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Abstract

The SISO and MIMO adaptive problems are approached via the theory of stochastic
optimal control. using results in the literature and previously-unexploited proper-
tites of canonical singular-pencil dynamical models. For both the SISO and MIMO
cases, it is shown how to choose the input to minimize the sample mean-square

error between the filtered output and the filtered desired output.

In the SISO case, the proposed method. which is an indirect scheme, leads to
control laws which not only use the estimates of the parameters and the states
but also the variances of the estimation errors. In other words. the SISO cautious

control problem is solved for the general delay-white noise case.

In the MIMO case, it is proved that the cautious control problem can be solved
only if the interactor matrix of the system is known. However, if the interactor
matrix is unknown, there will be no exact solution for the optimal problem. Hence.
in this research the certainty equivalence principle is employed based on the result
obtained by Das [17] and a priori knowledge of the degrees of the diagonal entries of
the interactor matrix. It is shown that the conventional approaches discussed in the
literature cannot be applied to a stochastic case. However, the indirect approach

proposed in this research is capable of dealing with stochastic cases.

Simulation results show the performance of the proposed methods both in the
SISO case and the MIMO case.

iv
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Chapter 1

Introduction

This thesis is concerned with indirect stochastic adaptive prediction and control.
Although there has been a considerable progress in stochastic adaptive prediction
and control in the past twenty years. the challenge of extending existing results to

general cases remains.

In this research, a number of open problems in single-input single-output (SISO)
stochastic adaptive prediction and cautious control as well as in multi-input multi-

output (MIMO) stochastic adaptive control have been tackled. The problems which

have been solved are:

e Adaptive prediction that is optimal in a minimum variance sense at each step
for SISO linear time-invariant discrete-time systems having general delay and

white noise perturbation.
e Indirect SISO cautious control for the general delay-white noise case.

e MIMO stochastic adaptive control with unknown interactor matrix using an

indirect approach.



CHAPTER 1. INTRODUCTION 2

o A new derivation of a previously-known important result on the optimality of
the joint parameter and state estimation problem for a particular canonical

form is given in Appendix A.

Stochastic adaptive control has become an important area of activity in control
theory. This activity has developed especially during the past twenty years or so
because many mathematical models of physical phenomena are stochastic systems
which contain unknown parameters and for which control is required. With the ma-
turity of this area of research there are a number of books and general surveys, for
example, Wittenmark [53], Goodwin and Sin [28], Kumar [32], Caines [12]. Astrém
and Wittenmark [10], Narendra. Ortega. and Dorato [41]. and Pasik-Duncan [43].
The chief advantage of the stochastic formulation of adaptive problems is its abil-
ity to exploit the averaging properties of the disturbances [44]. This allows it to
provide better performance in terms of disturbance rejection. The mathematical
foundation of this field was laid by Goodwin et al. [27], and Solo [49]. and the

various ramifications were explored in Goodwin and Sin [28].

Adaptive prediction: In Chapter 2 a deficiency in SISO stochastic adaptive
prediction related to transient performance is discussed. Using an indirect adap-
tive scheme, it is shown that in the general delay-white noise case how the optimal
prediction can be obtained. First using state variables, the ARX model is trans-
formed into a special canonical model proposed by Salut [45]. The identification is
done by augmenting the state with the unknown parameters of the process. This
usually leads to a nonlinear filtering problem. By choosing the model of special
structure proposed by Salut [45] the problem can, however, be reduced to a linear
problem, discussed in detail by Aplevich [3]. Taking advantage of the linearity
of this canonical model, the optimal joint parameter and state estimation can be

provided by a Kalman filter, [45, 46, 16, 4]. Although the use of the Kalman filter
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to identify system parameters is well known [42, 34], the joint estimation of the

system parameters and states in the filter is not common in the literature.

For a unit delay system, the Kalman filter applied to the model proposed by
Salut can be used as an adaptive optimal predictor, since the Kalman filter corre-

sponds exactly to the optimal one-step-ahead predictor for the data observed.

For delays d greater than unity, the proposed approach leads to the necessity
of using the theory of Gaussian random functions. The calculations outlined in
the proposed approach are based on one of the most useful properties of Gaussian
distribution which stems from the fact that the higher moments of the multidimen-
sional Gaussian distribution depend only on the elements of the mean vector and
the covariance matrix, [36]. Finally, it is described how the system parameter-state
estimates and estimates of their uncertainty, provided by the Kalman filter. can be

used to construct an optimal d-step-ahead predictor.

The conventional adaptive predictors discussed in Astrém and Wittenmark [9].
Wittenmark [52], Goodwin and Sin [28], and Ren and Kumar [44], approximately
solve the optimal problem using the certainty equivalence principle. This approach
makes sense when the parameter estimates are close to the actual plant parameters.
However, in general there will be circumstances where the transient performance
Is unnecessarily poor. As a result, the conventional predictors are asymptotically
optimal, proved by Sin, Goodwin, and Bitmead [47|, and Ren and Kumar [44],
whereas the proposed predictor is optimal in a minimum variance sense at each

step resulting in good transient performance as well as asymptotic performance.

Indirect SISO cautious control: In a survey of stochastic adaptive control
methods by Wittenmark in 1975, [53] the SISO cautious control problem has been
discussed in Astrém and Wittenmark (8], Wieslander and Wittenmark [51], and
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Nahorski and Vidal [40]. The method proposed in this research and the method
used by Astrém and Wittenmark [8] are the same except that the proposed method
can handle cases with uncertainty in initial conditions. Wieslander and Wittenmark
[51] used a very complicated way to solve the adaptive problem for a unity delay
system. Nahorski and Vidal [40] handle the case of general delay by using a special

model.

In Chapter 3, an open problem in SISO adaptive control is solved. The adaptive
problem is approached via the theory of stochastic optimal control following the
philosophy of Astrom [5. 6], and Wieslander and Wittenmark [51]. The system
model and identification process are the same as employed in Chapter 2. The
purpose of the control is to minimize the variance of the output around a desired
value one step ahead. It is shown how the general one-step ahead optimization
problem can be solved using stochastic control theory. Minimization over only
one step leads to the one-step ahead or cautious controller. This controller takes
the parameter uncertainties into account, in contrast to the certainty equivalence
controller. Using an indirect scheme and the same approach as used in Chapter 2, it
is proved that the optimal solution can be expressed analytically in a closed form. It
is also shown if the conditional mean of the noise seen by the predictor obtained in
Chapter 2 is zero, the optimal solution does not depend on the model used and the
approach applied, direct or indirect. Finally, using the same property of Gaussian
distribution employed in Chapter 2, the indirect method proposed in this research
leads to control laws which not only use the estimates of the parameters and states
but also the variances of the estimation errors. The simulation results show the

performance of the proposed algorithm.

MIMO stochastic adaptive control: In Chapter 4 the MIMO stochastic

adaptive control is discussed. There have been a number of important contributions
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to the multivariable adaptive control literature (e.g. Borrison. 1979 [11]; Koivo.
1980 [31]; Goodwin et al., 1981 [27]; Morse, 1981 [39]; Elliot and Wolovich, 1982 [21];
Johansson, 1982 [30]; Dugard, Goodwin and deSouza. 1983 [19];: Goodwin and
Dugard, 1983 [26]; Dugard, Goodwin and Xianya, 1984 [20]; Singh and Narendra.
1984 [48]; Elliot, Wolovich and Das, 1984 [50]; Goodwin and Sin. 1984 [28]; Das.
1986 [17]; Chen and Guo, 1987 [14]; Zhang and Lang, 1989 (55]; Guo and Chen,
1991 [29]: Mo and Bayoumi. 1993 [37]). Most of these have used direct strategies.
In Chapter 4,the interest in direct strategies for MIMO systems is explained. It is
also explained why an indirect scheme is the only way to solve the optimal problem

considered.

The concept of an interactor matrix which is a generalized concept of a relative
degree of a scalar system is reviewed. This matrix which describes the delay struc-
ture of MIMO system has an important role in multivariable conirol theory. [21. 28].
A procedure for constructing the interactor matrix was given by Wolovich and Falb
(1976) [54]. Furuta and Kamiyama (1977) [25] gave a method for computing the
Wolovich-Falb interactor from a state-space representation of the plant. Chang and
Wang (1990) {13] have presented an algorithm for computing the interactor matrix

form a right matrix fraction description (RMFD) of the plant.

As Dugard and Goodwin mentioned in one of their papers [20], if the interactor
matrix is assumed known, then it is possible to develop a stochastic adaptive control
algorithm which is globally convergent. However, the requirement of the knowledge
of the interactor matrix imposes certain difficulties, in practice. In general, this ma-
trix contains noninteger valued real variables, a knowledge of which will imply that
the complete system transfer function is known. There is thus strong motivation to
investigate ways in which the requirement of knowing the system interactor matrix

might be removed. One idea, first proposed in Johansson (1982) [30] and further
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explored in Dugard, Goodwin, and deSouza (1983) [19]. is to estimate the nonin-
teger valued variables in the interactor along with the other system parameters. It
was shown that one can still design a model-matching adaptive controller, if instead
of knowing the complete interactor matrix, one presumes knowledge of the degrees
of its diagonal entries as well as upper bounds on the degrees of its nondiagonal
entries. Das (1986) [17] showed that the priori knowledge of the degrees of the di-
agonal entries of the interactor matrix alone is sufficient for proving global stability.
Dion, Dugard, and Carrillo (1988) [18] verified the result obtained by Das [17] using
a different approach. An alternative idea. due to Singh and Narendra (1984) (48].
is to apply a suitably chosen precompensator to the system which transforms the
interactor to a diagonal matrix having only integer valued parameters. This inge-
nious idea works for a large class of multivariable systems. though certain cases are

excluded.

The new indirect approach proposed in this research is based on the result
obtained by Das [17]. Here the proposed approach involves first estimating the
parameters and states in a standard model such as the canonical ARX model or the
canonical singular pencil (SP) model and then evaluating the control law by on-line
calculations. These canonical models have been discussed in detail by Aplevich [4,
3]. Then it is shown how the entries of the interactor matrix are related to the
entries of the canonical ARX model using two different methods. The first method
uses the algorithm described in Furuta and Kamiyama (1977) [25] which involves
nontrivial computations including tests for linear dependence. The second method
is the method proposed in this research based on the result obtained by Das [17] and
a priori knowledge of the degrees of the diagonal entries of the interactor matrix.
The extension of the SISO cautious control to the MIMO case is examined. As

for the SISO case, it is shown how the general optimal solution of the one-step-



CHAPTER i. INTRODUCTION 7

step ahead criterion, defined for a MIMO system with unknown interactor matrix,
can be obtained. Using this solution, it is shown that the MIMO cautious control
can be designed only if the interactor matrix is known. However, if the interactor
matrix is unknown, an exact solution for the MIMO one-step-ahead optimization
problem cannot be obtained. Hence, the most popular approximation method.
i.e. the certainty equivalence principle, is employed. Then it will be shown that
the conventional approaches, [30, 19, 17|, cannot be applied in the stochastic case.
However, the proposed approach is capable of dealing with stochastic cases. At
the end of Chapter 4, simulation results show the performance of the proposed

algorithm.

A summary of the results obtained in this research and suggestions for further

studies are given in Chapter 5.

Appendix A is concerned with estimating the state variables and parameters
of discrete-time, linear stochastic SISO and MIMO time-varying systems. This
topic has been discussed in detail by Salut [45]. Nevertheless. using a different
method from that given by Salut, it is shown how the simultaneous estimation of
state variables and system parameters with known noise statistics can be solved
as an optimal linear filtering problem. In all the chapters to deal with cases with
uncertainty in initial conditions, it is necessary that not only the parameters of
the system but also the states of the system are estimated in an optimal sense.

Therefore, the appendix has been added to this thesis.



Chapter 2

Adaptive optimal prediction

2.1 Introduction

This chapter is concerned with indirect stochastic adaptive prediction. The goal
1s to obtain an adaptive predictor that is optimal in a minimum variance sense at
each step for SISO linear time-invariant discrete-time systems having general delay

and white noise perturbation.

The conventional adaptive predictors discussed in Astrém and Wittenmark (9],
Wittenmark (52|, Goodwin and Sin [28], and Ren and Kumar [44], approximately
solve the adaptive optimal prediction problem using the certainty equivalence prin-
ciple. This approach makes sense when the parameter estimates are close to the
actual plant parameters. However, in general there will be circumstances where
the transient performance is unnecessarily poor. As a result, the conventional pre-
dictors are asymptotically optimal, proved by Sin, Goodwin, and Bitmead [47],
and Ren and Kumar [44], whereas the proposed predictor is optimal in a mini-

mum variance sense at each step resulting in good transient performance as well as

8
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asymptotic performance.

This chapter is organized as follows. In Section 2.2 the system model is de-
scribed. Using state variables, it is shown how an ARX model can be transformed
into a special model proposed by Salut [45]. In Section 2.3 the identification is done
by applying a Kalman filter to the model proposed by Salut to provide the optimal
Jjoint parameter and state estimation. Section 2.4 contains the estimation criterion
of interest. In Section 2.5 it is shown how the system model can be transformed

into various predictor forms.

Section 2.6 contains the main results. In Section 2.6.1 the conventional approach
that is an approximation method based on the certainty equivalence principle is dis-
cussed. Section 2.6.2 contains the proposed approach based on one the most useful
properties of Gaussian distribution. This property stems from the fact that the
higher moments of the multi-dimensional Gaussian distribution depend only on the
elements of the mean vector and the covariance matrix. Finally, it is described how
the system parameter-state estimates and estimates of their uncertainty, provided
by the Kalman filter, can be used to construct an optimal d-step-ahead predictor.

A summary is given in Section 2.7.

2.2 System description

A time-invariant single-input, single-output system is assumed to be represented
by the following ARX model:

A(q Nyk = B(g™ )uk + ek (2.1)

where {y:}, {ux}, and {e;} denote the output, input and disturbance sequences

respectively, and A(g~'), and B(q™!) are polynomial functions of ¢g~! which have
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the following forms:

Al@Y) = 14+agt+---+a.qg" (2.2a)

B(gY) = ¢ %bo+big + -+ baag ™) (n>d) (2.2b)

where ¢! denotes the backward shift operator. The time delay is d > 1 and is
chosen so that the leading coefficient of B(q~!), bo, in the model (2.1) is nonzero.
The independent sequence {e} is a gaussian zero mean white noise process with
given covariance

E{e.e} = Ridry (2.3)
where d;._; is the Kronecker delta.

Using state variables, the model (2.1) can be written in the following canonical

form:
z(L'.:..]:l) —QnYr + bn—duk
zn7? 20 — anoyyk + bacgorte
d—
:z:;cﬂl) = :vﬁ_.d) — aqyk + bour (2.4a)
d- d—
$£+12) "’;c Y~ ag iy
0 1
L zf..+)1 | i zi '~ ak ]
e = zo) +ex (2.4b)
or putting
g =™ L gldTD g gONT (2.5)

Then the model (2.4) can be written in the following compact form:

T, = FE.z, - Awy+ By, (2.6a)

Y = Eozk + €r. (2.6b)
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where
[0 0| [ 4, | [ by ]
. i
0 a b
E. = A=] ¢ |.B=| "
0 ad-1 0
i 1 0‘ L a; ] | 0 ]
Eo = [0 .. .0 1] (2.7)

Note that the model (2.6) is not a standard state-space model: however. a stan-

dard state-space model can easily be obtained by substituting (2.6b) into (2.6a) as

follows:
Zpyr = Az + Buy +wy (2.8a)
yk = ézk + ek (2.8b)
where
A=E.-A.E,, B=B.. C=E,. w, = —A.e; (2.8c¢)
and
T
. . Sk
p| M| Lo |9 s (2.8d)
€L €t SE Rk

The model (2.8) represents the ARX model (2.1) in observer state-space form. In
this model, the system matrix A , Qk, and Sy all depend on the system parameters

in A(¢™!), and B depends on the parameters in B(q~!).

In the next section, it will become clear that why model (2.6) is used to deter-
mine the optimal joint parameter and state of the system, rather than using the

standard state-space model (2.8).
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2.3 Parameter and state estimation

In this section, the approach proposed by Salut in 1976. [45], to determine the
optimal joint parameter and state of the system is described. This section can also

be considered as a preliminary section for the next chapter.

For parameter estimation and state estimation, the measurements {y.} and

{ur} up to and including time & are assumed to be known. Furthermore. the

E.
matrices F. and Fy are known. such that the matrix F = is zero except

Eo
for a positive unit element in each column. Thus in eqn. (2.6), the entries in the

unknown state vector. z;, and the unknown system parameters in A. and B. are
multiplied by known values. This crucial fact allows us to solve the simultaneous
state and parameter estimation problem as a linear filtering problem. On the
other hand. using the standard state-space model (2.8) with unknown matrix A =
E.— A_Ey, the estimation problem leads to a nonlinear filtering problem due to the
occurrence of products between parameters and states. Furthermore, the optimality
of the Kalman filter depends on the a priori knowledge of the noise statistics. For
the model (2.8), this knowledge is not available when the system parameters are

unknown, because Q) and Si depend on the system parameters.

Now it is proceeded to describe the approach proposed by Salut. If 6 consisting

of the unknown parameters of the system (2.6) is defined as follows:
9=1ay,...,an,bo,...,bn_d]” (2.9)
then the model (2.6) can be rearranged in the following form:

Tryr = Eozi + Gu(yk,ur)l (2.10a)
Yy = Eozik + ek (2.10b)



CHAPTER 2. ADAPTIVE OPTIMAL PREDICTION 13

where the matrix G.(y, ui) is constructed to account for the order of the parameters
in 8. Since the system is time invariant, 8, ., = 6, = §. By appending the parameter

vectors 0, to the state vector, the following model is obtained :

. E. G.(yr, ur
Th+1 _ (Yx, ur) Tk (2.11a)
Okt 0 I O

Tk
Ye = [ Ey 0 ] + €k . (2.11b)
O
This model can be written in compact form as
Sty1 = FkSk (2.123)
Yy = Hsp+e (2.12b)

where si is an 7 = [n + (2n — d + 1)]-dimensional state vector [z7 8F |7 . Since the
sequence {e.} is a gaussian zero mean white noise process with given covariance

Ry, er has the following three properties which will be frequently used later:

Noise properties

E{e| Fraa} = 0 a.s. (2.13a)
E{e}|Fi.i} = R.>0 as. (2.13b)
: 1 ¥
*}msupﬁgei < o a.s. (2.13c)

where F; denotes the sigma algebra generated by y, ...,y and ug, ..., u;.

Now a Kalman filter for the augmented model (2.12) can be immediately ob-
tained to give the optimal one-step-ahead estimate of the composite state vector.
Let Sgi1x denote the conditional mean of s;; given observations of {yx} and {ux}

up to and including time k, that is,

Skt = E{sesr| Fi} - (2.14)
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In order to apply a Kalman filter to estimate the composite state s, in (2.12). it

is assumed that s¢ is a gaussian random variable of known mean 3, and known

covariance X, i.e.,

30 = E{so| F-1} =301 (2.15)
Zo = E{(so — S01-1)(s0 = S0-1)T| F_1} = Py_; 2 0. (2.16)

Further. it shall be assumed that s; is independent of e, for any k.
The optimal predictor for the composite state has the following form. (see proof

in Appendix A:

Serre = Fidgpoy + Kilye — Hépey): Soj-1 = 30 (2.17a)
K. = FPuy1HT(HPypHT + Ri)™! (2.17b)
Popip = FiPuypo1 FE — Ke(HPup HT + ROKT © Py = Zo . (2.17¢)
Because of the dependence of F}, on the actual measurements. u; and y,,, the Kalman

gain K, and the conditional error covariance Pj.;. are not precomputable off-line.

The corresponding gain and state covariance matrix can be partitioned as follows:

K. P.., PL
‘ } v Prpr = [ £ (2.18)

Ki =

Ks, Poz, Pes,

Using (2.18), (2.17b) can be rewritten as follows:

E.Pe. EJ + G.(yr,ur) Poc, B
Py ET

K.,
Ko,
Due to the special structure of (2.12), it can be seen that only K., depends on

(BoPez, ET + Ri)™H . (2.19)

u; and yg, and the other gain, Kp,, is independent of u; and yx. To stress this,
the notation K, (yi,ur) will be used instead of K, ,. Thus K, can be written as

follows:

K., = Ko, (yx, ux) = E.Poz, ET(EoPyz, ET + Ri)™" + G.(yk, ue) Ko, . (2.20)
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Using this new notation and (2.19) the optimal predictor (2.17) can be written as

follows:
Thy1ik
Ors1jk

Now let 3g. be the estimate of s based on all measurements up to and including

Kz, (Y. ur)
K,

} (ye — EO:i’Hk—],) .

(2.21)

_ [ E-iklk—l + G.(ykwuk)éklk-l

Orlie—1

yr. The optimal filter for this estimate has the following form:

'§ka = éklk—l + Pklk_lHT(HPklk..lHT + Rk)-l(yk - H‘;'k[k—l) (2.223)

§k+l|k = Fk'éklk (2.22b)
Py = Pupor — Pupt HT(HPyo HT + Ri) ™ HPyps, (2.22c¢)
Poop = FPuFT (2.22d)

The vector form of (2.22a) is

:l::uk _ i:'klk—l N P.. ET
Orik Brir—1

(BoPrz, Eg + Ri) ™ (yk — Bofret)  (2:23)
Py, ET
The equation yielding Si4ijx from Si, known as the time-update equation. is as

follows:
Sty = Frdpp . (2.24)
or
Bere = Buftge + Gu(Ye, ) Oege (2.25a)
e = Orn- (2.25b)

The equations (2.25b) are satisfied since the system is time-invariant. In order
to simplify some of the equations which will be obtained in the next sections the

following equation from (2.21) will frequently be used:

brirpe = Orpe = Oeper + Ko, (v — BoZrpe—t) - (2.26)
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2.4 Minimum mean square error prediction

Prediction is the forecasting side of information processing. The aim is to obtain
at time k information about y,, , for some d > 1, i.e., to obtain information about
what y, will be like subsequent to the time at which the measurement is available.
In obtaining the information, measurements up to and including time k& can be
used. The criterion of interest is the minimum mean square error prediction based

on the minimization of the cost function:

Jerde = E{(Yerd — Jrrap)’| Fe} (2.27)

where §iiae = E{yr, 4| Fi} is the optimal d-step-ahead prediction of yi at time k

In a minimum variance sense. Hence the objective is to produce E{y, 4| Fi}-

In the following sections it will be shown how this optimal problem can be solved

without using any approximation methods.

2.5 Predictor forms

As seen in Section 2.2, the input-output behavior of a linear dynamical system can
be described by an ARX model. The following lemma shows how an ARX model

can be expressed in an alternative predictor form.

Lemma 2.1 The output of the system (2.1), having an ARX model, at time k +d

can be ezpressed in the following predictor form:

d—1
Yira = Eo(E. — A-EO)d_lzkH + Z fjek+d—j (2.28)
—
where
k . k -
Ty = B¥'zg = Y E¥ Ay, + Y E¥IB.u; (2.29)
=0 =0
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Eo(E. = AcEo)*™ = [0....,0. for- . fu_y] (2.30)
n—d

for k>0 and d > 1.
Further, the coefficients f,,.... f,_, can be computed as follows:
1 1=
fi= . (2.31)
- ;;})fja,-_j cie=1....d-1

fori=0,....d—1 .

Proof: From (2.6) and using a sequential method. it will be shown how the predicted

output at k + d. y; 4, is obtained.

A sequence of inputs ug, ug, %1, - - .. U, is given. as well as a sequence of outputs

Yk- Yo. U1, - - - - Yk, and the initial conditions z4. Then

)y = E.zq— A.yo+ B.uo
2 = B.z;— Ay + B.uy = E?zo — (E.A.yo + A.y1) + (E.B.ug + B.u,)

3 = E.Iz - A.y2 + B.‘ll.z (232)
= E3zy— (E_zA.yo + E. Ay + Auya) + (EfB.uo + E.B.u; + B.u,) .
At step k + 1, this leads to
k ' k _
Tier = B¥tlzg — Y EB¥ Ay, + > E¥B.u; (2.33)
=0 =0
for k > 0.

Following (2.8), d-step-ahead prediction may be developed as follows. First,

Tipa = (E.— AuEo)Tiyr + Bougyr — Aueryqa
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Similarly,

Trts = (E- - A-Eo)-’ﬂk«i»z + B-uk+2 - A-€k+2
= (E. - A.Eo)zzk.H_ + (E. — A.Eo)B.Uk+1 + B.uk+2
—(E. — A.Eo)A epy1 — AnCrys .

Hence
Tesd = (Bo— AcBo)* 'z + Z — A.Eo)* ' Buuy, ;
d-1 _
~ Y (E. — AcEo)* 7 ALy - (2.34)
ij=1

for £k >0 and & > 1, and also from (2.8b)
Yird = BoTiid + €ksd - (2.35)
Substituting (2.34) into (2.35) gives

d-1 _
Yird = Eo(B.— A.Eo)* 'ziyr + Y Eo(E. — ALEo)* 7' Buuy;

=1
d-1 )
— " Eo(E. — A.Eo)* P Aceiyj + €id (2.36)
j=1

for k >0and d > 1.

In order to simplify (2.36), the row vector Eo(E. — A.Ep)?7~! is rewritten in

the following form:

Eo(E. — A.Eo)¥ 91 =10,...,0, fo, ..., fa—j1] (2.37)
n-(d—j) d—j

where the sequence {fo,..., fa-1} is a scalar sequence and a function of the poly-

nomial A(g~!) appearing in (2.1) and can be computed from (2.31).
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The following steps will show how (2.37) can be obtained.
Referring to (2.7), E. — A.Eq is obtained as follows:

0 .. .0 an (0 . . 0 -a, |
1 i i 1
E.—A.E, = ) =1 . (flo . . .01]=
1 0‘ | a 1 —a
(2.38)
Then
- qd-j—1
0 . 0 —a,
1
Eo(E. - A.Eo)* 7 '=[0 . . . 0 1] ) ) . (2.39)
1 —a)

Note that Eo(E. — A.Eo)¥ 7! is the last row of (E. — A.Eg)¢~7~! which establishes
(2.37). Meanwhile, using (2.37) the following interesting result is obtained:

Eo(E. — A.E)) !B, =0; j=1,....d-1 (2.40)
because
bn—d
. bo i
Eo(E. — A.Eo)* 7 'B. =[0,...,0, fo,..., facj1 ]| F Jn—d+l)xl | — g

D e Ve O
n—(d-j) d-j

0

L L Jd-1)x1

(2.41)
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forj=1,....,d-1.

Now using (2.37) and (2.40), equation (2.36) is simplified as follows:
d-1
yk+d = EO(E. - A.Eo)d—l$k+1 + Z f]ek+d—J . (2.42)
7=0
This gives (2.28).
Now it is shown how the proposed predictor form (2.42) can be related to the

conventional predictor form discussed by Goodwin and Sin [28].

Substituting (2.33) into (2.42) gives

d-1
Yrra = Bo( B — ALEg)* Y (B2, Z EX ALy + Z EYIBau;) + Y fiewra;
j=0 7=0
(2.43)
for £ > 0.
Now let us introduce the following notations:
L, = EoE.— A.Ey)* 'E! (2.44a)
ap_; = —Eo(E.— A.Eg)T'EFIA, (2.44b)
Bi.j = Eo(E.— A.Eg)* 'Ef 7B, (2.44c)
Then, (2.43) can be rewritten in terms of the new notations as follows:
d—1
Ykra = LiZo + Z o ;Y; + ZBL_,u, + 3 fieria; (2.44d)
j=0 j=0

for £ > 0.

Because of the special structure of matrix E.

E! =0,4n for I>n. (2.45)
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Then for & > n — 1 the effect of initial condition z, disappears and then (2.44d)

can be simplified as follows:

k k d—1
Yeed = O 4yt O Be_jui+ Y fi€kian; (2.46)
j=k—(n-1) j=k—(n-1) Jj=0

Now the predictor (2.46) can be expressed in a conventional polynomial form, dis-

cussed by Goodwin and Sin [28], as follows:

Yira = (g™ )y + Bg™ur + F(q)ey (2.47)
where
a(g™") = agtaqg i+t g™ ™Y (2.48)
Bl@™") = Bo+Bug ™t +-+ + Bacrg ™Y (2.49)
F(q) = fog®+ fig" 4+ -+ fi_1q (2.50)

where the coefficients in a(q~!) and B(q~!). using (2.44b) and (2.44c), can be

computed as follows:

a, = —Eo(E.—-A.E)* 'EiA.

= —[0,...,0,fouerr, fas] B A = —ay,; — d_X:(:jfjﬁ-lad+i—j—1 (2.51a)
B; = Eo(E.— A.E,)*'E!B. "

= [0,...,0,fy ..., fy_JE:B. = b, + dffmb‘-_,-_l (2.51b)

7=0
where 2 = 0,...,n — 1 and the coefficients f,, ..., f;_, are obtained from (2.31).

In the recursive equations above, (4.51a) and (4.51b) , whenever any1,@ny2,- - -

and b,_441,bn_d42,... appear in the formulas, they are set to zero.

As seen the predictor model above (2.47) is a special case of the predictor (2.44d)

proposed in this research. In a zero initial condition case there is no difference
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between the two models. However, the proposed predictor is capable of dealing

with a nonzero initial condition whereas the conventional predictor model lacks

such a capability. In the following lemma, the technique used by Goodwin and Sin,

(28], to express an ARX model in predictor form will be discussed.

Lemma 2.2 For the system (2.1), the d-step-ahead predictor has the following

form:

where

Yera = (@ )y + Blg u + F(q)ey

= ay+ ‘:‘1‘1_l +oe-+ an-1q—(n_l)

= ﬂo’*’ﬁlq—l +---+8 —1‘1-(n-1): Bo #0

= fog®+ fig® ' + -+ filiq; fo=1

Proof: Multiplying (2.1) by F'(q) gives

F(q)A(qa Ny, = F(q)B(q¢ )y + F(q)e,

Substituting the predicted output yi4q into (2.54) gives

Ykid — Yktd + F(@)A(q7 Ny = F(q)B(q™ i + F(g)e,

or

Ykrd = [0 — F(@)A(g7)ye + F(q)B(q )y, + F(g)es

where

¢* — F(Q)A(g™") = alg™)
F(g)B(¢™") = B(g™).

(2.52)

(2.53a)
(2.53b)
(2.53c)

(2.54)

(2.55)

(2.56)

(2.57a)
(2.57b)
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This establishes (2.52) as required. In the following it is shown how the coefficients

in F(q) , a(g™!), and B3(¢”!) can be computed uniquely.

Substituting (2.2a), (2.532), and (2.53c) into (2.57a) gives

¢~ (fog*+fig" "+ -+ fy 1) (1+a g7 4 +a,g ") = agta g - ta, g Y
(2.58)
By equating the terms of equal degree, the following recursive equations are ob-

tained for the coefficients of the polynomials F(q) and a(g~!):

1 cm=10
fm = m-1 (2_59)
—- e fiam-; : m=1,....d—1
and
d-2
a; = —Gqy; — E fj+1ad+i—j-1 3 1=0..... n—1. (2.60)
j=0

Further. using (2.57b) the coefficients in 3(¢~!) are determined as follows:

d—2
Bi=b+> figbicjis1: i=0,....n—1. (2.61)

7j=0
Note that, in the SISO case
Bo =1y . (2.62)

In the next section it will be shown how the parameter and state estimation
technique of Section 2.3 can be used in the predictors above to design an adaptive

predictor.

2.6 Adaptive prediction

There are two possible approaches to evaluate the conditional expected value of

Yrya Biven Fi, E{yri+4|Fr}. These will be designated:
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1. Conventional approach or Approzimation approach.

2. Proposed approach or Ezact approach.

The two approaches will be described and compared.

2.6.1 Conventional approach

It will be shown how the conditional expectation E{yi.4|Fr} can be determined
using an approximation method. Applying the following approximation method to
the predictor model (2.52), it is possible to derive an optimal steady-state d-step-
ahead predictor. The final result is the same as obtained by Astrém [7], Wittenmark
[52], and Goodwin and Sin [28].

Let us rewrite the conventional predictor (2.52) in the following form:
Yera = (g™ . 0)y, + B(a7". O)ur + Flq)es (2.63)

where a(q™!,8). B(¢~!,9) denote polynomials having the same structure as a(q™").
B(q~!) in (2.52) and having entries parametrized by the parameter vector §. where

6 contains the coefficients of A(q~!) and B(q~!) in (2.1).

The quantity E{yi+q| Fi} is a nonlinear function of §. The following notation
is used to make this nonlinearity explicit:

E{yr+d| Fr} = f(8), (2.64)

where f(6) is a nonlinear function of § which is a random variable with the following
conditional mean and covariance given Fy:

E{6| Fr} = E{0k| Fx} = Ok (2.65)

E{(8 — 6i)(8 — bk) "I Fi} = Zup (2.66)
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One of the approaches to determine the conditional mean of the random variable

f(8) is an approximation based on the truncation of the Taylor series expansion of

f(8) about the point ék[k = E{0|F} as follows:

The Taylor series expansion of f(6) about éHk = E{0c| Fi} is

~ df - 1 - &f ~

f(8) = f(Ore) + 707 ; (6 — b)) + 5(9 — Orik) yrE ; (0 —Opp) +--

klk k|

Taking conditional expectations given F; yields
) d )
BUGIFRY = flu) + Bl (0~ byl i)
Orti

1 - o &f -

+ iE’{(G = i) 797 . (6 — )| Fick + -+

Equation (2.68) can be simplified. using

il
o

E{(8 — bii)| Fi}
E{(6 - éklk)(g - ék|k)T| Fe} = T,

as follows:

. d?
E{f(0)| Fi} = f(Ori) + %tr( 47 D) + -

where tr(.) is the trace operator.

. (2.67)

(2.68)

(2.69)
(2.70)

(2.71)

If the conditional density function for 8 given F is concentrated near éklk’ and

f(0) is smooth in the vicinity of this point, then, retaining only the first term of

(2.71) gives
E{f(8)| F} = f(bupe)

or

E{f(8)i Fr} = f(E{6] Fi}).

(2.72)

(2.73)
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Now taking conditional expectation on both sides of (2.63), gives

E{yk+al Fi} = E{al(q™". 0)| Filye + E{B(¢™". 8)| Fi}u, . (2.74)

since E{F(q)y,| Fr} = 0. Using the approximation above, (2.73). equation (2.74)

can be simplified as follows:
E{yk+dl Fi} ~ alq™ . Oupe) v + B(q ™" Oupe) w (2.75)

and for simplicity if the right-hand side of the equation is called yk +dx We have

!}k+d|k = a(q™ Ok v + B(g72 . Bege) un (2.76)

where
a(qg ' Ok) = Gouw + G+ F Gnopapeg ™Y (2.77)
ﬁ(q—l- ék|k) = Bo,ku_- + Bl,klk g+ + ,Bn_1_k|k q'("'” (2.78)

and the coefficients in a(g™!, éklk) and B(qt. ék|k) are computed as follows:

d-2

Gope = —@gpipr — 2 Firrkik GariioLapn (2.792)
j=0
-~ - d_z - -~
Bixe = biu+ D Fivrsie bicjoy agn (2.79b)
=0

where: =0,...,n — 1 and

. 1 ; m=20
Fen it = et (2.80)
=270 fikk Gm-jie 3 m=1,...,d~-1.

As before, in (2.79), whenever any1 ik, Gns2.kfks - - - a0 bn_gi1 kjks bn—dy2.kiks - - - AP~

pear in the formulas, they are set to zero.
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Provided that the system input, output, and noise are absolutely bounded al-
most surely, the above indirect d-step-ahead predictor was proved by Sin. Goodwin.
and Bitmead [47] to be globally convergent in the following sense:

) 1 N - d-1
lim Z E{(yk+d - yk+d|k)2| fk} = Z fka-:-d-j = ’72 a.s. (2.81)
k=1

Noco N = =1
where 7?2 is the optimal d-step-ahead prediction error variance.

The adaptive predictor above uses the certainty equivalence principle. That is.
it uses on-line parameter estimates in lieu of actual plant parameters. When the
parameter estimates are close to the actual plant parameters (assuming the plant is
in the model set), then this approach makes sense. However for adaptive schemes
based on the certainty equivalence principle, in general there will be circumstances

where the transient performance is unnecessarily poor. perhaps intolerably so.

2.6.2 Proposed approach

In this section it will be shown how a d-step-ahead predictor which is optimal at
each step can be designed for the ARX model (2.1). As explained in the previous

section the main objective is to evaluate E{yi.q| Fi}.

From Lemma 2.1, the ARX model (2.1) can be written in the following proposed
predictor form, (2.42):
d-1
Yrtd = Bo(Be — AcEo) 'z + Y fitrpa; for £>0. (2.82)
7=0
Now taking conditional expectation given Fj on both sides of (2.82), gives
d-1
E{yrsal Fi} = E{Eo(E. — A.Eo)* 'z i | Fe} + E{Y_ fierpa il Fe} - (2.83)

i=0
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Since E{Z?;é fierra_jl Fr} =0, (2.83) can be simplified as follows:

E{yrsal Fe} = B{Eo(E. — A.Eo)" 'z, | Fi} . (2.84)
Initially, assume that the system delay is unity [d = 1 in (2.1)]. Later it will be

shown that this can be extended to the case d > 1.

Case d = 1: For d = 1. equation (2.84) finds the simplest possible form as

follows:

E{yk+1|-7'_k} = E{Eozk+llfk} (2.85)
or
Yk+1ik = EoZrqik (2.86)

Substituting (2.25a) into (2.86) gives
Jrerk = Bo[Buim + Gu(ypug)bip] for k>0 (2.87)

where the estimates Zx and éklk satisfy the difference equations (2.22).

Using (2.46) and (4.51), for k > n — 1 the one-step-ahead predictor will have
the following form:

k k
- X @G_jy;+ D br_ju; + eryy (2.88)

j=k—(n—1) j=k—(n-1)

Ye4r =
which can be written in a regression form
Yksr = P Ok + €y (2.89)
where

b = [ay,...8n_y,b9,---1b,_4]T (2.90)

Z' = [—yk"' .,—yk_n+1,uk,...,uk_n+1]. (291)
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Taking conditional expectation yields
Jreifk = Gp 0w for k>n—1 (2.92)

which coincides with the conventional one-step-ahead predictor discussed in the
literature. The main difference between the proposed one-step-ahead predictor
(2.87) and the conventional one (2.92) is that the proposed predictor is capable of
dealing with cases with unknown initial conditions. However. the initial condition

has to be known or zero to use the one-step-ahead predictor (2.92).

Case d > 1: As the number of time delays increases the adaptive optimal

predictor becomes more complex. Substituting (2.30) into (2.84) gives

E{yk+dl fk} = E{[O. c ey O, fo, Ceey fd_1]2k+1| fk} (293)
or
gk+dlk = E{foxf.-‘:” + fl-'l’t:z) +oe+ fd—11’§.-c21| Fi} (2.94)

where fo, f1,..., fa-1 are iteratively calculated from (2.31), such that

fo =1
fl = —a
fi = —ax+ Gf
fa = —az+2aya; —al
. d-2
fa-r = —Jgofjad-l—j - (2.95)

Substituting (2.95) into (2.94) gives

d-2

- d-1 d-2 4]

Yktdik = E{”§c+1 = ‘11’3§c+1 Vb - >, fjad_l_j:l:;c_gll Fi} . (2.96)
e
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Then according to the model (2.4) the equation above can be rewritten as follows:

d-2

erape = E{(2) —aayetbour) —ar (2 —aa i)+ = fiaa1-j(z —arye)| Fi}
=0

(2.97)

provided that the system order satisfies n > d. If n = d, the first term in the

(d)
k

equation above (2.97), z;’. is omitted.

Due to the linearity property of the expectation operator

Jeeae = E{z1 A} + E{—aay| Fi} + E{bour| Fi} + E{—a =™ | Fi}
d-2

+ E{araqyu| Fi} +---+ E{-_ figa-1-izV| Fi}

‘=0

d—2
+ E{}_ fiaa-1-ja1ye| Fi} . (2.98)

j=0
Using the following lemma, it will be explained how the terms on the right-hand
side of this equation can be evaluated from the elements of the mean vector Sy

and the covariance matrix Pp.

Lemma 2.3 If Z=[z,2,,..., 2,7 is a gaussian random vector with mean vector
M = [my,m,,...,m,|T and positive-definite covariance matriz I, then the higher
moments depend only on the elements of the mean vector and the covariance matriz,

[36]. as follows:

E{Z,'} = my (2998.)
E{Z,;ZJ’} = 2,'1' + m;m; (299b)
E{Z{ijk} = Z;jmk + Eikmj + Ejkm,- + mym;imy (2990)

E{zizjzzi} = ByZu+ TaZj + Balj + Diymemy + Tamymy + Symjmy,

+ Z‘jkm,-mz + Eﬂm,-mk + Ekzm,-mj + mym;memy . (299d)
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Proof: Using the moment generating function the lemma above is proved. If Z
is normally distributed in n dimensions with mean vector M and positive definite
covariance matrix ¥. the frequency function (probability density function) of Z is
f(2) = ——gpe IS 20 (2.100)

(2m)= %]

The moments of the distribution are defined by
E{z'23 - 5t} = /oc 1z 2t f(2)dZ (2.101)

where the 7;, 1 < j < k < n. are nonnegative integers. Let A = [A;. Ao, ..., A.]T be

a column vector. Then

$z(A) = E{e*"?} (2.102)

is called the moment generating function for Z since

gritreto-tre

oo otV = Bl st} (2.103)

A=0

An important property of moment generating functions is that the moment gen-
erating function determines the distribution. That is. there exists a one-to-one
correspondence between the moment generating function and the distribution func-
tion of a random variable. The moment generating function for the case in which
Z is normally distributed is calculated as follows. By definition of the moment

generating function

(0 = E{e7} = [~ & f(2)dz

- ﬁ/ T ATEHEMTE M g (2.104)
T2 2 -0

Hence

bz (A) = ATMHIATEA (2.105)
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For example

ad
6—/\4%('\) = midz(A)
az
anon, 22N = (B +mn)és(A)
63
o ?zN) = (Tim + Tn; + Sy + mingme) bz ()
iUA;
64
$2(A) = (TyZm+ TaZj + SuZje + Siimem + Taenym + Sanime
FIYIVEIWETY

+ Zenime + Zamime + Tamin; + ninimem)dz(A) (2.106)

where

Tla=3 Sgadg+ma : a=1ijkl. (2.107)
B=1

If the above partial derivatives are evaluated at A = 0. the corresponding moments

2.99 are obtained.

Note that as would be expected, the higher moments of the Gaussian distribu-

tion depend only on the elements of the mean vector and the covariance matrix.

Now using Lemma 2.3, the terms on the right-hand side of equation (2.98) can
be evaluated in terms of the elements of the mean vector Sy and the covariance

matrix Py as follows:

For simplicity, for systems with d = 2 and d = 3 it will be shown that the
optimal d-step-ahead predictor can be obtained using Lemma 2.3 ; the extension

to general d is straightforward but lengthy.

Case d = 2: For a system with d = 2 the optimal d-step-ahead predictor
E{yr+d| Fr} can be evaluated as follows. From (2.98)

Gesae = B{eP1 F} — E{aaye| Fi} + E{boue| Fi} — E{a1zM)| Fi} + E{a’ye| Fi} .
(2.108)
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Since yx and u; are F; measurable. (2.108) using the conditional expectation prop-

erty can be simplified as follows:

Jerape = E{z8| Fi} — E{azl Fi}ye + E{bo| Fi}ur — E{arz{| Fu} + E{a?| Fi}y: -
(2.109)
Hence, from (2.99b),

- A(2) - : . (1 .
Yetoie = z;clk =Gy Yk T bo,k{kuk - (al.klkz§¢|l)¢ + Pal:‘."lk) + (afﬂk + Paﬂk)yk . (2.110)

Once again it is emphasised that the above result (2.110) is for a system with an
order higher than two. If the order is n = 2. the first term on the right-hand side
of (2.110), zfﬂ will be omitted.

Using the conventional method explained in Section 2.6.1, the two-step-ahead
predictor of a second order system with d = 2 and white noise would have the

following form:

E{yi+al Fe} = (g™  Oup) v + B(g™ . Brp) e . (2.111)

where

a(g™h) = ao+aig”t =(—az +al) + (a1az)g”!

B(g™') = Bo+pBig™" =bo— arbog™"
and

a(q™?, 63lclk) = (~aypp + &f.ku:) + @y gl "

Ba™ 0kk) = by — &l.k[kao.ku:q-l
and finally

- 2 - - 1 - 7
E{yirdl Fe} = (=@qpp + @1 s )V + &y oo nwb—r + borptte — @1 o ppptieoy -

(2.112)
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As expected there are some similarities between the two predictors. (2.110) and
(2.112), but the main difference is that the real optimal predictor (2.110) includes
the uncertainty associated with the parameter and state estimates whereas the
optimal steady-state predictor (2.112) ignores the uncertainty in the parameter

estimates.

Case d = 3: Using (2.98), the optimal d-step-ahead predictor for a system with

d = 3 has the following form:

Jerae = E{(2) — aay + bour) — ar(z() — azyn) + (—az + @) (=) — aryw)| Fi} .

(2.113)
If the same procedure as employed for case d = 2 is applied for a system with d = 3

the optimal predictor can be evaluated as follows:

esae = E{z) Fi} — E{asyel Fe} + E{bour| Fi} — E{a1z{")| Fi} + E{a1aamii Fi}
- E{ag:l:;cl)l Fi} + E{ara yx| Fi} + E{af:l:{_l” Fi} - E’{a:l’ykl Fr} . (2.114)

Using the conditional expectation property

Geae = E{z)| Fe} - E{asl Filyr + E{bol Fitur — E{a1z{’| Fi} + E{a1az| Fi}un
- E{a2z| Fi} + E{azar| P}y + E{aizV| A} - E{a}| Fidw . (2.115)

Now from the results (2.99) the conditional expectation terms on the right-hand side
of the equation above (2.115) are simplified. The last term of (2.115), E{a3| i},
is selected as an example to show how the results (2.99) can be used to simplify

(2.115). According to the result (2.99c)
E{Z,'ijk} = E;jmk + ‘E,-km,- + Ejkm,- + mym;my. . (2.116)

Now if it is assumed that

Z=2; =z = a 2.117
i (



CHAPTER 2. ADAPTIVE OPTIMAL PREDICTION 35

and. accordingly, it can be deduced that
Lij =3 =% = Pap
mi=mj=m = &, -
Substituting into (2.99c) leads to
E{a}| Fi} = 3Papdy g + &3 apr - (2.118)

Using the same procedure as previously, the optimal d-step-ahead predictor (2.115)

can be rewritten in terms of the elements of the mean vector and the covariance

matrix as follows:

Vesae = 33{ — Gy Y + Bo s — (&I,Hké{‘[{. + Pa‘,,g) i) T 2080 k@ ki + Payanie)¥e
(g ) + P ) + (Papdlis + 2P, iy ki + a3 gt i)
(3P gy + a3 ki) Vi - (2.119)

Using the conventional method. the 3-step-ahead predictor of a third order system

with d = 3 and white noise would have the following form:
E{yral Fi} = a(q™ Gur) yr + Bla™" fige) w., (2.120)
where

a(qg™!) = ao+aq”t +axqt
(—a3z + 2a;a9 — a?) + (aias + ag - afaz)q'1 + (aqa3 — a'{’a;,)q‘1
B(@™") = Bo+Pig™" + Baq7?

= bO + (—albo)q‘l + (—a2b0 + afbo)q'z

and

-1 g _ - ~ - ~3 - - 2 ~2 -
(g7 Okk) = (—Gapp + 28 ko pe — 81 ppk) + (@ apBape + 81 g — 87 kkl246)9
- N ~2 N -2
+ (82 k(B3 ket — B k@3, 11k )D

Blg™" 0upe) = bospr + (=81 epbos)a ™" + (—@g kyrbo xpic + &f,k{kbo,uk)q—z
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and finally

~ (a2 . . _ 23 - . .2 .2 .
E{yeral Fi} = (—8gup + 28y gkl i — &y ope) ¥ + (8 ks pix + 63 it — 87 kpebo kpe) Vo1
- - -2 - s . -
+ (@5 kB3 ke — &1 k183 ki )Vk—2 + 0o kpetir + (—@y kpedo k) te—1

+ (=5 aiabo gix + 83 kpebo i) Ur—2 - (2.121)

2.7 Summary

This chapter considered an indirect optimal approach to prediction . An exact op-
timal solution was obtained whereas conventional approaches use an approximation
method to solve the problem. In the proposed approach, first the plant parameters
and states are estimated with a Kalman filter. Second the adaptive optimal predic-
tor is designed based on their uncertainty. Such a predictor is optimal at each step
in a minimum variance sense. This predictor can handle cases with unknown initial
conditions. On the other hand, the conventional predictor uses the estimates as if
they were the true parameters for the purpose of design and ignores any uncertainty
in the parameter estimates. This conventional predictor is based on the certainty
equivalence principle and is asymptotically optimal. As a result, both results have
the same steady-state performance. However, the proposed predictor can have a

better transient performance.

In the next chapter it will be explained why an indirect scheme is the only way

to solve the optimal problem considered in this chapter.



Chapter 3

SISO Cautious control

3.1 Introduction

This chapter is concerned with indirect SISO stochastic adaptive control. The
purpose of the control is to minimize the variance of the output around a desired
value one step ahead for SISO linear time-invariant discrete-time systems having
general delay and white noise perturbation. Minimization over only one step leads
to the one-step ahead or cautious controller. This controller takes the parameter

uncertainties into account, in contrast to the certainty equivalence controller.

The SISO cautious control problem has been discussed in Astrém and Wit-
tenmark [8], Wieslander and Wittenmark {51, and Nahorski and Vidal [40]. The
method proposed in this research and the method used by Astrém and Witten-
mark (8] are the same except that the proposed method can handle cases with
uncertainty in initial conditions. Wieslander and Wittenmark [51] used a very
complicated way to solve the adaptive problem for a unity delay system. Nahorski
and Vidal [40] handle the case of general delay by using a special model.

37
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This chapter is organized as follows. In Section 3.2 the control criterion of
interest is addressed. Section 3.3 contains the main results. In Sections 3.3.1
and 3.3.2 using the theory of stochastic optimal control, the general one-step ahead
optimization problem is solved in both nonadaptive and adaptive cases, respectively.
It is proved that the optimal solution can be expressed analytically in a closed form.
In Section 3.4 it is shown how the general optimal solution obtained in this research
can be applied to some special cases discussed in the literature. Because of the initial
condition g, there are two different cases for the estimation process. Hence the
proposed indirect cautious control with unknown and known initial condition are
presented in Sections 3.5 and 3.6, respectively. In Section 3.7 in order to explain
why the indirect approach is the only way to solve the minimization problem above.
the direct cautious control proposed by Nahorski and Vidal [40] is considered. In
Section 3.8 simulation results are presented to show the performance of the proposed

cautious control compared with that of the certainty equivalence controller.

3.2 The control criterion

The purpose of the control is to keep the output of the system (2.1) as close as
possible to a known reference value trajectory {y;}. In other words, the objective
is to choose the input u, so as to minimize the sample mean-square error between

the output and the desired value yr+4. Thus consider the following cost function:

Jitd = E{(yk+d - yl:+d)2} . (3.1)

The cost function should be minimized with respect to u;. Then a feature of the
cost function above is that it is only concerned with the situation one step ahead.

A control strategy is admissible if uy is a function of all outputs observed up to and
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including time k, i.e. . yx,Yk—1.....Yo, all applied control signals ug_y,....uo and

the a priori data. Using the smoothing property of conditional means, we have

Jk+d = E{E{(yk+d - yi-+d)2l Fr}} - (3.2)

Hence the optimal cost is
Jera = n‘J‘{nE{E’{(yk+d - yi-+d)2| Fi}} - (3.3)

It follows from a fundamental lemma of stochastic control theory, see Astrém [7],
that
Jiea = E{I?‘{n E{(Yr4a — y;:+4)2| Fi}} (3.4)

where uy, is Fj measurable. In other words, the control objective will be to minimize
the sample mean of the sequence E{(y;,4 — ¥r,q)?| Fr}, and the new criterion may

be written as
Jerdie = E{(Yrra — Yrya)?| F} - (3.9)
Once again using the property of conditional means the index becomes

Jk+d = E{E{(yk+d - yI:+d)2| fk,-’l"o,g}} (3.6)

where z¢ is the initial condition and 6 is the parameter vector. A new index when

zo and € are known will be obtained as follows:

Jerdikzod = E{(Yksa — Vi)l Fier T0, 6} . (3.7)

3.3 One-step-ahead optimization

In this section the one-step-ahead optimization problems above are solved using

the theory of stochastic optimal control following the philosophy of Astrém 5, 6],
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and Wieslander and Wittenmark [51]. In order to minimize the two cost functions
above, (3.5) and (3.7), the results obtained in Chapter 2 are employed in this

section.

As explained in Chapter 2, Lemma 2.1, the ARX model (2.1) can be written in

one of the following predictor forms:

d-1
Yird = Bo(Be — ABo)* 'z + Y fiksd-; (3.8)
j=0
or
d—1
Yesa = Eo(E. — -’4-£‘;’0)d-1(Ef'H Z EL_JA -y; + Z EL ’B. u; ) + Z fiek+d—;
=0 j=0 =0

(3.9)
for k>0and d > 1.

In order to show which term is a function of u,, (3.9) is rewritten as follows:
Yera = botk+Eo( E.— A.Eo)4 Y (E*+1g, ZE‘ Ay + ZE" 'B.u; +Zf Chrde;

(3.10)

or Y;.,4 can be expressed in a compact form as

ke = boue + 7(8, 20, V5 . Us™") +1(6, EFY) (3.11)

where 7(.) and 7(.) are nonlinear functions in terms of the parameter vector § and

s = {¥k---.%0} (3.12)
Ué‘"l = {‘Uk_l,. ..,UQ} (313)
g{:_tld = {ek+d, ey ek+1} . (314)

The independent process e, denotes a white noise which has the following properties

E{eru | Ft} = 0 as. (3.15a)
E{ertieiim| Fr} = R, d6(l—m) as. (3.15b)
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fori{>1,m>1,and k£ > 0.

Using (3.15a), it is clear that conditional mean of the noise seen by the predictor
(3.9) or (3.11), Z?;é fi€i4d—j: s zero as follows:
d-1 .
B{Y frerrasl Bk =0 or E{n(d.E5) F} =0 (3.16)
;=0
for k >0 and d > 1.
At this point, it can be shown how an optimal d-step-head predictor in a mini-
mum variance sense given Fi, the initial condition zo, and the parameter vector 8
can be obtained. Taking conditional mean of both sides of (3.11) with respect to

Fi. zg, and 0 gives
E{Ysrdl Fie, 0.8} = bour +7(6.20. V5 . Us ™) + E{n(8, ET) Fr 20,6} . (3.17)
Using (3.16),
E{yyal Fi.T0.0} = bour + v(8. 20, Vs .US™) (3.18)

or. using (3.8)
E{yr,q| Fe. 20,0} = Eo(E. — A.Eo)* zry (3.19)

or

k k
E{ysyql Fie, 30,0} = Eo(E. — A.Eo)* M (E¥'zo — Y E¥ Ay, + Y E¥7B.u))
=0 j=0
(3.20)
from (3.9), for £ > 0 and d > 1. Note that this case is a special case or a nonadaptive

case of the predictor discussed in Chapter 2.

In the next two sections it will be shown how the criteria Ji 4 -0 20d Jp g

can be minimized without using approximation methods.
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3.3.1 Minimization of J, +dlk, 20,0

If the parameters and the initial condition of the system are known it is easy to
determine the optimal feedback or to minimize the cost function Ji 44 .. 6 (3.7).
In the following theorem a stochastic controller based on an optimal predictor is
derived. The result shows that putting the predicted output equal to the desired

output achieves optimal control.

Theorem 3.1 For the system (2.1) the value of ur which minimizes the criterion
Jivdipze.6 = E{(Yrsa — Yira)?| Fr T, 0} (3.21)

can be determined as follows:
E{yrial Frr 20,0} = ypyq (3.22)

fork>0andd>1.
(Note that it is necessary to assume that by # 0 and that the system is minimum-

phase at every instant of time. The control signal may otherwise be unbounded.)

Proof: Substituting (3.11) into (3.21) gives
Jrrdikzes = E{[bour + (6. zo, V5 Us™) + (0, &) — yrpa)®l Frnzo, 0} (3.23)
or

Jetdpzos = E{lbour + (8,0, VEUSTY) — yipal® + 008, E3D) (3.24)
+ 2[b0uk + 7(07 Zo, yg 1u(,;_1) - yl:+d]77(07 gt:—-i‘)l }-kv Zo: 0} -

Since e is an independent noise which satisfies (3.16), the third term on the right

side of (3.24) is zero. From

d-1
n(4, gl,:i-f) = Z fjek+d—j (3.25)

=0
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and (3.15b), the second term of the right side of (3.24) is determined as follows:

d-1
E{n(8, &)1 Fro 0.8} = Y fiRpra-; (3.26)

=0

which is independent of u;. Therefore (3.24) is simplified as follows:

d-1
Jk+dlk.zo,5 = [bouk + 7(07 Zo, yg aug—l) - y]:+d]2 + Z f_‘lsz+d—J . (3.27)
j=0
The necessary condition for a minimum is
Jkrdikzed _ 0. (3.28)
Buk

Since only the first term on the right side of (3.27) is a function of u, differentiating
(3.27) with respect to u; gives the following equation:

0Jk+djk.zo.6

0 = 2bolbous + 7(9-$o,y§ vu(;c_l) ~ Yrea =0
(173

= 2bo[E{yk+d| .7:;_.,1:0, 9} - yL‘-+d] =0 (329)

using (3.18).

According to the initial assumptions by # 0. 50 Jiidjk.zo.¢ can be minimized when:
E{yk'f'dl fk? Lo, 0} - y]:.(..d =0 (330)

or
E{yk+d| fkv Zo, 0} = y;.{.d . (3.31)
This establishes (3.22).

This result had already been obtained in the literature for the case when the
parameters and the initial condition are known . In words, the minimum variance
control can be obtained by equating the predicted output to the desired output
given the parameters and the initial condition.

The minimum value of the cost function is then given by
d-1

Terdikzes = O FiBiraj - (3.32)

i=0
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3.3.2 Minimization of J, +dlk

44

Here the optimization of the design criterion J;, +djk given in (3.5) is discussed. Using

the same approach as used in Section 3.3.1, it is proved that the optimal solution

can be expressed analytically in a closed form. The result is summarized in the

following theorem.

Theorem 3.2 For the system (2.1) the value of ur which minimizes the criterion

Jk+d|k = E{(yk+d - yi+d)2| Fi}
can be determined as follows:
E{boyral Fr} = E{by| Fe}Yita

for k>0 and d > 1.

Proof: Using the property of conditional means

Jk+d|k = E{E{(yk+d - yI:+d)2| F. zo. 0} Fr}

or
Jk+d[k = E{Jk-(-d[k,zo,el Fi}

which shows the relationship between the two cost functions.

Hence, substituting (3.27) into (3.36) gives
d-1
Jevape = E{[bour + (6, 20, Vo UsTY) — yrpd® + > fiRiya— ;| Fi}
=0
or from (3.18)

d-1
ch+d[k = E{(E{yk+d|fk’-’6079} - yl:+d)2 + Z ffRHd-lek}
=0

(3.33)

(3.34)

(3.35)

(3.36)

(3.37)

(3.38)



CHAPTER 3. SISO CAUTIOUS CONTROL 45

for k>0 and d> 1.

From (3.19)
E{yk+d| Fr.z0,.0} = Eo(E. — A.E)® 'zpyy . (3.39)
Using the method used in Chapter 2

E{yk'f-dlfkvz()vo} = [07""O'f()v"",fd—l]zk-i-l

= forlV + o+ fa2l, (3.40)

where fo, ..., f4- are obtained from (2.30) of Chapter 2.
Then from (3.40)

z(d
k
E{ytrdl Ferz0,0} = bowe + [fo--- farl | | © | =] ¢ | (3.41)
:L'E:I) ay
In order to facilitate the writing, (3.41) is written in the following compact form:
E{Yi+al Fi, 20,0} = bour + p(z?, ..., z{" 4. 0) (3.42)
where p(.) is a nonlinear function, and also it is clear that
pz@, . 2y, 0) = 7(8. 2o, VE U (3.43)
Substituting (3.42) into (3.38) leads to
d-1
Tirare = B{lbow + p(=i”, . 29 8) = yial + 2 fiRura ;| B} (3.44)
j=0
or
T = B{0uf + 2bouelo(z”, ...z, i, 0) — wipall Fid

d-1
+ E{[p(=, ... 20, yis 0) = vl + 3 F2Ripar ;| Fi} - (3.45)
j=0
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Using the conditional mean properties

Jerae = ubB{B3| Fe} + 2urE{bolp(z{". ...z, 4y, 8) — yiiall F}
d-1
+ B{lp@ 2 v ) — vl + 2 I Rura | Fi} - (3.46)
=0
In Chapter 2, it was proved that the conditional distribution of s, = [zf 6F|T

given Fy is normal with mean 3. and covariance Py, where the conditional mean

and covariance are generated by the Kalman filter using the following difference

equations:
Sk = Sip-t + Peppr HT(HPyp 1 HT + Ri) My, — Eofrpeey) (3.47a)
Sker = Fidep (3.47b)
Pk = Pup—r — Pup HT(HPypor HT + Ri) ™ H Py (3.47¢)
Pope = FePnFT (3.47d)
where
. Tiepke E{z¢| Fi}
e - . (3.48)
Orir E{0:| Fi}

Note that the conditional means and covariances of z; and § given F;, are indepen-
dent of ui. Therefore, the conditional mean of any nonlinear function of z; and 4
given Fr, which is a function of the conditional means and covariances of z; and

6, are also independent of uy.

Thus the last two terms on the right side of (3.46) are not functions of u,

aJ, k+d|k

P 2ur E{B2| Fi} + 2E{bo[o(z{, ..., 2" 40, 8) — vipal| Fe} =0 (3.49)

or

uw B{83| Fi} + E{bo[p(z{, ..., z{", 4, 0) — viial| Fi} = 0. (3.50)
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In order to reach a general conclusion. (3.50) is manipulated as follows:

E{Bus + bolo(z. ... 2,44, 0) — yial| Fi} =0 (3.51)
or
E{bolboux + p(z(", - ...z 4k, 8) — yiral| Fi} = 0. (3.52)
From (3.42),
E{bo( E{ys+da| Fr, 20,8} — yi g)| Fi} = 0 (3.53)
or
E{boE{yr+a| Fr.z0.0} Fir} = E{bol Fi}vira - (3.54)

Now, noting that boE{yr+d| Fr, Z0,0} = E{boyr+da| Fk,z0,6},
E{E{boyr+d| Fr,zo, 0} Fr} = E{bo| Fi}yria - (3.55)
Using the smoothing property of conditional means again gives
E{boyr+al Fr} = E{bo| Fr}Yita - (3.56)

This establishes (3.34).

3.4 Some important special cases

Using the general optimal solution (3.34), the following important special cases can

be explained:

1. From (3.34) it is seen that if the parameters § and the initial condition zo in

the system are known and also by # 0, (3.34) can be simplified as follows:

E{yk+d| Fr:Z0,0} = yryq - (3.57)
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In words, the input {u:} is obtained by equating the predicted output of the
system with its desired value. Actually (3.34) can be considered as a general-
ization of (3.57); thus (3.34) will be equal to (3.57) when the parameters and

states and their estimates are equal, and the covariances are equal to zero.

2. If by # 0 and known then

E{yrtd| Fr} = yiiq (3.58)

where in Chapter 2 it was shown how E{yi+q4] Fi} can be determined even if

bo is unknown.

3. Using the certainty equivalence approximation, as shown in Chapter 2, (3.56)

can be approximated as follows:
E{bo(Yrra = Yisa)| Frr g0 = b} = 0 (3.59)
or
E{bo| Fi: 70,0 = O} E{(Yira — Yira)l Fer To, 0 = i} = 0. (3.60)
Now if E{bo| F.2q,8 = Gk} # 0,
E{yird| Fr: 20,0 = bun} = ypa - (3.61)

The comparison of (3.61) and (3.57) shows that an approximation of the op-
timal control law can be obtained by solving the control problem in the case
of known parameters and substituting the known parameters with their esti-

mates. The controller can be interpreted as a certainty-equivalence controller.

Because of the initial condition z,, there could be the following two different cases

for the estimation process:
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o The initial condition z, is known or zero.

o There is uncertainty in z,, or z, is unknown.

These two cases are analyzed in the following two sections.

3.5 Cautious control with unknown z;

In this section using the general optimal solution obtained in Theorem 3.2, an
indirect cautious control with unknown initial condition is developed. It is shown
that if there is uncertainty in the initial condition z,, or z, is unknown. not only
the parameters of the system but also the states of the system have to be estimated.
Therefore, the identification process is the same as employed in Chapter 2. Finally,
using the same property of Gaussian distributions employed in Chapter 2. the
indirect method proposed leads to control laws which not only use the estimates of

the parameters and states but also the variances of the estimation errors.

As in Chapter 2, using state variables the ARX model (2.1) can be written in

the following canonical form:

Ty, = E.zi — Aaye + Boug (3.62a)
ye = Eozi +ek. (3.62b)

If 6 is defined as follows:
8 =[ay,...,a,,bg...,b,_4]T (3.63)

then the model (3.62) can be rearranged in the following form:

zk+1 = E.:l:k + G_9 (3.643)
Y = EQ.’Bk + € - (364b)
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where the matrix G. is constructed according to the order of the parameters in §.
Since for a time invariant system 04, = 6, = 6, by appending the parameter vector
0y to the state vector z; and using the model (3.64), the following dynamical model

can be used for the estimation process:

Serr = Fisg (3.65a)

Yo = Hs, +e, (3.65b)

z, E. G.
S = Fk =
8, 0o I

It is assumed that so and {ei} are independent and gaussian: sq is N(3q, Xo); {€x}

where

H=[E 0]. (3.66)

is zero mean, with covariance R;d;_;. Then a Kalman filter may be used to find

Suk = E{sk| Fi}, the conditional mean of s; given Fi, as follows:

Sk = Sktk-1 + Ki(yp — HSkp-1) 5 S0p-1 = %o (3.67a)
Ki = Py HT(HPy_HT + Ri)™* (3.67b)
Sk =  Frdgp (3.67c)
Py = Py — KkHPpp—1;  Poj-1 = Z0 20 (3.67d)
Peyie = FePyFT. (3.67e)

Finally, the input signal is generated by solving
E{boyy.ql Fx} = E{bo] Fr}Viid (3.68)

or, from (3.50), the feedback law (3.68) is explicitly given by

E{bO[P(z{-d)a .. 72:;:)7 Yis 0) - yl:+d” ]'-k}
- for k >0 3.69
E{60 7]  fork2 (3.692)

U =
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where
z;cd) aqd
p($£d)7"~7z§¢l)vyk1 9) = [fOe"'vfd—l] - : Ye (369b)
z(l) a
k 1

and fq,..., fs-1 are obtained from (2.30) of Chapter 2.

Initially the system delay will be taken to be d = 1. Later it will be shown how

this can be readily extended to the case d > 1.

Case d = 1: Using (3.69). the control law for the case d = 1 is:

_E{bo(z{!) - aryp —yiyy)| Fi}

U =

E{b%| Fi.}
__E{bez”| Fi} — E{boar| Filyi — E{bol Filyin (3.70)
E{b3| Fi.}

for £ > 0 . Using Lemma 2.3 in Chapter 2. (2.99), the conditional mean terms in
(3.70) can be written in terms of the elements of the mean vector and the covariance

matrix as follows:
7 -~ 1 7 - 1 =
(bo,k!kzill): + Pbozi”m) - (bo.klkal,klk + Pogay k)Y — bo.klkyk+1 (3.71)
U = — = .
b3 i + Pz

for k>0.
For k > n — 1 the control law can be written in the conventional form discussed
by Astrom and Wittenmark [8, 10]. It can be seen from (2.4) of Chapter 2 that

z(kl) ==Y~ = Gnlongr H U+ F Oai U oy (3.72)

for £ > n — 1. Substituting (3.72) into (3.70) gives

 Efbo(=asypy =+ Gnbypay + b1ty o bactU_nyy — 1% — Yigr)| Fi}
E{b3| Fi}

Up =

(3.73)
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Once again using Lemma 2.3 in Chapter 2, (2. 99)

ZJ“I(bO k@i ke T Pooa k) Yk—jsr + (bo lebJ ki + Poobj k)i — bo.k{kyI:+1
bo.k[k + Py

U = —
(3.74)

fork>n-1.
As seen, for the case d = 1, there is actually no difference between the direct
approach and the indirect approach, since in this case the ARX model coincides
with the one-step-ahead predictor. As the number of time delays increases the

control law becomes more complex.

Case d = 2: Now consider a system with d = 2. Using the some procedure
as used for the case d = 1, the control law will be determined. From (3.69). the

control law for the case d = 2 is

(2)
Z, (¢3]
i (|2
E{b3 F.}
_Bofomi + fial) - foasys ~ fraw)| Pk = Blbol Felvias (515,
E{b3| Fi}
where fo =1 and f; = —a,, from (2.30) of Chapter 2. Hence
_E{by(z) = ayz) — ayyi + aly) Fi} — E{bol Fi}uisa
E{b3| 7.}

3 E{boxk — bya, 2 — byayy; + byady,| Fi} — E{bol Fie}Yis: (3.76)
E{b3| i}

yk) |-7'-k} - E{bO| fk}yi-+2

U =

for £ > 0.

Using the results obtained in Chapter 2, u;, (3.76), can be determined in terms
of the mean values of the parameters and states and the covariance matrix elements

as follows:

1 .
U = _(~——)[(bokk"’ k+P 2 )
bcz),klk + Pbglk (kK| [k
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—(Bo-klkpalz(kl”k + &1.k|ka°,Ll)|k + 5’81)¢Pboaxlk + 80.k|k&1.k|kjgl)c)

"(Bo.mk&z,uk + Pogay)Yr + (Bo,k(kP 21k + 28y g Pogartk + i’o.k|k&f,k|k)yk

~bo kil (3.77)
for £ > 0.

The control law (3.77) clearly shows the influence of the uncertainties of the
parameter and state estimates. The covariance matrix will help the controller to

make a more cautious control action when the estimates are poor.

3.6 Cautious control with known initial condition

In this section an indirect cautious control with known initial condition is discussed.
and it is shown that if the initial condition is known or zero, it is not required to
estimate the states of the system. Therefore. using the same method employed in
the previous section, Section 3.5. only the optimal parameter estimation, provided
by a Kalman filter, is used to obtain the optimal control law. As a result, the algo-
rithm proposed in this section can be considered as a special case of that discussed

in Section 3.5.
The ARX model (2.1) can be written in the following form:
Ye = —QYpoy — "~ Cp¥gop T OgUp_g + - + by_gUk—nra + € - (3.78)
Then (3.78) can be expressed in the following regression form:
Yo = Fio10 + e (3.79)
where
0 = [a,...,8p, b0, by_g)”

T
¢k—1 = [_yk—la cooy TYpns Uk-dy - - - u’k—n+d]
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with initial values

[y—l’ L] y—d—n-{-l’ U_ys.--s u—d—n+l] - (380)

Since for a time invariant system 61 = 0r = 8, using (3.79) the following dynam-

ical system can be used to estimate the system parameters:
Oryr = 6 (3.81a)
Ye = iibiten. (3.81b)

If it is assumed that 6y and {e:} are jointly gaussian and mutually independent:
8o is N(fo,Zo): {e.} is zero mean, covariance Rid,_,;. Then éklk = E{6i| Fi}. the
conditional mean of 8, given F, satisfies the following recursions (the Kalman

filter):

6jklk = éklk—l+Kk(yk—¢£_1ék|k-1); é0|_1= o (3.82a)
ék-{—llk = éklk (3.82b)

where K is the filter gain given by
K, = Pk{k—1¢k—1(¢£—1Pk(k-1¢k—1 + R)"! (3.82¢)
Ppjr—y is the error covariance matrix, that is,
Pige—r = E{(8 — Bie—1)(8 = Bee—1)”| Frmr } (3.82d)
P, satisfies the following equations:

Pk|k = Pk{k—l - Kk¢£_]_Pk|k—l s Pol_]_ = 20 (3.828)
Poyi = Pu. (3.82f)

Finally the input signal u, is generated from the following feedback control law:

E{boyk+d| fk} = E{bOI fk}yim (3.83)
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Initially it will be shown below how the algorithm above can be applied for the
model (2.1) with d = 1. Later it will be shown how this can be used for the general

case, a system with d > 1.

Case d = 1: For the case d = 1, the ARX model (??) can be readily expressed

in a predictor form as follows:
Ykst = —01Y = = @nlp_ayy Fhoup + oo F basiup gy ey (3.84)

Substituting (3.84) into (3.83) gives

E{bo(—a1yp— - — @n¥p_py; +boup +-- -+ bno1tp_nyr + el Fi}t = E{bol Fi}yips
(3.85)
Using E{bye;,| Fi} = 0, and after some manipulations
_ —EB{bo(-01y — - — @Yy F b1y + -+ bnoru_ | Fi} + E{bol Fr}uis,
E{83] Fi}
(3.86)

Using Lemma 2.3,

. — =180 ki @; 115 + Pooajit)Yk—jr1 — Z;":-f(bo,mkbj,mk + Pogb, k)i + by oYk
k= =

b + Pizin

(3.87)
where i>o,k|k and Py, are the conditional mean and variance of by, respectively, that
is,

borie = E{bol Fi}
Pap = E{(bo — bosp)’| Fi}

and Pyq |k is the conditional covariance of by and a; as well as Py, is the condi-

tional covariance of by and b;, i.e.,

Poajic = E{(by — box)(a; — ajep)| Fi}
Pubi = E{(b — bosir)(d; — bjap)| Fe} -
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For a unit delay system, the approach is identical to the one discussed in Astrém

and Wittenmark (1973), [9], differing only for delays greater than unity.

General case, d > 1: As explained above, the parameters of the system in its
representation (3.78) are recursively identified in time. Then the control law u, is

obtained by setting
E{boyisal Fr} = E{bol Fi}yira (3.88)

from which the control law can be expressed in the following compact form:

E{B3| Fi} '
where
Y = [yk ----- Yk—nt1 Yp—ygs---» uk—n+1]T
19T = [1919"'?'-9271—1]
and

BoBin: J=n+1....2n-1.
Using (2.59)-(2.62) of Chapter 2, the coefficients o; and 3; for i =1..... n — 1 are

.  =1,....
19., — { ﬂoa_j—l ] n (3.90)

obtained and then substituted into (3.90). After computing the conditional mean
E{97| Fi} using the method described in Chapter 2 and then substituting into
(3.89) the control law is obtained.

The method above is illustrated in the following example:

Example (Case d = 2): Consider the following second-order system with
d=2:
Alg e = B(a 7 ue + & (3.91)
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where

1 +a,q7! +a,q? (3.92)
q7(bo) - (3.93)

A(g™")
B(q™")

According to Lemma 2.2 of Chapter 2, the system above can be expressed in the

following predictor form:
Yerz = (@ + 0187 Jye + (Bo + B1g™ ue + (fod + fig)es (3.94)

where the coefficients ag, a1, 80, 51, fo. f1 are:

ag=-a,+ai fy=bo fo=1

(3.95)

@ = —a By = —a,by fi=-a
using (2.59)-(2.61). Substituting (3.95) into (3.94) gives
Yesz = (=@ + a7)yp + (= a)yk-1 + boty, + (—a8p) sy + €y — 1oy, - (3.96)

Returning to the cautious controller, recall that the control law is achieved by

setting E{boyr+d| Fr} = E{bo| Fi}yisq - Using (3.96), it follows immediately that
E{bo[(—a, + a})ye + (—a2)ye-1 +bouy + (—ayby)us_y| Fi} = E{bo| Fi}yrss (3.97)

using E{bo(er+2 — ar€k+1)| Fr} = 0. Hence the control law can be written as

w. = —E{bo[(—a, + al)yx + (—a,)yp_, + (—a;bo)wr_i]| Fe} + E{bo| Fi}yics2
¢ E{b%| Fr.}

(3.98)

or in a compact form as follows:

_ E{ﬁTl fk}"ﬁk - E{bo| fk}y1:+2
U, = ~— E{bélfk} (3.99)
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where

Ve = (Yo Uror Upor)T
19T = [191,192,193]

and

91 = bo(—a, + @), 92 =by(—a,). U3 =bo(—aib;). (3.100)
The only term in (3.99) which requires further explanation is E{97| F.}. Using the

property of random vectors, we have

EPWT| R} = E{[¥1,9:.93 F} (3.101)
= [E{9:| Fc}, E{9:| Fi}. E{ds| Fi}] (3.102)

and then using the results obtained in Chapter 2, the conditional means above are

computed as follows:

E{9,|F} = E{bo(—a,+ a?)| Fi}
= —E{b0a2| .Fk} + E{boafl fk} (3103&)

= —(bopdas + Pya,i) + (Pa';'[ki’olk + 2Py o e + a3 jbope)

E{J:| Fi} = E{bo(—a,)| Fr}
= —(bodak + Prya, i) (3.103b)

E{9;]| Fr} = E{bo(—aibo)| Fr}
= —(Papip + 2Poa, pbop + Bpane) - (3.103c)

Substituting (3.103) into (3.99) results in the following control law:

1

~——)[—[(i’o.k kG2 ke T Pooaslk)
bg.k|k + Py | ! ’

ukz-—(
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+(Pazikbo i + 2Pogay k81 pixe T+ &¥|kb0,k|k)]yk — (Oo kel i + Pogay k)Yr_1
~( Pzl ki + 2Pogarkbo i + 03 ki) sy — o iaieal] (3.104)
for £ > 0.

Note that in this research the minimization of J; , 4 is done for general systems.
i.e., the general delay and white noise case. The minimization of Ji 4 has been

discussed in:

o Astrom and Wittenmark in 1971, [8], for a unit delay system.
o Wieslander and Wittenmark in 1971, [51], when d = 2.

e Nahorski and Vidal in 1974, [40], the case with general delay d.

As explained before, for a unit delay system there is no difference between the
indirect and direct approaches. Therefore. the proposed method and the method
used by Astrém and Wittenmark are the same except that the proposed method

can handle cases with uncertainty in the initial condition.

Wieslander and Wittenmark used the following criterion for a unit delay system:
J = min E{y? | Fi1} (3.105)

which is different from what has been discussed in this research. Note that the
system time delay is d = 1, whereas the number of steps looked ahead in the
criterion (3.105), to determine the control signal ug, is two. In this research the

criterion used for a system with d =1 is
J = min E{y},,| Fi} (3.106)

which is more applicable than the criterion used by Wittenmark. The system
delay and the number of steps looked ahead in the criterion (3.106) are the same.
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According to (3.106), the control signal u; is determined when the output signal
yr has been observed which makes sense for every system with d > 1. However.
using (3.105) the control signal u; is obtained without observing y; which is already
available. For this reason, the method proposed by Wieslander and Wittenmark
solved the optimal problem for a unit delay system in a complicated way which

does not seem to be necessary at all.

The method proposed by Nahorski and Vidal in 1974 to minimize J, +dpe for
systems with general delay d > 1 is explained in the following section and it is shown
how their method differs from the method proposed in this research. Also. it will be
explained why an indirect scheme is the only way to solve both the adaptive optimal
control discussed in this chapter and the adaptive optimal prediction discussed in

Chapter 2.

3.7 Direct cautious control

As described previously, the proposed approach is an indirect algorithm because
this approach estimates the parameters in an ARX model for the system and then
converts this model into the required predictor format. The general advantages
of this approach, discussed by Goodwin and Sin in [28], are: (1) it is likely to
involve fewer parameters, and (2) it is natural to expect priori knowledge regarding
physical quantities in a system to be more easily mapped into priori knowledge
of parameters in an input-output model of the process than into priori knowledge
regarding predictor parameters. Besides, it will be shown below that the indirect
approach is the only way to solve the minimization problem above for a system
with an ARX model with general delay d. An alternative approach is to estimate
the parameters of the optimal predictor directly, which has the advantage that less
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calculation is required to determine control law. For a reason shown below, the

direct approach cannot handle the case with general delay d.

Using Lemma 2.2, the ARX model (2.1) can be transformed to the following

predictor form:
Yktd = a{g Dy, + B(g . + F(q)e,
n—1 n—1 d-1
= Yy i+ B+ fierra; - (3.107)
j=0 j=0 j=0

Then (3.107) can be written in the following stochastic regression form

Yird = P20 + Vipq (3.108)
or
U = bi_af + Vi (3.109)
with
S5 = (Yke o Ykontls Uke- - - - Ukmni1] (3.110)
8T = [ag- -y 1By -Bail (3.111)
where v, = Y% fier_;. The future (unpredictable) noise v; is a nongaussian

colored noise. The noise v, is colored because the value of this noise at one time is
correlated with the value at another time, and is nongaussian due to the occurrence
of the products between the unknown parameters {fo,..., fi-1} and the gaussian
input noise {er}. Since the a priori knowledge of the statistical characteristics of
the noise v is not available, the Kalman filter cannot be used to estimate the
parameter vector . A possible estimation method is using the following least

squares procedure

-

b = ber + Picrdr_a(yr — Sr-gbr-1) (3.112)

_ P 2r-adt_gPe_s . (3.113)
1+ ¢f_qPr-2¢i-a

Py, = P,
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Hence the estimator does not inherit the optimality properties of the Kalman filter.
In other words, since the noise vy is colored the unbiased estimate f; generated by
least squares will be nonoptimal. The estimate 6y is unbiased because Pr-q and v
are uncorrelated.

Because of the difficulty discussed above, in 1974, to handle the case with general
d without involving a noise with unknown statistical characteristics, Nahorski and

Vidal [40] used the following particular model

n—1 n—1
Yera = D WY+ D Btk + €xypa (3.114)

i=0 i=0
where €, ., was assumed a stochastic variable independent of F.. Moreover. the
disturbance e, ,, was assumed a normal stochastic variable with zero mean and

variance ¢2. The model (3.114) can be written in the following regression form:
Yksa = P50 + €rpq (3.115)

where 4 is an 2n x 1 column vector consisting the coefficients of [a(q™!), B(¢™")] as

follows:

0 =lag . . an_;, B Bui]” (3.116)

and the regression vector ¢, is defined as
¢z-' = [ykv'--vyk—n+11 ukv"’v“k—ﬂ-{‘l] [ (3'117)

these components being available at time k.

Based on the initial assumption the system (3.114) is time invariant, i.e., Ox41 =
8r = 6 and using (3.115), the following dynamical system is obtained to estimate
the parameters:

Ve = Si-abi+ex. (3.118b)
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It was assumed that 6, is a gaussian random variable of known mean éo|_1 and

known covariance Fy-1, i.e.,
foj-1 = E{6| F_1}  Po—1 = E{(8o — boj-1)(80 ~ foj-1)| F1} - (3.119)

It was further assumed that 6; is independent of e, for any k.

Based on the assumptions above and using (3.118), it can be shown that the
conditional distribution of 8, given F is normal. Hence, the unknown parameters
can be estimated using a Kalman filter, which gives the estimates, éklk, and the

covariance matrix, Pix, based on data obtained up to and included time %, i.e. Fy.

as follows:
bre = Oupor + Koy — BF_abrpr) (3.120a)
631~-+1|1= = ék|k (3.120b)
Ky = P19 a(t_aPrii-19r_a +0°)7" (3-120¢)
Puyr = Pup-r — Kidi_yPii1 (3.120d)
Pepie = Pug (3.120e)

with initial values fg_y, Po_;, and
[y-1s---vy—d—n+1vu—1’--- ’u—d—n+1] . (3.121)

Under these assumptions and using the general formula (3.34), it will be shown
below how the optimal control law can be obtained. The result will be the same as
that of Nahorski and vital.

From (3.34) and using 8, = by, (2.62), we have

E{ﬂo yk+d| Fr} = E{ﬂ0| fk}y;.m . (3.122)
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Substituting (3.114) into (3.122) gives

n—1 n—1
E{Bo(D_ ajye—; + X Biwe; + erpa)l Fi} = E{Bol Filyira - (3.123)
j=0 =0
Then the control law explicitly can be obtained:
2?-_?(} (Bo.k|k&j.k{k + Pﬁoaj Ik)yk-j + Z}‘:‘f (Bo'k|kﬂ-j'k|k + Pﬁoﬂ,- [k)uk—j - ﬂo,k|kyl:+d
B e + Pazii

U = —
(3.124)

where the estimates satisfy the equations (3.120). As expected. using the proposed
approach we reached the same result as Nahorski and Vital. Once again, this

verifies the generality of the proposed approach.

Next a simulated example showing the performance the proposed algorithm,

Section 3.6, will be presented.

3.8 Simulation results

In this section, an example of a minimum-phase system will be presented to illus-
trate the algorithm developed in this research. Section 3.6. The performance of
this algorithm will be compared to that of the adaptive minimum variance control

designed based on the certainty-equivalence principle.

Consider the following SISO linear time invariant system,
Al Ny = Blg uy, + & (3.125)
where

Alg™') = 1+4a,g7" +a,q7?

¢ (bo) -

oy

—~
o
|

—

N——
I
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The system above can be written in the following form:
Ye = —@ 1Ykt — Go¥r2 + boup_, + € (3.126)

Then (3.126) can be written in the following regression form:

Yo = b0 + € (3.127)
where
8 = [a;,a5b0]"
¢E—1 = [~Yko1: ~Ypoz Uk-2] -

The true value of the parameter vector 4 is
§=1[1,-2.15T. (3.128)

The minimum phase system above has one pole on the unit circle and an unstable
pole at -2.0. It is assumed that the unknown parameter vector . generated by a
random generator. is a gaussian random vector with a priori statistics having mean

and covariance

fo-1 = [2.9822,1.6839,1.7374]7 (3.129)
Py, = 10+I. (3.130)

The initial state is assumed to be known:
T, = 0. (3131)

The measurements noise {e,} is a white zero-mean noise with known covariance
R = 107°. The signal to noise ratio is rather high to avoid running the program
many times to obtain the mean values of estimation as well as the input and output

signals.
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yk & y*k

3 T T i T 1
2.5 _
2r 4
1.5F -
4
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_1 i 1 1 1 1
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time

Figure 3.1: Output y, (solid line) and reference signal y; (dashed line)

The desired output sequence {y;}, is taken to be a unit square wave of period

20 samples.

The performance of the indirect cautious control with known initial condition
algorithm (3.82) to (3.83), proposed in this research, Section 3.6, is shown in Figs 3.1
to 3.5.

Figures 3.1 to 3.3 show the output and reference signal, input signal, and the
estimated parameter, respectively. They correspond to one sample run for this

example. Fig. 3.1 shows that the algorithm converges and that perfect tracking is
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uk
3 ) 1 T | T
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time

Figure 3.2: Input signal u,

ultimately achieved. As shown by Fig. 3.3, the true parameter set is identified in

less than 5 samples.

Fig. 3.4 demonstrates the superiority of the proposed adaptive algorithm over
the certainty-equivalence controller. Fig. 3.5 exhibits the transient and steady-state
performance of both the cautious control and the certainty-equivalence controller.
As expected, both the controllers have the same steady-state behavior; However,

the cautious control shows a better transient behavior.
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al=1.0, a2=-2.0, b0=1.5
5 T T

time

Figure 3.3: Estimated parameters; a, (dotted and dashed line), a, (dashed line),
and b, (solid line)
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yk_cc & yk_ce
1 0 T T ] 13 L
_2 1 i ] 1 1
0 5 10 15 20 25 30
time

Figure 3.4: Cautious control response (solid line) and certainty-equivalence con-

troller response (dotted and dashed line)
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Transient respones Steady-state responses
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Figure 3.5: Transient and steady-state responses; the left graphs show the transient

responses and the right graphs show the steady-state responses. Cautious control

responses (solid line), certainty-equivalence controller responses (dotted and dashed

line), and reference signal y; (dashed line)



Chapter 4

MIMO adaptive control

4.1 Introduction

This chapter is concerned with indirect MIMO stochastic adaptive control. The
goal is to design an adaptive minimum variance controller for MIMO linear time-
invariant discrete-time systems having white noise perturbation and unknown in-

teractor matrix.

The new indirect approach proposed in this research is based on the result
obtained by Das [17]. Das (1986) [17] showed that the a priori knowledge of the
degrees of the diagonal entries of the interactor matrix alone is sufficient for proving
global stability. Dion, Dugard, and Carrillo (1988) [18] verified the result obtained
by Das [17] using a different approach. As for the SISO case, discussed in Chapter 3,
it is shown how the general optimal solution of the one-step-ahead criterion, defined
for a MIMO system with unknown interactor matrix, can be obtained. Using this
solution, it is proved that MIMO cautious control can be designed only if the

interactor matrix is known. However, if the interactor matrix is unknown, an exact

71
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solution for the MIMO one-step-ahead optimization problem cannot be obtained.
Hence. the most popular approximation method, i.e. the certainty equivalence
principle, is employed. Then it will be shown that the conventional approaches, [30,
19, 17], cannot be applied in the stochastic case. However, the proposed approach

is capable of dealing with stochastic cases.

This chapter is organized as follows. In Section 4.2 the system model is de-
scribed. The concept of an interactor matrix which is a generalized concept of a
relative degree of a scalar system is reviewed in Section 4.3. In Section 4.4 the con-
trol criterion is addressed. In Section 4.5 using state variables. it is shown how the
system model can be transformed into a special model proposed by Salut {45] or a
canonical singular pencil (SP). This minimal canonical model has been discussed in
detail by Aplevich [4, 3]. Then using this minimal canonical model, in Section 4.6
it is shown how the system model can be transformed into various predictor forms.
In Section 4.7 it is shown how the entries of the interactor matrix are related to the
entries of the canonical ARX model using two different methods. In Section 4.8 as
for the SISO case, the general optimal solution of the one-step-step ahead criterion,
defined for a MIMO system with unknown interactor matrix, is obtained. Then in
Section 4.9 it is shown how the general optimal solution obtained in this research
can be applied to some special cases discussed in the literature. In Section 4.10
in order to explain why the conventional direct approach cannot be applied in the
stochastic case, the direct adaptive control proposed by Dugard, Goodwin, and deS-
ouza [19] is considered. In Section 4.11 the proposed indirect stochastic adaptive
control with unknown interactor matrix is presented. At the end of this chapter,
Section 4.12, simulation results show the performance of the proposed algorithm

compared with that of the minimum variance controller with known parameters.
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4.2 System description

A linear time-invariant MIMO system is assumed to be represented by the following
ARX model:

Al " yk = Blg ™ ur + ek (4.1)
where y, is p x 1, u, is m x 1, and ¢, is p x 1. A(q™'), B(g™') are polynomial
matrices in the unit delay operator g~! which have the following forms:

Alg™") = Ao+ A+ +AgT (4.2a)
B(g7') = By+Big'+---+B,q" (4.2b)
where v is the maximum of the degrees of the polynomials in A(¢™') and B(q™').

The independent sequence {e.} is a gaussian zero mean white noise process with

given covariance

E{eel} = R, . trR < oo (4.3)
where d;._; is the Kronecker delta and ¢r(.) is the trace operator.
In the sequel the following assumptions, as used by Wolovich and Falb [54], will
be employed:
Assumption 4.1 The number of inputs, m, s equal to the number of outputs, p,
and the input-output transfer function T(z) = A(z~') ' B(z7!) satisfies
detT(z) # 0 almost all z (4.4)
Assumption 4.2 The transfer function T(z) is strictly proper,
Lm T(z)=0. (4.5)

Note that Assumption 4.1 ensures output tracking and Assumption 4.2 ensures that
there is a delay of at least one unit between each input and each output. Hence,

for a strictly proper system By is zero in (4.2b).
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4.3 The interactor matrix

An important concept for design of multivariable zero cancelling control strategies,
such as deadbeat and model matching is the system delay structure. discussed in
Elliott and Wolovich (1984) [22]. As seen in Chapter 2, for the SISO system (2.1)
the delay structure was very transparent. In fact, one simply chose the delay, d. so
that the leading coefficient of ¢?B(q~!) was nonzero. This can be stated slightly
more formally by saying that in the SISO case, there exists a scalar function £(q)

of the form £(q) = ¢? such that

lim £(z)A(z") 7" B(z7") = kr (4.6)

Z—00

where kp is a nonzero scalar.

In the multivariable case it turns out that the delay structure of the transfer
function matrix can also be specified in terms of a polynomial matrix £(g). The

following result proved by Wolovich and Falb [54] applies to the multivariable case.

Lemma 4.1 Given any transfer function satisfying Assumptions 4.1 and 4.2, there

ezists a polynomial matriz, €(q), known as the interactor matriz, satisfying:

lim £{(2)T(z) = K¢ (4.7)

zZo0
where Kr i3 a nonsingular matriz.

In general, {(2) can be taken to have the following structure:
€(z) = H(z)D(z2) (4.8)

where

D(z) = diag[z*,...,2%], (4.9)
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d; > min;¢j<, dij and dij is the delay between the jth input and ith output. H(z) is

a lower triangular, unimodular matriz, with ones on the diagonal as follows:

[ 1 0 - 0]
H(z) = h?”) b d (4.10)
| hpu(z) Bpalz) - 1|

and h;j(z) s divisible by z or is zero.

Proof: See Ref. [54] or Ref. [28].

In [17] Das proposed a simple formula to determine the upper bounds on the
degrees of the off diagonal entries of £(q). The main result obtained by Das is stated

in the following corollary:

Corollary 4.1 Upper bounds on the degrees of the off diagonal entries of €(q) are
given by _
A(&:;(9)) < (Do di) — (=) (4.11)

fori>j 4ij=1,....p.

Proof: See Ref. [17].

Dion, Dugard, and Carrillo (1988) [18] verified the result obtained by Das [17]
using a different approach. In the sequel it will be shown how the results obtained
by Das can be employed to design an adaptive controller for a MIMO stochastic

system.
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4.4 The control criterion

The objective is to choose the input so as to minimize the mean-square error be-
tween the filtered output £{(q)y, and the filtered desired output é{q)yz. Thus con-

sider the following one-step-ahead cost function

Jerw = E{E(@(w: — v} (4.12a)
= E{trlé(a) (v — vi)(me — v2)TE(@)T]} - (4.12b)

Using the smoothing property of conditional expectations, we have

Jera = ELE{IE(@)(yx — v)I*| Fe}} (4.13)

Hence the optimal cost is

min E{E{||¢(q)(yx — vi)ll*] Fi}}
= E{H}‘{n E{l€(a) (v — vi)II’l Fi}} (4.14)

I:+d’

where u; 1s constrained to be F. measurable. In other words. the new criterion

may be written as
Teraie = EUIE(D) (v — v Fo} - (4.15)

Once again using the property of conditional means the index becomes

Jere = E{E{I€() (e — yO)I*| Ficr w0, 61} (4.16)

where z is the initial condition and 6 is the parameter vector. A new index when

zg and 8 are known will be obtained as follows:

Jierd tezes = EUIE@) (wr — ) II*] Far 2o, 6} - (4.17)

As in the SISO case, a key step in deriving the control signal to minimize (4.15)

and (4.17) is to develop a predictor form for £(q)y,.
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4.5 Minimal canonical representations

In order to solve the optimal problem above, the same procedure as used in Chap-
ter 3 will be used. Before beginning this discussion, a brief introduction to the class
of minimal canonical representations required is given in this section, discussed in

detail by Aplevich [2, 3].

Using state variables, the ARX model (4.1) is transformed into a special canon-
ical model proposed by Salut [45|. First, by introducing auxiliary variables in a

vector z; with n = vp entries, the ARX model (4.1) is written as

[ 0,xp 0| [ A, ] [ B, | [0 ]
I, I : : :
Tiy1 = 7 . Tk — Y + U t+ e, (4.18)
Oan T Al Bl 0
] 0 [p_ _Ao_ -Bo_ _[p_

where [, denotes an identity matrix of order a and O,xs an a x 3 zero matrix.

In the special case of a scalar system. for which m = p = 1, all sub-matrices A, By,
of equation (4.18) are scalars, and the system parameters are obviously identical
to those of equation (4.1). For both efficiency and uniqness of identification, a
canonical form is required. In general, however, (4.18) must be modified slightly to
be canonical. The details are given in References [45] and [2]; here only a summary
of the results will be given.

It has been shown by Aplevich [2] that by premultiplying (4.18) by a non-singular
matrix, and by selectively deleting rows and columns, a canonical form can be
obtained which is externally equivalent to the original in the sense that the set
of external vectors {yi, ux} admitted by the equations is invariant. The canonical

form to be described is a minor variation of that proposed by Salut in [45], and for
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simplicity will be written

zk-{-l = E_zk - A-yk + B_uk (4.193)

0 = Eyz,— Ay, + Bouy + ¢, (4.19b)

A canonical model of the above form has the following properties:

o For causal discrete-time systems, the row degrees of ¢~! in A(q™!) are no
less than the corresponding row degrees of B(q~!), and A(q~!) is invertible.
Thus A, is invertible, and furthermore in the canonical form considered. A,

is upper right triangular with unit diagonal entries.

o The integers n;, ¢ = 1,...,p are the observability indices of the system and

n=mn;+mns+ -+ np.

E-
¢ The matrix £ = is zero except for a positive unit element in each

Eo
column. The unit elements called pivots, in the n non-zero rows are to the

right of pivot elements in superior rows. The locations of the pivots are
uniquely defined by n; such that if row i of Ej is denoted by Ey;, then Eo;( E.)™

is the lowest zero row in the matrix
Eo(E.)

(4.20)

&
I

EyE.
Eo

L J

Thus E contains zero rows Eo;(E.)™ together with the n non-zero rows of E,

so that each row of F is of the form Ey;(E.)?, and may be referred to as row

(2,7)-
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A.
Ao
(9)

and their locations are uniquely determined by {n;}. Each a;{’ is in row (i, j)

o The non-identically-zero, non-unit entries in A = [ } are designated af-;z)

of A, using the row indexing of E above, and column & = 1,2,...,p. Thereis
an entry af,’;) for each non-zero row of the form Egi(E.)™ 7 below Eg;(E.)™
in E, that is, for each non-zero row with index (k.n; — j ) below row (i,7n;) in
E.

B

e For causal systems the matrix B = [ " | does not have a special structure
By

are as for a'

.,‘Z) except that k =1.2,.... m.

3

and the subscripts of its entries bf-,’;)

For a strictly proper system, By is zero.

It has been shown by Aplevich (2] that the parameters {a'} and {6} in (4.19)
are identical to those in a canonical ARX model (4.1). Specifically, the parameters
af-i:) and b in (4.19) are the ik entries of the canonical coefficient matrices A, and

B; in equations (4.2a)-(4.2b), respectively.

Equation (4.19) can be written

poy | ¥ | = | B A B0 (4.21)
g Eo —Ao Bo I||u
L €k [ €k

where P()\) can be regarded as a singular pencil of matrices. Hence the above

model is sometimes called a singular pencil (SP) model, {3].

It has been proved by Aplevich [2] that with [~Ag Bo] in reduced row eche-
lon form, the dynamical system above, (4.21), is minimal iff it possesses the two

properties
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Property 4.1 [E. - A — A. B.] has full row rank for all complez .

E.- Al
Property 4.2

} has full column rank for all complez X.
Eo

The following example further illustrates these points.

Example 4.1:

Consider a 2-input. 2-output strictly proper system used in [?],

Alq )y, = B(g My + ¢ (4.22a)
where
[ (14 q71)(1 + 27 0
A(g™Y) = (I+a)+207) (4.22b)
0 (L+3¢71)(1 +4¢72)
i —1+2 -2 -1 + -2
Bgh) = |? v (4.22¢)
i q—l+4q"2 q-l +3q—'2
The corresponding SP model is
zV
z?)
(X 0 0 0 -20 00 20 10]|z®
0 -A 0 0 00 —120 40 3.0 || z®
1 0 -A 0 -3.0 0 1.0 1.0 ()
Ye 1 _g. (4.23)
0 1 0 - 0 —-7.0 1.0 1.0 || y®
0 0 1 0 -1 00 0 o0f]}u¥
0 0 0 1 o0 -1 0 o]«
el




CHAPTER 4. MIMO ADAPTIVE CONTROL 81

Note that throughout this chapter the entries 0 and +1, as opposed to 0.0 and
+1.0, in the system pencil are used to denote identically zero and identically unit

entries, which do not need to be estimated.

Since [—~Ag By in (4.23) is in reduced row echelon form and the dynamical
system (4.23) satisfy Properties 4.1 and 4.2, it can be deduced that the minimum
dimension of the system is n = 4. By constructing E in (4.20). {n;} = {2.2} which

the integers n; satisfy n, + n, = n, as expected.

The structure of the canonical SP form for this system. obtained by applying
the algorithms developed in References [2] and [24], is given in equation (4.19) with

000 0] row(1,2)
0 0 0 0| row(2,2)
E. _ 10 00 row(1,1) (4.24)
Eo 0100 row(2, 1)
0 01 0| row(l,0)
00 0 1| row(2,0)
ol a8 47 ]
—ay) —ai? b7 &7
—A- B‘} = a0 B by . (4.24b)
I 0 —ay by by
-1 —aﬁ) 0 O
|0 -1 0 0 |

The corresponding canonical ARX model can be obtained from the system pencil
by inspection, with
Alg ")y = B(q " )uk + ex (4.25)
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where
:
A(q_l) — 1 ag.?.) + ag.]i.) 0 q_1+ (Zg_i) a(lzz) —2
0 1 0 g @ o |7
i G22 as a2
100 30 o . [20 0]
= + g + q
-0 1 0 7.0 0.0 12.0
Bla-h) - |t bR oL | e
O B2 g2 |2
| 021 22 21 22
10 w0] _, 20 10]
= ¢+ q
1.0 1.0 4.0 3.0

Note that the canonical matrix polynomials A(¢q~!) and B(q~!) are obtained from
(4.24) by inspection.

Using the minimal canonical model (4.19) the cost function (4.12) can be min-
imized including the initial conditions. As the SISO case, it is necessary that a

ARX or the model (4.19) be expressed in a predictor form.

4.6 MIMO predictor forms

In this section it is shown how a MIMO system having a minimal canonical model
can be transformed to a predictor form. Then it is shown the conventional predictor
in the literature, discussed by Goodwin and Sin in [28], can be considered as a
special case of the predictor proposed in this research.

As explained in Section 4.5, in the MIMO case an ARX model can be written

in the minimal canonical form (4.19) or

Ty, = E.zp— Ay, + By (4.26a)

Y A Eozi + A5 Bouy, + Age (4.26b)
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since A, is required to be an invertible matrix. Substituting (4.26b) into (4.26a)

gives the following standard state-space model:

Ty = Az, + Bu,— A_Aj'e, (4.27a)
Y = Cz,+ Du, + Ajle, (4.27b)
where
A = E.—-A.A;'E, (4.27¢)
B = B.-A.A;'B, (4.27d)
C = Aj'E, (4.27e)
D = A;'B,. (4.27f)

As mentioned, for a strictly proper system, By is zero. Hence. the two models above
(4.26) and (4.27), are simplified as follow, respectively:
Ly = E.Ik - A-yk + B_uk (4.283)

yk = AEIEO.’I:L, + Ao_lek (4.28b)
and the corresponding state-space model is

Tppy = Az 4+ By, — A Aj'e, (4.29a)

yk = C‘-’Bk + Aalek R (4.29b)

The following lemma shows how a predictor form for a MIMO model can be derived

or how the filtered output £(q)y, can be determined.

Lemma 4.2 Subject to Assumptions {.1 and 4.2 and using the minimal canonical
model ({.28), the filtered output €(q)y, is related to {ur} and {yr} by a model of

the following predictor form:

d-1 iy d -1
€@y = Z ACA _l—lzk+1 + Z Fjek+d’_j (4.30)
i=0

=0
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where
k - k .
Tpor = Bit'zo- ) EFIAy;+ Y EYIBu; (4.31)
i=0 =0
€q) = Aog® +Mg® P+ +Ay_g (4.32)
d = mazimum advance in &(q) (4.33)

for k > 0 and d > 1. Furthermore, the coefficient matrices F,....Fy_, can be

computed as follows:

F. = (4.34)

7

AOAJI ] =0
(A; — DIl ACAF1ANATY j=1.....d -1

Proof: As the SISO case, from (4.28) and using a sequential method, we reach

k k
Tppy = E¥tlzy - Z Ef-jA.yJ- +> EF-i B.u; (4.35)
=0

=0

for £ > 0. Following (4.29), i-step-ahead prediction may be developed as follows.

First.
:l:k+2 = Azk+1 + B-uk+1 - A_A518k+1 . (436)
Similarly,
Zrys = /i:z:k+2 + B_uk+2 - A_Aalek.*.'_)
= A2$k+1 + (AB.ukH + B.uk+2) bt (AA.Aalek.fl + A-A51€k+2) .
Hence
. i-1 -1
Tipi = A 2y + 3 A B, — 3 AU AL AT ey (4.37)
i=1 ij=1

for K > 0 and 7 > 1, and also from (4.29b)

Y41 = C-7131c+1 + A616k+1 (4.38)
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and
Ypsi = Czyyi + Aglek-(—i (4.39)

for k > 0 and z > 1. Substituting (4.39) into (4.37) gives

i-1 i—1
yk+i = C'Ai_lzk+l + Z C_'Ai_j—lB.uk+j - Z CVAi—j—IA.Aglek+j + Aalek-q»i (4.40)

j=t 7=1

for k > 0andz > 1.

The filtered output £(q)y, can be written as follows:

(Aog® + Ay P+ + Ay _19)ys

£(q)yx

= Aoy Y MYy T H A Y
d -2

= Y AYpsd 1+ A 1Y (4.41)
=0

for d > 1. Substituting (4.40) and (4.38) into (4.41) gives
e -2 d-t-1

fQye = AICAd _l—1$k+1 - Z Ay Z C A* —I_J_IA-A(;Ieki-j + A516k+d'_,)
=0 (=0 j=1

7

d-2 d-l-1 . ~
+ Z Ay( Z CA* -I—J_IBUHJ') + Ad’_[(Czk+1 + A51€k+1) (4.42)
=0 i=1

for k >0 and d > 1. After some manipulations

’

d-1 e k+d -1 d-1
E(Q)yk = Z A[CA - _lzk+1 + Z ﬂk—juj + Zo Fjek+d1_j (4.43)
{=0 j=k+1 =

for k > 0, d > 1. Now substituting (4.35) into (4.43) gives

k k4d -1 d -1
Dy = Lizo+ Y ap_jyi+ D Brju; + 2 Fiep a_; (4.44)
=0 j=0 7=0
where
d-1 _,
Ly = Y AMCA*--1EM (4.45)

=0
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d -1

Q-5 = — Z A(C_'Ad’_l-lEf_jA. ] = 0, [P ,k (4.46)
=0
5 SZ 5 A CAY -1 BRi B, i=0,... .k wan
k—-j = . e . .
’ ktd —1-j \ & fktd ~1=j-1p j=k+4l... k+d—-1
Ao Ag* =0
F; = oo o ’ (4.48)
(Aj — i AMC AT 1AL A j=1.....d -1

for k>0and d > 1.

Now the coefficients of £(q), {Ao,..- .Ay_,}, can be chosen so that the coeffi-
cients of u;,,,.... 4., _, are zero and also the coefficient of u; is nonsingular (in

the SISO case the coefficient of u; in predictor form is nonzero).

Bogyr = --=Pa=0 (4.49a)
Po = nonsingular (4.49b)
where from (4.47)
d —1+j L
G = S ANCAYHTB, j=-d +1,....~1 (4.49¢)
=0
-1
Bo = > MCA*''B.. (4.49d)
=0

After substituting (4.49) into (4.43), equation (4.30) follows immediately.

In the following lemma the predictor proposed in Lemma 4.2 will be expressed

in an alternative form that will be used in the next sections.

Lemma 4.3 Subject to assumptions 4.1 and 4.2, the filtered output (q)yr can be

written as follows:

k k d -1
€(Q)yr = Lyzo + Z ap_;y; + Zﬁk-juj + Z Fiep a_; (4.50)
7=0 =0 =0

fork>0andd > 1.
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Proof: Follows by substituting (4.49a) into (4.44).

Note that as expected the filtered output £(q)y, is a function of the system

outputs and the system inputs up to and including time k as well as the future

(unpredictable) noise F'(q)ex.

Now in the following lemma it is shown how the predictor model (4.50) proposed

in this research can be related to the conventional predictor from in the literature.

Lemma 4.4 The predictor model (4.30) in Lemma 4.8 can be ezpressed in a con-

ventional polynomial form, discussed by Goodwin and Sin [28]. as follows:

E(@Q)yr = gy + B(a uy, + Flq)ex (4.51a)
where
-1 -1 —(v—-1)

a(q”) = ato g+t a, g (4.51b)

Blg™!) = Bo+Bygt+--+ B, g7 Y (4.51c)

Flq) = Fog® +---+ Fy_1q (4.514d)

£q) = Aog® +---+Ay g (4.51e)

d = mazimum advance in €(q) (4.51f)

and v in the ARX model ({.1) is the mazimum of the degrees of the polynomials in

Proof: Because of the special structure of matrix E,

E'=0,, for I>v= max {n;}, (4.52)
=lv.p

=
1=1,...,

see Ref. [3], where the integers n;, i = 1,...,p are the observability indices of the

system, as explained in Section 4.5.
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Then for & > v — 1 the effect of initial condition z, disappears and (4.50) can

be simplified as follows:

k k d -1
Dy = ) o _;y; + > Bi_ju; + > fiCkra—; (4.53)
j=k—(v—1) j=k—(v-1) J=0
or
v—-1 v—1 d’—l
@y = Z QYp_; t Zﬁjuk—j +) fiCrid-j - (4.54)
7=0 j=0 =0

This establishes (4.51).

As seen the predictor model above (4.51) is a special case of the predictor (4.50)
proposed in this research. In a zero initial condition case there is no difference
between two models. However, the proposed predictor is capable of dealing with
a nonzero initial condition whereas the conventional predictor model lacks such a

capability.

4.7 Determination of the parameters of £(q)

In this section two procedures for constructing the interactor matrix are considered.
Using an example it is shown that the two procedure reach the same results based

on different assumptions.

Procedure 1: The procedure proposed by Furuta and Kamiyama (1977) [25]
will be used here to show how the entries of the interactor matrix are related to
the parameters of the canonical ARX model (4.1) or the minimal canonical state-
space model (4.29). For simplicity, the notations used here are the same as used by

Wolovich and Falb [54].

There exist unique integers y;, ¢ = 1,...,p, such that

C;A* B, = T, (4.55)
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where C;A*~1B. denotes the ith row of f;, the coefficient of u; in the predictor
form (4.50), and 7; is both finite and nonzero.

The first row of £(q) denoted by &(gq): is given by

E@hr=[gn 0 - 0] (4.56)

so that
CiA" 'B. =& =1 . (4.57)

If 7, is linearly independent of &, then set
£&@)2=[0 ¢= 0 --- 0] (4.58)
so that the coefficient of ux in €(q)2yx
C. A" 'B. =6 =1, . (4.59)

On the other hand, if 7, and ¢, are linearly dependent so that 7, = §}¢; with & # 0.

then let

E(@2=a{[0 ¢= 0 - 0]-déah}. (4.60)
where d} is the unique integer for which —8:C, A*1t# 1B, + C, A%+l B, = €} is

both finite and nonzero. If E; is linearly independent of of &,, then we set

&(q)2 = €'(q)2 - (4.61)

If £! is not linearly independent of ¢;, then £} = 62¢, and we let

2, -

£2(q)2 = ¢*2(€'(q)2 — 82&(q)] (4.62)

where p2 is the unique integer for which —82C, A%+ -1B, + C,A%*% !B, = £ is

both finite and nonzero.
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If €2 and ¢ are linearly independent, we set £(q), = €2(q)z, and if not. we
repeat the procedure until linear independence is obtained. The remaining rows of
&(q) are defined recursively in an entirely analogous manner. Finally, we see that
K = B¢ = nonsingular since the ; is linearly independent and also it was proved by
Furuta and Kamiyama (1977) [25] that using this method B_y , =--- =8, = 0.

The algorithm above proposed by Furuta and Kamiyama (1977) [25] is illus-
trated in the following example:

Example 4.2 (Continued):

Consider the minimal canonical state-space model (4.29). For simplicity. it is
assumed that a(lg) = 0 but then it will be shown how the final results can be modified

when a{9 # 0.

The procedure proposed by Furuta and Kamiyama results in

E(gh = [q 0]
7'1.= C,A'"'B. = C,B.
by b2
by bay
= oo 1ol [ o =06 s]=6#0

bll b12
| 5 by |

If we put

£(g)2=(0 q] (4.63)
then
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6 o
by ba
by b
| B by

= (000 1] =[ b5} b5 ]

Note that if we know that £, and , are linearly dependent

with

Let

and

£l
2

T2 = 61151

Y L. ()
JL, if 6 £0

8t =
(1)
b b 40

by

(@2 = q{l0 ¢q]-81&ah}

= [ -8i¢* ¢
_§!C,A*'B. + C,A*B.
3 2 17 .2 2) ]
00 a2 o ][ 62 o
. 0 0 —aff —af || b b
—4l0 01 0] (1) (1) (1)
10 —ai1 0 bll blz
RN
00 —af} —aff ][ o
0 0 —aff —aff || 8 &)
+{0 00 1] (1) (1) ()
01

e

91

(4.64)

(4.65)
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R s S (R T IR (YO B O T O R C S (AT
= [ =862 — a5 + (32 — alB)  —g1(62 — a8y + (62 — aWplL)) |
If we know that €} and £, are not linearly independent, then £} = §2¢, with
Arl— s (6 — b)) + () — afPe)] i b)) # 0
6 = (4.66)
el 0 — o) + () — ae)] i by # 0

12

Since E; depends linearly on £;, we continue by defining
E(q)2 = ol ot ¢ 1—83é(ah}
= [ -di¢"~d8i® ¢° |
for which
€2 = —§1C, A% 1B, - §*C,A*'B. + C,A*'B. . (4.67)

If we know €2 and £, are linearly independent the procedure must terminate. Hence

3

q 0
&(q) = [ } . (4.68)
-8l — 83¢* ¢

For instance, if bﬁ’ # 0 then

q 0
€(q) = 1) (1) . (4.69)
%q ;%;T[—gfgy(b&”—au’b“’>+(b§2’ as b ¢

If the true values of the parameters in the model (4.25) are substituted into (4.69)

[ 0
£(q) = ? }

—1043_ Ly 10(90_30x1.0) + (4.0 — 7.0 x L.0)|]¢? ¢°
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which this is the same result as Goodwin obtained [?]. However, if a'% # 0. using

the same procedure as explained in above, the coefficients ¢} and §? are modified

as follows: o
ba, (1) (0) (1)
BT a0 if byy' — ay2 b3 # 0
8 = (4.70)
AR .p (1) 0); (1
(0 _ (01,10 lfb(lz - agz bgz) #0
12 12 722
and
1 0 1)
T)_—QQWM if 6} — {988} # 0
8 = (4.71)
1) 1] 1
. _(o)me 1fb( ( )b( ) #0
where
M = _Jl[b(z) (1)b(1‘+bg1i)a(111)a(1‘;)_ (0)(b(2) (1)b(1) ]-{'—(bgz) azz)b(l))
2 1 1 1 1 o] 0 2 1 2 1)4(1
N o= —&el — a6y + talYaly — alD (653 — alel))] + (687 - alyly) .

Procedure 2: The procedure above, Procedure 1, was based on the algorithm
described in Furuta and Kamiyama (1977) [25] and involves nontrivial computations
including tests for linear dependence. Whereas the procedure proposed in this
research, Procedure 2, is based on the result obtained by Das [17] and a priori
knowledge of the degrees of the diagonal entries of the interactor matrix and involves

solution of a set of linear algebraic equations.

In the proposed procedure, the first step is to determine the structure of the
interactor matrix {(g). Because of the special structure of £(gq), &i(g)=0fori<y
and &;(q) = ¢ fori =jandi,j=1,... ,p- The major difficulty is to determine
the polynomials of the nondiagonal entries of £(q). In the following lemma it is

shown how the polynomials of the nondiagonal entries of £(q) are determined.
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Lemma 4.5 The polynomzials of the nondiagonal entries of £(q) are given by

I RC I TTE PR, AL s >d+ 1
£4(a) ={ ot St a2 S (4.72)
where _
Wi; = a(fij(‘l)) < de - (i —17J) (4.73)

=7

fori>j5 i.j=1..... D -

Proof: From Corollary 4.1 proved by Das [17], the upper bounds on the degrees of
the entries of ¢;;(q) are given by (4.73). Also from Lemma 4.1

&i(q) = hij(‘])qdj (4.74)

for z>357 4,5=1....,p.
Since h;;(q) is divisible by q (or is zero), the least powers of ¢ in the polynomials
of {;;(q) are d; + 1 if w;; > d; + 1; otherwise, the polynomials of &;;(q) are equal to
zero if w;; <dj+1forz>jandi,j=1,...,p. This establishes (4.72).
For adaptive control Das {17] showed that the inequality sign in (4.73) can be

replaced by an equality as follows:

Wi = a(fij(‘])) = Z di. — (i — j) (4.75)
k=3
for t>35 i4,j=1,...,p.
Now using (4.75) and Lemma 4.5, the structure of £(q) can be specified. In other

words, the structure of the the matrices A; in (4.41),

’ ’ dl-l ’
€(q) = Aog” +Aig” T+ -+ Ay g= ) Mg (4.76)
{=0



CHAPTER 4. MIMO ADAPTIVE CONTROL 95

where d , the maximum advance in £(q), is obtained as follows:
d = maxd¢;(q) (4.77)
for : >3 4,3=1,...,p.

Finally, the unknown matrices A; are determined by solving the matrix equations
(4.49a),
B_gir=--=PB1=0, (4.78)

where
d-1+4j
Bi= Y AMNCAYWi-ip_; j=—d +1,....-1. (4.79)
=0
Finally, the following example is presented to illustrate Procedure 2.

Example 4.3 (Continued):

Consider again the system of Example 4.1 but with the priori knowledge of the
degrees of the diagonal entries of £(g). Assume that the degrees of the diagonal

entries of the interactor matrix are 1 and 3, 1.e. .d; =1 and d, = 3.

From (4.75)
wy;, = 9(éa(q)) = i d —(2-1)=3. (4.80)
Using Lemma 4.5 =
£31(9) = b0nq° + &1 T - (4.81)

Then the interactor matrix has the following structure:

q 0
€(g) = (4.82)
ARE + A ¢
where AS} = €021 and A = €, 21- Hence, the coefficient matrices of {(q) are
0 0 0 0 10
Ao , A= . (4.83)
AD 1 ALY 0 00
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Using the equations (4.49), we have

AoCAB.+ A CB. = 0 (4.84a)
AoCB. = 0. (4.84b)
From (4.24) and (4.27c¢)-(4.27f),
A = E.- A.A;'E,
-0000- paﬁ) a(lzz)- _
_ {0000 a? &2 1|1 <9 0010
T liroo00] | o 0 1 0001
(01 00] | 0 aff]
(00 ~al? ool
— —Q1 G321 @y; — Gy (4.85a)

0 (1) (2) (0)

0

0 0 —a? o0 _ 4@
1 —an @y, 011

0

1 0 ~aly)
2 2) ]
oY 5
2) (2
b7 557
(1) 1)
bll b£.2
1 1
By b5

-1
(0) (0)
- 1 0 010 1 -
C = Aj'E,=| ™ =% A (4.85¢)
0 1 0 0 01 0 00 1
Substituting (4.83) and (4.85) into (4.84b) gives
by b7
[ 0 o]f[o o1 —a@]|s? &2 . (w56
A 1{loo0oo0 1 L) Y
b b |
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which A(21 is obtained as follows:

-6 e 7 (1 1
ST (0,100 if by — afy'bly) # 0
11 12 721

AY = (4.87)
(1)
T;—}zm“’ if b{5 — a8y #0

The comparison of (4.82) and (4.68) shows that A{Y = —¢é! and Al = —§2. The
result obtained in (4.87) verifies that A(O) —4;. Then it can be verified that A(l)

is equal to —42 by solving the equation (4.84a).

The two procedure above reach the same results but based on different assump-
tions. Also, note that Examples 4.2 and 4.3 show how the entries of the interactor
matrix are related to the entries of the canonical ARX model. This relation can sim-
plify the problem of adaptive control of multivariable stochastic systems. This can
be interpreted as a technique for eliminating the need for knowing the noninteger

valued variables in the interactor matrix.

4.8 General optimal solution

Here the optimization of the control criterion Jy 4. given in (4.15) is discussed.
Using the same approach as used in the SISO case in Chapter 3, it will be proved
that the optimal solution can be expressed analytically. The result is summarized

in the following theorem.

Theorem 4.1 For the system (4.1) having predictor form (4.50), the control law

minimazing the criterion

Jeraie = E{1E(@) (i — w)II?| Fi} (4.88)
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s given by
E{B7¢(q) (v — v0)| Fi} =0 (4.89)

fork>0 andd > 1.

Note that it is necessary to assume that the system is minimum-phase at every

instant of time. The control signal may otherwise be unbounded.

Proof: Using (4.50), the term £(q)y. — €(q)ys can be written as follows:

’

’
d d -1

-1
Fjek+d,_j - IX: Ay (4.90)
=0

=0

k k
&y — €@y = Lizo+ D ap_jyi + O Bju; +
7=0

j=0

for k> 0and d > 1. In order to show which term is a function of ug. the equation

above (4.90) is rearranged as follows:

E(@)y — E(Q)yE = Bous +7(6.20. VE.UE™) + (8, EFF ) — (0. V7E1E)  (a.91)

where 4(.), 7(.), and p(.) are nonlinear functions and

Yo = {e:--- w0} (4.92)
U = {up .. .. ug} (4.93)
5&? = {ettas-- - Crpr} (4.94)
y't:f = {yl:+d’s---~yl:+1}° (4.95)

For simplicity, (4.91) is written in the following compact form:

£y — E(Qyx = Bouy + Ay, (4.96)

where

Ay = (8,70, YE,UETY) + (0, EEL ) — (8, VEET) (4.97)

and A, is independent of uy.
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Substituting (4.96) into (4.88) gives

Jerae = ElllBoue + A% Fi} (4.98)
= E{tr[(Bour + AL)(Bour + AL)T || Fi} (4.99)

or

Jesape = E{tr(Bourui By + Bour AL + Agui BT + AAT)| Fi}
= E{tr(Bowui ) + tr(Bour AF) + tr(Aufp]) + tr(AAT)| Fi} .

(4.100)
Using one of the properties of the trace operator, we have
tr(ﬁoukufﬂg‘) = tr(u,’fﬁg'ﬁouk) (4.101a)
tr(BourAL) = tr(ueALA) (4.101b)
tr(AguiB3) = tr(BIAwl) . (4.101c)

Substituting (4.101) into (4.100) yields
Teraie'= E{tr(w{ B8] Bowr) + tr(we AL Bo) + tr(B] Agul) + tr(ALAT)| Fi} . (4.102)

The expectation and trace operations can be interchanged, and as uy is constrained

to be F; measurable, this becomes

Jerd e = tr(ui E{B] Bol Fie}ur) + tr(ur E{Af Bol Fic}) + tr( E{BF Ap| Fi}ul)
+ tr(E{AAT| Fe}) . (4.103)

As in the SISO case, all the conditional expectations in (4.103) are independent
of u, and minimization of the cost function (4.88) can be achieved by setting the

partial derivative to zero:

aJ. .,
—2ak — 2B{BTB0| Fitur + (E{ATBo| F})T + E{BTA| Fu} = 0

a’u,k
= 2E{f] Pol Fi}u, + 2E{B A Fi} = 0 (4.104)
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or

ur = —(E{B] Bol Fi}) ' E{BT Ar| R} . (4.105)

In order to obtain (4.89), (4.104) is rewritten as follows:

E{BTBour| Fr} + E{BTALI F} = 0
E{B5 (Bour + A)| Fi} = 0. (4.106)

Using (4.96)
E{B3 &(a)(ye —yi)| Fe} = 0. (4.107)

This establishes (4.89).

4.9 Some important special cases

The general optimal solution (4.107) is one of the main contributions in this re-
search. This solution can be applied to any system with or without uncertainties
in the model. In other words, (4.107) can be applied in both adaptive and non-
adaptive cases. In different cases, the only problem is to determine the conditional
expectation in (4.107). Now, it will be shown how the general solution presented

above can be applied to the following special cases:

1. Nonadaptive case: If the parameters 8, the initial condition z,, and the in-
teractor matrix {(q) are known and also By is nonsingular, (4.107) can be

simplified as follows:

E{&(q)y| Fi, z0. 0} = &(q)y; - (4.108)

In words, the input {ux} is obtained by equating the optimal prediction
E{&(q)yi| Fi, 20,0} with the filtered desired outputs £(q)y;.
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2. If B, is known and nonsingular. and as well the interactor matrix is known,
then
E{&(q)yil i, Bo} = E(D)yi - (4.109)

3. MIMO cautious control: If the interactor matrix is assumed known, equation

(4.107) is simplified as follows:

E{B3 &(Q)yl Fi} = E{BT| Fi}e(a)y; (4.110)

and the control law which satisfies the equation above is called the MIMO

cautious control.

4. Certainty equivalence adaptive control: Using the certainty equivalence ap-

proximation, as shown in Chapter 2, (4.107) can be approximated as follows:
E{f5 &) ~ yi)| Fie- 20,6 = Gy} = 0 (4.111)
or
E{ﬂg‘l Fi, To, 0 = ék|k}E{f(‘1)(yk = Yi)l Fr, 0,0 = ék[k} =0. (4.112)
Now if E{BT| Fi, 20,0 = éklk} is nonsingular,
E{&(q)(yi. — vi)| Fr, 20,0 = 6} = 0. (4.113)

The equation above (4.113) shows that an approximation of the optimal con-
trol law can be obtained by solving the control problem in the case of known
parameters and substituting the known parameters with their estimates. The

controller can be interpreted as a certainty-equivalence controller.

Hence, there would be two different cases with known £(g) and unknown £(q)

as follows:
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o With known £(q): If the interactor matrix é(q) is known, then (4.113) is

simplified as follows:

E{&(a)yi| Frr 20,8 = 0} = €(q)vi - (4.114)
o With unknown £(q): If £(q) is unknown, then (4.113) is written as follows:

E{&(@)yil Frr 20,8 = b} = E{E(Q)Yi| Frr 20,0 = b} (4.115)

4.10 Direct adaptive control with unknown £(q)

In this section it will be explained why the conventional adaptive control with
unknown £(q) in the literature, which is based on a direct scheme, cannot be applied
for a stochastic case. However, the indirect approach proposed in this research.

which will be explained in the section. is capable of dealing with stochastic case.

In the following algorithm proposed by Dugard, Goodwin and deSouza (1983) {19]
the real variables appearing in the interactor matrix are estimated along with the
other parameters appearing in the system model in a deterministic case. This

approach follows a suggestion originally made by Johansson 1982 [30].

Counsider the predictor model (4.51) in a deterministic case, ¢, =0,

E(Qye = (g My + B(g™ M uy . (4.116)

Using (4.8)
H(q)D(q)y = aq™ ")y + B(g ™ uy (4.117)

where D(q) = diag[q¥ - - - ¢%]. Using the structure of H(q), Lemma 4.1,

D(q)yx = L(q)D(q)ys + (g~ )yy + Blg™)uy (4.118)
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where

Lq) = [I-H(qg)]

0
—h 0
— 2.1(‘1) . . (4119)
L _hpl(q) e _hpp—l(Q) 0 ]
Equation (4.118) can be written in regression form as:
ith element of [ D(q)y,] = yilq, = ¢£‘lf;9“’ : i=1..... p. (4.120)

In (4.120), ¢g)_z is a vector of values of the system outputs up to time (k + [;) and
of the system inputs up to time k where /; is the maximum forward shift in the ith
row of L(q)D(q). 8¢ is a vector of coefficients in the ith row of L(q), a(g™!), and
B(g7'). (Noted; > &;: i=1,---.p.)

The estimated vectors {éfc‘)} obtained by the least squares algorithm. are now

regrouped to form
a(k,q7"), B(k,q7"), and €(k,q7*) = (I — L(k,q7"))D(q) . (4.121)

Finally, using (4.115), the feedback control signal u;, based on the certainty equiv-

alence principle is generated by solving
Bk, g™ Yup + &(k, g7 Yy, = €k g7 Yyi - (4.122)

As mentioned before, the adaptive algorithm above with unknown £(q) is a direct
scheme since the design is based on estimation of the parameters of the predictor
model. The difficulty is that this algorithm cannot be applied for a stochastic case.
To show this disadvantage, once again consider the predictor model (4.51) including

noise which can be written as follows:

D(q)y, = L(Q)ye + a(q " )yr + B(q ™ )ur + F(q)ey. (4.123)
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Then (4.123) can be written in the following stochastic regression form

. i )T (i i .
ith element of [ D(g)y,] = y,(c_,)_d', = ¢§cll.-‘9( )+ u,(cldl. ;o ot=1,...,p (4.124)

where u,(c:)_d‘ is a colored noise with unknown statistical characteristics. The impor-
tant point that has to be stressed in this method is that the parameter estimator will
be biased because of the correlation between the noise and the regression vectors.

This is the reason why the algorithm above is not used in a stochastic case.

However, it will be shown how the difficulties in the direct algorithm above can

be resolved by using the proposed indirect scheme.

4.11 Indirect adaptive control with unknown &(q)

In this section an indirect adaptive control with unknown é(g) is developed. It is

shown the proposed approach is capable of dealing with stochastic cases.

In the following discussion, it is assumed that the degrees of the diagonal entries
of the interactor matrix are known. In order words, the structure of the interactor
matrix is known based on the results obtained in Section 4.7, in which it was shown
how the entries of the interactor matrix are related to the entries of the canonical
ARX model. As shown in Examples 4.2 and 4.3, the evaluation of the interacter
matrix requires real divisions. Hence, we will not be able to evaluate the conditional
expectation in Equation (4.107). However, there are some approximation methods
to solve the problem. The most common approximation method, i.e. the certainty

equivalence principle, is employed, Equation (4.115).

The indirect approach involves first estimating the parameters and states in

a standard model (e.g., a one-step-ahead predictor), such as the canonical ARX
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model (4.1) or the canonical SP model (4.21) and then evaluating the control law
by on-line calculations.

Because of the initial condition zg, there could be two different cases for the

estimation process:

e The initial condition z, is known or zero,

¢ There is uncertainty in z,, or z, is unknown.

Both cases will be considered below.

Case 1: If the initial condition z, is known or zero, it is not required to estimate
the states of the system. Hence, the canonical ARX model (4.1) can be written in

the following form:
Yo = (Ao — DNy — Awyp_y, — - — Avlhr—o + Bruy + - + Byur—, + €. (4.125)
Then (4.125) is written in regression form as
Yr = B0 + ex (4.126)

where 8 is a column vector consisting of nonidentically-zero and nonidentically-unit
entries in [Ay — [, Ay,.... Ay, By,...,B,] and ¢ is constructed according to the

known order of the parameters in 4.
Then using (4.126), the following dynamical system is obtained to estimate the
parameters:
Orer = 6 (4.127a)
Yk = Gibe+ex. (4.127b)

Hence, the unknown parameters will be chosen from the Gaussian family and their

estimate O and associated error covariance Py are sufficient statistics. The
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parameter vector estimate ék[k and the associated covariance Py are obtained from

a Kalman filter according to

O = Oepor + Ki(yr — S8 Okier) (4.128a)
ék+1|k = éklk (4.128b)
Ki = Prp-105(dxPup—18f + Re)™" (4.128¢)
Py = Py — Kibr P (4.128d)
Pepie = P (4.128e)

Finally, the input u, is generated by solving (4.115),

E{6(9)yel Fu. To, 8 = 6} = E{€(a)ui] Fir 20,0 = Bent - (4.129)

Case 2: If the initial condition zq is unknown, the canonical ARX model (4.1) or

the canonical SP model (4.21) can be put into the following equivalent form for the

simultaneous estimation of the state variable z; and the system parameters §:
.., = Ez.—-A.y,+ By, (4.130a)

Y = Eo:Bk - (Ao - I)yk +e. (4130b)

Then it is not difficult to see that the model above (4.130) can be written as follows:

Ty, = E.z, +G.6 (4.131a)

Y = Eozi+ Gob + e (4.131b)

where G. and Gj are matrices constructed from the measurements y; and u, ac-

cording to the ordering of the system parameters ag) and bg;i) in 8, such that

U Up

G.6 = [-A. B [ Yk } . and Gof = [—(4,— 1) 0] [ y"] L (4132)
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As the system is assumed to be time-invariant, then § = §, = ., and eqn (4.131)

can be written as follows:

8k+1 = stk (4.1333)
where
S = [zf GE]Ts H, =[E, Go]
E. G.
Fk =
0 I

The simultaneous state and parameter estimation algorithm is therefore given by

the following recursive equations [45]:

Sk = Skpk—1 + Kie(y, — Hidkppe—1) (4.134a)
Stere = Fidup (4.134b)
Ki = Py HI(HiPupo  HY + Ri)™ (4.134c¢)
Pae = Pup_y — K Hi P (4.134d)
Py = F. P FT (4.134e)

with initial conditions
.§o|_1 = E{30I .7'-_1} y POI—I = E{(SQ - 30[_1)(80 - 30[_1)T| .::_1} . (4135)
Finally, the input u, is generated by solving (4.115),

E{&(9)yr| Fr, 0,0 = ék[k} = E{&(q)yi| Fi, 20,0 = ék,k} . (4.136)
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4.12 Simulation results

In this section, an example of a two-input, two-output system with fifteen unknown
parameters will be presented to illustrate the performance of the algorithm devel-
oped above. Also, the performance of this algorithm will be compared to that of

the minimum variance control with known parameters.
Consider the system given in the previous examples, Examples 4.1-4.3. The

model can be expressed in the following form:

Y = —(Ao~ DNy, — A1yp_; — A2yp_o + Biuy_y + Boug_, + er (4.137)

or
1 (V] 1 1 1 2 2 1
W] o @[] el o J[uh ][l a2 ]
2 2 1 2 2 2 2
v 0 0 v 0 i || w2 o af) | | wla
(1) (1) {1 (2) 2 1) 1)
+ by’ bpa uk-)l + by b(lz) “L-z + e{'
TN N R S g
Let the parameter vector 6 be

0) (1) (1) (2) (2) (2} _(2) £(1) £(2) (1) (1} 2(2) 2(2) 1(2) 1 (2T
§ = [a(u) a(u) agz) au) agz) 0(21) a(zz) b(u) bgz) b£1 bgz) bg_l) b12) ng) bgz)]

which contains 15 unknown parameters. The exact value of 6 is
6=1[0,3,7,2,0,0,12,1,1,1,1,2,1,4,3]7

As seen, the minimum phase system above has one pole on the unit circle and three

unstable poles at -2, -3, and -4 and four zeros at infinity.

It is assumed that the unknown parameter vector 6, generated by a random
generator, is a gaussian random vector with a priori statistics having mean and

covariance

-

fo-1 = [0.0577,3.1165, 7.0627,2.0075,0.0352, —0.00697, 12.1696,
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1.0059, 1.1797.1.0264, 1.0872, 1.8554, 0.9299,4.1246, 2.9361]T
P0|_1 = 0.01=1.

The initial state is assumed to be known:
Ig = 0.

The {er} is a white zero-mean process with known covariance

107 0
0 10°°

R =

The signal to noise ratio is rather high to avoid running the program many times

to obtain the expected values of estimation as well as the input and output signals.

The desired output sequences {y;'"'} and {y:®'} are unit square waves of 20

and 30 samples, respectively.

The performance of the proposed algorithm (4.128) to (4.129), the indirect
adaptive control with unknown £(gq), is shown in Figs 4.1 to 4.3. Fig. 4.1 exhibits
the general response of the system. The steady-state responses and the transient

responses are demonstrated in Figs 4.2 and 4.3, respectively.

The algorithm converges and perfect tracking is ultimately achieved. It is evi-
dent from Fig. 4.3 that the first output y,(cl) converges faster than the second out-
put y,(cz). Because the interactor matrix is nondiagonal, an unconditional minimum
variance is achieved for y,(cl) but for y,(,z) the optimization is achieved subject to

constraints.

The conclusion is that the control law does not simultaneously minimize the

individual output variance when the interactor matrix is nondiagonal.



CHAPTER 4. MIMO ADAPTIVE CONTROL 110

y1 y2
4 100
3
50t
2 .
1 o —
0
_50 L
-1}
-2 -100
0 50 100 0 50 100
ul u2
600 500
400+
0
200t
-500¢
OFI P~ ]
-200 -1000
(o} 50 100 0 50 100
time time

Figure 4.1: General response
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y1

40 60 80 100 120

40 60 80 100 120
time

y2
5
o m
-5

40 60 80 100 120

40 60 80 100 120

Figure 4.2: Steady-state response



CHAPTER 4. MIMO ADAPTIVE CONTROL

y1 y2
5 15
10
a 5
0 o (I
N
-10
0 10 20 30 40 % 10 20 30 40
ul u2
150 150
100} 100
50} 50}
o—'{Lt - 0 |
-50} -50
-100} -100
=150, 10 20 30 40 ~15% 10J 20 30 40
time time

Figure 4.3: Transient response
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Chapter 5

Conclusion and further research

directions

5.1 Overview

In this thesis, 2 number of open problems in SISO adaptive prediction and cautious

control as well as in MIMO adaptive control have been solved.

In Chapter 2, a problem in SISO adaptive prediction related to transient perfor-
mance was discussed. Using an indirect adaptive scheme, it was shown in a general
case how the optimal d-step-ahead prediction of y;, at time & in 2 minimum variance
sense, E{y,. 4| Fi}, can be determined. First using state variables, the ARX model
is transformed into a state space form which allows to us to express the model into
a predictor form. Then using the estimated parameters and states provided by
a Kalman filter, the optimal d-step-ahead predictor is constructed. It was shown
that the optimal prediction is obtained based on both the plant parameter-state

estimates and estimates of their uncertainty. As a result, the conventional adap-

113
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tive predictors discussed in the literature are asymptotically optimal whereas the
proposed predictor is optimal in a minimum variance sense at each step resulting

in good transient performance as well as asymptotic performance.

In Chapter 3, SISO cautious control was solved for the general delay-white noise
case. Using the theory of stochastic optimal control, it was proved that the value

of 4, which minimizes the following criterion:

Jk+dlk = E{(yk+d - yi+d)2| Fi} (5.1)

satisfies the following equation:

E{Bo(Yisa — Yi+a)| Fi} = 0. (5.2)

Then using an indirect approach, the same method as used in Chapter 2. the
equation above was solved to determine the control law u,. Note that the solution
does not depend on the model used and the approach applied, direct or indirect.
provided that the conditional mean of the noise seen by the predictor given Fj is

Z€ro.

It was shown that the proposed method and the method used by Astrém and
Wittenmark (8] are the same except that the proposed method can handle cases
with uncertainty in the initial conditions. Wieslander and Wittenmark [51] used
a very complicated way to solve the adaptive problem for a unit delay system.
Nahorski and Vidal in 1974 [40] handle the case with general delay by using a
special model and employing a direct approach. In order to verify the generality of
the solution above, it was shown that if the solution above is applied to the model

used by Nahorski and Vidal, their result is obtained.

As expected, simulations indicate that the proposed adaptive controller has a

superior performance compared with the certainty equivalence controller.
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In Chapter 4, it was shown how a MIMO system having a minimal canonical
model can be transformed to a predictor form. Then it was shown conventional
predictor in the literature, discussed by Goodwin and Sin in {28}, can be considered
as a special case of the predictor proposed in this research. Hence using the same
method as applied to the SISO case, it was proved that the one-step-ahead control

law minimizing a criterion of the form

Tera e = E{1E(@) (e — v)I1?| Fi} (5.3)

is given by
E{B7€(a)(y — vi) | Fi} = 0. (5.4)
As in the SISO case, it was shown how the general optimal solution above can be
applied to some special cases discussed in the literature. Also the solution does not

depend on the model used and the approach applied. direct or indirect, provided

that the conditional mean of the noise seen by the predictor given F is zero.

Furthermore. it was shown that if the interactor matrix is assumed known.

equation (5.4) is simplified as follows:

E{B3 €(q)yil Fe} = E{B5| Fi}e(q)ux (5.5)

and the control law which satisfies the equation above is called MIMO cautious
control. However, requiring knowledge of the interactor matrix is a severe practical
limitation. In general, this matrix contains noninteger-valued real variables and one
can argue that knowledge of these variables is tantamount to requiring knowledge of
the complete system transfer function. Therefore there has been strong motivation
in the literature to investigate ways in which the requirement of knowing the system

interactor matrix might be removed.

It was shown that if £(g) is assumed unknown, an exact solution for equation

(5.4) cannot be obtained. Hence, in this research the most popular approximation



CHAPTER 5. CONCLUSION AND FURTHER RESEARCH DIRECTIONS 116

method, i.e. the certainty equivalence principle, was employed based on the result
obtained by Das [17] and a priori knowledge of the degrees of the diagonal entries

of the interactor matrix. As a result, equation (5.4) is simplified as follows:
E{§(9)yel Fir 70,0 = b} = E{E(a)uil Fi m0.8 = e} (5.6)

if E{BT| Fr,z0,0 = éklk} is nonsingular.

It was shown that the conventional approaches discussed in the literature cannot
be applied to a stochastic case. However, the indirect approach proposed in this
research is capable of dealing with stochastic cases. At the end of Chapter 4,
simulation results show the performance of the proposed algorithm compared with

that of the minimum variance controller with known parameters.

5.2 Suggestions for further studies

The results of this thesis can serve as the basis for the following further research.

o Convergence and stability analysis: Convergence and stability analysis of the
algorithms proposed in this research were not given here. It would be of
theoretical and practical importance to establish conditions that will guaran-
tee the convergence and the stability of these algorithms. It is believed that
the results in Middelton et. al. [35] and Kumar [33] can be applied to these
algorithms.

o Nonminimum phase and nonsquare systems: In Chapter 4 it was assumed
that the system is minimum phase and the number of inputs is equal to
the number of outputs. As discussed in the literature [28], using different

criteria from that was used in this research, the adaptive control problem for
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nonminimum phase and nonsquare systems have been tackled in deterministic
cases. It could be an interesting research problem to solve these optimal

problems using the approach proposed in this research for stochastic cases.

e Suboptimal dual control: Most adaptive controllers are based on a separation
between the estimation of unknown parameters and state variables from the
determination of the control signal. The methods discussed so far have not
considered the interaction between identification and control. This means that
the control laws have not been designed to facilitate the identification. The
control strategies have been designed in order to minimize some control error.
sometimes under the assumptions that some parameters are uncertain. The
learning procedure has not been active but accidental. In a dual controller
there is, however. an interaction between identification and control in the
sense that the controller must compromise between a control action and a
probing action, [23].

The ultimate purpose is to minimize the following multistep-ahead criteria:

1 k4+N-1
J = _E{ Z (y:+d - yt‘-{-d)zlfk} (5.7)
N t=k
for the SISO case, and
1 k+N-1
J =& > @)y = v)I*1 Fe} (5.8)
t=k
for the MIMO case, with respect to u,, ..., uren-1-

The formal solution of the dual control problem has been known for a long
time, [23, 1]. The solution leads, however, to a functional equation which in

most cases is difficuit to solve.

There are many ways to solve the dual control problem in an approximate way.

In 1989, Mookerjee and Bar-Shalom, [38], proposed a suboptimal solution for
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a MIMO system with £(q) = q/. Now it seems to be feasible to combine the
approach proposed by Mookerjee and Bar-Shalom and the approach used in
this research to find a suboptimal solution for both the SISO case with the
general delay-white noise and the MIMO case with a general form for £(q).



Appendix A

Optimal Filtering

This appendix is concerned with estimating the state variables and parameters of
discrete-time, linear stochastic, SISO and MIMO time-varying systems. This topic
has been discussed in detail by Salut [45]. Nevertheless. using a different method
from that given by Salut, it is shown how the simultaneous estimation of state
variables and system parameters with known noise statistics can be solved as an

optimal linear filtering problem.

A.1 SISO case

The input-output characteristics of a general stochastic linear system can be de-

scribed by an ARMAX model of the form
A(g")ye = B(g 7 )ue + C(q 7 )ex (A.1)

where {er} is a zero mean nonstationary white gaussian process with covariance

given by
E'{eke,T} = Rké(k - l) (A.2)

119
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for all £ and [, where §(k — [) is the Kronecker delta, which is 1 for K = [ and 0
otherwise. The polynomials A(¢g~!), B(q!), and C(q~!) are defined as

Alg7Y) = l14+agt +---+ang™ (A.3)
B(g™') = bo+bigt+---+bag™" (A.4)
Clg") = 1+eaqgt+---+cag™ (A.5)

In order to facilitate the estimation process the model above can be rewritten

in the following way:

Tryr = Euzi — A.yr + Boup + Clex (A.6a)
Y« = Eozi + Bouk + ex (A.6b)
where

(0 - 0 0] [ 4, | [ 5, | [ ¢, |

E = | A= ' . B.= o= (A.7)
0 a; b, Ca
] 1 0| | a1 | | b | o |
Eo = [0 .- 0 1].

If 8 is defined as follows:
6T = [AT BT b,] (A.8)

then the model (A.6) can be rearranged in the following form:

Tryr = FEuzp +G.0+ C.eg (A.9a)
yr = FEozi + Gob + e (Agb)

where the matrix G. and G, are constructed according to the order of the param-

eters in §. The identification problem is more realistic if 6 is subject to random
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perturbations, so we suppose that
Ory1 = O + m (A.10)

where 7 is an independent, zero mean, gaussian white noise possibly correlated
with e;. By appending the parameter vector fi; to the state vector z;,; and using

the model (A.9) , we obtain the following model:

: E. G. C.ex
S S R (A.11a)
Or 1 0 I ;. Tk
L
v« = [ Ey Go | + e (A.11b)
bk
or
Skp1 = Frse +wy (A.12a)
ye = Hisk + e (A.12b)
where s = { o J . It is assumed that both noises {w;} and {e;} are independent.
7
zero mean, gaussian white processes with known covariances
T
C'.ek C.ez
Qe Sk | .
E T 7fz = Ik =1). (A.13)
ST R
€l €

Now we can redefine the one-step prediction problem to be one of requiring compu-
tation of the sequence E{ski1|yo,-..,yx} for kK = 0,1,2,.... We shall denote this
quantity by S¢i1x and shall use the symbol F; to denote the set {yo, ..., yx}. Here,
we use the fact that {u;} is known. So far, we have not specified an initial condition

for the difference equation (A.12). Under normal circumstances, one might expect
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to be told that at the initial time k& = 0, the state vector so was some prescribed
vector. Here, however, we prefer to leave our options more open. From a practical
point of view, if it is impossible to measure s, exactly for arbitrary k., it is unlikely
that so will be available. This leads to the adoption of a random initial condition
for the system. In particular, assume that the initial state vector sq is a gaussian

random variable with mean $o and covariance P, i.e.,
E[so] = 30 E{(s0 — 30)(s0 — 30)T} = Ps. (A.14)

Further. assume that s is independent of {wy} and {e;}. Now we wish to determine

the estimates

Skrje = E{3k+1|-7:k} (A.15)
and the associated error covariance matrix Priyj, where
Pepe = E{(Sks1 — Srr1) (Skar — Sies1)T| Fi}- (A.16)
The following lemmas will be frequently used in this appendix.
Lemma A.1 If X s conditionally gaussian given Z with mean X and covariance
P, and A(-) and b(-) are measurable functions with ||A(Z)|| < +oo and ||b(Z)| <

+o00, then A(Z)X + b(Z) is also conditionally gaussian given Z with conditional
mean A(Z)X + b(Z) and conditional covariance A(Z)PA(Z)T.

Proof: See Ref. [15].

Lemma A.2 Suppose that [ X

} s conditionally gaussian given Z with condi-
Y

z
s

rxfz

T
Ezylx
with conditional mean

*ylz } . Then, given {Y,Z}, X is conditionally gaussian

tional covartance ':
yylz

E{X|Y,2} = E{X| Z} + £.,,5;}.(Y — E{Y| Z}), (A.17)
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and conditional covariance

2—1

zylz “yylz

p =%, 2% =T .. (A.18)

zr|y.z zylz

Proof: See Ref. [15].

Wo

Note that s and [ } are jointly gaussian as a result of their being indi-

€o

30

vidually gaussian and independent. Therefore the joint distribution of | y, | is

€g
gaussian with mean and covariance
50 Po 0 0
0 and 0 Qo So | - (A.19)
0 0 Sg Ry
( 39 ]
In order to prove that Yo s gaussian, use (A.12b) and sq = s¢., wg = wg, and
€o
Yo |

eg = eg to form the folldwing matrix equation:

[ | [ I 0 0]
roll™
0
Wo | _ wo | - (A.20)
€o 0 0 I
€o
_yOJ -H()OIJ

Now since linear transformations of gaussian random variables preserve their gaus-
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sian character, it follows that

00

30
I 0

0
0 I

0
0 7

and

or, equivalently, with mean and covariance

Hence

and conditional covariance

20|o =

r -
So
0
0
i HQSQ j
sg
wo
€0
S0
Moo =1 0
0

P, 0 0
0 Qo So
0 S Ro

and

So
Ro

P,HT

PHT
- So

S0
Wwo
€g
yo..

[ 1 0 0]
0 I 0
0 0 I

| Ho 0 I

[ P 0 o0
0 Qo So
0 S7 Ro

| HoP, ST

P, 0 0
0 Qo So
0 ST Ry
PHT
So
Ro

Ro H0P0H3+Ro ]

is conditionally gaussian given yo with conditional mean

(HoPng + Ro) " (yo — Hoso)

© O ~N O

is gaussian with mean and covariance

~ O~ O ©

124

(A.21)

(A.22)

(A.23)

(HoPoHI+Ro)™ | HoPy ST Ro | - (A:2)
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So

Then proving that the conditional distribution for | w, | given yo is gaussian

€o
with the mean and covariance above, we determine the conditional distribution for

s; given yo. From (A.12a)
3o
si=[Fo I 0] wo | - (A.25)
€o
Hence using the result for transformations of gaussian random variables. the distri-

bution of s; given yq is gaussian with mean

$10 = E{silyo} =[Fo I 0lmgyy,
= Foéo + Ko(yo - HQ-;O) (A26)

and covariance

PIIO = E{(31 - 51|0)(31 - -§1|0)T| yO}
= [Fo I 0]Zgp[Fo 10]7
= FoPoFT 4+ Qo — Ko(HoPoHT + Ro)KT (A.27)

where

K, = (FoPoHT + So)(HoPoHT + Ro)7!. (A.28)

It is also straightforward to obtain the conditional distribution for s, given {y,,y0}-
Let us proceed formally, in the same manner as used in deriving the conditional
wy

] are gaussian and indepen-
e1

distribution for s, given yo. Since s; given yo and |:

31
dent we can deduce that | , | is conditionally gaussian given yo. From (A.12b),

a1
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Sy = 8, wy = w,, and e; = e, the following matrix equation is obtained,

$1

w

€1

U |

[ 1
0
0

H,

(=

0

0
0
I
I

.

126

(A.29)

The linear transformation above proves that the conditional joint distribution of

81

wy

€1

n

(1 0 0]
0 [0
0 0 I

| H, 0 1|

given yo is gaussian with mean and covariance

310

and

0

o O 9~ O

or, equivalently, with mean and covariance

31j0
0
0

Now the vector

| His1p0 |

S
wy

€1

~ ~ O o

[ P 0 0

0 S

and Q1 S
0o ST R,

| Hi Py ST R

P 0 O
0 @1 S
0 ST R,
Py HT
S
Ry

H]_PIIOH;.T "|" Rl g

conditioned on yo and y; has mean

PyoHT
S
R,

(HiPyoH{ + Ri)™' (11 — Hidujo)

o O O~ O

(A.31)

(A.32)
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and covariance

P 0 O PyoHT
Z:1|1= 0 @1 51 - 51 (H1P1|0H1T+R1)"1[H1P1l0 S;F R,
0 ST R, R,
(A.33)
From (A.12a), we have
3
so=[F1 I 0]| w, (A.34)
€

By the linear transformation principle, s, given y, and yo is gaussian with condi-

tional mean

$op = E{salyre} = [A T O]mlll
= Fidy0+ K (y1 — H131)0) (A.35)

and conditional covariance

Py = E{(s2—321)(s2 — 32)" | y1. 50}
= [RI0Z,,[F I0]T
= FPFI+Q, - K,(HiPyoHT + R))KT (A.36)
where .
K, = (F\PyoHT + $,)(H\PyoHT + Ry)7!. (A.37)

More generally, repetition of the steps above yields that the conditional distribution
for si41 given yi,...,y1,yo is gaussian with mean 3, and covariance Piyy as

follows:

§k+1|k = E{3k+1| Yky- - - ,y1,yo}
= Fidpp-1 + Ke(y, — Hedkpe-1) (A.38)
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and

Pk+1|k = E{(3k+1 — -§K+1|k)(3k+1 - §K+1|k)T| Ye,---.Y1, yo}

= FePuypr FE + Qi — Ku(He P HY + Ru)KT (A.39)
in which K} is the filter gain given by

K = (FePue—r HT + Si)(H P  HY + Re) 7" (A.40)

A.2 MIMO case

In this section it is assumed that a linear stochastic MIMO system can be described
by an ARMAX model of the form

Al yr = B(q™")ur + C(g Ve (A.41)

where the polynomial matrices A(q~!), B(q™!), and C(gq~!) are defined as follows:

Alg™") = Ao+ Aig ' +...+Aq" (A.42)
B(g7') = Bo+Big7'+...+B.qg™" (A.43)
Clg7') = Co+Cig'+...+Cq™® (A.44)

and yi, ur, and e denote the p x 1 output vector, m x 1 input vector , and p x 1
noise vector, respectively. Thus A(q~!), B(¢~!), and C(q™!) are p x p, p x m, and
p X p polynomial matrices. Equation (A.41) is also called a left matrix fraction
description of the system. For the estimation process, the model above can be

written as follows:

Tryr = PB.zp — A.yr + Buaug + Cler (A.45a)
Y = Eozr + (I — Ao)yr + Bour + Coexr (A.45b)
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It must be emphasized that in the canonical form under consideration. Ag is upper-
right or lower-left unit triangular. We will take advantage of the triangular form
in the MIMO case, as to be explained. The model (A.45) in canonical form can
simply be used to estimate the states and parameters of the system by extending

the state vector z; with parameter vector 8 = 8;.:

Tk
Sk = . (A46)
O
Then the following augmented state model can be immediately obtained:
E. G.yr.ux C.
wen | _ wow) | [ fea]
Or+1 0 I O T
e = [Eo Gol(yk, ux)] { 0' + Coex (A.47b)
k

It is immediately noted, looking at equations (A.47), that in this case all unknown
parameters or state variables appear linearly multiplied by either external variables
that appear in the record, or by matrices that are only composed of zeros and
ones. This very important property enables us to construct a linear estimator for
all unknown variables and parameters of the system. The composite model above

can be written in compact form as

Skr1 = stk-i-wk (A.48a)
Yy = Hise +ui (A.48b)

Let us call H,gi) fori=1,...,p, the rows of the matrix Hy in (A.48); they appear

in the following form:

HO = HO Y,y we) (A.49)
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Rewrite equation (A.48b) as

y = HYs + Y (A.50)
y? = HPs + 4 (A.51)

= (A.52)
v = HPs+ 4P . (A.53)

In this section, the aim is to derive the Kalman filter equations. for the one-step
prediction state estimate and associated error covariance. In order to simplify the

problem, assume that the system (A.48) has just two outputs as follows:

Sk+1 = Frsi +wy (A54a)
v = HYs + Y (A.54b)
y,(L.z) = H,(cz)sk.+ ul(_.z) . (A.54c)

Here, {u:} is a known input sequence, sq has mean 3¢ and covariance Py ,{w;} and

{vi} are zero mean. independent gaussian processes with covariance

T
W wy Qr S,(cl) 5,5.2)
T
E (M Y = s RM  RUA | §(k-1). (A.55)
T T
V,(cz) l/l(z) S{.z) R(L.l'z) Rff’

T T
According to the initial assumptions, the random variable [sT wT »§'" ¥ |7 is

gaussian with mean and covariance

[ 5 | W 0 0
0 0 Q s sP
. and X, = R " o | (A.56)
0 Ry’ Ry
- 0 ‘ _ 0 Sc(,z)‘ R(()1,2)T R‘()z) J
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From (A.54b)

Hence using Lemma A.1, the joint distribution of [sI w]

I 00 01}~
So
0 I 00O
Wy
0 0 TI0 ()
W
0 00 I 2)
v,
HY o r o]t -

T

gaussian with mean and covariance

[ 5 ]

Wi ]

From Lemma A.2, it follows that [sI wf

and

gaussian and has mean

m =
ojyiM

and covariance

p) = %o —
olys" °

io | [ BEHM]

0 S
e

0 Ry

0 ] - Rém)"

o

2o

T
(Hs" PoHg"" + Re")™ (95"

T @7
Vg Yy ]T

131

(A.57)

nTt )T (1)Typr .
V(()) L4 yo)]Tls

s
Ry
R(()1.2)T

{ . T i
[ EOR SOT RY RV | (Y RHST + BY)

i .
P H

(A.58)

conditioned on y((,l) is

1) -
— H{M30)

(A.59)

(HRH + RO HPR, SPT RO REY ]

(A.60)
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From (A.54c), form the following matrix equation:

3o -
So
Wo
W | = ! e A6l
%o —[H(z)OOI] NONI (4-61)
)
(2)
Vg
| u” | -

e e T T .
Then using Lemma A.1, the joint distribution of [s wT u{" B g T given

y!) is gaussian with mean

I
Moy @ = [ [ H(z) 0 0 [] }molyf,n (A.62)
and covariance
11 12
EE, ‘)”|y“’ ((,’ygzily(()u
EO.yc(,z)Iy‘(,” =
2)T 22
2(1 ()”ll (1) : ()")| (1)
- T
' 2 ' (A.63)
= oV .63
_[H(()z’OO[] [H"’oo.r]
where
(11) _
Eo'y‘()z)lyéu = 20|ygl) (A.64)
T
(12) _
zo.yéz’ly.(,” - 2:Oly.g”[H(()z) 00 [] (A.65)
T
22
Soam = [H‘” 00 1] By, (.,[H(‘,” 0 0 1] . (A.66)
From Lemma A.2, it follows that [sI wT u§ i ((,2)7] given {87, y{"} is gaussian
with mean

(12 »(22) 2 2}, (1)
Mo® 40 = oM +20 ‘)”ly‘”( (2)| m) " (¥ & E'{y((, |0 '}) (A.67)
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where E{y((,z)| y((,”} is obtained from (A.62) :

(2) y(()l) H(2)~ +(H52)P H(I)T+R01 2)T (H(”P H(1)r+ 1)) H(”‘
)

(A.68)
T T
and the conditional covariance of [sT wl u{!" v{* | given @, y{"} is
_ (1) (12) (22)  \_15(12)7
z oly} (2) (l) = EO.yf,:’Iyg” - Eo.yg”m},”(Eo.y},"ly},") 20 (2 )| (1) - (A-69)

It remains only to find the formulas for the conditional mean and conditional co-
variance of s; given {yc(,z),y((,l)}. Hence, we write (A.54a) in the following matrix

form for k=0 :

si=[Fy, I 0 0] (A.70)

L 4

The linear transformation above shows that s, given {y5?, y{"'} is gaussian. The
conditional mean and covariance of s, given {y(()z),y(()l)} follows immediately from

Lemma A.1;

suo = E{silue”.ws"Y=[F 1 0 0]mye (A.71a)
Py = E{(31-~§1|0)(31—-§1|0 c()z)vyol)}
=[FR I00]ZymmlFk I 0o0]. (A.71b)

Substituting (A.67) and (A.69) into (A.71a) and (A.71b), respectively, give

8110 = Fod0 + Ko(yo — Hodo) (A.72)
Pio = FoPoFT + Qo — Ko(HoPoHT + Ro)KT (A.73)

where

Ko = (FoPoHy + So)(HoPoHY + Ro) 7t (A.74)
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More generally, repetition of the steps above yields

Sk = Fide + Ki(yr — HiSkjre-1)
Pesiie = FePujeo1 FT + Qi — Ki(Hi Pt HY + Ri)KT

where

Ki = (FiePrjk—1 He + Sk)(HiPor—1 HY + Ri)™".
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(A.75)
(A.76)

(A.77)
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