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Abstract 

Purpose:  Previous studies have shown that some digital filters can enhance picture-image 

visibility for people with visual impairment. The ultimate purposes of this study are to 

determine the improvement of picture-image visibility for people with maculopathy using 

digital image enhancement, and to compare the enhancement effects of generic filters and 

custom-devised filters. The secondary interests are to investigate the effect of age and 

maculopathy on supra-threshold contrast matching and to investigate the spatial frequency 

characteristics of picture-images.  

 

Methods: In order to develop effective custom-devised filters, supra-threshold contrast 

matching and contrast thresholds for two age groups of subjects with normal vision (14 aged 

20-50 years and 15 aged 51+ years) and three groups of people with maculopathy (13 with 

atrophic ARMD, 14 with exudative ARMD, and 8 with JMD) were measured. Amplitude 

spectrum at each spatial frequency and the slope of amplitude versus spatial frequency were 

measured to investigate the spatial frequency characteristics of single face and general scene 

images. To investigate the preference for filters, 7 generic filters and 4 custom-devised filters 

were applied to single faces and general scenes. The generic filters were high-pass/unsharp 

masking, contrast enhancement, Sobel edge enhancement, DoG convolution, DoG FFT, 

Peli’s adaptive enhancement, and a band-pass filter with equi-emphasis of spatial 

frequencies. The custom-devised filters were band-pass filters based on contrast sensitivity 

(CS) loss, contrast matching at 3.6% and 27.9%, and emphasis of the peak of the CS curve. 

Subjects with maculopathy were required to rate the visibility of each image with and 
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without filtering. Nine subjects with maculopathy participated to assess the enhancement 

quantitatively during which the recognition of facial expression and details in general scenes 

was tested with and without filtering. 

                                                                                                                                                                                    

Results: Contrast constancy was demonstrated in age-matched controls and people with 

maculopathy. Single faces were found to be of significantly lower average amplitude than the 

other groups of images.  Eight filters were found to be effective in improving perceived 

visibility; contrast enhancement, Peli’s adaptive enhancement, DoG convolution, high-

pass/unsharp masking, Sobel edge enhancement, band-pass based on 3.6% and 27.9% 

contrast matching and equi-emphasis band-pass filters.  These filters specifically were found 

to be effective for one or more combinations of maculopathy type and image category. The 

most commonly preferred filters were the generic filters, contrast enhancement and Peli’s 

adaptive enhancement. The two highest rated filters for each subject significantly reduced the 

number of errors of facial expression and errors of recognition of detail within general scene 

images.  

 

Conclusions: The visual system adjusts to compensate for CS loss with aging and 

maculopathy. Single faces are unique in spatial frequency characteristics. Some generic and 

custom-devised filters are effective in enhancing image visibility. The custom-devised filters 

are not superior to the generic filters. Visibility enhancement can be assessed quantitatively.  
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Chapter 1 

General Introduction 

 

1.1 Visual Impairment and Maculopathy 

Visual impairment is defined by the World Health Organization (WHO) as a 

measurable loss of visual function compared to the normal range of healthy eyes, a 

psychophysical measurement which is outside the normal range (World Health Organization, 

1980). There are two levels of visual impairment – low vision and legal blindness. Low 

vision is defined by WHO as “inability to reach near normal performance with visual aids”. 

Leat et al. (1999) reconsidered various definitions and suggested that low vision be defined 

as visual impairment which is sufficient to cause a disability, which would be visual acuity < 

6/12, contrast sensitivity < 1.05 (Pelli-Robson), and visual field of 120° with the Ш – 3e 

target (60° with Humphry). Legal blindness was defined by WHO as “the inability to 

perform tasks which normally require gross vision without increased reliance on other 

senses” (World Health Organization, 1980). The definition of legal blindness in the US and 

Canada is best corrected visual acuity ≤ 6/60 or a visual field ≤ 20º in any meridian 

(Kirchner,1988). 

With the increased aging of the population in industrialized nations, age-related 

vision problems need more and more attention. Prevent Blindness America reported that 

about 2.5 million Americans over the age of 40 have moderate visual impairment and an 

additional 1 million have severe impairment, including blindness (about 300, 000). These 
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numbers are expected to continually grow in the next two decades (Prevent Blindness 

America, 1994). Age-related macular degeneration (ARMD) is the primary cause of 

blindness in industrialized countries (Attebo et al., 1996; Bressler et al., 1988; Haymes et al., 

2001; Klaver et al., 1998). Its prevalence increases with age. For example, the Blue Mountain 

Eye Study found that exudative ARMD or geographic ARMD affected 0.2% of people from 

55 to 64 years of age, while it went up to 5.7% of the population aged 75 to 84 years 

(Mitchell et al., 1995).  With the rapid increase of the elderly population (Olshansky et al., 

1993), there will be more people experiencing ARMD. 

ARMD is a degenerative and progressive condition involving the retinal pigment 

epithelium (RPE), Bruch’s membrane, and choriocapillaris (Green & Enger, 1993; Green, 

1999; Schneider et al., 1998; Zarbin., 1998). Clinical symptoms include degraded or distorted 

central vision and central visual field loss. The early stage is accompanied by hypo- or hyper-

pigment and formation of drusen (Bressler et al., 1994; Sarks, 1994), and is called age-related 

maculopathy (ARM) (Bird et al., 1995). The later stage involves geographic atrophy or 

neovascular complications (Green & Enger, 1993), which are called “atrophic” and 

“exudative” ARMD respectively. Much more rarely, younger people, including infants and 

young children, develop macular dystrophies, and they do so in clusters within families, their 

disorders being more directly inherited.  These types of macular degeneration that affect 

young people are collectively called juvenile macular degeneration or dystrophy (JMD) and 

include diseases such as Stargardt’s disease, Best’s disease, cone dystrophy. 

Numerical and functional reduction in photoreceptors in all stages of ARMD has been 

shown with a variety of techniques (Curcio, 1990, 1996, 2000; Li et al., 2001). Some studies 
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show that the other layers of retina are also damaged by maculopathy. An early study by 

Enoch (1978) used special psychophysical methods to isolate the function of the outer retinal 

layer (bipolars and outer plexiform layers) from the inner retina (ganglion cells and inner 

plexiform layers). The results showed that around 1/3 of ARM cases demonstrated outer 

retina involvement and 2/3 demonstrated both inner and outer retina involvement. Dunaief et 

al. (2002) studied apoptosis in ARMD and reported that RPE, photoreceptors, and inner 

nuclear layer cells died by apoptosis (cell death). Kim et al. (2002) evaluated the extent of 

neural cell death in eyes with geographic atrophy and exudative ARMD. They found the 

outer nuclear layers were most severely affected while the inner nuclear layers were 

relatively preserved for both types of ARMD. However ganglion cell reduction was found to 

be significant in geographic atrophy but not in exudative ARMD. 

A “preferred retinal locus” (PRL) is formed in maculopathy to compensate for the 

central vision loss (Cummings et al., 1985; Schuchard & Fletcher, 1994). Studies have shown 

that 72% -84% of eyes with central scotoma due to ARMD or JMD adopt a PRL (Cummings 

et al., 1985; Fletcher & Schuchard, 1997). Because of the dysfunction of retinal cells and the 

use of PRL, various visual function losses have been observed in maculopathy.  

1.2 Visual Function Loss due to Maculopathy 

1.2.1 Visual acuity loss is obvious in maculopathy. When visual acuity reaches 6 / 15 or 

worse, performance of daily tasks will be more difficult (Sultan et al., 1997). Leat et al. 

(1999) suggested an adoption of visual acuity < 6/12 as a standard criterion for disability 

caused by visual impairment. In some western countries, people with maculopathy with 
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visual acuity loss to poorer than 6/15 would restrict the eligibility of driving. There is a big 

span of visual acuity exhibited for advanced maculopathy (MPS Group, 1994). It is generally 

found that visual acuity is not the best indicator of some abilities such as face recognition and 

mobility (Rubin et al., 2000). 

1.2.2 Visual field loss happens within the central visual field, i.e., there is a central scotoma. 

ARMD primarily affects the central 5 degrees of the retina (Folk, 1985; Leibowitz et al., 

1980).  

1.2.3 Contrast sensitivity (CS) loss shows the reduced capacity limit of the visual system to 

detect gratings with respect to spatial frequency for people with maculopathy. Increases of 

contrast threshold in early ARM mainly happen at high and intermediate frequencies whereas 

in ARMD, the impairment happens across the whole frequency range (Sjostrand & Frisen, 

1977; Loshin & White, 1984). Supra-threshold contrast perception in maculopathy is another 

consideration. Little is known about supra-threshold contrast perception in maculopathy. Leat 

and Millodot (1991) showed that supra-threshold contrast perception was also influenced by 

maculopathy, however, not as much as the threshold contrast loss would indicate.  

1.2.4 Other visual function loss also occurs. For example, some studies tested dark adaptation 

in early stages of ARM, revealing a scotopic dysfunction (scotopic sensitivity loss more than 

photopic sensitivity loss) and delays in rod-mediated dark adaptation (Owsley et al., 2000; 

Owsley et al., 2001; Steinmetz et al., 1993). Some researchers tested cone-mediated visual 

functional changes. Delayed visual adaptation of cones was observed (Cheng & Vingrys, 
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1993; Eisner, Stoumbos et al., 1991). Phipps et al. (2003) also found delayed cone recovery.  

Mayer et al. (1994) demonstrated a loss of flicker sensitivity. 

1.3 Low Vision Rehabilitation (LVR) 

Medical treatment of maculopathy, such as laser and radiation therapies, retinal 

transplants, gene therapies, ozone and hyperbaric therapies (Seddon, Ajani, Sperduto et al., 

1994; Eger, 1998) is limited. Therefore low vision rehabilitation (LVR) plays an important 

part to enhance the quality of life for low vision patients.  “LVR involves the assessment of 

visual impairment and the evaluation of functional performance, such as reading, writing, 

and mobility, within the context of lifestyle (e.g., employment, family activities), attitude, 

and psychological well-being. Rehabilitation goals are defined in terms of what matters most 

in a person’s life, and attempts are made to solve functional problems through adaptive 

options (e.g., vision enhancement and substitution devices, environmental modification) and 

coping strategies” (Elliott, Glasser, & Rubin, 2001).  

Maculopathy causes the loss of high resolution, contrast perception, and central visual 

field loss compared to normal vision. Most of LVR strategies are aimed at compensating for 

these three main visual function losses.  

1.3.1  Light Modulation 

For outdoor activities, a dark filter to reduce the light transmission into the eye is 

beneficial to patients with advanced maculopathy. Indoor activities such as reading require 

increased illumination because this results in more light reaching transitional areas of 

scotoma and produces increased contrast sensitivity (Markowitz, 2006). Generally it is 
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suggested that the lighting source is positioned either behind the patient or on top of the 

target (such as a book or an image). Besides, reducing glare by suppressing the short 

wavelength light is also helpful. This can improve contrast sensitivity and visual acuity 

(Markowitz, 2006). 

1.3.2  Substitution Aids 

Larger-size materials such as large print books, large print watches, large print clocks, 

large print microwave buttons etc., can compensate for the loss of resolution. Materials with 

better contrast compensate for the contrast threshold increase.  Voice output devices or 

instruments are a totally different approach from compensation for the loss of resolution. 

They translate text into voice information. Obviously this strategy cannot improve image 

viewing. 

1.3.3  Optical Aids 

Optical magnification devices provide enlarged images of text or images to 

compensate for the loss of resolution, but generally sacrifice the field of view. To date, these 

optical magnifiers are more commonly used by the visually impaired due to the advantage of 

being small and light, easy to carry and simple to use.  Optical aids are available for distance 

and near tasks.  

For distance vision 

Telescopes are made of two or more lenses. They can be monocular or binocular, 

spectacle-mounted or handheld, focal or afocal. With increased magnification, the field of 

view is reduced.  Generally, these devices are useful only for tasks performed while 

stationary or for spotting during mobility and orientation.  
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For near vision 

There are four categories of optical magnifiers used for near tasks: microscopes, hand 

magnifiers, stand magnifiers, and telemicroscopes. All these magnifiers limit the field of 

view. They cannot increase the contrast, which will be the same or decreased after the image 

has been magnified.  

1.3.4 Electronic Vision Enhancement Systems (EVES) 

In the 1950’s electronic visual enhancement systems (EVES) began to be used for the 

visually impaired (Lund & Watson, 1997). Not only is the object enlarged through the 

device, but other compensations can be made such as increased contrast or reversed contrast. 

These devices may be called high-tech devices. Basically they are categorized into two 

groups.  

Electro-optical Magnifiers 

A closed-circuit television (CCTV) is a device with a direct cable link between the 

camera imaging system and monitor viewing system (in contrast to broadcast television). The 

magnified image is displayed on the monitor. CCTV systems are available either as desktop, 

or handheld devices (see examples in Figure 1-1). They usually provide varying 

magnification, variable contrast and contrast reversal, variable brightness, and are available 

with or without color. They permit binocular vision. Compared with optical aids, CCTVs 

generally enable the use of a more comfortable posture, longer reading duration, and faster 

reading speed (Stelmack et al., 1991).  



 

 8

 

Figure 1-1. Examples of CCTV  

 

The Jordy is a head-mounted video display unit incorporating magnification and 

image processing (shown in figure 1-2). The first generation was called V-Max. According to 

Enhanced Vision the features of Jordy include magnification up to 30x, auto-focus which 

keeps images in focus, extremely lightweight and portable, wide field-of-view, four viewing 

modes (full-color, black and white, high-contrast positive and negative) and a digital zoom 

which provides the ability to magnify and view faces, objects, or any image instantly. The 

NuVision is a similar device made by Keeler, UK.. 

           Desktop CCTV (ClearView)                  Half-compact CCTV (Tieman Traveller)   

Compact CCTV (Tieman Traveller) 
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Figure 1-2. Jordy and NuVision low vision device 

 

Computers 

Adaptive computer software improves accessibility to electronic and printed text and 

images for low vision patients. Hardware such as modified keyboards, large monitor screens, 

and attached scanners increase usefulness (Markowitz, 2006). There are two main electronic 

methods that adapt computers for low vision patients, magnification of text or images with or 

without more contrast and translation to auditory or tactile sensorial perception. There are 

several available softwares which provide magnification such as MAGic (Freesom Scientific, 

St. Petersburg, Fla), ZoomText (www.AISuared.com), and LunarPlus 

(www.DolphinUSA.com). The translation to auditory or tactile sensorial perception can be 

used for text information. 

Text information is very important in daily life. A large body of research on reading 

shows that both optical and electronic magnifiers can provide dramatic enhancement in 

reading (Cheong et al., 2005; Leat et al., 1994; Legge et al., 1985; Stelmack et al., 1991). The 

audio substitutes can offer a good solution for patients with more severe visual loss. 

                   Jordy                                                      NuVision 
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However, we gain a lot of information about the world from color images. Due to the 

complexity of image structure, merely enlarging an image with optical or electronic 

magnifiers may not be sufficient. Audio output would not help in viewing images. Therefore, 

digital image enhancement has been investigated and applied to images for the visually 

impaired.  

1.4 Digital Image enhancement 

1.4.1 Digital images 

To form a digital image, an optical image is digitized through two processes—

sampling and quantization (Baxes, 1994). “The sampling process samples the intensity of the 

continuous-tone image at specific locations into a rectangular array of pixels” (Baxes, 1994). 

The first pixel of a digital image is located at the top and left and is represented by (0, 0). 

Then a pixel (x,y) represents a pixel located x pixels to the right of and y lines down from the 

pixel (0,0) of the image. The quantization process determines the digital brightness value (for 

example 0 to 255) of each pixel, ranging from black to white (Baxes, 1994). Therefore, a 

digital image exists as a large array of numbers, which correspond to different brightness. 

There are two common ways to deal with color. One is to create color with the primary 

colors of red, green, and blue (RGB). The other one is to create color with the hue, saturation, 

and brightness (HSB). 
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1.4.2 Digital image enhancement techniques 

Digital image processing is a technique of mathematical manipulation of pixel values 

in digital images. This process can emphasize details, sharpen the picture, remove anomalies, 

or detect differences between pictures. For the visually impaired, the perceived images are 

degraded. Digital processing may aim to compensate for the degradation by increasing 

overall contrast, amplitude of specific spatial frequencies, or enhancing the edges of the 

original image. If the processed images are more visible compared to the original images, the 

visually impaired might perceive the processed image better, as being more close to “normal” 

(Peli et al, 1984; Peli, 1991; Lawton, 1989; Lawton, 1992). This image processing is called 

image enhancement and it could be used to improve the visibility of video images displayed 

on a screen or printed out in hardcopy.  

The image enhancement used in most studies for the visually impaired does not 

increase the inherent information in an image but merely increases the dynamic range of the 

chosen features so that the observer can detect them more easily. During processing, some 

new pixel values fall outside of the dynamic range. Two methods can solve this problem, 

clipping and rescaling. Clipping allows the increased contrast in the middle ranges of pixel 

values to be maintained while the low and high ranges are chopped. The values that are 

outside of the range are set to the lowest or the highest value. Rescaling sets the maximum 

pixel value after processing to the highest value (such as 255 if the range is 0-255) and the 

minimum to the lowest value (such as 0 if the range is 0-255) and the intermediate values are 

rescaled proportionally to fit in between.  
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There are two main categories of digital image processing technique that will be 

discussed here. One is in the spatial domain and the other in the frequency domain.  

1.4.2.1 Spatial domain processing 

The spatial domain processing works on the pixels of a digital image directly. The 

primary value of a pixel is replaced with a new value. Digital filters based on spatial domain 

processing are the generic filters in this study. There are three basic techniques to generate 

this group of filters: 

A) Pixel Point Processing On an individual basis, each pixel is dealt with independently 

of its neighbors. The gray level of each pixel in the original image is modified, by a 

mathematical or logical manipulation, to a new value and placed in the processed image at 

the same spatial location (Baxes, 1994). With this processing, the contrast could be reversed, 

that is the black changed to white, and white to black. Many CCTVs and computer programs 

include basic functions of this type, e.g. contrast reversal.  

B) Pixel Group Processing This operates on a group of pixels surrounding a center pixel. 

One group of these pixels is called a kernel. The brightness trends of a kernel can be reflected 

by the values of the pixels in the kernel. The minimum kernel size (above 1x1, which is the 

same as point processing) is 3× 3 pixels. “The bigger the kernel size is, the larger the 

flexibility of the filter will be because there are more pixels involved in the calculation” 

(Baxes, 1984). All the output pixels are assigned a new value of brightness based on the 

values of the surrounding piexels. This technique is known as spatial convolution.  

Image processing was introduced as an aid to enhance visual perception for the visual 

impaired by Peli and Peli at 1984. Later, Peli and his colleagues have done a considerable 
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amount of research in this area. Two filters based on pixel group processing were created to 

enhance image visibility for the visually impaired: Peli’s adaptive thresholding filter and 

Peli’s adaptive enhancement filter (Peli & Lim, 1982; Peli & Peli, 1984, Peli et al., 1991). 

Peli’s adaptive thresholding filter  This is a kind of binary contrast enhancement. Using a 

mask or kernel, the value of a centered pixel is determined by the average luminance of the 

pixels around. All pixels of brightness less than a selected threshold brightness are set to 

black (0), and those equal or above are set to white (255). The threshold value varies as a 

function of the average pixel under the mask, so that varying the mask size produces 

differently enhanced images. 

Peli’s adaptive enhancement filter  With a local averaging technique, the image is 

separated into low and high spatial frequency components. The high spatial frequency 

component is enhanced while the low spatial frequency is reduced. The average brightness of 

a mask and the size of the mask are two parameters for this filter. A slope determines the 

degree of attenuation of the low spatial frequency component. It was found that the change of 

slope and the intercept of this filter did not have a strong effect (Leat et al, 2005); therefore 

these two parameters could be set at certain values.  

 

1.4.2.2 Frequency Domain Processing 

A transform such as a fast Fourier transform (FFT) decomposes an image from its 

spatial domain to the frequency domain. Paticular frequency components are reduced or 

enhanced from the frequency image. The frequency image is then transformed back to spatial 

domain with the changed frequency information.  
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1.4.3 Image processing in Low Vision 

  The image processing technique has been applied to both text and images for the 

visually impaired. Lawton (Lawton, 1989, 1992; Lawton, et al., 1998) applied individualized 

contrast sensitivity loss compensation filters to text for ARM patients. The filter was based 

on the ratio of the observer’s contrast sensitivity function divided by the contrast sensitivity 

function of an age-matched normal observer. So the contrast was enhanced dependant on the 

contrast sensitivity loss. A gain factor was applied to determine the maximum amount of 

enhancement. The filtering was done in the frequency domain and a re-scaling method was 

used to solve the problem of saturation of dynamic range. The results showed that reading 

speed was improved and the magnification required could be reduced with filtered text.  The 

reading speed improvement was demonstrated both with static and drifting texts.  

Peli developed two filters (adaptive thresholding and adaptive enhancement) that he 

applied to images viewed by the visually impaired (Peli & Lim, 1982; Peli & Peli, 1984; Peli, 

et al., 1991). The images they used included faces (Peli & Peli, 1984; Peli et al., 1991) and 

video scenes (Peli et al., 1994). First, high spatial frequencies in all the images that exceed 

the observers’ resolution limit were eliminated to save dynamic range for increases of the 

amplitude of frequencies which were within the resolution limit. Then either adaptive 

thresholding or adaptive enhancement was applied. The visual impairment they investigated 

was central visual loss, mostly age-related maculopathy (ARM). Their results showed that 

both filters significantly enhanced visibility of images for 40% of subjects (Peli et al., 1991) 

although the adaptive enhancement filter seemed to give more frequent improvement than the 

adaptive thresholding (9 out of 21 subjects with enhancement, and 6 out of 17 with 
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thresholding). A series of DigiVision devices have been developed to implement the adaptive 

enhancement algorithm in real time (Fullerton, & Peli, 2006; Hier, et al., 1993).  

In addition to the two adaptive filters, Peli’s group also investigated other filters. For 

example, they implemented wideband enhancement by detecting visually relevant edge and 

bar features in an image to produce a bipolar contour map. Then these contours were added 

to the original image resulting in an enhanced image (Peli, et al., 2004). However, only 22% 

of 35 visually impaired patients showed improved perceived visibility with these filters. In 

another study (Tang, et al., 2004), an algorithm to increase the contrast at all spatial 

frequencies by a certain factor was applied to images for visually impaired patients. The 

results showed a moderate improvement in image perception.  

Most of these image enhancement techniques enhance high spatial frequency 

information. But studies show that it is not necessarily the high spatial frequencies that are 

most important for image recognition. For example, single faces, as a unique image category, 

seem to have critical frequencies for recognition. Early studies showed some discrepancy on 

this issue. Ginsburg (1985) argued that the low spatial frequencies (1-4 cycles/face) were 

sufficient. However Fiorentini et al. (1983) found that face recognition performance 

benefited from information at spatial frequencies higher than 5 cycles/face rather than only 

information of below 5 cycles/face. Rubin and Siegel (1984), using only one pose of each 

face, showed that discrimination was possible even when the faces were low-pass-filtered to 

1.12 cycles/face. However, accurate recognition of numerous poses of the same face, 

including changes in expression, required information above 4.12 cycles/face. Sergent (1986) 

found that the identification of faces benefits from the presence of high frequencies. Hubner 
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et al (1985) derived high-frequency content from one face and low frequency content from 

another face and found that the high spatial frequency content dominates recognition. To 

verify the existence of critical spatial frequencies for face recognition, which could then be 

enhanced to improve performance in that task, Peli (1994) measured the degradation in 

recognition of familiar faces by older observers. His results showed that the band of spatial 

frequencies between 4 and 8 cycles/face is critical for face recognition. In that study, by 

enhancing spatial frequency information at 4 to 8 cycles/face, the recognition of faces was 

increased.  

As well as the filters that Peli’s group has investigated, there are other categories of 

digital filters which improve image visibility. Leat et al. (2005) compared custom-devised 

filters based on contrast sensitivity loss at each spatial frequency, some generic filters, plus 

Peli’s two adaptive filters on 28 subjects with low vision. In that study, the eye pathology 

included many different disorders such as ARMD, glaucoma, diabetic retinopathy and 

retinitis pigmentosa. Fourteen images were selected in each of four classes: single full face, 

multiple faces (head and shoulders), outdoor scenes (street scenes with activity) and sports 

events. The filters were implemented with ImageLab software (Kennedy, Leat, & Jernigan, 

1998), which ran on the NeXStep platform. The custom-devised filters used were based on 

contrast sensitivity loss. A gain was determined according to the ratio of the subject’s 

contrast threshold and average normal CS in the same age group. Most generic filters were 

applied with a limited range of parameters. Subjects made within filter rankings followed by 

between filter ratings. The results showed that generally lower gains were more preferred 

than higher gains. Unsharp masking significantly increased perceived visibility for some 
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image types. Three filters showed borderline enhancement. They were Peli’s adaptive 

enhancement, edge enhancement, and histogram equalization. Adaptive thresholding and the 

custom-devised filters, based on CS loss, did not result in improvement.  Leat et al also 

showed that the optimum filters were dependent on the type of image and the type of visual 

disorder.  

If digital image processing can improve the perceived visibility of digital images for 

people with maculopathy, then the next question would be how to assess the visibility 

improvement quantitatively. Peli’s lab team reported several studies which attempted this. 

The earliest ones were based on the use of receiver operating curves (ROC’s) by measuring 

the recognition of familiar and un-familiar faces (Peli et al., 1991; Peli, 1994; Peli, 2005). 

This method may be limited by the subjects’ familiarity with the celebrities. Peli’s group 

(Peli, 2005; Peli, 1999) also developed questions about video images to quantitatively 

measure enhancement. However, the results demonstrated a ceiling effect which may have 

reduced the sensitivity of the method. 
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Chapter 2 

PROPOSED STUDY 

2.1 Hypothesis 

The hypothesis of this study is that the application of image enhancement to digital 

images will improve visibility for people with maculopathy, and that this can be measured 

both qualitatively and quantitatively. 

The current study is a continuation of Leat et al.’s study (2005). There are several 

modifications in the approach of the current study. Firstly, the visual impairment will be 

restricted to three groups of maculopathy (atrophic ARMD, exudative ARMD, and JMD). 

Secondly, all the filters will be applied on a Windows system using Matlab. Thirdly, the 

“strength” of generic filters will be variable. Fourthly, custom-devised filters will be based 

on supra-threshold contrast matching as well as CS loss. Fifthly, in addition to the Gabor 

envelope, a polynomial envelope will be utilized for the band-pass filters. Sixthly, for spatial 

frequency filters, a band-width of two-octaves will be added in addition to one-octave band-

width. 

2.2 Aims and Purposes  

The ultimate aim of this study is to continue investigating the application of digital 

image enhancement techniques to improve visibility of digital images for three groups of 

subjects with maculopathy (atrophic ARMD, exudative ARMD, and JMD).  To reach this 

goal, there are five separate steps or goals: 
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2.2.1 Obtain age-related contrast matching data and investigate the aging 

effect 

In order to develop the custom-devised filters derived from supra-threshold contrast 

loss for people with maculopathy, two age groups of control data of supra-threshold contrast 

matching will be collected. The main purpose is to develop a control data set against which 

the subjects with maculopathy will be compared to calculate the gain for the various custom-

devised filters. The effects of age and contrast threshold on supra-threshold will be 

investigated at this stage.  

2.2.2 Investigate supra-threshold contrast matching in maculopathy  

To investigate the supra-threshold contrast loss in maculopathy and as a basis for the 

custom-devised filters, the supra-threshold contrast matching was tested for the three groups 

of subjects with maculopathy (atrophic ARMD, exudative ARMD, and JMD). The results 

will be compared to the older control group for statistical analysis.  

2.2.3 Analyze and classify images with spatial frequency 

The effective digital filters were found to be not only specific to type of maculopathy 

but also specific to the category of image (Leat et al., 2005). However, in their study the 

image grouping was according to the subject content in the images. There was no objective 

evidence to support their grouping. The purpose of this stage is to group images in a more 

objective way. The two parameters of amplitude spectrum and slope of the amplitude against 

spatial frequency will be considered, measured at three orientations (horizontal, vertical, and 



 

 20

oblique). Then the amplitude spectra and slopes will be analyzed statistically to show which 

groups are distinctive from other groups. 

2.2.4 Test the perceived visibility improvement of with image enhancement 

The purpose of this stage is to investigate the perceived improvement in visibility 

using some effective generic filters from Leat et al. (2005) in three groups of subjects with 

maculopathy and to investigate custom-devised filters based on supra-threshold contrast 

matching. There will be three phases to approach this goal. Firstly, the optimal “strength” of 

each version of a filter would be determined. Next, with the optimal “strength” each specific 

version of a filter type will be compared to each other so that the optimal version of the filter 

type will be determined. Then, with the optimal strength and version of each filter, all the 

filters will be rated. The effects of the generic filters and the custom-devised filters will be 

compared. 

2.2.5 Assess the improvement of visibility objectively 

The purpose of this stage is to measure how much improvement was generated by 

digital image enhancement. This section will be done in two steps. The first step is to develop 

effective methods in a preliminary study. The second step is to apply these methods to the 

nine subjects to attempt to demonstrate the improved visibility quantitatively.  
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Chapter 3 

Supra-threshold Contrast Matching and the Effects of Contrast 

Threshold and Age 

Ming Mei, Susan J. Leat, and Jeffery Hovis 

University of Waterloo 

Abstract 

Background: The effects of age on contrast threshold are well known, however little is 

known about its effect on supra-threshold contrast perception. This study examines supra-

threshold contrast matching and the effects of age in naïve observers.  

Methods: Two age groups (20 – 50 years and 51+ years) with 14 and 15 subjects in each 

group participated. Contrast threshold and supra-threshold contrast matching up to 8.53 

cycles per degree were measured.  

Results: Both age groups demonstrated some degree of contrast constancy at medium and 

higher contrasts, but this was not perfect even at the highest contrast tested (55.9%). There 

was no overall effect of age on supra-threshold contrast matching (p=0.086) but there was an 

interaction between age and spatial frequency (p<0.001). The plots of matched contrast 

against standard contrast showed that, for some spatial frequencies, the slope was 

significantly different from unity, indicating a gain in the visual system for supra-threshold 

perception.  This was still true when corrected for threshold differences.  
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Conclusion: Contrast constancy exists in a larger group of naïve subjects of different ages, 

but does not perfectly compensate for the differences in thresholds. The results are discussed 

in terms of the currently proposed models of contrast perception and are best explained by 

the model proposed by Näsänen et al (1998). 

Keywords: Contrast matching, Contrast constancy, Contrast threshold, contrast sensitivity, 

Age groups  

 

3.1 Introduction 

The use of achromatic sine-wave gratings with varying spatial frequencies is an 

efficient tool to study contrast perception. It is known that contrast perception behaves 

differently at threshold and supra-threshold levels (Georgeson & Sullivan, 1975). Research 

on contrast threshold with varying spatial frequencies has shown that the maximum contrast 

sensitivity is at 2-5 cycles per deg (cpd) (Cannon, 1985; Owsley, Sekuler, and Siemsen, 

1983; Pointer, and Hess, 1989; Watson, 1987; Peli, Yang, Goldstein, and Reeves, 1991). 

Factors such as grating area, duration time, mean luminance, and retinal location have a 

significant effect on contrast threshold (Peli et al., 1991; Patel, 1966; Tolhurst, 1975; Howell, 

1978; Legge, 1978; Swanson & Wilson, 1985; Luntinen, et al., 1995; Owsley, et al., 1995). 

However, it could be argued that studies of supra-threshold contrast perception give us more 

information about our day to day visual perception. 

With the method of contrast matching it has been shown that supra-threshold contrast 

matching functions (CMFs) have decreasing spatial frequency dependency with increasing 
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contrast. At higher contrast they take the shape of a wide band-pass or become flat 

(Georgeson & Sullivan, 1975; Peli et al., 1991; Blakemore & Muncey, 1973; Kulikowski, 

1976; Swanson, Wilson, & Giese, 1984; Nasanen, Tiippana, & Rovamo, 1998). This 

phenomenon was termed “contrast constancy” (Georgeson & Sullivan, 1975) and holds for a 

wide range of spatial frequencies and retinal eccentricities. Because of this contrast 

constancy, we perceive objects at a constant contrast regardless of the size and distance. 

However, several studies have demonstrated conditions under which contrast constancy 

breaks down. Peli et al (1991) tested CMFs under natural viewing conditions, showing that 

contrast matching was dependent on luminance below 8cd/m². Legge & Foley (1980) agree 

that contrast processing above 10% contrast is invariant with number of grating cycles. 

Hess’s study (1990) with dichoptic presentation and a long duration of light adaptation 

showed that at very low luminance (less than 0.02cd/m²) and higher spatial frequencies 

(10cycles/degree) there were substantial deviations from contrast constancy. Peli (1997) 

reported that increasing stimulus size had no effect on CMFs but that adaptation was another 

factor that affected contrast constancy. A later study from Peli’s group (Peli, Arend, & 

Labianca, 1996), regarding the effect of luminance and spatial frequency on contrast 

perception, demonstrated contrast constancy for 1-4 cpd across a luminance range of 0.5-50 

cd/m². However, perceived contrast was reduced for gratings of 8 cpd when the luminance 

was less than 2 cd/m² and perceived contrast was reduced for 16 cpd gratings across the 

entire luminance range. Thus at low spatial frequencies the supra-threshold contrast 

perception was less affected by decreased luminance than at high spatial frequencies. 
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Researchers have tried to use modeling to explain contrast constancy. Georgeson and 

Sullivan (1975) suggested that the gain of spatial frequency channels in the visual cortex was 

adjusted to compensate for earlier multiplicative attenuations that limit CSF. Kulikowski 

(1976) proposed a “subtractive factor” model, that is, if perceived contrast is a function of 

(C-C0), where C is the test grating contrast and C0 the corresponding spatial frequency 

threshold, then the form of the CMF curves is well predicted. Georgeson (1991) provided a 

model combining both compensation and subtraction. Some other models are based on 

matched filters, signal-to-noise ratio, visual transfer functions and spatial integration window 

(Burgess & Colborne, 1988; Rovamo, Luntinen, & Nasanen, 1993). Näsänen et al. (1998) 

proposed a new model assuming that perceived contrast is related to the signal-to-noise ratio 

at low contrast levels, while at higher contrast levels perceived contrast is based on estimated 

local contrast obtained by using the reciprocals of the optical and neural filters.  

Aging causes optical, anatomical, and physiological changes of the vision system, 

causing a decrease of contrast sensitivity which starts at age 50 (Owsley et al., 1985; 

Tulunay-Keesey, et al., 1988). However, studies are conflicting with regard to which spatial 

frequencies are affected. Some studies reported that contrast sensitivity decreased with aging 

mainly at the medium and high spatial frequencies (Owsley et al., 1985; Arundale, 1978; 

Derefeldt, Lennerstrand, & Lundh, 1979), one found decreases at low and medium spatial 

frequencies (Sekuler, Hutman, & Owsley, 1980), while others found a decrease at all spatial 

frequencies (Skalka, 1980; McGrath & Morrison, 1981; Ross, Clarke, & Bron, 1985; 

Nomura, et al., 2003). There are few studies on the effect of aging on supra-threshold 

contrast perception. Bead et al. (1994) used a contrast discrimination method to show that, 
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once normalized for contrast detection thresholds, contrast discrimination functions have the 

same shape in young and older adults. Tulunary-Keesey et al. (1988) measured contrast 

matching at one contrast level (1 log unit above the individual’s threshold) and showed no 

age-related effect.  

All of these studies of CMFs share similarities. Either contrast matching was tested 

only at one contrast level per spatial frequency, or only with a few subjects (mostly 

experienced experts). The present study aims to analyze CM more thoroughly by measuring 

CMFs on a larger sample of naïve subjects with normal vision and at a greater number of 

contrast levels [7 supra-threshold contrast levels (1.7- 55.9%)]. The subjects were separated 

into two groups, above and below 50 years.  CSFs were also measured to determine the 

influence of CSFs on CMFs with respect to age. The results are compared with some current 

models of perceived contrast.  

3.2 Method and Materials 

3.2.1 Apparatus 

A MacIntosh 6100/66 computer was used to generate stimuli with Morphonome 3.5 

software (Tyler & McBride, 1997). The stimuli were displayed on a grey-scale 21” Sony 

Trinitron monitor with mean luminance of 60cd/m² and a resolution of 1152 × 864. A 

hardboard surround with peripheral luminance of 60cd/m² was placed around the monitor to 

provide a constant level of light adaptation. The luminance was measured with a Minolta LS-

100 photometer. The display area measured 30.3° horizontally and 28.5° vertically at a 

viewing distance of 57 cm.  
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3.2.2 Stimuli  

Vertical cosine gratings with a circular vignette envelope were used. The "vignette" is 

a computed blurring of the edge of the grating, not a physical window. The edge blur is the 

integral of a Gaussian with a standard deviation of 10 pixels, invariant with field size or the 

spatial frequency of the modulation .It results in a less gradual blur than a Gaussian, so that 

more cycles are visible at threshold, but it still gives an indistinct edge to reduce spatial 

transients. This t is different from some of the recent studies which used a Gaussian envelope 

(Peli et al., 1991; Peli, 1997; Peli et al., 1996; Brady & Field, 1995). Gaussian–windowed 

stimuli have a more limited number of cycles, which may influence contrast threshold 

measurement (Savoy & McCann, 1975) and supra-threshold contrast matching of lower spatial 

frequencies at lower contrast levels (Legge & Foley, 1980). Contrast thresholds were 

measured for spatial frequencies of 0.26, 0.58, 1.11, 2.17, 4.29, 8.53 cpd. The highest 

frequency measured was 8.53 cycles/degree because this data was also to be used as control 

data in a subsequent study of age-related maculopathy (ARM). The viewing distance for 4.29 

cpd and lower was 57 cm, and for 8.53 cpd was 114 cm. To guarantee at least 4 cycles in 

width (Savoy & McCann, 1975; Hoekstra, et al., 1974), the 0.26 cpd grating had a width of 

16.6°, and higher spatial frequencies had a width of 10°. The duration of the stimulus for 

threshold measurement was 1.053 seconds, and the inter-stimulus interval was 583ms. 

For the supra-threshold contrast matching, similar to Georgeson and Sullivan’s work 

in 1975, two gratings (Table 3-1A) were presented side by side. The standard grating with a 

fixed spatial frequency of 0.58 cpd was on the right of the display screen and was presented 

at seven contrast levels (Michelson contrast): 1.7, 3.6, 7.2, 13.7, 27.9, 41.5, and 55.9%. The 
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spatial frequency of 0.58 cpd was chosen to be the standard grating because these normal 

data would be used as control of a subsequent study of low vision in ARM and it is 

appropriate to those subjects. The test grating with varying spatial frequency of 0.26, 0.58, 

1.11, 2.17, 4.29, 8.53 cpd was on the left.   

 

Table 3-1. Settings of the standard and test grating. 

Standard Grating Settings Test Grating Settings Viewing 

Distance Spatial frequency Diameter Spatial frequency Diameter 

A: Contrast matching stimuli for two age groups 

57cm 0.58cpd 10° 0.26cpd 16.6° 

57cm 0.58cpd 10° 0.58-4.29cpd 10° 

114cm 0.58cpd 6.65° 8.53cpd 5° 

B: Contrast matching stimuli for 4.29 and 8.53cpd for 4 subjects 

57cm 1.11cpd 10º 2.17cpd 10º 

114cm 1.11cpd 5º 4.29cpd 5º 

228cm 1.11cpd 3.3º 8.53cpd 2.5 º 

 

 

3.2.3 Subjects 

Naive subjects with normal vision were recruited from the Optometry Clinic at the 

School of Optometry, University of Waterloo. There were two age groups (20 – 50 years and 

51+ years) with 14 and 15 subjects in each. The average age of younger group was 32 ± 9 

years, and the older group was 70 ± 11 years. All subjects gave written informed consent for 
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participating in the study, which was approved by the Office of Research Ethics at the 

University of Waterloo. The following were the exclusion criteria: 

a) Corrected VA worse than 6/7.5.  

b) Refractive error greater than ±6.00DS or 2.50DC. 

c) Any history of amblyopia, strabismus, or anisometropia.  

d) Opacities on the cornea, lenticular opacities in the undilated pupil area, or 

within the vitreous along the visual axis.  

e) Any retinal pigmentary changes or more than 4 drusen in an area of 1 disc 

diameter around the fovea. 

f) Intraocular pressure greater than 21 mmHg. 

g) Systemic disease (hypertension, diabetes or vascular disease) or medication 

with known ocular effects (such as chloroquine, oxazepan, melperon or oral 

contraceptive). 

3.2.4 Procedure 

Subjects wore their habitual spectacles plus a working distance correction. Monocular 

visual acuity was measured with the University of Waterloo logMAR chart (Strong & Woo, 

1985) and all subjects had visual acuity of 6/6 or better.  Five minutes of light adaptation was 

allowed beforehand. For contrast threshold measurement, a temporal two-alternative forced 

choice (2-AFC) staircase method was used. The staircase went up three steps for each wrong 

response and down one step for each correct response. The minimum number of 
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presentations was 14. Each step value was 0.05 log unit. There were two stopping rules, a) 

number of presentations = 30, b) the ending sample count, n = 14.  For stopping rule b) a 

regression line is fitted to the last n presentations and when the slope of this regression line is 

less than =1/n, in this case less than 1/14, the staircase stops.  This assumes that when the 

slope of the last n presentations is zero or close to zero, the staircase is no longer ascending 

or descending and the threshold has been reached. The threshold value is calculated as the 

moving average of the last set of this number, n, of trials. At each spatial frequency the 

threshold was measured once for each subject. 

For supra-threshold contrast matching, a method of adjustment but under 

experimenter control was used. The minimum step size was 0.05 log units across the whole 

contrast span. Subjects, looking freely between the standard and the test gratings, compared 

the contrasts between the standard grating (0.58 cpd) and the test grating (with varying 

spatial frequency), then told the experimenter to increase or decrease the contrast level of the 

test grating to match the contrast of the standard grating. Subjects were instructed to make 

judgements based on apparent contrast, not visibility. To minimize any pattern adaptation 

(Blakemore et al., 1975), subjects were instructed not to look at the standard grating for too 

long. Three matches were done at each combination of spatial frequency and contrast and the 

average calculated.  

Nine younger subjects and five older subjects from the two age groups took part in a 

test-retest repeatability study, which was done by determining the contrast match with test 

gratings of 0.26 cpd and 2.17 cpd at contrast levels of 3.6% and 41.5% on two separate visits. 
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For statistical analysis, Systat was used for ANOVA and curve fitting (single degree-

of-freedom polynomial contrasts) and Excel was used to calculate the slopes of the 

regression lines.  

3.3 Results 

3.3.1 Repeatability  

The result of repeatability measurement is shown in Table 3-2. Generally speaking, 

the older subjects showed better repeatability except with 2.17 cpd at 41.5%, where the 

coefficients of repeatability for the two age groups were close. The coefficients of 

repeatability (1.96 x SD of test minus re-test) (Bland & Altiman, 1986) were in the region of 

0.05 which is similar to the step sizes used for the contrast matching and indicates that 

subjects could make consistent matches. 

Table 3-2. Repeatability of supra-threshold contrast matching   

 

3.3.2 Contrast Threshold 

Contrast thresholds with respect to spatial frequency are shown in Figure 3-1 (the 

highest two curves). For the younger group, 2.17 cpd was the most sensitive spatial 

frequency, while for the older group, it was 1.11 cpd. Generally, the older group showed 

higher contrast thresholds than the younger group across this spatial frequency range. The 

Contrast Level 3.6% 41.5% 

Spatial Frequency 0.26cpd 2.17cpd 0.26cpd 2.17cpd 

Younger Group 0.094 0.147 0.061 0.051 Coefficient of  

Repeatability (log)42 Older Group 0.045 0.070 0.018 0.061 
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two curves appear parallel from 0.26 to 1.11 cpd where there is a smaller discrepancy 

between the age groups, then they split further at higher frequencies. Repeated measures 

ANOVA (2 groups × 6 spatial frequencies) calculated in log values showed a main effect of 

age (p = 0.011) and spatial frequency (p < 0.001) but no interaction between age and spatial 

frequency (p = 0.273). 
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Figure 3-1. Mean supra-threshold contrast matching results for two age groups. The dashed-

lines represent the older group, and the solid-ones represent the younger group. The top line 

of each data set represents the thresholds. The lower lines represent the matched contrasts 

against each contrast of the standard grating as shown on the right. The error bars show ± 1 

standard error. The arrows indicate the spatial frequency of the standard grating. 
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3.3.3 Supra-threshold Contrast Matching 

Supra-threshold contrast matching as a function of spatial frequency is also shown in 

Figure 3-1. Generally, the matching curves for lower contrast levels resemble the threshold 

curve showing apparent spatial frequency dependence, with the peak (matched with less 

contrast than the standard grating) at either 1.11 or 2.17 cpd. The matching curves of medium 

and higher contrast levels show increasing flatness demonstrating contrast constancy, but 

there is still an apparent peak at 2.17 cpd. To explore the effect of age as a factor in contrast 

perception more thoroughly, repeated-measures ANOVA (2 groups x 6 spatial frequencies x 

7 contrast levels [excluding contrast threshold]) calculated in log values were applied. The 

results showed no main effect of age (p = 0.086) but there were main effects for contrast (p < 

0.001) and spatial frequency (p < 0.001). There was no interaction between contrast and age 

group (p = 0.149), but there were interactions between spatial frequency and age group (p = 

0.005) and contrast and spatial frequency (p < 0.001) but no interaction between age, contrast 

and spatial frequency (p = 0.12).   

The interaction between age and spatial frequency can be seen in Figure 3-1. There is 

a trend that the matched contrast curves of the older group show narrower band-pass 

functions compared to that of the younger group - that is, the older group tended to match the 

standard grating with higher contrast at both low and high spatial frequencies (0.26, 4.29, and 

8.53 cpd) than the younger group, while at the middle spatial frequencies (0.58, 1.11, and 

2.17 cpd), the older group tended to match with similar or lower contrast.  
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To explore whether contrast constancy is complete at the highest contrast, repeated 

measures ANOVAs were undertaken at each contrast level with respect to spatial frequency 

(2 groups x 6 spatial frequencies) This showed an effect of spatial frequency at all contrast 

levels, even at the highest contrast of 55.9% (p < 0.001) i.e. contrast matching is still 

dependant on spatial frequency at high contrasts. Curve fitting was undertaken of contrast 

matches with respect to spatial frequency. At all contrasts, the contrast matching functions 

were best fit with a quadratic function rather than a straight line. At 55.9% contrast the best 

fit straight line gave a p = 0.175 and the quadratic fit gave a p < 0.001.  

              To analyze the gain of matched contrasts against reference contrast the data were 

plotted at each spatial frequency (Georgeson & Sullivan, 1975) as shown in Figure 3-2, and 

regression lines were calculated. If contrast matching was perfect, all of the contrast 

matching lines should lie along the diagonal line for equal contrast. Generally speaking, the 

lower the contrast, the more distant the data points are from the diagonal.  The regression line 

slopes and corresponding 95% confidence limits are shown in Table 3-3. At 0.58 and 4.29 

cpd, the slopes of the contrast matching regression lines were close to the diagonal. At 0.26 

and 8.53 cpd, the slopes were shallower than that of the diagonal, while at 1.11 and 2.17 cpd 

they were steeper. However, although the slope of these lines was not always significantly 

different from unity (based on the 95% confidence limits), the magnitude of the slope was in 

the correct direction (either above or below unity) as would be predicted from the thresholds 

in all cases i.e. assuming that there is a “gain” that compensates for differences in contrast 

threshold. When the test grating had a higher threshold than the reference grating the line was 

positioned above the line for equal matches, and has a slope which is shallower than 1 and 
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vice versa when the threshold was lower. For example, 0.26 and 8.53 cpd show lower 

thresholds than 0.58 cpd and the contrast matching lines are significantly above the diagonal. 

Conversely, 1.11 and 2.17 cpd show higher thresholds, the matching lines are significantly 

below the diagonal. Contrast matching at 0.58 cpd is at the same spatial frequency as the 

standard and is along the perfect match diagonal line. The slopes of the regression lines were 

similar for the two age groups (two sample t-test, p>0.05 in all cases).   
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Figure 3-2. Mean threshold and supra-threshold contrast matching plotted against standard contrast for each spatial frequency. The 

standard grating was 0.58 cpd. The perfect contrast match is shown by the diagonal straight line. CTh = contrast threshold. CM = 

contrast matching.
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Table 3-3. Regression line slopes and the 95% confidence limits of 6 spatial frequencies for 

data plotted in Figure 3-2 (non-normalized data). Confidence limits are based on ± 1 standard 

error. Those in bold indicate where the slope is significantly different from 1.  

 

To test whether contrast matching can be accounted for by subtracting the thresholds 

(Kulikowski, 1976), and to examine the differences of contrast matching with respect to age, 

the data were normalized by subtracting the linear threshold for 0.58 cpd from the standard 

contrast and the threshold at each matched frequency from the matched contrast (McIlhagga, 

2004) and then taking the logarithm. The resultant plots and the regression analysis are 

shown in Figure 3-3 and Table 3- 4. With this transformation, the matching functions should 

fall on a line of slope 1 passing through the origin if the subtractive theory is correct. Similar 

to the non-normalized data, the regression lines are still affected by their corresponding 

thresholds. At 0.58 and 4.29 cpd, the slopes of the contrast matching regression lines were 

close to the diagonal. At 0.26 and 8.53 cpd, the slopes were still significantly shallower than 

that of the diagonal, while at 1.11 and 2.17 cpd the slopes of younger group were close to the 

diagonal but those of the older group were still significantly steeper. Thus the normalized 

contrast matching lines still show similar trends even though the thresholds have been 

  0.26cpd 0.58cpd 1.11cpd 2.17cpd 4.29cpd 8.53cpd 

Slope 0.877 0.993 1.104 1.071 0.946 0.852 Older 

 Confidence 

limits 

0.839 to 

0.915 

0.982 to 

1.003 

1.074 to 

1.134 

1.027 to 

1.116 

0.885 to 

1.008 

0.774 to 

0.929 

Slope 0.892 1.002 1.071 1.068 1.004 0.909 Younger 

Confidence 

limits  

0.865 to 

0.92 

0.989 to 

1.015 

1.038 to 

1.103 

1.015 to 

1.12 

0.943 to 

1.065 

0.842 to 

0.976 
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subtracted. Additionally, in some cases (1.11 and 2.17 cpd for the older group) the slope is 

more different from unity after normalization.
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Figure 3-3. Mean threshold and normalized supra-threshold contrast matching plotted against standard contrast for each spatial 

frequency. The standard grating was 0.58 cpd. The perfect contrast match is shown by the diagonal straight line. CTh = contrast 

threshold. CM = contrast matching.
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Table 3-4. Regression slopes and the 95% confidence limits of 6 spatial frequencies with the 

normalized values. Confidence limits are based on +/- 1 standard error. Those in bold 

indicate where the slope is significantly different from 1.  

 

  0.26cpd 0.58cpd 1.11cpd 2.17cpd 4.29cpd 8.53cpd 

Slope 0.894 0.989 1.134 1.074 0.936 0.863 Older 

 Confidence 

limits 

0.838 to 

0.950 

0.972 to 

1.007 

1.046 to 

1.222 

1.030 to 

1.118 

0.87 to 

1.003 

0.776 to 

0.949 

Slope 0.917 1.004 1.043 1.039 0.983 0.906 Younger 

Confidence 

limits  

0.861 to 

0.973 

0.984 to 

1.024 

0.989 to 

1.097 

0.98 to 

1.097 

0.92 to 

1.047 

0.828 to 

0.984 

 

3.4 Discussion 

3.4.1 Contrast Threshold 

The peaks of the two contrast threshold curves for both age groups were at 1.11-2.17 

cpd. When we take into account the fact that the present study measured CS down to a lower 

spatial frequency (0.25 cpd), this is in agreement with the results of Peli et al’s study (Peli et 

al., 1991). As for the effects of age, the younger group showed overall lower contrast 

thresholds across all spatial frequencies tested, which is in agreement with those studies that 

showed CS loss at all spatial frequencies with age (Skalka, 1980; McGrath & Morrison, 

1981; Ross et al., 1985; Nomura et al., 2003). The peak of the contrast threshold curve shifted 

to lower spatial frequencies with age. The younger group was most sensitive at 2.17 cpd and 

the older group at 1.11 cpd. This shift of the peak to lower spatial frequencies supports 

Owsley et al.’s study (1983). As for the explanation of the effect of age on contrast threshold, 
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there is no consensus as to whether optical or retinal factors are the primary cause (Elliott, 

1987; Elliott, Whitaker, & MacVeigh, 1990), but that discussion is beyond the scope of the 

present paper.  

3.4.2 Supra-threshold contrast matching  

Our supra-threshold contrast matching results plotted across contrast levels (Figure 3-

1) are quite similar to Georgeson and Sullivan’s findings (1975). At low contrast, the 

matching curves resemble the threshold curve, while at medium and higher levels, the curves 

become flatter, described as contrast constancy. Other studies also have shown similar results 

(Blakemore & Muncey, 1973; Kulikowski, 1976; Swanson, Wilson et al., 1984; Nasanen et 

al., 1998). However, all these studies were mainly based on the data obtained from a few 

subjects who were experienced observers. Our study extends their data to show that contrast 

constancy exists in a larger group of naïve subjects of different ages.  

There are a few differences between the study of Georgeson & Sullivan (1975) and 

the current study. In their study, using gratings of constant spatial extent, the reference spatial 

frequency was 5 cpd and a wider range of spatial frequencies (0.25-25 cpd) was tested. The 

current study used gratings of variable spatial extent, took 0.58 cpd as the reference and the 

tested spatial frequencies ranged from 0.26 to 8.53 cpd - a narrower span.  Another difference 

is that their subjects were two experienced observers, and ours were 29 naïve subjects. They 

do not describe their psychophysical technique for threshold measurement and the peak of 

their SC functions appears around 2-5 cpd which is similar to the current findings for the 

younger age group. When it came to the supra-threshold contrast matching curves, the two 

subjects in their study behaved differently from each other. If we only consider their results 
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for 0.25 to 10 cpd, one subject (GDS) mostly peaked at around 1 cpd or 10 cpd until 30%. 

The other subject (MAG) peaked at around 5 cpd. For the current data, the supra-threshold 

contrast matching curves of both age groups peak at around 2.17 cpd. By observation, both 

these studies show that contrast thresholds affect supra-threshold contrast perception until at 

least around 30-60% contrast although this influence declines with increasing contrast. This 

observation is supported by some of Kulikowski’s (1976) data (his Figure 3). The current 

data showed that at 55.9% contrast, the matching functions were best fit with a quadratic 

function, rather than a straight line (p < 0.001) and the matching was still spatial frequency 

dependant, with a peak at 1.11 to 2.17 cpd. This indicates that contrast constancy is still not 

perfect up to 55.9%.  

We should discuss the possible influence of sampling artefacts at the higher 

frequencies of 4.29 and 8.53 cpd. The screen had a horizontal resolution of 1152, which 

means that, at the testing distances of 57 and 114 cm respectively, one cycle would have been 

represented by 9 pixels. Thus the contrast actually displayed may have been less than that 

intended, so that the subject would have to set it higher to gain perceptual equality. To check 

that the results were not affected by this artefact, we repeated the contrast matches at a 

greater testing distance so that the higher spatial frequencies of 4.29 and 8. 53 were each 

represented by twice this number of pixels (see Table 3-1B) with 4 younger subjects. The 

ages of these younger subjects were between 23 to 32 years. In order to maintain the at least 

4 cycles, a standard spatial frequency of 1.11 cpd was used for these matches. The results are 

shown in Figure 3-4. Since we used 1.11 cpd as reference instead of 0.58 cpd, the relative 

positions of the three regression fitting lines for 2.17, 4.29, and 8.53 cpd to the diagonal line 
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are different from previous data shown in Figure 3-2. However, the most obvious result here 

is for the 8.53 cpd matches, since the threshold for 8.53 cpd is significantly higher than for 

1.11 cpd. The contrast matches for 8.53 cpd were consistently set at a higher contrast than the 

standard. This validates the previous finding that contrast constancy is not perfect up to 

55.9% contrast.  
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Figure 3- 4. Mean supra-threshold contrast matching plotted against standard contrast for 

three spatial frequencies for four younger subjects. The standard grating was 1.11 cpd. The 

perfect contrast match is shown by the diagonal straight line.  

 

In order to explain contrast constancy, different models have been suggested. 

Kulikowski (1976) used a linear “subtractive factor” theory. He suggested that perceived 

contrasts in linear terms would match if CF-TF = C0.58-T0.58, where CF is the test grating 
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contrast, TF the corresponding contrast threshold, C0.58 the reference contrast, and T0.58 the 

threshold of reference grating. This model would assume equal gain in all channels. Our 

findings, once corrected for threshold, showed that some slopes were still significantly 

different from unity (Figure 3-3) which implies that Kulikowski’s model is not an adequate 

explanation.  

McIlhagga (2004) re-evaluated Kulikowski’s threshold model and postulated that 

threshold subtraction is a method of noise suppression. They replotted the data from Näsänen 

et al. (1998) with linear (C-T) values (see their Figure 1). They suggested that from 0.5 to 8 

cpd the contrast matching values were close to the diagonal line. However careful 

observation of the graph indicates that the slopes at different spatial frequencies do not 

appear equal to unity. For example, the regression line of 8 cpd appears above the diagonal as 

does that for 2 cpd. Thus their data are in agreement with the present study. In our study, 

slopes for 0.26, 1.11, 2.17, and 8.53 cpd show statistically significant differences from a 

slope of 1. So, again, the supra-threshold contrast perception does not function in this simple 

linear threshold subtractive way. 

Georgeson and Sullivan (1975) proposed that the visual system adjusts its gain in 

inverse proportion to the attenuation due to optical and neural processes. According to Brady 

and Field (1995), this model is effective only at high contrasts while at low contrasts both 

signal and noise would be exaggerated due to the large gain of inverse filtering so that 

variability of perceived contrast is increased. Brady and Field suggested that threshold 

sensitivity is a function of the signal to noise ratio, whereas perceived contrast is assumed to 

be a function of the signal alone and to be independent of the noise. According to their 
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model, there is no need to propose different gains in different channels and that the contrast 

matching curves (as plotted in our Figure 3-2) should have a slope of 1. Their study reports 

that there was no transitional region between contrast threshold and supra-threshold contrast 

matching and that contrast constancy was observed immediately above threshold even at low 

contrasts such as 3%. They did discuss that, at the higher spatial frequencies, this might be 

due to the method (whether the high frequency is adjusted to match the lower or vice versa), 

but this did not seem to be the explanation for medium frequencies such as 4 cpd. However if 

this model is accurate, the supra-threshold contrast matching curves for low contrast should 

be close to a straight line when plotted against spatial frequency, which is not the case in the 

current study. Even in their results (their Figure 5B and 6B) departures from constancy at 

both low and high spatial frequencies are obvious and their other matching data (their Figure 

7) does not include data for contrast matches close to threshold. Our quadratic curve fitting 

analysis with respect to spatial frequency further excludes the possibility that contrast 

matching is as accurate as they claim at higher contrasts. Additionally, the current data do not 

show a sudden transition to contrast constancy, but rather a more gradual change towards 

accurate matches at higher contrasts, and we do show departures from a slope of 1, even 

when corrected for thresholds.  

Näsänen et al. (1998) proposed a contrast restoration model. In this model, at low 

contrast the perceived contrast is assumed to be related to the signal-to-noise ratio of the 

mechanism that is responsible for contrast detection. At high contrast, perceived contrast is 

based on estimated local contrast obtained by using the reciprocals of the gain due to the 

optical and neural filters (inverse filtering). Their data has been replotted in terms of matched 
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contrast against standard contrast before and after normalizing by subtracting the 

corresponding thresholds (Figure 3-5). In their experiment 4 cpd was the reference spatial 

frequency which showed the lowest contrast threshold among the tested spatial frequencies 

of 0.5, 1, 2, 4, 8, and 16 cpd. At supra-threshold contrast levels, the matched contrasts of 

other spatial frequencies were under-estimated and therefore matched with higher contrasts. 

Thus the regression lines were above the diagonal line for unity while that of 4 cpd was along 

the diagonal. These trends were similar after correction for thresholds. Note that we did not 

use a spatial frequency as high as 16 cpd in the current study, nor fit the models statistically. 

Thus, of the models currently proposed, Näsänen’s model is qualitatively the better 

description of the current data. 
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Figure 3-5. Contrast matching re-plotted from Figure 2A of Näsänen et al. (1998) in terms of matched contrast against standard 

contrast before and after normalized by subtracting the corresponding thresholds. (A) Before normalization. (B) After normalization. 

The standard grating was 4 cpd. The perfect contrast match is shown by the diagonal straight line. 
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3.4.3 Aging and contrast matching 

The current study has shown that aging increases contrast thresholds from 0.26 to 

8.53 cpd, and has also shown that supra-threshold contrast perception is related to threshold. 

So, what is the effect of aging on supra-threshold perception? Are any differences simply the 

result of threshold differences caused by aging? Repeated ANOVA and regression analysis 

show there are interactions between spatial frequency and aging. Leat and Millodot (1990) 

found an age effect on supra-threshold contrast perception using the method of contrast 

discrimination, measured at standard levels above threshold. Beard et al. (1994) found an age 

effect with contrast discrimination. However they concluded that this effect disappeared after 

normalizing the data for thresholds. Tulunay-Keesey et al. (1988) using contrast matching 

showed no age-related effects. The two age groups of their study were 20-29 years and 60-69 

years, while those of the current study were 21-50 years and 51- 86 years. In their study, one 

contrast level was tested which was 10 times the corresponding threshold at each spatial 

frequency, so the two age groups matched contrast at different absolute levels. They analyzed 

the ratios between log threshold and log match contrast, again different from the current 

study in which absolute values of contrast were used. These differences make these two 

studies difficult to compare.  

The effects of age were border-line for the present supra-threshold data (showing as 

an interaction with spatial frequency, but not with contrast). The interesting question here is, 

whether, as thresholds change with age, there is a change in the supra-threshold gain of the 

system to compensate.  
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However, whether age-related supra-threshold differences would be found would 

depend on the relative thresholds of the standard and the test grating. If these differences in 

threshold are similar between the age groups (although both might be elevated for the older 

subjects) no differences in the supra-threshold slopes would be found. If the threshold curves 

in Figure 3-1 are examined, it can be seen that the relative thresholds 0.58 cpd and other 

spatial frequencies for the two age groups are similar. Since the older subjects showed a 

decrease of contrast sensitivity at all spatial frequencies, there is little change in the relative 

thresholds. Also, as it happened, there was no example where the data point for the relative 

thresholds in Figure 3-2 or 3 was above the line for unity for one group and below it for the 

other.  Thus the present data cannot answer the question of whether there are changes in the 

gain to compensate for thresholds changes. 

 

3.5 Conclusion 

Our data supports the work of Georgeson and Sullivan (1975), but extends their data 

to show that contrast constancy exists in a larger group of naïve subjects of different ages. 

But contrast constancy was not found to be perfect up to 55.9%. Of the currently proposed 

models, the current data are best explained with the model proposed by Näsänen et al. (1998) 

in which at low contrast the perceived contrast is related to the signal-to-noise ratio. 

Alternatively at high contrast, perceived contrast is based on estimated local contrast 

obtained by using the reciprocals of the gain due to the optical and neural filters (inverse 

filtering). Thus the mechanisms of contrast threshold and low contrast perception are distinct 

from contrast perception at intermediate and higher contrasts. Our data show only subtle 
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changes of contrast matching with age (note that this is at absolute contrast levels) but were 

not able to indicate if there are adaptations in the gain of the supra-threshold system because 

of the changes in threshold due to optical and neural changes with age.  
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Chapter 4 
Supra-threshold Contrast Matching in Maculopathy 

Ming Mei and Susan J. Leat 
From the School of Optometry, University of Waterloo, Waterloo, Ontario, Canada. 

 

Abstract 

PURPOSE. To compare suprathreshold contrast perception among three groups of 

participants with maculopathy (atrophic age-related macular degeneration [ARMD], 

exudative ARMD, and juvenile macular dystrophy [JMD]) and to compare suprathreshold 

contrast matching between controls and subjects with maculopathy.  

METHODS. Three groups of subjects with macular disorders (13 atrophic ARMD, 14 

exudative ARMD, and 8 JMD) and one group of control subjects (15 subjects 50 years and 

older) participated. Contrast sensitivity (CS) up to 8.53 cycles per degree (cpd) was measured 

with a temporal two-alternative forced-choice staircase procedure. Suprathreshold contrast 

matching was measured using a method of limits. A 0.58 cpd sine-wave grating was the 

standard; the subject was asked to match the contrast of gratings of different spatial 

frequencies.  

RESULTS. Subjects with maculopathy showed marked deficits of contrast threshold. 

Suprathreshold contrast constancy was shown, though deficits were observed in absolute 

matches compared with control subjects. The slopes of matched contrast against standard 
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contrast for the subjects with maculopathy were significantly different from those for the 

controls, and these differences were in the direction that implies compensation for differences 

in thresholds. There were no significant differences among the three groups of subjects with 

maculopathy.  

CONCLUSIONS. In this study, the authors observed a degree of contrast constancy in 

subjects with maculopathy, though there were still deficits compared with control subjects. 

This is discussed in terms of gain of the visual system adjusting to compensate for CS losses 

(though incompletely) or contrast overconstancy, present in normal peripheral vision, which 

helps to compensate for CS loss.  
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4.1 Introduction 

Age-related macular degeneration (ARMD) is the leading cause of visual impairment 

in Western developed countries. The later stages of ARMD are categorized into atrophic 

ARMD and exudative ARMD (Bird, et al, 1995). Both conditions involve loss of central 

vision, including loss of contrast sensitivity and visual acuity. In juvenile macular dystrophy 

(JMD), such as Stargardt disease and Best disease, a similar loss of visual function occurs. 

Studies have shown that contrast threshold measurement is a better predictor of functions 

such as reading speed, mobility performance, and recognition of targets (e.g., faces) than 

visual acuity (Evans & Ginsburg, 1985; Hazel, et al., 2000; Leat & Woodhouse, 1993; Rubin 

& Legge, 1989; West, et al., 2002). However, most of our daily visual function happens at 

suprathreshold contrast levels. Little is known about how suprathreshold contrast perception 

is affected by maculopathy and whether suprathreshold perception might have a greater or 

lesser influence on visual disability than threshold measurements.  

Studies on normal vision have suggested that suprathreshold contrast perception is 

different from threshold detection in that it is less dependent on spatial frequency and 

exhibits constancy at higher contrasts (Georgeson & Sullivan, 1975; Peli et al., 1991; 

Nasanen et al., 1998). Thus, at higher contrasts, gratings of equal contrast but different spatial 

frequency are perceived as having similar contrast despite large differences in contrast 

threshold. Several studies have investigated contrast matching between the fovea and 

eccentric retinal areas (Georgeson & Sullivan, 1975; Cannon, 1985; Swanson & Wilson, 

1985). This is of interest in studies of maculopathy, because an eccentric location {the 

preferred retinal locus [PRL] (Georgeson & Sullivan, 1975; Cannon, 1985; Swanson & 
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Wilson, 1985)}, rather than the nonfunctional anatomic fovea, is used for fixation. These 

studies showed that subjects could make fairly accurate matches between the two retinal 

locations despite large differences in threshold. They suggested that the gain functions of 

peripheral channels are adjusted to compensate for the neural blur at each retinal locus. 

However, there was a consistent tendency to perceive an eccentric grating to be of higher 

contrast than the standard grating at the fovea (Georgeson & Sullivan, 1975). This was called 

contrast overconstancy (Georgeson, 1991).  Overconstancy also seemed to occur when 

gratings of different spatial frequencies, presented at the same retinal eccentricity, were 

matched—higher spatial frequencies appeared to have more contrast than lower spatial 

frequencies (Georgeson, 1991).  

A few studies have examined contrast matching in people with visual impairment 

caused by a variety of disorders, namely nystagmus (Dickinson & Abadi, 1992), amblyopia 

(Hess & Bradley, 1980), and demyelinating disease (Medjbeur & Tulunay-Keesey, 1986).  

All these studies showed normal or lower deficit in suprathreshold contrast perception 

compared with contrast sensitivity. Maculopathy is different from these eye diseases in that a 

PRL is developed and used instead of the anatomic fovea. A study by Leat and Millodot 

(1990), using contrast discrimination (CD) in four subjects with maculopathy, found that CD 

was significantly poorer for the maculopathy group than for the group with normal vision at 

all spatial frequencies (0.25–3.0 cycles per degree [cpd]). However, this measure of 

suprathreshold contrast perception was less affected by maculopathy than were contrast 

thresholds.  
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This study aimed to compare suprathreshold contrast perception studied with contrast 

matching among three groups of subjects with maculopathy—atrophic ARMD, exudative 

ARMD, and JMD—and to compare suprathreshold contrast matching between controls and 

subjects with maculopathy. Our hypothesis was that suprathreshold function in maculopathy 

is less affected than contrast thresholds. Additionally, we sought to determine whether there 

is evidence of contrast overconstancy in maculopathy.  

 

4.2 Method and Materials 

4.2.1 Apparatus 

A computer (MacIntosh 6100/66; Apple, Cupertino, CA) was used to generate stimuli 

with Morphonome 3.5 software (Tyler & McBride, 1997).  Stimuli were displayed on a high-

resolution 21-inch monitor (Trinitron; Sony, Tokyo, Japan) with a mean luminance of 60 

cd/m2. A hardboard surround with luminance of 60 cd/m2 was placed around the monitor to 

provide a constant level of light adaptation. The luminance was measured with a photometer 

(LS-100; Minolta, Tokyo, Japan). The display area measured 30.3° horizontally and 28.5° 

vertically at a viewing distance of 57 cm. 

4.2.2 Stimuli  

The stimuli were vertical cosine gratings of at least four cycles in width with a 

circular vignette envelope. Contrast thresholds were measured for spatial frequencies of 0.26, 

0.58, 1.11, 2.17, 4.29, and 8.53 cpd. The viewing distance for 4.29 cpd and lower was 57 cm, 
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and for 8.53 cpd it was 114 cm. The duration of the stimulus was 1.053 seconds, and the 

interstimulus interval was 583 ms.  

For suprathreshold contrast matching, two horizontally separated gratings were 

presented. The standard grating, with a fixed spatial frequency of 0.58 cpd, was on the right 

of the display screen and was presented at seven contrast levels: 1.7%, 3.6%, 7.2%, 13.7%, 

27.9%, 41.5%, and 55.9%. The test grating, with varying spatial frequency of 0.26, 0.58, 

1.11, 2.17, 4.29, or 8.53 cpd, was presented on the left.  

4.2.3 Subjects 

      Subjects with normal vision or maculopathy were recruited from the Optometry 

Clinic at the School of Optometry, University of Waterloo, and the Canadian National 

Institute for the Blind (CNIB). Given that our previous findings (Mei & Leat, 2007a) showed 

no main effect of age for suprathreshold contrast matching and most of the maculopathy 

subjects (30 of 36) were older than 50 years, one control group was used in this study (15 

subjects aged 50 and older). There were three groups of subjects with maculopathy (13 

subjects with atrophic ARMD, 14 with exudative ARMD, and 8 with JMD). Average ages of 

the groups were as follows: control group, 70 ± 11 years; atrophic ARMD group, 81 ± 5 

years; exudative ARMD group, 81 ± 8 years; and JMD group, 47 ± 14 years. All subjects 

gave written informed consent for participation in the study, which was approved by the 

Office of Research Ethics at the University of Waterloo. All subjects were treated in 

accordance with the Declaration of Helsinki. 
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4.2.4 Procedure 

Subjects’ refractive errors were checked by subjective refraction. If there was no 

improvement in visual acuity, they wore their spectacles plus a working distance correction. 

If there was a significant change, the refractive correction, plus a working distance lens, was 

worn in a trial frame. Monocular visual acuity of the preferred eye was measured with the 

University of Waterloo logMAR chart (Strong &Woo, 1985).  Five minutes of light 

adaptation was allowed beforehand. For contrast threshold measurement, a temporal two-

alternative forced-choice (2-AFC) staircase method was used.  

For suprathreshold contrast matching, a method of adjustment, under experimenter 

control, was used. Subjects, looking freely between the standard and the test grating with the 

preferred eye, compared the contrast between the standard grating (0.58 cpd) and the test 

grating (with varying spatial frequency) and told the experimenter to increase or decrease the 

contrast of the test grating to match the contrast of the standard grating. To minimize any 

pattern adaptation, subjects were instructed not to look at the standard grating for too long 

(Blakemore, Muncey, & Ridley, 1971).  Subjects with maculopathy were allowed to use their 

natural PRL.  

The number of contrast matches each subject could make was limited because of 

fatigue and level of vision; for instance, some subjects could not detect the lowest contrasts at 

some spatial frequencies to make a match. Therefore, the aim was to complete matching 

across all spatial frequencies at 3.6% and 27.9% contrast so as to get as full a data set as 

possible for these parameters and to undertake as many other contrast matches as possible for 
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the other contrast levels, including the highest spatial frequency and the lowest contrast that 

each subject could detect. Only a few subjects could undertake matches for 8.53 cpd (1 at 

3.6%, and 5 at 27.9%); therefore, 8.53 cpd was not included in the ANOVA statistical 

analysis for the contrast matching.  

Statistical Analysis  

ANOVA in Systat was used to analyze the contrast thresholds for 0.26 to 8.53 cpd 

and the contrast matching (3.6% and 27.9%) for 0.26 to 4.29 cpd. Given that some data were 

missing for both contrast thresholds and contrast matches, we assumed sphericity and 

repeated the ANOVAs according to Winer (1962), a method that uses all the data. To analyze 

the slopes of the contrast-matching curves, all data that were available for each subject were 

included.  

4.3 Results 

 ANOVA showed an age difference between the ARMD group and the control group 

(F = 19.53; P < 0.01). This occurred because it was difficult to recruit subjects with normal 

vision according to our criteria (no age-related maculopathy [ARM], no cataract within the 

pupil area, no diabetes, good general health) of the same age as some of the older subjects 

with ARMD. Average VAs were logMAR –0.03 ± 0.10 for control subjects, 0.88 ± 0.09 for 

atrophic ARMD, 1.06 ± 0.04 for exudative ARMD, and 1.06 ± 0.05 for JMD. ANOVA 

showed there was no significant difference in VA among the three maculopathy groups (F = 

2.05; P = 0.146).  
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First, the contrast threshold results are considered. Figure 4-1 shows the individual 

contrast thresholds of the three groups and the 95% range of the control subjects. As 

expected, most subjects with maculopathy showed some deficit of contrast sensitivity, 

especially at high spatial frequencies. To compare the performance of the three maculopathy 

groups, mixed ANOVA (three maculopathy groups/six spatial frequencies) was applied. 

There was no effect of diagnosis (F = 0.43; P = 0.658) and no interaction between spatial 

frequency and diagnosis (F = 2.074; P = 0.102). Because the three groups showed similar 

contrast sensitivity, they were pooled for comparison with the normal control data. Mixed 

ANOVA (two groups/six spatial frequencies) confirmed a difference between the normal 

control and the group with maculopathy (F = 182.26; P < 0.001).  

Examples of contrast thresholds and full suprathreshold contrast matching for three 

subjects (one each with atrophic ARMD, exudative ARMD, and JMD) who finished all 

contrast matches with a full range of contrasts and spatial frequencies are shown in Figure 4-

2. Matching curves for medium and higher contrast levels show increasing flatness 

demonstrating contrast constancy. 

Contrast matching of 3.6% and 27.9% for all subjects is shown in Figure 4-3, together 

with the 95% range of normal. Fifty of 175 data points were missing at 3.6%, and 10 of 175 

at 27.9%. To compare the performance of the three maculopathy groups, mixed ANOVA 

(three groups/five spatial frequencies/two contrast levels [excluding contrast threshold]) was 

undertaken but showed no main effect of diagnosis (F = 0.891; P = 0.431) and no higher 

interactions based on diagnosis. 
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Given that no effect of diagnosis was found, the three groups were pooled into one 

larger maculopathy group for final analysis. Mixed ANOVA (two groups/five spatial 

frequencies/two contrast levels [excluding contrast threshold]) showed a main effect of the 

presence of maculopathy (F = 49.34; P < 0.001) and main effects of contrast (F = 4500; P < 

0.001) and spatial frequency (F = 76.30; P < 0.001). Interactions occurred between contrast 

and group (F = 16.81; P < 0.001), spatial frequency and group (F = 23.15; P < 0.001), 

contrast and spatial frequency (F = 23.7; P < 0.001), and group, contrast, and spatial 

frequency (F = 11.70; P < 0.001).  

Interactions occurred between macular health and spatial frequency and between 

macular health and contrast that were explored further by post hoc mixed ANOVAs with 

respect to spatial frequency and contrast. Mixed ANOVA at each contrast level showed 

effects of macular health at both 3.6% (F = 45.64; P < 0.001) and 27.9% (F = 17.86; P < 

0.001), which indicates that maculopathy affects suprathreshold contrast perception at low 

and medium contrast levels. Interactions occurred between macular health and spatial 

frequency at both contrast levels (both P < 0.001). All our ANOVA results were confirmed 

with those determined by the method according to Winer (1962).  

Post hoc t-tests with Bonferroni correction (the new P value for significance is 0.05/5 

= 0.01, treating each ANOVA as a separate group of t-tests) showed an effect of macular 

health at 3.6% and 27.9% at spatial frequencies of 1.11 cpd and higher (P < 0.01). Thus, at 

higher spatial frequencies, subjects with maculopathy needed higher contrast than did 

controls to make a match. At higher contrasts, however, contrast-matching curves become 

flatter and more data points were within the normal range (Fig. 4-3). 
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Figure 4-1. Contrast thresholds for the three diagnostic groups compared with the 95% normal range (1.96 x SD, dashed lines). The 

solid curves represent the contrast thresholds of individual subjects with maculopathy. The arrows show the spatial frequency of the 

standard grating. 
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Figure 4-2. Contrast threshold and supra-threshold contrast matching curves for three subjects with atrophic ARMD, exudative 

ARMD, and JMD respectively. The top curve represents the contrast threshold. The lower curves represent the contrast matching 

curves at six contrast levels. All of them could not match 1.7% contrast and S2 and S3 could not match certain contrast levels at 4 and 

8 cpd. The arrows show the spatial frequency of the standard grating.
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Figure 4-3. Contrast matching at 3.6% and 27.9% for three groups. The dashed line curves represent the 95% confidence limits of 

normal older control subjects (1.96 x SD). The solid curves represent the contrast matches of individual subjects with maculopathy. 

The arrows show the spatial frequency of the standard grating. 
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To analyze the gain of matched contrasts against reference contrast, the data were 

plotted as the matched contrast against the test contrast at each spatial frequency (Georgeson 

& Sullivan, 1975) for subjects who were able to complete the contrast matching at a range of 

contrasts (four or more) at each spatial frequency. The numbers of these subjects for each 

spatial frequency are shown in Table 4-1. If contrast matching were perfect, all the contrast-

matching data points would lie along the diagonal line for equal contrast. Figure 4-4 shows 

some examples of this analysis. Generally speaking, the regression slopes of subjects with 

maculopathy showed larger variability than did those of the control subjects. Some of the 

contrast-matching points fell out of the 95% confidence limits of control group. At the higher 

spatial frequencies, there were more contrast matches outside the normal range. Regression 

lines were calculated for each subject, and the average slopes of each spatial frequency and 

the 95% confidence limits are shown in Table 4-1. Regression lines for 0.58 and 1.11 cpd 

were along the diagonal line; those for 0.26, 2.17 and 4.29 cpd were above the diagonal, with 

a tendency to flatter slopes. Between the slopes of the control and the maculopathy group, t-

tests showed significant differences at 1.11 cpd (P = 0.001), 2.17 cpd (P = 0.001), and 4.29 

cpd (P < 0.001). It was not possible to analyze the 8.53 cpd data in this way because data 

were missing for many subjects.  
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Figure 4-4. Examples of matched contrast against test contrast in log unit. The dashed diagonal line represents perfect matching with 
a slope of 1. The two heavy shadowed lines represent the 95% range of normal. Lines connecting different symbols represent the 
contrast matching of different subjects. The isolated symbols represent thresholds of those subjects.
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Table 4-1. Means and 95% range for slopes of contrast matching regression lines for subjects 

with maculopathy and control subjects. 

Spatial Frequency(cpd) Mean Slope 95% - 95% + 

Maculopathy (n = 18) 0.837 0.795 0.880 0.26 cpd 

Control (n = 15) 0.877 0.839 0.915 

Maculopathy (n = 17) 0.986 0.966 1.005 0.58 cpd 

Control (n = 15) 0.993 0.982 1.003 

Maculopathy (n = 17) 1.012 0.978 1.046 1.11 cpd 

Control (n = 15) 1.104 1.074 1.134 

Maculopathy (n = 17) 0.900 0.821 0.978 2.17 cpd 

Control (n = 15) 1.071 1.027 1.116 

Maculopathy (n = 10) 0.739 0.658 0.820 4.29 cpd 

Control (n = 15) 0.946 0.885 1.008 

 

 

4.4 Discussion 

4.4.1 Contrast threshold 

        Our results showed that contrast thresholds in subjects with maculopathy were 

significantly higher than in the 95% range of age-matched control subjects, which is in 

agreement with previous findings (Bellmann et al., 2003; Brown & Lovie-Kitchin, 1989; 

Loshin & White, 1984; Owsley, et al., 2001), and that this deficit of contrast sensitivity 

increased with increasing spatial frequency. Our results also showed that the average contrast 

threshold was abnormal at all spatial frequencies tested, which is also in agreement with 

former studies (Loshin & White, 1984; Sjostrand & Frisen, 1977; Wolkstein, Atkin, & 

Bodis-Wollner, 1980). In all three groups of subjects with maculopathy, the peak of the CSF 
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shifts to lower spatial frequencies, to around 0.58 cpd, compared with 1.11 cpd in control 

subjects. This shift can probably be attributed to two causes: eccentric fixation and 

photoreceptor dysfunction. 

4.4.2 Supra-threshold contrast matching 

         The first finding of this study is that, for subjects with maculopathy who were able to 

undertake contrast matching at all contrast levels (examples shown in Figure 4-2), the 

suprathreshold contrast-matching results plotted across contrast levels appear similar to 

previous findings in subjects with normal vision (Georgeson & Sullivan, 1975; Peli et al., 

1991; Nasanen et al., 1998). At low contrasts, the matching curves resembled the threshold 

curve, whereas at medium and higher levels, the curves became flatter, demonstrating 

contrast constancy. All the maculopathy subjects performed contrast matching at 3.6% and 

27.9% (shown in Figure 4-3), and the matching curves at higher contrast were flatter than 

those at lower contrast, again demonstrating some degree of contrast constancy. Thus, 

observers with maculopathy performed similarly to subjects with other visual disorders 

(Dickinson & Abadi, 1992; Hess & Bradley, 1980; Medjbeur & Tulunay-Keesey, 1986).  

This is particularly interesting because these studies included subjects in whom the disorder 

was located at the retinal level (maculopathy and albinism), the optic nerve (demyelinating 

disease), the cortical level (amblyopia), and the motor centers of the brain (congenital 

nystagmus).  

However, there were differences between the control and the maculopathy groups at 

both levels of contrast. Thus, our results are also in agreement with those of a previous study 
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(Leat & Millodot, 1990), showing deficits of suprathreshold contrast perception in subjects 

with maculopathy. As in this previous study, these deficits were not as great as the deficits in 

contrast threshold; there is some compensation for contrast sensitivity loss. As with contrast 

threshold, the peaks of the contrast-matching curves shifted to lower spatial frequencies 

compared with those of the control group. As with the contrast threshold differences, this 

shift could be attributed to two factors: the attenuation of medium and high spatial 

frequencies resulting from normal neural changes with eccentricity and the dysfunction of 

photoreceptors resulting from maculopathy (Swanson & Wilson, 1985; Rempt, Hoogerheide, 

& Hoogenboom, 1976). A few studies have compared visual function at a given eccentricity 

between people with ARMD and normal vision and show a loss of function compared with 

healthy eccentric retina (Brown & Lovie-Kitchin, 1989; Sunness et al., 1985).   

As in normal vision, there is a connection between contrast threshold and 

suprathreshold contrast perception, though these two mechanisms are probably different. 

Figure 4-4 and Table 4-1 show the regression slopes of contrast matching at each spatial 

frequency compared with the 95% normal ranges, indicating that the threshold differences 

between the test and the standard spatial frequency determined the position of the regression 

line relative to the diagonal line. Most subjects with maculopathy had highest contrast 

sensitivity for spatial frequencies of 0.58 and 1.11 cpd. Correspondingly, the regression line 

slopes of 0.58 and 1.11 cpd were close to the diagonal, and the other spatial frequencies of 

0.26, 2.17, and 4.29 cpd were above the diagonal line and had flatter slopes. These slopes 

were also significantly different from those of the controls, and these differences were in the 

direction expected to compensate for differences in thresholds. These findings are in 
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agreement with previous studies suggesting neural compensation by means of a change in 

gain (Dickinson & Abadi, 1992; Hess & Bradley, 1980; Leat & Millodot, 1990).  

Alternatively, the results may be explained according to the model of Brady and Field (1995). 

Accordingly, maculopathy would result in an increase in noise that would result in an 

increase in threshold, but suprathreshold performance, which depends on average signals 

rather than the signal-to-noise ratio, would be affected to a lesser extent or not at all. With 

this model there would be no need to suggest a change in gain. In fact, the partial-contrast 

constancy might indicate some deficit in gain.  

Given that observers with advanced maculopathy use a PRL for fixation, some 

discussion of the performance of eccentric retina is in order. At eccentric retinal locations, 

visually normal observers show overconstancy (Georgeson & Sullivan, 1975), a trend to 

overestimate the test gratings’ contrast at higher spatial frequencies (>3 cpd), especially at 

low contrasts. Observers with maculopathy, matching with a PRL (shown in Figure 4-3), did 

not show this trend but, rather, underestimated test grating contrast at higher spatial 

frequencies (>0.58 cpd). In other words, they have partial-contrast constancy. There are two 

possible ways to explain this. First, the PRL functions as a new "fovea," losing the normal 

overconstancy of eccentric vision but utilizing adjustment of the gain to compensate for the 

loss of CS caused by the disease process. Second, the PRL still functions as eccentric retina 

with contrast overconstancy, which in itself partially tends to compensate for loss of CS 

resulting from the disease process. The present data are not able to distinguish between these 

two situations.  
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Studies of suprathreshold contrast perception may give information that is more relevant to 

daily function than contrast sensitivity. This study has shown a suprathreshold contrast 

perception defect in maculopathy compared with normal, though this deficit is not as great as 

that for CS. Thus, we would conclude that the actual performance of people with ARMD may 

not be as poor as CS predicts. Whether this is found to be true is a matter for future research.  

4.5 Conclusions 

  We have shown that a degree of contrast constancy is apparent in subjects with 

maculopathy, though deficits persist compared with control subjects. No significant 

difference was observed among three groups of subjects with maculopathy in suprathreshold 

contrast matching. Evidence indicates that either the gain of the visual system adjusts to 

compensate for CS losses (though incompletely) or that contrast overconstancy, as in normal 

peripheral vision, helps to compensate for the CS loss. A third possibility is that maculopathy 

results in an increase of noise in the visual system that affects threshold, but not 

suprathreshold, performance. 
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Chapter 5 
Can Spatial Frequency Analysis Distinguish Image Categories? 

 

5.1 Introduction 

In order to understand how the human brain performs complex cognitive tasks it is 

necessary to understand the neural activities triggered by various visual stimuli. In recent 

years, recognition of single faces, one of the most important skills in daily life, has aroused 

interest among visual scientists. Neuroimaging studies in humans have found that the 

fusiform gyrus and the superior temporal sulcus selectively respond to face images (Allison, 

et al., 1999; Grill-Spector, & Malach, 2004; Haxby, et al., 1994; Kanwisher, et al., 1997; 

Loffler, et al., 2005; Puce, et al., 1995; Sergent, et al., 1992). Further studies suggest that the 

superior temporal sulcus is more concerned with the details of facial structure than the 

fusiform gyrus (Allison, et al., 2000; Andrews, Schluppeck, et al., 2002; Haxby, et al., 2000). 

Studies of the visual cortex have found areas selective for objects other than faces in the 

parahippocampal gyrus (Epstein & Kanwisher, 1998; Ishai, et al, 1999; Kanwisher et al., 

1997) and the lateral occipital lobe (Grill-Spector, et al., 1999; Malach, et al., 1995). It is 

suggested that the visual cortex analyzes non-face objects in a more parts-based way than it 

does for face objects (Ishai, et al., 2000). This is possibly because there are more variable 

parts in spatial arrangements for non-face objects, while each single face only has five organs 

located in various spatial ratios. Thus, several lines of research have suggested that face 

recognition is unique in humans and have stressed the importance of global configuration of 



 

 75

faces compared to other kinds of objects (Farah, et al., 1998; Wang, et al., 1998, Hasson, et 

al., 2001).  

Neuroimaging studies have also described a different activation pattern associated 

with specific images other than faces. These images include scenes/buildings (Haxby, et al., 

1999; Kanwisher et al., 1997), chairs (Ishai et al., 1999; Aguirre, et al., 1998; Epstein & 

Kanwisher, 1998), letters (Polk & Farah, 1998; Puce, et al., 1996), animals and tools (Chao, 

et al., 1999; Martin, et al., 1996), and hands (Puce, et al., 1999). These findings have led to 

the interpretation that the ventral temporal cortex contains anatomically segregated modules 

that are category-specific although not as specific as the regions responsive to faces (Puce et 

al., 1999; Aguirre et al., 1998; Kanwisher et al., 1997; Allison, et al., 1994). Alternatively, 

Ishai et al. (2000) proposed that the visual cortex areas responding to non-face objects are not 

highly selective to a certain object (such as a red iron chair) but to object form category (such 

as the shape of chair no matter what specific kind of chair it is). Besides, each cortical region 

mainly responds to one category of non-face object, but will give weaker responses to other 

categories of non-face objects (Chao, et al., 1999; Haxby, et al., 2001). 

Since it appears that some different regions of the visual cortex respond to specific 

images, it is interesting to determine whether there are differences in the characteristics of 

these stimuli that trigger these different visual responses. Additionally, if image processing is 

to be applied to images which will be viewed by human observers, it is useful to be able to 

classify images according to their characteristics. Spatial frequency amplitude spectra and the 

corresponding slope of amplitude versus spatial frequency are two parameters which may 

describe image physical characteristics. To date, most of the studies of amplitude spectra and 
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slopes have concentrated on natural scenes, i.e. scenes with no human-made content (Burton, 

et al., 1986; Field, 1987; van Hateren & van der Schaaf, 1998; Ruderman & Bialek, 1994; 

Tolhurst, et al., 1992; van der Schaaf & van Hateren, 1996). The visual system is believed to 

have evolved and developed to adapt to the natural environment. It has been known for some 

time that although the apparent complexity of natural images is high, natural images have a 

characteristic Fourier spectrum: Amplitude (f) = cƒ -β , where c is a constant and f is spatial 

frequency. The average βvalue of all orientations varies from 0.7 to 1.5 in achromatic 

images (Burton, et al., 1986; Field, 1987; van Hateren & van der Schaaf, 1998; Ruderman & 

Bialek, 1994; Tolhurst, et al., 1992; van der Schaaf & van Hateren, 1996). Billock, et al., 

(2001) applied correlation analysis to the human contrast sensitivity function and found that 

cortical spatial frequency channels are well suited to analyzing the exponent of ƒ -β images. 

Therefore, the characteristics of different images represented by ƒ -β could be reflected in 

visual perception processing.  

The amplitude spectrum of an image varies with orientation. Fourier analyses of 

natural scenes have shown that horizontal and vertical orientations contain more contrast than 

do the oblique orientations (Baddeley & Hancock, 1991; Coppola, et al., 1998; Keil & 

Cristobal, 2000; Switkes, et al., 1978; van der Schaaf & van Hateren, 1996). Using 

orientation-sensitive filters to process three groups of digital images (indoor scenes, outdoor 

scenes, and natural scenes), Coppola et al. (1998) also found a greater prevalence of contours 

near the cardinal axes. Contrary to the anisotropy (different sensitivities in different 

orientations) in perceiving simple stimuli (e.g. isolated grating patterns), Essock et al. (2003), 
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using images consisting of broadband spatial content (such as noise patch), showed that 

visual performance is best for image components at oblique orientations, worst for 

horizontal, and intermediate for vertical orientations. Several studies have shown that there 

are most neurons responding to the horizontal components of an image, fewer at the vertical, 

and fewest at oblique orientations (Essock et al, 2003, Hansen et al., 2003; Furmanski & 

Engel, 2000; Li, Peterson, & Freeman, 2003; Mansfield & Ronner, 1978). Essock et al. 

(2003) suggested that the visual cortex has the the largest perceptual response (gain) in 

oblique orientations and a smaller perceptual response (gain) in the horizontal and vertical 

orientations. In this paper they speculated that the consequence of this anisotropy would be to 

perceptually decrease the horizontal and vertical structure in a natural scene, thereby 

increasing the relative salience of other orientations. Torralba and Oliva (2003) studied the 

relationship between amplitude spectra and natural image categories. They found that simple 

image statistics such as amplitude spectra could be used to predict if one kind of object exists 

in a scene or not. We would deduce that images with similar content would show similar 

response characteristics in various orientations. We would also deduce that there might be 

different amplitude spectra and slopes among images of different objects and that there might 

be similarities in these two parameters within a category of images of similar objects, such as 

different styles of chairs or hands viewed from different angles. All of the neuroimaging 

studies described above were done with photographs of faces or objects presented either in 

blocks or as single images. However, in real life, usually the received images are much more 

varied than those used in these studies which tended to be either natural images or single 
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objects. Nevertheless, it is still anticipated that similar scenes share similarities in physical 

characteristics.  

The current study was devised to answer two questions: First, can amplitude spectra 

and slope show differences in a wide range of image types to support the differentiated image 

perception in the visual cortex; i.e. can images be classified according to spatial frequency 

content? Second, where are the differences of amplitude spectrum and slope in orientations 

between image groups? 

The ultimate application for this analysis is an attempt to categorise images into 

groups according to spatial frequency content for future study of digital image enhancement 

to improve visibility of images for people with visual impairment. Since the image 

processing is spatial frequency based, we would anticipate that images with similar spatial 

frequency content may be increased in visibility with similar processing.  

5.2 Methods 

5.2.1 Images  

132 digital images were obtained either by a Cannon G2 4.0 mega pixel or by a 

Nikon 4300 4.0 mega pixel digital camera. The image size was 990 ×1250 pixels (height x 

width). All were filtered with a low-pass filter with a maximum half-height of 15 cycles per 

degree (cpd) based on a viewing distance of 57 cms (equivalent to 427.5 cycles per image). 

This was to optimize the images for the future study of people with visual impairment, so as 

to avoid unnecessarily enhancing high frequencies beyond the subject’s acuity limit which 

would further compromise the dynamic range of an enhanced image (Peli, 1992; Leat, et al., 
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2005). Fifteen cpd (equivalent to 6/12 Snellen acuity) is the maximum spatial frequency that 

would be perceived by this population if we define low vision as visual acuity < 6/12 (Leat et 

al., 1999). The images were categorized into six groups according to the apparent subject 

matter of the images: single face (21 images), one whole person (15 images), two or more 

whole persons (21 images), indoor scenes (17 images), natural scenes (20 images), and 

miscellaneous (38 images). The face images showed one single whole face in the center 

covering more than 4/5 of the vertical dimension of the image, with varying backgrounds. 

The one-person images showed a single whole person in the center with varying 

backgrounds. The two or more-person images showed at least two persons in whole or in part 

in the center with varying backgrounds. The indoor images showed typical house or office 

interiors i.e., mainly furniture, floor, staircases, walls and pictures etc. The natural scenes 

were all outdoor scenes without any human-made content. The miscellaneous group includes 

animals, plants, outdoor scenes which include human-made content e.g. street scenes.  

5.2.2 Software 

A MatLab image analysis tool programmed by the Systems Design Engineering 

Department, University of Waterloo was used. The MatLab 6P51 Work software was 

available in the lab of Dr. Susan Leat. 

5.2.3 Analysis 

The low-passed images were subjected to a 2-dimensional Fourier transform in 

Matlab and the amplitude spectrum was obtained in a logarithmic scale for the four 

orientations of 0º, 45º, 90º, and 135 º (shown in Figure 5-1A) with respect to spatial 

frequency in a linear scale. Zero degrees correspond to the horizontal meridian and the others 
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are measured counter-clockwise from there. Note that spatial frequency components along 

the horizontal correspond to vertical contours or edges. The spatial frequency was in units of 

cycles per image relative to the image height. These amplitude spectra were retrieved to 

Excel files (shown in Figure 5-1B). Then the amplitude spectra for the four orientations 

versus spatial frequency were plotted as shown in Figure 5-1C. Plotting the log of the 

amplitude spectrum against the log of the spatial frequency turned the amplitude spectrum 

plot into straight lines (Burton et al., 1987; Field, 1987; van Hateren and van der Schaaf, 

1998; Ruderman and Bialek, 1994; Tolhurst et al., 1992; van der Schaaf and van Hateren, 

1996). The slopes of the corresponding regression lines were calculated.  
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Figure 5-1. An example of image analysis. A. Original image and plot with amplitude 

spectrum (log) versus spatial frequency (cycles per image) in a linear scale at the four 

orientations of 0º, 45º, 90º, and 135º, where 0º corresponds to the horizontal meridian and the 

others are measured counter-clockwise from there. B Part of the values of amplitude 

spectrum at each spatial frequency at the four orientations retrieved from A. C. Log of the 

amplitude spectrum plotted versus log spatial frequency. 

 

 
Figure 5-2 shows that amplitude spectra of the two oblique directions are 

considerably superimposed. This was true for all the images that were analyzed. Therefore 
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the values of amplitude and spectra of these two orientations were averaged to give one 

spectrum for oblique orientations.  

 

Figure 5-2.  Examples of amplitude spectra plots for four images showing the four 

orientations of 0º, 45º, 90º, and 135º. The two oblique orientations are superimposed and are 

lower in amplitude than the vertical and horizontal. 

 

5.3 Results 

The average amplitude versus slope of the 132 images (average of three orientations) 

is plotted in Figure 5-3A. Since the horizontal dimension of the images was greater than the 
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vertical, this limited the highest spatial frequencies measured in the vertical direction. The 

graph of amplitude versus slope for all meridians was truncated at the maximum value for the 

vertical meridian, so as to be able to compare the average amplitudes. It can be seen that 

there is a continuous distribution of data and no obvious clusters are formed. When each 

category of image is shown differently, as in Figure 5-3B, it can be seen that face images 

seem to make a separate cluster, distinct from other groups of images, being located superior 

and left of the plot. The other images all seem to cluster together, although there may be a 

slight tendency for the natural scene images to be located superior and right in the plot and 

for indoor images to be located inferiorly. Other groups of images are all overlapping and 

grouped together. The amplitude and slope in three separate orientations and the averages for 

all three orientations of six groups of images are shown in Table 5-1.  

Analysis of amplitude with mixed ANOVA (6 image categories x 3 orientations) 

shows that there are differences among the six groups of images (p < 0.001) and among the 

different orientations (p < 0.001). There was an interaction between orientation and image 

group (p = 0.003). Similar analysis for the slope also showed an effect of group (p = 0.001) 

and orientation (p < 0.001) but no interaction (p > 0.05).  Significant differences between 

image groups from post-hoc analyses (Bonferroni) are shown in Table 5-2A. Face images 

show the most frequent differences from other types of images, having a significant 

difference in at least one orientation compared to all other image types except one-person 

images. For slope (Table 5-2A) there are fewer differences, with natural images tending to be 

different from the other groups. Post-hoc analysis for differences in orientation for amplitude 

and slope showed significant differences (p < 0.001) among all the orientations. 
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One-way ANOVA was also performed on the average of the three orientations for 

amplitude (6 groups) and slope. There were significant effects of group in both cases (for 

amplitude p < 0.001 and for slope p = 0.001). The Bonferroni post-hoc analyses are shown in 

Table 5-2B. The amplitudes of face images are different from all other images types and the 

slopes of the natural images are more consistently different from other types of images than 

any other category. Indoor images show some differences of either slope or amplitude from 

other types (Table 5-2 A and B). Thus, looking at these results as a whole, it seems that faces, 

natural scenes and indoor images tend to be different from some other categories in either 

slope or amplitude. 

Considering the results shown in Table 5-1 and the average of the three orientations, 

the amplitude varies from 1.8 to 2.15 with face images having the smallest amplitude and 

miscellaneous images the largest. As for the standard deviation of the averaged orientations, 

indoor images show the smallest variability and one-person images the largest. Considering 

the amplitudes in the separate orientations, all six groups of images show a similar trend: 

vertical amplitude > horizontal > oblique, with the exception of the indoor images which 

show little difference between the horizontal and vertical.  The face images show the smallest 

amplitude in all three separate and the average orientations.  
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Figure 5-3.  Plots of slope versus amplitude for all images. A. All data showing a continuous range without obvious clusters. B. Data 
split into the six categories of images. C1-Horizontal, C2-Vertical, C3-Oblique orientations, according to image category. 
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Table 5-1. Average amplitude and slope ± one standard deviation for the six groups of images in the three orientations and the 

average of three orientations.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Amplitude  Horizontal Vertical Oblique Average  

Face 1.95 ± 0.26 2.30 ± 0.34 1.16 ± 0.17 1.80 ± 0.16 

1 Person 2.18 ± 0.34 2.49 ± 0.40 1.32 ± 0.28 2.00 ± 0.24 

2+ Persons 2.27 ± 0.26 2.53 ± 0.35 1.42 ± 0.19 2.07 ± 0 .13 

Indoor 2.37 ± 0.21 2.35 ± 0.28 1.27 ± 0.13  2.00 ± 0.12 

Natural 2.16 ± 0.27 2.67 ± 0.17 1.48 ± 0.26 2.10 ± 0.19 

Miscellaneous 2.36 ± 0.24 2.54 ± 0.26 1.55 ± 0.27 2.15 ± 0.19 

 Slope Horizontal Vertical Oblique Average  

Face -1.26 ± 0.19 -1.04 ± 0.13 -1.68 ± 0.19 -1.33 ± 0.12 

1 Person -1.20 ± 0.18 -1.02 ± 0.12 -1.66 ± 0.28 -1.30 ± 0.13 

2+ Persons -1.22 ± 0.20 -1.10 ± 0.21 -1.66 ± 0.21 -1.33 ± 0.13 

Indoor -1.23 ±  0.12 -1.16 ± 0.22 -1.74 ± 0.15 -1.37 ± 0.09 

Natural -1.07 ± 0.15 -0.97 ± 0.03 -1.56 ± 0.26 -1.20 ± 0.12 

Miscellaneous -1.15 ± 0.17 -1.03 ±  0.10 -1.61 ± 0.24 -1.27 ± 0.14 
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Table 5-2. Post-hoc Bonferroni analysis of ANOVA for amplitude and slope for separate orientations and averaged across 

orientations.  

A: Separate amplitude and slope in each of three orientations 

Amplitude-Horizontal Amplitude-Vertical Amplitude-Oblique 

Face vs. 2+Persons, p = 0.002 

Face vs. Indoor, p < 0.001 

Face vs. Miscellaneous, p < 0.001 

Face vs. Natural, p = 0.002 

Face vs. Miscellaneous, p = 0.047 

Indoor vs. Natural, p = 0.025 

Face vs. 2+Persons, p = 0.006 

Face vs. Naturals, p < 0.001 

Face vs. Miscellaneous, p < 0.001 

Indoor vs. Miscellaneous, p = 0.001 

1 Person vs. Miscellaneous, p = 0.022 

Slope-Horizontal Slope-Vertical Slope-Oblique 

Natural vs. Face, p = 0.006 Natural vs. Indoor, p = 0.002  

B: Average amplitude and slope  

Amplitude Slope 

Face vs. 1 Person, p = 0.013 

Face vs. 2+Persons, p < 0.001 

Face vs. Indoor, p = 0.008 

Face vs. Natural, p < 0.001 

Face vs. Miscellaneous, p < 0.001 

Indoors vs. Miscellaneous, p = 0.041 

Natural vs. Face, p = 0.018 

 

Natural vs. Indoor, p = 0.001  

 

Natural vs. 2+Persons, p = 0.027 
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For the average slope of three orientations, the β value varies from 1.20 to 1.37 

with the natural scene group being the shallowest and indoor the steepest. For slope in the 

separate orientations, all six groups of images show the same trend as the amplitude: 

vertical > horizontal > oblique. The natural scene group shows the shallowest slopes in 

all three orientations which suggest that there is relatively more high spatial frequency 

content in these images.  

 

5.4 Discussion 

Our visual cortex is highly differentiated to perceive specific images (such as 

single faces, chairs, buildings, etc). Correspondingly, it would be expected that there 

would be differentiation in the physical characteristics of images. The current study 

provides evidence that there are differences in some types of images. This finding is in 

agreement with Torralba and Oliva (2003) in that amplitude spectra can distinguish 

image characteristics of natural images. They did not include faces or scenes with human 

made content. The current study also extends an analysis of image characteristics from 

single objects (such as face, chair) to a wide range of image types, including everyday 

scenes. From Table 5-1 and 5-2 it can be seen that there are significant differences 

between some image groups in amplitude and slope. A study using computer simulation 

and psychophysical methods with city and beach scenes showed that the amplitude 

spectrum alone is sufficient to categorize the images (Guyader, et al., 2004). Our findings 

also demonstrate that amplitude spectrum is a good parameter to distinguish images 

according to spatial frequency content.   
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There are differences in amplitude and slope with respect to orientation. The 

present results show that, for most image groups, the amplitude is greater in the cardinal 

orientations than the oblique. This is consistent with former findings (Baddeley & 

Hancock, 1991; Coppola et al., 1998; Keil & Cristobal, 2000; Switkes at al., 1978; van 

der Schaaf & van Hateren, 1996). According to the anisotropy in visual perception for 

complex scenes (Essock et al., 2003), the horizontal has the least gain and the oblique the 

most in the order of oblique > vertical > horizontal. This is the reverse of the current 

finding of greater average amplitude for horizontal contours (vertical meridian) and least 

in the oblique orientation, which was found for almost all image types in this study. Thus, 

it would seem that the anisotropy of the visual system tends towards equalizing the 

anisotropy of real world images, resulting in a more equal perception of differently 

orientated contours.   

For slopes, the current study found the same trend in all six groups of images: 

vertical > horizontal > oblique i.e. shallower in the vertical. This implies that there is 

relatively more high frequency content in the vertical meridian i.e., for horizontal 

contours. Again, the anisotropy of the visual system would tend to equalise these 

differences. Former studies on slopes with amplitude versus spatial frequency focused on 

natural images and found the average values of β were from 0.70 to 1.50. In the current 

study, we focused on a broader range of images that people encounter in daily life. The 

average β values (1.20 to 1.37) are within this published range for natural images, which 

suggests that all kinds of daily encountered scenery images could presumably be analysed 

with the same cortical neural machinery as natural scene images.  
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According to all the analyses of amplitudes and slopes among the six groups of 

images categorized in this study, three groups stand out as possibly different: single 

faces, indoors, and natural scenes. 

Single face images 

Single faces turn out to be the most consistently distinctive image type (according 

to spatial frequency content) among all six groups, with significantly lower average 

amplitudes than other groups of images.  However, they are similar to other images in 

having the smallest slope in the vertical meridian thus having relatively more high spatial 

frequency information in the vertical meridian (horizontal contours). The physical 

uniqueness of single face images is consistent with the uniqueness of single face 

perception in the visual cortex (Farah et al., 1998; Ishai et al., 2000; Wang et al., 1998, 

Hasson, et al., 2001). 

However, the images used in this study represent only one kind of face stimulus 

(straight on view and showing details of the face structure). Faces can be viewed from 

any angle and may be represented diagrammatically e.g. the Rubin vase-face illusion. 

This visual illusion can be perceived either as a vase or two faces which means that the 

same stimulus activates two different cortical perception centers. Two studies (Andrews 

et al., 2002; Hasson et al., 2001) showed that, when subjects perceived a face, there was 

higher activation in face-selective regions but, when the stimulus was perceived as a 

vase, there was more activity in the object-selective regions. This, again, gives more 

evidence for face-specific regions in the cortex. It has been found that the fusiform gyrus 

and the superior temporal sulcus (Allison et al., 1999; Grill-Spector et al., 2004; Haxby et 

al., 1994; Kanwisher et al., 1997; Loffler et al., 2005; Puce et al., 1995; Sergent et al., 
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1992;) selectively respond to face images and that the superior temporal sulcus is more 

concerned with the details of facial structure (Haxby et al., 2000; Allison et al., 2000; 

Andrews et al., 2002). Therefore, it would be expected that single face images, such as 

used in this study, would stimulate the temporal sulcus face-selective region. 

Indoor images 

Indoor images show similar amplitudes in horizontal and vertical orientations. 

This is different from the other groups of images which showed bigger amplitudes in the 

vertical orientation (horizontal contours) than the horizontal. Therefore, indoors images 

have relatively larger amplitude in the horizontal orientation (vertical contours) compared 

to other images. This could be caused by the human-made vertical lines indoors such as 

the table legs and edges of walls.   

Natural scenes 

 Natural scenes have moderate amplitudes but their main difference from other 

images is in their shallower slopes for all orientations (Table 5-1 and 2B). This suggests 

that there is relatively more high spatial frequency structure in all three orientations 

compared to other image types.  The irregular content of natural scenes such as mountain 

edges, leaves, or clouds could explain this finding.  Natural scenes also stand out with 

significantly shallower average slopes compared to single faces.  

Future work 

While the present analysis of the spatial frequency spectrum and slope reveals 

some capability to distinguish among image categories, it may be possible to extract more 

effective discriminating features from a more detailed analysis of the spatial frequency 
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spectrum.  Specifically, a study of the amplitudes in the four orientations at different 

centre spatial frequency and bandwidths would comprise a multidimensional feature 

space within which statistical pattern recognition techniques could be used. Specifically 

we would determine the maximally discriminating sub-spaces for given image 

categories.  The two-dimensional space used in this chapter is in fact a particular feature 

pair that could be extracted directly from the filter bank outputs. 

 

5.5 Conclusions 

This study demonstrated that the amplitude spectra and slope in three orientations 

can be used to describe the physical characteristics of images and to distinguish among 

different groups of images. We have shown that most everyday scenes have more spatial 

frequency power in the vertical and horizontal than oblique orientations. Single face 

images are the most unique images of those tested, having a lower amplitude spectrum. 

This may correspond to the fact that there is evidence that they are dealt with uniquely in 

the visual cortex. Natural scenes are special in having much shallower slopes indicating 

more high spatial frequency structures, and are most different in this respect compared to 

face images. Indoor images show less anisotropy compared to other images.    
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Chapter 6 

 

The Perceived Visibility Enhancement in Maculopathy by Image 

Enhancement Techniques 

6.1 Introduction 

People with maculopathy lose central vision. Visual functions, such as visual 

acuity, visual field, contrast sensitivity (CS) and supra-threshold contrast as well (see 

chapter 4), are decreased due to the loss of cone and rod cells. Viewing images and 

reading are two tasks that present difficulties for people with maculopathy. Many 

different treatments have been investigated, such as laser and radiation therapies, retinal 

transplants, gene therapies, ozone and hyperbaric therapies, antioxidant and zinc 

therapies (Eger, 1998; Seddon et al., 1994). There has been no great breakthrough in the 

development of treatment to date (Elliot, et al., 2001). Most treatments slow the 

progression of the disease process to a greater or lesser degree, but none can completely 

restore vision that has been lost. Therefore, many investigations have focused on visual 

rehabilitation and a large number of optical and non-optical devices or instruments have 

been developed to compensate for the visual function loss. Much of this research has 

aimed at improving text for reading. However, the increasing use of television and 

personal computers has made digital image enhancement a new and potentially useful 

area for vision researchers. In the last two decades, digital image processing was 

introduced to enhance the visibility of digital images for the visually impaired.  
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The luminance information of a digital image can be decomposed to different 

spatial frequencies with a variety of contrast levels. People with maculopathy lose 

sensitivity to spatial frequencies not only at contrast threshold but also at supra-threshold 

levels (see chapter 4). In the early stages of maculopathy, high spatial frequency 

sensitivity loss occurs first. Later the whole range of spatial frequencies is influenced but 

the high spatial frequency loss is more severe. Therefore, increasing amplitude of the lost 

spatial frequencies has been the basic strategy for image enhancement for visually 

impaired viewers. However, when this approach was based on threshold losses it was not 

found to be very effective by Leat et al. (2005) and no filters were effective in ARMD. 

Therefore, the current study will investigate a wider range of filters, including filters 

based on supra-threshold contrast matching, with the aim of finding filters that may be 

effective in maculopathy.  

The former chapter (chapter 5) on image analysis and classification has shown 

that single full faces have different spatial frequency information compared to other 

categories of images such as indoor scenes and natural scenes. We would deduce that the 

filters that result in visibility improvement for single faces and other images might be 

different.  

As described in Chapter 1, quite a few image enhancement techniques may be 

effective at increasing the perceived visibility for the visually impaired. The present study 

will aim to investigate the beneficial filters for three groups of maculopathy—atrophic 

ARMD, exudative ARMD, and JMD. Also, due to the uniqueness of single faces, the test 

images are separate into two groups—single faces and general scenes. This study aims to 

further the investigation based on Leat et al. (2005)’s work. Some filters not found useful 
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in that study (e.g. the adaptive thresholding filter) will not be included for further study. 

The effective filters found in that study will be retested with a wider range of parameters. 

The cutom-devised filters will be based on supra-threshold contrast loss as well as CS 

loss. But the gain will be applied in a different way (not only the full gain but also part of 

the full gain will be applied).  

6.2 Methods and Materials 

6.2.1 Subjects 

Thirty five subjects aged 20- 92 years with maculopathy were recruited from the 

Optometry Clinic at the School of Optometry, University of Waterloo and the Canadian 

National Institute for the Blind (CNIB). Three groups of subjects with maculopathy (13 

atrophic ARMD, 14 exudative ARMD, and 8 JMD) participated (shown in Table 6-1). 

All subjects gave written informed consent for participating in the study, which was 

approved by the Office of Research Ethics at the University of Waterloo. Subjects’ 

refractive errors were checked by subjective refraction. If there was no improvement in 

visual acuity, then they wore their spectacles plus a working distance correction. If there 

was a significant change, the refractive correction, plus working distance lens, was worn 

in a trial frame. Monocular visual acuity of the preferred eye was measured with the 

University of Waterloo log MAR chart (Strong &Woo, 1985). A +1.75 D spherical lens 

was added for the 57cm viewing distance.  
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Table 6-1. The subjects’ diagnosis, ages, and visual acuities. ARMD = age-related 

macular degeneration; JMD = juvenile macular dystrophy. 

Subject Diagnosis Age VA (logMAR) 
1 Atrophic ARMD 75 1.10 
2 Atrophic ARMD 79 1.00 
3 Atrophic ARMD 84 0.70 
4 Atrophic ARMD 82 1.43 
5 Atrophic ARMD 83 0.70 
6 Atrophic ARMD 77 1.10 
7 Atrophic ARMD 78 1.20 
8 Atrophic ARMD 81 0.70 
9 Atrophic ARMD 82 0.51 
10 Atrophic ARMD 89 0.51 
11 Atrophic ARMD 79 0.51 
12 Atrophic ARMD 83 1.11 
13 Atrophic ARMD 92 0.92 
14 Exudative  ARMD 79 1.03 
15 Exudative  ARMD 91 1.03 
16 Exudative  ARMD 75 1.30 
17 Exudative  ARMD 83 1.15 
18 Exudative  ARMD 85 1.33 
19 Exudative  ARMD 59 0.70 
20 Exudative  ARMD 86 1.12 
21 Exudative  ARMD 86 1.12 
22 Exudative  ARMD 86 1.12 
23 Exudative  ARMD 89 0.60 
24 Exudative  ARMD 81 1.12 
25 Exudative  ARMD 77 1.03 
26 Exudative  ARMD 77 0.90 
27 Exudative  ARMD 85 1.33 
28 JMD 20 1.51 
29 JMD 47 1.20 
30 JMD 64 0.92 
31 JMD 47 0.90 
32 JMD 47 1.12 
33 JMD 48 0.80 
34 JMD 40 1.15 
35 JMD 64 0.90 
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6.2.2 Images 

Two smaller 24 bit color images of half the width of the monitor (488 x 616 

pixels or 14.05 x 17.73 cm) were selected.  One was a single full face, and the other was 

a general scene. Twenty eight larger images of the full size of the monitor (990 x 1250 

pixel or 28.5 x 35.98 cm) were also selected from our image pool (14 single full face 

images and 14 general scene images). Two half-sized images and one full-sized image 

are shown in Figure 6-1. The two half-sized images were used to determine the preferred 

parameters of each filter for each subject. The full-sized images were used to rate the 

whole range of filters. All of the images were low pass filtered at a maximum spatial 

frequency of 15 cpd. This was to optimize the images for the future study of people with 

visual impairment, so as to avoid unnecessarily enhancing high frequencies beyond the 

subject’s acuity limit which would further compromise the dynamic range of an enhanced 

image (Peli, 1992; Leat et al, 2005).  Fifteen cpd (equivalent to 6/12 Snellen acuity) is the 

maximum spatial frequency that would be perceived by this population based on the 

definition of low vision being visual acuity worse than 6/12 in visual acuity (Leat et al., 

1999). The average luminance of the screen was 60 cd/m2 measured with a Minolta 

Chromatic Meter CS-100. The display had a linear relationship between pixel value and 

luminance. This was measured by creating a grey square image of one pixel value, the 

pixel values were all varied between 0 and 255 and the luminance was measured with the 

same luminance meter. 
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Figure 6-1. Two half-sized images and one full-sized image showing their relative sizes 

6.2.3 Apparatus and Filters 

A high resolution 21-inch Sony Trinitron monitor was used to display the images 

which were processed with Matlab-based software, the Image Processing Tool.  It was 

programmed by Gordon Deng, a software programmer from the System Design 

Engineering Department of the University of Waterloo. This software can provide a 

variety of image processing/enhancement functions to process/enhance an image. The 

interface of this software is shown in Figure 6-2. The Image Processing Tool software is 

similar to the ImageLab software used by Kennedy, Leat, & Jernigan (1998) and Leat et 

al. (2005) but run through Matlab. Two modifications were made. First, the kernel-based 

filters could be applied with various “strengths”. Second, the spatial frequency filters 

could be applied with a polynomial envelope and with a two-octave bandwidth as well as 

a one-octave bandwidth.  
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Figure 6-2. The interface of the Image Processing tool. The interface can be divided into 

six areas: original image display area (top left), execution area (top middle), enhanced 

image display area (top right), enhancement option area (bottom left), enhancement 

parameter area (bottom middle), and image saving area (bottom right). 

 

Three main groups of filters were tested: generic filters, custom-devised filters, 

and unenhancing filters. The generic filters include the spatial domain filters, Peli’s 

adaptive enhancement filter, contrast enhancement filter and DoG FFT filter.  The 

custom-devised filters mainly are band-pass filters based on individual spatial frequency 

perception loss. The band-pass filter based on equi-emphasis of spatial frequencies was 

an exception because it is not based on individual spatial frequency loss. However, it 

used the same parameters as the other custom-devised filters so it was grouped as a 



 

 100

custom-devised filter. Table 6-2 shows the two groups of filters applied in the current 

study. The two unenhancing filters were used to degrade the image to prevent the subjects 

from having an expectation set that all filtered images should be more visible than the un-

filtered ones. For each filter, there was a variety of parameters which could be changed 

and these are shown in Table 6-2. Examples of these filters are shown in Appendix C.  

6.2.3.1 Generic filters 

The description and codes of the generic filters are shown in Appendix D, and the 

details of the different parameters that were used are shown in Table 6-2. 
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Table 6-2. Filter parameters 

Filter Parameter 

Generic Filters 

High-pass/unsharp masking Mask size (3x3, 5x5, 7x7), mode (high-pass, unsharp), & scale (1, 2, 4, 8) 

Sobel edge enhancement (horizontal & 

vertical) 

Mode (RGB, HSB), scale (1, 2, 4, 8)  

Contrast enhancement Mode (RGB/HSB), power (20, 40, 80, 160) 

DoG convolution Mask size (7x7, 9x9, 11x11), scale (1, 2, 4, 8) 

DoG FFT Central frequency (0.5, 1, 2, 4, 8 cpd), maximum gain (2, 4, 8, 16), cutoff frequency (15 cpd) 

Peli’s adaptive enhancement Kernel (9, 15, 21, 25), gain (2, 4, 8, 16), Slope (0.9), start value (13) 

Equi-emphasis of spatial frequencies * Mode (Gabor or polynomial), gain (1.5, 2, 4, 8), octave span (one, two)  

Custom-devised Filters: Band-pass  based on 

Contrast matching at 3.6% Mode (Gabor or polynomial), gain (0.5, 1, 1.5, 2, 4), octave span (one, two) 

Contrast matching at 27.9% Mode (Gabor or polynomial), gain (0.5, 1, 1.5, 2, 4), octave span (one, two) 

CS loss Mode (Gabor or polynomial), gain (1, 1/2, 1/4, 1/8, 1/16, 1/32), octave span (one, two)  

Peak-emphasis of spatial frequencies Mode (Gabor or polynomial), gain (1.5, 2, 4, 8), octave span (one, two)  

Unenhancing Filters 

Low Pass Cut-off frequency = 1 cpd  

DoG FFT Gain = 0.3 

*Since the filter based on equi-emphasis of spatial frequencies is also implemented with an FFT and it has similar parameters to the 

custom-devised filters, it is discussed together with the custom-devised filters rather than generic filters.
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6.2.3.2 Custom-devised Filters 

Band-pass filters were applied with FFT filtering. The Gabor filters were one or 

two octaves wide at half-height. The polynomial filters summed the gains of each spatial 

frequency span at one or two octaves wide. The band-pass filters based on the contrast 

matching at 3.6% and 27.9% were based on the contrast matching at these two contrast 

levels (an example for a particular subject is shown in Table 6-3-1). The ratios of the 

contrast matching of the subject with maculopathy to the control at each spatial frequency 

were calculated (M/C). The basic gain (M/C ratio) was multiplied by various gains (in an 

appropriate log scale) to obtain different strengths of the filter. The gains used in this case 

were 1, 2, 4, and 8. If the ratio was less than 1, then a gain of 1 was used. Usually with 

the gain of 8, the processed image would appear quite exaggerated. Therefore, the gain of 

8 was chosen as the biggest gain. The rule was that the smallest gain could go down until 

all the inputs of all spatial frequencies were below 1. For the example shown in the Table 

6-3-1, with the gain of 1, all the inputs of all spatial frequencies were close to 1. If the 

gain was taken lower, all the individual gains would be below 1, in which case the 

processing would not give any enhancement. Therefore, a gain of 1 was used as the 

smallest gain for this filter for this subject. 
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Table 6-3-1. An example of the band-pass filter based on the contrast matching at 27.9%. 

CM represents contrast matching. For this subject, the contrast matching at 27.9% was 

not available at 4.29 cpd and 8.53 cpd. The ratio (M/C) represents the ratio of the contrast 

matching of the test subject to the control. The black represents the spatial frequencies at 

which the subject could not make contrast matching at 27.9%. The grey shows the 

frequencies at which a gain was input for the 2-octave filters. 

 
 

With the gain of 4 from the example in Table 6-3-1, the band-pass filter obtained 

is displayed in Figure 6-3. The left plot shows the filter using a Gabor filter with 1-

octave. The right shows the polynomial with 1-octave. Gabor function was modulated by 

a Gaussian envelope for each specified spatial frequency span. The polynomial function 

was modulated by an envelope with a boundary line connecting the peaks of the gains for 

all spatial frequencies. For the 1-octave mode, gain was applied at all the specified spatial 

frequencies (every octave). For the 2-octave mode, gain was applied at every other 

specified spatial frequencies (i.e. every other octave). For the example shown in Table 6-

3-1, the available specified spatial frequencies are 0.26, 0.58, 1.11, and 2.17 cpd. For the 

Spatial 
frequency 

CM @ 27.9% 
-Control (%) 

CM @ 27.9% 
- Test (%) 

1x Ratio 
(M/C) 

2х Ratio 
(M/C) 

4х Ratio 
(M/C) 

8х Ratio 
(M/C) 

0.26 cpd 35.71 31.47 0.88 1.76 3.52 7.04 

0.58 cpd 27.81 28.62 1.03 2.06 4.12 8.24 

1.11 cpd 23.92 26.13 1.09 2.18 4.37 8.74 

2.17 cpd 22.53 25.49 1.13 2.26 4.52 9.04 

4.29 cpd 30.76      

8.53 cpd 32.69      
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1-octave mode, all these gains were inputted for these frequencies. For the 2-ocatave 

mode the gains at 0.26 and 1.11 cpd (highlighted in grey) were inputted. 

 

Figure 6-3. Example of frequency domain plots of the band-pass filter based on CM of 

27.9% with a gain of 4 from Table 6-3-1 showing two versions (Gabor filter with 1-

octave, & polynomial with1-octave).  The x axis shows the spatial frequency in cycles 

per image (cpi) and the y axis shows the magnitude response of the filter. 1 cpd = 28 cpi. 

 

 An example of the band-pass filter based on CS loss is shown in Table 6-3-2 and 

the filter profiles are shown in Figure 6-4. The ratio of the contrast threshold of the 

maculopathy subject to the control was calculated. This was the full gain of the filter. 

Usually with a full gain, the processed image would be quite exaggerated. The study of 

Leat et al. (2005) showed that the full gain was not preferred and could often not be 

implemented. Therefore, reduced gains in log steps were used such as 1/2, 1/4, 1/8, 1/16 

etc. The rule was that gain could do down to the point before all the inputs for all the 

spatial frequencies were below 1. In the example shown in Table 6-3-2, the smallest 

Band-pass filter – 27.9% - Gabor – 1 oct           Band-pass filter – 27.9% - Polynomial – 1 oct 

Frequency (cpi) Frequency (cpi) 
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reduced gain would be 1/32. At each spatial frequency where the ratio was < 1 a gain of 1 

was used. Thus for the 1/32 filter, gains of 1, 1, 1, 1, 1.40 would be used for spatial 

frequencies of 0.26, 0.58, 1.11, 2.17, and 4.29 cpd respectively. 

Table 6-3-2. An example of the band-pass filter based on the contrast sensitivity loss. 

CTh represents contrast threshold. The ratio (M/C) represents the ratio of the contrast 

threshold of the test subject to the control. The black represents the un-available contrast 

threshold at 8.53 cpd for this subject. 

Spatial 
frequency 

CTh – 
Control (%) 

CTh –
Test (%) 

1x Ratio 
(M/C) 

1/2 х 
Ratio 

1/4 х 
Ratio 

1/8 х 
Ratio 

1/16 х 
Ratio 

1/32 х 
Ratio 

0.26 cpd 1.06 3.09 2.92 1.46 0.73 0.36 0.18 0.09 

0.58 cpd 0.62 2.32 3.76 1.88 0.94 0.47 0.23 0.12 

1.11 cpd 0.41 3.39 8.30 4.15 2.08 1.04 0.52 0.26 

2.17 cpd 0.50 4.13 8.30 4.15 2.07 1.04 0.52 0.26 

4.29 cpd 0.61 27.51 44.83 22.42 11.21 5.60 2.80 1.40 

8.53 cpd 1.56        
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Figure 6-4. Examples of frequency domain plots of the band-pass filter based on CS loss 

with a gain of 1/4 ratio from Table 6-3-2 showing two versions (Gabor filter with 1-

octave, and polynomial with 1-octave).  The x axis shows the spatial frequency (cpi) and 

the y axis shows the magnitude response of the filter. 1 cpd = 28 cpi.

 

An example of the band-pass filter based on the peak-emphasis of spatial 

frequencies is shown in Table 6-3-3 and the filter profiles are shown in Figure 6-5. With 

this filter, the most sensitive spatial frequency (peak of the CS curve) was the most 

exaggerated and the least sensitive spatial frequency was the least exaggerated. For the 

example shown in Table 6-3-3, the most sensitive spatial frequency was 0.58 cpd. The 

ratios of contrast threshold of 0.58 to other spatial frequencies were calculated. The 

multiplied factors of 1.5, 2, 4 and 8 were the gains used for this filter. Any calculated 

input of below 1 would be replaced with 1. 

Frequency (cpi) Frequency (cpi)

    Band-pass filter – CS - Gabor – 1 oct           Band-pass filter – CS - Polynomial – 1 oct 
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Table 6-3-3. An example of the band-pass filter based on peak-emphasis of the spatial 

frequencies. CTh = contrast threshold, s.f. = spatial frequency. The ratio of CTh (0.58 

cpd/other s.f.) represents the ratio of the contrast threshold of the most sensitive spatial 

frequency to another spatial frequency. The black represents the un-available contrast 

threshold at 8.53 cpd for this subject. 

Spatial 
frequency 

CTh –
Test (%) 

Ratio of CTh (0.58 
cpd/ other s.f.) 

1.5 х 
Ratio 

2 х 
Ratio 

4 х 
Ratio 

8 х 
Ratio  

0.26 cpd 3.09 2.32/3.09 = 0.75 1.13 1.51 3.01 6.02 

0.58 cpd 2.32 2.32/2.32 = 1 1.5 2 4 8 

1.11 cpd 3.39 2.32/3.39 = 0.68 1.03 1.37 2.74 5.48 

2.17 cpd 4.13 2.32/4.13 = 0.56 0.84 1.12 2.25 4.49 

4.29 cpd 27.51 2.32/27.51 = 0.08 0.13 0.17 0.34 0.67 

8.53 cpd       
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Figure 6-5. Examples of frequency domain plots of the band-pass filter based on peak-

emphasis of spatial frequencies with a gain of 4 from Table 6-3-3showing two versions 

(Gabor with 1-octave and polynomial with1-octave).  The x axis shows the spatial 

frequency (cpi) and the y axis shows the magnitude response of the filter. 1cpd = 28 cpi. 

 

An example of the band-pass filter based on the equi-emphasis of spatial 

frequencies is shown in Table 6-3-4 and the filter displays are shown in Figure 6-6. This 

filter does not need contrast sensitivity or contrast matching information. All the spatial 

frequencies tested were equally exaggerated with gains of 1.5, 2, 4, and 8.  

 

 

 

 

Frequency (cpi) Frequency (cpi) 

Band-pass – Peak emphasis - Gabor – 1 oct             Band-pass – Peak emphasis  - Polynomial – 1 oct 
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Table 6-3-4. An example of the band-pass filter based on equi-emphasis of the spatial 

frequencies. All the spatial frequencies were exaggerated by the same gains (1.5 х, 2 х, 4 

х, and 8 х).  

Spatial frequency 1.5 х 2 х 4 х 8 х 

0.26 cpd 1.5 2 4 8 

0.58 cpd 1.5 2 4 8 

1.11 cpd 1.5 2 4 8 

2.17 cpd 1.5 2 4 8 

4.29 cpd 1.5 2 4 8 

8.53 cpd 1.5 2 4 8 
 

 
Figure 6-6. Examples of frequency domain plots of the band-pass filter based on equi-

emphasis of spatial frequencies with a gain of 4 and two versions (Gabor and 1-octave, 

polynomial and 1 octave).  The x axis shows the spatial frequency (cpi) and the y axis 

shows the magnitude response of the filter.  

 

Frequency (cpi) Frequency (cpi) 

Band-pass – Equi emphasis - Gabor – 1 oct             Band-pass – Equi emphasis  - Polynomial – 1 oct 
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6.2.4 Procedure 

Each subject made three or four visits during the study.  

6.2.4.1 First Visit 

 Preliminary tests were done for each subject with the preferred eye including 

visual acuity (VA), intraocular pressure, and fundus examination with ophthalmoscope. 

Contrast threshold and supra-threshold contrast matching were measured (see Chapter 4) 

to obtain the gains to be used for the custom-devised band pass filters. 

6.2.4.2 Second Visit 

Within-Filter Ranking – First phase 

The purpose of this phase was to determine the optimal power, scale or gain of 

each filter. Each of the two half-sized images was processed with each filter using 

different powers. Four of the processed half-sized images (in a randomized placement) 

were displayed together as shown in Figure 6-7. The subject, sitting at 57cm, was 

permitted to look freely among the four images. If there were four or fewer versions of a 

filter, the subject was required to indicate the one that provided the best visibility. If there 

were more than four versions of a filter, the subject was first required to indicate the 

worst one, i.e. which provided the poorest visibility. The worst version was then replaced 

with a fifth version with another scale, and the subject would be required to choose the 

worst one until there were four versions of images left. Then, the subject was required to 

determine the best version i.e. which provided the best visibility. Taking the Sobel edge 

enhancement filter as an example, the ranking was between scale of 1, 2, 4 and 8 for 

RGB and HSB modes, i.e. the subject compared among four versions of the filter. Using 
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this process, the best (most preferred) filter version was selected, i.e. the optimum power 

for each filter. 

Sobel_scale 1 Sobel_scale 2

Sobel_scale 4 Sobel_scale 8  

Figure 6-7. Four versions of the half-sized general scene image processed with different 

scales of the 3x3 Sobel horizontal and vertical edge enhancement filter. The four versions 

were located randomly on the screen. 

 

Within-Filter Ranking – Second phase 

Since the optimal scale/power/gain was selected from the first phase ranking, the 

purpose of the second phase was to determine the optimal kernel size or mode for each 

filter or group of similar filters using the optimal scale/power/gain of each filter version. 

The kernels and modes of each filter are shown in Table 6-2. Similar to the first phase of 

within-filter ranking, the filtered images with different kernels or modes of each filter 

were shown in a random placement on the screen. The subjects were required to rank the 

different versions and determined the kernel or mode which provided the best perceived 
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visibility. Taking the Sobel edge enhancement filter as an example again, the first phase 

ranking was between scale of 1, 2, 4 and 8 for each of the RGB and HSB modes, and the 

second phase ranking was between RGB mode and HSB mode using their corresponding 

optimal scales. After these two phases of within-filter rankings, each filter had been 

chosen with the best scale and the best mode so that comparison between filters in the 

final phase would be with the optimum version of each filter for each subject. 

6.2.4.3 Third Visit — between-filter ratings 

At the third visit, subjects evaluated the whole range of filters each in its optimal 

version. Fourteen faces and 14 general scene images were assigned to 14 filters for 

processing using a Latin Square (see Table 6-4) so that each image would be processed 

by one filter once. The 14 filters (11 test filters, 2 unenhancing filters and 1 control) were 

labeled from F1 to F14 shown in the top row of Table 6-4, and the 14 images of either 

single face or general scene were labeled from I1 to I14 shown in the left column.  For 

the first subject of each maculopathy group, I1 was assigned to F1, I2 to F2, and so on to 

I14 was assigned to F14. For the second subject of each group, I1 was assigned to F2 and 

I14 to F1. This pattern was repeated for each subject until each image was assigned to a 

filter without any repetition.  

To measure the display order effect, two blocks of ratings were undertaken. In the 

first block, the original picture was shown first, followed by the processed one. The 

subjects were told that the processed image could be better, the same, or worse than the 

original image in visibility. Examples were demonstrated for training before the real test. 

The subjects were asked to give a number in a scale of 0 to 200 to represent perceived 

improvement or decrement in visibility. The value of 100 represented the same in 



 

 113

perceived visibility as the original image. If processed image was more visible, a value 

from 101 and 200 was assigned; if less, then a value from 0 to 99 was assigned. In the 

second block, the processed image was shown ahead of the original, yet the subject was 

not informed of this display order. The subjects were first asked to determine which one 

was more visible, the first or the second. Then they were to assume that the worse one 

was 100 and rated the better one with a value either more or less than 100. If they did not 

see any difference between the two, they were allowed to say no difference and rate with 

100. The two unenhancing filters were used to prevent the subjects from having an 

expectation set that all filtered images should be more visible than the un-filtered ones. 

To measure the repeatability, the control unfiltered images were displayed in each block. 

To show the rating results more clearly, 100 was subtracted from each rating. 

Thus, if the perceived visibility with an enhanced image was better than the original, the 

displayed ratings would be higher than 0; if worse, then below 0.    
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Table 6-4. Latin Square. F1 to F14 represent the filters. I1 to I14 represent the images. S1 to 

S14 represent the subjects. 

F14F13F12F11F10F9F8F7F6F5F4F3F2F1

S1S14S13S12S11S10S9S8S7S6S5S4S3S2I14

S2S1S14S13S12S11S10S9S8S7S6S5S4S3I13

S3S2S1S14S13S12S11S10S9S8S7S6S5S4I12

S4S3S2S1S14S13S12S11S10S9S8S7S6S5I11

S5S4S3S2S1S14S13S12S11S10S9S8S7S6I10

S6S5S4S3S2S1S14S13S12S11S10S9S8S7I9

S7S6S5S4S3S2S1S14S13S12S11S10S9S8I8

S8S7S6S5S4S3S2S1S14S13S12S11S10S9I7

S9S8S7S6S5S4S3S2S1S14S13S12S11S10I6

S10S9S8S7S6S5S4S3S2S1S14S13S12S11I5

S11S10S9S8S7S6S5S4S3S2S1S14S13S12I4

S12S11S10S9S8S7S6S5S4S3S2S1S14S13I3

S13S12S11S10S9S8S7S6S5S4S3S2S1S14I2

S14S13S12S11S10S9S8S7S6S5S4S3S2S1I1

 

6.2.5 Statistical Analysis 

For the two phases of within-filter rankings, there were too many groups and 

parameters for meaningful statistical analysis. Therefore a statistical analysis was 

undertaken only for phase 3, the between-filter ratings. The coefficient of repeatability 

(1.96 x SD of block one rating minus block two rating) was calculated to show the 

repeatability. Since the filters were all rated twice in different orders, a paired t-test was 

applied to test order effect for all filters. If no order effect was found, the ratings of the 

two blocks were averaged and a one sample t-test was applied to show if the filter was 

rated significantly different from zero. 
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6.3 Results 

6.3.1 Within-Filter Rankings – First phase 

The number of subjects who preferred each power/scale/gain value is shown in 

Tables 6-5-A to 6-5-K.  

High-pass/unsharp masking filter (Table 6-5-A)  

For the general scene, the JMD group preferred a power of 4 or 8 less often than 

the two ARMD groups. For the face images, the exudative ARMD group preferred a 

power of 8 more often than the other two groups. Compared to the general scene, the face 

image seems to be preferred with higher powers. 

Table 6-5-A. First phase rankings of the high-pass/unsharp masking filter. HP = high-

pass filter. P1 to P8 represent power of 1 to power of 8. The powers were set in log 

scales. The numbers of subjects who preferred the scale of each version of the filter are 

shown. 

Atrophic ARMD Exudative ARMD JMD 
Image Version & 

Kernel P1 P2 P4 P8 P1 P2 P4 P8 P1 P2 P4 P8 
Unsharp  3*3 4 4 5 0 4 2 6 2 5 2 0 1 
HP 3*3 2 3 6 2 4 1 3 6 3 3 1 1 
HP5*5 2 7 3 1 9 0 4 1 6 1 1 0 

General 
Scene 

HP7*7 4 6 2 1 6 0 6 2 5 3 0 0 
Unsharp 3*3 4 6 1 2 4 1 5 4 0 3 1 4 
HP 3*3 1 5 3 4 4 0 5 5 1 3 0 4 
HP5*5 1 8 2 2 4 1 5 4 1 3 2 2 

Face 

HP7*7 3 7 3 0 3 1 7 3 2 4 1 1 



 

 116

 

3x3 horizontal and vertical Sobel edge enhancement filter (Table 6-5-B)  

For the general scene, the atrophic ARMD group preferred scales of 1 and 2. The 

exudative ARMD group tended to prefer higher scales more often. Most subjects with 

JMD preferred a scale of 1. For the face, both the atrophic ARMD and JMD preferred 

lower scales of 1 and 2, while the exudative ARMD tended to prefer higher scale of 4.  

Table 6-5-B. First phase rankings of the 3x3 Sobel horizontal and vertical edge 

enhancement filter. S1 to S8 represent scale 1 to scale 8. The subject numbers who 

preferred the scale of each version of the filter are shown. 

Atrophic ARMD Exudative ARMD JMD 
Image Mode 

S1 S2 S4 S8 S1 S2 S4 S8 S1 S2 S4 S8 
HSB 5 7 1 0 8 3 1 2 6 1 0 1 General 

Scene RGB 7 5 1 0 5 5 4 0 7 1 0 0 
HSB 7 4 2 0 3 4 5 2 2 4 1 1 Face 
RGB 9 4 0 0 5 3 5 1 3 3 0 2 

 

Contrast Enhancement filter (Table 6-5-C)  

For the general scene, the preferences of both the atrophic ARMD and JMD 

groups were spread among the powers, but the subjects with exudative ARMD preferred 

a higher λ value of 80 or 160. For the face, a λ value of 40 was most often preferred by the 

atrophic ARMD and JMD groups while a λ value of 160 was preferred by the subjects 

with exudative ARMD.   
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Table 6-5-C. First phase rankings of the contrast enhancement filter. λ 20 to λ 160 

represent the percentage of the enhanced image which was added back to the original 

image. The subject numbers who preferred the λ value of each version of the filter are 

shown. 

Atrophic ARMD Exudative ARMD JMD 
Image Mode 

λ20 λ 40 λ 80 λ 160 λ 20 λ 40 λ 80 λ 160 λ 20 
Λ 
40 λ 80 Λ 160 

HSB 4 3 5 1 1 1 7 5 2 3 2 1 General 
Scene RGB 1 3 3 6 1 2 6 5 1 2 3 2 

HSB 5 6 2 0 4 1 5 4 1 4 0 3 Face 
RGB 3 8 2 0 3 1 3 7 2 3 1 2 

 

DoG Convolution filter (Table 6-5-D)  

For the general scene, the JMD group preferred a scale of 1 or 2. The two ARMD 

groups showed more spread in their preference for scales. For the face, the atrophic 

ARMD group preferred a scale of 1 or 2 while the exudative ARMD group showed more 

spread in preference and the JMD group preferred a scale of 2 most frequently.   

 

Table 6-5-D. First phase rankings of the DoG Convolution filter. S1 to S8 represent the 

power of the filter. The subject numbers who preferred each scale of each version of the 

filter are shown. 

Atrophic ARMD Exudative ARMD JMD 
Image Kernel 

S1 S2 S4 S8 S1 S2 S4 S8 S1 S2 S4 S8 
7x7 6 3 3 1 5 3 3 3 4 3 1 0 
9x9 5 4 2 2 5 4 4 1 4 3 0 1 

General 
Scene 

11x11 5 4 1 3 5 4 1 4 3 4 0 1 
7x7 6 3 3 1 4 2 4 4 1 6 0 1 
9x9 5 6 0 2 3 3 6 2 1 6 0 1 Face 
11x11 4 7 0 2 3 4 5 2 1 7 0 0 
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DoG FFT filter (Table 6-5-E)   

As central spatial frequency increases, the preferred gain tends to be higher. For 

the general scene, both ARMD groups showed more spread in prefered gains; the JMD 

group preferred the gain of 2 or 4 most frequently. For the face, the atrophic ARMD 

group preferred gains of 2 or 4 for central spatial frequencies of 0.5 to 2cpd. The 

exudative ARMD group showed more spread in their preferences. The JMD preferred 

gain 2 for central spatial frequencies of 0.5 to 1cpd or gain 4 for 2 to 8 cpd.  

 

Table 6-5-E. First phase rankings of the DoG FFT filter. S.F. = spatial frequency. G2 to 

G16 represent gain of 2 to gain of 16. 

Atrophic ARMD Exudative ARMD JMD 
Image Central 

S.F. G2 G4 G8 G16 G2 G4 G8 G16 G2 G4 G8 G16 
0.5cpd 4 4 2 3 3 4 5 2 4 3 1 0 
1cpd 5 4 3 1 2 6 6 0 5 1 1 1 
2cpd 3 4 4 2 3 5 5 1 3 3 2 0 
4cpd 4 3 5 1 3 3 5 3 2 4 1 1 

General 
Scene 

8cpd 0 4 4 5 3 2 5 4 1 3 2 2 
0.5cpd 9 4 0 0 5 4 4 1 5 2 0 1 
1cpd 8 5 0 0 5 3 4 2 3 3 0 2 
2cpd 9 2 1 1 6 1 4 3 0 6 1 1 
4cpd 5 3 4 1 3 2 5 4 0 5 2 1 

Face 

8cpd 1 4 5 3 2 0 6 6 0 3 3 2 
 

Peli’s Adaptive Enhancement Filter (Table 6-5-F)  

For the general scenes, the atrophic ARMD and JMD groups preferred lower 

gains of 2 or 4. The exudative ARMD group showed more spread in preference. For the 

face, the three maculopathy groups showed a similar trend as they did for the general 
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scene. Relative to the general scene, the two ARMD groups preferred lower gains for the 

face, while the subjects with JMD preferred bigger gains for the face image. 

 

Table 6-5-F. First phase rankings of the Peli’s adaptive enhancement filter. G2 to G16 

represent the gain of 2 to 16. 

Atrophic ARMD Exudative ARMD JMD 
Image Kernel 

G2 G4 G8 G16 G2 G4 G8 G16 G2 G4 G8 G16 
 9 5 5 2 1 5 2 4 3 5 3 0 0
15 5 4 2 2 6 2 3 3 6 1 1 0
21 5 7 0 1 6 3 3 2 6 2 0 0

General 
Scene 

25 6 6 0 1 5 3 3 3 6 1 1 0
9 6 6 1 0 5 4 4 1 1 4 3 0
15 8 5 0 0 5 4 5 0 2 6 0 0
21 9 4 0 0 6 4 4 0 4 3 1 0

Face 

25 10 3 0 0 8 2 4 0 5 3 0 0
 

Band-pass filter based on contrast matching of 3.6% (Table 6-5-G)  

For the general scene, both the atrophic ARMD and JMD groups tended to prefer 

gains of not more than 1.5, while the exudative ARMD group showed more preference 

for higher gains. This is also the trend for the face image. All subjects tended to prefer 

relatively smaller gains more frequently for the face than the general scene. 

Band-pass filter based on the contrast matching at 27.9% (Table 6-5-H)  

For both types of image, the atrophic ARMD and JMD groups preferred gains of 

1 to 2, while the exudative ARMD group tended to prefer bigger gains more often. The 

subjects preferred relatively smaller gains more frequently for the face than the general 

scene. 
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Band-pass filter based on CS loss (Table 6-5-I)  

For the general scene, the subjects with atrophic ARMD preferred the middle 

gains of 1/16 to 1/2. The subjects with exudative ARMD showed a wide spread in 

preference. The subjects with JMD preferred smaller gains of 1/32 to 1/4. For the face 

image, the atrophic ARMD group preferred gains of 1/8 to 1/2. The exudative ARMD 

preferred gains of 1/8 to 1 and the JMD group tended to prefer to gain of 1/8 to 1/4. 

Relative to the preferred gains for the general scene, those for the face tend to be higher. 

Band-pass filter based on peak emphasis of spatial frequency (Table 6-5-J)   

For the general scene, both the atrophic ARMD and JMD groups preferred a 

smaller gain of 1.5 or 2 most frequently, while the exudative ARMD group showed a 

wider spread in preference. For the face, the atrophic ARMD and JMD groups showed 

the same trend as for the general scene while the exudative ARMD showed less 

preference for the biggest gain of 8.  

Band-pass filter based on equi-emphasis of spatial frequencies (Table 6-5-K)   

For the general scene, the atrophic ARMD preferred lower gains of 1.5 to 4, the 

JMD preferred gains of 1.5 and 2 while the exudative ARMD group showed spread in 

preference. For the face, both the atrophic ARMD and JMD groups preferred the smallest 

gains of 1.5 and 2 while the exudative ARMD showed a spread in preference.  

Generally speaking, two trends are demonstrated at this stage of rankings. Firstly, 

the atrophic ARMD and the JMD groups tended to prefer smaller gains more often than 

the exudative ARMD group. Secondly, it seemed that relative to the general scene, the 

face image was preferred more frequently with smaller gains.
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Table 6-5-G. First phase rankings of the band-pass filter based on contrast matching of 3.6%. 

Atrophic ARMD Exudative ARMD JMD 
Image Envelope-

octave span G0.5 G1 G1.5 G2 G4 G0.5 G1 G1.5 G2 G4 G0.5 G1 G1.5 G2 G4 
Gabor 1oct 1 5 4 1 1 2 0 1 1 5 2 3 0 1 1
Gabor 2oct 1 7 2 1 1 1 0 2 1 5 2 3 1 1 0
PolyN 1oct 1 6 2 1 2 2 0 1 0 6 2 3 0 0 2

General 
Scene 

PolyN 2oct 1 6 2 2 1 1 0 2 0 6 3 4 0 0 0
Gabor 1oct 1 7 2 2 0 2 2 1 2 2 3 3 1 0 0
Gabor 2oct 1 7 3 1 0 1 1 2 3 2 4 2 0 0 1
PolyN 1oct 2 6 3 1 0 3 1 1 2 2 4 2 1 0 0

Face 

PolyN 2oct 1 6 4 1 0 1 1 2 3 2 4 2 0 1 0

 

Table6- 5-H. First phase rankings of band-pass filter based on the contrast matching at 27.9%. 

Atrophic ARMD Exudative ARMD JMD 
Image Envelope-

octave span G0.5 G1 G1.5 G2 G4 G0.5 G1 G1.5 G2 G4 G0.5 G1 G1.5 G2 G4 

Gabor 1oct 0 4 5 3 1 0 1 4 2 7 0 3 2 3 0
Gabor 2oct 0 3 6 3 1 0 2 3 4 5 0 5 0 2 1
PolyN 1oct 0 5 6 1 1 0 2 3 4 5 0 2 3 3 0

General 
Scene 

PolyN 2oct 0 6 5 2 0 0 2 2 3 7 0 4 1 3 0
Gabor 1oct 0 6 4 1 2 0 3 2 3 6 1 2 4 0 1
Gabor 2oct 0 7 5 1 0 0 3 3 2 6 0 5 2 1 0
PolyN 1oct 0 8 5 0 0 0 3 4 2 5 1 3 4 0 0

Face 

PolyN 2oct 1 5 7 0 0 0 4 2 2 6 0 3 2 3 0
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Table 6-5-I. First phase rankings of the band-pass filter based on CS loss 

Atrophic ARMD Exudative ARMD JMD 
Image Envelope-

octave  1/32 1/16 1/8 1/4 1/2 1 1/32 1/16 1/8 1/4 1/2 1 1/32 1/16 1/8 1/4 1/2 1 
Gabor 1oct 0 3 2 4 3 1 3 2 3 2 2 2 2 0 3 3 0 0
Gabor 2oct 0 1 4 4 3 1 2 0 4 4 2 2 1 1 0 4 2 0
PolyN 1oct 0 3 5 2 3 0 1 2 5 1 2 3 3 1 1 2 1 0

General 
Scene 

PolyN 2oct 0 2 2 5 3 1 1 3 3 1 3 3 2 2 2 2 0 0
Gabor 1oct 0 1 3 3 5 1 1 0 4 3 3 3 1 2 1 2 2 0
Gabor 2oct 0 1 3 4 5 0 0 0 5 2 5 2 1 1 3 1 2 0
PolyN 1oct 0 0 2 5 5 1 0 2 5 1 4 2 1 1 4 2 0 0

Face 

PolyN 2oct 0 0 3 6 4 0 1 1 4 2 4 2 1 1 1 5 0 0

 

Table 6-5-J. First phase rankings of the band-pass filter based on peak emphasis of spatial frequency 

Atrophic ARMD Exudative ARMD JMD 
Image Envelope-

octave  G1.5 G2 G4 G8 G1.5 G2 G4 G8 G1.5 G2 G4 G8 
Gabor 1oct 8 5 0 0 3 2 6 3 1 5 1 1
Gabor 2oct 8 4 1 0 6 2 3 3 4 2 1 1
PolyN 1oct 5 8 0 0 5 2 5 2 4 3 0 1

General 
Scene 

PolyN 2oct 7 5 1 0 5 3 3 3 4 3 0 1
Gabor 1oct 7 5 1 0 4 4 4 2 4 3 0 1
Gabor 2oct 8 5 0 0 4 4 5 1 4 3 0 1
PolyN 1oct 7 6 0 0 5 3 6 0 4 4 0 0

Face 

PolyN 2oct 9 4 0 0 5 2 7 0 6 2 0 0
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Table 6-5-K. First phase rankings of the band-pass filter based on equi-emphasis of 

spatial frequencies 

Atrophic ARMD Exudative ARMD JMD 
Image 

Envelope-

octave G1.5 G2 G4 G8 G1.5 G2 G4 G8 G1.5 G2 G4 G8 

Gabor 1oct 6 2 5 0 4 0 4 6 3 3 2 0

Gabor 2oct 5 6 2 0 3 1 5 5 5 2 0 1

PolyN 1oct 4 5 4 0 4 0 4 6 5 2 1 0
Scene 

PolyN 2oct 4 6 2 1 4 0 3 7 3 3 1 1

Gabor 1oct 11 2 0 0 6 1 4 3 5 3 0 0

Gabor 2oct 10 3 0 0 4 3 6 1 5 2 1 0

PolyN 1oct 10 3 0 0 5 3 5 1 5 2 1 0
Face 

PolyN 2oct 8 5 0 0 5 3 4 2 5 3 0 0

 

6.3.2 Within-Filter Rankings – Second Phase 

The purpose of the second phase of within-filter rankings was to determine the 

preferred kernel or mode of each filter. The results are shown in Table 6-6. 

High-pass/unsharp masking filter   

For the general scene, the three maculopathy groups seemed to prefer the kernel 

of 5x5 and 7x7 more frequently. For the face, it seemed that the smaller kernels were 

more often preferred by the subjects with atrophic ARMD and JMD.   

DoG convolution filter   

For both image types, the subjects with atrophic ARMD and JMD preferred the 

two smaller kernels (7x7 and 9x9) more frequently while the subjects with exudative 

ARMD preferred the largest kernel (11x11) more frequently. 
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Peli’s adaptive enhancement filter  

For the general scene, the subjects with atrophic ARMD preferred the smallest 

kernel of 9 and the biggest of 25 most often, while the subjects with exudative ARMD 

and JMD preferred the kernel of 21. For the face, all three groups preferred the small 

kernels of 9 and 15 more often. 

Sobel edge enhancement (horizontal and vertical) filter   

There was no obvious difference between the two modes HSB and RGB, by 

observation. 

Contrast enhancement filter   

RGB was the more frequently preferred mode in all situations except for the face 

image for the atrophic ARMD observers.  

DoG FFT filter   

The DoG filter versions with the peak at the two highest central spatial 

frequencies (4 and 8cpd) were not generally preferred by all three groups. The two 

ARMD groups preferred a central frequency of 1 or 2cpd more frequently for the general 

scene but preferred 0.5cpd more often for the face. For JMD, the opposite pattern is seen 

– they preferred enhancement at a lower frequency of 0.5 or 1cpd for the general scene, 

but preferred enhancement at 1or 2cpd for the face image.  
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Table 6-6. Second phase of within-filter rankings between kernels/modes for each 

generic filter 

Atrophic ARMD Exudative  ARMD JMD Filter Kernel 
/mode Scene Face Scene Face Scene Face 
Un-sharp 3x3 2 7 3 4 0 0 
HP 3x3 1 2 1 1 2 4 
HP5x5 7 1 6 7 2 2 

High-Pass & 
Un-sharp 
masking HP7x7 3 3 4 2 4 2 

7x7 5 4 3 3 4 3 
9x9 7 6 4 4 3 4 DoG 

Convolution 11x11 1 3 7 7 1 1 
Kernel 9 5 6 4 6 1 2 
Kernel 15 1 6 2 4 2 4 
Kernel 21 2 1 6 2 4 0 

Peli’s Adaptive 
Enhancement 

Kernel 25 5 0 2 2 1 2 
HSB 7 6 8 9 4 4 Sobel Edge 

Enhancement RGB 6 7 6 5 4 4 
HSB 4 9 4 5 2 2 Contrast 

Enancement RGB 9 4 10 9 6 6 
0.5cpd 1 7 3 9 3 0 
1cpd 4 4 5 0 2 2 
2cpd 4 2 4 3 1 3 
4cpd 2 0 2 0 1 1 

DoG FFT 

8cpd 2 0 0 2 1 2 
Gabor 1oct 3 3 5 4 0 4 
Gabor 2oct 3 3 1 2 2 2 
PolyN 1oct 3 5 3 3 2 0 

Band-
pass_3.6% 

PolyN 2oct 3 1 1 1 3 1 
Gabor 1oct 4 5 8 5 3 3 
Gabor 2oct 4 3 1 4 1 4 
PolyN 1oct 4 4 3 2 2 1 

Band-
pass_27.9% 

PolyN 2oct 1 1 2 3 2 0 
Gabor 1oct 4 5 3 4 1 0 
Gabor 2oct 2 2 5 5 2   5 
PolyN 1oct 0 4 3 2 2 1 

Band-pass based 
on CS loss 

PolyN 2oct 7 2 3 3 3 2 
Gabor 1oct 5 5 4 4 3 3 
Gabor 2oct 2 3 0 1 1 0 
PolyN 1oct 2 3 5 4 3 4 

Band-pass based 
on peak-
emphasis of s.f. PolyN 2oct 4 2 5 5 1 1 

Gabor 1oct 4 4 3 4 3 2 
Gabor 2oct 1 1 3 2 0 3 
PolyN 1oct 4 4 3 2 0 2 

Band-
pass_Equi-
emphasis of s.f. PolyN 2oct 4 4 5 6 5 1 

 



 

 126

Each of the custom-devised filters has four versions (Gabor applied with 1-octave 

band-width, Gabor with 2-octave, polynomial with 1-octave, and polynomial with 2-

octave). To investigate the preference for Gabor versus polynomial and 1 versus 2 octave 

span, the data were combined so as to compare the preference for these parameters: 

Gabor versus polynomial and 1-octave versus 2-octave band-widths,  which are shown in 

Table 6-7-A and B.  

Gabor versus polynomial functions  

Generally speaking, the two ARMD groups preferred the Gabor function more 

frequently than the polynomial function. The JMD group preferred the Gabor function 

more often for the general scene but the polynomial more often for the face. The three 

band-pass filters based on the CM of 3.6%, 27.9% and the CS loss tended to be preferred 

with the Gabor function more often, while the peak-emphasis and the equi-emphasis were 

more frequently preferred when applied with the polynomial. Thus there is no great 

advantage in using the polynomial over the Gabor. 

1-octave versus 2-octave band-width  

For the band-pass filter based on CM of 3.6%, 27.9% and the peak-emphasis, the 

1-octave band-width was preferred more often than the 2-octave band-width. For the 

band-pass filter based on CS loss and the equi-emphasis, it seemed that the 2-octave was 

preferred more often.  The atrophic ARMD group preferred the 1-octave band-width 

more often. Thus there was no overall advantage of 2-octave band-width over 1-octave 

band-width for filtering.  
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Table 6-7-A. Second phase of within-filter rankings for the custom-devised filter applied 

with Gabor or polynomial function. 

Atrophic ARMD Exudative ARMD JMD Band-pass filter 
based on 

Mode 
Scene Face  Scene Face  Scene Face 

Gabor 6 6 6 6 6 2 CM of 3.6% PolyN 6 6 4 4 1 5 
Gabor 8 8 9 9 7 4 CM of 27.9% PolyN 5 5 5 5 1 4 
Gabor 7 6 9 8 5 3 CS loss PolyN 6 7 5 6 3 5 
Gabor 8 7 5 4 3 4 Peak-emphasis of 

spatial frequencies PolyN 5 6 9 10 5 4 
Gabor 5 5 6 6 5 3 Equi-emphasis of 

spatial frequencies PolyN 8 8 8 8 3 5 

 

Table 6-7-B. Second phase of within-filter rankings for the custom-devised filter 

according to 1-octave and 2-octave band-width. 

Atrophic ARMD Exudative ARMD JMD Band-pass filter based 
on 

Mode 
Scene Face  Scene Face  Scene Face 

1-oct 8 6 7 8 4 2 CM of 3.6% 2-oct 4 6 3 2 3 5 
1-oct 9 8 7 11 4 5 CM of 27.9% 2-oct 4 5 7 3 4 3 
1-oct 9 4 6 6 1 3 CS loss 2-oct 4 9 8 8 7 5 
1-oct 8 7 8 9 7 6 Peak-emphasis of 

spatial frequencies 2-oct 5 6 6 5 1 2 
1-oct 8 8 6 6 4 3 Equi-emphasis of 

spatial frequencies 2-oct 5 5 8 8 4 5 
 

6.3.3 Between Filter Ratings  

6.3.3.1 Repeatability 

For the unfiltered control images, a paired t-test showed no difference between the 

two orders of ratings (p > 0.05). This suggests there was no display order effect when 
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subject rated the images.  Therefore the two ratings were averaged for each subject. A 

one sample t-test was applied between the averaged ratings and 100. Again no difference 

was shown (p > 0.05), which suggests that subjects could make accurate ratings. The 

averaged results across subjects are shown in Figure 6-8 A. 

6.3.3.2 Ratings for two un-enhancing filters 

The average ratings across subjects for the two un-enhancing filters are shown in 

Figure 6-8 B & C. A one sample t-test was applied. Except with faces in atrophic ARMD, 

all showed significances indicating a poorer visibility of the filtered images compared to 

the original images (p < 0.05).  

6.3.3.3 Ratings of the generic filters  

The average ratings for the generic filters are shown in Figure 6-9. A one-sample 

t-test was applied to determine which were significantly different from zero. For the 

general scenes, the subjects with atrophic ARMD showed perceived improvement with 

the high-pass/un-sharp mask filter (p < 0.001) and the Peli’s adaptive enhancement filter 

(p = 0.007). The subjects with exudative ARMD showed improvement with Peli’s 

adaptive filter (p = 0.036) and the subjects with JMD with the high-pass/un-sharp 

masking filter (p = 0.009), Sobel edge enhancement filter (p = 0.001), contrast 

enhancement filter (p = 0.014), and Peli’s adaptive enhancement (p = 0.009). Peli’s 

adaptive enhancement filter was shown to be effective for all three categories of 

maculopathy for the general scenes.  

As for the single faces, the subjects with atrophic ARMD showed significantly 

perceived improvement with the contrast enhancement filter (p = 0.017), DoG 

convolution filter (p = 0.005) and Peli’s adaptive enhancement filter (p = 0.029). The 
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subjects with exudative ARMD showed no filter that gave significantly improvement and 

the subjects with JMD showed significantly improved visibility with the contrast 

enhancement filter (p = 0.003).  

Generally speaking, the DoG FFT filter did not give perceived improvement. 

Peli’s adaptive enhancement filter most often gave perceived improvement followed by 

the high-pass/un-sharp masking and contrast enhancement and the Sobel edge 

enhancement filter for general scenes. The contrast enhancement followed by Peli’s 

adaptive and DoG convolution most often gave perceived improvement for faces.  The 

Subjects with JMD gained perceived improvement with more filters compared to the 

atrophic ARMD and subjects with exudative ARMD.  

6.3.3.4 Ratings of the custom-devised filters 

 With custom-devised filters, for the general scenes (shown in Figure 6-10), both 

the atrophic and subjects with exudative ARMD only showed perceived improvement 

with the band-pass filter at a contrast of 27.9% (p = 0.013 and p = 0.008) while the 

subjects with JMD only showed perceived improvement with the equi-emphasis filter (p 

= 0.025) and 3.6% band-pass filter (p = 0.004).  

For the single faces, the subjects with atrophic ARMD showed perceived 

improvement with 3.6% band-pass filter (p = 0.001), the subjects with exudative ARMD 

with no filter, and the subjects with JMD with the equi-emphasis filter (p = 0.014). The 

peak-emphasis filter and band-pass filter based on CS loss did not give perceived 

improvement for any group. 
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Figure 6-8. Average perceived visibility ratings of the control and two un-enhancing filters. The error bars represent +/- one standard 

deviation. The stars show those that were significantly at the p < 0.05.
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Figure 6-9. Average ratings for generic filters for two groups of images (general scenes and faces). The error bars represent +/- one 

standard deviation. The arrows show those that were significant at the p < 0.05 level. 
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Figure 6-10. Evaluations of the custom-devised filters. The error bars represent +/- one standard deviation.  The arrows show those 

that were significantly preferred at the p < 0.05 level. 
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6.3.3.5 Bonferroni adjustment 

To control the Type 2 errors (false positives), all the significant p values of the 

filters from t-test were adjusted by the adjusted Bonferroni (Jacard and Wan, 1996) 

method (shown in Table 6-8). The current study was done according to two types of 

groupings – three maculopathies and two image categories. Therefore, the adjusted 

Bonferroni was applied to each of the six combinations: atrophic ARMD – general 

scenes, exudative ARMD – general scenes. JMD – general scenes, atrophic ARMD – 

faces, exudative ARMD – faces, JMD – faces. The results showed that all the initially 

significant p values of the filters remained significance (shown with *).
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Table 6-8. Bonferroni adjustment for all the significant p values. The final column shows 

the modified p values for each significance from t-test (shown in the fourth column). 

Those that reach significance after being adjusted by Bonferroni are shown with *. 

Maculopathy-
Image type 

Filter Mean 
rating 

P value Divisor Modified p 
level for 
significance 

High-pass/unsharp 
masking  

112.3 <0.001* 3 0.017 

Peli’s adaptive 
enhancement   

114.9 0.007* 2 0.025 
Atrophic 

ARMD-general 
scene 

Band-pass (27.9% )  115.5 0.013* 1 0.05 
Band-pass (27.9%) 119.4 0.008* 2 0.025 Exudative 

ARMD-general 
scenes 

Peli’s adaptive filter  115.0 0.036* 1 0.05 

Sobel edge 
enhancement  

110.3 0.001* 6 0.008 

Band-pass (3.6%)  112.9 0.004* 5 0.01 
Highpass/unsharp 
masking  

108.4 0.009* 4 0.0125 

Peli’s adaptive 
enhancement  

112.5 0.009* 3 0.017 

Contrast 
enhancement  

109.9 0.014* 2 0.025 

JMD-general 
scene 

Band-pass (equi-
emphasis) 

113.1 0.025* 1 0.05 

Band-pass (3.6%)  113.9 0.001* 4 0.0125 
DoG convolution 117.6 0.005* 3 0.017 
Contrast 
enhancement  

112.0 0.017* 2 0.025 Atrophic 
ARMD-Face 

Peli’s adaptive 
enhancement  

109.9 0.029* 1 0.05 

Contrast 
enhancement  

107.3 0.003* 2 0.025 

JMD-face Band-pass (equi-
emphasis) 

108.4 0.014* 1 0.05 
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6.4 Discussion  

This study found that eight filters were effective at improving the perceived 

visibility of images. They were the contrast enhancement, Peli’s adaptive enhancement, 

DoG convolution, high-pass/unsharp masking, Sobel edge enhancement, band-pass based 

on CM at 3.6% and 27.9%, and the band-pass filter based on equi-emphasis of spatial 

frequencies. Three filters were not effective in enhancing the perceived visibility of any 

type of image and any group of subjects with maculopathy. These were the DoG FFT 

filter, the band-pass based on CS loss, and the peak-emphasis filter. The effective filters 

were specific to one or several combinations of type of maculopathy and category of 

image. This is summarized in Table 6-9. It can be seen that there are more effective filters 

for the subjects with atrophic ARMD and JMD than for the subjects with exudative 

ARMD and there are more effective filters for general scenes than for single faces. The 

most commonly preferred filter was the Peli’s adaptive enhancement (shown in bold 

italic font) followed by the contrast enhancement (underlined). 
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Table 6-9. The filters that gave significant improvement in perceived visibility 

 

 

6.4.1 Comparison with former studies 

Peli’s studies 

A few of Peli’s studies applied the adaptive enhancement filter for people with 

visual impairment (Fullerton, & Peli, 2006; Peli et al., 1991; Peli, 1994a, 1994b). All the 

studies claimed effective enhancement in image visibility. For example, Peli et al. (1991) 

demonstrated that the adaptive enhancement filter improved face recognition (celebrity 

and unfamiliar faces) for subjects with central scotomas. In that study, 9 out of 21 

patients with macular disease showed significant improvement (p < 0.05). Peli (1994b) 

applied individually tuned enhancement to face images for people with a central scotoma. 

The filter depended on the patient’s contrast sensitivity function and on the spatial 

 
Maculopathy 

General Scenes Single Faces 

Atrophic 
ARMD 

• Peli’s adaptive enhancement  
• High pass/unsharp masking 
• Band pass - 27.9% 

• Peli’s adaptive enhancement  
• Contrast enhancement 
• DoG convolution 
• Band pass - 3.6% 

Exudative 
ARMD 

• Peli’s adaptive enhancement  
• Band pass - 27.9% 

 

JMD 

• Peli’s adaptive enhancement 
• Contrast enhancement  
• High pass/unsharp masking 
• Sobel edge enhancement 
• Band pass - Equi-emphasis 
• Band pass - 3.6% 

• Contrast enhancement  
• Band pass - Equi-emphasis 
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frequency content of the image. This study found that the individually tuned enhancement 

filter had a similar effect to the uniformly applied adaptive enhancement filter.  There 

were 3 out of 11 subjects who showed significant improvement and the level of 

improvement was similar in magnitude to the effect found in the previous study (Peli et 

al., 1991). The level of significance was calculated for each subject but not across all 

subjects as a group.  In the present study, the Peli’s adaptive enhancement filter gave 

significant improvement in perceived visibility for single faces only for the subjects with 

atrophic ARMD. In the present study, the significance was calculated across the whole 

group with maculopathy instead of for each subject. Unfortunately, in Peli’s two studies 

the exact type of retinal disease for each subject with central scotoma was not recorded. 

Therefore, it is hard to know the extent of agreement between Peli’s studies and the 

present study.  

Peli (1994b) showed that 48 subjects with a central scotoma selected a face image 

filtered with a gain factor of 2.4 ± 1.5. In the current study, the majority of subjects in all 

maculopathy groups preferred filtered images with a gain of 2 or 4 (see Table 6-5-F) 

which basically supports Peli’s finding.  

The study of Leat et al. (2005) 

The current study was continuation of the study of Leat et al. (2005). Generally 

speaking the current study found more filters to be effective for improving perceived 

visibility than the previous one.  Eight filters were found to be effective in the current 

study compared to only two by Leat et al (2005). Several factors can explain this 
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difference. Firstly, the subjects in the current study were diagnosed with only 

maculopathy, and the subjects were further separated into three groups (atrophic ARMD, 

exudative ARMD, and JMD) while Leat et al. (2005) included subjects with low vision 

due to a variety of disorders. It may be easier to find effective filter(s) for a more 

homogeneous population than for a whole group of low vision subjects with mixed visual 

pathologies. Secondly, the tested images were grouped into single faces and general 

scenes instead of the four categories of images used in the study of Leat et al. (2005). 

This grouping was based on the analysis of the image spatial frequency characteristics 

rather than the subjective grouping according to the scenes in the images used in Leat et 

al’s study. Single faces were found to be distinctive from other general scene images (see 

Chapter 5) having significant lower amplitude spectra in all three orientations (horizontal, 

vertical, and oblique). Similar to the grouping of maculopathy, the single face image 

group or the general scene group may be more homogeneous, possibly making it easier to 

find effective filters.  Thirdly, the current study based the custom-devised filters on supra-

threshold contrast loss instead of CS loss. As was discussed in Chapter 3, supra-threshold 

contrast perception may be more important than contrast threshold for daily visual 

function. Fourthly, the current study instructed subjects to rate image “visibility” rather 

than “preference” which was adopted by Leat et al. (2005). That is, the subjects were 

required to choose the image version from which they could gain more information rather 

than the one which was more “pleasing”. During the current study, the author did notice 

that some subjects said “I do see better with the processed image but I like the smoother 

(original) one”. This suggests that the low vision patients with maculopathy can perceive 
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the exaggerated information in an enhanced image. Although this exaggeration is not 

always pleasant, it does help with visibility. Peli (1994) noticed this point and stated that 

“since the degradation of performance by low vision is larger than the effect of distortion, 

the enhancement that reduced performance for normal observers may still be beneficial 

for the visually impaired observer”. This different rating criterion may have resulted in 

the higher scores. Fifthly, the enlarged parameter span in the current study also may have 

contributed to the different findings. For example, Peli’s adaptive enhancement filter 

resulted in borderline improvement in the study by Leat et al. (2005). The tested 

parameters were three kernel sizes (9, 15, and 21) with a gain of 5. In the current study 

four kernels (9, 15, 21 and 25) and four gains (2, 4, 8, and 16) were tested. The results 

showed that the kernel size of 25 and the gain of 2 or 4 were frequently chosen by the 

subjects. This suggests that, in the previous study, some filters probably did not show 

effects because of the narrower span of parameters. Another two filters also resulted in 

borderline improvement in the earlier study. These were edge enhancement and 

histogram equalization. 

Two effective filters from the study of Leat et al. (2005) were again found to be 

effective in the current study. These were the high-pass/unsharp masking and Peli’s 

adaptive enhancement filter. Leat et al. showed that, for maculopathy, unsharp masking 

had no effect for single faces but was effective for multiple faces and outdoors images 

(see their Figure 4). In the current study, unsharp masking and high-pass were grouped as 

one type of filter. We found that high-pass/unsharp mask had no effect for single faces 

but was effective for both the subjects with atrophic ARMD and JMD for general scenes. 
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Thus the findings with regards to the high-pass/unsharp masking filter in the two studies 

show some agreement with each other. 

Generally, Leat et al did not find any significant effects for subjects with 

maculopathy with the Peli’s adaptive enhancement filter.   The current study did find an 

effect for single faces for atrophic ARMD and effects for general scenes for all three 

maculopathy groups which is in disagreement with Leat et al. The possible explanation is 

the sample size. In the study of Leat et al (2005), there were 18 subjects with 

maculopathy and 2 out of these 18 had both ARMD and diabetic retinopathy. Plus, the 

three types of maculopathy were treated as one group. If the filter were effective for only 

one type of maculopathy but ineffective for the others (as found in the current study), the 

significance for maculopathy as a whole group would be reduced.  

6.4.2 What can be drawn from the current study? 

If one filter has to be chosen to enhance the perceived visibility of one type of 

image, Peli’s adaptive enhancement filter could be used to enhance the perceived 

visibility of general scenes (shown in italic and bold font in Table 6-9); and the contrast 

enhancement filter would be chosen for single faces (shown with underline in Table 6-9) 

except for people with exudative ARMD.  

If one filter had to be chosen to enhance the visibility for each type of 

maculopathy, Peli’s adaptive enhancement would be used for people with atrophic 

ARMD, and contrast enhancement or equi-emphasis for people with JMD. Unfortunately, 
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no effective filter was found for people with exudative ARMD. The parameters of these 

filters are discussed below. 

6.4.2.1 Effective filters according to image category 

General scenes   

Peli’s adaptive enhancement stood out in this study as being effective for general 

scenes for all three types of maculopathy.  

In the first phase of within-filter rankings, subjects with atrophic ARMD and JMD 

preferred lower gains of 2 and 4.  Relatively more subjects with exudative ARMD chose 

gains of 8 and 16 (Table 6-5-F). The filtering effects with different gains are shown in 

Figure 6-11 with the top two images. Bigger gains lead to stronger enhancement effects 

and usually cause more exaggeration. Therefore, the subjects with exudative ARMD 

seem to prefer stronger filtered images compared to the subjects with atrophic ARMD 

and JMD. In the current study, no difference was shown in visual acuity and CS between 

the three types of maculopathy. Maybe some other aspects of the disease process or the 

functional deficits between the three maculopathy types caused this difference. For 

example, spatial phase may be more disrupted in those with exudative ARMD. Spatial 

frequency phase may be one factor that affects between these ocular disease groups. 
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Figure 6-11. Demonstration of Peli’s adaptive enhancement. The top two images show 

filtering with gains of 2 and 8 with the same kernel size of 15. The bottom two images 

show filtering with two different kernel sizes of 9 and 25 with a gain of 4. 

 

In the second phase of within-filter rankings for viewing general scenes, the 

subjects with atrophic ARMD tended to prefer the biggest kernel of 25 and the smallest 

kernel of 9 while the subjects with exudative ARMD and JMD tended to prefer a kernel 

of 21 more often. Smaller kernels result in a wider range of spatial frequencies being 

enhanced (demonstrated in Figure 6-11 with the bottom two images). The larger kernels 

Kernel 15 – Gain 2                                    Kernel 15 – Gain 8 

 Kernel 9 – Gain 4                                     Kernel 25 – Gain 4 
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21 and 25 are more often preferred by all three groups of maculopathies than the smaller 

kernels. This suggests that for the general scenes, the enhancement of wider range of 

spatial frequencies works better than the enhancement of a narrower band of spatial 

frequencies.  

Therefore, for the general scenes, the subjects with exudative ARMD preferred 

higher gains with larger kernels, and the subjects with atrophic ARMD and JMD 

preferred smaller gains with bigger kernels. This suggests that a stronger filtering effect is 

more beneficial to the subjects with exudative ARMD than the subjects with atrophic 

ARMD and JMD. It also suggests that if one filter version was to be chosen for all 

subjects with maculopathy, the kernel size should be 21 or 25 and the gain should be 4 or 

8. 

Single faces  

The contrast enhancement filter was shown to be effective for single faces for 

subjects with atrophic ARMD and JMD. Again we will consider the optimum version of 

this filter. 

In the first phase of within-filter rankings, the subjects with atrophic ARMD 

preferred smaller power/scales of 20 or 40 while subjects with JMD showed more spread 

in their preference for scales (some preferred 80 or 160). For modes HSB and RGB, the 

bigger the power/scale, the more enhanced the filtered image tends to be (shown in 

Figure 6-12).  
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In the second phase of within-filter rankings, more subjects with atrophic ARMD 

preferred the HSB mode, while more subjects with JMD preferred the RGB mode. With 

the same power/scale, the RGB mode filtered image appears more intense in color than 

the HSB mode (shown in Figure 6-12) because each color is also enhanced. In general, 

subjects with atrophic ARMD preferred smaller gains with the HSB mode, and Subjects 

with JMD showed more spread in their preferred power/scales with the RGB mode. This 

suggests the subjects with JMD preferred more colourful and a stronger filtered image 

compared to the subjects with atrophic ARMD. 

Generally for all preferred filters, the face images seem to need less gain/strength 

of filtering than the general scenes. What causes this difference? Chapter 5 has shown 

that single face images have lower amplitude spectra of spatial frequencies in all three 

orientations (horizontal, vertical, and oblique) than general scene images. However, there 

is no significant difference in slopes (amplitude spectrum versus spatial frequency) 

between the two categories of images. This suggests that single face images have less 

high spatial frequency content than the general scenes. It is already known that high 

spatial frequency perception is more damaged for people with maculopathy. In that case, 

viewing general scenes (with relatively more high spatial frequency information) should 

be more negatively affected than viewing single faces (with relatively less high spatial 

frequency information) for people with maculopathy. As compensation, the optimum 

digital filtering gains/strengths for single faces should be smaller than those for general 

scenes.  
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Figure 6-12. Face images enhanced with the contrast enhancement filter in two scales 

(20 and 80) and two modes (HSB and RGB). 

 

   

6.4.2.2 Effective filters according to maculopathy group 

Atrophic ARMD  

Peli’s adaptive enhancement filter was effective in atrophic ARMD for both 

single faces and general scenes. The first phase of within-filter rankings showed that 

more subjects preferred smaller gains when viewing single faces than general scenes. The 

Scale 20                                    Scale 80 

HSB RGB



 

 146

second phase of within-filter rankings showed that subjects with atrophic ARMD 

preferred the smallest and the biggest kernels of 9 and 25 for general scenes but preferred 

the two small kernels of 9 and 15 for single faces. In general, single faces need smaller 

gains with smaller kernels while general scenes need bigger gains with either the smallest 

or the biggest kernel. This suggests that general scenes for subjects with atrophic ARMD 

need stronger enhancement.  

Exudative ARMD  

There was no effective filter for single faces although the Peli’s adaptive 

enhancement and the band-pass filter based on the CM at 27.9% were shown to be 

effective for general scenes. Therefore, no filter could be chosen for all types of images 

for this type of maculopathy based on the current study. 

JMD  

The contrast enhancement and band-pass based on equi-emphasis of spatial 

frequency were effective for both image types. 

Regarding the contrast enhancement filter, it has been discussed above that it was 

effective for single faces with a preference for scales of 20 or 40 and the RGB mode. For 

subjects with JMD viewing general scenes, the first phase of between-filter rankings 

showed that more subjects tended to prefer higher scales of 40 and 80 (see Table 6-5-C). 

The second phase of between-filter rankings showed that the RGB mode was more often 

preferred (see Table 6-6). These results indicate that general scenes needed stronger 

enhancement than single faces for subjects with JMD. Both single faces and general 

scenes were preferred with color enhanced images in the RGB mode. 
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Regarding the equi-emphasis band-pass filter, the first phase of within-filter 

rankings showed that more subjects with JMD preferred lower gains (1.5 and 2) for the 

single faces than the general scenes (Table 6- 5-K), which could be attributed to the 

differences of physical characteristics between the two categories of images. The second 

phase of within-filter rankings showed that more subjects tended to prefer the Gabor 

mode for the general scenes but more tended to prefer the polynomial mode for the single 

faces (Table 6-7-A). The subjects did not show a preference for 1 or 2 octave band widths 

for the general scenes, but more often preferred the 2-octave filtering for the single faces. 

With the same gain, the Gabor mode filtered images appear more exaggerated to the 

normally sighted eye compared to the polynomial filtered image and the 2-octave mode 

filtered face images look smoother than the 1-octave mode filtered images (shown in 

Figure 6-13 & 14). Therefore, for single faces the polynomial and 2-octave modes were 

preferred i.e. relatively smoother looking images were preferred. General scenes 

benefited from the Gabor filter, which means that more exaggerated images can be 

acceptable. However, this difference between the preference to Gabor and polynomial 

was almost unnoticeable to subjects with maculopathy for the smaller gains for the 

general scene image.  
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Figure 6-13. Demonstration of the band-pass filter based on equi-emphasis of spatial 

frequencies showing the filtering effects with Gabor and polynomial for the face and the 

general scene. 

    Gabor                                                   Polynomial 
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Figure 6-14. Demonstration of the band-pass filter based on equi-emphasis of spatial 

frequencies for 1-octave and 2-octave filtering with the face and general scene. 

 

6.4.2.3 Custom-devised filters  

In the former study of Leat et al. (2005), the custom-devised filter was derived 

from contrast sensitivity loss and no significant improvements were found. In the current 

study, the custom-devised filters were derived from both contrast perception loss at 

supra-threshold levels and contrast threshold.  Also, a band-pass filter based on equi-

emphasis of spatial frequencies was tested.  

1-octave                                         2-octave   
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The results showed that several modes derived from supra-threshold contrast loss 

were effective (shown in Table 6-9). This supports previous findings that the visual 

system does not process contrast linearly (Georgeson & Sullivan, 1975). There are 

different gains in different channels, so that contrast constancy is achieved. For people 

with maculopathy, contrast constancy was demonstrated although supra-threshold 

contrast perception was influenced by the presence of maculopathy (Mei & Leat, 2007; 

chapter 4). The filtered images derived from contrast threshold loss look more 

exaggerated than those from supra-threshold contrast loss (shown in Figure 6-15). Leat et 

al. (2005) found the band-pass filter derived from CS loss was not effective and the full 

gain could not be applied because of unwanted effects due to exceeding the dynamic 

range. The current study also showed that the band-pass filter based on CS loss was not 

effective and the full gain was not preferred (the most preferred gains were 1/8 to ½ of 

the full gain). However, with the filters based on supra-threshold contrast loss at 3.6% 

and 27.9% were both effective. Most subjects with atrophic ARMD and JMD chose gains 

of around 1 (1x the ratio of CM of abnormal/CM of normal) while quite a few subjects 

with exudative ARMD chose gains of 2 or 4 (2x or 4x of the ratio). For the equi-emphasis 

mode, the subjects with atrophic ARMD and JMD chose the two smaller gains of 1.5 and 

2 (1.5x and 2x of the ratio), while more subjects with exudative ARMD chose bigger 

gains of 4 and 8. 
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Figure 6-15. Demonstration of the filtering effects of the band-pass filter based on CM at 

27.9% with a gain of 2 and band-pass filter based on CS loss with gain of 0.5. 

 

Three points are drawn from these findings. Firstly, custom-devised filters derived 

from supra-threshold contrast loss are effective for people with maculopathy, but those 

derived from CS loss are not, even when the gains were reduced. Secondly, a full gain or 

a bigger gain is required for the supra-threshold based filter to function well. Thirdly, 

subjects with exudative ARMD preferred bigger gains than subjects with atrophic ARMD 

or JMD. This seems to be the rule for all custom-devised filters. This finding is in 

agreement with the generic filters. Consistently, people with exudative ARMD prefer 

larger gains or stronger filtering effects than those with atrophic ARMD and JMD. The 

first phase of within-filter rankings also showed that smaller gains were preferred for the 

faces than for the general scenes. This finding is consistently shown for the generic filters 

and the custom-devised filters.  

   Band -pass (CM @ 27.9%) - Gain 2               Band-pass (CS) – Gain 0.5 



 

 152

The second phase of between-filter rankings showed subjects’ preferences for 

Gabor and polynomial modes and 1-octave and 2-octave modes. For the band-pass filter 

at a contrast of 3.6% and 27.9%, in most situations, subjects preferred the Gabor mode, 

while for peak-emphasis and equi-emphasis filters, in most situations, subjects preferred 

the polynomial mode (Table 6-7-A). Table 6-7-B demonstrates that the subjects preferred 

1 octave more frequently than 2 octave filtered images. With normal vision, the 2 octave 

filtered images look less exaggerated than the 1 octave filter when applied to the same 

image.   

6.4.2.4 The comparison between generic and custom-devised filters 

Although the custom-devised filters functioned better when based on supra-

threshold contrast loss than CS loss, this group of individualized filters did not show 

superiority to the generic filters (shown in Table 6-8 in this chapter). The Peli’s adaptive 

enhancement filter and contrast enhancement filter were the two most effective filters 

(demonstrated in Table 6-9), not custom-devised filters. Peli (1994) compared an 

individually tuned enhancement filter which was derived from CS loss with the generic 

Peli’s adaptive enhancement filter. Peli stated that the level of improvement for each 

subject was similar for the two filters, but only 3 out of 11 subjects with retinal diseases 

showed significant improvement in visibility with the individually tuned filter. 

Considering all these findings, it could be concluded that enhancing the contrasts at 

certain spatial frequencies where there is loss of sensitivity due to visual impairment back 

to a “normal” level is not the only optimal way to improve the visibility of images.  
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6.5 Conclusions 

The results of this study show that some generic and custom-devised filters 

improved perceived visibility of images (general scenes and full single faces) for subjects 

with maculopathy (atrophic ARMD, exudative ARMD, and JMD). For each combination 

of image category and maculopathy type, there are corresponding effective filters except 

for the case of subjects with exudative ARMD viewing single faces. According to the 

ratings of perceived image visibility, Peli’s adaptive enhancement and the contrast 

enhancement filter stood out as the two most frequently effective filters. Next were the 

high-pass/unsharp masking, band-pass filter based on contrast matching of 3.6% and 

27.9%, and the equi-emphasis filter. The DoG convolution and the Sobel edge 

enhancement were occasionally effective. Three filters did not lead to improvement. They 

are the DoG FFT filter, the band-pass based on CS loss, and the peak-emphasis filter. The 

custom-devised filter derived from supra-threshold contrast loss functioned better than 

that derived from CS loss. However, the custom-devised filters did not show superiority 

to the generic filters. Subjects with exudative ARMD preferred relatively bigger gains 

and smaller kernels than the subjects with atrophic ARMD and JMD. Subjects viewing 

general scenes preferred bigger gains and smaller kernels than when viewing single faces. 

Further study is required to find effective filter(s) for subjects with exudative ARMD for 

viewing single faces.   
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Chapter 7 

 

Quantitative Assessment of Perceived Visibility Enhancement 

with Image Processing  

 

7.1 Introduction 

In chapter 6, it was shown that digital image processing can improve the 

perceived visibility of digital images for people with maculopathy. Other studies have 

shown similar findings for people with visual impairment due to a variety of conditions 

(Leat et al., 2005; Peli, 1994b). But one remaining question is whether this perceived 

enhancement can be demonstrated quantitatively or objectively i.e., does it result in 

measurable improvement in performance. 

To answer this question, several methods have been attempted by previous 

investigators. The earliest one was based on the use of receiver operating curves (ROCs). 

A number of Peli’s studies of image processing for the visually impaired were based on 

this method (Peli et al., 1991; Peli, 1994; Peli, 2005) For example, in the 1994 study, to 

investigate the individually tuned Peli’s adaptive  enhancement for face recognition, they 

measured the recognition of familiar faces, i.e., celebrities compared to unfamiliar faces. 

The original and filtered images were shown to peoplewith low vision. Subjects indicated 

on a scale of 1 to 6 their level of confidence in recognizing a face as a celebrity. These 

ratings were used to calculate ROCs, plotting the probability of recognizing a true 
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celebrity versus a false celebrity. Then, the ratio of the area under the ROC obtained from 

the filtered images to the area under ROC obtained from the unfiltered images was 

calculated. These ratios could demonstrate if the face recognition with filtered images of 

familiar faces was improved or not, compared to the un-filtered images in some degree. 

This method obviously has restrictions. It may function well with certain people who are 

interested in celebrities and know these faces. But for people who are not well-informed 

about politics and entertainment, it will not work at all. Sometimes, even for a subject 

who knows a celebrity, it may be hard for the subject to recognize the face if the face is 

making an unusual expression. The false positive rate might be high.  Considering these 

two concerns, it is hard to say whether this method is reliable and valid.  

In several other studies (Peli, 1999; Peli & Fine, 1996), performance with the 

enhanced image was evaluated by questions following sequential viewing of either the 

enhanced and unenhanced versions of the test images. These questions were about visual 

details contained in the images. In these studies, the low vision subjects answered the 

questions quite accurately even with the un-enhanced images which renders many 

questions useless, i.e., there was a “ceiling effect”. This made it hard to show any change 

between filtered and unfiltered images. The 1994 study of Peli et al. tested the 

individually-selected enhancements with 16 subjects. The results showed that subjects 

were able to correctly identify 57% of the details when the image was un-enhanced, and 

74% with enhancement (p = 0.0012). Interestingly, Peli did not continue with this method 

in subsequent publications and adopted a new method. This deserves some attention. One 

can deduce that there must be some shortcomings or restrictions that led Peli in other 
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directions. The questions developed for the test images were not recorded in the paper 

and it seems that these questions were not tested on normal control subjects. That is, the 

reliability of these questions is unknown. It is possible that the questions were too general 

to reflect a difference between filtered and unfiltered images.  

In a recent study (Peli, 2005), Peli developed a similar method to assess the effect 

of individually-selected Peli’s adaptive enhancement. The enhancement was applied to 

motion video segments. Recognition was tested by measuring the number of visual 

details that could be correctly identified in response to the questions after observing either 

the original or the enhanced video segments. The visual details were reflected in 

questions which were multiple-choice such as, “The woman has… (1) gray hair; (2) black 

hair”. The questions were based on “Audio Description (AD)” used by some US TV 

stations to describe video for people with visual impairment.  The overall means of the 

number of questions answered correctly for the enhanced segments and unenhanced 

segments were compared using paired sample statistics.  Twenty-five subjects completed 

this assessment. The results showed that the subjects could answer over 71% of the 

questions correctly with enhancement and 66% without enhancement. Therefore, this 

method of quantitative assessment failed to show that the enhanced images significantly 

increase visibility. This conclusion is contrary to Peli’s previous findings (Peli et al., 

1994). Peli suggested that “the failure could be attributed to the big variability of AD 

program itself and it could detect improvement if the effect of enhancement was 

relatively large”. Peli stated in the 2005 paper that “the best methodologies to assess the 
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effects of enhancement on perceived image quality, and even more so, on recognition 

performance have yet to be developed”.  

The current study was designed to quantitatively assess the visibility enhancement 

with processed images for people with maculopathy in a valid, reliable, and sensitive 

way. Since single faces are such a unique type of image that they are perceived 

differently from general scenes, and since facial discrimination is a difficult task for 

people with maculopathy, separate methods for assessing improvements in face images 

and general scenes were developed. The study had two stages. Stage one was a 

preliminary study to develop a methodology to be used in quantitative measurement of 

image visibility enhancement. Stage two was the application of this method for people 

with maculopathy. 

7.2 Methods and Materials 

To measure improvement in image perception quantitatively, the task should give 

a good indication of the detail and meaning in the images. For single full face images, 

facial expression recognition is a good parameter to reflect image visibility. For general 

scene images, detailed questions developed from the image were considered to be a good 

parameter to measure visibility.  

7.2.1 Images  

Full sized images (990 x 1250 pixel or 28.5 x 35.98 cm) were displayed on the 

same high resolution 21-inch Sony Trinitron monitor which was used in Chapter 6. 

Images were again displayed with Matlab software named Imageshow which was 
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programmed by a software programmer from the System Design Engineering 

Department, University of Waterloo.   

Single Full Face Images  A CD of full face images with different expressions named 

JACFEE (Japanese and Caucasian Facial Expressions of Emotion) was used 

(http://www.paulekman.com/researchproducts.html). JACFEE consists of 56 photographs 

of different people, half of whom are male and half female, and half of whom are 

Caucasian and half Japanese. The photographs are in color and each photograph 

illustrates one of seven different emotions (anger, contempt, disgust, fear, happiness, 

surprise, and sadness). There were eight images for each emotion giving a total of 56 

images. Among the eight images, there were two male and two female Caucasians, and 

two male and two female Asians.  

General Scene images  Ten general scene images out of the image pool described 

in Chapter 5 were selected. These images did not include those used in the subjective 

preference ratings described in Chapter 6. These images were chosen to be complex 

images including many objects so that questions could be devised about the content. 

7.2.2 Preliminary study  

Subjects Six subjects with normal vision (aged 25 to 35) and two subjects with 

maculopathy (aged 59 and 78) participated in this preliminary study.  

Single faces  The task for the subjects was to tell the facial expression of a briefly 

presented single face image. Using all the images from the JACFEE CD, subjects needed 

to choose one expression from 7 possibilities (anger, contempt, disgust, fear, happiness, 



 

 159

surprise, and sadness). Because most of the subjects participated in the quantitative 

measurement were seniors, the number of facial expressions (7) was considered to be too 

many for them to keep in mind during the test.  Initial testing showed that the image 

display duration was a critical factor; the longer the display duration, the higher the 

accuracy of expression recognition. If the display time were not short enough, the task 

would be too easy and any enhancement in recognition with the filtered images compared 

to the un-filtered images would not be shown (a ceiling effect). A critical duration time 

should be determined to eliminate the ceiling effect to show the enhancement effect with 

the filtered images. Also, it was noted that some facial expressions were easier to 

recognize than others, while other expressions were very similar to each other. Yet other 

images did not seem to fit the intended type of expression. The contempt expression was 

excluded from the beginning because even normally-sighted observers made quite a 

number of errors about the expression, which means this face expression is confusing to 

subjects. Therefore, a preliminary study was done to find out the critical display duration 

time so that the enhancement could be shown, and to eliminate expressions which were 

too easy or too confusing, and to lower the number of expressions so that the senior 

subjects could keep the choices of expression in mind while undertaking the test.  

The six facial expressions were displayed to the six subjects with normal vision 

with various durations preceded (duration of 2 seconds) and followed (unlimited 

duration) by a plain grey image. In total, 48 images were shown with all 6 expressions. 

The image display sequence is shown in Figure 7-1. An image duration of 2 seconds was 

used at the begining. The results showed that no subjects made any mistakes in 
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recognizing the expressions with this duration. Then, the duration was shortened to 1 

second and the subjects with normal vision began to make a very few mistakes. Lastly, 

the duration was shortened again to 0.73 second which is the minimum duration that the 

image display program could provide. The normally sighted subjects made more mistakes 

with this display duration. The results are shown in Table 7-1. The normally sighted 

subjects did not make any mistakes with the expressions of happiness, and only one with 

the expression of surprise. Therefore, these two expressions were excluded. Thus, only 

four face expressions were left (anger, disgust, fear, and sadness), which is relatively easy 

for senior people to remember at one time. Next the two subjects with maculopathy were 

tested with the four face expressions using 32 images displayed with a duration of 0.73 

second. The results are also shown in Table 7-1. It can be seen that the subjects with 

maculopathy made more mistakes than the normal subjects under the same experimental 

conditions. This suggests that the duration of 0.73 second can show a difference between 

normal subjects and subjects with maculopathy. According to the subjective responses of 

the two subjects with maculopathy, a choice of four facial expressions was easy for the 

seniors to undertake. From this preliminary study, the face expression image duration of 

0.73 and the four face expressions (anger, disgust, fear, and sadness, shown in Figure 7-2) 

were chosen for the further quantitative measurement of image visibility.   
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Grey Image 
 
 

2 seconds 

Face Expression 
Image 

 
? 

Grey Image 
 
 

Unlimited duration 
 

Figure 7-1. Face expression image display durations, used to determine the optimum 

duration for the face images. It was preceded with a grey image in 2 seconds and 

followed by the same grey image for an unlimited duration time. 

 

 

Anger Disgust

Fear Sadness
 

Figure 7-2. Examples of the four facial expressions finally chosen from JACFEE. 
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Table 7-1. Number of mistakes of facial expression recognition with face expression 

image display duration of 0.73 second 

Subject Anger 

N = 8 

Disgust 

N = 8 

Fear 

N = 8 

Sadness 

N = 8 

Happiness 

N = 8 

Surprise 

N = 8 

Normal S1 0 1 0 2 0 0 

Normal S2 1 1 1 1 0 0 

Normal S3 0 1 0 0 0 0 

Normal S4 1 0 1 1 0 0 

Normal S5 0 0 1 0 0 1 

Normal S6 1 1 0 1 0 0 

Maculopathy S1 3 4 2 3   

Maculopathy S2 4 3 4 3   

 

General scenes 

 The purpose of the preliminary study was to develop the same number of 

questions for each of the ten images and to determine standard answers to these 

questions. The first step was to develop as many questions as possible from each of the 

ten images for testing. The rule for the question development was to adopt “how many” 

questions instead of “yes” or “no” questions, “what”, “where” or “why” questions. Thus, 

the answer of these “how many” questions would provide a wide range of potential 

answers which could be qualified. It was possible to develop at least 8 questions based on 

this condition for each image. Therefore 8 questions from each image were adopted. One 

example is shown in Figure 7-3. The eight questions for that image were: 1) How many 

street lamps can you see? 2) How many cars can you see? 3) How many wheels can you 

see? 4) How many trees can you see? 5) How many garbage cans can you see? 6) How 
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many driving signs can you see? 7) How many Canadian flags can you see? 8) How 

many gorillas can you see? The second step was to decide how many images should be 

involved in this quantitative visibility measurement. The highest rated two filters would 

be tested plus a control (no filter) to test any learning effect and repeatability.  

Considering this and the testing time, it was decided that seven images would be optimal. 

The seven images would be randomized in order. The first three would be assigned for 

filter 1, another three for filter 2, and the seventh one for the control.  The last step was to 

develop the standard answers for these questions and to validate the questions using the 

same 6 control subjects who participated in the validation of facial expressions. The 

general scene images were displayed for unlimited duration.  Subjects were allowed to 

infer from their general knowledge, based on what they could see in the image. After 

answering each “how many” question, the subject was asked to point to the positions in 

the image of each object. Thus, standard answers to these questions were gained from the 

subjects with normal vision. If subjects with normal vision could not answer the question 

accurately or consistently missed an object, then that question had to be eliminated, or the 

“correct” standard answer modified. Next, these images were displayed to the two 

subjects with maculopathy and they were required to answer the same questions. This 

showed that the subjects with maculopathy made quite a number of mistakes compared to 

the standard answers from the subjects with normal vision. This indicated that these 

developed questions do not produce a “ceiling effect”. That is, the questions provide 

room for improvement with the filtered images. 



 

 164

 

Figure 7-3. One example of a general scene image for performance measurement. 

 

7.2.3 Subjects 

Nine subjects with maculopathy from the group of subjects who participated in 

the study described in Chapter 6 participated in this session. These were subjects who had 

recently been involved in the qualitative assessment part of the study and who were 

willing to attend for a further session. Three of them had atrophic ARMD, four had 

exudative ARMD, and two had JMD. The two subjects with maculopathy who 

participated in the preliminary study were not included. 
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7.2.4 Digital filters  

At the fourth visit, the two highest rated filters for each subject (filter 1 and filter 

2) were chosen for re-evaluation using the quantitative measures. The names of “filter 1” 

and “filter 2” were used to distinguish the two filters. Because the intention was to test 

the enhancement difference between the two filters, they were named according to the 

rating rate from the qualitative measurement (Chapter 6). 1st filter represents the highest 

rated filter, and 2nd filter represents the second highest rated filter. For some subjects, the 

top two filters had been rated equally. In these cases “filter 1” or “2” was assigned 

arbitrarily. 

7.2.5 Procedure  

Facial Expression Images  

For each subject, the 32 images showing the four emotions were randomized in 

order. The first 1-15 images were processed by filter 1. The next 16-30 images were 

processed by filter 2. Images 31 and 32 were not processed and used as controls. These 

32 images were mixed and then put into a randomized order for image display. Each 

image was shown twice in random order, in an original and processed version with one 

rule that the same face (filtered and unfiltered) would not be shown consequently. The 

two unfiltered control images were shown twice to measure any practice effect.  

 The subjects were told that there were four expressions to recognize and a list of 

the possible 4 expressions in large print was given to them. They were shown one 

separate image example of each emotion at the beginning to explain the purpose of this 

session. When testing began, similar to the preliminary study, a plain grey image was 
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shown before and after the test image. The first grey image was displayed for 2 seconds, 

the face image for 0.73 second and the second grey image for an unlimited time until the 

subject gave a response (see Figure 7-1).  

Each face expression image presentation was marked as incorrect or correct and 

the numbers of errors were recorded. For the control images, the coefficient of 

repeatability was calculated across all subjects (Bland and Altman, 1986) and a paired t-test 

was applied to consider any practice effect. To study the effect of enhancement with the 

test images, a paired t-test was also applied across subjects.  

To test if there was any enhancement difference between two tested effective 

filters, the results from the two filters were separated according to 1st filter and 2nd filter, 

and a paired t-test was applied, excluding those subjects who had rated filter 1 and filter 2 

equally. 

General Scene Images 

 For each subject, the seven general scene images used for objective measurement 

of visibility were randomized in order. Images 1-3 were processed with filter 1. Images 4-

6 were processed with filter 2. Image No. 7 was a control and was not processed by any 

filter. These 7 images were mixed with the 7 original images randomly to determine a 

display order for each subject with one rule that the same image (filtered and unfiltered 

versions) could not be displayed consecutively. Each image in its two versions (original 

and processed) was then shown twice.  The control image was shown twice, both in the 

unfiltered version. The subjects were asked to answer the 8 oral consecutive questions 



 

 167

about each image and the image remained on the screen for as long as the subject needed. 

Therefore each set of questions were answered two times by each subject, but the order 

(filtered or unfiltered first) was randomized. After each answer, the subject was asked to 

point to each object on the screen. 

 The number given in answer to each question was transferred to an error score. 

For example, there are five cars in the image of Figure 7-4 so that for the question “how 

many cars are in the image?” the full correct answer would be scored as 5. If a subject 

only saw four cars and pointed to them correctly, a score of 4 would be given. The error 

score was the difference between the correct score and the subject’s answer. In some 

cases, the subjects gave false positive answers when pointing. For example, there should 

be 5 cars in the image. The subject may have said 4 cars were seen, but pointed 

incorrectly to the position of one car, i.e., misidentified another object for a car. In this 

situation there are two methods to calculate the score. Method 1: Positive mark for each 

correctly identified car = 3; Method 2: (positive mark for each correctly identified object) 

– (negative mark for each erroneously pointed to object) = 3-1 = 2. Both of these two 

methods of scoring were used for comparison. 

 For the control images, the coefficient of repeatability was calculated across all 

subjects. For the test images, a paired t-test was applied for each subject comparing the 

error score with the filtered and unfiltered images.  

To test if there was any enhancement difference between two tested effective 

filters, the results from two filters were separated according to 1st filter and 2nd filter, and 
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a paired t-test was applied. For this analysis those subjects who had rated their two best 

filters equally were excluded. 

7.3 Results 

7.3.1 Repeatability  

Facial Expression Images  

The coefficient of repeatability was 1.73 and the mean difference was 0.44. This 

can be compared with the whole range of the scale. There could be a total of 30 (or 23 

taking into account the 25% guessing rate) possible errors. Compared to 30 or 23, 1.73 is 

relatively small which implies that this facial expression task has good repeatability. It 

also means that an improvement of 2 or more with the filtered image is a significant 

improvement at the 95% level. The mean difference of 0.44 suggests that there was 

hardly any practice effect.  

General scenery images 

The randomly decided No. 7 control image was displayed twice and the eight 

questions for this image were answered twice.   The coefficient of repeatability for the 

error score was 0.227 for both methods of scoring and the mean difference was 0.11. The 

maximum error score for any image ranged from 20 to 32 and the total number of 

possible errors is between 140 and 224. This is large in comparison to this level of 

repeatability. This repeatability also means that a significant difference at the 95% level 

between the filtered and unfiltered image is 1 or more. The mean difference of 0.11 

suggests that there was hardly any practice effect.  
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7.3.2 The effects of filters with test images 

Facial Expression Images 

The results are shown in Table 7-2. The two-tailed paired t-test showed that the 

best two filters significantly decreased the errors of facial expression recognition across 

the 9 subjects with maculopathy (p = 0.004). Considering this in terms of the coefficient 

of repeatability (1.73), only subjects 8 and 9 did not show a decrease of 2 or more errors. 

All other subjects showed significantly fewer recognition errors with the filtered images. 

General scenery images 

According to the two-tailed paired-t-test for each subject (Table 7-2), 6 subjects 

using scoring method 1, and 7 subjects using scoring method 2 showed significantly 

fewer errors with filtered images. Considering the coefficient of repeatability of 0.227, all 

of the 9 subjects showed significantly fewer errors. This suggests that image processing 

did enhance visibility using a performance measure for all subjects. 
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Table 7-2. Results of the performance measure of visibility enhancement. D represents 

the mean error difference per image between unfiltered and filtered images.  * shows 

significance at the level of p = 0.05.  

Face Expression Images General Scenes Subject 
Errors with 
original image 

Errors with 
enhanced image 

Scoring method 1 Scoring method 2 

S1 (Atrophic) 
 
 
S2 (Exudative) 
 
 
S3 (Atrophic) 
 
 
S4 (JMD) 
 
 
S5 (Atrophic) 
 
 
S6 (JMD) 
 
 
S7 (Exudative) 
 
 
S8 (Exudative) 
 
 
S9 (Exudative) 

9 
 
 
14 
 
 
4 
 
 
15 
 
 
11 
 
 
15 
 
 
15 
 
 
8 
 
 
12 
 

6 
 
 
6 
 
 
2 
 
 
11 
 
 
7 
 
 
8 
 
 
13 
 
 
8 
 
 
11 
 

Mean 11.4 8 

 t-test, p = 0.004 

D = 0.35 
p = 0.005 * 
 
D = 0.27 
p = 0.026 * 
 
D = 0.21 
p = 0.017 * 
 
D =  0.15 
p = 0.09 
 
D = 0.19 
P = 0.027 * 
 
D = 0.29 
p = 0.005 * 
 
D = 0.60 
p = 0.021 * 
 
D = 0.13 
p = 0.057 
 
D = 0.10 
P = 0.255 
 

D = 0.29 
p = 0.029 * 
 
D = 0.31 
p = 0.012 * 
 
D = 0.44 
p = 0.003 * 
 
D = 0.15 
p = 0.164  
 
D = 0.29 
P = 0.029 * 
 
D = 0.31 
p = 0.017 * 
 
D = 0.60 
p = 0.021 * 
 
D = 0.17 
p = 0.04 * 
 
D = 0.21 
P = 0.077 
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7.3.3 The comparison between two best-rated filters 

The qualitative average ratings (from Chapter 6) of the 1st and 2nd filters for the 9 

subjects are shown in Table 7-3. Since subjects 7 and 9 for faces and 3 and 8 for general 

scenes had rated the 1st and 2nd filter equally, they were excluded from this statistical 

analysis. A paired t-test showed that the qualitative ratings of the two groups of filters 

were significantly different (p = 0.034 for single faces and p = 0.015 for general scenes). 

The quantitative measurement results of 1st filter and 2nd filter were separated and 

analyzed using a t-test which is shown in Table 7-4. For the facial-expression-recognition 

task, a t-test was applied to the two groups of errors from the 1st and 2nd filters (subject 7 

and 9 were excluded from the analysis). The p value = 0.33. This shows that there was no 

significant difference in visibility enhancement with face expression images between the 

two groups of effective filters. The higher rated 1st filters did not show better 

enhancement than the 2nd filters. 

For the general scenes, data comparing 1st and 2nd filter were also shown in Table 

7-4. Subjects 3 and 7 were excluded from the analysis because they rated the 1st and 2nd 

filters equally in the qualitative measurement. Only subjects 1 and 9 demonstrated 

significant differences between their 1st and 2nd filters. However, the D values of the 1st 

filters for subjects 1 and 9 were both smaller than those of the 2nd filters, i.e., the 

difference was in the unexpected direction. This shows that the highest rated 1st filter did 

not give better performance than the 2nd highest rated filter.  
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Table 7-3.   Qualitative ratings and type of filter of the 1st and 2nd filters for the 9 subjects for the single faces and the general scenes. 

S1 to S9 represent the subjects 1 to 9. S7 and S9 for faces and S3 and S9 for scenes rated the two filters equally (shown in grey).p 

value shows the difference between the qualitative ratings of 1st and 2nd filter excluded the equally rated filters.  

 

Face General Scene Subjects 

1st Filter 2nd Filter 1st Filter 2nd Filter 

S1 (JK) 

S2 (BT) 

S3 (LL) 

S4 (NA) 

S5 (LG) 

S6 (DG) 

S7 (SF) 

S8 (GC) 

S9 (BS) 

145 ( BP_Equi Emphasis) 

115 (BP_Peak Emphasis) 

132.5 (DOG Convolution) 

127.5 (BP_CS ) 

150 (DOG Convolution) 

135 DOG Convolution 

175 (BP_27.9%) 

107.5 (BP_3.6%) 

125 (High-pass) 

117.5 (BP_3.6%) 

107.5 (BP_Equi Emphasis0 

130 (BP_3.6%) 

122.5 (BP_27.9%) 

135 (Peli Enhancement) 

127.5 (DOG FFT) 

175 (BP_Equi Emphasis) 

106.5 (BP_27.9%) 

125 (BP_27.9%) 

125 ( High-pass) 

110 ( BP_Equi Emphasis) 

127.5 ( Peli Enhancement) 

145 ( BP_Equi Emphasis) 

145 ( BP_Equi Emphasis) 

130 ( BP_Peak Emphasis) 

175 ( BP_Equi Emphasis) 

105 ( High-pass) 

142.5 (BP_27.9%) 

120 (DOG Convolution) 

107.5 (BP_CS) 

127.5 (BP_CS) 

140 (BP_Peak Emphasis) 

140 (DOG Convolution) 

128.5 (BP_3.6%) 

175 (DOG FFT) 

104.5 (Peli Enhancement) 

132.5 (Contrast Enhancement) 

Paired t-test p = 0.034 p = 0.015 
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Table 7-4. The comparison of quantitative assessment of performance between the 1st 

filter and 2nd filter. D represents the mean differences of error per image (original- 

filtered) for each subject. The bigger the D value the more effective the filter. * shows 

significance at the level of p = 0.05. The blank data are where the 1st filter and 2nd filter 

were equally rated from the qualitative measurement. 

Facial Expression Images General Scene Images Subject 
Errors with 1st 

Filter 
Errors with 
2nd Filter 

1st Filter 2nd Filter p 

S1 (Atrophic) 

S2 (Exudative) 

S3 (Atrophic) 

S4 (JMD) 

S5 (Atrophic) 

S6 (JMD) 

S7 (Exudative) 

S8 (Exudative) 

S9 (Exudative) 

2 

2 

2 

4 

4 

4 

 

2 

4 

4 

0 

7 

2 

4 

 

6 

Mean  2.86 3.86 

p (between 1st and 2nd filter) = 0.33 

D = 0.00 

D = 0.33 

 

D =  0.13 

D = 0.25 

D = 0.42 

 

D = 0.08 

D = -0.13 

D = 0.71 

D = 0.21 

 

D = 0.17 

D = 0.13 

D = 0.17 

 

D = 0.17 

D = 0.33 

p = 0.003 * 

p = 0.60  

 

p = 0.81 

p = 0.45  

p = 0.21 

 

p = 0.52 

p = 0.01 * 

 

 

 

7.4 Discussion 

The method developed in this study used to measure performance-based 

assessment of visibility improvement with image processing for the visually impaired 

overcame the limitations of previous methods. The use of familiar versus unfamiliar face 

recognition (Peli, 1994b) was obviously limited by the familiarity of the celebrities to 

each subject. If a subject did not know any of the celebrities or only a limited number of 

celebrities, the method would not be successful. The current study used facial expressions 
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to reflect the visibility of the single face images. This method is applicable to all people 

and does not rely on specific knowledge. Besides, the faces were from both Caucasians 

and Asians, both men and women. Thus people from different racial backgrounds were 

included making the application more generalizable. Also, the four face emotions chosen 

for the quantitative measurement were selected through preliminary study with subjects 

with normal vision. The ease of the task and the difficulty for recognizing particular 

facial expressions for the older maculopathy population were considered.  

Details regarding the specific questions for general images (Peli et al., 1994a) 

were not well recorded in literature. The kind of questions or how many questions were 

derived for one image has not been published.  Other studies with questions (Fine, Peli, & 

Brady, 1998; Peli, 1999; Peli & Fine, 1996) turned out to be ineffective.  The most recent 

study, based on audio described questionnaires (Peli, 2005), did not show a significant 

difference between filtered and unfiltered video sequences, and therefore the questions 

may have had poor sensitivity. The current study developed questions according to 

certain rules. The questions and answers were first tested by subjects with normal vision. 

This ensures some validity to the questions. Additionally, all the answers were numbers 

varying from 0 to 12 which gave a wide span for measurement of change. This eliminated 

the “ceiling effect” shown in Peli’s studies. 

With these methods, image visibility enhancement with digital filtering was 

demonstrated quantitatively for people with maculopathy. Although the current study was 

only undertaken on a subset of subjects, the results confirm the improvements perceived 

by the subjects. When comparing many filters it is quicker to use subjective ratings, but 
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here we have confirmed that when subjects prefer an image it does lead to improved 

performance i.e. people do actually see more accurate information in an image.  

As for the relation between qualitative measures and the quantitative measures, 

the current study seems to suggest that they are not necessarily directly related. This is 

demonstrated by the comparison of the two effective filters of 1st and 2nd effective filters. 

Five out of seven subjects did not show any difference between the two filters, and two 

subjects even showed that the lower rated 2nd filter gave better performance than the 

higher rated 1st filter. Therefore, people’s visual subjective rating of how much 

improvement they perceive may be not very reliable. The objective measurement of 

visual enhancement demonstrates how much more detail the subjects can detect in the 

filtered images. 

The methods developed and used in this study not only overcome the limitations 

of previous methodologies and turned out to be effective, but also have the potential of 

being a widely applicable standard method because they meet the criteria of validity, 

reliability, and sensitivity. 

Validity   

Validity is the degree to which a measure actually reflects that which it purports 

to measure (Anastasi & Urbina, 1997, p114). In the current study, the purpose was to 

directly measure visibility enhancement with filtered images compared to unfiltered 

images. The recognition of facial expression is important in daily life and therefore this 

measure has face, i.e., apparent validity and we would seem to be measuring an important 
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aspect of viewing a face. The facial expression images were professionally made. All the 

expressions shown in the images were previously tested by large numbers of subjects and 

shown to have accurate expressions (Biehl et al., 1997). Therefore, this group of facial 

expression images could be used in the current and subsequent research of image 

enhancement techniques applied to face images.  

For the general scene images, the measurement of image detail perception 

differences between filtered and unfiltered images provided evidence about the amount of 

improvement in performance gained with image enhancement. Eight questions for each 

image were developed about details in the image. It seems intuitively obvious that 

correctly identifying details within an image is important. Therefore, there is face validity 

regarding this measure. Also, the fact that we did measure an improvement with the 

preferred filters indicated validity.  

Reliability  

In research, the term reliability means “repeatability” or “consistency” 

(http://trochim.human.cornell.edu/kb/reliablt.htm). A measure is considered reliable if it 

gives us the same result over and over again when administered at different times, 

locations, or with different populations. In the current study, the measurement of 

objective visibility was administered to the same subjects at two points in time. 

Therefore, the test-retest reliability can be considered. The coefficient of repeatability is 

one method to calculate test-retest reliability. This is 1.96x the standard deviation of the 

differences and thus 95% of differences are less than this value. In the current study, the 



 

 177

coefficient of repeatability (Bland & Altman, 1986), for face expression images was 1.73, 

which is a small number compared to the total possible mistakes which is 30. This 

suggests that this method of facial expression recognition is reliable. For the general 

scene images, the coefficient of repeatability was 0.227. The total possible number of 

mistakes was 187 and, therefore, the coefficient of repeatability is a small proportion of 

the total measurement range. This suggests that the questions developed to show 

objective image visibility enhancement are reliable. There were no large practice effects, 

i.e., the subjects did not gain benefit from seeing the image a second time, even within a 

short space of time (the experimental session). 

Sensitivity 

Sensitivity is the ability of a measurement to detect a disease, condition or change. 

In this study, the condition to be detected is an objective measure of improvement in 

visibility as a result of digital image enhancement.  

For the facial expression recognition task, the paired-t test for 9 subjects showed 

that there was a significant effect of image processing on image visibility (p= 0.004), e.g. 

fewer errors were made with filtered images than with the unfiltered images. For the 

general scenes, a paired-t test for each subject indicated that 6 or 7 subjects (depending 

on scoring method) out of a total of 9 showed significantly enhanced visibility with 

filtered images than with unfiltered images. These two groups of results suggest that the 

measurements used to demonstrate the objective visibility enhancement are sensitive 

enough to detect the improvements in visibility suggested by the subjective ratings. For 
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the general scene, each question had quite a range of possible answers. For example, if 

the standard answer obtained from the normal observers was 5, there could be at least 5 

possible answers from the subject (0, 1, 2, 3, 4, 5, or more than 5 with false positives). 

Accordingly, the errors between the normal answer and the answer from the subject have 

a relatively large potential range. These questions encouraged the subjects to observe 

almost every detail of an image. These kind of questions could be generated for almost 

any general scene. This helped to ensure the sensitivity of the methodology. 

7.5 Conclusions 

The method developed in the preliminary study turned out to be effective in 

objective (quantitative) measurement of the image visibility enhancement with digital 

filtering for people with maculopathy. The results of the objective measurement were not 

directly in proportion to those of the qualitative measurements. The facial expression task 

was valid for measuring single face perception. The questions developed for general 

scenes also appeared to be a valid method. The methodology developed and validated in 

the current study is proposed as a standard method to be utilized in other future studies of 

image enhancement.  
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Chapter 8 

General Discussion 

Compared to the former studies of application of digital filtering for people with 

visual impairment to enhance image visibility (Peli, 1991; Peli, 1994b; Leat et al., 2005), 

the current study has some unique aspects. First, this project focused on people with 

maculopathy only, and the maculopathy was further grouped according to the diagnosis 

of atrophic ARMD, exudative ARMD, and JMD. Therefore effective filter(s) were found 

for each specific type of maculopathy. Secondly, this study grouped the test images into 

single full faces and general scenes according to the image spatial frequency 

characteristics. Effective filter(s) were also found specifically for each image category.  

Thirdly, this study tested custom-designed filters based on supra-threshold contrast loss 

rather than just CS loss. The CS loss derived custom-devised filters were tested in some 

former studies (Leat et al, 2005; Peli, 1994b) and found to be ineffective. The results 

showed that the supra-threshold contrast loss derived custom-devised filters were 

effective. Fourthly, this study compared generic filters with custom-devised filters 

derived from supra-threshold contrast loss. The results showed that the custom-devised 

filters were not superior to the generic filters. Fifthly, not only was a qualitative 

measurement of visibility enhancement used but also a quantitative measurement. The 

method designed for the quantitative enhancement was able to demonstrate improvement 

in visibility.  
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8.1 Supra-threshold contrast matching in control groups 

In order to develop the custom-devised filters derived from supra-threshold 

contrast loss for people with maculopathy, two age groups of control data of supra-

threshold contrast matching were collected. The main purpose was to develop a control 

data set against which the subjects with maculopathy could be compared to calculate the 

gain for the various custom-devised filters. The effects of age and contrast threshold on 

supra-threshold were investigated at this stage.  

The supra-threshold contrast matching results for the two groups were quite 

similar to Georgeson and Sullivan’s findings (1975). At low contrast, the matching 

curves resembled the threshold curve, while at medium and higher levels, the curves 

became flatter, described as contrast constancy. This study extends their data to show that 

contrast constancy exists in a larger group of naïve subjects of different ages. The data 

showed that, at 55.9% contrast, the matching functions against spatial frequency were 

best fit with a quadratic function, rather than a straight line (p < 0.001) and the matching 

was still spatial frequency dependant, with a peak at 1 to 2cpd. This indicates that 

contrast constancy was still not complete up to 55.9%.  

Aging increased contrast thresholds for spatial frequencies between 0.26 and 8.53 

cpd in the current study. The interesting question here is whether, as thresholds change 

with age, there is a change in the supra-threshold gain of the system to compensate. By 

calculating the regression lines of the matched test grating contrast against the standard 

grating contrast, it was found that the slopes of the regression lines were similar for the 

two age groups (two-sample t-test, p > 0.05 in all cases).  Whether age-related supra-
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threshold differences in slope would be found would depend on the relative thresholds of 

the standard and the test grating. The threshold curves in Figure 3-1 showed that the 

relative thresholds for 0.58 cpd and other spatial frequencies for the two age groups are 

similar. Since the older subjects showed a decrease of contrast sensitivity at all spatial 

frequencies, there is little change in the relative thresholds. Also, as it happened, there 

was no example where the data points for the relative thresholds in Figure 3-2 or 3-3 

were above the line for unity for one group and below it for the other.  Thus, the present 

data cannot answer the question of whether there are changes in the gain to compensate 

for thresholds changes with age. 

To test whether contrast matching can be accounted for by subtracting the 

thresholds (Kulikowski, 1976), and to examine the differences of contrast matching with 

respect to age, the data were normalized by subtracting the linear threshold for 0.58 cpd 

from the standard contrast and the threshold at each matched frequency from the matched 

contrast (McIlhagga, 2004) and then taking the logarithm. Similar to the non-normalized 

data, the regression lines were still affected by their corresponding thresholds.  

In general, at most levels of contrast the two groups matched supra-threshold 

contrast similar statistically although the contrast thresholds were significantly different. 

8.2 Supra-threshold contrast matching in maculopathy  

To investigate the supra-threshold contrast loss in maculopathy and as a basis for 

the custom-devised filters, the supra-threshold contrast matching was tested for the three 

groups of subjects with maculopathy (atrophic ARMD, exudative ARMD, and JMD). 
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The results were compared to the older control group for statistical analysis. There were 

two reasons that the younger control group data were not used in this comparison. First, 

there was no main effect of age in supra-threshold contrast matching for the two control 

age groups. Second, most of the maulopathy subjects belonged to older age group. To test 

the effect of threshold on supra-threshold contrast, the contrast threshold was measured as 

well. 

The results showed that the average contrast thresholds of maculopathy patients 

were significantly higher than the 95% age-matched normal range at all spatial 

frequencies tested.  In all three groups of subjects with maculopathy, the peaks of the 

CSF shifted to lower spatial frequencies. The supra-threshold contrast matching results 

plotted across contrast levels appear quite similar to the previous findings with subjects 

with normal vision. At low contrasts, the matching curves resemble the threshold curve, 

while at medium and higher levels, the curves become flatter, demonstrating contrast 

constancy. Contrast matching at 3.6% and 27.9% was analyzed with ANOVA. There 

were differences between the normal control and the maculopathy group at both levels of 

contrast. Thus, the results are also in agreement with a previous study (Leat & Millodot, 

1990), showing that there are deficits of supra-threshold contrast perception in people 

with maculopathy. Similar to this previous study, these deficits are not as great as the 

deficits in contrast threshold - there is some compensation for contrast sensitivity loss. 

Also, similar to normal vision, there is a connection between contrast threshold and 

supra-threshold contrast perception. This is in agreement with previous studies which 

have suggested neural compensation by means of a change in gain.  
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Gain Compensation 

Variations of contrast gain in the visual system which is located at the retina and 

visual cortex are usually used to explain contrast constancy (Georgeson & Sullivan, 

1975). For normal vision, contrast gain was found to change so that contrast perception 

was fairly accurate even under different visual conditions such as dark adaptation. In 

ocular disorders, it has also been suggested that there is a gain adjustment (Dickinson & 

Abadi, 1992; Leat & Millodot, 1990). In the present study, the gains for people with 

maculopathy were significantly different than the normals especially at higher spatial 

frequencies, and these differences were in the direction expected to compensate for 

differences in thresholds (Figure 4-4). For higher spatial frequencies, where contrast 

sensitivity is more reduced compared to the lower spatial frequencies in maculopathy 

(Figure 4-2), the slopes were reduced compared to the controls, i.e., more contrast is 

required to make a match nearer threshold and less contrast is required at higher 

contrasts. The subjects with maculopathy are, therefore, showing modification of the 

gain, presumably as a result of the contrast sensitivity loss due to the disease process.  

Gain control has been suggested in various stages in the visual pathway; retina (Albrecht 

& Hamilton, 1982), Lateral geniculate nucleus (Webb et al., 2003; Webb et al., 2002; 

Przybyszewski et al., 2000), visual cortex (Geisler & Albrecht, 1992; Carandini & 

Ferster, 1997; Truchard et al., 2000) or by feedback from extrastriate cortex (Gardner et 

al., 2005) and may, of course, occur at all these locations. There is evidence that damage 

in ARMD is not only limited to photoreceptors, but occurs in the various retinal layers 

from photoreceptors, horizontal cells, bipolar cells to ganglion cells (Enoch, 1978; Dunaief 
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et al., 2002; Kim et al., 2002). For advanced maculopathy, as in the current study, the retinal 

gain control may be expected to be damaged. It would therefore appear that the contrast 

gain compensation does happen in the cortex or that the cortex is able to compensate for 

damage to the gain control in the retina.   

One interesting question is, how long the visual system needs to adjust the 

contrast gain as a result of CS loss. One case with bilateral congenital cataract removal 

resulting in improved CS showed that the contrast of high spatial frequencies was 

overestimated by the patient’s visual system as long as one year after the surgery (Fine et 

al., 2002). In the current study, all the subjects were recruited from the Low Vision Clinic 

or CNIB and had had maculopathy at least 2 years before they took part in the study. 

Some participants with age-related maculopathy (a progressive condition) may have 

experienced changes in their condition fairly recently prior to the study. However, 

juvenile macular degeneration progresses earlier in life and is more stable later. These 

subjects would be less likely to have changes in the period prior to the study. Yet, these 

groups (ARMD and JMD) performed similarly in the present study. This would seem to 

indicate that initial changes in gain occur quite rapidly. However, there were significant 

differences between the maculopathy and the normal group. This would seem to indicate 

that, although some adaptation occurs, it does not completely compensate for CS losses, 

even after many years.  
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Overconstancy 

Another explanation for the apparent contrast constancy may be in overconstancy. 

Observers with advanced maculopathy use a PRL for fixation, at which location normal 

observers show overconstancy (Georgeson & Sullivan, 1975). Georgeson’s data (1991), 

shown in his Figure 3a, is replotted in Figure 8-1. A trend of overestimating of test 

gratings’ contrast at higher spatial frequencies (> 3 cpd) can be seen, especially at low 

contrasts and high spatial frequencies.  Observers with maculopathy who were doing 

contrast matching with PRL fixation and peripheral vision (shown in Figure 4-3) did not 

show this trend but rather underestimated test grating contrast at higher spatial 

frequencies (> 0.5cpd).  Considering the partial contrast constancy shown by the subjects 

with maculopathy, there are two possible ways to explain this. First, the PRL functions as 

a new “fovea” losing the normal overconstancy of eccentric vision but with adjustment of 

the gain to compensate for the loss of CS due to the disease process.  Second, the PRL 

still functions as eccentric retina with contrast overconstancy which in itself partially 

tends to compensate for loss of CS due to the disease process.  The present data are not 

able to distinguish between these two situations.  
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Figure 8-1. Replotting of Figure 3a from Georgeson (1991). Contrast overconstancy was 

shown with eccentric fixations for both standard and test gratings.  

Is there any evidence that there is plasticity of the cortex, so that the PRL may 

function like the fovea? There is early evidence that there is considerable plasticity in the 

visual cortex, even in adults.  Some researchers have shown evidence of retinotopic 

cortical re-organization. Animal studies with monkey and cat (Gilbert & Wiesel, 1992; 

Darian-Smith & Gilbert, 1994; Calford et al., 2000) have shown that reorganization in adult 

mammalian visual cortex occurred following visual field loss. Studies in humans 

(Morland et al., 2001; Baseler et al., 2002) reported abnormal retinotopic organization in 

cases of congenital vision loss and in long-standing macular degeneration of over 20 

years (Baker et al., 2005). They found that parts of the visual cortex that normally 

respond only to central visual stimuli were strongly activated by peripheral stimuli. 

However a recent study reported no retinotopic re-mapping of a 60-year-old subject with 
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a 3-year history of atrophic ARMD (Sunness et al., 2004). Thus, so far no studies have 

provided evidence for reorganization of visual cortex in older adults with visual loss 

which is less long standing. However, in the present study, no difference was found in 

supra-threshold contrast matching between the three maculopathy groups, although some 

were more long standing (those with JMD) and some of more recent onset (ARMD). 

These results seem to support the view that there may be some cortical reorganisation (so 

that the PRL functions more like the fovea) or that there are changes in the gain which is 

likely located in the cortex.  

An alternative explanation could be based on Brady and Field’s work (1995).  

Maculopathy would result in an increase in noise resulting in an increase in thresholds, 

but supra-threshold performance, which depends on average signals rather than signal to 

noise ratio, would be affected to a lesser extent or not at all. With this model there would 

be no need to suggest a change in gain. In fact, the partial contrast constancy might 

indicate some deficit in gain. 

This study has shown that there is a supra-threshold contrast perception defect in 

people with maculopathy compared to those with normal vision, although this deficit is 

not as great as that for CS. Thus, one would conclude that the actual performance of 

people with AMD may not be as poor as CS predicts. Whether this is found to be true is a 

subject for future research.  
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8.3 Image analysis and grouping 

The effective digital filters were found to be not only specific to type of 

maculopathy but also specific to the category of image. Leat et al. (2005) also 

demonstrated this in their study. However, in their study the image grouping was 

according to the subject content in the images. There was no objective evidence to 

support their grouping. Spatial frequency, amplitude, orientation and phase are the basic 

parameters which describe the spatial frequency content of an image. In this study, phase 

was not considered (which will be one interest in the future study).  Amplitude spectrum 

of spatial frequencies and the slope of the amplitude against spatial frequency were 

measured at three orientations (horizontal, vertical, and oblique). The 132 images were 

first grouped into six groups according to the apparent subject matter of the images (singe 

face, one whole person, two or more whole persons, indoor scenes, natural scenes, and 

miscellaneous). Then the amplitude spectra and slopes were analyzed statistically to show 

which groups were distinctive from other groups. 

There were differences in amplitude and slope with respect to orientation. For 

most image groups, the amplitude is greater in the cardinal orientations than the oblique. 

Essock et al. (2003) suggested greater gains in the oblique vs. vertical vs. horizontal 

meridian. This is the reverse of the finding that in images there is greatest average 

amplitude for horizontal contours (vertical spatial frequency components) and least in the 

oblique orientation, which was found for almost all image types in this study. Thus, it 

would seem that the anisotropy of gains within the visual system tends towards 
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compensating for the anisotropy of real world images, resulting in a more equal 

perception of differently orientated contours.   

For slopes, the current study found the same trend in all six groups of images: 

vertical > horizontal > oblique, i.e., shallower in the vertical. This implies that there is 

relatively more high-frequency content in the vertical meridian, i.e., for horizontal 

contours. 

Single faces were found to be the most consistently distinctive image type 

(according to spatial frequency content) among all six groups. They had significantly 

lower average amplitudes than other groups of images.  However, they are similar to 

other images in having the smallest slope in the vertical meridian, thus having relatively 

more high spatial frequency information in the vertical meridian (horizontal contours). 

The physical uniqueness of single-face images is consistent with the uniqueness of single 

face perception in the visual cortex (Farah et al., 1998; Wang et al., 1998, Hasson, et al., 

2001; Ishai et al., 2000). Therefore, grouping images into single full faces and general 

scenes was considered to be reasonable in the later section of image visibility 

enhancement with digital filtering. 

8.4 Measurement of perceived visibility improvement 

This part was a continuation of the study of Leat et al. (2005). Due to the 

modified method, more filters were found effective. Both generic filters and custom-

designed filters were tested. The custom-designed filters were derived from the supra-

threshold contrast loss compared to the normal age-matched control data. Eight filters 
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were found to be effective in improving perceived visibility: contrast enhancement, Peli’s 

adaptive enhancement, DoG convolution, high-pass/unsharp masking, Sobel edge 

enhancement, band-pass at 3.6% and 27.9%, and equi-emphasis band-pass filters. These 

filters are effective specifically for one or more combinations of maculopathy type 

(atrophic ARMD, exudative ARMD, and JMD) and image category (single full faces and 

general scenes). The combination of subjects with exudative ARMD viewing single faces 

did not give rise to any significantly effective filters. 

The DoG filter in this study was applied in both spatial domain and frequency 

domain. There was some overlap in enhancement effects between these two domains. As 

shown in Figure 8-2, the effect of DoG convolution with a kernel of 7x7 and a gain of 1 

is very close to the DoG FFT with a central spatial frequency of 4cpd and a gain of 4. 

This suggests that the convolution processing with a kernel of 7x7 has its primary effect 

at a central spatial frequency of 4cpd which is therefore the highest central spatial 

frequency that a convolution domain DoG filter would enhance in this study. Therefore, 

the DoG FFT filters used in this study enhanced spatial frequencies at a wider range of 

central spatial frequencies (from 0.5 to 8cpd) than the spatial domain DoGs.  
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Figure 8-2. The overlap effects of DoG convolution and DoG FFT. 

 

The current findings regarding Peli’s adaptive enhancement filter are basically in 

agreement with Peli’s studies of this filter (Fullerton, & Peli, 2006; Peli et al., 1991; Peli, 

1994a, 1994b). In Peli’s studies, the filter was effective for both single faces images and 

TV segments in improving visibility for people with visual impairment. In the current 

study, Peli’s adaptive enhancement was demonstrated to be effective mainly for the 

general scenes. For the single faces, only the atrophic ARMD group found this filter 

effective. The within-filter rankings showed that large kernel sizes (21 or 25) and smaller 

gains (2 or 4) were most often preferred by subjects. In the former study of Leat et al. 

(2005), Peli’s adaptive enhancement filter was found to be borderline effective for the 

image category of “faces” in perceived visibility improvement. However, this effect was 

not found for subjects with maculopathy (their Figure 4). The modified methodology may 

explain why more effective filters were found from the current study.  

DoG Convolution_7x7_gain1 DoG FFT_4cpd_gain4 
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It is found that high-pass/unsharp mask had no effect for single faces but was 

effective for both the subjects with atrophic ARMD and JMD with general scenes. This is 

in agreement with Leat et al. (2005) regarding the unsharp masking filer.  

Generally, for all preferred filters, the face images seem to be preferred with less 

gain/strength of filtering than the general scenes. This difference may be attributed to the 

spatial characteristics of single face images and general scene images. Chapter 5 has 

shown that single face images have lower amplitude spectra of spatial frequencies in 

three orientations (horizontal, vertical, and oblique) but have similar slopes (amplitude 

spectrum versus spatial frequency) compared to general scene images. This suggests that 

the single face images have less high-spatial frequency content than the general scenes. 

For people with maculopathy, the high spatial frequencies perception is more damaged 

than medium and lower spatial frequencies. Thus general scene viewing (with relatively 

more high spatial frequency information) should be more damaged than single face 

viewing (with relatively less high spatial frequency information) for people with 

maculopathy. Therefore, it is expected that the optimum digital filtering gains/strengths 

for single faces are smaller than those for general scenes.  

The subjects with atrophic ARMD and JMD behaved more similarly. They 

preferred smaller gains and bigger kernels than the subjects with exudative ARMD. This 

is probably related to the severity of pathology. Usually, exudative ARMD is more severe 

than the other two maculopathies.  
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The custom-devised filters based on supra-threshold contrast perception loss were 

found to be effective. This supports the concept that supra-threshold contrast may be 

more important to everyday visual function than contrast sensitivity because most 

everyday scenes contain spatial information that is supra-threshold. However, the 

custom-devised filters were not found to be superior to the generic filters. Thus 

compensating for the lost contrast at each band of spatial frequency for each individual is 

not better for enhancing image visibility than filters which are similar between subjects 

such as Peli’s adaptive enhancement and the contrast enhancement filters. 

8.5 Measurement of quantitative visibility improvement 

Digital filtered images do enhance the visibility of images for people with 

maculopathy. The question is how much improvement is generated. Peli et al. tried three 

methods to measure image visibility improvement quantitatively (Fine, Peli, & Brady, 

1998; Peli, 1999; Peli & Fine, 1996, Peli 1994 a, b; Peli, 2005). For single faces, a 

method of recognizing celebrity or non-celebrity faces was applied. The application of 

this method depends on subjects’ familiarity with those celebrities.  For general scenes, a 

method of answering questions about the tested images was applied. The results from 

these developed questions were not effective because of the “ceiling effect”. That is, the 

low vision subjects answered the questions quite accurately even with the un-enhanced 

images which renders many questions useless.  There was no room for improvement. 

Therefore, Peli’s methods have limitations. The current study reconsidered this question 

and demonstrated that visibility improvement can be measured quantitatively.  The two 
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most preferred filters were evaluated for 9 subjects who took part in the qualitative 

measurements. 

This section was done in two steps. The first step was to develop effective 

methods in a preliminary study. The second step was to apply these methods to the nine 

subjects to measure the improved visibility quantitatively.  

For face images, the recognition of facial expression is important in daily life. 

This section adopted this idea to measure the enhanced visibility quantitatively after 

filtering. A CD of full face images with seven different expressions named JACFEE was 

used.  All the expressions shown in the images had been previously tested by large 

numbers of subjects and shown to be accurately recognizable. The preliminary study 

testing subjects with normal vision was done to develop the effective methodology. Four 

emotions from the seven were chosen based on difficulty of recognition (for example, 

surprise and happiness were too easy to recognize) and the short memory of seniors (four 

emotions were easier for them to remember than 7 emotions). For general scenes, the 

measurement of the perception of image detail before and after filtering was found to be 

an effective measure. The preliminary study with subjects in normal vision was done to 

develop eight effective questions from each of the 7 images.  This ensures the “quality” 

of the questions. Additionally, all the answers were a certain numbers varying from 0 to 

11 or 12 which gave a wide span to measure change. Through the preliminary study, the 

developed methodology for single faces and general scenes avoided the “ceiling effect” 

that was demonstrated in Peli’s studies. 
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With the methods developed by the preliminary study, the image visibility 

enhancement with digital filtering was demonstrated in a quantitative way for the people 

with maculopathy. The results firstly showed that both face expression recognition and 

answering questions designed for the general scene images had good repeatability.  This 

suggests that the two methods are reliable. It was also confirmed that, when subjects 

prefer an image, it does lead to improved performance, i.e., people do actually see more 

accurate information in an image. However the higher rated perceived visibility 

enhancement does not necessarily correspond to higher quantitative enhancement. The 

top two highly rated filters from the section of qualitative measurement were compared 

and the statistical analysis showed that there was a significant difference between the two 

perceived rating scores across the 9 subjects. But the quantitative measurement results did 

not show this same trend (7 out of 9 did not show significance, 2 showed opposite 

significance). This suggests that the quantitative measurement may be more reliable in 

demonstrating visibility enhancement than the qualitative measurement. 

In general, the methodology developed in this section is repeatable, valid and 

sensitive. It could be applied in future studies. 

8.6 Implementation in the future 

From an application point of view, the generic filters allow images to be processed 

quicker than the custom-devised filters. Besides, the custom devised filters are 

individually based on the lost contrast perception due to maculopathy and require the 

prior measurement of contrast matching. If generic filters have a similar or better effect 

on image visibility compared to the custom-devised filters, it would not be worthwhile to 
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use custom-devised filters. The present results show that the custom-devised filters were 

not better at improving image visibility than the generic filters. The two most frequently 

effective filters for all three groups of maculopathy and the two categories of images 

were Peli’s adaptive enhancement filter and the contrast enhancement filter. 

8.7 Future work 

Based on the findings from the current study, several questions still remain to be 

answered. 1) There is still no filter that was preferred for subjects with exudative ARMD 

for face images. 2) Would quantitative testing reduce the number of filters that are shown 

to be effective for the whole population of people with maculopathy? The qualitative 

results show that there are some filters which are commonly preferred between groups. 3) 

Are the same filters effective for static and moving images?  

Three further studies could be done in the future. 

Study one: Identification of potential filters for people with exudative ARMD viewing 

single face images.  The results showed a larger variability in preferred filter ratings 

scores for the subjects with exudative ARMD. Therefore, one possibility is to test those 

borderline effective filters (such as the DoG convolution and the band-pass based on CM 

at 27.9%) quantitatively for a whole group of subjects with exudative ARMD for faces. It 

is possible that subjects with exudative ARMD did not rate the filters very highly as the 

image still looks poor to them, but they might gain improvement in performance. An 

alternative method would be to study the effects of phase in this population. 

Study two: Identification of effective filters for the whole population of maculopathy. 
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 If study one shows some effective filters for subjects with exudative ARMD 

viewing single face images and these filters are also preferred by subjects with atrophic 

ARMD and juvenile maculopathy, a commonly preferred group of filters would be tested 

using the quantitative method for all  groups of maculopathy. This might simplify the 

implementation of effective filters in low vision devices by reducing the number of 

filters.  

 If the three groups of subjects with maculopathy do not show any common 

preferences, the three eye disorders still need to be tested separately. Again quantitative 

assessment could be applied but for each maculopathy group separately. The best filter(s) 

for each group could be identified. 

Study three: Application of effective filters assessed from static images to video clips. 

Quantitative assessment could be applied to viewing video face clips and general scene 

video clips. 

 For the face clips, facial expression recognition could be investigated with and 

without filtering. For general scene clips, a series of questions could be generated similar 

to the current study. The subjects would be asked to answer these questions with and 

without filtering. 

The ultimate aim of the project is to implement these beneficial image processing 

techniques into actual vision aid devices to help people with maculopathy. Ideally these 

filters would be effective for static images (as viewed through a closed-circuit TV or a 

computer) and for moving images such as video viewed with DVD or video clips viewed 
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with a computer. A specialized application would be real-time images viewed through a 

head-mounted electro-optical device which includes magnification.  
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Chapter 9 

General Conclusions 

1. Contrast constancy was shown to exist in a larger group of naïve subjects of 

different ages, but did not perfectly compensate for the differences in contrast 

thresholds. The results are discussed in terms of the currently proposed models of 

contrast perception and are best explained by the model proposed by Näsänen et 

al (1998). 

2. A degree of contrast constancy was shown in maculopathy, although there were 

still deficits compared to control subjects. This is discussed in terms of either the 

gain of the visual system adjusting to compensate for CS losses (although 

incompletely) or contrast overconstancy, which is present in normal peripheral 

vision, helping to compensate for the CS loss. 

3. The amplitude spectra and slope in the three orientations can be used to describe 

the physical characteristics of images and to distinguish between different groups 

of images. Single faces were the most distinctive image group showing lower 

amplitude spectra in all three orientations. It was also shown that most everyday 

scenes have more spatial frequency power in the vertical and horizontal than 

oblique orientations.  

4. Eight filters were found to be effective: contrast enhancement, Peli’s adaptive 

enhancement, DoG convolution, high-pass/unsharp masking, Sobel edge 

enhancement, band-pass at 3.6% and 27.9%, and equi-emphasis band-pass filters. 
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Three filters were not effective: DoG FFT filter, the band-pass at contrast 

threshold, and peak-emphasis filter. 

5. The custom-devised filters derived from the supra-threshold contrast loss were 

effective, but were not better than the generic filters in visibility enhancement.  

6. The single full faces were preferred with smaller gains and bigger kernels than the 

general scenes. The subjects with atrophic ARMD and JMD preferred smaller 

gains and bigger kernels than the subjects with exudative ARMD. 

7. The methodologies developed for performance assessment were found to be 

effective in measuring changes of image visibility with digital filtering for people 

with maculopathy. The results of objective measurement were not directly 

proportional to those of the qualitative measurements. The methodologies 

developed in the current study meet the criteria to be a standard method to be 

utilized in future studies of image enhancement.  
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APPENDIX A 

Contrast Calibration for Sony Trinitron Monitor and 

Morphonome Software, used for the Contrast Threshold and 

Contrast Matching Studies 
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APPENDIX B 

 Spatial Frequency Calibration for Trinitron Monitor and 
Morphonome Software, used for the Contrast Threshold and 

Contrast Matching Experiment 
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APPENDIX C 

Examples of Filters 
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       Original (low-passed)                 High-pass/unsharp masking          Sobel edge enhancement 

        Contrast enhancement                     DoG convolution                                     DoG FFT 
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Peli’s adaptive enhancement                   Band-pass - 3.6%                       Band-pass - 27.9%  

                 Band-pass – CS                      Band-pass – Peak emphasis         Band-pass – Equi Emphasis 
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     Original (low-passed)                    High-pass/unsharp masking            Sobel edge enhancement 

Contrast enhancement                       DoG convolution                                      DoG FFT 
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Peli’s adaptive enhancement                   Band-pass - 3.6%                       Band-pass - 27.9%  

                  Band-pass – CTh                     Band-pass – Peak emphasis            Band-pass – Equi Emphasis 
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APPENDIX D 

 
Codes of the Generic Filters 

The codes of the generic filters were written by Gorden Deng from the System 

Designs Department, University of Waterloo. According to the ImageLab manual, the 

purpose of the convolution here is to enhance certain information in the original image, 

so the enhanced image should be added back to the original image, that is 

ce 21 λαλ +=  

where e  denotes the overlaid enhanced image, and 1λ and 2λ are the weights for 

overlaying requiring 121 =+ λλ . 

 

The above two equations can be combined into one equation if changing the convolution 

kernel h : 

he ′⊗=α  

where Ehh +=′ λ , E  has the same size of h and all its elements are zeros but the central 

element is one, and λ is a scale factor to determine how much the convoluted image is 

overlaid with the original image. 

 

Appendix D. 1  3x3 Unsharp Masking 

This functions by enhancing edge information in the original image. The convolution 

kernel h′ is 

 

Esh +×
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−−
−−
−−−

=′ 9/2
111
1121
111
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Where E represents the original image. s is the scaling value in the parameter scroll bar in 

Figure D-1. s = 1, 2, 4, or 8. 

 
Figure D-1. The scroll bar for the high-pass/unsharp masking and Sobel edge 

enhancement. 

 

Appendix D. 2  High-pass Convolution Filter 

This functions to enhance high frequency information in the original image.  

3x3 high-pass 

The convolution kernel (3 x 3) h′ is 

 

Esh +×
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−−

−
=′ 2/

010
141

010
  

Where E represents the original image. s is the scaling value in the parameter scroll bar in 

Figure D-1. s = 1, 2, 4, or 8. 

 

5x5 high-pass 

The convolution kernel (5 x 5) h′ is 
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Esh +×

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−−−
−−−−−
−−−−
−−−−−
−−−−−

=′ 14/

11111
11211
122821
11211
11111

 

Where E represents the original image. s is the scaling value in the parameter scroll bar in 

Figure D-1. s = 1, 2, 4, or 8. 

7x7 high-pass 

The convolution kernel (7 x 7) h′ is 

 

Esh +×

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−−−−−
−−−−−−−
−−−−−−−
−−−−−−
−−−−−−−
−−−−−−−
−−−−−−−

=′ 32/

1111111
1112111
1123211
12364321
1123211
1112111
1111111

 

Where E represents the original image. s is the scaling value in the parameter scroll bar in Figure 

D-1. s = 1, 2, 4, or 8. 

Appendix D. 3  3x3 Sobel Horizontal & Vertical Edge 

Enhancement  

This functions by enhancing edge information in the original image. The convolution 

kernel h′ is 
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Esh +×
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−
−=′ 3/

022
202
220

 

Where E represents the original image. s is the scaling value in the parameter scroll bar in 

Figure D-1. s = 1, 2, 4, or 8. 

There are two modes of this filter, RGB and HSB. s = 1, 2, 4, or 8. 

Appendix D. 4  Difference of Gaussians (DoG) Convolution Filter 

This functions by enhancing high information in the original image.  

7x7 DoG convolution 

The convolution kernel h′ is 

 

 

 

Where E represents the original image. s is the scaling value in the parameter scroll bar in 

Figure D-1. s = 1, 2, 4, or 8. 

 

9x9 DoG convolution 

The convolution kernel h′ is 

 

Esh +×

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−
−−−−−

−−−−
−−−−
−−−−

−−−−−
−−−

=′ 28/

0011100
0233320
1355531
13516531
1355531

0233320
0011100
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Esh +×

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−
−−−−−−−
−−−−−−−

−−−−−−
−−−−−−
−−−−−−

−−−−−−−
−−−−−−−

−−−

=′ 50/

000111000
023333320
032111230
131101010131
131102010131
131101010131

032111230
023333320
000111000

 

Where E represents the original image. s is the scaling value in the parameter scroll bar in 

Figure D-1. s = 1, 2, 4, or 8. 

11x11 DoG convolution 

The convolution kernel h′ is 

Esh +×

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−−−

−−−−−−−
−−−−−−−

−−−−−−
−−−−−−−
−−−−−−

−−−−−−−
−−−−−−−

−−−
−

=′ 52/

00000100000
00001110000
00233333200
00321112300
01311010101310
01311024101311
01311010101310
00321112300
00233333200
00001110000
00000100000

 

Where E represents the original image. s is the scaling value in the parameter scroll bar in 

Figure D-1. s = 1, 2, 4, or 8. 
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Appendix D. 5  Peli’s Adaptive Enhancement Filter 

This filter is described by Peli et al. (1982. 1984). A set of parameters should be set in the 

parameter area shown in Figure D-2. 

 
Figure D-2. Peli’s adaptive enhancement filter processing parameters used in this study 

were kernel size (9,15, 21, or 25), slope (0.9), start Value (13), and gain (2, 4, 8, or 16). 

 

Appendix D. 6.  Contrast Enhancement Filter 

This functions by enhancing contrast. The formula for contrast enhancement is as 

follows: 

100/)]([ ααλα meane −+=  

where e  is the enhanced image, α is the original image, )(αmean is the mean pixel 

values of the original image, and λ is the scale adjusted by the scroll bar in the parameter 

area (Figure D-3). The units are in percentage. The value of λ gives the power of the filter. 

The bigger the λ value, the stronger the filtering is.  

13 



 

 214

 
 

Figure D-3. The scroll bar for the contrast enhancement. The unit is in percentage. 

There are two modes of this filter, RGB and HSB. λ = 20, 40, 80, 160% in this study. 

Appendix D. 7  DOG FFT Filter 
 

With this filter, certain spatial frequencies are enhanced.  A set of parameters should be 

set in the parameter area shown in Figure D-4. 

 
Figure D-4. Examples of DoG FFT filter parameters and filter profile. 
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Frequency (cpi) 
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Direct current (DC) gain = 1 (to maintain unchanged luminance) 

Maximum gain = 2, 4, 8, 16 

Maximum frequency = 0.5, 1, 2, 4, 8 cpd (7, 14, 28, 56, 112 cycles per image for half-

sized image or 14, 28, 56, 112, 224 cycles per image for full-sized image) 

Cutoff frequency = 15 cpd (210 cycles per image for half-sized image or 420 cycles per 

image for full-sized image). The cutoff frequency is the frequency at half-height. 

 

Appendix D.8 Low-pass Filter 

 

A Gaussian function with zero mean and standard deviation f is used to generate 

the low pass filter lh . An example of a low pass filter with cpif 100= is shown in Figure 

D-5 

 

 
 

Figure D-5. Low pass filter with cpif 100= (image size is 600x800) 

 

A cutoff frequency f should be set in the parameter area shown in Figure D-6. 



 

 216

 

 
 

Figure D-6. Cutoff frequency of low-pass filter
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