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Abstract

Recently, a novel optical imaging technique was successfully used in measuring the func-

tional response of living retinal tissues. The technique, functional ultra high resolution

optical coherence tomography, measures localized differential changes in the retina reflec-

tivity over time resulting from external white light stimulation. This result can be used to

develop a non-invasive diagnostic method for the early detection of retinal diseases. How-

ever, the physiological causes of the experimentally observed optical signals, most of which

originate from the photoreceptors layer, are still not well understood. Due to the com-

plexity of the photoreceptors, using purely experimental methods to isolate the changes in

light reflectivity corresponding to individual physiological processes is not feasible. There-

fore, we have employed the finite-difference time-domain method to model the changes in

light scattering patterns of the photoreceptor cells caused by light-induced physiological

processes. Processes such as cell swelling, cell elongation and hyperpolarization of double-

lipid membrane structures were simulated by changing the size parameters and optical

properties of the cells components. Simulation results show that the hyperpolarization of

double-lipid membranous structures and cell swelling are the most likely causes for the

experimentally observed changes in optical reflectivity. A number of experiments were

suggested to verify the conclusions drawn from this numerical work. This numerical work

includes an analysis of various errors in FDTD computational models.
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Chapter 1

Introduction

1.1 Overview

Retinal diseases such as Diabetic Retinopathy, Age related Macular Degeneration (AMD)

and Retinitis pigmentosa are characterized by the progressive loss of the visual perception.

Currently, electroretinography (ERG) is the only clinically approved method for probing

the functional response of the retina. However, ERG lacks spatial and depth resolution, and

can only provide an integrated electrical response from all layers of the retina. Therefore,

various optical imaging techniques were developed for the diagnosis of retinal diseases.

Most of these techniques rely directly or indirectly on light scattering in tissue especially

for the wavelength range 600-1100nm [1]. By providing in-vivo 3D high-resolution images

of the retinal morphology at the cellular level, these techniques can detect the abnormal

development of biological tissue caused by retinal pathologies.

Previous studies have demonstrated that, in addition to providing in-vivo 3D high

resolution morphological images of the retina, optical coherence tomography (OCT) can be

used to probe the functional response of living photoreceptor cells resulting from external

1



1.1. Overview 2

light stimulation [2, 3, 4]. The technique, called functional ultra high resolution OCT

(fUHROCT) measures localized differential changes in the retinal reflectivity over time

resulting from light stimulation of the retina. Using fUHROCT, it was shown that a

significant temporal change in optical reflectivity occurs in the photoreceptor cells after

the external light stimulation of the living retinal tissue.

Since OCT is sensitive to changes in the magnitude and spatial distribution of the index

of refraction, to the shape and surface quality and to the absorption properties of the cell

tissues, the detected functional response indicates the presence of physiological processes

that affect the structural and optical properties of the photoreceptor cells when stimulated

by external light. Therefore, retinal diseases which alter these photo-active physiological

processes can be diagnosed by detecting changes in the functional response. This potential

diagnostic method based on fUHROCT will be able to detect the functional abnormalities

of the photoreceptor cells at a very early stage of retinal diseases before they develop

into permanent physiological and morphological changes (such as the gradual death of the

photoreceptor cells and their detachment from the retinal tissue).

Currently, the cellular mechanisms behind the experimentally observed changes in re-

flectivity are not well understood. This is a very challenging task using pure experimental

methods given the complex nature of the photoreceptor cells. Various physiological pro-

cesses such as the hyperpolarization of the cell membranes and the propagation of the

action potentials can affect the signal detected by the fUHROCT system by changing the

index of refraction of biological tissue [5, 4, 6]. Many of these processes occur simultane-

ously (within the fUHROCT time resolution) and are localized in a very small volume in

biological tissue comparable to the pixel size of fUHROCT. Therefore, isolating individual

physiological processes as the cause of particular optical changes is not trivial and in most

cases not feasible experimentally.
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Computational electromagnetics can be employed in investigating the origins of the

functional response. Various techniques ranging from integral equations solvers to differ-

ential equations solvers can be used to model light scattering from photoreceptor cells.

Among these techniques, the finite-difference time-domain method (FDTD) stands out for

the simplicity it allows in modeling complex structures such as the photoreceptor cells. In

the recent year, the FDTD method has been successfully employed in studying the effect

of diseases such as cancer on light scattering simulations from biological cells [7, 8, 9, 10].

This work presents computational models of the photoreceptor cells based on the FDTD

method. A processing scheme for light scattering computations was developed, validated

and successfully applied in simulating the functional response of the photoreceptor cells. In

addition, numerical errors in the results were quantified. Based on the simulation results,

a theory was conceived to provide an explanation of the experimental results of the study

on the functional response of the retina [2]. The work is concluded by suggesting an

experiment to test the provided explanation.

1.2 Thesis Outline

Chapter 2 presents background information about fUHROCT and the photoreceptor cells.

In Chapter 3, the FDTD method and its application to light scattering simulations are

discussed. In addition, a general model of the photoreceptor cells is proposed in combi-

nation with several hypotheses about the origins of the functional response. Simulation

results are presented and analyzed in Chapter 4. Analysis of numerical errors in FDTD

light scattering simulations is given in Chapter 5. Finally, Chapter 6 concludes the study

and outlines the future work.



Chapter 2

Background

2.1 Optical Coherence Tomography

Optical coherence tomography (OCT) is an optical imaging technique offering sub-micrometer

resolution in axial and lateral directions. It has been widely adopted in the non-invasive

in-vivo imaging of biological tissues and in particular the retinal tissue [11]. OCT is based

on low coherence interferometry as demonstrated in fig. 2.1. A beam-splitter divides the

source light beam and directs it toward two reflective mirrors. A photo-detector measures

the magnitude of the central interference fringe of the back reflected optical beams. As the

measurement mirror changes position, a coherent light source will show a constant ampli-

tude interferogram. However, when a partially coherent light source is used, interference

occurs only when the difference in the optical paths of the two beams is smaller than the

coherence length of the light source, and as a result the interferogram shows a Gaussian-

like modulation in the amplitude. In an OCT system, the magnitude of the interference

signal is proportional to the power of back-reflected light, while the time delay determines

the position within the imaged object from which the back-reflected light originated. The

4



2.1. Optical Coherence Tomography 5

Figure 2.1: Principle of optical coherence tomography: a low coherent light source in a
Michelson interferometer ([12]).

ability of an OCT system to image biological tissues depends on the optical reflectiveness of

the tissue. In addition, the differences in the power of light reflected from various portions

of the tissue provide the contrast in the image. The optical properties of biological tissues

are described by their index of refraction n, the roughness of their surface and the degree

of their homogeneity. The refractive index is a fundamental physical property given by the

square root of the product of the relative permittivity ǫr with the relative permeability µr

(i.e. n =
√

ǫrµr). In general, the refractive index is a complex number nc = n− iκ where n

measures how much the speed of light vph is reduced inside the medium as compared to its

speed in vacuum c (n = c
vph

) and κ is the coefficient of absorption of light in the medium.

The index of refraction is the main parameter in the Fresnels equations which describe the

behavior of light (reflection and transmission) when propagating from a half-space medium

to another with different index of refraction. For the case of normal incidence, the reflec-

tivity coefficient R, given in eq.2.1, shows that the amount of light reflected at the interface
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n0
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Incident
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n1 n1

λ λ

Incident Incident

n0 n0

n1 n1

λ λ

Figure 2.2: Physical parameters affecting the amount of back-reflected light: a) change in
the index of refraction, b) change in the physical size.

separating the two mediums is proportional to the square of the difference of the refractive

indexes. Therefore, a light beam incident on an object consisting of a stack of layers (fig.

2.2(a)), each with a different refractive index, will back-reflect at each of the interfaces and

consequently, the OCT cross-sectinal image of the object will show the various layers with

the contrast corresponding to the amount of back-reflected light.

R =
Ereflected

Eincident

=
(n1 − n2

n1 + n2

)2

(2.1)

In addition to the index of refraction, the physical size of the scattering object as compared

to the wavelength affects significantly the amount of back-reflected light (fig. 2.2(b)). In

general, the amount of back-reflected light increases when the size of the scattering object

increases (fig. 2.2(b)).

2.2 Retinal Photoreceptors

The retina is a thin (∼ 500µm) transparent and multi-layered tissue that lines the back

of the eye. In vertebrate retinal tissues, The photoreceptor layer constitutes the back

layer (taking the direction of incident light as reference). Photoreceptors cells are sensory
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neurons that detect visible light photons (wavelength ranging from 380nm to 780nm) and

generate the electrical neural signal. All vertebrates retina contain two types of photore-

ceptors, rods and cones which are similar in their basic structure. In addition, vertebrate

rods and cone photoreceptor cells show a very uniform organization with some variations

in size and shape. These variations depend on the type of species and the location within

the retina relative to the fovea. In general, a single photoreceptor (cone or rod) can be

divided into three major parts:
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Figure 2.3: A cross-sectional image of the foveal region in a monkey’s retinal tissue: RPE-
Retinal Pigment Epithelium layer, OS-Outer Segment, IS-Inner Segment, ONL-Outer Nu-
clear Layer, OPL-Outer Plexiform Layer, INL-Inner Nuclear Layer, IPL-Inner Plexiform
Layer, GCL-Ganglion Cell Layer, NFL-Nerve Fiber Layer. ([13])

1. Head, almost entirely occupied by the nucleus. The nucleus is surrounded by a small

volume of cytoplasm. The head forms the outer nuclei layer of the retina.

2. Neck, known as the inner segment (IS) of the photoreceptor. The IS provides the

metabolic support for the cell.



2.2. Retinal Photoreceptors 8

3. Tail, known as the outer segment (OS) of the photoreceptor. The OS contains the

visual pigments responsible for the detection of light.

Fig. 2.3 shows a cross-sectional image of the foveal region in a monkey’s retinal tissue. The

figure shows the locations of the retinal pigment epithelium layer (RPE) and the photore-

ceptors layer. Fig. 2.4 presents a schematic of rod and cone photoreceptors. The schematic

shows the basic organization of the cells (Nucleus, IS, OS), their main components (mito-

chondria, microtubules, discs, ...), and highlights the basic structural differences between

the rod and cone photoreceptors (tapered cone OS and IS vs. cylindrical rod IS and OS

...). The rest of this section discusses various structural and functional characteristics of

the photoreceptor cells that are relevant in constructing the models of the photoreceptor

cells and in understanding the physiological processes causing the experimentally observed

optical signals.

2.2.1 Inner Segment

The IS can be divided into two parts, the myoid and the ellipsoid. The ellipsoid, to the

side of the OS, is densely packed with mitochondria which provide the energy needed

for the proper functioning of the cell. In mammals and most vertebrates, the ellipsoid

mitochondria are typically long, slender (filamentous mitochondria) and are packed parallel

to the axis of the IS and along the full length of the ellipsoid[15]. Furthermore, the

mitochondria comprise 74-85% of the volume of cone ellipsoids and 54-66% of the volume

of rod ellipsoids in macaque [16]. Fig. 2.5 shows how the ellipsoid of a cone photoreceptor

is packed with mitochondria. The physical dimensions of the ellipsoids change as a function

of the distance from the fovea. Rod ellipsoids in the central regions are thin, long, and

cylindrical whereas, at increasing eccentricities, the rod ellipsoids become larger in diameter

and shorter in length [16].
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Figure 2.4: A schematic of rod and cone photoreceptors showing their basic organization
and their main components ([14]).

The myoid, to the side of the nucleus, contains a complex system of tubules, vesicles and

vacuoles that consists of the rough and smooth endoplasmic reticulum, the golgi apparatus,

secretory vesicles, and a multiplicity of transport vesicles that interconnect these various

organelles. Also, longitudinal filaments are abundant, running the full length of the IS

and are grouped in bundles around the periphery of the cell, parallel to the long axis.

In general, filaments (microtubules, neurofilaments and actin microfilaments) account for

about 25% of the protein mass of neuron cells. They form the cytoskeleton which is the
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major determinant of the shape of the cell. On the functional level, the myoid provides the

proteins involved in the synthesis of the visual pigments (rhodopsin molecules) of the outer

segments. In addition, the myoid provides the structural mechanisms that allow for photo-

induced mechanical movements in the photoreceptors [14]. The photo-induced movements

consist of either the contraction or the expansion (depending on the lighting conditions)

and/or the alignment of the cells towards the pupillary center. These movements are

carried out through alteration of lengths of the filaments of the IS (in particular in the

myoid part) and maybe through the involvement of various micro-organelles such as the

microtubules, fins and the calcycal processes.

Ellipsoid Outer Segment

mitochondria OS discs

Plasma 
membrane

Ellipsoid Outer Segment

mitochondria OS discs

Plasma 
membrane

Figure 2.5: A cross-sectional image showing the end of the ellipsoid and the beginning of
the OS in a cone photoreceptor ([17])

2.2.2 Outer Segment

The OS is comprised of thousands of densely packed double-lipid membrane discs stacked

on top of each other like a roll of pennies in a bank wrapper (fig. 2.5. Each disc is
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pocked with complex molecules called rhodopsin which consists of a small light-absorbing

molecule attached to a large membrane-spanning protein. This periodic structure increases

the surface area of the membrane allowing the OS of a single photoreceptor cell to contain

a remarkably large number of these visual pigments (∼ 108) [18]. Moreover, this struc-

ture enhances light absorption properties because the dipole movement of the rhodopsin

chromophore is transverse to the receptor axis [19]. On the functional level, the OS is the

location of the transduction of the neural signal in the photoreceptors: The OS plasma

membrane (outer membrane) provides the site where the action potential is generated.

On the structural level, the OS discs are continuously being generated as a series of

uniform invaginations of the cell’s plasma membrane, which leads to this regular structure.

On average, there are 80-90 discs assembled daily (in human rod cells [20]) and it takes a few

days for a disc (about 9-13 days in monkeys photoreceptors) to migrate the entire length of

the OS before its disintegration by phagocytosis in the Retinal Pigment Epithelium layer

(RPE). It has been shown that light stimulates the rate of discs addition in both rods and

cones and that the shedding of discs is synchronized with the opening of the eye [21] such

that the outer segment remains of constant length [22]. The highly ordered regularity of

the disc arrangement and structure may be disrupted, more easily in cones than in rods,

by a variety of traumas such as fixation artifact, visible light of too long duration or too

high intensity, retinal detachment, vitamin A deficiency, thermal trauma and a result of

non-Q-switched laser irradiation, low-energy-level laser damage, aging and osmotic shock

[14].

One of the most consistent differences between rods and cones are found in their outer

segment discs. In cones, the discs are continuous with the plasma membrane, while in

rods, the newly created discs become independent intracellular organelles by pinching off

from the plasma membrane [23, 24]. Therefore, most cone discs retain the continuity with
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the plasma membrane, and hence, are open to the extracellular space whereas rod discs

form closed saccules, isolated from the extracellular space [14]. Consequently, the rod discs

show osmotic expansion and shrinkage [25]. In addition, rod discs have their double-lipid

membranes further apart near the edges than at the center. The rod disc edge stains more

heavily than the rest of the saccule and it has greater resistance to deformation. It has

been suggested that a calcium-binding protein may be located at the disc edge close to the

plasma membrane. Calcium has been implicated in the transmitter process, being released

when light acts on the rhodopsin molecule[26].

2.2.3 Rod Photoreceptor

Rod photoreceptors, named for their cylindrical shape, are used for night and peripheral

vision. They are sensitive enough to detect a single photon however their response time

is slow and consequently they cannot detect image changes faster than 100ms [18]. Some

vertebrates (e.g. rabbits) have only rod photoreceptors in their retina.

2.2.4 Cone Photoreceptor

Cone photoreceptors are named as such due to the conic shape of their IS. The IS and OS

of a cone photoreceptor are independently tapered structures and the entire cell forms a

clearly tapered structure [27]. Cone photoreceptors contains three types of photosensitive

pigment (rhodopsin) which are responsible for detecting colors. Moreover, a cone cell can

detect faster changes in the perceived images but it requires 100 times more photons than

a rod cell to get activated. In human retina, cone photoreceptors are concentrated in the

fovea part and therefore they are sensitive to direct light whereas rod photoreceptors are

more sensitive to scattered light. [18]
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2.2.5 Mechanism of Signal Transduction

Ion Channels

In neural cells, the action potential is created by a change in the ionic fluxes across the

plasma membrane. Cytoplasmic membranes are made of double layers of phospholipids.

Phospholipid molecules have hydrophilic heads and hydrophobic tails. The hydrophobic

tails join to the inside of the membrane to prevent the crossing of water and ions while the

polar hydrophilic heads face the aqueous medium. However, membrane spanning proteins

called ion channels form active gateways for the ions to cross the membrane. Ion channels

have three properties: conducting ions, recognizing and selecting specific ions, and opening

and closing in response to specific electrical, mechanical, or chemical signals. Also, even

though ion channels are highly selective, they conduct large flows of ions, up to 100 million

ions/channel/sec [18]. In addition, the switching time in ion channels is less than 10µsec

allowing the membrane potential to change quickly, up to 500 V/sec.

Photo-activation

The photo-activation of the visual pigments in the OS of rods and cones triggers a three-

stage cascade of biochemical processes which leads to a change in the ionic fluexes across

the plasma membrane, and consequently a change in the membrane potential. A key

molecule in the chain is the nucleotide cyclic guanosine monophosphate (cGMP) [18]. In

the dark, the concentration of cGMP molecules is relatively high and consequently, the

cGMP-gated channels are in an open state and allowing the inward current they carry

to maintain the cell in a relatively depolarized state. When light activates the visual

pigment, a conformal change occurs in the molecular configuration of the rhodopsin. The

photoactivated rhodopsin stimulates an enzyme which reduces the concentration of cGMP

in the cytoplasm. This reduction in cGMP concentration closes the cGMP-gated channels
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and stop one of the dark currents, thus creating an imbalance in the “dark” current flowing

between the inside and the outside medium and consequently causes the hyperpolarization

of the photoreceptor.

Dark Current

In dark conditions, two ionic currents dominate the photoreceptor. Inward current flows

through cGMP-gated channels, which are confined to the OS, while an outward K+ current

flows through none-gated K+ selective channels, which are confined to the IS. The outward

current carried by the K+ channels tends to hyperpolarize the photoreceptor toward the

equilibrium potential for K+ (around -70 mV). The inward current tends to depolarize the

photoreceptor. The photoreceptor is able to maintain steady intracellular concentrations

of Na+ and K+ because its IS has a high density of Na+ and K+ pumps, which pump out

Na+ and pump in K+ [18].

2.2.6 Light Adaptation

In addition to the pupil of the eye, there exist other photomechanical mechanisms in the

RPE layer and the myoid part of the IS and which regulate the amount of light striking

the photoreceptor cells. The RPE layer contains lots of melanin granules. The pigment

granules absorb the stray photons, preventing their reflection back into the photoreceptors,

which would cause images to blur. They also protect the cells from too much exposure

to light radiation. In the dark, the pigments move toward the RPE cell base and in light

towards the Outer Limiting Membrane (OLM) so that the rods, which are more light-

sensitive, are well surrounded by the pigment during bright light conditions and vice versa

in the dark. Furthermore, depending on the light conditions, the myoid part of the IS of

rods and cones alters its length. In the light, the rod myoids elongate and cone myoids

contract, while in the dark, rod myoids contract and the cone myoids elongate. This
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alteration of the lengths of the photoreceptor cells occur at the rate of 1-2µm/min [28]. In

photomechanical movements, the myoid can elongate or shorten by up to 90% [28]. These

photomechanical movements can affect light scattering by changing the dimensions of the

photoreceptor cells in the case of myoid length alteration or through the effect of having a

sheath of absorbing material around the OS in the case of light-induced pigment migration.

Experimental studies on suspensions of rod OS found that the photo-excitation of

rhodopsin induced changes in the light-scattering profiles. It has been suggested that

the causes behind these light-scattering signals lie in the modification of the size or the

separation of the disks, the swelling of the rod OS [29] or its shrinkage [30, 31]. In the

IS, the generation of the neural signal is accompanied by an increase in the metabolic

activity. The activity of the photoreceptor when exposed to light or not causes some

staining differences in the ellipsoid mitochondria [32] which might indicates a change in

the chemical composition or the density, both of which can cause a change in the refractive

index and consequently a change in its light scattering pattern.

2.3 Functional Response of the Retina using OCT

Fig. 2.6 shows the schematic of a fUHROCT system used in probing the functional response

of the retinal tissue. A white light source provides the external stimulation of the retina

while an infra-red beam scans the retina in the lateral directions. The position of the

reference mirror specifies the scanning depth inside the retina. A spectrometer measures

the reference and the back-reflected signals. A processing unit computes the interferogram

and outputs a depth specific signal versus time.

Functional imaging of the retina was conducted on rabbit retina (rod photoreceptors)

[2], rat retina [3] and frog retina (rod photoreceptors) [4] and all studies reported similar

results. The external white light stimulation of a living retinal tissue caused a significant
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Figure 2.6: General schematic of a fUHROCT system used to probe the functional response
of the retina (to our knowledge, there are no published data about fUHROCT applied on
human retina yet) ([12]).

increase in optical reflectivity of the OS and a significant decrease in the optical reflectivity

of the IS part. The change in optical reflectivity and the ERG signal (indicating the living

state of the photoreceptors) are detected simultaneously after the short stimulation of the

retinal tissue. The amount of change in the intensity of back-reflected light is proportional

to the intensity of the stimulation [2]. The change in reflectivity lasts for couple seconds

after the stimulation is applied. Currently, the origins of these optical signals are still

unknown.

2.4 Optical Properties of Photoreceptors

Constructing electromagnetic models of the photoreceptor cells for light scattering compu-

tations requires knowing the optical properties and size parameters of the cells and their

main components. However, many of these parameters have some dependencies on the

type of species, the location of the photoreceptor within the eye, ... Moreover, the values
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Cell Component Index Reference

External medium 1.35 [7]
Cytoplasm 1.35 − 1.37 [33]

1.35 [34]
1.365 [35]

Cell Membrane 1.46 − 1.48 [36]
1.48 [1]

Nucleus 1.39 [7]
Rod Outer Segment 1.410 [37, 38]
Cone Outer Segment > 1.41 [37]

1.385 [14]
IS 1.353 [14]
Cone IS - myoid 1.36 [14]
Cone IS - ellipsoid 1.39 [14]
Rod IS - myoid 1.36 [14]
Rod IS - ellipsoid 1.40 [14]
Mitochondria ≈ 1.43 [14]

Table 2.1: Refractive index values of cell components taken from published data in the
scientific literature.

of some parameters such as the dielectric properties of some cell components are only avail-

able for different type of cells and from various species. Furthermore, the majority of the

values of indexes of refraction found in the scientific literature do not include the complex

components that model the absorption effects and the frequency dependence. However,

since the retina is a transparent tissue, it is assumed that the refractive index values ob-

tained constitute a sufficient approximation for first order calculations. Table 2.1 presents

the refractive index values of the main components of rods and cones. Since the refractive

index of a material is proportional to the density of proteins and lipids, the cytoplasm

and surrounding medium has smaller values compared to the nucleus and the mitochon-

dria. The double-lipid membrane has the highest refractive index due to the polarity of its

molecules. The refractive index of the OS is higher than that of the IS, since it includes the

contribution of the discs which are made of the double-lipid membrane. The size parame-
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Cell Component Parameter Value Reference

Mitochondria diameter > 0.2µm [39]
0.4 − 0.5µm [1]
0.1 − 0.5µm [34]

length up to 10µm [34]
Microtubules diameter 25 − 28nm [18]

length up to 0.1 mm [18]
Vacuoles diameter 20 − 80nm [40]
Rod OS diameter ≈ 1µm [37]

length ≃ 10µm [37]
Cone OS diameter 0.9µm [14]
Cone IS Diameter 2.5 − 3µm [37]

1.5 − 2.1µm [14]
Plasma membrane thickness 6 − 8nm [18]

Table 2.2: Typical sizes of segments and organelles in photoreceptor cells of various species
taken from published data in the scientific literature.

ters are presented in table 2.2. Since the size parameters of a photoreceptor cell as whole

are comparable to the wavelengths of the spectrum of the imaging beam, it is expected

that changes in these parameters will cause a significant change in the light scattering

pattern. The cylindrical shape of photoreceptor cells, their dimensions and the fact that

their refractive index is higher than the surrounding medium are the reasons behind their

waveguiding properties [14]. Among the waveguide properties of photoreceptors is that the

light at the shorter wavelengths of the visual spectrum couples better to the inside of the

photoreceptor cell than the light at the longer wavelengths. So far, various analytical and

semi-analytical models were used to represent the photoreceptors as dielectric waveguides

and to explain some of the experimentally observed effects such as the Stiles-Crawford ef-

fect which describes the directional sensitivity of the cone photoreceptors [41]. In another

approach, the photoreceptor was modeled as a light collector given its tapered structure

at the IS-OS interface and the fact that the refractive index of the OS is greater than that

of the IS. In summary, the structure of the photoreceptor plays a significant role in light



2.5. Conclusions 19

detection.

2.5 Conclusions

This chapter discusses OCT and its applications in the functional imaging of the living

retina. Also, the chapter presents a summarized description of the photoreceptors which is

necessary for a basic understanding of these complex cells. Various functional, structural

and optical properties of the photoreceptor cells were presented. The discussion was very

helpful in guiding the modeling work and in providing the theoretical basis for explaining

the origins of the experimentally observed signals.



Chapter 3

General Photoreceptor FDTD Model

3.1 Introduction

In 1966, Yee introduced the FDTD method for solving Maxwell’s equations [42]. Because

of its simplicity in modeling complex structures, the FDTD method has been used to study

the electromagnetic interaction with organic materials [8]. In Yee’s algorithm, Maxwell’s

curl equations are solved by implementing time and space derivatives of the electric and

magnetic fields using second order accurate central finite-difference expressions. Space is

discretized according to a special Cartesian grid, Yee’s lattice, which indirectly implements

Maxwell’s divergence equations. At each time instant, the electric and magnetic fields

components of each grid cell are computed using the stored values of the previous time

instant and the values of fields in the neighboring cells. Eq. 3.1 demonstrates the FDTD

algorithm for computing the x-axis component of the magnetic field at grid cell (i,i,k)

at time instant n where ρ and ρ
′

are respectively the electric and magnetic resistivity

20
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(equations for the other fields components are similar).
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(3.1)

The solutions are obtained in the time domain and therefore, only one simulation run is

needed to obtain results over a wide spectrum [10]. To ensure stability of the solution,

the time step is chosen such that the Courant factor C = v∆t
∆x

< 1√
dim

everywhere in the

computational domain (dim is the number of dimensions). Although FDTD simplifies the

modeling process, it is computationally intensive in terms of memory, data storage, and

processing requirements. In fact, for a Cartesian grid, if the resolution in n dimensions

is doubled, the memory and storage needed increase by a factor of 2n and the simulation

duration increases by a factor 2n ×C. Moreover, solutions using the FDTD method suffer

from numerical phase errors termed in the literature as “numerical dispersion” since the

error depends on the wavelength. In second order FDTD, the numerical dispersion is pro-

portional to the ratio of the mesh size to the wavelength ∆x
λ

and consequently, the numerical

dispersion can only be reduced by increasing the meshing resolution which consumes vast

computing resources.

3.2 Methods

Fig. 3.1 shows the setup of FDTD simulations for light scattering from photoreceptors.

The computational domain is divided into two regions. The inner region is the Total

Field (TF) region where the total electromagnetic fields (total field = incident + scattered

fields) are solved. The outer region is the Scattered Field (SF) region where only the
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Figure 3.1: Typical setup of an FDTD simulation for light scattering computations.

scattered fields are solved. The incident wave is generated by forcing boundary conditions

at the interface between the TF and the SF regions. The spectrum of the plane wave

excitation spans 100nm around a central wavelength of 1040nm in order to match the

properties of the fUHROCT system. The grid mesh size in each direction is chosen to

resolve the smallest object of interest and to minimize the staircase of modeled circular

shapes. Compared to the spectrum of interest, the grid size ∆xi was kept ≤ λmin

50
, a value

five times less than the maximum mesh size of λmin

10
[43]. The field monitors are positioned

in the SF region. To minimize storage and processing requirements, these monitors perform

online Discrete Fourier Transform (DFT) on the near fields at the end of each time step.

Once the simulation finishes, a post-simulation processing step performs an exact near-

to-far field transform to obtain light scattering power at the far zone. Details about the

FDTD algorithms and the near-to-far field transform can be found in Taflove’s book on

Computational Electromagnetics [43].
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3.3 Validation

The approach outlined in the previous section was checked against analytical scattering

solutions by Mie. Mie solutions are available for light scattering from an infinite cylinder

or from a sphere. Fig. 3.2 compares the FDTD solution to Mie solution for light scattering

from an infinite cylinder. The wavelength of the incident plane wave is set to 1µm. The

radius of the infinite cylinder is set to 1µm and its refractive index to 1.04. The FDTD

results are in good agreement with Mie solutions however it shows a minimal discrepancy

only for scattering angles larger than 160◦. Similar discrepancies have been observed in the

past and it has been proven that is it related to the grid size and the boundary conditions.

This deviation can be attributed to the staircase effect when modeling circular shapes using

Cartesian grids. The field monitors are put as close as possible (the monitors average results

over 4 cells) to the TF-SF boundary. In theory, the distance of the TF-SF boundary to

the scattering object should be as small as possible to minimize the numerical dispersion;

however, it was found from several simulations and comparison with Mie solutions that

the optimal distance of the TF-SF boundary to the object is close to λcentral

10
× dλ

2
where dλ

is the extent of the object in the lateral directions in λcentral units. Also, it was found that

the distance of the PML (i.e. the boundaries of the computational domain) to the TF-SF

boundary should be set close to λcentral

4
.

3.4 Photoreceptor Model

3.4.1 Overview

In general, the photoreceptor cells can be modeled as long cylindrical structures with the

axial direction aligned towards the center of the pupillary aperture [14]. The photoreceptors

tend to incline to the best angular position for capturing light photons, i.e. orthogonal to
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Figure 3.2: Validation of the FDTD method. Comparison of FDTD results with Mie theory
predictions at λ = 1µm for an infinite dielectric cylinder of radius 1µm and refractive index
n = 1.04.

the pseudo-spherical wave front coming from the pupil [44, 45]. This simplifies the modeling

of light scattering from a single photoreceptor cell since we only need to consider plane wave

excitation with its wave vector parallel to the axial direction of the photoreceptor model.

The darker color of the inner surface of the eye ball is due to the RPE layer since the whole

retina is a thin (∼ 500µm), transparent and multilayered tissue, the photoreceptor layer

being the bottom one. Therefore, in constructing the FDTD model of the photoreceptors,

the various constituents of the cell are assumed to have a real index of refraction i.e. with

no imaginary part modeling an absorption effect.

3.4.2 Objectives

Only nature is able to simulate itself.

The main objective of this work is to determine the physiological processes that are most

likely responsible for the functional response of the photoreceptors. This response consists

of the increase in light reflectivity of the OS and the decrease in light reflectivity of the

IS. Therefore, we are primarily interested in the qualitative aspect of change in light scat-
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Figure 3.3: General FDTD model for cone and rod photoreceptor cells. The basic structure
and organization of the cells is presented with a range of values for the size parameters.

tering as a function of the physiological processes, potential candidates for explaining the

functional response. The candidate processes were selected based on the background study

presented in chapter 2. The general model of the photoreceptor cells, shown in fig. 3.3, was

constructed to allow the representation and easy testing of these processes on light scat-

tering. In the following section, we present the candidate processes and the mechanisms

by which they affect the light scattering patterns.

3.4.3 Hypotheses

External light stimulation of living photoreceptors causes a temporary increase in OS

optical reflectivity and a decrease in IS’s one. Both signals are recorded over time as a

change in the power of backscattered light. Also, it has been shown [2] that the intensity
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of optical response is proportional to the intensity of stimulus before saturation level is

reached and that the response to some extent coincides with the electroretinogram (ERG)

signal (differences exist in the rise time, the slope and the sign of change) indicating that

the photoreceptor cells are living and generating the neural signal. Currently, the origins

of the optical response are not known and since it is very difficult to determine the involved

physiological processes using pure experimental techniques, we can only postulate potential

processes and investigate numerically their effect on photoreceptors optical reflectivity. The

following present some of these processes:

Membrane Hyperpolarization

It has been shown in [5] that changes in the membrane potential of neuron cells is associated

with changes in its light scattering pattern. During the photo-transduction process, an

action potential is generated in the OS which propagates through the IS to the synaptic

terminals of the photoreceptors. The change of the membrane potential from -40mV to

-70mV will enhance the alignment of the dielectric dipoles in the double-lipid membrane,

therefore, increasing the refractive index of the membrane. This increase in the refractive

index might cause an increase in reflectivity at the backscattered angles. From previous

work [5], this increase in the refractive index can be assumed not to exceed the 5%.

Discs Hyperpolarization

In dark conditions, steady current flows through gated ion channels spanning the plasma

membrane of the OS. This “dark current” partially depolarizes the OS of the photoreceptor

cell. The photo-activation of the rhodopsin molecules initiates a sequence of reactions that

lead to the closure of the cation channels at the membrane, therefore stopping the dark

current and causing a potential buildup inside the OS.

The discs positioned first in the path of light will have greater probability of capturing
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incident photons and for starting the photochemical process earlier since they are exposed

to the incident photons before the other discs. Therefore, the action of each “antecedent”

disc on the nearby ion channels will be earlier and greater than the action of each “prece-

dent” disc. Consequently, antecedent cGMP-gated ion channels will show an earlier and

greater change in the flow of ionic currents they control and since the OS double-lipid mem-

brane discs are sealed against the passage of ions, the light activated OS will be forming

a stack of “almost” isolated solutions each showing a monotonic change in the concentra-

tion of ions. Changes in the the ionic channels fluxes are assumed to be greater than the

diffusion flows of ions between the inter-discs spacings and which try to reestablish the

electrochemical equilibrium. Consequently, a potential difference will exist for a certain

amount of time around each disc and the whole OS will behave as a stack of “watch batter-

ies” having the same polarity. The potential difference around each OS discs will increase

its refractive index by reorienting the dielectrical dipoles of the double-lipid membrane

that forms it. It is worth noting that the solutions with different ionic concentration are

not totally isolated since the space between the plasma membrane and the edges of the

discs (the two edges in the case of the rod photoreceptor and the one edge in the case of

the cone photoreceptor) permit the passage of ions to recreate the electrochemical equi-

librium. However, as was highlighted in section 2.2.2, there are experimental evidences

that the edges of a rod OS disc are structurally and functionally different than the rest of

the disc, and it is possible that some mechanism exists (e.g. disc stretching) to close the

pores between the edges and the plasma membrane. The non-existence of such a mecha-

nism does not refute the explanation for discs hyperpolarization outlined in the previous

paragraph, but it would indicate that the active action of the high rate cGMP-gated ion

channels is countered by the passive diffusion of ions trying to recreate the electrochemical

equilibrium. In addition, once the photoreceptor goes back to the dark state, the ionic
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Figure 3.4: Proposed mechanism for light induced hyperpolarization of the OS discs: in
dark state, all inter-discs spacing show the same concentration of Na+ ions; in the light
state, a concentration gradient exists.

diffusion will slowly reestablish the equilibrium and the refractive index of the discs will

decrease back to its original value.

As we will see later in section 4.4, the hyperpolarization of the OS discs is the best

candidate process that can explain the increase of reflectivity of the OS. The mechanism

presented for OS discs hyperpolarization can be checked experimentally by comparing the

differences in the optical signals from rod and cone photoreceptors. The discs in rod OS

are free-floating whereas the discs in cone OS stay connected to the plasma membrane

at one edge. The rate of reestablishing the electrochemical equilibrium in rod OS will be

faster (up to two times) than in the case of cone OS (see fig. 3.5) which might translate

as a noticeable difference in the optical functional signal. Based on this hypothesis, it is
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Conjectures

Functional response’s parameter Rod Cone
Rise time Slow Fast
Relaxation Time Fast Slow

Table 3.1: Table of testable conjectures spanning from discs hyperpolarization proposed
mechanism.

expected that the hyperpolarization of discs in cone photoreceptors should be faster (up

to two times) than that of rod photoreceptors. Consequently, the rise time of the OS

optical signal in the case of cones will be smaller than in the case of rods. Moreover, the

depolarization of discs once the cell is back into the dark state will be faster in rods than

in cones. Consequently, the relaxation time of the OS optical signal will be greater in the

case of cones than in the case of rods. Currently, the experimental data of the functional

response is only available for rod dominated retinal photoreceptors, however, there are

some indications that support the first conjecture (see table 3.1) since it is known that

rods have slower response to light (they need to be exposed over a certain amount of time

to be activated) whereas cones have a quicker response to light (cones can perceive more

rapid changes in stimuli) [18].

Structural changes

Light stimulation of a photoreceptor cell can cause structural changes which in turn can

affect the light scattering pattern. On light stimulation, the metabolic activity of mi-

tochondria in the IS increases which might cause an increase in its size, density and/or

chemical composition and consequently a change in its refractive index [34]. In the OS, the

isomerization of the rhodopsin molecules induces conformational changes in the opsin part

of the molecules which might cause changes in the size of the discs. In addition, in the light

state, the photoreceptor cell and its components might experience swelling due to a change
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Rod cell Cone cell

Dark state reestablished

Rod cell Cone cell

Dark state reestablished

Figure 3.5: Conjectured differences between cone and rod photoreceptors regarding the
reestablishment of ionic equilibrium among the inter-discs mediums: the process is faster
in rods photoreceptors

in the osmotic pressure which can be attributed to the demanding and fast metabolic ac-

tivities. Moreover, in bright conditions, a protection mechanism [46] is initiated where the

IS of rods elongates to bring the OS closer to the RPE layer and consequently reduce the

number of photons absorbed by the OS. The elongation of the IS decreases its aperture at

the IS-OS boundary giving the IS a more conical shape. It has been shown [14] that the

photoreceptor cell can be modeled as a dielectric light collector which means that the more

conical shape of the IS increases its angle of acceptance, which might explain its decreasing

reflectivity.
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3.5 Conclusions

This chapter presented a general “blue print” FDTD model of the photoreceptor cells. The

model was constructed based on the understanding acquired from the literature survey,

most of which was presented in chapter 2. Moreover, in this chapter, several hypotheses

about the origin of the functional optical signals were presented.



Chapter 4

Simulation Results

4.1 Introduction

In the FDTD simulations, the plane wave excitation had a spectrum spanning 100nm

around a central wavelength of 1040nm. These parameters match the properties of the

fUHROCT imaging system used in the experiments. For each simulation, scattering pro-

files were computed for 11 wavelength points (990nm, 1000nm, 1010nm, ... 1090nm).

Therefore, the dependencies of the tested changes on the signal wavelength can be ob-

served. Moreover, for each test case, a single scattering profile that averages the data of

all 11 wavelengths was provided in order to examine the effect of the tested case on the

exciting signal over the whole spectrum (a more realistic experimental scenario).

It is worth mentioning that, since the experimental data consists of OCT recording

obtained from light scattering measurements over a limited angular range, we are more

interested in the light scattering simulation results of the backscattering region and in

particular for the range of angles [165◦,180◦]. Simulation results at lower angles are useful

in providing a priori understanding of the effectiveness of future light scattering based

diagnostic devices.

In the following, the models and the simulation results are presented, starting from the

32



4.2. OS Solid Cylinder Model 33

simple ones to the more complex ones.

4.2 OS Solid Cylinder Model

4.2.1 Description

The thickness of discs, the inter-discs spacing (∼ 15nm) and the thickness of the plasma

membrane are all “electrically” small compared to the wavelengths of the probing electro-

magnetic wave. Therefore, as a first step, the OS can be modeled as a solid cylinder with

a homogeneous refractive index which encompasses the optical properties of the discs, the

cytoplasm (inter-discs spacing) and the plasma membrane. Fig. 4.1 shows a schematic de-

scription of the model used. Table 4.1 presents the values of the parameters of the model.

[n0]
medium

[n1]

d

Discs + 
interspacing h

Incident 
plane wave

[n0]
medium

[n1]

d

Discs + 
interspacing h

Incident 
plane wave

Figure 4.1: Schematic of the OS solid cylinder model showing the model parameters.

4.2.2 Test Cases

Using the solid cylinder model of the OS, the following changes were tested:
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Parameter Symbol Value

Diameter of inner cylinder d 1.56µm
Length h 10µm
Medium refractive index n0 1.34
Inner cylinder refractive index n1 1.41

Table 4.1: Simulations parameters for the solid cylinder model estimated from data in
table 2.1.

1. Test case 1: A ±5% change in n1. This test case models the effect of a change in the

refractive index of the OS as a whole on its light scattering pattern. The change in

the index of refraction can be attributed to membrane discs hyperpolarization and/or

discs hyperpolarizations.

2. Test case 2: A ±10% change in h, the length of the cylinder. This test case models the

effect of an elongation or a shortening of a cylindrical structure on light scattering.

In the OS, this change can be attributed to the conformal changes in the rhodopsin

or to a light protection mechanism. Moreover, the results can be used in the case of

the IS where there are experimental evidences about shrinking and elongation of the

myoid part as a protection mechanism for excessive lighting conditions.

3. Test case 3: A ±10% change in d, the diameter of the cylinder. This test case models

the effect of a change in the “aperture” of a dielectric cylindrical structure on light

scattering. In the OS, this change can be attributed to cell swelling which can be

caused for example by changes in the osmotic pressure across the plasma membrane.

Also, the results can be used in the case of the IS since shrinking and elongation of

the myoid is matched with a corresponding change in the aperture.
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Figure 4.2: Light scattering profiles for a ±5% change in n1, the refractive index of the
solid cylinder (test case 1). a)λ=1000nm, b)λ=1030nm, c)λ=1060nm d)λ=1090nm.
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Figure 4.3: Light scattering pattern averaged over the spectrum of the test signal for a
±5% change in n1, the refractive index of the solid cylinder (test case 1).
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4.2.3 Results

Test case 1

Fig. 4.2(a) - 4.2(d) present the scattering profiles for a selection of 4 wavelengths (1000nm,

1030nm, 1060nm and 1090nm) for test case 1. The plots indicate that the effect of chang-

ing the refractive index of the solid cylinder on light scattering does not depend on the

wavelength of the incident wave. In fact, for all wavelengths, the change in the index of

refraction had effect on light scattering in the forward direction (0◦ to 60◦) and a relatively

minimal effect on light scattering in the normal direction (60◦ to 120◦) or the backscat-

tering direction (120◦ to 180◦). The independence of the change in light scattering in test

case 1 on the wavelength can be checked in fig. 4.3 which averages light scattering profiles

for all 11 wavelengths. The plot shows that a 5% increase in the refractive index increases

light scattering power in the forward direction and vice versa. No significant changes are

observed in the other directions.

Test case 2

Fig. 4.4(a) - 4.4(d) present the scattering profiles for the same selection of 4 wavelengths

(1000nm, 1030nm, 1060nm and 1090nm) for test case 2. The plots show that a 10%

increase in the length of the cylinder shifts to the right the sidelobes found at angles above

90◦ and shifts to the left the sidelobes found at angles below 90◦ and the amount of shift

is greater for longer wavelengths. The opposite exactly happens for a 10% decrease in the

length of the cylinder.Fig. 4.5 averages light scattering power for all 11 wavelengths. The

plot shows that the effect of a change in the length of the cylinder on light scattering has

been mitigated for angles higher than 90◦. The effect is almost negligible for the angles in

the backscattered direction.
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Figure 4.4: Light scattering profiles for a ±10% change in h, the length of the solid cylinder
(test case 2). a)λ=1000nm, b)λ=1030nm, c)λ=1060nm d)λ=1090nm.
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Figure 4.5: Light scattering pattern averaged over the spectrum of the test signal for a
±10% change in h, the length of the solid cylinder (test case 2).
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Figure 4.6: Light scattering profiles for a ±10% change in d, the diameter of the solid
cylinder (test case 3). a)λ=1000nm, b)λ=1030nm, c)λ=1060nm d)λ=1090nm.
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Figure 4.7: Light scattering pattern averaged over the spectrum of the test signal for a
±10% change in d, the diameter of the solid cylinder (test case 3).
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Test case 3

The plots in fig. 4.6(a) - 4.6(d) show that changing the “aperture” of the cylinder introduce

significant wavelength dependent changes in light scattering profiles especially at angles

around the normal direction. The increase in the diameter increases the magnitude of the

normal direction sidelobes and vice versa. The effect on the backscattered sidelobes does

not follow a specific pattern with the exception for the last sidelobe since its magnitude

increases with the increase of the diameter and vice versa. The averaging plot in fig. 4.7

simplifies the analysis since it shows that the increase in the “aperture” of the cylinder

increases the magnitude of light scattering of the normal direction sidelobes. The sidelobes

in the backscattered become narrower and their magnitudes increase with the increase in

the aperture. The change in the magnitude at the backscattered direction is significantly

greater than in the previous test cases and therefore it can be used to explain the decrease

in reflectivity of the IS as caused by a decrease in its aperture. This decrease in the aperture

might be caused by the photoreceptor protection mechanism where the IS elongate when

the rod photoreceptor is exposed to external light. The effect of the change is smaller in

the forward direction. The opposite happens with a 10% decrease in the diameter.

4.3 OS Double Cylinder Model

4.3.1 Description

In the solid cylinder model, the bulk effect of discs and membrane hyperpolarizations were

simulated in a single test case. In order to investigate the effect of membrane hyperpolar-

ization alone, the solid cylinder model was modified by including a thin cylindrical shell

representing the outer cell membrane. Fig. 4.8 shows a schematic description of the model
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Figure 4.8: Schematic of the OS double cylinder model showing the model parameters.

Parameter Symbol Value

Diameter of inner cylinder d 1.5µm
Membrane thickness t 30nm
Length h 10µm
Medium refractive index n0 1.34
Membrane refractive index n1 1.48
Inner cylinder refractive index n2 1.41

Table 4.2: Simulations parameters for the double cylinder model estimated from data in
table 2.1.

used. Table 4.2 presents the values of the model parameters used in the simulations.

4.3.2 Test Cases

Using the double cylinder model of the OS, the effect of a ±5% change in n1 was tested.

This test case models the effect of a change in the refractive index of the outer cell mem-

brane on light scattering. This change in the index of refraction can be attributed to

the hyperpolarization of the plasma membrane which occurs during the generation of the

neural electrical signal.
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Figure 4.9: Light scattering profiles for a ±5% change in n2, the refractive index of the
cylinder’s sheath. a)λ=1000nm, b)λ=1030nm, c)λ=1060nm d)λ=1090nm.
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Figure 4.10: Light scattering pattern averaged over the spectrum of the test signal for a
±5% change in n1, the refractive index of the outer membrane.
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4.3.3 Results

As the results in fig. 4.9(a) - 4.9(d) show, a ±5% change in n1 has a negligible effect

on light scattering for all angles and for all wavelengths. The averaging plot shown in fig.

4.10 confirms that membrane hyperpolarization has no significant effect on light scattering.

However, when compared with the case of the solid cylinder, modeling the membrane sepa-

rately has increased the number of sidelobes and reduced the magnitude of light scattering

in the normal and backscattered directions.

4.4 OS Discs Stack Model

4.4.1 Description

Inter-discs [n1]
spacing s

d

h

Incident 
plane wave

Medium [n0]

OS Disc  [n2]
thickness td

Inter-discs [n1]
spacing s

d

h

Incident 
plane wave

Medium [n0]

OS Disc  [n2]
thickness td

Figure 4.11: Schematic of the OS discs stack model showing the model parameters.

The periodic dielectric structure of the OS might have an effect on light scattering

even though the discs thickness and spacing are much smaller than the wavelengths of

interests. Therefore, the inner cylinder in the double cylinder model was replaced a by

a stack of discs with equal inter-discs separation. Fig. 4.11 shows the disc stack model
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Parameter Symbol Value

OS diameter d 1.5µm
Length h 10µm
Disc thickness t 15nm
Inter-Discs spacing s 15nm
Medium refractive index n0 1.34
Inter-discs refractive index n1 1.37
Discs refractive index n2 1.46

Table 4.3: Simulations parameters for the discs stack model estimated from data in table
2.1.

of the OS which contains 333, 15nm double-lipid membrane discs separated by 15nm

cytoplasmic gaps. This 50% duty cycle in the periodicity of the discs stack model was

selected after inspection of high magnification images of the OS obtained using scanning

electron microscopy [17, 47].

4.4.2 Test Cases

A discs stack model of the OS can be used to test the following changes:

1. Test case 1: A ±5% change in n2. This test case models the effect of a change in

the refractive index of the discs on light scattering. Such a change in the index of

refraction can be attributed to the hyperpolarizations of discs.

2. Test case 2: A ±10% change in t, the thickness of a disc. This test case models the

effect of a change in the “duty cycle” of the periodic structure which was initially

set to 50%. This change can be attributed to the conformal changes in the axial

direction when the rhodopsin is photoactivated. The length of the cylinder h is kept

constant.
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3. Test case 3: A ±10% change in d, the diameter of the cylinder. This case was simu-

lated in the single cylinder model, but it is possible that a change in the “aperture”

of a periodic structure might give different results.

4.4.3 Results

Test case 1

Fig. 4.12(a) - 4.12(d) show that the effect of a change in the refractive index of the discs

on light scattering profiles. A 5% increase in the n2 increases light scattering power by a

significant factor for all angles, especially for the ones of the normal and backscattered di-

rection. Although this behavior is present for all wavelengths, some wavelengths experience

greater change which can reach approximately 3 orders of magnitude in light scattering

power as in fig. 4.12(b). In most light scattering patterns presented in this chapter, one can

distinguish two types of sidelobes: sidelobes of great magnitudes that form the envelope

of the scattering profile and sidelobes of small magnitudes that modulate the scattering

profile. In general, the increase in n2 should increase the number of sidelobes, mainly the

modulating ones, and make them narrower, however, because the near-to-far field trans-

formation computes the far field each 0.5◦, therefore the very narrow sidelobes are smeared

out leaving the envelope sidelobes. Fig. 4.13 shows the effect for the change in n2 over

the whole spectrum. Contrarily to the effect observed in fig. 4.3, a ±5% change in the re-

fractive index of discs in the periodic nonhomogeneous cylindrical structure, that amounts

to an effective change of ±2.5% for the entire volume of the OS, caused significant changes

in light scattering as compared to the case of a solid cylinder. The increase in the index

of refraction of discs causes an increase in light scattering power over most angles and a

smearing of sidelobes especially around the direction of normal scattering. The opposite
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Figure 4.12: Light scattering profiles for a ±5% change in n2, the refractive index of discs
(test case 1). a)λ=1000nm, b)λ=1030nm, c)λ=1060nm d)λ=1090nm.
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Figure 4.13: Light scattering pattern averaged over the spectrum of the test signal for a
±5% change in n2, the refractive index of the OS discs (test case 1).
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happens with a decrease in the refractive index.

Test case 2

As the results in fig. 4.14(a) - 4.14(d) show, a ±10% change in t, the thickness of discs, has

a negligible effect on light scattering for all angles and for all wavelengths. The averaging

plot shown in fig. 4.10 confirms that the conformal changes of the rhodopsin along the

axial direction has no effect on light scattering.

Test case 3

Fig. 4.16(a) - 4.16(d) present the effect of a ±10% change in the d, the diameter of discs,

on light scattering profiles. The effects are most noticeable in the range of 30◦ to 150◦.

The increase in the diameter of discs increases the magnitude and numbers of scattering

sidelobes around the normal direction and vice versa.

4.5 IS Model

4.5.1 Description

From refractive index data and microscopic images, the volumetric percentage of the mi-

tochondria is estimated at 60% of the ellipsoid volume. For the myoid, the volumetric

percentage of the organelles is estimated at 15% of the total volume, again using refractive

index data. The IS is modeled as a 12µm cylinder with 9 mitochondria occupying the

lower 7µm and the rest is occupied by the organelles (160 vacuoles and 40 microtubules).

The sizes of mitochondria, vacuoles and microtubules were randomly selected based on

ranges found in the literature and their positioning was done randomly while ensuring no



4.5. IS Model 47

0 20 40 60 80 100 120 140 160 180

1E-9

1E-8

1E-7

1E-6

1E-5

1E-4

1E-3

0.01

0.1

1
 @ 1000 nm

 Base

 +10% ∆t

 -10% ∆t

S
ca

tte
rin

g 
In

te
ns

ity
 (a

.u
.)

Angle

0 20 40 60 80 100 120 140 160 180

1E-9

1E-8

1E-7

1E-6

1E-5

1E-4

1E-3

0.01

0.1

1
 @ 1030 nm

 Base

 +10% ∆t

 -10% ∆t

S
ca

tte
rin

g 
In

te
ns

ity
 (a

.u
.)

Angle

0 20 40 60 80 100 120 140 160 180

1E-9

1E-8

1E-7

1E-6

1E-5

1E-4

1E-3

0.01

0.1

1
 @ 1060 nm

 Base

 +10% ∆t

 -10% ∆t

Sc
at

te
rin

g 
In

te
ns

ity
 (a

.u
.)

Angle

0 20 40 60 80 100 120 140 160 180

1E-9

1E-8

1E-7

1E-6

1E-5

1E-4

1E-3

0.01

0.1

1
 @ 1090 nm

 Base

 +10% ∆t

 -10% ∆t

Sc
at

te
rin

g 
In

te
ns

ity
 (a

.u
.)

Angle

Figure 4.14: Light scattering profiles for a ±10% change in t, the thickness of discs (test
case 2). a)λ=1000nm, b)λ=1030nm, c)λ=1060nm d)λ=1090nm.
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Figure 4.15: Light scattering pattern averaged over the spectrum of the test signal for a
±10% change in t, the thickness of the OS discs (test case 2).
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Figure 4.16: Light scattering profiles for a ±10% change in d, the diameter of discs (test
case 3). a)λ=1000nm, b)λ=1030nm, c)λ=1060nm d)λ=1090nm.

0 20 40 60 80 100 120 140 160 180

1E-6

1E-5

1E-4

1E-3

0.01

0.1

1

 Base

 +10% ∆d

 -10% ∆d

Sc
at

te
rin

g 
In

te
ns

ity
 (a

.u
.)

Angle

Figure 4.17: Light scattering pattern averaged over the spectrum of the test signal for a
±10% change in d, the diameter of the OS discs (test case 3).
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Figure 4.18: Schematic of the IS solid cylinder model showing the model parameters.

intersection. Fig. 4.18 presents a schematic description of the IS model, while table 4.4

indicates the values of the parameters used in the simulations.

4.5.2 Test cases

White light stimulation of a photoreceptor cell increases the metabolic activity of the

mitochondria which constitute the bulk of the ellipsoid part of the IS. The effect of the

increased metabolic activity on light scattering can be modeled by changes in the structural

and optical properties of the mitochondria. Using the IS model, the following changes have

been tested:

1. Test case 1: A ±5% change in n4, the refractive index of a mitochondrion.

2. Test case 2: A ±21% change in vm, the volume of a mitochondrion.
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Parameter Symbol Value

Diameter of inner cylinder d 1.5µm
Membrane thickness t 30nm
IS length h 12µm
Myoid length hm 5µm
Ellipsoid length he 7µm
Vacuole thickness tv 20 − 80nm
Microtubule thickness tt 10 − 40nm
Microtubule length lt 1.5 − 4.5µm
Mitochondrion thickness tm 175 − 250nm
Mitochondrion length lm 3 − 4.5µm
Medium refractive index n0 1.34
Membrane refractive index n1 1.48
Cytoplasm refractive index n2 1.37
Microtubules & Vacuoles refractive index n3 1.42
Mitochondria refractive index n4 1.43

Table 4.4: Simulations parameters for the IS model estimated from data in table 2.1.

4.5.3 Results

Test case 1

Fig. 4.19(a) - 4.19(d) show the results of a ±5% change in the refractive index of the

mitochondria. Changes in the scattering profile common to all wavelengths occurs at the

angles of the forward direction where, in general, the increase in the index of refraction

causes a slight increase in light scattering power. Some wavelengths specific changes in

scattering power are observed in some sidelobes occurring in the normal and backscattered

regions. The average plot in fig. 4.20 indicate that the increase in the refractive index

of the mitochondria leads to a small noticeable change in light scattering power in the

forward direction. This behavior can be explained by comparing a mitochondrion to an

optical fiber and therefore, the increase in the index of refraction causes more light to

channel through the mitochondrion in the forward direction.
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Figure 4.19: Light scattering profiles for a ±5% change in n4, the refractive index of
mitochondria (test case 1). a)λ=1000nm, b)λ=1030nm, c)λ=1060nm d)λ=1090nm.
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Figure 4.20: Light scattering pattern averaged over the spectrum of the test signal for a
±5% change in n4, the refractive index of mitochondria (test case 1).
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Figure 4.21: Light scattering profiles for a ±21% change in vm, the volume of mitochondria
(test case 2). a)λ=1000nm, b)λ=1030nm, c)λ=1060nm d)λ=1090nm.
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Figure 4.22: Light scattering pattern averaged over the spectrum of the test signal for a
±21% change in vm, the volume of mitochondria (test case 2).
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Test case 2

The change in the volume was selected to be 21% to compare with the case of a 10%

change in the lateral thickness (not reported) of mitochondria which causes a change of

21% in the volume in the lateral direction. both cases show identical results. The effect of

mitochondria structural changes on light scattering are presented in fig. 4.21(a)-4.21(d).

For all wavelengths, the only noticeable changes are seen over the range of angles 20◦ to 40◦.

The average plot in fig. 4.22 shows that a ±21% change in the volume of mitochondria has

limited effect on light scattering. This means that even with a significantly large change

in the volume, the mitochondria still fall in the same regime of light scattering from small

objects.

4.6 Conclusions

In this chapter, various FDTD models of the OS and IS were presented. Also, for each

model, several test cases were devised. Among all the simulation results obtained, only

two cases showed interesting results which can explain the functional response of the pho-

toreceptors. The first case is the ±10% change in the “aperture” as was simulated in test

case 3 of the solid cylinder model. For this case, the scattering profile shown in fig. 4.7

indicates appreciable change in light scattering power at the backscattered region, espe-

cially at the range of angles [165◦, 180◦] for which the experimental data were obtained.

This result can explain the decrease in the reflectivity of the IS as a change in the “aper-

ture” which can be attributed to the elongation of the myoid during the activation of the

protection mechanism or as a cell swelling behavior caused by the high metabolic activity

that accompanies the transduction of the neural signal. The second case is the change

in the discs index of refraction index n1 within the discs stack model. This ±5% change
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lead to a significant change in light scattering power over all angles and for all wavelengths

(fig. 4.12 and fig. 4.13). In particular, the increase in power at the near 180◦ by more

than an order of magnitude can explain the optical response of the OS as caused by the

hyperpolarization of discs. On the other hand, results from the rest of models and test

cases showed very small variations in light scattering power at the backscattered direction.

While no claim can be made on the exclusiveness of the two best results in explaining

the functional response, the whole study narrows down the cases of structural changes to

changes affecting the “aperture” and the cases of refractive index changes to cases with

”high frequency“ variation in the static component of the refractive index.



Chapter 5

Numerical Dispersion

5.1 Introduction

5.1.1 Motivation

When compared to the exact physical solution, the FDTD results suffer from phase errors

that originate from the discrete nature of the FDTD algorithms. The phase errors strongly

depend on the ratio of wavelength to the grid meshing size, especially in the case of second

order accurate FDTD. Therefore, the effect of the errors on a propagating signal matches

the effect of propagation in a dispersive material, and consequently, the term “numerical

dispersion” was coined for this class of errors. In general, reducing the effect of numerical

dispersion is constrained by the computational resources and the size of the problem since

halving the phase errors requires the doubling of the resolution (i.e. doubling the mesh size

in all directions). The main trade-off is between computational resources and accuracy.

Moreover, numerical dispersion is more severe in electrically large structures which spans

several wavelengths since the error in phase can accumulate up to a 180◦ phase reversal

55
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during the propagation in the space-time coordinate system.

5.1.2 Objectives

To our knowledge, there hasn’t been any study which quantifies the effect of numerical dis-

persion on light scattering profiles obtained using the FDTD approach outlined in chapter

3. Consequently, the meshing step in all simulation jobs performed during this study was

reduced in order to achieve the minimum error possible. The disadvantage in this approach

is the consumption of large computational resources in terms of memory, processing units,

storage and more importantly the waiting time a researcher will have to spend for maybe a

simple first round simulations. In this chapter, a study of the effect of numerical dispersion

in light scattering simulations is presented. The main objective is to provide quantitative

data about the nature and magnitude of errors introduced in the scattering profiles for a

given mesh size. This a priori understanding will allow better productivity in applying

FDTD for scattering related problems.

5.2 Theory

Numerical dispersion is manifested by the modification of the real wavenumber k to a

numerical wavenumber k̃. Eq. 5.1 shows how the wave dispersion equation in FDTD

depends on the time step ∆t and the mesh step ∆Z. The stability of the FDTD algorithm

constrains the Courant factor C = v∆t
∆Z

to be < 1√
dim

(< 1√
3
≈ 0.577 for 3D simulations).

Setting the Courant factor to 0.5, k̃ can be simply expressed as a function of the relative

mesh size ∆z
λ

(eq. 5.2) and the solution will be stable even for the coarse meshing of

λ
∆Z

= 10. In the case of sinusoidal waves, the numerical phase velocity can be calculated

using eq. 5.3. Fig. 5.1 presents a plot of the ratio of the numerical phase velocity to
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theoretical one versus the relative mesh size. The maximum phase error introduced in a

structure spanning m number of wavelengths can be calculated using eq. 5.4. Fig. 5.2

shows the phase error introduced in a sinusoidal wave after propagating a distance of 10λ

(i.e. m = 10).

k̃ =
1

∆Z
arccos{1 + (

∆Z

c∆t
)2[cos(ω∆t) − 1]} (5.1)

k̃ =
1

∆Z
arccos{1 + 4[cos(2

∆Z

λ
) − 1]} (5.2)

ν̃p =
ω

k̃
=

2πf
1

∆Z
arccos{1 + 4[cos(2∆Z

λ
) − 1]} = {

∆Z
λ

arccos{1 + 4[cos(2∆Z
λ

) − 1]}}νp (5.3)

∆φ = mλ
∆Z

λ
(1 − ν̃p

νp

) × 360◦ (5.4)
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Figure 5.1: Relative numerical phase velocity vs. relative mesh size. The numerical phase
velocity is taken relative to the theoretical one.
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Figure 5.2: Numerical phase error (in degrees) vs. relative mesh size. The error is intro-
duced in the phase of a sinusoidal signal which propagated a distance of 10λ.

5.3 Methods

5.3.1 Overview

In light scattering computations using the FDTD method, there are two processing steps:

The first step consists of the FDTD solution of the interaction of an incident wave with

a scattering object. At the end of the first step, the near-fields over a surface enclosing

the object are stored. The second step consists of the near-to-far field transformation

which integrates the contribution of all near-fields at the far zone. Numerical dispersion

is introduced in the first step and it has been suggested in [48] that the integration aspect

of the near-to-far field transform can mitigate the phase errors, therefore, reducing the

weight of the numerical dispersion on the scattering profiles. In investigating the effect

of numerical dispersion on light scattering, separate analyses were made for the near and
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far-field results.

5.3.2 Model

Our main interest in this study is to quantify the errors in our results. In general, the

presence and the value of phase errors in our results do not affect the conclusions drawn

since the interest was in the relative change in the scattering pattern rather than in the

absoluteness of the results. The quantification of errors will be most useful when the

numerical values of the results are needed, for example during a future development of the

diagnostic method. Since the photoreceptors were modeled as long cylindrical structures,
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Figure 5.3: The setup of the FDTD simulations for numerical dispersion. The stars show
the locations of the time-domain monitors used.

the study of the numerical dispersion was done for the most basic model used, the solid
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cylinder model presented in section 4.2. The effect of numerical dispersion on the model

was simulated by increasing progressively the mesh size in the axial direction since the

incident wave travels for the longest distance and duration in this direction. The incident

plane wave pulse has 100nm bandwidth around a central wavelength of λcen = 1µm.

The simulations were performed for three cylinders of different diameters (0.1µm, 1µm

and 5µm). These different apertures are meant to be representative of the three distinct

scattering regimes: In the first regime, λ, the wavelength of the excitation is greater than
√

σ where σ = π d2

4
is the scattering cross section area and d the diameter of the cylinder.

In the second regime, λ is comparable to
√

σ and in the third regime, λ is smaller than
√

σ (λcen√
σ

≈ 8, 0.8, 0.16 respectively).

5.3.3 Near-fields analysis method
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Figure 5.4: Processing flow chart showing the generation of the theoretical signal Stheoretical

with ideally zero phase error. Stheoretical was obtained from an ideal propagation of the
incident signal recorded by the first time-domain monitor toward the location of the second
time-domain monitor.

The analysis of the near-fields consists of determining the error in phase introduced

during the propagation of the plane wave from its insertion point at the TF-SF boundary
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to the opposite boundary. Two time-domain point monitors were set along the main axis

of the cylinder to record the time signals that will be used in the processing (fig. 5.3).

The first Time-monitor records the incident plane wave entering the TF region whereas

the second time-monitor records the signals reaching the other end of the TF region. The

incident signal recorded by the first time-domain monitor was used to create the propagated

incident signal as it should be theoretically at the location of the second time-domain

monitor. Fig. 5.4 presents the processing flow used to implement the ideal propagation of

the incident signal. A Discrete-Fourier-Transform (DFT) transforms the incident pulse into

the frequency domain, then each frequency component is selected and inverse transformed

back to the time-domain using Inverse-Discrete-Fourier-Transform (IDFT). The harmonical

signal obtained in the previous step is multiplied by the phase factor e−kx where k is the

wavenumber corresponding to the frequency f and to the medium of propagation with

length ∆L and refractive index n (c is light celerity). Finally, all time sub-signals are

integrated to generate the ideally propagated signal Stheoretical. Stheoretical has ideally zero

phase error and therefore, the difference in phase when compared to the FDTD signals

recorded by the second time-domain monitor approximates the phase error introduced by

the numerical dispersion. Fig. 5.5 presents the processing diagram for the computation of

phase errors in the FDTD signals. First, the DFT signals of both reference (i.e., theoretical)

and target (i.e., simulated) signals were computed to determine the spectrum of interest.

Then each frequency component is selected and inverse transformed back to the time-

domain using IDFT. The time-domain sub-signals are inputted to the hilbert analyzer

which computes the phase difference. The phase difference are reported per each frequency

of the source signal spectrum.
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Figure 5.5: Diagram of processing to determine numerical dispersion

5.3.4 Far-fields analysis method

The far-field results consist of scattering profiles computed for each mesh size. The errors

can only be reported relative to the case of finest grid since there is no analytical solution

for light scattering from a finite cylinder where the incident wave propagates along the

axial direction.

5.4 Results

5.4.1 Near-field results

Fig. 5.6 shows the phase error introduced in the near-fields data after propagating through

the TF region. The figure shows that, as the mesh size increases, the phase error at the

smaller wavelengths starts to increase at a faster rate compared with the errors at the

longer wavelengths. For relative mesh sizes λ
∆Z

> 0.02, this difference in phase error can

pass the 200%.
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Figure 5.6: Phase error plotted vs. signal wavelength spectrum for various mesh sizes
(∆Z

λ
=0.01, 0.02, 0.05 and 0.1).

Fig. 5.7 presents the phase error occurring at the median wavelength with peak power

(λ = 1000nm). The result compares well with the theoretical phase error calculated for

the same wavelength and presented in fig. 5.1. Also, fig. 5.7 shows that for a structure of

10λ, the error in phase in the near-fields is less than 180◦ for most practical meshing sizes

and less than 90◦ for mesh size satisfying ∆Z
λ

< 0.06. Fig. 5.8 presents the ratio of the

average phase velocity of the propagated signal. The results show significant deviations

and faster decrease as a function of the mesh size when compared with phase velocity

values reported by the theoretical analysis (see fig. 5.1). The analysis of the effect of

numerical dispersion on near-fields showed that the phase error will not exceed 90◦ for

mesh size satisfying ∆Z
λ

< 0.05. Also, over a spectrum of 100nm = λcentral

10
, the variation in

phase error will not exceed 60◦, again for mesh sizes ∆Z
λ

< 0.05. Above these thresholds,

the variations show a deviation from the linear behavior where the phase error can change

by values up to 180◦. In terms of phase velocity, the change is less or equal to 5% for mesh
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Figure 5.7: Phase error at median spectrum wavelength (with highest power) plotted vs.
mesh sizes (∆Z

λ
=0.01, 0.02, 0.05 and 0.1).
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size satisfying ∆Z
λ

< 0.05 and can reach 15% for mesh size satisfying ∆Z
λ

= 0.1.

5.4.2 Far-field results
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Figure 5.9: Effect of numerical dispersion on light scattering in the case of small scattering
cross section as compared to the wavelength (case 1).

The far-field results are reported for the three regimes of scattering as explained earlier.

Fig. 5.9 shows the light scattering profile for the first regime, where the wavelengths of

the signal are much greater than the diameter of the cylinder. In this case, numerical

dispersion has the greater effect around the normal scattering directions where the side-

lobes experience large fluctuations in their magnitude. The sidelobes in the forward and

backscattering directions show a slight shift towards lower angles. Fig. 5.10 presents the

light scattering profile for the second regime of scattering where the diameter of the cylin-

der is comparable to the wavelengths of the signal. In this regime, the sidelobes around the

normal directions start to show less magnitude fluctuations and more positional fluctua-
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Figure 5.10: Effect of numerical dispersion on light scattering in the case of medium
scattering cross section as compared to the wavelength (case 2).
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Figure 5.11: Effect of numerical dispersion on light scattering in the case of large scattering
cross section as compared to the wavelength (case 3).
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tions whereas the opposite happens in the normal and backscattered directions. Fig. 5.11

presents the light scattering profile for the third regime of scattering where the diameter

of the cylinder is larger than the wavelengths of the signal. In this regime, the sidelobes

around the normal directions show slight variations in magnitude whereas the sidelobes

of the backscattered and forward regions show a mix of large magnitude and positional

changes.

5.5 Conclusion

We have investigated the effect of numerical dispersion on light scattering profiles obtained

from simulations of retinal photoreceptors models. The near-field results quantified the

maximum phase error and the relative phase velocity observed versus the meshing size.

Far-field results show that numerical dispersion either affects the sidelobes in forward and

backscattering regions or the sidelobes in the normal scattering directions. The normal

direction sidelobes are less affected as the aperture increases whereas the opposite happens

for the sidelobes of the forward and backscattering regions.



Chapter 6

Conclusions

6.1 Summary

We have simulated changes in light scattering from retinal photoreceptors evoked by ex-

ternal light stimulations. Various physiological processes have been investigated such as

double-lipid membrane and discs hyperpolarization and cell structural changes. Their ef-

fect on light scattering has been determined. Simulation results indicate that OS discs

hyperpolarization is the most likely cause for the increase of optical reflectivity from the

OS. Other results suggest that the decrease in optical reflectivity of the IS is due to the

elongation of the IS which acts as a protection mechanism from excessive lighting condi-

tions. These results will be compared with experimental fUHROCT data acquired from

animal models and human studies. We hope that the comparison of experimental and com-

putational results would provide conclusive indications as to how different light induced

physiological processes in the retina affect the detected fUHROCT signal. Such analysis

will be crucial for the future development of fUHROCT as an ophthalmic diagnostics tool

for neurodegenerative diseases, comparable and complementary to ERG.
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In addition, we have investigated the effect of numerical dispersion on light scattering

profiles obtained from simulations of retinal photoreceptors models. The study shows

that numerical dispersion have different effects for various scattering regimes. The study

indicates that the conclusions drawn from the photoreceptors simulations are not affected

by the values of errors presents in the results.

6.2 Future Work

The work described in this thesis has paved the way for further investigations on the effect

of physiological processes on light scattering from photoreceptors. We hope to increase the

accuracy of the models to be able to use the quantitative aspects of the results in order

to compare with the experimental results. Also, the work suggested couple functional

imaging experiments to validate the explanation of the mechanisms leading to OS discs

hyperpolarization. In addition, there is a need for an understanding of the kinetics of

ionics fluxes flowing through the ions channels in comparison with the diffusion of ions in

between the inter-discs spacings and between the IS and OS mediums. On the numerical

aspects, more work needs to be done to optimize the processing algorithms and to decrease

the computational requirements. For example, a significant reductions in processing time

and memory requirements can be made by including the far-field transform as part of

the simulation processing rather than a separate post-processing step. Finally, there is a

promising opportunity for research work on the compensation of the effects of numerical

dispersion on far-fields results.
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