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Abstract 
 

Post translational modifications in histone proteins are transmissible changes that are not 

coded for in the DNA sequence itself but have a significant affect in the control of gene 

expression. Eukaryotic transcription is a regulated process, and acetylation plays a major 

role in this regulation. Deranged equilibrium of histone acetylation can lead to alteration 

in chromatin structure and transcriptional dysregulation of genes that are involved in the 

control of proliferation, cell-cycle progression, differentiation and or apoptosis. Evidence 

shows that high glucose conditions mimicking diabetes can increase histone acetylation 

and augment the inflammatory gene expression. Recent advances also highlight the 

involvement of altered histone acetylation in gastrointestinal carcinogenesis or 

hyperacetylation in amelioration of experimental colitis. However, the role of histone 

acetylation under obesity conditions is not yet known. Therefore in the present study, 

western blot analysis in the liver of Zucker obese versus lean rats was performed to 

determine the pattern and level of H3 and H4 acetylation (both in nuclear and 

homogenate fractions) at specific lysine (K) in pathological state of hepatic steatosis The 

same technique was also applied in the liver of obese rats fed higher amounts of vitamin 

B6 (OH) versus those fed normal amounts of vitamin B6 (ON) to assess if hyper-

acetylation can be a protective response to hepatic steatosis. In both experimental models, 

it was also of interest to elucidate the expression of anti- and pro- apoptotic factor Bcl-2 

and Bax in respect to histone acetylation. 

It was observed that, in liver homogenate fractions in control animals (LC/OC), 

there was a higher level of histone H3 acetylation at (K9, K14) and H4 acetylation at K5 
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in the obese animals. In contrast, the nuclear level of H3 and H4 acetylation at the same 

lysine residues was considerably higher in the lean and lower in the obese animals. Obese 

animals contained lower liver preneoplastic lesions as well as liver weight as a result of 

higher amounts of vitamin B6, had significantly higher H3 acetylation at K9 and K14 and 

H4 acetylation at K5, in both homogenate and nuclear fractions. However, histone 

acetylation was not detected for histone H4 at lysine 12 (K12) in either control group 

(LC/OC) or obese with different B6 diet group (OH/ON). Nevertheless, global histone 

H3 and H4 acetylation in both homogenate and nuclear fractions, was slightly higher in 

the lean rats and obese rats fed higher amounts of B6. By using the western blot 

technique, the level of anti- and pro- apoptotic Bcl-2 and Bax were also evaluated. The 

moderately higher level expression of anti-apoptotic Bcl2 protein was found in lean 

animals, whereas the expression of pro-apoptotic Bax was significantly higher in obese 

animals. Furthermore, anti-apoptotic Bcl2 protein expression was slightly higher in the 

obese rats fed normal amounts of B6 diet; but, pro-apoptotic Bax was higher in the obese 

rats fed higher amounts of vitamin B6.  

This is the first study which shows that hyperacetylation of histones in liver nuclei 

can be correlated with amelioration of hepatic steatotis. Histone acetylation and B6 rich 

diet might be involved in the regulation of biological availability of key apoptotic 

proteins, which, in turn, can possibly modify the severity of the disease. 
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Chapter 1: 

Introduction 

1.1   Epigenetics 

Epigenetics is the study of reversible heritable changes in gene function that occur 

without a change in nucleotide sequence of the DNA; therefore, gene function is not only 

determined by the DNA code but also by epigenetic phenomena. 

Over the past fifteen years, it has been shown that gene expression can be regulated 

by the proteins called histones, which help packing genomic DNA into the nucleus and 

also by enzymes that modify both histones and the DNA [1, 2]. The two main 

mechanisms in the epigenetic regulation of gene expression involve DNA methylation 

and histone modifications. The study of these mechanisms is important since the change 

of gene expression is implicated in numerous human disorders and diseases, including 

obesity, diabetes, cancer and developmental abnormalities [3]. 

 

1.2   Histones and Chromatin Structure 

In 1884 histones were discovered by Albrecht Kossel. The word “histone” comes 

from the German word of “Histone”, of uncertain origin and perhaps from Greek word 

histanai or histos. Until the early 1990s, histones were known just as packing material for 

nuclear DNA. The regulatory functions of histones were discovered during the early 

1990s. 

It is now known that histones are small basic architectural proteins of 102-135 

amino acids that package the genomic DNA of eukaryotic organism into chromatin which 

is a dynamic macromolecular complex [4]. The basic repeating units of chromatin, the 
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nucleosome, is composed of two super helical turns of DNA containing approximately 

146 base pairs which wrap around an octamer of the four core histones H2A, H2B, H3, 

and H4 with the addition of linker DNA and histone H1. H1 determines the level of DNA 

condensation [5]. These highly conserved histone proteins play an important role in 

determining the structure and function of chromatin which can be dynamically changed. 

Chromatin condensation provides an extensive barrier to the nuclear machinery that 

drives processes such as replication, transcription, or DNA repair; while chromatin 

decondensation facilitates those processes. Each core histone protein has two domains: a 

histone fold domain or globular domain, which is involved in histone-histone interactions 

as well as in wrapping DNA in nucleosomes; and a more flexible and charged amino-

terminal ‘tail’ domain of 25-40 residues [5]. The tail lies on the outside of the 

nucleosome where it can interact with other regulatory proteins and with DNA. The basic 

N terminal tails of the core histones are subject to various post-translational 

modifications. The functional effects of tail modifications are dependent on the specific 

amino acids that are modified. 

The selected amino acid residues of the core histones (H3-H4)2 tetramer are 

modified by acetylation (AC), methylation (Me), and phosphorylation (P); and H2A-H2B 

dimers are modified by acetylation, phosphorylation, ubiquitination (Ub), 

multiubiquitination, and ADP-ribosylation (Figure 1). 

The function of these modifications is the focus of attention due to the possibility 

that the nucleosome, with its modified tail domains, is not only a packer of DNA but also 

a carrier of epigenetic information that indicates both how genes are expressed as well as 

how their expression patterns are maintained from one cell generation to the next. Of 
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such modifications, acetylation and deacetylation have generated the most interest. Also 

acetylation was the first modification that had been reported to have correlation with gene 

activity [7]. 

 
Figure 1: Schematic presentation of the core histone protein. 

The enzymes catalyzing reversible acetylation are shown histone acetyltransferase, HAT A; histone 
deacetylase, HDAC. The core histones are shown as a H2A-H2B dimmer and H3-H4 tetramer. Histone 
modification type are shown as acetylation (Ac), methylation (Me), phosphorylation (P), ubiquitination 

(Ub), (Davie et. al., 1998) 
 

1.3   Histone Acetylation, Deacetylation and Chromatin Structure 

In order to understand the role of acetylation in transcriptional regulation, it would 

be beneficial to know what structural changes may occur within chromatin as a result of 

acetylation and/or deacetylation. Currently two theories exist that postulate how histone 

acetylation may facilitate transcription. The first theory proposes that acetylation 

neutralizes the positive charge on histones, thereby reducing the affinity between histones 

and DNA, and relaxing chromatin [8]. 
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Figure 2: Schematic presentation of chromatin structure regulating transcriptional activity. 
 Histone acetylation (Ac) by acetyltransferase (HAT) makes chromatin to unfold. Therefore transcription 

factor (TF) can have access to promoter regions of DNA. (E. Di Gennaro et al.2004) 
 

Therefore, histone acetylation facilitates the access of Transcription Factors (TFs), 

and RNA polymerases to promoter regions of DNA [9] and allows transcriptional 

activation (Figure 2).  

A second theory suggests that covalent modification of histones provides an 

epigenetic marker for gene expression known as “histone code” [10] or ‘epigenetic code’ 

[12, 13]. In other words the level of affinity of chromatin for chromatin – associated 

proteins may depend on particular pattern of histone modifications in a cell which 

determines if chromatin is in an active “euchromatin” or silent “heterochromatin” state. 

Histone tails may be involved in the arrangement of higher order chromatin 

structure and acetylation may facilitate its disruption. Acetylation of H3 and H4 tails, the 

dominant factor in maintaining chromatin conformation, may disrupt higher order 

structure rather than destabilize the histone - DNA interaction within the nucleosome [6].  
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A positive charge on lysine residues of core histones is restored by histone 

deacetylation, permitting chromatin to change into a highly condensed, transcriptionally 

silent conformation or heterochromatin. Therefore, in most cases, histone acetylation 

permits transcription while histone deacetylation represses transcription. Nevertheless, in 

some cases transcriptional repression occurs as a result of histone acetylation which can 

be possibly explained by the histone code hypothesis. The balance between histone 

acetylation/deacetylation is controlled by the competitive activities of 2 superfamilies of 

enzymes: histone acetyltransferases (HATs) and histone deacetylases (HDACs) [6, 9]. 

 

1.4   Histone Acetylation and Gene Transcription 

The very first indication of association between acetylation and transcription came 

from the observation of Allfrey and co-workers who proposed that in actively transcribed 

regions of chromatin, histones tend to be hyperacetylated, whereas in transcriptionally 

silent regions histones are hypoacetylated [7]. Many additional studies have solidified 

this proposal by showing that hyperacetylated core histones are associated with 

transcriptionally active chromatin [14-18]. 

Two independent lines of evidence exists that suggest acetylation and transcription 

may be mechanistically and physiologically related. First, in yeast, altered patterns of 

transcription due to the mutation of H4 lysine residues have been reported. Those 

mutations prevented the acetylation of the H4 tail [19]. Second, treatment of mammalian 

cells with effective inhibitors of histone deacetylase activity, such as trapoxin and 

trichostatin A, resulted in augmented expression of a diversity of genes [20]. However, 

after identification of the structure and function of a variety of histone acetyltransferases 
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and deacetylases the molecular mechanisms of these processes became clearer. The 

interesting part of these findings is that numerous HATs and HDACs are proteins initially 

characterized as being involved in transcriptional regulation.  

 

1.5   Histone Acetyltransferase (HAT) 

An early indication that histone acetyltransferases (HAT) are involved in 

transcription came from the discovery of a protein p55 in Tetrahymena [21]. P55 is 

related to yeast protein, GCN5 (transcriptional coactivator/adapter), and was found to 

acetylate histones [19]. Currently, numerous co-activator proteins are known to have 

HAT activity [22]. HAT which links chromatin modification to gene activation, is the 

catalytic subunit of a multi-subunit protein complex [12] that catalyzes the transfer of an 

acetyl group from acetyl-CoA to the specific lysine residues on the N-terminal regions of 

the histones. All HATs contain an acetyltransferase domain, and a shared domain that can 

be used to group HATs into subfamilies [20]. Sequence analysis of HAT proteins shows 

that they contain a high sequence similarity within families but little to no sequence 

similarity between families [21]. Furthermore, each HAT family has a distinct substrate 

preference, and different families are in different functional contexts. Typically, HATs 

acetylate global histones or nucleosome substrates. In most cases, the ability to acetylate 

nucleosome substrates reflects a role for HAT in chromatin modification. The ability of 

HATs to acetylate only global histones may reflect a role in nucleosome assembly [22]. 

There have been five families of histone acetyltransferases reported which contain 

more than twenty enzymes.  
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1.5.1 CBP/P300 

CBP/P300 (CREB Binding Protein) consists of two highly homologous 

transcriptional coactivators that participate in many physiological processes, including 

proliferation, differentiation and apoptosis [23]. The P300/CBP family is found in a 

variety of multicellular organisms, but it does not exist in yeast. CBP was originally 

identified as a coactivator for the transcription factor CREB [24, 25] and may be critical 

for the normal development and functioning of the hematopoietic system [25]. The 

CBP/P300 family of enzymes is more efficient and has less substrate specificity than the 

other HAT enzymes since recombinant CBP/P300 has been shown to acetylate all four 

histones in global-histone form as well as in nucleosomes [24].  

Furthermore P300 was isolated as a target of the adenoviral transforming protein 

E1A [24, 26] which form viral oncoprotein complex that causes a loss of cell growth 

control, enhances DNA synthesis and blocks cellular differentiation [27].  

 

1.5.2 The GNAT Family 

The GNAT (GCN5- related N-Acetyltransferases) superfamily consists of HAT’s 

that show a sequence and structural similarity to yeast GCN5 [10] ‘contains proteins that 

share one or several conserved sequence motifs [28]. In particular Gcn5 homologues 

have been identified in a wide range of eukaryotes. Humans express two Gcn5-like 

proteins including: Gcn5 and PCAF (p300/CBP Associated Factor) both of which can 

interact with p300/CBP [29], and have a role in transcriptional regulation and cell cycle 

control. 
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1.5.3 The MYST Family 

The MYST family is named according to its  members, (MOZ, YBF2/SAS3, SAS2, 

Tip 60). The MYST family of HAT proteins has diverse biological functions in cell-cycle 

and growth control, transcription activation, positive transcriptional silencing (Sas2 and 

Sas3) [30], formation of leukemic translocation products (MOZ and TIF2) [31,32], 

dosage compensation in Drosophila (MOF) [33], and DNA repair [34]. The MOZ 

(monocytic leukemia zinc finger protein) is a human proto oncogene that has a homology 

with yeast Sas3 which is the catalytic subunit of the nucleosomal H3-specific HAT 

complex, NuA3 [35]. The human MOZ protein stimulates acute myeloid leukaemia 

AML1-mediated transcription [36].  

 

1.5.4 Nuclear Receptor Coactivator 

This family facilitates the assembly of basal transcription factors into a stable pre-

initiation complex which in turn stimulates gene expression [37]. 

Some of the human coactivators such as ACTR, SRC-1 and TIF2, which are 

involved in certain types of leukemia, can acetylate global or nucleosomal histones H3 

and H4 by interacting with nuclear hormone receptors [38, 39]. 

 

1.5.5 TAFII250 

TAFII250 (TBP-associated factor) is a subunit of the TFIID complex, a general 

transcription factor (GTF) that provides a critical first step in transcription initiation. 
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1.6   Histone Acetylation and Disease 

It is hypothesized that different diseases can be the result of hyperacetylation of 

chromosomal regions that are generally silenced or deacetylation of chromosomal regions 

that are generally actively transcribed; therefore, alterations of HATs and HDACs at the 

genomic level disturb the equilibrium of histone acetylation and deacetylation which in 

turn acts as a key factor in regulating gene expression. Review of some of the diseases 

associated with aberrant HAT and / or HDACs activity can solidify this hypothesis. 

 Mutations in the human CBP gene have been reported to be associated with 

Rubinstein-Taybi syndrome (RTS) which is a developmental haploinsufficiency disorder 

with an increased risk of cancer development [1, 28, 40]. 

In human cancer, spontaneously occurring mutations in the P300 gene have been 

reported [26, 41] which reinforce the idea that indicate ‘P300/CBP activity can be under 

abnormal control in human disease, particularly in cancer, which may inactivate a 

p300/CBP tumor-suppressor-like activity [27]’. 

PCAF can interact with two important cell cycle regulators: E2F and p53. 

Transcription factor E2F induces S-phase specific gene expression and is involved in 

promoting S-phase-entry. In contrast, p53 acts as a tumor suppressor protein by inhibiting 

cell cycle progression and S-phase entry. Induction of p53 usually leads to post-

translational modifications of the protein [42]. Several reports have been shown that 

acetylation of the C-terminal regulatory domain is involved in regulating activity of p53 

[43, 44]. Acetylation of this site is observed after DNA damage in vivo, induced p53 and 

caused cell cycle arrest or apoptosis; therefore, over expression of PCAF can cause 

growth arrest [28]. On the other hand acetylation of E2F increases the transcriptional 
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activity of E2F in vivo and stabilizes the E2F protein [28]. Therefore, PCAF can be 

involved in two opposing scenarios: one is promoting of cell cycle progression by 

activating E2F, the other is cell cycle arresting by activating p53. Thus, significant effects 

on cellular proliferation and tumor formation can be the result of PCAF mutation. 

 

1.7   Histone Deacetylases (HDAC) 

The identification of several histone deactylase (HDAC) enzymes [45] whose 

activities have been correlated with transcriptional repression came almost in parallel to 

the discovery of HAT enzymes. The histone deacetylases are classified into three classes 

[45]. Class I contains HDAC 1-3, 8 and 11 which are related to the yeast Rpd.3 histone 

deacetylases. [45] Class II contains HDAC 4-7, 9 and 10 which are related to the yeast 

Hda1 histone deacetylases [46]. Class III, is also known as the Sir2 (silent information 

regulator)-like deacetylases family, consists of 7 genes related to yeast Sir2 and have 

nikotinamideadenine dinucleotide (NAD)+ - dependent deacetylase activity [46]. 

 

1.8   Histone Deacetylase Inhibitors (HDACI) 

Effective histone deacetylase inhibitors can cause hyperacetylation of nucleosomal 

histones and histone deacetylation repression [47] which affects cell growth, 

proliferation, differentiation, and/or apoptosis [1]. HDACI can be divided into four major 

classes based on their chemical structures (Table 1). Even though, all classes of HDACI 

promote acetylation, each individual HDACI has a different effect on the stimulation of 

differentiation and/or apoptosis [48]. Short-chain fatty acids, valporic acid and Sodium 

butylate, non-specifically react with enzymes and inhibit deacetylation with millimolar 
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concentration which is a relatively high dose [48, 49]. It is important to note that only 

these two fatty acids have been approved, so far, for safe clinical use [50]. The 

hydroxamate class of HDACI, including Trichostatin A (TSA),  suberoylanilide 

hydroxamic acid (SAHA),  Suberoyl bis-hydroxamic acid (SBHA), pyroxamide, and 

Oxamflatin,  inhibit deacetylation selectively and are effective at a lower concentration 

dose (in the micro-nano range) [51]. For example TSA and SAHA stimulate reversibly 

about 2% of specific gene promoters [52] and induce differentiation both in vitro and in 

vivo [53].   

The cyclic tetrapeptide class contains Trapoxin, apicidin, and depsipeptide 

(FR901228). Depsipeptide is a natural product. The trapoxins have been isolated from 

fungal metabolites as cyclic tetrapeptides and they irreversibly inhibit HDAC. Their 

inhibitory effects are obtained at nanomolar concentration [51]. The last class of HDACI 

are composed of synthesized benzamid derivatives MS-275 and CI-994; CI-994 has an 

effective suppressive activity on cancer cell proliferation [52]. 

 

Table 1: Overview of histone deacetylase inhibitors. 

 

(Mel et al, 2004) [11] 
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1.9   Apoptosis 

For the first time, the term “apoptosis” or “program cell death” [53] was proposed 

by Kerr et al. to describe the “falling off” of leaves from trees [54] which coincides with 

the morphology of apoptosis. Characteristic features of apoptosis include shrinkage of 

cells, blebbing of the membrane, condensation of the nucleus and finally formation of 

apoptotic bodies [55]. Apoptosis plays an important role in various processes such as 

normal development, differentiation, and homeostasis. Apoptosis is involved in 

maintaining balance between cell division and cell death (apoptosis) and is an essential 

key for maintaining of these processes. Therefore, dysfunction or deregulation of the 

apoptotic program leads to many pathological conditions including cancer [56]. 

 

1.9.1 Bcl-2 Family 

The Bcl-2 family of proteins is involved in enhancement or suppression of 

apoptotic pathways by releasing pro- and anti-apoptogenic factors-such as cytochrom c 

from the mitochondria in which caspase activity occurs [57]. Bax, Bad, Bim, Bid, and 

Bik are pro-apoptotic and Bcl2 and Bcl-xL are anti-apoptotic factors, which together 

regulate apoptotic pathways. Bcl-2 dimer suppresses the apoptotic pathway by binding to 

Apaf-1 (Apoptotic protease activating factor-1) and preventing it from activating 

caspase-9, whereas Bax dimer causes an influx of ions through mitochondrial membrane 

and promotes release of cytochrome C into the cytosol which then binds to Apaf-1 and 

activates the downstream caspase cascade activity. Heterodimerization of anti-apoptotic 

Bcl-2 proteins, such as Bcl-2, with pro-apoptotic Bax suppresses apoptosis [58]; thus, the 

ratio of pro-apoptotic Bax to anti-apoptotic Bcl-2 plays an important role in 
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determination of cell fate. Tumor cells can either be controlled by oncogenes which may 

be activated on the epigenetic level via histone acetylation or they can contain inactivated 

tumor suppressor genes which may be silenced via histone deacetylation mechanisms. 

Therefore, gaining insight into the relationship between apoptosis factors and histone 

acetylation levels and/or patterns of histone acetylation can sire a  better understanding of 

genes controlling cell proliferation and cell death. 

 

1.10   Chromatin Remodeling under High Glucose Condition  

Evidence shows that high glucose (HG) conditions, mimicking diabetes, can 

activate the transcription of nuclear factor Kappa B (NF-κB) -regulated inflammatory 

genes [59]. It was shown by in vitro experiments with monocyte cell culture that high 

glucose (HG) conditions lead to the activation of the transcription factor NF-κB and 

considerably amplify the expression of a number of inflammatory chemokines and 

cytokines such as tumor necrosis factor-α (TNF-α), and monocyte chemoattractant 

protein-1 (MCP-1) [60, 61]. NF-κB regulates expression of more than 100 genes 

including inflammatory genes such as TNF-α, and cyclooxygenase-2 (COX-2). NF-κB is 

a heterodimer that consists of 65 and 50-kDa subunits (p65 and p50), which is bound to 

its inhibitor, IκB, in the cytoplasm. P65 is a key transcription activating component of 

NF-κB. Recent studies by F. Miao et. al (2004) have shown the occurrence of chromatin 

rearrangements at the promoters of inflammatory genes in vivo in monocytes under 

diabetic conditions [59]. It was noted that HG culture of monocytes could specifically 

enhance the recruitment of p65 and coactivator HATs such as CBP and PCAF to the 

promoters of inflammatory genes (TNF-α, COX-2) as well as an increase in the 
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acetylation of nucleosomal factors histone H3 lysine 9 (K9), and lysine 14 (K14) and H4 

(K5, K8, K12). In vivo relevance has been clarified by examining histone acetylation 

patterns in monocytes from diabetic patients [59]. These results demonstrate high glucose 

condition mimicking diabetes can have an effect on in vivo chromatin remodeling in both 

cell culture and in patients by increasing acetylation of specific lysine residue from 

histone 3 and 4 and by activation of transcription factor NF-κB and HAT at the promoters 

of inflammatory genes [59]. 

 

1.11   Anti-inflammatory Effect of Histone Hyperacetylation  

In 2006, the role of acetylation in inflammatory bowel disease was investigated  

indirectly by evaluating various classes of histone deacetylases (HDAC) inhibitors. In 

this study, colon-specific anti-inflammatory effects of (HDAC) inhibitors were evaluated 

for their in vitro capacity to suppress cytokine production and to induce apoptosis and 

histone acetylation in mice, causing colitis [62]. So far, it is known that alteration in gene 

transcription is a common mechanism of HDAC inhibitors achieved by increasing the 

accumulation of hyperacetylated histones H3 and H4 which affects chromatin structure 

and, thereby, the relationship of the nucleosome and the gene promoter elements [63]. It 

is also known that HDAC inhibitor is associated with a considerable suppression of pro-

inflammatory cytokines; therefore, it was proposed that it contains an anti-inflammatory 

property [64]. Suberyolanilide hydroxamid acid (SAHA) has potent anti-inflammatory 

activities, both in vitro and in vivo [64] ; and the anti inflammatory property of HDAC 

inhibitors are until now restricted just to SAHA and trichostatin A (TSA), both members 

of the class of hydroxamic acids. Glauben R. et. al [62] not only confirmed the anti- 
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inflammatory properties of HDAC inhibitor, which resulted in a dose-dependent 

suppression of cytokine synthesis and apoptosis induction, but also announced a dose-

dependent increase in histone 3 acetylation at the site of inflammation under VPA 

treatment [62]. Therefore, in 2006, it was shown that histone hyperacetylation is 

associated with amelioration of experimental colitis in mice [62]. Even though this study 

demonstrated that HDAC inhibitors have strong anti-inflammatory effects in 

experimental colitis caused by hyperacetylation of H3, it still remains to be identified 

whether the anti-inflammatory efficacy would also reduce the incidence of 

gastrointestinal malignancies. 

 

1.12   Rat Model of Obesity (Zucker Obese Rats) 

Independent or combined actions of genetic and environmental/epigenetic factors 

can be involved in the development of many diseases including cancer [65]. Appropriate 

animal models can help us understand chromatin remodeling and the role of 

environmental factors in multi-step development of cancer. Results obtained from animal 

studies are a necessary first step in investigations relevant to the human population. In 

Canada and many other countries, obesity is one of the important public health problems 

and it is increasing in both young and adult populations [66]. Obesity is a premorbid 

condition resulting from either lifestyle factors or genetic [67]. Zucker obese animals 

have hyperglycemia, hyperinsulinemia, hyperphagia, and hypercholesterolemia [65]. 

They contain a sustained inflammatory state as well as an increased sensitivity to colon 

cancer [66, 68]. In addition Zucker obese rats have enlarged liver and also exhibit hepatic 

steatosis (fatty liver) in their adulthood [69] compared to their lean counterpart. However, 
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hepatic steatosis in obese rats is similar to those noted in obese humans. Zucker lean 

counterparts are considered as normal individuals. In a recent study conducted by A. 

Kular, in our laboratory, it was noted that a high B6 diet reduced liver weight as well as 

the number of preneoplastic lesions in the Zucker obese rats. It has been suggested that a 

high B6 could serve as an antioxidant and it could reduce the levels of oxidative stress 

markers. 

Therefore, all of the above information made Zucker rats to be an excellent 

experimental model to test present study. To meet the overall objective of this project two 

studies performed. In the following section, the both objectives of this work will be 

described and the studies performed to meet each objective will be outlined. 

 

1.13   Objective of the Research 

The overall objective of this research was to elucidate the pattern and level of H3 

and H4 acetylation (both in nuclear and homogenate fractions) in pathological state of 

hepatic steatosis and determine if hyper-acetylation can be a protective response to 

hepatic steatosis. It was also of interest to assess the expression of anti- and pro- 

apoptotic factor Bcl-2 and Bax. 

In the present study, it is hypothesized that hyperglycemic and pro-inflammatory 

conditions in Zucker obese rats will have strong effect on histone acetylation and that 

tissue extracted from Zucker obese rats would have increased histone acetylation.  

Zucker obese rat model and western blot assay were effectively used to demonstrate, for 

the first time, the effect of histone acetylation in the pathogenesis of hepatic steotosis. 

associated with obesity. 
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Chapter 2:  

Materials and Methods 

2.1   Materials 

To meet the objectives mentioned above, tissues were obtained from previous 

studies conducted in our lab. A brief description of experimental approaches and 

methodology are described below. 

Unless otherwise stated, all chemicals, reagents, monoclonal Anti-α-tubulin 

antibody and β-actin were purchased from Sigma Chemical Co., (Ottawa, Ontario). Some 

of the primary antibodies were purchased from Upstate Biotechnology (Now part of 

Millipore corporation, Billerica, MA), all others antibodies were from Santa Cruz 

Biotechnology (Santa Cruz, CA). 

 

2.2   Animals, Diet, Body Weight and Termination for Objective 1 

Twelve female rats [6 Zk-Ob (fa/fa) and 6 Zk-Ln (Fa/Fa)], at the age of 28 days 

were purchased from Charles River Breeding Laboratories (Montreal, CA). Animals were 

housed in polypropylene cages lined with woodchip bedding and stainless steel wire 

mesh lids in the Biology department animal facility Environmental conditions were 

controlled for climate and temperature with 12 h light/12 h dark cycle. All animals were 

cared for according to guidelines of the Canadian council on animal care and the office of 

Research Ethics, University of Waterloo (AUPP: 04-17). 

Experimental diet was based on a low fat diet semi-synthetic AIN-93G standard 

diet formula with 5% corn oil by weight. Twice a week diets were prepared. Every day 

food cups were filled and food intake was monitored. Body weights were monitored 
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weekly from the initial ten weeks of the study and at termination day. Upon the end of an 

experimental period, at the tenth week, animals were terminated by CO2 asphyxiation. As 

a general observation any pathological abnormality was recorded. Weights of liver, 

kidney, spleen, and heart were recorded for both lean and obese rats, and then samples 

were frozen for future biochemical analysis at -80˚C. 

 

2.3   Animals, Diet, Body Weight and Termination for Objective 2 

Fifty two female rats [30 Zk-Ob (fa/fa) and 22 Zk-Ln (Fa/Fa)], at the age of 6 

weeks were purchased from Charles River Breeding Laboratories (Montreal, CA). 

Animals were housed in polypropylene cages lined with woodchip bedding and stainless 

steel wire mesh in the animal facility. Environmental conditions were controlled for 

climate and temperature with 12 h light/12 h dark cycle. All animals were cared 

according to guidelines of the Canadian Council on Animal Care and the Office of 

Research Ethics, University of Waterloo, (AUPP: 04-17). 

Experimental diet was based on a low fat diet semi-synthetic AIN-93G standard 

diet formula with 5% corn oil by weight. Food cups were filled every day with fresh diet. 

One animal group received a low fat diet containing the recommended amount of vitamin 

B6 for comparison and investigation of the effect of high B6 on acetylation pattern, the 

other group of Zucker obese rat was fed a diet containing five times the recommended 

amount of vitamin B6 (7mg versus 35mg/kg of diet). 

Following a two week period which included feeding of the experimental diet, 

animals were subcutaneously injected with the colon specific carcinogen, AOM, diluted 

in 0.9% saline at a dose of 10 mg/kg body weight. The animals received a second 
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injection, two weeks after the first one. Animals were given free access to the 

experimental diets during and after the injection period. Body weights were monitored 

weekly for 6 weeks after the final AOM injection and at termination. A summary of the 

study design is detailed in Figure 3. 

 

 
 

Figure 3: Schematic representation of the experimental protocol for effect of supplementary vitamin 
B6 in the Zucker obese rat model. 

 

 

2.4   Sample Preparation for In vivo Analysis 

2.4.1 Preparation of Whole Extract from Liver Tissue 

One gram of Zucker rat liver was diced and mixed with 4 mL of ice-cold RIPA 

buffer (50 mM Tris-HCl, 1% NP-40, 0.25% Sodium deoxycholate, 150 mM NaCl, 1 mM 

EDTA, 1 mM NaF) and freshly added protease inhibitors ( 1  μg/mL of Aprotinin, 
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Leupeptin, Trypsin Inhibitor, Sodium Orthovandate). This mixture was homogenized 

with PT2100 Polytron homogenizer and transferred into microcentrifuge tubes. 

Cell debris and lipids were removed through centrifugation at 15krpm for 20 min at 

4◦C. The middle layer of this lysate was collected into pre-chilled Eppendorf tubes and 

stored in -80˚C freezer. Equal amount of protein were used for western blot analysis. 

 

2.4.2 Nuclear Extraction 

Nuclear Fraction from liver tissue was collected using nuclear extract kit (Active 

motif, Carlsbad, CA) according to the manufacturer’s protocol. The 1X hypotonic buffer 

and 10mM DTT were made out of 10X hypotonic buffer and 1M DTT respectively. One 

gram of liver  from each group was chopped and mixed with 3 ml of 1X hypotonic 

buffer, 3μl of 1M DTT and 3μl of provided Detergent. This mixture was homogenized 

with a PT2100 Polytron homogenizer and incubated for 15 minutes on ice. After 

incubation, cells were centrifuged at 850 x g for 10 minutes at 4˚C and the supernatant 

was collected. At this point, most of the cells were not yet lysed. Therefore 1ml of 1X 

hypotonic buffer was again added to the each remaining pellet and vortexed until 

dissolved, then incubated for 15 minutes on ice. 50 μl detergent was added to each and 

then vortexed at highest setting. Then suspensions were centrifuged at 14,000 x g for 30 

second in a microcentrifuge pre-cooled to 4˚C. Tubes were placed on ice while the 

supernatant (cytoplasmic fractions) was mixed with the supernatant that earlier had been 

collected and was then aliquoted and stored at -80˚C. Remaining pellets each were 

resuspended in 100 μl of Complete Lysis Buffer (10 μl of 10 mM  DTT, 89 μl of lysis 

Buffer, 1μl of Protease Inhibitor Cocktail) and vortexed at the highest setting for 10 
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seconds. The Eppendorf tubes containing this mixture were laid horizontally on ice in an 

ice bucket and were rocked on a rocking platform at maximum speed for 30 minutes. 

Centrifugation at 14,000 x g for 10 minutes at 4˚C was again applied. Supernatants 

(nuclear fraction) were aliquoted in pre-chilled tubes and stored at -80˚C for further 

analysis. The purity of nuclear fractions was checked by probing with anti-tubulin 

antibody which is a cytosolic protein. 

 

2.5   Western Blot Analysis 

2.5.1 Protein Assay 

Bradford Assay was used to determine the concentration of protein. A standard 

curve was plotted using several known concentration of bovine serum albumin (BSA). 

The standards were mixed with Bradford reagent (10% CBB G-250, 85% phosphoric 

acid, and 5% ethanol) in 1:50 dilution. Duplicates of each protein sample were assayed in 

a 96 well plate; after 5 minutes of incubation the plates were measured with Bio-Rad 

3550-UV Micro plate Reader at 595 nm. 

 Once the absorbance readings were recorded, a standard curve was plotted using 

the concentration on the x-axis and the absorbance on the y-axis. The program Excel 

provided an equation, which was then used to determine the concentration of unknown 

proteins. With the other words BSA standards were used to construct a standard curve 

that was used to determine the concentration of each protein sample. 
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2.5.2 Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis (SDS-

PAGE) 

Equal amount of 2X SDS Laemmli buffer (Sigma Chemical) and protein sample 

were mixed and boiled for 5 min at 90˚C. Protein bands were analyzed by sodium 

dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The 12% resolving gel 

was made with Acrylamide-Bis (30% T, 2.67% C) (Bio-Rad Laboratories Ltd, Canada), 

1.5 M Tris-HCL (pH 8.8), 10% SDS (Fisher Scientific), 10% Ammonium persulphate, 

and 0.05% TEMED (Bio-Rad Laboratories Ltd, Canada). The 4% stacking gel was made 

of using all of the above, but the Tris-HCL buffer was 0.5 M with pH 6.8. Mini-Protein® 

II gel apparatus (Bio-Rad Laboratories Ltd, Canada) was used to run the gels followed by 

the staining with Coomassie blue G-250 (J. T. Chemical Co, NJ, USA). Furthermore, 

similar gels were transferred directly to PVDF membranes in order to detect the bands 

with specific antibodies. 

 

2.5.3 Western Blot 

First, the optimal amount of protein for loading was determined. Protein samples 

were subjected to 12% SDS-PAGE as discussed in section 2.5.2.  

Equal amounts of proteins were separated by SDS-PAGE at 120V for 120 min. A 

molecular weight marker was loaded in all gels. After separation, proteins were 

transferred onto 0.45 μm PVDF membranes (Pall Corp. FI, USA). Membranes were 

presoaked first in methanol for 15 minutes and then in transfer buffer for 1 hour before 

using the Trans-Blot Semi-Dry transfer cell (Bio-Rad Laboratories Ltd, Canada). Then, 

the protein gels were placed on the top of a thick Sponge (Bio-Rad Laboratories Ltd, 
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Canada), onto the anode platform of the Semi-dried system. The PVDF membranes were 

placed directly onto the gels and another sponge was placed on the membranes. A test-

tube was rolled over the thick sponge to get rid of the bubbles. The proteins were then 

transferred to the PVDF membrane at 20V for 32 minutes.  Then gels were stained with 

Coomassie Brilliant Blue in order to see if proteins properly separated. The PVDF 

membranes with transferred protein were blocked with TBS-T containing 5% skim milk 

powder for 2-3 hours at room temperature in order to block the non-specific proteins 

binding. Then blots were probed with primary antibody in an appropriate dilution for 1.5 

hour at room temperature followed by overnight incubation at 4˚C. The next day, 

immunoblots were rocked for another half an hour and then washed with TBS-T (Tris-

Buffered Saline Tween-20) four times each 10 minutes. Then membranes were incubated 

with an appropriate HRP-labeled polyclonal goat anti-rabbit, secondary antibody, in a 

dilution of 1/5000 in 5% blocking solution for 2 hours. Subsequently, the membranes 

were washed four times in TBS-T, for 10 minutes each. 

 

2.5.4 Antibody Detection 

An ECL plus western blot analysis detection kit was used according to 

Manufacturer’s protocol  (Amersham Biosciences Canada, GE Healthcare Bio-Sciences 

Inc.,Quebec, Canada) to discern bound antibody. Detection solution A and B were mixed 

in a ratio of 40:1, then, blots were incubated for 5 minutes, and detected using X-ray film 

(Fisher Scientific Company, Ottawa, ON, Canada). The film was exposed for 10 seconds, 

depending on the intensity of the band, the second film was exposed either for a longer or 
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shorter period of time. Equal loading of each gel was verified by comparison with the 

immunoblotting of beta-actin. 

 

2.6   Densitometry and Statistical Analysis 

Densitometry analysis was performed using a Visible Imaging System equipped 

with AlphaEaseFC software (Alpha Innotech, San Leandro, CA). The data obtained were 

analyzed statistically using SPSS software (SPSS Inc. Headquarters, Chicago, IL). A 

comparison between the groups of interest was performed by descriptive analysis. All 

values are means ± s.e.; and differences were determined at a significance level of P < 

0.05 as determined by Independent-Samples T-test. 
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Chapter 3: 

Results 

3.1   Protein Expression Pattern in Control Liver Tissue (LC/OC) 

Western blots were performed to assess relative whole homogenate and nuclear 

extract protein levels of H3 and H4 acetylated at specific lysine residues. A comparison 

of obese and lean rats is demonstrated below.  

 

3.1.1 Identification of Acetylated Global Histone H3 and H4 

The importance of altered global histone H4 acetylation levels in gastrointestinal 

carcinogenesis [70] as well as human gastric adenomas and carcinomas has been studied 

[71]. We therefore wanted to determine if the level of global histone H3 and H4 

acetylation is different in obese rats which contained sustained inflammatory state and 

more sensitivity to colon cancer in compare with their lean counterparts. In order to 

demonstrate this, western blot assay was performed with anti-acetylated histone H3 and 

H4 antibodies to determine global acetylation status of histones. The level of acetylated 

global histone H3 & H4 expression is shown to be slightly reduced in both homogenate 

and nuclear fractions in obese liver in comparison with their lean counterparts (summary 

is in figure 8). This is supported by data showing that the level of global histone H4 

acetylation reduced in colorectal cancer [71]. A similar reduction of the total amount of 

acetylated histone H4 with association of tumorigenesis in gastric cancer has been also 

reported [70]. From these observations, it appears possible that reduced levels of global 

histone acetylation may possibly participate in sensitivity of obese rats to colon cancer. 
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3.1.2 Identification of Specific Lysines Acetylated on Histone H3 and H4 

Changes in the level of histones H3 and H4 acetylation at specific lysine residues in 

several disease such as diabetes and colitis [59,62] shows the importance of specific 

patterns of histone acetylation at lysine residues for the final outcome of gene expression. 

Since Zucker obese rats are also known for having hyperglycemia and hepatic steatosis 

we wanted to examine which specific lysine residue of histone H3 and H4 are acetylated 

and to compare with their lean counterparts to determine if there is a difference in the 

level of acetylated histones at specific lysine residues (K). By using anti-acetylated 

antibodies for histone H3 at K9 & K14 and for H4 at K5 & K12 the level of acetylation 

in homogenate fraction as well as nuclear fractions in Zucker obese liver was examined. 

In homogenate fractions, obese rats had a higher level of acetylation in H3 K9, and K14 

as well as H4 K5, (summary is in figure 13) suggesting probably higher amount of 

histones need to go inside the nucleus for chromatin assembly in obese animals.  

In obese, in compare with their lean, nuclear fractions, a significantly decreased level of 

acetylation in H3 K9, & K14 as well as H4 K5 was observed (summary is in figure 18). 

One possibility can be related to excess of HDAC which can elicit dynamic alterations in 

HAT to HDAC activities which in turn decrease acetylation level. However, no 

acetylation was detected for H4 K12 in both homogenate and nuclear fractions (Figure 12 

and 17 respectively ). These data suggest that acetylation at these sites may be important 

to the transcriptional activation of some genes such as TNF-α which can play a role in 

obesity conditions. In addition these differences between acetylation levels of obese 

verses lean also may indicate a novel critical level of regulation at the level of chromatin. 

An extensive discussion on this topic is presented later. 
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Figure 4: Western Blot Analysis of Histone 3 (Global Histone) Histone Acetylation form Liver 
Homogenates of Zucker rats 
Histone 3 (H3) was analyzed by Western blot analysis as described in Materials and Methods 50 μg of liver 
Protein Samples was separated by 12% SDS-PAGE gel and transferred onto PVDF membranes. The 
membrane was cut and probed with primary anti-histone 3 and β-actin separately at a final dilution of 1:500 
and 1:5000 respectively. Then secondary antibody (a goat anti-rabbit HRP conjugated) and (a goat anti-
mouse HRP conjugated) at a final dilution of 1:2500 and 1:5000 for histone and β-actin was used 
respectively. The blots were exposed by ECL Plus substrate and developed on X-Ray film. (A) 
Representative western blots of H3 and β-actin using 50 μg of liver protein from Zucker Obese (Ob) and 
Lean (Ln) rats. (B) shows densitometric quantitation p<0.05 as determined by Independent-Samples T-test. 
Bar graph represents level of H3 protein of the relative intensities of H3 bands. The standard deviations of 
the experiment for each group of 6 animals are shown on the bars as determined by descriptive analysis. 
(C) shows normalized densitometric quantitation p<0.05 as determined by Independent-Samples T-test. Bar 
graph represents level of H3 protein of the relative intensities of H3 bands normalized to β-actin. The 
standard deviations of the experiment for each group of 6 animals are shown on the bars as determined by 
descriptive analysis. 
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Figure 5: Western Blot Analysis of Histone 4 (Global Histone) Histone Acetylation from Liver 
Homogenates of Zucker Rats. 
Histone 4 (H4) was analyzed by Western blot analysis as described in Materials and Methods 50 μg of liver 
Protein Samples was separated by 12% SDS-PAGE gel and transferred onto PVDF membranes. The 
membrane was cut and probed with primary anti-histone 4 and β-actin separately at a final dilution of 1:500 
and 1:2500 respectively. Then secondary antibody (a goat anti-rabbit HRP conjugated) and (a goat anti-
mouse HRP conjugated) at a final dilution of 1:5000 and 1:2500 for histone and β-actin was used 
respectively. The blots were exposed by ECL Plus substrate and developed on X-Ray film. (A) 
Representative western blots of H4 and β-actin using 50 μg of liver protein from Zucker Obese (Ob) and 
Lean (Ln) rats. (B) shows densitometric quantitation p<0.05 as determined by Independent-Samples T-test. 
Bar graph represents level of H4 protein of the relative intensities of H4 bands. The standard deviations of 
the experiment for each group of 6 animals are shown on the bars as determined by descriptive analysis. 
(C) shows normalized densitometric quantitation p<0.05 as determined by Independent-Samples T-test. Bar 
graph represents level of H4 protein of the relative intensities of H4 bands normalized to β-actin. The 
standard deviations of the experiment for each group of 6 animals are shown on the bars as determined by 
descriptive analysis. 
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Figure 6: Western Blot Analysis of Histone 3 (Global Histone) Histone Acetylation form Liver 
Nuclear Fractions of Zucker rats 
Histone 3 (H3) was analyzed by Western blot analysis as described in Materials and Methods 50 μg of liver 
Protein Samples was separated by 12% SDS-PAGE gel and transferred onto PVDF membranes. The 
membrane was cut and probed with primary anti-histone 3 and β-actin separately at a final dilution of 1:500 
and 1:5000 respectively. Then secondary antibody (a goat anti-rabbit HRP conjugated) and (a goat anti-
mouse HRP conjugated) at a final dilution of 1:2500 and 1:5000 for histone and β-actin was used 
respectively. The blots were exposed by ECL Plus substrate and developed on X-Ray film. (A) 
Representative western blots of H3 and β-actin using 50 μg of liver protein from Zucker Obese (Ob) and 
Lean (Ln) rats. (B) shows densitometric quantitation p<0.05 as determined by Independent-Samples T-test. 
Bar graph represents level of H3 protein of the relative intensities of H3 bands. The standard deviations of 
the experiment for each group of 6 animals are shown on the bars as determined by descriptive analysis. 
(C) shows normalized densitometric quantitation p<0.05 as determined by Independent-Samples T-test. Bar 
graph represents level of H3 protein of the relative intensities of H3 bands normalized to β-actin. The 
standard deviations of the experiment for each group of 6 animals are shown on the bars as determined by 
descriptive analysis. 
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Figure 7: Western Blot Analysis of Histone 4 (Global Histone) Histone Acetylation from Liver 
Nuclear Fractions of Zucker Rats. 
Histone 4 (H4) was analyzed by Western blot analysis as described in Materials and Methods 50 μg of liver 
Protein Samples was separated by 12% SDS-PAGE gel and transferred onto PVDF membranes. The 
membrane was cut and probed with primary anti-histone 4 and β-actin separately at a final dilution of 1:500 
and 1:2500 respectively. Then secondary antibody (a goat anti-rabbit HRP conjugated) and (a goat anti-
mouse HRP conjugated) at a final dilution of 1:5000 and 1:2500 for histone and β-actin was used 
respectively. The blots were exposed by ECL Plus substrate and developed on X-Ray film. (A) 
Representative western blots of H4 and β-actin using 50 μg of liver protein from Zucker Obese (Ob) and 
Lean (Ln) rats. (B) shows densitometric quantitation p<0.05 as determined by Independent-Samples T-test. 
Bar graph represents level of H4 protein of the relative intensities of H4 bands. The standard deviations of 
the experiment for each group of 6 animals are shown on the bars as determined by descriptive analysis. 
(C) shows normalized densitometric quantitation p<0.05 as determined by Independent-Samples T-test. Bar 
graph represents level of H4 protein of the relative intensities of H4 bands normalized to β-actin. The 
standard deviations of the experiment for each group of 6 animals are shown on the bars as determined by 
descriptive analysis. 
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Figure 8: Summary of normalized densitometry quantification of LC/OC Global Histone 3 and 4 
acetylation  
(a) Histone 3 Acetylation form Liver Homogenates of Zucker rats (b) Histone 4 Histone Acetylation form 
Liver Homogenates of Zucker rats (c) Histone 3 Histone Acetylation form Liver Nuclear Fractions of 
Zucker rats (d) Histone Acetylation form Liver Nuclear Fractions of Zucker rats 
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Figure 9: Western Blot Analysis of Histone 3 (Lys 9) Histone Acetylation from Liver Homogenates of 
Zucker Rats. 
Histone 3 Lys 9 was analyzed by Western blot analysis as described in Materials and Methods 50 μg of 
liver Protein Samples was separated by 12% SDS-PAGE gel and transferred onto PVDF membranes. The 
membrane was cut and probed with primary anti-histone 3 Lys 9 and β-actin separately at a final dilution of 
1:7500 and 1:10000 respectively. Then secondary antibody (a goat anti-rabbit HRP conjugated) and (a goat 
anti-mouse HRP conjugated) at a final dilution of 1:5000 and 1:10000 for histone and β-actin was used 
respectively. The blots were exposed by ECL Plus substrate and developed on X-Ray film. (A) 
Representative western blots of H3 Lys 9 and β-actin using 50 μg of liver protein from Zucker Obese (Ob) 
and Lean (Ln) rats. (B) shows densitometric quantitation p<0.05 as determined by Independent-Samples T-
test. Bar graph represents level of H3 Lys 9 protein of the relative intensities of H3 Lys 9 bands. The 
standard deviations of the experiment for each group of 6 animals are shown on the bars as determined by 
descriptive analysis. (C) shows normalized densitometric quantitation p<0.05 as determined by 
Independent-Samples T-test. Bar graph represents level of H3 Lys 9 protein of the relative intensities of H3 
Lys 9 bands normalized to β-actin. The standard deviations of the experiment for each group of 6 animals 
are shown on the bars as determined by descriptive analysis. 
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Figure 10: Western Blot Analysis of Histone 3 (Lys 14) Histone Acetylation from Liver Homogenates 
of Zucker Rats. 
Histone 3 Lys14 was analyzed by Western blot analysis as described in Materials and Methods 50 μg of 
liver Protein Samples was separated by 12% SDS-PAGE gel and transferred onto PVDF membranes. The 
membrane was cut and probed with primary anti-histone 3 Lys 14 and β-actin separately at a final dilution 
of 1:2500 and 1:20000 respectively. Then secondary antibody (a goat anti-rabbit HRP conjugated) and (a 
goat anti-mouse HRP conjugated) at a final dilution of 1:5000 and 1:20000 for histone and β-actin was used 
respectively. The blots were exposed by ECL Plus substrate and developed on X-Ray film. (A) 
Representative western blots of H3 Lys 14 and β-actin using 50 μg of liver protein from Zucker Obese (Ob) 
and Lean (Ln) rats. (B) shows densitometric quantitation p<0.05 as determined by Independent-Samples T-
test. Bar graph represents level of H3 Lys 14 protein of the relative intensities of H3 Lys 14 bands. The 
standard deviations of the experiment for each group of 6 animals are shown on the bars as determined by 
descriptive analysis. (C) shows normalized densitometric quantitation p<0.05 as determined by 
Independent-Samples T-test. Bar graph represents level of H3 Lys 14 protein of the relative intensities of 
H3 Lys 14 bands normalized to β-actin. The standard deviations of the experiment for each group of 6 
animals are shown on the bars as determined by descriptive analysis. 
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Figure 11: Western Blot Analysis of Histone 4 (Lys 5) Histone Acetylation from Liver Homogenates 
of Zucker Rats. 
Histone 4 Lys 5 was analyzed by Western blot analysis as described in Materials and Methods 50 μg of 
liver Protein Samples was separated by 12% SDS-PAGE gel and transferred onto PVDF membranes. The 
membrane was cut and probed with primary anti-histone 4 Lys 5 and β-actin separately at a final dilution of 
1:1000 and 1:10000 respectively. Then secondary antibody (a goat anti-rabbit HRP conjugated) and (a goat 
anti-mouse HRP conjugated) at a final dilution of 1:5000 and 1:10000 for histone and β-actin was used 
respectively. The blots were exposed by ECL Plus substrate and developed on X-Ray film. (A) 
Representative western blots of H4 Lys 5 and β-actin using 50 μg of liver protein from Zucker Obese (Ob) 
and Lean (Ln) rats. (B) shows densitometric quantitation p<0.05 as determined by Independent-Samples T-
test. Bar graph represents level of H4 Lys 5 protein of the relative intensities of H4 Lys 5 bands. The 
standard deviations of the experiment for each group of 6 animals are shown on the bars as determined by 
descriptive analysis. (C) shows normalized densitometric quantitation p<0.05 as determined by 
Independent-Samples T-test. Bar graph represents level of H4 Lys 5 protein of the relative intensities of H4 
Lys 5 bands normalized to β-actin. The standard deviations of the experiment for each group of 6 animals 
are shown on the bars as determined by descriptive analysis. 
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Figure 12: Western Blot Analysis of Histone 4 (Lys 12) Histone Acetylation from Liver Homogenates 
of Zucker Rats.  
Histone 4 Lys 12 was analyzed by Western blot analysis as described in Materials and Methods 50 μg of 
liver Protein Samples was separated by 12% SDS-PAGE gel and transferred onto PVDF membranes. The 
membrane was cut and probed with primary anti-histone 4 Lys 12 and β-actin separately at a final dilution 
of 1:5000 and 1:10000 respectively. Then secondary antibody (a goat anti-rabbit HRP conjugated) and (a 
goat anti-mouse HRP conjugated) at a final dilution of 1:5000 and 1:10000 for histone and β-actin was used 
respectively. The blots were exposed by ECL Plus substrate and developed on X-Ray film. Representative 
western blots of H4 Lys 12 and β-actin using 50 μg of liver protein from Zucker Obese (Ob) and Lean (Ln) 
rats.  
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Figure 13: Summary of normalized densitometry quantification of histone acetylation from Liver 
Homogenates of Zucker Rats.  
(a) Histone 3 (Lys 9) Histone Acetylation from Liver Homogenates of Zucker Rats. (b) Histone 3 (Lys 14) 
Histone Acetylation from Liver Homogenates of Zucker Rats. (c) Histone 4 (Lys 5) Histone Acetylation 
from Liver Homogenates of Zucker Rats.  
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Figure 14: Western Blot Analysis of Histone 3 (Lys 9) Histone Acetylation from Liver Nuclear 
Fraction of Zucker Rats. 
Histone 3 Lys 9 was analyzed by Western blot analysis as described in Materials and Methods 50 μg of 
liver Protein Samples was separated by 12% SDS-PAGE gel and transferred onto PVDF membranes. The 
membrane was cut and probed with primary anti-histone 3 Lys 9 and β-actin separately at a final dilution of 
1:7500 and 1:2500 respectively. Then secondary antibody (a goat anti-rabbit HRP conjugated) and (a goat 
anti-mouse HRP conjugated) at a final dilution of 1:5000 and 1:2500 for histone and β-actin was used 
respectively. The blots were exposed by ECL Plus substrate and developed on X-Ray film. (A) 
Representative western blots of H3 Lys 9 and β-actin using 50 μg of liver protein from Zucker Obese (Ob) 
and Lean (Ln) rats. (B) shows densitometric quantitation p<0.05 as determined by Independent-Samples T-
test. Bar graph represents level of H3 Lys 9 protein of the relative intensities of H3 Lys 9 bands. The 
standard deviations of the experiment for each group of 6 animals are shown on the bars as determined by 
descriptive analysis. (C) shows normalized densitometric quantitation p<0.05 as determined by 
Independent-Samples T-test. Bar graph represents level of H3 Lys 9 protein of the relative intensities of H3 
Lys 9 bands normalized to β-actin. The standard deviations of the experiment for each group of 6 animals 
are shown on the bars as determined by descriptive analysis. 
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Figure 15: Western Blot Analysis of Histone 3 (Lys 14) Histone Acetylation from Liver Nuclear 
Fraction of Zucker Rats. 
Histone 3 Lys14 was analyzed by Western blot analysis as described in Materials and Methods 50 μg of 
liver Protein Samples was separated by 12% SDS-PAGE gel and transferred onto PVDF membranes. The 
membrane was cut and probed with primary anti-histone 3 Lys 14 and β-actin separately at a final dilution 
of 1:2500 and 1:2500 respectively. Then secondary antibody (a goat anti-rabbit HRP conjugated) and (a 
goat anti-mouse HRP conjugated) at a final dilution of 1:5000 and 1:2500 for histone and β-actin was used 
respectively. The blots were exposed by ECL Plus substrate and developed on X-Ray film. (A) 
Representative western blots of H3 Lys 14 and β-actin using 50 μg of liver protein from Zucker Obese (Ob) 
and Lean (Ln) rats. (B) shows densitometric quantitation p<0.05 as determined by Independent-Samples T-
test. Bar graph represents level of H3 Lys 14 protein of the relative intensities of H3 Lys 14 bands. The 
standard deviations of the experiment for each group of 6 animals are shown on the bars as determined by 
descriptive analysis. (C) shows normalized densitometric quantitation p<0.05 as determined by 
Independent-Samples T-test. Bar graph represents level of H3 Lys 14 protein of the relative intensities of 
H3 Lys 14 bands normalized to β-actin. The standard deviations of the experiment for each group of 6 
animals are shown on the bars as determined by descriptive analysis. 
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Figure 16: Western Blot Analysis of Histone 4 (Lys 5) Histone Acetylation from Liver Nuclear 
Fraction of Zucker Rats. 
Histone 4 Lys 5 was analyzed by Western blot analysis as described in Materials and Methods 50 μg of 
liver Protein Samples was separated by 12% SDS-PAGE gel and transferred onto PVDF membranes. The 
membrane was cut and probed with primary anti-histone 4 Lys 5 and β-actin separately at a final dilution of 
1:1000 and 1:10000 respectively. Then secondary antibody (a goat anti-rabbit HRP conjugated) and (a goat 
anti-mouse HRP conjugated) at a final dilution of 1:5000 and 1:10000 for histone and β-actin was used 
respectively. The blots were exposed by ECL Plus substrate and developed on X-Ray film. (A) 
Representative western blots of H4 Lys 5 and β-actin using 50 μg of liver protein from Zucker Obese (Ob) 
and Lean (Ln) rats. (B) shows densitometric quantitation p<0.05 as determined by Independent-Samples T-
test. Bar graph represents level of H4 Lys 5 protein of the relative intensities of H4 Lys 5 bands. The 
standard deviations of the experiment for each group of 6 animals are shown on the bars as determined by 
descriptive analysis. (C) shows normalized densitometric quantitation p<0.05 as determined by 
Independent-Samples T-test. Bar graph represents level of H4 Lys 5 protein of the relative intensities of H4 
Lys 5 bands normalized to β-actin. The standard deviations of the experiment for each group of 6 animals 
are shown on the bars as determined by descriptive analysis. 
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Figure 17: Western Blot Analysis of Histone 4 (Lys 12) Histone Acetylation from Liver Nuclear 
Fraction of Zucker Rats. 
Histone 4 Lys 12 was analyzed by Western blot analysis as described in Materials and Methods 50 μg of 
liver Protein Samples was separated by 12% SDS-PAGE gel and transferred onto PVDF membranes. The 
membrane was cut and probed with primary anti-histone 4 Lys 12 and β-actin separately at a final dilution 
of 1:5000 and 1:5000 respectively. Then secondary antibody (a goat anti-rabbit HRP conjugated) and (a 
goat anti-mouse HRP conjugated) at a final dilution of 1:5000 and 1:5000 for histone and β-actin was used 
respectively. The blots were exposed by ECL Plus substrate and developed on X-Ray film. Representative 
western blots of H4 Lys 12 and β-actin using 50 μg of liver protein from Zucker Obese (Ob) and Lean (Ln) 
rats.  
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Figure 18: Summary of normalized densitometry quantification of Liver Nuclear Fractions in 
Zucker Rats. 
(a) Histone 3 (Lys 9) Histone Acetylation from Liver Nuclear Fractions of Zucker Rats. (b) Histone 3 (Lys 
14) Histone Acetylation from Liver Nuclear Fractions in Zucker Rats. (c) Histone 4 (Lys 5) Histone 
Acetylation from Liver nuclear fractions in Zucker Rats. 
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3.2 Protein Expression Pattern in Obese with High Vitamin B6 vs. 

Obese with Normal Vitamin B6 (OH/ON) 

Western blots were performed to asses relative whole homogenate and nuclear 

extract protein levels of H3 and H4 acetylation at specific lysine residues. The level of 

vitamin B6 was increased five fold in the group of obese animals abbreviated as (OH) in 

compare with obese with normal vitamin B6 abbreviated as (ON). 

 

3.2.1 Identification of Global as well as Specific Lysines Acetylated on 

Histone H3 and H4 

The effect of vitamin B6 on histone acetylation is not yet known. From present 

study we know that the level of global acetylation of H3 and H4 slightly reduced in obese 

rats. We also obtained that nuclear acetylation of H3 and H4 decreases at specific lysine 

residues in the liver of obese rats in comparison with their lean counterparts. 

Furthermore, we know that high B6 diet reduces liver weight as well as the number of 

preneoplastic lesions in the Zucker obese rats (A. Kular study). These new results were 

suggestive to examine if a positive effect of vitamin B6 is associated with changes in the 

level and pattern of H3 and H4 acetylation. In order to address this question, we similarly 

examined the level and pattern of global acetylation as well as homogenate and nuclear 

acetylation at lysines (K9, K14, K5, K12) acetylated in livers of obese rats fed a normal 

amount of vitamin B6 (ON) and those fed five times higher amount of vitamin B6 (OH). 

If hyperacetylation could play a role as a protective response to hepatic steatosis then we 

expect to see enhancement of global acetylation of H3 and H4 as well as hyperacetylation 

in nuclear fractions of OH group. The levels of histone H3 and H4 acetylation slightly 
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enhanced in both liver homogenate and nuclear fractions in obese animals feeding high 

amount of vitamin B6 (summary is in figure 23). There was a slightly significant increase 

in the level of acetylation in homogenate and nuclear fractions of histone H3 at lysine K9, 

K14, and H4 at K5 (summary is in figure 28 & 33). We were not able to detect 

acetylation of K12 in histone H4 for either homogenate or nuclear fractions (Figure 27 

and 32 respectively). From these observations, it appears possible that hyperacetylation 

may possibly participate in amelioration of hepatic steatosis. One possibility can be 

explained by antioxidant affect of B6 which reduce the level of oxidative stress markers 

which in turn can affect acetylation levels.   

 

3.3 Identification of the level of Bax and Bcl-2 protein expression in 

LC/OC and OH/ON group 

It is known that obese rat contains more oxidative stress as the result of respiration and 

glucose metabolism. On the other hand, oxidative stress and inflammatory mediators 

activate transcription factors leading to the expression of pro-inflammatory genes which 

in turn involves the remodeling of the chromatin structure by the histone protein [72]. 

It is also known that oxidative stress can trigger apoptotic pathway. Therefore, anti- and 

pro-apoptotic Bax and Bcl-2 expression in obese versus lean and obese fed high amount 

of vitamin B6 versus obese fed normal amount of vitamin B6 by western blot were 

effectively examined. Quantification of the band densities after normalization with beta 

actin shows that obese animals have higher level of Bax but lower level of anti-apoptotic 

Bcl-2, in compare to the lean counterparts, as expected (figure 34 and 35 ). In OH versus 

ON, unexpectedly, obese with healthier liver (OH) had higher amount of Bax and lower 
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amount of Bcl-2 (figure 36 and 37). An extensive discussion on this topic is presented 

later (summary is in figure 38). 
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Figure 19: Western Blot Analysis of Histone 3 (Global Histone 3) Histone Acetylation From Liver 
Homogenates of Zucker Obese Rats. 
Histone 3 (H3) was analyzed by Western blot analysis as described in Materials and Methods 50 μg of liver 
Protein Samples was separated by 12% SDS-PAGE gel and transferred onto PVDF membranes. The 
membrane was cut and probed with primary anti-histone 3 and β-actin separately at a final dilution of 1:500 
and 1:5000 respectively. Then secondary antibody (a goat anti-rabbit HRP conjugated) and (a goat anti-
mouse HRP conjugated) at a final dilution of 1:5000 and 1:5000 for histone and β-actin was used 
respectively. The blots were exposed by ECL Plus substrate and developed on X-Ray film. (A) 
Representative western blots of H3 and β-actin using 50 μg of liver protein from Zucker Obese with high 
vitamin B6 (OH) and Zucker Obese with normal vitamine B6 (ON). (B) shows densitometric quantitation 
p<0.05 as determined by Independent-Samples T-test. Bar graph represents level of H3 protein of the 
relative intensities of H3 bands. The standard deviations of the experiment for each group of 6 animals are 
shown on the bars as determined by descriptive analysis. (C) shows normalized densitometric quantitation 
p<0.05 as determined by Independent-Samples T-test. Bar graph represents level of H3 protein of the 
relative intensities of H3 bands normalized to β-actin. The standard deviations of the experiment for each 
group of 6 animals are shown on the bars as determined by descriptive analysis. 
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Figure 20: Western Blot Analysis of Histone 4 (Global Histone 4) Histone Acetylation From Liver 
Homogenates of Zucker Obese Rats. 
Histone 4 (H4) was analyzed by Western blot analysis as described in Materials and Methods 50 μg of liver 
Protein Samples was separated by 12% SDS-PAGE gel and transferred onto PVDF membranes. The 
membrane was cut and probed with primary anti-histone 4 and β-actin separately at a final dilution of 1:500 
and 1:5000 respectively. Then secondary antibody (a goat anti-rabbit HRP conjugated) and (a goat anti-
mouse HRP conjugated) at a final dilution of 1:5000 and 1:5000 for histone and β-actin was used 
respectively. The blots were exposed by ECL Plus substrate and developed on X-Ray film. (A) 
Representative western blots of H4 and β-actin using 50 μg of liver protein from Zucker Obese with high 
vitamin B6 (OH) and Zucker Obese with normal vitamine B6 (ON). (B) shows ensitometric quantitation 
p<0.05 as determined by Independent-Samples T-test. Bar graph represents level of H4 protein of the 
relative intensities of H4 bands. The standard deviations of the experiment for each group of 6 animals are 
shown on the bars as determined by descriptive analysis. (C) shows normalized densitometric quantitation 
p<0.05 as determined by Independent-Samples T-test. Bar graph represents level of H4 protein of the 
relative intensities of H4 bands normalized to β-actin. The standard deviations of the experiment for each 
group of 6 animals are shown on the bars as determined by descriptive analysis. 
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Figure 21: Western Blot Analysis of Histone 3 (Global Histone) Histone Acetylation From Liver 
Nuclear Fractions of Zucker Obese Rats. 
Histone 3 (H3) was analyzed by Western blot analysis as described in Materials and Methods 50 μg of liver 
Protein Samples was separated by 12% SDS-PAGE gel and transferred onto PVDF membranes. The 
membrane was cut and probed with primary anti-histone 3 and β-actin separately at a final dilution of 1:500 
and 1:5000 respectively. Then secondary antibody (a goat anti-rabbit HRP conjugated) and (a goat anti-
mouse HRP conjugated) at a final dilution of 1:5000 and 1:5000 for histone and β-actin was used 
respectively. The blots were exposed by ECL Plus substrate and developed on X-Ray film. (A) 
Representative western blots of H3 and β-actin using 50 μg of liver protein from Zucker Obese with high 
vitamin B6 (OH) and Zucker Obese with normal vitamine B6 (ON). (B) shows densitometric quantitation 
p<0.05 as determined by Independent-Samples T-test. Bar graph represents level of H3 protein of the 
relative intensities of H3 bands. The standard deviations of the experiment for each group of 6 animals are 
shown on the bars as determined by descriptive analysis. (C) shows normalized densitometric quantitation 
p<0.05 as determined by Independent-Samples T-test. Bar graph represents level of H3 protein of the 
relative intensities of H3 bands normalized to β-actin. The standard deviations of the experiment for each 
group of 6 animals are shown on the bars as determined by descriptive analysis. 
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Figure 22: Western Blot Analysis of Histone 4 (Global Histone) Histone Acetylation From Liver 
Nuclear Fractions of Zucker Obese Rats. 
Histone 4 (H4) was analyzed by Western blot analysis as described in Materials and Methods 50 μg of liver 
Protein Samples was separated by 12% SDS-PAGE gel and transferred onto PVDF membranes. The 
membrane was cut and probed with primary anti-histone 4 and β-actin separately at a final dilution of 1:500 
and 1:5000 respectively. Then secondary antibody (a goat anti-rabbit HRP conjugated) and (a goat anti-
mouse HRP conjugated) at a final dilution of 1:5000 and 1:5000 for histone and β-actin was used 
respectively. The blots were exposed by ECL Plus substrate and developed on X-Ray film. (A) 
Representative western blots of H4 and β-actin using 50 μg of liver protein from Zucker Obese with high 
vitamin B6 (OH) and Zucker Obese with normal vitamine B6 (ON). (B) shows ensitometric quantitation 
p<0.05 as determined by Independent-Samples T-test. Bar graph represents level of H4 protein of the 
relative intensities of H4 bands. The standard deviations of the experiment for each group of 6 animals are 
shown on the bars as determined by descriptive analysis. (C) shows normalized densitometric quantitation 
p<0.05 as determined by Independent-Samples T-test. Bar graph represents level of H4 protein of the 
relative intensities of H4 bands normalized to β-actin. The standard deviations of the experiment for each 
group of 6 animals are shown on the bars as determined by descriptive analysis. 
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Figure 23: Summary of normalized densitometry quantification of Histone Acetylation From Liver 
Homogenates of Zucker Obese Rats. 
(a) Histone 3 (Global Histone) histone acetylation from liver homogenates of Zucker obese rats. (b) 
Histone 4 (Global Histone) histone acetylation from liver homogenates of Zucker obese rats. (c) Histone 3 
(Global Histone) histone acetylation from liver nuclear fractions of Zucker obese rats. (d) Histone 4 
(Global Histone) histone acetylation from liver nuclear fractions of Obese Zucker Rats. 
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Figure 24: Western Blot Analysis of Histone 3 (Lys 9) Histone Acetylation from Liver Homogenates 
of Zucker Obese Rats.  
Histone 3 Lys 9 was analyzed by Western blot analysis as described in Materials and Methods 50 μg of 
liver Protein Samples was separated by 12% SDS-PAGE gel and transferred onto PVDF membranes. The 
membrane was cut and probed with primary anti-histone 3 Lys 9 and β-actin separately at a final dilution of 
1:7500 and 1:5000 respectively. Then secondary antibody (a goat anti-rabbit HRP conjugated) and (a goat 
anti-mouse HRP conjugated) at a final dilution of 1:5000 and 1:5000 for histone and β-actin was used 
respectively. The blots were exposed by ECL Plus substrate and developed on X-Ray film. (A) 
Representative western blots of H3 Lys 9 and β-actin using 50 μg of liver protein from Zucker Obese with 
high vitamin B6 (OH) and Zucker Obese with normal vitamine B6 (ON). (B) shows densitometric 
quantitation p<0.05 as determined by Independent-Samples T-test. Bar graph represents level of H3 Lys 9 
protein of the relative intensities of H3 Lys 9 bands. The standard deviations of the experiment for each 
group of 6 animals are shown on the bars as determined by descriptive analysis. (C) shows normalized 
densitometric quantitation p<0.05 as determined by Independent-Samples T-test. Bar graph represents level 
of H3 Lys 9 protein of the relative intensities of H3 Lys 9 bands normalized to β-actin. The standard 
deviations of the experiment for each group of 6 animals are shown on the bars as determined by 
descriptive analysis. 
 



 71

 
 
 
 
 
 
 
 
 
 
 
 
(A) 

 

Obese High B6 
___________________________________ 

Obese Normal B6 
___________________________________ 

 

β-actin 
 

42 kDa

H3 K9 
 

17 kDa

   
(B)                                                                                  (C) 

 
Histone 3 Lysine 9

Obease with high B6 (OH) Vs. Obease with normal B6 (ON)

0
200000
400000
600000
800000

1000000
1200000
1400000
1600000
1800000

H
is

to
ne

 A
ce

ty
la

tio
n 

(a
rb

itr
ar

y 
un

it)

OH
ON

      

Histone 3 Lysine 9
Obease with high B6 (OH) Vs. Obease with normal 

B6 (ON)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

H
is

to
ne

 A
ce

ty
la

tio
n 

(a
rb

itr
ar

y 
un

it)

OH
ON

 



 72

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 25: Western Blot Analysis of Histone 3 (Lys 14) Histone Acetylation from Liver Homogenates 
of Zucker Obese Rats. 
Histone 3 Lys14 was analyzed by Western blot analysis as described in Materials and Methods 50 μg of 
liver Protein Samples was separated by 12% SDS-PAGE gel and transferred onto PVDF membranes. The 
membrane was cut and probed with primary anti-histone 3 Lys 14 and β-actin separately at a final dilution 
of 1:2500 and 1:25000 respectively. Then secondary antibody (a goat anti-rabbit HRP conjugated) and (a 
goat anti-mouse HRP conjugated) at a final dilution of 1:5000 and 1:2500 for histone and β-actin was used 
respectively. The blots were exposed by ECL Plus substrate and developed on X-Ray film. (A) 
Representative western blots of H3 Lys 14 and β-actin using 50 μg of liver protein from Zucker Obese with 
high vitamin B6 (OH) and Zucker Obese with normal vitamine B6 (ON). (B) shows densitometric 
quantitation p<0.05 as determined by Independent-Samples T-test. Bar graph represents level of H3 Lys 14 
protein of the relative intensities of H3 Lys 14 bands. The standard deviations of the experiment for each 
group of 6 animals are shown on the bars as determined by descriptive analysis. (C) shows normalized 
densitometric quantitation p<0.05 as determined by Independent-Samples T-test. Bar graph represents level 
of H3 Lys 14 protein of the relative intensities of H3 Lys 14 bands normalized to β-actin. The standard 
deviations of the experiment for each group of 6 animals are shown on the bars as determined by 
descriptive analysis. 
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Figure 26: Western Blot Analysis of Histone 4 (Lys 5) Histone Acetylation from Liver Homogenates 
of Zucker Obese Rats. 
Histone 4 Lys 5 was analyzed by Western blot analysis as described in Materials and Methods. The 
membrane from figure 19 was washed and reprobed with primary anti-histone 4 Lys 5 and β-actin 
separately at a final dilution of 1:1000 and 1:2500 respectively. Then secondary antibody (a goat anti-rabbit 
HRP conjugated) and (a goat anti-mouse HRP conjugated) at a final dilution of 1:5000 and 1:2500 for 
histone and β-actin was used respectively. The blots were exposed by ECL Plus substrate and developed on 
X-Ray film. (A) Representative western blots of H4 Lys 5 and β-actin using 50 μg of liver protein from 
Zucker Obese with high vitamin B6 (OH) and Zucker Obese with normal vitamine B6 (ON). (B) shows 
densitometric quantitation p<0.05 as determined by Independent-Samples T-test. Bar graph represents level 
of H4 Lys 5 protein of the relative intensities of H4 Lys 5 bands. The standard deviations of the experiment 
for each group of 6 animals are shown on the bars as determined by descriptive analysis. (C) shows 
normalized densitometric quantitation p<0.05 as determined by Independent-Samples T-test. Bar graph 
represents level of H4 Lys 5 protein of the relative intensities of H4 Lys 5 bands normalized to β-actin. The 
standard deviations of the experiment for each group of 6 animals are shown on the bars as determined by 
descriptive analysis. 
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Figure 27: Western Blot Analysis of Histone 3 (Lys 12) Histone Acetylation from Liver Homogenates 
of Zucker Obese Rats. 
Histone 4 Lys 12 was analyzed by Western blot analysis as described in Materials and Methods 50 μg of 
liver Protein Samples was separated by 12% SDS-PAGE gel and transferred onto PVDF membranes. The 
membrane was cut and probed with primary anti-histone 4 Lys 12 and β-actin separately at a final dilution 
of 1:5000 and 1:5000 respectively. Then secondary antibody (a goat anti-rabbit HRP conjugated) and (a 
goat anti-mouse HRP conjugated) at a final dilution of 1:5000 and 1:20000 for histone and β-actin was used 
respectively. The blots were exposed by ECL Plus substrate and developed on X-Ray film. Representative 
western blots of H4 Lys 12 and β-actin using 50 μg of liver protein from Zucker Obese with high vitamin 
B6 (OH) and Zucker Obese with normal vitamine B6 (ON). 
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Figure 28: Summary of normalized densitometry quantification of histone acetylation from Liver 
Homogenates of Zucker Obese Rats. 
(a) Histone 3 (Lys 9) histone acetylation from Liver Homogenates of Obese Zucker Rats.  (b) Histone 3 
(Lys 9) histone acetylation from Liver Homogenates of Obese Zucker Rats. (c) Histone 4 (Lys 5) histone 
acetylation from Liver Homogenates of Obese Zucker Rats. 
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Figure 29: Western Blot Analysis of Histone 3 (Lys 9) Histone Acetylation from Liver Nuclear 
Fraction of Zucker Obese Rats. 
Histone 3 Lys 9 was analyzed by Western blot analysis as described in Materials and Methods 50 μg of 
liver Protein Samples was separated by 12% SDS-PAGE gel and transferred onto PVDF membranes. The 
membrane was cut and probed with primary anti-histone 3 Lys 9 and β-actin separately at a final dilution of 
1:7500 and 1:2500 respectively. Then secondary antibody (a goat anti-rabbit HRP conjugated) and (a goat 
anti-mouse HRP conjugated) at a final dilution of 1:5000 and 1:2500 for histone and β-actin was used 
respectively.. The blots were exposed by ECL Plus substrate and developed on X-Ray film. (A) 
Representative western blots of H3 Lys 9 and β-actin using 50 μg of liver protein from Zucker Obese with 
high vitamin B6 (OH) and Zucker Obese with normal vitamine B6 (ON). (B) shows densitometric 
quantitation p<0.05 as determined by Independent-Samples T-test. Bar graph represents level of H3 Lys 9 
protein of the relative intensities of H3 Lys 9 bands. The standard deviations of the experiment for each 
group of 6 animals are shown on the bars as determined by descriptive analysis. (C) shows normalized 
densitometric quantitation p<0.05 as determined by Independent-Samples T-test. Bar graph represents level 
of H3 Lys 9 protein of the relative intensities of H3 Lys 9 bands normalized to β-actin. The standard 
deviations of the experiment for each group of 6 animals are shown on the bars as determined by 
descriptive analysis. 
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Figure 30: Western Blot Analysis of Histone 3 (Lys 14) Histone Acetylation from Liver Nuclear 
Fraction of Zucker Obese Rats. 
Histone 3 Lys14 was analyzed by Western blot analysis as described in Materials and Methods 50 μg of 
liver Protein Samples was separated by 12% SDS-PAGE gel and transferred onto PVDF membranes. The 
membrane was cut and probed with primary anti-histone 3 Lys 14 and β-actin separately at a final dilution 
of 1:2500 and 1:5000 respectively. Then secondary antibody (a goat anti-rabbit HRP conjugated) and (a 
goat anti-mouse HRP conjugated) at a final dilution of 1:5000 and 1:5000 for histone and β-actin was used 
respectively. The blots were exposed by ECL Plus substrate and developed on X-Ray film. (A) 
Representative western blots of H3 Lys 14 and β-actin using 50 μg of liver protein from Zucker Obese with 
high vitamin B6 (OH) and Zucker Obese with normal vitamine B6 (ON). (B) shows densitometric 
quantitation p<0.05 as determined by Independent-Samples T-test. Bar graph represents level of H3 Lys 14 
protein of the relative intensities of H3 Lys 14 bands. The standard deviations of the experiment for each 
group of 6 animals are shown on the bars as determined by descriptive analysis. (C) shows normalized 
densitometric quantitation p<0.05 as determined by Independent-Samples T-test. Bar graph represents level 
of H3 Lys 14 protein of the relative intensities of H3 Lys 14 bands normalized to β-actin. The standard 
deviations of the experiment for each group of 6 animals are shown on the bars as determined by 
descriptive analysis. 
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Figure 31: Western Blot Analysis of Histone 4 (Lys 5) Histone Acetylation from Liver Nuclear 
Fraction of Zucker Obese Rats. 
Histone 4 Lys 5 was analyzed by Western blot analysis as described in Materials and Methods 50 μg of 
liver Protein Samples was separated by 12% SDS-PAGE gel and transferred onto PVDF membranes. The 
membrane was cut and probed with primary anti-histone 4 Lys 5 and 1:5000 respectively. at a final dilution 
of 1:1000 and 1:5000 respectively. Then secondary antibody (a goat anti-rabbit HRP conjugated) and (a 
goat anti-mouse HRP conjugated) at a final dilution of 1:5000 and 1:5000 for histone and β-actin was used 
respectively. The blots were exposed by ECL Plus substrate and developed on X-Ray film. (A) 
Representative western blots of H4 Lys 5 and β-actin using 50 μg of liver protein from Zucker Obese with 
high vitamin B6 (OH) and Zucker Obese with normal vitamine B6 (ON). (B) shows densitometric 
quantitation p<0.05 as determined by Independent-Samples T-test. Bar graph represents level of H4 Lys 5 
protein of the relative intensities of H4 Lys 5 bands. The standard deviations of the experiment for each 
group of 6 animals are shown on the bars as determined by descriptive analysis. (C) shows normalized 
densitometric quantitation p<0.05 as determined by Independent-Samples T-test. Bar graph represents level 
of H4 Lys 5 protein of the relative intensities of H4 Lys 5 bands normalized to β-actin. The standard 
deviations of the experiment for each group of 6 animals are shown on the bars as determined by 
descriptive analysis. 
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Figure 32: Western Blot Analysis of Histone 4 (Lys 12) Histone Acetylation from Liver Nuclear 
Fraction of Zucker Obese Rats. 
Histone 4 Lys 12 was analyzed by Western blot analysis as described in Materials and Methods 50 μg of 
liver Protein Samples was separated by 12% SDS-PAGE gel and transferred onto PVDF membranes. The 
membrane was cut and probed with primary anti-histone 4 Lys 12 and β-actin separately at a final dilution 
of 1:5000 and 1:10000 respectively. Then secondary antibody (a goat anti-rabbit HRP conjugated) and (a 
goat anti-mouse HRP conjugated) at a final dilution of 1:5000 and 1:10000 for histone and β-actin was used 
respectively. The blots were exposed by ECL Plus substrate and developed on X-Ray film. Representative 
western blots of H4 Lys 12 and β-actin using 50 μg of liver protein from Zucker Obese with high vitamin 
B6 (OH) and Zucker Obese with normal vitamine B6 (ON). 
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Figure 33:Summary of normalized densitometry quantification of Histone Acetylation from Liver 
Nuclear Fraction of Zucker Obese Rats. 
(a) Histone 3 (Lys 9 Histone Acetylation from Liver Nuclear Fraction of Zucker Obese Rats. (b) Histone 3 
(Lys 14) Histone Acetylation from Liver Nuclear Fraction of Zucker Obese Rats. Histone 4 (Lys 5) Histone 
Acetylation  from Liver Nuclear Fraction of Zucker Obese Rats. 
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Figure 34: Western Blot Analysis of anti-apoptotic Bcl2 Protein expression from Liver Homogenates 
of Zucker Obese Rats. 
Bcl2 was analyzed by Western blot analysis as described in Materials and Methods. 50 μg of liver Protein 
Samples was separated by 12% SDS-PAGE gel and transferred onto PVDF membranes. The blots were 
blocked about 4-5 hours. The membrane was probed with primary anti-Bcl2 and β-actin separately at a 
final dilution of 1:1000 and 1:5000 respectively. Then secondary antibody (a goat anti-rabbit HRP 
conjugated) and (a goat anti-mouse HRP conjugated) at a final dilution of 1:2500 and 1:5000 for histone 
and β-actin was used respectively. The blots were exposed by ECL Plus substrate and developed on X-Ray 
film. (A) Representative western blots of Bcl2 and β-actin using 50 μg of liver protein from Zucker Obese 
(Ob) and Lean (Ln) rats. (B) shows densitometric quantitation p<0.05 as determined by Independent-
Samples T-test. Bar graph represents level of Bcl2 protein of the relative intensities of Bcl2 bands. The 
standard deviations of the experiment for each group of 6 animals are shown on the bars as determined by 
descriptive analysis. (C) shows normalized densitometric quantitation p<0.05 as determined by 
Independent-Samples T-test. Bar graph represents level of Bcl2 protein of the relative intensities of Bcl2 
bands normalized to β-actin. The standard deviations of the experiment for each group of 6 animals are 
shown on the bars as determined by descriptive analysis. 
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Figure 35: Western Blot Analysis of Proapoptotic Bax Protein expression from Liver Homogenates of 
Zucker Obese Rats. 
Bax was analyzed by Western blot analysis as described in Materials and Methods. 50 μg of liver Protein 
Samples was separated by 12% SDS-PAGE gel and transferred onto PVDF membranes. The blots were 
blocked about 4-5 hours. The membrane was probed with primary anti-Bax and Anti-α-tubulin at a final 
dilution of 1:200 and 1:1000 respectively. Then secondary antibody (a goat anti-rabbit HRP conjugated) at 
a final dilution of 1:2500. The blots were exposed by ECL Plus substrate and developed on X-Ray film. (A) 
Representative western blots of Bax using 50 μg of liver protein from Zucker Obese (Ob) and Lean (Ln) 
rats. (B) shows densitometric quantitation p<0.05 as determined by Independent-Samples T-test. Bar graph 
represents level of Bax protein. The standard deviations of the experiment for each group of 6 animals are 
shown on the bars as determined by descriptive analysis. (C) shows Normalized densitometric quantitation 
p<0.05 as determined by Independent-Samples T-test. Bar graph represents level of Bax protein normalized 
to Anti-α-tubulin. The standard deviations of the experiment for each group of 6 animals are shown on the 
bars as determined by descriptive analysis. 
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Figure 36: Western Blot Analysis of anti-apoptotic Bcl2 Protein expression from Liver Homogenates 
of Zucker Obese Rats. 
Bcl2 was analyzed by Western blot analysis as described in Materials and Methods. 50 μg of liver Protein 
Samples was separated by 12% SDS-PAGE gel and transferred onto PVDF membranes. The blots were 
blocked about 4-5 hours. The membrane was probed with primary anti-Bcl2 and β-actin separately at a 
final dilution of 1:1000 and 1:2500 respectively. Then secondary antibody (a goat anti-rabbit HRP 
conjugated) and (a goat anti-mouse HRP conjugated) at a final dilution of 1:2500 and 1:2500 for histone 
and β-actin was used respectively. The blots were exposed by ECL Plus substrate and developed on X-Ray 
film. (A) Representative western blots of Bcl2 and β-actin using 50 μg of liver protein from Zucker Obese 
with high vitamin B6 (OH) and Zucker Obese with normal vitamine B6 (ON). (B) shows densitometric 
quantitation p<0.05 as determined by Independent-Samples T-test. Bar graph represents level of Bcl2 
protein of the relative intensities of Bcl2 bands. The standard deviations of the experiment for each group 
of 6 animals are shown on the bars as determined by descriptive analysis. (C) shows normalized 
densitometric quantitation p<0.05 as determined by Independent-Samples T-test. Bar graph represents level 
of Bcl2 protein of the relative intensities of Bcl2 bands normalized to β-actin. The standard deviations of 
the experiment for each group of 6 animals are shown on the bars as determined by descriptive analysis. 
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Figure 37: Western Blot Analysis of Proapoptotic Bax Protein expression from Liver Homogenates of 
Zucker Obese Rats. 
Bax was analyzed by Western blot analysis as described in Materials and Methods. 50 μg of liver Protein 
Samples was separated by 12% SDS-PAGE gel and transferred onto PVDF membranes. The blots were 
blocked about 4-5 hours. The membrane was probed with primary anti-bax at a final dilution of 1:200, and 
secondary antibody (a goat anti-rabbit HRP conjugated) at a final dilution of 1:25000. The blots were 
exposed by ECL Plus substrate and developed on X-Ray film. (A) Representative western blots of Bax 
using 50 μg of liver protein from Zucker Obese with high vitamin B6 (OH) and Zucker Obese with normal 
vitamine B6 (ON). (B) shows densitometric quantitation p<0.05 as determined by Independent-Samples T-
test. Bar graph represents level of Bax protein. The standard deviations of the experiment for each group of 
6 animals are shown on the bars as determined by descriptive analysis. (C) shows normalized densitometric 
quantitation p<0.05 as determined by Independent-Samples T-test. Bar graph represents level of Bax 
protein normalized to Anti-α-tubulin. The standard deviations of the experiment for each group of 6 
animals are shown on the bars as determined by descriptive analysis. 
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Figure 38: Summary of normalized densitometric quantitation of Bax and Bcl-2 Protein expression 
from Liver Homogenates of Zucker Rats. 
(a) anti-Proapoptotic Bcl2 Protein expression from Liver Homogenates of Zucker Rats. (b) Proapoptotic 
Bax Protein expression from Liver Homogenates of Zucker Rats. (c) anti-Proapoptotic Bcl2 Protein 
expression from Liver Homogenates of Obese Zucker Rats. (d) Proapoptotic Bax Protein expression from 
Liver Homogenates of Obese Zucker Rats. 
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Chapter 4: 

Discussion 

Histone acetylation is associated with increased gene transcription [9,15] and hence with 

transcriptionally active chromatin domains. Histones deacetylation, on the other hand, 

confers repressed gene transcription [48]. Therefore, chromatin remodeling following 

histone acetylation or deacetylation plays a central role in the regulation of expression of 

many genes. Some reports show that up-regulation of inflammatory genes such as COX-2 

and TNF-α involves in the pathology of a number of diseases [59,62]. However, in vivo 

histone acetylation state in disease such as hepatic steatosis is not yet known. Our present 

study bring a new perspective in this area. The main objective of this study was to 

elucidate the pattern and level of H3 and H4 acetylation both in nuclear and homogenate 

fractions in pathological state of hepatic steatosis and determine if hyper-acetylation can 

be a protective response to it. It was also of interest to assess the expression of anti- 

apoptotic and pro-apoptotic factor Bcl-2 and Bax in respect to histone acetylation. 

Investigation of histone acetylation level and pattern in Zucker obese rats, and 

comparison to their lean counterpart provide a new insight as to the association of 

acetylated state in the pathogenesis of hepatic steotosis associated with obesity.  

In order to initiate the study, nuclear fraction was extracted from the liver of Zucker 

rats. Protein concentration was estimated and the linear range was determined in order to 

find appropriate protein concentration. The purity of nuclear fractions was also 

determined by probing membrane containing nuclear fractions against anti-tubulin 

antibody. Nuclear fraction was almost pure, but unfortunately, there was no positive 

control in order to solidify this observation. Histone 3 (H3) and histone 4 (H4) are 
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dominant players in chromatin fiber folding and intermolecular fiber-fiber interactions 

[6]; therefore H3 and H4 were selected as a good candidate to study acetylation in 

association with transcription. 

In a previous study, enhancement in acetylation of nuclear histone H3 at lysine 9 

&14 (K9, K14) and nuclear histone H4 at K5, K8, K12 in high glucose condition, 

mimicking diabetes, in human monocytes THP-1 has been reported [59]. At about the 

same time, Hyperacetylation of H3 in amelioration of experimental colitis, which is an 

inflammatory disease, has been also reported [62]. It has been also believed that hepatic 

steatosis is in part due to oxidative stress and abundance of pro-inflammatory cytokines 

such as tumor necrosis factor-α (TNF- α) [69]. Furthermore, It has been shown that in 

human alveolar epithelial cells (A549), both TNF- α and oxidant alter histone 

acetylation/deacetylation, and activate NF-κB which in turn lead to release of the pro-

inflammatory cytokines [72].Therefore, the primary objective of this research was to 

assess whether histone acetylation is involved and altered in Zucker obese rats which 

contained not only hyperglycemia and sustained inflammatory state but also exhibit 

steatotic liver. 

The findings reported in these papers were used as a starting point for the present 

study. For the starting point of the experiments, all of four anti-lysine antibody for each 

H3 (K9, K14, K18 & K23) and H4 (K5, K8, K12, & K16) was used. Based on 

preliminary results and previous studies specific lysine K9, K14 for histone 3 and K5, 

and 12 for histone 4 was selected.  

In this research project, in control lean animal versus obese, slightly lower levels of 

global histone H3 and H4 were found in liver homogenates and nuclear fractions in obese 
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animals. Evidence shows that reduced levels of global histone acetylation are associated 

with tumorigenesis, invasion and metastasis in gastic cancer [70]. It is also clear that 

acetylated histone H4 expression reduced in colorectal cancer and gastric carcinomas in 

comparison with nonneoplastic mucosa [71]. Our present result is proportional to these 

findings and opens up the possibility that sensitivity of obese rats to colon cancer as well 

as their proinflammatory state may take part to decrease global histone H3 and H4 

acetylation.  

Additionally, we obtained that obese animals had higher histone acetylation levels 

in liver homogenates for H3 (K9 and K14) and for H4 at K5. Histone 4 has to be mono-, 

di- or triacetylated at either K5, K8 and K12 in order to go into the nucleus for chromatin 

assembly. Unacetylated H3 would be incorporated into nucleosome by way of H4 

acetylation [73]. This acetylation serve as a chemical tag to induce chromatin assembly 

factor 1 (CAF1) which assembles newly synthesized H3 and H4 onto replicating DNA in 

vitro. [74]. Therefore, results obtained in this study, suggest that a slight difference in 

global histones does not really count for the level of nuclear acetylation. In other words, 

higher amount of global histone will not necessarily lead to higher level of nuclear 

histone acetylation. 

Having in mind that histone acetylation in the cytoplasm is necessary for histones’ 

transport into nucleus; higher level of histone acetylation in liver homogenate fraction of 

obese animals could be explained by increased transport of histones from cytoplasm into 

nucleus as a response to obesity condition. The other possibility is that histones from 

liver homogenate of obese rats get deacetylated either immediately after entering nucleus 
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or upon binding to DNA, by deacetylases, which are integral part of numerous silencing 

complexes.  

Interestingly, in nuclear fraction, histone acetylation levels were opposite to the 

levels noted in the whole tissue homogenate; histone acetylation levels were higher in the 

lean and lower in the obese animals. Neither in homogenate fractions nor in nuclear 

fractions, acetylation was detected for H4 at K12; but if we could have a positive control, 

we would be more able to rely on the results at K12.  

It is still unclear whether the lower level of nuclear acetylation in obese animals in 

comparison with their lean counterparts has a protective role through silencing (not 

activating) some genes such as, for example, inflammatory genes TNF-alpha and COX-2 

or it has a negative effect by turning off tumor suppressor genes. Therefore, it can be 

reasonable to suggest that lower acetylation of these specific lysine in nuclear hepatic 

fraction in obese rats may possibly correlate in the pathogenicity of hepatic steatosis as a 

result of obesity with hyperglycemia. More specifically H4 at lysine 5 and probably H3 at 

lysine 9 may probably have more effect in this process. 

In addition, the levels of histone acetylation in obese animals fed five times normal 

vitamin B6 (OH) diet and obese animals fed normal amount of vitamin B6 (ON) were 

also analyzed. The animals received an AOM injection twice. It was previously found in 

experiment conducted in our lab (by A. Kular) that vitamin B6 has therapeutic effect and 

decreases the size and preneoplastic legions in obese animals. In the present study, it was 

shown that in both homogenate and nuclear fractions, histone acetylation level of H3 at 

K9 and K14 and of H4 at K5 are higher in OH animals. This observation is in correlation 

with the findings reported by Glauben et al (2006) [62] which indicate that 
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hyperacetylation of histones in liver nuclei correlates with amelioration of hepatic 

steatotis. Therefore, we could conclude that the level of nuclear histone acetylation in OH 

group is more similar to lean than obese counterparts, suggesting better health conditions, 

including lower liver weight, size and etc, along with hyperacetylation of histone H3 and 

H4 at specific lysine residues. 

Since Zucker obese rats are more sensitive to many diseases including diabetes, 

inflammatory disease and cancer [69], it was interesting to see if the levels of anti- 

apoptotic and pro-apoptotic proteins Bcl2 and Bax are different in obese versus lean and 

to assess if this difference could be correlated with hypoacetylation of histones at specific 

lysine residues. Oxidative stress has a significant role in the development of many human 

diseases, including atherosclerosis, cancer and diabetes. [75] Some of the wide range of 

oxidative damage within the cell can be the result of respiration and glucose metabolism 

which in turn generate hydroxyl radicals and other reactive oxygen species (ROS) [76]. 

ROS as well as hyperglycemia can trigger apoptosis pathway. Zucker obese rats can 

exhibit more oxidative stress because of the hyperglycemia. We hypothesized that in 

obese rats apoptotic pathway will be triggered due to the prolonged oxidative stress, 

which means they would show an increase in pro-apoptotic Bax and decrease in anti-

apoptotic Bcl2, compared to their lean counterparts. This hypothesis was proven by our 

result which suggests that higher level of Bax and lower level of Bcl-2 may also be 

associated with pathological state of the tissue.  

Vitamin B6 was used as anticancer treatment. It has been shown that supplemental 

vitamin B6 have no effect on apoptosis in colonic cell [72]. Therefore, we were expecting 

to have a high Bcl-2 and low Bax as in lean animals for OH group. But surprisingly, 
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against our expectation, obese animals fed high vitamin B6 diet had lower Bcl-2 and 

higher Bax expression. One possibility can be that the increased level of Bax did not 

become functional as an indirect effect of vitamin B6 on factor such as Bid (which makes 

Bax functional). The other possibility can be that therapeutic vitamin B6 possibly acted 

as histone deacetylase inhibitors which increased the level of histone acetylation which in 

turn increased the level of Bax in OH group.  

In general, these results represent to our knowledge the first demonstration that 

nuclear hyperacetylation may probably correlate with the amelioration of hepatic coloitis 

associated with obesity. It is also suggestive that even though apoptotic factors Bax and 

Bcl-2 can play a non negligible role in this process but may also be associated with 

pathological state of the tissue.  
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