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Abstract

This thesis describes the development of a new computational approach for rapid
and accurate evaluation of the three-dimensional potential field and its gradient.
Efficient evaluation of the potential field is an essential requirement for simulation
of large ensembles of particles in many applications including astrophysics. plasma
physics. fluid dynamics. molecular dynamics, VLSI systems. and micro-electro-me-
chanical systems. Current methods use multipole expansion of spherical harmonics
for the potential field. which is computationally expensive in terms of running time
and memory requirements when a high degree of accuracy is desired. The mathe-
matical background for the approach proposed in this thesis stems from an expo-
nential integral representation of Green's function : and an approximation to the
integral using Gauss quadratures. The translations are simple in structure, error-
free. and independent of the approximation. which enables the overall accuracy and
computational performance to be controlled externally via the approximation. In
addition, the gradient of the potential can be readily retrieved as a by-product of
the computational process. More importantly, the memory requirement is indepen-
dent of the desired degree of accuracy. The technique presented here opens new
possibilities for efficient distributed computing and parallel processing of large-scale
simulation of particle systems.

The research described in this thesis makes the following key contributions:
(i) A randomized algorithm is devised for generating exponential expansion of the
Green’'s function. Given an intended error, this probabilistic-type scheme con-

structs the Gauss quadratures for the expansions with sizes as small as possible.

iv



It makes use of the available Gauss-Legendre quadratures and does not require
solving non-linear equations. (ii) Employing the exponential expansion, a theory
is developed for efficient evaluation of the potential field and its gradient. The
main motivation is to provide an alternative to the current methods for N-body
problems involving millions of particles. (iii) A new formulation is proposed for the
charge density problem. It yields integral equations of the second kind, for which
efficient numerical algorithms are available. The resultant discretization matrices
have improved conditioning and the convergence rate is faster. (iv) A simulator is
designed and implemented for numerically extracting capacitance of multi-layered
dielectric multi-conductor systems. It is used for studying capacitance associated

with amorphous silicon thin-film transistors and imaging arrays.
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Chapter 1

Introduction

With the rapid increase in both component density and operating frequency. the
parasitic coupling capacitance associated with interconnects poses serious design
issues in high density and high performance integrated circuits. These issues are
also common to large-area high-resolution amorphous silicon (a-Si) arrays for ap-
plications in X-ray imaging or active-matrix liquid-crystal displays. The parasitic
capacitances increase with increasing component density [1]. The interconnect ca-
pacitance due to the crossover of the gate and data lines (see Fig. 1.1) introduces
electronic noise, thus undermining the quality of the image generated [2]. The ca-
pacitive coupling due to geometric overlapping between the gate and source/drain
electrodes in the TFT (see Fig. 1.2) can give rise to charge feedthrough thus shifting
the pixel voltage [3].

To gain insight into the effect of parasitic coupling capacitance on the overall
array performance, one needs to be able to extract the capacitance with a high

degree of accuracy and in an efficient manner. In addition, this aids in further
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(READ) ;
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(a) (b)

Figure 1.1: (a) Schematic diagram of a pixel in a-Si imaging array and (b) inter-
connect addressing lines.

development of equivalent circuit models for effective SPICE-like simulations for

sensitivity analysis and design optimization at the system level.

1.1 Capacitance and charge density

The capacitance is calculated from the distribution of charge density on the sur-
face of the conductors. In general. given a conductor system S;,S,..... S, with
the applied voltages Vi, V5,...,V,, we need to determine the charge demnsity o on
these conductor surfaces. Here, we assume that the conductors are embedded in
homogeneous or multiple dielectric media. The surface S of interest comsists of
the conductor surfaces (denoted as S, = JS;) and the interfaces (denoted as Sy)
between dielectric layers. Figure 1.3 shows a system of three conductors and its
equivalent circuits. Here, each non-ground node represents a conductor and the
element connecting two nodes is the associated coupling capacitance. The capac-

itance C;; between two conductors S; and S; is defined as the surface integral of
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—a-Si

SOURCE Csp  DRAIN

GATE L,,
GLASS SUBSTRATE
L

(a) (b)

Figure 1.2: Schematic diagram of an a-Si TFT: (a) cross section and (b) geometric
quasi-static coupling capacitances.

charge density o on S; [4]

c; 2 / 05 X) dSx. (1.1)

S;

Here, 0;;(X) is the charge density on conductor S; when conductor S; is applied a
voltage of 1V (i.e., V; = 1) and other conductors are grounded (i.e., Vi =0,k # 7).
The capacitances C;; form a matrix C, called capacitance matriz, with which the
relationship between the charge vector @ and the voltage vector V of the conductors

are expressed:

Q=CV (1.2)

In theory, the capacitance matrix is symmetric. However, in real computation, due

to amplification by different values of the permittivity (see eqs. (1.18) and (1.20)),
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S, T

Figure 1.3: Multiconductor system and equivalent circuit.

the errors in the computed charge density can result in C;; # Cj;. It is noted that
Ci > 0 and C;; < O for j # ¢; furthermore. the coupling capacitance Cjo between
conductor S; and the ground at infinity is Cio = Y_7_, Ci; > 0 (see [5.6]).

The relationship between the charge density on a conductor and the potential
can be expressed as [4]:

dP~(X)
dn

d®*(X)

og(X) = € (X) n

- eH(X) X €S.. (1.3)

Here, ¢} (X) and €7 (X) (with ¢}(X) < €7(X)) denote the permittivities of the
media separated by the conductor surface. The unit normal vector n(X) points
to the medium with dielectric constant €. The derivatives '%Eﬂ and ‘i%ﬁ are
taken along the direction of normal vector n at points (X + On) and (X — On),

respectively. For a thick conductor, we have %—l = 0 and the above expression
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1s reduced to

o) = -0 (14)

There are two main approaches for describing the charge density: differential-
equation formulation (7] and integral-equation formulation [8,9]. The former leads

to differential equations with the potential as unknown. The latter yields integral

equations with the charge density or capacitance as unknown.

1.1.1 Differential-equation formulation
With the equations (1.3) and (1.4), the charge density problem can be described
in terms of the potential. In the absence of external source charges. the potential

satisfies the Laplace equation:

o°® 0%  0°%
2H — -
V=t et = O (1.5)

The boundary conditions are

3X) = V, XeS; (1.6)
RE Lt SR M T an
&(c0) = 0. (1.8)

Here, ¢~ and € denote the permittivities of the respective dielectric layers. The
boundary conditions (1.6) and (1.8) signify that each conductor surface or the in-

finity is equipotential while the discontinuity of the electric field across the interface
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between two dielectric layers is described in the boundary condition (1.7).

The Laplace equation (1.5) together with the boundary conditions (1.6)—(1.8)
can be solved using finite difference or finite element methods (see. for exam-
ple. '10]). The resultant matrix is sparse thanks to local coupling but large due
to discretization of the whole volume. The main advantage is that there are effi-
cient methods for solving sparse systems (see. for example, [11] and the references
therein). The main problem is that the unbounded domain (1.8) needs to be re-
placed by a bounded one at the cost of loss of accuracy. In this case. at the boundary

Sia of the bounded domain. the Neumann condition is often employed:

d®(X)

- = 0. X & 5. (1.9)

1.1.2 Integral-equation formulation

Instead of solving the Laplace equation. we can express the potential ® in terms of

the charge density (see Fig. 1.4):

B(X) = /SG(X.Y)G(Y)dSy. (1.10)

where G(X.Y) is the associated Green's function *:

1
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=@
DX

S

Figure 1.4: Surface charge o and potential P.

dd*(X) dP—{X)
and =

With the jump relation 8. the derivatives = can be expressed in

terms of the charge density as:

+
d(pd‘r(LX) _ /Sd_G((%Y_)o(y)ds,,_ %g(x) (1.12)
43~ (X dG(X.Y 1

nCIg /s L) s(v1asy + zo(x) (1.13)

With the equations (1.12) and (1.13). the discontinuity of the electric field at the

interface (eq. (1.7)) can now be described in terms of an integral equation:

o(X) +2AVE(X)-n(X) = 0. X € Sa (1.14)

where

A = (1.15)
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Assuming that ¢~ > €™ and n(X) points towards the dielectric medium with smaller
permittivity (i.e.. €7), we have A € [0.1]. The model equations for the charge
density are the systems of (1.6) and (1.14) with ®(X) expressed explicitly in (1.10)

rather than (1.5).

X)) = Vi. Xe65; (1.16)

I
o
<
m
&

7(X) + 2AV&(X) - n(X) (1.17)

Note that the Neumann condition (1.9) can also be simulated as a special case of
the interface equation (1.14). For % =0or % = 0. we can choose A = -1
or A = 1. respectively.

With the charge density o obtained from the above model equations. in order
to calculate the capacitance described in (1.1). we need to scale o accordingly.
The reason is that when describing the Green's function :. we do not include the

permittivity. For thick conductors. the formula for C;; in (1.1) now reads:
C{j = / GI(JY)O’(j(X) de. (1.18)
Si

For infinitesimally thin conductors. using eqs. (1.3). and the jump relation (1.12)

and (1.13), we obtain a formula for C;;:

(X + ()]
Ci; —/S‘,-( g:;(X)+

2

0 — ey [ o)

dn d'ij(Y)dSY) dSX (119)
S

=/;([€-(X) '2+‘ e'*'(X)]m-j(X) + [ (X) - 5‘*‘(X)]V@(X) . n(JY)dSX(l.?.O)
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If the the medium contacting the conductor is homogeneous (i.e., e (X) = e*(X)),
the formula (1.20) is reduced to (1.18).

In discretization of the model equations (1.17). the resultant matrix is full due to
global coupling but smaller thanks to discretization of the surfaces S only. The main
advantage of the integral-equation formulation is that we can avoid the unbounded
domain (1.8) and need to deal with the surfaces of conductors and interfaces only.
The main problem is that the discretization matrix is dense. The challenge is how to
deal with such dense systems with millions of unknowns. Any scheme that requires
storage for the whole matrix is practically ruled out since the memory requirement
is of the order O(N?). Here. N denotes the number of unknowns. Furthermore.
any scheme that needs computational time of the order O(N?) for matrix-vector
multiplication can be considered too expensive. It is one of the motivations of this
work to meet this challenge.

The overall computational accuracy and performance in solving the system
(1.16)—(1.17) lLies in the evaluation of the potential ®(X) and its gradient V&(X)

at all NV points of interest.

1.2 Evaluation of three-dimensional potential field

In a more general context. efficient methods for rapid evaluation of the potential
field and its gradient in three dimensions are essential in many practical problems
in applied mathematics, physics, chemistry, and engineering. In these problems,
given an ensemble of particles located at points X;, ¢ = 1..N in R® and a set of
associated real values g;, ¢ = 1..N, we need to rapidly and accurately evaluate the

potential and its gradient at each location X;. The potential and its gradient are
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given by

N

g
®(X;) = —— (1.21)
J:L:‘;.i [ X X
N g
Ve(X) = > V(W—Jx—”) (1.22)
j=rg# TR

The particles can represent different entities. In astrophysics. they can be masses:
in chemistry. they can be atoms: in electrical engineering, they can be charges:
in magnetism. they can be magnetic dipoles. In this thesis. we will adopt the
terminology used in electrostatics. viz. charge and potential. and the terms particle
and point will be used interchangeably. At first glance. the expressions (1.21) and
(1.22) are simple to calculate. However. for a large system. it may take too much
computing resource to perform the calculation at all those NV points. It is another
motivation of this work to tackle this problem.

In computation. the potential (1.21) can be expressed as
¢ = (pnear T (pfar T (peztcrnab (123)

where ®,..,, denotes the near-field potential (e.g. Van der Waals potential). ®¢,,
the far-field potential (e.g. coulombic or gravitational potential). and ®..sernar the
contribution to potential from external sources which are not part of the ensemble.
The evaluation of ®p.q. is of the order O(N) because ®,.,, decays rapidly and
each particle interacts significantly only with neighbours of close proximity. The

evaluation of ®.zsernai is also of the order O(N) because its contribution to the
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potential of each particle is calculated only once. However, the evaluation of ®,,.
which belongs to a more general class of problems known as the N-body problem.
presents a challenge. If the evaluation is performed through direct pairwise particle-
to-particle interactions. the computational time is of the order O(N?). which is
prohibitively expensive for large N.

State-of-the-art algorithms have managed to evaluate the potential (with some
loss of accuracy) in computational time of only O(Nlog N) or even O(N) [12.13].
The main idea behind these algorithms is to replace a cluster of particles by a
pseudo-particle or centre. and subsequent processes need only to deal with the
pseudo-particle (centre of the cluster) instead of each of the individual particles

that form the cluster. These algorithms rely on two main steps:

(1) Decomposing the ensemble of particles into clusters. This is usually realized
using a tree-like hierarchy of cubes. in which the root cube is a bounding box
containing all of the particles. Such a tree-like hierarchy has some important
features. It offers an efficient method for the systematic clustering of particles
and their associated hierarchical processing. It also provides a means to
determine quickly whether a pair of particles are close to each other without

the need to calculate the distance between them.

(i) Starting with the finest level in the tree-like hierarchy, we replace all particles
in each (leaf) cube with an equivalent pseudo-particle located at the cube’s
centre. This operation is called translation. The process is then continued at
each level until the root cube is reached. Then. starting from the root cube.

a similar process progresses down to the finest level, and the potential and its
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gradient are obtained.

The above processes can be performed using different methods. Among these meth-
ods are the popular Barnes-Hut algorithm {12] and the Greengard-Rokhlin Fast
Multipole Algorithm (FMA) [13-15]. The mathematical background for translation
of centres comes from the theory of spherical harmonics [16] and notably the add:-
tion theorem. The expansion of potential in terms of spherical harmonics is called
multipole ezpansion and the associated methods can be classified as multipole-
expansion-based (MP) methods. These methods have so far been the choice for
evaluation of the potential field. In electrical engineering, for example. they are
used for capacitance extraction [17,18] and for electrostatic analysis in micro-elec-

tro-mechanical systems [19].

1.3 Multipole-expansion-based methods

In this section, we briefly describe multipole expansion for the potential. which
was developed a century ago for solution of the Laplace equation. and its use for
computation of the potential field of a particle system in linear time. which was

realized in the last decade.

1.3.1 Multipole expansion
According to the theory of spherical harmonics. any harmonic function. ®, which

satisfies the Laplace equation, can be expanded in the form

[ o) n M"’
e = > Y (L;r"+rn3>m(9,¢). (1.24)

n=0 m=-n
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Here. (r,6.¢) are the spherical coordinates of the point at which the harmonic
function ® is evaluated. Y2(8,¢) are spherical harmonics. and M7 and L7? are
called multipole and local expansion coefficients. respectively. The relation (1.24)
is also referred to as multipole expansion. In numerical computation. the expansion
is truncated and the outer sum is evaluated for 0 < n < p. Here. p is some non-
negative integer. which is called the order of the expansion. A truncated version of

(1.24) is

P n

M
¢ = 3 3 (L 2B Y20 (1.25)

n=0 m=-n

With the truncation. the function ® can be determined approximately by spherical
harmonics Y.7(6. ), and the multipole and local expansion coefficients M7 and L7,
for 0 <n < pand —n < m < n. The order of expansion p is the important pa-
rameter that characterizes the overall performance of the MP method. The larger
the value of p. the more accurate is the result. However. the computing process
becomes more costly in terms of computational time and memory requirements. A
significant numerical effort in the MP method lies in obtaining the expansion coeffi-
cients efficiently through a sequence of translations from source points to multipole
centres (Q2M), from multipole centres to multipole centres (M2M). from multipole
centres to local centres (M2L). from local centres to local centres (L2L), and from lo-
cal centres to the target points for evaluation of the potentials (L2P). The interested
reader is referred to the work of Steinborn & Ruedenberg [20] and Greengard [13]
for detailed discussions of these translations. For the purpose of comparison. we

briefly discuss some computational aspects of the translations. We focus especially
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on the original FMA [13] and its latest version [14,15]. The FMA is an ingenious
combination of the ideas from the addition theorem in spherical harmonics and the
hierarchical algorithms (see, for example, {12]) to approximate the potential with

virtually any degree of accuracy in the order of only O(N) computational time.

1.3.2 Translations and computational cost

A rough estimation of computational cost of the FMA in terms of running time and
memory requirement is summarized in Table 1.1.

Original version

In the original FMA. the cost for each of the translations M2M. M2L. and L2L is of

W‘“#l coefficients for

the order O(p*). For a given order of expansion p. there are
each multipole centre and each local centre. These must be stored explicitly so that
coeflicients for new centres can be generated. The evaluation of each new coefficient
involves a double sum of the order O(p*). Therefore. the cost in computational time
is O(p*). and the cost in memory is O(p*). Furthermore. for each cube. we need
about 875 M2L translations. which makes the translation of multipole centres to
local centres the most expensive operation in the FMA. With the given dependence
on p. it becomes very expensive in terms of computational time and memory to
achieve a high degree of accuracy. An approach to reduce the overall cost of the FMA
is to reduce the number of M2L translations by allowing M2L translations between
cubes that are 1 cube apart, instead of 2 cubes apart as in the original FMA. The
number of M2L translations for each cube can be reduced to 189. However. such

translations require a larger p to achieve the same degree of accuracy.
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Version | Time Memory Reference |
Original | O(p*) | O(p) [13]
New | O(p°) | O(p*) + O(6p?) | [14.15]

Table 1.1: Computational cost of translations in the FMA.

New version

Recently. multipole and exponential expansions were combined to reduce the cost
of M2L translations significantly [14.15.21,22]. The cost of translations using ex-
ponential expansion (X2X) is roughly O(p?) and the number of M2L is 189. The
combination of both expansions requires recomputation of coefficients to deal with
the conversion of multipole coefficients to exponential coefficients (M2x). This is
then followed by a reverse conversion from exponential coefficients to local coef-
ficients (X2L). Both of these conversions require O(p®). There are also rotations
prior to an M2X and posterior to an X2L. These rotations also require O(p®). More
specifically, at each cube. we need 5 rotations of M, 6 M2X conversions. 189 X2X
translations. 6 X2L conversions, and 5 rotations of L. Thus, the total cost for M2L
translation at each cube can be estimated as O(22p® + 189p*). which is a signifi-
cant reduction from O(875p*) of the original version. With optimization. this cost
can be further reduced. In terms of memory requirement. the new version needs
O(6p®) extra units of memory for storing the exponential expansion coefficients in
the six associated directions for cubes whose M2L translations have not been com-
pleted. Furthermore, the use of combined expansions may lead to additional loss

of accuracy.
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1.4 Difficulties and motivations
In studying the problems associated with the computation of capacitance. charge
density. and general three-dimensional potential. we identify the following difficul-

ties.

From a computational standpoint. the main difficulties in the numerical extrac-

tion of capacitance in a-Si TFTs and imaging arrays include:

1. The extreme device geometries, in which the ratio of thin film thickness to
other physical dimensions (such as the width and length) can well be of the

order of 1073.

(S

The floating potential of the glass substrate: the substrate now needs to be

included as part of the computational domain.

3. Treatment of multi-dielectric media where the electric field is discontinuous
across dielectric interfaces. This requires computation of the electric field (see

eq. (1.14)).

The extreme geometry of metal lines and active devices. and the presence of the
glass substrate require a large number N of panels (or mesh elements) to barely
resolve the surfaces of interconnects and the interfaces between two dielectric media.
This leads to a very large system of equations. Furthermore, to gain sufficient
accuracy on the electric field. we may need to evaluate the potential with a higher
degree of accuracy. Accurate evaluation of the potential is also needed to ensure
that the errors in the computed charge density are not due to the approximation

of the potential and its gradient.
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With the MP methods, to evaluate the potential with accuracy of O(%). where
p is the order of the multipole expansion. the computational time is of O(p*N) and
the associated memory requirement is of O(p* N') (see Table 1.1). For accurate large-
scale simulation (i.e.. with high p and large N in the range of hundred thousands or
millions). this memory requirement of O(p*N) can be problematic and can impose
a severe constraint on computing resources.

For a large number N of unknowns. due to the mismatch between the integral
equations (1.16) (first kind) and (1.17) (second kind). the discretization matrix can
become increasingly ill-conditioned. As a result. the matrix-vector multiplication
is very sensitive to error in the solution. leading to slow convergence rate and even
incorrect solution.

The above difficulties led us to the development of a new approach for evaluation
of the potential field in three dimensions and a new formulation for the charge
density problem. With the latter. we obtain integral equations of the second kind:
the discretization matrix has improved conditioning, leading to a faster convergence
rate. The former. which is referred to as the exponential-expansion-based (EE)
method, employs an exponential integral representation of the Green's function.
With the EE method, the potential and its gradient can be evaluated in linear
time with memory requirements independent of the desired degree of accuracy and
with different forms of parallelism available for remotely-distributed networks and
closely-coupled parallel systems.

The proposed approach and formulation are documented in detail in a series of
technical reports [23-28]. The EE method was first briefly reported in [29] and the

first comprehensive treatment of the method is presented in {30].



CHAPTER 1. INTRODUCTION _ 18

1.5 Organization of thesis

In the chapter that follows. we describe a randomized algorithm for generating the
exponential expansions for the Green's function. Starting with an exponential inte-
gral representation of the Green's function. we discuss how to construct the Gauss
quadratures for the expansion with the number of nodes kept as small as possible
for a given intended error.

The fundamentals of the EE method are presented in chapter 3. We discuss
the relationship between the accuracy of the exponential expansion and that of the
computed potential and its gradient. Here, we establish the main theorem for per-
forming translations. The computational elements associated with the translations
are described and the salient features are identified. Three algorithms together with
the cost analysis and numerical results are presented.

Chapter 4 is devoted to the discussion of solving the charge density problem
and the employment of the EE in this process to achieve linear running time and to
facilitate any desired degree of accuracy. This includes a description of the panel
method with the exponential expansion. preconditioning techniques. stopping cri-
teria, and our proposed multi-level multi-precision iterative process. Hlustrative
examples for computing the charge density on spherical conductors are also given.

In chapter 5, we report on a new formulation for the charge density problem.
We identify the mismatch between integral equations of the first and second kinds
and its effect on the convergence rate. With the proposed formulation. the charge
density is described in terms of integral equations of the second kind. The choice of

related parameters in the integral equations are discussed together with numerical
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results.

The numerical extraction of capacitance associated with a-Si TFTs and inter-
connect crossover of addressing lines in imaging arrays is discussed in chapter 6.
The simulation results are compared with those from the parallel-plate formula and

measurements. The last chapter summarizes the work and outlines future research

extensions.



Chapter 2

Generating Exponential Expansion

The underlying approximation of the Green's function ! used in the EE method
is the exponential expansion. It is the quadrature formula of Gaussian type of an
exponential integral representation of the Green's function. Two important pa-
rameters associated with the expansion are the intended error and the size of the
expansion. They determine the overall accuracy and computational performance
of the evaluation of the potential. In this chapter. we present a probablistic-type
approach for generating Gauss quadratures for the integral that maintains the de-
sired exponential forms and at the same time, for a given intended error. keeps the

size of the expansion as small as possible.

2.1 Exponential expansion

The Green’s function ! can be expressed in an exponential integral form as:

!
;

1 *
= e~ *Jo(pA)dA,
Ve +yt+ 22 /o o(p))

20
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where z > 0, p = /z2 + y2. and Jy is Bessel function of the first kind with order
0. The validity of the above expression can be verified with the Laplace transform

of the Bessel function J; (see. e.g.. [31}):

L{Jo} = F(S) = /’x e”‘.fg(ct)dt (22)
i (2.3)
Vs -

The proof can be found in [32.33]. By replacing s = z and ¢ = p. we obtain exactly
the exponential integral representation of *. Furthermore. the Bessel function J,

can also be expressed in an exponential integral form as (see §2.5):

1 2w ) )
Jo(PA) — ; eu\(:cosai-ysma)da. (24)
- 0
— rea.l [_1_ /‘” eiz\(:cosa-i—ysina)da. (25)
T Jo

In our problem. for a given intended error € € {€.e1. €465 }- We seek an approximation

of the following form for the integral (2.1):

~ real[S(z.y,z2)] (2.6)

r

where the desired exponential expansion S(z,y.z) is of the form:

Souter Sinner(k)
S(z.y.2) = Y we > Elkjl(z.y.2) (2.7)
k=1 ij=1

Elk.j)(z,y,2) = e(-etilzcomaytysinas,) (28)
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The domain of approximation D, is designed with the EE method in mind for far

field translations:
Dy = {(z,y,2)l1<z<b, max(-b.—z—-2)<z.y<min(b. =+ 2)} (2.9)

Here. b is an integer of the form 2™.m > 2. The quantity b indicates how far in the
+z-direction a point (z,y,z) can be in Dy in order for the approximation (2.6) to
be valid. The quaantities to be determined are the weights wi. nodes A\¢ and ay; for
the outer integral (2.1) and inner integral (2.5). as well as the respective numbers
of nodes Syueer and Sigper(k).

An important parameter for characterizing the efficiency of the expansion (2.7)
Is its size:

Soucer Sinner(k) Souter

Sapp = ; Zl 1= ;Sim(k). (2.10)

1

Note that S,p, depends on both the domain of approximation Dy and the accuracy

of the approximation (2.6), i.e.. the intended relative error ¢..; or absolute error

€abs-

The integral (2.1) is a special case of the following two general forms:

L(z.y.z) = '/o‘ e ** f(pA)dA (2.11)

d
Iz.y.z) = / 9(A)Jo(pA)dA. (2.12)
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Here, d is a positive number. finite or infinite. There are several approaches to

generate Gauss quadratures for the above two forms.

1.

o

The simplest approach to evaluate (2.11) would be to use the classical Laguer-
re-Gauss integration. However, conventional methods of approximating f(pA)
by a low order polynomial may not be applied here for the Bessel function
Jo(pA). The order required for Laguerre-Gauss quadrature is large. which
gives large S,yie,- Furthermore. the nodes A, in Laguerre-Gauss integration
are also large. This makes it more difficult to approximate the Bessel function
Jo(pAk). and hence Sipner(k) also becomes large. As the result. the size of the

approximation Sa,p turns out to be too large.

Another approach to evaluate (2.11) is to find orthogonal polynomials for
the weight function W(A) = e~* [34]. However. this may have the same
drawbacks as using Laguerre-Gauss integration. Furthermore. the procedure

involved has to deal with solving a system of non-linear equations.

The exponentially decaying behavior of e~** for large A as well as the oscilla-
tory behavior of Bessel function Jo(pA) in (2.12) are made use of in [35-37].

However. the desired exponential form E[k. ] is lost.

Rokhlin and Yarvin [38] give a numerical scheme for the design of general-
ized Gaussian quadratures. The method can be applied to a wide range of
functions. including all of the above cases. However, the scheme needs other
numerical tools for approximation and singular value decomposition. and has

to deal with solving a system of non-linear equations.
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In light of the above issues. we develop a new probabilistic-type approach [23.39].
The randomized approach bears some resemblance to the Monte Carlo method in
that it needs a sequence of random points (z;, ;. z;). However. unlike the Monte
Carlo method. which tries to evaluate the integral. the proposed method attempts to
find a suitable order n for the Gauss quadratures for the integral. Once the order n is
obtained. weights and nodes can be generated from the well-known Legendre-Gauss
and Chebyshev-Gauss quadratures. Unlike the methods in [34.38]. the method
proposed here does not involve solution of non-linear equations. While taking
advantage of the exponentially decaying behavior of e™** and the boundedness of
the Bessel function Jy(pA). the proposed approach always maintains the desired
expounential terms E[k, j|(z.y. z).

The rest of the chapter is organized as follows. In §2.2. we give a summary of
the new approach. In §2.3. we discuss how to approximate. for a given relative
€rTor €ro;, the infinite-interval integral (2.1) using the Gauss quadratures generated
for a finite-interval integral. We present in § 2.4 a randomized approach to obtain a
suitable order of the Gauss quadratures for the finite-interval integral. Section § 2.5
is devoted for generating the Gauss quadratures for the Bessel function Jo(pA). In

§2.6. we present some numerical results.

2.2 Summary of randomized approach

Let v, and 7, be numbers such that:

Yo+v = 1, v>0. ~,>0. (2.13)
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The numbers v, and -, are used to indicate the relative contribution of the outer and
inner approximations. respectively. to the overall relative error €,..;. The proposed
procedure for generating the exponential expansion can be summarized as follows:

—Az

Step 1 By taking advantage of the exponentially decaying behavior of e~** and

the boundedness (by unit) of the Bessel function Jy(pA), for a given relative

€ITOr €. We replace the infinite interval [0.oo] with a finite interval [0. U]

such that for some number v,, € (0.1):

7 e do(pA)dA — [P e Jo(pA)dA|

< Yo1Yobrel- (2.14)

1
™

Any Gauss quadratures that can approximate the finite-interval integral:

Soul.er

I3 e a(pA)d = 35 wge e (o e

k=1

< (1 — Tor )706rel~ (215)

1
.

can also approximate the infinite-interval integral:

sou‘er
Jo e 2 Jo(pA)dA — Y wle M= Jo(pAk)
' k=1 - < Yobrei- (2.16)

1
r

Hence. this step makes it possible to use Guass quadratures for the finite-in-
terval integral in (2.15) just as the Gauss quadratures for the infinite-interval

integral in (2.16).

Step 2 Using a sequence of random points (z;, y;, z:), we find a suitable order n;

for Legendre-Gauss quadrature for the finite-interval integral fOU e~ **Jo(pA)dA
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that probably satisfies the following condition for all points (z.y, z) in Dj:

SO“‘CP
j;fo e Jo(pA)dX — Y wle M= Jo(pAe)

lk:l Y < Yobrel- (2.17)

Note that in the above expression. we deal with the infinite-interval integral
directly. The reason is that its value is known. namely ’% There is no need

to take the intermediate step (2.15).

Step 3 For each node A;. using the same randomized procedure in step 2. we find
a suitable number of nodes Sinper(k) for the Chebyshev-Gauss or midpoint
quadrature for the integral representation of Bessel function Jo(pAx) in (2.5)

that probably satisfies the following condition for all points (z.y. z) in Dj:

sinner(k) !
wle ™ Jo(pAe) — Y. wrE[k.j)(z.y.z)|
£
' J; < Y Vi€rer-  (2.18)
where
wy )
= 2.1
Wk Smner(k) ( 9)
suuter
Z 71& = 1’ 71,‘ > 0. k= l--Souter- (220)

k=1
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The more stringent relative error v, v,¢,«t and the requirement (2.20) is to

ensure that:

lsouter Solucr sinner('k)
Y wlem™ ho(pAe) = 3 Y weElkjl(z.y. 2)
| k=1 k=1 Jj=1 :

< Yi€ret.(2.21)

R R

and hence. with (2.13) and (2.17):

¢ Souter Sinner(k) .
e Jo(pA)dd = Y Y wkElk.ji(z.y.2)

k=1 =1

i
r

Step 4 Putting the coefficients together. and using another sequence of random
points. we verify that the approximation (2.6) is valid. This test is expected
not to fail. If it does fail then either step 2 and/or step 3 is repeated for the

particular point that causes the approximation to break down.

2.3 From infinite-interval to finite-interval inte-

grals

We denote the finite-interval integral in (2.14) as Fyr(z.y. 2):
U
Fy(z.y.z) = / e **Jo(pA)dA. (2.23)
(o]

For a given relative error €., we wish to determine the values of U so that the

approximation (2.14) is satisfied. The following proposition gives a formula for U:
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Proposition 2.3.1 If U >= —In (22X0¢ ;) then the approzimation (2.14) is al-
p 19 v

ways valid for any point in Dy.

Proof. For (z.y.z) € Dy we have:

2 12 o »2
T VT Ay - (2.24)
pA z
-~ 4 9)2 - 932 .2
< \/(“ 2) +(" +2)°+z (2.25)
< 3+2+2 (2.26)
< V19 (since z > 1). (2.27)

Taking advantage of the boundedness (by unit) of Bessel function Jy(pA) and the

expression (2.27). we can obtain an upper bound for the left hand side of (2.14):

=2z Jo(pA)Yd\ — Frlz.y. 2 I e

5™ oA = Pty )| / e Jo( pA)dA (2.28)
- v ’

- / e 2d) (| Jo(pA) < 1)(2.29)

U
< Lew (2.30)

Yor1Yo

< \/1—9-—_ re 2.31
< e (2.31)
< YorYoébrel- (2.32)
B

With Proposition 2.3.1, we have a means to find U. However, the value of U may
not be an optimal one. In general, too small a value of U can result in (2.16) not

being satisfied at all and too large a value of U may unnecessarily require a high
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order Gauss quadrature. The above estimate of U can fall into the latter case.
In order to use the available Legendre-Gauss quadratures. we change variable A

to A’ so that the interval [0, U] is transformed to [—1.1]: A = (X +1).
1 o r
Fy(z.y.2) = g/ e “"Jo(%(/\' +1)p)dN (2.33)
-1 -

With the above form, for a given point (z.y.z) € Ds. there are Legendre-Gauss
quadratures with weights w?’ and nodes A} that can approximate Fy(z.y.:z) and
hence the infinite-interval integral. Qur requirement is that such weights and nodes
must be independent of the points (z,y. z). More specifically. we need to find wg’
and A;, such that the following conditions is always satisfied for all points (z.y. =)

in Dy.

soum

;F”(’"“) = § ) wpem s g (g (X, + 1)
= - < (1= Yo1)Vokret- (2.34)

1
r

Once w?’ and A}, are available, we can obtain w¢ and A using the following expres-

sions:

<

wp = —w? (2.35)

A o= =M +1) (2.36)

| Qo
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In practice. the condition (2.34) is not used and is replaced by (2.16). which is

rewritten here for convenience:

! Souter
I e aloN)d = 8 wge e o(phe)
k=1

< YoCret- (2.37)

1
-

It 1s easier to verify (2.37) than (2.34) because the value of the infinite-interval
integral is known. which is 1. while the value of the finite-interval integral is not
readily available. The main use of U is to obtain w¢ and A¢ from wg’ and A
via (2.35) and (2.36). In the next section. we discuss a randomized approach for

obtaining these weights and nodes.

2.4 Gauss quadratures for outer loop

In order to obtain weights and nodes wg and . respectively, so that the condition
(2.37) is satisfied. we find a suitable order n; for Legendre-Gauss quadrature wg’
and A;,. We first start with an initial order n; = n;,. With the n; known. we find
Legendre-Gauss quadrature wg' and A, (from. e.g.. standard handbooks) and then
calculate w? and A using (2.35) and (2.36). We use a sequence of random points
(Ti.yi. zi) € Dy and test whether the condition (2.37) is satisfied for all of the points.
If there is a point in the sequence at which the condition is not satisfied. we find the
next order n; of the available Gauss-Legendre quadratures and repeat the whole
process. Otherwise, we accept n; as a suitable order and use the corresponding
weights wy and nodes A; as Gauss quadrature for the infinite-interval integral.
Like other probabilistic approaches, there is no absolute guarantee that for a

given relative error ¢,, the inequality (2.37) is always satisfied. However, for a
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sufficiently long sequence of random points. it is very unlikely that the condition

fails. If so. such a break down would have occurred at some point in the sequence

and would have been detected and fixed. The approach is summarized in the

following algorithm. The input to the algorithm is the value U. the initial order

ny = My,. the relative error ¢,... the length N of a sequence of random points in Ds.

The output of the algorithm is a suitable order n; for Legendre-Gauss quadrature

Wi and /\k.

2.4.1
Step 1

Step 2

Step 3

Step 4

Randomized algorithm I

With n,. find the standard Legendre-Gauss weights w?’ and nodes A}, for
Fy in (2.33).

With the given U and the known wg’ and A,. we calculate w? and \;
using (2.35) and (2.36).

Generate a sequence of N random points in Dy that should contain points
on the boundary of Dy, i.e.. points with z =1. 2 =b.0or 1 < z < b and

one of the equalities in the definition of Dy (2.9).

For each point (z;,y:.z) in the sequence. test whether the condition
(2.16) is satisfied. If the test fails. we find the next order n; of the avail-
able Legendre-Gauss quadratures with which the condition is satisfied
at the point where the test failed and repeat the whole process. If the
test passes all of the points in the sequence, then we return the current

value of n; as a suitable order.

Having obtained all the weights w? and nodes Ai, we next try to obtain Gauss

quadratures for an integral representation of Jo(pAx) for each A¢. Again, our re-

quirement is that such quadratures should be independent of points in Dy, and at the



CHAPTER 2. GENERATING EXPONENTIAL EXPANSION 32

same time the condition (2.18) be always satisfied. We employ the same strategy
as above to deal with this problem.

2.5 Gauss quadratures for inner loop

2.5.1 An integral representation for Bessel function Jy(t)

We use a generic variable t for the variable of Bessel function J;. In fact. we mean
t = pA = Ay/z2 + y2. We have the following three forms of integral representation
of the Bessel function Jo(t) [33]:

2x
Jo(t) = > cos(t cos a)da (2.38)
2r Jo
Jolt) = %/ cos(t cos a)da (2.39)
0
1 ! cos(ts)
Jo(t) = - d 2.40
0() _ \/1—_? S ( )

We use (2.38) so that we can express the integrand in terms of a complex exponential
form of £ and y. We use (2.39) and (2.40) to obtain a quadrature formula for Jy(t).
With regard to (2.38). thanks to the periodicity of the cosine and sine functions.

we have:

2

27
cos(tcos(a — B))da = / cos(t cos a)da (2.41)
0

2
in(tcos(a — 8))da = 0, (2.42)

J
s
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where 3 is any displacement angle. If we choose 3 such that z = pcos3 and

y = psin §. then from (2.38), (2.41) and (2.42), we have:

1 2
Jo(pA) = ﬁ/ cos(A(z cos a + ysin a))da (2.43)
il 0
2
— L eia\(zcosa-f-ysina)da_ (2 44)
2 Jo o

For a in [r.27], the expression (z cosa + ysina) changes sign. Therefore. we can

reduce the interval [0,2x] to [0. r]:

1 L . T .
JO(P/\) - (/ eu\(zcosa+ysma)da + COD.j [/ eu\(zcosa-.‘-ysmcx)da]) (2.45)
o 0

o
_ %(Ig(pz\)-!-conj(lo(p/\)) (2.46)
= real[ly(pA)]. (2.47)

where.
IO(P/\) = l/ eiz\(::coaa-é-ysina)da. (248)
T Jo

Having an integral representation for Jo(p)), we next discuss how to obtain the

Gauss quadrature.

2.5.2 Gauss quadrature
From (2.39), (2.47), and (2.48), we can use the same quadrature for both (2.39)

and (2.48). The integral form (2.40) suggests Chebyshev-Gauss integration. The
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weights and nodes for Chebyshev-Gauss integration with a number of nodes n. are:

(.Uc} = n— (249)
27 -1
J =
S¢; = on. T (2.00)

They are exactly the weights and nodes from the mid-point rule for the integral
(2.39). It is for this reason we choose the mid-point rule for the integral (2.48).

More specifically. with a given n., we choose

T T
_ T 2.51
Sinncr(k) Ne ( 2 )
N Ak 1S (k 5
Qe = -Sinner(k) T, = 1--anncr(k)- (2.52)

as weights and nodes for the integral (2.48). This provides a mechanism to choose
the Gauss quadrature. However, we do not intend to approximate the integral (2.48)
with these weights and nodes. Instead, we wish to find n. so that the condition
(2.18) is always satisfied for all points (z.y. z) in Dy and for each A.. The condition

(2.18) 1s repeated here:

siuner(k) . .
’wlge-Aszo(p/\k) _ 2:1 wkekg(—:ﬁ-x(zcosa”-{»ysxna,,,-))
- < YV irer. (2.53)

1
r

where Sinner(k) and aq; are defined in (2.51) and (2.52). They both depend on k.
But our requirement is that they must be independent of (z.y, z) in Dy. This is the

same requirement we have in finding the Gauss quadrature for the outer loop. We
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employ here the same strategy. It is summarized in the following algorithm. The
input to the algorithm is the set of nodes A; of the outer loop, the initial number of
nodes n. = n, the relative error €. and the length N of the sequence of random
points in Dy. The output of the algorithm is a suitable number of nodes n. for the
weights m and nodes ag; in (2.51) and (2.52) so that the condition (2.53) is
always satisfied for all points (z.y. z) € Dy.

2.5.3 Randomized algorithm II

Repeat for each Ag:
Step 1 With n., calculate Sippe.(k) and nodes ag; via (2.51) and (2.52).

Step 2 Generate a sequence of N random points in D that should contain points
on the boundary of Dy, i.e.. points with z =1. 2 =b.or 1 < z < b and

one of the equalities in the definition of Dy (2.9).

Step 3 For each point (z;.y;.z:) in the sequence. test whether the condition
(2.53) is satisfied. If the test fails, we increment n. . repeat step 1 and
test again: this process is repeated until the condition is satisfied at
the point where the test failed. If the test passes all of the points in the
sequence, we return the current value of 7. as a suitable number of nodes

and the corresponding weights s— and nodes ;.

Before concluding this section, we have some remarks on the approximation

(2.6). It has two forms: relative-error and absolute-error approximations:

< Erel (254)

l L _ real[S(z,y.2)]

1

'S

- real[S(z, y. z)]

' L <  €Eabs (2.55)
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For (z,y.z) € Dy. we have 1 < r < b/3, therefore as far as the approximation
(2.6) is concerned, the above two forms are equivalent. If €., = bv/3eu, then
(2.55) implies (2.54). If €55 = €. then (2.54) implies (2.55): in this case. the
expansion S(z.y,z) generated for (2.54) can also be used for (2.55). However. we
can directly generate S(z.y.z) for (2.55) using the above randomized algorithm.
This produces a smaller size S,p;. The only change needed is to replace all the
relative-error approximations (2.14)-(2.18) with the corresponding absolute-error

approximations. The value of U chosen in Proposition 2.3.1 is replaced by U >

—log (Yo1V0€abs )-

2.6 Numerical results

We have implemented the above method of generating Gauss quadratures for the
integral representation (2.1) of Green's function :. The approximations are in
either form (2.54) or (2.55). Gauss-Legendre quadratures of order n; from 6 to
40 that are available in [31] are used. Given a relative error ,.; or absolute error
€qabs- the method generates the weights w;, nodes A;. the number of nodes Sgycer
and Signer(k) for the outer loop and inner loop. respectively. With these values.

the approximation (2.6) is expected to be satisfied for all points in Dy. In the

current implementation. the values for the parameters in (2.13) and (2.14) are:

1

som.er ’

Yo =7 = 0.5 and 70, = 0.5; the values for parameters in (2.18) are: v, =
In most cases, U is chosen exactly as in Proposition 2.3.1: in some other cases. it is
slightly reduced. Tables 2.1-2.2 list samples of the Gauss quadratures generated.
A full list of the Gauss quadratures generated is documented in [23].

With the weights and nodes, the approximation (2.6) is tested using a sequence
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of N = 5.000,000 random points on the boundary and in the interior of D;. In the

verification. no failure is observed. In the tests. at each point (zi,yi.2z5). ¢t = 1.V,
r _ 1 sy z:) 1 2.7). _ 1 2
we calculate = W cre et S(zi.yi, zi) in (2.7). the left-hand sides of (2.54)

and (2.55). At the end. we obtain (a) the maximum absolute error Epsyz.45, and
maximum relative error Epr.zrer of the approximation of f for the test points in

Dy (b) the absolute error E4,. and relative error Eg.; of the calculated potential.

which is & = Z:N=1 S(z;. yi. z):

1
= —_— P Yie 25 2.5
EMa.::Aba 1?:%.}%{ r; S(ZD,, Yis 1) l ( 36)
= — S(zi. yi- zi)
— r 9 I d
ErfazRe 22 T (2.57)
Ewe = |&-3| (2.58)
I -
i ®~P
| 1

The potential & = Zfil ,_i is in the order of 10°. Tables 2.3-2.5 show the results of
the test for the case of b = 22. 2°, and 2*. The first. second. and third columns give
information about the approximation: its size and forms. The last four columns
show the errors of the approximations of 1 and the calculated potential. respec-
tively. For the absolute-error approximations. we have Epfaza5s < €ass (second and
fourth columns) and for the relative-error approximation. we have Epfazrer < €rel
(third and fifth columns). The results demonstrate that the proposed method yields
probabilistically reliable approximations.

There is a sharp contrast between the values of absolute error E.;, and the

relative error Eg,; of the calculated potential &; E, is too large due to the accu-
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mulative effect and a large value of ®: and Eg.; is small. much smaller than €,..; or
€as- It is for this reason. the relative error is often used to estimate the error of the
calculated potentials. An explanation for the fact that Eg. is much smaller than
the intended error €, or €4, is that the intended errors are meant for the worst case
scenario in order to account for all points in Dy. It should be emphasized that due
to the probablistic nature of the approach. for the given relative or absolute error.
there is no absolute guarantee that the approximation (2.54) or (2.55) is always
satisfied for all points in D,. However. it can expected such a breakdown is unlikely
to occur. Furthermore. if a breakdown does occur. it is rare and probably has only

a small effect on the overall accuracy.

b = 22, €abs = 10_1- Sou:cr = 5v Sapp = 18
= o = 2L
Wk = Sinner(k)’ ki = 2Sinner(k)

iy

l

[ Nodes (Ag) Weights (wg) rsmw(k)
3.20497155410784 | 0.39835901561247 2

2.58671834468409 | 0.80474635024563
1.68135843054705 | 0.95650612937788
0.77599851641000 | 0.80474635024563
0.15774530698625 | 0.39835901561247

[NV ) B e )

Table 2.1: Absolute-error approximation: sample Gauss quadratures.
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Table 2.2: Relative-error approximation: sample Gauss quadratures.

GENERATING EXPONENTIAL EXPANSION

I

!
b =22

w

= R
Wk = 5 e (R)

25—1

€rel = 107, Sou:er = 8. Sapp =31

(o)
Xk = 3 naerlB) T

Nodes (A)

| Weights (wp)

T Sinner( k)

| 3.24917390948062
1 2.79308840683894
2.08256281075830
1.28015405033579
0.56962845425515

0.11354295161347

0.28805787962091
0.60656951226190
0.78673103866423
0.78673103866423
0.60656951226190
0.28805787962091

7

N WUt =g -

39
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! Approximation Errors K
Sapp | €abs | €rel || EMazabs EMazRet E 46, ERe
18 { 107! 3.5x107% | 1.2x107! {[8.1x10° 6.1 x1073
22 | 107! 2.4 x1072 "1.3x107" 3.6 x 10° 2.7 x 103 |
25 | 107! ! 2.4 x1072 | 7.7x10"% 3.6 < 10* | 2.8 x 10~*
30 | 107! 1.6 x107% [50x10"% | 1.3 x10° 1.0 x 103
31 1071135 x107% 135x10"% |72 <102 55 x 10~*
32 {1071 | 23x10"2 199x10"% [79x 10> [6.0x 10"
38 1071 [ 1.1 x 1072 155 x10~* ]| 1.3 x 10° | 9.6 x 10~*
44 1071 1 1.1 x107% 11.4x 1072 || 5.2 x 10! | 4.0 x10~°
50 107! | 1.1 x 1072 |1 1.2x107% || 1.3 x 102 [9.8 x 1073
51 107 | 1.1 x 1072 | 1.8 x 107 || 8.6 x 10! | 6.6 x 10~°
60 | 10~2 3.6 x 10~ |2.1x10"% f5.1 x 10" ;3.9x%x107°
64 | 1072 4.1 x107% 125x107% 1.1 x10® |8.2x 1073
73 | 1072 1.6 x107™% [6.7x 1073 | 1.1 x 10® | 8.3 x 10~°
87 1072 ] 3.5 x 1073 [3.5x1073 | 2.4 x 10* | 1.8 x 10~°
102 ! 1072 | 1.1 x 1073 [1.4x107% [ 1.2 x 10* ;9.1 x 10~°
116 ; 1073 1 7.2 x107% [43x10"% [6.0x10° |45 10°°
146 | 1073 1.4 x10™* |59 x107* {72 x 107 [ 5.5 x 10~7
179 1073 [6.9x107° |27x10"% || 1.7x 10° [1.3x10°®
180 | 1073 1.1 x10™* [ 1.3 10"* | 85 x 10~ | 6.5 x 10~7
208 | 10~ 6.7 x107° 14.0x10"* | 22x10° |1.6 x 10~S
243 | 1074 | 1.8 x107° | 7.8 x107° |58 x 10! | 4.4 x 10~7
289 | 10~* 1.1 x107° [ 1.5x107° [[21x 1072 [ 1.6 x 1073
294 1074 |1 3.5 x10™® [35x10"° |[3.2x 107! 125 %< 10"7 -
322 | 10°° 8.1x10"°% | 4.7x107° [[5.1x10"2:3.9x10°8
358 | 10°° 1.1 x10™% 3.4x107° {{59x 1072 | 4.5 x 107°
411 1072 [ 7.2 x 1077 |44x107° |[1.2x107% | 9.4 x 10~°
425 107 ] 1.1 x107® [ 1.6 x10™°® | 2.6 x 107° | 2.0 x 10~°
661 107 ]/ 6.9 x107% [6.9x107® || 3.6 x 10~* 1 2.8 x 10710
672 | 10~° 1.1 x10~® [ 5.0 x107® [[5.2x10"% | 3.9 x 10°1°
772 1077 ] 1.1 x107% [ 1.8x107% || 2.0x 107> | 1.5 x 10~
1052 107% ]} 6.9 x 10719 | 6.9 x 10710 I 4.8 x 107 | 3.6 x 10!
1076 | 10~° 1.1 x 10710 [ 2.9 x 1071° || 1.4 x 10° | 1.1 x 10!
1220 [10° | 1.1 x 10719 [ 3.5 x 10719 |1 2.6 x 10~7 [ 2.0 x 10713 |

Table 2.3: Approximation and errors: b = 22

40
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Approximation Errors l
! Sapp €abs €rel E)\'!aa:.olba L EMaa:Rcl EAba ERel
22 1 1071 48 %1072 140 <107 | 76 x10° [3.8 <1073
26 | 1071 3.0x107213.3x107! || 3.6 x 10* [1.8 x 10~2
311 10°¢ 2.0 x 1072 | 2.5 x 10~ | 1.5 x 10* | 7.8 x 1073
32107t 23x107211.1x10"1[]2.0x10° 199 x10~*
371107t 1.4 x1072 9.4 <1072 1150 x10® |25 x 10~*
44 [ 107! 1.6 x1072 ] 5.0x102 ][ 9.9 x 102 | 5.0 x 10~*
55 1071 1.1 x1072 [ 4.1 x 1072 || 1.0 x 10® | 5.2 x 10~ |
66 107 [ 1.1 x1072 [ 1.1 x 1072 || 1.7 x 10* | 8.4 x 10~
751 1072 47x10%1"54x1072 (1.2 x10° |6.0x10"*
103 | 102 1.3x107% (56 x10°15.3x10" |27 x10°°
137 1072 1 1.1 x 1073 [ 3.7 x 1073 || 5.5 x 10* [ 2.8 x 10-3
176 1072 | 1.1 x1073 ' 1.9 x 1073 || 6.2 x 10° | 3.1 x 10~
186 | 103 1.2x107% [ 1.5 x 1073 || 1.7Tx 10° | 8.5 x 10~
295 | 10~ 38x105 49 x107%]22x10° [1.1 x10°®
312 1073 57x10511.6x107*[[9.4x10"']4.8 x 10°7
582 | 107° [ 1.1 x107™® | 7.4 x 10~° | 1.6 x 1072 | 7.9 x 107°

Table 2.4: Approximation and errors: b = 2°
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f Approximation Errors
| Sapp | €abs | Erel || EMazabe EnfazRet E s, | ERet
26 | 107! 3.3x1072,9.0x107! | 1.8 x10° |5.7 x 10~?
31107t 2.1 x107% | 5.7 x 10~! || 5.5 x 10% 1.8 x 102
33110t 23 x1072126x10"'{9.9 x10° 3.1 x10"3
38 | 107! 14x107% 24 x107 || 2.8 x 10* 8.8 x 1073
44 1 107! 1.6 x1072 [ 1.8 x 1072 [ 9.2 x 10° 2.9 x 103
91 | 1071 1.1 x1072 119 x1072 || 3.4 x 10® |1.1 x 10~
104 | 1072 3.6 x107%199x10"2} 29 x 10° 9.2 x 10~
129 | 102 14x1073 [ 1.8 x 1072 [ 1.7 x 10® [ 5.4 x 1073
214 1072 1.1 x10731.8x1073% [ 2.4 x 10! 7.7 x 10~°
227 | 1073 40x107*]1.1x10721 1.1 x 10> [3.6 x 10~°
395 1072 1.1 x107* | 1.3 x 107 || 6.0 x 107! | 1.9 x 107
402 | 10~ 43 x107° 1.2 x1073 || 7.5 x10° |24 x 10~

Table 2.5: Approximation and errors: b = 2*




Chapter 3

Exponential-expansion Method

Based on the exponential expansion generated for the Green's function. which is
discussed in Chapter 2, we develop the EE method [24.29.30]. The method belongs
to a more general class of hierarchical algorithms (tree codes). in which the domain
of computation is partitioned into a tree-like hierarchy of cubes and each of these
cubes can be considered as a cluster of all its particles. The main difference with
other treecodes is that the underlying approximation of the Green's function is the
exponential expansion as opposed to the multipole expansion. As it will be demon-
strated later in this chapter, the EE method provides a computationally efficient
alternative to the MP methods for evaluation of the three-dimensional potential and
its gradient, opening new avenues for accurate large-scale simulation of particle sys-
tems and the related applications.

In §3.1, we introduce the notion of siz directions to extend the domain of ap-
proximation D (2.9). We also discuss the relationship between the exponential

expansion and the computed potential in terms of computational accuracy and effi-

43
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ciency. The translations with EE are presented in § 3.2. Here, we establish the main
theorem underlying all the translations that constitute the computational procedure
for the EE method. Section § 3.3 is devoted to description of the computational ele-
ments associated with the translations (clustering, shifting, and declustering). We
particularly give full analysis of the far-field translations (shifting) required at a
given cube and illustrate how exponential expansion is used in the evaluation of
the potential and its gradient [40]. The salient features of the EE method are ar-
ticulated in § 3.4 together with qualitative comparisons with the MP methods. We
also show a sample pseudo code suggesting how parallel processing can be employed
for the EE method. In §3.5. a computational framework for realization of the EE
method is proposed with three EE-based O() algorithms along with their cost
analysis. Each of these algorithms deals with a different type of domain of approx-
imation. Section § 3.6 presents numerical results. which demonstrate a wide range

of accuracy in the calculated potential and a running time of the order O(N).

3.1 Mathematical background

In this section. we describe the underlying mathematics of the proposed method.
starting with the exponential expansion described in the previous chapter. With the
notion of six directions and by scaling, we extend the domain of approximation D,
to virtually cover the whole three-dimensional space R®. We study the relationship
between the intended error of the approximation (expansion) and the actual error
of the calculated potential. We also identify an important parameter associated
with the approximation that affects the overall computational performance of the

proposed method.
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3.1.1 Six directions
The expressions (2.1) and (2.6)-(2.9) are biased towards the +z-direction while

there exists no such bias in } To reflect this bias towards the +z-direction. we add

the superscript Up to the expressions (2.6)-(2.9). They are now rewritten as:

—11: ~ real [SU"(z.y,z)]. (3.1)
Souter  Sinner(k)
§YP(z.y.z) = Zwk Z EY?(k. j](z. y. z). (3.2)
k=1 j=l1
EY"lk.jl(z.y.2) 2 e "lkill=u) (3.3)
Pk j)(z.y, 2) 2 Ak(—z + i(z cos axj + ysin ag;)) (3.4)

pvr 2 {(z.y.z) |la=1< z< b max(—b.—z—-2) < z.y < min (b.z + 2)}(3.5)

The function EYP[k. ji(z.y. z) is called ezponential distance associated with di-
rection Up and indices [k. j] of a vector (z.y. z).

By switching the bias towards —z-. +z-. —z-. +y-. and —y-directions. we obtain
five more expressions similar to (3.1)-(3.5) with the same ag;. Ac. Wi. Sinnec(£). and
Souter- We refer to +z-, —z-. +z-, —z-. +y-. and —y- directions as Up. Down.
East. West. North, and South. The set of the six directions is denoted by DirSet.

Corresponding to (3.4), we have the following definitions for the functions g's:
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Definition 3.1.1

Pk, j)(z,y. z) 2 Ak(—z +i(T cos ag; + ysin ay;))
P (k. jl(z.y.2) = Me( z+i(zcosa; + ysinay))
gPotlk jl(z.y.2) = Me(—z +i(zcosag; + ysinay;))
g7tk ji(z.y. 2) 2 Ar( = +1(zcos ar; + ysin a;))
gVorth ik jl(z.y. z) 2 Ak(—y + i(z cos ag; + zsin ag;))

>

gSmLth{k’j](z.y. z) Ae( y +i(zcos Qpj + zsin agj)).

In correspondence to (3.2) and (3.3). we have the following definitions for the ex-

ponential distances and the sums:

Definition 3.1.2 For each direction dir € DirSet.

E¥ (k. jl(z.y.z) & s kilEu) (3.6)
A Soucer sinner(k)

S%(z.y.z) £ D we Y. E¥k.jl(z.y.2). (3.7)
Jj=1

w
il

1

Corresponding to (3.5). we have the following definitions for the sets Dj's:
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Definition 3.1.3

D? ={(z.y.z)la=1< z<b max(—b—2-2)<z. y< (6. z+2)}
DPom = {(z.y.z)|]a=1< —z<b max(-b. z-2)<z.y< (b. —z +2)}
Dfst = {(z.y.z)la=1< z<b max(—b.—z-2)<z.y< (6. z+2)}
Dyt ={(z.y.2)ja=1< -z <b max(~b. z—2) <z y<min(b —z+2)}
DNorth = {(z.y.z)|la=1< y<b max(—b.—y—2)<z.z< min(b y+2)}
Dfouth = {(z.y.z)|]a=1< —y <b. max(—=b. y—2)<z. z<min(b -y +2)}

With the above definitions. we can express (3.1) and (3.5) in a more general form.

in which the bias towards +z-direction is eliminated.

Proposition 3.1.1 The ezpressions (3.1) and (3.5 will imply that for each direc-

tion dir € DirSet and each point (z.y.z) € DZ,

1 ; 1
- = real [S¥ (k. j](z.y.z)]. (3.8)
Proof. Permute the variables z., y, and = in (2.1) and (2.6)-(2.9). [ |

If no specific direction is given. it can be omitted. If no specific indices [k. j] are
given. they can also be omitted. The approximation (3.8) is rewritten as

- = real [S(z,y,z)]. VY(z.y.z) € Ds. (3.9)
Note that in order for (3.9) to be valid. the directions associated with S(z.y. z)

and Dy must be the same. Furthermore, approximation (3.9) only holds for (z,y, z) €

Dy. If (z.y, z) is not in any of the D;’s. then some form of scaling is needed.
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3.1.2 Approximation and scaling

If we have a scaling factor s > 0 such that (sz.sy.sz) € Ds. then we can obtain

approximations that are similar to (2.54) and (2.55).

Proposition 3.1.2 Let s > 0 be a scaling factor. The approzimation (2.54) or

(2.55) will imply the following respective approzimations. V(s x z.3xy.8 xz) € Dy,

< €ret. OT (3.10)

1

r

(L —real[s x S(s x z.8 x y.s x 2) !
i
| < 8 X Egpa- (3.11)

I——realsxS(sx:z:sXy-’X")]

Proof. Let r, = \/(sz)? + (sy)? + (82)> = s x \/z* + y?> + z° = s x r. Because

(sz. 3y.sz) € Dy. we can apply the approximation (2.54) and (2.53) for % to obtain
(3.10) and (3.11). respectively. [ |

From the above proposition. we have two observations: (a) Approximations with ab-
solute errors are sensitive to scaling while those with relative errors are not. It is for
this reason. the relative-error approximation (2.54) is preferred over the absolute-
error approximation (2.55). (b) For the relative-error approximation (2.54). if we
replace the weights wy, with s x wi. then the new weights can also be used in the new
coordinate system in which all coordinates are scaled by s. With this flexibility.
the relative-error approximation (2.54) can be applied. with corresponding scaling

of the weights wy's. to any set s~! Dy defined as

2

s~IDy {(z.y.z)|(sz,8y,82z) € Dy} (3.12)
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The union of all these sets with the associated six directions covers the whole three-
dimensional space R3, except the point (0,0,0).

Having established a general form for the approximation to Green’s function 1.
we now discuss the accuracy and efficiency of the approximation. For the latter, we
identify a parameter associated with the approximation that can be used to model
the overall performance of the proposed method. For the former, we describe
relationships between the intended error of the approximation and the actual error

of the calculated potential.

3.1.3 Approximation: accuracy and efficiency

Absolute error vs. relative error

Suppose that Q;. ¢ = 1..N, are source points of charges ¢; and P is a target point
such that vectors Q;P(z — z;,y — yi.z — z) are all in D,. Let ¥ = Zfix %
where r; = ||Q;P|, and ¥ = YV real[q;S(z — i,y — yi,z — z)]. which is an
approximation of ¥ using exponential expansion. Let ¥ = ¥+ — ¥~ where ¥* and
¥~ are the contribution to ¥ by positive charges and absolute value of negative
charges, respectively. Similarly, let ¢ = ¥+ — U~. The error in the calculated
potential ¥ can be described in terms of the relative error €. (2.54) or absolute

erTor €g, (2.55) as follows:
Proposition 3.1.3
() 18— |< (L] @ Deas-

(i) If all the charges are non-negative, the relative error in approzimating ¥ s

€rel -
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(iii) The relative errors in approzimating ¥* and ¥~ by ¥+ and ¥, respec-
tively, are both €, .

(tv) For a scaling factor s > 0 such that sQ;P, i = 1..N, are all in Dy, with
reference to the case of no scaling, the calculated potential has the same

relative error, while its absolute error is multiplied by s.

Proof. For (i), we use triangle inequality; for (ii), we apply (2.54) for each ;1-

: q_ —real[g:5(z — zi.y —yi 2 — zi)]. < z—::erel (3.13)
| e-¥] < (fj ?—) €rel (3.14)

=1 ¢
< Ve (3.15)

For (iii). we apply (ii) for each of ¥+ and ¥~. For (iv), we use (3.10) and (3.11) in

Proposition 3.1.2. [ ]

From the above result. it is clear that the relative-error approximation (2.54) pro-
vides more reliable information about the error (due to the approximation of the
potential using exponential expansion) compared to the absolute-error approxima-
tion (2.59).

In addition to accuracy, the cost to evaluate the sum S(z,y, z) is another im-
portant factor that determines the overall computational efficiency of the proposed

method. The question of how such cost is modeled and reduced will be discussed

next.



CHAPTER 3. EXPONENTIAL-EXPANSION METHOD 51

Efficiency
The computational cost of evaluating each exponential distance E is the same.
Therefore, the total cost to evaluate S(z.y.z) can be modelled as the number of
terms in the double sum (3.7) (see (2.10)). As it will be shown later, for a given
error €. the proposed algorithms are of the order O(Sgpp(€.b)N). Therefore, reduc-
ing S,;p without compromising accuracy is a way to improve the computational
performance.

Note that in (2.54) and (2.55). * is a real number and the sum S5(z.y.z) as
defined in (3.7) is a complex number. However, we do not insist that the imaginary

part of S(z.y, z) be zero. A justification for this is as follows. We can rewrite (3.9)

as

% ~ Si(z.y.z), VY(z.y,z) € Ds. (3.16)
Here Si(z.y.z) = %(S(:c,y.z) + conj(S(z.y.z))). where conj(S(z.y, z)) denotes
the conjugate of S(z.y,z). The imaginary part of Si(z.y,z) is zero and the real
part of Si(z.y, z) is the same as S(z,y, z), which approximates L. Hence (3.16) is
valid. If we extend the symbol E[k,j](z,y, z) to include negative indices such that

E[k, —j)(z.y. z) = conj(E[k, j](z,y, z)), then we can express S; as

Souter Sinner(k)
W .
Sizoz) = Y5 2 Bkl (3.17)
k=1 F=—Sinner (k). J#0

Si(z,y, z) has the same form as S(z,y, z); they are both sums of the exponential

distances E[k,j](z,y, z). Suppose that we process the E[k, j|(z,y, z)’s individually
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and add them up to get the approximated value for 1. If we use S; then no extra
work is needed. If we use S(z,y. z), then we need to take the real part of S(z,y, z)
to obtain }, which costs little. The results in both cases are the same. However, the
cost of evaluating S(z.y, z) is only half the cost of evaluating S;(z.y, z). The reason
is that the number of terms in S(z.y, z) is only half that of S)(z,y, z). Driven by
the need for approximations with sizes as small as possible (see (2.10)), we prefer
S(z.y.z) to Si(z.y,z). For convenience and with a slight change of notation, we

restate (3.9) as

1
; =~ S(z9yv Z), V($~yvz) € Db’ (3'18)

We have discussed the approximation of Green’s function } using one of its

exponential integral representations as an intermediate step. Starting with (2.1)
and using Gauss quadratures. we obtain (3.8). In the following sections, we describe
how the approximation is used for efficient and rapid evaluation of the potential
field in three dimensions. As it was mentioned in the introduction, the basis for
state-of-the-art O(N In N) and O(N) algorithms for evaluation of the potential field
lies in the capability of replacing a cluster of particles by a pseudo-particle or centre
through translations. The theory of spherical harmonics provides the mathematical
background to perform such translations. Current O(N In N) or O(N) methods for
evaluating the potential field are, in one form or another, based on the theory of
spherical harmonics. However, the exponential expansion employed here provides

a much more flexible mechanism for efficient translations.
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3.2 Translations

In this section, we discuss how translations are described using exponential ex-
pansion, along with an illustrative example. We discuss important properties of
exponential distances E[k. j](z,y, z). We introduce the notion of boundedness and
direction of a vector, which is used to describe the condition for translations. We
establish the main theorem underlying all the translations that constitute the com-

putational procedure of the proposed method.

3.2.1 Properties of exponential distances

The important properties of the exponential distance E[k, j] are summarized in the

following proposition.
Proposition 3.2.1
(i) E¥ (k. j)(—z.—y, ~2) = conj(E~*"[k. j](z,y, 2)).

(ii) B (k. j)(z1+ T2.y1 + y2. 21 + 22) = E¥ [k, j](21, 11, 21) X E¥ [k, j](22. y2, 22).
(iii) E¥r[k,jl(s x z.8 x y,s x z) = { E¥ [k, j)(z,y,2)} .

(tv) E¥ (k. jl(~z,-y,—2) = Eﬂ;—,ﬁm—z—)
Here, —dir denotes the opposite direction of dir (e.g., —Up = Down).

Proof. The proof is straightforward and based on Definitions 3.1.1 and 3.1.2. &

In Proposition 3.2.1, (¢) and (iv) suggest that E%"[k, j](—z, —y, —z) can be in-
directly obtained by taking the conjugate of E~%"[k, j](z, y, z) or the multiplicative

inverse of E%"[k, j|(z,y, z) without resorting to an expensive direct calculation; (iz)
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can be considered as the addition theorem for exponential distances; (:2z) provides
the means to calculate E[k,j] with different scaling factors; and (:v) is a special
case of (zzz) in which s = —-1.

In order to describe translations in a more compact form, we introduce additional

terminology.

3.2.2 Vector: boundedness and direction
Definition 3.2.1 For a given closed interval [c,d] with endpoints c.d as positive

integers. a vector V(z.y, z) is said to be bounded in [c,d] if

c<max(|z ||yl |z])<d

The geometric motivation behind the above definition is that if vector V' connecting
the centres of two cubes of unit length is bounded in [c. d], then these two cubes
are separated by at least (c — 1) and at most (d — 1) cubes. We shall work with
the case of c = a+1 and d = b — 1, which is in association with the approximation
(3.8).

Proposition 3.1.1 suggests that the approximation (3.8) can be applied in any
direction provided that the point or vector! (z,y, z) belongs to the corresponding
set Dy. Therefore, in order to use the approximation, we need (a) to determine
to which set D, the point belongs and (b) to have a self-consistent criterion to
choose a set D if the point belongs to more than one set. Through the notion of
the direction of a vector, we indeed have an efficient method to satisfy both of the

above requirements.

1 As far as coordinates are concerned, the terms point and vector are used interchangeably.
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Definition 3.2.2 The direction of a vector V (z.y, z) is defined as

(Up = max(| z |, y |, 2 |)
Down elseif z= —max(|z ||yl z])
bir(v) = | Fast cbeifz= max(zlivhiz)
West elseifz= —max(|z ||yl z])
North elseify= max(|z |yl zI)
| South else ify= —max([z |y l.| z]).

With the above definition, the direction of a vector is uniquely determined. There
appears to be mild bias toward some directions: this, however, occurs only when at

least two of the three coordinates have the maximum absolute value.

3.2.3 Theorem for translations

The mathematical background for translations in the EE method is the following

theorem:

Theorem 3.2.1 Let Cube; and Cube; denote cubes of unit length centred at C,
and C,. Let Q@ and P be points in Cube, and Cube,, respectively. The necessary
and sufficient condition for vector C,C3 to be bounded in [a + 1,b— 1] is that there
ezists a direction Dir € DirSet such that any vector QP is in DP*". Furthermore,

under this condition and the approzimation (3.1),

EP"[k,j|(QP) = EP"[k,5)(QC:) x EP" [k, j}(C1Cs) x EP" [k, }(C2P) (3.19)
1

T real [SP"(QP)] . (3.20)
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Proof. First we observe that | zqc, |< % and | z¢,p |< % There are similar

inequalities for the z- and y- coordinates. Hence,

Zeies — 1< 2qp L 2ce0, +1 (3-21)
Yorca — 1< Yer S Ycye, +1 (3.22)
Teye, — 1< zZgp L ZToye, +1 (3.23)

Zgp— 1< zce, S zqe +1. (3.24)

1. Necessary condition: suppose that vector C;C3 is bounded in [a + 1,5 — 1].
Let Dir denote the direction of C;C3, as defined in Definition 3.2.2. We will
be proving that any vector QP is in DP*. For simplicity, we assume that

D:r = Up. that is

a+1

IN

chc2 S b - 1 (3.25)

—zclcg < zCIC:vyclc’ S zc103' (3'26)

With these assumptions, we need to show that a < zgp < band max(—b. —zqp — 2)
< Zgp.Yqr < min (b, zgp + 2).

For z4p. from (3.21) and (3.25), we have

a< zqp <b (3.27)
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For yqp, from (3.22), (3.26), (3.24), and (3.25), we have

—2qp —2< Ygr S zgp t+2 (3.28)

—b< yor <b. (3.29)

Similarly for z4e, from (3.23). (3.26), (3.24), and (3.25). we have

—zqp —2 < Zgp < zgp +2 (3.30)

—b S Zqgrp S b. (331)

Expressions (3.27)-(3.31) show that QP is in DP¥.

2. Sufficient condition: suppose that there exists a direction Dir such that any
vector QP (with Q in Cube, and P in Cube;) is in DP*". We will be proving
that vector C;C; is bounded in [a+1.b—1]. Again. without loss of generality.

we assume that Dir = Up, that is

a < Zqp <b (3.32)

—2qp—2< ZTqp,Yor < 2gp t+2. (3.33)

We need to show (a + 1) < z¢,e, < (b—1) and | z¢,c, |.| Yerc, L 2c5c,-

For the former, by an appropriate choice of @ and P, we obtain from (3.21),
Zqp = Zc,c, + 1. From the right hand side of (3.32), it follows that z¢,c, <
(b—1). Similarly, with another appropriate choice of Q and P, we can obtain
from (3.21), zqp = zc,c, — 1. From the left hand side of (3.32), it follows
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that (@ + 1) < z¢,c,. Thus,

(6+1)< zee, S(B—1). (3.34)

For the latter, we use the same procedure but with (3.21), (3.22), and (3.33).
A choice of Q and P such that zqp = 2¢,c, — 1 and yqp = Yc,c, + 1 (or
Yar = Yc,c, — 1) will lead to yc,c, < zeye, (OF —Zeie; < Yoyc,)- The

treatment of z¢, ¢, is analogous. Thus,

IN

yC1C3 S 20103 (3-35)

—Zcy0,

—ZCICQ S zCICQ S zC1C3' (3'36)

Expressions (3.34)-(3.36) show that C,C, is bounded in [a + 1.5 — 1].

The expression (3.19) follows from Proposition 3.2.1(z¢) and from the fact that
QP = QC,; + C,C; + C, P. Finally, with the direction Dzr identified, the expres-

sion (3.20) comes from (3.8). [

Note that in the sufficient condition, if we order the directions as Up, Down, East.
West, North, and South, and if we choose Dir as the first direction such that any
QP is in DP", then it follows from the above proof that Dir = Dir(C1C32). This
is consistent with the necessary condition.

Theorem 3.2.1 is the cornerstone of the EE method. In what follows, we discuss
some of its implications. Here, we assume that the condition in the theorem is

satisfied; that is C;C; is bounded in [a + 1,b — 1].
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3.2.4 Remarks
e Choice of direction: with Dir(C;C3) as the common direction for all pairs of
points (@, P), we have a self-consistent criterion and an efficient mechanism
to choose the direction to use in approximation (3.8). The choice Dir(C,C3)
leads to (3.19) and (3.20). For each QP. there is no need to test to which
D, it belongs and which D should be used in (3.8). From Theorem 3.2.1. we

know that it is the set Df ir(C1C72) )

e Domain of approximation: for given values of b and ¢, the approximation (3.8)

1
I It

is bounded in [a + 1.5 — 1]. Otherwise, the approximation may not hold and

can only be used for when the vector connecting their centres C1C>
some form of scaling (see Proposition 3.1.2) is needed to transform C,C; to
a new vector that is bounded in [a + 1.b — 1]. All of the three algorithms to

be presented later make use of this observation.

o Geometrical meaning of Dy: now it is clear that Dy is exactly the set of all
vectors QP with Q in Cube; and P in Cube,. In other words, D, contains
no redundant points and none of QP is missing. Redundant points may
unnecessarily increase the size of the approximation S,pp; an example of this
case is when we choose D” as the rectangle box [—b,5] x [—b,b] x [a,b]. At
the missing points, approximation (3.1) may be invalid. Therefore, Dy is the

optimal domain of approximation.

o The quantity b and the number of levels in the tree-like hierarchy: for a
tree-like hierarchy of n levels, the maximum number of cubes along one of the

z-,y-, and z-directions is 2". Therefore, if we choose the length of the smallest
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H >N

/ N

®Q

Figure 3.1: A translation from @ to P through centres C; and C,: E(QP) =
E(QC,) x E(C,C;) x E(C,P).

cube as the unit length and if b > 2", then any vector connecting two cube
centres that are at least a = 1 cube apart will be bounded in [a + 1.5 — 1].
Hence Theorem 3.2.1 can be applied. This forms the basis for Algorithm I,
to be presented later. It turns out that even with b as small as 22, we can. in
light of Theorem 3.2.1 and with appropriate scaling, perform all the required
translations. This will be presented in Algorithm II.

e Translations as an indirect evaluation of E[k, j}(QP): expression (3.19) sug-
gests that we can evaluate E[k, j](QP) indirectly via E[k, j(QC,), E[k. j])(C1C?).
and E[k,j](C2P). The indirect evaluation can be depicted in terms of a se-
quence of three translations: (a) from @ to Cy, (b) from C, to C,, and (c)
from C, to P. This is illustrated in Fig. 3.1.

With Theorem 3.2.1, we now illustrate how the translations work in the EE method.

The translations are detailed in the next section.
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3.2.5 Illustration

Let Cube; and Cube, denote cubes of unit length centred at C; and C;. Assume
that the vector C,C; is bounded in [a + 1,5 — 1]; that is, we can invoke Theorem
3.2.1. Let Dir = Dir(C1C;). Suppose that Cube; contains N; source points @
whose charges are denoted by ¢(@) and that Cube; contains N, target points P at
which we wish to find the potential due to the charges in Cube;. For each target

point P in Cube,. the potential at P is

(Q)
p) = Yy L (3.37)
ocCube, QP

From (3.20). the potential $(P) can be approximated as

&P) =~ Y, q(Q)S*"(QP) (3.38)
@eCube,
Souter Sinner(k)
~ Y, q@) ) we Y, EP[k.HQP) (3.39)
@eCube, k=1 i=1

souter slnnet(k)

v Lwe Y dQ@ETRIQP). (340)

=1 @eCube,
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We now describe the procedure for efficient evaluation of the innermost sum using

translations, i.e. using (3.19) for indirect calculation of EP*[k, j](QP) for each P.

&P k5] = Y a(Q)EP"IK,jI(QP) (3.41)
QeCube,
= ) a(Q)E[Kk,jI(QC1)E[k, j}(C:1C3)E[k, j(C2P) (3.42)
QeCube,
= {( Zq(Q)E[k-jl(QCI)) E[kvj](clcz)}E'[k,j](CgPI3.43)
Q@eCube,

Note that in (3.42) and (3.43) the superscript Dir is omitted for ease of presentation.
The expression (3.43) suggests the following procedure for translating the effect of

Qs to each P. This is illustrated in Fig. 3.2.

Step 1. Clustering all source points Qs to centre Cy:

E(C)P" k5] = ) a(QE"[k.j)QC)). (3.44)
QeCube,

Step 2. Shifting centre C, to centre Cj:

E(Cy)P" [k.5] = E(C1)P"[k, 5] x EP7[k,j)(C1C3). (3.45)

Step 3. Redistributing from centre C, to each target point P:

E(P)P" [k, j] = E(C2)P" [k, j] x EP"[k,j](C2P). (3.46)
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Q‘o\ C- /.Q’ P’o\ ) / o
<L\, N

Figure 3.2: Translations for efficient approximation of the potential field at N, = 3
target points in Cube; due to N, = 4 source points in Cube;.

The result E(P)P*[k.j] is the innermost sum &P [k, j](P) defined in (3.41).
The cost of evaluating the innermost sum is only O(N; + 1+ N;) and therefore. the
total cost for approximating ®(P) using (3.40) is O(Sapp(N1+1+N,)), as opposed to
O(N.N,) in direct pairwise particle-to-particle calculation. This suggests that with
exponential expansion, we can have O(N) algorithms for evaluation of the potential
field. In addition. the translations here are much simpler and more efficient than
those based on spherical harmonics. This is further elucidated in the next section.

Having presented the basis, we now describe the elements of the EE method.
They are source points (Q) with associated charges (g), source centres (S), target
centres (T), and target points (P) with associated potentials ® and gradients of
potentials V®. The input is source points, their charges, and target points; the
output is the potential and/or the gradient of the potential at the target points.
Source points are clustered to form source centres. Source centres are clustered

to form new source centres or are shifted to target centres. Target centres are
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redistributed either to form new target centres or to target points for obtaining
the far-field potential and its gradient. The clustering, shifting, and redistributing
translations all have the same structure. In clustering and redistributing, all six
directions are involved: in shifting source centres to target centres only one direction

is involved. The direction used in the shifting is determined by Theorem 3.2.1.

3.3 Computational elements

In this section. we describe the elements of the proposed method in the context of
translations. We assume that the domain of interest is contained in a cube, called
the root cube: the root cube is recursively decomposed into a tree-like hierarchy
of cubes: the cubes at the lowest level in the hierarchy are called leaf cubes. We
assume that the leaf cubes are of equal length? I. We choose the scaling factor s in

such a way that the leaf cubes become unit cubes:

s = % (3.47)

3.3.1 Clustering: source points and source centres

A source centre of a cluster (e.g., a cube) represents all the source points in the clus-
ter. The source centre is located at centre of the cluster. The process of obtaining
the equivalent charge at the source centre is referred to as a Q2s translation. The

equivalent charge is expressed in terms of an exponential distance defined below.

2In adaptive algorithms, | can be chosen as the length of the leaf cubes of smallest size.



CHAPTER 3. EXPONENTIAL-EXPANSION METHOD 65

Definition 3.3.1 (Q2s) For a collection of ng source points {Qi, i = l..ng} of
charges {g;.,t = l..n,}, in a leaf cube centred at S, we define the source at S

associated with a pair of indices [k, j] and a direction dir as

g
Ervreedit(k 51(S) = s x w Z GE* [k, 7)(Q;:S). (3.48)

i=1
Here. the weight w; and the exponential distance E*"(k, j] come from approxima-
tion (3.1). Note that if each source point Q; is replaced by a continuous distribution

of charge density o; over an area A; or a volume V;, then the equivalent charge (3.48)

is expressed as

B igl(S) = sxw . [[QE“I@S)dAq  (3.49)

i=1 A;

g
sl i) = sxwd [[[aQE“kN@S) Ve (350)

i=1 7§
Practical problems in which charges are of continuous distributions are common in
electrical engineering. Here. the method of moments [41] for field computation is
often employed in these problems. In chapter 4, we will present a formulation for
the integral (3.49) in terms of the exponential distance.

A cluster of source centres can be replaced, in a similar way, with a new source
centre. This process is referred to as an s2s translation. This new source centre
represents all the source points associated with the constituent source centres. Its
equivalent charge is also expressed in terms of an exponential distance defined

below.
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Definition 3.3.2 (s2s) For a cube centred at S that has n. child cubes centred
at 5,..Sn.. we define the source at S associated with a pair of indices [k.j]| and a

direction dir as

Bk G)(S) = ) Bk )(S)) x E¥(k,5](S:S).  (3.51)

=1

The clustering process starts at the leaf cubes, progressing upwards in the tree-like
hierarchy. and ends at the root cube. Once the clustering process is completed. the
next step is to shift the source centres to target centres for efficient evaluation of
the far-field potential, which is the potential due to source points contained in a

cube that is at least one cube apart from the cube containing the target points.

3.3.2 Shifting: from source centres to target centres

A target centre of a cluster represents all target points in the cluster in receiving
the far-field potential. The target centre is located at the centre of the cluster. The
shifting of a source centre to a target centre is the transformation of the global
effect of the source centre to a local accumulative effect at the target centre. The
effect is accumulative because the target centre may also be under the influence
from other source centres as well as other target centres. The effect is local be-
cause it is propagated (redistributed) only to the target points in its cluster. This
process is referred to as an S2T translation. The equivalent potential at the target
centre, which represents the effect of all source points outside its cluster and the

surroundings, is also expressed in terms of an exponential distance defined below.
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Definition 3.3.3 (s2T) For a cube centred at T and for cubes centred at {S;,i =
1..n,} with vectors S;T being bounded in [a+1,b— 1] and having the same direction
Dir, we define the target at T associated with a pair of indices [k, j] and the direction
Dir as

Etargd'Dir[k,j](T) 4= E anurce.Dir[k'j](Si) x EDi'[k,j](SiT). (3.52)

=1

Here, we use the symbol += to indicate that the sources S; in S2T partially con-
tribute to the potential at the target T'; the other sources of contribution come from
other source centres (also via an S2T) or from other targets via a T2T translation
(to be described in the next subsection).

The s2T has the same structure as the other translations. However. for a given
cube. the number of $2T translations necessary to account for all far-field interac-
tions is much larger and hence more expensive. In the following, we provide an

estimate of the total number of S2T translations needed for a given cube.

e Cubes and directions: let P be a parent cube with eight children cubes C =
{Ci,1 = 0..7}. We encode P with a triple (k, j, %) of non-negative integers that
are bounded by the number of cubes on the same level along the z-, y-. and
z-directions, respectively. Each C; can be also be encoded as (2k + AL, 25 +
A_’,-,2i + A!l), where A}, Ag-, Al € {0,1}. The set C can be decomposed into
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pairs of subsets of size 4:

C =

which are defined as

U
CDoum
cEaat
CWe:t
CN orth

C.S'outh

e e ue e e

e

cUp U cDoum
CEaat U Ccht
cNorth U CSouth’

{Ciec| Al =1}
{CiecC|A, =0}
{Ceclal=1}
{CiecC|Al=0}
{CiecC| A, =1}
{CieC| A, =0}

68

(3.53)

(3.54)
(3.55)
(3.56)
(3.57)
(3.58)

(3.59)

e Interaction list: for each cube C;, the associated interaction list, which is

denoted as 7, is the list of all cubes C at the same level as C; such that C;C

is bounded in [2, 3]. It is the list of C to which we perform the S2T translation

from C; in accordance with Theorem 3.2.1. The size of each Z; is 189. The

interaction list is decomposed into sublists associated with six directions:

I

U z.

dir€DirSet

(3.60)
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which are defined as
I# 2 {C € I | Dir(C/C) = dir}. (3.61)

Each of these sublists can be further partitioned into smaller sublists:

) Idir Idir if C; e Cdir
Ildxr — F. U D‘.l ‘ l ‘ (3.62)
Té | I I i C, € C-%".
Here. Z#" and T§" denote the lists of cubes C that belong to all the interaction
lists T3 with C; € C*" or belong to only the interaction lists Z#* with

C; € C~¥r, respectively. These lists are independent of I. The symbol Z&7

denotes the remaining cubes of each Z#". [ = 0..7.

e Forms of s2T: the above decomposition allows the S2T translations to be
performed efficiently. For each C € Zg" and all C; € C~%". the s2T from
C to C can be carried out by first (a) translating (via an $2s) from C; to
P and then (b) translating (via an S2T) from P to C. For all C; € C. the
s2T from C; to each C € I#" can be performed similarly. These two forms
of s2T are referred to as the half-list S2T and full-list S2T, respectively. The
main difference between them is that the latter is applied for all cubes C; € C
while the former is only for cubes C; € C~%". The subscripts H and F in the
respective lists Z&"™ and Z#" are used to distinguish these two forms of S2T.
For C € Igf,, we resort to the direct S2T translations from C; without using

P. This form of s2T is referred to as the direct-list 2T, which is indicated
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by the subscript D in the associated list Ig‘:f. The procedure to perform $2T

translations for all cubes C; € C is summarized as follows:

Procedure 3.3.1 [s2T(dir)]

Step 1 Perform s2s from each C; € C~%" to P.
Step 2 Perform s2T from P to each C € Zgr.

Step 3 Perform s2s from each C; € C¥" to P.
Step 4 Perform s2T from P to each C € Tg".
Step 5 For each C; € C and for each C € Ig, perform direct

S2T from C; to C.

o Number of S2T translations: the size of the sublists Zg™, Zg", and Z&7 for each
C: and each direction is listed in Table 3.1. The number of S2T translations
per cube is 89, which is less than half the size of the initial 189-cube interaction
list. Furthermore, as a by-product. the $2s translations from C to P are also

obtained (steps 1 and 3) with no extra cost.

Once the target centre has accumulated all the effects from the sources that are
outside its cluster and the surroundings. its equivalent potential can then be redis-

tributed to target centres of its subclusters or directly to its target points.

3.3.3 Redistributing: target centres and target points

Redistributing from a target centre to new target centres is the reverse operation of
clustering source centres to form new source centres. It is the redistribution of the
equivalent potential of one target centre to new target centres of its subclusters.
This process is referred to as a T2T translation. The equivalent potentials of the
new target centres are also expressed in terms of exponential distances defined

below.
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dir | I | IgT Ig‘j s2s
Co|Ci|Ca |C3|Cy|Cs | Ce | Cr

up 36| 16( 94 9| 9| 9 9 9 9] 9 8
down | 36 16| 91 91 9{( 9| 9 9} 9! 9 8
east 24 81 13 71 13 713 7| 13 7 8
west 24 8 7113 7113 7113 7113 8
north 16 4|1 14| 14 9 9114 ] 14 o 9 8
south 16 4 5 5|14 14 b 951 144 14 8
total | 152 | 56 | 57 | 57 | 57 | 57 | 57 | 57 [ 57 | 57 | 48

Table 3.1: Number of S2T translations per cube
(There are 89 (= 57 + 152435448 597 translations for each cube)

Definition 3.3.4 (T2T) For a cube centred at T that has n. child cubes centred at
Ty..T,... we define the target at T;, i = l..n., associated with a pair of indices [k. j]

and a direction dir as
Eta'get'di'[k.j](ﬂ) 4= Etarget‘dir[k,j](T) x Ed‘r[k,J](TT';) (363)

A target point can be viewed as a special target centre of a one-point cluster. In
this case, the T2T is referred to as a T2P translation. It redistributes the equivalent
potential from a target centre to a target point in the cluster. The equivalent
potential contains all the necessary information of the far-field potential and its

gradient at the target point.

Definition 3.3.5 (T2P) Let T be the centre of a leaf cube. Let P be a target

point in the cube. The equivalent potential at P associated with indices [k, j] and a
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82T

Figure 3.3: Translations in the EE method.

direction dir is defined in terms of exponential distance as

Etargct.dir(P) = Etargchdif[k.]’](T) X Ed"[k,]](TP) (364)

B Etarget.dir[k_j](T)
~ TEFERIPT) (3:69)

Relation (3.65) follows from (3.64) and Proposition 3.2.1(iv). Here, instead of
calculating E4"[k. j](T P) directly. we can obtain it via the multiplicative inverse
of E¥"[k.j|(PT), which has already been calculated in the Q2s translation.

The translations in the EE method are illustrated in Fig. 3.3. After a sequence
of translations Q2s, s2s, s2T, T2T, and T2P, from source points to target points,
the information about the far-field potential and its gradient at target points is
available for retrieval.

3.3.4 Potential ® and its gradient V&
Potential &

The potential ®(P) of a target point P can be expressed as a sum of two
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potentials: ®7(P) and $°(P). The former is due to all far-field interactions, which
are covered by the S2T translations. The latter is due to interactions with source
points of close proximity. In a tree-like hierarchy, it includes all points in the leaf
cube containing P and in the cubes that are neighbours of the leaf cube. For a

given target point P, we denote this set as Neighbour(P).

®(P) = @T(P)+ @°(P). (3.66)

For ®P(P). we resort to direct pairwise particle-to-particle potential calculation

(1.21).

&°(P) = 2Q) (3.67)
7 ceniair 19P]

For ®T(P), we express it in terms of the potential due to translations associated

with each pair of indices [k. j]. which we denote as @[k, j](P).

SQu(er lnner(k)

eT(P) = ) Z ®[k. 5)(P). (3.68)

k=1

Each ®[k. j] can be expressed in terms of the potential due to translations associated

with six directions, which we denote as &% [k, j]( P), dir € DirSet.

ok, jI(P) = D [k, I(P) (3.69)

dir€DirSet
Gradient V& = ($.,®,,®,)
The gradient V& of the potential is a vector whose components are the partial

derivatives ®., ®,, and &, of the potential ® in the z-, y-, and z-direction, respec-
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tively. The expressions for these partial derivatives can be obtained in correspon-

dence to (3.66)-(3.69). For example, the expressions for ®, read

®.(P) = ®T(P)+dP(P) (3.70)

&°P(py = —9(Q)zqr 3.71

z( ) QeNeithbour(P) “QP”3 ( )
Souter  Sinner(k)

®T(P) = sx Y A D &.[kj](P) (3.72)
k=1 =1

e[k GUP) = ). [k j|(P). (3.73)

dir€DirSet

The expressions for , and ®, can be constructed similarly. Note that in (3.72),
we have included the scaling factor s introduced in (3.47) and A in (3.4).

In order to have a complete expression for the potential and its gradient. we
now describe ¥ [k.j](P), ®5"[k.7}(P). % (k.j](P), and ®F"[k,j](P) for each
direction dir € DirSet. These values can be retrieved from the equivalent potential

at the target point E*ar9°t4ir(k j](P) in (3.64).

Proposition 3.3.1 Let P be a target point with the equivalent potential as a com-
plez number Eterectdir( j|(P) = Rﬁ;" +iI,‘g-’, dir € DirSet. The potential at P due

to all the translations associated with indices [k, j] and direction dir s

% [k,j] = REr. (3.74)
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The corresponding partial derivatives are

4

—cosag;Igr  dir € {Up, Down, North, South}
®;7[k,j] = { —REe dir = East (3.75)
+Rfe dir = West

—sin aq; IgT dir € {Up, Down, East, West}

&7 [k.jl = { —RN¥e™  dir = North (3.76)
+ Rk dir = South
(R dir = Up
. + RPewm dir = Down
ek = ¢ ¢ (3.77)

—cos ag;Ig"  dir € {East, West}

—sin ag;IgT  dir € {North, South}.

\

Proof. Let n be the number of levels in the tree-like hierarchy. We assume that
b = 2™ > 2" so that all far-field interactions are coverered by the S2T translations
and therefore, no extra scaling is required. We shall discuss the case in which
b=2™ < 2"in §§3.5.3 and 3.5.4.

In §3.2.5, using (3.41), we obtain the equivalent potential associated with one
direction using a sequence of clustering, shifting and redistributing operations. In
the general case, all of the six directions should be taken into account. This explains
the sum in (3.69) and (3.73). Note that in (3.8) only the real part of S(z,y,z2) is
taken. This explains why only the real part of E*379t4ir[k, j](P) is used in (3.74).

The partial derivatives (3.75)—(3.77) are in fact the partial derivatives of the
equivalent potential E®r9¢t¥r (L j](P) (excluding the factor s x A¢). Because the
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equivalent potential is only an approximation of the far-field potential, the results in
(3.75)—(3.77) may be less accurate than the result in (3.74). This is due to approx-
imation (3.1), and not the translations. Note that the accuracy of the computed

gradient can be improved using more accurate approximations (3.1) [25]. |

The above five Definitions 3.3.1-3.3.5 for translations in the EE method are
reminiscent of the Q2M, M2M, M2L. L2L, and L2P translations in the MP method.
The translations here. however. have a distinct character. This is discussed in what

follows.

3.4 Salient features

In this section. we describe some of the salient features of the proposed approach
with respect to simplicity, accuracy, speed. memory requirement, retrieval of gra-
dient of potential. and possibilities for efficient distributed computing and parallel
processing. The salient features stem from the simplicity of the translations and

the independence between the approximation and the translations.

3.4.1 Simplicity

The translations in the EE method are tidy. They all have the same structure: the
value at destination is equal to or accumulative of the value at origin (with the
same indices and same direction) multiplied by the exponential distance E between
origin and destination (see (3.48)-(3.65)). The translations can be expressed in-
dividually for each pair of indices [k, j] and each direction (see (3.68)-(3.69) and
(3.72)-(3.73)). It is this kind of simplicity that makes it easier for comprehension

and implementation. In contrast, the translations in the MP method have different
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structures: one for M2M, another for M2L, and yet another for L2L. Furthermore.
they involve a double sum (original version) or a single sum (new version) with tight

coupling between the multipole and local expansion coefficients M}}’s and L7,’s.

3.4.2 Accuracy

All translations in the EE method are exact. They are based purely on the equality
given in (3.19) and hence no additional error is introduced. The computational
accuracy depends solely on the approximation of 1 (3.1) in the associated set Df P
(3.5). Proposition 3.1.3 describes the relationships between the intended error of
the approximation and the actual error of the calculated result. This shows that
the accuracy of the EE method is controlled externally. If a more accurate approx-
imation in (3.1) is available without increasing the approximation size Sgpp. then
this automatically translates into an improvement in the accuracy of the computed
potential without undermining the computational performance. In stark contrast.
the accuracy of the MP method inherently depends on the order of the expansion p
and on how the M2L translations are performed. Discussions in the literature (see.
for example, [42.43]) on error estimation of the MP method indicates the associated

complexity.

3.4.3 Speed

All translations in the EE method are of the order O(Sgp). In Q2s, the calculation
involves exponent, cosine, and sine operations. In other translations, only multi-
plication and addition operations in complex numbers are involved. In all of the
translations, except S2T, the calculations for all six directions are needed. In S2T,

which has the largest number of translations, calculation for only one direction is
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Translation Cost Object

Q2s 6 X Sgpp x C. | per particle

s2s 6 X Sapp X Cm | per cube

S2T 1 x Sgpp X Cr | per translation
89 X Sspp X Cmm | per cube

T2T 6 X Sapp X Cm | per cube

T2P 6 X Sgpp X Cm | per particle

Table 3.2: Computational cost of translations in EE method

needed. Let C. and C,, denote the costs to perform calculations involving exponent
and multiplication operations, respectively. The cost of each of the above trans-
lations is summarized in Table 3.2. Here, we observe that all translations are of
the order O(S,pp). Hence. the efficiency of the translations is also controlled exter-
nally via S,pp. the size of the approximation (3.1). A smaller approximation size.
without compromising the accuracy of approximation (3.1), will improve computa-
tional speed without loss of accuracy in the computed potential. This is in contrast
to the MP method, whose computation time inherently depends on the order of
the expansion, O(p®) in the new version or O(p*) in the original version, and on
the trade-off between computational time and memory in choosing the interaction
list for M2L translations. With both accuracy and speed being controlled exter-
nally, the performance of the EE method can be improved by having more accurate

approximations with smaller sizes.

3.4.4 Memory requirement

The memory requirement in the EE method is independent of the size of the ap-

proximation and hence the desired degree of accuracy. For each pair of indices [k, ]
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Object | Variable | Memory unit for complex number
particle | E 1 (optional)
cube E®vree 11 (and/or)

Etarget 1

Table 3.3: Cost in memory independent of degree of accuracy

and for each direction dir € DirSet, the value at destination depends only on the
value at origin with the same indices and same direction. As a result. there is no
need to store all of the E[k. j]'s. Nor is there need to store the values of E[k. j] for
all of the six directions. One E can be used for all six E¥"[k, j]|'s, dir € DirSet.
More specifically, the memory requirement in the proposed method is listed in Ta-
ble 3.3. The memory unit is the number of bytes to store a complex number or two
real numbers. The variables E. E*°*"*¢, and E**™?* are used for all six directions
and for all pair of indices [k.j]. In contrast, the multipole and local expansion
coefficients M and L7 in the MP method have to be stored explicitly: the memory
requirement is O(p?). In the new version of the FMA, the memory requirement is
even more demanding, with O(6p?) extra memory units for storing the exponential
expansion coefficients at cubes which are being affected by M2L translations. The
improvement in the new version of the FMA is. to some degree, offset by this high
demand for memory. The memory requirement per cube in the two approaches, MP
versus EE, are summarized in Table 3.4. From this, it is clear that the EE method
proposed here is far more efficient in terms of memory requirement. Thus, it is now
possible to simulate larger ensembles of particles with higher degrees of accuracy,

given the same computing resources.
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Approaches Memory requirement
multipole expansion (MP) “’*'—l)z(”—ﬂ

exponential expansion (EE) | 1

(p+1)(p+2
2

ratio %—E—

Table 3.4: Memory requirement per cube in the two approaches: MP vs. EE.

If it turns out that there is unused memory, the overhead due to processing
each individual E[k, j] can be reduced by storing E[k, j| for more than one direc-
tion as well as for more than one pair of indices, and performing translations on
them in the same tree traversal. However, it should be emphasized that this is an

implementation option, not an inherent requirement imposed by the EE method.

3.4.5 Retrieval of gradient of potential

In the EE method. the gradient of potential can be obtained as a by-product from the
computational process of the potential. The retrieval of the gradient is accomplished
using expressions (3.75)—(3.77), the overhead of which is small (see Fig. 3.4). This
is applied to both types of charge distributions: discrete charge distribution (3.48)
and continuous charge distributions (3.49)-(3.50). In contrast, the formulation and
the evaluation of the gradient of the potential in MP method is quite complex (see,

for example, [17]).

3.4.6 Distributed and parallel processing
The EE method renders itself naturally to distributed computing and parallel pro-
cessing. For a given pair of indices [k, j] and a direction dir € DirSet, the expo-

nential distance E%"(k,j] can be processed independently. This makes it possible
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Figure 3.4: Running time for evaluation of potential only (dashed), and both po-
tential and its gradient (solid). The overhead in evaluating both potential and its
partial derivatives ranges from 1.06 to 1.15.



CHAPTER 3. EXPONENTIAL-EXPANSION METHOD 82

for large-scale simulation of particle systems using remotely-distributed computer
networks. Furthermore, for each E%"[k, j], parallel or distributed schemes for per-
forming the required translations can also be employed here. Therefore. with the EE
method, there are two forms of parallelism: parallelism among the E¥"[k, j]'s and
parallelism among translations for each E%"[k.j]. The following typifies sequential

and parallel codes:

Sequential Code Parallel Code
For each pair [k,j] and In parallel,

For each direction For each pair [k,j] and
in sequence, each direction
perform translations in parallel,

End perform translations

End End

Following the above discussion on the attributes of the EE method, we next dis-
cuss the associated algorithms. We propose three algorithms using the translation
(3-19) and approximation (3.20) for efficient evaluation of the potential field in an
ensemble of N particles. Algorithm I handles the case of @ = 1 and b > 2”, where
n denotes the number of levels in the tree-like hierarchy of cubes. The framework
is similar to Greengard's FMA. However, all the translations are now performed
on the exponential distances E%'[k,j]’s, which can be processed independently.
Furthermore, there is no need to perform the s2s translations directly; they are
already available from the S2T translations. Algorithm II handles the case of a = 1

and b = 4. Here, due to the scaling problem (to be discussed later), we employ a
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very different framework without the efficient s2s and T2T translations. Algorithm
IIT is a generalization of Algorithms I and II. It handles the case of a = 1 and

b = 2™ < 2", where m is an integer between 2 and n.

3.5 Algorithms

The three algorithms have many computational steps in common. They all have
the same input and output structure; they have the same structure for S2T and
T2P translations: and they have the same procedure for direct pairwise short-range
particle-to-particle potential calculation. Before describing the specific algorithms.

we first discuss the computational steps they have in common.

3.5.1 Common computational steps

Input and output

In all of the three algorithms, the input is (a) the number of levels n of the tree-like
hierarchy. (b) the approximation (3.1) for a given error €, and (c) an ensemble of par-
ticles {X;,7 = 1..N'} whose charges are {g;,i = 1..N}. The output is the potential
®(X:) and/or its gradient V@(X;) at each location X;. Note that a location X; rep-
resents both a source particle and a target particle. The preprocessing step involves
(a) precomputing some frequently used values of E, such as E(£0.5, +0.5, +0.5) for
s2s, E(xz,ty, +z) with z,y,z € {0.5,1.5,2.5,3.5} for half-list and full-list s2T,
and E(tz,ty,xz) for z,y,2z € {0,1,2,3} for direct-list s2T; (b) precomputing
sin ax; and cos ai; for Q2s; (c) constructing the tree-like hierarchy of cubes; and
(d) allocating memory for the variable E at each particle (optional), E*“"¢ and /or

Etarget at each cube.
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Direct pairwise short-range particle-to-particle potential calculation

Procedure 3.5.1 [Direct]
For each particle P, perform direct pairwise short-range particle-to-particle

potential calculation using (3.67) on the set Neighbour(P).

Cost analysis: let P, denote the average number of particles per leaf cube. For
each particle, 27 x P,. such calculations are needed. Let Cy denote the cost of
each direct pairwise particle-to-particle potential calculation. The total cost of all

pairwise particle-to-particle potential calculation is

Cost(DirectCalculation) = 27 x P, x Cg x N. (3.78)

TreeTraversal(dir. n,are. Nend)

The following procedure shows how the translations $2s, s2T, T2T, and T2P. in
all of the three algorithms, are linked in order to obtain the potential. The only
missing translation is the Q2s translation. Each algorithm handles Q2s in a different
manner. The three input parameters are the direction dir and the levels at which
the tree traversal starts (n,eqr:) and ends (nend), With n,e4re > Tieng. All translations
associated with the cubes at the levels between n,4,: and n..q are performed, with
the exception of the Q2s translation. It is assumed that the source centres at the
level 7,:q,+ have been calculated and the length ! of cubes at level 1,4, is chosen
as the unit length. The scaling factor is given in (3.47). During the tree traversal,

the remaining source centres, target centres, and target points are computed.
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Step | Operation cost | Particle vs. cube
step 1 | 89 x Sgpp X Cm | per cube

step 2 | 6 x Sypp X Crn | per cube

step 3 | 6 X Sgpp X Crn | per particle

Table 3.5: Cost of operations per cube or per particle in TreeTraversal for all six
directions

Procedure 3.5.2 [TreeTraversal(dir, n,iart, Pend))

Step 1 For level from n,4.¢ t0 Neng, perform s2T(dir) (see Procedure 3.3.1).
Step 2 For level from neng to n,e.e — 1, perform T2T.

Step 3 At level n,4.¢, perform T2P and retrieve the potential using (3.69)

and (3.74).
Cost analysis: The computational cost of each step in TreeTraversal for all six
directions is listed in Table 3.5. For a given cube, there are about 89 s2T translations
and the total cost of all translations is 6 x Sspp X Crn x (1+ %9-) = 6 X Supp X Crm x 16.
Let Cin,caremenq) D€ the total number of cubes from level n,epe to level neqg. The

total cost of the procedure TreeTraversal for all of the six directions is estimated as

Cost(TreeTraversal(dir, n,4rt, Teend) )

= 6 X Sapp X Cm X [16 X Clnprareincna) + N1- (3.79)

3.5.2 Algorithm I (fora =1, b > 2")

Procedure 3.5.3 [Algorithm I]

For each pair indices [k, j] and each direction dir € DirSet,
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Step Operation cost Particles vs. cubes
step 1l | 6 X Sgpp x Ce x N all particles

step 2 [ 6 X Sgpp X Crm X [}i—:c + 1] x N | all cubes and particles
step 3 | 27 x Ppe x Cgx N all particles

Table 3.6: Cost of operations in Algorithm I

Step 1 At the finest level (n? level), perform Q2s.
Step 2 Perform TreeTraversal(dir,n,2).
Step 3 Perform direct pairwise short-range particle-to-particle potential cal-

culation (Procedure 3.5.1).

Cost analysis: the total number of non-leaf cubes is about 1 the number of leaf
cubes. Therefore, the total number of cubes in the tree-like hierarchy is about
Clnsare=nangng=1) = %PL::. The computational cost of each step is summarized in
Table 3.6. The cost of step 2 is obtained from (3.79) by replacing Cin,,qc.ncnq) With

%;.%. The cost of step 3 is obtained from (3.78). The total cost is estimated as

Cost(Algorithm I)

= (65,,‘,,,{,(0e + [}1,—7 +1|Cm) + 27Ppccd) x N. (3.80)
pc

If the cost of direct pairwise short-range particle-to-particle potential calculation
is relatively small, the total cost can be considered as O(N), or more precisely as

O(SuppN).

3.5.3 The scaling problem
In the approximation (3.1)-(3.5) with b < 2", not all S2T translations are possi-

ble. The reason is that according to Theorem 3.2.1 and Definition 3.3.3, an S2T
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translation is only valid if the vector connecting the centres containing the source
and the target is bounded in [a + 1,b — 1]. Because b < 27, there exist source
centres and target centres (such as those at the two ends of the root cube) whose
vectors are not bounded in [a + 1,5 — 1]. The case b = 2? is an extreme case in
which this condition is never satisfied when we move either upwards or downwards
to the next level. One way to deal with this difficulty is by scaling. Here, we
choose the length of the current cubes as the unit length (as opposed to that of the
leaf cubes). Due to this new scaling, all of the Q2s’s have to be recomputed. A
direct recomputation would be too expensive because it involves exponent. cosine,
and sine operations. To avoid unnecessary recomputation, we need the following
proposition. which provides an efficient method to obtain the Q2s to a child cube
from the Q2s to the parent cube. We assume that Q2s is performed with the length

of the cube (containing the source) chosen as unit length.

Proposition 3.5.1 Let S be the centre of a cube and Sp the centre of its parent
cube. Let Q be a source particle in cube S, and hence also in cube Sp. The Q2s

from Q to S can be obtained from the Q2s from Q to Sp as follows:

Edir[kv j](qunit(S))

= {Edir [kv j](QSPunjt(sp))}z Edir[k» j](sPsunjt(s))- (3.81)

Here, the subscripts unit(s) and unit(se) are used to indicate that the lengths of the
respective cubes S and Sp are chosen as unit length in the calculation of E. The
cost to perform Q2s from @ to S for each direction is now 2 x C,,, which is much

cheaper than a direct Q2s, which costs C..



CHAPTER 3. EXPONENTIAL-EXPANSION METHOD 88

Proof.
E*" [k, 5/(QS ynit(s))

= E¥[k.j/(QSpunit(s)) B k. 5)(SPSunit(s)) (3.82)

= B¥[k.512QS punit(sp) E* k. 31(SPSunit(s)) (3.83)

= {E“ k. 1(QSpumitisn)} B k. 1(SpSynits)- (3.84)

|

Note that we can also obtain the Q2s to parent from the Q2s to children in
a similar way. But this is not preferable because it is more costly in view of the
square root operation involved.

In approximation (3.1) and the associated set Dfp (3.5) with a = 1 and b = 4.
we process the cubes level by level, starting from level 2. At each level, we consider
the associated cubes as leaf cubes. The sequence of translations is as follows: Q2s.

s2T. and T2P. The translations $2S and T2T are used as part of T2P.

3.5.4 Algorithm II (for a =1, b = 2?)

Procedure 3.5.4 [Algorithm II]

For each pair indices [k, j] and each direction dir € DirSet,

level = 2

Step 1 Perform direct Q2s.
Step 2 Perform TreeTraversal(dir, level, 2).

level = 3 to n step 1

Step 3 Perform Q2s using (3.81) for E¥*"[k, j](QS).
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Step Operation cost Particles vs. cubes
stepl | 6% Sopp xCe x N all particles
step 2,4 | 6 x Sapp X Crm X [}i—:c +(n —1)] x N | all cubes
step3 | 6X Sepp XCra x2x(n—2)x N all cubes and particles
stepd |27 x Ppe xCygx N all particles

Table 3.7: Cost of operations in Algorithm II

Step 4 Perform TreeTraversal(dir, level, level).

Direct

Step 5 Perform direct pairwise short-range particle-to-particle potential cal-

culation (Procedure 3.5.1).

Cost analysis: the computational cost of each step is summarized in Table 3.7.
In steps 2 and 4. we need (n — 1) T2P translations for each particle. In step 3. we
need (n — 2) Q2s translations using (3.81) of Proposition 3.5.1. The cost of each

subsequent Q2s translation for each E is 2 x Cr,. The total cost is estimated as

Cost(Algorithm II)

= <6Sapp(0, + [;,—7 +(3n — 5)|Cm) + 27P,,cc,,) x N. (3.85)

pc

If the cost of direct pairwise short-range particle-to-particle potential calculation is
relatively small, the total cost can also be considered as O(N), or more precisely
as O(S.ppN). It is noted that the total cost (3.85) is also a function of the number

of levels n. A comparison between the algorithms will be discussed later.
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3.5.5 Algorithm III (fora=1, 22<b=2™ < 2")

We have discussed the two extreme cases in which the condition of boundedness
in {@ + 1.b — 1] (of vectors connecting two cube centres that are at least one cube
apart) is either always satisfied or never satisfied when one moves from one level
to another in the tree-like hierarchy. Now we discuss the general case in which
4 =22 < b=2™ < 2", where n is the number of levels in the tree-like hierarchy
and m is an integer between 2 and n. Let Am = m — 1 and An = [322]; (Am —1)
can be considered as the number of levels we can move through without violating
the condition of boundedness in [@ + 1,b — 1]; An is the number of re-works on Q2s
each time the condition is violated. While moving from one level to another. if the
condition of boundedness in [a + 1,b— 1] is still satisfied, we can apply the strategy
in Algorithm I by just continuing with S2T or T2T translations; otherwise, we use
the strategy in Algorithm II by reworking on the Q2s translations. In Algorithm II.
the rework on Q2s is based on Proposition 3.5.1. The following proposition extends

Proposition 3.5.1 to a more general case.

Proposition 3.5.2 Let S be the centre of a cube and S4 be the centre of its ancestor
cube that is Am levels higher. Let Q be a source particle in cube S and hence also
in cube S4. The Q2s from Q to S can be can be obtained from the Q2s from Q to

S4 as follows:

E* [k, j](qunit(s))

= {E“"[k,j](QSAunit(Sa))}

24

E* [k, j(SaSunits)-  (3-86)

Proof. Similar to the proof of Proposition 3.5.1. |
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The cost of Q2s from Q to S is now (Am + 1) x Cp,. Because Am is small (1, 2. or
3), the cost here is expected to be smaller than the cost of calculating Q2s directly.
Note that if Am is large. by combining (3.86) with (3.81), we can avoid overflow
and underflow in (3.86).

Procedure 3.5.5 [Algorithm III]
For each pair indices [k. j] and each direction dir € DirSet,
initLevel =n - An x Am

Step 1 Perform direct Q2s.

Step 2 Perform TreeTraversal(dir, initLevel.2).

level = initLevel + Am to n step Am

Step 3 Perform Q2s using (3.86) for E¥"[k, j](QS).

Step 4 Perform TreeTraversal(dir, level. level — Am + 1).

Direct

Step 5 Perform direct pairwise short-range particle-to-particle potential cal-

culation (Procedure 3.5.1).

Cost analysis: the computational cost of each step is summarized in Table 3.8. In
steps 2 and 4, we need (An + 1) T2P translations for each particle. In step 3, we
need (An) Q2s translations using (3.86) of Proposition 3.5.2; the cost of such Q2s

translation for each E is (Am + 1) x Cy,,. The total cost is estimated as
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Step Operation cost Particles vs. cubes
stepl |6 X Sgpp xCe x N all particles
step 2,4 | 6 X Sapp X Cm x [g=+ (An +1)] x N' | all cubes and particles
step 3 | 6 X Sapp X Crn X [An x (Am + 1)] x N | all particles
stepb |27 x Ppe xC4x N all particles

Table 3.8: Cost of operations in Algorithm III

Cost(Algorithm III)

= (63:,,,,[,((:c + [11)—7 + An(Am +2) + 1]Cr) + 27P,,ccd) x N.  (3.87)
pc

Again. if the cost of direct pairwise short-range particle-to-particle potential calcu-
lation is relatively small, the total cost can be considered as O(N), or more precisely
as O(SappN). The cost estimates (3.80) and (3.85) are special cases of (3.87). For
Algorithm I. we have Am = n — 1 and An = 0: for Algorithm II, we have Am =1

and An=n - 2.

3.5.6 Algorithms: comparison

At first glance, the difference in the costs (3.80) and (3.85) appears to be the
terms in bracket: [;—:‘ + 1] versus [%:—c + (3n — 5)]. However, an important factor
that needs to be taken into account lies in the sizes of the approximations used in
the two algorithms; they may be significantly different. With the same degree of
accuracy. Algorithm I needs a larger approximation size while Algorithm II requires
the indirect re-work on Q2s using Proposition 3.5.1. With the approximations
available, if the cost of the indirect re-work on Q2s is relatively small, which is

often the case for particles of discrete distributions (3.48), then Algorithm II is
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faster than Algorithm I. This is in spite of the dependence of the cost (3.85) on the
number of levels n in the tree-like hierarchy. However, for particles of continuous
distributions (3.49)-(3.50), the rework can be more involved, and therefore, this
may not be the case. In both cases, the overall performance can be improved by
obtaining better approximations in (3.1), i.e., more accurate approximations with
smaller sizes. Algorithm III is a hybrid version of Algorithms I and II. which inherits

both the strengths and weaknesses from the two algorithms.

3.6 Numerical results

All of the three Algorithms I, II, and III are implemented in and tested on uniform
random distributions with unit charges. The results demonstrates that with the
EE method. the potential can be approximately evaluated with a wide range of
accuracy and with a running time of the order O(N), or more precisely O(SgppN).

In this section. we discuss these results.

3.6.1 Approximation and error

Maximum relative error and average relative error

For the purpose of comparison, we define the following two error norms: maximum

relative error Eprq.-r.1 and average relative error E4ygRel-

e

Etacre(®) (3.88)

1<i<N

B(X;) — B(X:)
®(X:)

a |ZE 1 ‘I’(X — &(X;) |2
Epugra(®) = ‘/ 1 LB [ (3.89)

‘l=
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Here. &(X;) and $(X;) are the potentials calculated using direct particle-to-particle
calculation and using the proposed EE method. respectively. For tests with N >
10. 000 particles. only a subset of 100 random particles are chosen for direct pairwise
particle-to-particle potential calculations. and the error norms (3.88) and (3.89) are
evaluated on this subset.

The maximum relative error norm is tighter than the average relative error norm.

It can be shown that

E avgret(®) £ Ermazre(®). {3.90)

In the EE method. the two error norms above can be estimated using Proposition
3.1.3. If all of the charges are non-negative then Epazret(®) < €. and hence from

(3.90). E4vgret(®) < €ret. In general. we have

EMachl(Q-*-) < el (3'91)

EMQ.‘BR:‘(Q_) < Epels (392)
and hence from (3.90),

Eaugret(®t) < € (3.93)

EAngcl(@—) < Erel- (394)

In the MP method, the error analysis becomes quite complicated, therefore, the

average relative error norm E4,4ge is commonly used for error estimation.
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Intended errors (€abs, €rel) and actual errors (Emaxrel, EavgRel)

The expressions (3.91)-(3.94) indicate that the actual errors (maximum relative
error and average relative error) are bounded by the intended relative error €.
The test results show that the actual errors are much smaller. For an intended
k digits of accuracy in relative error, we can expect between (k + 2) and (k + 4)
digits of accuracy in the calculated potential. The reason is that the intended error
€re; 1s meant for the worst case scenario in approximation (2.54) to account for
all points in D, especially those on the boundary. In general, the value on the
left hand side of (2.54) is much smaller than the value €. on the right hand side.
Table 3.9 lists both the maximum relative error Eq:ret and average relative error
E gugrea of the calculated potentials using the exponential expansion listed in Table
2.2. The first three columns describe the approximation (3.1): its size and relative
error (2.54) or absolute error (2.55). The remaining three pairs of columns show
the maximum relative error Ep.zre (3.88) and average relative error E 4y5r (3.89)
of the calculated potential in three sample sizes: N = 1000, 10000.50000. On each
row, both of the error norms are much smaller than the corresponding relative or
absolute error for the approximation. This confirms (3.91) and (3.92). Furthermore.
the average relative error is smaller than the maximum relative error. This supports
(3.90). From the test results, it can be concluded that, with the approximations
available, a wide range of accuracy, from a few digits to the machine precision, can

be achieved in the evaluation of the potential field using the proposed EE method.
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96

Approximation

EMazre(®) and E4ugre(P)

sample size N

1000

10000

50000

E MazRel

E AvgRel

EMazRet

EAngel

EMazre

E AvgRel

87
102
116
146
179
180
208
243
289
294
322
358
411
425
661
672
772

1.052
1,076
1.220

10-2
102
10-2

1073
1073
10-3
10~
1074
104

10-°
10-°

1077

10-°

101
1071
10-!

101
1071

10-2
10-2

1073

104

10-°
10~°
10-¢

1077
10-9

1079

2.4 x 1073
1.7 x 1073
4.4 x 1073
2.3 x 1073
2.8 x 10~4
1.3 x 1073
1.9 x 10~4
1.1 x 104
7.1 x 10°8
6.7 x 10~¢
3.6 x10°°
6.1 x 10~8
2.1 x 10°8
1.3 x 10-¢
5.5 x 1076
6.6 x 10~¢
1.3 x 10~¢
4.5 x 107
4.2 x 1077
5.8 x 107
1.7 x 1077
7.7 x 10°8
1.2 x 1077
5.2 x 10~8
9.1 x 10~°
1.5 x 10°°
1.5 x 10~°
3.3 x10°°
2.9 x 10°°
2.0 x 10711
4.7 x 10712
1.2 x 10710
9.6 x 10~13

35x 104
2.2 x 104
1.1 x 103
6.0 x 1074
6.0 x 10°%
3.0 x10°¢
2.9 x 10°%
1.5 x 10-°
1.3 x 1075
1.8 x 10~¢
7.0 x 10~
6.3 x 10~
2.3 x 10~¢
2.4 x 10°¢
1.1 x 10°8
54 x 10°7
2.3 x 1077
49 x 10°8
5.5 x 10~8
4.8 x 10°8
1.5 x 10~8
4.6 x 102
1.1 x 10°8
2.5 x 1079
6.5 x 10-10
1.8 x 10710
2.2 x 10710
1.1 x 10~
8.7 x 107
1.5 x 10~12
1.8 x 10713
4.6 x 10712
4.4 x 1074

3.8x10°3
2.9 x 1073
6.1 x 10~3
3.0 x10°3
3.0 x10°4
1.8 x 103
5.1 x 10~
7.7 x 10°3
4.7 x 1078
9.5 x 10~
5.6 x 10~
7.2 x 1073
4.3 x 10~%
1.0 x 10~%
6.4 x 10~
1.4 x 108
1.4 x 1078
5.5 x 10~7
7.1 x 1077
46 x 10~7
2.1 x 107
6.3 x 10~8
8.7 x10°8
1.2 x 107
6.6 x 108
4.1 x10~°
5.1 x10~°
8.1 x 10710
1.2 x 10~°
1.2 x 1010
5.5 x 10~
6.0 x 10~11
7.2 x 10712

4.3 x 1074
2.8 x 104
1.4 x 1073
7.3 x 10™4
5.1 x 10~3
3.9x10°¢
4.1 x 10-°
1.2 x 10~®
9.1 x 10~¢
2.2 x 10~4
9.6 x 10~°
9.3 x 10~¢
2.6 x 10~8
1.3 x 10~6
1.2 x 10~
6.1 x 10”7
2.5 x 1077
6.8 x 108
5.9 x 10~8
7.0 x 10~8
2.0 x 10~8
3.1x10°
1.2 x 10~8
3.1 x10°°
1.4 x 10~°
2.0 x 10°10
2.5 x 10~10
2.8 x 101!
2.9 x 10712
4.2 x 10~12
7.8 x 1013
1.5 x 10~12
2.4 x 10713

1.8 x 1073
1.6 x 102
4.0 x 1073
2.8 x 10°3
1.7 x 10~¢
1.3 x 103
1.8 x 10°¢
3.7 x 1078
2.6 x 10~®
9.3 x 10~4
3.7x10°8
5.1 x 1075
1.4 x 1075
46 x 10°¢
3.8 x10°¢
3.7x10°¢
8.0 x 1077
3.5 x 1077
1.3 x 10~7
2.7 x 1077
6.1 x 10°8
6.4 x 10~°
3.4 x10°8
1.3 x 10°8
6.7 x 10~°

4.3 x 10710

5.4 x 10~°

1.1 x 10°1°
1.8 x 1071°
1.8 x 10~
4.2 x 10712
6.6 x 10713
58 x 10°13

4.0 x 104
3.2x10°%
1.4 x 1073
7.7 x 10~*
4.6 x 10°8
39x10¢
3.7 x 10~
1.2 x 1073
7.8 x 106
2.2 x 10~*
8.8 x 106
1.1 x 108
2.4 x 106
8.3 x 1077
1.1 x 10°¢
6.1 x 10~7
2.5 x 1077
7.0 x 108
51 x 108
6.6 x 10~8
1.9 x 10°8
1.8 x 10~°
1.0 x 10~8
1.6 x 10~°
7.8 x 10°1°
8.1 x 10~1¢
4.4 x 10710
1.8 x 10°11
1.9 x 1011
1.8 x 10~!2
6.1 x 1013
8.9 x 1014
7.2 x 10~

Table 3.9: Maximum relative errors: approximation (3.1) and calculated potentials.
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3.6.2 Computational time O(SappN)
O(N) behaviour

Table 3.10 lists the running time of Algorithm II, together with the maximum rela-
tive error and average relative error of the calculated potential in simulations with
tree-like hierarchies of 4 and 5 levels. Here, N denotes the sample size, TaigorithmIr
the running time of Algorithm II, Tpiree the extrapolated running time of direct
particle-to-particle calculation. The approximation used is described in Table 2.2):
Sapp = 31, e = 10~!, and b = 22. The error in the calculated potentials is
EMazret < 1072 and Egygre < 107%. In both cases, when the cost of the direct
pairwise short-range particle-to-particle potential calculation is relatively small. the
curves are virtually linear. When this cost becomes dominant, it can be made neg-
ligible by expanding the tree hierarchy to one level higher (see Fig. 3.5). This is in
agreement with the cost estimations (3.80). (3.85), and (3.87), suggesting that the
proposed EE method is of the order O(N).

O(SeppN) behaviour

Figure 3.6 shows running time as a function of approximation size Sapp- Again, for
each sample size, the curve is virtually linear. This demonstrates that the proposed

EE method is of the order O(SgppN).

3.6.3 Algorithms I, II, and IIT : comparison

In this subsection, we compare the running time of the three algorithms proposed
in the previous section. In spite of the dependence of the computational time on the
number of levels in the tree-like hierarchy, with the available exponential expansions
generated [23], Algorithm II is the fastest.
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Level N TAlgon'thmI I TDirect EM azRel E AvgRel

1 26.000 37.41 (216) | 1.3 x10-* | 3.8 x 10
30.000 54.72 (486) 1.1 x10~* | 3.2 x10°°

50,000 95.06 (1,350) 1.0 x10~* | 3.3 x 1073

100,000 227.71 (5,400) 1.3 x 107 3.2 x10°®
110.000 260.17 | (6,534) | 1.3x10~* | 3.8 x 10-°
120,000 293.40 (7,776) 1.4x10™* | 3.7 x10°°
130,000 329.29 (9.126) 1.0x107* | 3.6 x 10°°
140,000 367.60 | (10,584) 1.1 x10°%* | 3.3 x10°°
150,000 405.22 (12.150) 1.4 x 107 3.4 x10°°
160.000 446.18 | (13.824) | 1.4x10™* | 3.9 x 10~°

5 100,000 247.22 (5,400) 1.1x107* | 3.3 x107°
110,000 261.36 | (6.534) | 1.2x107* | 3.7 x 1075
120,000 279.46 (7.776) 1.2x10"% | 3.3 x 107®
130.000 295.10 (9.126) 1.2x10"* | 3.7 x 107°
140,000 317.81 (10,584) 1.3x10°* | 3.5 x10°°
150.000 332.04 | (12,150) | 1.4x 10~* | 3.8 x 105
160,000 350.49 (13,824) 1.3x107% | 3.7x107°
2000,00 426.23 | (21.600) | 1.2x10* | 3.1 x 10~3
250.000 526.21 | (33,750) | 9.4 x 1075 | 2.7 x 1073
300,000 631.99 | (48,600) 1.2x10"* | 3.3 x10°°
350,000 746.35 | (66,150) | 1.5x 10~% | 3.5 x 10~
400,000 867.70 | (86.400) 1.5x10™* | 3.9 x 1073

Table 3.10: Running time as function of sample sizes in tree-like hierarchies of

different levels.

98
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Figure 3.5: Computational time as a function of number of particles, over a range
from 0.3 x 10° to 4 x 10° particles in tree-like hierarchy of (a) four levels and (b)
five levels.
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Figure 3.6: Computational time as a function of approximation size (Sapp) for
different sample sizes: (a) 5000, (b) 10000, (c) 25000, and (d) 40000.
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Algorithms I and II

Tables 3.11-3.12 list the running time and average relative error of Algorithms I
and II. The sample sizes are 10000, 30000, 50000, and 80000; the number of levels is
4. The approximations used in these algorithms have similar relative error €,.;. For
each sample size, both the running time and average relative error of Algorithm I
are larger than that of Algorithm II. This is illustrated in Figure 3.7. The result here
demonstrates that Algorithm I is less efficient than Algorithm II. At first glance,
Algorithm I appears to be faster because it has no dependence on the number of
level n as it is the case in Algorithm II. However, for a given relative error, the size
of the approximation needed for Algorithm I is much larger than that of Algorithm
II. The reason for this is that in order to use Algorithm I for tree hierarchies with
level 4, we need b > 2%, while the requirement for Algorithm II is b = 22. The
larger the value of b, the larger the set Dj is. and hence, the larger the size of the
approximation. This trend remains until one has a better method for generating

the approximation with large b.

Approximation Running Time (s)
Algorithm b €rel Sepp sample size N

10000 | 30000 50000 | 80000
algorithm 1 2¢ | 107! 91 30.08 54.44 77.95 119.60
algorithm II | 22 | 107! 44 20.20 44.16 69.85 110.26
algorithm II | 22 | 10! 31 14.02 31.06 51.15 85.81

Table 3.11: Running time (s) for Algorithms I and IL
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Figure 3.7: Algorithms I and II: (a) running time and (b) average relative error.
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Approximation Average relative error E4ugret
Algorithm b | €et | Sopp sample size N
10000 30000 50000 80000
algorithm 1 | 2* | 10-T | 91 || 5.9x107° [ 6.5x107° | 7.0x10~° | 5.5x107°
algorithm II | 22 | 10~! | 31 | 5.1x107° | 4.6x107° | 4.9x107° | 4.8x107°
algorithm II | 22 | 10~! | 44 || 1.2x10~% | 1.1x107° | 8.9x107° | 1.2x107°

Table 3.12: Average relative error of Algorithms I and II.

Algorithms II and III

Algorithm III is a generalization based on a compromise between Algorithms I

and II. With the same relative error €., the size of the approximation needed

in Algorithm III is still larger, by a factor 1.5, than Algorithm II. Therefore, in

spite of the smaller dependence on number of levels in Algorithm III, Algorithm

II is still faster. Tables 3.13-3.14 list the running time and average relative error

of Algorithms IT and III on sample sizes of 40000, 80000, 120000, and 150000.

The number of levels is 5. It can be concluded that with the current available

approximation in [23], Algorithm II is the most suitable of the three.

Approximation Running time (s)
Algorithm b €rel Sapp sample size N
40000 80000 120000 | 150000
algorithm III | 2° | 107! 66 142.05 | 225.46 | 288.64 329.52
algorithm II 22 | 107! 44 113.41 | 190.16 | 251.99 296.42

Table 3.13: Running time (s) for Algorithms II and III.
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Figure 3.8: Algorithms II and III: (a) running time and (b) average relative error.
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Approximation Average relative error Eggrei
Algorithm b | €ret Sapp sample size N
40000 80000 120000 150000
algorithm III | 23 | 107! 66 3.4x10°5 | 2.5x107° | 2.7x10~°% | 3.0x107°
algorithm II |22 | 10~ | 44 | 1.0x107% | 1.1x107° | 9.9x107° | 1.1x107°

Table 3.14: Average relative error of Algorithms II and IIL




Chapter 4

Solving the Charge Density
Problem

In this chapter. we discuss the solution to the charge density problem using the
EE method to achieve linear running time and to facilitate any desired degree of
accuracy [27,44). The discretization of the model equations (1.16)-(1.17). which
yields a system of linear equations of some N unknowns, is discussed in §4.1. The
linear equations are solved using iterative methods, whose key operation is matrix-
vector multiplication. With the EE method, the matrix-vector multiplication can
be approximated in computational time of O(N) as opposed to O(N?). Section
§4.2 describes formulae for (3.49) and (3.71) to account for the continuous charge
distribution [26]. Preconditioning techniques and stopping criteria in the iterative
process are discussed in §§4.3 and 4.4. For capacitance extraction, we have de-
veloped a stopping criterion that can reduce the number of iterations significantly

without compromising the accuracy of the final solution. In §4.5, we propose a

106
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multi-level multi-precision iterative process, enabling cost-effective generation of a
good initial guess, thus improving the overall performance. Numerical results are
presented in §4.6 in terms of two examples, which illustrate the behaviour of con-
vergence rate and the accuracy of the computed charge density and capacitance

with respect to the number of panels and the accuracy of the expansion.

4.1 Discretization

In terms of the charge density, the system of equations (1.16)-(1.17) is expressed

as:
/G(X,Y)O’(Y)dSy =V, XeSs, (4.1)
S
a(X)+ 22 wa(Y)dSy = 0, XEe€Sg, (4.2)
s Onx

These integral equations can be solved numerically by use of a function (X) that
is believed to be close to the true solution ¢(X). Among the most popular methods
to determine 6(X) are the Galerkin method and the collocation method (see, for
example. [45] and the references therein). We focus on the latter, and in particular,
on the constant element collocation method. In this method, the surface areas
are meshed into N subareas called panels, II;,II;,--- ,IIxy. On each panel Il,
the charge density is assumed to be constant and its value oy is evaluated at the
centroid Cy of the panel: o = o(Ci). Here, the main task is to find the charge

density ox, k = 1..N at the centroids of these panels. The discretization of egs.
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(4.1)-(4.2) leads to a system of linear equations:
Ao = b, (4.3)

where A is an N x N matrix and b is a column matrix of size N. Their entries are

defined below,

,

/ G(Ck,Y)dSy if I C S.
o;

1 fk=y
o . if I C S4
u/-c%,ﬂ— if & # j
J

k

Vi I CS;
b(k) = | (4.5)

0 otherwise.

\

If N is small, the system of linear equations (4.3) can be solved using a direct
scheme such as Gauss elimination. In practice, however, N is very large, and it
becomes prohibitively expensive to use a direct method since the computational
time for the solution is O(N?) and the memory requirement for storing the entries
of the matrix is O(/N?). In this case, it is necessary to employ iterative schemes [11],
such as GMRES [46]. The main operation in the iterative methods is matrix-vector

multiplication. Here, we need to take into account:

e Both accuracy and efficiency (computational time and memory requirement).
A direct multiplication would cost O(N?) in computational time and O(N?)

in memory requirement.
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e Convergence rate.
e Stopping criteria.
o Initial guess.

The above issues are discussed in the next five sections. In the context of our prob-
lem. if z = (zx) is viewed as charge density, then the matrix-vector multiplication
Az can be accelerated using the MP method or the EE method. Here, we focus
on the latter. The rate of convergence can be improved using (i) preconditioning.
and/or (ii) a high accuracy for the approximation of the potential and/or (iii) reli-
able initial guess. Alternatively. we can employ a different formulation that yields
less ill-conditioned discretization matrix (to be discussed in the next chapter). The
stopping criteria needs to take into consideration not only the change in the residual
but also the change in the computed charge or capacitance. Additionally, we also
need to take into account the accuracy of the approximation on the potential. The
initial guess should be as close to the true solution as possible so that the number
of iterations can be reduced. Here. we can use solution from coarser grids or from

less accurate potential approximations as initial guess for more accurate solution

on the finer grid.

4.2 Matrix-vector multiplication

Let y = (yx) represent Az, i.e., yr = 25;1 A(k,j)z;. For a given k = 1..N, we
examine the evaluation of yr. There are two cases, depending whether the panel

I, is on a conductor surface or on an interface. For the first case, according to eq.
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(4.4).
N
- Glcx. y)z,dS,, 46
v Z::/n (cery)z5dS, (4.6)

which is the potential at c; due to the charge density z on S. This suggest the use

of exponential expansion for approximating yx. For the second case,

3G(c,,,y)
Y = T+ 2/\2 - T‘nq—z,-dSy (4.7)
=1 ]
= zx+2A\H:-n (4.8)
where the vector H is defined as:
N

H(c) = Z / V., G(ck.y)z;dS,. (4.9)

i=1 n)

Here. the V., G(ck, y) denotes the gradient of the Green'’s function G(z.y) at z = ¢.
From eq. (4.8). the evaluation of y; is reduced to that of H, which is the gradient
of the potential, and hence can also be approximated using exponential expansion.

The evaluation of yr can be performed in two steps: one for the near-field
interaction and the other for the far-field interaction. For a given k, the set of
indices j = 1..N is partitioned into two subsets J% and JE. The subset J§ consists
of all indices j such that the panel IT; is a neighbor of panel II, that is, they belong
to leaf cubes that have at least one vertex in common. The subset J£ consists of

the remaining indices 5. We can now describe yx as a sum of two terms.

Ye = Ye.D+ YrE, (4.10)
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where
yep = > A(k.j)z; (4.11)
jeJy
e = Y Ak.j)z; (4.12)
jelt

The first term yi p, which is referred to as near-field or direct term, is calculated
exactly as given in eq. (4.11). However, the second term yi g, which is referred to
as far-field or indirect term. is approximated using exponential expansion through
a sequence of translations: Q2s, s2s, S2T, and T2P. In the next two subsections,

we discuss how to evaluate these terms.

4.2.1 Charge to source (Q2s) translation

For charge distributions that are discrete (particles) or continuous (panels), the
translations s2s, S2T, and T2P are identical. In the case of the latter, the Q2s
needs an extra step to replace all the charges on each panel with an equivalent
discrete charge at the centroid. This is illustrated in Fig. 4.1. More specifically, in

terms of exponential distance E, we have
E(QS) = E(QG)E(GS), (4.13)
and therefore,

/A e E(QS)dAq = ( /A . E(QG)dAQ) E(GS) (4.14)
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A

oW

C

Figure 4.1: Q2S translation for continuous charge distribution on a triangle AABC
to a source center S: (i) all charge Q is translated to the centroid G and (ii) G is
translated to S.

The extra step mentioned above is the computation of the surface integral:

Iasage = / E(QG)dAgq. (4.15)
AABC

In general. we replace the triangle with a planar polygon II:

In = /n E(QG)dA,. (4.16)

The above surface integral represents the clustering of the charges on panel II to
its centroid and it is also referred to as exponential distance of a panel. In the rest
of this section, we discuss how to express it in terms of the exponential distance at

the vertices.
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Local coordinate

We use a two-dimensional local coordinate system to describe points on the panel II.
The surface integral is then transformed into line integrals using Green’s theorem.
Following this, we establish a formulation for the line integral. We choose an
orthonormal basis B = (e, ey, e;) as the local coordinate system for the plane =
supporting the panel II. Here, |lez] = [leyll = |llez]| =1 and ez L e, L e.. All
vectors QG(z,y) with Q@ € II can now be described using this local coordinate
system: QG = ze, + ye,.

From surface integral to line integral

Let V;..V,, denote vertices of panel II (the vertex V.4, is understood as V;). With

respect to the functions ¢’s in Definition 3.1.1. we need to consider two cases:
Case 1: g(ey) # 0, and

Case 2: g(ez) #0.

Note that e, and e, are linearly independent and it can be verified that g(z,y, z)
is a linear function with 1-dimensional kernel. Therefore, it is impossible that both

g(ez) and g(e,) are zero. Hence either Case 1 or Case 2 must hold. We have:

o (_1_ =g(ez)+ya(e,,)) 1
e*9(€z)+va(€y) _ 89( © Case (4.17)
)

1 )ezg(ez)ﬂm(ey)) Case 2.
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Applying the Green's theorem, we can express the surface integral (4.16) as a sum

of line integrals along the edges of II

4

(-el ) fezg(ez)*-ya(ey) dzr Case 1
In = { & (4.18)
g(éz) fezg(ez)+ya(ey) dy Case 2
\
4 m
Z g(-ely) f e:ﬂ(ez)-ﬂlg(ey)% dt Case 1
— ﬁ 1r=nl ViVisr (4.19)
> g(é ) § eza(ez)'*'!lﬂ(ev)% dt Case 2.
\ =1 z iVit1

Our focus now lies in calculating the line integral on a segment from a point U

to another point V:
L, & }{ oa(€2)tua(€y) gy (4.20)
v

The coordinates of vectors QG where Q is on the segment from U to V can be

described as:
=Ty — zuvt and Y=Yu— yuvt' (4'21)

Here, (Zu, ¥u), (ZvsYv)s (Tues Yue) denote the coordinates of the vectors UG, VG,
and UV associated with the local coordinate system B, respectively. The values

of t are in the interval [0, 1]. The derivatives of z and y with regard to ¢ are:

dz dy
’Et_ = —Tye and E_t' “Yuo (4'22)
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The integral (4.19) can now be expressed in terms of the line integral (4.20) as:

i W—“,ﬂfvv Case 1
g(€y) "ViVit1

In = =1 . (4.23)
Z —g('?;)ﬁfv_.vi_u Case 2.

i=1
With the parametric equation for the segment UV the line integral (4.20) can be

expressed as:

1
Iy = erua(ez)-f-vua(ey)/ e~ (Tuvg(€z)+vucg(€y)lt 4 (4.24)
0

There are two cases.
Case 3: z..9(ez) + y..9(ey) =0,
Case 4: z,.9(€z) + yu.9(ey) # 0.

The value of the line integral (4.24) in each case is

,

ezuy(ez)‘(’yuﬂ(ey) Case 3

lyv = 9 (4.25)
\ ruug(e;)-l-ly...g(ey)(eug(ezHyog(ey) - exuy(ez)+y..g(ey)) Case 4
e?(e) Case 3

= 9 (4.26)
sttt - st e 4
E(ve) Case 3

= (4.27)
=L_(E(ve) — E(uc)) Case 4

L 9(uV)
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With the expressions (4.23) and (4.27), we have established a formulation for cal-
culating the surface integral (4.16). The exponential distance of a panel can be
expressed in terms of exponential distance of vectors connecting its vertices and its
centroid. Due to the restriction on the set D, which is defined in (3.5), scaling is
required for points that are not in D;. In the next subsection, we show that only a

slight modification is needed to handle the scaling.

Scaling

For a scaling factor s > 0. we replace g(e;) and g(ey) with g(s x ez) = s x g(ez)
and g(s x ey) = s x g(e,). The integrals in (4.23) and (4.27) can now be described
as:

’

_Z .XL;‘(,ieiyl-).[lei‘,‘*.l Case 1
Iyxn = / E(SQG)dAQ = { =1 (4.28)
m oYy,
i z ax‘;.(‘é:;. ['XViV-'-H. Case 2
\ =1
E(s xve) Case 3
IJXUV = 4 (429)
{ ,x—g-(z,v)(E(-’ x veé) — E(s x ug)) Case 4.

We have obtained the analytical expression for clustering charges on panel to its

centroid via the surface integral (4.16). We have some remarks on the calculation

of the surface integral (4.16).

e The choice of the centroid as the source center is to ensure that neither over-

flow nor underflow occurs.

o The extra cost for dealing with piecewise charge distribution is O(N~). Here,

N* denotes the total number of vertices of all the panels.
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e The exponential distance of a panel depends on the vectors connecting the
vertices to the centroid; therefore if two panels are equal, in the sense that
one can be obtained from the other through a geometrical translation, then
their exponential distances are the same. Taking advantage of this property.
we can classify the panels into identical panels and calculate the exponential
distance for each class of identical panels. In planar structures, many panels
are equal in the above sense, and therefore, the cost in computational time of

calculating the surface integral for all panels can be significantly reduced.

e No memory allocation is needed for the exponential distance at each vertex
or each edge since the Q2s can be performed for each panel prior to any s2s
and s2T. To improve the speed for S2T we may need the memory allocation

for the exponential distance at the centroid; this is, however, optional.

e There is no extra cost for calculating the gradient of the potential since it is
obtained at the end of the T2P translation. The associated overhead is rela-
tively small, therefore, the computation of the electric field can be considered
as a by-product of the computational procedure for the potential. However,
for the near-field term yi p, it is still calculated explicitly and exactly as in

(4.11). This will be discussed in the next subsection

Integration of Green’s function and its gradient

We shall now discuss the calculation of the near-field term yi p in (4.11). It involves

the surface integrals over a panel II of the Green’s function : = IIQ_IHT and its partial
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derivatives. Here, P is a target point and Q a source point on II.

e = [[ L a0
L(PIN) = // So(2) dA (431)
Lo(PTI) = / [ 5(z)aa (4.32)
L(P.1) = // 2 (1)da (4.33)

Discussion on evaluation of the integrals (4.30)-(4.33) can be found in [47-49].
However, we will introduce the notion of signed area to avoid possible errors aris-
ing from intuitive analysis. We demonstrate that the integrals (4.31)-(4.33) can
be efficiently obtained as by-products of the computational process for evaluating
(4.30); the overhead involved is small.

Signed area

The motivation behind the concept of signed area stems from the following problem.
Given a triangle AABC on a plane 7 and a point G on 7, we need to find an
expression of the area of AABC in terms of the areas of AGAB, AGBC, and
AGCA. This is an analogy with, and in fact a generalization to, the problem for

signed distance. For a segment AB on a line ! and a point G on I, the signed

distance AB can be expressed in terms of the signed distance GB and GA as
AB =GB - GA.

Definition 4.2.1 For a given triangle AABC on a plane w, let A(z4,y4), B(zB.yB),

and C(z¢,yc) denote some local coordinates of A, B, and C associated with w. The
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signed area of triangle AABC in the order of vertices A, B, and C 1is defined as:

g

1|ZB—Z4 YB — YA

2 IZc —ZTa Yo — YA

ABC (4.34)

= %[(za —z4)(yc — ya) — (yB — ya)(zc — z4)] (4.35)

Some properties of the signed area is summarized in the following proposition.
Proposition 4.2.1
(i) area(AABC) = sign(ABC)ABC

(it) ABC = sign(ABC)area(AABC)

(iii) ABC = BCA =CAB

(iv) ACB = ~ABC

(v) ABC = GAB + GBC + GCA

Proof. For (i) and (ii), if we extend the two-dimensional local coordinate system
to a three-dimensional coordinate system, preserving the local coordinates , the
signed area ABC is the third component of the cross product AB x AC. The
properties (iii) and (iv) follow directly from (4.35). For (v), by expanding both

sides and performing the subtraction, we get 0. ]

From property (v) in Proposition 4.2.1, there are four important results.

1. It establishes the consistency and hence validity of Definition 4.2.1. The
reason is that in the definition, the value of the signed area ABC is defined
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in terms of local coordinates. What if one has other local coordinates. i.e..
different (z4.y4),(zB,yB). and (z¢,yc)? Thanks to (v), the value of ABC
is independent of the choice of local coordinates. To verify this, we use (v)

with G being the origin of the local coordinate system.

2. It solves the problem we have posed on how to express the area of AABC in
terms of the area of the triangles AGAB, AGBC, and AGCA. We have

area(AABC) = sign(ABC)(sign(GAB) area(AGAB)
+ sign(GBC) area(AGBC) (4.36)

+ sign(GC A) area(AGC A)).

3. We can extend the notion of signed area to polygons. If II = V..V, Vay,.
where V,,,; = V4, is a planar polygon on a plane, then the signed area of II

can be defined as:

KVaVors = Y, CViVina (4.37)

=1

The value of V;5..V,,V,.;1 is independent of the choice of G on the plane

supporting II.

4. We can further have the notion of signed surface integral over a planar polygon
H = w..Vme+1.

4 [14 & sgu(ViVoVorr) 4 [ aa (4.38)
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With the notion of signed surface integral, we have

//fdA = zm:// fdA (4.39)

i=IGVi Visi

Here, we assume that the integrand f is defined and integrable on the triangles

AGV,Viy1.

Surface integration of Green’s function *

Having established a mechanism to algebraically decompose the planar polygonal
area I into signed triangular areas, we shall now discuss how to evaluate the surface
integrals of the Green's function and its gradient over a triangle AHUW, where
H is the projection of the target point P on the plane supporting the panel II and

UV is an edge of II. Corresponding to (4.30), we have
I.(AHUV) = // %dA. (4.40)
AHUV

We use the same local coordinate system B = (ez.ey,e;) as in the previous sub-
section. Let Q be a point on AHUW . The triangle AHUW can be mapped into

a square [0.1] x [0, 1] with a transformation T defined as (see Fig. 4.2),

HQ = u(HU+wUV) (4.41)

T(HQ) (u,v). (4.42)

Here, u,v € [0,1]. The geometrical meaning of (u,v) can be explained as follows.

We extend HQ to intersect UV at M and draw QN parallel to UV. We have
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el

Figure 4.2: Local coordinate system B = (ez.e,,e.) associated with panel IT and
transformation T of a triangle (AHUW) into a square ({0,1] x {0,1]): T(HQ) =
T(u(HU +vUV)) = (u,v).

HQ=vHM.HM = HU + UM, and UM = vUV, thus leading to (4.41).

The Jacobian of the mapping is:

z + ZyvV ZTyvlu
J(T) = OHQ _ HU vv uv (4.43)

0(u,v) Yuu + Yuv? Yuvl

The absolute value of the determinant of the matrix is |det (J(T'))| = 2area(AHUV)u =
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du. Here é denotes 2area(AHUV). With this transformation, we have

L(AHUV) = § / 1 / | ududv (4.44)

o VQP?
u dudv
= 4 —_—_— .
/o /o VHQ? + h? (4.43)
1

u dudv
= 4 s .
/o /cg Va(v)u?® + h? (446)

where q(v) = (HU + vUV)% The above double integral can be reduced to three

single integrals. which can be evaluated analytically.

' d(q(v)u? + k)
. = 4 0 |
I(AHUV) /0 /0 Yo m] (4.47)
- 5/ (v)uz+h2 dv (4.48)
0 q(v)
— '_ || \/ )+ R
= /o qv)d +/ q(v (4.49)
[ [tlhldy ' K S
= §|- Liadinng .
| o a®) +/o OV m e Vo)
= |h|(L — L) + 815, (4.51)
where
1 dv
Lo=4 /0 2 (4.52)
! |h|dv
I, = § . '
p= 8 a(0)val) + 12 (453)
! dv
L = WA 5
’ /0 Va(v) + 12 (4.54)
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We now describe the formulae for these integrals [50]. We have
q(v) = (HU +9UV)? = UV*?+2HU -UVv + HU>. (4.55)

For I, the corresponding indefinite integral is of the form

; dz
L= / az?+br + ¢ (4.56)
2 2ar + b
= —=—arctan . 4.57
VA2 VA ( )

Here.a=UV?>0.b=2HU -UV . ,and c = HU?. We have Ay, = —b% + 4ac =
4((JUV|||HUI|)> — (HU -UV)?] = 46 > 0. Therefore,

V-HV UV -HU
I, = arctan —U—i —arctan { —— ). (4.58)
) )
For I,. the corresponding indefinite integral is
: d
L o= z (4.59)
(az? + bz + ¢)Vaz? + bz + ¢ + h?

2 |k 2az + b )
= ————arctan . 4.60
AV ALz (\/An vaz?® + bz + c+ h? ( )

Here,a = UV?>0,b=2HU -UV and ¢ = HU?. We have A;; = —b% + 4ac =
4(JUV||HU|)> = (HU -UV)?*] = 46% > 0. Therefore,

. h| UV -
I, = arcta.n(lh| vv-HV ) —a.rct:a.n(l | HU ) (4.61)

§ JHV 1 2 5 JHU + 17
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For I. the corresponding indefinite integral is

i _/ dz
3T Var? + bz +c+ h?
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(4.62)

Here.a=UV?2>0,b=2HU -UV and c = HU|®. We have A; = —b* + 4a(c +

h?) = 4[(JUV|||HU||)* + h* — (HU - UV)?] > 46® > 0. The formula for the

indefinite integral I} is

o 71:1n[a.1:+%| if A3 =0
3 =
7‘;ln|(az+%)+\/5\/az2+bz+c+h2] if A3 >0
Therefore,
e o |[GYEY| i Ag = 0
Iy =

I in UV.HV UV iVHV a2 if Ay > 0
OV~ \{UV.HU qUV VHU 12

(4.63)

(4.64)

The formulae (4.58), (4.61), and (4.64) facilitate the evaluation of the surface in-

tegral of the Green’s function * (4.40) using (4.51). They can also be used for the

evaluation of the surface integrals of the partial derivatives of * (to be discussed in

the next subsection). We now describe some special cases.

e h = 0: the surface integral (4.51) is reduced to §I3. Therefore, we need only

to evaluate [3.

e area(AHUYV = 0): the surface integral (4.51) is zero. Note that in this case,

it is possible that I3 # 0.
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Surface integration of partial derivatives of Green’s function
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To determine the surface integrals of the partial derivatives, we first express the

partial derivatives using local coordinates. evaluate the integrals using the local

coordinates, and then switch back to the global coordinate system for the final

result.

Partial derivatives in local coordinates

Let (z,.y,,2,) be the global coordinates of vector QP. Let (z.y) be the local

coordinate of @QH. We have

z T,
= B!

y Yg

h 2

. . . l = 1 — 1 .
The partial derivatives of - QP m are

a 1. -z
5z, T

a 1. -y
a—yg(;) = =3

d 1 -z,

a(; N

(4.65)

(4.66)
(4.67)

(4.68)
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With (4.65), these partial derivatives can be expressed in terms of the local coor-

dinates as

- 1) =z
Ozg \r e
g (1 —_ -
2| = B |z (4.69)
= (%) =

We have the same linear relationship between the two corresponding integrals,

Io(I1) I(II)
L, | = B | |, (4.70)
I4(II) I4(10)

where I,(Il). I,(II). and I.,(II) are defined in (4.31)-(4.33). The integrals I.(II).
I(II). and [4(II) are defined below:

-z

(O = é/( — dA (4.71)
_ -y

L) = 4/( 7 dA (4.72)
—h

(o = 4 / Ty dA. (4.73)

Evaluation of integrals in local coordinate system
For the integrals (4.71) and (4.72), the integrands are the partial derivatives of

L with respect to z and y, respectively; therefore, we can transform these

Ve AR
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surface integrals into line integrals similar to (4.23). For the integral (4.73), we use

the same approach taken in evaluating (4.30).

LM) = ) v, fey(ViVina) (4.74)
=1
() = i—zmﬂz,,y(wml) (4.75)
() = V. VaVm 3 HViVi In(AHVVigs) (4.76)
=1
where.
! dt
fia(ov) = /0 [UH - tUV + HP]| (4.77)
= f 1 dt (4.78)
B 0 \/(zhu+zuvt)2+(yhv+yuvt)2+h2 ‘
! dt
= = .79
/o,/q(t)+h2 (+19)
and
1L opt —hu dudv
IWAHUV) = 6 /0 /0 s (4.80)
- _zus/1 /1 dg(v)u’ + ) 3] dv (4.81)
o |Jo 2q(0)v/gon 4 12
3 1
1 1
= —hé ? 4.82
_/0 -q(v) /q(‘u)‘u.2+h_2 0] av ( )
. 1 {h|dv U dv
= —sign(h)s - = .
sign(? Uo q(v)va(v) + A2 Jo q(v)] (453
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These integrals can also be expressed using the integrals (4.58). (4.61) and (4.64).
We have:

Lioy(ov) = Iy (4.84)

In(AHUV) = —sign(h)(Ir — I,). (4.85)

We have obtained formulae for evaluating the integrals of Green's function and
its partial derivatives over a planar polygonal area. The computational process is
summarized in the following algorithm.

Procedure

Step 1 For each edge UV, calculate the integrals /,. I>, and [.

Step 2
For Green's function %. use (4.38). (4.39), and (4.51).

For :2-(1), use (4.74) and (4.84).

dzg\r

For 2-(1). use (4.75) and (4.84).

Syg r

For 5%(}), use (4.38), (4.39). and (4.85).

Step 3 For partial derivatives. use (4.70).

Remarks
e Most of the effort lies in Step 1. Therefore, the surface integral of the par-
tial derivatives of Green's function 1 can be obtained as by-products of the

computational process for evaluating the surface integral of L.
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o In boundary element methods. the above surface integrals are normally calcu-
lated using numerical integration. notably. Gauss quadratures. However. the
analytical formulation proposed here is preferable. The main reason is that
these integrals are meant for near-field interaction and in this case. Gauss
quadratures are not as accurate and efficient. It is noted that the far-field
interaction is already handled by the translations and therefore. there is no

need for direct calculation of these integrals.

4.3 Preconditioning

The discretization matrix A in (4.3) can be ill-conditioned. thereby making the
matrix-vector multiplication Az sensitive to small changes in z. potentially leading
to deterioration of the convergence rate or even to unreliable results. Therefore.
preconditioning is essential for improvement of the rate of convergence. A detailed
discussion of preconditioning can be found in {11]|. In preconditioning, we can em-
ploy one of two kinds: left preconditioner P; and right preconditioner P,. With
a left preconditioner, instead of solving equation Ac = V. we solve PAc = FV.
while with a right preconditioner. we solve AP,y = V and obtain ¢ = P,y. We
prefer the right preconditioner because the nature of the residual r = ||Aoc — V||
i1s not altered by P.. It is expected that with either kind of preconditioner. the
matrix PA or AP, is less ill-conditioned than the original matrix A. The ideal case
is P, = A™t or P, = A™!; however, for large N, it is impractical to obtain A~
therefore, we contend with some form of approximation of A~!.

In constructing P,, we employ the technique suggested in [51.52], which belongs
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to a more general scheme called overlapping block preconditioning. Here. a block
represents the equations associated with all the panels in a given leaf cube. Sup-
pose that the given leaf cube has m,; panels: II,..... Ik, and m, neighbor panels:
1§ PO Ilk,,. belonging to it’s neighboring leaf cubes. Here m = m; + m.. Let
A, be an m x m submatrix of A that contains only the rows and columns corre-
sponding to the m indices: k;,...k,. Let P,, be a submatrix (to be determined)
of size my x m of the right preconditioner P, corresponding to the m, panels. We

choose P., as the corresponding submatrix of (A;!)7. That is.
PT = A7 (4.86)

where [ be an m < m; matrix whose diagonal entries are 1 and whose other entries
are 0. Note that m, is usually much smaller than m. Therefore. it is more efficient to
use LU decomposition on A, than to compute A;! directly. We solve the following

equation for P,,:
APE =1 (4.87)

The memory requirement for preconditioning lies in the storage of matrix P.. which
is the same as that of storing the entries of A for the direct part in eq. (4.11). When
N is large, the storage can be significant. If there is insufficient memory. we may
resort to using a higher tree hierarchy for reducing m, and hence m. In such a
case, the preconditioning may be less effective. In terms of computational time.

the extra cost of using preconditioning includes calculating the entries of A, that
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do not belong to any near-field term (see (4.6)) and solving eq. (4.87) for each leaf
cube. It also includes the extra multiplication P,y at each iteration step and the

restoration of the solution o = P,y at the end of the iteration process.

4.4 Stopping criteria

In iterative methods. it is crucial to determine the stopping criteria needed which
effectively terminate the iteration process without compromising physical plausibil-
ity of solutions. The only available indication of the error of the computed charge

density is the residual of the solution of eq. (4.3) at each iteration step:
r = ||Ae® — V. (4.88)

Here. o) denotes the charge density obtained at the i*? iteration and V = b. Note
that exact value of r is not available because we only have an approximation of Ag*.
the accuracy of which is determined by that of the underlying exponential expansion
and is affected by the conditioning of the matrix A. Even if the exact value of r
is known, it does not reflect the true error of the solution to the problem because
the discretization and associated errors are not taken into account. Therefore, in
devising meaningful stopping criteria. one should be aware of the above issues.

For a given tolerance €*! € {efl e} the first stopping criterion is

[4c® -V < &, (4.89)
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or

A0 -V

Wl €rel: (4.90)

The overall computational accuracy and efficiency is dependent of the value chosen
for the tolerance €*°!. The main difficulty lies in the choice of value for € to guar-
antee the desired degree of accuracy with minimal number of iterations. On the
one hand. if €*! is too large. equation (4.3) is not satisfied. On the other hand. if
e®! is too small. an unnecessarily large number of iterations may be required with-
out corresponding improvement in the accuracy of the computed charge density.
Furthermore. it is noted that Ao is not exact and therefore. the error in matrix-
vector multiplication. which is denoted as ¢®E. should also be taken into account.
It may turn out that the residual r is limited or masked by €®&. In this case. it is
not necessary to choose values of € small relative to €EE.

For a desired degree of accuracy on the solution & of eq. (4.3}, with some prob-
lems. it is sufficient if the values of €*! are in the same range as the expected error ¢
of 0. However. in other problems. it may be necessary that ¢! « €. This is evident
from the results shown in Tables 4.1 and 4.2. which show the change in relative
error of the calculated capacitance with respect to the residual r. In the first case
(Table 4.1). the value of the capacitance is stabilized when r is smaller than 10~%:
while in the second case (Table 4.2), the calculated value stabilizes only when r is
smaller than 1078.

In capacitance extraction. it is observed that when the residual falls below some

value, the change in capacitance becomes negligible and iteration beyond this value
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is not necessary. This is illustrated in Table 4.3. Here. if one needs four digits
of accuracy for the capacitance, the iteration process can be terminated after the
8¢" iteration. at which point the residual is still only around 10=3. The above

observation suggests a more effective stopping criterion:

i C - C . ca|
| "ﬁz, “°“‘” 2P, (4.91)

Here. Cp.w and C,y denote capacitances obtained in the last two iterations and
el the relative error tolerance on the capacitances. Because the values of the
computed capacitance are very small. we use the relative error instead of absolute
error as the stopping criterion. Furthermore. the values in the capacitance matrix
may be different by orders of magnitude. therefore. the above criterion should be
applied for each entry in the capacitance matrix. To deal with the transient nature
of the error and to improve reliability of the criterion. it may be mandatory that
the inequality (4.91) be applied in a number consecutive iterations. Note that with
the use of (4.91). the number of iterations required can be reduced significantly.

However, the additional cost lies in the evaluation of the capacitance Crep. which

involves the computation of the charge density in eq. (4.3) at each iteration step.

4.5 Multi-level multi-precision iteration

In addition to efficient matrix-vector multiplication and effective preconditioning,
generating reliable initial guesses is an important component of the iterative pro-
cess for solving the large and dense system of linear equations (4.3). If an initial

guess is close to the true solution. the number of iteration required can be reduced
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. X IC - C|
— lAg® — V! e — =1
Iteration | r = ||Ac V| el
1 1.5 6.39 x 10°!
2 1.7 x 1072 2.47 x 1073
3 2.1 x 1073 2.20 x 1073
4 2.5 x 10~ 2.16 x 1073
.5 3.5 x 103 2.16 x 1072 |

Table 4.1: Change in residual and associated relative error in calculated capaci-
tance. Here C denotes the exact value of capacitance and C its computed value.
The result is stabilized for » < 2.5 x 10~*. ||V]| = 2.2 x 10

}

Iteration | r = ||Ad!) — V|| %f—”
1 1.8 x 102 6.5 x 10~}

3 2.8 x 1073 6.5 x 10~t

6 2.3 x 101 6.5 x 107t

8 | 39x107° 6.5 x 107!

24 1.0 x 10~% 6.2 x 10~!

28 3.3 x107° 6.6 x 102

29 5.9 x 108 1.9 x 1073

30 8.0 x 10~° 1.3 x 10—+

Table 4.2: Change in residual and associated relative error in calculated capaci-
tance. The result is stabilized for »r < 1078, [|[V]| = 2.2 x 10!.
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Iteration Residual Capacitance | Relative change

‘ t—;%‘- %f- in capacitance
1 1.0 x 10° 7.2744 | -3.2830 4.1 x 1073
2 4.6 x 107t | 7.2324 | -3.2849 5.8 x 1073
3 2.8 x 107t | 7.2199 | -3.2702 . 4.5 x 1073
4 1.7 x 107! 7.2175 | -3.2695 3.3 x 107
5 8.2 x 10°% | 7.2209 | -3.2691 4.7 x 107
6 3.0x10°% | 7.2251 | -3.2699 5.8 x 10~
7 1.4 x 107% | 7.2264 ! -3.2699 1.8 x 107*

8 | 5.8 x107% | 7.2270 | -3.2701 8.6 x 10~° ;

9 2.4 x 107% | 7.2274 | -3.2702 4.9 x 1073
! 10 1.4 x 1073 7.2275 | -3.2702 2.2 x 1073
11 6.5 x 107 | 7.2276 | -3.2702 1.2 x 1073
12 2.2 x 107 | 7.2277 ; -3.2702 1.0 x 1073
13 1.5 x 10~* | 7.2277 | -3.2702 1.3 x 10~¢
14 5.5 x 107% | 7.2277 | -3.2702 1.9 x 1078
15 1.5 x 10™% | 7.2277 | -3.2702 5.1 x 1077
| 16 5.2 x 10~¢ | 7.2277 | -3.2702 1.5 x 1077

Table 4.3: Relative change in calculated capacitance versus residual.
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significantly, thus improving the overall computational performance. In this sec-
tion, we describe two schemes that can be combined to generate reliable initial
guesses: multi-level iteration and multi-precision iteration. The former is based on

the general multigrid technique [53] and the latter is realized using the EE method.

4.5.1 Multi-level iteration

The solution associated with a coarse grid can be used as initial guess for iterations
with a fine grid. Suppose that the conductor and interface surfaces are meshed into
a sequence of nested grids: Go C Gy C G2 --- C G,. Starting with the initial course
grid Go. we find the charge density o(%), which can be obtained easily. Using ¢(® as
initial guess. we find the charge density (") on the finer grid G; without requiring
too many iterations. This process is repeated until the charge density o™ on the
finest grid G, is obtained.

Although there is an extra cost of finding the charge density on coarser grids. the
cost is offset by a significant reduction in the number of iterations. Table 4.4 lists
the number of iterations and the cost associated with and without the use of multi-
level iteration. Here., seven nested grids are used and the corresponding numbers
of panels are listed in column 1. Columns 2 and 4 show the number of iterations in
each case. Column 5 lists the cost associated with the case of not using multi-level
iteration. The cost is defined as the product of the numbers of panels and iterations.
Column 3 lists the accumulative cost for finding the charge density on all grids when
multi-level iteration is used. The ratio of the costs of the two approaches (columns

5 and 3) is listed in column 6. An improvement by a factor of 1.5 is observed. As
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[ 1 With multi-level Without multi-level
: Panel | Iteration | Accumulative | Ilteration Cost Cost ratio
cost :

160 10 160 10 160 1.00

996 11 12.556 14 13.944 1.11

2.656 14 49.470 17 45.152 0.91

8.148 16 180,108 24 195.552 1.09

28.132 16 630,220 24 675,168 | 1.07

102.772 21 2.788.432 32 ' 3.288.704 1.18

t 393.368 | 33 15.769,576 61 i 23.995.448 ! 1.52

Table 4.4: Number of iterations and cost ratio: with and without multi-level itera-

tion.

the grid is refined. the discretization matrix becomes increasingly ill-conditioned.
leading to poorer convergence rate. Therefore, good initial guesses become more
important in reducing the number of iterations. The multi-level iteration can be
employed to generate good initial guesses. thus improving the overall computational

performance.

4.5.2 Multi-precision iteration

The EE method provides a flexible mechanism for approximating the matrix-vector
multiplication with various degrees of accuracy during the iteration process. The
accuracy of the matrix-vector multiplication is determined by that of the underlying
exponential expansion for the Greens' function 1, which in turn can be expressed
in terms of its approximation size S;p,. Because each term in the expansion can be
processed independently of each other, switching among expansions of different S,

incurs negligible overhead. Furthermore, the memory requirement is independent

of Sapp. Therefore, for a given matrix size N x N, the main computational cost
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of matrix-vector multiplication is O(S.ppV) in time, which is proportional to the
approximation size Sgpp. For smaller S,,,. the multiplication Az is faster at the cost
of a less accurate result and the number of iterations is larger due to sensitivity to
the conditioning of the matrix A. For larger S;,,. the multiplication is slower but
the results are more accurate and the number of iterations is smaller. If precondi-
tioning is used. the number of iterations is less dependent on S, than it is without
preconditioning; with good preconditioning, the variation in number of iterations
with S,pp 1s insignificant (see Tables 4.7 and 4.9). Furthermore. for an extra digit of
accuracy. the approximation size S,p, needed may increase twofold or more. These
observations lead to our proposed multi-precision iteration scheme. In the early
stage of the iteration process with preconditioning, we choose a small S,,, to speed
up the matrix-vector multiplication and to obtain a preliminary solution. which
can then be used as an initial guess for the next iterative step. When the solution
becomes stabilized (e.g.. when the residual falls below some value or when there is
no significant change in the capacitance), we switch to a larger S,,, and continue
with the iteration process. The number of remaining iterations is expected to be
smaller thanks to the improved initial guess previously obtained using a smaller
Sapp-

In a more general description, we choose a sequence of non-decreasing approx-
imation sizes {Sf,’:,;,} At the ** iteration step. we perform matrix-vector multipli-
cation using exponential expansion of size Sc(.';;,). Note that the traditional method
can be considered as a special case in which all the Sf,g,’s are the same. With the

multi-precision iteration scheme, we can observe the change in the accuracy of the
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] With multi-precision Without multi-precision
Panel Iteration | Cost | Iteration Cost Cost ratio
Sapp = 18 | Sepp = 60 Sapp = 60 :
8.148 3 15 990 24 1.440 1.45
28.132 | 3 15 990 24 1,440 1.45
102,772 7 20 1.326 32 1.920 1.45
i 393.368 12 i 35 2.316 65 3.990 1.68

Table 4.5: Number of iterations and cost ratio: with and without multi-precision
iteration.

iterative solution with respect to the approximation size S,pp during the iteration
process. It is expected as the iteration process progresses. the solution become
stabilized beyond a certain ngp. At this point. the iteration process can be ter-
minated and we are confident that the accuracy of the solution is adequate with
the approximation size Sf;p. Here. any discrepancy from the true solution may be
attributed to discretization and related errors [54].

Table 4.5 lists the number of iterations and the cost associated with and with-
out the use of multi-precision iteration. Column 1 shows the number of panels.
Columns 5 and 6 list the number of iterations and cost associated with the case
of not using multi-precision iteration. Here, the cost is defined as the product of
numbers of iterations and approximation size Sypp. Columns 2 and 3 lists the num-
ber of iterations corresponding to two approximation sizes when the multi-precision
iteration is used; the total cost is shown in column 4. The ratio of the costs of the
two approaches (columns 6 and 4) is listed in column 7. Here, an improvement by
a factor of 1.5 is observed. Hence, the multi-precision iteration can also be used to

generate good initial guesses, thus reducing the number of iterations required.
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4.6 Numerical results

In this section, we consider two simple examples for verification of capacitances
computed using the EE method. We also show the computational time and memory

storage in solving the charge density problem.

4.6.1 Illustrative examples

We consider two simple examples for verification of capacitances computed using the
EE method. The examples deal with spherical conductors. Here. the exact value of
capacitance can be determined analytically. We examine the convergence rate and
accuracy of the computed charge and capacitance in terms of panel number and the
approximation accuracy on the potential. Note that the accuracy on the exponential
expansion can be characterized by its approximation size S,;,. Therefore. the
accuracy on the potential can also be expressed in terms of S,,, of the underlying
exponential expansion. Additionally, the effect of different preconditioning schemes
on convergence rate and accuracy is examined. Unless specified otherwise. the unit
of length is 1m. and the capacitance is normalized in terms of the permittivity of
free space ¢, = 8.854 x 107 *F/m.

Example 1

The value of capacitance associated with a spherical conductor of unit radius (1m)
is 4 x we, = 111.26pF [55]. The relative error in the computed capacitance and
the L,-norm error in charge density (|lc — &||) and charge (||g — gj|) are listed in
Table 4.6. Here. o and g denote the exact values of charge density and charge.
respectively, while & and § denote the respective computed values.

For a small number of panels N, the discretization error is dominant and there-
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fore a small approximation size Sg,p is sufficient. When N is large, however, the
discretization error is reduced for larger V. and therefore, a larger S,,, (i.e.. more
accurate approximation on potential) is needed for more accurate charge density.
charge. and capacitance. The difference in error due to variations in approximation
size becomes evident in the Ly-norm error in charge density and charge rather than
in the relative error in capacitance. The difference in error grows with increasing
N.

The effect of preconditioning on convergence rate is shown in Table 4.7. The
difference between preconditioning schemes 1 and 2 is that in the case of the former.
the average number of panels per leaf cube is smaller. Regardless of preconditioning,
the number of iterations decreases as the approximation size S,p, increases since a
more accurate approximation on potential can reduce the effect of ill-conditioning of
discretization matrix A. However. the number of iterations increases as the number
of panels NV increases. This is due to the discretization matrix A becoming more
ill-conditioned. This clearly demonstrates the effect of an ill-conditioned matrix
on the convergence rate and on the accuracy of matrix-vector multiplication Ao.
From the point of view of computational efficiency, using a larger S,p, to reduce
the number of iterations may not be efficient. since the time taken for each iter-
ation is proportional to Sgp,. The preconditioning technique discussed in section
4.3 significantly reduces the number of iterations. The effectiveness of the precon-
ditioning depends on the number of neighbor panels of a given panel. which can
be characterized by the average number of panels per leaf cube. It appears that

the preconditioning becomes more effective as the number of panels per leaf cube
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increases. However. the associated memory requirement for storage of the extra
near-field coeflicients as well as the preconditioner’s coefficients can be quite high.
especially when N is large.
Example 2
We compute the capacitance of a unit sphere conductor embedded in a concentric
dielectric sphere of radius 1.5 unit and dielectric constant of 2. Its value is 4.8 x
mé, = 133.52pF {55]. The relative error in the computed capacitance and the L,-
norm error in charge density (||o — &{|) and charge (||g — ¢||) are listed in Table 4.8.
The convergence rates with different preconditioning schemes are listed in Table
4.9. The trends with respect to accuracy and convergence rate observed in this
example are similar to those in Example 1. For a small number of panels N. the
discretization error is dominant: and hence. the use of a small approximation size
appears to be sufficient. However. as N increases. the discretization error reduces
and therefore, a large approximation size is needed to improve the overall accuracy.

Note that the accuracy in the capacitance alone may not reflect the overall
accuracy. The value of capacitance computed from a coarse mesh (2560 panels)
appears to be more accurate than that obtained from a finer mesh. But this is
most likely due to numerical cancellation. The results shown in Tables 4.6 and 4.8
indicate that as the mesh is refined. the accuracy of the computed charge density
and charge. and hence the overall accuracy. are improved.

With regard to convergence rate, as N increases, the number of iterations also
increases. With the use of preconditioning or higher approximation accuracy on

potential. the convergence rate is improved. For a larger number of panels per leaf
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cube. preconditioning appears to be very effective. but at the cost of high memory

requirement.
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4.6.2 Computational time and memory storage

For the purpose of estimating the trends on the computational time and memory
storage used in solving the charge density problem. we perform numerical extraction
of geometric capacitance associated with a-Si TFTs (to be discussed in Chapter 6).
In the simulation. we record the running time and maximum memory storage.
There are several factors that can influence these values such as (i) the design and
implementation of the software. (ii) the degree of optimization invested. and (iii) the
trade of between speed and memory requirement in the choice of near-field /far-field
calculation. the preconditioner (see §4.2), and the number of directions processed
in each translation (see § 3.2). However. these values reflect the linear dependence
of both the computational time and memory storage on the number of panels
N. The former is linearly dependent on both the approximation size S, of the
exponential expansion used and the number of iterations required. while the latter
is independent of these two factors.

Computational time O(S,pp)

The computational time as a function of the number of panels N and the number of
iterations is shown in Table 4.10. Here. the approximation size of the exponential
expansion used is S;pp = 31. The computational time for each iteration. mainly
from matrix-vector multiplication. is found to increase linearly with N. This is
illustrated in Fig. 4.3. With preconditioning, the number of iterations increases

much more slowly in comparison with that of panels. In this case, the charge

density problem can be solved in linear time O(S,pp V).
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Panel Iteration | Time (s)
160 10 4
996 11 9
2,656 14 30
8.148 16 115
28.132 16 454
102,772 21 2627

' 393.368 33 19081 |

Table 4.10: Computational time as a function of number of panels and iterations.

Panel Memory (Mb)
160 6
996 7
2.656 9
8.148 15
28.132 45
102.772 167 A
393.368 640 i

Table 4.11: Computational memory storage as a function of number of panels.

Memory storage independent of accuracy

The memory storage used in the simulation as a function of the number of panels

N is shown in Table 4.11. It is linearly proportional to N and independent of the

desired degree of accuracy (or equivalently on S,,,) and of the number of iterations.
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Time per iteration (s)

0 2 » a 2 e 2

0 0.5 1 1.5 2 2.5 3 3.5 4
Number of panels x10°

Figure 4.3: Computational time per iteration as a function of number of panels.
Approximation size S5, = 31.



Chapter 5

Integral Equations of Second Kind

for Charge Density Problem

The existing integral-equation approach for describing the charge density (see eqs.
(1.16)—(1.17)) uses a single-layer potential description that yields either a Fred-
holm integral equation of the first kind or a combination of the first and second
kinds {4.8]. However. as the mesh is refined. the resultant matrix can become
ill-conditioned, leading to a potentially high cost of obtaining the solution. This
situation is exacerbated in the methods that provide only approximation of matrix-
vector multiplication such as the MP and EE methods. Furthermore. the numerical
solution of the integral equation of the first kind is not as well understood as that
of the second kind, for which there are efficient numerical algorithms [45].

Integral equations of the second kind have been formulated for a homogeneous
dielectric medium but with the use of double-layer potential description. Here, one

can directly retrieve the capacitance since it is expressed as unknowns of the inte-
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gral equation [56-58]. However, the charge density, which is necessary for analysis
of electrostatic interaction. is not readily available: additionally. the extension of
the double-layer potential description for multiple dielectric media does not appear
to be straightforward.

In this chapter we describe a new formulation for the charge density that em-
ploys a single-layer potential description and yet yields Fredholm integral equations
of the second kind [28.59]. The formulation is applicable to both homogeneous and
multiple dielectric media. Here. we consider not only the potential but also the elec-
tric flux. offering a direct means of controlling the overall computational accuracy
and efficiency. In §5.1. we describe the existing integral-equation model equations
for the charge density in terms of integral operator form and identify difficulties as-
sociated with these model equations. We present ovr proposed formulation in §5.2
and discuss the subtleties in choice of parameter values that preserve the character
of integral equations of the second kind without compromising the desired degree
of accuracy. Numerical results are shown in §5.3 along with comparisons between

the two approaches in terms of accuracy and convergence rate.

5.1 Existing approach
5.1.1 Integral equations

The model equations for the charge density of a multi-conductor system embedded
in a homogeneous medium (eq. (1.16)) or multiple dielectric media (eqs. (1.16)-
(1.17)) can be expressed in a more compact form using integral operator forms. We

assume free space for the former and multi-layered dielectric for the latter.
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Free space

For the homogeneous, the model equation (1.16) is a Fredholm integral equation of

the first kind:
Ko =V, (5.1)
where
K.o(X) = /G(X.Y)a(Y)dSy. (5.2)
S
. n 1 lf 1Y E Si -
V(X) = Y Vixsi(X). xs(X)= (5.3)
=1 0 if X¢S§,.

The surface S here represents conductor surfaces: S = S..

Moultiple dielectric media
For the multiple dielectric media. the equation (1.14) for the discontinuity of the

electric field across the interface between two dielectric layers is a Fredholm integral

equation of the second kind:

(I +2\K3)e = 0. (5.4)
Here. I is the identity operator, i.e., Io(X) = ¢(X) and K, is defined similarly to
K.:

Kyo(X) = sg%fx’—y)amdsy, (5.5)



CHAPTER 5 INTEGRAL EQUATIONS OF SECOND KIND 153

where ?_f-f;nx_:’) is the normal derivative of G(X.Y) at a point X on the interface
S4. The surface S now consists of the conductor surfaces and the interfaces: S =
S.U Sa.

The model equations (1.16)-(1.17) are . therefore. a combination of Fredholm

integral equations of the first and second kinds:

[
<

K.o
(5.6)

(I +2)K3)o =

Discretization of the above equations using the panel method yields a system of

linear equations (4.3). We shall now discuss some difficulties associated with the

above formulation.

5.1.2 Difficulties

Il-conditioning of discretization matrix A

With a coarse mesh, the numerical solution may not yield reliable values of the
charge density due to discretization error. To improve the accuracy. we need mesh
refinement. which requires a larger number N of panels. An important observa-
tion is that as IV increases the matrix A becomes more ill-conditioned. Therefore.
the result of matrix-vector multiplication Az is very semsitive to small changes in
the vector z. As a consequence, convergence rate decreases. resulting in a large
number of iterations. Furthermore, when the MP or EE method is used to approx-
imate matrix-vector multiplication, the reliability of solutions becomes even more
questionable. The error due to the approximation in matrix-vector multiplication

is amplified by the ill-conditioning of matrix A. Consequently, a higher order of ex-
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pansion is needed for a more accurate matrix-vector multiplication so as to reduce
the effect of the ill-conditioning on the overall accuracy. To deal with this problem.
one may also resort to the use of preconditioning as described in the previous chap-
ter: for large N. however, the memory requirement for effective preconditioning can
be significant.

Mismatch in mixed integral equation system

We examine the coefficients of matrix A. which can be decomposed into two sub-
matrices A. and Ay. These submatrices originate from the rows of A corresponding
to panels on the conductors and on interfaces. respectively. If we use a scaling
transformation: {X.Y.Z) — (sX.sY.sZ) with a scaling factor s > 0, we observe

that A, remains unchanged while A. is scaled by s. The resultant matrix s(A) is:

s(A) = s (5.7)

Aqg
We consider the two extreme cases: s — 0 and s — oo. When s approaches zero
(for example. when the geometry of the system is scaled down). the matrix s(A) has
the tendency of singular behavior due to one of its submatrices s A. tending to zero:
the other submatrix A4 remains unchanged. As a consequence. the convergencerate
is poor and the sensitivity to errors in matrix-vector multiplication is high. When
s approaches infinity, the coefficients of the submatrix sA4. becomes increasingly
large, while those of A4 remain the same. This also results in ill-conditioning of A.

To gain insight into the effect of scaling on the solution of eq. (4.3). we describe
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the following form for the scaling:

sAdo = V (5.8)
Ajo = 0 (3.9)

By replacing ¢ with ¢’ = so. equations (5.8) and (5.9) can be rewritten as:

Ao =V (5.10)

1
~(Aw0’) = 0 (5.11)

In comparison with the original system (4.3), the first equation (i.e.. eq. (5.10)) is
unchanged. while the second equation (i.e., eq. (5.11)) is scaled by % For a given
tolerance € on the residual. when s approaches zero {or equivalently when f ap-
proaches infinity). eq. (5.11) requires more iterations to bring the residual below e.
When s approaches infinity (or equivalently. when % approaches zero), it becomes
easier to satisfy eq. (5.11): therefore, to ensure sufficient accuracy, one may need to
choose much smaller e. Note that with the above scaling, the factor % in eq. (5.11)
can easily be removed by scaling the original equation (5.4) with s. This suggests
that one may need to modify the original equation (5.6) to deal with the mismatch
between the equations. (5.1) and (5.4), which. in general. may not be as simple as
the case considered above.

A similar situation arises when the mesh is refined and the areas of the panels

are reduced; all the entries in the resultant matrix are reduced correspondingly

except for the diagonal in A4, which is unchanged and remains as unity.
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In view of the above difficulties. we propose an alternative formulation which
yields a Fredholm integral equation of the second kind. leading to less ill-conditioning

of the matrix A.

5.2 Integral equations of the second kind

5.2.1 Integral equations

It is known that the potential within a conductor is constant and that the electric
field vanishes in the interior. Therefore. the flux at the surface going into the

interior of the conductor is zero.

d®(X) _ dd(X)

= e . 5.12
dn; dn 0. Xes (5.12)

With the jump relation (1.13). the above equation can be cast into a Fredholm

integral equation of the second kind:

9G(X.Y)

| Tem oSy = 0. X &S, (5.13)

a(X)+2

This equation looks similar to eq. (1.14) with A being set to 1. which can be viewed

as €~ = oo. In the integral operator form. eq. (5.13) can be rewritten as:
(I +2K;)e = 0. (5.14)

Here. Ky is identical to K4. The domain of Kfo(X) is on S., while that of K40 (X)
is on Sy. The main observation is that a linear combination of eqgs. (5.1) and (5.14)

yields a Fredholm integral equation of the second kind, which at the same time can
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be used to replace (5.1):

(a(I +2K;) + BK.)o = BV. (5.15)

Here, a and /3 are scalar (or possibly vector) parameters introduced for flexibility
in choice of the final form of the equation. In system (5.6). by replacing the first
equation (which originates from eq. (5.1)) with eq. (5.15). and by scaling the second
equation with a parameter vy, we obtain an alternative system. which is purely a

Fredholm integral equation of the second kind.

(a(l +2Ky) + BK.)o = pBV
v(I + 2AKy4)o = 0.

(5.16)

The two egs. (5.15) and (5.16), together with a proper choice of the parameters a. 3.
and 7. constitute the new formulation for the charge density of a conductor system
in a homogeneous medium or multiple dielectric medium. respectively. Having

established the equations. we now discuss choice of parameter values.

5.2.2 Choices of parameters
The efficient and accurate evaluation of the charge density lies in the proper choice

of the parameters a. 3. and . The formulation proposed here can be considered

general.

o The choice of a = 0, 8 = 1, and v = 1 reduces the system to that of the

existing approach.
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e On the other hand, if we choose @ = 1. # = 0, and v = 1. the result would
likely be a zero charge density since o = 0 is one of the solutions and this
solution gives the best residual (zero residual) that an iterative solver can
hope for. Thus the choice of the above parameter set produces unreliable
results.

The above choices are two extreme examples. The former gives § = 0 and the
latter yields § = +oo. If% is too large. this undermines the overall accuracy.
Because of the discretization error. the left hand side of eq. (5.12) or (5.14) is
not equal to zero. even at the centroid c; of a panel IIx. This non-zero value is
an error. In egs. (5.15) and (5.16), the error is amplified by . which in turn
affects the accuracy of the solution of the original potential equation (5.1). If
% is too small, the character of (5.15) and (5.16) as integral equations of the
second kind diminishes. reducing the system to eq. (5.6). Thus a non-zero «
is needed in order to maintain the character of the integral equations as well
as to prevent the deterioration of the conditioning of matrix A when the mesh
is refined or when dimensional scaling is performed. This is the main reason
why we introduce the flux equation (5.14) into the potential equation (5.1) to
obtain (5.15) and (5.16). Note that for non-zero a. when the mesh is refined.
the areas of the panels are reduced and the coefficients in the discretization
matrix are reduced proportionally except for the diagonal entries. If a is
large enough, mesh refinement has negligible effect on the portion of the

diagonal associated with the conductor equations; the other portion is always

maintained at 4. This is how « is used to control the conditioning of A.
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From the above two extreme properties. it is essential that a be chosen in
such a way that the error amplification is kept within some tolerance and at
the same time. the character of the integral equations of the second kind be
maintained in spite of the increase in the number of panels. The following
observation suggests that the above requirement can be satisfied. Here. as
the mesh is refined. the discretization error is improved and so is the error in
the flux equation (5.12). This improvement makes the amplification of error

by «a less severe. especially when «a is not too large.

e With 3 = 1. v = 1, @ € (0.00) and independent of geometry. the main
problem is that there is mismatch between the coefficients of the potential
equation (5.1) and the corresponding coefficients of the flux equation (5.14).
Again. we consider the scaling transformation: (X.Y.Z) — (3sX.sY.sZ) on

eq. (5.15). The resultant equation is:

(a(] +2Ky) + BsK.)o = BV. (5.17)

The part originating from the flux equation. (a(/+2Ky)o remains unchanged.
while that from the potential equation. 3sK_.o is scaled by s. When s ap-

proaches zero. the above equation reduces to the following invalid form:

(I +2K;))e = BV. (5.18)

for which seeking a solution is pointless. Thus we have seen another improper

choice of the parameter a. From this, we conclude that the value of a should
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be chosen relative to the coefficients from the potential equation (5.1). Since
the coefficients on the diagonal are the largest. they can be used as the refer-
ence. We consider the largest diagonal value. denoted as D.mg.- This leads

us to the following choice.

e 3 =1and a = a,D.mez- Here, ap is a prefactor for weighting how large
or how small a is with respect to Decmaz- In many cases. a, = 1 is a good
compromise. With regard to 7. it is chosen in the range of a so that the scaling
employed in both eqs. (5.15) and (5.16) are similar. One of the choices is
v = (ag+1)De maz- yielding values for the diagonal entries in the discretization
matrix between a and 7. It is clear from the above considerations that further

work may be needed for selection of optimal values of these parameters.

5.3 Numerical experiments

In order to demonstrate the suitability of the new formulation for the charge density
problem. we present two examples: Example 1: capacitance of a spherical conductor
of unit radius (1m). which is known to be C) = 4me,; and Example 2: capacitance
of a spherical conductor of unit radius embedded in a concentric dielectric sphere of
radius 1.5 unit and dielectric constant 2, which is known to be C = 4.87¢,. These
exact values can be calculated using the formulae described in [55]. In these exam-
ples. we compare the two approaches with respect to: (i) the number of iterations
required for a given absolute error tolerance of the residual: (ii) the accuracy of the
charge, the potential and its normal derivative (pointing into the conductor’s inte-

rior, see (5.12)) at the centroids of the panels; (iii) the effect of mismatch between
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the integral equations of the first and second kinds on the convergence rate. The

simulation procedure is summarized as follows.

5.3.1 Simulation procedure
1. The surfaces are meshed into N panels. The charge density (to be computed)
on each panel is assumed to be constant. The discretization yields a system

of linear equations as given by eq. (4.3).

Lo

The system of linear equations is solved using the iterative method GMRES
[46]. The matrix-vector multiplication is approximated using exponential
expansion. with an average relative error 107 for the potential and 10~° for
its gradient. In most cases. we use no preconditioning so as to compare the
conditioning number of the matrix A obtained from the existing formulation
(egs. (5.1) and (5.6)) with that from the new scheme (egs. (5.15) and (5.16)).
The conditioning of A is reflected in the convergence rate or equivalently. in
the number of iterations required for the residual to fall below some given

tolerance. Here. this is chosen as 1076.

5.3.2 Results

The results of the two simulation examples are summarized in Tables 5.1-5.7. The
first column in each table lists the number of panels used for meshing the conductor
surfaces and the interfaces. In Tables 5.1 and 5.3. the columns (2,3.4) and (5.6.7)
list the number of iterations and the relative error of the capacitance obtained
for the cases when a, = 0. 1, and 10, respectively. In Tables 5.2 and 5.4. the

third column shows the L;-norm error in the charge: ||g — §j|; the fourth and fifth
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columas list the L,,4--norm error (absolute maximum error) in the potential and its
normal derivative at the centroids of the panels on the conductors. In Table 5.5. the
columns (2.3) and (4.5) list the number of iterations required with a scaling factor
s = 107° without an with preconditioning. respectively. Tables 5.6-5.7 shows the
results for the case of s = 10°. Here, the columns (2.3) list the number of iterations

and the columns (4.5) the relative error of the capacitance computed.

5.3.3 Observation

o Convergence rate: as a, (and hence a) increases. the number of iterations
decreases. This is a result of eqs. (5.15) and (5.16) having increasingly more

character of integral equations of the second kind.

o Accuracy: for a given mesh, as a gets larger. the difference in the results of the
two approaches also grows. However, as the mesh is refined. this difference
decreases. Although. the potential obtained in the case of a, = 0 is always
superior. the overall L, norm error in the charge as well as the L., norm
error in the normal derivative of potential are not as good as that obtained in
the case of a, # 0. For the capacitance. the case of a, = 0 appears to yield
more accurate values for Example 1, but not for Example 2. Note that the
accuracy of the capacitance alone in some cases does not reflect the overall
accuracy. In the case of @, = 0 in Example 2. the accuracy of the capacitance
obtained from the coarse mesh (2560 panels) is higher than that obtained
from a finer mesh. But this is most likely due to numerical cancellation.
The results shown in tables 2 and 4 indicate that as the mesh is refined,

the overall accuracy is improved and the difference in values from the two
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' Panel Iteration Capacitance error
| 0] 1710 a =0 =1 a,=10
2.048 17 11 6 -2.2 x 1073 3.2 x 1073 | -1.2 x 1072
8.192 22 1210 7 5.7 x 10 | -8.3 < 107 | -3.2 x 1073
32,768 || 27 | 14, 9 || -1.4x10* | 2.7x107* | -7.8 x 10*

Table 5.1: Convergence rate in terms of number of iterations and relative error in
capacitance in Example 1.

approaches is insignificant: in fact. it is expected that this difference vanishes

in the asymptotic limit.

o Mismatch between the integral equations of first and second kinds: the re-
sults in Tables 5.5-5.7 suggest that with the existing approach (a, = 0) the
mismatch between the two kind of integral equations induced by scaling can
cause a significant increase in the number of iterations. Furthermore. for the
case of s = 10°. if no preconditioning is used, the convergence rate is very
slow: even with a residual in the range 107°, the error in the computed ca-
pacitance is only in the range 10~!. This indicates that the matrix A is very
much ill-conditioned. With the new approach (@, # 0). no such mismatch
occurs and the number of iterations is much smaller. Note that precondition-
ing can significantly reduce the effect of the mismatch. But even with the use
of preconditioning, with the scaling factor s = 10~%, the number of iterations
required in the case of @, = 0 is still larger than that in the case of a, # 0

without preconditioning (see Table 5.5).
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Panel | a, Lo-error | Lmax-€rTor
g Hee) | B |
2.048 0 ] 1.7x107° || 58x10°® | 3.3 x1073
1 | 1.6 x 1073 1.1 x107% | 3.2x10° |
10 | 3.4x107° | 1.0x10% | 2.9 x 107
8.192 0 | 32x10% || 25 x10°® ; 1.8 x1073
1| 31x10% || 3.0x10* | 1.7 x1073
10  55x107% || 27x10% | 1.5 x 1073
32.768 0 ] 6.0x10° | 2.0x10°® | 9.1 x 10
1| 6.0x10°% || 1.5x10* | 88 x107*
10 | 8.9 x10° || 72x10 | 8.3 x107™* |

Table 5.2:

Error in charge. potential and its normal derivative in Example 1.

Panel Iteration Capacitance error
0 1 10 a, =0 a, =1 a, = 10
2.560 13 9 6 -1.0x 107 | 22 x107% | -2.1 x 107°
10,240 17 | 10 6 1.9 x 1073 1.3 x 1073 -4.0 x 1073
40,960 21 | 12 8 1.4 x 1078 1.3 x 1073 -1.2 x 107
163.840 || 27 | 14 | 10 83x10% | 7.8x10% | 43 x10™* .
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Table 5.3: Convergence rate in terms of number of iterations and relative error in

capacitance in Example 2.



CHAPTER 5 INTEGRAL EQUATIONS OF SECOND KIND

Panel | a, Lo-error Lpax-error
q B(ck) e
2.560 0 | 1.2x1072 || 4.6 x10°® | 3.7 x 1073
1§ 1.1x10? 2.3 x103% | 3.4x10
10 1.3 x 1072 2.2 x 1073 3.2x10°% |
10.240 2.5 x 1073 5.6 x 1078 2.0 x 1073
1 2.2 x 1073 6.8 x 107* 1.9 x 1073
10 2.3 x 1073 6.2 x 1073 1.7 x 1073
40.960 0 5.1 x 107 3.1 x 1078 1.1 x 1073
1 4.6 x 107* 1.8 x 107 1.0 x 1073
10 4.3 x 1074 1.6 x 1073 9.5 x 107
163.840 1.1 x 107¢ 1.7 x 1078 5.7 x 107
1 1.0 x 107 4.7 x 1078 5.4 x 107
10 ! 9.2 x 107 4.4 x 107 5.0 x 1074

Table 5.4:

Error in charge, potential and its normal derivative in Example 2.

No preconditioning Preconditioning

Panel a, =0 a, =1 a, =0 a, =1
2.560 48 8 11 6
10.240 84 10 14 8
40.960 > 100 14 17 12

Table 5.5: Effect of mismatch of integral equations of the first and second kinds
due to scaling in Example 2. Scaling factor s = 1.0 x 107%. Accuracy of potential
approximation is 1078,
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! No preconditioning
| Panel iteration cap. rel. err.
a, =0 a, =1 a, =0 a, =1
2.560 25 8 2.4 x107t | -22 x 1073
10.240 43 10 5.1 x 107! -1.3 < 1073
40.960 80 12 6.7 x 1071t -1.3 x 1073

Table 5.6: Without preconditioning. Effect of mismatch of the integral equations of
the first and second kinds due to scaling in Example 2. Scaling factor s = 1.0 x 10°.

Accuracy of potential approximation is 1078,

Preconditioning
Panel iteration cap. rel. err.
a, =0 | a, =1 a, =0 a, =1
2,560 6 6 -4.7x107° | -2.2x 1073
10.240 8 7 -1.8x107% | -1.3 x 1073
i 40,960 11 10 1.5 x 1073 -1.3 x 1073

Table 5.7: With preconditioning. Effect of mismatch of the integral equations of
the first and second kinds due to scaling in Example 2. Scaling factor s = 1.0 x 10°.

Accuracy of potential approximation is 1078,



Chapter 6

Numerical Extraction of

Capacitance in a-Si TFTs and

Imaging Arrays

The main objective of this work is to develop a computational procedure for numer-
ically extracting the capacitance with a high degree of accuracy and in an efficient
manner. Although the method presented here can be used for general device struc-
tures, our focus is on a-Si TFTs and interconnects in imaging arrays [60]. Following
the approach and formulation presented in previous chapters. we now describe re-
sults of the EE-based numerical extraction of these parasitic coupling capacitances.

In many situations where direct measurement is not feasible or is too costly and
the parallel-plate approximation is unreliable, numerical simulation is the preferred
choice for extracting the capacitance. With its flexibility, numerical capacitance

extraction can help to gain insight into device behaviour under different geometric
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structures and operating conditions. Not only is this useful from the standpoint of
establishing design rules for large-area systems, it also facilitates further develop-
ment of equivalent circuits for effective SPICE-like simulations at the system level.
The latter is necessary for design optimization and sensitivity analysis. Comparison
of simulation results with those from measurement and the parallel-plate approxi-
mation are presented in §§ 6.1 and 6.2. respectively.

Numerical computation can also be used for extracting other geometric param-
eters. For example. the result from simulation and measurement can be used to
extract the overlap length in a-Si TFTs. This is discussed in §6.3.

As mentioned in Chapter 1. the extreme geometric structures in a-Si imaging
electronics require a large number of panels to barely resolve the surfaces and high
degrees of accuracy on the evaluation of the potential. This can be problematic
and even out of reach for current numerical algorithms in view of the exorbitant
memory requirements. These concerns. however. can be addressed effectively using
the EE method. The simulation results presented in the sections that follow are

obtained from the EE-based method.

6.1 Simulation vs. measurement

To verify the reliability of the simulation, we design test structures for a-Si TFTs
and parallel-plate capacitors. The parallel-plate capacitors are used to calibrate the
dielectric constant of SiN; its value is 7.15. Due to the limited resolution (= 0.1pF)
of the available measurement equipment (Keithley, Model 82-DOS simultaneous
C-V), these structures had to be oversized. Figure 6.1 shows the layout and a

photograph of the fabricated test structures. For the TFTs (see Fig. 1.2 for the cross
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section and symbols), the length is L,;=200um and the width is W,;=400um; the
length of the source and drain is L,;=60um: the channel length is L.,=50um: the
overlap length assumes values: L,=15pm. 25um. and 35um: and the corresponding
lengths of the gate are 80um. 100um. and 120um. The respective layer thicknesses

and dielectric constants are listed in Table 6.1.

SiN a-Si SiN Source & | Gate

(gate) (top) drain metal | metal
' Thickness (um) 0.22 0.05 0.22 1.0 0.12
| & 7.15 | 11.9 | 7.15

Table 6.1: Thickness of various layers (see Fig. 1.2) and their dielectric constants.

The capacitance of the test structures obtained from measurement, simulation.
and parallel-plate approximation are shown in Table 6.2 for the overlap between
gate and source/drain (Cgs) in the TFT. The results are in close agreement. Factors
that may contribute to the discrepancy include (i) the uncertainty of the dielectric

constant of SiN. which can range from 3.6 to 7.5 depending on the relative composi-

' Overlap length Capacitance |
| (pm) measurement simulation | parallel-plate approximation
| (pF) value (pF) |rel. error | value(pF) rel. error
15 1.6 1.58 1.25% 1.52 5.00%
25 2.6 2.58 0.08% 2.53 2.62%
35 3.6 3.59 0.03% 3.54 1.54%

Table 6.2: Overlap capacitance in a-Si TFTs as a function of overlap length: values
shown are obtained from measurement, simulation. and the parallel-plate approxi-
mation.
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Figure 6.1: Fabricated test structures: (a) layout and (b) photograph.
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tion of Si and N, (ii) the uncertainty of the overlap due to errors in patterning, and
(ii) the presence of trapped charge as defects in the amorphous material. which
has not been accounted for in the model equations.

Figure 6.2(a) shows overlap capacitance as a function of overlap area. For large
overlap areas. the results obtained from measurement. parallel-plate approximation.
and simulation show good agreement. This confirms the reliability of the numeri-
cal simulations. For overlap areas in the range of a few hundred pm?. the overlap
capacitance is too small to be measured. There is a large discrepancy. especially
in cases where there is no overlap. between the parallel-plate approximation and

simulation as illustrated in Fig. 6.2(b). This is further discussed in the next section.

6.2 Simulation vs. parallel-plate approximation

In this section. we compare the results of capacitance extraction obtained from
the parallel-plate approximation and numerical simulation. Here. the capacitance
computed is associated with gate and source/drain overlap in a-Si TFTs and the
crossover of addressing lines in a-Si imaging arrays. When the overlap length be-
tween the gate and source/drain in the TFT is small or when the crossover area of
addressing lines is small. the parallel-plate approximation is less reliable due to the
dominance of the fringing field in these structures. Furthermore, the capacitance
is found to increase with the permittivity of the substrate. which the parallel-plate

approximation fails to predict.

6.2.1 Geometric overlap capacitance in a-Si TFT's
The number of panels used to discretize the conductor surfaces and dielectric inter-

faces is nearly 400,000. The length. width, and thickness of the structure considered
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Figure 6.2: (a) Overlap capacitance (fF) as a function of overlap area (um?): mea-
surement(+), parallel-plate approximation (*), and simulation (0). (b) Overlap
capacitance (fF) as function of overlap length (um): parallel-plate approximation
(dashed) and simulation (solid); corresponding overlap areas are from —500um? to
500pm?.
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(see Fig. 1.2) in simulations is 100pm x 100pm x 11.3um. Here. only 10um of the
glass substrate (e,=5.84) (or silicon substrate (e¢,=11.9)) is considered so as to re-
duce panel count. The respective layer thicknesses and dielectric constants are
listed in Table 6.1. except that SiN now has dielectric constant of 4.5 and thickness
of 0.25um. The length of the source and drain regions is L,;4=25um while that of
the channel is L.,=16pm. The overlap length L,, is varied from —5um to 20um.
which corresponds to the gate length from 6um to 56um. Here. the negative sign
implies no overlap and the associated value denotes the horizontal separation be-
tween the gate and the source/drain electrodes.

The values of the geometric overlap capacitance between gate and source (Cgs)
are listed in Table 6.3 for different L,,. These values are obtained from parallel-
plate formula (Capprox: column 2) and numerical simulation (Ciimuiation) for glass
substrate (column 3) and silicon substrate (column 4). From the simulations, we
observe that (i) the capacitance is a non-linear function of L. and hence. the
overlap area: (ii) even when L, < 0, the capacitance is non-trivial: and (iii) the
capacitance increases with increasing permittivity of the substrate material.

The discrepancy between simulations and the parallel-plate formula, which in-

creases with decreasing L.,. can be expressed in terms of a fringing factor a:

Capprox
a = —mm— 6.1
Csimulation ( )

The fact that @ < 1 signifies the presence of a fringing field component in the
capacitance, which is not accounted for by the parallel-plate approximation. The

fringing factor a is a highly non-linear function of L., (see Fig. 6.3), particularly
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' Lov Cappmx Csimula:ion(fF )

(um) (fF) glass(e, = 5.84) Si(e, = 11.9) |
-3 0 3.77 6.21
-4 0 4.82 7.05
-3 0 ! 5.57 9.22
-2 0 6.13 : 9.68
-1 0 8.16 12.3
0 0 14.4 19.5

1 14.8 30.5 36.6
2 29.6 45.6 51.7
3 44.4 61.1 ' 66.8
4 59.3 76.1 81.7
63 74.1 90.4 96.9
10 148 165 172
15 222 241 247
20 | 296 314 321

Table 6.3: Geometric overlap capacitances from parallel-plate formula (C,pprox) and
numerical simulation (Cgimulation)-

at low values of L., due to the dominance of the fringing field. This rules out
the use of any constant prefactor a, (i.e., replacing Capprox bY @Capprox) for better

approximation of the true capacitance.

6.2.2 Interconnect crossover capacitance

The crossover capacitance of the gate and data lines (see Fig. 1.1b) is computed as a
function of the crossover area. The dielectric layers are the same as in the previous
simulation example of the TFT. but with the source and drain now replaced by data
lines of 0.12um thickness and 16um of separation. The gate line. also of 0.12um
thickness, is on the glass substrate and runs perpendicular to the data lines. The

widths of the both gate and data lines are the same and are varied from lum to
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25um: the corresponding crossover areas range from 1um? to 625um?. The values of
the crossover capacitance are listed in Table 6.4. They are obtained from numerical
simulation (column 2) and from the parallel-plate formula (column 3). Again.
as in the previous example, when the crossover area is small. we see the dominance
of the fringing field, and hence. a large discrepancy in values (Fig. 6.4). In these
structures, the fringing field has a truly two-dimensional character. which is strongly
influenced by the close proximity of (intersection) corners. In contrast. for large
crossover areas, the effect of the fringing field can be superposed, and following

intuitive reasoning, we can construct an approximate edge factor whose value is
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Crossover area | Capacitances (fF')

(,umz ) ' Csimulation I Capprox

1 17 | 027

25 95 . 6.70

100 31.6 ! 26.8

225 66.3 ‘ 60.2

400 115.4 107.0

625 1771 | 167.2

Table 6.4: Crossover capacitances (fF) from parallel-plate approximation(Capprox)
and numerical simulation (Csimuiation)-

the square of that of the previous example (see Fig. 6.3). Here. since Wy, > L,,.
the fringing field can be perceived to have a one-dimensional character. In this
case. however. if the overlap area and crossover area (see Fig. 6.5) are the same.

the parallel-plate formula appears to be better for the latter in view of the weaker

effect of the fringing field.

6.3 Extraction of overlap length

In comparison with other parameter values such as width. channel length. and
thickness. an accurate value of the overlap length (L,,) is difficult to retrieve. Nu-
merical simulation can facilitate the extraction of the gate-source/drain overlap
length L,,. For a given process. we calibrate simulations to account for variations
in device structure (e.g., layer thicknesses) and physical parameters (e.g.. permit-
tivities) induced by the fabrication process. The simulations are then performed for
a wide range of L,,. Figure 6.6 shows the overlap capacitance in TFTs computed

as a function of L.,. By comparing the values obtained from measurement and the
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calibrated simulation. we can retrieve L,,. Note that with the above procedure.
it is possible to retrieve a negative L,, since measurements will yield a non-trivial

capacitance due to the fringing fieid. In this case. |L,,| denotes the horizontal

separation between gate and source/drain electrodes.
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Chapter 7

Conclusions

In this thesis. we describe the numerical extraction of parasitic coupling capacitance
associated with a-Si TFTs and imaging arrays. The extreme geometries of device
structures. the presence of the floating potential of the glass substrate. and the
discontinuity of the electric field across the dielectric layers pose severe constraints
on numerical methods that need exorbitant computer memory. This makes numer-
ical capacitance extraction for large-area systems a challenging task. We address
the above difficulties with a new method based on exponential expansion (EE) of
the Green's function 1 for efficient evaluation of the potential field. along with a
new formulation for the charge density in a multilayered-dielectric multi-conductor
system. With these constructs. we develop an EE-based simulator. which employs
a multi-level multi-precision iterative scheme for solution of the charge density and
extraction of capacitance.

With the EE method, the evaluation of the potential of an ensemble of N par-

ticles as well as its gradient can be performed in linear time (O(SsppN)) and with
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a memory requirement O(N). which is independent of the desired degree of ac-
curacy. The latter feature makes the EE method distinctively unique among the
algorithms reported for the well-known family of N-body problems. The EE method
also opens new avenues for efficient distributed computing and parallel processing
of large-scale N-body simulation of particle systems. ranging from the atomic to
the cosmological scale.

As considerations for future work. the use of the EE method can be extended
to physical systems in which the exponential expansion can be generated for the
associated Green's function. The generation of the expansion can be realized using
the randomized algorithm. Alternatively. translations on the expansion of X can be
manipulated to express such a function: it is a very attractive scheme for dealing
with a silicon substrate of fixed potential or glass/polymer substrate of floating po-
tential. However. the use of the randomized algorithm is more general in that once
the exponential expansion is available. the EE method can be employed without
any modification.

The parasitic coupling capacitance in a-Si systems is also dependent on bias
and frequency. To include these dependences in the numerical extraction is an
important consideration for future work. Here. we need models that describe the
charge trapping and detrapping mechanisms in the a-Si and dielectric layers. These
models need to be coupled with the charge transport (current continuity) equation.
Hence. a combination of differential-equation formulation (for the volume) and in-

tegral-equation formulation (for surfaces) may be needed.
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