. In

particular, the spins within the same pyramid layer have a very strong coupling to

each other, that is unwanted.

These are all homonuclear couplings.

It has been shown [CMG90] that it is possible to suppress all homonuclear

dipolar coupling via the 48 pulse sequence. More recent experiments [Sin06] are

using a modified sequence to refocus the homonuclear couplings while just rescaling

the heteronuclear dipolar coupling. It is thus within the current NMR practice to
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Figure 9.15: The first plot shows the spectrum for a spin on the second layer of a
rhombohedral lattice with angles α = β = γ = π/3, with the homonuclear couplings
suppressed. Note the similarity to the ideal case, presented in Fig. 9.13 on page 92.

create the interaction: ∝ σzσz limited to heteronuclear spins in a solid.

By suppressing all but the heteronuclear couplings, the Hamiltonian resembles

the nearest neighbour interaction only, albeit with extra ‘error’ terms, that are

generally no stronger than roughly 1/30 the strength of first-neighbour couplings.

In figure 9.15 we show the absorption spectrum of a second layer spin (in a

hypothetical crystal, where the couplings are set up so that the nearest neighbour

couplings are roughly 1000 Hz). Notice how similar it is to the ideal (nearest-

neighbour only coupling) case.

Using these techniques it is possible to tailor a pulse sequence to achieve the

gates we require. Consider for example a spin of the B species in the interior of the

crystal, that is, with six neighbours.

Three of these will be in the layer above the spin under consideration and three

in the one below. Therefore, the spin should be flipped if, and only if, the spins in

the upper layer are in the |+1〉 state. To perform this transformation, we rotate

the heteronuclear Hamiltonian H =
∑

k ω
k
dσ

B
z σ

Ak
z to the transverse plane by a π/2

pulse about y: H′ =
∑

k ω
k
dσ

B
x σ

Ak
z . This Hamiltonian will rotate the spin B at a

rate dictated by the number of A spins up and down to which it is interacting with,

until we apply another π/2 pulse about y. If the A spins are all up, then the B spin
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Figure 9.16: This graph presents the simple pulse sequence given in the main text
as a possible way to implement the update rule. It shows the rf power of the pulse
as a function of time. By choosing τ = 1/(10ωd) and T = 1/(2.1ωd) the frequency
profile of this pulse sequence (obtained by a Fourier Transform) is an excitation of
the frequencies ω±6 → ω±4. By choosing the total rotation angle of these pulses to
be π, we can rotate just spins B which have frequencies ω±3 → ω0 as required by the
algorithm. This pulse sequence is presented only as an example, as more complex
pulse sequence can be designed to improve further these results.

oscillates between the states (the A spins remain invariant under this evolution):

−i sin (6ωdt) |+1〉 + cos (6ωdt) |−1〉.
If they are down (and the spin B is down as well, since the algorithm has already

rotated these layers) we get the evolution: −i sin (6ωdt) |−1〉−cos (6ωdt) |+1〉, while

if three neighbours are up and three down, the spin remains unchanged. Hence,

if we apply the second π/2 pulse about y after t = π/(12ωd), we can obtain the

wanted evolution.

We can use a similar scheme to make the H′ interaction rotate only the B (A)

spins with neighbours in the upper layer in the up state and neighbours in the

lower layer still in the down state. This simple two-pulse sequence is a zero order

example of pulse sequences, where the time during which the spins are let rotate at

the spin- state dependent frequencies is further and further subdivided to obtain

the desired selectivity in the effective rotation applied (see Fig. 9.16).

As we mentioned, the Hamiltonian we obtain after suppressing the heteronuclear

couplings is not exactly nearest neighbour coupling only, but has some small error
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terms. These error terms, as well as imperfect control, will cause imperfect gates.

Also, the crystal lattice may not be perfectly polarized initially. It is important to

deal with these issues.

As we have already mentioned our scheme is impervious to phase-flip errors in

the lattice. Effectively, all pulses, and the final output, depend only on the diagonal

terms of the density operator ρ of the lattice.

We have already mentioned rudimentary methods for bit-flip tolerance in the

previous section.

We mentioned that errors inside the pyramid are less critical than errors on the

faces, or worse, edges, of the pyramid.

The reason is that inside the pyramid all lattice points have exactly 6 neighbours.

If one flips erroneously, there are still 5 neighbours in the correct state.

Previously we concluded that we need to suppress the homonuclear coupling

during our pulse sequences. In this Hamiltonian, the term σi
+σ

j
− + σi

−σ
j
+, often

referred to as the ‘flip-flop’ term, has the effect of swapping two anti-aligned neigh-

bouring spins. Take a horizontal slice of the pyramid and suppose there is a single

error among these lattice points. The effect of the flip-flop term on neighbouring

spins is well known and is called spin diffusion [Wau98]. A simple approximation

to this dynamics is a quantum walk on the lattice. In this model, an erroneous

bit not only becomes diffused over several spins, it also has a much lower proba-

bility (averaged over time) of being in non-interior points. This leads us to believe

that letting the system evolve under the homonuclear interaction for some time

before running the algorithm will have the effect of reducing errors in the edges,

and increase overall robustness to errors.





Chapter 10

Further Directions and

Conclusions

We will begin this final chapter by discussing some of the research directions opened

by the results in the preceding. We will discuss what progress has been made in

these directions, if any. We will also discuss open problems in this area of research.

Insight will be provided into how one may tackle resolving such questions.

In many cases, the ideas presented here represent current work in progress.

Although a complete formal resolution was not available at the time of this writing,

a clear intuitive picture is present. Other ideas presented here are more speculative

in nature.

We will close this chapter, and this thesis, with a summary of results, and some

closing remarks from this author.

10.1 Dissipative QCA

The model of QCA we have introduced and discussed throughout this thesis is

based solely on unitary evolution steps.

In many cases, this is all that is needed. For many physical systems, all inter-

actions are constrained to nearest, or next nearest neighbours. In these cases, the

LUQCA accounts for all types of evolution.

99
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Consider however, the situation where not all interactions are constrained to

being between lattice cells.

For example, one might contemplate a quantum system consisting of homoge-

nous subsystems, with nearest neighbour couplings—as in traditional QCA—but

with the added factor of a coupling between each subsystem and some external one:

a gradient magnetic field, some vibrational degree of freedom, etc.

As discussed previously, in many cases it is not difficult to consider this external

force as part of the QCA model. In many other cases, it might not be as easy, or

even beneficial to do so.

In particular, consider the case of a solid-state NMR quantum computer. This

could be constructed using some crystalline structure where each spin-1
2

nucleus is a

register in the quantum computer. Since normally we would not expect individual

control of these registers, but only selective global control, this is an ideal case for

QCA modelling.

However, let us further suppose that the coupling between the nuclei and the

electron spins—called the hyperfine interaction—is used to reduce the entropy of

the nuclear spin registers both before (cooling) and during (quantum error correc-

tion) the computation. This procedure would take advantage of the much shorter

relaxation times of the electrons, compared to the nuclear spins.

The electron spins are not considered as part of the quantum computer proper,

they are simply a mechanism for enhancing the control of it.

In such case, we may wish to model the quantum computer as a QCA, or

implement a QCA algorithm on it. However, the fact that it is not a closed quantum

system means we can no longer restrict our attention to unitary evolution.

What we want to add to our model is the ability to consider couplings between

lattice cells and some external system—environment, heat bath, etc. A simple way

to do this is to extend the definition of our local update rule to allow the update step

V , to be a general completely-positive trace preserving (CPTP) map. Formally,

Definition 10.1. A Dissipative Quantum Cellular Automaton (QCA) is a 5-tuple

(L,Σ,N , U0, V0) consisting of a d-dimensional lattice of cells indexed by integers,

L = Zd, a finite set Σ of orthogonal basis states, a finite neighbourhood scheme
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N ⊆ Zd, a local read function U0 ∈ U
(
H⊗N

Σ

)
, and a local update function V0 ∈

A (HΣ). The read operation carries the further restriction that any two lattice

translations Ux and Uy must commute for all x, y ∈ L.

As with LUQCA, each cell has a finite Hilbert space associated with it HΣ =

span (Σ). The reduced state of each cell is a density operator over this Hilbert

space ρx ∈ D (HΣ).

The main difference between dissipative and non-dissipitative QCA lies in the

definition of the local update rule V0. Recall that in LUQCA V0 was defined to

be a unitary operator, acting on the Hilbert space of a single cell, while here V0 is

defined a CPTP map mapping the space of a single cell onto itself V0 ∈ A (HΣ).

Likewise, we extend the definition of the initial state of the QCA to allow for ar-

bitrary density operators, instead of allowing only pure initial state configurations.

Formally, the initial state of a dissipitative QCA is defined in the following way.

Let f be any computable function that maps lattice vectors to density operators

ρ ∈ D
(
H⊗kd

Σ

)
, where d is the dimension of the QCA lattice, and k is the block size of

the initial state. Then for any lattice vector z = (z1k, z2k, . . . , zdk) ∈ Zd the initial

state of the lattice hypercube delimited by (z1k, z2k, . . . , zdk) and ((z + 1)k − 1,

(z1 + 1)k − 1, . . . , (zd + 1)k − 1) is set to f(z).

We can mention some results regarding this extended model.

First, it is obvious that LUQCA constitute a proper subset of DQCA. However,

we also know that LUQCA are universal for quantum computation, and that quan-

tum computation is Turing complete. This means that for every DQCA there must

be an LUQCA that can simulate it.

However, this does not imply that this simulation be in any way efficient. This

is in fact, an open problem left by this thesis: Does there exist an efficient—in

dimensions, number of states, and number of steps—simulation of any DQCA in

the LUQCA model?

If the question were to be answered in the affirmative this would seem to imply,

inter alia, that general algorithmic cooling is as efficient with, or without, a heat

bath. Given results to the contrary [SMW07,SMW05], it seems unlikely that this

would be the case. Hence a conjecture put forth in this thesis is that in fact there
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exists no such efficient simulation.

Two important applications of DQCA are exporing algorithmic cooling, and

fault-tolerant QCA.

10.1.1 Algorithmic Cooling with QCA

Algorithmic cooling is a procedure by which a subsystem s of a much larger system

S is ‘cooled down’, i.e. its entropy reduced by applying unitary operations on the

system S. This of course has the side effect of increasing the entropy on the system

S \ s, a necessary condition to ensure consistency with thermodynamics.

Two different formalizations exist. The first one [SV99] considers the whole

system S as a computational resource with a computational cost associated with

it. For instance, the cooler we want the qubits in the subsystem s to be, the larger

the system S \ s, and by consequence the system S as a whole, have to be.

The second formalization [SMW05,SMW07] does not consider the system S \ s
to be part of the computer itself, but regards it as an exernal heat bath. The

system S \ s is seen as a pontentially infinite reservoir from which cool qubits can

be drawn, and to which hot qubits can be sent, without ever noticeably changing

its temperature.

Both formalizations are valid, and reasonable under differing assumptions. While

it may seem that algorithmic cooling algorithms with access to a heat bath are more

efficient than those without, this is not entirely true. Part, if not all, of this appar-

ent gain in efficiency is a consequence of not formally accounting for all resources

used. This is not to say, that with regards to some specific experimental setups,

this heat bath can be seen as a potentially infinite reservoir of ‘coolness’.

A very clear and concise description of major algorithmic cooling algorithms,

both with and without a heat bath, is given in [Kay07b].

All algorithmic cooling algorithms can be described simply as follows.

Suppose we start with a set S of qubits all in the state:

1 + ǫ0
2

|0〉 〈0| + 1 − ǫ0
2

|1〉 〈1| .
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Figure 10.1: This very simple circuit computes the majority function of the three
bits, and deposits this value on the first bit. The circuit is a fundamental building
block of all algorithmic cooling techniques.

We call ǫ0 the starting bias towards |0〉 〈0|.
The goal of algorithmic cooling is to achieve a subset s where all the qubits have

a bias ǫf > ǫ0. Towards this end, we do the following. Take sets of three qubits

from set S, all with bias ǫ0. Apply three-bit majority voting to each set of three,

storing the outcome in the first qubit of each set. Figure 10.1 for a circuit that

implements this. This will result in the first qubit of each set having a bias ǫ1 > ǫ0.

Discard the remaining two qubits of each set. Gather the first qubit of each set,

and divide them into sets of three. Repeat the same procedure to achieve qubits

with bias ǫ2 > ǫ1. Repeat the whole procedure until enough qubits with the desired

bias has been obtained.

In a scheme with no heat bath, discarding a qubit simply entails moving it

further out along the spin-chain etc., exchanging places with a qubit that was

further out and has still the initial bias ǫ0. In a scheme with a heat bath discarding

a qubit entails swapping it out of the system, exchanging it for a qubit with initial

bias ǫ0.

In their paper Schulman and Vazirani show how this very simple scheme can be

achieved using only global control, in spatially homogenous quantum arrays.

Giving a QCA implementation of algorithmic cooling is mostly an issue of defin-

ing the problem to be solved, formally and extensively. The goal, and resources need

to be well established, and these can shape the problem’s difficulty dramatically.

For instance, suppose the goal is to perform heat-bath algorithmic cooling. We

are allowed to use dissipitative QCA update rules without restrictions. Then the

problem becomes almost trivial. The update is as follows. First, perform three
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bit-majority on every set of three contiguous cells, storing the result in the first

cell. Then reset the second and third cells with the heat-bath.

The problem becomes slightly harder if we only allow a few special cells to

interact with the heat-bath. However, this can still be done as long as one is allowed

to use extra workspace within each cell (not target of the cooling algorithm). This

extra space can be used to encode clock-registers and so on needed to perform a

simulation of the GCQA cooling algorithm proposed b Schulman and Vazirani.

The problem becomes a lot more difficult if we are assuming that each cell

consists only of a single qubit, which is to be cooled. In this case, there is no way

to perform a time-dependant evolution. In fact, without using Coloured QCA in

order to provide spatial distinguishability, the problem might even be intractable.

It is possible that using a Coloured Dissipitative QCA one could design an

algorithm that performs cooling throughout the lattice, without the need for time-

dependancies in the update rule. Providing such an algorithm is work in progress.

10.1.2 Fault-Tolerant QCA

Fault-tolerant quantum computing is an issue that has been well addressed in the

general circuit model [CS96,Got98,Got07], in the local-gate circuit model [STD05],

and more recently in globally controlled quantum arrays [BBK03,Kay05,Kay07a,

FT07].

It is unclear how well these fault tolerance methods could be translated into the

QCA model. In particular the scheme presented in [FT07] requires a highly non-

space homogenous array, not to mention time inhomogeneity. While it is possible,

as has been shown extensively throughout this thesis, to simulate non-homogenous

systems on QCA, here we are presented with a much more challenging problem.

In simulating any of these fault-tolerant schemes within the QCA model, it is

important to prove that the constructions upon which the simulation is constructed

on, are themselves, fault tolerant. Summarily, it is not enough to simply give a

simulation of a fault-tolerant circuit in the QCA model, it is necessary to show that

way the simulation is built is fault-tolerant as well.

It is possible that the road towards fault tolerant QCA lies not in looking for
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such simulation, but in building a fault-tolerant QCA from the ground up. In order

to do this, one may try to learn the lessons learned in building a classical fault

tolerant CA [Gác83].

Peter Gacs [Gác83] gives a construction, along with a complete description, of

a fully functional classical fault-tolerant CA. The complexity of his construction,

makes the prospect of emulating his work in the quantum regime extremely daunt-

ing.

10.2 Further Physical Implementations of QCA

In Chapter 8 we studied solid-state NMR as quantum computing architecture that

is ideal for implementing QCA algorithms.

Many other proposal for universal quantum computer implementations have

been proposed. Of these, any such where addressing a single qubit is a major

concern, while concatenating a large number of them is not, would seem to be an

ideal candidate for a QCA approach.

Buckyballs in nanotubes [BAB+06] is very interesting example of such a system.

Any generalization of the systems described therein, e.g. general doped organic

structures in up to three dimension would also be prime candidates.

10.3 Modifications and Further Applications of

Spin-Amplification

In Chapter 9 we discussed the ‘Pyramid Scheme’ spin-amplification algorithm. We

mentioned that the main application of such an algorithm is to act as a measurement

device. In this section we will see how to further this application, as well as give a

different, but related, application.
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10.3.1 Using Different Lattice Structures

Perhaps one of the biggest avenues for further research on spin-amplification is

adapting the algorithm for different lattice structures.

The choice of lattice structure in Chapter 9 was very careful and deliberate one.

The A−B chess-grid structure provides a simple enough environment, yet powerful

enough to implement the algorithm. At the same time, it is not unreasonable

to expect a crystal with said structure to be made available, either naturally or

artificially, for the purposes of said algorithm.

There are, however, many reasons to consider alternative lattices.

First, so far an ideal candidate crystal has not been found with the above lattice

structure. If a crystal which is otherwise appropriate, but with a different crystal

lattice structure, were to be found, implementing the algorithm on such lattice

would become of utmost priority.

There is also the prospect of implementing spin-amplfication in different quan-

tum hardware, not necessarily solid-state NMR. For instance, one may wish to

implement the algorithm using ESR on different molecules. Buckyballs, nan-

otubes [BAB+06], polymers, all represent viable candidates for implementing spin-

amplification, and each would require a different approach.

10.3.2 Cat State Creation and Verification

Here we discuss another application of the algorithm: the creation and verification

of large ‘cat’ states.

Ever since Schrödinger [Sch35] noted that quantum mechanics allows for super-

positions of arbitrarily large, even macroscopic, systems, e.g. cats, there has been

a myriad of experiments, and experiment proposals for generating ever larger ‘Cat

States’. One purpose of such experiments is to better understand decoherence, and

the transition from quantum to classical.

There are several examples of experimental realizations of cat states. For in-

stance, the Bucky Ball (C60) interferometer [ANVA+99]. Their experimental setup

is similar to the well known Young’s double-slit experiment, except that it uses
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much larger molecules—Bucky Balls.

A proposal for an experimental realization of a macroscopic cat state is the

superposition of a mirror, proposed by Marshall, Simon, Penrose, and Bouwmeester

in 2003 [MSPB03].

There are many other examples of experimental realizations of cat-states, and

proposals for such. For a more comprehensive list see for example [Leg02]

Here we present a new proposal for creating a cat-state, this time in solid-state

NMR. Our proposed method can potentially create arbitrarily large cat states, up

to the mesoscopic, and macroscopic scales, limited only by the level of fidelity of

the quantum control mechanism.

Let us call our spin-amplification process, as described in Chapter 9, ∆N . The

subscript N is a parameter of the algorithm that gives the number of update steps

applied. As shown previously, we know that,

∆N

(
|0〉︸︷︷︸

Control

⊗ |0〉⊗N

︸ ︷︷ ︸
Ancilla

)
= |0〉⊗N+1 ,

and also that,

∆N

(
(X |0〉) ⊗

(
|0〉⊗N

))
= |1〉⊗N+1 .

This under the assumption that we have perfect quantum control, and that the

ancillary system is perfectly polarized. Under these assumptions we have that,

∆N

(
(H |0〉) ⊗

(
|0〉⊗N

))
=

1√
2

(
|0〉⊗N+1 + |1〉⊗N+1

)
.

Of course, we would not expect these conditions to hold in actual experimental

setup. Previously, we showed how in the context of spin-measurement the spin-

amplification algorithm ∆N is robust to errors in the form of imperfect quantum

control, and imperfect polarization of the ancilla. We also showed how the algorithm

does not need to be executed in less than the t2 times.

Some of these traits, but not all, carry onto the context of cat-state creation.

Let us suppose that we do not have perfect polarization of the ancillary system.
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Rather suppose each spin in the ancilla is, independently, in the state ρi = (1 −
ǫ0) |0〉 〈0| + ǫ0 |1〉 〈1|.

We know, from the results shown in Chapter 9, that if ǫ0 ≤ 0.1 then we have

that,

∆N

(
|0〉 〈0| ⊗

(
ρ⊗N

i

))
∆†

N = |0〉 〈0| ⊗ ̺
(N)
0 ,

and,

∆N

(
(X |0〉 〈0|X) ⊗

(
ρ⊗N

i

))
∆†

N = |1〉 〈1| ⊗ ̺
(N)
1 ,

where ̺
(N)
0 and ̺

(N)
1 are macroscopically distinguishable, with probability almost

one, via their induced magnetic field, for N large enough.

This implies that for all K, ‖̺(K)
0 − ̺

(K)
1 ‖tr ≈ 1. This from the fact that for

every K there exists a POVM that will distinguish ̺
(N)
0 and ̺

(N)
1 with probability

almost one.

We get that if we start with an equally-weighted superposition in the control

qubit, we would end up with an equally weighted superposition of two mixed, but

highly distinguishable, density operators,

∆N

(
(H |0〉 〈0|H) ⊗

(
ρ⊗N−1

i

))
∆†

N =

1

2

(
|0〉 〈0| ⊗ ̺

(N)
0 + |1〉 〈1| ⊗ ̺

(N)
1 + |0〉 〈1| ⊗ ̺

(N)
0,1 + |1〉 〈0| ⊗ ̺

(N)
1,0

)
, (10.1)

where ̺
(N)
0,1 and ̺

(N)
1,0 are cross-term matrices obtained in the natural fashion.

Note that the right hand side of the previous equation is a coherent superposition

of two density operators and is not, in general, equal to a non-conherent mixture:

1

2

(
|0〉 〈0| ⊗ ̺

(N)
0 + |1〉 〈1| ⊗ ̺

(N)
1

)

We claim that the right hand side of equation 10.1 represents a valid cat state.

While usually in the literature cat-states are presented as superpositions of two

distinct pure states, it is unreasonable to limit one’s attention to such, or even

believe that a macroscopic cat-state would have such a structure.
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Consider Schrödinger’s original paper [Sch35] on the subject. In it, he considers

the superposition of an actual physical cat into two possible states: dead and alive.

From his paper:

“One can even set up quite ridiculous cases. A cat is penned up in a

steel chamber, along with the following device (which must be secured

against direct interference by the cat): in a Geiger counter there is a tiny

bit of radioactive substance, so small, that perhaps in the course of the

hour one of the atoms decays, but also, with equal probability, perhaps

none; if it happens, the counter tube discharges and through a relay

releases a hammer which shatters a small flask of hydrocyanic acid. If

one has left this entire system to itself for an hour, one would say that

the cat still lives if meanwhile no atom has decayed. The psi-function

of the entire system would express this by having in it the living and

dead cat (pardon the expression) mixed or smeared out in equal parts.

It is typical of these cases that an indeterminacy originally restricted

to the atomic domain becomes transformed into macroscopic indetermi-

nacy, which can then be resolved by direct observation. That prevents

us from so naively accepting as valid a ‘blurred model’ for representing

reality. In itself it would not embody anything unclear or contradictory.

There is a difference between a shaky or out-of-focus photograph and a

snapshot of clouds and fog banks.”

The wave function alluded to by Schrödinger in the above passage has been

generally agreed in the literature to be of the form

Ψ =
1√
2

(|Dead Cat〉 + |Alive Cat〉) .

We contend that this is the wrong formalism. Before the experiment even begins,

before the cat is put in the box, we do not have a perfect description of the cat.

We know, for sure, that it is alive (otherwise the experiment would have no point),

but the number of degrees of freedom of the subsystems that constitute said cat far

outweigh our knowledge.
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Given our ignorance of the exact state of every subsystem that constitutes the

cat, we are forced to assign to it a mixed state ρAlive Cat, rather than labelling it with

a pure state |Alive Cat〉.
This is not a mere technicality that can be brushed away by asserting that it

is in principle possible to have a full description of the cat before beginning the

experiment, and hence it is possible to, in principle to use a pure state description.

First, whether or not such description exists, or is available to us, should in no

way change the outcome of the experiment. Hence, one should be able to determine

the existence of a cat state, regardless of whether we labelled the initial state of the

cat as pure or mixed.

Perhaps a stronger argument is the following. Suppose that prior to the experi-

ment we prepare an EPR pair of two spin-1
2

particles. One is given (e.g. fed) to the

cat, and the other is kept in isolation such that the entanglement is not destroyed.

In this case, once the cat is in the box, we have no option but to describe the

state of said cat as a mixture.

Hence we have that ρDead Cat and ρAlive Cat represent very mixed, but highly dis-

tinguishable, states. We have a state ρDead + Alive Cat that is the result of putting the

alive cat inside the box, and performing Schrödinger’s experiment. We purport

that this state is really a Cat State, i.e. it is a coherent superposition of the states

ρDead Cat and ρAlive Cat, and not just an incoherent mixture.

Coming back to our own proposed method for creating Cat States, once again

we claim that the right hand side of equation 10.1 represents a valid cat state.

Furthermore, we now provide a method by which an experimentalist can show that

he has succeeded in creating said Cat State.

Verifying Cat States

In order to give a method by which to show that the state created by our algorithm

under imperfect polarization,

ρcat = ∆N

(
(H |0〉 〈0|H) ⊗

(
ρ⊗N−1

i

))
∆†

N ,
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is indeed a Cat State and not merely an incoherent mixture, we will follow Leggett

[Leg02]. A, possibly macroscopic, system is in a superposition of two states, as

opposed to a classical mixture of such, if it is possible to induce a interference effect

on said state.

The way to induce such an interference effect is simple. Assuming perfect quan-

tum control, even under the assumption a dirty ancilla, we have that:

H ⊗ I⊗N−1
(
∆†

N (ρcat) ∆N

)
H ⊗ I⊗N−1 = |0〉 〈0| ⊗ ρ⊗N−1

i

Therefore, a method for creating, and verifying a Cat State of consisting of N

spins in the laboratory would be the following:

1. Verify that

∆N

(
|0〉 〈0| ⊗

(
ρ⊗N

i

))
∆†

N = |0〉 〈0| ⊗ ̺
(N)
0 ,

and,

∆N

(
(X |0〉 〈0|X) ⊗

(
ρ⊗N

i

))
∆†

N = |1〉 〈1| ⊗ ̺
(N)
1

where ̺
(N)
0 and ̺

(N)
1 are macroscopically distinguishable. This can be done by

initializing the control qubit appropriately, running the single-spin measure-

ment algorithm as defined earlier and verifying that both outcomes produce

significantly different magnetic field. If the measurement algorithm described

in Chapter 9 has been successfully implemented, this step can easily be done.

2. (a) Create the state

ρcat = ∆N

(
(H |0〉 〈0|H) ⊗

(
ρ⊗N−1

i

))
∆†

N

(b) Verify that the state ρcat is indeed a Cat State by first applying the

transformation

ρresult = H ⊗ I⊗N−1
(
∆†

N (ρcat)∆N

)
H ⊗ I⊗N−1
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and then applying the single-spin measurement procedure to verify that

trancilla
(
ρresult

)
= |0〉 〈0|

This procedure could, in theory, generate cat states involving up to N spins,

using O
(

3
√
N
)

steps (see Chapter 9 for a discussion of the scaling).

There are a few of caveats. First, we have been assuming perfect quantum

control. This assumption may be relaxed. This relaxation might not be as negative

as one might at first assume. If we use the right error model, we might be able to

predict, and experimentally obtain, an interference effect

Normally, mathematicians assume uncorrelated random errors. This is because

these are the easiest to model. However, in practice, errors in quantum control

seldom behave this way.

Suppose the error in gates behaves in following way. A NOT gate is imple-

mented with a faulty π-pulse which instead of applying the rotation e−iπσx , applies

the transformation e−i(π−ǫ)σx . Recall that applying rotations about the z axis is—for

all practical purposes—error free, since it requires one to simply update the lab-

oratory reference frame with regards to the rotating reference frame of the spins.

Note that.

σze
−i(π−ǫ)σxσze

−i(π−ǫ)σx |ψ〉 = |ψ〉 ,

for all possible |ψ〉 and all values of ǫ.

With this in mind, it may be possible to implement ∆†
N in such a way that

∆†
N∆N ≈ 1l even with faulty gates.

Another concern that must be addressed is that, unlike simple spin-measurement,

when implementing the spin amplification algorithm for purposes of generating and

verifying cat states, this procedure must be run in under the phase decoherence, t2,

times.

A question of more theoretical importance is how to quantify the Cat state

created by such a procedure. Currently, all measures of Cat state size contemplate

only pure states [DSC02,MAv06,KWDC07].

It should be possible to formalize some of the intuitive ideas discussed in this
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section into an actual measure of Cat size.

10.4 Further Simulations of Physical Systems

In Chapter 7 we studied some physical systems that can be simulated on a QCA. A

natural question to ask, is what other examples of physical systems can be simulated

efficiently, i.e. with at most a polynomial overhead.

For instance, we saw that it is possible to simulate a freely-moving particle. An

interesting extension would be to simulate this same particle, but now subject to

some energy potential, or perhaps a gradient field. This should not be a difficult

extension of the simulation presented in Chapter 7. One would initialize the QCA

so that each cell begins with the value of the strength of the field, direction, etc.

at that point in space. The QCA update rule would then have to be modified to

take into account this field value when moving the particle.

Other interesting examples would be to simulate larger molecules, and how

the atoms within interact with one another. Potentially, this could be useful in

studying, inter alia, how proteins fold. In this case, however, it seems that more

difficult than performing the simulation itself, is getting useful information out of

measurements on the QCA system.

Another interesting avenue is the simulation capabilities of dissipitative QCA.

For example, we know that the continuous limit of a quantum walk gives the

Schrödinger equation for a freely moving particle [BT98]. On the other hand, the

continuous limit of a completely classical random walk closely resembles electric

current [Tet91].

A conjecture put forth in this thesis is that given a quantum walk QCA, with

some appropriate amount of decoherence, and taking its continuous limit, would

give rise to a master equation for a particle subject to an external force. It should be

possible, in principle, to obtain master equations for many actual physical systems

by first positing an appropriate dissipitative QCA, and taking its continuous limit.

If we adhere to the belief that all systems ultimately behave according to some

local quantum rules, then there is no theoretical limit on the type of systems that
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can be simulated on QCA.

It is even conceivable that a theoretical framework built around QCA could be

used to model the Universe as a whole.

10.4.1 The Universe as a QCA

The idea of a QCA model of the universe is quite attractive, even if the obstacles

against it are many and large.

A great difficulty would be to make QCA theory work with general relativity.

An obstacle for this, inter alia, is Lorentz invariance.

For instance, take the same quantum walk QCA that we described in Chapter

7. If restricted to one dimension, it is possible to take the continuous limit of this

walk and obtain the relativistic Dirac equation for a single moving particle in free

space [LB05,Mey96a].

Unfortunately, this construction cannot be made to work with Lorentz invari-

ance for QCA with dimension strictly higher than one [Mey96a]. The issue, in

particular, has to do with the evolution not being invariant under rotation of the

reference frame, due to the discrete nature of the lattice.

This is an issue that has been discussed and addressed in quantum cosmological—

quantum gravity—models. For instance, in loop quantum gravity a QCA-like lattice

is put forth as the underlying structure of space-time. However, to make the model

Lorentz invariant, the lattice points are randomly scattered.

While it may be possible to make a QCA model Lorentz invariant another pos-

sible avenue is to forgo perfect Lorentz invariance altogether. It is entirely possible

that Lorentz invariance is a result of a possibly false assumption of continuous

space-time structures.

In particular, a fundamental Lorentz invariant usually taken for granted is ro-

tation of the spatial co-ordinates.

If one were to give up on rotational invariance as a fundamental principle and

embrace a QCA type formalism as the underlying structure of space-time it is

possible that this would lead to a ‘third’ quantization.
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In order to better visualize what is meant by third quantization, consider a

qubit:

α |0〉 + e−iθβ |1〉 .

Suppose this qubit represents a spin-1
2

system. Generally, the parameters α, β

and θ are considered to be real-valued. Note that these parameters are with respect

to a certain eigenbasis, given by some observable. Let us call this observable σz .

Fix α and β. For every value of θ there is an observable σθ such that the

superposition given above is the plus one eigenstate of said observable. In principle,

there exists an experimental setup to measure σθ for any real value θ. This is

consistent with the notion of continuous space.

Now, let us suppose that space is not continuous, but rather is a discrete lat-

tice. Then there would be no freedom to choose from a continuum of observables.

Likewise, this would postulate that the state of the qubit above must in fact be

written as

αk̄ |0〉 + e−iθk̄/2βk̄ |1〉 ,

where k̄ is some, heretofore undetermined, universal constant. Intuitively, what this

says for the case of a spin-1
2

system, is that there is a minimum quanta of rotation

about any axis. This constant could, in principle, be derived from the QCA lattice

structure, and experimentally verified.

10.5 Closing Remarks

In this thesis, we have presented a model of quantum cellular automata based

on local unitary operators. We have shown that it has distinct advantages over

previous cellular automata quantizations. In particular, we have shown that given

any LUQCA it is always possible to give an efficient, low-depth quantum circuit that

faithfully represents it. This leads to the conclusion that any universal quantum

computer could implement an LUQCA efficiently.

More importantly, however, we have also shown that it is possible to implement

LUQCA in experimental setups that are arguably simpler than traditional quantum
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circuit based algorithms: for instance, globally addressing spins in NMR or ESR. At

the same time, we have shown that our model is universal for quantum computation.

We gave an explicit proof of an efficient simulation of quantum circuits using a two-

dimensional QCA. We also presented a proof of universality for one-dimensional

LUQCA.

Furthermore, we showcased the LUQCA as a modelling and simulation tool.

We gave explicit constructions within the LUQCA model for simulating certain

spin-chain systems. We also showed how to construct quantum lattice gases within

this model.

Finally, we have shown that QCA in previous models can be efficiently translated

into QCA within the model presented here. For example, a universal QCA in

previous models [Wat95, SFW06] can easily become a universal QCA within the

local unitary model. This fact was used to prove the universality of one-dimensional

LUQCA. All of these facts suggest that the LUQCA is a very strong model.

The purpose of this thesis has been to motivate, develop and showcase a model of

quantum cellular automata based on strictly local, translation-commuting, unitary

operators. It is an author’s conjecture that the construction given here is the most

general of this form.

Perhaps most importantly, we have opened new and interesting avenues of re-

search, from algorithms, to theoretical and experimental physics.

Ultimately, it is the author’s hope that this body of work serves to help unify

the several methods, results, and views surrounding QCA into one single, cohesive

paradigm.
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