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ABSTRACT 
 

Toxic cyanobacterial blooms constitute a threat to the safety and ecological 

quality of aquatic environments worldwide. Cyclic hepatotoxin, especially microcystin, is 

the most widely occurring of the cyanotoxins. The aim of this study was to identify the 

cyanobacterial genotypes present including how many toxic genotypes were present in 

two North American lakes and one African Lake. All three lakes are prone to 

cyanobacterial blooms and were sampled in 2005 and 2006: Lake Ontario (Bay of Quinte, 

Canada), Lake Erie (Maumee Bay, Canada) and Lake Victoria (Nyanza Gulf, Kenya). 

The cyanobacterial genotypic community was assessed using DNA based analyses of the 

hypervariable V3 region of the 16S rRNA gene. In addition, the aminotransferase (AMT) 

domain in modules mcyE and ndaF of the microcystin and nodularin gene cluster 

respectively was used to detect the presence of hepatotoxic genotypes. Denaturing 

gradient gel electrophoresis (DGGE) results from this study suggested that hepatotoxin 

producers were present in all study sites sampled and were most likely members of the 

genus Microcystis. This study was the first to report the potential for microcystin 

production in the in-shore and off-shore open lake of Nyanza Gulf in Kenya. A seasonal 

study of the Bay of Quinte and Maumee Bay showed differences in the cyanobacterial 

genotypic community from early to late summer. In addition, the cyanobacterial 

genotypic community from the Bay of Quinte differed from 2005 to 2006 and 

quantification of the North American samples revealed an increase in cyanobacterial cells 

from early to late summer. The Bay of Quinte saw relatively no change in hepatotoxic 

cells from early to late summer but in Maumee Bay hepatotoxic cells increased from 

undetectable in early summer to dominating the cyanobacterial community by late 
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summer. This study demonstrated the use of DGGE and qPCR of the 16S rRNA-V3 and 

AMT gene region in monitoring the cyanobacterial community of waterbodies 

susceptible to toxic cyanobacterial blooms.    
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CHAPTER 1.0: GENERAL INTRODUCTION 
 

1.1 TOXIC CYANOBACTERIAL BLOOMS 
 

The phylum Cyanobacteria is a morphologically diverse group of Gram-negative, 

photosynthetic prokaryotes (Codd 1995). In eutrophic freshwater bodies, cyanobacteria 

are frequently the dominant phytoplankton group (Reynolds, 2007; Negri et al., 1995) 

and under favorable conditions, extensive growth of cyanobacteria can result in intense 

blooms on the water surface. Several environmental factors are involved in the promotion 

of these cyanobacterial blooms such as high phosphorous concentrations, low nitrogen to 

phosphorus ratio (N:P), increased water temperature, and a stable water column (Ferber 

et al., 2004; Jacoby et al., 2000; Lean and Pick 1981). Cyanobacterial blooms often result 

in a variety of water quality issues such as dissolved oxygen (OD) depletion resulting in 

subsequent fish kills, aesthetic nuisances, and unsafe drinking water (Jacoby et al., 2000). 

In addition, cyanobacteria are capable of producing a broad range of secondary molecules 

which include biologically toxic metabolites such as microcystin. These toxins are 

produced during cellular growth or released during cell lysis and exposure to these 

cyanotoxins presents waterborne hazards in the aquatic system and organisms using the 

water body as a source of drinking water (Codd et al., 2005; Dietrich and Hoeger 2005). 

The first documented report in the scientific literature of the toxic effects of 

cyanobacteria appeared in 1878 by George Francis who attributed the deaths of sheep, 

horses, dogs, and pigs to the ingestion of toxic Nodularia spumigena Mertens from Lake 

Alexandrina (Francis 1878). 
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1.2 CYANOTOXIN CLASSIFICATION 
 

Given their 3.5 billion years of evolution, cyanobacteria have developed a broad 

spectrum of secondary metabolites. Several of these secondary metabolites have been 

shown to have anticancer, antibacterial, antiviral, and protease inhibitory effects (Moore 

1996; Namikoshi and Rinehart 1996; Panda et al., 1998; Patterson, Larsen, More 1994; 

Smith et al., 1994).  The toxins produced by cyanobacteria can be classified according to 

their mode of action (hepatotoxic, neurotoxic, cytotoxic, dermatotoxic, or irritant toxic) 

or by their chemical structure (cyclic peptides, alkaloids, and lipopolysaccharides) 

(Sivonen and Jones 1999; Wiegand and Pflugmacher 2005) (Table 1.1).  

Lipopolysaccharide (LPS) endotoxins are common to all cyanobacteria since they 

are a part of the Gram-negative cell wall where they form complexes with proteins and 

phospholipids (McElhiney and Lawton 2005). The effects of LPS from enteric bacteria, 

such as Escherichia coli, Salmonella sp., and Pseudomonas aeruginosa are well known. 

Unlike enteric bacterial LPS, cyanobacterial LPS contains a great variety of long chain 

unsaturated fatty acids and hydroxyl fatty acids and lacks phosphate groups (Martin et al., 

1989). Generally, the fatty acid component of the LPS molecule is responsible for 

allergenic reactions in humans and mammals to this endotoxin (Sivonen and Jones 1999).  

In contrast to LPS, neurotoxins and hepatotoxins are intracellular secondary metabolites 

and only certain strains of cyanobacteria are capable of synthesizing these compounds 

(McElhiney and Lawton 2005). Neurotoxins consist of two groups of low molecular 

weight alkaloids: anatoxins (anatoxin-a, homoanatoxin-a and anatoxin-a(S)) and 

saxitoxins (McElhiney and Lawton 2005). Both anatoxin-a and homoanatoxin-a mimic 

the effect of acetylcholine and bind to neuronal nicotinic acetylcholine receptors  
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TABLE 1.1 General summary of cyanobacterial toxins including their respective 

cyanobacterial producing genera and mode of action. Table was 

adapted from (Sivonen and Jones 1999)
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Toxin group Cyanobacteria genera Mode of action 

Lipopolysaccharide 
(LPS) 

All  Potential irritant; affects 
any exposed tissue 

Anatoxin-a Anabaena, Aphanizomenon Irreversibly binds to 
nicotinic acetylcholine 
receptors 

Anatoxin-a(S) Anabaena Inhibitor of 
acetylcholinesterase 

Saxitoxins Anabaena, Aphanizomenon, 
Lyngbya, Cylindrospermopsis 

Blocks nerve cell sodium 
channels  

Nodularin Nodularia Inhibition of protein 
phosphatases (PP1 and 
PP2A) 

Microcystin Microcystis, Anabaena, 
Planktothrix (Oscillatoria), 
Nostoc, Hapalosiphon, 
Anabaenopsis 

Inhibition of protein 
phosphatases (PP1 and 
PP2A) 

Cylindrospermopsin Cylindrospermopsis, 
Aphanizomenon, Umezakia 

Inhibitor of protein 
synthesis  
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causing muscle cells to become overstimulated (McElhiney and Lawton 2005). These 

two toxins have been detected within species and strains of Anabaena, Aphanizomenon, 

and Planktothrix (Oscillatoria) (Edwards et al., 1992; Sivonen and Jones 1999). 

Anatoxin-a (S) is a potent inhibitor of acetylcholinesterase causing interference with 

normal muscle contraction (McElhiney and Lawton 2005). Anatoxin-a(S) can be 

produced by strains of Anabaena flos-aquae (Lyng.) Brèb. and Anabaena lemmermannii 

P. Richter (Carmichael and Gorham 1979; Henriksen et al., 1997). The other group of 

neurotoxic alkaloid is saxitoxin which blocks nerve cell sodium channels halting impulse 

propagation between neurons (McElhiney and Lawton 2005). Saxitoxins are produced by 

some strains of Aphanizomenon sp., Anabaena sp., Lyngbya sp. and Cylindrospermopsis 

sp. (Humpage et al., 1993; Sivonen and Jones 1999).  

Since hepato– (liver) toxic cyanobacterial blooms are more prevalent than 

neurotoxic blooms; poisoning by cyclic hepatopeptides remains the most common cause 

of toxicosis involving cyanobacteria (Carmichael et al., 1997; Sivonen and Jones 1999). 

Cyclic hepatotoxins include the cylindrospermopsins, the nodularins, and the 

microcystins. The cylindrospermopsin is a cyclic sulfated-guanidinium alkaloid produced 

by Cylindrospermopsis raciborskii (Woloszynska) Seenayya and Subba Raju (Ohtani et 

al., 1992), Umezakia natans M. Watanabe (Harada et al., 1994), and Aphanizomenon 

ovalisporum Forti (Banker et al., 1997; Shaw et al., 2000). Cylindrospermopsin mediates 

its toxicity by targeting the liver and inhibits protein synthesis (Terao et al., 1994). 

Nodularins are a hepatotoxic penta-peptide that is only known to be synthesized by one 

species of cyanobacteria, Nodularia spumigena Mertens (Sivonen and Jones 1999). The 

structure and mode of toxicity of nodularins are similar to microcystins (discussed in the 
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following sections) (figure 1.1) (McElhiney and Lawton 2005). Of the numerous toxins 

produced by cyanobacteria, microcystins are the most prevalent and studied of the 

cyanotoxins (Hisbergues et al., 2003).  

1.3 HEPATOTOXIN – MICROCYSTIN 
 

Both microcystin and nodularin are monocyclic hepatotoxins and consist of either 

five (nodularins) or seven (microcystins) amino acids (Sivonen and Jones 1999). The 

cyclic peptides are relatively large natural products (molecular weight, MW ≈ 800–1100) 

but relatively small compared with other cell oligopeptides and polypeptides (MW > 10 

000) (Sivonen and Jones 1999). Microcystin’s chemical nature makes it stable in water 

and tolerant of extreme changes in water chemistry such as pH (Harada et al., 1996; 

Harada and Tsuji 1998). Microcystin-producing strains are from a group of 

cyanobacterial genera that include unicellular, multicellular filamentous, heterocystous, 

and nonheterocystous forms (Christiansen et al., 2003). Each toxic strain is capable of 

producing more than one variant of microcystin as well as other peptides simultaneously 

(Fastner, Erhard, von Dohren 2001; Sivonen et al., 1992). Bloom forming species of 

Microcystis, Anabaena, and Planktothrix (Oscillatoria) are the most common 

microcystin producers and more rarely are species of Anabaenopsis, Nostoc, and 

Hapalohsiphon (observed in soils) (Carmichael 1992; Skulberg et al., 1992). Generally, 

five Microcystis species (M. aeruginosa, M. ichthyoblabe, M. novacekii, M. viridis, and 

M. wesenbergii) are recognized as the dominant microcystin-producing species (Tanabe 

et al., 2004).  

There are over 70 isoforms of microcystin that exhibit varying levels of toxicity; 

with microcystin-LR (L, L-leucine; R, L-argentine), -RR, and -YR being the most  
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FIGURE 1.1 Chemical structures of the cyanobacteria hepatotoxins, microcystin, 

and nodularin. (a) General structure of microcystin (D-Ala–L-X–D-

MeAsp–L-Z–Adda–D-Glu–Mdha), in which X and Y are variable L-amino 

acids. (b) Structure of nodularin showing similarities to microcystin.
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common (McElhiney and Lawton, 2005; Sivonen and Jones 1999). All the isoforms share 

the common cyclo (D-Ala–L-X–D-MeAsp–L-Z–Adda–D-Glu–Mdha) structure, with X 

and Z denoting variable L-amino acids, Adda is 3-amino-9-methoxy-2,6,8,-trimethyl-10-

phenyl-4,6-decadienoic acid, DMeAsp is 3-methyl-aspartic acid, and Mdha is N-

methyldehydroalanine (Honkanen et al., 1990; Rinehart et al., 1994) (Figure 1.1). The 

unusual amino acid Adda gives microcystin its toxicity and is key to the biological 

activity of the microcystin molecule (Goldberg et al., 1995).  

1.3.1 MICROCYSTIN MODE OF TOXICITY 
 

With the exception of a few hydrophobic microcystins variants, microcystin is 

water soluble (hydrophilic) thus it cannot directly permeate the lipid membranes 

(hydrophobic) of animals and plants cells (Sivonen and Jones 1999). For the toxin to 

elicit an effect it requires active uptake mechanisms to enter the cells via membrane 

proteins. Primary route of hepatotoxin exposure to humans and animals is through the 

ingestion of toxin contaminated waters during recreational activities (Chorus et al., 2000; 

Pilotto et al., 1997; Sivonen and Jones 1999) or contaminated foods such as shellfish 

(Eriksson et al., 1989) and fish (Ernst et al., 2001; Ernst et al., 2007). Once ingested, it is 

postulated that microcystin reabsorbed from the gastrointestinal tract is taken up from the 

blood by membrane transporters of hepatocytes, via multispecific bile acid transport 

mechanisms (Eriksson et al., 1990a; Runnegar et al., 1991). In vertebrates, toxicity is 

linked to the active transport of microcystin into hepatocytes by the bile acid organic 

anion transport system, which then inhibits serine/threonine phosphatase 1 (PP 1) and 2A 

(Goldberg et al., 1995; MacKintosh et al., 1990). Hydrophobic interactions between the 

long hydrophobic Adda side-chain of microcystin and the hydrophobic grove of PP 1 and 
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2A renders the protein phosphatase inactive (Goldberg et al., 1995). However, 

microcystin is not inhibitory to protein phosphatase activity in Microcystis itself (Shirai et 

al., 1991).  

Exposure to high doses of microcystin will cause liver damage as a result of 

cytoskeletal disorganization that eventually leads to death by hemorrhagic shock (Ding et 

al., 1998; Eriksson et al., 1990b; Hermansky et al., 1990; Honkanen et al., 1990). This 

led the World Health Organization (WHO) to set a safe concentration threshold of 1.0 

μg·L-1 of microcystin in drinking water. However, several studies showing long-term 

chronic exposure to low concentrations of microcystin has been linked to primary liver 

cancer in humans and animals (Nishiwaki-Matsushima et al., 1992; Ueno et al., 1996; Yu 

1988). Based on these findings, Ueno et al. (1996) propose that the concentration 

threshold be set to 0.01-μg·L-1. 

1.3.2 ECOLOGICAL ROLE 
 

Numerous studies have investigated the biological function(s) of microcystin but 

its potential role(s) and function(s) remain highly debated. Several hypotheses regarding 

the biological function of microcystin have been proposed such as the evolution of these 

molecules as a defense mechanism in response to grazing pressure by zooplankton 

(DeMott, et al., 1991). The zooplankton defense theory is contradicted by recent studies 

which postulate that microcystin-producing cyanobacteria predate the metazoan lineage 

(Rantala et al., 2004). This means that microcystin-producing strains are 

“phylogenetically older” than the zooplankton that graze on them (Rantala et al., 2004). 

Hence, Rantala et al. (2004) suggest that microcystin and nodularins have adapted to 

serve other functions such as siderophoric scavenging of trace metals (e.g. chelating of 
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iron ions) (Utkilen and Gjolme 1995) or signaling gene regulation (Dittmann et al., 2001). 

The role of microcystin in photosynthesis or other light related reactions within the cell 

have also been speculated. Hess et al. (2001) observed that cellular concentrations of 

photosynthetic pigments are approximately 20% lower in non-microcystin producing 

mutants compared to wild-type microcystin-producing strains. Also, subcellular 

localization of microcystins in thylakoid membranes (Shi et al., 1995; Young et al., 2005) 

and light regulated transcription of the microcystin synthetase gene cluster (Kaebernick et 

al., 2000) suggest a role in light-dependent processes. Involvement as growth regulators 

(quorum sensing) has also been speculated. Sedmak and Kosi (1998) observed that 

Microcystis aeruginosa Kützing is permeable to microcystin-RR and cells exposed to the 

toxin proliferate faster than controls. They suggest that microcystin production is a self-

enhancing mechanism for cell division that leads to denser blooms and gives microcystin 

producers a competitive advantage over non-toxic cyanobacterial strains. Although 

microcystin is classified as a secondary metabolite, the linear correlation between 

microcystin production and cell division suggests constitutive production of microcystins 

and a possible role in cellular metabolism (Orr and Jones 1998). 

Since the role of microcystin is not well understood, the influences of 

environmental factors on microcystin production are complex and difficult to identify 

(Rolland et al., 2005). Conflicting results are reported in the literature concerning the 

effects of various ecological conditions, such as nutrients, light and temperature, on 

microcystin production (Graham et al., 2004; Jacoby et al., 2000; Kaebernick et al., 2000; 

Kotak et al., 2000; Wicks and Thiel 1990).  
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1.3.3 TOXIC AND NON-TOXIC MICROCYSTIN-PRODUCING STRAINS 
 

Morphologically toxic and nontoxic microcystin-producing strains are identical. 

Genetically, only toxic strains carry a functional microcystin synthetase gene cluster 

(Figure 1.2) transcribing the enzymes involved in microcystin biosynthesis (Dittmann et 

al., 1997; Meissner et al., 1996; Neilan et al., 1999; Nishizawa et al., 1999). All genera 

with microcystin-producing strains also contain related strains that are unable to produce 

the toxin (Rantala et al., 2004). The literature remains unclear as to why closely related 

strains differ in their ability to produce microcystin and nodularins. LeFlaive and Ten-

Hage (2007) suggested that non-toxic strains may take advantage of the production of 

microcystin produced by co-occurring strains without the energy cost of synthesis. 

Rantala et al. (2004) hypothesized that strains not carrying the genes for microcystins or 

nodularins biosynthesis in their genome contain other genes for the synthesis of other 

nonribosomal peptides that serve similar functions as the hepatotoxins. Similar peptide 

synthetase complexes of unknown function found in several cyanobacterial genera 

support this hypothesis (Neilan et al., 1999). 

The sporadic distribution of microcystin synthetase (mcy) genes in several 

cyanobacterial lineages has raised a few theories about the origins of the mcy genes. 

Congruent evolution between specific mcy gene regions (fragments of the mcyA, mcyD, 

and mcyE genes), 16S rRNA and rpoC1 genes in hepatotoxic cyanobacteria suggests that 

the microcystin synthetase genes were present in the last common ancestor of a large 

number of cyanobacteria (Rantala et al., 2004). Thus, the sporadic distribution of the 

ability to synthesize microcystin in current cyanobacteria is attributed to repeated gene 

loss (Rantala et al., 2004). Moreover, the distribution of gene cluster and variation of the 
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FIGURE 1.2 Organization of the gene cluster for nodularin biosynthesis in 

Nodularia (Moffitt and Neilan 2004) and microcystin biosynthesis in 

Anabaena (Rouhiainen et al., 2004), Microcystis (Tillett et al., 2000), and 

Planktothrix (Christiansen et al., 2003). Figure shows the order of genes 

and direction of gene transcription. The arrows indicate the transcriptional 

start sites from the putative promoter regions. Figure adapted from 

(Dittmann and Börner 2005).
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70 or more microcystin isoforms may also be explained by horizontal gene transfer, 

lateral recombination, and gene loss (Mikalsen et al., 2003; Moffitt and Neilan 2004; 

Rantala et al., 2004). 

1.3.4 MICROCYSTIN SYNTHETASE GENE (MCY) AND MICROCYSTIN BIOSYNTHESIS 
 

The microcystin synthetase gene (mcy) cluster encodes for non-ribosomal peptide 

synthetases (NRPSs), polyketide synthases (PKSs), and tailoring enzymes, which modify 

the peptide chain (Dittmann et al., 1997; Meissner et al., 1996; Nishizawa et al., 1999; 

Nishizawa et al., 2000; Tillett et al., 2000). Microcystin’s cyclic structure, unusual 

peptide bonds, and occurrence of modified amino acid moieties suggests that microcystin 

and nodularin are nonribosomally synthesized (Arment and Carmichael 1995; Dittmann 

et al., 1997). Peptide synthetase genes identified in Microcystis sp. and Anabaena sp. 

contain the characteristic modular structure of the peptide synthetase genes and specific 

conserved sequence motifs observed in other bacteria and fungi (Dittmann et al., 1996). 

Microcystin is synthesized by the large enzyme complex, microcystin synthetase, 

utilizing the nonribosomal thio-template mechanism (Arment and Carmichael 1995). 

According to this mechanism, peptide synthesis is performed by NRPSs and generally, 

the order of the modules (genes) is co-linear to the amino acid sequence of the peptide 

(Mootz et al., 2002). Each amino acid is activated as an amino acid adenylate precursor 

and transferred to the enzyme complex bound (Laland and Zimmer 1973; Stein and Vater 

1996). 

The gene clusters involved in microcystin biosynthesis were identified and 

sequenced in Microcystis aeruginosa strain K139 (Nishizawa et al., 1999; Nishizawa et 

al., 2000) and PCC7806 (Tillett et al., 2000), Planktothrix agardhii strain CYA 126 
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(Christiansen et al., 2003), and Anabaena sp. strain 90 MCS (Rouhiainen et al., 2004) 

(Figure 1.2). The size of the gene cluster among these three genera is approximately 55-

kb. The multienzyme complexes in the three genera are highly similar but the 

arrangements of the mcy genes differ between the genera (Dittmann and Borner 2005; 

Rouhiainen et al., 2004). Only the NRPS genes, mcyA, mcyB, and mcyC, from the mcy 

gene cluster are in the same order for all three genera. The microcystin gene cluster is 

comprised of 10 microcystin genes (mcyA-J) in M. aeruginosa K139 and Anabaena strain 

90 and 9 genes in P. agardhii CYA 126. The mcyF and mcyI genes are absent in the P. 

agardhii CYA 126 mcy gene cluster but an additional gene, mcyT, is present which is not 

observed in Microcystis and Anabaena. The mcy genes are organized into two clusters in 

M. aeruginosa K139 and Anabaena strain 90 and transcribed from a bidirectional 

promoter. In contrast, the mcy genes in P.  agardhii CYA 126 are in one cluster and  

transcribed in the same direction except for mcyT  as depicted in Figure 1.2. 

For Microcystis aeruginosa PCC7806, Tillett and colleagues (2000) observed that 

the 10 open reading frames (ORFs) are flanked on both sides by genes not involved in 

microcystin biosynthesis but show high similarity to genes localized on the chromosome 

of Synechocystis sp. PCC 6803. This strongly suggests that the mcy gene cluster is 

located on the chromosome rather than on a large plasmid as previously proposed by 

(Bolch et al., 1997). Previously mentioned, the ten mcy genes reside in two putative 

operons (mcyA-C and mcyD-J) (Nishizawa et al., 1999; Nishizawa et al., 2000; Tillett et 

al., 2000). One operon consists of the NRPS genes (mcyA, mcyB, mcyC), and the larger 

operon contain one PKS gene (mcyD) and two hybrid corresponding to the PKS-NRPS 

modules (mcyE and mcyG) (Tillett et al., 2000). The PKS modules of McyG and E along 
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with the two-modular polyketide synthase McyD are responsible for the synthesis of the 

unique Adda-D-glutamic acid precursor (Tillett et al., 2000). Tailoring enzymes encoded 

by the mcy cluster include mcyF that contains the racemase gene involved in the synthesis 

of D-glutamate residues in the microcystin molecule (Nishizawa et al., 2000). The mcyH 

gene encodes for the putative ATP-binding cassette (ABC) transporter protein (a 

membrane transport system) that is potentially involved in microcystin transport (Tillett 

et al., 2000). The presence of a putative ABC transporter protein sequence in the 

microcystin biosynthesis gene cluster suggests that extracellular microcystins may also be 

the result of active transport rather than passive release via cell lysis (Pearson et al., 

2004). 

The nodularin gene cluster spans 49-kb and consists of 9 ORFs (ndaA to ndaI) 

(Moffitt and Neilan 2001). Similarities in the biosynthesis, chemical structure, and 

biological action of microcystins and nodularins implicates that the two groups of 

hepatotoxins are closely related (Sivonen and Jones 1999). The study by Rantala et al. 

(2004) indicates that the nodularin synthetase genes were formed from the ancestral 

microcystin synthetase gene set through a deletion and mutation in the mcyA gene of the 

microcystin cluster. The authors suggested that nodularins can be regarded as the most 

extreme structural variant of the numerous known microcystin variants. As in Microcystis 

and Anabaena, the Nodularin genes are transcribed from a central bidirectional promoter 

region (Dittmann and Börner 2005).  
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1.4 MOLECULAR ANALYSES OF POTENTIAL TOXIGENIC CYANOBACTERIA 
 

To reduce the risk of poisoning in humans and animals there is a need for 

sensitive and robust methods for detecting and monitoring of toxin producing 

cyanobacteria in drinking and recreational waters. Since microcystin producing and non-

producing genotypes within a particular species are closely related, identification based 

on cellular morphological characteristics is extremely difficult (Hisbergues et al., 2003). 

Furthermore, morphological plasticity has also been observed in culture which adds to 

the difficulty of morphological identification (Otsuka et al., 2000). To overcome these 

issues, molecular analyses have been developed to help with the identification of 

cyanobacteria to the strain level. Molecular DNA tools provide a reliable method of 

detecting toxic from non-toxic cyanobacterial strains (Janse et al., 2004).  

Genomic analysis and sequence analysis of various genes and variable non-coding 

regions have been used to detect microcystin producing cyanobacteria. Past studies 

included random amplified polymorphic DNA (RAPD) (Nishihara et al., 1997), 

restriction fragment length polymorphism (RFLP) (Neilan et al., 1995) repetitive DNA 

elements (Asayama et al., 1996; Rouhiainen et al., 1995), and 16S rRNA genes (Neilan 

et al., 1997; Otsuka et al., 1998; Tillett et al., 2001) but none of these analyses have been 

shown to be reliable in identifying toxic microcystin producers from non-producers. On 

the other hand, studies analyzing the mcy gene cluster have shown a direct relationship 

between gene detection and toxin production. 
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1.4.1 PCR OF MCY GENES FOR IDENTIFICATION OF POTENTIAL TOXIGENIC 
MICROCYSTIS SPECIES 

 
Despite the genotypic similarities between toxic and non-toxic strains, only 

potential microcystin producing species contain the microcystin gene cluster (Baker et al., 

2002; Tillett et al., 2000). Elucidation of the microcystin genes and its biosynthesis has 

led to a number of studies utilizing the mcy region to detect toxin-producing strains. A 

study by Janse et al. (2004) of the mcyA gene, the mcyB gene, and the adenylation 

domain within the mcy gene cluster revealed a good correlation with microcystin 

production but showed some irregularities. Some of their samples showing no 

microcystin production tested positive for the presence of mcy genes. This may be due to 

the similarity of the mcyB region with other loci, or possibly the presence of inactive mcy 

gene cluster in non-toxic Microcystis strains (Janse et al., 2004). 

As previously stated above, the genes mcyD, mcyE and mcyG are responsible for 

the assembly of the unique Adda moiety. PCR primers flanking sequences of the mcyD 

and mcyE gene have been successful at identifying potentially harmful hepatotoxic 

Microcystis and Anabaena species (Vaitomaa et al., 2003). To increase sensitivity, some 

researchers opted to use several primer sets. Ouahid et al. (2005) used two to three sets of 

different primers targeting the mcy genes in their whole cell PCR reaction with success. 

Regardless of the primer combination, PCR products were only obtained from 

microcystin producing strains (Ouahid et al., 2005). For most of these studies, the 

primers used were only specific towards one microcystin producing genera (Bertasi et al., 

2003; Christiansen et al., 2003; Kurmayer and Kutzenberger 2003; Kurmayer et al., 2005; 

Neilan 1996; Tillett et al., 2001; Vaitomaa et al., 2003). Thus, using these genus specific 

primers could result in an under estimation of total potential toxin-producers in water 
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samples. Primers targeting the mcy genes in more than one genus allows for the 

monitoring of multiple microcystin-producing species in freshwater. A study by 

Hisbergues et al. (2003) using PCR primers targeting the condensation domain of McyA 

have been shown to amplify the corresponding mcyA fragment in Anabaena, Planktothrix, 

and Microcystis, the main genera responsible for most of the microcystin-producing 

species. Recently, PCR primers designed by Jungblut and Neilan (2006) were able to 

detect all known microcystin and nondularin-producing strains by targeting the 

aminotransferase (AMT) domain of the mcyE and ndaF genes. Amplifying regions of the 

mcy gene cluster is a rapid and easy way of identifying the presence of potentially toxic 

microcystin-producing blooms in advance. However, focusing solely on the mcy gene 

regions ignores the non-microcystin producing cyanobacteria species that may also be 

present in the sample. Thus, information about the diversity of cyanobacteria in the water 

body will be missed.  

1.4.2 DENATURING GRADIENT GEL ELECTROPHORESIS (DGGE) OF CYANOBACTERIAL 
16S RRNA GENES & THE INTERNAL TRANSCRIBED SPACERS (ITS) 

 
The combination of PCR and denaturing gradient gel electrophoresis (DGGE) is 

widely used in analyzing microbial diversity based on target nucleic acid sequences 

(Bernard et al., 2000; Gill et al., summitted; Muyzer, de Waal, Uitterlinden 1993; 

Muyzer and Smalla 1998; Schafer et al., 2000; van Hannen et al., 1999). PCR-DGGE is 

capable of surveying entire microbial communities without cultivation (Muyzer et al., 

1993). DGGE is a sequence-dependent separation of PCR products that can be used to 

evaluate the genotypic diversity in natural samples and to assess the purity of isolated 

cultures or colonies (Muyzer et al., 1993). In DGGE, separation of PCR products is based 

on the electrophoretic mobility of partially melted DNA molecules in a polyacrylamide 
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gel of increasing denaturing conditions (urea and formamide) (Muyzer et al., 1993). The 

degree to which a DNA strand dissociates depends on the nucleotide composition and 

melting properties of the molecule (Nollau and Wagener 1997). As nucleotide domains in 

the DNA molecule separate, there is a change in the double stranded DNA structure from 

helical to partially dissociated DNA molecule which halts the migration of the DNA 

molecule (Muyzer et al., 1993). This results in unique fingerprints when DGGE is used to 

separate PCR products from environmental samples. To guarantee sequence-specific 

strand separation and to prevent a complete denaturation of the double-stranded DNA 

molecule, GC-rich sequences (GC-clamp) is incorporated onto the 5’ end of the forward 

primer (Myers et al., 1985; Sheffield et al., 1989). 

The numbers, positions, and intensities of the DGGE bands can be used to 

determine the diversity of environmental samples (Garcia-Pichel et al., 2003; Lyautey et 

al., 2005; Muyzer 1999; Nakatsu et al., 2000). However, it should be noted that DGGE 

diversity profiles are not completely reflective of the true diversity of the field (Janse et 

al., 2003). There are inherent problems associated with both the DNA extraction step and 

the PCR-DGGE step. Misinterpretation of DGGE profiles can be due to amplification 

errors, preferential amplification of DNA templates (Reysenbach et al., 1992), varying 

numbers of rRNA operons between genera (Speksnijder et al., 2001), heteroduplex 

formation (Jensen & Straus, 1993), and co-migration of different DNA fragments 

(Sekiguchi et al., 2001). To reduce possible inter-sample PCR variation, all PCR 

reactions can be run in triplicates and pooled together before loading on a DGGE gel (Li 

et al., 2006). 
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To visualize the genotypic diversity of bacteria including cyanobacteria in natural 

samples, DGGE analysis of the small-subunit ribosomal RNA (16S rRNA) gene 

sequence (Figure 1.3) has been widely used (Kolmonen et al., 2004; Li et al., 2006; 

Nakatsu et al., 2000; Nübel et al., 1997; Zwart et al., 1998). Sequence analysis of the 16S 

rRNA gene is useful in the phylogenetic classification of taxonomic levels above species 

(Wilmotte 1994). Due to its high degree of conservation, 16S rRNA genes often fail to 

discriminate between closely related species (Janse et al., 2003). For higher taxonomic 

resolution of closely related species, there is an increased focus on the faster evolving 

rRNA 16S–23S internal transcribed spacer (rRNA-ITS) within the ribosome cistron 

(Hillis and Dixon 1991) (Figure 1.3). Janse et al., (2003, 2004) showed that DGGE 

analyses of natural and cultured samples were very reliable in differentiating between 

closely related cyanobacterial species. The authors determined that rRNA-ITS DGGE is a 

valuable method for the analyses of the Microcystis genus due to the high resolution and 

single bands generated. These studies showed that DGGE can be a powerful tool for 

examining and comparing cyanobacterial diversity.  

1.4.3 QUANTIFICATION OF CYANOBACTERIA USING QUANTITATIVE REAL-TIME PCR  
  

Adding fluorescent dye in a PCR reaction permits monitoring of amplicon 

accumulation in a closed tube using a laser or a camera in real time (Walker 2001). 

Quantitative real-time PCR (qPCR) combines the amplification step and detection step 

into a single process (Wong and Medrano 2005). During qPCR reactions, data is 

collected throughout the process by monitoring fluorescence intensity which correlates 

with PCR product concentrations (Walker 2001; Wong and Medrano 2005). PCR 

reaction can be divided into four phases: the linear ground phase, early exponential phase, 
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FIGURE 1.3 Map of prokaryotic rRNA cistron. Functional constraints of rRNA 

makes the gene highly conserved and is therefore extensively used in 

diversity studies.
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log-linear phase (exponential phase), and plateau phase (Wong and Medrano 2005). In 

regards to qPCR, the early exponential phase is where the threshold cycle is reached – the 

fluorescent signal is higher than the background (Ct) (Wong and Medrano 2005). The Ct 

value is inversely reflective of the target starting copy number in the original sample 

(Wong and Medrano 2005). There are a variety of applications for qPCR such as single-

step detection and quantification of target nucleic acids from food, vectors in gene 

therapy protocols, genetically modified organisms, viral load, and areas of microbiology 

and oncology (Mackay et al., 1993). With respect to cyanobacteria, qPCR has improved 

the speed and resolution at which toxic and nontoxic Microcystis populations can be 

examined (Rinta-Kanto et al., 2005). Rinta-Kanto et al., (2005) surveyed the 

cyanobacterial community in western Lake Erie by quantifying the gene copy numbers of 

cyanobacteria-specific 16S rRNA genes, Microcystis-specific 16S rRNA genes, and 

mcyD genes. The authors noted that prokaryotes have varying numbers of 16S rRNA 

genes (ranging from one to four or more per genome) within the genome that may be a 

source of error for quantification based on the 16S rDNA. The enumeration of toxigenic 

Microcystis populations based on the mcyD gene is more sensitive since it appears that 

the cells carry only one mcyD gene copy per genome (Rinta-Kanto et al., 2005). The 

quantification of mcyA genotypes in comparison with direct microscopic counts of 

Microcystis viridis (A. Braun) Lemmermann showed relatively good correlation between 

the two (Furukawa et al., 2006). This suggests that qPCR can accurately quantify the 

number of cyanobacteria. Earlier studies by (Kurmayer and Kutzenberger 2003) and 

(Vaitomaa et al., 2003) utilized other mcy genes to quantify the toxigenic Microcystis 

population. Kurmayer and Kutzenberger (2003) monitored the microcystin content of 
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Lake Wannsee by comparing the copy number of the mcyB gene region with the 

intergenic spacer region within phycocyanin operon. By comparing the two gene regions, 

the amount of toxic genotypes in relation to the total Microcystis concentration can be 

quantified. Vaitomaa et al. (2003) used the mcyE gene region to quantify and 

discriminate toxigenic Microcystis and Anabaena in lake samples. These studies show 

that qPCR is a sensitive and rapid tool for monitoring potential toxic blooms.  

1.5 THESIS OBJECTIVES 
 

1. Use PCR-DGGE analysis of the 16S-V3 spacer to profile the cyanobacterial 

genetic community and aminotransferase (AMT) domain of mcyE and ndaF 

genes to detect the presence of potential hepatotoxic cyanobacterial genotypes. 

 

PCR-DGGE analyses of the 16S-V3 spacer will be used to evaluate the 

cyanobacterial phytoplankton community from the three study sites (Lake Ontario, Lake 

Erie, and Lake Victoria). The 16S-V3 hypervariable region spans the 357-518 nucleotide 

region of the 16S ribosomal DNA of cyanobacteria (Yu and Morrison 2004). 

Cyanobacteria specific V3 primers (Cya-b-F371 and Cya-R783) designed by (Zwart et al., 

2005) were used to characterize the planktonic cyanobacterial genotypes present from 

each sample. Primers (HEPF and HEPR) designed by Junglunt and Neilan (2006) that 

amplify the AMT domain of the mcyE and ndaF genes in all known microcystin and 

nodularin producing strains will be used to determine the presence of potential 

hepatotoxin-producers from the collected filter samples. PCR-DGGE of the AMT domain 

will determine if multiple hepatotoxic cyanobacterial genotypes were present from each 

 26



sampling station for each of the three lakes. For each DGGE profile, the presence of 

bands and band intensity will be used to statistically calculate genotypic diversity and 

similarity between each site. Predominate and unique bands from certain profiles will be 

excised from the gel and sequenced in an attempt to identify the corresponding 

cyanobacteria species. 

 

2.  Quantify the number of cyanobacteria and potential hepatotoxic cyanobacteria 

present at each sampling site using quantitative real-time PCR (qPCR) of the 

16S-V3 and AMT fragment respectively. 

 

The same cyanobacteria specific 16S-V3 primers (Cya-b-F371 and Cya-R783; Zwart 

et al., 2005) used in DGGE will be used to estimate the number of cyanobacteria present 

at each sampling site. The same primers for the AMT gene region (HEPF and HEPR; 

Junglunt and Neilan, 2006) as mentioned above will used to determine the number of 

toxic cyanobacteria present in the filter sample. For each sample, data obtained from 

qPCR of AMT fragment will be compared with the 16S qPCR data to estimate the 

percentage of potentially toxic cyanobacteria.  
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CHAPTER 2: METHODS 
 

2.1 STUDY SITES 

2.1.1 BAY OF QUINTE, LAKE ONTARIO 
 

The Bay of Quinte (257.4 km2) at the northeastern end of Lake Ontario is a Z-

shaped bay that is divided into three regions: upper (Trenton to Green Point, Ontario), 

middle (Green Point to Glenora), and lower bays (Glenora to Lake Ontario) (Figure 2.1). 

The upper bay spans 36.4 km2 in area, with a mean depth of 3.5 m, and is the shallowest 

of the three regions; the middle bay, 49.2 km2, has a mean depth of 5.2 m; and the deep 

lower bay, 71.8 km2, has a mean depth of 24.4 m (Chu et al., 2004; Minns 1995). 

In this study, the Bay of Quinte was sampled during the summer of 2005 and 

2006. In 2005, three stations: Napanee (NA), Hay Bay (HB) and Big Bay (BB) were 

sampled on three separate dates (June 28, August 3, and August 30) on the fourth 

collecting trip only Napanee was sampled due to poor weather conditions. During the 

summer of 2006, the number of sampling stations was increased to six: NA, GPT, NR, 

MBO, F1, and DS. Two collecting trips were made in 2006: one in early summer (July 4) 

and one in late summer (September 22). 

2.1.2 MAUMEE BAY, LAKE ERIE 
 

Lake Erie (12,893 km2) is the most southern and shallowest of the five Laurentian 

(North American) Great Lakes (Figure 2.2). The lake is divided into three distinct 

physiographic basins: western, central, and eastern with a mean depth of 10, 25, and 50 m 

respectively. Six stations were sampled in early summer (June 20, 2006) and late summer 

(August 22, 2006) from Maumee Bay, western Lake Erie (Toledo, Ohio). The six stations 
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Figure 2.1 Map of the Bay of Quinte station locations in 2005 and 2006. Locations 

of stations are indicated by station code and asterisk. (A) Lake Ontario 

with location of the Bay of Quinte circled in red, (B) station locations 

sampled in 2005, (C) station locations within the Bay of Quinte in 2006.
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Figure 2.2 Map of Maumee Bay station locations in 2006. Locations of stations are 

indicated by station code and asterisk. (A) Lake Erie with location of 

Maumee Bay circled in red, (B) station locations sampled in 2006.

 31



.

 32



Figure 2.3 Map of Nyanza Gulf station locations in 2005. Locations of stations are 

indicated by station code and asterisk. (A) Lake Victoria with location of 

Nyanza Gulf circled in red, (B) station locations sampled in 2005.

 33



 34



 include: MB19 (N 41.72714, W 83.43214), MB18 (N 41. 74238, W 83.40142), 8M 

(N41.78887, W 83.35550), MB15 (N 41.70132, W 83.36464), Clear Site (N 41.70004, W 

83. 32247), and 7M (N 41.73333, W 83.29720). 

2.1.3 NYANZA GULF, LAKE VICTORIA 
 

Relative to the Laurentian Great Lakes (<13 000 BP), Lake Victoria (East Africa) 

is an ancient lake (>23 000 BP) (Figure 2.3). Its water is shared among three countries: 

Tanzania, Kenya, and Uganda in east Africa. In terms of surface area, Lake Victoria is 

the largest tropical lake and second largest freshwater lake in the world. It spands 68 800 

km2 with a mean depth of 40 m and volume of 2 760 km3 (Guildford et al., 2003). In this 

study, four stations were sampled between November 14 and 15, 2005: 3 from Nyanza 

Gulf, (also called Winam Gulf or Kavirondo Gulf) and one from the open lake. The gulf 

is a shallow embayment that connects to the open lake via the Rusinga channel. The 

locations of the sites are as follows: KL3 (S 00o15.371’, E 34o 31.173’), KL5 (channel; S 

00o 21.177’, E 34o 14.302), and CG5 (channel; S 00o 25.193’, E 034o 18.149); and one 

from the open lake COL (channel open lake; S 00o 18.597’, E 34o 08.798’). As well, a 

phytoplankton bloom sample was taken from Nyanza Gulf on November 16, 2005. 

2.2 SAMPLING 
 

From each station sampled, known volumes of water sample were taken from 

depths that ranged from surface water to 2.0 m below the water surface. Water sample 

volumes ranging from 0.5 L to 1.0 L were vacuum-filtered through a glass fibre filter 

(Whatman GF/F; 47 mm diameter; N.J., U.S.A.). Each filter was stored in individual 

polystyrene petri dishes (Falcon no. 1006; 50 x 9 mm; Becton-Dickinson Labware; NJ, 

U.S.A.) and kept in a dewer containing dry ice during transportation for long-term 
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storage in a –80oC freezer until use. At each station sampled, 6 filter replicates were 

taken and about 25-50 ml of phytoplankton sample was preserved in Lugol’s iodine for 

future microscopic identification. 

2.3 STRAINS AND STRAIN CULTIVATION 
 

Five non-toxic cyanobacterial isolates and three microcystin-producing isolates 

(Table 2.1) were obtained from Dr. Susan Watson (Environment Canada, University of 

Calgary), Dr Freiderich Jüttner (University of Zurich), and four culture collections: 

Culture Collection of Algae (NIVA), Norway; Pasteur Culture Collection (PCC), France; 

University of Toronto Culture Collection (UTCC), Canada; and the University of Texas 

Culture Collection (UTEX), USA were amongst the studied cyanobacteria. These 

cultures were grown at 23ºC in liquid mediums of Bold’s basal medium (BBM) (Stein, 

1973), B3N (Bold-Basal Medium with 3-fold nitrogen and vitamins; modified), or cyano 

media (Jüttner et al., 1983) in a 150 ml Erlenmeyer flask containing approximately 50 ml 

of media at an irradiance of approximately 25 μmol · m
-2 

· s
-1 

for a cycle of light-to-dark 

ratio of 16:8 h. To maintain healthy cell growth, subcultures (1-5 ml) of each isolate were 

transferred to a new sterile 150 ml Erlenmeyer flask with fresh media monthly and grown 

under the same conditions as the initial culture. The isolates were monitored 

microscopically using an Olympus BX51 light microscope (Olympus Optical Co., LTD; 

Tokyo, Japan) to eliminate cross-contamination and dominance of bacteria. All steps 

were performed in a laminar flow hood using aseptic technique and sterile equipment.  
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2.4 DNA EXTRACTION FROM CELL CULTURES 
 

DNA from cell cultures of cyanobacterial isolates were extracted by transferring 

250 μl of each culture into a sterile 1.5 ml microfuge tube and centrifuged at 8000 rpm 

for 2 min to pellet the cells. For cell lysis, the supernatant was removed and the pelleted 

cells were freeze-thawed three times by immersing each tube in liquid nitrogen for 20 s 

immediately followed by immersion in a 65°C water bath for 30 s. DNA was isolated 

using the Qiagen DNeasy Plant Mini Kit (Qiagen Inc.; Mississauga, Canada) and DNA 

was eluted in 50-150 μl of either 50 mM Tris-HCl (pH 8.0) or DNA/RNA free water.  

2.5 DNA EXTRACTION FROM FROZEN FILTERS 
 

Bead-beating technique was used for the extraction of bulk community DNA 

from phytoplankton samples collected on GF/F filters. A combination of protocols by 

Kim et al. (2006), Giovannoni et al. (1990) and Zwart et al. (1998) were applied for the 

extraction method. In general, 1/16th of the GF/F filter was cut using a sterile razor blade 

and transferred into a 2.0 ml screw-cap tube containing zirconia/silica beads (0.5 g of 0.5 

mm in diameter and 0.2 g of 0.1 mm in diameter; Biospec, Bartlesville, OK, USA) and 

700 μL of lysis buffer (40 mM EDTA, 400 mM NaCl, 50 mM Tris-hydrochloride, pH 

9.0). The sample was bead-beaten for 90 seconds at 3500 rpm followed by cooling on ice 

for 1.0 minute. The sample was then centrifuged for 2.0 minutes at 10 000 x g and 

supernatant was transferred to a new 1.5 ml microfuge tube. RNase was added to a final 

concentration of 1.0 μg μL-1 and incubated for 10 minutes at 65oC. Following incubation, 

proteinase K was added to a final concentration of 50 μL ml-1 and sodium dodecyl sulfate 

(SDS) to a final concentration of 0.5%. The cell suspension was then incubated at 60oC 
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for 1 hour. DNA was isolated with equal volume of phenol/chloroform/isoamyl alcohol 

(25:24:1 [vol/vol/vol]) and centrifuged for 5 minutes at 13 000 g. The aqueous layer was 

transferred to a new 1.5 ml microfuge tube and the previous step was repeated again. The 

aqueous phase was then purified with an equal volume of chloroform-isoamyl alcohol 

(24:1 [vol/vol]) to the aqueous phase followed by centrifuging for 5 minutes at 13 000 g. 

DNA was then precipitated with 3 M sodium acetate (pH 5) (0.1x volume of aqueous 

phase) and iso-propanol alcohol and incubated in a –80oC freezer for 15 minutes 

followed by centrifuging in a 4oC centrifuge for 20 minutes at 14 500 g. The supernatant 

was discarded followed by a wash with 500 μL of 70% ethanol and centrifuged in a 4oC 

centrifuge at 14 500 x g for 10 minutes. The supernatant was discarded and the DNA 

pellet was dried in a SpeedVac for 2-5 minutes. The DNA pellet was rehydrated in 50 μL 

of DNA/RNA free water and stored in a –20oC freezer until further use. 

2.6 PCR AMPLIFICATION OF 16S RRNA-V3 REGION  
 

Using DNA extracts from filter samples or cyanobacterial isolates, a 161 base pair 

(bp) region of the 16S rRNA gene was amplified in two successive PCRs, conducted as a 

nested PCR first using cyanobacterial specific primers to reduce bacterial DNA 

interference (Zwart et al., 2005). The first cyanobacteria-selective round of amplification 

was performed with 2 μl DNA extract, 2.5 μl 10x taq polymerase buffer (500 mM KCl, 

100 mM Tris-HCl, pH 9.0 (at 25°C), 1.0% Triton
® 

X-100, and 15 mM MgCl
2
) (Promega; 

W.I., U.S.A.), 0.625 U Taq DNA polymerase (Promega; W.I., U.S.A.), 200 μM each 

dNTP (Promega, Madison, W.I., U.S.A.), 0.5 μM of each cyanobacterial specific primer 

Cya-b-F371 (5’-CCTACGGGAGGCAGCAGTGGGGAATTTTCCG-3’) and Cya-R783 
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(5’-GACTACWGGGGTATCTAATCCW-3’) (Zwart et al., 2005) in a total reaction 

volume of 25 μl. A 20-cycle touchdown procedure was followed using the Eppendorf 

Mastercycler® Gradient 5331 (Eppendorf, C.A., U.S.A.). After an initial denaturation 

step at 95°C for 1 min 30 s, a 20 cycle touchdown procedure was performed at 94°C for 1 

min, 65°C for 1min, and 72°C for 1 min, in which the annealing temperature decreased 

by 0.5°C each cycle to end at 55°C in the final cycle. A final extension step at 72°C for 

10 min concluded the end of the pre-amplification. The touchdown procedure reduces the 

formation of spurious by-products during amplification (Muyzer et al., 1993). 

The second round of amplification was performed with similar reagent 

concentrations as the first round but with the following changes: 2 μl template DNA, 

0.5mM of each general bacterial primer (GC)-F357 (5’-CCTACGGGAGGCAGCAG-3’) 

and R518 (5’-CCAGCAGCCGCGGTAAT-3’) (Muyzer et al., 1993) in a total reaction 

volume of 25 μl. A 40 bp GC-clamp 5’-CGC CCG CCG CGC CCC GCG CCC GGC 

CCG CCG CCC CCG CCC-3’ was added to the 5’ end of primer F357GC to increase the 

separation of DNA bands in DGGE gel (Muyzer et al., 1993). Following the initial 

denaturation step at 95ºC for 1 min 30 s, a touchdown procedure consisting of 20 cycles 

at 94°C for 1 min, 65°C for 1min, and 72°C for 1 min, in which the annealing 

temperature decreased by 0.5°C each cycle was performed. Subsequently five additional 

cycles were performed at 94°C for 1 min, 55°C for 1min, and 72°C for 1 min. A final 

extension step at 72°C for 10 min concluded the nested round of the procedure. Each 

Amplification product was electrophoresed through a 1.0% agarose gel in 1x TBE buffer 

at 100 V for 45 min. Products were visualized using the Syngene Bioimaging System 

(Synoptics Ltd., United Kingdom). PCR product size and concentrations were estimated

 39



using a DNA marker (ΦX174 DNA digested with Hae III restriction enzyme) that was 

electrophoresed along side the PCR products.  

2.7 PCR AMPLFICATION OF AMINOTRANSFERASE REGION (AMT) 
 

PCR amplification of a 472 bp fragment of the aminotranferase domain of PKS 

and NRPS in mcyE and ndaF respectively was similar as above but with 0.5 μM of each 

primer: (GC)-HEPF (TTTGGGGTTAACTTTTTTGGGCATAGTC) and HEPR 

(AATTCTTGAGGCTGTAAATCGGGTTT) (Jungblut and Neilan 2006). A 40 bp GC-

clamp was added to the 5’ end of primer (GC)-HEPF. Thermal cycle program consisted 

of initial denaturation step at 92oC for 2 min and 35 cycles of 92 oC for 20  s, 52 oC for 30 

s, and 72 oC 1 min, with a final extension step at 72oC for 5 min. PCR amplicons were 

visualized as above. 

2.8 DGGE STANDARD 
 

The standards were a modification of those used by (Gill et al., submitted). DNA 

concentration was estimated from agarose gel electrophoresis. Approximately 100 ng·μl-1
 

of amplified 16S rDNA fragments from 9 well resolved single band cyanobacterial 

isolates (Table 2.1) were mixed to create a 16S rRNA-V3 DGGE standard. When 

electrophoresed in a DGGE gel, each band in the mixture was representative of one DNA 

sequence at a single position on the gel and associated with one or more known 

cyanobacterial isolates used in this study. An AMT (mcyE/ndaF) DGGE standard 

consisted of 3 known microcystin producing strains: UTCC 299 (Microcystis aeruginosa), 

UTCC 507 (Planktothrix rubescens), and NIVA-CYA 83/1 (Anabaena lemmermannii var.  
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TABLE 2.1 Cyanobacteria isolates of the Chroococcales, Nostocales, and 

Oscillatoriales used in the development of the16S rRNA-V3 region 

DGGE standard marker. The asterisk denotes the three known 

microcystin-producing strains used in the development for the AMT 

region (of the mcyE and ndaF gene) DGGE standard marker.
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.  

Taxon Strain Origin Source Collection 

Chroococcales Microcystis aeruginosa 
Kutz.em. Elenkin* UTCC 299 Pretzlaff Pond, Alberta, Canada University of Toronto Culture Collection 

Nostocales An. flos-aquae UTCC 64 Western Lake Ontario, Canada University of Toronto Culture Collection 

 An. lemmermannii var 
minor* 

NIVA-
CYA 83/1 Unknown Culture Collection of Algae (NIVA), Norwegian 

Institute for Water Research 

 Anabaena viguieri Denis et 
Frémy  Unknown Dr Freiderich Juttner (University of Zurich) 

 Aphanizomenon flos-aquae 
(Linneaus) Ralfs HHAFA Hamilton, Harbour, Lake 

Ontario, Canada 
Dr. Susan Watson (Environment Canada, 
University of Calgary) 

 Calothrix parietina 
(Thuret) Bornet et Flahault 

PCC 6303 

 

Wisconsin, USA 

 
Pasteur Culture Collection c/o Dr Freiderich 
Juttner (University of Zurich) 

 Gloeotrichia ghosi Singh 
LB 1920 

 
Unknown The Culture Collection of Algae,  University of 

Texas 

Oscillatoriales Oscillatoria limosa  Unknown Dr Freiderich Juttner (University of Zurich) 

 Planktothrix rubescens* UTCC 507  Lake Wilcox, Ontario, Canada University of Toronto Culture Collection 
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minor). The DGGE standards allowed for the comparison of banding profiles from 

natural samples. 

2.9 DGGE PROFILING OF 16S RRNA-V3 AND AMT AMPLICONS 
 

A vertical DGGE was performed using the D-Code Universal Mutation Detection 

System (Bio-Rad Laboratories, Inc.; C.A., U.S.A.). PCR amplicons (25 μl) of from the 

16S rRNA–V3 region from natural samples were applied to 8% (wt/vol) polyacrylamide 

gel (1.0 mm, 16 by 16 cm; acrylamide-bisacrylamide, 37.5:1) with a linear denaturing 

gradient of 35-55%, and 40-55% (100% denaturant is 7 M urea and 40% deionized 

formamide [vol/vol]) for 16S rRNA-V3 and AMT amplicons respectively. Samples were 

electrophoresised in a 0.5x TAE buffer (0.04 M Tris-acetate and 0.001 M EDTA, [pH 

7.6]) at a constant voltage and temperature of 60 V and 60°C respectively for 16 h. After 

electrophoresis, the gel was stained in 0.5 μg ethidium bromide ml
-1 

for 1 h and 

subsequently visualized using the Syngene Bioimaging System (Synoptics Ltd.; 

Cambridge, United Kingdom). Band matching to the DGGE marker and determination of 

band intensities were performed using the GeneTools software program for Windows 

(Synoptics Ltd.; Cambridge, United Kingdom).  

2.10 SEQUENCING OF DNA FROM DGGE PCR PRODUCTS AND BANDS  
 

Bands were spot check by cutting out unique and common bands in each profile 

using a pipette tip and incubated in 50 μl DNA/RNA free water overnight at 4oC. An 

aliquot of 1.0 μl of the eluant was re-amplified using the same programs as above (second 

round of amplification protocol for 16S rRNA-V3 only) and PCR products were purified 

using UltraCleanTM PCR Clean-upTM Kit (Mo Bio Laboratories, Ltd.; C.A., U.S.A.). All 
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purified PCR products were sequenced using the Applied Biosystems 3130XL Genetic 

Analyzer. Sequence reaction products were visualized using Bioedit sequence alignment 

editor and analysis program (Hall 1999) and similarity to sequences deposited in the 

GenBank databases were verified by using the program BLAST (Altschul et al., 1990) 

(www.ncbi.nlm.nih.gov/blast/).  

2.11 STATISTICAL ANALYSIS OF DGGE PROFILES 
 

Banding patterns on gels were statistically analyzed to infer diversity. The 

presence or absence of bands and/or band intensities in each sample was taken into 

account. Shannon-Weaver diversity index (H’) (H’ = –∑ pi  x ln pi, where pi is the 

proportion of members that a particular species contributes to the total in the sample) was 

used to calculate a relative estimate of the degree of genetic variation within a population 

(Girvan et al., 2003; Kowalchuka et al., 2006; Shannon and Weaver 1949). H’ takes into 

account both the “richness” and “eveness” component of diversity (Lynch et al., 2004). 

Similarity indices between sample banding patterns were calculated using Jaccard 

similarity index (J = 100(c/[a + b – c]), where a is the number of bands of sample A, b 

the number of bands in sample B and c the number of bands common to A and B) 

(Jaccard 1908; Lyautey et al., 2005).  

2.12 QUANTITATIVE REAL-TIME PCR (QPCR) 
 

To quantitatively describe the number of cyanobacteria and potential toxic 

Cyanobacteria present in each sample, the gene copy numbers of cyanobacteria-specific 

16S rRNA genes, and AMT (mcyE/ndaF) were determine by quantitative real-time PCR 

(qPCR) in two separate assays. PCR amplification and quantification were performed 
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using a 48-well plate MiniOpticon Real-Time PCR Detection System and MJ Opticon 

MonitorTM Analysis Software, version 3.1.32 (Bio-Rad Laboratories, Inc.; C.A., U.S.A). 

The same cyanobacteria-specific 16S rRNA primers (Cya-b-F371 and Cya-R783) and 

AMT (mcyE/ndaF) primers (HEPF and HEPR) as above but without the 40-nucleotide 

GC clamp were used in the qPCR reaction. For both cyanobacterial 16S and AMT 

(mcyE/ndaF) assays, qPCR was performed with a total volume of 20 μl containing: 10 μl 

of the hot start reaction mix (2x iQ SYBR Green Supermix; Bio-Rad Laboratories, Inc.; 

C.A., U.S.A), 0.5 μM concentrations of each primer (Sigma-Genosys, Ltd., T.X., U.S.A), 

and 2 μl of DNA extract. All the samples were amplified in triplicates with a no template 

control (NTC) included in each run. The thermal cycle program for cyanobacterial 16S 

rRNA-V3 consisted of initial preheating step of 95oC for 3 min, followed by 40 cycles of 

95oC for 20 s, 52 oC for 20s, and 72 oC for 20 s. The thermal cycle program for AMT 

(mcyE/ndaF) consisted of 95oC for 3 min, followed by 40 cycles of 95oC for 20 s, 56oC 

for 30s, and 72oC for 60 s. The generation of amplicons was monitored after each 

annealing and extension step by measuring the fluorescence intensity from double-

stranded DNA binding SYBR Green I dye using MiniOpticon (Bio-Rad Laboratories, 

Ltd.; C.A., U.S.A.). To assess the homogeneity of a sample, fluorescence melting 

(dissociation) curve analysis was performed on the amplified products in each reaction 

tube. Following the qPCR reaction, the temperature was gradually increased from 56oC to 

95oC with 1oC increment and a hold time of 2 s at each increment before the fluorescence 

is read. To check that the expected amplicons were amplified, PCR products were run on 

a 1% agarose gel along side a ΦX174 DNA-Hae III standard. The number of total 

cyanobacterial and potential toxic cyanobacterial cells in each sample were determined 
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by converting the obtained Ct values into cell numbers according to the to the regression 

equations of the external standards (cell number vs Ct). Data from qPCR analysis was 

subjected to an ANOVA (analysis of variance) using Systat® version 9 for Windows to 

determine if there was a significant differences between lakes, stations, and dates.  

2.13 CONSTRUCTION OF QPCR STANDARD CURVES 
 

External standards of the 16S rRNA gene and AMT (mcyE/ndaF) were prepared 

from genomic DNA of Microcystis aeruginosa UTCC 299. M. aeruginosa UTCC 299 

was grown in 1.0 L Erlenmeyer flask containing approximately 350 ml of Bold’s basal 

medium (BBM) (Stein 1973). An aliquot of the culture was directly counted in a Spencer 

Brite-line® hemocytometer (American Optical, Scientific Instruments; N.Y., U.S.A.). The 

cells were enumerated under 100x magnification with an Olympus BX51 System 

compound light microscope. Five cell-count replicates were performed and an average 

cells·L-1 was calculated. Immediately following cell counts, a 25 ml volume was filtered 

through a GF/F filter and frozen prior to extraction. The number of cells present on the 

GF/F filter was calculated by multiplying the cells·L-1 (determined hemocytometer) by 

the volume filtered (25 ml). Genomic DNA extraction process was the same as above and 

total DNA yield was determined using the NanoDrop® ND-1000 UV-Vis 

Spectrophotometer (NanoDrop Technologies, Inc.; Wilmington, D.E., U.S.A). To 

determine how much DNA is yielded from one cell, DNA yield (ng of DNA) was divided 

by total number of cells on the 1/16 filter piece. Six dilutions of template DNA ranging 

from 5 x 105 cells to 5 cells equivalent were prepared from the DNA extract to serve as 

external standards. Cycle threshold line (Ct) was position to obtain the highest possible 

correlation coefficient (R2) and amplification efficiency (e, e = 10 – 1/S – 1, where S is the 
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slope of the linear regression; e = 1.0, means a doubling of product in each cycle) with 

greater weight placed on the latter. An R2 value greater than 0.990 indicates proper 

positioning of the threshold line and a slope of -3.32 indicates perfect doubling.  

2.14 PROTEIN PHOSPHATASE INHIBITION ASSAY AND DIRECT CELL COUNT 
 

The protein phosphatase inhibition assay (PPIA) used to determine microcystin 

concentration was performed by Sarah Yakobowski (University of Waterloo, Ontario, 

Canada) on all samples collected from the Bay of Quinte and Maumee Bay. One Bay of 

Quinte (NA September 22, 2006) sample was sent to Hedy Kling (Freshwater Institute, 

Winnipeg, Manitoba, Canada) for direct cell count.
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CHAPTER 3.0: RESULTS  
 

3.1 DGGE RESULTS 

3.1.1 CYANOBACTERIA 16S RRNA-V3 GENETIC PROFILES FROM THE BAY OF QUINTE, 
MAUMEE BAY, AND NYANZA GULF USING DGGE  

 
Profiles of the cyanobacterial genetic communities using the 16S rRNA-V3 gene 

region are depicted in Figures 3.1.1 to 3.1.4. For consistency, all samples on each DGGE 

polyacrylamide gel were extracted, PCR amplified, and DGGE analyzed together. Each 

cyanobacterial population was differentiated on the basis of the position of their 16S 

rRNA-V3 amplicons on DGGE gels. In this study, each band was assumed to be a unique 

genotype. The two blurred bands at the bottom of the 16S rRNA-V3 DGGE gels are 

presumed to be primer-dimers formed during the amplification process. The intensities of 

each band provided information about the abundance of a particular genetic population 

relative to the other bands within the same sample. 

3.1.1.1 BAY OF QUINTE, 2005 
 

The 16S rRNA-V3 DGGE profile for the Bay of Quinte in the summer of 2005 

(Figure 3.1.1) indicated the presence of a predominant unidentified genotype A from all 

three sampling stations (NA, HB, BB) in June 28, 2005. Re-amplification and sequencing 

of genotype A (Figure 3.1.1) provided no further information other than the sequence is 

of cyanobacterial origin. Microscopic examination of the June 28, 2005 planktonic 

samples indicated that a large portion of the planktonic community was the genus 

Gloeotrichia. It is speculated that genotype A was from a strain of Gloeotrichia other 

than G. ghosi UTEX LB 1920 since genotype A did not match with the standard. A band 
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corresponding to the M. aeruginosa UTCC 299 standard was faintly present in the HB 

June 28, 2005 filter sample but absent from the other two filters collected on the same 

date from stations NA and HB. In contrast, bands corresponding to the A. viguieri/A. 

planktonica and M. aeruginosa UTCC 299 standards were predominant in all three 

sampling stations from the August and October filters.  

3.1.1.2 BAY OF QUINTE, LAKE ONTARIO 2006 
 

The 16S rRNA-V3 profile for the Bay of Quinte samples (Figure 3.1.2) showed 

differences in the cyanobacteria genetic population between early and late summer. 

Based on band intensities, Microcystis genotypes were predominant in early summer 

(July 4, 2006) from all six sampled stations. Furthermore, present at each station in 

relatively high abundance was an unidentified band, genotype B (Figure 3.1.2) between 

the A. flos-aquae UTCC64 and A. lemmermannii NIVA-CYA 83/1 standards. Genotype 

B in the July 4, 2006 samples was at the same position as genotype A in the June 28, 

2005 samples (Figure 3.1.1). Sequencing of these two bands, A (Figure 3.1.1), and B 

(Figure 3.1.2), showed that they were identical. Another unknown band, genotype A 

(Figure 3.1.2), above the genotype B band (Figure 3.1.2) was present in all the samples 

but in lower abundance relative to the previous two bands mentioned. In five of the six 

early summer samples (NA, GPT, NR, MBO, DS) a faint band corresponding to the A. 

viguieri/A. planktonica standard was present. 

By late summer (September 22, 2006), the band corresponding to the Microcystis 

standard was only faintly present in all the six samples collected from each station. In 

contrast, there were two discrete genetic populations in relatively high abundance in all 

six samples (Figure 3.1.2). One was a band matching the A. viguieri/A. planktonica 
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standard and the other was genotype C. Genotype C (Figure 3.2) was the most intense 

band (most abundant) in the late summer samples.  

3.1.1.3 MAUMEE BAY, LAKE ERIE 2006 
 

Similar to the Bay of Quinte 2006 samples, profiles of the 16S rRNA-V3 

amplicons from the Maumee Bay samples showed differences in the cyanobacteria 

genetic populations between early and late summer (Figure 3.1.3A and 3.1.3B). Due to 

slanted banding patterns in the June 20, 2006 samples (Figure 3.1.3A), they were re-

analyzed on a separate DGGE gel (Figure 3.1.3B). There were slight differences between 

the two DGGE gels (Figure 3.1.3A and 3.1.3B) for the June 20, 2006 samples which are 

discussed below. 

Profiles of the early summer (June 20, 2006) samples showed a very faint band 

corresponding to the Microcystis standard only from station MB18 (Figure 3.1.3A). In a 

second gel run the Microcystis band was present in two samples: MB19 and 8M (Figure 

3.1.3B). Sample MB18 in early summer showed the only band (faint) matching to the O. 

limosa standard for both gels. Five distinct bands (A, B, D, E, F) that did not migrate to 

the same position as any of the standards were present in all the early summer samples 

for both gels (Figure 3.1.3A and 3.1.3B). Unknown genotype A and B bands (Figure 

3.1.3A and B) migrated to gel positions above the first C. parietina standard. Unknown 

genotype D, E, and F bands were in close proximity to one another and migrated between 

the A. flos-aquae and A. lemmermannii standards. The two gels (Figure 3.1.3A and B) 

differed by one distinguishable band, genotype C, above the A. flos-aquae standard and 

present in all the samples in the gel depicted in Figure 3.1.3A but absent in the second gel 

(Figure 3.1.3B).  
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By late summer (August 22, 2006) Microcystis genotypes were present in high 

abundance from all stations sampled. Based on band intensities, all the other genotypes 

were in lower abundance relative to the bright bands corresponding to the Microcystis 

standard (Figure 3.1.3A). Two other bands were predominant in the late summer samples: 

unknown genotype G and H bands (Figure 3.1.3A). Band G appeared to have a similar 

melting temperature as the C. parietina standard since it migrated closely to the same 

position on the DGGE gel.  

3.1.1.4 NYANZA GULF (WINAM GULF), LAKE VICTORIA 2005 
 
 Profile of the 16S-rRNA-V3 amplicons showed two bands matching the 

Microcystis and A. viguieri standards in all the samples with varying intensities (Figure 

3.1.4). The bands corresponding to the Microcystis genotype was in higher abundance in 

samples KL3, KL5, and COL. Sample KL5 had a third band matching the O. limosa 

standard. Unknown genotype A band (Figure 3.1.4) was present in all the station samples 

collected from the 4 stations but the band was barely visible in the phytoplankton bloom 

sample. Unknown genotype B band was present in all five samples but lower in 

abundance relative to the other bands.  

3.1.2 PROFILES OF THE TOXIC CYANOBACTERIA COMMUNITY USING AMT REGION OF 
MCYE AND NDAF USING DGGE 

 
Profiles of the AMT amplicons for each study site are represented in Figures 3.1.5 

to 3.1.9. The profile of the aminotransferase (AMT) domain of the microcystin gene E 

(mcyE) and nodularin gene F (ndaF) showed far less genotype richness than the 16S 

rRNA-V3 DGGE profiles since there were less bands observed in the AMT DGGE gels. 

 51



Figure 3.1.1 DGGE profile of the 16S rRNA-V3 amplicons amplified from the Bay 

of Quinte 2005 filter samples. Unknown genotype A bands visible in all 

the samples is highlighted with a red box. Bands that migrated to the same 

gel position as a standard band are indicated with an asterisk. Standard 

mix consisted of: (1) Calothrix parietina PCC 6303, (2) Anabaena flos-

aquae UTCC 64, (3) Anabaena lemmermannii NIVA-CYA 83/1, (4) 

Anabaena viguieri/Anabaena planktonica*, (5) Gloeotrichia ghosi UTEX 

LB 1920, (6) Microcystis aeruginosa UTCC 299/Microcystis 

wesenbergii*, (7) Aphanizomenon flos-aquae HHAFA, (8) Oscillatoria 

limosa, (9) Planktothrix rubescens UTCC 507
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Figure 3.1.2 DGGE profile of the 16S rRNA-V3 amplicons amplified from the Bay 

of Quinte 2006 filter samples. Unknown genotypes A, B, and C bands 

visible in all the samples are highlighted with a red box. Bands that 

migrated to the same gel position as a standard band are indicated with an 

asterisk. Standard mix consisted of: (1) Calothrix parietina PCC 6303, (2) 

Anabaena flos-aquae UTCC 64, (3) Anabaena lemmermannii NIVA-CYA 

83/1, (4) Anabaena viguieri/Anabaena planktonica*, (5) Gloeotrichia 

ghosi UTEX LB 1920, (6) Microcystis aeruginosa UTCC 299/Microcystis 

wesenbergii*, (7) Aphanizomenon flos-aquae HHAFA, (8) Oscillatoria 

limosa, (9) Planktothrix rubescens UTCC 507
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Figure 3.1.3A DGGE profile of the 16S rRNA-V3 amplicons amplified from the 

Maumee Bay 2006 filter samples. Unknown genotypes A, B, C, D, E, 

F, G, and H bands visible in all the samples are highlighted with a red 

box. Bands that migrated to the same gel position as a standard band are 

indicated with an asterisk. Standard mix consisted of: (1) Calothrix 

parietina PCC 6303, (2) Anabaena flos-aquae UTCC 64, (3) Anabaena 

lemmermannii NIVA-CYA 83/1, (4) Anabaena viguieri/Anabaena 

planktonica*, (5) Gloeotrichia ghosi UTEX LB 1920, (6) Microcystis 

aeruginosa UTCC 299/Microcystis wesenbergii*, (7) Aphanizomenon 

flos-aquae HHAFA, (8) Oscillatoria limosa*, (9) Planktothrix rubescens 

UTCC 507
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Figure 3.1.3B DGGE profile of the 16S rRNA-V3 amplicons amplified from the 

Maumee Bay June 20, 2006 filter samples. Unknown genotype A, B, 

C, D, E, and F bands visible in all the samples are highlighted with a red 

box. Bands that migrated to the same gel position as a standard band are 

indicated with an asterisk. Standard mix consisted of: (1) Calothrix 

parietina PCC 6303, (2) Anabaena flos-aquae UTCC 64, (3) Anabaena 

lemmermannii NIVA-CYA 83/1, (4) Anabaena viguieri/Anabaena 

planktonica, (5) Gloeotrichia ghosi UTEX LB 1920, (6) Microcystis 

aeruginosa UTCC 299/Microcystis wesenbergii*, (7) Aphanizomenon 

flos-aquae HHAFA, (8) Oscillatoria limosa*, (9) Planktothrix rubescens 

UTCC 507. 
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Figure 3.1.4 DGGE analysis of the 16S rRNA-V3 amplicons amplified from the 

Nyanza Gulf 2005 filter samples. Unknown genotypes A and B bands 

visible in all the samples are highlighted with a red box. Bands that 

migrated to the same gel position as a standard band are indicated with 

an asterisk. Standard mix consisted of: (1) Calothrix parietina PCC 6303, 

(2) Anabaena flos-aquae UTCC 64, (3) Anabaena lemmermannii NIVA-

CYA 83/1, (4) Anabaena viguieri/Anabaena planktonica*, (5) 

Gloeotrichia ghosi UTEX LB 1920, (6) Microcystis aeruginosa UTCC 

299/Microcystis wesenbergii*, (7) Aphanizomenon flos-aquae HHAFA, 

(8) Oscillatoria limosa*, (9) Planktothrix rubescens UTCC 507
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Figure 3.1.5 DGGE gel of the AMT amplicons amplified from the Bay of Quinte 

2005 filter samples. Negative image of ethidium bromide stained gel. 

Standard mix consisted of (from top to bottom): (1) Planktothrix 

rubescens UTCC 507, (2) Anabaena lemmermannii NIVA-CYA 83/1, and 

(3) Microcystis aeruginosa UTCC 299. Samples “BB Jun 28/05” and “HB 

Aug 3/05” contained faint bands at the same gel position as the M. 

aeruginosa UTCC 299 standard but were too faint to be visible in the gel 

picture.
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Figure 3.1.6 DGGE gel of the AMT amplicons amplified from the Bay of Quinte 

2006 filter samples. Negative image of ethidium bromide stained gel. 

Standard mix consisted of (from top to bottom): (1) Planktothrix 

rubescens UTCC 507, (2) Anabaena lemmermannii NIVA-CYA 83/1, 

and (3) Microcystis aeruginosa UTCC 299
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Figure 3.1.7 DGGE gel of the AMT amplicons amplified from Maumee Bay 2006 

filter samples. Three distinct bands in the gel are labeled A, B, and C. 

Negative image of ethidium bromide stained gel. Standard mix consisted 

of (from top to bottom): (1) Planktothrix rubescens UTCC 507, (2) 

Anabaena lemmermannii NIVA-CYA 83/1, and (3) Microcystis 

aeruginosa UTCC 299.
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Figure 3.1.8 DGGE gel of the AMT amplicons amplified from Nyanza Gulf 2005 

filter samples. Negative image of ethidium bromide stained gel. 

Standard mix consisted of (from top to bottom): (1) Planktothrix 

rubescens UTCC 507, (2) Anabaena lemmermannii NIVA-CYA 83/1, 

and (3) Microcystis aeruginosa UTCC 299
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3.1.2.1 BAY OF QUINTE, LAKE ONTARIO 2005 AND 2006 
 

Except for the HB August 30, 2005 sample, there appears to be only one or two 

AMT genotype populations present in all the samples (Figure 3.1.5). Each sample on the 

gel contained a band at the same position as the M. aeruginosa UTCC 299 standard. The 

multiple banding patterns in the HB August 30, 2005 samples showed that four AMT 

genotypes were present. One of the four AMT bands in sample HB August 30, 2005 

migrated to the same position as the A. lemmermannii NIVA-CYA 83/1 standard. 

Based on band intensities, very little AMT amplicons were detected in the three June 28, 

2005 samples (NA, HB, BB) and two of the August 3, 2005 samples (NA, HB). By late 

August, the band intensity was greater suggesting an increase in abundance of toxic 

genotypes. 

 DGGE analysis of AMT amplicons from the 2006 samples (Figure 3.1.6) showed 

one or two distinct toxic genetic populations present at each site in early and late summer. 

Both the AMT bands (separated by on 1 mm) migrated nearly close to the same position 

as the M. aeruginosa UTCC 299 standard. 

3.1.2.2 MAUMEE BAY, LAKE ERIE 2006 
 

Profiles of the Maumee Bay samples (Figure 3.1.7) showed no detectable toxic 

genotypes in early summer (June 20, 2006). Filter extraction and PCR-DGGE analysis of 

all Maumee Bay samples were performed several times to ensure that the result was not 

due to errors in the extraction and PCR process. The same extract used in AMT DGGE 

analysis was used for the 16S rRNA-V3 analysis to ensure that the extracts were 

amplifiable. By late summer (August 22, 2006), multiple AMT genotypes were visible in 

each sample on the gel. There were more than 5 different bands present in each of the 
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sample. Most notable was the band corresponding to the M. aeruginosa UTCC 299 

standard in each of the sample in relatively high abundance over the other bands present. 

There was also a band in the same gel position as the A. lemmermannii NIVA-CYA 83/1 

standard present in all 6 late summer samples. 

3.1.2.3 NYANZA GULF (WINAM GULF), LAKE VICTORIA 2005 
 

PCR and DGGE analysis of the AMT domain (mcyE/ndaF) showed a band in the 

same gel position as the M. aeruginosa UTCC 299 standard in the four samples collected 

from each of the station in Nayza Gulf (Figure 3.1.8). No AMT band was detected in the 

phytoplankton bloom sample while COL contained more than one visible AMT band.   

3.1.3 SEQUENCING OF EXCISED DGGE BANDS 
 

Predominant and unique bands were excised and sequenced to provide further 

identification of the cyanobacterial species represented in the particular band. On average, 

only short sequences approximately 100 base pair long were obtained from each of the 

excised 16S rRNA-V3 DGGE bands. This small region did not provide enough 

information to identify the species and sometimes the genus of the excised bands. The 

16S rRNA-V3 sequences were compared to sequences deposited in the GenBank 

database using the Basic Local Alignment Search Tool (BLAST) algorithm (Altschul et 

al., 1990) (www.ncbi.nlm.nih.gov/blast/). The 16S rRNA-V3 sequences showed high 

degrees of sequence similarities (95-100%) to multiple cultured and uncultured 

cyanobacteria species.  

Sequences obtained from selected AMT bands were about 400 nucleotides long. 

BLAST nucleotide (BLASTn) (Altschul et al., 1997) results of sequences obtained from 

bands at gel positions close to the M. aeruginosa UTCC 299 standard (Figure 3.1.7, band 
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C) returned matches to several Microcystis species (aeruginosa, wesenbergii, and viridis) 

with 98% nucleotide matches.  

Comparison of the 16S rRNA-V3 sequences obtained from excised bands showed 

that genotypes that migrated to the same gel position have identical sequences. As shown 

with the Bay of Quinte, sequences of all genotype A bands in the 2005 samples (Figure 

3.1.1) and band B of the 2006 early summer sample (Figure 3.1.2) were the same. Bands 

with the same gel position as the A. viguieri/ A. planktonica standard in the 2005 and 

2006 Bay of Quinte gels had identical sequences to the standard. All bands that migrated 

to the same gel position as the M. aeruginosa UTCC 299 standard in both Maumee Bay 

and Bay of Quinte samples are a 99%-100% match with the standard. 

3.1.4 GENERAL STATISTICAL ANALYSIS 

3.1.4.1 DIVERSITY 
 

Shannon’s diversity indices were calculated based on the number and relative 

intensity of bands present in the 16S rRNA-V3 profiles. Diversity index of the three 

study sites showed some differences between the lakes, but sampling stations within a 

study site did not differ significantly from each other (P>0.05). The Nyanza Gulf samples 

had the highest diversity index (H’) of 3.09 followed by Maumee Bay, and Bay of Quinte. 

Samples from Maumee Bay showed a slight decrease in diversity between early (H’ = 

2.72) to late summer (H’ = 2.61) although not significant (P = 1.00). The diversity index 

for the Bay of Quinte 2006 samples decreased between early (H’ = 2.42) and late summer 

(H’ = 2.18) (P = 0.02). For the Bay of Quinte 2005 samples, both the June 28 and August 

30 samples had the same calculated diversity (H’ = 2.02); and the August 3 and October 
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6 samples had nearly similar diversities (H’ = 2.38 and 2.39 respectively). Evenness 

values for all the samples ranged from 92% to 98%. 

3.1.4.2 REPRODUCIBILITY DGGE PROFILES 
 

Two separate 16S rRNA-V3 DGGE gels for each study site (Bay of Quinte 2005 

samples, Maumee Bay early summer samples, and Nyanza 2005 samples) were compared 

for similarities in banding patterns. Sample sets from each gel were extracted, PCR 

amplified, and DGGE analyzed at different times. Genomic DNA was extracted from 

filter pieces taken from different GF/F filters. Based on the presence and absent of bands 

in each sampling station, the Jaccard similarity coefficient was determined for each 

duplicate set of 16S rRNA-V3 DGGE gels. The Bay of Quinte 2005 sample profiles 

showed the highest similarity (84%) between the two gels followed by the Nyanza Gulf 

2005 samples (75%) and Maumee Bay 2006 early summer samples (71%). 

3.2 QPCR RESULTS 

3.2.1 STANDARD CURVE 

3.2.1.1 16S RRNA-V3 STANDARD CURVE 
 

A standard curve was developed using six dilutions of template DNA extracted 

from M. aeruginosa UTCC 299 that ranged from 5 cells per reaction to 5.0 x 105 cells per 

reaction (Figure 3.2.1A). The Cya-b-F371 and Cya-R783 primer set by (Zwart et al., 

2005) were used to develop the 16S rRNA-V3 standard curve. The regression equation 

was y = 36.00 – 3.719x (R2 = 0.996, 86% efficiency) where y is the threshold cycle (Ct: 

the PCR cycle at which an increase in fluorescence signal is detected above a set baseline 

signal) at the set fluorescence threshold level (0.038) and x is the amount of starting DNA 

(represented as log10 cell number equivalents). A melt curve made from the qPCR 
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products (Figure 3.2.1B) showed that all products had similar melting curves with only 

one peak at 85oC, no primer peaks were observed in samples with DNA template. There 

were small peaks in the NTC (no temple control) tubes (blue peaks in Figure 3.2.1B) but 

it was insignificant to the larger peaks of the DNA template samples. 

3.2.1.2 AMT (MCYE/NDAF) STANDARD CURVE 
 

A highly significant linear curve (Figure 3.2.2A) between the amount of starting 

DNA and Ct was obtained for AMT standard curve using the primer set HEPF and HEPR 

(Jungblut and Neilan 2006). The regression equation was y = 31.88 – 3.665x (R2 = 0.999, 

87% efficiency), where y is the Ct at the set fluorescence threshold level (0.014) and x is 

the amount of starting DNA (represented as log10 cell number equivalents). AMT 

sequence detection ranged from 5 x 101 to 5 x 105 cells per 20-μl reaction. Quantification 

of 5 cells per 20-μl reaction resulted in a melting curve with two distinct peaks indicating 

presence of primer-dimers. For this reason, the 5 cells per reaction standard was excluded 

from the AMT standard curve, thus the standard curve ranged from 5 x 105 cells per 

reaction to 5 x 101 cells per reaction. A melt curve for all the qPCR products showed only 

one peak at 85oC and no primer peak from the DNA template samples. The NTC samples 

produced a peak at ~76oC (blue peaks in Figure 3.2.2B). 

3.2.2 QUANTIFICATION OF TOTAL CYANOBACTERIA AND TOTAL POTENTIAL 
HEPATOTOXIC CYANOBACTERIAL CELL COUNTS IN LAKE WATER SAMPLES 

 
Quantification of total cyanobacteria was based on the M. aeruginosa UTCC 299 16S 

rRNA-V3 standard curve. On the other hand, the quantification of potential hepatotoxic 

cyanobacteria was calculated from the M. aeruginosa UTCC 299 AMT standard curve. 

Numbers indicated in Tables 3.2.1 and 3.2.2 were the mean values of three or more 
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Figure 3.2.1 Standard curve and dissociation/melting curve of the 16S rRNA-V3 

amplicons. (A) Standard curve of 16S rRNA-V3 amplicons was based on 

predetermined M. aeruginosa UTCC 299 cell concentrations by relating 

known DNA concentration (in cell equivalent) to Ct values of diluted 

samples using primers Cya-b-F371 and Cya-R783 (Muyzer et al., 1993). 

All plots represent the mean of triplicate determinations and error bar 

provide the standard deviation. (B) Dissociation/melting curve of the 16S 

rRNA-V3 amplicons. The melting curve of the three no template control 

(NTC) samples are indicated by the red circle. 
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Figure 3.2.2 Standard curve and dissociation/melting curve of the AMT amplicons. 

(A) Standard curve of AMT amplicons was based on predetermined M. 

aeruginosa UTCC 299 cell concentrations by relating known DNA 

concentration (in cell equivalent) to Ct values of diluted samples using 

primers HEPF and HEPR (Jungblut and Neilan 2006). All plots represent 

the mean of triplicate determinations and error bar provide the standard 

deviation. (B) Dissociation/melting curve of the AMT amplicons. The 

melting curves from the three NTC samples are highlighted by the red 

oval in the figure.
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determinations ± standard deviation. For consistency and comparison purposes, the 

genomic DNA extract used for qPCR quantification of the 16S rRNA-V3 gene fragment 

was also used for qPCR of the AMT gene region. 

3.2.2.1 BAY OF QUINTE (LAKE ONTARIO)
 

Water samples were collected and filtered through GF/F filters in early (July 4, 

2006) and late summer (August 22, 2006) from six sampling stations in the Bay of Quinte. 

Majority of the sampling stations showed no significant differences (P > 0.05) in total 

cyanobacteria (cells·L-1) and potential hepatotoxic cell (cells·L-1) concentrations for both 

early and late summer. Hence, the six stations were treated as one sampling replicate and 

averaged. Quantification of the six sampling stations by qPCR assay determined that the 

average cyanobacterial cell concentration was significantly higher (P = 0.000) from late 

summer (1.76 ± 0.70 x 109 cells·L-1) to early summer (1.22 76 ± 1.00 x 108 cells·L-1) by 

an order of one magnitude (Table 3.2.1). For early summer, the cell concentration ranged 

from 4.01 (± 1.70) x 107 cells·L-1 (GPT) to 3.18 (± 0.73) x 108 cells·L-1 (DS). For late 

summer, the cell concentration ranged from 9.85 (± 1.07) x 108 cells·L-1 (F1) to 3.00 (± 

0.95) x 109 cells·L-1 (NR). Quantification of cyanobacterial cell concentration from 

station NA September sample (1.82 ± 1.31 x 109 cells·L-1) was almost one magnitude 

higher than direct cell count numbers (3.69 x 108 cells·L-1) as determined by Hedy Kling 

(Freshwater Institute, Winnipeg, Manitoba, Canada).

Hepatotoxic genotypes were detected from all six stations by qPCR. On average, 

the hepatotoxic cell concentration was 2.99 (± 3.60) x 106 cells·L-1 in early summer and 

decreased almost 50% to 1.46 (± 0.20) x 106 cells·L-1 by late summer; however, this was 

not a significant decrease (P = 0.372). Potential hepatotoxic cell concentrations ranged 
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from 4.17 (± 1.47) x 105 cells·L-1 (NA) to 9.28 (± 3.63) x 106 cells·L-1 (DS) in early 

summer and 1.20 (± 0.35) x 106 cells·L-1 (F1) to 1.75 (± 1.07) x 108 cells·L-1 (NA) in late 

summer. In both the early and late summer samples, the hepatotoxic population was less 

than 1.0% of the total cyanobacteria population. PPIA (protein phosphatase inhibition 

assay) reported detectable levels of microcystin in early and late summer samples (Sarah 

Yakobowski, University of Waterloo, Ontario, Canada). The average total microcystin 

concentration ranged from 2.18 (± 0.57) μg·L-1 in early summer to 0.58 (± 0.58) μg·L-1 by 

late summer (Sarah Yakobowski, University of Waterloo, Ontario, Canada). 

3.2.2.2 MAUMEE BAY (LAKE ERIE) 
 

Quantitative real-time PCR of the filter samples collected from Maumee Bay in 

early (June 20, 2006) and late summer (August 22, 2006) showed no significant 

differences (P > 0.05) in cyanobacterial cell concentrations (cells·L-1) among the six 

sampling stations in both early and late summer  (Table 3.2.2). As well, in late summer, 

there were no significant differences (P > 0.05) in potential hepatotoxic cell concentration 

(cells·L-1) among the six sampling stations. Thus, cell concentrations from the six 

sampling stations were averaged. As observed in the Bay of Quinte, there was a 

significant increase (P = 0.0) of more than one order of magnitude in cyanobacterial cell 

abundance from early to late summer (Table 3.2.2). Cell concentration in Maumee Bay in 

early summer ranged from 1.12 (± 0.98) x 107 cells·L-1 (CS) to 3.62 (± 0.52) x 107 

cells·L-1 (7M). Cell concentration from station MB18 samples in early summer was 

undetermined because the samples failed to amplify. An average of the five sites (station 

MB18 excluded) sampled in early summer showed that the cell abundance was 2.35 (±  
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TABLE 3.2.1 qPCR data of total cyanobacteria and total potential hepatotoxic 

cyanobacteria concentration (cells·L-1) from the Bay of Quinte filter 

samples. Cyanobacterial cell abundance was based on the M. aeruginosa 

UTCC 299 16S rRNA-V3 standard curve. Number of potential 

hepatotoxic cyanobacteria based on the M. aeruginosa UTCC 299 AMT 

standard curve. The values represent the mean of triplicate determinations 

± standard deviation.
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 No. of Cyanobacteria (cells·L-1) 

(M. aeruginosa UTCC 299 equivalent)  
No. of Potential Hepatotoxic 

Cyanobacteria (cells·L-1) 
(M. aeruginosa UTCC 299 equivalent) 

sampling 
station  early summer  

(4-Jul-2006) 
late summer 
(22-Sept-2006)  early summer  

(4-Jul-2006) 
late summer 
(22-Sept-2006) 

NA  6.26 x 107  
(± 2.95 x 107) 

1.82 x 109  
(± 1.31 x 109)  4.17 x 105  

(± 1.47 x 105) 
1.75 x 106  
(± 7.21 x 105) 

GPT  4.01 x 107  
(± 1.70 x 107) 

1.25 x 109  
(± 8.47 x 107)  5.34 x 106  

(± 9.07 x 106) 
1.47 x 106  
(± 1.42 x 105) 

NR  9.40 x 107  
(± 5.12 x 107) 

3.00 x 109  
(± 9.50 x 108)  6.49 x 105  

(± 1.47 x 105) 
1.60 x 106  
(± 2.88 x 105) 

MBO  1.23 x 108  
(± 8.76 x 106) 

1.65 x 109  
(± 1.76 x 108)  5.51 x 105  

(± 2.92 x 104) 
1.33 x 106  
(± 3.15 x 105) 

F1  9.67x 107  
(± 1.64 x 107) 

9.85x 108  
(± 1.07 x 108)  1.71 x 106  

(± 3.08 x 105) 
1.20 x 106  
(± 3.53 x 105) 

DS  3.18 x 108  
(± 7.33 x 107) 

1.87 x 109  
(± 3.20 x 101)  9.28 x 106  

(± 3.63 x 106) 
1.41 x 106  
(± 5.00 x 106) 

Avg. of 6 
stations  1.22 x 108

(± 9.99 x 107) 
1.76 x 109

(± 6.96 x 108)  2.99 x 106

(± 3.60 x 106) 
1.46 x 106

(± 1.96 x 105) 
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Table 3.2.2 qPCR data of total cyanobacteria and total potential hepatotoxic 

cyanobacterial cell concentration (cells·L-1) from Maumee Bay filter 

samples. Cyanobacterial cell abundance was based on the M. aeruginosa 

UTCC 299 16S standard curve. Number of potential hepatotoxic 

cyanobacteria based on the M. aeruginosa UTCC 299 AMT standard 

curve. The values represent the mean of triplicate determinations ± 

standard deviation (M. aeruginosa UTCC 299 equivalent per liter). 

Sample from station MB18 failed to amplify. BDL (below detection limit) 

means that amplification occurred but was below the set threshold
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.  
 No. of Cyanobacteria (cells·L-1) 

(M. aeruginosa UTCC 299 equivalent)  
No. of Potential Hepatotoxic 

Cyanobacteria (cells·L-1) 
(M. aeruginosa UTCC 299 equivalent) 

sampling 
station  early summer  

(20-Jun-2006) 
late summer 
(22-Aug-2007)  early summer  

(20-Jun-2006) 
late summer 
(22-Aug-2007) 

MB18  – 1.08 x 108  
(± 1.78 x 107)  BDL 1.40 x 108  

(± 4.55 x 107) 

MB19  1.79 x 107  
(± 4.84 x 106) 

5.33 x 107  
(± 1.32 x 107)  BDL 5.23 x 107  

(± 8.78 x 106) 

8M  2.19 x 107  
(± 1.18 x 107) 

1.39 x 108  
(± 1.12 x 108)  BDL 3.57 x 108  

(± 4.26 x 108) 

MB15  3.03 x 107  
(± 3.31 x 106) 

2.02 x 107  
(± 5.22 x 106)  BDL 2.78 x 107  

(± 6.11 x 105) 

7M  3.62x 107  
(± 5.17 x 106) 

7.35 x 107  
(± 1.52 x 107)  BDL 6.04 x 107  

(± 4.17 x 106) 

Clear 
Site  1.12 x 107  

(± 9.80 x 106) 
2.31 x 108  
(± 0.0)  BDL 7.17 x 107  

(± 1.22 x 107) 

Avg. of 6 
stations  2.35 x 107

(± 9.92 x 106) 
1.04 x 108

(± 7.46 x 107)  BDL 1.18 x 108

(± 1.23 x 108) 

 

 84



Table 3.2.3 Comparison of qPCR and PPIA data in this present study with Rinta-

Kanto et al. (2005).  Each numeric value for the Bay of Quinte and 

Maumee Bay in 2006 is an average of the 6 stations ± standard deviation. 

Protein phosphatase inhibition assay (PPIA) values were obtained from 

Sarah Yakobowski (University of Waterloo, Ontario, Canada). The qPCR 

and PPIA values for the Maumee Bay area are comparable to the values 

published by Rinta-Kinto et al. (2005).
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Site Date No. of cyano. (cells·L-1) No. of potential hepatotoxic 

cyano. (cells·L-1) PPIA (μg·L-1) 

This present study Bay of Quinte Jul 2006 1.22 (± 0.99) x 108 2.99 (± 3.60) x 106 2.18 (± 0.57) 

 Bay of Quinte Sep 2006 1.76 (± 0.70) x 109 1.46 (± 0.20) x 106 0.58 (± 0.58) 

 Maumee Bay Jun 2006 2.35 (± 0.99) x 107 BDL BDL 

 Maumee Bay Aug 2006 1.04 (± 0.75) x 108 1.18 (± 1.23) x 108 4.45 (± 2.19) 

      

Rinta-Kanto et al. (2005) Maumee Bay 
(station 1) Aug 2003 9.9 (± 1.1) x 108 1.1 (± 0.3) x 106 15.4 

 Maumee Bay 
(station 882) Aug 2004 7.5 (± 1.3) x 105 3.4 (± 0.7) x 104 0.04 
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0.99) x 107 cells·L-1. This number was one order of magnitude lower than the Bay of 

Quinte samples collected in early summer. In late summer in Maumee Bay cell 

abundance ranged from 2.02 (± 0.52) x 107 cells·L-1 (MB15) to 2.31 (± 0.0) x 108 cells·L-

1 (CS) with an average of 1.04 (± 0.75) x 108 cells·L-1. Again, the average cyanobacterial 

cell concentration of Maumee Bay was one magnitude lower than the Bay of Quinte 

samples in late summer. 

Quantitative real-time PCR data from the quantification of the AMT gene region 

(mcyE and ndaF) for the Maumee Bay early summer samples were unreliable since PCR 

products in all the samples were detected only after PCR amplification cycles 28-36. A 

melt curve of all the PCR products showed two broad peaks indicating primer-dimers in 

all the sample reaction tubes. Thus, potential hepatotoxic cyanobacterial cells were out of 

the quantifiable range of this qPCR assay. However, potential hepatotoxic cyanobacterial 

cells were in high abundance by late summer. Cell concentration of potential hepatotoxic 

cyanobacteria in late summer ranged from 2.78 (± 0.06) x 107 cells·L-1 to 3.57 (± 4.26) x 

108 cells·L-1 with an average of 1.18 (± 1.23) x 108 cells·L-1. Consequently, this suggests 

that there were more toxic hepatotoxic cyanobacteria than there were total cyanobacteria 

in late summer which is not possible. A second qPCR reaction on another set of late 

summer DNA extracts yielded similar results (data not shown) as the first run. PPIA 

showed that MC levels were below detectable limits in early summer but increased to 

4.46 (± 2.19) μg·L-1 by late summer (Sarah Yakobowski, University of Waterloo, Ontario, 

Canada).
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CHAPTER 4.0: DISCUSSION 
 

4.1 DGGE DISCUSSION 

4.1.1 DGGE ANALYSIS OF 16S RRNA-V3 AND AMT (MCYE/NDAF) AMPLICONS FROM 
THE STUDY SITES 

 
In this current study, DGGE analysis was used to identify and enumerate the 

number of different cyanobacterial genotypes present and to observe for any seasonal 

changes that may occur from early summer to late summer. The decision to use the 16S 

rRNA was based on its universal distribution in all prokaryotes, ease of amplification, 

and the relative abundance of sequence information in the public database (GenBank). 

The primers for AMT region of mcyE and ndaF was chosen for its ability to amplify in 

both microcystin and nodularin producing cyanobacteria from several genera (Jungblut 

and Neilan 2006). This permits detection of potentially hepatotoxic organisms to be 

surveyed for each station. 

16S rRNA-V3 fingerprinting of the three lakes showed distinct banding patterns 

among them as well as distinct seasonal patterns from early to late summer. The different 

banding patterns among the three study sites (Bay of Quinte, Maumee Bay, and Nyanza 

Gulf) illustrates that the cyanobacterial genotypic community in the three sites are 

different from each other which is not unexpected. Likewise, the North American sites 

showed a change in cyanobacterial genotypic community from early to late summer. 

Multiple 16S rRNA-V3 bandings in all the stations sampled suggest a diverse 

cyanobacterial genotypic community with Nyanza Gulf having the highest diversity. 

Samples taken from the Bay of Quinte and Maumee Bay were similar in that there was a 

slight decrease in diversity from early to late summer. These two sites, however, differed 
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in the timing when Microcystis was most predominant. For the Bay of Quinte, 

Microcystis genotypes were detected in greater abundance (based on band intensity) in 

early summer than in late summer however, the reverse was observed for Maumee Bay. 

Microcystis genotypes were detected in all the Nyanza Gulf samples as well. Bay of 

Quinte samples had relatively similar diversity indices between 2005 and 2006 but 

showed different seasonal banding patterns between the two years.  

AMT profiles indicated that hepatotoxic genotypes were present in all three lakes. 

Sequences from excised AMT bands suggested that they were all from mcyE gene of 

Microcystis species. No AMT sequences belonging to the nodularin ndaF gene were 

detected. This was expected since nodularin-producing Nodularia is commonly observed 

in brackish waters around the world (Koskenniemi et al., 2007). 

4.1.1.1 BAY OF QUINTE 16S RRNA-V3 AND AMT DGGE ANALYSIS 
 

The Bay of Quinte stretches 100 km in length and is a major near-shore water 

body for Ontario. Similar to many other freshwater bodies, the Bay of Quinte has 

experienced a long history of severe eutrophication, especially in the upper bay (Nicholls 

1999). As a result of high phosphorus loading and nuisance algae, the Bay of Quinte was 

named as an Area of Concerns by the International Joint Commission (Millard and Sager 

1994). Following remedial actions after the signing of the Great Lakes Water Quality 

Agreement in 1972, there has been an approximately 90% reduction of point source 

phosphorous loading (Chu et al., 2004) and a 51% decrease in phytoplankton (Nicholls et 

al., 2002).  

More recently, the colonization of dreissenid mussels are causing other water-

quality issues, most importantly, the increase in Microcystis cells (Nicholls et al., 2002). 
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This is consistent with previous experiences in western Lake Erie and in Saginaw Bay, 

Lake Huron (Vanderploeg et al. 2001; Budd et al. 2002). Following the establishment of 

Dreissena in Lake Ontario, there has been a 13-fold increase in Microcystis biovolume at 

the Bay of Quinte (Nicholls et al., 2002). Preferential feeding and alteration of lake water 

nutrient cycling by Driessena is hypothesized to contribute to the increase in 

cyanobacterial blooms (Baker et al., 2000; Bykova et al., 2006; Nicholls et al., 2002). 

Previous studies by Vanderploeg et al. (2001) suggested that Dreissena are capable of 

selective feeding by expelling toxic Microcystis as pseudofeces while ingesting 

“desirable” algae. Dionisio Pires et al. (2005), however, observed no difference in the 

excretion of toxic and non-toxic Microcystis strains by Dreissena which is contradictory 

to what was observed by Vanderploeg et al. (2001). Dionisio Pires et al. (2005) 

suggested that the difference in results to Vanderploege et al. (2001) may be due to the 

type of Microcystis strains used in the two studies. Dionisio Pires et al. (2002) performed 

grazing experiments with Dreissena polymorpha using Microcystis strains that were 

colonial but lacked a mucilage matrix; whereas, Vanderploeg et al. (2001) used 

Microcystis strains that maintained their mucilage making it less palatable (Dionisio Pires 

et al., 2005). Nevertheless, the mussels’ high density in combination with their high 

filtration rate, and excretion of feces/pseudofeces and soluble nutrients can alter the lake 

nutrient chemistry, which then affects the phytoplankton community structure (Arnott 

and Vanni 1996; Bykova et al., 2006; Makarewicz et al., 2000). Arnott and Vanni (1996) 

shown that mussels excreted more phosphorous (P) relative to nitrogen (N) thereby 

decreasing the N:P ratio which favours cyanobacteria dominance. The combinations of 
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decreased point source phosphorous loadings and dense driessenid population has altered 

the phytoplankton community structure in the Bay of Quinte (Nicholls et al., 2002).   

In 2005 the samples were taken from the upper bay (BB) and middle bay (NA, top 

region of middle bay; HB, lower region of middle bay) (Figure 2.1). Despite the distance 

between the three stations, their cyanobacterial genotypic communities were similar. 

Several cyanobacterial genotypes including potential hepatotoxin-producing genotypes 

were detected in nearly all the Bay of Quinte samples using DGGE analysis of the 16S 

rRNA-V3 and AMT gene fragments. Based on DGGE separation of the 16S rRNA-V3, 

Gloeotrichia dominated the cyanobacterial community in early summer, but Microcystis 

and Anabaena dominated the cyanobacterial community by late summer. DGGE analysis 

AMT amplicons from the 2005 samples reported the presence of hepatotoxic Microcystis 

genotypes throughout the summer.  

The high abundance of Gloeotrichia sp. (observed microscopically) during the 

June 28, 2005 and July 4, 2006 (early summer) collecting trips suggest that the dominant 

genotype A band, in early summer of 2005 (Figure 3.1.1) and distinct genotype B in early 

summer of 2006 (Figure 3.1.2), were possibly from a Gloeotrichia sp. Sequences of 

genotypes A (Figure 3.1.1) and B (Figure 3.1.2) were identical in sequence which suggest 

that they were the same Gloeotrichia genotype in 2005 and 2006. Other than knowing 

that genotypes A (Figure 3.1.1) and B (Figure 3.1.2) were not the same genotype as the 

Gloeotrichia ghosi UTEX LB 1920, the species of this particular presumed Gloeotrichia 

band remains unidentified. BLASTn of the sequences for genotype A and B provided no 

further information except that the sequence was derived from a cyanobacterium. The 

lack of a band or the presence of a faint band corresponding to the Microcystis sp. 
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standard indicates that species of Microcystis were in very low abundance during June 28, 

2005. However, the presence of potential hepatotoxic genotypes were detected from all 

three sampled stations (NA, HB, BB) on June 28, 2005 in spite of the low detection of 

Microcystis 16S rRNA-V3 genotypes. All seven samples collected on August and 

October of 2005 showed similar banding patterns with Microcystis and Anabaena species 

detected from each site. This implied that throughout late summer to early fall of 2005 

there was little change in the cyanobacterial community. Detection of hepatotoxic bands 

from all the 2005 samples indicated that toxic cyanobacteria were present throughout the 

summer months. Based on band intensities, potential hepatotoxic genotypes increased in 

abundance from early to late summer. AMT amplicons(s) present in all the 2005 samples 

migrated closely to the same gel position as the M. aeruginosa UTCC 299 AMT standard. 

This suggests that Microcystis was the primary potential hepatotoxin-producer in the Bay 

of Quinte. This is consistent with Nicholls et al. (2002) observations that Microcystis 

increases after the establishment of Dreissena and may only involve toxic strains because 

non-toxic strains are actively consumed by Dreissena according to Vanderploeg et al. 

(2001).  

All samples from 2006 were only collected from the top region of the Bay of 

Quinte middle bay and are equivalent to station NA of 2005. A band corresponding to the 

Microcystis standard was present in all station samples collected in early summer (July 4-

5, 2006). In contrast to the 2005 samples, band intensity for Microcystis was very faint in 

late summer of 2006 suggesting little abundance of Microcystis. Similar to the 2005 late 

summer samples, a band corresponding to the Anabaena viguieri/Anabaena planktonica 

standard was present in all sites for the 2006 late summer (September 22) samples. There 
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were some discrepancies from 2005 to 2006 (two distinct genotypes, A and C, [Figure 

3.2.1] present in the 2006 samples but absent in the 2005 samples). These differences 

could be attributed to differences in environmental conditions between the summer of 

2005 and 2006 that favoured certain cyanobacterial species over others. For example, 

studies showed that increases in nitrogen reduced the biomass of heterocystous (nitrogen 

fixing) Aphanizomenon and Anabaena species but favoured non-heterocystous 

Microcystis and Synechococcus (Barica et al., 1980; Ferber et al., 2004; Stockner and 

Shortreed 1988).    

DGGE analysis of PCR amplified AMT amplicons indicated the presence of two 

hepatotoxic genotypes present throughout the summer of 2006 (Figure 3.1.6). Bands 

migrating closely together may be subspecies of a genus or different copies of the gene 

from the same organism (Iteman et al., 2002; Kolmonen et al., 2004). The close 

proximity of the two genotypes to each other and to the Microcystis standard suggested 

that the bands were derived from two Microcystis strains. Since it is believed that only a 

single copy of the mcy gene cluster is present within a single cyanobacterial genome 

(Dittmann et al., 1997; Nishizawa et al., 1999) it is unlikely that the two AMT bands 

present in the DGGE gel are from the same cyanobacterial cell. Results from AMT 

DGGE analyses of both 2005 and 2006 samples is supported by Hotto et al. (2007) who 

also observed that Microcystis was the dominant potential microcystin producer in 

southern and eastern shores of Lake Ontario (during 2001 and 2003) based on mcyA 

sequences.  
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4.1.1.2 MAUMEE BAY 16S RRNA-V3 AND AMT DGGE ANALYSIS 
 

Historically, Lake Erie had experienced ongoing cultural eutrophication and dense 

algal blooms during the 1950s and 1960s (Beeton, 1969; Davis, 1968). Following the 

1972 Great Lakes Water Quality Agreement to reduce phosphorous discharge to the 

Great Lakes, there was a significant reduction in cyanobacteria biomass and algal blooms 

by the mid 1980s (Makarewicz and Bertram, 1991). Surprisingly, in September of 1995, 

a dense toxic Microcystis bloom occurred that covered the entire surface of the western 

basin (Brittain et al., 2000). A second and larger toxic Microcystis bloom occurred 

several years later in August of 2003 and persisted for over a month (EPA 2007; 

Ouellette et al., 2006). Since then, toxic Microcystis blooms of varying magnitude have 

become common in late summers (EPA 2007). Similar to the Bay of Quinte, the spread 

of Dreissena polymorpha in the late 1980’s to Lake Erie (Leach 1993) coincided with an 

increase in Microcystis blooms (Ouellette et al., 2006). Prior to the colonization of 

Dreissena polymorpha in the 1980s cyanobacteria was only a minor component of the 

phytoplankton community (Nicholls and Hopkins 1993). The mussel’s establishment in 

Lake Erie is presumed to play a role in shifting the phytoplankton community structure 

from predominately nitrogen-fixing cyanobacteria (Anabaena spiroides and 

Aphanizomenon flos-aquae) to non-nitrogen-fixing Microcystis species in the western 

basin (Brittain et al., 2000). Dreissenids are believed to be responsible for making 

ammonium-nitrogen more available to non-nitrogen fixers thereby allowing them to take 

advantage of the increased soluble phosphorous levels produced by the mussels (Brittain 

et al., 2000). In this current study, non-nitrogen-fixing Microcystis were observed to 

dominate Maumee Bay’s cyanobacterial community in late summer. 
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Figure 4.1 Cyanobacterial bloom in Maumee Bay on August 22, 2006. (A) View 

of the water surface of Maumee Bay. (B) Close-up view of the water 

surface. Photo by A. Chhun
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As with the Bay of Quinte samples, there were seasonal differences in the 

planktonic cyanobacterial community between early and late summer. Several 

cyanobacterial 16S rRNA-V3 genotypes, many of them unidentified, were present in both 

early and late summer. The 16S rRNA-V3 profiles reported little to no Microcystis 

genotypes in early summer but high abundance of Microcystis genotypes by late summer 

(Figure 3.1.3A and 3.1.3B). Profiles of the AMT amplicons showed no detectable 

hepatotoxic genotypes observed in early summer but multiple hepatotoxic genotypes 

were present in late summer when Maumee Bay was experiencing a cyanobacterial 

bloom (Figure 4.1).  

Faint or absent of bands corresponding to the Microcystis standard in the early 

summer station samples were indications of low Microcystis biomass during early 

summer months. The absence of an AMT band (Figure 3.1.7) for the early summer 

samples implied that toxic strains were in such low abundance (<1% of total DNA) they 

were unable to be detected by PCR-DGGE. The distinct 16S rRNA-V3 bands (Figure 

3.1.3A, A-F) that did not migrate to the same position as any of the standards in the early 

summer samples remain unknown. A comparison of these sequences to the nucleotide 

database (BLASTn) resulted in a 98% nucleotide match to Microcystis and numerous 

uncultured cyanobacteria. Due to the small sequence length and the highly conserved 

nature of the 16S rRNA gene, several cyanobacterial species or genera may share the 

same nucleotide sequences (Gill et al., summitted; Nubel et al., 1997). Thus, bands in 

figure 3.1.3A (A-F) cannot be assumed to belong to Microcystis due to sequence 

similarities. Microscopic observations suggest one or more of these bands may belong to 

a species of Anabaena since it was the cyanobacterial genus most commonly observed in 
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the samples. It is also possible that one or more of the 16S rRNA-V3 bands may belong 

to Synechococcus and Cyanobium species. Ouellette et al. (2006) observed that their 16S 

rRNA clone library of samples collected during July in 1999-2002 from near and off-

shores of Lake Erie was dominated by Synechococcus and Cyanobium-like sequences. 

The authors also reported that the picoplankton population (0.2-2.0 μM) made-up 24% of 

the total chlorophyll a in the western basins of Lake Erie in July 2002. Dominance of 

Synechococcus and Cyanobium within the picoplankton population is common in 

oligotrophic freshwater systems (Callieri and Stockner, 2002; Postius and Ernst, 1999). 

Lake Erie is no different as its ecosystem is shifting from eutrophic to meso-oligotrophic 

the dominance of Synechococcus and Cyanobium in picoplankton size class is not 

surprising (Ouellette et al., 2006). Thus the picoplankton population makes up a large 

portion of the phytoplankton community and their presence were most likely represented 

by some of the unknown 16S rRNA-V3 bands. 

August and September (late summer) are the months that Microcystis blooms 

typically occur in western Lake Erie (Brittain et al., 2000). Based on the visual 

observation of the lake, it was clear that in late summer of 2006 Maumee Bay was 

experiencing a cyanobacterial bloom (Figure 4.1). Microscopic examination of the 

phytoplankton samples collected in late summer revealed that it was predominantly 

colonies of Microcystis. This morphological observation was further supported by DGGE 

analysis of the 16S rRNA-V3 amplicons which indicated an intense band at the same 

position as the Microcystis standard in each sampling station from late summer. DGGE 

analysis of the AMT amplicons indicated that hepatotoxic strains, most likely a strain of 

Microcystis, were present in all the late summer samples. The high abundance of 
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Microcystis and presence of the hepatotoxin gene(s) are strong indications that the 

cyanobacterial bloom observed in late summer was a toxic Microcystis bloom. This was 

not surprising since toxic Microcystis blooms of varying degrees have been reported 

annually during the 2000s (EPA 2007; Rinta-Kanto et al., 2005).  

Multiple AMT bands in some of the samples (Figure 3.1.7) suggest different 

hepatotoxic genotypes present at these stations. High sequence similarities of different 

AMT bands in the same sample to Microcystis standard indicated that there could be 

more than one Microcystis species present. One must keep in mind that sequence data for 

mcy genes are small relative to the 16S rRNA database for cyanobacteria. Thus sequence 

searches of the AMT sequence domain of mcyE may be biased towards Microcystis since 

the majority of data sequences are Microcystis sequences. Sequences from AMT bands 

that migrated to the same position as the A. lemmermannii NIVA-CYA 83/1 standard 

(Figure 3.1.7, band A) showed high sequence similarity to a partial sequence of the mcyE 

gene of M. wesenbergii (98%) in GenBank.  

4.1.1.3 NYANZA GULF 16S RRNA-V3 AND AMT DGGE ANALYSIS 
 

Over the last three decades, population growth, increasing demands for natural 

resources and land-use has lead to pollution loading and eutrophication of Lake Victoria 

in eastern Africa (Machiwa, 2003). Similar to the two Laurentian Great Lakes studied, 

there has been a shift of the phytoplankton community structure in Lake Victoria from 

diatoms to cyanobacteria dominance throughout the year (Kling et al., 2001). 

Cyanobacterial blooms have become common in the Nyanza Gulf and are most abundant 

from October to November when the water column is thermally stratified (Kling et al., 

2001; Krienitz et al., 2002; Lung'ayia et al., 2001; Ochumba and Kibaara 1989). For this 
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reason, phytoplankton samples were collected in November for molecular analysis of the 

cyanobacterial community.  Presently, nitrogen fixers make up most of the phytoplankton 

biomass (Kling et al., 2001). Kling, et al. (2001) observed that heterocystous nitrogen 

fixing cyanobacteria Cylindrospermopsis dominate the phytoplankton from December to 

June in 1990-1992. Nitrogen-fixers can overcome the nitrogen limited condition in Lake 

Victoria brought on by excessive phosphorous loading, from sewage effluents and 

agriculture (Kling et al., 2001; Lehman and Branstrator, 1994; Lung'ayia et al., 2001). In 

this study, nitrogen-fixing Anabaena species were commonly found in all samples 

examined microscopically.  

Profiles of the Nyanza Gulf’s 16S rRNA-V3 amplicons indicated Microcystis and 

Anabaena genotypes were present in all sampling stations. A band corresponding to the 

Anabaena viguieri/Anabaena planktonica standard was present in all the samples. 

Microcystis genotypes appeared to be the most dominant cyanobacterial genotype (based 

on band intensity) in 3 (KL3, KL5, COL) of the 4 station samples. Low Secchi 

transparency (0.5-1.2 m) at Nyanza Gulf is an advantageous condition for the taxa 

Microcystis. Microcystis, especially M. aeruginosa, are capable of developing many gas 

vacuoles within the cell to regulate its vertical buoyancy in the water column (Kromkamp 

et al., 1988; Zohary and Roberts, 1990). Examination of the preserved phytoplankton 

bloom sample revealed only Anabaena species, however, DGGE separation of the 16S 

rRNA-V3 amplicons revealed multiple cyanobacterial genotypes. This may be due to the 

degraded quality of the phytoplankton bloom sample. The genetic profile of the 

phytoplankton bloom sample indicated that it was composed of several 16S rRNA-V3 

genotypes (>5) that included Microcystis and Anabaena-like genotypes. This is 
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comparable to a study by Krienitz et al. (2002) who observed that the toxic 

cyanobacterial bloom in Nyanza Gulf on November of 2001 was composed of 

Microcystis (M. aeruginosa) and Anabaena (A. flos aquae and A. discoidea). 

PCR-DGGE of the AMT amplicons revealed that potentially hepatotoxic 

Microcystis strains were present at all four stations. The presence of AMT bands in 

station COL implied that potentially toxic Microcystis genotypes pose a threat to the open 

lake and not just the shallow depth of Nyanza Gulf. DGGE analysis of the phytoplankton 

sample produced no detectable AMT bands on the polyacrylamide gel. This indicated 

that the phytoplankton bloom was not toxic or that the potentially hepatotoxic population 

was too miniscule to be detected by PCR-DGGE. The detection of hepatotoxin producers 

in November 2001 (Krienitz et al. (2002) and potential hepatotoxin genotypes in 

November 2005 raises the question of whether cyanotoxic cells appear annually around 

November or if they are constantly present. More sampling trips to these stations are 

required to address seasonality of cyanobacteria in Lake Victoria.  

4.1.2 GENERAL STATISTICAL ANALYSIS 

4.1.2.1 DIVERSITY 
 

The 16S rRNA-V3 sequence divergence between cyanobacteria species was used 

to infer diversity at each sampling station. The number of bands presents (richness) and 

relative band intensity (evenness) was used in the Shannon diversity index equation to 

mathematically measure the cyanobacterial community diversity. Each band present on 

the gel was considered as one operational taxonomic unit (OTU).  

The Shannon diversity index of the Bay of Quinte and Maumee Bay samples 

showed temporal differences from early to late summer for both. Given the close 
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proximity of the 6 each stations to one another in the Bay of Quinte and Maumee Bay, 

the banding patterns showed no significant spatial differences. Hence, the diversity of the 

6 sampling stations was averaged for early and late summer. Nyanza Gulf had a slightly 

higher 16S rRNA-V3 genotypic diversity relative to the two temperate lakes. All the 

sampling sites of the three lakes had a high evenness value (92-96%) indicating that the 

relative abundance of each OTU is equally spread. In terms of richness, Nyanza Gulf had 

a higher number of bands (OTU) which gave it a higher diversity index than the Bay of 

Quinte and Maumee Bay samples. There were no significant differences in 

cyanobacterial community diversity for Maumee Bay between early and late summer. 

However, there was a slight decrease in diversity for the Bay of Quinte 2006 samples 

from early and late summer, but the opposite was observed in the 2005 sample which saw 

a small increase in diversity. Nevertheless, diversity index for the Bay of Quinte in 2005 

and 2006 were fairly similar. These small differences suggested that cyanobacterial 

blooms had little effect on the cyanobacterial genotypic diversity.  

DGGE can be a powerful tool for surveying microbial community structures; 

however, caution should be used when interpreting DGGE profiles. Several factors in the 

DGGE analysis used in this study can result in an underestimation of genotypic diversity. 

The presence of bands that migrate to identical positions in a gel does not necessarily 

mean that they are the same sequence or originate from the same organism (Jackson et al., 

2000; Muyzer et al., 1993). In addition, all PCR based techniques have biases in PCR 

amplification which affects the band intensity used to calculate diversity (Kowalchuka et 

al., 2006). Given that only a fraction (1/16) of the filter was analyzed and may not be 

representative of the actual population, the diversity estimation could have been biased 
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(Kirchman et al., 2001). In this present study, several DGGE analyses of samples from 

different filter pieces collected from the same station and date found that there were some 

discrepancies but overall, the bands were fairly reproducible. As well, underestimation of 

diversity can happen when species populations occurring in small numbers fail to be 

detected by PCR-DGGE. Generally, target DNA of a species whose abundance is greater 

than 1% of the total DNA extract mixture can be detected by PCR-DGGE (Muyzer et al., 

1993). In contrast, there is the other possibility that heterogeneity of 16S rRNA genes 

within a single species may result in overestimation of diversity (de Souza et al., 2004; 

Nubel et al., 1997). Hence, diversity indices should only be used for relative comparison 

to other samples and not viewed as absolute numbers (Girvan et al., 2003).  

4.1.2.2 REPRODUCIBILITY 
 

Three different sample sets were run on two different DGGE gels to determine 

how reproducible banding patterns were for the same stations. The average Jaccard 

similarity coefficient of the three sample sets was 76.7%. This showed that when samples 

were extracted and analyzed on a DGGE gel and repeated again (extraction and analysis), 

the banding patterns were highly reproducible. 

4.2 QPCR DISCUSSION 

4.2.1 STANDARD CURVES 
 

In this present study, quantitative real-time PCR (qPCR) was used to enumerate 

the abundance of cyanobacterial cells and hepatotoxic cells present at each station at the 

time the samples were collected. Only lake samples collected during the summer of 2006 

were analyzed by qPCR. Filters collected in 2005 were too old and decayed (too much 

freeze thawing) to provide reliable results. Cyanobacterial cell concentration and 
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hepatotoxic cell concentration were calculated based on M. aeruginosa UTCC 299 cell 

equivalents. PCR amplification efficiency based on the slope of the standard curve was 

86% for the 16S rRNA-V3 primers and 87% for the AMT primers. This is slightly below 

the ideal efficiency range of 90% to 110% with 100% meaning perfect doubling of PCR 

amplicons. PCR amplification efficiency is influenced by the amplicon size and GC 

content, and primers, fluorescent dye, and Taq polymerase used (Arezi et al., 2003; 

Labrenz et al., 2004). Nevertheless, quantification of target cell number was possible 

since both standard curves, 16S rRNA-V3 and AMT, had a high correlation value (R2 = 

0.996 and 0.999 respectively) between the amount of initial DNA template and Ct values. 

Dissociation curve of all PCR amplicons from both 16S rRNA-V3 and AMT 

amplification samples showed only one peak at 85oC in tubes with DNA template added. 

This confirms that no primer-dimers and non-specific binding of the PCR primers 

occurred in the template samples. There was a smaller peak at around 76 oC to 77oC 

illustrated in the dissociation curve of the AMT amplicons for the three NTC (no template 

control) reaction tubes. These peaks are most likely primer-dimers that occurred due to 

lack of DNA template in the NTC reaction tubes. PCR products that were run on an 

agarose gel showed only the band corresponding to the expected PCR size giving further 

support that only the target sequence was amplified.  

Multiple copies of the 16S rRNA gene in the genome allowed for PCR 

amplification with only few cells present because there was more target DNA template 

available. Therefore, it was easy to establish a standard curve with as little as 5 cells per 

reaction. On the other hand, the AMT region in the mcyE or ndaF gene which may only 

exist as one copy per genome made constructing the AMT standard curve more difficult.  
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PCR amplification at 5 cells per reaction failed due to insufficient amount of DNA 

template. Hence, the detection limit of the AMT standard curve ranged from 50 to 5 x 105 

cells per 20 μl reaction. 

Numbers from qPCR analyses were only considered as estimates of the cell 

concentration for each sample. The log-linear relation of the standard curve makes qPCR 

very sensitive to minor changes to the slope of the curve resulting in systematic errors 

(Becker et al.,  2002; Kurmayer and Kutzenberger, 2003). Moreover, there are inherent 

errors when using the 16S rRNA gene derived from only the M. aeruginosa UTCC 299 

strain to create the standard. Redundancies of the 16S rRNA sequences in a single 

genome vary among different cyanobacteria. As well, a single cyanobacterial cell can 

have more than one copy of genomic DNA (polyploidy) depending on the environmental 

condition (Becker et al., 2002; Becker et al., 2002; Herdman et al., 1979; Labarre et al., 

1987). Therefore, all cell abundances calculated from the two standard curves were 

interpreted as M. aeruginosa UTCC 299 cell equivalents.  

4.2.2 QUANTIFICATION OF CYANOBACTERIAL COMMUNITY  
 

Variations of cell concentration among the six sampling stations in the Bay of 

Quinte and Maumee Bay were not statistically significant, thus an average was taken of 

the six stations. In general, the Bay of Quinte contains a higher concentration of 

cyanobacterial cells than Maumee Bay by an order of one magnitude in both early and 

late summer months (Table 3.2.3). Both sampling sites showed a significant increase in 

cyanobacterial cell concentration from early to late summer but differed in their seasonal 

changes in potential hepatotoxic cell concentration.  
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4.2.2.1 BAY OF QUINTE 
 

At the time of this study, there was no known literature reporting on the 

cyanobacterial cell concentration from the Bay of Quinte. To our knowledge, this is the 

first study to quantify the cyanobacterial cells from the Bay of Quinte uins qPCR. 

According to this current study there was a significant increase (P = 0.0) in 

cyanobacterial cell concentration from early to late summer in 2006; however, the 

concentration of hepatotoxic cells remained relatively the same (Table 3.2.1). The 

average total cyanobacterial cell concentration (cells·L-1) was 1.22 x 108 (± 1.00) in early 

summer and increased more than one magnitude to 1.76 x 109 (± 0.70) by late summer. 

Direct cell counts of the NA sample collected in late summer was about one magnitude 

lower (3.69 x 108 cells·L-1; Hedy Kling, Freshwater Institute, Canada) than the qPCR data 

(1.82 x 109 cells·L-1). This difference could be due to errors in counting, not all the 

cyanobacterial cells were accounted for, or errors in the standard curve, or both. As stated 

earlier, the log-linear curve of the16S rRNA-V3 standard curve makes qPCR analysis 

very sensitive to variations in the slope.  

Potential hepatotoxic cell population comprised only a small percentage (< 1%) of 

the total cyanobacterial community during both collecting trips. Hepatotoxic cell 

concentration decreased from 2.99 (± 3.60) x 106 to 1.46 (± 1.96) x 106 but the difference 

was not statically significant. Nevertheless, the average total microcystin concentration in 

early summer, 2.18 (± 0.57) μg·L-1 (Sarah Yakobowski, University of Waterloo, Canada) 

exceed the WHO guidelines of 1.0 μg·L-1 but by late summer the microcystin 

concentration, 0.58 (± 0.58) μg·L-1 (Sarah Yakobowski, University of Waterloo, Canada), 

was below the WHO threshold. Even though hepatotoxic cell concentrations were 
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statistically similar, microcystin concentration differed significantly. This may be due to 

differences in ecological conditions and different dominating hepatotoxic strains between 

early and late summer. Genetic regulation of microcystin are presumed to be influenced 

by certain environmental factors such as temperature (Billam et al., 2006), light (Graham 

et al., 2004; Kaebernick et al., 2000; Rolland et al., 2005; Utkilen and Gjolme 1992), 

total phosphorus and total nitrogen ratio (Jacoby et al., 2000; Kotak et al., 2000), and 

water column stability (Rolland et al., 2005). Graham et al. (2004) and Yang et al. (2006) 

observed that the relationship between microcystin concentration and environmental 

conditions are nonlinear and not related to a single environmental condition but rather a 

complex relationship between several ecological factors. Also, microcystin production 

between different hepatotoxic strains can differ by 3 orders of magnitude (Sivonen and 

Jones, 1999). Thus, it is possible that the toxic cyanobacterial strains in early summer 

produced more toxin than the toxic cyanobacterial strains observed in late summer. As 

observed from the Bay of Quinte 16S rRNA-V3 DGGE gel (Figure 3.1.2) the early 

summer profile contained bright distinguishable Microcystis-like genotypes versus late 

summer which contained only faint Microcystis. The decrease in microcystin 

concentration may be due to decrease in toxic Microcystis cells from early to late summer.  

4.2.2.2 MAUMEE BAY 
 

Maumee Bay also had an increase in cyanobacterial cell concentration from early 

to late summer. Unlike the Bay of Quinte, there was a considerable increase in 

hepatotoxic cell concentrations from early to late summer (Table 3.2.2). Cyanobacterial 

cell concentration demonstrated an average one-fold increase from 2.35 (± 0.99) x 107 

cells·L-1 in early summer to 1.04 (± 0.75) x 108 cells·L-1 by late summer. These numbers 
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relate with an earlier study by Rinta-Kanto et al. (2005) who surveyed the western basin 

that included Maumee Bay (Table 3.2.3). Quantification of the 2003 Microcystis bloom 

(considered the most severe bloom to date; Bridgeman 2007) by qPCR, reported total 

cyanobacteria concentration for Maumee Bay as 9.9 (± 1.1) x 108 cells·L-1 in August 

(Rinta-Kanto et al., 2005). In 2004, cyanobacterial concentration of a “moderate” bloom 

was reported as 7.5 (± 1.3) x 105 cells·L-1. Hence, based on these results, the 2006 bloom 

was not as severe as the 2003 bloom but greater than the 2004 bloom.  

In early summer, the hepatotoxic cell concentration was below the detectable 

qPCR limits. The lack of detectable hepatotoxic genotypes from the qPCR assay is 

supported by the absence of hepatotoxic DNA bands observed in the AMT PCR-DGGE 

gel (Figure 3.1.7). This indicated that the hepatotoxin cell population was low and not a 

significant contributor to the cyanobacterial community structure in early summer. By 

late summer, the hepatotoxic cell concentration increased tremendously from 

undetectable to an average of 1.18 (± 1.23) x 108 cells·L-1. The increased in hepatotoxic 

cells were observed as bright AMT bands on the DGGE gel (Figure 3.1.7). Based on the 

data, there were more hepatotoxic cells than total cyanobacterial cell which is not 

possible. Nonetheless, the data indicated that hepatotoxic cells made up the majority of 

the cyanobacterial community at the time the sample was collected in late summer. Rinta-

Kanto et al. (2005) also quantified toxic Microcystis in August 2003 and August 2004 

and reported that the concentrations were 1.1 (± 0.3) x 106 cells·L-1 and 3.4 (± 0.7) x 104 

cells·L-1 respectively in Maumee Bay. The estimated potential hepatotoxic cells 

concentration [1.18 x (± 1.23) 108 cells·L-1, August 2006] of the 2006 bloom from this 

present study was much higher than those observed in 2003 and 2004 by Rinta-Kanto et 
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al. (2005) (Table 3.2.3). A part of the reason for the differences in number is because the 

toxic cell assessment in this study included all possible hepatotoxin producing cells from 

different genera. Thus, toxin cell concentration would be greater than just surveying toxic 

Microcystis cells alone. In addition, extraction method, qPCR assay, and standard curve 

used in this study were different from Rinta-Kanto et al. (2005). This would account for 

the significant differences in cell concentration between the two studies. 

Microcystin concentration also corresponded to the increase in hepatotoxic cell 

concentration (Table 3.2.3). Just as hepatotoxic cells were below the detectable limits by 

qPCR in early summer, microcystin levels were also below the detectable limits by PPIA 

(Sarah Yakobowski, University of Waterloo). In late summer, the average total 

microcystin concentration increased to 4.45 (± 2.19) μg·L-1 (Sarah Yakobowski, 

University of Waterloo), which is more than four times above the WHO threshold. The 

microcystin concentrations reported by Rinta-Kanto et al. (2005) for Maumee Bay using 

PPIA were 15.4 μg·L-1 in August of 2003 and 0.04 μg·L-1 in August of 2004. The 

microcystin concentration numbers further supports the earlier statement that the 

cyanobacterial blooms in late summer of 2006 were not as severe as the 2003 bloom but 

greater than the 2004 bloom. 
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CHAPTER 5: CONCLUSION 
 

Cyanobacterial blooms are increasing worldwide as a consequence of accelerated 

eutrophication in freshwater bodies. Secondary products produced by bloom-forming 

cyanobacteria are implicated in a number of water quality issues, but the most concerning 

are toxin production. Human and animal illnesses and death due to exposure to 

hepatotoxins (microcystin and nodularin) makes it the most studied of the cyanotoxins 

(Hisbergues et al., 2003). In the current study, the cyanobacterial community structure 

was evaluated from three separate study sites: Bay of Quinte (Lake Ontario), Maumee 

Bay (Lake Erie), and Nyanza Gulf (Lake Victoria) using molecular techniques. The 

combination of DGGE and qPCR analysis of the 16S rRNA-V3 gene region and AMT 

region of mcyE and ndaF gene region was used to survey and quantify the cyanobacterial 

genotypic community in the studied sites. Primers Cya-b-F371 and Cya-R783 (Zwart et 

al., 2005) for the 16S rRNA-V3 region and primers HEPF and HEPR (Jungblunt & 

Neilan, 2006) for the AMT domain were effective in estimating the total cyanobacterial 

cell and total hepatotoxic cell concentrations respectively. DGGE separation of the 16S 

rRNA-V3 amplicons was shown to be a quick and reproducible method for visualizing 

the cyanobacterial genotypic community.  DGGE analysis of the AMT amplicons showed 

that all three lakes contained potentially hepatotoxin-producing cells. The majority of 

toxic genotypes detected most likely came from species of the genus Microcystis. This 

was expected since Microcystis is one of the most dominate bloom-forming 

cyanobacterial genus in eutrophic waters with a majority of its strains capable of 

producing microcystins (Carmichael, 1992; Chorus and Bartram, 1999). Quantification of 

the 16S rRNA-V3 amplicons showed that the Bay of Quinte contained a higher 
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concentration of cyanobacteria than Maumee Bay in both early and late summer. 

Potential hepatotoxic cell concentration was higher in the Bay of Quinte than Maumee 

Bay in early summer but the by late summer Maumee Bay had far more toxin producers 

than the Bay of Quinte. 

The Bay of Quinte cyanobacterial community structure differed from one year to 

another and from early summer to late summer. Based on DGGE analysis of the 2005 

samples, Microcystis genotypes were not present in early summer but were present from 

August through October. The reverse was observed in 2006, Microcystis genotypes were 

detected in early summer but faint in late summer. However, potential hepatotoxin-

producers were detected throughout the summer in both years. Quantitative real-time 

PCR analysis of the 2006 samples reported a significant increase (one order of magnitude) 

in cyanobacterial cell concentration from early to late summer but the potential 

hepatotoxic cell concentrations remained relatively similar. Although hepatotoxin 

population consisted of less than 4% of the cyanobacterial population in early summer, it 

was enough to produce harmful levels of microcystin. Analytical analysis of the same 

2006 samples revealed a seasonal change in microcystin concentration from levels above 

the WHO 1.0 μg·L-1 set guideline (2.25 μg·L-1) in early summer to levels below the 

guideline (0.55 μg·L-1) (Sarah Yakobowski, University of Waterloo). It appears that 

certain environmental factors were involved in triggering the transcriptional proteins in 

the toxic cells to produce more microcystin in early summer than late summer.  

In Lake Erie, Microcystis is the major microcystin-producer, thus the presence of 

Microcystis 16S rRNA-V3 genotypes were of particular interest. DNA bands of 16S 

rRNA-V3 amplicons that migrated to the same gel position as the Microcystis standard 
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were a good predictor of potential toxin producers in the lake. DGGE separation of the 

16S rRNA-V3 amplicons revealed faint to undetectable Microcystis-like bands in the 

Maumee Bay samples suggesting that potential hepatotoxin producers were in low 

concentration. This is supported by the undetectable hepatotoxin genotypes by DGGE 

analysis in the early summer samples. Additionally, these results coincide with the lack 

of detectable heptatoxin-producers and microcystin by qPCR and PPIA (Sarah 

Yakobowski, University of Waterloo) respectively. Bright Microcystis 16S rRNA-V3 

band intensity in all the late summer bloom samples supports the microscopic observation 

the bloom-forming cyanobacteria was dominated by species of Microcystis. The multiple 

AMT bands and high levels of potential hepatotoxin genotypes and microcystin 

confirmed that the bloom was toxic and consisted of possibly more than one hepatotoxic 

genotype. 

DNA profile of the Nyanza Gulf suggested a richer cyanobacterial genotypic 

community than the North American sites sampled. Bands at the same gel position as the 

Anabaena and Microcystis 16S rRNA-V3 standard suggested the potential for 

hepatotoxin production. With the exception of the phytoplankton bloom sample, the 

presence of AMT band close to the same gel position as the Microcystis standard 

indicated that potential microcystin producing Microcystis species were present in 

Nyanza Gulf. The lack of an AMT band in the phytoplankton bloom sample on the 

DGGE gel suggested that the bloom consisted of multiple cyanobacterial genotypes but 

was not toxic.  

Concerns of over- or underestimations of the genotypic diversity and cells 

concentrations may be overcome by using a single copy gene region such as RNA 
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polymerase beta subunit (rpoB). The rpoB gene appears to be a single copy gene found in 

all prokaryotes and consists of slow and fast evolving regions that can provide a lot of 

genetic information (Dahllöf et al., 2000; Mollet et al., 1997). Similar to the 16S rRNA 

gene, rpoB is a housekeeping gene which makes it less susceptible to horizontal gene 

transfer (Case et al., 2007). DGGE analysis of the rpoB gene by Peixoto et al. (2002) 

observed that rpoB profiles produced fewer bands than the 16S rRNA profile for the 

same soil sample, thus evaluation of diversity was easier to analyse than the 16S rRNA 

gene. As well, a microbial ecological study by Case et al. (2007) reported that rpoB had a 

higher taxonomic resolution, down to subspecies level, than the 16S rRNA gene. For 

these reasons rpoB is widely used as an alternative biomarker in ecological studies (Case 

et al., 2007; Dahllöf et al., 2000; Peixoto et al., 2002; Rantsiou et al., 2004).  

The existence of potential hepatotoxic cells in the three surveyed sites confirmed 

the need for continual monitoring and detection of these lakes for harmful toxic blooms 

that may form. Although molecular techniques are powerful tools in ecological studies, it 

has its limitations. In this study, molecular data was only able to determine genotypes 

present and quantity present but could not explain the differences and changes in 

genotypic community and quantity that occurred. The molecular data in this study would 

need to be analyzed in combination with the physical and nutrient chemistry of the water 

to understand the seasonal changes in the cyanobacterial community and predict the 

causes of blooms and triggers of toxin production.  
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APPENDIX A 
 
Lake Site Date Diversity (H' ) OTU (S ) Evenness (E H )
Erie MB19 20-Jun-06 2.57 14 0.98
Erie MB18 20-Jun-06 2.51 13 0.98
Erie 8M 20-Jun-06 2.44 12 0.98
Erie MB15 20-Jun-06 2.54 14 0.96
Erie CS 20-Jun-06 2.41 12 0.97
Erie 7M 20-Jun-06 2.50 13 0.97
Erie MB19 22-Aug-06 2.57 14 0.98
Erie MB18 22-Aug-06 2.51 13 0.98
Erie 8M 22-Aug-06 2.44 12 0.98
Erie MB15 22-Aug-06 2.54 14 0.96
Erie CS 22-Aug-06 2.41 12 0.97
Erie 7M 22-Aug-06 2.50 13 0.97
Quinte NA 4-Jul-06 2.46 13 0.96
Quinte GPT 4-Jul-06 2.31 11 0.96
Quinte NR 4-Jul-06 2.32 11 0.97
Quinte MBO 4-Jul-06 2.12 9 0.96
Quinte F1 4-Jul-06 2.25 10 0.98
Quinte DS 4-Jul-06 2.32 11 0.97
Quinte NA 22-Sep-06 1.98 8 0.95
Quinte GPT 22-Sep-06 2.20 10 0.96
Quinte NR 22-Sep-06 2.19 10 0.95
Quinte MBO 22-Sep-06 2.09 9 0.95
Quinte F1 22-Sep-06 2.18 10 0.95
Quinte DS 22-Sep-06 2.07 9 0.94
Victoria KL3 14-Nov-05 2.97 25 0.92
Victoria CG5 15-Nov-05 2.75 20 0.92
Victoria KL5 15-Nov-05 2.76 19 0.94
Victoria COL 15-Nov-05 2.96 23 0.94
Victoria LV1 16-Nov-05 2.65 17 0.93
Quinte_05 NA 28-Jun-05 1.89 8 0.91
Quinte_05 HB 28-Jun-05 2.08 10 0.90
Quinte_05 BB 28-Jun-05 1.92 8 0.92
Quinte_05 NA 3-Aug-05 1.98 9 0.90
Quinte_05 HB 3-Aug-05 2.32 12 0.94
Quinte_05 BB 3-Aug-05 1.97 8 0.95
Quinte_05 NA 30-Aug-05 1.71 7 0.88
Quinte_05 HB 30-Aug-05 1.56 6 0.87
Quinte_05 BB 30-Aug-05 2.04 9 0.93
Quinte_05 NA 6-Oct-05 2.39 12 0.96  
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APPENDIX B 
 
Lake Station Date No. of Cyano. (cells/L) No. of Potential 

Hepatotoxic Cyano. 
Quinte NA 4-Jul-06 9.67E+07 5.70E+05
Quinte NA 4-Jul-06 4.40E+07 2.77E+05
Quinte NA 4-Jul-06 4.71E+07 4.03E+05
Quinte GPT 4-Jul-06 2.86E+07 1.58E+07
Quinte GPT 4-Jul-06 3.21E+07 1.03E+05
Quinte GPT 4-Jul-06 5.97E+07 1.01E+05
Quinte NR 4-Jul-06 3.50E+07 4.81E+05
Quinte NR 4-Jul-06 1.20E+08 7.10E+05
Quinte NR 4-Jul-06 1.27E+08 7.56E+05
Quinte MBO 4-Jul-06 1.20E+08 5.28E+05
Quinte MBO 4-Jul-06 1.16E+08 5.42E+05
Quinte MBO 4-Jul-06 1.33E+08 5.84E+05
Quinte F1 4-Jul-06 1.05E+08 2.01E+06
Quinte F1 4-Jul-06 7.78E+07 1.40E+06
Quinte F1 4-Jul-06 1.07E+08 1.72E+06
Quinte DS 4-Jul-06 2.97E+08 1.25E+07
Quinte DS 4-Jul-06 3.99E+08 9.93E+06
Quinte DS 4-Jul-06 2.57E+08 5.37E+06
Quinte NA 22-Sep-06 3.33E+09 2.57E+06
Quinte NA 22-Sep-06 1.04E+09 1.45E+06
Quinte NA 22-Sep-06 1.09E+09 1.23E+06
Quinte GPT 22-Sep-06 1.28E+09 1.32E+06
Quinte GPT 22-Sep-06 1.15E+09 1.47E+06
Quinte GPT 22-Sep-06 1.31E+09 1.61E+06
Quinte NR 22-Sep-06 1.96E+09 1.35E+06
Quinte NR 22-Sep-06 3.82E+09 1.92E+06
Quinte NR 22-Sep-06 3.21E+09 1.55E+06
Quinte MBO 22-Sep-06 1.49E+09 1.13E+06
Quinte MBO 22-Sep-06 1.63E+09 1.69E+06
Quinte MBO 22-Sep-06 1.84E+09 1.16E+06
Quinte F1 22-Sep-06 9.26E+08 9.54E+05
Quinte F1 22-Sep-06 9.20E+08 1.05E+06
Quinte F1 22-Sep-06 1.11E+09 1.61E+06
Quinte DS 22-Sep-06 1.87E+09 1.67E+06
Quinte DS 22-Sep-06 1.87E+09 1.73E+06
Quinte DS 22-Sep-06 1.87E+09 8.36E+05  
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APPENDIX C 
 
Lake Station Date No. of Cyano. (cells/L) No. of Potential 

Hepatotoxic Cyano. 
Erie MB18 20-Jun-06 BDL BDL
Erie MB18 20-Jun-06 BDL BDL
Erie MB18 20-Jun-06 BDL BDL
Erie MB19 20-Jun-06 1.38E+07 BDL
Erie MB19 20-Jun-06 1.67E+07 BDL
Erie MB19 20-Jun-06 2.33E+07 BDL
Erie 8M 20-Jun-06 8.64E+06 BDL
Erie 8M 20-Jun-06 3.13E+07 BDL
Erie 8M 20-Jun-06 2.59E+07 BDL
Erie MB15 20-Jun-06 2.67E+07 BDL
Erie MB15 20-Jun-06 3.11E+07 BDL
Erie MB15 20-Jun-06 3.31E+07 BDL
Erie 7M 20-Jun-06 3.33E+07 BDL
Erie 7M 20-Jun-06 3.31E+07 BDL
Erie 7M 20-Jun-06 4.22E+07 BDL
Erie Clear Site 20-Jun-06 2.16E+07 BDL
Erie Clear Site 20-Jun-06 9.72E+06 BDL
Erie Clear Site 20-Jun-06 2.17E+06 BDL
Erie MB18 22-Aug-06 1.23E+08 1.93E+08
Erie MB18 22-Aug-06 1.14E+08 1.17E+08
Erie MB18 22-Aug-06 8.83E+07 1.11E+08
Erie MB19 22-Aug-06 4.00E+07 4.27E+07
Erie MB19 22-Aug-06 5.35E+07 5.99E+07
Erie MB19 22-Aug-06 6.64E+07 5.42E+07
Erie 8M 22-Aug-06 1.33E+08 8.90E+07
Erie 8M 22-Aug-06 1.52E+08 1.34E+08
Erie 8M 22-Aug-06 1.33E+08 8.49E+08
Erie MB15 22-Aug-06 2.40E+07 2.96E+07
Erie MB15 22-Aug-06 1.43E+07 2.10E+07
Erie MB15 22-Aug-06 2.24E+07 3.28E+07
Erie 7M 22-Aug-06 7.14E+07 6.03E+07
Erie 7M 22-Aug-06 5.96E+07 6.46E+07
Erie 7M 22-Aug-06 8.97E+07 5.63E+07
Erie Clear Site 22-Aug-06 2.31E+08 8.36E+07
Erie Clear Site 22-Aug-06 2.31E+08 7.23E+07
Erie Clear Site 22-Aug-06 2.31E+08 5.92E+07  
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