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Abstract 
The quantitative analysis of decomposed electromyographic (EMG) signals reveals 

information for diagnosing and characterizing neuromuscular disorders. 

Neuromuscular jitter is an important measure that reflects the stability of the operation 

of a neuromuscular junction. It is conventionally measured using single fiber 

electromyographic (SFEMG) techniques. SFEMG techniques require substantial 

physician dexterity and subject cooperation. Furthermore, SFEMG needles are 

expensive, and their re-use increases the risk of possible transmission of infectious 

agents. Using disposable concentric needle (CN) electrodes and automating the 

measurment of neuromuscular jitter would greatly facilitate the study of 

neuromuscular disorders. An improved automated jitter measurment system based on 

the decomposition of CN detected EMG signals is developed and evaluated in this 

thesis. 

Neuromuscular jitter is defined as the variability of time intervals between two muscle 

fiber potentials (MFPs). Given the candidate motor unit potentials (MUPs) of a 

decomposed EMG signal, which is represented by a motor unit potential train 

(MUPT), the automated jitter measurement system designed in this thesis can be 

summarized as a three-step procedure: 1) identify isolated motor unit potentials in a 

MUPT, 2) detect the significant MFPs of each isolated MUP, 3) track significant 

MFPs generated by the same muscle fiber across all isolated MUPs, select typical 

MFP pairs, and calculate jitter. In Step one, a minimal spanning tree-based 2-phase 

clustering algorithm was developed for identifying isolated MUPs in a train. For the 

second step, a pattern recognition system was designed to classify detected MFP 

peaks. At last, the neuromuscular jitter is calculated based on the tracked and selected 

MFP pairs in the third step. These three steps were simulated and evaluated using 

synthetic EMG signals independently, and the whole system is preliminary 

implemented and evaluated using a small simulated data base.  

Compared to previous work in this area, the algorithms in this thesis showed better 

performance and great robustness across a variety of EMG signals, so that they can be 

applied widely to similar scenarios. The whole system developed in this thesis can be 

implemented in a large EMG signal decomposition system and validated using real 

data.  
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Chapter 1  
Introduction 
Electromyographic (EMG) signals can reflect the electrical properties and activities of 

a contracting muscle. The analysis of EMG signals provides important information for 

the diagnosis and characterization of neuromuscular disorders. Depending on the 

electrode used, EMG signals basically consist of the electrical activities of one or 

multiple motor units (MUs) within the detection area of the electrode, which are 

called motor unit potentials (MUPs). To study the electrical activity of individual 

muscle fibers, the technique of single fiber (SF) EMG is used for investigating the 

neuromuscular jitter phenomena [Stalberg 1971]. SF-EMG techniques use the most 

precise and fine electrodes -- single fiber needle electrodes (SFN) -- to identify 

individual muscle fiber potentials (MFPs).   

Neuromuscular jitter reflects the transmission stability of neuromuscular junctions 

(NMJs). It is a sensitive clinical test for evaluation of the NMJ dysfunction. The 

measurement of jitter has been conventionally completed using SFN electrodes. 

However, using SFN electrodes is time-consuming since it requires the dexterity of an 

experienced physician and the cooperation of the patient. In addition, SFN electrodes 

are expensive, and their re-use increases the risk of possible transmission of infectious 

agents. Recently, researchers have found that neuromuscular jitter can be measured 

from EMG signals detected using concentric needle (CN) electrodes with comparable 

accuracy as SFEMG.  Adopting disposable CN electrodes for the automated 

measurement of jitter would greatly facilitate the study and diagnosis of 

neuromuscular junction disorders.   

Neuromuscular jitter is expressed as the variability of time intervals between two 

MFPs of the same MUP. To measure jitter from an EMG signal, individual MFP 

contributions (or MFPs) have to be detected accurately from an MUP, and at least one 

specific MFP pair has to be identified consistently from the same motor unit. The 

process of EMG signal decomposition can resolve a routine EMG signal into 

individual MUPs and assign MUPs generated by the same motor unit to an MUPT. 

Previous research has shown that MFPs can be detected by 2nd order filtering of an 

MUP signal, and some tentative work has been done to select the MFPs and MFP 
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pairs. In this thesis, a three-step procedure has been developed for measuring jitter 

from decomposed CN detected EMG signals. The three-step procedure includes a 

preprocessing step to identify the isolated MUPs (ISO-MUPs) in an MUPT, a major 

step to detect the significant MFPs of each ISO-MUP, and a final step to select typical 

MFP pairs and calculate jitter. Evaluated by simulated, the performance of each step 

as well as the whole procedure is improved compared to former work. The whole 

system developed in this thesis can be integrated to any EMG signal decomposition 

tool as a jitter measurement system or as an independent application. The well-

modularized system allows each step operated and adjusted independently, which 

makes it easy to modify or reuse these modules for a wide range of applications in the 

biomedical signal processing area.  

The remainder of this thesis is organized as follow. Chapter 2 reviews the background 

knowledge of neuromuscular electrophysiology, EMG signal composition, and jitter 

measurement. Chapter 3 provides an overview of CN-detected EMG-signal-

decomposition-based automated neuromuscular jitter measurement. The basic ideas of 

filtering are explained, previous research is discussed, and the three-step procedure is 

described briefly. For algorithm evaluation, the data simulation method is introduced 

as well. The following Chapters 4 to 6 are dedicated to the three steps of the 

procedure respectively. Chapter 7 presents the conclusions and discussions regarding 

this research. 
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Chapter 2  
Background 
 “Electromyography is the study of muscle function through the inquiry of the 

electrical signal the muscles emanate” [Basmajian 1985]. Following the birth of 

neurophysiology in 1953, the study of electromyographic (EMG) signals has 

fascinated a wide variety of researchers and grown rapidly. Since Adrian and Bronk’s 

introduction of the concentric needle electrode in 1929, electromyography has 

developed into a fundamental technique of electrodiagnostic medicine consultation 

[Dumitru 2002].  

Technological advances in electronics and microcomputers have enabled the 

development of methods for investigating the electrical activity generated by a muscle. 

For example, the needle EMG examination has been a routine evaluation procedure in 

the clinical diagnosis of nerve and muscle disease. Signals are acquired using a CN 

needle or a monopolar needle electrode and recorded by a cable-connected instrument. 

However, the recorded EMG waveform is traditionally assessed subjectively from its 

appearance and corresponding sound from the monitors by an electromyographer with 

trained eyes and ears. When abnormalities of the routine EMG are equivocal and 

serial assessments of disease progression are required, a statistically valid sample of 

EMG signals is quantified and characterized manually or using automated computer-

based methods, which is called the quantitative analysis of EMG. EMG signal 

decomposition is a type of quantitative analysis. It helps not only to detect 

abnormalities more accurately, but also to evaluate their severity, status, duration, etc. 

With the rapid development of computers and modern signal processing technologies 

and their dramatically decreasing cost, the integration of automated quantitative 

analysis and the routine examination is tending to be the standard function of some 

EMG equipment. From the 1980s, interest has been focused on the ability to analyze 

EMG signals quantitatively and automatically. [Guiheneuc 1983, Stalberg 1983, 

Antoni 1983, Stewart 1989, Stashuk 1999, Dumitru 2002] 

The SF-EMG technique was developed by Stalberg and Ekstedt in the early 1960s. 

Exploiting a fine needle with small pickup radius, SFEMG signals provide 

physiological information about just one or a few muscle fibers. SFEMG has become 
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a major tool in the electrodiagnosis of disorders of the neuromuscular junction, which 

are the focal abnormalities of motor unit architecture. Neuromuscular jitter is one of 

the main measurements of quantified SFEMG analysis which still has to be measured 

manually in most clinical applications. In addition, SFEMG requires a special 

electrode which is expensive, and its reuse increases the risk of transmission of 

infectious agents. Many attempts have been made to measure jitter using standard 

EMG electrodes, and some of them have produced encouraging results [Payan 1978, 

Weichers 1985, Buchman 1992, Ertas 2000, Sarrigiannis 2006, and Benatar 2006.  

This background chapter briefly describes topics about neuromuscular physiology, the 

generation of EMG signals, SFEMG and jitter measurement, and EMG signal 

decomposition.  

 

2.1 Neuromuscular Physiology 

The practice of electromyography as well as electrodiagnostic medicine in general is 

based on knowledge of nerve and muscle physiology. In short, any voluntary 

movement is produced by a hierarchical procedure: a stimulus initiates from the 

cortex, passes along the spinal cord, goes through the neurons, transmits to muscle 

fibers through neuromuscular junctions, and finally results in muscle fiber 

contractions.  The major consequence of the elaborate information processing within 

the brain is the contraction of skeletal muscle.  

A typical skeletal muscle is composed of many thousands of muscle fibers working in 

parallel and organized into a smaller number of motor units. Muscle fibers are 

multinucleated cells with diameters from 10 to 100 µm, and lengths from a few mm 

up to 30 cm [Basmajian 1985]. Like all living cells, a muscle fiber is enclosed by a 

plasma membrane and has an electrical potential across its membrane. When the 

electrical signal from the nerve arrives at the muscle fiber, membrane depolarization 

occurs. Subsequently, an action potential is generated and propagates along the 

membrane. As a result of electrochemical interactions, muscle fiber contraction then 

takes place. [Dumitru 2002] 

A typical muscle is controlled by about 100 motoneurons whose cell bodies lie in the 

spinal cord or brain stem, and whose axons bifurcate widely to innervate from several 
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to 1000 muscle fibers scattered over a part of the muscle. Each muscle fiber is 

normally connected to only one motoneuron in only one position, usually near its 

midpoint. The ensemble of muscle fibers innervated by an individual motoneuron 

together with the motoneuron itself is referred to as a motor unit (see Figure 2.1). MU 

architecture varies considerably among different muscles and is diversified by various 

neuromuscular disease processes. [Kandel 2000, Dumitru 2002] 

The functional connection between a motoneuron and a target muscle fiber is a 

synapse called the endplate or neuromuscular junction (NMJ).  For each action 

potential in the motoneuron, the synapse releases sufficient transmitter to depolarize 

the membrane of the muscle fiber to its threshold for a muscle fiber action potential 

(MFAP). All of the muscle fibers belonging to the same motor unit respond 

synchronously to each discharge of the motoneuron, and the MFAPs summate to a 

motor unit action potential (MUAP). [Kandel 2000, Dumitru 2002] 

 

 
 

Figure 2.1: Motor Unit [Boron 2003] 
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Once the membrane of an NMJ is depolarized to its threshold, an action potential 

propagates along the membrane of the muscle fiber, which gives rise to relatively 

large potential gradients in the extracellular fluid around the muscle fiber. All muscle 

fibers of a motor unit are activated in synchrony, so the resulting currents sum to 

generate an electrical signal that can be readily detectable even outside the muscle. 

Furthermore, the asynchronous barrage of action potentials from many motoneurons 

produces overlapping action potentials arising from multiple motor units. The 

resulting complex pattern of electrical potentials can be recorded as an 

electromyographic (EMG) signal using electrodes in the muscle or on the overlying 

skin. The relative timing and amplitude of these patterns recorded in or over particular 

muscles reflect closely the aggregate activity of motoneurons innervating these 

muscles. 

2.2 Acquisition and Decomposition of EMG 
Signals 

2.2.1   Needle Electrodes for EMG 

EMG signals can be detected by electrodes inserted in the muscle tissue or located on 

the skin surface over the interested muscle, where these electrodes are referred to as 

needle electrodes or surface electrodes respectively. Although surface electrodes can 

be conveniently used to detect gross EMG signals, by far the most popular electrode 

category for electrodiagnosis is the needle electrode [Basmajian 1985]. These needle 

electrodes are commonly used in clinical practice: standard concentric needle (CN), 

monopolar needle (MN), and single-fiber needle (SFN), while CN and MN electrodes 

are used in routine clinical EMG examination. [Dumitru 2002] (see Figure 2.2). 

As shown in Figure 2.2, the SFN electrode is the most selective type of electrode 

among these three. The central 25 µm diameter platinum wire exits approximately 4 

mm from the beveled tip through a side port in the cannula. With an uptake radius of 

about 300 µm, it is possible to detect a single MFP using a SFN electrode. The SFN 

electrode, specially constructed for detecting SFEMG signals, primarily reflects the 

activity of only one (with probability of 70%) or two (around 25%) muscle fibers.  
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Figure 2.2: Three types of EMG needle electrodes. A schematic view of the pickup area (grey 
part in the 1st column) and the recording surface (black part in the 2nd column) of different 

electrodes are shown compared to a typical motor unit territory (inset). (A): SFN electrode, (B): 
CN electrode, (C): MN electrode.  [Merletti 2004] 

  

The CN electrode has an elliptical (150 x 580 µm) detection surface located in the 

beveled tip of a cannula. Signals detected by the 0.07 mm2 recording surface are 

referenced to the cannula so that interference from distant muscle fibers is reduced in 

the detected signals. On average, CN-EMG signals are derived from 15 to 20 muscle 

fibers that lie within the uptake area of the needle electrode using standard filter 

settings of 10 – 10 kHz. The CN electrode is one of the routine electrodes used for 

clinical detection of EMG signals. 

The MN electrode consists of a solid insulated pin, and the detection area is the 

denuded cone tip, where the standard recording surface is between 0.15 and 0.20 mm2. 

A separate surface electrode is needed as a reference for an MN electrode. Compared 

to CN electrodes, MNs tend to detect larger electrical signals including greater 

amounts of baseline noise. Therefore, MNs are not as sensitive as CNs for detecting 

the activity of a motor unit; however, they are more comfortable and economical. The 

MN electrode is also one of the standard electrodes used for clinical applications. 

Differences in the size and construction of CN, MN, and SF electrodes and their 

reference setups give them various detection characteristics, especially between the 

SFN and routine electrodes (i.e., CN and MN). In this thesis, the CN was chosen as 

the representative standard electrode. Comparison of SFN EMG and CN-EMG based 

neuromuscular jitter measurement will be made based on work in this thesis. 
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2.2.2   Composition of a EMG Signal: Muscle Fiber 
Potential (MFP), Motor Unit Potential (MUP), and Motor 
Unit Potential Train (MUPT) 

The electrical activity of a skeletal muscle cell is a transmembrane action potential 

spikes, which can be perceived extracellularly. To distinguish the membrane action 

potential generated by a muscle fiber (MFAP) from the corresponding potential 

detected by an electrode, the latter is called a muscle fiber potential (MFP) in this 

thesis. Following in the same way, a motor unit potential (MUP) refers to the detected 

potential of a motor unit in contrast with an MUAP. The detected potential can be 

considered the corresponding filtered action potential which is filtered by the 

intermediate tissue and the electrode itself. 

An MFP is a primary component of an EMG signal; in addition, an EMG signal 

results from electrical contributions from all active muscle fibers. Typically, the shape 

of a MFP is a triphasic voltage waveform, and it corresponds to the procedure that (i) 

an action potential propagates along the fiber towards the electrode, (ii) moves away 

from the electrode, and (iii) decays. The duration usually ranges from 2 to 6 ms (see 

Figure 2.3). The characteristics of the waveform depend on the size of the muscle 

fiber, the speed of action potential propagation, the configuration of the electrode, and 

the distance between the muscle fiber and the detection surface. Generally, the 

magnitude and high frequency content of a MFP decrease exponentially as the 

distance between the fiber and the detection surface increases. For example, the peak-

to-peak amplitude may decrease approximately 75% if the electrode is moved 100 µm 

away from a fiber. Thus, the contribution of any individual muscle fiber to an MUP 

crucially depends on its distance from the detection surface. Decreases of amplitude 

with distance vary with the different types of electrode. As shown in Figure 2.4, 

needles with a small detection surface show a steep decline of MFP amplitude with 

increasing distance, therefore they are more selective and detect primarily activity of 

the closest muscle fibers. Conversely, electrodes with large detection surfaces are less 

selective, picking up potentials over a larger area. [Brown 1984, Merletti 2004] 
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Figure 2.3: Typical MFP waveform 

 

 

 
Figure 2.4: Amplitude versus electrode type and distance [King 1997] (SF: single fiber, CN: 

concentric, MN: monopolar, MAC: macro needle) 
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Summation of the synchronized activity of muscle fibers belonging to the same motor 

unit, an MUP, is the linear superposition of MFPs with some temporal delay: 

( )∑
=

−=
jN

i
iiijj st

1
MFPMUP τ ,                 (2.1) 

where, MUPj(t) is the jth MUP detected; MFPij(t) is the ith MFP belonging to the jth 

motor unit; N th is the number of fibers of the jj  motor unit; t is the temporal variable of 

the waveforms; τi is the conduction delay of MFPij(t) at the detection site; si is a 

binary flag for muscle fiber i firing (s  = 1) or blocking (i.e., does not fire) (si i = 0) 

[Stashuk 2001]. The summating MFPs for a motor unit are not perfectly aligned due 

to the fact that conduction times from the NMJs to the electrode vary with different 

fibers (i.e., τi differs with i). Consequently, MUP amplitude may be affected by the 

partial phase differences of the contributing MFPs, and the shape could be serrated or 

polyphasic. Although the size of an MUP is theoretically determined by the number of 

fibers for that motor unit (i.e., Nj), it mostly depends on the location and diameter of 

the closet few fibers.   

The voluntary discharges of a motor unit are repetitive so as to maintain or increase 

the force output of a muscle. In the order of firing time, the collection of MUPs 

generated by the same motor unit is known as a motor unit potential train (MUPT).  

Following the definition in (2.1), an MUPT can be expressed as: 

( ) ( )∑
=

−=
kM

i
kiikk tt

1
MUPMUPT δ ,   (2.2) 

where, MUPTk(t) is the MUPT for the kth motor unit; MUPik(t) is the MUP 

corresponding to the ith firing of the kth motor unit; Mk is the number of firings of the 

kth th th motor unit; δ  is the time of i  firing of the k  motor unit.  ki

Ultimately, the superposition of the MUPTs of all active motor units results in a 

composite EMG signal: 

( ) ( ) ( )∑
=

+=
L

k
k tntt

1
MUPTEMG ,   (2.3) 

where, L is the number of active motor units; n(t) is instrumentation noise. The 

composition of an EMG signal can be represented as in Figure 2.5. In fact, the 

composition is associated with the target muscle, the detection site, the contraction 
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level, and the configuration of the electrode. Using an electrode with a very small 

pickup area, such as a SFN electrode, EMG signals may primarily detect the electrical 

activity of only one or a few of the closet fibers.  

 

 

 
 

Figure 2.5: Models of the generation of an EMG signal [Basmajian 1985]  
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2.3 Single Fiber EMG and Neuromuscular 
Jitter 

Since its development in the early 1960s, SFEMG has provided insight into details of 

motor unit structure and function and become a major tool in the electrodiagnosis of 

neuromuscular junction disorders. Using the specially constructed SFN electrode, 

SFEMG allows single and multiple MFPs to be measured with an accuracy of 1 µs or 

less. Owing to high spatial resolution, MFPs of individual motor units can be reliably 

recognized selectively. SFEMG signals are quantified mainly by measuring fiber 

density and neuromuscular jitter. Fiber density provides information about the 

innervation patterns of MUs. It is measured as the average number of potentials that 

are recognized as MFPs over 20 tests at different sites within the muscle. 

Neuromuscular jitter measurement by SFEMG is considered the most sensitive 

method for detecting disordered neuromuscular transmission, and is widely used to 

diagnose myasthenia gravis and other diseases of the NMJ. [Brown 2002, Dumitru 

2002]  

Even in healthy NMJs of a motor unit, there is a certain fluctuation in the time 

interval between the arrival time of the neuron impulse and the subsequent generation 

of an MFAP. In a motor unit, the amount of variability in the operation of a pair of 

NMJs can be assessed if two MFPs can be consistently detected and individually 

identified. Normally, by carefully positioning a SFN electrode close to the fibers of an 

MU, and high-pass filtering the detected suitable potentials with a cutoff frequency of 

500 to 1,000 Hz, the activity of individual muscle fibers can be consistently identified.  

Usually, the subject is asked to voluntarily recruit the associated motor unit or is 

stimulated repetitively, and successive sweeps are triggered off one MFP of the fiber 

pairs. With reference to the triggering MFP, the variability in transmission time at 

both NMJs is defined as the variation in latency of the other potential, which has been 

termed neuromuscular jitter (see Figure 2.6). When this jitter is greatly increased, 

indicating a pronounced NMJ disturbance, one fiber may fail to generate a potential 

with some MU discharges. This is seen when some potentials are missing in some 

MU discharges, and this phenomenon is called blocking.  
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Figure 2.6: Neuromuscular jitter and blocking. A: normal jitter, B: increased jitter but no 

blocking, and C: increased jitter and occasional blocking (arrows). In the lower part, discharges 
are superimposed. [Stalberg 1997] 

 

The time interval between the two MFPs, called the interpotential interval (IPI) (see 

Figure 2.6), varies from one discharge to another. Defined as in formula (2.4), the 

statistic typically used to quantify neuromuscular jitter is the mean consecutive 

difference (MCD) which is relatively unaffected by any trends in the mean value of 

the time interval between the MFPs. At least 50 IPIs should be analyzed to compute 

the MCD. Jitter can be also calculated on the ordered set of IPIs, which is called the 

mean sorted difference (MSD). Usually, the smaller of the MCD and MSD values is 

used to represent jitter in the pair of potentials. The reference value for normal 

neuromuscular jitter is from 5 to 55 µs for different muscles [Brown 2002]. 

1
13221

−
−++−+−

= −

n
IPIIPIIPIIPIIPIIPI

MCD nnL
.  (2.4) 

Neuromuscular jitter analysis can be quite tedious, time-consuming, and subject to 

errors when several MUs are active. In addition, the SF electrode is quite expensive 

and vulnerable, and its reuse has raised concern regarding the risk of accidental 

transmission of infectious agents such as prions. These limitations have prompted 

researchers to evaluate the possibility of employing some disposable needles with 

alternate filtering methods to detect single MFPs. Experiments have shown that 
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accuracies obtained using CN and MN-EMG for measuring neuromuscular jitter are 

comparable with SFEMG. Investigators still face the challenges of measuring jitter 

automatically from decomposed CN or MN-EMG signals. [Wiechers 1985, Clarke 

1985, Buchman 1992, Stashuk 1999b, Ertas 2000, Sarrigiannis 2006, Benatar 2006].  

2.4 EMG Signal Decomposition 

EMG signal decomposition is a quantitative analysis process of identification and 

classification of individual MUPs in the interference pattern detected so as to 

determine the MUPTs that make up the signal. Despite some nonlinear effects such as 

temperature and very high lever of muscle contraction which can be ignored clinically, 

the decomposition of EMG signals is a linear signal process according to Formula 2.1 

– 2.3.  However, this practical process is complex for needle EMG because different 

MUPs may overlap in time to different degrees, and their shapes may deviate with 

motor unit property changes or electrode movements. Since the 1980s, many 

techniques have been developed to implement this process for intramuscularly 

detected signals with various degrees of automation [Merletti 2004, Stashuk 1999a]. 

A clinical quantitative EMG analysis system has been developed in the Biomedical 

Signal Processing Lab of the University of Waterloo, which would be the basic 

experimental environment for this research in practice. 

To resolve a composite EMG signal into its significant and constituent MUPTs, EMG 

signal decomposition involves the two major steps of detecting MUPs and 

recognizing detected MUPs (See Figure 2.7). The detailed procedure includes signal 

acquisition, signal segmentation for detecting MUPs, MUP representation or feature 

extraction, MUPs clustering, supervised MUP classification, resolution of 

superimposed MUPs, and discovery of temporal relationships between MUPTs.  

Following the decomposition of needle detected EMG signals, once the MUPs in an 

MUPT are resolved into MFPs accurately and consistently, neuromuscular jitter can 

be measured based on the decomposition of a routine EMG signal. In Chapter 3, the 

method of decomposing an MUP into its constituent MFPs for jitter measurement is 

described in detail. 
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Figure 2.7: Schematic representation of the detection and decomposition of the intramuscular 
EMG signals [Merletti 2004]  
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Chapter 3  
Measuring Neuromuscular Jitter based on 
Concentric EMG Signal Decomposition 
As introduced in Chapter 2, neuromuscular jitter is usually measured using a SFN 

electrode either manually or automatically. Attempts have been made to study jitter in 

MUPs detected with CN or MN electrodes, some of which give values that are similar 

to those obtained using a SFN electrode. However, due to the much larger uptake area 

of CN and MN electrodes, the spike components of the detected MUPs are the 

superimposition of multiple MFPs. This may lead to an underestimation of jitter if 

superimposed MUPs are recognized as single MFPs.  To measure jitter automatically 

based on CN and MN detected EMG signals, a strict procedure must be followed.   

This chapter introduces methods for measuring neuromuscular jitter from a 

decomposed EMG signal in detail. The first section presents a review of related work 

on this topic, followed by two sections describing different aspects of the methods. 

Section 3.4 gives an overview of the three-step system developed for this research 

with further details coming in Chapters 4 – 6, while section 3.5 introduces the EMG 

signal simulator used for evaluating the developed system. 

3.1 Review of Former Works 

By removing low-frequency energy from CN or MN detected MUPs, the underlying 

complexity and instability of MUs can be revealed. Payan was the first one to show 

this theory in his ‘blanket principle’ where he used a 3.2 kHz cutoff frequency and 

demonstrated that the high-pass filtered MUPs contained useful stability information 

[Payan 1978]. Wiechers removed frequencies below 500 Hz from MUPs detected 

using an MN electrode, and assessed neuromuscular jitter and blocking qualitatively 

[Wiechers 1985]. Buchman and Garratt also filtered MN detected EMG signals with a 

cutoff frequency of 500 Hz, and quantitatively proved that MN-based jitter 

measurements are reproducible and able to distinguish between normals and patients 

with myasthenia gravis (MG), an NMJ disease [Buchman 1992]. Recently, Tutkavul 

et al. evaluated jitter measured using an MN electrode and a 3 kHz high-pass filter, 
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and concluded that jitter measurements with an MN electrode can be superior to those 

obtained using an SFN electrode [Tutkavul 2006].  

At the same time, many researches have focused on jitter measurement using the more 

popular standard electrodes, CN electrodes. A simulation study on this topic using a 

line-source model was done by Tvrdon and Stashuk [Tvrdon 1995]. Processed by an 

‘inverse average-current filter’, it was found that the measured jitter varied 

approximately linearly with the expected jitter with the correlation coefficients around 

0.96. Stashuk did more simulations comparing the abilities of detect MFPs 

contributing to MUPs measured using SFN and CN electrodes [Stashuk 1999b]. The 

results suggested that the filtered acceleration of CN detected MUPs can strongly 

correspond to individual fiber activity and may be useful for measuring fiber density 

and jitter. Ertas et al. [Ertas 2000] applied a 2 kHz to 10 kHz band-pass filter to 

measure jitter, and compared the results to those using an SFN electrode. For two 

muscles during voluntary contraction and electrical stimulation respectively, jitter 

values using CN and SFN electrodes were found highly comparable, which 

demonstrated that CN electrodes could be used instead of SFN electrodes for 

neuromuscular jitter analysis. Ma presented an algorithm for automated jitter 

measurement in MUPs in his thesis [Ma 2003]. Choosing an acceleration filter, the 

algorithm demonstrated acceptable performance and could consistently measure jitter 

in a variety of EMG signals with the average error of 8.37%. Extending Ma’s work, 

Wang improved this algorithm by applying a McGill filter [Wang 2005]. Recently, 

studies done by Sarrigiannis et al. [Sarrigiannis 2006], Benatar et al. [Benatar 2006], 

and Cattaneo et al. [Cattaneo 2007] have also confirmed that a CN electrode is a 

justifiable alternative to an SFN electrode for measuring neuromuscular jitter or other 

statistics related to NMJ disease. Stalberg [Stalberg 2006] concluded that jitter values 

measured from CN-based MUPs may not be as accurate as those obtained using a 

SFN electrode due to the relatively large pickup area of a CN electrode, but that the 

deviation would not usually lead to misdiagnosis of NMJ disease. More specifically, 

using the peak trigger measurement algorithm, reference values for measurements 

made with a CN electrode are about 5 µs lower than those obtained using a SFN 

electrode. 

Based on the above studies and following Ma and Wang’s work, this thesis is 

dedicated to the design of an automated neuromuscular jitter measurement system 
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based on CN-EMG signal decomposition. The method developed for measuring jitter 

is introduced as follows: (i) definition of significant or near MFPs, (ii) MUP filter 

selection, (iii) system architecture design, and (iv) data simulation. 

3.2 Significant or Near MFPs  

As introduced in section 2.2.2, the amplitude of detected potentials steeply declines 

with distance from the detection surface. In fact, no matter what type of electrode is 

used, only muscle fibers very close to the detection surface contribute significant 

MFPs to an MUP. Compared to the 5 to 10 mm MU territory, only those muscle 

fibers within approximately 0.5 mm range around the electrode make significant 

contributions to the detected MUPs, which are called significant or near MFPs (or 

MFP contributions). The spike components of an MUP detected by a CN electrode are 

produced predominantly by the closest 2 to 12 muscle fibers [Wang 2005].  

It may be hard to distinguish all MFPs from muscle fibers within the CN electrode 

pickup area. However, if one is only interested on the focal area very close to the 

detection surface like when using an SFN electrode, jitter can be measured from only 

those significant MFPs once they are accurately and consistently identified. Referring 

to the characteristics of individual MFPs detected using an SFN electrode, a 

significant MFP has a stable shape with no bifurcation, a short rise time, and adequate 

amplitude across the ensemble of detected MUPs from the same MU. For measuring 

jitter automatically based on CN detected MUPs and evaluating an algorithm, 

significant or near MFPs have to be quantitatively defined. In [Ma 2003], near MFPs 

were defined arbitrarily as MFPs that had amplitudes above 150 µV. Stashuk used a 

threshold of peak acceleration to distinguish near and distant MFPs, where the best 

threshold values were found to range from 2.5 to 7.5 kV/s2 for MUPs detected using a 

CN electrode [Stashuk 1999b]. In the research of this thesis, two threshold values of 

peak acceleration of a MFP were used for defining a significant or near MFP: 5 and 

7.5 kV/s2. 

Significant MFPs usually can not be recognized directly in a CN detected MUP since 

they may be a superposition of more than 2 MFPs. Proper filtering has to be applied 

to the MUP to distinguish the significant MFP contributions, which is discussed in the 

next section.  
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3.3 Methods for Detecting Significant MFPs 
in MUPs 

In clinical settings, a CN detected MUP may consist of up to 50 individual MFP 

contributions [Stashuk 1999a]. However, a considerable portion of them are created 

by muscle fibers that are relatively distant from the detection surface of the electrode, 

which are defined as distant MFPs. In fact, distant MFPs consist mostly of relatively 

lower frequency components compared to near MFPs. Consequently, distant MFPs 

can be essentially removed by proper filtering techniques so that near MFP 

contributions can be more distinguishable. 

3.3.1   Filtered MUPs 

As reviewed before, the principle of measuring jitter using a CN or MN electrode is to 

differentiate individual MFPs by filtering the detected MUPs, though different filters 

with various cutoff frequencies have been exploited by researchers. As for CN-based 

detection, Stashuk [Stashuk 1999b] compared two band-pass filters with bandwidths 

of 500 Hz to 10 kHz: a 16th order zero-phase Butterworth filter and a McGill filter 

[McGill 1984]; The filter settings used by Ertas et al [Ertas 2000] were 500 Hz to 10 

kHz for SFN electrode recordings and 2 kHz to 10 kHz for CN electrode recordings, 

which were also employed in [Sarrigiannis 2006], [Benatar 2006] and [Cattaneo 

2007]. 

In his thesis [Ma 2003], Ma completed a detailed frequency spectrum analysis of 

MFPs and MUPs. It was found that for an MUP, the peak of the spectral density 

corresponds to contributions of almost all MFPs in the low frequency bandwidth, i.e. 

below 2000 Hz. These contributions contain mostly distant MFPs with relatively low 

frequency components. In the high frequency zone ranging from 3500 Hz to 10 kHz, 

an MUP’s spectral density is low and approximately constant. Since the spectral 

density of individual MFPs is relatively low and rapidly falls off over 3500 Hz, the 

contributions of MFPs to an MUP in the high frequency bandwidth would be subtle 

and the energy may mainly come from noise. So in order to distinguish near or 

significant MFPs for measuring neuromuscular jitter, the frequency section between 

2000 Hz and 3500 Hz, which mainly contains contributions from near MFPs, was 

selected as the bandwidth of a band-pass filter.  
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Several kinds of digital filters satisfying the bandwidth requirement were discussed 

and evaluated in Ma’s thesis, for example, a McGill filter which is a specific 2nd order 

symmetric differentiator (shown as in Equation (3.1)), a 1st order differentiator which 

was called a ‘Slope’ filter (Equation (3.2)), and a 2nd order differentiator which was 

called a ‘Acceleration’ filter (Equation (3.3)).  
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 is the sampled data of the original MUPs, and Ywhere, Xn n is the data of the filtered 

MUP. 

The criteria of designing or choosing the optimal filter is that it should be sensitive to 

the rapid rising edges of MFPs and able to suppress low frequency content and the 

false peaks efficiently. The ‘Acceleration’ filter was chosen for his algorithm due to 

its best performance, and the average detection, false, and miss rates were 75.1%, 

4.6%, and 24.9% respectively.  

3.3.2   MUP acceleration 

Another filtering method is to use MUP acceleration directly [Stashuk 1999b, Wang 

2005]. The sharp peaks of the MUP acceleration with sufficient amplitude and short 

rise time are corresponding to significant MFPs. Stashuk asserted that analyzing MUP 

acceleration is a powerful technique for detecting major fiber contributions to MUPs 

compared to a 16th order zero-phase Butterworth filtered MUP.  
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The MUP acceleration can be considered as another version of a McGill filtered MUP 

with different step length and divided by a constant which only depends on the 

sampling rate. For example, the zero-phase acceleration of an MUP can be calculated 

using the following 2nd order difference equation: 

2
112

2∆
+−−

= −++ nnnn
n

XXXXY ,    (3.4)  

where, ∆ is the sampling time interval of the detected MUP. Meanwhile, MUP 

accelerations and filtered MUPs have different units like kV/s2 versus µV, so also 

different detection thresholds for significant MFPs.  

In this thesis, the MUP acceleration calculated using equation (3.4) was used to 

differentiate significant MFPs. However, no matter which filtering method is applied, 

a key problem is how to identify false peaks produced by the filter. Ma did some 

initial work on this problem by characterizing true peaks which correspond to 

individual MFPs with features of the peaks of the filtered MUPs. Discussion on this 

problem is contained in the next section and later chapters.  

3.4 The Three-Step System for Automated 
Neuromuscular Jitter Measurement from an 
MUPT 

Needle-detected EMG signal decomposition is commonly a supplementary function 

for a clinical EMG analysis system in diagnosing myopathies and neuropathies. The 

decomposition process is complex since different MUPs overlap to various degrees in 

time, the shape of an MUP may vary because of changing MU properties or MU-

electrode relative position, and the firing intervals of an MU deviate to some extent 

depending on the stability of NMJ transmission [Merletti 2004]. By applying complex 

signal processing and pattern recognition techniques, a needle-detected EMG signal 

can be decomposed into MUPTs, and summarized as MUP templates and 

corresponding statistics suggesting the physiological status of a muscle.  

From an MUPT, significant or near MFPs can be identified in each of the filtered 

MUPs or MUP accelerations of the train. Neuromuscular jitter can then be calculated 

based on the IPIs of significant MFP pairs in the MUPs of an MUPT. To measure 
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jitter accurately, near MFPs should be identified precisely and consistently for each 

MUP of the MUPT. However, in order to keep complete firing information of an MU, 

a decomposed MUPT may contain superimposed MUPs which are contaminated with 

MUPs from other MUs. Filtering or using the acceleration of superimposed MUPs 

may reveal the MFPs of contaminating MUs, or show superimposed MFPs, which 

would be sources of false detection. To avoid the effect of superimposition, 

superimposed MUPs have to be removed from decomposed MUPTs before further 

analysis. Therefore, a preprocessing step that identifies isolated MUPs (i.e., the un-

superimposed MUPs) of an MUPT has to be completed before detecting near MFPs 

and calculating jitter.  

To design and evaluate the complex procedure for neuromuscular jitter measurement 

in decomposed CN-EMG signal hierarchically, a system composed of three functional 

steps is described: 

Preprocessing step: Identify isolated MUPs in an MUPT; 

Major step: Recognize near MFPs in each isolated MUP; 

Track near MFPs across an MUPT, select 

MFP pairs, and calculate jitter. 

Final step: 

  

The identification of isolated MUPs can be addressed as a clustering problem, while 

the detection of significant MFPs can be solved by a pattern recognition system. 

Algorithms designed for the three steps are introduced and evaluated independently in 

detail in the following chapters. Simulated data were generated for evaluation of each 

step as well as the whole system quantitatively. Real data collected by the Biomedical 

Signal Processing Lab of University of Waterloo were also used for validating 

algorithms. An EMG signal simulator was employed to generate synthetic data 

[Hamilton-Wright 2005], and an EMG signal decomposition system was applied for 

decomposing the EMG signals. The principles of the EMG signal simulator are 

introduced in the next section.  
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Figure 3.1: An example of muscle fiber distribution in an MU (bottom) and a CN electrode 
detected MUP (top) [Hamilton-Wright 2005] 

 

3.5 Data Simulation 

To evaluate the jitter measurement system, a large dataset which covers a variety of  

EMG signals with known jitter or known MFPs for each MU detected, i.e. data with a 

known structure, had be to created.  Furthermore, to estimate the accuracy of each 

step of the procedure, MUPTs with different degrees of superposition and MUPs with 

various complexities of MFP contributions were required as well as corresponding 
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pre-known compositions. In practice, it is impossible to establish such a large real 

EMG dataset with known details at each level. In this thesis, synthetic data were used 

for quantitative evaluations, while real data can be employed for qualitative checking 

and validating since the true answer of the composition of the real data is not 

available. 

An EMG signal simulator has been adopted to produce synthetic datasets for 

evaluation of the designed system [Hamilton-Wright 2005]. The simulator imitates 

the generation of EMG signal at each detailed level from bottom to top, and is mainly 

based on four models: a muscle model, an MU recruitment model, a MFP and MUP 

model, and a composite EMG signal model [Stashuk 1993]. The muscle model 

defines MU organization and muscle fiber layout based on a “seed” scattering 

algorithm and possible developmental mechanisms. The MU recruitment model is 

applied to mimic the repetitive neural stimulus of each MU during muscle contraction. 

It determines which MUs of a muscle are active for a specific contraction level, and 

simulates firing times for the individual active MUs. A line source volume conductor 

model is then used to create MFPs and MUPs for a specific electrode configuration, a 

physical layout of the fibers, and relative positions of the muscle fibers and the MU to 

the detection surface of the electrode. MUPTs are produced using the firing times of 

the corresponding MUs. Finally, a simulated EMG signal is generated using the 

composite EMG signal model considering the setting of signal to noise ratio, 

sampling rate, etc. Because the simulator builds up the signal based on physiological 

and morphological models of the muscle with proper statistical distribution of random 

variables, simulated EMG signals are credible, rational and closely resemble real 

EMG signals. 

Using data generated by this simulator, the effects of MU morphology, activation, and 

neuromuscular junction activity on acquired signals can be analyzed at the fiber, MU, 

and muscle level (exemplified in Figure 3.1). The intermediate results of the simulator 

include individual MFPs and MUPs, which are useful for evaluating the individual 

steps of the system developed in this thesis. The simulator also incorporates the 

variability of MUPs due to the deviation of NMJ transmission delay, i.e. 

neuromuscular jitter (see Figure 3.2), which makes the simulated data suitable for 

evaluating the whole jitter measurement system. Details of how the simulator was 
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used for evaluating each step as well as the whole system are presented in the 

experimental parts of the corresponding chapters.  

 

 
 

Figure 3.2: Simulated neuromuscular jitter values versus measured values with correlation 
coefficient of 0.97. [Hamilton-Wright 2005] 
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Chapter 4  
Identifying Isolated MUPs from an MUPT  
Identifying isolated MUPs is not only crucial for jitter measurement, it also is the 

initial task for resolving superimposed MUPs which is important for the detailed 

analysis of MU firing patterns [Merletti 2004]. In this chapter, interrelationships 

between/among isolated and superimposed MUPs were exploited, methods for 

classifying MUPs were discussed, and a two-phase clustering algorithm is presented 

theoretically and experimentally compared with a minimum spanning tree (MST) 

clustering algorithm and a template-based clustering algorithm.  

4.1 Isolated MUPs versus Superimposed 
MUPs 

During muscle contraction, MUs discharge asynchronously at variable firing rates, 

depending on an MU’s recruitment threshold and the contraction level. When two or 

more MUs discharge at the same time or in close temporal succession, a 

superimposed MUP (abbreviated as SUP-MUP in this thesis), which is the algebraic 

summation of individual MUPs, is detected (as exemplified in Figure 4.1). On the 

contrary, those MUPs whose waveforms are not contaminated by any other MUPs are 

termed isolated MUPs (noted as ISO-MUPs). Technically, a MUP is superimposed 

when its waveform is overlapped with other MUPs and the interfered energy of other 

MUPs is larger than some threshold. For example, the MUP drawn with solid line in 

Figure 4.1 is definitely an SUP-MUP comparing to MUP 1 (dashed curve) since the 

interfered energy is more than 100% of the individual energy of MUP 1, but it is not 

differ from MUP 2 (dotted waveform) too much, so may not be declared as an SUP-

MUP in MUPT 2 depending on the energy interference threshold used. In this thesis, 

the energy interference of simulated MUPs are checked using information from the 

gold standard file, a document generated by the simulator containing the true firing 

times and shapes of all individual MUPs of each EMG signal, which allows us to 

define SUP-MUPs correctly. 
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Figure 4.1: An example of SUP-MUPs  

 

 
Figure 4.2: Raster graphs of MUPs in an MUPT with SUP-MUPs (dashed lines) 

 

Compared to various compositions of SUP-MUPs, ISO-MUPs of an MUPT usually 

consist of the same MFPs of that MU. From Figure 4.2, the SUP-MUPs can be easily 

identified visually, since isolated ones look similar to each other. To identify ISO- or 

SUP-MUPs automatically, classification techniques especially clustering algorithms 

have been exploited.  
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Figure 4.3: A 2-dimentsional expression of ISO- (blue) and SUP- (red) MUPs in an MUPT 

 

4.2 Classification Algorithms for Detecting 
ISO-MUPs 

As a two-class classification question essentially, the problem of identifying ISO-

MUPs in an MUPT can be solved in two ways: classifying ISO-MUPs or detecting 

SUP-MUPs. Since SUP-MUPs are scattered relative to the major cloud of ISO-MUPs 

in a multi-dimensional feature space, in the former way identifying ISO-MUPs can be 

addressed as a one-class classification problem, while in the later way, detecting SUP-
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MUPs can be solved by outlier detection algorithms where SUP-MUPs are outliers 

and isolated ones are inliers. For both categories of problems, different types of 

algorithms have been designed based on the model or structure of data, e.g., distance-

based types, density-based schemes, and connectivity-based models [Juszczak 2006, 

Tang 2005].  

As exemplified in Figure 4.2, it seems that a SUP-MUP differs a lot from an ISO-

MUP in shape so that it may be easily distinguished from isolated ones. However, due 

to the instability of MUPs and measurement noise, the diversity of ISO-MUPs may be 

comparable with the dissimilarity between ISO- and SUP-MUPs [Etawil 1996]. This 

is why some distance-based or template-based algorithms which measure the distance 

to a template of MUPs may not yield high accuracies of identifying ISO-MUPs 

especially when jitter is large. 

In fact, ISO-MUPs usually do not form a compact spherical class in a high 

dimensional feature space. Statistically observing an ISO-MUP in a train which 

usually contains hundreds of MUPs, though an ISO-MUP may be far away from the 

center of the isolated ones, it can be expected to be close to at least one other ISO-

MUP. Expressed in the terms of graph theory, one can image that in a graph whose 

vertices are MUPs in a train, the connectivity among ISO-MUPs is much better than 

between SUP- and ISO-MUPs or among SUP-MUPs. According to this assumption, 

some researchers have applied connectivity-based classification algorithms for similar 

problems. For example, a ‘nearest neighbor clustering’ technique was adopted by 

Slawnych et al. to classify MUPs based on the statistical distance between isolated 

and superimposed classes with 5% false alarm rates [Slawnych 1996]; Wang selected 

a minimal spanning tree (MST) algorithm to identify ISO-MUPs with less than 10% 

miss detection error [Wang 2005].  

Nevertheless, in practical operation, low false classification error is always obtained 

at the cost of high miss classification error, because the ISO- and SUP-MUP data are 

not well separated especially when high contraction level or large jitter exists (as 

shown in Figure 4.3). To identify MUPs robustly, the MST clustering algorithm 

developed by Wang was extended to include a template based refining phase in this 

thesis. 
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4.2.1   The Minimal Spanning Tree (MST) Clustering 
Algorithm 

4.2.1.1 MST and MST Curve 

In graph theory, a spanning tree is a sub-graph spanning a set of vertices such that 

every pair of points is connected without closed loops. Each edge in the tree is 

associated with the distance between the linked vertices. An MST is the spanning tree 

such that the sum of all the distances is a minimum. An example of a MST is shown 

by the points and solid line segments in Figure 4.4. The MST algorithm is actually a 

single-link hierarchical clustering method in statistics [Webb 1999].  

A clustering algorithm based on Kruskal’s MST [Kruskal 1956] was used in Wang’s 

thesis. MUPs of a train and their interrelationship can be expressed in a graph where 

each vertex refers to an MUP and each edge between two vertices represents the 

distance between two corresponding MUPs. Starting from the nearest pair of MUPs of 

an MUPT which are assumed as ISO-MUPs, a MST can be generated to express the 

inter sample connectivity. For an MUPT, the root of a tree is one of the closest MUPs 

of the train. Then it grows by linking to the nearest unconnected MUP to the tree one 

by one until all MUPs are connected. The distance of an MUP to the tree is defined as 

the smallest distance from the MUP to all MUPs in the tree, i.e., 

D (MUPi, MST) =  (MUP
MSTjMUP ∈

min i, MUPj), for ∀  MUPi ∉  MST.       (4.1) 

If MUPs are indexed in the order of generation of a MST, any MUP to MST distance 

can be expressed as: 

D (MUPi, MST) =  (MUP
ji>

min i, MUPj), for ∀  MUPi in an MUPT,        (4.2) 

where the subscripts i and j are indexes of MUPs ordered by the generation of the 

MST. Since the connectivity of a MST decreases along with its generation, an MUP 

with a small index tends to be an ISO-MUP and one with a large index is apt to be a 

SUP-MUP. Compared to a complete graph where each pair of vertices is linked by 

one edge, a MST is a simple but meaningful graph representing the connectivity or 

interrelationship of MUPs.  
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If distances of MUPs to MST are plotted in the order of generating the MST (i.e., a 

piecewise linear curve of MUP to MST distance versus MUP index), the inter-MUP 

connectivity can be conveniently displayed as an approximately increasing curve of 

MUP to MST distance, which is called a MST curve in this thesis (see Figure 4.5). 

Generally, a sudden increase in this curve happens at the breaking point where the 

distance of the next MUP to MST is much larger than those of the former MUPs. 

Theoretically, this breaking point can be referred as the boundary of ISO- and SUP-

MUPs classes in the curve, e.g., the dotted stem which cuts the MST curve and 

separates the ISO- and SUP-MUPs (marked with dotted stems) as shown in Figure 4.5.  

4.2.1.2 MST Clustering Algorithm 

The principle of the MST clustering algorithm is to find the proper cutting of the MST 

curve, e.g., the solid stem in Figure 4.5, or stop generation of the tree when the next 

MUP to MST distance is larger than some threshold, e.g., four bold lines cutting the 

MST in Figure 4.4. Depending on the order of the statistics used, this cutoff threshold 

can be a distance value, a relative increasing of distance or slope of the MST curve, or 

even an acceleration threshold of the MST curve. 

The MST clustering algorithm designed by Wang can be summarized by the 

following steps: 

i. Calculate the distance between each pair of MUPs in an MUPT; 

ii. Sort these pair wise distances and generate the MST; 

iii. Choose 30 to 50 of the most similar MUPs to calculate the mean and standard 

deviation (STD) of the MUP to MST distances; 

iv. Cut the tree when the distance of an MUP to the MST is larger than 2.4 to 2.9 

times the STD plus the mean calculated at step iii, and mark the MUPs before 

the cut as isolated and the remaining MUPs as superimposed.  

The threshold of ‘coefficient × STD + mean’ is robust to the change of jitter to some 

extent. As the jitter becomes large, the STD of the distances increases accordingly, so 

the threshold raises as well, which makes the algorithm somehow adaptive to the 

increased variability of ISO-MUPs.  
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Figure 4.4: An illustration of MST and the two-phase clustering algorithm (MST: points and 
solid line segments; cutoff: bold sticks; reclassified sample: hollow square point; final clustering 

result: dashed circle.) 

 

 
Figure 4.5: An MST curve of a simulated MUPT with SUP-MUPs (dotted stems) according to the 

gold standard and a cutoff (bold stem) 

 

4.2.1.3 Criteria for Cutting the MST Curve 

Cutting the MST around the breaking point of the curve is the main step of the MST 

algorithm. However, the assumption that there is a sudden change of MUP-MST 

distance or MST curve slope which can be used to separate ISO-MUPs and SUP-

MUPs roughly may not hold true in some situations. With the help of the simulator, 

MUPTs of the same MU can be detected with different values of jitter and at various 

contraction levels. The effect of contraction level and jitter on the MST curve and 
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cutoff position can be clearly demonstrated by comparing two curves of the same 

MUPT with different contraction level and jitter, e.g. the MST curves in Figure 4.6. 

Note the curves are smoothed using a median trimmed filter on a moving window 

along the curve. 

The train shown in subplot (a) of Figure 4.6 is a simulated normal MUPT with 25 µs 

jitter under contraction level of 5% of maximum voluntary contraction (MVC), while 

subplot (c) shows a MST curve of the same train with 4 times the contraction level, 

subplot (b) is with 4 times the jitter, and (d) with increased jitter and contraction level 

simultaneously. Comparing subplot (a) with (b) of Figure 4.6, one can find that larger 

jitter will make the MUP-MST distances larger because of the variation of MUPs 

increases with jitter. This is why the absolute distance threshold will not work well for 

cutting an MST or MST curve since it is not flexible to any change of jitter.  

The effect of contraction level or intensity on MUPTs can be learned by contrasting 

subplot (c) to (a). Besides the increased MUP to MST distance, the breaking position 

is also less distinct for higher contraction level. Meanwhile, the number of 

superimposed MUPs goes up with contraction level because the firing frequency of 

each MU raises with contraction level so MUPs are more overlapped with each other. 

This is why a cutting criterion which works perfectly in one case may not work well 

for other situations with different contraction levels.  

Besides the distance threshold, two backup criteria for cutting an MST curve were 

considered: the slope threshold and the acceleration criterion, where each criterion can 

be absolute or relative. The absolute slope threshold was applied for cutting the MST 

curves in Figure 4.6, from which one can conclude that the slope criterion is 

insensitive to jitter but is not adaptive to changes of contraction level. An acceleration 

threshold 0.1 was used for cutting the curves in Figure 4.7. Though it seems that the 

acceleration criterion is less sensitive to contraction level than the slope criterion, it is 

still not flexible enough to cut trees under high contraction level. Since the idea of the 

acceleration criterion matches the intuition of cutting the curve at a breaking point, the 

acceleration threshold was selected in this thesis. An adaptive acceleration threshold 

was designed for the two-phase algorithm based on the inverse relationship between 

intensity and the proper cutting threshold as shown in Figure 4.8, i.e. when intensity 

goes up, the cutting threshold should be reduced, and vice versa. 



  

  
Figure 4.6: Effects of jitter and contraction level on an MST curve cutting by the slope threshold 2.9 ((a) jitter: 25 µs; contraction level: 5% MVC (b) jitter: 100 µs; 

contraction level: 5% MVC (c) jitter: 25 µs; contraction level: 20% MVC (d) jitter: 100 µs; contraction level: 20% MVC) 
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Figure 4.7: Effects of jitter and contraction level on an MST curve and the cutoff position using absolute acceleration threshold of 0.1 (MUPTs are the same as 

Figure 4.6) 
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Figure 4.8: Effects of jitter and contraction level on an MST curve and the cutoff position using adaptive acceleration threshold of 5/intensity (MUPTs are the same 

as Figure 4.6) 
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4.2.2   The Minimal Spanning Tree-based Two-
phase Clustering Algorithm 

When adopting 2.4 as the coefficient of STD, the MST algorithm was reported having 

a false error rate of less than 10% and a relatively low missed error rate of ISO-

MUP’s identification in [Wang 2005]. The missed detected ISO-MUPs may be still 

close to the center or template of the ISO-MUPs, though they are not similar to other 

ISO-MUPs, like the square sample point in Figure 4.4. In practice, both identification 

errors are important for accurate measurement of jitter. Missed classified ISO-MUPs 

usually are MUPs with large variation, the losing of which will lead to the 

underestimation of jitter values. On the other hand, false identifications will cause 

errors of detection of significant MFPs directly. Furthermore, there is commonly no 

perfect cutoff of a MST that can separate ISO- and SUP-MUPs completely, since they 

are intersected around the breaking point on the curve (shown in the ellipse area in 

Figure 4.5). Therefore, an optimal algorithm for ISO-MUPs identification has to be 

well balanced for both types of error as well as the stability, robustness, and 

computation efficiency.  

Although the adaptive acceleration cutting criterion exemplified in Figure 4.8 can 

greatly reduce false errors, the number of missed ISO-MUPs will increase at the same 

time. In this thesis, a template based classifier was added to the MST algorithm as a 

second phase to reclassify missed ISO-MUPs. If an MUP was closer the ISO-MUP 

center compared to some threshold, it would be added into the isolated class; on the 

contrary, it would be classified as a SUP-MUP.  

To achieve a balanced accuracy, a conservative cutting of the MST was made at first 

trying to ensure that MUPs before the cutoff place are isolated to the fullest extent 

possible without too much cost of missing. Then MUPs after the cutting point are 

checked if their distances to the template of ISO-MUPs is within the ‘mean + 

coefficient × STD’, where the template, mean and STD of distances to the template 

are calculated using ISO-MUPs detected during the first phase. The threshold of the 

second phase represents for the boundary of the ISO-MUPs class well since those 

statistics are measured from almost all ISO-MUPs. If some robust statistics of average 

and variance are measured instead of mean and STD, e.g. median or trimmed mean 

describing average and median absolute deviation or mean absolute deviation 
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estimating variance, some of the SUP-MUPs falsely detected in the first phase can be 

correctly identified as ISO-MUPs.  

This two-phase solution actually combines the advantages of the connectivity-based 

scheme and the distance-based model for complex datasets like an MUPT. This 

combined clustering algorithm is named the MST-based two-phase clustering 

algorithm in this thesis, with the first phase referred to as the separating phase, and the 

second phase called the refining phase. Concretely, the two-phase algorithm can be 

summarized by adding two more steps to the original MST clustering algorithm:  

v. Calculate the isolated template, the mean and STD of ISO-MUPs to template 

distances using the ISO-MUPs identified by the MST clustering; 

vi. Check the unidentified MUPs, and reclassify an MUP as isolated if its distance 

to the ISO-MUP template is smaller than some threshold: ‘mean + coefficient 

× STD’ of ISO-MUP to template distances.   

Illustrated in the example of Figure 4.4, the square sample point would be reclassified 

as an ISO-MUP during the refining phase since it is close to the center of the ISO-

MUPs. Those ISO-MUPs between the cutoff point and the SUP-MUPs in Figure 4.5 

(MUPs located in the ellipse) might be identified as well. The computation 

complexity of the two-phase algorithm is , where n is the number of data points 

and D is the dimension of the feature space, which is the same as the complexity of 

the MST clustering algorithm.  

Dn 2

4.2.3   Other Algorithms 

Besides the MST-based algorithms, some other methods have also been tried to 

identify ISO- or SUP-MUPs by the author, e.g., a customized fuzzy c-means (CFCM) 

clustering algorithm identifying ISO-MUPs and a robust principle component analysis 

(RPCA) algorithm detecting SUP-MUPs as outliers. The CFCM clustering algorithm 

yielded high accuracies with relatively high computation cost. The number of classes 

(i.e., value of ‘c’) had to be decided arbitrarily, which was hard to predict since the 

SUP-MUPs are usually not gathered as one or multiple classes. The RPCA outlier 

detection algorithm worked very fast, but had relatively high identification error rates 

compared to the MST algorithm. In this thesis, the two-phase algorithm was 

compared to the original MST method and a template based classifier, i.e., the 
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component technique of each phase, to show the improvement of combining the two 

methods. 

4.3 Experiment  

Besides listing the experimental results, this experiment section of identifying ISO-

MUPs also involves the related topics such as data simulation, experimental 

procedure design, error cost design, and error analysis.  

4.3.1   Data  

To evaluate the performance of an algorithm on diverse EMG signals, a small 

database was created. It is comprised of seven data sets which simulated EMG signals 

detected during different levels of muscle contraction (qualified as firing intensity) , 

where each data set includes six EMG signals with MUPs comprised of MFPs with 

different amounts of jitter, and each EMG signal contains 5 to 13 MUPTs depending 

on the contraction level. In total 42 EMG signals, 378 trains were generated with 

different contraction levels and jitter values: the two main parameters affecting ISO-

MUP identification. With increasing values of jitter, the variance of ISO-MUPs 

increases, while the number of the overlapping MUPs in an EMG signal (denoted by 

the ratio of SUP-MUPs in a train) increases with contraction level. All the data were 

created using the same needle configuration, in the same muscle, and with the same 

needle-muscle position, which allowed study of the effects of jitter and intensity 

independently. 

In each simulated data set, jitter values were 25, 50, 75, 100, 125, and 150 µs and 

ranged from normal to extremely abnormal at each contraction level. Contraction 

levels are 5, 7.5 10, 12.5, 15, 17.5, and 20 corresponding to the seven data sets. The 

ratio of SUP-MUPs differed from around 9% to 45% representing simple to very 

complex EMG signals depending on the contraction level. SUP-MUPs were marked 

by an energy overlapping criterion based on the gold standard files generated by the 

simulator, which means MUPs that have at least 15% of their energy overlapping with 

other MUPs were recognized as actual SUP-MUPs. Other parameters of the simulator 

were set as normal, e.g., 25% S/N ratio, maximum recruitment threshold of 50, and 

generating 30 seconds EMG signal per run. The simulated database is summarized in 

Table 4.1. 
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Note that in practice the contraction level is usually 5% to 15% of MVC for NMJ 

measurement, where the simulated range is wider than the practical one. However, 

with a wide range of contraction levels, the ability of an algorithm to process data 

with high SUP-MUP ratio can be investigated for other applications, although, the 

SUP-MUP ratio of a train is normally less than 30% in an EMG decomposition 

system. Meanwhile, neuromuscular jitter is seldom larger than 100 µs because the 

possibility of NMJ blocking usually increases with high jitter, and blocked MFPs can 

not be used to calculate jitter. The process of NMJ blocking is described in Chapter 6. 

 

Table 4.1: Summary of the simulated MUPT data base 1 
Data 
Set 

Contraction level 
(% MVC) Jitter (µs) Num. of Train Ave. Intensity 

(pulse per sec.) 
Ave. SUP-MUPs Ratio 

(%) 
25 5 
50 5 
75 5 
100 5 
125 5 

1 5 

150 5 

40.0 9.1 

2 7.5 7 64.1 15.5 
3 10 9 90.7 23.3 
4 12.5 9 105.7 27.0 
5 15 9 120.8 30.0 
6 17.5 11 151.3 38.9 
7 20 

Same as Data Set 1 

13 184.2 45.4 
AVE 13.75 87.5 10 119.5 30.0 

 

 
 

Figure 4.9: Flowcharts of the MST based two-phase clustering (all steps) and two component 
algorithms (steps in the ellipses) 
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Multiple real EMG data sets from different muscles of various subjects including 

controls and patients were visually checked since a gold standard for real data is not 

available.  

4.3.2   Procedures 

The flowcharts of the three algorithms are shown in Figure 4.9. For the template-

based algorithm, the trimmed mean of all MUPs was calculated as the template of the 

ISO-MUPs. The classification criteria for this algorithm were the same as the second 

phase of the two-phase algorithm, except it was applied to all the MUPs in a train.  

For the MST clustering algorithm, a ‘mean + coefficient × STD’ threshold was used 

for cutting the tree, where the mean and STD are calculated using the 30 MUPs in a 

moving window which moves along the MST and searches for the cutting position. 

The statistics of the 30 MUPs in a moving window represents the variability of the 

distances between ISO-MUPs well, which makes this algorithm somewhat robust to 

different amounts of jitter.  

The two-phase algorithm has two parameters: CAT and COV3, which are not 

independent since the result of the separating phase will be used as a reference for the 

refining phase. The parameter optimization for a problem with multiple dependent 

parameters can be tedious in order to find the global optimal. However, we simply set 

an empirical value for CAT which conservatively cuts off the MST, so that the 

estimated mean and STD can remain relatively constant as jitter and contraction levels 

change. 

The performances of the three algorithms were compared with optimized controlling 

parameters. For the MST clustering algorithm, the cutoff threshold ‘mean + COV1 

(i.e., Coefficient Of Variance) × STD’ is controlled by the COV1. The classification 

boundary of template-based method, ‘median + COV2 × MAD’, is also determined by 

a coefficient COV2, where MAD stands for median absolute deviation which is a 

robust measure of the variability of data with outliers. As for the two-phase clustering 

algorithm, an adaptive acceleration threshold of ‘CAT / intensity’ was introduced to 

cut the MST at the first phase, where CAT stands for a Constant for Acceleration 

Threshold, and the ‘median + COV3 × MAD’ threshold of MUP to template distance 

was calculated for the refining phase. 
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A code optimization for speed was made by dividing an MUPT which contains 

hundreds of MUPs into small groups of MUPs, e.g., small groups of 150 MUPs, in 

respect that the calculating and sorting of pair wise distances has the computational 

complexity of O(n2) where n is the number of MUPs in a group. Generally, it 

speedups the process more than 3 times without any noticeable effect on the accuracy 

if a group size of 150 is used. 

4.3.3   Error Cost Design 

As a two-class classifier, two types of errors were defined for the ISO-MUP 

identification algorithms: false errors and missed errors. The false error (a.k.a. false 

positive, false alarm, or type I error) corresponds to the error that classifies SUP-

MUPs as ISO-MUPs. On the contrary, a missed error (a.k.a. false negative or type II 

error) happens when an ISO-MUP is identified as a SUP-MUP. In medical 

classification problems, the terms sensitivity and specificity are adopted to 

characterize a rule. They can be defined as follows for the ISO-MUP identification 

problem: 

Sensitivity: the probability of predicting ISO-MUP given true state of an MUP is 

isolated; 

Specificity: the probability of predicting SUP-MUP given true state is superimposed.  

Accordingly, we have   

Sensitivity (%) = 1 – missed error rate (%) 

and  

Specificity (%) = 1 – false error rate (%). 

In practice, identification of ISO-MUPs is an asymmetric problem, where the two 

types of errors should not be weighted equally. The cost of a missed error is a bit 

more serious than that of a false error for jitter measurement. The missed ISO-MUPs 

usually have large jitter, so not including them will lead to an underestimation of jitter. 

On the other hand, falsely identified SUP-MUPs can be partly excluded during a later 

stage of the jitter measurement process. Therefore, one simple cost function was 

defined to assess a classifier: 

Error cost = 0.55 × missed error + 0.45 × false error.  (4.2) 

 42



Unfortunately, the unbalanced cost function of errors may lead to minimizing missed 

error rates with a relatively large false error rate. Therefore, acceptable ranges of both 

errors have to be defined as constrain of the cost function. For example, the expected 

error upper bounds are 10% for missed error rates and 20% for false error rates in this 

thesis. 

4.3.4   Results 

Table 4.2 lists the best experimental results (i.e., lowest error cost) obtained with 

parameters COV  = 2.96, COV  = 2.70, CAT = 5.00 and COV1 2 3 = 7.00. Note that 

results of the MST algorithm and template-based algorithm were optimized by 

minimizing the false error when keeping the missed error smaller than 10%, since 

they can not satisfy the two constrains for errors at the same time. Summarized in 

Table 4.3, the experimental results demonstrate that the error costs of two-phase 

algorithm are less than other two algorithms, and it is also the only method satisfying 

both error bounds concurrently. In a word, the two-phase algorithm yields higher 

accuracy and better balance of the two types of errors. Errors of the three algorithms 

are summarized in Table 4.3. 

4.3.5   Error Analysis 

The experimental results are analyzed on the aspects of robustness, stability and 

sensitivity of ISO-MUP identification. 

4.3.5.1 Robustness Analysis 

Since the three algorithms all have some mechanisms to resist the change of jitter, 

only the robustness to contraction level (intensity) is investigated for each method. 

To investigate the robustness of the three algorithms to contraction level, error details 

of each data set are averaged and listed in Table 4.4. Contraction level is a quantified 

intensity level relative to the maximal intensity a muscle can generate. The changes in 

both error types corresponding to changes in contraction level are clearly shown in 

Table 4.2, Table 4.4 and the error bars in Figure 4.10. For the two compared 

techniques, missed errors changed inversely with contraction level, and false errors 

were positively related to it. For the two-phase algorithm, both missed and false errors 

increase slowly with contraction level.  
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Table 4.2: Details of Experimental Errors 
MST clustering Template-based classifying Two-phase clustering 

Missed error False error Missed error False error Missed error False error Cont level Jitter (us) 
Mean MAD Mean MAD Mean MAD Mean MAD Mean MAD Mean MAD 

25 9.3 2.1 0.7 0.4 8.8 0.3 0.5 0.3 2.1 1.2 1.7 0.5 
50 8.1 3.9 0.6 0.7 8.4 0.7 0.7 0.5 1.9 1.4 2.1 1.1 
75 4.9 1.8 1.3 0.1 9.8 0.5 2.0 0.4 0.8 0.7 3.7 0.4 
100 3.5 1.3 3.6 1.3 8.8 1.5 3.9 2.7 1.9 1.6 5.5 2.9 
125 4.8 2.2 1.9 1.4 8.3 3.1 3.1 1.9 1.7 1.2 4.8 2.5 

5.0 

150 4.3 1.4 2.0 0.5 9.4 3.1 3.5 2.6 2.5 1.8 4.7 2.4 
25 4.7 2.2 3.1 0.3 4.5 0.7 1.9 0.4 1.9 0.8 3.8 0.7 
50 6.2 3.1 2.1 1.3 4.6 0.4 3.3 1.0 2.5 1.1 4.6 1.4 
75 5.0 0.8 4.4 1.8 5.4 1.2 4.5 1.5 2.3 0.9 5.9 1.8 
100 5.4 3.2 3.7 1.3 6.7 1.1 5.0 2.4 4.2 2.8 6.3 2.4 
125 3.8 2.6 5.1 1.4 5.3 1.6 6.6 2.3 2.6 1.0 8.0 3.1 

7.5 

150 3.3 0.8 5.4 1.8 6.1 1.7 6.1 1.9 3.8 3.5 7.7 3.3 
25 4.3 1.5 6.6 1.8 3.1 0.7 6.0 2.6 2.2 1.3 6.7 2.7 
50 3.9 1.8 6.9 2.9 3.1 1.1 6.9 1.9 2.7 1.4 7.4 1.3 
75 2.5 1.7 8.5 2.9 3.8 0.8 8.2 1.1 2.0 1.3 9.9 1.9 
100 2.4 1.1 9.4 0.9 4.5 2.1 9.2 1.7 1.7 1.1 11.0 2.0 
125 3.2 0.9 9.6 3.4 3.3 1.4 10.4 2.0 3.0 2.8 11.0 2.3 

10.0 

150 1.6 1.0 11.1 2.0 3.5 1.1 11.4 2.3 5.8 5.2 11.3 1.7 
25 4.2 2.4 11.4 2.1 3.2 0.5 10.6 2.1 3.2 1.1 10.7 3.1 
50 4.6 2.0 10.4 3.3 3.1 1.4 10.9 2.6 3.8 1.5 10.4 2.9 
75 3.8 1.4 11.5 2.3 3.8 1.0 11.4 2.1 5.8 2.1 9.6 2.3 
100 3.7 2.0 12.0 1.7 4.1 1.3 12.4 1.7 4.1 1.9 11.9 1.5 
125 2.5 0.6 14.8 2.6 3.5 1.9 13.6 0.9 5.6 3.5 11.8 2.4 

12.5 

150 4.0 3.0 12.4 2.3 3.3 0.7 13.5 1.3 4.0 2.8 13.3 3.6 
25 2.2 1.5 14.9 5.0 2.5 0.7 12.2 2.3 4.5 1.3 10.2 2.5 
50 4.5 3.3 11.6 3.9 2.9 0.5 12.1 2.4 4.4 1.1 10.2 2.3 
75 3.0 1.5 14.3 2.5 3.3 1.2 15.0 2.5 4.2 2.1 13.4 3.7 
100 1.6 1.0 16.2 2.1 3.2 1.1 15.3 0.9 6.0 2.2 12.6 2.0 
125 1.1 0.6 16.0 1.3 3.0 1.4 14.7 2.5 5.5 2.1 12.9 2.5 

15.0 

150 2.2 1.2 17.5 3.9 2.9 1.6 17.7 4.8 6.0 2.8 15.8 4.0 
25 1.8 0.6 20.3 5.9 1.6 0.9 20.1 4.3 5.7 1.6 13.3 3.2 
50 2.9 1.2 19.3 3.3 1.6 0.5 19.7 6.1 5.6 1.6 14.2 2.5 
75 0.9 0.6 24.1 6.3 1.5 0.4 21.4 4.0 5.3 1.7 14.9 3.1 
100 2.1 0.9 20.4 4.8 2.0 0.7 21.3 2.9 5.2 1.9 15.5 3.1 
125 1.6 0.9 23.8 2.9 1.9 0.4 22.8 3.1 6.1 2.2 17.5 3.2 

 17.5 

150 1.3 0.3 25.7 3.9 1.7 0.9 24.9 3.9 5.8 1.8 17.5 5.4 
25 1.5 0.4 26.4 6.3 0.7 0.2 25.9 5.5 6.0 2.4 14.8 2.5 
50 1.0 0.2 27.8 6.7 0.7 0.2 27.2 4.9 5.0 1.4 16.7 4.1 
75 1.1 0.5 26.2 5.4 0.9 0.4 26.1 4.0 5.4 2.6 17.3 3.5 
100 1.7 0.6 28.3 8.4 1.0 0.4 29.2 6.9 5.8 1.9 18.7 3.6 
125 0.7 0.2 30.5 4.8 1.3 0.4 30.1 3.1 5.8 2.3 18.7 4.4 

20.0 

150 1.2 0.4 30.7 5.5 1.2 0.6 30.0 5.5 6.3 2.0 19.8 5.1 

 

Table 4.3: Best Results Averaged over Whole Database 

 

Missed error rate (%) False error rate (%) Error cost (%) 
Algorithm 

Maximum Average Maximum Average Maximum Average 

MST 9.3 3.2 30.7 13.1 14.5 7.7 

Template 9.8 3.9 30.1 13.1 14.2 8.0 

Two-phase 6.3 4.1 19.8 10.9 12.4 7.1 
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Table 4.4: Results of each data set averaged over EMG signals with different jitter*

* Note that the ‘MAD’ in this table measures the deviation of errors for each contraction level. 

MST clustering Template-based classifying Two-phase clustering 
Missed error False error Missed error False error Missed error False error Cont level 

Mean MAD Mean MAD Mean MAD Mean MAD Mean MAD Mean MAD 
5.0 5.8 1.9 1.7 0.8 8.9 0.5 2.3 1.2 1.8 0.4 3.8 1.3 
7.5 4.7 0.8 4.0 1.0 5.4 0.6 4.6 1.3 2.9 0.7 6.1 1.3 

10.0 3.0 0.8 8.7 1.4 3.6 0.4 8.7 1.7 2.9 1.0 9.6 1.7 
12.5 3.8 0.5 12.1 1.0 3.5 0.3 12.1 1.1 4.4 0.9 11.3 1.1 
15.0 2.4 0.9 15.1 1.5 3.0 0.2 14.5 1.6 5.1 0.7 12.5 1.5 
17.5 1.8 0.5 22.3 2.3 1.7 0.2 21.7 1.4 5.6 0.3 15.5 1.4 
20.0 1.2 0.3 28.3 1.5 1.0 0.2 28.1 1.7 5.7 0.3 17.7 1.4 
AVE 3.2 0.8 13.2 1.4 3.9 0.3 13.1 1.4 4.1 0.6 10.9 1.4 

 

 

 
 

 
Figure 4.10: Error bars of three algorithms with different contraction levels 

 

The influence of contraction level on ISO-MUP identification errors is reflected 

through SUP-MUP ratios of an MUPT. The template-based algorithm adopts all 

MUPs to calculate the ISO-MUP template and the distance threshold to the template. 

Even if an ISO-MUP template is estimated without the effect of SUP-MUPs using 

some robust method, the mean and STD of distances to the template may still be 

overestimated because of the influence of SUP-MUPs especially when the ratio of 

SUP-MUPs is high. The higher a contraction level is, the larger the difference 
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between predicted class radius (i.e., ‘mean + COV2 * STD’) and the actual radius of 

the ISO-MUP class will be. Consequently, the missed errors get smaller until all ISO-

MUP are included, while false errors increase dramatically with contraction level.  

Similar trends are obtained by the MST clustering algorithm. When contraction level 

increases, more and more ISO-MUPs are contaminated by other MUPs to some extent 

so that the all MUP-MST distances become larger, the sudden change of distances or 

the cutting point on the MST curve becomes harder to detect. Like the example shown 

in subplot (c) of Figure 4.8, there is almost no clear cutting point in the MST curve at 

a contraction level of 20% MVC. If the MST curve is cut using the ‘mean + COV1 * 

STD’ of the adjacent 30 MUPs on the curve, as the mean and STD estimations both 

increase with the contraction level, the cutting position would be later than the proper 

one in the MST. The number of missed errors will go down and the number of false 

errors will increase as the class radius of ISO-MUPs becomes larger than the actual 

one. 

On the contrary, the two-phase clustering algorithm is designed to be adaptive to the 

contraction level based on the positive relationship between intensity and the 

percentage of SUP-MUPs in an MUPT. Figure 4.8 demonstrates the efficiency of the 

adaptive acceleration threshold for cutting a MST curve. However, since the ISO- and 

SUP-MUPs become more overlapped along the MST as contraction level increase, the 

false errors during the separating phase will increase which can not be corrected by 

the second phase. Alternately, the conservative separating of ISO- from SUP-MUPs 

causes more ISO-MUPs to be missed during the first phase. Therefore, the ISO-MUP 

class radius is also underestimated so that fewer ISO-MUPs are reclassified. This is 

why the number of missed errors slightly increases with contraction level while the 

number of false errors also increases. However, the degree of influence of contraction 

level on this algorithm is much lower than that on the other two (see Figure 4.10), 

which means the two-phase algorithm is more robust to the effect of intensity.  

4.3.5.2 Stability Analysis 

The MADs calculated in Table 4.4 measure the variability of testing results on 

multiple EMG signals with different jitter values at certain contraction levels. The 

stability of the identification results of different trains with the same jitter and 

contraction level can only be investigated from the detailed Table 4.3, where the 
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MAD was used for measuring variability within each EMG signal that only has a few 

trains, in order to reduce the effect of outliers. Though the variations of missed errors 

are all quite small for the three algorithms, the variations of false errors are large for 

the first two methods. On the contrary, the results for the two-phase algorithm are 

more consistent even for some situations where its predictions are not very accurate. It 

means that the two-phase algorithm is more stable for identifying ISO-MUPs from 

diverse MUPTs. The same conclusion can be drawn by comparing the ranges of errors 

across the whole database, i.e., contrasting the maximal values to the averaged ones. 

As shown in Table 4.3, the differences between the maximum and the average errors 

made by the first two algorithms are much larger than that of the two-phase method. 

4.3.5.3 Sensitivity Analysis 

The sensitivity of controlling parameters can be investigated by comparing the 

drifting of performance with certain adjustment of corresponding parameters. For the 

two phase algorithm, a robust value 5.00 was chosen as the CAT in this thesis based 

on some initial experiments. Then the control parameters for searching optimal results 

are all COV, coefficient of variance for the ‘mean + COV * STD’ estimation, so the 

sensitivity of the three algorithms relative to the controlling parameters can be 

compared by the changes of results during certain parameter adjustment. For example, 

with the COVs altered in the range of -10% to +10% around their cost optimal values, 

the errors are compared in Table 4.5. 

 

Table 4.5: Results for different controlling parameters 

 

Missed Error False Error Error Cost 
Algorithm Change of 

COV Maximum Average Maximum Average Maximum Average 

2.66 13.7 6.2 25.3 10.0 13.1 7.9 

2.96 9.3 3.2 30.7 13.2 14.5 7.7 MST 

3.26 5.9 1.8 34.2 15.5 15.5 7.9 

2.43 11.1 4.7 29.0 12.5 14.0 8.2 

2.70 9.8 3.9 30.1 13.1 14.2 8.0 Template 

2.97 8.3 3.2 31.1 13.7 14.5 8.0 

4.68 11.2 7.6 14.7 8.1 12.8 7.8 

5.20 10.0 6.6 16.0 8.8 12.7 7.6 Two-phase 

5.72 8.7 5.7 17.2 9.4 12.5 7.4 
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Comparing the changes of errors in Table 4.5, one can find that the MST algorithm is 

sensitive to its parameter, since the relative change of errors is up to 50% 

corresponding to the 10% tuning of the parameter. On the contrary, the template-

based method and the two-phase algorithm both have around 10% accuracy shifts 

with 10% changes of the controlling parameters, which are acceptable as long as the 

changed errors are still in a proper range.      

The sensitivity of the two-phase clustering algorithm on the first parameter, CAT, can 

also be investigated by checking the optimal range with alternative COVs. As shown 

in Table 4.6, when CAT increases, the acceptable COVs tend to be small but change 

relatively slowly, which means COV is not sensitive to changes of CAT if it is kept in 

a suitable range, e.g., 4 to 5. 

 

Table 4.6: Acceptable ranges of COV and errors with different CAT 
Missed Error False Error Error Cost 

CAT Acceptable range of 
COV Maximum Average Maximum Average Maximum Average 

5.9 9.9 6.4 17.3 8.9 12.4 7.5 
4 

7.1 7.6 4.7 19.9 10.3 12.4 7.2 

5.2 10.0 6.6 16.0 8.8 12.7 7.6 
5 

7.0 6.3 4.1 19.8 10.9 12.4 7.1 

4.9 9.9 6.4 16.2 9.0 12.6 7.5 
6 

6.5 6.9 4.1 19.9 10.8 12.5 7.2 

 
 

Table 4.7: Speeds of three algorithms (s)*

 *: Implemented in Matlab 7.0 and tested on a PC with dual core 1.60 GHz CPU and 1 GB of RAM.  

Ave. time processing each train Contr. level (% of 
MVC) 

Intensity 
(p.p.s.) 

Ave. num of MUPs in 
one train MST 

clustering 
Template-based 

classification 
Two-phase 
clustering 

5.0 40.0 320 2.0 0.0 2.0 

7.5 64.1 300 2.4 0.1 2.5 

10.0 90.7 296 2.9 0.1 2.9 

12.5 105.7 332 3.3 0.1 3.3 

15.0 120.8 368 3.9 0.1 3.9 

17.5 151.3 396 4.0 0.1 4.0 

20.0 184.2 439 4.1 0.1 4.1 

AVE 119.5 350 3.2 0.1 3.3 

 

 

 

 48



4.3.6   Computation Efficiency 

The speeds of the three algorithms are listed in Table 4.7, where the two-phase 

algorithm has almost the same speed as the MST method. By further code 

optimization, the running time of the two-phase algorithm on a train can be reduced to 

less than 0.1 s in Visual C++, which is fast enough for the online measurement of 

jitter. 

4.3.7   Algorithm Validation 

A real MUPT example validating the two-phase algorithm is shown in Figure 4.11, 

where the MUPT is decomposed by DQEMG, an EMG signal decomposition and 

quantitative analysis system developed by Biomedical Signal Processing Lab at the 

University of Waterloo. Since no prior knowledge of jitter is available, the 

identification results are visually checked by researchers. The real data checking is 

completed on some real EMG data detected from normals and patients with 

neuropathic or myopathic disease, and the automated identification results match the 

manual results consistently. 

 

 
Figure 4.11: An example of the identification results of two-phase algorithm on a real MUPT 

(detected SUP-MUPs are marked by dashed lines) 
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4.4 Discussions 

To meet the requirements of identifying ISO-MUPs for automated jitter measurement 

and prepare for other applications in EMG signal detailed decomposition, a MST-

based two-phase clustering algorithm was designed and tested compared to a MST 

clustering technique and a template-based method. Identification accuracies, error 

balances, robustness, stabilities, speeds, and sensitivities to parameters of the three 

algorithms were compared using a simulated database. In summary, the two-phase 

clustering algorithm excels or equals the other two algorithms in most of the 

investigated aspects. The strongest point of the two-phase algorithm is its robustness 

to the diversity of EMG signals detected during various contraction levels and (or) 

with different jitter values. Meanwhile, it keeps both types of errors relatively small 

simultaneously with stable performance if parameters are in proper ranges.  

The effect of jitter is reduced by employing the MST scheme to describe the 

connectivity among MUPs instead of using the distance scheme. Meanwhile, by 

introducing an intensity adaptive threshold for cutting the MST curves, the two-phase 

algorithm is robust to the contraction level as well. The second refining phase helps 

make a better error balance as a complement process. Moreover, the design idea is 

that makes a conservative guess first then check the answer with obtained information, 

which is the reason for the stability of performance and insensitivity with respect to 

controlling parameters.  

Besides being successful to identifying ISO-MUPs in a variety of EMG signals, the 

two-phase algorithm is also useful for SUP-MUPs resolution for detailed EMG signal 

decomposition. The proposed algorithm has been implemented in the DQEMG 

system to accurately estimate MUPT templates with a satisfying performance.  

As a suggestion for future work, the optimal value or range of the controlling 

parameters could be searched using a receiver operating characteristic (ROC) curve 

[Hastie 2001] for best error balance. Real datasets with gold standard or physician 

defined SUP-MUPs should be collected for algorithm validation. The connection 

between this preprocessing step and the next step for automated jitter measurement 

will be discussed in Chapters 6 and 7. 
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Chapter 5  
Recognizing Near MFP Contributions to 
Isolated MUPs 
Detecting MFP contributions to MUPs is a core step for automated measurement of 

neuromuscular jitter. After the preprocessing of MUPs, near MFPs can be detected as 

‘near’ peaks in filtered MUP waveforms, while ‘distant’ peaks correspond to 

relatively distant MFPs, and ‘false’ peaks refer to baseline noise or artificial peaks 

created by the filter. MFP detection can be addressed as a multi-class classification 

problem and solved using pattern recognition (PR) techniques. The PR system 

designed for this problem has to be robust, accurate, and computationally efficient. By 

using simulated MUPs with known MFP components, the performance of two 

categories of classifiers – discriminant classifiers and nonparametric classifiers have 

been evaluated and compared in a reduced feature space. A simple PR system 

employing the quadratic discriminant classifier has been validated as the most 

appropriate MFP identification system in this thesis.  

5.1 Introduction 

As reviewed in Chapter 3, previous research has proved that MFP peaks can be 

detected by band-pass filtering an MUP or by using the acceleration of an MUP 

directly. Detected acceleration peaks may correspond to near or distant MFP 

contributions or may not correspond to any MFP contribution. For convenience, these 

peaks have been named near, distant, and false peaks respectively. Two examples of 

MUPs and detected peaks are shown in Figure 5.1. The problem in this chapter is how 

to determine if a detected acceleration peaks is a near, distant, or false peak. It is 

essentially a pattern recognition problem. 

A typical PR system comprises three phases, i.e., data acquisition, feature selection or 

extraction, and classification. Data are collected using a set of sensors during the data 

acquisition phase. After some preprocessing, they are passed on to the feature 

selection or extraction phase, where the dimensionality of measured data is reduced to 

a few characterizing features. Finally, the data represented by these features are fed to 

the classification system, and the classifier makes the final decision [Sankar 2004]. 
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Usually, the design procedure for a PR system is an adaptive cycle as shown in Figure 

5.2. Feature and classifier selection are key steps for the whole design. 

For the specific PR problem in this chapter, the input data are measurements of the 

detected acceleration peaks of an MUP, and the output of the classifier should be 

labels of near, distant, or false. To handle the variety caused by different muscles and 

the noisy measuring channel, the MFP peaks identification system has to be robust 

and accurate. It is also required to be computationally efficient, since the designed PR 

system designed will be integrated into a larger EMG signal processing system in the 

future.  

 
Figure 5.1: MUPs and corresponding acceleration filtered MUPs (solid line) composed by two 
(left) and three (right) near MFPs (dashed lines). The locations of near MFP contributions and 

acceleration peaks are marked by asterisks. 

Prior knowledge

Choose 
model 

Evaluate 
Classifier 

Choose 
features 

Train 
Classifier 

 

Figure 5.2: The design cycle of a pattern recognition system 

Collect data Start End
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5.2 Method 

Following the design cycle shown as in Figure 5.2, the method of the near MFP 

recognition system is discussed in three parts: data collection, feature selection or 

extraction, and classification designing.  

5.2.1   Data Collection 

5.2.1.1 Data measuring 

As exemplified in Figure 5.3, a peak on an MUP acceleration waveform, or more 

specifically, a positive peak, can be defined as the local maximum and the monotone 

increasing and decreasing segments of the waveform at the side of that maximum are 

called the rising and falling edges respectively. To characterize acceleration peaks, 

measurements are usually taken from the perspectives of energy, frequency, 

symmetry, and location of a peak. Six measurements have been considered in this 

thesis, and their definitions and units are:  

• Amplitude [kV/s2]: magnitude of the detected peak which is the minimal 

magnitude of the rising and falling edges of that peak;  

• Sharpness [kV/s2/sample interval]: minimal absolute slope of the two edges;  

• Slope ratio: the ratio of the two absolute slopes, i.e., the falling slope / the 

rising slope; 

• Peak location [sample index]: the location of the maximal acceleration in the 

whole MUP; 

• Maximal acceleration [kV/s2]: the maximal acceleration of the peak; 

• Rise time [sample interval]: the length of the rising edge of the peak, 

where the sample interval is the constant time interval between two sample points in 

an MUP, and it is the reciprocal of the sample frequency of an EMG signal. The 

sample interval is 32 µs and the sample index is relative to the 10 ms sampling 

window of an MUP in the simulated dataset. As shown in Figure 5.3, part of the six 

measurements can be taken directly from the detected peak, while others are 

calculated from these basic measurements. Meanwhile, some quantities are also 

related physically, e.g., amplitude and maximal acceleration are both quantities 
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measuring energy. It means the six measurements are correlated to some extent. The 

redundant information as well as the relatively high dimensionality should be reduced 

by a feature extraction or feature selection process. 

 
Figure 5.3: Some measurements of a MFP acceleration waveform  

 

 
Figure 5.4: An example shows the procedure of MUP simulation and peaks labeling 
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5.2.1.2 Data simulation and labeling 

For the purposes of algorithm evaluation, peaks detected from accelerations of MFPs 

are collected like the two peaks in the example shown in Figure 5.3. Since the near 

peaks and distant peaks are just relative categories, in this thesis, three arbitrary 

criteria were used to define the acceleration peaks for simplicity. One example of a 

definition criterion, namely ‘7.5-2.5’, is listed as follow: 

⎪
⎩

⎪
⎨

⎧

<

>

peak. MFPany   tocorrespondnot  doesit  if   peak, "false"
;kV/s 2.5  amplitude its andpeak  MFP a  toscorrespondit  if     peak, "dist"
;kV/s 7.5  amplitude its andpeak  MFP a  toscorrespondit  if    peak, near""

   

a ispeak on accelerati isolatedAn 

2

2

 (5.1) 

The blank between the near and distant (or dist in short) categories was left intended 

for the purpose of making the two peak classes more separable to simplify this 

classification problem. Two other criteria with smaller or no gap between near and 

distant peaks have also been employed to evaluate the performance of the designed 

pattern recognition system.  

During EMG signal decomposition of real signals, it is not important to identify a 

detected MFP peak as near or distant, as the idea of significant MFP is only relative to 

baseline. However, the error of falsely detecting baseline noise as a significant MFP, 

and the opposite, the missed detection error, are important for further MFP analysis. 

Therefore, the PR system designed should be able to distinguish between near and 

false peaks as accurately as possible. 

A variety of individual MFPs were simulated and summated with small random 

shifting to make a pool of MUPs. The detected acceleration peaks of those simulated 

MUPs were labeled corresponding to individual peaks, though they have different 

measurements due to the overlapping with other MFPs. As illustrated in Figure 5.4, 

the actual labeling rule of a detected peak dataset is: 

⎪
⎩

⎪
⎨

⎧

otherwise. peak, false''
;peakdist  individual a ofposition  relative  the toclose detected isit  if   peak, 'dist'
;peaknear  individual a ofposition  relative  the toclose detected isit  if  peak, near''

   

aispeak on accelerati detectedAn 

, 

where the concept of ‘close’ is quantified as less than 128 µs (i.e., 4 sample intervals) 

in this research.  
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A simulated MUP example composed by two near MFPs and three distant MFPs is 

shown in Figure 5.4. The locations of the isolated peaks corresponding to true MFPs 

are shown in subplot (b). And the detected peaks labeled using the above rule are 

shown in subplot (c). Note that one distant MFP peak is not detectable since it is 

overwhelmed by one near peak. 

5.2.2   Feature Selection / Extraction 

5.2.2.1 Feature normalization 

As discussed before, six measurements have been taken to represent some features of 

a MFP acceleration peak: Amplitude and maximal acceleration are measurements of 

energy; sharpness and rise time are quantities related to frequency content; slope ratio 

inspects the symmetry of a peak; and peak location relates to the temporal distribution 

of a peak in an MUP. If we simply take each measurement as one feature, the feature 

space is correlated and has to be normalized. Sample histograms were studied for each 

measurement taken from a typical simulated dataset. Figure 5.5 shows that the 

simulated data distributions of the three types of peaks for each measurement. 500 

peaks of each type were randomly picked from the dataset defined by criteria of 

equation (5.1) (see Table 5.1 for the composition of this data set) and counted for the 

frequencies of the bins in the histograms. Due to the nature of digital measurements, 

all of these quantities are discrete.  

Observing the density histograms in Figure 5.5, it seems that the feature distributions 

of some classes are non-Gaussian or even bimodal, which makes the classification 

problem very hard. To avoid the complex classification of non-Gaussian data, the 

sample distribution of each feature was studied using the distribution fitting tool of 

Matlab statistics toolbox, ‘dfittool’. The lognormal distribution was found to be the 

best fitting for almost all of the non-normal distributed features. Figure 5.6 has 

exemplified the lognormal fittings of amplitude distributions with respect to a PDF, 

while Figure 5.7 shows the CDF, where most of the fitting errors are within the 

confidence level.  

Table 5.1: The composition of the simulated ‘7.5-2.5’  dataset 
Classes Near Distant False Total 

Number of data 1280 500 696 2476 
Percentage (%) 51.7 20.2 28.1 100 
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Figure 5.5: Histograms show the measurement distributions of three classes 
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Figure 5.6: The lognormal fitting of three categories of data by density (PDF) display 

 

 
Figure 5.7: The lognormal fitting of three categories of data using the cumulative probability 

(CDF) display 



  

  

Figure 5.8: Histograms of the logarithmic transformed features 
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In statistics, the lognormal distribution is the probability distribution of any random 

variable whose logarithm is normally distributed.  It means that if X is log-normally 

distributed with parameters µ and σ2, then ln(X) is distributed normally with the same 

parameters µ and σ2. So by simply taking the natural logarithm of each non-Gaussian 

measurement, one can convert the feature space to be normally posed. The results of 

logarithm transformations of the non-normal features are shown in Figure 5.8. 

5.2.2.2 Dimensionality reduction 

After feature normalization, dimensionality reduction can be applied to reduce the 

complexity and information redundancy of a feature space. Two different approaches 

exist for reducing the dimensionality: one is to discard certain measurements and to 

select the remaining ones, which is called feature selection; another approach is 

feature extraction such that the selection takes place in a transformed space.

Transformation for dimensionality reduction can be linear, e.g., principal component 

analysis (PCA) and independent component analysis (ICA), or nonlinear, e.g., 

multidimensional scaling and kernel PCA. The eigen-map in Figure 5.9 shows that the 

first two principal components (PCs) account for most (87%) of the variance of the 

feature space, thus we can reduce the dimensionality of the feature space to 2. 

(Although using 3 or 4 may be more accurate, 2-D features can express the near and 

false peaks separately enough for this practical application.)  

However, transformation of original measurements by PCA causes the low 

dimensional features to lose their physical identity and makes the final decision rule 

hard to interpret. In addition, the extracted feature subspace is data dependent since 

the transformation is based on the sample covariance. Alternatively, selecting the best 

N features does keep the physical units, and does not depend on the training sample 

dataset. The best separable 2-D subspace observed is the subspace of sharpness and 

slope ratio shown in Figure 5.10. The effectiveness of feature extraction and feature 

selection were compared using the classification results of data represented by 

extracted features or selected features in one course project done by the author. The 

selected two features: sharpness and slope ratio, were employed to characterize the 

measured peaks since the performance difference between using extracted feature and 
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using selected feature was not obvious, and feature selection is much more simple and 

fast in practice. 

 

 
Figure 5.9: The fractions of variance wrt number of PCs 

 

 
Figure 5.10: A 2-D subspace shows the separability of peaks when normalized by a logarithmic 

transformation 
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5.2.3   Classifier Design 

As a major part in the PR system design, classifier design includes procedures of 

model searching and classifier evaluation. For the MFP peak identification problem, 

no prior knowledge about the data structure model has been given. The nonparametric 

techniques and linear discriminant classification algorithms were considered, because 

both of them can learn the data structure from the training data without prior 

knowledge. The classic linear and quadratic discriminant classifiers (note as LDC and 

QDC respectively) were compared to the two typical nonparametric techniques: k 

nearest neighbor (k-NN) and Parzen window algorithms in this thesis. Based on the 

requirement of this MFP peak recognition problem, the four candidate classifiers were 

evaluated on accuracy, speed, and algorithm complexity aspects.  

5.2.3.1 Linear discriminant classifier (LDC) and quadratic 

discriminant classifier (QDC) 

From [Duda 2000], a linear discriminant function of x can be written as a linear 

combination of the components of x as: 

( ) 0wg += xwx T , 

where w is the weight vector and is the bias. For two-category cases, the linear 

decision boundary will separate the feature space into two half 

spaces where  and 

0w

( ) 0=xg

( ) 0>xg ( ) 0<xg1R 2R  correspondingly. For multi-category cases like 

the MFP identification problem, a linear machine was employed. A linear machine 

divides the feature space into c decision regions, which classify x to region 

where  being the largest discriminant. The boundary between two contiguous 

region and are defined by 

( )xgiiR

iR jR

( ) ( )xx ji gg = . 

The linear machine generally is most appropriate for the problem with unimodal 

conditional densities ( )iwp x , so it was a good choice for the normalized dataset in this 

study.  
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The quadratic linear function is an extension of the linear discriminant function 

created by adding additional terms involving the products of pairs of the components 

of x: 

( ) ∑∑∑
= ==

++=
d

i

d

j
jiij

d

i
ii xxwxwwg

1 11
0x . 

( ) 0=xgThe separating surface defined by is a hyperquadric surface.  

5.2.3.2 k-NN classifier and Parzen window classifier 

Both the k-NN and Parzen window techniques are essentially density estimation 

approaches. The difference between them is that the later uses a hypercube window 

with optimized size to estimate the density, while the former adopts cells whose 

volume is decided by the training data. They both do not require any prior knowledge, 

thus are suitable for estimating any density theoretically. As classifiers, the number of 

cells of the k-NN approach or the smoothing parameter of the Parzen windows 

method has to be provided. In this study, these two parameters were optimized by 

leave-one-out or Jackknife cross validation on a training dataset. Though these 

optimized parameters are dataset dependent, they are reliable if the training dataset 

suitably represents real data. 

5.3 EXPERIMENTS 

5.3.1   Simulated Data Sets 

Three datasets with different levels of difficulty were created to investigate the 

performance of the four classifiers. The easiest dataset is shown in Table 5.1 and is 

defined based on the criteria described in equation (5.1). This is the most separable 

dataset. The moderately difficult dataset one is defined as using equation (5.2) and is 

shown in Table 5.2. The dataset defined using the most difficult criteria defined by 

equation (5.3) has been listed in Table 5.3. 

⎪
⎩

⎪
⎨

⎧

<

>

peak. MFPany   tocorrespondnot  doesit  if   peak, "false"
;kV/s 5  amplitude its andpeak  MFP a  toscorrespondit  if     peak, "dist"

;kV/s 7.5  amplitude its andpeak  MFP a  toscorrespondit  if    peak, near""
   

a ispeak on accelerati isolatedAn 

2

2

(5.2) 
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Table 5.2: The composition of the simulated ‘7.5-5’ dataset 
Classes Near Distant False Total 

Number of data 1280 663 696 2639 
Percentage (%) 48.5 25.1 26.4 100 

 

⎪
⎩

⎪
⎨

⎧

<

>

peak. MFPany   tocorrespondnot  doesit  if   peak, "false"
;kV/s 5  amplitude its andpeak  MFP a  toscorrespondit  if     peak, "dist"
;kV/s 5  amplitude its andpeak  MFP a  toscorrespondit  if    peak, near""

   

a ispeak on accelerati isolatedAn 

2

2

 (5.3) 

Table 5.3: The composition of the simulated ‘5-5’ dataset 
Classes Near Distant False Total 

Number of data 1573 663 696 2932 
Percentage (%) 53.7 22.6 23.7 100 

 

5.3.2   Procedure 

The basic procedure for each experiment was performed as:  

data transformation -> feature extraction / selection -> classifier training -> classifier 

testing -> classification evaluation. 

For the nonparametric classifiers, k of k-NN classifier (kNNC) and the smoothing 

parameter h of Parzen window classifier (ParzenC) were optimized by minimizing the 

Jackknife error of the training data. For example, k=14, h=0.036 were found by cross 

validation with the ‘7.5-5’ dataset. Once these parameters were found, the models of 

the classifiers were fixed for further studies and this optimization procedure was not 

repeated again. 

To make sure that the performances of all classifiers were compared using a 

consistent index, the leave-one-out (an extreme case of the Jackknife method) error of 

the whole dataset was calculated for each classifier and weighted averaged by the 

class frequencies. Confusion matrixes were created by half training and half testing 

the data of the datasets, for further analysis of error distribution. Meanwhile, the 

classification time of each data has been recoded for each candidate. (Note it was the 

testing time rather than the training time recoded, since the training time is not 

important for an identification system.) Experimental results follow in the next section. 
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5.3.3   Results 

As an example, the decision boundaries of the four classifiers on the moderately 

difficult dataset ‘7.5-5’ are shown in Figure 5.11. It seems that all four classifiers 

worked well and none of them was out-performed by the others. However the k-NN 

classifier and the Parzen window classifier as shown in the subplot (c) and (d) tend to 

be over- complex for this dataset. Especially the Parzen classifier, its boundary 

separating distant and false peaks seems overfit to the noisy data.  

The confusion matrixes of the four classifiers are listed as Table 5.4 to Table 5.7. As 

illustrated by the decision boundaries and the confusion matrixes, the results of the 

four methods do satisfy the unequaled requirement of classification errors. The 

important false identification errors of classifying false peaks as near ones are all 

almost 0, and the critical missed identification errors of recognizing near peaks as 

false ones are quite small. This means the weighting strategy works well from the 

design perspective for each classifier.   

The classification errors for the three datasets are listed in Table 5.8 and shown in 

Figure 5.12 as well. The performance of each classifier decreased with the increasing 

difficulty of the different datasets, while the k-NN and Parzen window classifiers 

yielded relatively fewer errors than LDC and QDC classifiers. However the 

nonparametric classifiers work very slowly, and tend to over fit the training data, so 

they are not preferred for the MFP peak recognition problem. Between the two 

discriminant methods, the LDC had a slightly smaller average, but fails when the data 

gets more difficult. Based on the comparison performed so far, the QDC is the most 

appropriate classifier in the four selected classifiers for the three-class classification 

problem in this chapter.   

  



   

   

Figure 5.11: The decision boundaries of the four classifiers for the moderately difficult dataset 
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Table 5.4: Confusion matrix of LDC 
Estimated labels True 

Labels Dist False Near Total 
Dist 265 35 31 331 

False 20 327 1 348 

Near 20 0 620 640 

Total 305 362 652 1319 
 

Table 5.5: Confusion matrix of QDC 
Estimated labels True 

Labels Dist False Near Total 
Dist 277 29 25 331 
False 26 322 0 348 
Near 20 0 620 640 
Total 323 351 645 1319 

 

Table 5.6: Confusion matrix of 14-NN classifier 
Estimated labels True 

Labels Dist False Near Total 
Dist 297 10 24 331 
False 41 306 1 348 
Near 30 0 610 640 

Total 368 316 635 1319 
 

Table 5.7: Confusion matrix of Parzen classifier 
Estimated labels True 

Labels Dist False Near Total 
Dist 299 8 24 331 
False 30 317 1 348 
Near 25 0 615 640 

Total 354 325 640 1319 

 

Table 5.8: The experimental results of four classifiers on three datasets 

Classifier Dataset Ave Weighted Test Error of Jackknife Estimation  
(%) 

Ave Classify Speed 
(ms/data) 

‘7.5-2.5’ 6.79 0.013 

‘7.5-5’ 7.92 0.012 
‘5-5’ 9.79 0.010 

LDC 

Average 8.17 0.012 

‘7.5-2.5’ 7.03 0.000 

‘7.5-5’ 8.34 0.012 
‘5-5’ 9.48 0.000 

QDC 

Average 8.28 0.004 

‘7.5-2.5’ 6.34 0.530 

‘7.5-5’ 6.74 0.665 
‘5-5’ 8.36 0.618 

k-NN 
( k = 14 ) 

Average 7.15 0.604 

‘7.5-2.5’ 6.18 0.505 

‘7.5-5’ 7.28 1.101 
‘5-5’ 8.53 0.618 

ParzenC 
( h = 0.036 ) 

Average 7.33 0.741 
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Figure 5.12: The error of four classifiers on three datasets 

 

5.4 CONCLUSIONS AND DISCUSSIONS 

A pattern recognition system was designed for the MFP peak recognition problem. 

Three major tasks of data collection, feature selection, and classifier design were 

carried out. Six measurements were taken to represent each data, and two features 

were selected to characterize each detected peak. Given no prior knowledge of the 

data distribution, the nonparametric techniques and linear discriminant methods were 

adopted to classify the MFP peaks in the reduced feature space. Two nonparametric 

classifiers (k-NN and Parzen window) and two discriminant methods (LD and QD) 

were compared with respect to the classification accuracy, computability, and 

simplicity for the practical problem. Leave-one-out or Jackknife cross validation was 

employed to evaluate the performance of the classifiers. Errors were weighted 

averaged over three classes by the class priors. Based on the experimental results, a 

simple PR system was chosen and could be implemented as shown in Figure 5.13. 

According to the experiments on synthetic datasets, the classification error for the 

finial system is expected to be around 10%. 

All the work done till now is only the first loop of the design cycle as shown in Figure 

5.2. Adjustment of each step has to be made to improve the performance of the 

recognition system. For instance, the lognormal density fitting has to be checked 

using more datasets, noise and outlier data of the false peak class should be removed 

 68



since they are the main cause of classification error. Other classifiers or methods 

improving classification performance such as support vector machine (SVM) and 

boosting, can also be tried. In fact, since features are almost all Gaussian distributed 

after the logarithmic transformation, the MFP peak data is essentially Gaussian. 

Therefore, we do not need more powerful techniques for this classification problem 

since linear discriminant classifiers can find an optimal solution for 2-D normal 

distributed data in theory. Actually, LDC is good enough to classify false and true 

MFP peaks, and it works even better than QDC in some circumstances, though QDC 

may be more powerful and be the best choice for classifying three types of peaks in 

this Chapter. However, the weights of error should be adjusted, and an ROC curve 

could be used for classification evaluation and design. Real data must be applied to 

the final designed system. When results on real data are suitable, the whole system 

will be simplified and integrated as part of a clinical EMG signal decomposition 

system for measuring jitter or fiber density in the future. 

 

 
 

Figure 5.13: The final designed PR system for MFP peak recognition 
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Chapter 6  
Measuring Jitter from Detected Near MFP 
Contributions to Isolated MUPs in an MUPT 
After SUP-MUPs are excluded and near MFPs are recognized, jitter can be finally 

measured from the near MFP pairs contributed to ISO-MUPs in a train. 

6.1 Introduction 

6.2 

As explained in Chapter 2, neuromuscular jitter is the measurement of the variability 

of inter-potential intervals (IPIs) within MUPs created by consecutive discharges of 

an MU. To measure jitter in MUPs, individual MFP pairs have to be found precisely 

and consistently across an MUPT. After the steps described in Chapter 4 and Chapter 

5, ISO-MUPs and their significant MFP contributions can be detected accurately and 

robustly. The final step for the automated jitter measurement system, measuring jitter 

from near MFP contributions to ISO-MUPs in a train, is discussed in this chapter. The 

whole procedure for this step can be divided into three functional sections: tracking 

near MFPs across all ISO-MUPs in a train, selecting proper MFP pairs, and 

calculating jitter. Since jitter calculation from a selected MFP pair is straightforward, 

the focus of this chapter is on the first two sections.   

Serial MFP Tracking and Selection 
Algorithm 

6.2.1   Basic Idea 

As emphasized in Chapter 3, MFPs of at least one pair of near muscle fibers have to 

be detected correctly and consistently for measuring jitter. Now since near MFPs of 

ISO-MUPs have been identified, the key problem described in this chapter is how to 

determine which near MFPs are created by the same muscle fiber. In this thesis, MFPs 

created by one muscle fiber are called serial MFPs and the corresponding problem 

was called serial MFP tracking. Essentially, this tracking problem can also be dressed 

as a pattern recognition problem and solved by a classification system like the system 
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described in chapter 5. However, the philosophy behind this problem is a simple fact 

that MFPs created by the same muscle fiber are temporally located at approximately 

the same position relative to MUPs in an MUPT because of the relatively consistent 

activation times of muscle fibers in an MU. So serial MFPs can be tracked by their 

locations in each MUP in a train, which allows us to generate a simple classification 

rule directly: 

• If two MFPs are detected almost at the same position of two ISO-MUPs in an 

MUPT, they belong to one series of MFPs. 

After the tracking process, MFP pairs can be selected from those series of MFPs 

which are consistently detected across the MUPT. Neuromuscular jitter can then be 

calculated based on each pair of MFPs. 

6.2.2   Challenges 

The principles of the finial jitter measurement step are straightforward and nothing 

intricate. Nevertheless, the effect of biological variations and instrumentation noise on 

detected MFPs and MUPs make the process easier said than done in practice. For 

serial MFP tracking, the waveforms of ISO-MUPs are not exactly identical and the 

locations of a series of MFPs may differ a lot from each other, especially when jitter 

is large. Meanwhile, as neuromuscular jitter increases, blocking appears more 

frequently which means some near MFPs may not be detected in some MUPs when 

the corresponding NMJ fails. Moreover, besides the residual SUP-MUPs falsely 

detected by the preprocessing step, the superposition of multiple MFPs (SUP-MFPs in 

short) in one MUP is also a challenge for tracking. Compared to the SUP-MUPs, the 

number of SUP-MFPs goes up with increasing jitter and can be a more serious 

problem for jitter measurement. In addition, simulated MUP data used in this research 

were sampled at 31.25 kHz (i.e., sampling time interval of 32 µs), which  does not 

satisfy the time resolution for measuring jitter since it normally ranges from 5 to 50 µs 

and requires a time resolution of at least 1 µs. In conclusion, only stable, smooth, and 

non-bifurcated near MFP contributions are qualified for jitter measurement. Therefore, 

the shapes of detected near MFP peaks have to be analyzed as well as their locations, 

and compared to the expected features (or ‘typical’ features in [Ma 2003, Wang 2005]) 

of the serial MFPs to make assignment decisions.  
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6.2.3   Method 

In Ma’s thesis, the expected number, occurrence times and amplitudes of serial MFPs 

were determined based on a preliminary set of filtered MUPs and by some arbitrary 

threshold [Ma 2003]. The MST algorithm was applied to detect individual MFP 

contributions belonging to the same series of MFPs, because ISO-MUP identification 

and near MFP peaks recognition had not been carried out previously and 

independently before jitter measurement. In this research, most of the SUP-MUPs 

have been excluded from MUPTs by the preprocessing step, and only near and a few 

distant MFP peaks have been recognized using the designed PR system. Therefore, 

MFP peaks for jitter measurement can be tracked and selected simply based on the 

similarity of their location and amplitude to those expected values. 

Following the work of Ma and Wang [Ma 2003, Wang 2005], the first positive peak 

in each filtered MUP was aligned as a reference, the expected number, occurrence 

times and amplitudes of near MFP contributions were then determined based on the 

ISO-MUPs template. The average amplitude of the baseline noise was also considered 

to determine amplitude assignment thresholds for tracking serial MFPs. 

As for blocking, it has to be separately processed since the blocking rate is also an 

important clinical reference of NMJ transmission. A blocking will be recognized once 

no similar MFP peak has been found in the searching interval around the expected 

peak. MUPs with any blocked MFP contribution are excluded for jitter calculation of 

that series of MFPs, but they are counted to measure the corresponding blocking rate.  

To deal with the problem of superposition, the amplitude of each MFP peak is 

checked along with its location during tracking, since the sharpness and slope ratio of 

a MFP peak has been verified as described in Chapter 5. If the NMJ axial positions of 

two muscle fibers in an MU are so close that most of their detected MFP peaks across 

an MUPT are completely overlapped with each other, the two serial MFPs can not be 

distinguished by MFP detection and serial MFP tracking. Therefore, a further 

inspection of such kind of superposition is carried out during the MFP selection 

process. An MFP peak is actually superimposed by two MFPs if a bifurcation of its 

peak has been detected. Once a bifurcation has been found, the whole series of MFPs 

has to be excluded for jitter calculation, because the bifurcated MFP series actually 

carries variations of two or more NMJs and can not be estimated as one MFP. 
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However, the criterion defining a bifurcation has to be robust to reduce the effects of 

noise and some accidental superposition, e.g., the amplitude of these bifurcating peaks 

should both be much larger than the expected amplitude of the noise. 

In order to enhance the time resolution of measured jitter, a suitable interpolation 

must be applied to the detected MUPs. The cubic spline interpolation technique 

introduced by Ma [Ma 2003] with increased sampling rate of 967.5 kHz was also 

applied in this research to obtain a time resolution of exactly 1 µs. 

6.2.4   Procedure 

To meet the challenges of serial MFP tracking and selection, the whole procedure of 

the final jitter measurement step can be summarized by the flowchart shown in Figure 

6.1. To evaluate the procedure in this chapter, simulated data was created with 

different expected jitter values. Note that neuromuscular jitter actually is a test 

corresponding to each NMJ, so the jitter calculated based on each pair of available 

near MFPs were calculated as one result. The details of the jitter measurement 

procedure are introduced in the following sections.  

6.2.4.1 Tracking of a Serial MFP across all ISO-MUPs in an 

MUPT 

To resist to the inevitable distortion of MFPs caused by the errors left by previous 

processes, biological variability like jitter, or instrumentation noise, robust tracking of 

serial MFPs with additional amplitude checking was designed. The searching interval 

for an expected MFP was determined by the expected location of this MFP and the 

IPIs between it and other MFPs, e.g. ‘expected location +/- coefficient× IPI’. The 

acceptable range of amplitude was a robust range around the amplitude of the 

expected MFP, which was controlled by the average amplitude of all expected MFPs 

and the root mean square (RMS) of the baseline noise. Considering the average 

amplitude was to make the checking range more resistant to the slight superposition 

of MFPs, while the RMS of the baseline noise was taken into account to eliminate the 

effect of noise. Because of the joint checking of location and amplitude of a MFP, 

both thresholds can be more relaxed and robust to the variability of MFPs caused by 

slight superposition or noise. One example is shown in Figure 6.2, where different 

markers stand for different serial MFPs tracked.  
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Figure 6.1: Flowchart of jitter measurement from near MFPs of ISO-MUPs in a train 
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Figure 6.2: An example raster showing serial MFP tracking results of one MUPT with three near 
MFPs and an expected jitter value of 50 us (Note different MFP series are marked using different 

markes) 

 
Figure 6.3: MFP Selection Result for the same MUPT in Figure 6.2. Unmarked peaks are not 

selected for jitter measurement.  
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However, a medium to complete superposition of MFPs may still not be distinguished 

by tracking, e.g., when two MFPs are almost completely overlapped across the MUPT 

except the small bifurcations of a few detected peaks. Therefore, in order to eliminate 

the effect of MFP superposition, a MFP selection process is necessary.  

6.2.4.2 Typical MFP Pair Selection 

The tracked MFPs have to be further selected to exclude the medium to complete 

superposition of MFPs. When two near muscle fibers have similar axial NMJ 

locations, some of their detected MFPs may be temporally overlapped to some extent 

and their detected peaks may be smoother and blurred due to the superposition. This 

kind of superposition is categorized as medium superposition in this thesis. A serial 

MFP with some medium SUP-MFPs can still be used for jitter measurement after 

removing these superimposed ones. However, if two MFPs are so close in time that 

most of their firings are detected as one MFP peak except a few bifurcated peaks, they 

are almost not distinguishable by corresponding MFP peaks, and have to all be 

excluded from jitter measurement. Therefore, to measure jitter accurately and robustly, 

bifurcation and superposition of MFPs have to be processed separately. When two (or 

more) MFPs are tracked within one searching interval with proper amplitudes, they 

are defined as a superposition of MFPs if their occurrence interval is relatively large; 

otherwise they are recognized as a bifurcation. For example, if two peaks are detected 

within a time interval of 500 µs but longer than 350 µs, they are recognized as 

medium SUP-MFPs; or bifurcated MFPs if their time interval is smaller than 350 µs, 

where 500 and 350 µs are empirical thresholds. For both situations, the amplitudes of 

both peaks also have to be larger than a threshold of baseline noise so that the noise 

on a MFP peak does not cause the detection of two peaks (i.e., a bifurcation).  

The MFP selection result for the same MUPT shown in Figure 6.2 is shown in Figure 

6.3, where the first MFP peaks of MUPs NO. 41, 48, 70 and the third peak of MUP 

NO. 72 are SUP-MFPs and not selected for jitter measurement. Note that not all SUP-

MFPs are recognized since the interfered MFP peak may be detected as another 

individual MFP or may not even be detected. For example, the fourth peak of MUP 

NO. 53 was recognized as an individual MFP; the small peak before the third one of 

MUP NO. 69 was actually not detected as a peak. 

 76



6.2.4.3 Blocking Identification and Jitter Measurement 

If no matched positive peak is found in a corresponding searching interval, a blocking 

is identified. The percent blocking is calculated by the ratio of the number of detected 

blockings to the total number of MUPs.  

Neuromuscular jitter is calculated using the MCD statistic (see Chapter 2 for details). 

To calculate the jitter of a MFP pair, at least 50 MUPs are required [Sanders 1996]. 

Jitter measurements were evaluated using a synthetic MUPT that modeled signals 

detected using CN electrodes during voluntary muscle contraction (level 5% MVC). 

In addition, the percentage of blocking was also measured as the larger one between 

two blocking rates of the two serial MFPs of the pair. 

6.3  Independent Experiment 
6.3.1   Simulated Data 

To evaluate the jitter measurement step independently, a typical simulated EMG 

signal was generated repeatedly with different jitter values. Instead of being 

determined by the near MFP peak recognition system, the expected number and 

occurrence times of near MFPs were input manually after visually checking. Since 

visually checking results can be considered as a gold standard, the influences of 

previous procedures were eliminated. However, in order to investigate the 

performance of the jitter measurement step under the same conditions as in the whole 

system, proper amounts of errors were kept in the simulated EMG signal, e.g., a 

relatively low SUP-MUP ratio, which stands for the false identification error of ISO-

MUP from the preprocessing step, and some peak detection error representing the 

error of the near MFP recognition process.  

The simulator employed in this thesis provides an optional function for jitter 

evaluation that models enormous fibers at known locations close to the detection 

surface of the electrode. Although the ‘super’ MUPs created are based on an unnatural 

layout of a muscle, the simulated MUPs consist of multiple near MFP contributions 

which are especially useful for the evaluation of jitter measurement. A typical MUPT 

composed by three near MFPs and two distant MFPs was employed as example data 

to evaluate the jitter measurement procedure in this chapter. All data were generated 

at a contraction level 5% MVC with a signal to noise ratio of 25. The templates of this 
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MUPT with two different jitter values were compared in Figure 6.4, where the peaks 

with larger jitter values tends to be smaller and noisier than the one with lower jitter 

due to the increasing variability of the MUPs.  

6.3.2   Results 

Jitter measurement results of the example train are listed in Table 6.1 and 6.2 with 

different ways of treating bifurcated MFPs, i.e., removing MFP series with bifurcated 

MFPs or excluding bifurcated MFPs, where the percentage error is calculated by: 

%100
Jitter Expected

Jitter ExpectedJitter Measured
 Error  Percentage 1 ×

⋅

−
=
∑
=

n

n

i
i

, 

where n is the number of MFP pairs.  

 

 

Table 6.1: Experiment Result Excluding the Superimposed MFPs and Bifurcated MFP serials 
MFP Pair 1 (1 and 

2) 
MFP Pair 2 (1 and 

3) 
MFP Pair 3 (2 and 

3) 
Expected 
Jitter (us) 

Num. of 
SUP-
MUPs 

based on 
Gold 

Standard 

Num. of 
SUP-
MFPs 

Detected 

Num. of 
Bifurcated 

MFPs 
Detected 

Jitter 
(us) 

Blocking 
Rate (%) 

Jitter 
(us) 

Blocking 
Rate (%) 

Jitter 
(us) 

Blocking 
Rate (%) 

AVE. 
Error 

of 
Jitter 
(%) 

25 7 1 0 24.7 0 30.9 0 29.6 0 14.5 
50 14 1 0 50.3 0 61.6 0 57.0 0.4 12.6 
75 8 8 2 66.8 0     11.0 
100 9 23 0 93.9 0 118.0 0 113.3 2.6 12.5 
125 3 42 2        
150 10 75 4        

 

 

Table 6.2: Experiment Result Excluding the Superimposed (including Bifurcated) MFPs 
MFP Pair 1 (1 and 

2) 
MFP Pair 2 (1 and 

3) 
MFP Pair 3 (2 and 

3) 
Expected 
Jitter (us) 

Num. of 
SUP-
MUPs 

based on 
Gold 

Standard 

Num. of 
SUP-
MFPs 

Detected 

Num. of 
Bifurcated 

MFPs Jitter 
(us) 

Blocking 
Rate (%) 

Jitter 
(us) 

Blocking 
Rate (%) 

Jitter 
(us) 

Blocking 
Rate (%) 

AVE. 
Error 

of 
Jitter  

25 7 1 0 24.7 0 30.9 0 29.6 0 14.5% 
50 14 1 0 50.3 0 61.6 0 57.0 0.4 12.6% 
75 8 8 2 66.8 0 93.9 0 74.6 1.8 12.2% 

100 9 23 0 93.9 0 118.0 0 113.3 2.6 12.5% 
125 3 42 2 108.0 0.4 121.3 0 118.0 6.6 7.4% 
150 10 75 4 123.9 1.3 185.7 0 147.0 4.4 14.4% 
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Figure 6.4: Templates of the experimental MUPT with jitter of (a) 25 us and (b) 150 us. The 

triangles mark the detected peaks. The first and third peak is a superposition of one near MFP 

and one distant MFP, and the last peak is a false peak. 

 

 
Figure 6.5: The expected jitter value and measured jitter value of results in Table 6.2 

 

Table 6.1 and 6.2 show that the number of detected SUP-MFPs is not affected by the 

relative low false ISO-MUP identification errors, but directly related to the expected 

jitter. This is reasonable since the probability of MFP overlapping goes up with 

increasing jitter, while the slight superposition by another MUP may not affect the 

MFP peaks. The number of detected bifurcated MFPs also does increase with jitter as 

expected. Though muscle fibers created by the simulator never block, blocking was 

still recognized when a MFP was canceled by other MFPs, i.e., a negative 

superposition. The relationship between expected and measured jitters is shown in 

Figure 6.5. 
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From the comparison of Table 6.1 and Table 6.2, one can find that excluding the 

whole serial MFP in which one or more MFPs bifurcate can eliminate errors in jitter 

measurement caused by the corresponding superpositions. Meanwhile, jitter may be 

immeasurable due to the reduced number of available MFP series. The balance 

between accuracy and measurability has to be considered in real clinical testing, 

though the strategy described in Table 6.1 was applied to the system designed in this 

thesis.  

6.4 System Experiment 
To evaluate the whole jitter measurement system, the simulated database introduced 

in Chapter 4 (see Table 4.1), which is called Data Base 1, could be used. However, 

since that data base was created for evaluation of identification of ISO-MUPs, almost 

all MUPs only have one near MFP, and the only train which is composed of multiple 

near MFPs has bifurcation problems. Therefore, a new database was created for 

evaluating the whole jitter measurement system. A Data Base 2 was created taking 

advantage of the ‘super’ muscle fiber generation option of the simulator. The two data 

bases have the same structure except that the contraction levels of 17.5% and 20% 

MVC are not considered in the system experiment since these levels of intensity are 

never expected during clinical testing. The acceleration threshold of 7.5 kV/s2 was 

used to define near MFP peaks in Data Base 2. The general information and the ISO-

MUPs identification errors of Data Base 2 are listed in Table 6.3.  Note that the 

optimal parameters for the MST-based two-phase clustering algorithm were changed 

because the acceleration of the MUPs (or filtered MUPs) would be used instead of the 

raw MUP waveforms. (The raw signal is used wider in EMG signal decomposition 

system, so the ISO-MUP identification algorithm in Chapter 4 was evaluated based on 

it.) The empirical optimal parameters applied to the ISO-MUP identification step is 

CAT: 1 and COV3: 4. The final jitter measurement results are shown in Table 6.4 as 

well as the blocking rate. 

Observed from Table 6.4, the blocking rates measured were quite low since the 

simulator does not generate MUPs with blocking. Most jitter values measured 

matched the expected ones except those large ones at relative high contraction level. 

This is because some MUPs differ a lot from others in an MUPT due to the variation 

caused by large jitter so that they may be excluded as SUP-MUPs during the ISO-
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MUP identification step, i.e., the missed errors of the preprocessing step cause 

underestimation of jitter. Some other measured jitter values shifted from the expected 

ones when they are small because of the false detection of MFP peaks. For example, 

one MUPT with expected jitter of 25 µs and measured jitter of 43 µs at a contraction 

level 15% MVC is partly shown in Figure 6.6. The first peak of each MUP is not 

sharp enough to be accurately detected, so its location is severely affected by noise. 

This kind of peak should be recognized as a distant peak in the peak detection step, 

and not used for measuring jitter. In practice, peaks without enough amplitude would 

not be counted as near MFP peaks, so that such types of errors can be avoided in a 

real implementation.   

 

Table 6.3: Errors of Iso-MUP identification of filtered MUP in Data Base 2 

 

Missed Error Rate (%) False Error Rate (%) Error Cost (%) 
Data 
Set 

Contr. 
Level 

Intensity 
(pps) 

Num. 
of 

Trains 

Sup-
MUP 
Ratio 
(%) 

Maximum Average Maximum Average Maximum Average 

1 5.0 
16.8 2 4.6 2.9 1.5 3.6 1.7 2.2 1.6 

2 7.5 
27.9 3 7.9 3.4 2.2 3.3 1.8 2.3 2.0 

3 10.0 
47.2 5 14.4 3.4 2.4 8.3 4.2 4.7 3.2 

4 12.5 
70.1 7 21.3 4.5 3.5 9.6 5.3 6.8 4.3 

5 15.0 
90.1 8 27.9 4.6 3.4 11.5 6.8 7.0 4.9 

Figure 6.6: Raster of an MUPT with overestimated jitter 
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Table 6.4: Test results of Data Base 2 
Measured Jitter Blocking Rate Contr. 

Level 

Intensity 
(p.p.s.) 

Num. 
of 

Trains 

Expected 
Jitter (us) 

Num. of  
Avail. 
MFP 
pairs 

Jitter (us) Mean MAD 
Percen
t Error 

(%) 

Blocking 
Rate (%) 

Mea
n MAD 

25 4 31 26 29 24 27 2.5 9.1 0 0 0 0 0 0 

50 4 57 46 60 46 52 6.2 4.0 0 0 0 0.5 0.1 0.2 

75 1 83 83 0 11.1 0 0 0 

100 1 105 105 0 5.4 0 0 0 

5.0 

 

16.8 

2 

150 0        

25 4 37 31 38 30 34 3.6 35.9 0 0 0 0 0 0 

50 2 51 53 52 0.8 3.4 0 0 0 0 

75 2 76 69 73 3.9 3.3 0 0 0 0 

7.5 

 

27.9 

3 

100-150 0        

25 5 39 35 36 33 
41 37 2.8 47.5 0 0 0 0 0 0 0 

50 2 52 63 57 5.4 14.7 0 0 0 0 

75 1 66 66 0 11.6 0 0 0 

100 1 100 100 0 0.4 0.5 0.5 0 

125 1 94 94 0 25.1 0.7 0.7 0 

10.0 

 

 

47.2 

5 

150 0        

25 4 42 34 40 35 38 3.4 52.1 0 0 0 0 0 0 

50 2 52 56 54 2.1 8.6 0 0 0 0 

75 2 71 77 74 3.4 1.3 0 0 0 0 

12.5 

 

70.1 

7 

100-150 0        

25 4 37 35 43 37 38 2.6 53.0 0 0 0 0 0 0 

50 2 50 58 54 4.0 7.3 0 0 0 0 

75 3 68 78 80 75 5.0 0.3 0 0.9 0 0.3 0.4 

100 5 86 83 94 97 
105 93 6.8 7.3 0 0.9 1.6 

1.6 1.6 1.2 0.6 

125 1 107 107 0 14.3 3.4 3.4 0 

15.0 

 

 

90.1 

8 

150 0        

 

Totally, only 51 MFP pairs were selected from Data Base 2. In order to thoroughly 

evaluate the jitter calculation step as well as the whole automated jitter measurement 

system, further experiments need to be done using simulated data and real data with a 

gold standard for jitter measured using the SF-EMG technique. 

6.5 Discussions 

Although the principle of jitter measurement is straightforward, the operation has to 

be tolerant of the errors created by previous steps, the biological variability inherent in 

an EMG signal and instrumentation noise. A robust procedure composed by three 

functional sections was described in this chapter, where the peak amplitude of a MFP 
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was employed for serial tracking along with the occurrence time and superpositions 

and bifurcations were excluded for MFP selection.  

Since the designed procedure is stable and just sensitive to changes of jitter values, 

one typical MUPT was simulated with different jitter values to exemplify and 

evaluate the jitter measurement step independently. The designed jitter measurement 

procedure is robust to errors created by the previous steps to some extent. As long as 

the errors are kept in the proper range as discussed in pervious chapters, the whole 

jitter measurement system can be accurate and robust. However, some details of the 

design of the last step could be further discussed. For example, amplitude threshold 

could be adjusted to eliminate the effect of falsely recognized peaks which causes the 

overestimation as shown in Figure 6.6. The underestimation of jitter when the 

expected value is large can be reduced by making the serial MFPs tracking range 

adaptive to the jitter. In addition, the definition of bifurcation and superposition of 

MFPs should be reconsidered carefully for the trade of accuracy and measurability.  

Finally, experiments on real EMG signals need to be carried out for validation in the 

future. 

Preliminary experiments using a small synthetic data base of ‘super’ MUPs were done 

for evaluating the whole jitter automated measurement system. The result showed that 

most of the measured jitter values match the expected ones. Compared to the reported 

average error of jitter measurement 8.37% at contraction level 5% of MVC in [Ma 

2003], the corresponding error of the whole system tested by the small data set was 

7.40%. The system designed in this thesis is also aimed to measure jitter under 

different muscle firing intensities which has not been studied by former researchers. 

Since the algorithms were fundamentally developed and each step of the whole 

procedure was evaluated by simulated data, further refinement and adjustment should 

be carried on using a large simulated data base and real data. Furthermore, the 

designed system will be evaluated using real data with a gold standard and compared 

to the traditional SFN EMG method. Ultimately, the system will be integrated into the 

DQEMG system for clinical testing in the future. 
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Chapter 7  
Conclusions, Contributions and Future 
Work 
In order to facilitate the study of neuromuscular disorders using disposable routine 

electrodes, an automated jitter measurment system based on the decomposition of CN 

detected EMG signals was developed and preliminarily evaluated in this thesis. The 

designed system comprises three functional modules for excluding SUP-MUPs, 

identifying near MFPs and calculating jitter, which are described separately in three 

chapters in this thesis. 

In addition to being a preprocessing step of the jitter measurement system, identifying 

ISO-MUPs is also important for detailed EMG signal decomposition. The proposed 

MST-based two-phase clustering algorithm demonstrates higher accuracy, robustness 

and stability than the MST clustering algorithm or the template-based algorithm. A 

simulation experiment obtained results with missed error rates less than 5% and false 

rates less than 15% simultaneously.  

After preprocessing, the near MFP contributions to an ISO-MUP can be recognized 

by properly filtering the MUP and classifying the detected peaks using the proposed 

quadratic discriminant classifier (QDC). A pattern recognition system was employed 

for the classifier design, and the weighted average error obtained was less than 10%. 

In practice, the QDC can be simplified as a linear discriminant classifier (LDC) if 

only true and false MFP peaks have to be distinguished. 

Finally, jitter can be measured from the near peaks detected from ISO-MUPs in an 

MUPT, though the practical process also has to be robust to biological variation, 

errors from previous steps and instrumentation noise. The flowchart of this step is 

divided into three sections: serial MFP tracking, MFP pair selection and jitter 

calculation. A preliminary experiment using simulated data demonstrated the 

efficiency of the designed system. 

The performance of each step was evaluated independently using simulated data as 

well as the whole system. The measurement results suitably matched the expected 

values based on the simulation experiments. The measurement error principally 
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resulted from the effects of noise and overlapping of individual MFPs. Compared to 

the initial algorithm created by Ma and Wang [Ma 2003, Wang 2005], in which the 

three functional modules are interactive and iterative, the designed system proposed in 

this thesis is well modularized which allows each step to be modified, evaluated, and 

reused in other applications independently. Furthermore, the proposed system 

demonstrated an improved performance over a variety of EMG signals compared to 

the initial algorithm, e.g., average jitter measurement error of 7.40% versus 8.37% at 

contraction level of 5% of MVC. In addition, the effect of muscle contraction level on 

jitter measurement was also studied in this thesis, which was not previously 

investigated. Ma and Wang worked on the basic idea of measuring jitter based on 

decomposed CN-EMG signal; the work done in this thesis created algorithms and a 

scheme for practical application. For example, the MST clustering algorithm is 

improved for ISO-MUPs identification, the optimal classifier for near MFP 

recognition is implemented, and a complete procedure for jitter calculation using 

detected MFPs is suggested. 

However, due to time constraint, the last step of the jitter measurement system is not 

fully developed, i.e., the serial MFP tracking and typical MFP pair selection parts can 

be improved by adjusting the thresholds iteratively. The parameters can be further 

adjusted and optimized for each step using a large simulated data base and real data. 

Last but not least, the system has not been fully validated, especially using the real 

data that is difficult to collect. To implement the automated jitter measurement system 

clinically, the optimization of each step as well as the whole system should be carried 

out using real EMG data and compared to reference values measured using SF-EMG 

techniques. In addition, the degree of MFP superposition or minimal IPI which can be 

tolerated for measuring jitter accurately could be investigated in detail.  

Although the system designed in this thesis has not been fully validated, the 

algorithms and the whole scheme are demonstrated to be powerful enough for jitter 

measurement based on decomposed CN-EMG signals. The three functional modules 

can also be applied to other application areas in EMG signal processing, e.g., the 

MST-based two-phase algorithm has been implemented in DQEMG to remove 

superimposed MUPs for calculating MUP templates. The system can also be used to 

measure jitter based on decomposed MN-EMG signals, or even calculate fiber density 

once the MFPs for an MU can be clearly counted from the decomposed MUPs. 
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