
Design and Implementation of an

OFDM WLAN Synchronizer

by

Joseph Pierri

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Master of Applied Science

in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2007

c©Joseph Pierri, 2007

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,

including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

Joseph Pierri

ii

Abstract

With the advent of OFDM for WLAN communications, as exemplified by IEEE 802.11a,

it has become imperative to have efficient and reliable synchronization algorithms for

OFDM WLAN receivers. The main challenges with synchronization deal with the de-

lay spread and frequency offset introduced by the wireless channel. In this work, rigorous

research is done into OFDM WLAN synchronization algorithms, and a thorough synchro-

nizer implementation is presented. This synchronizer performs packet detection, frequency

offset estimation, and time synchronization. Competing time synchronization algorithms

are compared under a variety of channel conditions, with varying delay spreads, frequency

offsets, and channel SNR. The metrics used to select between competing algorithms are

statistical variance, and incremental hardware complexity. The time synchronization algo-

rithms chosen are a basic, or dropoff detection, algorithm for coarse time synchronization,

and a quantized cross-correlator with a maximum detector for fine time synchronization.

iii

Acknowledgements

I would like to thank my supervisor, Prof. Amir K. Khandani, for his unwavering support

during the course of my graduate studies, for sharing his technical expertise with me,

and for helping me produce this thesis. In addition, I would like to thank Dr. Shahram

Talakoub for providing thoughtful analysis and feedback on the topic of my research.

Finally, I would like to thank my parents, Edward and Mary Pierri, for their encour-

agement and their belief in me.

iv

Contents

1 Introduction 1

1.1 Contributions of Thesis . 1

1.2 Organization of Thesis . 2

2 Background Information 4

2.1 OFDM Systems . 4

2.2 Synchronization Issues with OFDM . 6

2.3 The IEEE 802.11a Preamble . 7

2.4 Synchronization Algorithms for IEEE 802.11a 8

2.4.1 Packet Detection . 9

2.4.2 Frequency Offset Estimation . 10

2.4.3 Time Synchronization . 12

2.5 Implementation Algorithms and Techniques 16

3 Implementation Considerations and Simulation Environment 19

3.1 Comparison Metrics . 19

3.2 Algorithm Evaluation . 20

v

3.3 Software and Hardware . 22

3.4 Channel Model . 23

3.5 Input Sequences . 26

4 Implementation of the Synchronizer 27

4.1 Packet Detection . 27

4.2 Frequency Offset Calculation . 30

4.3 Coarse Time Synchronization . 35

4.3.1 Basic Auto-Correlation Method . 36

4.3.2 Auto-Correlation Difference Method 40

4.3.3 Auto-Correlation Sum Method . 43

4.3.4 Performance of Estimators under Varying Channel SNR 45

4.4 Fine Time Synchronization . 47

4.4.1 Cross-Correlation Calculation . 47

4.4.2 Quantized Cross-Correlator . 52

4.4.3 Performance of Cross-Correlation Estimators under Varying Channel

SNR . 57

4.5 Algorithm Analysis . 59

4.6 Final Implementation . 61

4.7 Total Hardware Requirements . 62

5 Conclusions and Future Work 63

A Structure of the IEEE 802.11a Preamble 66

vi

List of Figures

2.1 IEEE 802.11a Preamble . 8

3.1 Channel Block Implementation . 23

4.1 Packet Detector Block Diagram . 28

4.2 Typical Packet Detector Output . 29

4.3 Frequency Offset Estimation Block . 30

4.4 CORDIC Algorithm . 31

4.5 Internals of the Frequency Offset Estimation Block 33

4.6 Typical Frequency Offset Estimator Output 34

4.7 Typical Basic Auto-Correlator Time Synchronization Output 37

4.8 Distribution of Time Synchronization Calculations for SNR=10dB, Using

the Basic Auto-Correlation Method . 39

4.9 Block Diagram for the Auto-Correlation Difference Algorithm 40

4.10 Distribution of Time Synchronization Calculations for SNR=10dB, Using

the Auto-Correlation Difference Method 42

4.11 Distribution of Time Synchronization Calculations for SNR=10dB, Using

the Auto-Correlation Sum Method . 44

vii

4.12 Distribution of Time Synchronization Calculations for Varying SNR Values,

Frequency Offset of 100 kHz . 46

4.13 Multiply-Accumulator Circuit for Cross-Correlator 47

4.14 Distribution of Fine Time Synchronization Calculations for SNR=10dB,

Using the Cross-Correlator with the Maximum Detector 50

4.15 Distribution of Fine Time Synchronization Calculations for SNR=10dB,

Using the Cross-Correlator with the Minimum Threshold Detector 51

4.16 Diagram of the Multiply-Accumulate Circuit Used in the Quantized Version

of the Cross-Correlator . 53

4.17 Distribution of Fine Time Synchronization Calculations for SNR=10dB,

Using the Quantized Cross-Correlator with the Maximum Detector 55

4.18 Distribution of Fine Time Synchronization Calculations for SNR=10dB,

Using the Quantized Cross-Correlator with the Minimum Threshold Detector 56

4.19 Distribution of Fine Time Synchronization Calculations for Varying SNR

Values, Frequency Offset of 100 kHz . 58

4.20 Final Synchronizer Implementation . 62

viii

List of Tables

3.1 Delay Profile in ETSI A Channel Model 24

3.2 Delay Profile in ETSI C Channel Model 25

3.3 Frequency Offset Values Used in Simulation 25

4.1 Frequency Offset Estimator Results . 35

4.2 Summary of Time Synchronization Algorithms, with Delay Spread of 50 ns

and Frequency Offset of 100 kHz . 59

4.3 Summary of Hardware Complexity of Synchronization Algorithms 60

4.4 Hardware Complexity for the Final Synchronizer Design 62

ix

Chapter 1

Introduction

This work documents the design and implementation of the synchronizer for an IEEE

802.11a [IEE99b] receiver. This receiver was built for academic research use at the Uni-

versity of Waterloo. The goal for this receiver implementation was to have a system that

functioned with a high degree of reliability, was reconfigurable, and was efficient in terms

of hardware costs.

1.1 Contributions of Thesis

While there are several works which examine IEEE 802.11a receiver synchronization algo-

rithms in the literature, a complete and rigorous Field Programmable Gate Array (FPGA)

implementation of a synchronizer has not yet been documented. This work offers a thor-

ough investigation into many of the existing synchronization algorithms, and complete

documentation of the design and implementation of a synchronizer which uses these al-

gorithms. It is hoped that this work can be used as a reference point for any team that

1

2 Introduction

wants to build a similar Orthogonal Frequency Division Multiplexing (OFDM) Wireless

Local Area Network (WLAN) synchronizer in the future.

This work develops comprehensive metrics for selecting among possible time synchro-

nization algorithms, on the basis of performance and hardware optimality, and uses these

metrics in selecting between competing implementation options. This work looks at three

different auto-correlation algorithms for coarse time synchronization, and four different

cross-correlation implementations for fine time synchronization. It examines whether or

not fine time synchronization is necessary for this design, and which implementation should

be chosen.

This work also introduces several important new synchronizer features, and imple-

ments other features which have hereto been described only theoretically in the literature.

Overall this work examines existing algorithms and adds several important modifications,

producing a novel synchronizer which has excellent performance on all counts.

1.2 Organization of Thesis

The second chapter of this work begins by examining the problems associated with syn-

chronization in an OFDM system. It looks at the specific challenges involved with IEEE

802.11a systems, and how the structure of the packet preamble can be used for synchroniza-

tion. It examines existing algorithms in the literature, and techniques for implementing

these algorithms in hardware.

The third chapter examines the metrics used to compare synchronization algorithms,

and the algorithms chosen for implementation. It also looks at the simulation and im-

plementation environment, including the channel models used for simulation, the input

1.2 Organization of Thesis 3

sequences, and the software and hardware used. The fourth chapter gives a complete

description of the implementation process and the results derived from simulation. This

dissertation concludes with an analysis of the experiment results, and recommendations

for future research.

Chapter 2

Background Information

WLANs have become increasingly pervasive in recent years. The IEEE 802.11 standard

is currently one of the most widely-used standards for implementing short-range WLANs

[IEE99a]. The standard was designed to provide wireless connectivity and efficient data

transfer for users who are either stationary or are moving with limited velocity. The first

amendment to the standard, IEEE 802.11b, used Direct-Sequence Spread Spectrum (DSSS)

modulation for transmitting data [IEE99c]. Later amendments (specifically IEEE 802.11a

and 802.11g) make use of OFDM, a modulation method which offers several important

benefits.

2.1 OFDM Systems

In an OFDM system, the available bandwidth, B, of the system is divided into N subcar-

riers, each with a bandwidth of BN = B
N

(in IEEE 802.11a, N = 52 and BN = 312.5 kHz).

The value N is chosen to ensure that BN >> BC , where BC is the coherence bandwidth

4

2.1 OFDM Systems 5

of the channel [Uys06]. This means that the frequency-selective fading channel can be

treated instead as N frequency-flat fading channels, and consequently, the system is much

less susceptible to Inter-Symbol Interference (ISI) [Fla03] due to multi-path fading.

The term “Orthogonal” refers to the fact that each of the subcarriers, or tones, is

orthogonal in the frequency domain. That is, at the centre frequency of one tone, all other

tones have amplitude zero [Fla03]. This orthogonality ensures that there will not be Inter-

Carrier Interference (ICI) between subcarriers. This is in contrast with non-orthogonal

frequency division multiple access (FDMA) systems in which guard bands are inserted

between carriers to ensure that no ICI occurs.

In an OFDM system, bits are assigned to the N subcarrier frequencies at the transmit-

ter. This frequency domain data is then passed through an Inverse Fast Fourier Transform

(IFFT) to yield a time domain representation, which is called an OFDM symbol. On the

receiver end, the time domain OFDM symbol is received, and a Fast Fourier Transform

(FFT) is performed to yield the frequency domain data.

At the receiver, the FFT is performed on M OFDM symbol samples which have been

received (in IEEE 802.11a, M = 64). For the FFT to be calculated correctly, all M samples

must be from the same OFDM symbol. However, if the start of the packet is inaccurately

calculated due to poor time synchronization, samples from adjacent OFDM symbols may

also be present at the input to the FFT. To remedy this, a guard interval is introduced

between OFDM symbols [Fla03]. This guard interval is composed of redundant data from

the end of the OFDM symbol, effectively lengthening each OFDM symbol and increasing

the probability that the FFT will be calculated correctly. Note that the FFT calculation

will yield an identical result regardless of which M of the symbol samples are used, provided

6 Background Information

that all M samples are consecutive.

A major benefit of OFDM systems is their low cost of implementation, due to the rel-

atively simple components required. An OFDM system requires Digital Signal Processing

(DSP) hardware for the implementation of the IFFT and FFT transformations. These pro-

cessors are inexpensive and widely available, either as stand-alone components or on FPGA

hardware [Fla03]. An OFDM receiver requires only only one modulator and demodulator,

in contrast with other multi-carrier systems [Uys06].

2.2 Synchronization Issues with OFDM

With any data communications system, a critical component is the ability for the receiver

to detect the transmission of a packet. This can be complicated by the effects of the

wireless channel, so it is important to have packet detection algorithms which can account

for channel effects.

The wireless channel also affects the orthogonality of the subcarriers. If there is an offset

between the subcarrier frequencies at the transmitter and the subcarrier frequencies at the

receiver, the tones will no longer be orthogonal, and this can cause significant degradation

in system performance. To maintain this orthogonality, the transmitter and receiver must

be precisely synchronized in terms of frequency. This requires accurate frequency offset

calculation at the receiver.

Another important issue which must be dealt with in OFDM systems is ISI, which

can occur in a multipath fading wireless channel. OFDM systems are typically resistant

to significant ISI because of the presence of the guard interval at the beginning of each

OFDM symbol. The guard interval length in IEEE 802.11a, for example, is 800 ns for

2.3 The IEEE 802.11a Preamble 7

each OFDM data symbol [IEE99b]. As the length of the channel multipath delay spread

is usually 200 ns or less, this length is usually sufficient for preventing ISI in the system.

Despite the presence of the guard interval, it is still possible for ISI to occur in OFDM

systems. To prevent ISI from occurring, there must be accurate time synchronization at

the receiver.

2.3 The IEEE 802.11a Preamble

The IEEE 802.11a standard provides mechanisms for dealing with the synchronization

problems noted above. OFDM symbols are transmitted over a channel as part of a packet.

The size of this packet can vary, but it is generally several orders of magnitude longer than

a single OFDM symbol. The packet consists of a packet header, followed by a data payload.

The packet header contains information about the packet that the receiver will require,

including information about the packet duration and the transmission rate [IEE99b]. It

also contains a preamble which is used for synchronization purposes.

The preamble consists of ten repeated short symbols (forming the Short Training Se-

quence, or STS), and two repeated long symbols (forming the Long Training Sequence, or

LTS) [IEE99b]. See Figure 2.1 for a diagram of the preamble. Each of the short symbols

are composed of 16 samples, and each of the long symbols are composed of 64 samples.

A guard interval is inserted before the long symbols. This guard interval is composed of

samples repeated from the end of the LTS.

The preamble design includes repeated symbols because this repetition makes synchro-

nization easier for the receiver. The receiver will be able to recognize the presence of an

incoming packet because the received symbols will be similar to each other, irrespective of

8 Background Information

Figure 2.1: IEEE 802.11a Preamble

the effects of the channel.

The standard specifies [IEE99b] that the first seven short symbols of the STS should

be used for signal detection, automatic gain control (AGC), and diversity selection (for

Multiple Input Multiple Output systems). The last three symbols of the STS should be

used for Coarse Frequency Offset (CFO) calculation, and Time Synchronization. The LTS

is designed to be used for Channel Estimation and Fine Frequency Offset (FFO) calculation.

It can also be used to refine the time synchronization estimates.

After calculating the time-domain preamble sequences, rSHORT(t) and rLONG(t) (please

see Appendix A for mathematical details), the sequences are appended together, and placed

at the beginning of the packet to be transmitted. The preamble is transmitted over the

channel without undergoing coding or interleaving.

2.4 Synchronization Algorithms for IEEE 802.11a

Since the development of the IEEE 802.11a standard, many algorithms have been developed

for synchronization which exploit the structure of the preamble. In the following pages, a

few of these algorithms are outlined briefly.

2.4 Synchronization Algorithms for IEEE 802.11a 9

2.4.1 Packet Detection

The first challenge for the receiver is to detect the packet. One possible algorithm to use

is packet detection based on power level [HT01]. That is, the presence of a packet can

be inferred when the signal power exceeds a specific threshold. However, packet detec-

tion cannot be done in this manner in wireless systems because of the channel noise and

multipath fading, which cause the received power to vary.

Another proposal is to use signal auto-correlation [HT01], taking advantage of the

repetition in the preamble, and correlating the received sequence samples with a delayed

copy of the sequence, with the delay being equivalent to the length of one symbol. A moving

average of this correlation can be taken over a range of one symbol. This is represented

mathematically in Equation 2.1:

R(d) =
L−1∑
m=0

(
r∗d+mrd+m+L

)
(2.1)

Note that rd represents the value of the dth incoming sample, r∗d represents the conjugate

of rd, and that in the case of the STS symbols, L = 16 samples. Because of the variance

of the incoming signal power, it is not possible to use a detection algorithm based on R(d)

alone [HT01]. A method for packet detection was developed in which auto-correlation is

normalized by a moving sum of the received power [SC97], as shown in Equations 2.2 and

2.3:

P (d) =
L−1∑
m=0

|rd+m+L|2 (2.2)

10 Background Information

M(d) =
|R(d)|2

(P (d))2 (2.3)

This value is then compared with a threshold, th, and a packet is said to have been

detected if M(d) > th. The values of M(d) should fall between 0 and 1. The value

th should be chosen to minimize the incidence of false positive detection, and also the

incidence of undetected packets, which occur when the receiver is unable to detect the

training sequence.

Other possible packet detection schemes use Maximum Likelihood (ML) detection or

Minimum Mean-Squared Error Criterion (MMSE) methods [HG02]. In a comparison of

packet detection approaches, it was shown that there are fewer instances of false alarms us-

ing the auto-correlation method [HG02]. The ease of implementation is another important

advantage for the normalized auto-correlation method seen in [SC97]

2.4.2 Frequency Offset Estimation

Methodologies for estimating the carrier frequency offset rely on the fact that a phase

difference is introduced as a consequence of any frequency offset between the transmitter

and receiver. That is, if two identical samples are transmitted over the channel, the phase

difference between them at the receiver is proportional to the frequency offset, and also

proportional to the separation between the two transmission times. Specifically, for a

frequency offset of ∆f the magnitude of the phase offset is:

φ = 2πt∆f (2.4)

2.4 Synchronization Algorithms for IEEE 802.11a 11

This phase difference can be calculated by observing incoming samples separated by

one symbol length. For the STS, the phase difference can be extracted from the auto-

correlation value R(d) in Equation 2.1. R(d) can be expressed as:

R(d) = e−j2πL∆f
L−1∑
m=0

|rd+m|2 (2.5)

The relationship between the φ value in Equation 2.4 and the term R(d) in Equation

2.5 is given by:

φ = 6 R(d) (2.6)

In this case, L = 16 samples, for a total time difference of 16Ts, where Ts is the sample

period, 50 ns. Thus, if the phase difference value can be determined, an estimate of the

frequency offset can be calculated as:

∆f =
6 R(d)

2π × 16Ts

(2.7)

The value 6 R(d) will fall between π and −π, and thus the range of possible frequency

offset values is:

−625 kHz ≤ ∆f ≤ 625 kHz

It is possible to calculate Equations 2.1 and 2.5 using the LTS rather than the STS, in

which case L = 64. When L = 64, the precision improves by a factor of 4, and the range

of possible offset estimates is:

−156.25 kHz ≤ ∆f ≤ 156.25 kHz

12 Background Information

Because of the improved precision, performing the calculation with a 64 sample auto-

correlation is referred to as fine frequency offset estimation, while the method using a

16 sample auto-correlation is referred to as coarse frequency offset estimation. Because

of the limited range in the 64 sample case, the frequency offset is best estimated in two

passes, first using the STS, and then using the LTS. The IEEE 802.11a standard states

that the maximum tolerance for the central frequency is ±20 parts per million (ppm),

which corresponds to a maximum possible frequency offset of 200 kHz, when the carrier

frequency is 5 GHz [IEE99b].

2.4.3 Time Synchronization

Several methods exist for determining the offset between the assume packet start and the

actual packet start, referred to as the timing offset. The time synchronization methods

proposed in [SC97] are based on the timing metric in Equation 2.3. In one method, the

maximum value of M(d) is found, and also the sample index, dmax, at which this maximum

value occurs. The timing offset can be taken as the difference between the actual location

of dmax and its expected location. In the second method, two points at which M(d) is 90%

of M(dmax) are found, and the midpoint between these two samples is used to estimate the

offset. The problem with these approaches is the lack of precision in the first case, and the

difficulty of hardware implementation in the second case.

In [LL04], and in other approaches, the time synchronization calculation is done by

finding the index, ddropoff , at which M(d) falls below half of its peak value. This dropoff

point will occur after the final STS symbol, during the guard interval which precedes the

LTS symbols.

2.4 Synchronization Algorithms for IEEE 802.11a 13

Another approach was introduced by [KFST04]. This method relies on calculating

R(d), and then calculating another auto-correlation sequence, this time with a sample

separation of 2L:

R2(d) =
L−1∑
m=0

(
r∗d+mrd+m+2L

)
(2.8)

The difference between these two sequences is then calculated:

Rdiff(d) = R(d)−R2(d) (2.9)

This difference sequence typically has a triangular peak during the LTS guard interval,

and the index, ddiffmax of this peak can be used to calculate the timing offset. This algorithm

promises improved performance, and has relatively low hardware complexity [KSF04].

A third scheme for auto-correlation was introduced by [FE03]. This method calculates

the sum of the incoming sequence delayed by L, and the same sequence delayed by 2L,

and this sum is correlated with the undelayed sequence.

R3(d) =
L−1∑
m=0

(
r∗d+m × (rd+m+L + rd+m+2L)

)
(2.10)

Once again, a detector can be designed to determine the index, dsumdrop, at which R3(d)

drops off to half of its peak value.

Instead of correlating the incoming sequence with delayed signal samples, it is possible

to correlate the incoming sequence with the original preamble sample values. This approach

is referred to as cross-correlation, and it uses the following calculation:

14 Background Information

Λ(d) =
L−1∑
m=0

c∗mrd+m (2.11)

The c∗m terms are the complex conjugates of the preamble sample values, L is symbol

length, and rd is the received sequence. In the case where the LTS is used for cross-

correlation, L = 64, and the c∗m terms are taken from the original LTS.

Auto-correlation and cross-correlation methods are contrasted in [FWD+03]. The cross-

correlation algorithm uses the LTS, and several detectors which can be used for determining

the timing point are compared. The first of these detectors simply finds the maximum value

of Λ(d):

dxcmax = arg max
d

(|Λ(d)|) (2.12)

The second detector adds the absolute values of N successive cross-correlation results,

and attempts to maximize the sum:

dxcsum = arg max
d

N−1∑
p=0

|Λ(d + p)|

 (2.13)

Finally, a third detector looks to find the first instance at which Λ(d) exceeds a chosen

threshold, th, where th is a percentage of the observed maximum value. That is:

dxcp = arg min
d
| |Λ(d)| ≥ th× |Λ(dxcmax)| (2.14)

Comparing an auto-correlation algorithm and a cross-correlation algorithm, it has been

shown that the cross-correlation algorithm outperforms, and that the first and third de-

tectors have much better performance than the second detector [FWD+03].

2.4 Synchronization Algorithms for IEEE 802.11a 15

The STS can also be used in cross-correlation algorithms. If the original STS symbols

are correlated with the incoming symbol sequence, there should be peaks in Λ(d) every 16

samples. The timing offset can be calculated from the point at which these cross-correlation

peaks stop occurring [YCK06].

A few algorithms exist which combine the auto-correlation and cross-correlation ap-

proaches. In [NG03], Λ(d) is used to identify the point at which R(d) drops off, and this

dropoff point is used to calculate the timing offset value. A similar approach is used in

[KP07]. In this case the coarse timing point is determined using auto-correlation, and the

fine timing point is determined using cross-correlation.

Another type of algorithm which combines both auto-correlation and cross-correlation

methods was proposed [ZS04]. In this case, the auto-correlator output is compared to a

threshold, as in other methods, and a moving sum of the cross-correlator output is taken,

and compared with another threshold. The timing offset is calculated at the moment at

which the auto-correlator output is less than the first threshold, and the moving sum is

greater than the second threshold.

Rather than limiting the calculations to the STS and LTS, another possibility is to

include the guard interval in the calculations, taking advantage of its known structure.

In [YCK06], an algorithm is proposed in which the last STS symbol, t10, is united with

the guard interval to form a 48 sample symbol. Because of the longer symbol length, this

symbol can offer a more precise timing offset estimate, while reserving the LTS for later

use. The downside of this approach is that the correlation result has prominent sidelobes

which interfere with the estimation process. These sidelobes result from the correlation of

the STS with the incoming sequence. To account for these sidelobes, the correlation of the

16 Background Information

STS and the incoming sequence is calculated, and subtracted from the 48 sample symbol

correlation.

When doing synchronization, an essential consideration is AGC, which, as per the IEEE

802.11a standard, is done using the STS. In [FE03] an interface is proposed which allows

the detection system to be disabled while the gain value is being calculated, and is then

re-enabled once it has been calculated.

2.5 Implementation Algorithms and Techniques

One of the important algorithms used for calculating Equations 2.1 and 2.2 is the following

from [SC97]:

R(d + 1) = R(d) + (r∗d+Lrd+2L)− (r∗drd+L) (2.15)

This iterative algorithm allows for an efficient hardware implementation of L-sample

averaging. Another algorithm was introduced in [LL04] which has a further hardware

saving modification for this correlation calculation. In this algorithm:

R(d + 1) = R(d) + Re{(r∗d+Lrd+2L)− (r∗drd+L)} (2.16)

By considering only the real values, this algorithm reduces the hardware complexity,

and lowers the noise level of the correlation sequence.

Another contribution is the observation that the division operation required in Equation

2.3 can be avoided by choosing a metric threshold level which is a power of 2 [CVA+04a].

For instance, choosing a threshold value of 0.5 will allow the calculation to implemented

2.5 Implementation Algorithms and Techniques 17

using a bit shift operation rather than a division operation. The advantage is hardware

savings, and in [CVA+04a] it was shown that the value of 0.5 is actually a very good

threshold choice. In [YNW02], the choice of 0.5 is shown to be a good choice for Rician

fading channels as well, for a variety of different delay values.

For calculating the frequency offsets a CORDIC (COordinate Rotation DIgital Com-

puter) processor can be used to calculate the value of the angle in Equation 2.6. The

CORDIC takes two input values, the real and imaginary components of the calculated

auto-correlation value from Equation 2.1, and returns the angle corresponding to these

values. In [CVA+04b], a CORDIC processor is incorporated into a receiver hardware de-

sign, and it is reused for both the coarse and fine frequency offset estimate. More details

about the CORDIC algorithm and implementation are given in later chapters.

One of the limitations of the cross-correlation schemes for time synchronization is the

hardware complexity required. If bit-shifting operations could replace multiplication oper-

ations, the hardware savings would be significant. In [HLK03], the c∗m terms are quantized

to powers of 2, allowing bit-shifting to be used in place of multiplication.

In the implementation in [HLK03], the hardware savings are almost 90%, while the

performance does not suffer greatly. In fact, in the case where the quantization range is

between -4 and +4, the performance is very comparable to the case where no quantization

is used. However, using a quantization range smaller than [-4, +4] would result in a

degradation in performance [HLK03].

In [MKB06] the structure of the LTS is expressed as a function of conjugates, as seen

in Equation 2.17. Using this conjugate property, it is possible to reduce the computations

required for calculating the cross-correlation sum by half, resulting in hardware savings.

18 Background Information

rLONG(t) = [yA(k)yB(k)yA(k)yB(k)] (2.17)

where:

yB(k) = y∗A(32− k) (2.18)

An overall system architecture is demonstrated in [CVA+04b], showing how the detec-

tion, synchronization and compensation blocks work together at the system level. Another

overall system architecture is given in [MS04]. In this paper, the block diagram for a Xilinx

FPGA implementation is given, including the circuitry used for the synchronization block.

Chapter 3

Implementation Considerations and

Simulation Environment

3.1 Comparison Metrics

One of the questions which this work attempts to answer is: how should a designer choose

between competing synchronization algorithms? In this section, metrics for comparing

various algorithms are described.

In quantifying the accuracy of an algorithm, a useful metric is the variance of the

estimates produced by the synchronizer algorithm. The simulation iterations will produce

a range of slightly different channel conditions, and this will result in different estimates

for the time and frequency offset. The variance within a series of estimates is indicative

of how well an algorithm can withstand the random noise introduced by the channel. The

variance should be non-zero, because the timing offset will not be identical in all cases. A

smaller variance is very desirable.

19

20 Implementation Considerations and Simulation Environment

With this investigation, the synchronizer was implemented on an FPGA. The efficiency

of a synchronizer design in terms of hardware can be estimated by the quantity of resources

that it takes up on the FPGA. Specifically, with the Altera Stratix II, the resources of

interest are Adaptive Look-up Tables (ALUTs), registers, and DSP elements. The resource

counts are taken after hardware synthesis, but before placement and routing, because

placement and routing algorithms often sacrifice area to improve circuit speed.

Thus the two metrics which are used in this work to evaluate and compare synchroniza-

tion algorithms are the variance of simulation iterations, and the total hardware footprint

of the synchronizer design, measured in FPGA resource counts.

3.2 Algorithm Evaluation

Packet detection synchronization can be done using the Equations 2.1, 2.2 and 2.3. No

ML methods are considered in this work, because, as detailed in Section 2.4, the auto-

correlation algorithms offer superior performance and lower variance. The hardware re-

quired to do packet detection consists of a block for calculating auto-correlation, one for

calculating power, a bit-shifter, and a comparator.

The coarse frequency offset estimate can be calculated using Equations 2.6 and 2.7.

This requires the addition of a CORDIC block, as well some additional hardware blocks

for calculating the frequency value from the angle. Fine frequency offset calculations can be

done with the same hardware, although it requires another auto-correlator for performing

the 64 sample auto-correlation calculation. The question for the time synchronization

implementation is: what additional hardware should be added to the design, and how

much incremental performance benefit is derived from this addition of hardware.

3.2 Algorithm Evaluation 21

As mentioned in Section 2.4, the proposals from [SC97] for time synchronization are

unattractive candidates, and are not considered for implementation. The “dropoff detec-

tion” method introduced in [LL04] is straight-forward to implement in hardware. This

algorithm takes the 16 sample auto-correlator output and determines the point at which

it drops below a threshold value, outputting the index value.

The other two auto-correlation algorithms considered are the “difference” method pre-

sented in [KFST04], and the “sum” method presented in [FE03]. Implementing the former

algorithm requires an additional auto-correlator and a peak detector, and implementing

the latter algorithm requires an additional adder, delay elements, and the same dropoff

detector mentioned earlier. Implementing a cross-correlation algorithm will require more

hardware, but with the promise of much better precision for time synchronization

One important decision is how to determine the timing offset point using a cross-

correlator. The two detectors under consideration are the ones presented in [FWD+03].

Specifically, the max detector, as seen in Equation 2.12, and the minimum threshold de-

tector given by Equation 2.14. A final decision when implementing a cross-correlation

algorithm is whether to use fully precise cross-correlation coefficients, or whether to round

those coefficients to the nearest powers of 2, as seen in [HLK03].

Overall, three auto-correlation algorithms are considered for coarse time synchroniza-

tion, and four different cross-correlation implementations are considered for fine time syn-

chronization. Based on the metrics introduced in Section 3.1, these algorithms are com-

pared and evaluated, and then a final synchronizer design is decided upon.

22 Implementation Considerations and Simulation Environment

3.3 Software and Hardware

Once the algorithms to be implemented are known, the next step is setting up an appro-

priate simulation environment for evaluating these algorithms. The implementation and

simulation of all algorithms is done using the Simulink environment. The simulation envi-

ronment provides pre-built channel models, mechanisms for specifying input sequences and

storing output results. The Altera DSP Builder software provides hardware building blocks

which can be used to construct the synchronizer circuit. This circuit can be simulated in

Simulink and MATLAB, compiled into netlists, and finally implemented directly onto an

FPGA.

The chosen FPGA is the Altera Stratix II EP2S180. This FPGA is large enough

to accommodate the entire receiver design, including the synchronizer, and offers a large

quantity of DSP resources. The chosen synthesis tool is Altera’s Quartus Native Synthesis,

used within the DSP Builder environment.

To generate simulation results, a series of MATLAB scripts were authored to automate

the process of executing simulations. The input for the Simulink circuit was taken from

input files, and is detailed in Section 3.5. The wireless channel effects are simulated using a

channel model, detailed in Section 3.4. Output from the circuit is captured in the MATLAB

environment, and saved to files. It is also fed to MATLAB scripts for data analysis and

graphical display.

3.4 Channel Model 23

3.4 Channel Model

The channel model used in this investigation follows the tapped-delay model. It incorpo-

rates the effects of multi-path fading and Additive White Gaussian Noise (AWGN). The

block diagram for the channel model used is given in Figure 3.1.

Figure 3.1: Channel Block Implementation

In building the tapped-delay model for the channel, this investigation relied upon indus-

try standard channel models. In particular the European Telecommunications Standards

Institute (ETSI) channel models [Ber01].

The ETSI channel model parameters for two types of channels are given in Tables 3.1

and 3.2. The first type of channel simulates the indoor environment of an office, and has a

delay spread of 50 ns. The second type of channel simulates a large open space environment,

and has a delay spread of 150 ns.

24 Implementation Considerations and Simulation Environment

Tap number Delay (ns) Relative Power (dB)
1 0 0.0
2 10 -0.9
3 20 -1.7
4 30 -2.6
5 40 -3.5
6 50 -4.3
7 60 -5.2
8 70 -6.1
9 80 -6.9
10 90 -7.8
11 110 -4.7
12 140 -7.3
13 170 -9.9
14 200 -12.5
15 240 -13.7
16 290 -18.0
17 340 -22.4
18 390 -26.7

Table 3.1: Delay Profile in ETSI A Channel Model

3.4 Channel Model 25

Tap number Delay (ns) Relative Power (dB)
1 0 -3.3
2 10 -3.6
3 20 -3.9
4 30 -4.2
5 50 0.0
6 80 -0.9
7 110 -1.7
8 140 -2.6
9 180 -1.5
10 230 -3.0
11 280 -4.4
12 330 -5.9
13 400 -5.3
14 490 -7.9
15 600 -9.4
16 730 -13.2
17 880 -16.3
18 1050 -21.2

Table 3.2: Delay Profile in ETSI C Channel Model

In addition to the two delay models used, various frequency offsets were used in sim-

ulations. These were chosen to simulate channel conditions in the best, moderate and

absolute worst cases. They are given in Table 3.3.

Frequency offset values (kHz)
0

100
200

Table 3.3: Frequency Offset Values Used in Simulation

26 Implementation Considerations and Simulation Environment

3.5 Input Sequences

To test the ability of the circuit to detect the presence of a packet sent over the channel,

it was necessary to generate two types of input sequences. A sequence in which a packet

preamble is present, and sequences in which there is no preamble present. The specific

preamble sequence sent over the channel is given in Table G.24 in [IEE99b].

It is necessary to send a large quantity of packets over the channel, while changing the

random channel parameters in each case. In this way, the performance of the synchronizer

can be averaged over a series of trials. In this work, 200 simulations are run for each

test case, and in each simulation the “seed” parameters for the channel model are selected

randomly, between 0 and 100. A selection of seeds within this range ensures an adequate

amount of channel condition variation. There are two seed parameters (one for the AWGN

component, and one for the Multipath Fading component), and the generation of random

seeds is done through MATLAB.

Chapter 4

Implementation of the Synchronizer

4.1 Packet Detection

Implementing the Packet Detection hardware involved building the auto-correlator, the

power calculator, and the comparator required for implementing Equations 2.1, 2.2 and

2.3, deciding on a threshold value, and ensuring correct functionality during simulations.

In accordance with the analysis given in Section 2.4, it was decided that the threshold

should be set at 0.5 × P (d). A choice of 0.5 allows for the use of a bit shift operation

instead of a division operation.

The input to the packet detection circuit is the output from the AGC circuitry. How-

ever, to isolate and study the synchronization algorithms of interest in this work, the AGC

is ignored, and the input comes directly from the sampled channel output. The output of

the packet detection circuit includes a control signal indicating when a packet has been

detected, as well as the auto-correlation and power values, which are also used elsewhere in

the synchronizer. The packet detection output control signal should only become non-zero

27

28 Implementation of the Synchronizer

after the AGC has completed.

To account for the problem of momentary spikes in the auto-correlation value, an

averaging circuit has also been introduced. The averaging circuit will output a non-zero

value only if the packet detection signal has been non-zero for a certain number M of the

past N clock periods. Values of M = 8 and N = 32 were used for the simulations. The

block diagram for the packet detector is given in Figure 4.1.

Figure 4.1: Packet Detector Block Diagram

Figure 4.2 shows the behaviour of the packet detection circuit when the input sequence

contains a preamble. In this figure, the top graph shows the 16 sample auto-correlation,

the second graph shows the power output (multiplied by 0.5), the third graph shows the

comparator output, and the fourth graph shows the averaged comparator output. This

graph shows the effect that the averager has on the circuit, smoothing the comparator

output, but delaying the signal by several samples.

4.1 Packet Detection 29

Figure 4.2: Typical Packet Detector Output

30 Implementation of the Synchronizer

4.2 Frequency Offset Calculation

The frequency offset is estimated in two steps, first using the 16 sample auto-correlator

output, and then subsequently using 64 sample auto-correlator output. The hardware

requirements for this part of the synchronizer overlap with the requirements for the Packet

Detector. In particular, the auto-correlator hardware can be reused.

The frequency offset estimation block should take as its inputs the auto-correlation of

the incoming samples and control signals for the circuit. The outputs of the circuit should

include control signals, and a frequency offset estimate. The inputs and outputs to the

frequency offset estimation block are shown in Figure 4.3. The output of the estimation

block can be sampled at any time during the STS, but it must be after the AGC has

completed.

Figure 4.3: Frequency Offset Estimation Block

Inside the block, the CORDIC is the engine used for calculating the angle of the sample

auto-correlation, as per Equation 2.6. To calculate this angle, the CORDIC executes the

4.2 Frequency Offset Calculation 31

algorithm given in Figure 4.4.

for count <- 1 to N

diff_x <- x / power (2, count - 1)

diff_y <- y / power (2, count - 1)

diff_angle <- atan (count)

if y < 0 then

x <- x - diff_y

y <- y + diff_x

angle <- angle - diff_angle

else

x <- x + diff_y

y <- y - diff_x

angle <- angle + diff_angle

end if

end for

Figure 4.4: CORDIC Algorithm

This algorithm can be visualized in the following way. The input is the vector (x, y)

and the algorithm seeks to rotate this vector to the x-axis. At the end of the algorithm’s

execution, the angle is calculated and stored in angle, and the hypotenuse value is stored

in the variable x. The absolute value of the y variable will continue to decrease with each

iteration. The number of iterations N is up to the implementer, and the algorithm will

improve its precision with more iterations. The atan(count) constants are calculated prior

to the execution of the algorithm, and are stored in memory.

A value of 20 was chosen for N , and the (x, y) vector is composed of the real and

imaginary parts of the auto-correlation value, with each being 20 bits in width. The

CORDIC block takes integer inputs, so the incoming real and imaginary values are scaled

by a predetermined scaling factor.

32 Implementation of the Synchronizer

The value of N = 20 requires 20 clock cycles for the output value to be calculated.

During the course of this 20 cycle period, the estimation output value will vary. To ensure

that the estimation value can be sampled at the output, a small circuit is required to hold

the “settled” value. In addition to storing the output, this circuit performs the calculation

given in Equation 2.7, and also divides by the scaling factor.

Another functionality required for the frequency offset estimation block is the ability

to compensate for angles which are outside of the first quadrant (i.e., x > 0, y > 0), as

the CORDIC will only calculate angles between 0 degrees and 90 degrees. This hardware

takes the sign bit from the incoming real and imaginary parts of the input, and uses these

to choose the quadrant of the angle.

The hardware implementation of the frequency estimation block involved several steps.

The CORDIC required by the circuit was adapted from an existing CORDIC implementa-

tion which was used for calculating sin(x) and cos(x) values. The original implementation

is available as a demo application in Altera’s DSP Builder software. The adaptation re-

quired restructuring the CORDIC by modifying the decision signal “decision zsign”, and

adding some control circuitry to the shift registers.

Please refer to Figure 4.5 for a diagram of internals of the frequency offset estimation

block. Figure 4.6 shows the typical behaviour of the frequency offset estimation circuitry

when the input sequence contains a packet preamble. In this figure, the top graph shows

the output from the CORDIC block, and the lower graph shows the coarse frequency

offset estimate.

4.2 Frequency Offset Calculation 33

Figure 4.5: Internals of the Frequency Offset Estimation Block

34 Implementation of the Synchronizer

Figure 4.6: Typical Frequency Offset Estimator Output

4.3 Coarse Time Synchronization 35

To test the estimator, and to analyze its behaviour in varying channel conditions, a

series of tests were performed, using a series of different parameters. The SNR was kept

constant at 10 dB, and the estimator performance was examined in the face of various delay

spreads and frequency offset values. The results of these trials are summarized in Table

4.1. These results show that the accuracy of the estimator is relatively good, as all of the

estimates are quite close to the actual frequency offset introduced by the wireless channel.

Freq. Offset (kHz) Delay Spread (ns) Max. Abs. Calculation Error (kHz)
0 50 6.33
0 150 6.33

100 50 3.67
100 150 3.67
200 50 22.13
200 150 22.13

Table 4.1: Frequency Offset Estimator Results

4.3 Coarse Time Synchronization

This section covers each of the coarse time synchronization possibilities outlined in Section

3.2. The three algorithms under consideration are the “Basic Auto-Correlation” method,

which refers to the method outlined in [LL04], the “Auto-Correlation Difference” method,

which refers to the method outlined in [KFST04], and the “Auto-Correlation Sum” method,

which refers to the method outlined in [FE03].

36 Implementation of the Synchronizer

4.3.1 Basic Auto-Correlation Method

In the first case, the auto-correlation calculating hardware is reused. The R1(d) value

calculated in Figure 4.1 is used as the input to a detector. This detector includes a counter,

which is initiated when the Packet Detector asserts that a packet has been detected, and

continues counting while the output of the auto-correlator exceeds a particular threshold.

The threshold used is once again 50% of the incoming signal power.

The detector takes as input the auto-correlator output as well as some control signals,

and outputs the counter output as well as a control signal, and the counter output is

held for a certain number of samples. The circuit includes the counter, a simple state

machine, and some additional control circuitry. Without considering AGC, the minimum

output value for the circuit would be 136 samples (from the first preamble sample), and

the maximum possible would be 176 samples.

Figure 4.7 shows the typical behaviour of the circuitry when the input sequence

contains a packet preamble. In this figure, the top graph shows the output of the counter,

and the lower graph shows the control signal which notifies the circuit that the time

synchronization has been completed.

4.3 Coarse Time Synchronization 37

Figure 4.7: Typical Basic Auto-Correlator Time Synchronization Output

38 Implementation of the Synchronizer

To test the validity and performance of this algorithm, the circuit was tested under

varying delay spread, frequency offset, and SNR conditions, as detailed in Section 3.4.

In each set of conditions, the circuit was tested 200 times, with different random seeds,

meaning that in each trial the output from the channel was different.

If there were perfect channel conditions, the auto-correlator output would drop below

the threshold somewhere around sample 144. However, because of the noise, and the effects

of the multi-path fading, the sample value at which the output drops below the threshold

varies, and can be different in each case.

Figure 4.8 shows the behaviour of the time synchronization circuitry under delay spreads

of 50 ns and 150 ns respectively, displaying the sample value at which the auto-correlator

output drops below the threshold. What is evident in these figures is that the variance

is quite high with this method, mainly because the noise and the delay spread can affect

the timing point significantly. However, this method preforms similarly irrespective of the

frequency offset.

4.3 Coarse Time Synchronization 39

(a) Delay Spread of 50 ns

(b) Delay Spread of 150 ns

Figure 4.8: Distribution of Time Synchronization Calculations for SNR=10dB, Using the
Basic Auto-Correlation Method

40 Implementation of the Synchronizer

4.3.2 Auto-Correlation Difference Method

In this method, the 16 sample R1(d) calculation from Figure 4.1 is reused, and a 32 sample

auto-correlator is introduced. The outputs from these two correlators are subtracted, and

the output of this subtractor is fed to a peak detector. The location of this peak is taken

to be the timing offset point.

The hardware requirements for this method include a second auto-correlator, with

a delay value of 32 samples rather than 16, a subtractor, and a peak detector. The

peak detector includes an index counter, which starts when a packet is first detected

and concludes when the peak of the subtracter output is detected. It also includes a

state machine, as well as several other pieces of control circuitry. The peak detector

must be able to ignore spikes that occur in the subtracter output, and produce a time

synchronization estimate only when a genuine peak has occurred. The block diagram for

the Auto-Correlation Difference Algorithm is given in Figure 4.9.

Figure 4.9: Block Diagram for the Auto-Correlation Difference Algorithm

4.3 Coarse Time Synchronization 41

The same tests which were performed on the basic auto-correlator method circuit were

performed on this auto-correlator subtracter circuit. Without noise or channel effects, the

Difference method would produce a peak around sample 160. However, due once again to

channel effects and noise, the sample at which the peak will occur varies.

Figure 4.10 shows the behaviour of the time synchronization circuitry under delay

spreads of 50 ns and 150 ns, displaying the sample value at which the peak in the difference

signal occurs. As evidenced by these figures, the variance of the Auto-Correlation Difference

method is quite comparable with the basic method at lower frequency offsets, however, at a

frequency offset of 200 kHz, the performance is far worse, and the resulting estimates have

a very large variance. The main weakness in this algorithm seems to be that a well-defined

peak is difficult to locate under extreme channel conditions.

42 Implementation of the Synchronizer

(a) Delay Spread of 50 ns

(b) Delay Spread of 150 ns

Figure 4.10: Distribution of Time Synchronization Calculations for SNR=10dB, Using the
Auto-Correlation Difference Method

4.3 Coarse Time Synchronization 43

4.3.3 Auto-Correlation Sum Method

In this method, the calculation of R1(d) given in Figure 4.1 is reused, with the addition of

a delay element, which delays the incoming samples by 32 clock cycles.

As in the Basic Auto-Correlation Estimator, a detector is required to observe the point

at which the auto-correlation value falls below a particular threshold, and this detector is

identical to the one in the Basic Auto-Correlator. The same tests which were performed

on the basic auto-correlator method circuit were performed on this circuit. This method

should produce a drop below the threshold level around sample 144, just as in the first

case.

Figure 4.11 shows the behaviour of the time synchronization circuitry under delay

spreads of 50 ns and 150 ns respectively, displaying the sample value at which the auto-

correlator output drops below the threshold value. This algorithm, like the Basic Auto-

Correlation Algorithm, has a large variance due to the effects of the channel and noise.

The performance is similar to that of the basic method in all cases.

44 Implementation of the Synchronizer

(a) Delay Spread of 50 ns

(b) Delay Spread of 150 ns

Figure 4.11: Distribution of Time Synchronization Calculations for SNR=10dB, Using the
Auto-Correlation Sum Method

4.3 Coarse Time Synchronization 45

4.3.4 Performance of Estimators under Varying Channel SNR

In order to compare the coarse time synchronizers, the variance of their estimates under

various channel conditions is compared. The variance is examined under a set of SNR

values, with a constant frequency offset of 100 kHz, and for delay spreads of 50 ns and

150 ns, respectively. The results can be seen in Figure 4.12. It can be seen that all three

algorithms have large variance, and are very susceptible to channel noise. It is clear that

greater precision will be needed for correct synchronization.

46 Implementation of the Synchronizer

(a) Delay Spread of 50 ns

(b) Delay Spread of 150 ns

Figure 4.12: Distribution of Time Synchronization Calculations for Varying SNR Values,
Frequency Offset of 100 kHz

4.4 Fine Time Synchronization 47

4.4 Fine Time Synchronization

After calculating a coarse timing offset value using the STS, fine time synchronization

can be calculated using the LTS. This involves adding more hardware to the circuit to

implement a cross-correlation calculator. It also involves selecting an appropriate detection

metric, among those discussed in Section 2.4.

4.4.1 Cross-Correlation Calculation

In a cross-correlator, the incoming sequence is simply multiplied by constant values which

are identical to the original synchronization sequence which was submitted over the

channel, as per Equation 2.11. The circuity required for this cross-correlator is composed

of multipliers and adders. The architecture for one of these multiply-accumulate blocks

is given in Figure 4.13. The total circuit would be composed of 64 copies of this circuit.

The c(m) values are loaded from the MATLAB simulation environment, and thus can be

reprogrammed for testing purposes.

Figure 4.13: Multiply-Accumulator Circuit for Cross-Correlator

48 Implementation of the Synchronizer

The inputs to this cross-correlator block are the signal sequence received over the chan-

nel, and the control signal which enables the circuit. The output of this cross-correlator

goes to a peak detector. This peak detector can either search for the maximum cross-

correlation value, or it can find the first index value at which the cross-correlation exceeds

a particular threshold, corresponding to the two detection metrics given by Equations 2.12

and 2.14.

The hardware required for implementing these detectors is fairly straightforward. The

maximum detector searches for the index of the maximum value which occurs within the

expected sample range. The other detector, the “Minimum Threshold Detector”, searches

for the index of the first sequence sample which exceeds a predetermined threshold value.

Note that both of these detectors search for a peak within the first 100 samples after they

are enabled. This is due to the fact that the cross-correlation peak ideally should occur

at sample 96 of the LTS. However, there is a minimum of an 8 sample delay before the

cross-correlation detector is activated, so the timing point would occur at sample 88 if

there was no timing offset present.

To test the behaviour of the cross-correlator and the two detectors, a series of tests

were performed, with varying delay spreads, frequency offsets, and SNR values. The per-

formance of cross-correlator with the two detection methods, at an SNR of 10 dB, with

varying frequency offset values, and with delay spreads of 50 ns and 150 ns, is displayed

in Figures 4.14 and 4.15. The x-axes in these plots show the sample at which the peak

occurs, indicating the timing offset point.

The charts show that the cross-correlator performs extremely well with both detectors.

The only exception is the higher variance which occurs at frequency offsets of 200 kHz.

4.4 Fine Time Synchronization 49

The charts show a spike at the sample value of 80, but this indicates the cumulative sum

of all instances which occur at sample values less than or equal to 80. With both detectors,

the variance is more pronounced with a delay spread of 150 ns than with a delay spread of

50 ns.

50 Implementation of the Synchronizer

(a) Delay Spread of 50 ns

(b) Delay Spread of 150 ns

Figure 4.14: Distribution of Fine Time Synchronization Calculations for SNR=10dB, Using
the Cross-Correlator with the Maximum Detector

4.4 Fine Time Synchronization 51

(a) Delay Spread of 50 ns

(b) Delay Spread of 150 ns

Figure 4.15: Distribution of Fine Time Synchronization Calculations for SNR=10dB, Using
the Cross-Correlator with the Minimum Threshold Detector

52 Implementation of the Synchronizer

4.4.2 Quantized Cross-Correlator

In the quantized version of the cross-correlator the implementation of the multiply-

accumulate circuitry is modified to reduce hardware complexity. Implementing this quan-

tized cross-correlation involved replacing the multipliers in the original cross-correlation

circuit with bit-shifters. It also involved taking the constant values that are used in the

cross-correlator and replacing them with quantized values, all of which are powers of 2.

The quantization algorithm takes the cross-correlation coefficients, c∗(m), and assigns

quantization levels, q∗(m), in their place [HLK03]:

q∗(m) = Qi

[
2ic∗(m)

max{c∗(m)}

]
(4.1)

where the function Q(x) is given by:

Q(x) =

2blog2 xc, x > 0

−2blog2 xc, x < 0

0, x = 0

(4.2)

The cross-correlation value, Λ(d) can then be calculated as follows:

Λ(d) =
M−1∑
m=0

sgn(m)× [r(d + m) << l(m)] (4.3)

where:

l(m) =
log2 |q∗(m)|, q∗(m) 6= 0

0, q∗(m) = 0
(4.4)

4.4 Fine Time Synchronization 53

sgn(m) =

+1, q∗(m) > 0

-1, q∗(m) < 0

0, q∗(m) = 0

(4.5)

The choice of i = 3 in Equation 4.1 corresponds to quantization level of [-8, -4, -2,

-1, 0, 1, 2, 4, 8]. Quantization to these levels ensures a sharp reduction in hardware

complexity, while maintaining a high level of accuracy in the calculation of Λ(d). The

architecture for one of quantized shift-accumulate blocks is given in Figure 4.16. The total

circuit would be composed of 64 copies of this circuit. The l(m) values are loaded from

the MATLAB simulation environment, and thus can be reprogrammed for testing purposes.

Figure 4.16: Diagram of the Multiply-Accumulate Circuit Used in the Quantized Version
of the Cross-Correlator

54 Implementation of the Synchronizer

This quantized cross-correlation hardware was tested using both types of peak detectors,

in each case under varying delay spreads, frequency offsets, and SNR values. Once again,

in the case of perfect time synchronization, the sample value at which the cross-correlation

would be maximized would be sample 88.

The results for the quantized cross-correlator with the Maximum Detector and delay

spreads of 50 ns and 150 ns are given in Figure 4.17, while the results with the Minimum

Threshold Detector with delay spread values of 50 ns and 150 ns are given in Figure 4.18.

Once again, the performance is excellent for both detectors. In all cases, the variance is

higher with a frequency offset of 200 kHz, however, the variance with a delay spread of

50 ns is much better with the quantized cross-correlator and the Maximum Detector than

in the case of the non-quantized cross-correlator.

4.4 Fine Time Synchronization 55

(a) Delay Spread of 50 ns

(b) Delay Spread of 150 ns

Figure 4.17: Distribution of Fine Time Synchronization Calculations for SNR=10dB, Using
the Quantized Cross-Correlator with the Maximum Detector

56 Implementation of the Synchronizer

(a) Delay Spread of 50 ns

(b) Delay Spread of 150 ns

Figure 4.18: Distribution of Fine Time Synchronization Calculations for SNR=10dB, Using
the Quantized Cross-Correlator with the Minimum Threshold Detector

4.4 Fine Time Synchronization 57

4.4.3 Performance of Cross-Correlation Estimators under Vary-

ing Channel SNR

To compare the performance of the quantized and non-quantized cross-correlators, using

the two sets of detectors, a series of tests were performed in which the SNR value was

varied, with constant delay spread and frequency offset parameters. The results for delay

spreads of 50 ns and 150 ns are given in Figure 4.19.

58 Implementation of the Synchronizer

(a) Delay Spread of 50 ns

(b) Delay Spread of 150 ns

Figure 4.19: Distribution of Fine Time Synchronization Calculations for Varying SNR
Values, Frequency Offset of 100 kHz

4.5 Algorithm Analysis 59

These charts indicate that the performance at a delay spread of 50 ns are quite com-

parable, while at a delay spread of 150 ns, the Maximum Detector tends to outperform

the Minimum Threshold Detector, for both the quantized and non-quantized cases. De-

spite the stark differences in implementations, the performance of both the quantized and

non-quantized cross-correlators is remarkably similar.

4.5 Algorithm Analysis

In accordance with the methodology proposed in Section 3.1, the two metrics of interest

are the variance of the timing offset calculations, and the hardware complexity. In Table

4.2, the time synchronization algorithms are compared on the basis of variance.

Algorithm Name Var. at 10 dB Var. at 20 dB
Basic Auto-Correlation method 42.18 29.81

Auto-Correlation Difference method 35.95 26.14
Auto-Correlation Sum method 55.52 37.19

64 sample cross-correlation method,
with maximum detection metric 4.32 4.29

64 sample cross-correlation method,
with minimum threshold detection metric 4.28 4.24

Quantized 64 sample cross-correlation method,
with maximum detection metric 4.31 4.33

Quantized 64 sample cross-correlation method,
with minimum threshold detection metric 4.32 4.26

Table 4.2: Summary of Time Synchronization Algorithms, with Delay Spread of 50 ns and
Frequency Offset of 100 kHz

The hardware complexity metric for each algorithm is based on the resource require-

60 Implementation of the Synchronizer

ments for that algorithm. Once again, these are the values output by the synthesis program

after the Simulink circuit had been compiled into HDL files.

The hardware resources used by an implementation include the number of ALUTs, the

number of registers, and the number of DSP block elements. A summary of the results

for each type of algorithm can be seen in Table 4.3. Keep in mind that all of the options

listed also include the frequency offset estimation and packet detection circuitry. Also, in

the case of the fine time synchronization circuits, the Basic Auto-Correlation circuitry is

included for coarse time synchronization.

Algorithm Name ALUTs 1 Registers 2 DSP 3

Basic Auto-Correlation method 2084 2083 24
Auto-Correlation Difference method 3656 3656 96

Auto-Correlation Sum method 3638 3638 96
64 sample cross-correlation method,

with maximum detection metric 9216 4362 34
64 sample cross-correlation method,

with minimum threshold detection metric 9230 4363 34
Quantized 64 sample cross-correlation method,

with maximum detection metric 4692 4428 34
Quantized 64 sample cross-correlation method,

with minimum threshold detection metric 4706 4429 34

Table 4.3: Summary of Hardware Complexity of Synchronization Algorithms

From Table 4.2, it can be seen that the coarse time synchronizer which offers the best

performance in terms of variance is the Auto-Correlation Difference estimator. However

the estimator which requires the lowest incremental hardware cost is the Basic Auto-

1Total ALUTs on Stratix II EP2S180F1020C3: 143520
2Total Registers on Stratix II EP2S180F1020C3: 143520
3Total DSP Blocks on Stratix II EP2S180F1020C3: 96

4.6 Final Implementation 61

Correlation method from [LL04]. On the basis of the lower hardware costs, and also on

the basis of the lower variance in channel conditions with high frequency offsets (compare

Figures 4.8 and 4.10), the Basic Auto-Correlator seems to be the better choice for coarse

time synchronization.

It can also be seen that the fine time synchronizers all have very similar performance

in terms of variance, but that the hardware complexity is much lower for the quantized

versions of the estimators. The maximum detector has very comparable performance in

most of the cases, and seems to perform better at extreme frequency offsets. On the basis

of these points, the quantized 64 sample cross-correlator with a maximum detector seems

to be the best option for fine time synchronization.

4.6 Final Implementation

Given that the final implementation of the synchronizer must include both the packet

detection and frequency offset estimator, the decisions the designer must make are in

regards to time synchronization. On the basis of performance capability and low hardware

complexity, the Basic Auto-Correlator is preferred for coarse time synchronization. The

next decision is whether or not to include a fine time synchronization. On the basis

of the low incremental cost and the vast performance increase, the quantized fine time

estimator is preferred. The additional size required by the quantized estimator is not a

big issue considering the large size of the FPGA being used. The detector can be either

the maximum detector or the minimum threshold detector, but on the basis of the better

performance at high frequencies, the maximum detector is preferred.

The block diagram for the final synchronizer is shown in Figure 4.20.

62 Implementation of the Synchronizer

Figure 4.20: Final Synchronizer Implementation

4.7 Total Hardware Requirements

The hardware requirements for the combination of the packet detector, the frequency

offset estimation circuitry, the Basic Auto-Correlator, and the quantized 64 sample cross-

correlator with the maximum detector are given in Table 4.4:

ALUTs Registers DSP elements
4692 4428 34

Table 4.4: Hardware Complexity for the Final Synchronizer Design

Chapter 5

Conclusions and Future Work

With the widespread adoption of IEEE 802.11 as a standard for Wireless LANs, and

the higher data rates afforded by OFDM based implementations, the importance of good

receiver algorithms for this class of systems is paramount. This work attempted to examine

one class of algorithms, synchronization algorithms, for the particular case of the IEEE

802.11a WLAN standard. The primary goal was the implementation of reliable, efficient,

and reconfigurable hardware.

This work proposed a complete examination of the decision-making, design, and imple-

mentation engineering phases for an OFDM synchronizer. It contributed a sound method-

ology for choosing between competing time synchronization algorithms, based on statistical

variance and incremental hardware complexity.

This work examined three different auto-correlation algorithms for coarse time synchro-

nization, and four different cross-correlation algorithms for fine time synchronization. It

was determined that coarse time synchronization alone would not be enough because of

the large variance produced during algorithm simulations. Fine time synchronization, on

63

64 Conclusions and Future Work

the other hand, offered much lower variance.

After a careful analysis of competing algorithms, it was decided that the best choice for

time synchronization was to use the Basic Auto-Correlation estimator. It was also decided

that the quantized 64 sample cross correlator, in conjunction with the maximum detector,

would be used for fine time synchronization.

This work also introduced several new features not yet seen in the literature, such as

packet detection averaging, an implementation of a quantized cross-correlation circuit, and

compensation for angles outside of the first quadrant during frequency offset calculation.

The main difference separating this work from previous works is the thorough documenta-

tion of a synchronizer implementation. The final synchronizer design was shown, and the

total hardware complexity of the circuit was calculated.

An obvious area for future research is in the arena of MIMO-OFDM systems. The

research done in this work could be built upon and extended to the case of multiple

antennae systems. In particular, the Simulink work done during the course of this research

can be configured with very little incremental effort. With the advent of IEEE 802.11n as

a standard for MIMO-OFDM, this research would be very useful in coming years.

A few areas not considered in great detail in this work were the optimal fixed point

precision for the synchronizer circuit, and how the circuit would be affected by the presence

of an AGC component. Future works should look into these aspects for a more complete

consideration of the synchronizer implementation problem. Another possibility is for ASIC

researchers to use the research done in this work as the basis for an investigation into the

optimal implementation possibilities for OFDM receiver synchronization on ASIC hardware

rather than FPGAs.

65

In summary, the accomplishments of this dissertation include a novel approach to al-

gorithm analysis, the introduction of new features not yet seen in the literature, and the

complete documentation of a synchronizer design. In the end, the synchronizer design was

a success, as it consumed an relatively low quantity of hardware resources, and produced

excellent results for packet detection, frequency offset estimation, and time synchroniza-

tion.

Appendix A

Structure of the IEEE 802.11a

Preamble

A short training symbol has the following subcarrier assignment:

S−26,26 =
√

(13/6)×



0, 0, 1+j, 0, 0, 0, -1-j, 0, 0,
0, 1+j, 0, 0, 0, -1-j, 0, 0, 0,

-1-j, 0, 0, 0, 1+j, 0, 0, 0, 0,
0, 0, 0, -1-j, 0, 0, 0, -1-j, 0,
0, 0, 1+j, 0, 0, 0, 1+j, 0, 0,
0, 1+j, 0, 0, 0, 1+j, 0, 0


(A.1)

This is brought into the time domain by performing an IFFT, yielding rSHORT(t), the

transmitted STS:

rSHORT(t) = wTSHORT
(t)

NST/2∑
k=−NST /2

Ske
kj2π∆ft (A.2)

Where TSHORT = 8 µs is the total length of the STS, NST = 52 is the number of

66

67

subcarriers, and ∆F = 312.5 kHz, which is the subcarrier frequency spacing [IEE99b]. The

w(t) term is a time-windowing function, used to smooth the transition between OFDM

symbols [IEE99b]:

wT(nTs) =

1 1 ≤ n ≤ 79

0.5 n = 0, 80

0 otherwise

(A.3)

Where Ts is the sample period, which is 50 ns in 802.11a.

A long training symbol has the following subcarrier assignment:

L−26,26 =



1, 1, -1, -1, 1, 1, -1, 1, -1,
1, 1, 1, 1, 1, 1, -1, -1, 1,
1, -1, 1, -1, 1, 1, 1, 1, 0,
1, -1, -1, 1, 1, -1, 1, -1, 1,
-1, -1, -1, -1, -1, 1, 1, -1, -1,
1, -1, 1, -1, 1, 1, 1, 1


(A.4)

Performing the IFFT yields rLONG(t), the transmitted LTS:

rLONG(t) = wTLONG
(t)

NST/2∑
k=−NST/2

Ske
kj2π∆f(t−TG12) (A.5)

Where TLONG = 8 µs is the total length of the LTS, and TG12 = 1.6 µs is the length of

the guard interval inserted before the first long training symbol. Precise preamble sample

values are specified in Tables G.4 and G.6 of the IEEE 802.11a standard [IEE99b].

Bibliography

[Ber01] A. Berno. Time and Frequency Synchornization Algorithms for Hiperlan/2.

Master’s thesis, Universita Degli Studi di Padova, 2001.

[CVA+04a] M.J. Canet, F. Vicedo, V. Almenar, J. Valls, and E.R. de Lima. A Common

FPGA Based Synchronizer Architecture For Hiperlan/2 and IEEE 802.11a

WLAN Systems. In PIMRC 2004: 15th IEEE International Symposium on

Personal, Indoor and Mobile Radio Communications., pages 531–535, Septem-

ber 2004.

[CVA+04b] M.J. Canet, F. Vicedo, V. Almenar, J. Valls, and E.R. de Lima. Hardware

Design of a FPGA-Based Synchronizer for Hiperlan/2. In FPL 2004 : Field-

Programmable Logic and Applications, 2004.

[FE03] A. Fort and W. Eberle. Synchronization and AGC Proposal for IEEE 802.11a

Burst OFDM Systems. In GLOBECOM, pages 1335–1338, 2003.

[Fla03] Flarion Technologies Inc. OFDM for Mobile Data Communications, 2003.

[FWD+03] A. Fort, J. Weijers, V. Derudder, W. Eberle, and A. Bourdoux. A Performance

68

69

and Complexity Comparison of Auto-Correlation and Cross-Correlation for

OFDM Burst Synchronization. In ICASSP ’03, pages II 341–344, April 2003.

[HG02] D.Y. Huang and D.Y.L. Guek. Performance Analysis of OFDM Burst Syn-

chronization Algorithms. In ICCS 2002: The 8th International Conference on

Communication Systems, 2002., pages 245–249, November 2002.

[HLK03] T. Ha, S. Lee, and J. Kim. Low-complexity Correlation System for Timing

Synchronization in IEEE 802.11a Wireless LANs. In RAWCON ’03: Radio

and Wireless Conference, 2003., pages 51–54, August 2003.

[HT01] J. Heiskala and J. Terry. OFDM Wireless LANs: A Theoretical and Practical

Guide. Sams, 2001.

[IEE99a] IEEE Standard 802.11-1999. Wireless LAN Medium Access Control (MAC)

and Physical Layer (PHY) Specifications. IEEE, 1999.

[IEE99b] IEEE Standard 802.11a-1999. Wireless LAN Medium Access Control (MAC)

and Physical Layer (PHY) Specifications: High-Speed Physical Layer in the

5GHz Band. IEEE, September 1999.

[IEE99c] IEEE Standard 802.11b-1999. Wireless LAN Medium Access Control (MAC)

and Physical Layer (PHY) Specifications: High-Speed Physical Layer in the

2.4GHz Band. IEEE, September 1999.

[KFST04] K.Wang, M. Faulkner, J. Singh, and I. Tolochko. Timing Synchronization for

802.11a WLANs under Multipath Channels. In Proc. ATNAC 2003, 2004.

70 Structure of the IEEE 802.11a Preamble

[KP07] T. Kim and S.C. Park. A New Symbol Timing and Frequency Synchronization

Design for OFDM-based WLAN Systems. In ICACT ’07, pages 1669–1672,

February 2007.

[KSF04] K.Wang, J. Singh, and M. Faulkner. FPGA Implementation of an OFDM-

WLAN Synchronizer. In DELTA 2004: Second IEEE International Workshop

on Electronic Design, Test and Applications, 2004., pages 89–94, January 2004.

[LL04] J. Liu and J. Li. Parameter Estimation and Error Reduction for OFDM-Based

WLANs. IEEE Transactions on Mobile Computing, 3(2), April 2004.

[MKB06] S.K. Manusani, R.S. Kshetrimayum, and R. Bhattacharjee. Robust Time

and Frequency Synchronization in OFDM based 802.11a WLAN systems. In

Annual India Conference, 2006, pages 1–4, September 2006.

[MS04] F. Manavi and Y. Shayan. Implementation of OFDM modem for the Physical

Layer of the IEEE 802.11a Standard Based on Xilinx Virtex-II FPGA. In IEEE

59th Vehicular Technology Conference, 2004, pages 1768–1772, May 2004.

[NG03] S. Nandula and K. Giridhar. Robust Timing Synchronization for OFDM-based

Wireless LAN System. In TENCON, pages 1558–1561, 2003.

[SC97] T. Schmidl and D. Cox. Robust Frequency and Timing Synchronization for

OFDM. IEEE Transactions on Communications, 45(12), December 1997.

[Uys06] M. Uysal. ECE 414 Course Notes, 2006.

[YCK06] J. Yang, K. Cheun, and J. Kim. Symbol Timing Synchronization Algorithm

71

for Wireless LAN Systems in Multipath Channels. In APCC ’06. Asia-Pacific

Conference on Communications, 2006., pages 1–5, August 2006.

[YNW02] K. Yip, T. Ng, and Y. Wu. Impacts of Multipath Fading on the Timing

Synchronization of IEEE 802.11a Wireless LANs. Proc. ICC 2002, pages 517–

521, 2002.

[ZS04] L. Zhou and M. Saito. A New Symbol Timing Synchronization for OFDM

based WLANs Under Multipath Fading Channels. In PIMRC 2004: 15th

IEEE International Symposium on Personal, Indoor and Mobile Radio Com-

munications, 2004., pages 1210–1214, September 2004.

