# On a Question of Wintner Concerning the Sequence of Integers Composed of Primes from a Given Set 

by<br>Jeongsoo Kim

A thesis<br>presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Doctor of Philosophy<br>in<br>Pure Mathematics

Waterloo, Ontario, Canada, 2007
(c) Jeongsoo Kim 2007

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

Jeongsoo Kim

## Abstract

Wintner asked the following question :
Does there exist an infinite set $S$ of prime numbers such that if $n_{0}<n_{1}<\ldots<$ $n_{i}<\ldots$ is the sequence of all positive integers composed of the primes in $S$ then

$$
\lim _{i \rightarrow \infty}\left(n_{i+1}-n_{i}\right)=\infty ?
$$

In 1973 Tijdeman [38] proved that the answer to the question is yes. In this thesis, we shall investigate Wintner's question in more detail.

Tijdeman [38] proved that for each real number $\theta$ with $0<\theta<1$ there exists an infinite set of primes $S$ such that if $n_{0}<n_{1}<\ldots<n_{i}<\ldots$ is the sequence of all positive integers composed of the primes in $S$ then $n_{i+1}-n_{i}>n_{i}^{1-\theta}$ for $i=0,1, \ldots$.
Given such a $\theta$, we shall show that we can find an infinite set $S=\left\{p_{1}, p_{2}, \ldots\right\}$ of primes with $p_{1}<p_{2}<\ldots$ so that the $n$-th term $p_{n}$ does not grow too quickly. In particular, we shall show that

$$
p_{n}<\exp \left(\frac{c_{1} n^{2}}{\theta} \log \left(\frac{c_{2} n}{\theta}\right)\right)
$$

where $c_{1}, c_{2}$ are explicit numbers.
We shall also investigate the following question. We shall look for a function $\mathcal{L}(x)$ which grows quickly and yet for which there is an infinite set of primes $S$ such that the associated sequence of power products $n_{0}<n_{1}<n_{2}<\ldots$ satisfies

$$
n_{i+1}-n_{i} \quad>\quad \mathcal{L}\left(n_{i}\right)
$$

for $i=0,1, \ldots$.
We define a family of functions

$$
F_{k, \theta}(x)=\exp ^{k}\left(\left(\log _{k}(x)\right)^{\theta}\right)
$$

where $k$ is an non-negative integer and $\theta$ is a real number and $\log _{k}$ is $k$-iterated logarithms and $\exp ^{k}$ is $k$-iterated exponentiations. And we prove that for given non-negative integer $k$ and a real number $\theta$ with $0<\theta<1$ there is an infinite set $S(k, \theta)$ of prime numbers such that if $n_{0}<n_{1}<\ldots<n_{i}<\ldots$ is the sequence of
all positive integers composed of the primes in $S(k, \theta)$ then

$$
n_{i+1}-n_{i}>\frac{n_{i}}{F_{k, \theta}\left(n_{i}\right)}
$$

for $i=0,1, \ldots$.
Finally, we shall consider prime pairs $(p, q)$ such that if $n_{0}<n_{1}<\ldots$ is the sequence of all positive integers composed of the primes $p, q$ then

$$
n_{i+1}-n_{i} \quad>\quad \sqrt{n_{i}} .
$$

We find all such prime pairs $(p, q)$ with $2 \leq p<q<e^{8}$ by computational work. Given two such primes $p, q$ we can find an infinite set of primes $\left\{p, q, p_{3}, p_{4}, \ldots\right\}$ such that if $n_{0}<n_{1}<n_{2}<\ldots$ is the sequence of all positive integers composed of the primes then

$$
n_{i+1}-n_{i} \quad>\quad \sqrt{n_{i}} .
$$

for $i=0,1, \ldots$.
These results generalize and develop the answer to Wintner's question due to Tijdeman.

## Acknowledgments

I would like to express my gratitude to my supervisor Dr. Cameron L. Stewart. He introduced me into this transcendental area and inspired me how to approximate there. I sincerely thank him for all his time and patience, support and encouragement and consideration. I realized that some intuitions and examples from him turn to be new theorems. Without Professor Stewart, I would not have done nor even started this work. I am honored to be his student.

I would like to thank Dr. Tijdeman for his encouragement of my study.
I would like to thank my examiners Dr. Ram Murty and Dr. Yu-Ru Liu and Dr. Kevin Hare, Dr. Bruce Richmond and my supervisor. With their detailed remarks and suggestions I could finalize this thesis. Under their critical review and profound questions I should initialize myself.

I would like to thank all members of our Department, especially graduate officer Dr. Ng and wonderful staff Ms. Shonn Martin, for their guide and help.

I would like to thank Rachel for many cards, pictures and messages. These touch my heart and make me happy. I would like thank Jason for helping me to organize many things.

I would like to thank many friends and colleague for sharing food and information.
I would like to thank uncle Joe and his family.

I would like to thank my brothers, Suk-Won and Suk-Hyeon, sister-in-law and my nephew and niece for sharing their delight and joy.

I would like to thank my grandmother for her endless love, kindness and pray.
Above all I sincerely thank my Dad and Mom for their unlimited love, goodness and support.

Give Thanks...
Jeongsoo Kim

## Dedication

Dedicated to my parents: D.-H. Kim and J.-J. Cho Kim and to my grandmother : K.-S. Bae Cho

## Contents

1 Introduction ..... 1
1.1 When $|S|$ is Finite ..... 2
1.2 Wintner's Question ..... 5
1.3 Motivation ..... 6
1.3.1 Lower bounds for $p_{n}$ ..... 7
1.3.2 Upper bounds for $p_{n}$ ..... 11
1.3.3 The Sequence of Gaps $n_{i+1}-n_{i}$ ..... 11
1.3.4 Computation ..... 13
2 Preliminaries ..... 17
2.1 Definitions ..... 17
2.2 Linear Forms in Logarithms ..... 18
2.2.1 Baker's Theorems ..... 18
2.2.2 Trivial Estimate ..... 18
2.2.3 Estimates on Linear Forms in Logarithms ..... 19
2.2.4 Sharpening Estimates ..... 22
2.2.5 Waldschmidt's Theorem ..... 23
2.3 Explicit Determination ..... 24
3 First Main Theorem ..... 26
3.1 Lemma ..... 26
3.2 Terminology ..... 28
3.3 First Main Theorem ..... 29
4 Second Main Theorem ..... 36
4.1 Basic Properties ..... 36
4.2 Nice Functions ..... 37
4.3 Lemmas ..... 42
4.4 Second Main Theorem ..... 48
4.5 Further Research ..... 55
5 Computation ..... 57
5.1 General Upper Bound ..... 59
5.2 Reduced Number of Calculations ..... 61
5.3 Find a Proper Expression ..... 65
5.4 Criteria for Solution ..... 67
5.5 Some Remarks on the Program ..... 67
5.5.1 The Small Range ..... 67
5.5.2 The Medium Range ..... 68
5.5.3 Computing Environment ..... 69
5.6 Further Research ..... 69
Appendix A. Table ..... 71
Appendix B. Maple Code ..... 78
Bibliography ..... 93

## Chapter 1

## Introduction

Let us define the following set:

Definition Let $S$ be a set of prime numbers. Define

$$
\mathcal{N}(S)=\left\{x \in \mathbf{N} \mid x=\prod_{p \in S} p^{a}, a \in \mathbf{N} \cup\{0\}\right\} .
$$

We see that $\mathcal{N}(S)=\left\{n_{0}, n_{1}, \ldots\right\}$ is the set of all positive integers composed of the primes in $S$. That means for given set $S$ of prime numbers, we see that for a positive integer $x, x$ is in $\mathcal{N}(S)$ if and only if for any prime number $p$ with $p \mid x, p$ is in $S$.

We have some examples.

## Examples

1. If $S$ is the set of all prime numbers then $\mathcal{N}(S)$ is the set of all positive integers.
2. If $S=\emptyset$ then $\mathcal{N}(S)=\{1\}$ and this is the only case $\mathcal{N}(S)$ is a finite set.
3. If $S=\{2\}$ then $\mathcal{N}(S)=\left\{2^{i} \mid i \in \mathbf{N} \cup\{0\}\right\}$
4. If $S$ is the set of all odd prime numbers then $\mathcal{N}(S)$ is the set of all positive odd integers.

We want to see $\mathcal{N}(S)$ from an additive point of view. First, without loss of generality, we can order the elements of the set

$$
\begin{aligned}
S & =\left\{p_{1}<p_{2}<\ldots\right\} \\
\mathcal{N}(S) & =\left\{n_{0}<n_{1}<n_{2}<\ldots\right\} .
\end{aligned}
$$

We see that $n_{0}=1$ and $n_{1}=p_{1}$ the smallest prime in $S$. We denote the cardinality of a set $A$ by $|A|$.

### 1.1 When $|S|$ is Finite

In 1898, Størmer [36] proved the following theorem.
Theorem 1.1 (Størmer). Let $S$ be a finite subset of odd primes. Then for $n_{i} \in$ $\mathcal{N}(S)$

$$
\liminf _{i \rightarrow \infty}\left(n_{i+1}-n_{i}\right) \quad>2
$$

This result was improved by Thue [41] in 1908.
Theorem 1.2 (Thue). Let $S$ be a finite set of primes and $n_{i} \in \mathcal{N}(S)$. Then

$$
\lim _{i \rightarrow \infty}\left(n_{i+1}-n_{i}\right)=\infty
$$

Thue derived this theorem from his result on the approximation of algebraic numbers by rational numbers.
Størmer proposed the question of determining for a given finite set of prime numbers, the pairs ( $a, a+1$ ) of consecutive integers such that both $a$ and $a+1$ belong to $\mathcal{N}(S)$. He proved [35] that given a finite set $S$ of $t$ primes, there are only finitely many pairs $(a, a+1)$ such that both $a$ and $a+1$ belong $\mathcal{N}(S)$. He used explicit methods involving Pell's equations and showed that the number of such pairs is at most $3^{t}-2^{t}$.

Lehmer [21] generalized this question to that of finding, for a given finite set $S$ of primes, all pairs $(a, a+k)$ such that $a$ and $a+k$ are in $\mathcal{N}(S)$ for $k=1,2,4$. He was interested in an efficient way to determine the number of these pairs. Using a result of Gelfond [15], Cassels [12] gave an explicit upper bound for the size of the numbers. And he gave necessary and sufficient conditions to determine when both $a$ and $a+k$ are in $\mathcal{N}(S)$. Recently, Jones [18] extended Lehmer's results to the case when $k$ is an arbitrary positive integer.

In 1918, Pólya [29] proved the same result as Theorem 1.2 with a different approach. His proof uses an estimate for the sum of the divisors of $p-1$ for primes $p$ up to $x$. Pólya proved that

Theorem 1.3 (Pólya). If $S$ is any finite subset of primes and $n_{i} \in \mathcal{N}(S)$ then $n_{i+1}-n_{i}$ tends to infinity. Moreover, if $|S| \geq 2$ then

$$
\lim _{i \rightarrow \infty} \frac{n_{i+1}}{n_{i}}=1
$$

From Pólya's proof, we have information of upper bounds of the sequence of the quotients $\frac{n_{i+1}}{n_{i}}$.
Erdös [13] observed this using the results of Siegel [32] and Mahler [23].
Theorem 1.4 (Erdös). Let $S$ be a finite subset of primes. Let $0<\theta<1$. Then there is $N(\theta, S)>0$ such that

$$
n_{i+1}-n_{i}>n_{i}^{\theta}
$$

for all $n_{i} \in \mathcal{N}(S)$ with $n_{i}>N(\theta, S)$.
But in both Siegel's and Mahler's methods $N(\theta, S)$ is not effectively computable.
In 1973 and 1974, Tijdeman [38, 39] resolved these problems. He uses Fel'dman's estimates [14] for linear forms in the logarithms of algebraic numbers.

Theorem 1.5 (Tijdeman [38]). Let $n_{1}<n_{2}<\ldots$ be the sequence of integers composed of primes not greater than $p$. Then there exists an effectively computable positive number $C_{1}=C(p)$ such that

$$
n_{i+1}-n_{i} \quad>\quad \frac{n_{i}}{\left(\log n_{i}\right)^{C_{1}}}
$$

for $n_{i} \geq 3$.
In 1974, Tijdeman proved the following theorem by applying estimates for linear forms in logarithms and using some elementary properties of continued fraction expressions.

Theorem 1.6 (Tijdeman [39]). Let $S=\left\{p_{1}<p_{2}\right\}$ and $n_{i} \in \mathcal{N}(S)$. Then there exist effectively computable numbers $C_{2}=C\left(p_{1}, p_{2}\right)$ and $N=N\left(p_{1}, p_{2}\right)$ such that

$$
n_{i+1}-n_{i}<\frac{n_{i}}{\left(\log n_{i}\right)^{C_{2}}}
$$

for $n_{i} \geq N$.

Tijdeman proved the following theorem without estimates for linear forms in the logarithms of algebraic numbers.

Theorem 1.7 (Tijdeman [38]). Let $S=\left\{p_{1}<\ldots<p_{t}\right\}$ be a given set of $t$ prime numbers and $t>1$. Then there are infinitely many pairs $x, y$ in $\mathcal{N}(S)$ such that

$$
\begin{equation*}
0<x-y<\frac{\left(t \log p_{t}\right)^{t} \cdot y}{(\log y)^{t-1}} \tag{1.1}
\end{equation*}
$$

Remark We shall include the proof of this theorem for completeness and rewrite the proof in terms of our notation. The proof may be found in [38, Theorem 2].

Proof. Let $S=\left\{p_{1}<\ldots<p_{t}\right\}$ be given. Let $M$ be a positive integer and consider a set $\mathcal{N}(S, M)$ such that

$$
\mathcal{N}(S, M)=\left\{x \in \mathcal{N}(S) \mid x=p_{1}^{a_{1}} \cdots p_{t}^{a_{t}}, \quad 0 \leq a_{i} \leq M \text { for } i=1, \ldots, t\right\} .
$$

Then,

$$
\begin{equation*}
|\mathcal{N}(S, M)|=(M+1)^{t} . \tag{1.2}
\end{equation*}
$$

For any $x \in \mathcal{N}(S, M)$ with $x=p_{1}^{a_{1}} \cdots p_{t}^{a_{t}}$

$$
\begin{equation*}
0 \leq \log x=a_{1} \log p_{1}+\cdots+a_{t} \log p_{t} \leq M \cdot t \cdot \log p_{t} . \tag{1.3}
\end{equation*}
$$

By (1.2) and (1.3) there are $x, y \in \mathcal{N}(S, M)$ such that $y<x$ and

$$
\begin{equation*}
0<\log x-\log y \leq \frac{M \cdot t \cdot \log p_{t}}{(M+1)^{t}-1} . \tag{1.4}
\end{equation*}
$$

Let $x=p_{1}^{a_{1}} \cdots p_{t}^{a_{t}}$ and $y=p_{1}^{b_{1}} \cdots p_{t}^{b_{t}}$. We may assume without loss of generality $a_{i} \cdot b_{i}=0$ for $i=1, \ldots, t$. We have $y^{2}<x y<p_{t}^{M t}$. Therefore, $M>\frac{2 \cdot \log y}{t \cdot \log p_{t}}$. Substituting this estimate in (1.4) then we see that

$$
\begin{equation*}
\log \frac{x}{y}=\log x-\log y<\frac{\left(t \log p_{t}\right)^{t}}{(2 \log y)^{t-1}} \tag{1.5}
\end{equation*}
$$

We see that from (1.4) and since $t>1$, if $M$ goes to infinity then $\log \frac{x}{y}$ goes to 0 .

Since $\frac{x}{y}>1$ we have

$$
\begin{equation*}
\log \frac{x}{y} \geq \frac{1}{2}\left(\frac{x}{y}-1\right) \tag{1.6}
\end{equation*}
$$

for sufficiently large $M$. We note that $\mathcal{N}(S)=\cup_{M=1}^{\infty} \mathcal{N}(S, M)$. Therefore, by (1.5),(1.6) and $t>1$, if $M$ goes to infinity then we have infinitely many $x, y \in \mathcal{N}(S)$ that satisfy (1.1) as required.
By the above Theorem, we note that the constant $C_{1}=C(p)$ in Theorem 1.5 cannot be replaced by a constant smaller than $\pi(p)-1$ where $\pi(x)$ denotes the number of primes less than or equal to $x$.

Theorem 1.8 (Tijdeman [38, 39]). Let $S$ be a finite subset of $t$ prime numbers and $t \geq 2$. Then there are effectively computable numbers $C_{3}, C_{4}$ and $N$ that only depend on $S$ such that

$$
\frac{n_{i}}{\left(\log n_{i}\right)^{C_{3}}}<n_{i+1}-n_{i}<\frac{n_{i}}{\left(\log n_{i}\right)^{C_{4}}}
$$

for $n_{i} \in \mathcal{N}(S)$ with $n_{i} \geq N$.
By Theorem 1.5 and Theorem 1.7 we see that the numbers in Theorem 1.8 satisfy $C_{3} \geq t-1$ and $C_{4} \leq t-1$.
This result is very satisfactory not only because we can deduce all the previous theorems from Theorem 1.8 but also for finite $S$ we see the difference $n_{i+1}-n_{i}$ behaves like $\frac{n_{i}}{\left(\log n_{i}\right)^{C}}$ on average.

### 1.2 Wintner's Question

What can be said if $S$ is an infinite subset of primes ?
In the review paper [13] Erdös mentioned the following question introduced by Wintner.

Question (Wintner) Does there exist an infinite sequence of primes $p_{1}<p_{2}<$ $\ldots$ such that if $n_{0}<n_{1}<\ldots$ is the sequence of all positive integers composed of $p$ 's in the sequence of primes then

$$
\lim _{i \rightarrow \infty}\left(n_{i+1}-n_{i}\right)=\infty ?
$$

And Erdös mentioned that it seems certain that such a sequence exists.

This looks like a natural question after what we know about the sequence of gaps $n_{i+1}-n_{i}$ in $\mathcal{N}(S)$ when $S$ is finite. But, we meditate on what this question means.
In the additive point of view, we can construct the set of all positive integers on the Peano axioms. In the multiplicative point of view, we can construct the set of all positive integers by the set of all prime numbers $P$.

These two aspects of construction for the same set, we ask whether there is some relation between the successor function in Peano Axioms and the set of all prime numbers $P$ and in this case we can write $\mathcal{N}(P)=\mathbf{N}$.
In this point, we can say Wintner's question is a question of finding some relation between the additive structure and the multiplicative structure of the set of integers composed of primes from a given set. In other words, we can ask whether there is an infinite subset $S$ of prime numbers such that for $n_{i} \in \mathcal{N}(S)$ we can define the sequence of gaps $n_{i+1}-n_{i}$ as a successor like function $\mathcal{L}\left(n_{i}\right)$ and the behavior of $\mathcal{L}\left(n_{i}\right)$ is similar to the case $|S|$ is finite.
Just after Baker [8] proved a sharpening of the bounds for linear forms in logarithms, Tijdeman applied the theorem and proved such an infinite set $S$ of primes exists.

Theorem 1.9 (Tijdeman). Let $0<\theta<1$. Then there is an infinite set $S$ of prime numbers with

$$
\begin{equation*}
n_{i+1}-n_{i} \quad>\quad n_{i}^{1-\theta} \tag{1.7}
\end{equation*}
$$

for all $n_{i} \in \mathcal{N}(S)$.
Proof. See [38, Theorem 7].

### 1.3 Motivation

Tijdeman proved that for given $0<\theta<1$, if we have a set of $t$ prime numbers $S_{t}=\left\{p_{1}<\ldots<p_{t}\right\}$ such that $n_{i+1}-n_{i}>n_{i}^{1-\theta}$ for all $n_{i} \in \mathcal{N}\left(S_{t}\right)$ then there is a prime number $p_{t+1}$ with $p_{t+1}>p_{t}$ such that $m_{j+1}-m_{j}>m_{j}^{1-\theta}$ for all $m_{j} \in$ $\mathcal{N}\left(S_{t} \cup\left\{p_{t+1}\right\}\right)$. And in the last part of his paper [38] he remarked the following two things. (Here, we have relabeled Theorem and Equation numbers so that they correspond to the numbering in this thesis.)

Remarks ([38, Remarks])

1. It follows from the proof of Theorem 1.9 that for every $\theta$ with $0<\theta<1$ it is possible effectively to give a sequence $T_{1}, T_{2}, \ldots$ such that there exists a sequence $p_{1}<p_{2}<\ldots$ with required property and with $\frac{T_{n}}{2} \leq p_{n} \leq T_{n}$ for all $n=1,2, \ldots$
2. It follows from Theorem 1.7, there does not exist a constant $C$ such that Theorem 1.9 is valid if (1.7) is replaced by the inequality

$$
n_{i+1}-n_{i} \quad>\quad \frac{n_{i}}{\left(\log n_{i}\right)^{C}} .
$$

3. Remark 1 is discussed in more detail in Section 1.3.2. Remark 2 is discussed in section 1.3.3.

So, we want to know what a sequence of such $T_{n}$ could be like. Moreover, for given $\theta$ we want to find a formula $T(n, \theta)$ such that there is $p_{n}<T(n, \theta)$ with required property.

And then, we are interested in the lower bounds of the sequence of gaps $n_{i+1}-n_{i}$. We want to find a function $\mathcal{L}(x)$ such that there is an infinite set $S$ of primes with

$$
n_{i+1}-n_{i} \quad>\quad \mathcal{L}\left(n_{i}\right) .
$$

That means we want to know the behavior of the sequence of gaps $n_{i+1}-n_{i}$ that makes it possible for there to exist an infinite subset $S$ of prime numbers that satisfies Wintner's question.

### 1.3.1 Lower bounds for $p_{n}$

Let $S=\left\{p_{1}<p_{2}<\ldots\right\}$ be an infinite set of prime numbers such that for all $n_{i} \in \mathcal{N}(S), n_{i+1}-n_{i}>\sqrt{n_{i}}$ hold. Then it is not difficult to find a lower bound for $p_{n}$ in $S$. Since the $p_{n}$ 's are primes we know that $n \log n<p_{n}$ for $n$ sufficiently large by the prime number theorem. Now we have a non-trivial lower bound for $p_{n} \in S$.

Proposition 1.1. Let $S=\left\{p_{1}<p_{2}<\ldots\right\}$ be an infinite set of prime numbers such that $n_{i+1}-n_{i}>\sqrt{n_{i}}$ hold for all $n_{i} \in \mathcal{N}(S)$. Then there is a positive number $C$ such that $p_{n} \geq C n^{2}$ for sufficiently large $n$.

Proof. Consider a set $\mathcal{X}(a)=\left\{x_{0}<x_{1}<\ldots<x_{i}<\ldots\right\}$ that is generated by the following recursive relation :

$$
x_{0}=a, \quad x_{i}=x_{i-1}+\sqrt{x_{i-1}}
$$

for some $a \geq 4$ and $i=1,2, \ldots$.
For any set $W$ of real numbers and a real number $u$ we denote

$$
f(W, u)=|\{w \in W \mid w \leq u\}|
$$

First, it is clear that

$$
\log x<f(\mathcal{X}(a), x)<x
$$

for sufficiently large $x$. Since $\lim _{i \rightarrow \infty}\left(x_{i}-x_{i-1}\right)=\infty$, we have $f(\mathcal{X}(a), x)<x$. Since $\sqrt{x_{i}}<x_{i}$ for all $x_{i} \in \mathcal{X}(a)$ we see that $x_{i+1}<2 x_{i}$. Hence, for such given $x>0$ there are at least $k$ members in $\mathcal{X}(a)$ where $k$ is the largest number satisfying $2^{k} a<x$. Therefore $\log x<f(\mathcal{X}(a), x)$ for sufficiently large $x$.

Now we are interested in a non-trivial upper bound for $f(\mathcal{X}(a), x)$.
The idea for this proof as following:

Step 1 For any set $S$ of prime numbers with required property $n_{i+1}-n_{i}>\sqrt{n_{i}}$ for all $n_{i} \in \mathcal{N}(S)$, we observe

$$
\begin{equation*}
f(\mathcal{N}(S), x) \quad<\quad f(\mathcal{X}(a), x) \tag{1.8}
\end{equation*}
$$

for sufficiently large $x$. For any set $S$ of prime numbers, we know $S \subsetneq \mathcal{N}(S)$ and

$$
\begin{equation*}
f(S, x)<f(\mathcal{N}(S), x) \tag{1.9}
\end{equation*}
$$

Step 2 For given positive real number $x$, we will claim that that

$$
\begin{equation*}
f(\mathcal{X}(4), x) \leq 3 \sqrt{x} \tag{1.10}
\end{equation*}
$$

Step 3 On the other hand, we suppose a set $S$ of prime numbers such that $f(S, x) \geq 3 \sqrt{x} \geq f(\mathcal{X}(4), x)$ for some $x>0$. Then by definition of $\mathcal{X}(4)$ there are
many such integers $n_{i} \in \mathcal{N}(S)$ composed of these primes in $S$ that the integers will be close and cannot satisfy the relation $n_{i+1}-n_{i}>\sqrt{n_{i}}$.
Therefore, if we produce a non-trivial upper bound for $f(\mathcal{X}(4), x)$ then we get a nontrivial lower bound for $p_{n} \in S$ for any set $S$ of prime numbers with $n_{i+1}-n_{i}>\sqrt{n_{i}}$ for all $n_{i} \in \mathcal{N}(S)$.
This is a brief idea of this proposition.
Before proving (1.10), we observe the following relation.
For any non-negative integer $i$,

$$
x_{i} \geq\left\{\begin{array}{lll}
\left(\frac{i}{3}+2\right)^{2} & \text { if } i \equiv 0 & (\bmod 3)  \tag{1.11}\\
\left(\frac{i-1}{3}+2\right)^{2}+\left(\frac{i-1}{3}+2\right) & \text { if } i \equiv 1 & (\bmod 3) \\
\left(\frac{i-2}{3}+2\right)^{2}+2\left(\frac{i-2}{3}+2\right) & \text { if } i \equiv 2 & (\bmod 3)
\end{array}\right.
$$

We shall use induction on $i$. When $i=0$ then $i=0 \equiv 0(\bmod 3)$, and as we assumed that $x_{0}=a=4$ so we have $x_{0}=\left(\frac{0}{3}+2\right)^{2}$ as required. Now we suppose that for all $i \leq k-1$ (1.11) hold. When $i=k$ we consider 3 cases.
(Case 1) $k \equiv 0(\bmod 3)$ and $k>0$ : Then $k-1 \equiv 2(\bmod 3)$ and by the inductive hypothesis $x_{k-3}$ satisfies the inequality (1.11) so that

$$
x_{k-1} \geq\left(\frac{k-3}{3}+2\right)^{2}+2\left(\frac{k-3}{3}+2\right)
$$

Obviously for positive integer $k, x_{k-1} \geq 1$ and so $\sqrt{x_{k-1}} \geq 1$. Therefore, we have

$$
x_{k}=x_{k-1}+\sqrt{x_{k-1}} \geq\left(\frac{k-3}{3}+2\right)^{2}+2\left(\frac{k-3}{3}+2\right)+1
$$

And we know that $(a+1)^{2}=a^{2}+2 a+1$, so

$$
\begin{equation*}
x_{k} \geq\left(\left(\frac{k-3}{3}+2\right)+1\right)^{2} \tag{1.12}
\end{equation*}
$$

And since $k \equiv 0(\bmod 3),(1.12)$ is equivalent to

$$
x_{k} \geq\left(\frac{k}{3}+2\right)^{2}
$$

as required.
(Case 2) $k \equiv 1(\bmod 3):$ Then $k-1 \equiv 0(\bmod 3)$ so we have by inductive hypothesis $x_{k-1} \geq\left(\frac{k-1}{3}+2\right)^{2}$. Therefore,

$$
x_{k}=x_{k-1}+\sqrt{x_{k-1}} \geq\left(\frac{k-1}{3}+2\right)^{2}+\left(\frac{k-1}{3}+2\right)
$$

as required.
(Case 3) $k \equiv 2(\bmod 3):$ Then $k-1 \equiv 1(\bmod 3)$ so we have by inductive hypothesis $x_{k-1} \geq\left(\frac{k-1}{3}+2\right)^{2}+\left(\frac{k-1}{3}+2\right)$. We note that $\sqrt{x_{k-1}} \geq\left(\frac{k-1}{3}+2\right)$. Therefore,

$$
x_{k} \quad=\quad x_{k-1}+\sqrt{x_{k-1}} \geq\left(\frac{k-1}{3}+2\right)^{2}+2\left(\frac{k-1}{3}+2\right)
$$

as required.
Therefore, for all 3 cases, we have (1.11).
Now we can show (1.10) that, for given $x>0$

$$
f(\mathcal{X}(4), x) \leq 3 \sqrt{x}
$$

By (1.11), if $k$ is the greatest number satisfying

$$
\left(\frac{k}{3}\right)^{2} \leq x
$$

then $f(\mathcal{X}(4), x) \leq k$ and $k \leq 3 \sqrt{x}$.
Suppose that there is a set $S$ of prime numbers such that $f(S, x) \geq 3 \sqrt{x}$ and $n_{i+1}-n_{i}>\sqrt{n_{i}}$ for all $n_{i} \in \mathcal{N}(S)$. Then we get

$$
f(\mathcal{X}(4), x) \leq 3 \sqrt{x} \leq f(S, x) \leq f(\mathcal{N}(S), x)
$$

This contradict to the relations (1.8) and (1.9).
Hence, for all $S$ with required property $f(S, x)<3 \sqrt{x}$. Therefore, for any set $S$ of prime numbers with required property, we have $p_{n}>C n^{2}$.
We have a non-trivial lower bound $C n^{2}$ for $p_{n}$ in $S$ where $S$ satisfies Wintner's condition with $n_{i+1}-n_{i}>\sqrt{n_{i}}$ for $n_{i} \in \mathcal{N}(S)$.

### 1.3.2 Upper bounds for $p_{n}$

Recall from the Remark on page 7, it is possible to find a sequence $T_{n}$ such that $\frac{T_{n}}{2} \leq p_{n} \leq T_{n}$ and $p_{n}$ have the desired property. In this section, we discuss this sequence $T_{n}$ in more detail.
Theorem A There are effectively computable positive numbers $c_{1}$ and $c_{2}$ such that for any real number $\theta$ with $0<\theta<1$ there exists an infinite set $S$ of prime numbers $p_{1}<p_{2}<\ldots$ for which the integers composed of the primes satisfy (1.7) with $\frac{1}{2} T(n) \leq p_{n} \leq T(n)$, where

$$
T(n)=\exp \left(\frac{c_{1} n^{2}}{\theta} \log \left(\frac{c_{2} n}{\theta}\right)\right) .
$$

In Theorem A, we give an effectively computable upper number $T(n)$ such that there is a prime $p_{n}$ in the interval $\left[\frac{T(n)}{2}, T(n)\right]$ for each $n=1,2, \ldots$ and when the $n_{i}$ 's are composed of the primes in the sequence $p_{1}<p_{2}<\ldots$ then the inequality (1.7) holds. In the proof of our Main Theorem A we apply Waldschmidt's estimate for linear forms in the logarithms of algebraic numbers and use nested recursive induction to construct $T(n)$ as required.

Our objective for Theorem A is the following :
For given $0<\theta<1$, we want to construct a set $S=\left\{p_{1}<p_{2}<\ldots\right\}$ of prime numbers such that

1. $n_{i+1}-n_{i}>n_{i}^{1-\theta} \quad$ for all $n_{i} \in \mathcal{N}(S)$.
2. For given initial $t$ primes $p_{1}<\ldots<p_{t} \in S$ we can find the next prime $p_{t+1}$ such that $p_{t+1} \leq T(t+1)$.
3. The sequence $T(t)$ is effectively computable in terms of $t$ and grows slowly.

### 1.3.3 The Sequence of Gaps $n_{i+1}-n_{i}$

Now we go back to Tijdeman's answer to Wintner's conjecture with an additive point of view. We ask what make it possible for there to exist a set of primes with the required property.

We investigate the inequality

$$
n_{i+1}-n_{i} \quad>\frac{n_{i}}{F\left(n_{i}\right)}
$$

where the $n_{i}$ 's are composed of a given set of primes and $F(x)<x^{\theta}$ for any $\theta$ with $0<\theta<1$. By Theorem 1.7, we can prove the following Proposition.
Proposition 1.2. Let $F(x)=(\log x)^{C}$ for any real number $C$. Then, we cannot find infinitely many primes $S=\left\{p_{1}<p_{2}<\ldots\right\}$ such that if $n_{i} \in \mathcal{N}(S)$ then

$$
n_{i+1}-n_{i} \quad>\quad \frac{n_{i}}{F\left(n_{i}\right)}
$$

Proof. Suppose that there is a real number $C$ and there is an infinite set $S$ of primes such that

$$
\begin{equation*}
n_{i+1}-n_{i} \quad>\quad \frac{n_{i}}{\left(\log n_{i}\right)^{C}} \tag{1.13}
\end{equation*}
$$

for all $n_{i}$ in $\mathcal{N}(S)$. By Theorem 1.3, such a $C$ is a positive number.
For the set $S=\left\{p_{1}<p_{2}<\ldots\right\}$, we consider a subset of $S$ with initial $r$ primes $S_{r}=\left\{p_{1}<\ldots<p_{r}\right\}$ with $r>2(C+1)$. By Theorem 1.7, there are infinitely many $y, x$ in $\mathcal{N}\left(S_{r}\right)$ that satisfy (1.1). Moreover we can choose such $x$ and $y$ with $x>y>\exp \left(r^{r} p_{r}^{r}\right)$. We see that these $x, y$ are in $\mathcal{N}(S)$ also. So there is a positive integer $i$ such that $n_{i}=y$ and $n_{i} \in \mathcal{N}(S)$. Since, $S$ satisfies Wintner's condition with respect to $F(a)=(\log a)^{C}$, and $S_{r}$ is a subset of $S$ we have

$$
x-y \geq n_{i+1}-y>\frac{y}{(\log y)^{C}}
$$

Since, $x$ and $y$ satisfy (1.1) we have

$$
\frac{y}{(\log y)^{C}}<x-y<\frac{\left(r \log p_{r}\right)^{r} \cdot y}{(\log y)^{r-1}}
$$

By our choices of $r$ and $x, y$ we see the above inequality gives us a contradiction as follows

$$
1<\frac{\left(r \log p_{r}\right)^{r}}{(\log y)^{r-1-C}}<\frac{r^{r} p_{r}^{r}}{(\log y)^{C+1}}<\frac{r^{r} p_{r}^{r}}{\left(r^{r} p_{r}^{r}\right)^{C+1}} .
$$

So, we want to figure out what conditions on the gaps $n_{i+1}-n_{i}$ with

$$
\lim _{i \rightarrow \infty}\left(n_{i+1}-n_{i}\right)=\infty
$$

allow us the possibility of finding an infinite set of primes satisfying Wintner's condition.

So, our objective is as follows:
To find a function $F(x)$ which grows as slowly as possible and yet for which there is an infinite set $S$ of prime numbers such that $n_{i+1}-n_{i}>\frac{n_{i}}{F\left(n_{i}\right)}$ for $n_{i} \in \mathcal{N}(S)$.
In Chapter 4, we construct an infinite set $S$ of primes for Wintner's question with respect to a family of functions which grow quite slowly. In particular, we prove the following result.
Theorem B Let $\theta$ be a real number with $0<\theta<1$ and $k$ be a positive integer. For $a \geq \exp ^{k}(1)$ we define

$$
F(a)=\exp ^{k}\left(\left(\log _{k} a\right)^{\theta}\right)
$$

There is an infinite set $S$ of primes such that if $n_{i}, n_{i+1} \in \mathcal{N}(S)$ then

$$
n_{i+1}-n_{i} \quad>\quad \frac{n_{i}}{F\left(n_{i}\right)}
$$

where $\exp ^{k}$ denotes the $k$-th iterated exponentiation and $\log _{k}$ denotes the $k$-th iterated logarithm.

In order to prove Theorem A and B we shall build on the argument given by Tijdeman [38] in his solution of Wintner's problem.

### 1.3.4 Computation

After finding theoretical upper bounds for $p_{n}$ in Wintner's question, we want to find the initial few primes in the question practically. We shall review some related problems.
In 1974, Tijdeman and Meijer [40] found a relation between the convergents of the continued fraction of $\xi=\frac{\log p_{1}}{\log p_{2}}$ and the exponents in the sequence $\frac{n_{i+1}}{n_{i}}$ with $n_{i}, n_{i+1} \in \mathcal{N}\left(\left\{p_{1}, p_{2}\right\}\right)$. They considered one-sided convergents to $\xi=\frac{\log p_{1}}{\log p_{2}}$ as defined below :

Let $\xi$ be an irrational number with the continued fraction expansion $\left[a_{0}, a_{1}, \ldots\right]$. The $n$-th convergent $\left[a_{0}, \ldots, a_{n}\right]$ to $\xi$ is denoted by $\frac{A_{n}}{B_{n}}$. We recall that for $n=0,1, \ldots$

$$
\begin{aligned}
& A_{n+1}=a_{n+1} A_{n}+A_{n-1} \\
& B_{n+1}=a_{n+1} B_{n}+B_{n-1}
\end{aligned}
$$

where we define $A_{-1}=1, A_{0}=a_{0}, B_{-1}=0$ and $B_{0}=1$.

Definition. A rational number $\frac{A}{B}$ is said to be one-sided convergent to $\xi=$ $\left[a_{0}, a_{1}, \ldots\right]$ if there is a non-negative integer $n$ such that for the $n$-th convergent $\frac{A_{n}}{B_{n}}$ to $\xi$ and for some $j$ with $1 \leq j \leq a_{n+1}$ we have

$$
\frac{A}{B}=\frac{j A_{n}+A_{n-1}}{j B_{n}+B_{n-1}} .
$$

They showed that
Theorem 1.10 (Tijdeman, Meijer [40]). Let $\alpha, \beta$ be real numbers with $\alpha>\beta>1$ and such that $\xi=\frac{\log \beta}{\log \alpha}$ is irrational. Let $n_{1}<n_{2}<\ldots$ be the sequence composed of $\alpha$ and $\beta$ i.e., for all $i$ we can express $n_{i}=\alpha^{a_{i}} \beta^{b_{i}}$ for some non-negative integers $a_{i}, b_{i}$. Let

$$
W=\left\{\left.\frac{n_{i+1}}{n_{i}} \right\rvert\, i=1,2, \ldots\right\}
$$

Then $W$ is the set of all products $\alpha^{-k} \beta^{l}$ and $\alpha^{k} \beta^{-l}$ which are greater than 1 and such that $\frac{k}{\ell}$ is a one-sided convergent to $\xi$.

We note that if $\beta$ and $\alpha$ are different primes then $\xi=\frac{\log \beta}{\log \alpha}$ is irrational.
In 1982, Stroeker and Tijdeman [37] found all the positive integer solutions $a, b$ of the inequality

$$
\begin{equation*}
\left|p^{a}-q^{b}\right|<p^{\frac{a}{2}} \tag{1.14}
\end{equation*}
$$

for all primes $p, q$ with $p<q<20$.
They first proved that the linear form

$$
\Lambda=a \log p-b \log q
$$

has a value close to zero when $a, b$ is a solution of (1.14). And then they split the exponents $a$ in (1.14) into three cases : $a$ is "very large", $a$ is "medium large" and
$a$ is "small". These cases correspond approximately to $a \geq 2^{43}, 10<a<2^{43}$ and $a \leq 10$.

When they applied the estimate of linear forms in logarithms of $p, q$, they got a "very large" bound of $M_{1}=\max \{a, b\}$ such that if $a \geq M_{1}$ then there is no solution of (1.14). This is because Baker's theory implies that the linear forms cannot be close to zero so that there is no solution with "very large" $a$. In order to solve (1.14), in the "medium large" of $a$, they can avoid checking all the $a$ in the range. For this they investigated the size of the linear forms $a \log p-b \log q$. If

$$
\left|\frac{\log p}{\log q}-\frac{b}{a}\right|<\frac{1}{2 a^{2}}
$$

then $\frac{b}{a}$ is a convergent of the continued fraction of $\frac{\log p}{\log q}$. Hence it is suffice to check only the $a$ 's which are denominators of the convergents of the continued fraction of $\frac{\log p}{\log q}$. Finally, for "small" values of $a$ they calculate directly. They found that all solutions of (1.14) have "small" a.

In the 1980's, de Weger gave computational methods to reduce the upper bounds for the solution of Diophantine equations. He studied a linear form $\Lambda$ that is close to 0 together with a large but explicitly known upper bound for the absolute values of the coefficients of $\Lambda$. And then he showed that there is no solution between the known bound and the reduced bound he computed. In 1987, de Weger [45] gave a table with numerical data for the following inequalities :

$$
\begin{equation*}
\left|p^{a}-q^{b}\right|<\left(\min \left\{p^{a}, q^{b}\right\}\right)^{\delta} \tag{1.15}
\end{equation*}
$$

for $p, q$ primes such that $p<q<200$ and $a, b$ positive integers with $a \geq 2, b \geq 2$ and either $\delta=\frac{1}{2}$ or $\delta=0.9, \min \left\{p^{a}, q^{b}\right\}>10^{15}$.
In Chapter 5 , we shall investigate the inequality (1.15) where $\delta=\frac{1}{2}$ by computational methods because much sharper estimates have been established on linear forms in logarithms. In addition supercomputers and computer technology have improved greatly since the 1980 's, and there are computer packages for performing various number-theoretic calculations. We shall apply the estimates for linear forms in 2 logarithms by Laurent, Mignotte and Nesterenko [22], follow the ideas that have been applied in computation by Stroeker and Tijdeman [37] and de Weger [45], and then use MAPLE for number-theoretic calculation, specifically continued fraction expansion for a given real number to a certain precision. In this way we prove the follow result.
Theorem C There are 2086 pairs of prime numbers $\left(p_{1}, p_{2}\right)$ with $2 \leq p_{1}<p_{2}<$
$e^{8}$ such that

$$
x-y<\sqrt{y}
$$

where $x, y \in \mathcal{N}\left(\left\{p_{1}, p_{2}\right\}\right)$ with $y<x, \operatorname{gcd}(x, y)=1$. And they are listed in the Table I (page 71).

It follows from the proof of Theorem A that if $p_{1}$ and $p_{2}$ are prime numbers with $p_{1}<p_{2}$ and for which $n_{i+1}-n_{i} \geq \sqrt{n_{i}}$ where $n_{i}$ is the $i$-th term in $\mathcal{N}\left(\left\{p_{1}, p_{2}\right\}\right)$ then we may extend $\left\{p_{1}, p_{2}\right\}$ to an infinite set $S=\left\{p_{1}, p_{2}, \ldots\right\}$ of prime numbers for which $n_{i+1}-n_{i} \geq \sqrt{n_{i}}$ but with now $n_{i}$ the $i$-th term in $\mathcal{N}(S)$.

## Chapter 2

## Preliminaries

### 2.1 Definitions

We define some terminology we will use in our thesis

Definition Let $\alpha$ be an algebraic number of degree $d$ over $\mathbf{Q}$ with conjugates $\sigma_{1} \alpha, \ldots, \sigma_{d} \alpha$ and minimal polynomial

$$
c_{0} X^{d}+\cdots+c_{d}=c_{0} \cdot \prod_{i=1}^{d}\left(X-\sigma_{i} \alpha\right)
$$

where $c_{i}$ 's are integers with $c_{0}>0$.

1. Height (or classical height) $H(\alpha)$ is defined by

$$
H(\alpha)=\max \left\{c_{0},\left|c_{1}\right|, \ldots,\left|c_{d}\right|\right\} .
$$

2. Weil's absolute logarithmic height $h(\alpha)$ of $\alpha$ is defined by

$$
h(\alpha)=\frac{1}{d} \cdot\left(\log c_{0}+\sum_{i=0}^{d} \log \max \left\{1,\left|\sigma_{i} \alpha\right|\right\}\right) .
$$

### 2.2 Linear Forms in Logarithms

### 2.2.1 Baker's Theorems

In the 1960's, Baker made a major breakthrough in transcendental number theory in his celebrated series of papers $[1,2,3,4]$.

Theorem 2.1 (Baker). If $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ are non-zero algebraic numbers such that $\log \alpha_{1}, \ldots, \log \alpha_{n}$ are linearly independent over the field of rational numbers then $1, \log \alpha_{1}, \ldots, \log \alpha_{n}$ are linearly independent over the field of all algebraic numbers where $\log$ denotes the principal branch of the logarithm functions.

Theorem 2.2 (Baker). If $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}, \beta_{1}, \beta_{2}, \ldots, \beta_{n}$ are non-zero algebraic numbers and

$$
\Lambda=\beta_{1} \log \alpha_{1}+\cdots+\beta_{n} \log \alpha_{n}
$$

where $\log$ denotes the principal branch of the logarithm functions then $\Lambda=0$ or $\Lambda$ is transcendental.

### 2.2.2 Trivial Estimate

In the special case that all $\alpha_{i}$ and $\beta_{i}$ are rational integers we have the following trivial estimates.

Proposition 2.1. Let $a_{1}, \ldots, a_{n}$ and $b_{1}, \ldots, b_{n}$ are rational integers with the $a_{i}$ greater than 1. We assume that

$$
a_{1}^{b_{1}} \cdots a_{n}^{b_{n}} \quad \neq 1 .
$$

Then

$$
\left|a_{1}^{b_{1}} \cdots a_{n}^{b_{n}}-1\right| \geq \exp (-n B \log A)
$$

where $B=\max \left\{\left|b_{1}\right|, \ldots,\left|b_{n}\right|\right\}$ and $A=\max \left\{a_{1}, \ldots, a_{n}\right\}$.

Proof. We know that the absolute value of a non-zero rational number is at least
as large as the inverse of a denominator so

$$
\begin{align*}
\left|a_{1}^{b_{1}} \cdots a_{n}^{b_{n}}-1\right| & \geq \prod_{b_{i}<0} a_{i}^{b_{i}} \\
& \geq \exp \left(-\sum_{i=1}^{n}\left|b_{i}\right| \log a_{i}\right) \\
& \geq \exp (-n B \log A) . \tag{2.1}
\end{align*}
$$

We shall call (2.1) Liouville's inequality. The dependence in $n$ and $A$ in Liouville's inequality is sharp, but the main interest for applications is with the dependence in $B$.

### 2.2.3 Estimates on Linear Forms in Logarithms

Baker gives effective lower bounds for $|\Lambda|$ in the case $\Lambda \neq 0$.
Baker's work affected a wide range of research, directed both towards improving his estimates and to applying them to specific arithmetic problems. Many problems of Diophantine analysis reduce to lower estimates for the absolute values of the $\Lambda$. The bounds are given as functions of the degrees and the heights of these numbers $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}, \beta_{1}, \beta_{2}, \ldots, \beta_{n}$. Baker's general effective estimates led to significant applications in number theory and opened a new era in the theory of Diophantine equations. In the 1970's and 1980's Baker, Fel'dman, Stark, Waldschmidt, Wüstholz and many others gave quantitative estimates for the bounds. The bounds have been improved in terms of heights and other parameters over the years.
Let $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ be non-zero algebraic numbers with $\alpha_{i} \neq 1$ for $i=1, \ldots, n$. Let $\mathbf{Q}\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ have degree at most $d$ over $\mathbf{Q}$. Let the heights of $\alpha_{i}$ be $H\left(\alpha_{i}\right) \leq A_{i}$ where $A_{i} \geq 4$ for $i=1, \ldots n$. Put $\Omega=\left(\log A_{1}\right) \cdots\left(\log A_{n}\right), \Omega^{\prime}=\left(\log A_{1}\right) \cdots\left(\log A_{n-1}\right)$. Let $\beta_{1}, \beta_{2}, \ldots, \beta_{n}$ be algebraic numbers with the classical heights $H\left(\beta_{i}\right) \leq B$ where $B \geq 4$ for $i=1, \ldots n$. Let

$$
\Lambda=\beta_{1} \log \alpha_{1}+\cdots+\beta_{n} \log \alpha_{n}
$$

where $\log$ denotes the principal branch of the logarithm functions.
In 1977, Baker proved that

Theorem 2.3 (Baker). If $\Lambda \neq 0$ then

$$
|\Lambda|>(B \Omega)^{-C \Omega \log \Omega^{\prime}}
$$

where $C=(16 n d)^{200 n}$. In the special case that if $\beta_{1}, \ldots \beta_{n}$ are rational integers then the bracketed factor $\Omega$ has been eliminated to yield

$$
|\Lambda|>B^{-C \Omega \log \Omega^{\prime}} .
$$

This bound has been improved in terms of the constants and the factor $\Omega \cdot \log \Omega^{\prime}$.
In 1993, Baker and Wüstholtz [11] proved the following Theorem.
Let $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ be non-zero algebraic numbers with $\alpha_{i} \neq 1$ for $i=1, \ldots, n$ and $\mathbf{Q}\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ have degree at most $d$ over $\mathbf{Q}$. Let $b_{1}, \ldots, b_{n}$ be rational integers, not all 0 with $B=\max \left\{\left|b_{1}\right|, \ldots,\left|b_{n}\right|, e^{\frac{1}{d}}\right\}$ and $A_{i}=\max \left\{H\left(\alpha_{i}\right), e\right\}$ for $i=1, \ldots, n$. Let $\Omega=\log A_{1} \cdots \log A_{n}$.

Theorem 2.4 (Baker-Wüstholtz). If $\Lambda \neq 0$ then

$$
|\Lambda| \geq \exp (-C(n, d) \Omega \log B)
$$

where $C(n, d)=(16 n d)^{2 n+4}$.
We see that this estimation is fully explicit with respect to all parameters. Moreover, we note that the factor $\Omega^{\prime}=\log A_{1} \cdots \log A_{n-1}$ in Theorem 2.3 has been removed.

It is conjectured that the product of the logarithms in $\Omega=\log A_{1} \cdots \log A_{n}$ may be replaced by the sum of logarithms.

Conjecture (Lang-Waldschmidt). Let $a_{1}, \ldots, a_{n}$ be positive rational numbers and $b_{1}, \ldots, b_{n}$ be integers. For $j=1, \ldots, n$ let $B_{j}=\max \left\{H\left(b_{j}\right), 1\right\}, A_{j}=H\left(a_{j}\right)$, $B=\max \left\{B_{1}, \ldots, B_{n}\right\}, A=\max \left\{A_{1}, \ldots, A_{n}\right\}$ and $\Lambda=b_{1} \log a_{1}+\cdots+b_{n} \log a_{n}$.
Let $\epsilon>0$. There exists $C(\epsilon)>0$ depending only on $\epsilon$ such that if $|\Lambda| \neq 0$ then

$$
|\Lambda|>\frac{C(\epsilon)^{n} B}{\left(B_{1} \cdots B_{n} \cdot A_{1}^{2} \cdots A_{n}^{2}\right)^{1+\epsilon}}
$$

Remark ([20, p.213]). This conjecture is motivated from the uniform distribution. Suppose that $B_{1}, \ldots, B_{n}, A_{1}, \ldots, A_{n}$ are sufficiently large. Let $\mathcal{S}$ be the set of numbers

$$
b_{1} \log a_{1}+\cdots+b_{n} \log a_{n}
$$

with $H\left(b_{j}\right) \leq B_{j}$ and $H\left(a_{j}\right) \leq A_{j}$ for $j=1, \ldots, n$. Since $b_{j}$ are integers and $a_{j}$ are rational numbers for $j=1, \ldots, n, \mathcal{S}$ has cardinality at most

$$
\left(2 B_{1}+1\right) \cdots\left(2 B_{n}+1\right) \cdot\left(2 A_{1}+1\right)^{2} \cdots\left(2 A_{n}+1\right)^{2} .
$$

This set $\mathcal{S}$ is contained in the interval

$$
[-n B \log A, n B \log A] .
$$

If this set is uniformly distributed in this interval, then the distance from 0 to the closest non-zero element of $\mathcal{S}$ in absolute vale would be

$$
\frac{2 n B \log A}{\left(2 B_{1}+1\right) \cdots\left(2 B_{n}+1\right) \cdot\left(2 A_{1}+1\right)^{2} \cdots\left(2 A_{n}+1\right)^{2}} .
$$

This motivates their conjecture.

For Diophantine equations the first application of Baker's estimates were given by Baker himself and by Baker and Davenport [6]. In the last forty years very extensive Diophantine investigations were made by using Baker's theory on linear forms in logarithms. For various general classes of equations, theorems regarding upper bounds for the solutions of the equation have been established. These provide explicit upper bounds on the solutions.

In many applications only two or three logarithms occur. In these cases bounds with better constants are available. In 1995, Laurent, Mignotte, and Nesterenko [22] gave the following estimates for linear forms in two logarithms of algebraic numbers.

Let $\alpha_{1}, \alpha_{2}$ be non-zero algebraic numbers and suppose they are multiplicatively independent. Let $\mathbf{Q}\left(\alpha_{1}, \alpha_{2}\right)$ have degree at most $D$ over $\mathbf{Q}$. Let $A_{i}>1$ be a real number satisfying

$$
\log A_{i} \geq \max \left\{h\left(\alpha_{i}\right), \frac{\left|\log \alpha_{i}\right|}{D}, \frac{1}{D}\right\}
$$

where $\log$ denotes the principal branch of logarithm. Further, let $b_{1}$ and $b_{2}$ be two
positive integers. Define

$$
b^{\prime}=\frac{b_{1}}{D \log A_{2}}+\frac{b_{2}}{D \log A_{1}}
$$

and

$$
\log B=\max \left\{\log b^{\prime}, \frac{21}{D}, \frac{1}{2}\right\}
$$

Lemma 2.1 (Laurent, Mignotte, Nesterenko [22]). Let $\Lambda=b_{2} \log \alpha_{2}-b_{1} \log \alpha_{1}$. Then

$$
|\Lambda| \geq \exp \left(-30.9 D^{4}(\log B)^{2} \log A_{1} \log A_{2}\right)
$$

In the proof of this Lemma, they applied Laurent's interpolation determinants and a refined zero estimate due to Nesterenko. And the constant 30.9 is much smaller than 270 from the previous estimates due to Mignotte-Waldschmidt [27].

### 2.2.4 Sharpening Estimates

Baker refined his estimates from [1, 2, 3] and [4] in a new series of papers [7, 8, 9] generalized and deepened them. His estimate is best possible for both fixed $A$ and variable $B$ and for fixed $B$ and variable $A$. He later generalized this result, obtaining the following theorem.

Theorem 2.5 (Baker [7]). Let $a_{1}, a_{2}, \ldots, a_{n+1}$ be non-zero algebraic numbers with degrees at most d. Suppose that the heights of $a_{1}, a_{2}, \ldots, a_{n}$ and $a_{n+1}$ are at most $A_{n}$ and $A \geq 2$ respectively. There is an effectively computable number $C>0$ depending on $n, d$ and $A_{n}$ such that

$$
0<\left|b_{1} \log a_{1}+\cdots+b_{n+1} \log a_{n+1}\right|<C^{-\log A \log B}
$$

have no solution in rational integers $b_{1}, b_{2}, \ldots, b_{n+1}$ with absolute values at most $B \geq 2$.

And he established the following generalization.
Theorem 2.6 (Baker [8]). Let $a_{1}, a_{2}, \ldots, a_{n+1}$ be non-zero algebraic numbers with degrees at most $d$. Suppose that the heights of $a_{1}, a_{2}, \ldots, a_{n}$ and $a_{n+1}$ are at most $A_{n}$ and $A \geq 2$ respectively. There is an effectively computable number $C$, depending only on $n, d$ and $A_{n}$ such that, for any $\theta$ with $0<\theta<\frac{1}{2}$, the inequalities

$$
\begin{equation*}
0<\left|b_{1} \log a_{1}+\cdots+b_{n+1} \log a_{n+1}\right|<\left(\frac{\theta}{B_{n+1}}\right)^{C \log A} \exp \left(-\theta B_{n}\right) \tag{2.2}
\end{equation*}
$$

have no solution in rational integers $b_{1}, \ldots, b_{n}$ and $b_{n+1}(\neq 0)$ with absolute values at most $B_{n}$ and $B_{n+1}$, respectively.

Note that, on taking $\theta=\frac{1}{B_{n}}$ and assuming that $B_{n} \leq B_{n+1}$ we obtain the result of Theorem 2.5.

His generalized sharpening of the bounds for linear forms in logarithms (2.2) has a particular significance in connection with applications. Specifically, Tijdeman [38] applied Theorem 2.6 in order to prove Wintner's conjecture.

Baker's works generalized Gelfond's method. In [42], Waldschmidt gave estimates for linear forms in logarithms based on Schneider's method. He also gives a lower bound for linear forms in logarithms of algebraic numbers in integer coefficients with an explicit constant. Finally, Waldschmidt [43] stated, using an extended method of Schneider, a completely explicit lower bound when $\beta_{1}, \ldots, \beta_{n}$ are rational integers.
In our proofs of Theorem A and Theorem B, we applied a Theorem of Waldschmidt, which is the subject of the next section.

### 2.2.5 Waldschmidt's Theorem

For any rational number $x$ we may write $x=\frac{b}{a}$ with $a$ and $b$ co-prime integers. We see the height of $x$ to be the maximum of $|a|$ and $|b|$.
Let $a_{1}, \ldots, a_{n}$ and $a_{n+1}$ be rational numbers with heights at most $A_{1}, \ldots, A_{n}$ and $A_{n+1}$ respectively. We shall suppose that $A_{i} \geq 4$ for $i=1, \ldots, n+1$. Next let $b_{1}, \ldots, b_{n}$ and $b_{n+1}$ be rational integers. Suppose that $B$ and $B_{n+1}$ are positive real numbers with $B \geq\left|b_{j}\right|$ for $j=1, \ldots, n$ and $B_{n+1} \geq \max \left(3,\left|b_{n+1}\right|\right)$. Put

$$
\begin{gathered}
\Lambda=\quad b_{1} \log a_{1}+\cdots+b_{n} \log a_{n}+b_{n+1} \log a_{n+1}, \\
\Omega_{n}=\log A_{1} \log A_{2} \cdots \log A_{n}
\end{gathered}
$$

where $\log$ denotes the principal branch of the logarithm functions.

Lemma 2.2 (Waldschmidt [43]). There exists an effectively computable positive number $C$ such that if $\Lambda \neq 0$ then

$$
|\Lambda|>\exp \left(-C(n+1)^{4(n+1)} \Omega_{n} \log A_{n+1} \log \left(B_{n+1}+\frac{B}{\log A_{n+1}}\right)\right)
$$

Remark We shall include in the thesis the proof of Lemma 2.2 given by Stewart and Tijdeman for completeness. The proof may be found in [34, Lemma 1].
Proof of Lemma 2.2 This follows from the estimates by Waldschmidt [43, Corollaire 10.1]. He proved this result under the assumption that $b_{n+1} \neq 0$. If $b_{n+1}=0$ then we apply the same theorem with $b_{n+1}$ replaced by $b_{j}$ where $j$ is the largest integer for which $b_{j} \neq 0$. Notice that $j \geq 1$ since $\Lambda \neq 0$. Since $\log A_{n+1} \log \left(3+\frac{B}{\log A_{n+1}}\right)$ is larger than $\frac{1}{2} \log B$, the result follows.

Remark In Lemmas 2.1 and 2.2, the logarithms are supposed to have their principal values, but this is not a restriction, since we shall be concerned exclusively with positive real numbers.

### 2.3 Explicit Determination

Baker [5] showed in 1968 how his estimates for linear forms of logarithms of algebraic numbers can be used to give effective upper bounds for the solutions of the Thue equation. Then Baker and Davenport [6] introduced a simple but powerful lemma, the so-called Davenport's Lemma, that is related to Diophantine approximation. Applying this lemma they found much smaller upper bounds for the solutions. They then combined the reduction algorithms and computational techniques to find all the solutions of certain types of equations practically.

Györy [17] reviewed some classical strategy for solving some classes of Diophantine equations or inequalities while applying Baker's theory. The main steps are as follows.

1. Transform the equation into a purely exponential equation i.e., a Diophantine equation where the unknowns are all in the exponents. Each type of equation needs a particular kind of transformation. It uses some arguments from algebraic number theory, theory of recurrence sequences, and geometry of numbers. This transformation makes it possible to apply Baker's theory.
2. Apply Baker's theory to derive an explicit upper bound for the solutions. In general, the upper bounds are so large that they cannot be used to determine all solutions in practice.
3. Reduce the explicit upper bound to a much smaller bound. In this step we apply theory from Diophantine approximations.
4. Determine all the solutions under the smaller bound from above step, using some search techniques with computation and specific properties of the initial equation.

In Chapter 5, we shall apply the above strategy and procedure used by Stroeker, Tijdeman [37] and de Weger [45] for finding the first two primes $p_{1}, p_{2}$ so that $n_{0}<$ $n_{1}<\ldots$ is the sequence of integers composed of the two primes then $n_{i+1}-n_{i}>\sqrt{n_{i}}$ for all $i=0,1, \ldots$.

## Chapter 3

## First Main Theorem

In this chapter, we shall show that for a given real number $\theta$ with $0<\theta<1$, we can find an infinite set $S=S(\theta)=\left\{p_{1}, p_{2}, \ldots\right\}$ of primes with $p_{1}<p_{2}<\ldots$ such that $n$-th term $p_{n}$ in $S$ does not grow too quickly and if $n_{i} \in \mathcal{N}(S)$ then $n_{i+1}-n_{i}>n_{i}{ }^{1-\theta}$ for $i=0,1,2, \ldots$.
In particular, for a given $0<\theta<1$, we shall find sequence $T(n)=T(n, \theta)$ such that

1. $T(n)$ is effectively computable and grows slowly.
2. We can find the $n$-th prime $p_{n}$ in $S$ with $\frac{1}{2} T(n) \leq p_{n} \leq T(n)$.
3. If $n_{0}<n_{1}<\ldots$ is the sequence of all integers composed of the primes in $S$ then

$$
\begin{equation*}
n_{i+1}-n_{i} \quad>\quad n_{i}^{1-\theta} \tag{3.1}
\end{equation*}
$$

for $i=0,1,2, \ldots \ldots$

### 3.1 Lemma

We give an auxiliary lemma due to Pethö and de Weger [28]. This one enables us to find an upper bound in closed form for some real number $x>1$ that is bounded by a polynomial in $\log x$.

Lemma 3.1 (Pethö, de Weger [28]). Let $u \geq 0, v>0, h \geq 1$ and let $x$ be a real number with $x>1$ satisfying

$$
x \leq u+v(\log x)^{h}
$$

If $v>\left(\frac{e^{2}}{h}\right)^{h}$ then

$$
x<2^{h}\left(u^{\frac{1}{h}}+v^{\frac{1}{h}} \log \left(h^{h} v\right)\right)^{h}
$$

and if $v \leq\left(\frac{e^{2}}{h}\right)^{h}$ then

$$
x \leq 2^{h}\left(u^{\frac{1}{h}}+2 e^{2}\right)^{h}
$$

Remark We shall include in this thesis the proof of this Lemma for completeness. The proof may be found in [45, Lemma 2.1]. We can see also [28, Lemma 2.2].
Proof of Lemma 3.1 Because $x$ is bounded above, we may assume that $x$ is the largest solution of

$$
x=u+v(\log x)^{h} .
$$

Since, $x^{\frac{1}{h}}$ is concave when $h \geq 1$ if $z_{1}$ and $z_{2}$ are positive real numbers then

$$
\left(z_{1}+z_{2}\right)^{\frac{1}{h}} \leq z_{1}^{\frac{1}{h}}+z_{2}^{\frac{1}{h}}
$$

hence we have

$$
x^{\frac{1}{h}} \leq u^{\frac{1}{h}}+c \cdot \log \left(x^{\frac{1}{h}}\right)
$$

where $c=h v^{\frac{1}{h}}$. Define $y$ by

$$
x^{\frac{1}{h}}=(1+y) c \log c .
$$

If $c \geq e^{2}$ then from

$$
\log c<\log (c \log c)
$$

it follows that

$$
c^{h}(\log c)^{h}<v\left(\log \left(c^{h}(\log c)^{h}\right)\right)^{h}
$$

which implies

$$
x>c^{h}(\log c)^{h} .
$$

Hence $y>0$. Now, we see that

$$
\begin{aligned}
(1+y) c \log c=x^{\frac{1}{h}} & \leq u^{\frac{1}{h}}+c \log (1+y)+c \log c+c \log \log c \\
& <u^{\frac{1}{h}}+c y+c \log c+c \log \log c
\end{aligned}
$$

Therefore,

$$
y c(\log c-1)<u^{\frac{1}{h}}+c \log \log c .
$$

Since, $c \geq e^{2}$

$$
\begin{aligned}
x^{\frac{1}{h}} & =c \log c+y c \log c \\
& <c \log c+\frac{\log c}{\log c-1}\left(u^{\frac{1}{h}}+c \log \log c\right) \\
& <2\left(u^{\frac{1}{h}}+c \log c\right)
\end{aligned}
$$

as required. If $c \leq e^{2}$ then note that $x \leq u+\left(\frac{e^{2}}{h}\right)^{h}(\log x)^{h}$. So, we may assume $c=e^{2}$ in this case. The result follows.

### 3.2 Terminology

Definition 3.1. Let $F(x)$ be a function with $\lim _{x \rightarrow \infty} F(x)=\infty$. A set $S$ of prime numbers is said to satisfy Wintner's condition with respect to $F$ if
(1) $S$ is infinite.
(2) For any $n_{i}, n_{i+1} \in \mathcal{N}(S), \quad n_{i+1}-n_{i}>F\left(n_{i}\right)$.

In this thesis, we reserve $p$ for a prime number, $S$ as a subset of prime numbers with ordering

$$
S=\left\{p_{1}<p_{2}<\ldots\right\},
$$

and $\mathcal{N}(S)$ as the set of all positive integers composed of primes in $S$ with ordering

$$
\mathcal{N}(S)=\left\{n_{0}<n_{1}<n_{2}<\ldots\right\}
$$

### 3.3 First Main Theorem

Theorem 3.1. There are effectively computable positive numbers $c_{1}$ and $c_{2}$ such that for any real number $\theta$ with $0<\theta<1$ there exists an infinite set $S$ of prime numbers $p_{1}<p_{2}<\ldots$ which satisfies Wintner's question with respect to $x^{\theta}$ and all $p_{n}$ in $S$ we have $\frac{1}{2} T(n) \leq p_{n} \leq T(n)$ where

$$
T(n)=\exp \left(\frac{c_{1} n^{2}}{\theta} \log \left(\frac{c_{2} n}{\theta}\right)\right) .
$$

Proof. Given $0<\theta<1$. Let $c_{1}=2^{7}$ and $c_{2}=2 C$ where $C$ is the effectively computable positive number in Lemma 2.2. Put

$$
\begin{equation*}
T(n)=\exp \left(\frac{c_{1} n^{2}}{\theta} \log \left(\frac{c_{2} n}{\theta}\right)\right) \tag{3.2}
\end{equation*}
$$

for $n=1,2, \ldots$. Note that for the given $0<\theta<1$

$$
T(1)<T(2)<\ldots
$$

and

$$
\begin{equation*}
2 T(n)<T(n+1) \tag{3.3}
\end{equation*}
$$

We will use induction on $n$ to prove our result.
When $n=1$. We can take a prime $p_{1}$ with $\frac{1}{2} T(1) \leq p_{1} \leq T(1)$ since Rosser and Schoenfeld [31] proved that for an integer $T$ with $T \geq 41$, the number of primes in the interval $\left[\frac{T}{2}, T\right]$ is greater than $\frac{3 T}{10 \log T}$ and we see that $T(1) \geq 41$. Let $S_{1}=\left\{p_{1}\right\}$. We know that the $n_{i} \in \mathcal{N}\left(S_{1}\right)$ can be expressed by $n_{i}=p^{i}$ for $i=0,1,2, \ldots$ so that

$$
n_{i+1}-n_{i}=p_{1}^{i+1}-p_{1}^{i}=p_{1}^{i}\left(p_{1}-1\right)>p_{1}^{i} \geq\left(p_{1}^{i}\right)^{1-\theta}
$$

for $i=0,1,2, \ldots$ Therefore, (3.1) holds for powers of $p_{1}$.
Now suppose that we have $S_{n}=\left\{p_{1}<p_{2}<\ldots<p_{n}\right\}$ satisfying $\frac{1}{2} T(j) \leq p_{j} \leq T(j)$ for $j=1,2, \ldots, n$ and if $n_{0}<n_{1}<\ldots<n_{i}<\ldots$ is the sequence of all positive integers composed of the primes in $S_{n}$ then $n_{i+1}-n_{i}>n_{i}^{1-\theta}$ for $i=0,1,2, \ldots$.
We claim that we can find the next prime $p_{n+1}>p_{n}$ satisfying $\frac{1}{2} T(n+1) \leq p_{n+1} \leq$ $T(n+1)$ such that if $n_{0}<\ldots<n_{i}<\ldots$ is the sequence of all positive integers
composed of the primes in $S_{n} \cup\left\{p_{n+1}\right\}$ then $n_{i+1}-n_{i}>n_{i}^{1-\theta}$ for $i=0,1,2, \ldots$.
Put $T=T(n+1)$ for brevity. Consider any prime $p$ with $p \in\left[T, \frac{T}{2}\right]$. Then by (3.3), $p_{n}<p$. Suppose that there are $y, x \in \mathcal{N}\left(S_{n} \cup\{p\}\right)$ such that

$$
\begin{equation*}
0<x-y<y^{1-\theta} \tag{3.4}
\end{equation*}
$$

Suppose $y=1$ and $x \geq p_{1}$ then $x-y \geq p_{1}-1>1$ holds for any $p_{1}>2$. Therefore, $y>1$. In particular we note that since $y$ is less than $x$ and $0<\theta<1$, we get

$$
\begin{equation*}
y<x<y+y^{1-\theta}<2 y . \tag{3.5}
\end{equation*}
$$

Let $y=p_{1}{ }^{a_{1}} p_{2}{ }^{a_{2}} \cdots p_{n}{ }^{a_{n}} p^{a}$ and $x=p_{1}{ }^{b_{1}} p_{2}{ }^{b_{2}} \cdots p_{n}{ }^{b_{n}} p^{b}$ be the prime factorizations of $y$ and $x$, respectively. Then we can see that $a \neq b$, since if $a=b$ then we can consider $y^{\prime}=\frac{y}{p^{a}}, x^{\prime}=\frac{x}{p^{b}}=\frac{x}{p^{a}}$ and by (3.4) we get

$$
0<x-y=p^{a}\left(x^{\prime}-y^{\prime}\right)<p^{a}\left(y^{\prime}\right)^{1-\theta}
$$

But this contradicts our inductive hypothesis since $y^{\prime}, x^{\prime} \in \mathcal{N}\left(S_{n}\right)$, hence

$$
x^{\prime}-y^{\prime} \quad>\quad y^{(1-\theta)} .
$$

Therefore, $a \neq b$.
Put $\Lambda=\log \frac{x}{y}$ where $\log$ denotes the principal branch of logarithm. Then,

$$
\Lambda=\sum_{j=1}^{n}\left(b_{j}-a_{j}\right) \log p_{j}+(b-a) \log p>0 .
$$

Further, by (3.4)

$$
\begin{equation*}
0<\log \frac{x}{y}<\frac{x}{y}-1<y^{-\theta} \tag{3.6}
\end{equation*}
$$

Furthermore, since $a_{j}, b_{j} \geq 0$ and $3 \leq p_{j}$ for $j=1,2, \ldots, n$ so by (3.5) we have

$$
\begin{equation*}
\left|b_{j}-a_{j}\right| \leq \max _{j=1, \ldots, n}\left(b_{j}, a_{j}\right) \leq \max (\log x, \log y)<\log 2 y \tag{3.7}
\end{equation*}
$$

and since $a, b \geq 0$, we have

$$
\begin{equation*}
|b-a| \leq \max (b, a) \leq \max \left(\frac{\log x}{\log p}, \frac{\log y}{\log p}\right)<\frac{\log 2 y}{\log p} . \tag{3.8}
\end{equation*}
$$

Now we suppose that $y \geq p^{8}$. Then $\frac{\log 2 y}{\log p}>3$. Applying Lemma 2.2 with $A_{i}=T(i)$ for $i=1, \ldots, n, A_{n+1}=p, B=\log 2 y$ and $B_{n+1}=\frac{\log 2 y}{\log p}$ to our $\Lambda \neq 0$, we see that there exists an effectively computable constant $C$ such that

$$
\Lambda \quad>\quad \exp \left(-C(n+1)^{4(n+1)} \log T(1) \cdots \log T(n) \log p \log \left(4 \frac{\log 2 y}{\log p}\right)\right)
$$

Then by (3.3), (3.5) and (3.6),

$$
y^{\theta}<\exp \left(C(n+1)^{4(n+1)}(\log T(n))^{n} \log p \log \left(4 \frac{\log 2 y}{\log p}\right)\right)
$$

Now, we take logarithms of both sides and divide by $\theta \log p$ to get

$$
\begin{equation*}
\frac{\log y}{\log p}<\frac{1}{\theta} C(n+1)^{4(n+1)}(\log T(n))^{n} \log \left(4 \frac{\log 2 y}{\log p}\right) \tag{3.9}
\end{equation*}
$$

Let

$$
X=\frac{\log y}{\log p} .
$$

Then since $y \geq p^{8}$ we obtain from (3.9) that

$$
\begin{equation*}
X<C_{1} \log (8 X) \leq 2 C_{1} \log X \tag{3.10}
\end{equation*}
$$

where $C_{1}=\frac{1}{\theta} C(n+1)^{4(n+1)}(\log T(n))^{n}$.
We apply Lemma 3.1 with $u=0, v=2 C_{1}, h=1$ and $x=X>8$ to (3.10) then

$$
X \leq 2\left(2 C_{1} \log \left(2 C_{1}\right)\right)
$$

Therefore, we can have

$$
\begin{equation*}
X<\frac{1}{2} U(n) \tag{3.11}
\end{equation*}
$$

where

$$
U(n)=16 C_{1}^{2} .
$$

If $y<p^{8}$ and so $X<8$ then we also have that (3.11) holds.
Further, by (3.7) and (3.8), we see

$$
\begin{equation*}
a_{j}, b_{j} \leq U(n) \log p \tag{3.12}
\end{equation*}
$$

for $j=1,2 \ldots, n$ and

$$
\begin{equation*}
a, b \leq \frac{\log 2 y}{\log p} \leq 2 X \leq U(n) \tag{3.13}
\end{equation*}
$$

Hence, for each prime $p \in\left[\frac{T}{2}, T\right]$, the number of possible pairs $(y, x)$ for which $0<x-y<y^{1-\theta}$ with $y=p_{1}{ }^{a_{1}} p_{2}{ }^{a_{2}} \cdots p_{n}{ }^{a_{n}} p^{a}$ and $x=p_{1}{ }^{b_{1}} p_{2}{ }^{b_{2}} \cdots p_{n}{ }^{b_{n}} p^{b}$ is at most the number of possible choices of the exponents $a_{1}, \ldots, a_{n}, a, b_{1}, \ldots, b_{n}$ and $b$. Moreover, from (3.12) and (3.13) it is at most

$$
\begin{equation*}
(U(n) \log T+1)^{2 n}(U(n)+1)^{2} \quad<\quad(U(n)+1)^{2 n+2}(\log T)^{2 n} \tag{3.14}
\end{equation*}
$$

Now, we assume that these exponents $a_{1}, \ldots, a_{n}, a, b_{1}, \ldots, b_{n}, b$ are fixed. Then by (3.5)

$$
1<\frac{x}{y}=p_{1}{ }^{b_{1}-a_{1}} p_{2}^{b_{2}-a_{2}} \cdots p_{n}^{b_{n}-a_{n}} p^{b-a}<1+y^{-\theta}
$$

Put $K=p_{1}{ }^{a_{1}-b_{1}} p_{2}{ }^{a_{2}-b_{2}} \cdots p_{n}{ }^{a_{n}-b_{n}}$. Then,

$$
\begin{equation*}
K<p^{b-a}<K\left(1+y^{-\theta}\right) \tag{3.15}
\end{equation*}
$$

Since, $a \neq b$, we have 2 cases.
(Case 1) $b>a$. Then,

$$
\begin{aligned}
K^{\frac{1}{b-a}}<p & <K^{\frac{1}{b-a}}\left(1+y^{-\theta}\right)^{\frac{1}{b-a}} \\
& <K^{\frac{1}{b-a}}\left(1+y^{-\theta}\right)
\end{aligned}
$$

Hence, $p$ is contained in a fixed interval of length

$$
K^{\frac{1}{b-a}} \cdot y^{-\theta}
$$

and by (3.15) and $p \in\left[\frac{T}{2}, T\right]$

$$
K^{\frac{1}{b-a}}\left(y^{-\theta}\right)<p y^{-\theta} \leq T y^{-\theta}
$$

(Case 2) $b<a$. Then, by (3.15)

$$
\begin{equation*}
K^{\frac{1}{b-a}}\left(1+y^{-\theta}\right)^{\frac{1}{b-a}}<p<K^{\frac{1}{b-a}} \tag{3.16}
\end{equation*}
$$

So, $p$ is contained in an interval of length $K^{\frac{1}{b-a}}\left(1-\left(1+y^{-\theta}\right)^{\frac{1}{b-a}}\right)$. Moreover, by (3.16) we see that $K^{\frac{1}{b-a}}<p\left(1+y^{-\theta}\right)^{\frac{1}{a-b}}$. Hence, we have

$$
\begin{align*}
K^{\frac{1}{b-a}}\left(1-\left(1+y^{-\theta}\right)^{\frac{1}{b-a}}\right) & <p\left(1+y^{-\theta}\right)^{\frac{1}{a-b}}\left(\left(1-\left(1+y^{-\theta}\right)\right)^{\frac{1}{b-a}}\right) \\
& =p\left(\left(1+y^{-\theta}\right)^{\frac{1}{a-b}}-1\right) \tag{3.17}
\end{align*}
$$

Since $b<a$ we have $\left(1+y^{-\theta}\right)^{\frac{1}{a-b}} \leq\left(1+y^{-\theta}\right)$ and then from (3.17)

$$
\begin{equation*}
p\left(\left(1+y^{-\theta}\right)^{\frac{1}{a-b}}-1\right) \leq p y^{-\theta} \tag{3.18}
\end{equation*}
$$

Since we take $p \in\left[\frac{T}{2}, T\right]$

$$
\begin{equation*}
p y^{-\theta} \leq T y^{-\theta} \tag{3.19}
\end{equation*}
$$

That means by (3.17), (3.18) and (3.19), the length of the interval that contains $p$ is bounded by

$$
K^{\frac{1}{b-a}}\left(1-\left(1+y^{-\theta}\right)^{\frac{1}{b-a}}\right)<T y^{-\theta}
$$

In both cases, the number of primes $p$ with fixed exponents $a_{1}, \ldots, a_{n}, a$ and $b_{1}, \ldots, b_{n}, b$, for which $y, x \in \mathcal{N}\left(S_{n} \cup\{p\}\right)$ with $y=p_{1}{ }^{a_{1}}{p_{2}}^{a_{2}} \cdots p_{n}{ }^{a_{n}} p^{a}$ and $x=$ $p_{1}{ }^{b_{1}} p_{2}^{b_{2}} \cdots p_{n}^{{ }^{b_{n}}} p^{b}$ such that $0<x-y<y^{1-\theta}$ does not exceed $T y^{-\theta}$. Since, we have $\frac{T}{2} \leq p \leq x<2 y$, we see that

$$
\begin{equation*}
T y^{-\theta} \leq T\left(\frac{T}{4}\right)^{-\theta}=4^{\theta} T^{1-\theta}<4 T^{1-\theta} \tag{3.20}
\end{equation*}
$$

That means by (3.14) and (3.20) the total number of possible primes $p \in\left[\frac{T}{2}, T\right]$ for
which there exist $y, x \in \mathcal{N}\left(S_{n} \cup\{p\}\right)$ with $0<x-y<y^{1-\theta}$, is at most,

$$
4 T^{1-\theta}\left((U(n)+1)^{2 n+2}(\log T)^{2 n}\right)
$$

We want to exclude these primes in the interval $\left[\frac{T}{2}, T\right]$. Now we claim that for $T=T(n+1)$ we can find the next prime $p$ for which $\mathcal{N}\left(S_{n} \cup\{p\}\right)$ satisfying (3.1). For this it is sufficient to show that the number of primes in $\left[\frac{T}{2}, T\right]$ is larger than the number of the excluded primes

$$
4 T^{1-\theta}\left((U(n)+1)^{2 n+2}(\log T)^{2 n}\right)
$$

Recall that the number of primes in $\left[\frac{T}{2}, T\right]$ at least $\frac{3 T}{10 \log T}$. Thus we want to show that for our $T=T(n+1)$,

$$
4 T^{1-\theta}\left((U(n)+1)^{2 n+2}(\log T)^{2 n}\right) \quad<\frac{3 T}{10 \log T}
$$

Since $4 \frac{10}{3}<2^{4}, 2 T(n)<T(n+1)$ and $U(n)+1 \leq 2 U(n)$, it suffices to show that

$$
\begin{equation*}
2^{4}(2 U(n))^{2 n+2}(\log T)^{2 n+1}<T^{\theta} \tag{3.21}
\end{equation*}
$$

In the right hand of (3.21), we see that

$$
\begin{align*}
T(n+1)^{\theta} & =\left(\frac{c_{2}(n+1)}{\theta}\right)^{c_{1}(n+1)^{2}} \\
& =\mathcal{R}_{c} \mathcal{R}_{\theta} \mathcal{R}_{n} \tag{3.22}
\end{align*}
$$

where

$$
\begin{aligned}
& \mathcal{R}_{c}=c_{2}^{c_{1}(n+1)^{2}} \\
& \mathcal{R}_{\theta}=\left(\frac{1}{\theta}\right)^{c_{1}(n+1)^{2}} \\
& \mathcal{R}_{n}=(n+1)^{c_{1}(n+1)^{2}} .
\end{aligned}
$$

We recall that $U(n)=16 C_{1}^{2}=16\left(\frac{1}{\theta} C(n+1)^{4(n+1)}(\log T(n))^{n}\right)^{2}$.

For the left side of (3.21), we note that

$$
\begin{equation*}
\log T(n)=\frac{c_{1} n^{2}}{\theta} \log \left(\frac{c_{2} n}{\theta}\right)<\frac{c_{1} c_{2} n^{3}}{\theta^{2}} \tag{3.23}
\end{equation*}
$$

When we put $c_{1}=2^{7}$ and $c_{2}=2 C$ where $C$ is the constant in Lemma 2.2 then by (3.23),

$$
\begin{align*}
2 U(n) & \leq 2^{5} \cdot \frac{1}{\theta^{2}} \cdot C^{2} \cdot(n+1)^{8(n+1)}\left(\frac{c_{1} c_{2} n^{3}}{\theta^{2}}\right)^{2 n} \\
& \leq 2^{16 n+5} \cdot\left(\frac{1}{\theta}\right)^{4 n+2} \cdot C^{2 n+2} \cdot(n+1)^{8(n+1)+6 n} \tag{3.24}
\end{align*}
$$

And we know that

$$
\begin{equation*}
\log T(n+1)=\frac{c_{1}(n+1)^{2}}{\theta} \log \left(\frac{c_{2}(n+1)}{\theta}\right)<\frac{c_{1} c_{2}(n+1)^{3}}{\theta^{2}} \tag{3.25}
\end{equation*}
$$

Hence the left side of (3.21) satisfies by (3.23), (3.24) and (3.25),

$$
\begin{equation*}
2^{4}(2 U(n))^{2 n+2}(\log T)^{2 n+1} \quad<\quad \mathcal{L}_{c} \mathcal{L}_{\theta} \mathcal{L}_{n} \tag{3.26}
\end{equation*}
$$

where

$$
\begin{aligned}
\mathcal{L}_{c} & =(2 C)^{96(n+1)^{2}} \\
\mathcal{L}_{\theta} & =\left(\frac{1}{\theta}\right)^{8(n+1)^{2}} \\
\mathcal{L}_{n} & =(n+1)^{32(n+1)^{2}} .
\end{aligned}
$$

We compare (3.22) and (3.26). Since $\mathcal{L}_{c} \leq \mathcal{R}_{c}, \mathcal{L}_{\theta} \leq \mathcal{R}_{\theta}$ and $\mathcal{L}_{n} \leq \mathcal{R}_{n}$, hence the inequality (3.21) holds. Also, we observe that (3.3) holds. Therefore we can find a prime $p>p_{n}$ in the interval $\left[\frac{T(n+1)}{2}, T(n+1)\right]$ with the required property and we put $p=p_{n+1}$.

## Chapter 4

## Second Main Theorem

In this chapter, we will consider Wintner's question with respect to lower bounds for the sequence of gaps $n_{i+1}-n_{i}$. We shall look for a function $\mathcal{L}(x)$ which grows quickly and yet, for which we can still prove that there is an infinite set of primes $S$ such that the associated sequence of power products $n_{0}<n_{1}<n_{2}<\ldots$ satisfies

$$
\begin{equation*}
n_{i+1}-n_{i}>\mathcal{L}\left(n_{i}\right) \tag{4.1}
\end{equation*}
$$

for $i=0,1,2, \ldots$.
Because we already know Theorem 1.7 and Theorem 1.9, we are interested in $\mathcal{L}(x)$ which for any real number $C>0$ and any real number $\theta$ with $0<\theta<1$ satisfy

$$
\begin{equation*}
n_{i}^{1-\theta}<\mathcal{L}\left(n_{i}\right)<\frac{n_{i}}{\left(\log n_{i}\right)^{C}} \tag{4.2}
\end{equation*}
$$

for $n_{i}$ sufficiently large.

### 4.1 Basic Properties

Remark First, we observe some basic properties of $\mathcal{N}(S)$ for a given set $S$ of prime numbers.

1. $S_{1}=S_{2}$ if and only if $\mathcal{N}\left(S_{1}\right)=\mathcal{N}\left(S_{2}\right)$.
2. $S_{1} \subseteq S_{2}$ if and only if $\mathcal{N}\left(S_{1}\right) \subseteq \mathcal{N}\left(S_{2}\right)$.
3. If $S_{1} \subseteq S_{2}$ and $a \in \mathcal{N}\left(S_{1}\right) \cap \mathcal{N}\left(S_{2}\right)$ then there are non-negative integers $i, j$ with $i \leq j$ such that $a=n_{i}=m_{j}$ with $n_{i} \in \mathcal{N}\left(S_{1}\right), m_{j} \in \mathcal{N}\left(S_{2}\right)$. Further we see that $n_{i+1}-n_{i} \geq m_{j+1}-m_{j}$.

### 4.2 Nice Functions

In this section, we define a family of functions and investigate some properties of the functions.

We use the following notation for iterated logarithms and iterated exponentials.

Notation. For any non-negative integer $n$, we denote $n$-iterated exponentiation by

$$
\exp ^{0}(x)=x, \quad \exp ^{1}(x)=\exp (x)=e^{x}, \quad \exp ^{n+1}(x)=\exp \left(\exp ^{n}(x)\right)
$$

and $n$-iterated logarithms by

$$
\log _{0}(x)=x, \quad \log _{1}(x)=\log (x), \quad \log _{n+1}(x)=\log \left(\log _{n}(x)\right) .
$$

We note that for any non-negative integer $k$ and for any real number $x, \exp ^{k}(x)$ is a well defined positive continuous function. And for $x \geq \exp ^{k}(1), \log _{k}(x)$ is a well defined non-negative continuous function.
Further $\exp ^{k}\left(\log _{k}(x)\right)=\log _{k}\left(\exp ^{k}(x)\right)=x$ as expected.
We shall investigate the derivatives of the above functions. For convenience we denote for a non-negative integer $k$,

$$
E^{k}(x)=\exp ^{k}(x)
$$

for a real number $x$ and

$$
L_{k}(x)=\log _{k}(x)
$$

for a real number with $x \geq \exp ^{k}(1)$.
The following two propositions are simple applications of the chain rule.
Proposition 4.1. For a given positive integer $k$ we have the following:
For any real number $x$

$$
\begin{equation*}
\left(E^{k}(x)\right)^{\prime}=E^{k}(x) \cdot E^{k-1}(x) \cdots E^{1}(x) \tag{4.3}
\end{equation*}
$$

and for any real number $x$ with $x \geq \exp ^{k}(1)$ we see that

$$
\begin{equation*}
\left(L_{k}(x)\right)^{\prime}=\frac{1}{L_{0}(x) \cdot L_{1}(x) \cdots L_{k-1}(x)} . \tag{4.4}
\end{equation*}
$$

Proof. We first show (4.3), the derivative of the iterated exponential function. We use induction on $k$. When $k=1, E^{1}(x)=e(x)$ so $\left(E^{1}(x)\right)^{\prime}=(e(x))^{\prime}=e(x)=$ $E^{1}(x)$ as required. Suppose for any $k \leq n-1$ (4.3) hold. For $k=n$, by definition of $E^{n}(x)$ we see $E^{n}(x)=\exp \left(E^{n-1}(x)\right)$ and by property of exponential function and the inductive hypothesis we have

$$
\begin{aligned}
\left(E^{n}(x)\right)^{\prime} & =\left(\exp \left(E^{n-1}(x)\right)\right)^{\prime} \\
& =\left(\exp \left(E^{n-1}(x)\right)\right) \cdot\left(E^{n-1}(x)\right)^{\prime} \\
& =E^{n}(x) \cdot E^{n-1}(x) \cdots E^{1}(x)
\end{aligned}
$$

as required.
Now, we show (4.4), the derivative of the iterated logarithm function using induction on $k$. When $k=1$ and $x \geq \exp ^{1}(1), L_{1}(x)=\log (x)$ so $\left(L_{1}(x)\right)^{\prime}=(\log (x))^{\prime}=$ $\frac{1}{x}=\frac{1}{L_{0}(x)}$ as required. Suppose for any $k \leq n-1$ (4.4) hold. Then for $k=n$ and $x \geq \exp ^{n}(1)$, by definition of $L_{n}(x)$ we see $L_{n}(x)=\log \left(L_{n-1}(x)\right)$ and by property of logarithm function and the inductive hypothesis we have

$$
\begin{aligned}
\left(L_{n}(x)\right)^{\prime} & =\left(\log \left(L_{n-1}(x)\right)\right)^{\prime} \\
& =\frac{\left(L_{n-1}(x)\right)^{\prime}}{L_{n-1}(x)} \\
& =\left(L_{n-1}(x)\right)^{\prime} \cdot \frac{1}{L_{n-1}(x)} \\
& =\frac{1}{L_{0}(x) \cdot L_{1}(x) \cdots L_{n-2}(x)} \cdot \frac{1}{L_{n-1}(x)}
\end{aligned}
$$

as required.

Definition 4.1. Let $k$ be a non-negative integer and $\theta$ be a real number such that $0<\theta<1$. Let $a$ be a real with $a \geq \exp ^{k}(1)$. Define

$$
F_{k, \theta}(a)=\exp ^{k}\left(\left(\log _{k}(a)\right)^{\theta}\right)
$$

For convenience, we define $F_{k, \theta}(1)=1$.

## Remark

1. If $k=0$ then for $a \geq \exp ^{0}(1)=1$ we have $F_{k, \theta}(a)=a^{\theta}$ for any real $\theta$ with $0<\theta<1$.
2. If $\theta=0$ then $F_{k, \theta}(a)=\exp ^{k}(1)=C$ for any non-negative integer $k$ and for $a$ with $a \geq \exp ^{k}(1)$.
3. For given non-negative integer $k$ and a real number $\theta$ with $0<\theta<1$ we see that $F_{k, \theta}(x)$ is an increasing function on $x \geq \exp ^{k}(1)$ since $F_{k, \theta}(x)$ is a composition function of the increasing functions $x^{\theta}, \log _{k} x$ and $\exp ^{k}(x)$ on $x \geq \exp ^{k}(1)$.

Note. We will consider $\mathcal{L}(x)$ in (4.1) and (4.2) as $\mathcal{L}(x)=\frac{x}{F_{k, \theta}(x)}$ for proper ranges of $k$ and $\theta$.
Now we discuss Wintner's question regarding the function $F_{k, \theta}(x)$.
Proposition 4.2. Let $k$ be a non-negative integer. If $\theta=0$ then we cannot find an infinite set $S$ of primes satisfying

$$
n_{i+1}-n_{i} \quad>\quad \frac{n_{i}}{F_{k, \theta}\left(n_{i}\right)}
$$

for $n_{i} \in \mathcal{N}(S)$.

Proof. When $\theta=0$ for any real number $x$ and for any non-negative integer $k$, we have $F_{k, \theta}(x)=\exp ^{k}(1)$. Let $C=\exp ^{k}(1)>0$. Suppose we can find an infinite set $S$ of primes satisfying $n_{i+1}-n_{i}>\frac{n_{i}}{C}$. So $n_{i+1}>\left(1+\frac{1}{C}\right) n_{i}$. We apply the third part of the Remark of Section 4.1 then this contradicts Theorem 1.3 which asserts that, $\lim _{i \rightarrow \infty} \frac{n_{i+1}}{n_{i}}=1$.

Proposition 4.3. Let $k$ be a positive integer. For given $0<\theta<1$,

$$
F_{0, \theta}(a)>F_{1, \theta}(a)>\cdots>F_{k, \theta}(a)
$$

for sufficiently large a.

Proof. Consider $a \geq \exp ^{k}(1)$. Let $t$ be a non-negative integer with $0 \leq t \leq k-1$. We compare $F_{t, \theta}(a)$ and $F_{t+1, \theta}(a)$. Up to taking $t$ times logarithms on $F_{t, \theta}(a)$ and $F_{t+1, \theta}(a)$, we get $\left(\log _{t}(a)\right)^{\theta}$ and $\exp ^{1}\left(\left(\log _{t+1}(a)\right)^{\theta}\right)$ respectively. After taking the logarithms one more time of both sides we have $\theta \cdot \log _{t+1}(a),\left(\log _{t+1}(a)\right)^{\theta}$ and since $0<\theta<1$, there is a positive real number $a_{t}$ such that

$$
\theta \cdot \log _{t+1}(a)>\left(\log _{t+1}(a)\right)^{\theta}
$$

for $a>a_{t}$. Hence for $a>\max \left\{a_{0}, a_{1}, \ldots, a_{t-1}\right\}$ we have

$$
F_{0, \theta}(a)>F_{1, \theta}(a)>\cdots>F_{k, \theta}(a)
$$

as required.
Proposition 4.4. Let $k$ be a non-negative integer and let $\theta_{1}$ and $\theta_{2}$ be real numbers with $0<\theta_{1}<\theta_{2}$. Then for all real numbers a with $a \geq \exp ^{k}(1)$

$$
F_{k, \theta_{1}}(a)<F_{k, \theta_{2}}(a) .
$$

Proof. When we take logarithms $k$ times we see that $\left(\log _{k}(a)\right)^{\theta_{1}}<\left(\log _{k}(a)\right)^{\theta_{2}}$, since $a \geq \exp ^{k}(1)$ and $\theta_{1}<\theta_{2}$.

Remark For any non-negative integer $k$ we have restricted our attention in Definition 4.1 to $F_{k, \theta}(a)$ with $0<\theta<1$. If $\theta \geq 1$ then by Proposition 4.4, we see that $F_{k, \theta}(a)>F_{k, 1}(a)=a$. Hence, if we consider $n_{i} \in \mathcal{N}(S)$ for a given infinite set $S$ of prime numbers we see that

$$
n_{i+1}-n_{i} \geq 1=\frac{n_{i}}{n_{i}}>\frac{n_{i}}{F_{k, \theta}\left(n_{i}\right)}
$$

for any integers $n_{i+1}>n_{i} \geq \exp ^{k}(1)$. And, it is obvious for any integers with $n_{i+1}>n_{i}$.
Therefore, we will consider $\mathcal{L}(x)$ in (4.2) as $\mathcal{L}(x)=\frac{x}{F_{k, \theta}(x)}$ for any non-negative integer $k$ and a real number $\theta$ with $0<\theta<1$.

Proposition 4.5. For any real $\theta_{1}, \theta_{2}$ with $0<\theta_{1}<1$ and $0<\theta_{2}<1$ we see that

$$
\begin{equation*}
F_{k, \theta_{1}}(a)>F_{k+1, \theta_{2}}(a) \tag{4.5}
\end{equation*}
$$

for sufficiently large $a$.

Proof. After taking logarithms $k+1$ times on $F_{k, \theta_{1}}(a)$ and $F_{k+1, \theta_{2}}(a)$ we see that

$$
\theta_{1} \cdot \log _{k+1}(a)>\left(\log _{k+1}(a)\right)^{\theta_{2}}
$$

Since $0<\theta_{2}<1$, we have the inequality (4.5) for sufficiently large $a$.

Remark By Proposition 4.5, for given non-negative integer $k$ and for any $0<$ $\theta_{i}<1$ where $i=1,2, \ldots, k$, we have that

$$
F_{1, \theta_{1}}(a)>F_{2, \theta_{2}}(a)>\cdots>F_{k, \theta_{k}}(a)
$$

for sufficiently large $a$.
Proposition 4.6. For any positive integers $k_{1}, k_{2}$ and any positive real numbers $\theta_{1}$ and $\theta_{2}$ with $0<\theta_{i}<1$ for $i=1,2$, we see that

$$
\begin{equation*}
\exp ^{k_{1}}\left(\left(\log _{k_{1}}(a)\right)^{\theta_{1}}\right) \quad>\quad \exp ^{k_{2}}\left(\left(\log _{k_{2}+1} a\right)^{\theta_{2}}\right) \tag{4.6}
\end{equation*}
$$

for sufficiently large $a$.

Proof. If $k_{1}=k_{2}$ then it is clear by Proposition 4.5. If $k_{1}>k_{2}$ then we take logarithms $k_{2}$ times on both sides of (4.6). Then we want to show

$$
\exp ^{k_{1}-k_{2}}\left(\left(\log _{k_{1}}(a)\right)^{\theta_{1}}\right) \quad>\quad\left(\log _{k_{2}+1}(a)\right)^{\theta_{2}}
$$

When we take logarithms $k_{1}-k_{2}$ times of both sides of the above inequality we have

$$
\left(\log _{k_{1}}(a)\right)^{\theta_{1}} \quad>C+\left(\log _{k_{1}+1}(a)\right)
$$

which is then for sufficiently large $a$ as required. If $k_{1}<k_{2}$ then we take logarithms $k_{1}$ times on both sides. Then we want to show

$$
\left(\log _{k_{1}}(a)\right)^{\theta_{1}}>\exp ^{k_{2}-k_{1}}\left(\left(\log _{k_{2}+1}(a)\right)^{\theta_{2}}\right)
$$

When we take logarithms $k_{2}-k_{1}$ times on both sides of the above inequality again, since $0<\theta<1$ we have

$$
C+\log _{k_{2}}(a)>\left(\log _{k_{2}+1}(a)\right)^{\theta_{2}}
$$

which holds for sufficiently large $a$ as required.

### 4.3 Lemmas

We see the following relation. Indeed, it is related to the fact that for any real numbers $a, b$ if $2 \leq a \leq b$ then $a+b \leq 2 b \leq a b$.

Lemma 4.1. Let $n$ be a non-negative integer and let $A$ and $B$ be real numbers with $A, B \geq \exp ^{n+1}$ (2). Then

$$
\begin{equation*}
\log _{n}(\log A \cdot \log B) \leq\left(\log _{n+1}(A)\right) \cdot\left(\log _{n+1}(B)\right) \tag{4.7}
\end{equation*}
$$

Proof. When $n=0$ then both sides of (4.7) are equal to $\log A \log B$. We use induction on $n \geq 1$. If $n=1$, then $\log (\log A \cdot \log B)=\log _{2} A+\log _{2} B \leq$ $\log _{2} A \cdot \log _{2} B$ since by $A, B \geq \exp ^{k}(2)$ both $\log _{2} A$ and $\log _{2} B$ are greater than or equal to 2 . Suppose that the statement is true for all $n \leq k-1$. Now we want to show that it is true for $n=k$. By the inductive hypothesis and properties of the $\log$ function we see that

$$
\begin{aligned}
\log _{k}(\log A \cdot \log B) & =\log \left(\log _{k-1}(\log A \cdot \log B)\right) \\
& \leq \log \left(\log _{k} A \cdot \log _{k} B\right) \\
& =\log \left(\log _{k} A\right)+\log \left(\log _{k} B\right) \\
& =\log _{k+1} A+\log _{k+1} B \\
& \leq \log _{k+1} A \cdot \log _{k+1} B
\end{aligned}
$$

since $A, B \geq \exp ^{k+1}(2)$, so we have both $\log _{k+1} A$ and $\log _{k+1} B$ are greater than or equal to 2 .

Lemma 4.2. Let $k$ be a positive integer and $\theta$ be a real number with $0<\theta<1$. For any real number $x \geq \exp ^{k}(2)$ we define

$$
\begin{equation*}
f(x)=f_{k, \theta}(x)=\frac{\exp ^{k-1}\left(\left(\log _{k}(x)\right)^{\theta}\right)}{\log x} \tag{4.8}
\end{equation*}
$$

Then $f(x)$ has the following properties.

1. $0<f(x)<1$ for any $x \geq \exp ^{k}(2)$.
2. $f(x)$ is a decreasing function on $x \geq \exp ^{k}(2)$.
3. $G(x)=x^{-f(x)}$ is a decreasing function on $x \geq \exp ^{k}(2)$.
4. Let $F(x)=\frac{1}{G(x)}$ where $G(x)$ is defined above. Then $\frac{x}{F(x)}$ is an increasing function on $x \geq \exp ^{k}(2)$ and $\lim _{x \rightarrow \infty} \frac{x}{F(x)}=\infty$.

Remark. We will claim that $\frac{x}{F(x)}$ is the function $\mathcal{L}(x)$ we consider in Wintner's question.

Proof. Let a positive integer $k$ and a real number $\theta$ with $0<\theta<1$ be given.

1. Let $x$ be a real number with $x \geq \exp ^{k}(2)$. Then, $\log (x)>0$ and $\exp (y)$ is positive for any real number $y$. Therefore $f(x)>0$. We can show that

$$
\begin{equation*}
\exp ^{k-1}\left(\left(\log _{k}(x)\right)^{\theta}\right)<\log (x) \tag{4.9}
\end{equation*}
$$

since after taking logarithms $k-1$ times of both sides of (4.9) we have, since $0<\theta<1$

$$
\left(\log _{k}(x)\right)^{\theta}<\log _{k}(x)
$$

Therefore $f(x)<1$.
2. We shall show that the derivative of $f(x)$ is negative on $x \geq \exp ^{k}(2)$. Recall the notation $E^{k}(x)$ and $L_{k}(x)$, then

$$
\begin{equation*}
f(x)=f_{k, \theta}(x)=\frac{E^{k-1}\left(\left(L_{k}(x)\right)^{\theta}\right)}{L_{1}(x)} \tag{4.10}
\end{equation*}
$$

And, the derivative of $f(x)$ is

$$
\begin{equation*}
(f(x))^{\prime}=\frac{\left(E^{k-1}\left(\left(L_{k}(x)\right)^{\theta}\right)\right)^{\prime} L_{1}(x)-E^{k-1}\left(\left(L_{k}(x)\right)^{\theta}\right) \frac{1}{L_{0}(x)}}{\left(L_{1}(x)\right)^{2}} \tag{4.11}
\end{equation*}
$$

But, the denominator of (4.11) is square and so positive, we need to determine the sign of numerator of (4.11). By the property of exponential function

$$
\begin{equation*}
\left(E^{k-1}\left(L_{k}(x)\right)^{\theta}\right)^{\prime}=\left(E^{k-1}\left(\left(L_{k}(x)\right)^{\theta}\right)\right) \cdot\left(E^{k-2}\left(L_{k}(x)^{\theta}\right)\right)^{\prime} \tag{4.12}
\end{equation*}
$$

Moreover,

$$
\begin{align*}
\left(E^{k-2}\left(\left(L_{k}(x)\right)^{\theta}\right)\right)^{\prime} & =\left(E^{k-2}\left(\left(L_{k}(x)\right)^{\theta}\right)\right) \cdot\left(E^{k-3}\left(\left(L_{k}(x)\right)^{\theta}\right)\right)^{\prime} \\
\left(E^{k-3}\left(\left(L_{k}(x)\right)^{\theta}\right)\right)^{\prime} & =\left(E^{k-3}\left(\left(L_{k}(x)\right)^{\theta}\right)\right) \cdot\left(E^{k-4}\left(\left(L_{k}(x)\right)^{\theta}\right)\right)^{\prime} \\
& \vdots  \tag{4.13}\\
\left(E^{1}\left(\left(L_{k}(x)\right)^{\theta}\right)\right)^{\prime} & =E^{1}\left(\left(L_{k}(x)\right)^{\theta}\right) \cdot\left(\left(L_{k}(x)\right)^{\theta}\right)^{\prime} .
\end{align*}
$$

And, by Proposition 4.1, we have

$$
\begin{align*}
\left(\left(L_{k}(x)\right)^{\theta}\right)^{\prime} & =\theta \cdot\left(L_{k}(x)\right)^{\theta-1}\left(L_{k}(x)\right)^{\prime} \\
& =\theta \cdot\left(L_{k}(x)\right)^{\theta-1} \frac{1}{L_{0}(x) L_{1}(x) \cdots L_{k-1}(x)} \tag{4.14}
\end{align*}
$$

Therefore, by (4.12), (4.13) and (4.14)

$$
\begin{align*}
& \left(E^{k-1}\left(L_{k}(x)\right)^{\theta}\right)^{\prime} \\
= & \left(\prod_{j=1}^{k-1} E^{j}\left(\left(L_{k}(x)^{\theta}\right)\right)\right) \cdot \theta \cdot\left(L_{k}(x)\right)^{\theta-1} \cdot \frac{1}{\prod_{i=0}^{k-1} L_{i}(x)} . \tag{4.15}
\end{align*}
$$

Therefore, the numerator of (4.11) is by (4.15)

$$
\begin{equation*}
\left(\frac{E^{k-1}\left(\left(L_{k}(x)\right)^{\theta}\right)}{L_{0}(x)}\right) \cdot\left(\frac{\mathcal{E}}{\mathcal{L}} \cdot \theta \cdot \frac{\left(L_{k}(x)\right)^{\theta}}{L_{k}(x)}-1\right) \tag{4.16}
\end{equation*}
$$

where

$$
\begin{align*}
\mathcal{E} & =L_{1}(x) \cdot \prod_{j=1}^{k-2} E^{j}\left(\left(L_{k}(x)\right)^{\theta}\right)  \tag{4.17}\\
\mathcal{L} & =L_{1}(x) \cdot \prod_{i=2}^{k-1} L_{i}(x) \tag{4.18}
\end{align*}
$$

We claim that for any real number $x$ with $x \geq \exp ^{k}(2)$, (4.16) is negative.

First we note that $\frac{E^{k-1}\left(\left(L_{k}(x)\right)^{\theta}\right)}{L_{0}(x)}$ is positive for a real $x$ with $x \geq \exp ^{k}(2)$. Hence it is sufficient to show that for given real number $x \geq \exp ^{k}(2)$, $\left(\frac{\mathcal{E}}{\mathcal{L}} \cdot \theta \cdot \frac{\left(L_{k}(x)\right)^{\theta}}{L_{k}(x)}-1\right)$ is negative or equivalently $\frac{\mathcal{E}}{\mathcal{L}} \cdot \theta \cdot \frac{\left(L_{k}(x)\right)^{\theta}}{L_{k}(x)}$ is less than 1 . Since $\theta<1$ and $\frac{\left(L_{k}(x)\right)^{\theta}}{L_{k}(x)}<1$ we shall show that $\frac{\mathcal{E}}{\mathcal{L}}<1$.
We recall that

$$
\frac{\mathcal{E}}{\mathcal{L}}=\frac{E^{k-2}\left(\left(L_{k}(x)\right)^{\theta}\right)}{L_{2}(x)} \cdots \frac{E^{1}\left(\left(L_{k}(x)\right)^{\theta}\right)}{L_{k-1}(x)} .
$$

But for each $i$ for $i=2, \ldots, k-1$ we can show that

$$
\frac{E^{k-i}\left(\left(L_{k}(x)\right)^{\theta}\right)}{L_{i}(x)}<1
$$

Or equivalently we shall show that,

$$
\begin{equation*}
E^{k-i}\left(\left(L_{k}(x)\right)^{\theta}\right)<L_{i}(x) \tag{4.19}
\end{equation*}
$$

The above inequality holds because after taking $k-i$ logarithms on both sides of (4.19) we have since $0<\theta<1$

$$
\left(L_{k}(x)\right)^{\theta}<L_{i+k-i}(x)=L_{k}(x)
$$

as required.
So, we proved our claim that for any $x \geq \exp ^{k}(2)$ (4.16) is negative so $f(x)^{\prime}$ is negative.
Therefore, $f(x)$ is a decreasing function on $x \geq \exp ^{k}(2)$.
3. Now we want show that $G(x)=x^{-f(x)}$ is a decreasing function on $x \geq \exp ^{k}(2)$ or equivalently, $G(x)^{\prime}$ is negative. But we know that $G(x)=\exp (-f(x) \log (x))$ and the derivative of $G(x)$ is

$$
\begin{align*}
& (\exp (-f(x) \log (x)))^{\prime}=\quad \exp (-f(x) \log (x)) \cdot(-f(x) \log (x))^{\prime} \\
= & \exp (-f(x) \log (x)) \cdot\left((-f(x))^{\prime} \cdot \log x+(-f(x)) \frac{1}{x}\right) . \tag{4.20}
\end{align*}
$$

For any real number $x, \exp (x)$ is positive. Hence the sign of (4.20) is determined by the sign of

$$
\begin{equation*}
\left((-f(x))^{\prime} \cdot \log x+(-f(x)) \frac{1}{x}\right) \tag{4.21}
\end{equation*}
$$

To show (4.21) is negative we claim that

$$
\begin{equation*}
f(x)>(-f(x))^{\prime} \cdot \log x \cdot x \tag{4.22}
\end{equation*}
$$

By (4.10) and (4.16) we see that

$$
\begin{align*}
& (-f(x))^{\prime} \cdot \log x \cdot x=(-f(x))^{\prime} \cdot L_{1}(x) \cdot L_{0}(x) \\
= & \left(-L_{0}(x)\right) \cdot \frac{\left(E^{k-1}\left(\left(L_{k}(x)\right)^{\theta}\right)\right)^{\prime} L_{1}(x)-E^{k-1}\left(\left(L_{k}(x)\right)^{\theta}\right) \frac{1}{L_{0}(x)}}{\left(L_{1}(x)\right)} \\
=\quad & -\left(E^{k-1}\left(\left(L_{k}(x)\right)^{\theta}\right)\right)^{\prime} \cdot L_{0}(x)-f(x) . \tag{4.23}
\end{align*}
$$

By (4.15) and (4.23), to show (4.22) is equivalent to show the following inequality

$$
2 f(x)>\theta \cdot \frac{\left(L_{k}(x)\right)^{\theta}}{L_{k}(x)} \cdot \frac{E^{1}\left(\left(L_{k}(x)\right)^{\theta}\right)}{L_{k-1}(x)} \cdots \frac{E^{k-1}\left(L_{k}(x)^{\theta}\right)}{L_{1}(x)}
$$

By (4.10), we can divide both sides of the above inequality by $f(x)$ we get

$$
\begin{equation*}
2>\theta \cdot \frac{\left(L_{k}(x)\right)^{\theta}}{L_{k}(x)} \cdot \frac{E^{1}\left(\left(L_{k}(x)\right)^{\theta}\right)}{L_{k-1}(x)} \cdots \frac{E^{k-2}\left(L_{k}(x)^{\theta}\right)}{L_{2}(x)} . \tag{4.24}
\end{equation*}
$$

By (4.19) for $i=1, \ldots, k-1$ and $0<\theta<1$, the right hand side of inequality (4.24) is less than 1 . Hence (4.24) holds on $x \geq \exp ^{k}(2)$. Therefore, $x^{-f(x)}$ is a decreasing function on $x \geq \exp ^{k}(2)$.
4. Finally, we want to show that $x^{1-f(x)}$ is increasing on $x \geq \exp ^{k}(2)$. Note that $x^{1-f(x)}=\exp ((1-f(x)) \log x)$, so we see

$$
\begin{equation*}
\left(x^{1-f(x)}\right)^{\prime}=\exp ((1-f(x)) \log x) \cdot((1-f(x)) \log x)^{\prime} \tag{4.25}
\end{equation*}
$$

Since for any real $x, \exp (x)$ is positive, for given $x$ with $x \geq \exp ^{k}(2)$, the sign of (4.25) is determined by the sign of

$$
\begin{align*}
(\log x-f(x) \log x)^{\prime} & =\frac{1}{x}-(f(x))^{\prime} \log x-\frac{f(x)}{x} \\
& =\left(\frac{1-f(x)}{x}-(f(x))^{\prime} \log x\right) \tag{4.26}
\end{align*}
$$

But, the sign of (4.26) is positive on $x \geq \exp ^{k}(2)$ by the first and second part of Lemma 4.2 that $0<f(x)<1$ and $f(x)^{\prime}<0$.
Finally, we shall show that $\lim _{x \rightarrow \infty} \frac{x}{F(x)}=\infty$.
For any positive number $N$, we shall show that for sufficiently large $x$

$$
\frac{x}{F(x)}>N
$$

or equivalently that

$$
\begin{equation*}
x>N \cdot F(x)=N \cdot \exp (f(x) \log x) \tag{4.27}
\end{equation*}
$$

But the above inequality holds for sufficiently large $x$ because after taking the logarithm on both sides of (4.27) we have

$$
\begin{equation*}
\log x>\log N+f(x) \log x \quad=\quad \log N+\exp ^{k-1}\left(\left(\log _{k}(x)\right)^{\theta}\right) \tag{4.28}
\end{equation*}
$$

By taking the logarithms $k-1$ time on both sides of (4.28), we see the inequality holds for sufficiently large $x$ since $0<\theta<1$.
Hence $\frac{x}{F(x)}$ is an unbounded increasing function and so $\lim _{x \rightarrow \infty} \frac{x}{F(x)}=\infty$.
We are ready to prove the main theorem.

### 4.4 Second Main Theorem

Theorem 4.1. Let $k$ be a non-negative integer and let $\theta$ be a real number with $0<\theta<1$. For $a \geq \exp ^{k}(2)$, we define

$$
F(a)=\exp ^{k}\left(\left(\log _{k}(a)\right)^{\theta}\right)
$$

Also, we define $F(1)=1$. Then we can find a set $S$ of infinitely many primes such that if $n_{i}, n_{i+1} \in \mathcal{N}(S)$ then

$$
\begin{equation*}
n_{i+1}-n_{i} \quad>\quad \frac{n_{i}}{F\left(n_{i}\right)} \tag{4.29}
\end{equation*}
$$

for $i=0,1, \ldots$.

Remark $\quad n_{0}=1 \in \mathcal{N}(S)$ for all $S$ so $F(1)$ needs to be defined. We can choose $S$ such that $p_{1} \geq \exp ^{k}(2)$ for any non-negative integer $k$, so $F(x)$ is well defined for all $n_{i} \in \mathcal{N}(S)$.

Proof. For $k=0$, this is Theorem 1.9. So we shall suppose that $k \geq 1$. For a given positive integer $k$ and a real $\theta$ with $0<\theta<1$, we want to construct a sequence of primes $p_{1}<p_{2}<\ldots<p_{n}<\ldots$ satisfying (4.29) inductively.
We can take $p_{1}$ to be the least prime greater than $\exp ^{k}(2)$. Let $S_{1}=\left\{p_{1}\right\}$. Then $n_{0}=1$ and $n_{1}=p_{1}>\exp ^{k}(2)$. So $n_{1}-n_{0}>1$ as required. For all $n_{i} \in \mathcal{N}\left(S_{1}\right)$ with $n_{i} \geq n_{1}, F\left(n_{i}\right)>1$ and so (4.29) holds since

$$
n_{i+1}-n_{i}=p_{1}{ }^{i+1}-p_{1}{ }^{i}=p_{1}{ }^{i}\left(p_{1}-1\right)>p_{1}^{i}>\frac{p_{1}^{i}}{F\left(p_{1}^{i}\right)} .
$$

Now suppose that we have $S_{n}=\left\{p_{1}<p_{2}<\ldots<p_{n}\right\}$ satisfying (4.29).
First we note that for $x \geq \exp ^{k}(2)$,

$$
\frac{x}{F(x)}=x^{1-f(x)}
$$

where

$$
\begin{equation*}
f(x)=\frac{\exp ^{k-1}\left(\left(\log _{k} x\right)^{\theta}\right)}{\log x} \tag{4.30}
\end{equation*}
$$

Consider any prime $p>p_{n}$. Suppose that there are $x, y \in \mathcal{N}\left(S_{n} \cup\{p\}\right)$ such that

$$
\begin{equation*}
0<x-y<y^{1-f(y)} \tag{4.31}
\end{equation*}
$$

where

$$
f(y)=\frac{\exp ^{k-1}\left(\left(\log _{k} y\right)^{\theta}\right)}{\log y}
$$

If $y<x<p$ then $x, y \in \mathcal{N}\left(S_{n}\right)$ and so by the inductive hypothesis $x, y$ satisfies (4.29). We note that $p \leq x$. Moreover, $y^{1-f(y)} \leq y$ by the first part of Lemma 4.2. Hence we observe that $p<x<y+y^{1-f(y)}<2 y<2 x$. Let $y=p_{1}{ }^{a_{1}} p_{2}{ }^{a_{2}} \cdots p_{n}{ }^{a_{n}} p^{a}$ and $x=p_{1}{ }^{b_{1}} p_{2}{ }^{b_{2}} \cdots p_{n}{ }^{b_{n}} p^{b}$ be the prime factorizations of $y$ and $x$ respectively. Then we can see that $a \neq b$, since if $a=b$ then we can consider $y^{\prime}=\frac{y}{p^{a}}, x^{\prime}=\frac{x}{p^{b}}=\frac{x}{p^{a}}$ so,

$$
\begin{align*}
0 & <x-y=p^{a}\left(x^{\prime}-y^{\prime}\right) \\
& <\left(p^{a} y^{\prime}\right)^{1-f\left(p^{a} y^{\prime}\right)} \\
& =\left(p^{a}\right)^{1-f\left(p^{a} y^{\prime}\right)} \cdot\left(y^{\prime}\right)^{1-f\left(p^{a} y^{\prime}\right)} \tag{4.32}
\end{align*}
$$

Moreover, we note that by the third part of Lemma 4.2

$$
\left(p^{a} y^{\prime}\right)^{-f\left(p^{a} y^{\prime}\right)}<\left(y^{\prime}\right)^{-f\left(y^{\prime}\right)}
$$

Hence, in (4.32)

$$
\begin{aligned}
p^{a}\left(x^{\prime}-y^{\prime}\right) & <p^{a} \cdot\left(y^{\prime}\right)^{-f\left(y^{\prime}\right)} \cdot\left(y^{\prime}\right) \\
& =p^{a} \cdot\left(y^{\prime}\right)^{1-f\left(y^{\prime}\right)} .
\end{aligned}
$$

But this contradicts the inductive hypothesis since $y^{\prime}, x^{\prime} \in \mathcal{N}\left(S_{n}\right)$ so $x^{\prime}-y^{\prime}>$ $y^{\prime\left(1-f\left(y^{\prime}\right)\right)}$.

Put $\Lambda=\log \frac{x}{y}$. Then

$$
\Lambda=\sum_{j=1}^{n}\left(b_{j}-a_{j}\right) \log p_{j}+(b-a) \log p>0
$$

and by (4.31)

$$
\begin{equation*}
\log \frac{x}{y}<\frac{x}{y}-1<y^{-f(y)} \tag{4.33}
\end{equation*}
$$

where $\log$ denotes the principal branch of logarithm.
Furthermore, since $a_{j}, b_{j} \geq 0$ for $j=1, \ldots, n$ and $y<x<2 y$ we have,

$$
\begin{equation*}
\left|b_{j}-a_{j}\right| \leq \max _{j=1, \ldots, n}\left(b_{j}, a_{j}\right) \leq \max (\log x, \log y)<\log 2 y \tag{4.34}
\end{equation*}
$$

for $j=1,2, \ldots, n$, and since $a, b \geq 0$

$$
\begin{equation*}
|b-a| \leq \max (b, a) \leq \max \left(\frac{\log x}{\log p}, \frac{\log y}{\log p}\right)<\frac{\log 2 y}{\log p} \tag{4.35}
\end{equation*}
$$

Put $X=\frac{\log y}{\log p}$ and assume that $X \geq \exp ^{k}$ (2).
Then by Lemma 2.2 with $A_{j}=p_{j}$ for $j=1, \ldots, n, A_{n+1}=p, B=\log 2 y$ and $B_{n+1}=\frac{\log 2 y}{\log p}$, there exists an effectively computable constant $C$ such that by (4.33),
$y^{-f(y)}>\Lambda>\exp \left(-C(n+1)^{4(n+1)} \log p_{1} \cdots \log p_{n} \cdot \log p \log \left(4 \frac{\log 2 y}{\log p}\right)\right)$.
We will denote by $C_{1}, C_{2}, C_{3}, \ldots$ positive numbers which depend on $n, p_{1}, \ldots p_{n}$ but do not depend on $p$. Let $C_{1}=C(n+1)^{4(n+1)} \log p_{1} \cdots \log p_{n}$. Then, we see that

$$
y^{f(y)}<\exp \left(C_{1} \cdot \log p \cdot \log \left(4 \frac{\log 2 y}{\log p}\right)\right)
$$

Now, we take logarithms of both sides and divide by $\log p$.
Then, there is a real number $C_{2}, C_{3}$ with $C_{2}>1$ and $C_{3}>1$ such that

$$
\begin{equation*}
f(y) \frac{\log y}{\log p}<C_{2} \cdot \log \left(8 \frac{\log y}{\log p}\right)<C_{3} \cdot \log \left(\frac{\log y}{\log p}\right) \tag{4.36}
\end{equation*}
$$

Then by (4.30) and (4.36),

$$
f(y) X=\frac{\exp ^{k-1}\left(\left(\log _{k} y\right)^{\theta}\right)}{X \log p} X<C_{3} \log X
$$

We multiply each side by $\log p$ and recall the definition of $X$, then we have

$$
\begin{equation*}
\exp ^{k-1}\left(\left(\log _{k-1}(X \log p)\right)^{\theta}\right)<C_{3} \log p \log X \tag{4.37}
\end{equation*}
$$

We note that $X \geq \exp ^{k}(2)$. We can take $k-1$ times logarithms of both sides again then, since $p^{C_{3}}>p_{n}^{C_{3}} \geq \exp ^{k}(2)$, by (4.37) and Lemma 4.1

$$
\begin{aligned}
\left(\log _{k-1} X\right)^{\theta} & <\left(\log _{k-1}(X \log p)\right)^{\theta} \\
& <\log _{k-1}\left(C_{3} \log p \log X\right) \\
& \leq \log _{k}\left(p^{C_{3}}\right) \log _{k} X
\end{aligned}
$$

Let $Z=\left(\log _{k-1} X\right)^{\theta}$. Then,

$$
\begin{aligned}
Z & <\log _{k}\left(p^{C_{3}}\right) \cdot \log \left(Z^{\frac{1}{\theta}}\right) \\
& =\log _{k}\left(p^{C_{3}}\right) \cdot \frac{1}{\theta} \cdot(\log Z)
\end{aligned}
$$

When we apply Lemma 3.1, with $u=0, h=1$ and $v=\log _{k}\left(p^{C_{3}}\right) \cdot \frac{1}{\theta}$ we have

$$
Z \leq\left(\frac{1}{\theta} \cdot \log _{k}\left(p^{C_{3}}\right)\right)^{2}
$$

or equivalently

$$
\begin{equation*}
\log _{k-1} X<\left(\frac{1}{\theta} \cdot \log _{k}\left(p^{C_{3}}\right)\right)^{\frac{2}{\theta}} \tag{4.38}
\end{equation*}
$$

Let us define

$$
\begin{equation*}
U_{1}(p)=\exp ^{k-1}\left(\left(\frac{1}{\theta} \cdot \log _{k}\left(p^{C_{3}}\right)\right)^{\frac{2}{\theta}}\right) \tag{4.39}
\end{equation*}
$$

and define

$$
\begin{equation*}
\mathcal{U}(p)=\max \left(2 \exp ^{k}(2), 2 U_{1}(p)\right) \tag{4.40}
\end{equation*}
$$

Then, if $X \geq \exp ^{k}(2)$ then by (4.38) and (4.39) for any $p>p_{n}$ we have

$$
X \leq \frac{1}{2} \mathcal{U}(p)
$$

And, if $X<\exp ^{k}$ (2) then by (4.40) we have

$$
X \leq \frac{1}{2} \mathcal{U}(p)
$$

Therefore, for any $X>0$ we have $X \leq \frac{1}{2} \mathcal{U}(p)$.
Let $T$ be an integer with $\frac{T}{2}>p_{n}$. We recall the result of Rosser and Schoenfeld [31] that the number of primes in the interval $\left[\frac{T}{2}, T\right]$ is larger than $\frac{3 T}{10 \log T}$ for $T \geq 41$. For each prime $p \in\left[\frac{T}{2}, T\right]$, we first count the number of integers $y, x \in \mathcal{N}\left(S_{n} \cup\{p\}\right)$ such that $0<x-y<y^{1-f(y)}$. We observed in (4.34)

$$
a_{j}, b_{j} \leq \mathcal{U}(T) \log T
$$

for $j=1,2, \ldots, n$, and in (4.35)

$$
a, b \leq \frac{\log 2 y}{\log p} \leq 2 X \leq \mathcal{U}(T)
$$

We note that $p<x<2 y<y^{2}$ and $p<T$. Therefore, the number of possible choices of the exponents $a_{1}, \ldots, a_{n}, a, b_{1}, \ldots, b_{n}$ and $b$ is at most

$$
\begin{equation*}
(2 \mathcal{U}(T) \log T)^{2 n} \cdot(2 \mathcal{U}(T))^{2} \tag{4.41}
\end{equation*}
$$

Now, we assume that all these exponents are fixed. Then, we have

$$
1<\frac{x}{y}=p_{1}^{b_{1}-a_{1}} p_{2}^{b_{2}-a_{2}} \cdots p_{n}^{b_{n}-a_{n}} p^{b-a}<1+y^{-f(y)}
$$

Put $K=p_{1}{ }^{a_{1}-b_{1}} p_{2}{ }^{a_{2}-b_{2}} \cdots p_{n}{ }^{a_{n}-b_{n}}$. Then,

$$
\begin{equation*}
K<p^{b-a}<K\left(1+y^{-f(y)}\right) . \tag{4.42}
\end{equation*}
$$

Since, $a \neq b$, we have two cases.
(Case 1) $b>a$. Then,

$$
K^{\frac{1}{b-a}}<p<K^{\frac{1}{b-a}}\left(1+y^{-f(y)}\right)^{\frac{1}{b-a}}<K^{\frac{1}{b-a}}\left(1+y^{-f(y)}\right)
$$

Hence $p$ is contained in an interval of the length $K^{\frac{1}{b-a}}\left(y^{-f(y)}\right)$ and by (4.42)

$$
K^{\frac{1}{b-a}}\left(y^{-f(y)}\right)<p \cdot y^{-f(y)} \leq T \cdot y^{-f(y)}
$$

(Case 2) $b<a$. Then, by (4.42)

$$
\begin{equation*}
\left(1+y^{-f(y)}\right)^{\frac{1}{b-a}} K^{\frac{1}{b-a}}<p<K^{\frac{1}{b-a}} . \tag{4.43}
\end{equation*}
$$

Hence $p$ is contained in an interval of the length

$$
\begin{equation*}
K^{\frac{1}{b-a}}\left(1-\left(1+y^{-f(y)}\right)^{\frac{1}{b-a}}\right) . \tag{4.44}
\end{equation*}
$$

But, $\left(1+y^{-f(y)}\right)>0$ so by (4.43)

$$
\begin{equation*}
K^{\frac{1}{b-a}}<p\left(1+y^{-f(y)}\right)^{\frac{1}{a-b}} \tag{4.45}
\end{equation*}
$$

and so we get by (4.44) and (4.45)

$$
\begin{aligned}
& K^{\frac{1}{b-a}}\left(1-\left(1+y^{-f(y)}\right)^{\frac{1}{b-a}}\right) \\
< & p \cdot\left(1+y^{-f(y)}\right)^{\frac{1}{a-b}}\left(1-\left(1+y^{-f(y)}\right)^{\frac{1}{b-a}}\right) \\
= & p \cdot\left(\left(1+y^{-f(y)}\right)^{\frac{1}{a-b}}-1\right) \\
< & p \cdot y^{-f(y)} \\
\leq & T \cdot y^{-f(y)} .
\end{aligned}
$$

Fix the exponents $a_{1}, \ldots, a_{n}, a$ and $b_{1}, \ldots b_{n}, b$. In both cases, the number of primes $p$ for which $y, x \in \mathcal{N}\left(S_{n} \cup\{p\}\right)$ have prime factorizations $y=p_{1}{ }^{a_{1}} p_{2}{ }^{a_{2}} \cdots p_{n}{ }^{a_{n}} p^{a}$ and $x=p_{1}{ }^{b_{1}} p_{2}{ }^{b_{2}} \cdots p_{n}{ }^{b_{n}} p^{b}$ and satisfy $0<x-y<y^{1-f(y)}$ does not exceed $T y^{-f(y)}$. We replace this bound with a bound that does not depend on $y$. Indeed we claim that

$$
\begin{equation*}
T y^{-f(y)} \leq 4 T^{1-f(T)} \tag{4.46}
\end{equation*}
$$

Note that $\frac{T}{2} \leq p<x<2 y$ and so $y>\frac{T}{4}$. Moreover, by Lemma 4.2 we note that, $x^{-f(x)}$ is a decreasing function and $f(x)$ is a decreasing function and $0<f(x)<1$.

Therefore,

$$
\begin{aligned}
T \cdot y^{-f(y)} & \leq T\left(\frac{T}{4}\right)^{-f\left(\frac{T}{4}\right)} \\
& \leq T\left(\frac{T}{4}\right)^{-f(T)} \\
& \leq T^{1-f(T)} \cdot 4^{f(T)} \\
& \leq 4 T^{1-f(T)}
\end{aligned}
$$

We know that the number of primes in the interval $\left[\frac{T}{2}, T\right]$ is larger than $\frac{3 T}{10 \log T}$. On the other hand we know the number of possible exponents by (4.41) and for each set of exponents the number of primes $p$ in the interval is at most $1+4 T^{1-f(T)}$. Hence it suffices to check the following inequality :

$$
\begin{equation*}
\left(4 T^{1-f(T)}\right)(2 \mathcal{U}(T))^{2 n+2}(\log T)^{2 n} \quad \leq \frac{3 T}{10 \log T} \tag{4.47}
\end{equation*}
$$

That means for sufficiently large $T$, we can find a prime that does not have a pair $y, x$ with $x-y \leq y^{1-f(y)}$. We see that (4.47) is equivalent to

$$
C_{4}(2 \mathcal{U}(T))^{2 n+2}(\log T)^{2 n+1} \leq T^{f(T)}
$$

By (4.30) we want to show, equivalently, that

$$
\begin{equation*}
C_{5}+C_{6} \cdot \log \mathcal{U}(T)+C_{7} \log _{2} T<\exp ^{k-1}\left(\left(\log _{k} T\right)^{\theta}\right) \tag{4.48}
\end{equation*}
$$

By (4.39) and (4.40), we observe that for sufficiently large $T$,

$$
\log \mathcal{U}(T) \quad<\quad \exp ^{k-1}\left(\left(\log _{k} T\right)^{\theta}\right)
$$

And,

$$
\log _{2} T<\exp ^{k-1}\left(\left(\log _{k} T\right)^{\theta}\right)
$$

Therefore, (4.48) holds for sufficiently large $T$ or equivalently (4.47) holds.

Therefore we can find a prime $p$ in the interval $\left[\frac{T}{2}, T\right]$ with the required property and we put $p=p_{n+1}$.

### 4.5 Further Research

In this section, we report on a question related to Theorem 4.1 which we are not able to answer. We introduce a family of functions.

Definition 4.2. For a given non-negative integer $k$ and a real number $\delta$ with $\delta>1$, we put

$$
G_{k, \delta}(a)=\exp ^{k}\left(\left(\log _{k+1}(a)\right)^{\delta}\right)
$$

for $a \geq \exp ^{k+1}(1)$.
Proposition 4.7. For given $\delta>1$,

$$
G_{1, \delta}(a)<G_{2, \delta}(a)<\ldots<G_{k, \delta}(a)
$$

for $a \geq \exp ^{k+1}(1)$.
Proposition 4.8. For any non-negative integers $k_{1}, k_{2}$, and for any real $\theta>0$ and $\delta>1$ we have

$$
F_{k_{1}, \theta}(a)>G_{k_{2}, \delta}(a)
$$

for sufficiently large $a$.
We have no idea whether we can find an infinite set $S$ of primes such that if $n_{0}<n_{1}<\ldots<n_{i}<\ldots$ is the set of all positive integers composed of the primes in $S$ then

$$
n_{i+1}-n_{i} \quad>\quad \mathcal{L}\left(n_{i}\right)
$$

when we replace our functions $\mathcal{L}\left(n_{i}\right)=\frac{n_{i}}{F_{k, \theta}\left(n_{i}\right)}$ with functions $\mathcal{L}\left(n_{i}\right)=\frac{n_{i}}{G_{k, \delta}\left(n_{i}\right)}$ where

$$
G_{k, \delta}(a)=\exp ^{k}\left(\left(\log _{k+1}(a)\right)^{\delta}\right)
$$

where $\delta>1$.
Moreover, we want to find relations between the sequences of functions $G_{k}$ and $F_{k}$. We have the following question :

Question What functions $H(a)$ have the following properties :

$$
\lim _{a \rightarrow \infty} \frac{F_{k, \theta}(a)}{H(a)}=\infty
$$

and

$$
\lim _{a \rightarrow \infty} \frac{H(a)}{G_{k, \delta}(a)}=\infty
$$

for $k=1,2, \cdots$ ?

Remark. The existence of the function $H(a)$ may be related to tetration that occurs in the fourth place in the logical progression : addition, multiplication, exponentiation, tetration. [30]

## Chapter 5

## Computation

In this chapter, we shall determine all prime pairs $\left(p_{1}, p_{2}\right)$ with $2 \leq p_{1}<p_{2}<e^{8}$ such that for all $n_{i} \in \mathcal{N}\left(\left\{p_{1}, p_{2}\right\}\right)$

$$
\begin{equation*}
n_{i+1}-n_{i}>\sqrt{n_{i}} . \tag{5.1}
\end{equation*}
$$

These prime pairs $\left(p_{1}, p_{2}\right)$ can be extended to an infinite sequence of prime numbers in Wintner's question with respect to $\sqrt{x}$ when we appeal to the proof of Theorem 4.1 with $k=0$ and $\theta=\frac{1}{2}$.

Remark The largest prime less than $e^{8}$ is 2971 which is the 429 -th prime number. First we have the following Theorem.

Theorem 5.1. There are 2086 prime pairs $\left(p_{1}, p_{2}\right)$ with $2 \leq p_{1}<p_{2}<e^{8}$ for which

$$
\begin{equation*}
0<x-y<\sqrt{y} \tag{5.2}
\end{equation*}
$$

has a solution $x, y$ with $x, y \in \mathcal{N}\left(\left\{p_{1}, p_{2}\right\}\right)$ and $\operatorname{gcd}(x, y)=1$. We list $p_{1}, p_{2}, x, y$ in Table I for all the prime pairs $\left(p_{1}, p_{2}\right)$ as above except for those with $x=p_{2}, y=p_{1}$.

Before showing Theorem 5.1, we remark on some assumptions we may make and about the feasibility of our computation.

## Remark A

1. In Theorem 5.1, we consider $x, y \in \mathcal{N}\left(\left\{p_{1}, p_{2}\right\}\right)$ such that $\operatorname{gcd}(x, y)=1$ without loss of generality. If we have $x>y$ in $\mathcal{N}\left(\left\{p_{1}, p_{2}\right\}\right)$ satisfying (5.2)
with $\operatorname{gcd}(x, y)=d>1$ then $x^{\prime}=\frac{x}{d}, y^{\prime}=\frac{y}{d}$ are also in $\mathcal{N}\left(\left\{p_{1}, p_{2}\right\}\right)$ and these $x^{\prime}, y^{\prime}$ satisfy (5.2) since

$$
0<x^{\prime}-y^{\prime}=\frac{x-y}{d}<\frac{\sqrt{y}}{d}<\frac{\sqrt{y}}{\sqrt{d}}=\sqrt{y^{\prime}}
$$

2. Therefore, we can write $x, y \in \mathcal{N}\left(\left\{p_{1}, p_{2}\right\}\right)$ with $\operatorname{gcd}(x, y)=1$ that satisfy (5.2) as

$$
\begin{align*}
& x=p^{a}, \quad y=q^{b} \\
& \text { with } p, q \in\left\{p_{1}, p_{2}\right\} \quad \text { and } p \neq q \\
& \text { for some non-negative integers } a, b \tag{5.3}
\end{align*}
$$

From now on we reserve the expression (5.3) for $x, y \in \mathcal{N}\left(\left\{p_{1}, p_{2}\right\}\right)$ with $\operatorname{gcd}(x, y)=1$.

Remark B We review that the computation for Theorem 5.1 is feasible for some given range of primes.

1. In computation, we are given a range of primes $p_{1}<p_{2}<\mathcal{U}$. This $\mathcal{U}$ depends on computational power : for finding primes and for accurate calculations for each step in the proof of the theorem, etc.
2. By Theorem 1.4, for given $p_{1}<p_{2}$ there are only finitely many $x, y \in$ $\mathcal{N}\left(\left\{p_{1}, p_{2}\right\}\right)$ satisfying (5.2).
3. Moreover, by (3.11) in Theorem 3.1, there is an effectively computable positive number $C\left(p_{1}, p_{2}\right)$ such that if $x, y \in \mathcal{N}\left(\left\{p_{1}, p_{2}\right\}\right)$ satisfy (5.2) then $x<C\left(p_{1}, p_{2}\right)$.
4. The inequality (5.2) suffices to check (5.1). If we find $x, y \in \mathcal{N}\left(\left\{p_{1}, p_{2}\right\}\right)$ satisfying (5.2) then there is non-negative integer $i$ such that $n_{i}=y$. Moreover, $n_{i+1} \leq x$ since $x>y$. So,

$$
0<n_{i+1}-n_{i} \leq x-y<\sqrt{y}=\sqrt{n_{i}} .
$$

Note that, $x-y \neq \sqrt{y}$ since $x, y$ are integers with $\operatorname{gcd}(x, y)=1$.

Remark C By Remark B, if for given $p_{1}, p_{2}$ there is no $x, y \in \mathcal{N}\left(\left\{p_{1}, p_{2}\right\}\right)$ with $\operatorname{gcd}(x, y)=1$ that satisfies (5.2) then all $n_{i} \in \mathcal{N}\left(p_{1}, p_{2}\right)$ satisfy (5.1).

Strategy for the Proof of Theorem 5.1. We consider separately each prime pair ( $p_{1}, p_{2}$ ) with $2 \leq p_{1}<p_{2}<e^{8}$. Let $a$ and $b$ be positive integers and put $M=\max \{a, b\}$. We wish to determine when

$$
\begin{equation*}
\left|p_{1}^{a}-p_{2}^{b}\right|<\left(\min \left\{p_{1}^{a}, p_{2}^{b}\right\}\right)^{\frac{1}{2}} \tag{5.4}
\end{equation*}
$$

We split the search for examples into three ranges for $M$. The first is for $M<20$ and we check this range by a direct search through all possible exponent pairs. The second range is for $20 \leq M<2^{18}$ and in this range we use properties of the continued fraction of $\frac{\log p_{1}}{\log p_{2}}$ to determine if these are any solutions of (5.4). The third range is for $M \geq 2^{18}$ and we prove, see Proposition 5.2, that there are no solutions in this range. But we should mention that these 3 ranges for $M$ are dependent on the upper and lower bounds for the primes $p_{1}$ and $p_{2}$. In our computation, $2 \leq p_{1}<p_{2}<e^{8}$.

We have already used some of the properties we shall discuss in this chapter but at this time we recall and show them clearly. We can see some similar propositions in the following sections to those in the work of Stroeker and Tijdeman [37] and the work of de Weger [45].

### 5.1 General Upper Bound

Proposition 5.1. Let $x, y \in \mathcal{N}\left(\left\{p_{1}, p_{2}\right\}\right)$ with $\operatorname{gcd}(x, y)=1$ and expressed by (5.3). Suppose that $x$, $y$ satisfy the inequality (5.2). Define $\Lambda_{1}=\log x-\log y$. Then

$$
\begin{equation*}
\Lambda_{1}<\sqrt{\frac{2}{p_{1}^{M}}} \tag{5.5}
\end{equation*}
$$

where $M=\max \{a, b\}$.
Proof. First note that $y>1$ since if $y=1$ then $0<x-y<1$ has no solution. We also have $x<2 y$ since if $x \geq 2 y$ then $x-y \geq 2 y-y=y>\sqrt{y}$. Let $M=\max \{a, b\}$. Since $x, y$ satisfy the inequality (5.2) and $1<y<x<2 y$ so we have

$$
\begin{equation*}
0<\Lambda_{1}=\log \frac{x}{y}<\frac{x}{y}-1<\frac{1}{\sqrt{y}}<\sqrt{\frac{2}{x}} \tag{5.6}
\end{equation*}
$$

We observe that $x \geq p_{1}^{M}$. For this we let $m=\min \{a, b\}$. Recall that we assume that $\operatorname{gcd}(x, y)=1$.

1. $p_{1} \mid x$ then $x=p_{1}^{M}$ since $x>y$ and $p_{1}<p_{2}$.
2. If $p_{2} \mid x$ then we consider 2 cases.
(a) If $y=p_{1}^{M}$ it is clear since $x>y=p_{1}^{M}$.
(b) If $y=p_{1}^{m}$ then $x=p_{2}^{M}>p_{1}^{M}$. Therefore $x \geq p_{1}^{M}$.

Therefore, by (5.6) we obtain

$$
0<\Lambda_{1}<\sqrt{\frac{2}{p_{1}^{M}}}
$$

Proposition 5.2. Let $p_{1}, p_{2}$ be given with $2 \leq p_{1}<p_{2}<e^{8}$. Let $\mathcal{B}=2^{18}$.
Then there are no $x, y \in \mathcal{N}\left(\left\{p_{1}, p_{2}\right\}\right)$ satisfying (5.2) expressed by (5.3) such that $M=\max \{a, b\} \geq \mathcal{B}$.

Proof. Let $\Lambda_{1}=\log x-\log y=a \log p-b \log q>0$. Let $b^{\prime}=\frac{b}{\log p}+\frac{a}{\log q}$. Since $M=\max \{a, b\}$ and $2 \leq p_{1}<p_{2}<e^{8}$, we have

$$
\begin{equation*}
\frac{M}{8} \leq \quad b^{\prime} \leq 3 M \tag{5.7}
\end{equation*}
$$

Then by Lemma 2.1 with $D=1, A_{1}=p_{1}, A_{2}=p_{2}$ and $\log B=\max \left\{\log b^{\prime}, \frac{21}{D}, \frac{1}{2}\right\}$

$$
\Lambda_{1}>\exp \left(-31(\log B)^{2} \log p_{1} \log p_{2}\right) .
$$

Suppose that $x, y$ satisfy (5.2). Then by (5.5),

$$
\begin{equation*}
\exp \left(-31(\log B)^{2} \log p_{1} \log p_{2}\right) \quad<\Lambda_{1}<\sqrt{\frac{2}{p_{1}^{M}}} \tag{5.8}
\end{equation*}
$$

By taking logarithms of both sides of (5.8) and multiplying by $-\frac{2}{\log p_{1}}$, we have

$$
\begin{equation*}
M-\frac{\log 2}{\log p_{1}}<62(\log B)^{2} \log p_{2} \tag{5.9}
\end{equation*}
$$

We divide into 2 cases.
(Case 1) If $\log B=21$ then we have that by (5.9)

$$
M<62 \cdot(21)^{2} \cdot 8<2^{18}
$$

(Case 2) If $21<\log B=\log b^{\prime}$ then by (5.7) and (5.9)

$$
3 M<3 \cdot 62 \cdot(\log B)^{2} \cdot 8+1<3 \cdot 496 \cdot(\log 3 M)^{2}+1
$$

Hence

$$
3 M<C \cdot(\log 3 M)^{2}
$$

where $C=1489$. We apply Lemma 3.1 with $u=0, v=C, h=2$ and $x=3 M$ to get

$$
M<2^{18}
$$

But this contradicts the fact (5.7) of that $e^{21}<3 M$.
Therefore, we always have the case 1 and $M<2^{18}$.
That means there is no solution $x, y \in \mathcal{N}\left(\left\{p_{1}, p_{2}\right\}\right)$ satisfying (5.2) expressed by (5.3) such that $M=\max \{a, b\} \geq 2^{18}=\mathcal{B}$.

Therefore, to find $x, y$ satisfying (5.2) we may suppose that both exponents $a$ and $b$ are less than $\mathcal{B}=2^{18}$.

### 5.2 Reduced Number of Calculations

There remains the problem of covering this range $M=\max \{a, b\}<\mathcal{B}$ without a prohibitive amount of computation. We resolve this question by applying some results from Diophantine approximation.

Proposition 5.3. Let $x, y \in \mathcal{N}\left(\left\{p_{1}, p_{2}\right\}\right)$ be expressed by (5.3) which satisfy (5.2) such that $M=\max \{a, b\}$. Then $M$ is the exponent of the smaller prime.

Proof. We recall that $x=p^{a}, y=q^{b}$ and $p, q \in\left\{p_{1}, p_{2}\right\}$ with $p \neq q$. If $p=p_{1}<$ $p_{2}=q$ then since $x>y$ so $M=a \geq b$ is the exponent of the smaller prime.

Let $q=p_{1}<p_{2}=p$ and suppose that $M=a>b$. Then $x=p_{2}^{a}$ and $y=p_{1}^{b}$. But in this case $y<2 y \leq p_{1} \cdot p_{1}^{b} \leq p_{1}^{a}<p_{2}^{a}=x$ this contradicts our choice of $x, y$ as $x<2 y$. Therefore, $M=b$ is the exponent of the smaller prime.

Now, we want to apply some properties of continued fractions. For this we need to restrict our search range as follows.

Proposition 5.4. Let $x, y$ be expressed by (5.3) and let $M=\max \{a, b\}$. Suppose that $p_{1}^{M} \geq 2^{18}$. Then,

$$
\begin{equation*}
p_{1}^{\frac{M}{2}}>23 M \tag{5.10}
\end{equation*}
$$

Proof. Suppose not, then

$$
2^{\frac{M}{2}} \leq p_{1}^{\frac{M}{2}} \leq 23 M
$$

Hence $M \leq 18$. This is a contradiction since we then have

$$
414 \geq 23 M \geq p_{1}^{\frac{M}{2}} \geq 2^{9}
$$

Remark D We will see in Proposition 5.7 that for a given pair of primes $\left(p_{1}, p_{2}\right)$ with $2 \leq p_{1}<p_{2}<e^{8}$, if we want to find $x, y \in \mathcal{N}\left(\left\{p_{1}, p_{2}\right\}\right)$ satisfying (5.2) and expressed by (5.3) by using properties of the continued fraction of $\frac{\log p_{1}}{\log p_{2}}$ then it suffices to restrict $y$ to $y \geq 2^{18}$ by Proposition 5.3 and Proposition 5.4.
But we note that if $x$ and $y$ satisfy (5.2) then $x<2 y$. Therefore we compute whether $x-y<\sqrt{y}$ directly for all $x, y \in \mathcal{N}\left(\left\{p_{1}, p_{2}\right\}\right)$ with $y<x<2^{19}$. Note the associated powers $a, b$ satisfy $0 \leq a, b<20$ and this is the first range for $M=\max \{a, b\}$.
If we can not find any $x, y \in \mathcal{N}\left(\left\{p_{1}, p_{2}\right\}\right)$ with $1<y<x<2^{19}$ that satisfy (5.2) by a direct search through the first range for $M$ then we apply properties of the continued fraction of $\frac{\log p_{1}}{\log p_{2}}$ for finding $x, y$ satisfying (5.2).
We recall some definitions and facts about continued fraction expressions.

Definitions Let $\alpha$ be a real number. We denote by $[\alpha]$ the greatest integer $n$ less than or equal to $\alpha$. Let $a_{0}=[\alpha]$. If $\alpha \neq a_{0}$ there is a real number $\alpha_{1}>1$ such that
$\alpha=a_{0}+\frac{1}{\alpha_{1}}$. Put $a_{1}=\left[\alpha_{1}\right]$. Next, if $\alpha_{1} \neq a_{1}$ then $\alpha_{1}=a_{1}+\frac{1}{\alpha_{2}}$ and let $a_{2}=\left[\alpha_{2}\right]$. By repeated application of the above, we produce a sequence of integers $a_{0}, a_{1}, \ldots$, and a sequence of real numbers $\alpha_{1}, \alpha_{2}, \ldots$. The sequences may be finite.

1. The integers $a_{0}, a_{1}, \ldots$ are called the partial quotients of $\alpha$.
2. If the sequence of integers is finite, say $a_{0}, a_{1}, \ldots, a_{n}$ then $\alpha$ is a rational number and

$$
\alpha=a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+}} \begin{aligned}
& \ddots \frac{1}{a_{n-1}+\frac{1}{a_{n}}}
\end{aligned} .
$$

This expression is known as a finite continued fraction expansion of $\alpha$ and we denote $\alpha=\left[a_{0}, a_{1}, \ldots, a_{n}\right]$.
3. If the algorithm does not terminate we write

$$
\alpha=a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+} \ddots^{1}} .
$$

and we call this the infinite continued fraction of $\alpha$ and denote
$\alpha=\left[a_{0}, a_{1}, a_{2}, \ldots\right]$.
4. Let $\alpha=\left[a_{0}, a_{1}, \ldots, a_{k}\right]$. We write $\frac{p_{n}}{q_{n}}=\left[a_{0}, a_{1}, \ldots, a_{n}\right]$ for $n=0,1,2, \ldots, k$ with $\operatorname{gcd}\left(p_{n}, q_{n}\right)=1$ and $q_{n}>0$.
The rational number $\frac{p_{n}}{q_{n}}$ is called the $n$-th convergent of $\alpha$.
Let $\alpha=\left[a_{0}, a_{1}, \ldots\right]$. We write $\frac{p_{n}}{q_{n}}=\left[a_{0}, a_{1}, \ldots, a_{n}\right]$ for $n=0,1,2, \ldots$
with $\operatorname{gcd}\left(p_{n}, q_{n}\right)=1, q_{n}>0$. The rational number $\frac{p_{n}}{q_{n}}$ is called the $n$-th convergent of $\alpha$.

We recall some important properties of continued fractions. The proofs of the next two Propositions may be found in [19].

Proposition 5.5. Let $\theta=\left[a_{0}, a_{1}, \ldots, a_{n}, \ldots\right]$ and $\frac{p_{n}}{q_{n}}$ be the $n$-th convergent of $\theta$. Then

$$
\begin{equation*}
\frac{1}{\left(a_{n+1}+2\right) q_{n}^{2}}<\left|\theta-\frac{p_{n}}{q_{n}}\right|<\frac{1}{a_{n+1} q_{n}^{2}} \tag{5.11}
\end{equation*}
$$

Proposition 5.6. Let $\theta$ be a real number and $\frac{p}{q}$ be a rational number $\frac{p}{q}$ satisfying the following inequality

$$
\left|\theta-\frac{p}{q}\right|<\frac{1}{2 q^{2}}
$$

Then there is a non-negative integer $k$ such that $\frac{p}{q}$ is the $k$-th convergent of $\theta$.
Now we are ready to prove the following Proposition.
Proposition 5.7. Let $x, y$ satisfy (5.2) and be expressed by (5.3). Let $M=$ $\max \{a, b\}$ and $m=\min \{a, b\}$.
If $p_{1}^{\frac{M}{2}}>23 M$ then $\frac{m}{M}$ is a convergent of $\frac{\log p_{1}}{\log p_{2}}$.
Proof. By Proposition 5.3, $M$ is the exponent of the smaller prime $p_{1}$. We recall that $2 \leq p_{1}<p_{2}$. Dividing $\left|\Lambda_{1}\right|=|a \log p-b \log q|=\left|M \log p_{1}-m \log p_{2}\right|$ by $M \log p_{2}$, then by (5.5) we have

$$
\begin{align*}
\left|\frac{m}{M}-\frac{\log p_{1}}{\log p_{2}}\right| & \leq \sqrt{\frac{2}{p_{1}^{M}}} \cdot \frac{1}{M \log p_{2}} \\
& \leq \frac{\sqrt{2}}{23 M} \cdot \frac{1}{M \log p_{2}} \\
& \leq \frac{1}{17 M^{2}}  \tag{5.12}\\
& <\frac{1}{2 M^{2}}
\end{align*}
$$

By Proposition 5.6 we can find a non-negative integer $k$ such that $\frac{m}{M}$ is the $k$-th convergent of $\frac{\log p_{1}}{\log p_{2}}$.

Remark E Recall that $M=\max \{a, b\}$ and $m=\min \{a, b\}$.

1. It clearly suffices to make a check of all numbers $a, b$ in the relevant range $20 \leq M<2^{18}$ which are denominators of the convergent of $\frac{\log p_{1}}{\log p_{2}}$. But the following Propositions ensure us that we only need to compute and check $m, M$ when $\frac{m}{M}$ is one of the convergent of $\frac{\log p_{1}}{\log p_{2}}$ up to $M<2^{18}=\mathcal{B}$ with special partial quotients. We shall discuss this in Proposition 5.8.
2. In Proposition 5.4, for given range of primes $p_{1}<p_{2}<\mathcal{U}$ we have found some relation between $2^{18}$, the lower bound of $p_{1}^{M}$ in the hypothesis and 23 the coefficient of $M$ in (5.12). This represents a trade off between direct computation for the small range for $M$ and the probability distribution of the "large enough" n-th partial quotients of the continued fraction expansion to check the approximation property. (See Proposition 5.8.) In our case, "large enough" means greater than or equal to 15 .

### 5.3 Find a Proper Expression

Now, our interest is to find a proper expression of $\frac{\log p_{1}}{\log p_{2}}$. In computation there are some restrictions to represent irrational numbers. Hence we need to check the required accuracy before computing. The following remarks and proposition tell us the relation between the convergents of an irrational number and the convergents of a close rational number.

Remark F For given 2 primes $p_{1}, p_{2}$ with $2 \leq p_{1}<p_{2}<e^{8}$, let $\xi=\frac{\log p_{1}}{\log p_{2}}$. Then $\xi$ is irrational number. Let the continued fraction expansion of $\xi$ be given by

$$
\xi=\left[a_{0}, a_{1}, a_{2}, \cdots\right]
$$

and let $\frac{m_{k}}{M_{k}}$ be the $k$-th convergent of $\xi$ for $k=0,1,2 \ldots$.
Let $x, y$ satisfy (5.2) and be expressed by (5.3).

1. By Proposition 5.2 and Proposition 5.7, $M_{k}$ is bounded. So, we need to find all the convergents $\frac{m_{k}}{M_{k}}$ of $\xi$ up to $M_{k}<\mathcal{B}=2^{18}$. In this case we only need to consider the continued fraction expansion of $\xi$ up to the $k$-th step where

$$
\begin{equation*}
k \leq-1+\frac{\log (\sqrt{5} \mathcal{B}+1)}{\log \left(\frac{1+\sqrt{5}}{2}\right)} \tag{5.13}
\end{equation*}
$$

de Weger [45] showed this using the fact that if $\frac{p_{n}}{q_{n}}$ is the $n$-th convergent of a real number, then $q_{n}$ is at least the $(n+1)$-th Fibonacci number.
2. Therefore, for finding $k$-th convergents $\frac{m_{k}}{M_{k}}$ up to $M_{k}<\mathcal{B}=2^{18}$ in (5.13), it suffices to compute the continued fraction expansion up to the 26 -th partial quotient.
3. For computing, it suffices to find a rational number $\theta$ such that for every $n$ up to 26 the $n$-th convergent of $\xi$ is exactly the same as that of $\theta$.

The following theorem tells us the required accuracy in order to apply the continued fraction algorithm while the denominator of the $k$-th convergent is less than $\mathcal{B}=2^{18}$.

Theorem 5.2. Let $\xi=\frac{\log p_{1}}{\log p_{2}}$ and $\theta$ be a rational number with $|\xi-\theta|<\epsilon$ where $\epsilon=2^{-39}$. Then every convergent $\frac{p_{n}}{q_{n}}$ of $\xi$ with $20 \leq q_{n}<2^{18}$ is a convergent of $\theta$.

Proof. Let $\frac{p_{n}}{q_{n}}$ be a convergent of $\xi$ and $20 \leq q_{n}<2^{18}$. Since $p_{1}^{M} \geq 2^{18}$, we see by Proposition 5.4 and Proposition 5.7

$$
\begin{equation*}
\left|\theta-\frac{p_{n}}{q_{n}}\right| \leq|\theta-\xi|+\left|\xi-\frac{p_{n}}{q_{n}}\right| \leq \epsilon+\frac{1}{8 q_{n}^{2}}<\frac{1}{2 q_{n}^{2}} \tag{5.14}
\end{equation*}
$$

Therefore, $\frac{p_{n}}{q_{n}}$ is also a convergent of $\theta$.

## Remark G

1. Therefore, for given $\xi=\frac{\log p_{1}}{\log p_{2}}$, if we represent $\xi$ by a rational number $\theta$ with $|\xi-\theta|<2^{-39}$ then any convergent $\frac{m_{k}}{M_{k}}$ of $\xi$ with $k \leq 26$ and $M_{k} \geq 20$ is also a convergent of $\theta$.
2. Note that if we have two rational numbers $\theta_{1}, \theta_{2}$ such that

$$
\theta_{1}<\xi<\theta_{2}
$$

and the continued fraction expansions of $\theta_{1}$ and $\theta_{2}$ are the same up to the $k$-th partial quotient then $\xi$ also has the same continued fraction expansion up to $k$-th partial quotient.
3. When we use Maple, we shall find the continued fraction expansion of $\xi$ up to the 30 -th partial quotient that satisfies the above two conditions we mentioned in this Remark in order to guarantee the accuracy of our computations.

### 5.4 Criteria for Solution

We have already reduced the number of calculations in Section 5.2. For a given prime pair ( $p_{1}, p_{2}$ ), we only need to check 26 candidates pairs ( $M, m$ ) in the whole "medium" range of $20 \leq \max \{a, b\}<\mathcal{B}=2^{18}$. But, in computation the most time and memory consuming part is exponentiation. So, reducing the number of exponentiations is one of the critical parts for feasibility.

In our question, for given two prime numbers $p, q$, we need to compute exponentiations $p^{a}, q^{b}$ where $a, b$ are huge numbers almost up to $\mathcal{B}=2^{18}$. In this section, we shall discuss the nice criteria for deciding to calculate exponentiation. And this is the answer to the question we mentioned in Remark E.

Proposition 5.8. Let $x, y$ be expressed by (5.3) and $M=\max \{a, b\}$ and $m=$ $\min \{a, b\}$. And suppose that $p_{1}^{M} \geq 2^{18}$. If $(x, y)$ is a solution of (5.2) then there is a positive integer $r$ with $0 \leq r \leq 26$ such that

1. $\frac{m}{M}$ is the $r$-th convergent of $\frac{\log p_{1}}{\log p_{2}}$.
2. The $(r+1)$-th partial quotient $a_{r+1}$ of the continued fraction expansion of $\frac{\log p_{1}}{\log p_{2}}$ is greater than or equal to 15 .

Proof. By (5.12) of Proposition 5.7 we see

$$
\begin{equation*}
\left|\frac{\log p_{1}}{\log p_{2}}-\frac{m}{M}\right|<\frac{1}{17 M^{2}} . \tag{5.15}
\end{equation*}
$$

And, by Proposition 5.5,

$$
\begin{equation*}
\frac{1}{\left(a_{r+1}+2\right) M_{r}^{2}}<\left|\frac{\log p_{1}}{\log p_{2}}-\frac{m_{r}}{M_{r}}\right|<\frac{1}{a_{r+1} M_{r}^{2}} . \tag{5.16}
\end{equation*}
$$

By (5.15) and (5.16) we see that $a_{r+1} \geq 15$.

### 5.5 Some Remarks on the Program

### 5.5.1 The Small Range

In the execution of our program we treat all prime pairs $\left(p_{1}, p_{2}\right)$ with $2 \leq p_{1}<p_{2}<$ $e^{8}$. For given $p_{1}, p_{2}$, the aim is to find $x, y \in \mathcal{N}\left(\left\{p_{1}, p_{2}\right\}\right)$ such that

1. $x=p^{a}, y=p^{b}$ where $p, q \in\left\{p_{1}, p_{2}\right\}, p \neq q$ and
2. $0<x-y<\sqrt{y}$.

We note that $0 \leq a, b<20$ cover the "small" range for $1 \leq \max \{a, b\}<20$. For each pair $\left(p_{1}, p_{2}\right)$ the solutions $x, y$ with $a, b$ in this range are detected by direct checking for all possible pairs $x, y$ with $1<y<x<2 y$. We generate all positive integers $p^{a}, q^{b}$ where $p, q \in\left\{p_{1}, p_{2}\right\}, p \neq q$ with $a, b<20$ and check whether

$$
\left|p^{a}-q^{b}\right|<\left(\min \left\{p^{a}, q^{b}\right\}\right)^{\frac{1}{2}}
$$

If we find $p^{a}, q^{b}$ that satisfy the above inequality and $a>1$ or $b>1$ then write $p_{1}, p_{2}, a, b, \max \left\{p^{a}, q^{b}\right\}, \min \left\{p^{a}, q^{b}\right\}$ in Table 1. Hence in Table 1 we have all solutions $x, y \in \mathcal{N}\left(\left\{p_{1}, p_{2}\right\}\right)$ with $\operatorname{gcd}(x, y)=1$ that satisfy $0<x-y<\sqrt{y}$ except $\{x, y\}=\left\{p_{1}, p_{2}\right\}$.

After checking all the range for small $M$ we go "medium" range for $M$.

### 5.5.2 The Medium Range

We call the range of exponents $20 \leq \max \{a, b\}<2^{18}$ "medium". We searched $x, y$ that satisfy (5.2) and the associated the maximum exponents $M$ are in "medium" by the strategy from Diophantine Approximations.
We review the algorithm that has been used for finding solutions $x, y$ for given $p_{1}, p_{2}$.
Given two prime numbers $p_{1}, p_{2}$ with $2 \leq p_{1}<e^{8}$.
Let $\xi:=\frac{\log p_{1}}{\log p_{2}}$.
Call continued fraction expansion of $\xi$ up to the 30 -th partial quotient and we get

$$
\theta=\left[a_{0}, a_{1}, \ldots, a_{30}\right]
$$

We note that for required accuracy it is enough to find the continued fraction up to the 30 -th partial quotient. The error between $\frac{\log p_{1}}{\log p_{2}}$ and computational expressed number so that

$$
\left[a_{0}, a_{1}, \ldots, a_{28}\right]<\xi<\left[a_{0}, a_{1}, \ldots, a_{29}\right]
$$

And so $\theta$ is a proper expression of $\xi$. Let

$$
\begin{equation*}
\frac{m_{k}}{M_{k}}=\left[a_{0}, a_{1}, \ldots, a_{k}\right] \tag{5.17}
\end{equation*}
$$

for $k=1, \ldots, 30$.
Apply Proposition 5.2, we are interested in the case the denominator of the $k$-th convergent (5.17) is less than $\mathcal{B}=2^{18}$. We have reduced level with

$$
\text { reducedLevel }=\max _{0 \leq k \leq 26}\left\{k \mid \text { the k-th denominator } M_{k}<2^{18}\right\} .
$$

For $i$ from 0 to reducedLevel do
If the $i$-th partial quotient is such that $a_{i+1} \geq 15$.
Then, we set $\frac{m_{i}}{M_{i}}=\left[a_{0}, a_{1}, \ldots, a_{i}\right]$.
Check the inequality (5.2) whether

$$
\begin{equation*}
\left|p_{1}^{M_{i}}-p_{2}^{m_{i}}\right|<\left(\min \left\{p_{1}^{M_{i}}, p_{2}^{m_{i}}\right\}\right)^{\frac{1}{2}} \tag{5.18}
\end{equation*}
$$

If (5.18) is true
then we add $p_{1}, p_{2}, p_{1}^{M_{i}}, p_{2}^{m_{i}}$ to the Table I.
else $i:=i+1$.
Else $i:=i+1$.

### 5.5.3 Computing Environment

We use the package Maple 10 on grayling server (SunFire V20/40z systems with 2 CPUs and 4GB memory) in University of Waterloo. The total time for computing for the code based on the Appendix B is around 9 days.

### 5.6 Further Research

We may try to find an initial 3 or more primes in Wintner's question with respect to $\sqrt{x}$. In this case we should apply the LLL algorithm [45]. For computational feasibility, we need sharp estimates of linear forms in $n$ logarithms if we are dealing with more than 2 primes.

Finally, we mention a consequence of the abc conjecture. The abc conjecture links the additive and multiplicative structure of the integers.

Conjecture (Oesterlé-Masser)
Let $a, b$, and $c$ be non-zero integers and define

$$
G=G(a, b, c)=\prod_{\substack{p \mid a b c \\ p \text { aprime }}} p
$$

Suppose that $a, b$, and $c$ are co-prime and that

$$
a+b+c=0
$$

For each $\epsilon>0$ there is a $C(\epsilon)>0$ such that

$$
\max \{|a|,|b|,|c|\}<C(\epsilon) \cdot G^{1+\epsilon} .
$$

This conjecture is known as the abc conjecture.

Remark For $S$ and for any $n_{i} \in \mathcal{N}(S)$ we note

$$
\left(n_{i+1}-n_{i}\right)+n_{i}=n_{i+1} .
$$

We observe that Theorem 1.4 an immediate consequence of abc conjecture when we take $\theta=\frac{1}{1+\epsilon}$.

## Appendix A

## Table I

In the following table we list the prime pairs $\left(p_{1}, p_{2}\right)$ with $2 \leq p_{1}<p_{2}<e^{8}$ for which there is a co-prime pair of integers $x, y$ from $\mathcal{N}\left(\left\{p_{1}, p_{2}\right\}\right)$ with $0<x-y<\sqrt{y}$. Note that $x=\max \left\{p_{1}^{a}, p_{2}^{b}\right\}$ and $y=\min \left\{p_{1}^{a}, p_{2}^{b}\right\}$. We also list ALL such integers $x$ and $y$ and the associated powers $a$ and $b$ of $p_{1}$ and $p_{2}$ respectively for which $\{x, y\} \neq\left\{p_{1}, p_{2}\right\}$ and $0<x-y<\sqrt{y}$ EXCEPT $x=p_{2}, y=p_{1}$.
We should mention that all the solutions are found in the "small" range for $M$.

| $p_{1}$ | $p_{2}$ | $a$ | $b$ | $x$ | $y$ |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 2 | 3 | 2 | 1 | 4 | 3 |
| 2 | 3 | 3 | 2 | 9 | 8 |
| 2 | 3 | 5 | 3 | 32 | 27 |
| 2 | 3 | 8 | 5 | 256 | 243 |
| 2 | 5 | 2 | 1 | 5 | 4 |
| 2 | 5 | 7 | 3 | 128 | 125 |
| 2 | 7 | 3 | 1 | 8 | 7 |
| 2 | 11 | 7 | 2 | 128 | 121 |
| 2 | 13 | 4 | 1 | 16 | 13 |
| 2 | 17 | 4 | 1 | 17 | 16 |
| 2 | 19 | 4 | 1 | 19 | 16 |
| 2 | 23 | 9 | 2 | 529 | 512 |
| 2 | 29 | 5 | 1 | 32 | 29 |
| 2 | 31 | 5 | 1 | 32 | 31 |
| 2 | 37 | 5 | 1 | 37 | 32 |
| 2 | 59 | 6 | 1 | 64 | 59 |
| 2 | 61 | 6 | 1 | 64 | 61 |
| 2 | 67 | 6 | 1 | 67 | 64 |
| 2 | 71 | 6 | 1 | 71 | 64 |
| 2 | 127 | 7 | 1 | 128 | 127 |
| 2 | 131 | 7 | 1 | 131 | 128 |
| 2 | 137 | 7 | 1 | 137 | 128 |
| 2 | 139 | 7 | 1 | 139 | 128 |
| 2 | 181 | 15 | 2 | 32768 | 32761 |
| 2 | 241 | 8 | 1 | 256 | 241 |


| 2 | 251 | 8 | 1 | 256 | 251 |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 2 | 257 | 8 | 1 | 257 | 256 |
| 2 | 263 | 8 | 1 | 263 | 256 |
| 2 | 269 | 8 | 1 | 269 | 256 |
| 2 | 271 | 8 | 1 | 271 | 256 |
| 2 | 491 | 9 | 1 | 512 | 491 |
| 2 | 499 | 9 | 1 | 512 | 499 |
| 2 | 503 | 9 | 1 | 512 | 503 |
| 2 | 509 | 9 | 1 | 512 | 509 |
| 2 | 521 | 9 | 1 | 521 | 512 |
| 2 | 523 | 9 | 1 | 523 | 512 |
| 2 | 997 | 10 | 1 | 1024 | 997 |
| 2 | 1009 | 10 | 1 | 1024 | 1009 |
| 2 | 1013 | 10 | 1 | 1024 | 1013 |
| 2 | 1019 | 10 | 1 | 1024 | 1019 |
| 2 | 1021 | 10 | 1 | 1024 | 1021 |
| 2 | 1031 | 10 | 1 | 1031 | 1024 |
| 2 | 1033 | 10 | 1 | 1033 | 1024 |
| 2 | 1039 | 10 | 1 | 1039 | 1024 |
| 2 | 1049 | 10 | 1 | 1049 | 1024 |
| 2 | 1051 | 10 | 1 | 1051 | 1024 |
| 2 | 2011 | 11 | 1 | 2048 | 2011 |
| 2 | 2017 | 11 | 1 | 2048 | 2017 |
| 2 | 2027 | 11 | 1 | 2048 | 2027 |
| 2 | 2029 | 11 | 1 | 2048 | 2029 |
| 2 | 2039 | 11 | 1 | 2048 | 2039 |
| 2 | 2053 | 11 | 1 | 2053 | 2048 |
| 2 | 2063 | 11 | 1 | 2063 | 2048 |
| 2 | 2069 | 11 | 1 | 2069 | 2048 |
| 2 | 2081 | 11 | 1 | 2081 | 2048 |
| 2 | 2083 | 11 | 1 | 2083 | 2048 |
| 2 | 2087 | 11 | 1 | 2087 | 2048 |
| 2 | 2089 | 11 | 1 | 2089 | 2048 |
| 3 | 5 | 3 | 2 | 27 | 25 |
| 3 | 7 | 2 | 1 | 9 | 7 |
| 3 | 11 | 2 | 1 | 11 | 9 |
| 3 | 13 | 7 | 3 | 2197 | 2187 |
| 3 | 23 | 3 | 1 | 27 | 23 |
| 3 | 29 | 3 | 1 | 29 | 27 |


| 3 | 31 | 3 | 1 | 31 | 27 |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 3 | 47 | 7 | 2 | 2209 | 2187 |
| 3 | 73 | 4 | 1 | 81 | 73 |
| 3 | 79 | 4 | 1 | 81 | 79 |
| 3 | 83 | 4 | 1 | 83 | 81 |
| 3 | 89 | 4 | 1 | 89 | 81 |
| 3 | 229 | 5 | 1 | 243 | 229 |
| 3 | 233 | 5 | 1 | 243 | 233 |
| 3 | 239 | 5 | 1 | 243 | 239 |
| 3 | 241 | 5 | 1 | 243 | 241 |
| 3 | 251 | 5 | 1 | 251 | 243 |
| 3 | 257 | 5 | 1 | 257 | 243 |
| 3 | 421 | 11 | 2 | 177241 | 177147 |
| 3 | 709 | 6 | 1 | 729 | 709 |
| 3 | 719 | 6 | 1 | 729 | 719 |
| 3 | 727 | 6 | 1 | 729 | 727 |
| 3 | 733 | 6 | 1 | 733 | 729 |
| 3 | 739 | 6 | 1 | 739 | 729 |
| 3 | 743 | 6 | 1 | 743 | 729 |
| 3 | 751 | 6 | 1 | 751 | 729 |
| 3 | 2141 | 7 | 1 | 2187 | 2141 |
| 3 | 2143 | 7 | 1 | 2187 | 2143 |
| 3 | 2153 | 7 | 1 | 2187 | 2153 |
| 3 | 2161 | 7 | 1 | 2187 | 2161 |
| 3 | 2179 | 7 | 1 | 2187 | 2179 |
| 3 | 2203 | 7 | 1 | 2203 | 2187 |
| 3 | 2207 | 7 | 1 | 2207 | 2187 |
| 3 | 2213 | 7 | 1 | 2213 | 2187 |
| 3 | 2221 | 7 | 1 | 2221 | 2187 |
| 5 | 11 | 3 | 2 | 125 | 121 |
| 5 | 23 | 2 | 1 | 25 | 23 |
| 5 | 29 | 2 | 1 | 29 | 25 |
| 5 | 127 | 3 | 1 | 127 | 125 |
| 5 | 131 | 3 | 1 | 131 | 125 |
| 5 | 601 | 4 | 1 | 625 | 601 |
| 5 | 607 | 4 | 1 | 625 | 607 |
| 5 | 613 | 4 | 1 | 625 | 613 |
| 5 | 617 | 4 | 1 | 625 | 617 |
| 5 | 619 | 4 | 1 | 625 | 619 |


| 5 | 631 | 4 | 1 | 631 | 625 |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 5 | 641 | 4 | 1 | 641 | 625 |
| 5 | 643 | 4 | 1 | 643 | 625 |
| 5 | 647 | 4 | 1 | 647 | 625 |
| 7 | 19 | 3 | 2 | 361 | 343 |
| 7 | 43 | 2 | 1 | 49 | 43 |
| 7 | 47 | 2 | 1 | 49 | 47 |
| 7 | 53 | 2 | 1 | 53 | 49 |
| 7 | 331 | 3 | 1 | 343 | 331 |
| 7 | 337 | 3 | 1 | 343 | 337 |
| 7 | 347 | 3 | 1 | 347 | 343 |
| 7 | 349 | 3 | 1 | 349 | 343 |
| 7 | 353 | 3 | 1 | 353 | 343 |
| 7 | 359 | 3 | 1 | 359 | 343 |
| 7 | 907 | 7 | 2 | 823543 | 822649 |
| 7 | 2357 | 4 | 1 | 2401 | 2357 |
| 7 | 2371 | 4 | 1 | 2401 | 2371 |
| 7 | 2377 | 4 | 1 | 2401 | 2377 |
| 7 | 2381 | 4 | 1 | 2401 | 2381 |
| 7 | 2383 | 4 | 1 | 2401 | 2383 |
| 7 | 2389 | 4 | 1 | 2401 | 2389 |
| 7 | 2393 | 4 | 1 | 2401 | 2393 |
| 7 | 2399 | 4 | 1 | 2401 | 2399 |
| 7 | 2411 | 4 | 1 | 2411 | 2401 |
| 7 | 2417 | 4 | 1 | 2417 | 2401 |
| 7 | 2423 | 4 | 1 | 2423 | 2401 |
| 7 | 2437 | 4 | 1 | 2437 | 2401 |
| 7 | 2441 | 4 | 1 | 2441 | 2401 |
| 7 | 2447 | 4 | 1 | 2447 | 2401 |
| 11 | 113 | 2 | 1 | 121 | 113 |
| 11 | 127 | 2 | 1 | 127 | 121 |
| 11 | 131 | 2 | 1 | 131 | 121 |
| 11 | 401 | 5 | 2 | 161051 | 160801 |
| 11 | 1297 | 3 | 1 | 1331 | 1297 |
| 11 | 1301 | 3 | 1 | 1331 | 1301 |
| 11 | 1303 | 3 | 1 | 1331 | 1303 |
| 11 | 1307 | 3 | 1 | 1331 | 1307 |
| 11 | 1319 | 3 | 1 | 1331 | 1319 |
| 11 | 1321 | 3 | 1 | 1331 | 1321 |


| 11 | 1327 | 3 | 1 | 1331 | 1327 |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 11 | 1361 | 3 | 1 | 1361 | 1331 |
| 11 | 1367 | 3 | 1 | 1367 | 1331 |
| 13 | 47 | 3 | 2 | 2209 | 2197 |
| 13 | 89 | 7 | 4 | 62748517 | 62742241 |
| 13 | 157 | 2 | 1 | 169 | 157 |
| 13 | 163 | 2 | 1 | 169 | 163 |
| 13 | 167 | 2 | 1 | 169 | 167 |
| 13 | 173 | 2 | 1 | 173 | 169 |
| 13 | 179 | 2 | 1 | 179 | 169 |
| 13 | 181 | 2 | 1 | 181 | 169 |
| 13 | 2153 | 3 | 1 | 2197 | 2153 |
| 13 | 2161 | 3 | 1 | 2197 | 2161 |
| 13 | 2179 | 3 | 1 | 2197 | 2179 |
| 13 | 2203 | 3 | 1 | 2203 | 2197 |
| 13 | 2207 | 3 | 1 | 2207 | 2197 |
| 13 | 2213 | 3 | 1 | 2213 | 2197 |
| 13 | 2221 | 3 | 1 | 2221 | 2197 |
| 13 | 2237 | 3 | 1 | 2237 | 2197 |
| 13 | 2239 | 3 | 1 | 2239 | 2197 |
| 13 | 2243 | 3 | 1 | 2243 | 2197 |
| 17 | 277 | 2 | 1 | 289 | 277 |
| 17 | 281 | 2 | 1 | 289 | 281 |
| 17 | 283 | 2 | 1 | 289 | 283 |
| 17 | 293 | 2 | 1 | 293 | 289 |
| 19 | 83 | 3 | 2 | 6889 | 6859 |
| 19 | 347 | 2 | 1 | 361 | 347 |
| 19 | 349 | 2 | 1 | 361 | 349 |
| 19 | 353 | 2 | 1 | 361 | 353 |
| 19 | 359 | 2 | 1 | 361 | 359 |
| 19 | 367 | 2 | 1 | 367 | 361 |
| 19 | 373 | 2 | 1 | 373 | 361 |
| 19 | 379 | 2 | 1 | 379 | 361 |
| 23 | 509 | 2 | 1 | 529 | 509 |
| 23 | 521 | 2 | 1 | 529 | 521 |
| 23 | 523 | 2 | 1 | 529 | 523 |
| 23 | 541 | 2 | 1 | 541 | 529 |
| 23 | 547 | 2 | 1 | 547 | 529 |
| 29 | 821 | 2 | 1 | 841 | 821 |


| 29 | 823 | 2 | 1 | 841 | 823 |
| ---: | ---: | ---: | :--- | ---: | ---: |
| 29 | 827 | 2 | 1 | 841 | 827 |
| 29 | 829 | 2 | 1 | 841 | 829 |
| 29 | 839 | 2 | 1 | 841 | 839 |
| 29 | 853 | 2 | 1 | 853 | 841 |
| 29 | 857 | 2 | 1 | 857 | 841 |
| 29 | 859 | 2 | 1 | 859 | 841 |
| 29 | 863 | 2 | 1 | 863 | 841 |
| 31 | 173 | 3 | 2 | 29929 | 29791 |
| 31 | 937 | 2 | 1 | 961 | 937 |
| 31 | 941 | 2 | 1 | 961 | 941 |
| 31 | 947 | 2 | 1 | 961 | 947 |
| 31 | 953 | 2 | 1 | 961 | 953 |
| 31 | 967 | 2 | 1 | 967 | 961 |
| 31 | 971 | 2 | 1 | 971 | 961 |
| 31 | 977 | 2 | 1 | 977 | 961 |
| 31 | 983 | 2 | 1 | 983 | 961 |
| 31 | 991 | 2 | 1 | 991 | 961 |
| 37 | 1361 | 2 | 1 | 1369 | 1361 |
| 37 | 1367 | 2 | 1 | 1369 | 1367 |
| 37 | 1373 | 2 | 1 | 1373 | 1369 |
| 37 | 1381 | 2 | 1 | 1381 | 1369 |
| 37 | 1399 | 2 | 1 | 1399 | 1369 |
| 41 | 263 | 3 | 2 | 69169 | 68921 |
| 41 | 1657 | 2 | 1 | 1681 | 1657 |
| 41 | 1663 | 2 | 1 | 1681 | 1663 |
| 41 | 1667 | 2 | 1 | 1681 | 1667 |
| 41 | 1669 | 2 | 1 | 1681 | 1669 |
| 41 | 1693 | 2 | 1 | 1693 | 1681 |
| 41 | 1697 | 2 | 1 | 1697 | 1681 |
| 41 | 1699 | 2 | 1 | 1699 | 1681 |
| 41 | 1709 | 2 | 1 | 1709 | 1681 |
| 41 | 1721 | 2 | 1 | 1721 | 1681 |
| 43 | 1811 | 2 | 1 | 1849 | 1811 |
| 43 | 1823 | 2 | 1 | 1849 | 1823 |
| 43 | 1831 | 2 | 1 | 1849 | 1831 |
| 43 | 1847 | 2 | 1 | 1849 | 1847 |
| 43 | 1861 | 2 | 1 | 1861 | 1849 |
| 43 | 1867 | 2 | 1 | 1867 | 1849 |


| 43 | 1871 | 2 | 1 | 1871 | 1849 |
| ---: | :--- | :--- | :--- | ---: | ---: |
| 43 | 1873 | 2 | 1 | 1873 | 1849 |
| 43 | 1877 | 2 | 1 | 1877 | 1849 |
| 43 | 1879 | 2 | 1 | 1879 | 1849 |
| 43 | 1889 | 2 | 1 | 1889 | 1849 |
| 47 | 2179 | 2 | 1 | 2209 | 2179 |
| 47 | 2203 | 2 | 1 | 2209 | 2203 |
| 47 | 2207 | 2 | 1 | 2209 | 2207 |
| 47 | 2213 | 2 | 1 | 2213 | 2209 |
| 47 | 2221 | 2 | 1 | 2221 | 2209 |
| 47 | 2237 | 2 | 1 | 2237 | 2209 |
| 47 | 2239 | 2 | 1 | 2239 | 2209 |
| 47 | 2243 | 2 | 1 | 2243 | 2209 |
| 47 | 2251 | 2 | 1 | 2251 | 2209 |
| 53 | 2767 | 2 | 1 | 2809 | 2767 |
| 53 | 2777 | 2 | 1 | 2809 | 2777 |
| 53 | 2789 | 2 | 1 | 2809 | 2789 |
| 53 | 2791 | 2 | 1 | 2809 | 2791 |
| 53 | 2797 | 2 | 1 | 2809 | 2797 |
| 53 | 2801 | 2 | 1 | 2809 | 2801 |
| 53 | 2803 | 2 | 1 | 2809 | 2803 |
| 53 | 2819 | 2 | 1 | 2819 | 2809 |
| 53 | 2833 | 2 | 1 | 2833 | 2809 |
| 53 | 2837 | 2 | 1 | 2837 | 2809 |
| 53 | 2843 | 2 | 1 | 2843 | 2809 |
| 53 | 2851 | 2 | 1 | 2851 | 2809 |
| 53 | 2857 | 2 | 1 | 2857 | 2809 |
| 53 | 2861 | 2 | 1 | 2861 | 2809 |
| 113 | 1201 | 3 | 2 | 1442897 | 1442401 |
| 131 | 1499 | 3 | 2 | 2248091 | 2247001 |
| 163 | 2081 | 3 | 2 | 4330747 | 4330561 |

Appendix B1

## Maple Code

The following code is based on the Maple Code we used in our computation specially for the "Medium" range for $M$.

```
> PRIME_1 := given;
> PRIME_2 := given;
> with(numtheory);
> generalLevel := 30;
> veryLarge := 2^(18);
> enoughLarge := 15;
> outputFilefp:= fopen("tabel1.txt", WRITE, TEXT);
> fclose(outputFilefp);
> runFilefp:= fopen("runningReport.txt", WRITE, TEXT);
> fclose(runFilefp);
> p1 := PRIME_1;
> p2 := PRIME_2;
> x := log (p1)/ log (p2);
> BOUND := 0;
> reducedLevel := 0;
```

```
> cf := cfrac(x, generalLevel, 'quotients');
> print(cf);
> for BB from 1 to generalLevel do # BB
> BOUND := nthdenom(cf, BB);
> if (BOUND > veryLarge ) #BOUND
then
> printf("This BOUND is too BIG = %d > veryLarge = %d \n",
> BOUND, 2^(18) );
> break; #then
> else reducedLevel := reducedLevel + 1;
> end if; #BOUND
> end do; # BB
> printf("Reduced Level is %d \n", reducedLevel );
> for i from 1 to reducedLevel by 1 do #from nthLevel to reduced
> step by very Large #
> #### NEW PART CRITERIA
> Criteria := cf[i+1] - enoughLarge;
> if (signum(Criteria) > -1)
> then
> printf("%d + 1 the partial quotient %d is
> bigger than 14 ", i, cf[i+1] );
> kk:=p1^(nthdenom(cf, i));
> printf("\n\n p1^nthdemum = %d^(%d) \n = kk = %d \n",p1,
```

```
> nthdenom(cf, i), kk);
> tt:=p2^(nthnumer(cf, i));
> printf("\n\n p2^nthnumer = %d^(%d) \n = tt = %d \n", p2,
> nthnumer(cf, i), tt);
> LL := abs ( kk - tt );
> printf("\n\n LL = abs(kk - tt) \n = %d \n", LL);
> RR := sqrt( min(kk, tt ) );
> printf("\n\n RR = sqrt ( min(kk, tt ) ) \n = %g \n", RR);
> printf("\n\n LL - RR %g \n", LL-RR);
> if ( signum(LL-RR) < 0)
> then
> ouputFilefp:= fopen("tabel1.txt", APPEND, TEXT);
> fprintf(outputFilefp, "p1 = %d a = %d p2 = %d b = %d ",
> p1,nthdenom(cf, i), p2, nthnumer(cf, i));
> fprintf(outputFilefp, " abs(%d - %d) = abs(%d) = %d ", kk, tt,
> abs(kk-tt), LL);
> fprintf(outputFilefp, " sqrt(%d) = %g \n ", min(kk,tt), RR);
> fclose(ouputFilefp);
> end if; # signum(LL - RR) < 0
> end if; #criteria
> end do; #i reducedLevel for n-th denum nth numer
```

> runFilefp:= fopen("runningReport.txt", APPEND, TEXT); \#betterthan > binary
> fprintf(runFilefp, "We've done check prime pair (\%d \%d) \n", p1, > p 2 );
> fclose(runFilefp);

## Appendix B2

## Running Sample

We attach a sample running result for the Maple Code in Appendix B with special the case $p_{1}=43$ and $p_{2}=1013$.

$$
\text { PRIME_1 }:=43
$$

$$
\text { PRIME_2 }:=1013
$$

[GIgcd, bigomega, cfrac, cfracpol, cyclotomic, divisors, factorEQ, factorset, fermat, imagunit, index, integral_basis, invcfrac, invphi, issqrfree, jacobi, kronecker, $\lambda$,
legendre, mcombine, mersenne, migcdex, minkowski, mipolys, mlog, mobius, mroot, msqrt, nearestp, nthconver, nthdenom, nthnumer, nthpow, order, pdexpand, $\phi, \pi$, pprimroot, primroot, quadres, rootsunity, safeprime, $\sigma$, sq2factor, sum2sqr, $\tau$, thue]

$$
\begin{aligned}
& \text { generalLevel }:=30 \\
& \text { veryLarge }:=262144 \\
& \text { enoughLarge }:=15 \\
& \text { outputFilefp }:=0 \\
& \text { runFilefp }:=0
\end{aligned}
$$

$$
\begin{gathered}
p 1:=43 \\
p 2:=1013 \\
x:=\frac{\ln (43)}{\ln (1013)} \\
\text { BOUND }:=0
\end{gathered}
$$

reducedLevel $:=0$
cf $:=[0,1,1,5,3,1,94,3,10,4,1,10,5,3,3,2,2,83,1,8,19,1,1$, $3,3,2,1,24,2,4,4$,
...]
$[0,1,1,5,3,1,94,3,10,4,1,10,5,3,3,2,2,83,1,8,19,1,1,3,3,2,1,24,2,4,4, \ldots]$

$$
\begin{aligned}
& \text { BOUND }:=1 \\
& \text { BOUND }:=2 \\
& \text { BOUND }:=11 \\
& \text { BOUND }:=35 \\
& \text { BOUND }:=46
\end{aligned}
$$

$$
B O U N D:=4359
$$

$$
B O U N D:=13123
$$

$$
B O U N D:=135589
$$

$$
B O U N D:=555479
$$

```
This BOUND is too BIG = 555479 > veryLarge = 262144
Reduced Level is 8
```

                    Criteria := -14
    Criteria \(:=-14\)
    Criteria \(:=-10\)
    Criteria \(:=-12\)
    Criteria \(:=-14\)
    Criteria :=79
    $6+1$ the partial quotient 94 is bigger than 14

$$
\text { p1^nthdemum }=43^{\wedge}(4359)
$$

= $\mathrm{kk}=$
1945350546965597461267744209398273250646028240711581661547099348267840 3609808039190805551699238710442124964225107349991785325168154812514416 6295184488546311653873678583979723756599484431149855457616853602364356 6403002633859621041054448265850800949938813711695288000239724941836812 3660459924116117217586380417184745114439582656571416390079931319321085 2118946940700411796928518914321838267987668566375970936959079563825117 2036096342280287183897799809832551747339889090000811108566929704171583 4639545168814200326125370732480615392486228938632406346105795996100592 7171190414679741657515720110103808669882451956620909154369578324665962 0161721367674182154620435227153673702590682680404454503247205341770685 6222295355667980560565418462351020128795752152078126376627555826924426 1222708517738999367683339867381054501851579367864435403528227057806683 8362732223783436159089966551118629512830185880967969999339854067749419 2742095149872550723501668396982787920711589778017485964133738237954276 9770850305734105675555292343346352343366622603512967756748291911918936 1288523964273933744584645809981563221983802067811884579598652362534765 2725092366080614750897778764071878704141828556694878309775008755763907 1190241194883720350664524331251814588670008469145377848952743374682873 1850239979273812374548605097611667549119155255879203019673675620384252 1125405706238020180983318695134031075151558541449805632695220022725749 5365972446683819981099759379675312993750813100795683111978025924480171 3095000179386949706874770089279713924123179774681212504940286170951507 3899744524817140453249121001979422088992751741278481578005652116718728 0450663412516080773405456628884898119953798909153621727818696051097348 6979047298488501764041947002853753530163544004200014854903858077378597 5516699034808932407328533525409864257866513236552317904559302751622744 0037920659057050227565069325524128068692231744705835447349980457004226 3827193986014915603544394308481536591333697871442696957151611615772212 9530765770826862555526447316191270074296179960812385303472828051884308 3731828548405213978432331796932169681455567380347273086662986106557495 4197611034827577116631842010592019636008021717674255065383253643612315 8607604585531173247523951544253310973225940370700024029833279417826975 2349773686142277108337769199299177153694596339793867349054635376504764 9841542263255359672739549739428841880817574977059693809020513999091661 9416626567405629419361001761382153102330803087871806175928005888054632 9512384405722412968558889574389583774491994690500385778779256232839204 8776299804688101277101598569897851246400917457770691076826110872046895 2915875190558690661183581799371265410702292913560307519218337280514548 4575009941521931240271131681418712233145606421769993250627661687394304 3641259616229688242720495831618826808445657233723035736623853836651597 1766798152196859725337598090123258874944629208017935634843354731343783 0350272119354762738075418052956640382229011451340577525153141055761439 7799940334520434434401399769011701416027726523531223657977704639065209 0103222855691168579636236792110855488129174922809419356069936973408999

8574768412663188853335677626105609260169496113385299594665215352707494 6215877701597275068340974298559267714708108850350014404036124420168552 7600141990314174141702307710503577065505045144379232366982577492784441 4275513953590598534666201323004742834230748946245486735426684730317134 5942918087482140719304745711268694305711895327634808830921655413470207 3815271837335838958248025395509618074629817015759704819883169828434362 7353840692342543236556855847224659840769681840327943630845886549999332 3218230177264120283922500856527562610442959299225811421284575476531505 0239517693829899650006076844660058004393720886619945165643330907756189 9644069469763970457030538857928840121798647201813709410846834431507245 0281936975403995572665986546599776771561316789281208408381338236810545 3585708399209858777032301315285907638015654450148963790769387356347652 0910882020601791025688130073703155820658429767510346543663900796077291 4123501916397365654699121632611221239491979070545576430689636814435175 2218615995114863062685413214020248153997357027425826182075219557017677 7462794120278161250755154269503104394672446705599535532886035479735454 5898626999538506567304957933403121191128056826041685654587514672166002 9263811291600466131689936947576851626828688573895677299587019352723113 3260531432634595799334011189701097047207446678382919274880859241145010 9707541474646032338744605503910500176498273479950871117411091598370055 9412080825080705589692602872190846919177988740398153084698528448706680 3594063949681590402010712476631535104320944324541830860404899682846935 5361243330224402106609727388329433837736752956988424025033617574189913 3282884687754874001279857730103377025012611479728083925826453169314709 9774018989418318014821201386015759998337060341031888494229919931755060 1624101015223423355188893578067594843703863249438300472612941869499722 5898403258639786443267658197147969585587350775433863808233108320905320 6634744460435482007960137725126886948018516884631155312258223406564806 3019139762021274611030451009792656914540873358908882155433072884373511 3389183915371046135793080072359449332766342654493604846963542682893654 2495169863658631400546122421451250200728502387473821128124113793698379 0490284169807180517150822331575759933804124362130910537707078749873154 7638501545415058731278221101716719994484909060636706994867947602943852 3458485318449112296910798134873766124826646953178998187462633922133974 1529651067580120571866580132196143511103127687199443927105583758804087 0415519634660886006965014640502936868521856069941646550786785444573540 4765029442257980424031526772891867316817995305338748436611233135232368 9049915000655607437873031608388287038730143783004663111805227498901088 0379672035191663271841978173892862427108466732933385669710312975252518 3411873970805273536953534259222300297150361178573360499010917127865459 2982133975430159019587660470646143530137965732633655176411215887386215 4530934424608313983194782646059119597290793762218950641607637390114990 6717007695944704311570208989833474006603113559570363052773459889412436 2351775255265471704565586489918530304621175551900989432538332860820929 8325560622929645050607214385733509202298777505741365661296016461601222 9670109426389920021469620046507795331517297667799528074972919765477539 3050960374585486815945176111184468485249894927811860210747133251585671 1542795343088854850947156648906591074124566134939711651532689033768502 6836418330880564915819233828973882889352320351584019471720138857741362

4792122414871453512612753601389964495104109800459114214336990524462823 0930381778764375116824431400481630924279320168025707852553686643388631 2376147010746933648539813786285013535228641255592181707845698711189247 6565488976655243602134586018342456528813767530258448047354595587303145 1336638056463289622897355191785385391614096155138868256636787064601700 0141503812941842197070800142499710271179777329390984915409145844787275 1545964345010097255477925366134818746798144302260080833284787458198444 5421334061259934014790119256105458838866195510119000239735474017828214 922944552360218939261896240708905066587188974271907
p2^nthnumer $=1013^{\wedge}(2369)$
$=\mathrm{tt}=$
1944357226269164679897750981689865790619836834498690045927205930194194 8008369761927153225625067338855917425826409456777525480466840878615794 8234744647925005092520043177122150321513620563436758817162335905092500 3988855692076535654125535357772383253567342237449917330821642626030821 4668211369813031644840803369299466306918594105271579462501176075663174 9756623568933641683761241070059505577274473440454569960042879032674585 9097315961658599308056581714390933969386969788253919289750560553692662 9860731552286200507465919533310946523043712754264253400156170982356211 3754957452457497229240784777453192891715230474506336459974532488100688 3869992013727866848478994351608072823564344906854665062991219426202750 4655870281589947922661402286327987295412576264603649353301608180157125 5110400518200694804287010419771486440836474972057074772649058149030910 6842812382159839682197152071143573729223262794735939322755726805490618 4206032620863604699056855440106987835713557047110538339955384402669812 9471663338242152838045049053651369901731227386098740594170139418934719 4973333222183511194472508622718590915878016208327299518861184619590155 0847570865177762679306648894304425986244040147305895890693593766278477 3659500590806334175729362315585326393463435873615105792395756007702193 9498132039570698601814394971849812055051877972547283356285159664807436 4289329540420410715831292946122537090811701372357781925313248455345494 5577473971589152004761058493671475616048724979282208763253871078059698 0280257082573601602172302089233769167181060696406822271602037549025982 6588422223446349800940005712222258145315923300019469792691220519001147 5646593009463058504342724441662742330160271180912877101677975556996776 4785905836051109152786859015479427247422412453362534180837625091533177 1565776474250193909901268661860570330283218139226604155532247700046709 3755923780504795898898028742526501436595457428832028051987024756083994 7772659399667763037378356771984319921079864117037786622830015569536926 6878808643442427761268826092756490719651278694348555952991191491254455 9166760960467841837481359776423949038662259482407976340722610792872891 1565719984275061092824580175700947102145158612086522348136440760368456 0127370754013809193391168664809643563743602047382522481001778181053651 2623567478671424585950247875829427093059900630313007573775646702101271

4480710424532678731482857026976034508126458907121338838397680188894583 4302926087315953927239598299603956686028530884138658913790410878079660 2500949778429480979877554474542161536063865051091661162104530398256578 5479438017594941881859347832060067323883991708123122030830297674966424 9209190806391206935653633493845631159926215925688794048300671097926163 8524174617576617273368286498700211049263337697869039290074335481222559 3588912858320405855871005477455372636917515285367659179585766444500472 5238002192338835108860544931816130827398211953375423227443229546969098 3611176012372648028923776491077409560789701844900616900833990252651586 7345463693538736947798484397481919413310752927670901218465259004631981 5447395290512160371380286421700923892617462632360698566285026004376421 5980685769356148334253143998637776278059901989594014896717367601643873 7106428912064314679780270840522829992015709553854973750586195805745076 6836336729113452866711064258302805719741992992555542169489342935946571 6658286646381459507739143101658497108728112745665616334547783571472012 6436970515895937321410522141534656864557827278957511777461773332889151 8444503272383683621825897563272308424120816477460838900412613671623271 0363567480165778264897326345635764038464953792647833788049163000397539 6641790484325926959686257441625143914862597828097946032987746282429181 0239804508483326735163887688047616992455523929716743383867678048622416 1479035179618648465402045331327291222057488553413968832001698374962825 7300290895783347514801826492429116251725779109168198066877102329005541 7574501336689964461268098401743211632095734939637413464767978005924967 6348272127401843415354005227424898137471483343721728084011581318235310 1076798067369207837209103881794065392452369922943237623928552835167304 6202102667172170482844441820542523643958186814477005672205578355201307 5611559480483001426015733339009334100896620779010077646206031029371635 7882238337807058142722294322004209575989024155017718883637617120131282 4457868345449482789860276638165777928288353441189491636023786288094283 3448462369224539470614315831837181927198838115907496607796064508836108 9836127584845558610878820480860040584362236299480689428228457079713280 4842492504294905471298768126132994579297350472341050689440285006893122 6476055803859029767481186885000036645877722474536680607895808233486001 4821336017693610336415347256074952418351448655543544313350932649422885 2848606585576998814941112494047335091348854915063346790578544916864788 9398048703089516406408148795027677548274325449662855482558247425255412 2599031754376752040809928579160322499113149561967703551225489809094511 5939276687088987933908471893731573928160523850279455665106094215810983 9003042335109317433561875016440257577157545515843889470050778413015161 1368034105491092427617493007286263405364769960877130443208701054223036 7014213394736784079289534973266777819164913850208381724069506316869198 0199492622508229064669354624548329381918997339856133519031279277049761 0135528563662768023686693966662317731035604205974268270776939652855996 9222627807429553156314870731486723528484281884523320389974046410259105 2983833138408015421852503183193063224106064628937340297430955917491756 2907310196322809611602618021093106043304564051693397222147965820258782 0815519081118695364846468885414827254912660312659347268503675116685981 5210908311493773527366374815006887221448162936863569012760483637968875 2095806730836134096766698789705832014984130112368123758183381749494555

4070517955869696847238116783951994070369962686507236099494160139595621 6435025304347001488653568276552675388809319892230803927717606356553954 2433277514636358678797851697331201949407933944894023134195740802301178 4091603554058438698373171515201649072148586004930034996787653941127459 7192608250294354078562006657788036397969967774661277932266622031115515 9400252549439072430443143382603492098931674023236386902907974616587770 9220135435008196299593869832659493682412681077160643544588708746379305 6362953340593755713824447559295345677924552787131192458970242621765629 8109596589909462839526308988337950654624815253822649615312563419776980 4823879820774236873674917655783903516801526693270890289770873611613704 3467317846242676165313689762293323461516390653854802854007907073979336 2770940287551134416650719913350151210976037296180711128798408281495484 2601057406360614289537703998133809315692079952884764912158455718610064 2782453920835487339701483003603993095318276260139553697221533447043934 3458313160946315759591645976212441992088821531507532913036652013934765 0470771669212563360881348785987643535977724009506533514864750579848162 7858022974379748498262931682597897743367726526175074064089887937040326 3555655532331464669875134843890998773641290925066437408391722403171037 9834718528559025186240831372294787817293557274285385258577422994195489 373953799454328657838773111826736919970212908451573

$$
\mathrm{LL}=\mathrm{abs}(\mathrm{kk}-\mathrm{tt})
$$

=
9933206964327813699932277084074600261914062128916156198934180736455601 4382772636523260741713715862075383986978932142598447013139338986218060 4398406213065613536354068575734350858638677130966404545176972718562414 1469417830853869289129080784176963714714742453706694180823158059908992 2485543030855727455770478852788075209885512998369275787552436579102362 3233717667701131672778442623326907131951259214009769162005311505312938 7803806216878758412180954416177779529193017468918188163691504789204778 8136165279998186594511991696688694425161843681529459496250137443813416 232962222444282749353326506157781672214821145726943950458365652736291 7293539463153061414408755456008790263377735497894402559859155679351566 4250740780326379040161760230328333831758874744770233259476467673006112 3079995383045633963294476095680610151043958073606308791689087757731519 9198416235964768928144799750557836069230862320306765841272622588008536 0625290089460244448129568758000849980327309069476241783538352844640299 1869674919528375102432896949824416353952174142271625781524929842166315 1907420904225501121371872629723061057858594845850607374677429446101877 5215009028520715911298697674527178977884093889824190814149894854297530 7406040773861749351620156664881952065725955302720565569873669806792352 1079397031137727342101257618554940672772833319196633885159555768156836 0761658176094651520257490114939843398571690920237073819715673802549788 4984750946679763387008860038373777020881215134743487241548464204732814 7430968133481047024680000459447569421190782743902333382486219255247311

3223013707906523091152897571639436768284412590117853144315977175804804 0704030530222690627321872221557897935277282407446261407204941005722193 1414624373926112550879873743262827411315508374806740662329858454203950 9225605587384974272648635492939275832950973257137490270550515760346281 9968785522543286670405829976266320967743158738073953629557009202316054 5345863471525661660375364972166702538337544049103343215960462352862651 9571273844347942576212234347793546449012664638293504816365606298524565 0675879373721409509720205082206427933078979392967459403753136846042631 8910505525160238072618348910725338628631055877327172468128832438598480 2338315173640541327828794436674094823383233175015488315012367733239726 2062074708525223875213234697500606346957094808597752789886744034935360 8318387226809412566927124528073726911160699383549706228338101970785113 7004800896754921214034617781964163022722037331472621375950099749727011 4346272929319886813350998474222384281296394087246166747258345826263296 8617870931593952422507378377839225169257496475690459958131970804703706 6843841674837255299483055256342507760769878715134709176661825883846050 8353239453139669028451827185011838822687239009539605533262061717450052 3467579092823868494903541634541715281419483553765570380873921511246528 7959598580246164770531583071280475464172546425124074001251843746846739 0961069821147091516415618792308214393096064399606243191508031098530454 4766409816974866029153715297820027169735958603224395124456344332274655 8275651790082082559503704099315955117122904487207897849109690325782594 0826433070405190825336274678329821095941237912846979478477510636209109 4487895329603885607034580364377226923992964950406534499286144234760763 8052612007212749912434522007713457630521518236901974932345568378697617 2273072091390269270582213462457255026362005798704008789011588451219505 9475715862033978942235697340374411540680486772970534598820805810555370 7685649521553364221278322373096505090005382988659194705561568110916990 2732121767649716595295015888958023047280476801098427967235496017926576 4396929381933242362434149024186955803614711278653882968291941023239999 7131853465729148421891566124410119381969569032017817756528591337738165 0342901453219916284935266015488997411586483997405788451360565444192981 6460796206480578641600541706605198355376801130103415042359078050036011 2070625198943157642029135426960059199195105115503260014093504226844562 6098931999476103341248462782576831869464237886184596523194778419813046 7038490281578174900177508171558470396091476023388067610839792678706016 5133279426925798409713934777245100391702129488205098696412018163701851 2346397951598247394209304937702937758259265894578866800044503638188016 3886617314484245826636113989116151390326710239667709498975520347204805 9429461509833418296603094110736985403351327061856635632330646288299812 0690634100563287196953578639151200086085624754226670847947323089019871 4138898004737278657850230504595921360371804701816891826345186567754569 5883207858001183938347460578523398806382680571023952582434418135577118 0081458225606345295255916314984584432218500051502525090914493609340539 9073125307917701943801322544814193853043014448797116826849247670280434 2781021778751863387452360560419336637565646647371352479082524499210375 9702863288016084130525909880824500627348913690330116716725064996479025 0692608466713143789649989072723445907136874705969213874520604052109959 1265715507985093591863034163956574268269251544081431270141050943367631


#### Abstract

7021253261645743982627086866293708609713687872658422074449935496451651 1056565301821834129580025063935091761033980317517122243718301504746374 9705206342620565035450990926715136014288042852231228940363660244562295 6772411504023358767677969029208188095050476176876090928345166486180354 7556061444124934641283649134422027685201561566422669301390970171578415 8737379855055749633503702299964660006271761133866048939011926847470474 6521800410968750582949516807029007205823242416578900316780046422178622 3408712573109602639621111030374677985636355060467049576179385453049600 0005535421906421185457550881096136091957572822992822831103278875589554 1211307642068966651519578849800953698323684751794238507494972634936954 1082698194733411063328186824550237460136706365393536218457494065326309 1540793219664246038613899408683567385040464261495702161528356568966976 8486664582720482999659826696249083410412863425565712933107713115050548 8564607938003407898087733149415807300317877396320422154750850850370439 3308705498752848216111308574705251422077572889156448199834489875309524 3994456503502330082023320454376086331457849090851205068378582969202951 5227058263992741224431073150382056895015286646025296303582442331589105 4251879214487510133445530740155198860964285807221167073077152219173307 1560857961643076451724872124496535927448806683356160026771437119094941 3637846760239764188671228465178306250796739892105954345698318086906718 9155223146179772722389931226875573230394416688213617618154221547983369 1004846378887505055440666805594278359296977292166177122317837620262021 1821273203190959620336880398132841280725042784030855385822429673388329 3243724037608272867274023478216085872402151409429403952309247785669593 6930899114463088383307826810204399103649954526280106241652641453133107 1758157089278425429400421300145367249459987509151343179435733683800865 8663872507262620160064057977418556363721456323347417720364847535372283 4808385620936988078684599018125278120508032159108513192579077469487990 3088126786325856027905222438199731568533771936434248930650550274065586 6155327009088285492878838106710215726382358336149811580510236327255489 90752905890281423123128882168146616976065820334


$R R=\operatorname{sqr} t(\min (k k, t t))$
$=1.39440 \mathrm{e}+3560$

LL - RR 9.93321e+7116

$$
\text { Criteria }:=-12
$$

Criteria $:=-5$
runFilefp $:=1$

## Bibliography

[1] A. Baker, Linear forms in logarithms of algebraic numbers I, Mathematika 13 (1966), 204-216.
[2] A. Baker, Linear forms in logarithms of algebraic numbers II, Mathematika 14 (1967), 102-107.
[3] A. Baker, Linear forms in logarithms of algebraic numbers III, Mathematika 14 (1967), 220-228.
[4] A. Baker, Linear forms in logarithms of algebraic numbers IV, Mathematika 15 (1968), 204-216.
[5] A. Baker, Contributions to the theory of diophantine equations, I : On the representation of integers by binary froms, II: The diophantine equation $y^{2}=$ $x^{3}+k$, Phil. Trans. Roy. Soc. London A 263 (1967/68), 173-208.
[6] A. Baker and H. Davenport, The equations $3 x^{2}-2=y^{2}$ and $8 x^{2}-7=z^{2}$, Quart. J. Math. Oxford Ser. (2) 20 (1969), 129-137.
[7] A. Baker, A sharpening of the bounds for linear forms in logarithms. I Acta Arith. 21 (1972), 117-129.
[8] A. Baker, A sharpening of the bounds for linear forms in logarithms. II Acta Arith. 24 (1973), 33-36.
[9] A. Baker, A sharpening of the bounds for linear forms in logarithms. III Acta Arith. 27 (1974), 247-252.
[10] A. Baker, Transcendental Number Theory, Cambridge University Press, 1975.
[11] A. Baker and G. Wüstholz, Logarithmic forms and group varieties, J. Reine Angew. Math. 442 (1993), 19-62.
[12] J. W. S. Cassels, On a class of exponential equations, Arkiv f. Mat., 4 (1960), 231-233.
[13] P. Erdös, Some recent advances and current problems in number theory, Lectures on Modern Mathemthematics, Vol. III, 196-244, Wiley, New York, 1965.
[14] N. I. Fel'dman, Improved estimate for a linear form of the logarithms of algebraic numbers, Mat. Sb., 77 (1968), 423-436. Transl. Math. USSR Sb., 6 (1968), 393-406.
[15] A. O. Gelfond, Sur le septieme Probleme de D. Hilbert, Comptes Rendus Acad. Sci. URSS Moscou 2, (1934a), 1-6.
[16] A. O. Gelfond, Sur le septieme Probleme de Hilbert, Bull. Acad. Sci. URSS Leningrade 7, (1934b), 623-634.
[17] K. Györy, Solving Diophantine Equations by Baker's Theory, A Panorama of Number Theory or The View from Baker's Garden, (2002), 38-72, Cambridge University Press.
[18] L. Jones, Providence, RI: American Mathematical Society (AMS). CRM Proceedings and Lecture Notes 36, (2004), 165-176.
[19] A. Y. Khintchin, Continued Fractions, (1964), The University of Chicago Press.
[20] S. Lang, Elliptic Curves: Diophantine Analysis, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 231 Springer-Verlag, Berlin-New York, 1978.
[21] D. H. Lehmer, On a problem of Størmer, Illinois J. Math., 8 (1964), 57-79.
[22] M. Laurent, M. Mignotte, Y. Nesterenko, Formes lineaires en deux logarithmes et determinants d'interpolation. J. Number Theory 55, (1995), no. 2, 285-321.
[23] K. Mahler, Zur Approximation algebraischer Zahlen, Math. Ann., I: 107, (1933), 691-730.
[24] K. Mahler, Zur Approximation algebraischer Zahlen, Math. Ann., I: 108, (1933), 37-55.
[25] K. Mahler, Uber den grossten Primteiler der Polynome $X^{2} \pm 1$, Arch. Math. og Naturvid., 41 (1933), 1-8.
[26] M. Mignotte and M. Waldschmidt, Linear forms in two logarithms and Schneider's method. II, Acta Arith., 53 (1989), no. 3, 251-287.
[27] M. Mignotte and M. Waldschmidt, Linear forms in two logarithms and Schneider's method. III, Ann. Fac. Sci. Toulouse Math., 5 (1989), 43-75.
[28] A. Pethö and B. M .M. de Weger, Products of prime powers in binary recurrence sequences I: The hyperbolic case, with an application to the generalized Ramanujan-Nagell equation, Math. Comp., 47, (1986), 713-727.
[29] G. Pólya, Zur arithmetischen Untersuchung der Polynome, Math. Z., 1 (1918), 143-148.
[30] R. von B. Rucker, Infinity and the Mind, (1982), Birkhäuser.
[31] J. B. Rosser and L. Schoenfeld, Approximate formulas for some functions of prime numbers, Illinois J. Math., 6 (1962), 64-94.
[32] C. Siegel, Über Näherungswerte algebraischer Zahlen, Math. Ann., 84, (1921), 80-99.
[33] C. Siegel, Approximation algebraischer Zahlen, Math. Z., 10 (1921) 173-213.
[34] C. L. Stewart and R. Tijdeman, On the greatest prime factor of $(\mathrm{ab}+1)(\mathrm{ac}+1)(\mathrm{bc}+1)$, Acta Arith., 79 (1997), 93-101.
[35] C. Størmer, Quelques théoremes sur l'équation de Pell $x^{2}-D y^{2}=1$ et leurs applicaions, Vid. Skr. I MAth. Natur. Kl. (1897) No. 2, 48.
[36] C. Størmer, Sur une équation indeterminée, C. R. Paris, 127 (1898), 752-754.
[37] R. J. Stroeker and R. Tijdeman, Diophantine Equations. Computational Methods in Number Theory, H. W. Lenstra and R. Tijdeman (eds.), MC tract 155, Centr. Math. Conp. Sci., Amsterdam, 321-369.
[38] R. Tijdeman, On integers with many small prime factors, Compositio Math., 26 (1973), 319-330.
[39] R. Tijdeman, On the maximal distance between integers composed of small primes, Compositio Math., 28 (1974), 159-162.
[40] R. Tijdeman and H. G. Meijer, On integers generated by a finite number of fixed primes, Compositio Math., 29 (1974), 273-286.
[41] A. Thue, Bermerkungen über gewisse Näherungsbrüche algebraischer Zahlen, Skrift. Vidensk. Selsk. Christ., (1908), Nr. 3.
[42] M. Waldschmidt, A lower bound for linear forms in logarithms. Acta. Arithm. 37, (1980), 257-283.
[43] M. Waldschmidt, Minorations de combinaisons linéaires de logarithms de nombres algébriques, Can. J. Math. 45 (1993), 176-224.
[44] M. Waldschmidt, Diophantine Approximation on Linear Algebraic Groups, Transcendence Properties of the Exponential Function on Several Variables, Springer-Verlag, (2000).
[45] B. M. M. de Weger, Algorithms for Diophantine Equations, CWI Tract 65, Centre for Mathematics and Computer Science, 1989.

