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Abstract

In 1878, Lucas [16] investigated the sequences (ℓn)∞n=0 where

ℓn =
αn − βn

α− β
,

αβ and α+ β are coprime integers, and where β/α is not a root of unity. Lucas sequences

are divisibility sequences; if m|n, then ℓm|ℓn, and more generally, gcd(ℓm, ℓn) = ℓgcd(m,n)

for all positive integers m and n. Matijasevic utilised this divisibility property of Lucas

sequences in order to resolve Hilbert’s 10th problem.

In 1930, Lehmer [15] introduced the sequences (un)
∞
n=0 where

un =
αn − βn

αǫ(n) − βǫ(n)
,

ǫ(n) =

{

1, if n ≡ 1 (mod 2);

2, if n ≡ 0 (mod 2);

αβ and (α+β)2 are coprime integers, and where β/α is not a root of unity. The sequences

(un)
∞
n=0 are known as Lehmer sequences, and the terms of these sequences are known as

Lehmer numbers. Lehmer showed that his sequences had similar divisibility properties to

those of Lucas sequences, and he used them to extend the Lucas test for primality.

We define a prime divisor p of un to be a primitive divisor of un if p does not divide

(α2 − β2)2u3 · · ·un−1.

Note that in the list of prime factors of the first n − 1 terms of the sequence (un)
∞
n=0, a

primitive divisor of un is a new prime factor.

We let

κ = k(αβmax{(α− β)2, (α + β)2}),

η =

{

1 if κ ≡ 1 (mod 4),

2 otherwise,

where k(αβmax{(α−β)2, (α+β)2}) is the squarefree kernel of αβmax{(α−β)2, (α+β)2}.
On the one hand, building on the work of Schinzel [24], we prove that if n > 4, n 6= 6,
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n/(ηκ) is an odd integer, and the triple (n, α, β), in case (α− β)2 > 0, is not equivalent to

a triple (n, α, β) from an explicit table, then the nth Lehmer number un has at least two

primitive divisors. Moreover, we prove that if n ≥ 1.2×1010, and n/(ηκ) is an odd integer,

then the nth Lehmer number un has at least two primitive divisors. On the other hand,

building on the work of Stewart [30], we prove that there are only finitely many triples

(n, α, β), where n > 6, n 6= 12, and n/(ηκ) is an odd integer, such that the nth Lehmer

number un has less than two primitive divisors, and that these triples may be explicitly

determined. We determine all of these triples (n, α, β) up to equivalence explicitly when

6 < n ≤ 30, n 6= 12, and n/(ηκ) is an odd integer, and we tabulate the triples (n, α, β)

we discovered, up to equivalence, for 30 < n ≤ 500. Finally, we show that the conditions

n > 6, n 6= 12, are best possible, subject to the truth of two plausible conjectures.
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Chapter 1

The Integer Sequences Studied by

Lucas, Lehmer, and Schinzel

1.1 Introduction

We begin by considering for any two integers L > 0 and M 6= 0 the quadratic polynomial

x2 −
√
Lx+M,

and its two roots obtained by the quadratic formula

α =

√
L+

√
L− 4M

2
,

and

β =

√
L−

√
L− 4M

2
.

We note that α and β are algebraic integers as they are roots of

x4 − (L− 2M)x2 +M2 = (x2 −
√
Lx+M)(x2 +

√
Lx+M). (1.1)

Moreover, we note that either (α2, β2) ∈ R × R, or (α2, β2) /∈ R × R, since α2 and β2 are

roots of

x2 − (L− 2M)x+M2. (1.2)
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2 Lehmer Numbers with at Least 2 Primitive Divisors

Since α 6= 0, let

γ =
β

α
.

We record Lemma 1.1, which summarizes some useful properties of γ for later reference.

Lemma 1.1 Let L > 0 and M 6= 0 be fixed integers and let γ = β/α, where α and β are

the roots of x2 −
√
Lx+M .

1. The algebraic number γ is of degree at most 2.

2. If (α2, β2) ∈ R × R, then |α| > |β|, and |γ| < 1.

3. If (α2, β2) /∈ R × R, then |α| = |β|, |γ| = 1, and deg γ = 2.

4. If (α2, β2) /∈ R×R, and gcd(L,M) = 1, then Mx2 − (L− 2M)x+M is the minimal

polynomial of γ over Q.

5. If (α2, β2) /∈ R × R, and gcd(L,M) = 1, then γ is a root of unity if and only if

(L,M) ∈ {(1, 1), (2, 1), (3, 1)}.

Proof In order to see the first item, note that γ and γ−1 are the roots of

Mx2 − (L− 2M)x +M. (1.3)

Moreover, if gcd(L,M) = 1, then (1.3) is the minimal polynomial of γ over Q, which

settles the fourth item. For the second item, α2 = (1/2)(L − 2M +
√

L(L− 4M)), from

which we deduce α2 > β2,
√
α2 >

√

β2, and the result. For the third item, α2 and β2

are complex conjugates, and in particular α2 6= β2, |α| = |β| and |γ| = 1. If deg γ = 1,

then γ = ±1 and α2 = β2, a contradiction. Thus deg γ = 2. Finally, we consider the fifth

item. If (L,M) ∈ {(1, 1), (2, 1), (3, 1)}, it follows directly from (1.3), Definition 2.11, and

Lemma 2.13, that γ is a root of unity. On the other hand, suppose that γ is a root of

unity. Then by (1.3), Definition 2.11, and Lemma 2.13, it follows that |M | = 1 . Hence,

|L − 2M | = |M ||γ + γ−1| < 2, from which we deduce that (L,M) ∈ {(1, 1), (2, 1), (3, 1)}
(compare with [4, Lemma 1.5]).

QED.
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We will see over the course of this introduction that the arithmetic and algebraic properties

of the cyclotomic polynomial are the main tools which we use to study the primitive divisors

of Lehmer numbers. In fact, the second item of Lemma 1.1 is precisely the property that

given a real Lehmer pair, allows Schinzel to obtain clever inequalities for the cyclotomic

polynomial of an elementary nature, and the main result of this first chapter, which we

utilise in the proof of Theorem 1.1. Moreover, the fifth item of Lemma 1.1 helps characterise

the pairs of integers (L,M) which ensure that we have a complex Lehmer pair for the

remaining chapters, the third item of Lemma 1.1 shows that in case we have a complex

Lehmer pair, γ lies on the unit circle, and hence we need to use estimates for linear forms in

2-logarithms in order to prove Theorem 2.1, while the first and fourth items of Lemma 1.1

allow us to obtain a lower bound for the absolute logarithmic Weil height of γ, which we

need in the proof of Theorem 2.1. We now record some fundamental definitions underlying

our study.

Definition 1.2 A Lucas pair is a pair (α, β) of algebraic integers such that α+ β and αβ

are non-zero coprime rational integers, and β/α is not a root of unity.

Definition 1.3 Two Lucas pairs (α1, β1) and (α2, β2) are equivalent if

α1/α2 = β1/β2 = ±1.

Definition 1.4 A Lehmer pair is a pair (α, β) of algebraic integers such that (α+β)2 and

αβ are non-zero coprime rational integers, and β/α is not a root of unity.

Definition 1.5 Two Lehmer pairs (α1, β1) and (α2, β2) are equivalent if

α1/α2 = β1/β2 ∈ {±1,±
√
−1}.

We observe that given a Lucas or Lehmer pair, (α − β)(α + β) 6= 0, since β/α 6= ±1.

Moreover, we use the notation
√
−1 instead of Euler’s well established notation i, which

Euler introduced in 1777, in order to avoid confusion in our later work, when we index by

the letter i.



4 Lehmer Numbers with at Least 2 Primitive Divisors

Definition 1.6 Given a Lucas pair, we define a Lucas sequence (ℓn)∞n=0 by

ℓn = ℓn(α, β) =
αn − βn

α− β
.

A Lucas number is a term of the Lucas sequence (ℓn)∞n=0.

Lemma 1.7 Lucas numbers satisfy the following recurrence relation

ℓ0 = 0,

ℓ1 = 1,

ℓn = (α + β)ℓn−1 − αβℓn−2, , n ≥ 2.

Proof This is clear for n = 0, 1. Let n ≥ 2. It remains to show that

αn − βn

α− β
= (α+ β)

αn−1 − βn−1

α− β
− αβ

αn−2 − βn−2

α− β
. (1.4)

The desired relation follows on clearing denominators in (1.4), and noting that

(α + β)(αn−1 − βn−1) − αβ(αn−2 − βn−2)

= αn − αβn−1 + βαn−1 − βn − βαn−1 + αβn−1

= αn − βn.

QED.

Definition 1.8 Given a Lucas or Lehmer pair, we define a Lehmer sequence (un)
∞
n=0 by

un = un(α, β) =
αn − βn

αǫ(n) − βǫ(n)
,

ǫ(n) =

{

1, if n ≡ 1 (mod 2);

2, if n ≡ 0 (mod 2).

A Lehmer number is a term of the Lehmer sequence (un)
∞
n=0.
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Lemma 1.9 Lehmer numbers satisfy the following recurrence relation

u0 = 0,

u1 = 1,

u2 = 1,

un = (1 + (
√
−1)n−1 sin(πn/2)((α+ β)2 − 1))un−1 − αβun−2, n ≥ 3.

Proof This follows by definition for n = 0, 1, 2. Let n ≥ 3. Note that if n ≡ 0 (mod 2),

then sin(πn/2) = 0, and we must show that

αn − βn

α2 − β2
=
αn−1 − βn−1

α− β
− αβ

αn−2 − βn−2

α2 − β2
,

which is equivalent to showing that for some integer k ≥ 2,

α2k − β2k

α2 − β2
=
α2k−1 − β2k−1

α− β
− αβ

α2k−2 − β2k−2

α2 − β2
. (1.5)

Clearing denominators in (1.5), it remains to show that

α2k − β2k = (α+ β)(α2k−1 − β2k−1) − αβ(α2k−2 − β2k−2). (1.6)

On the other hand, if n ≡ 1 (mod 2), let n = 2k + 1, for some integer k ≥ 1. Then

sin(πn/2) = cos(πk) = (−1)k,

and

(
√
−1)n−1 = (−1)k,

and we must show that

α2k+1 − β2k+1

α− β
= (α + β)2α

2k − β2k

α2 − β2
− αβ

α2k−1 − β2k−1

α− β
. (1.7)

Clearing denominators in (1.7), it remains to show that

α2k+1 − β2k+1 = (α + β)(α2k − β2k) − αβ(α2k−1 − β2k−1). (1.8)
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Plainly, by expanding the right hand side of (1.6) or (1.8), we establish equality (1.6) or

(1.8).

QED.

We note that by Lemma 1.7 and by Lemma 1.9, it is easily seen that Lucas numbers

and Lehmer numbers are rational integers. In 1930, Lehmer [15] introduced the sequences

(un)
∞
n=0, and showed that they had similar divisibility properties to those of Lucas se-

quences. Earlier, in 1878, Lucas [16], in an article in the first volume of the American

Journal of Mathematics, had investigated the integer sequences (ℓn)∞n=0. Both Lucas and

Lehmer sequences generalize the sequences (an−bn)∞n=0, where a and b are coprime integers.

In this thesis we are interested in studying the primitive divisors of terms of the Lehmer

sequence.

Definition 1.10 Let a ∈ Z, b ∈ Z, gcd(a, b) = 1, |a| > |b| > 0. A primitive divisor of a

term an − bn of the sequence (an − bn)∞n=0 is a prime number p which divides an − bn, but

does not divide am − bm for 0 < m < n.

Definition 1.11 A primitive divisor of a term ℓn = ℓn(α, β) of a Lucas sequence is a

prime number p which divides ℓn, but does not divide the product

(α− β)2ℓ2 · · · ℓn−1.

Definition 1.12 A primitive divisor of a term un = un(α, β) of a Lehmer sequence is a

prime number p which divides un, but does not divide the product

(α2 − β2)2u3 · · ·un−1.

The reason for introducing the factor (α2−β2)2 in Definition 1.12 is that if a prime number

p > 2 divides (α − β)2, then p divides up, while if p > 2 divides (α + β)2, then p divides

u2p (see Lemma 1.24, item 7 and 8). We now record some simple observations underlying

our study.

Lemma 1.13 Let n > 2, and let (α, β) be a Lucas pair. A prime number p is a primitive

divisor of ℓn = ℓn(α, β) if and only if p is a primitive divisor of un = un(α, β).
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Proof The result follows by Definitions 1.11 and 1.12, and from the observation that

ℓn = un if n ≡ 1 (mod 2), whereas ℓn = (α + β)un if n ≡ 0 (mod 2).

QED.

Lemma 1.13 means that searching for primitive divisors of a Lucas sequence is a special

case of the same problem for Lehmer sequences.

Lemma 1.14 Let L ∈ Z, M ∈ Z, L > 0, M 6= 0, L = gL′, M = gM ′, where g =

gcd(L,M) ≥ 1, and gcd(L′,M ′) = 1. Further, let α =
√
gα′, and β =

√
gβ ′, where α′ and

β ′ are the roots of x2 −
√
L′x+M ′. Then

un(α, β) = g(n−ǫ(n))/2un(α′, β ′),

where ǫ(n) is defined in Definition 1.8. In particular, the primitive divisors of un(α, β)

coincide with the primitive divisors of un(α
′, β ′).

Proof The first part follows by Definition 1.8. The second part follows from Definition

1.12 on noting (α2 − β2)2 = Lg(L/g − 4M/g).

QED.

Lemma 1.14 means that in searching for primitive divisors of a Lehmer sequence we may

assume that L and M are coprime.

Lemma 1.15 Let L ∈ Z, M ∈ Z, L > 0, M 6= 0, α and β be the roots of x2 −
√
Lx+M ,

and α′ and β ′ be the roots of x2 −
√
−Lx−M . Then

(−1)(n−ǫ(n))/2un(α, β) = un(α′, β ′),

where ǫ(n) is defined in Definition 1.8. In particular, the primitive divisors of un(α, β)

coincide with the primitive divisors of un(α
′, β ′).

Proof The first part follows by Definition 1.8 on noting α′ =
√
−1α and β ′ =

√
−1β. The

second part follows by Definition 1.12.

QED.

Lemma 1.15 means that in searching for primitive divisors of a Lehmer sequence we may

assume that L is positive.
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Definition 1.16 We define the cyclotomic polynomial

Φn(x, y) =
n
∏

i=1

(i,n)=1

(x− ζ i
ny), (1.9)

where

ζn = exp(2π
√
−1/n).

The next two Lemmas, Lemma 1.17 and Lemma 1.18, are useful in proving Lemma 1.26,

and more importantly, in establishing a particular factorisation of Φn(x, y) in Lemma 1.36,

which we exploit in proving Theorem 1.1 and Theorem 3.1.

Lemma 1.17 For any odd integer ℓ > 1, Φℓ(x,−y) = Φ2ℓ(x, y).

Proof

Φ2ℓ(x, y) =

2ℓ
∏

j=1

gcd(j,2ℓ)=1

(x− ζj
2ℓy)

=

ℓ
∏

j=1

gcd(j,2ℓ)=1

(x− ζj
2ℓy)

2ℓ
∏

j=ℓ+2

gcd(j,2ℓ)=1

(x− ζj
2ℓy)

=

ℓ
∏

k=(ℓ+1)/2

gcd(2k−ℓ,ℓ)=1

(x− ζ2k−ℓ
2ℓ y)

(ℓ−1)/2
∏

k=1

gcd(ℓ+2k,ℓ)=1

(x− ζℓ+2k
2ℓ y).

The result follows on noting that gcd(2k−ℓ, ℓ) = 1 and gcd(ℓ+2k, ℓ) = 1 imply gcd(k, ℓ) =

1, ζℓ
2ℓ = ζ−ℓ

2ℓ = −1, and ζ2k
2ℓ = ζk

ℓ .

QED.

Lemma 1.18 For any even integer ℓ > 1, Φℓ(x, y) = Φ2ℓ(
√
x,
√
y).
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Proof

Φ2ℓ(
√
x,

√
y) =

2ℓ
∏

i=1

gcd(i,2ℓ)=1

(
√
x− ζ i

2ℓ

√
y)

=

ℓ
∏

i=1

gcd(i,2ℓ)=1

(
√
x− ζ i

2ℓ

√
y)(

√
x+ ζ i

2ℓ

√
y)

=

ℓ
∏

i=1

gcd(i,ℓ)=1

(x− ζ2i
2ℓy)

= Φℓ(x, y).

QED.

Lemma 1.19 is used to establish Lemma 1.20, and Lemma 1.20 is used to establish Lemma

1.21, which is useful in later applying the particular factorisation of Φn(x, y) from Lemma

1.36, and Lemma 2.1, which is crucial to the proof of Theorem 2.1.

Lemma 1.19 Let n > 0. Then

xn − yn =
∏

d|n

Φd(x, y), (1.10)

where Φd(x, y) is defined by equation (1.9).

Proof Assume first that y 6= 0. Then equation (1.10) follows from the factorisation

xn − yn = yn((x/y)n − 1)

= yn
n−1
∏

j=0

(x/y − ζj
n)

= yn
∏

d|n

n
∏

j=1

(j,n)=d

(x/y − ζj
n),

since

∏

d|n

Φd(x, y) =
∏

d|n

n/d
∏

ℓ=1

(ℓ,n/d)=1

(x− ζℓ
n/dy).
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If y = 0, the result follows from the fact that

∏

d|n

Φd(x, 0) =
∏

d|n

d
∏

j=1

gcd(j,d)=1

x

=
∏

d|n

xφ(d)

= x
P

d|n φ(d)

= xn.

QED.

Lemma 1.20 Let n > 0. Then

Φn(x, y) =
∏

d|n

(xd − yd)µ(n/d), (1.11)

where Φn(x, y) is defined by equation (1.9).

Proof Applying the Möbius inversion formula to equation (1.10), we obtain (1.11).

QED.

Lemma 1.21 Let n > 1 be an integer, and let n∗ denote the greatest squarefree divisor of

n. Then

Φn(x, y) = Φn∗(xn/n∗

, yn/n∗

),

where Φn(x, y) is defined by equation (1.9).

Proof It follows from equation (1.11) and the definition of the Möbius function that

Φn(x, y) =
∏

d|n

(xn/d − yn/d)µ(d)

=
∏

d|n∗

(xn/d − yn/d)µ(d)

=
∏

d|n∗

((xn/n∗

)n∗/d − (yn/n∗

)n∗/d)µ(d)

= Φn∗(xn/n∗

, yn/n∗

).

QED.
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Definition 1.22 For any positive integer m, we let P (m) denote the greatest prime factor

of m, with the convention that P (1) = 1.

The next three Lemmas, Lemma 1.23, Lemma 1.24, and Lemma 1.25, establish the con-

nection between the arithmetic properties of the cyclotomic polynomial, and the primitive

divisors of un. More precisely, that given a Lehmer pair (α, β), the prime factors of the

cyclotomic polynomial Φn(α, β) are the primitive divisors of un(α, β), except possibly for

the prime factor P (n/ gcd(n, 3)).

Lemma 1.23 Let n > 2, and let (α, β) be a Lehmer pair. Then Φn(α, β) is an integer.

Proof

Φn(α, β) =

⌊n/2⌋
∏

j=1

gcd(j,n)=1

(α− ζj
nβ)(α− ζ−j

n β)

=

⌊n/2⌋
∏

j=1

gcd(j,n)=1

(α2 + β2 − (ζj
n + ζ−j

n )αβ).

Let

Fn(x, y) =

⌊n/2⌋
∏

j=1

gcd(j,n)=1

(x− (ζj
n + ζ−j

n )y).

Note that Fn(x, y) is a binary form of degree φ(n)/2, with rational integer coefficients since

all of its roots lie in Q(ζj
n + ζ−j

n ), the maximal real subfield of Q(ζn). It remains to note

that since (α, β) is a Lehmer pair, thus αβ ∈ Z, α2 + β2 = (α+ β)2 − 2αβ ∈ Z, and

Φn(α, β) = Fn(α2 + β2, αβ) ∈ Z.

QED.

Lemma 1.24 Let (α, β) be a Lehmer pair and (un)∞n=0 the corresponding sequence of

Lehmer numbers. Then

1. For all positive integers n we have gcd(αβ, un) = 1.
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2. If d|n, then ud|un and gcd(un/ud, ud) divides n/d.

3. For all positive integers m and n we have gcd(um, un) = ugcd(m,n).

4. If a prime p does not divide αβ(α2 − β2)2, then p divides up−1up+1.

5. If a prime p divides um, then p divides ump/um; if p > 2 then p exactly divides

ump/um (i.e. p2 ∤ ump/um).

6. If 4|um, then 2 exactly divides u2m/um.

7. If a prime p > 2 divides (α − β)2, then p divides up; if p > 3 then p exactly divides

up.

8. If a prime p > 2 divides (α + β)2, then p divides u2p; if p > 3 then p exactly divides

u2p.

9. If n > 2, d < n and d|n, then Φn(α, β) divides un/ud, where Φn(α, β) is defined by

equation (1.9).

Proof These properties go back to Lehmer [15], and are proved by Stewart [29]. They are

listed in [4, Proposition 2.1].

QED.

Lemma 1.25 Let P (n/ gcd(n, 3)) be defined by Definition 1.22, (α, β) be a Lehmer pair,

and let Φn(α, β) be defined by equation (1.9). If n > 4 and n /∈ {6, 12}, then P (n/ gcd(n, 3))

divides Φn(α, β) to at most the first power. All other prime factors of Φn(α, β) are con-

gruent to ±1 (mod n). Moreover, if n = 12, then some divisor of 6 divides Φ12(α, β) to at

most the first power. All other prime factors of Φ12(α, β) are congruent to ±1 (mod 12).

Proof This is [29, Lemma 6].

QED.

We first use Lemma 1.24 and Lemma 1.25 in order to establish Lemma 1.26, which we

utilise in order to complete our proof of Theorem 1.1. For example, Lemma 1.26 means

that searching for primitive divisors of u219((1/2)(3 +
√

37), (1/2)(3 −
√

37)) is the same

as searching for primitive divisors of u518((1/2)(3 +
√

37), (1/2)(−3 +
√

37)), and hence it

suffices to consider only one of these Lehmer numbers in the proof of Theorem 1.1.
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Lemma 1.26 Let (α, β) be a Lehmer pair, L = (α + β)2 > 0, M = αβ 6= 0, α′ and β ′ be

roots of

x2 −
√

max{L− 4M,L}x+ |M |,

n > 4, n /∈ {6, 12}, 8 ∤ n, and let

u′n = un(α
′, β ′).

Then

un(α, β) =











u′n if M > 0,

u′n if M < 0 and n is even,

u′2n/u
′
n if M < 0 and n is odd.

Moreover, the primitive divisors of un(α, β) coincide with those of u′n if M > 0, with those

of u′2n if M < 0 and n is odd, with those of u′n/2 if M < 0 and n ≡ 2 (mod 4), and with

those of u′n if M < 0 and n ≡ 0 (mod 4).

Proof If M > 0, then max{L− 4M,L} = L and |M | = M , hence un = u′n. On the other

hand, in case M < 0, then by definition

α′ =
1

2
(
√
L− 4M +

√
L) = α,

and

β ′ =
1

2
(
√
L− 4M −

√
L) = −β.

It follows that if n is even and M < 0 then

u′n =
(α′)n − (β ′)n

(α′)2 − (β ′)2

=
(α)n − (−β)n

(α)2 − (−β)2

=
αn − βn

α2 − β2

= un,
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while if n is odd and M < 0 then

u′2n

u′n
=

(α′)2n − (β ′)2n

(α′)2 − (β ′)2

α′ − β ′

(α′)n − (β ′)n

=
(α′)n + (β ′)n

α′ + β ′

=
(α′)n − (−β ′)n

α′ − (−β ′)

=
αn − βn

α− β
= un.

By Lemma 1.24 and Lemma 1.25, the primitive divisors of un are the prime factors of

Φn(α, β), except possibly for P (n/ gcd(n, 3)). If M > 0,

Φn(α′, β ′) = Φn(α, β).

If M < 0, and n ≡ 1 (mod 2), by Lemma 1.17,

Φ2n(α′, β ′) = Φn(α, β).

If M < 0, and n ≡ 2 (mod 4), by Lemma 1.17,

Φn/2(α
′, β ′) = Φn(α, β).

If M < 0, and n ≡ 0 (mod 4), by Lemma 1.18,

Φn(α′, β ′) = Φn/2(α
2, β2),

and since 8 ∤ n, by Lemma 1.21,

Φn/2(α
2, β2) = Φn(α, β).

QED.

The first general result1 about the existence of primitive divisors of terms of the Lehmer

sequence dates back to 1892, when Zsigmondy [37] proved that given an integer Lucas pair

(α, β) ∈ Z × Z,
1Earlier, Bang [2] dealt with the case α ∈ Z and β = 1.
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if n > 6, then un has a primitive divisor. This result was obtained independently in 1904

by Birkhoff and Vandiver [5]. Note that their result is best possible since the prime divisors

of 63, the 6th term of the sequence (2n − 1)∞n=0, divide the second or third term.

In 1913, Carmichael [7] extended this result by proving that given a real Lucas pair

(α, β) ∈ R × R,

if n > 12, then un has a primitive divisor. Note that Carmichael’s result is best possible

since the prime divisors of 144, the 12th term of the Fibonacci sequence

(

1√
5

((

1 +
√

5

2

)n

−
(

1 −
√

5

2

)n))∞

n=0

,

divide the third or fourth term.

In the 1950’s, Ward [36] and Durst [9] extended these results to real Lehmer pairs (α, β)

such that

(α2, β2) ∈ R × R.

In 1962, motivated by Ward’s remark that nothing appears to be known for complex

Lehmer pairs (α, β) such that

(α2, β2) /∈ R × R,

Schinzel [22] showed that given a Lehmer pair, there exists a constant n1(α, β), depending

on α and β, such that if n > n1(α, β), then un has at least one primitive divisor. Later, in

1974, Schinzel [27] showed that, rather surprisingly, the constant n1(α, β), depending on α

and β, may be replaced by an absolute constant n1.

In 1977, Stewart [30] made a remarkable improvement by not only making Schinzel’s

work explicit by using his estimates on linear forms in 2-logarithms in order to show that

we may take

n1 = e452467 ∼ 10231,

but also by showing that there are only finitely many Lehmer sequences whose nth term,

n > 6, n /∈ {8, 10, 12}, does not possess a primitive divisor, and by establishing a cyclo-

tomic criterion, and thereby an algorithm, from which these exceptional sequences may

be explicitly determined by solving the implicated Thue equations. Moreover, Stewart
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showed that the restrictions n > 6, n /∈ {8, 10, 12}, are best possible for the Lehmer se-

quence (un)∞n=0, but may be replaced by the best possible restrictions n > 4, n 6= 6 for the

Lucas sequence (ℓn)
∞
n=0.

In the 1990’s, Voutier [33] made use of the refinement by Laurent, Mignotte and

Nesterenko [14] for linear forms in 2-logarithms, and refined Stewart’s constant to

n1 = 2 × 1010.

Furthermore, after implementing Stewart’s algorithm in MAPLE, and computing all of the

solutions of the implicated Thue equations in the range n ≤ 30, and the small solutions

of the implicated Thue equations in the range 30 < n ≤ 250, Voutier [32] tabulated all

Lehmer sequences whose nth term, 6 < n ≤ 30, n /∈ {8, 10, 12}, has no primitive divisor,

and conjectured that n1 = 30. Moreover, shortly after, Voutier [34] refined his work and

established

n1 = 30030.

At the turn of the millennium, in a spectacular display of the interplay between compu-

tational number theory and theoretical number theory in helping to resolve an outstanding

problem, Bilu, Hanrot, and Voutier [4] established Voutier’s conjecture. In particular, they

showed

n1 = 30.

In order to further motivate our study, let us consider the following problems:

Problem 1.27 Classify all Lehmer triples (n, α, β) such that (α, β) is a Lehmer pair, and

un has at least one primitive divisor.

Problem 1.28 Classify all Lehmer triples (n, α, β) such that (α, β) is a Lehmer pair, and

un has at least r primitive divisor(s), where r is a given natural number.

As already noted, Problem 1.27 has been solved completely by Bilu, Hanrot, and

Voutier. In this thesis we concern ourselves with Problem 1.28. It is not clear at the

outset that Problem 1.28 is not accounted for by the solution to Problem 1.27. As an
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example, note that there are Lehmer sequences whose nth term has 2 primitive divisors.

In particular, the 7th term of the following Lehmer sequence

0, 1, 1, 37, 2 · 31, 1669, 3 · 29 · 37, 7 · 13 · 883, . . .

corresponding to the triple

(n, α, β) = (7,
√

3 + 2
√

7,
√

3 − 2
√

7),

has two primitive divisors, namely 13 and 883. Note that 7 divides (α2 − β2)2 = 26 · 3 · 7,

and so is not a primitive divisor.

The first general result in the direction of Problem 1.28 was made in 1962 by Schinzel

[23]. More precisely, let n > 0 be an integer, a and b be relatively prime integers with

|a| > |b| > 0, k(ab) denote the squarefree kernel of ab, and let

η0 =

{

1 if k(ab) ≡ 1 (mod 4),

2 if k(ab) ≡ 2, 3 (mod 4).

Schinzel showed that if n/(η0k(ab)) is an odd integer, and the triple (n, a, b) is not in Table

1.1, then the nth term of the sequence (an − bn)∞n=0 has at least two primitive divisors. In

the same year, Rotkiewicz [21] generalised this theorem to real Lucas sequences.

In 1963, Schinzel [24] generalised Rotkiewicz’s theorem to a theorem about the nth

term of the Lehmer sequence (un)
∞
n=0 having at least two primitive divisors. In the same

year, Schinzel [25] proved a theorem about un having at least r primitive divisors, where

r is 3, 4 or 6, while a few years later in 1968, Schinzel [26] refined all of his theorems on

primitive divisors of Lehmer sequences. Nonetheless, all of Schinzel’s theorems had the

shape, ignoring other conditions similar to the conditions described above for the sequence

(an − bn)∞n=0, that there exists a constant nr(α, β), depending on α and β, such that if

n > nr(α, β), then un has at least r primitive divisors, where r is a natural number. Later,

in 1974, Schinzel [26] showed that for each r, nr(α, β) may be replaced by an absolute

constant nr.

In this thesis, we extend Stewart’s program. More precisely, we use the arithmetic

and algebraic properties of the cyclotomic polynomial, together with a sharp estimate for

linear forms in 2-logarithms determined by Mignotte, and sharp inequalities for the arith-

metic functions φ(n) and ω(n), in order to make Schinzel’s constant nr for r = 2 explicit.
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n, a, b n, a, b

1, (2i + 1)2, (2i − 1)2 3, 4,−3

1,−(2i + 1)2,−(2i − 1)2 3,−4, 3

1, (pi + 1)2/4, (pi − 1)2/4 4,±2,±1

1,−(pi + 1)2/4,−(pi − 1)2/4 6, 3, 1

2, (2i + 1)2,−(2i − 1)2 6,−3,−1

2,−(2i + 1)2, (2i − 1)2 6, 4,−1

2, (pi + 1)2/4,−(pi − 1)2/4 6,−4, 1

2,−(pi + 1)2/4, (pi − 1)2/4 6, 4, 3

3, 3,−1 6,−4,−3

3,−3, 1 12,±2,±1

3, 4, 1 12,±3,±2

3,−4,−1 20,±2,±1

Table 1.1: A table of all exceptional triples (n, a, b). Note i ∈ N.

Furthermore, for certain conditions on (n, α, β) similar to the conditions described for the

sequence (an − bn)∞n=0, we show that there are only finitely many Lehmer sequences whose

nth term has less than two primitive divisors, and we establish a cyclotomic criterion, and

thereby an algorithm, from which these exceptional sequences may be explicitly determined

by solving the implicated Thue equations. Finally, we show that our work is best possible

subject to the truth of two plausible conjectures.

1.2 Classifying real Lehmer triples

In this section we establish a theorem on terms of Lehmer sequences, generated by a

real Lehmer pair, with at least two primitive divisors, in the direction of solving a part

of Problem 1.28. Our result is obtained by making explicit a result of Schinzel [24]. In

particular, Schinzel determines a finite list of Lehmer numbers which might have fewer than

2 primitive divisors, and we shall determine those which do have fewer than 2 primitive

divisors. In contrast to the case where (α, β) is a complex Lehmer pair and γ = β/α lies on
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the unit circle, the methods used by Schinzel [24] in case (α, β) is a real Lehmer pair rely

on the fact that |α| > |β|, and hence that the algebraic factors of the implied cyclotomic

polynomial may be bounded from below using clever inequalities of an elementary nature,

and in particular, not inequalities for linear forms in 2-logarithms.

1.2.1 Statement of Theorem 1.1 and Preliminary Lemmas

We note first that the following conditions

L > 0,

M 6= 0, (1.12)

L− 4M > 0,

gcd(L,M) = 1,

ensure that we have a real Lehmer pair. Plainly, the conditions (1.12) imply (α, β) ∈ R×R,

and hence that (α2, β2) ∈ R × R and β/α ∈ R. Moreover, β/α is a root of unity in R if

and only if β = ±α. If β = α, then L − 4M = 0, while if β = −α, then L = 0, in either

case, a contradiction.

Definition 1.29 For any integer n, we define k(n) to be n divided by the greatest square

divisor of n. We note that k(n) is known as the squarefree kernel of n.

We let

κ = k(M max{L− 4M,L}), (1.13)

and

η =

{

1 if κ ≡ 1 (mod 4),

2 if κ ≡ 2, 3 (mod 4).
(1.14)

Theorem 1.1 Let L and M be integers satisfying the conditions (1.12), (α, β) be the

associated real Lehmer pair, and let κ and η be defined by (1.13) and (1.14). If n > 4,

n 6= 6, n/(ηκ) is an odd integer, and the triple (n, α, β) is not equivalent to a triple (n, α, β)

from Table 1.2, then un(α, β) has at least two primitive divisors.
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(n, α, β) (n, L,M) p

5 , (1/2)
√

5 + (1/2), (1/2)
√

5 − (1/2) 5, 5, 1 11

*5 , (3/2) + (1/2)
√

5, (3/2) − (1/2)
√

5 5, 9, 1 11

7 , (1/2)
√

3 + (1/2)
√

7, (1/2)
√

3 − (1/2)
√

7 7, 3,−1 13

*10 , (1/2) + (1/2)
√

5, (1/2) − (1/2)
√

5 10, 1,−1 11

10 , (1/2)
√

5 + (3/2), (1/2)
√

5 − (3/2) 10, 5,−1 11

*12 , 3, −2 12, 1,−6 61

*12 , 2, −1 12, 1,−2 13

12 , (1/2)
√

2 + (1/2)
√

6, (1/2)
√

2 − (1/2)
√

6 12, 2,−1 13

*12 , 1 +
√

2, 1 −
√

2 12, 4,−1 11

12 , (1/2)
√

6 + (1/2)
√

2, (1/2)
√

6 − (1/2)
√

2 12, 6, 1 13

12 ,
√

2 + 1,
√

2 − 1 12, 8, 1 11

*12, 2, 1 12, 9, 2 13

*12, 3, 2, 12, 25, 6 61

14 , (1/2)
√

7 + (1/2)
√

3, (1/2)
√

7 − (1/2)
√

3 14, 7, 1 13

15 , (1/2)
√

5 + (1/2), (1/2)
√

5 − (1/2) 15, 5, 1 31

*20, 2, -1 20, 1,−2 41

*20, 2, 1 20, 9, 2 41

*30 , (1/2) + (1/2)
√

5, (1/2) − (1/2)
√

5 30, 1,−1 31

Table 1.2: A table of all exceptional real Lehmer triples (n, α, β) (up to equivalence) and

associate triples (n, L,M), such that L > 0, M 6= 0, L − 4M > 0, gcd(L,M) = 1, 4 < n,

n 6= 6, n/(ηκ) is an odd integer, and un(α, β) has less than two primitive divisors, together

with their primitive divisor p. Note that the star ∗ indicates the real Lehmer triples

correspond to real Lucas triples.



The Integer Sequences Studied by Lucas, Lehmer, and Schinzel 21

Lemma 1.30 clarifies the admissible n in Theorem 1.1.

Lemma 1.30 Let n > 2 be a positive integer, m1 be a squarefree divisor of n, and let

m2 = 1 if m1 ≡ 1 (mod 4), and m2 = 2 otherwise. If n/(m1m2) is an odd integer and m1

is positive, then n is either an odd integer, or a multiple of 4 not divisible by 8, or a multiple

of 2, not divisible by 4, and divisible by a prime p ≡ 3 (mod 4). Moreover, if n/(m1m2) is

an odd integer and m1 is negative, then n is either an odd integer, or a multiple of 4 not

divisible by 8, or a multiple of 2, not divisible by 4, and divisible by a prime p ≡ 1 (mod 4).

Proof Let ℓ be an odd integer. In case m1 is positive, note that either m1m2 = 1 + 4z1,

or m1m2 = 4(1 + 2z2), or m1m2 = 2(3+ 4z3), for some nonnegative integers z1, z2, z3, from

which it follows that either n = (1+4z1)ℓ, or n = 4(1+2z2)ℓ, or n = 2(3+4z3)ℓ. Similarly,

in case m1 is negative, either n = (3 + 4z1)ℓ, or n = 4(1 + 2z2)ℓ, or n = 2(1 + 4z3)ℓ.

QED.

The proof of Theorem 1.1 amounts to exhibiting the set R0 ∪ Q0, defined in Lemma

1.31, due to Schinzel [24, Theorem 1], explicitly. We do this in Table 1.2. Schinzel [26]

remarks that Brillhart and Selfridge have done this, although no reference2 to their work

is given.

Lemma 1.31 Let L and M be integers satisfying the conditions (1.12), (α, β) be the as-

sociated real Lehmer pair, and let κ and η be defined by (1.13) and (1.14). If n > 4, n 6= 6,

and n/(ηκ) is an odd integer, and the triple (n, L,M) /∈ R0 ∪Q0, where

R0 = {(5, 9, 1), (10, 5,−1), (20, 1,−2), (20, 9, 2)},
Q0 = {(n, L,M) ∈ S0 ∪ T0 : un has less than two primitive divisors},
S0 = {(η|κ|, L,M) : (L,M) ∈ S},
T0 = {(3η|κ|, L,M) : (L,M) ∈ T},
S = {(L,M) : gcd(L,M) = 1, (L,M) = (12,−25), (112, 25), or 1 ≤ |M | ≤ 15,

2M + 2|M | + 1 ≤ L < min(64 + 2M − 2|M |, 2M + 2|M | + 4|M |1/2 + 1},
T = {(L,M) : gcd(L,M) = 1, (L,M) = (4,−1), (8, 1) or 1 ≤ |M | ≤ 15,

L = 2M + 2|M | + 1},
2In personal correspondence, Brillhart confirms the calculation was done, not published, and since lost.
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then un(α, β) has at least two primitive divisors.

Proof This is part 1 of [24, Theorem 1].

QED.

Lemma 1.32 Let un be defined by Definition 1.8, ℓ > 1 be a divisor of un,

a = L(L− 4M)

n−1
∏

i=3

gcd(i,n)6=1

ui,

b = gcd(ℓ, a), c = ℓ/b, and d = gcd(b, c). If c > 1 and d = 1, then ℓ has at least one

divisor, which is a primitive divisor of un.

Proof Note first that ℓ = bc. Since c > 1, let p|c. Then p|ℓ. We will show that p ∤

L(L − 4M)u3 · · ·un−1. Since d = 1, p ∤ b, which implies p ∤ a. We are left to show for

3 ≤ i ≤ n− 1, gcd(n, i) = 1, that p ∤ ui. Recall part 3 of Lemma 1.24, that for all positive

integers m and n

gcd(un, um) = ugcd(m,n). (1.15)

It follows from equation (1.15) that for any 3 ≤ i ≤ n− 1 for which gcd(i, n) = 1,

gcd(un, ui) = ugcd(i,n) = u1 = 1,

and hence gcd(ℓ, ui) = 1. Plainly, p ∤ ui for any 3 ≤ i ≤ n− 1, gcd(i, n) = 1.

QED.

Definition 1.33 Let p be an odd prime number, a ∈ Z. The values of (a|p) = (a
p
), called

the Legendre symbol, are given by

(a|p)

=











1, if p ∤ a, and there exists an integer x such that x2 = a (mod p);

0, if p|a;
−1, if p ∤ a, and there does not exist an integer x such that x2 = a (mod p).
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Definition 1.34 Let b be an odd integer with prime factorisation ±1
∏r

i=1 pi. For a ∈ Z,

we define the Jacobi symbol (a|b), as follows:

(a| − 1) = (a|1) = 1,

and

(a|b) =

r
∏

i=1

(a|pi),

a product of Legendre symbols.

Lemma 1.35 Let ℓ > 1 be an odd integer, and let m be a divisor of ℓ. Then

Φℓ(x, y) =

ℓ
∏

s=1
gcd(s,ℓ)=1

(s|m)=1

(
√
x− ζs

ℓ

√
y)(

√
x+ ζs

ℓ

√
y)

ℓ
∏

t=1
gcd(t,ℓ)=1

(t|m)=−1

(
√
x− ζ t

ℓ

√
y)(

√
x+ ζ t

ℓ

√
y).

Proof On dividing the values of j in equation (1.9) into two classes according as (j|m) = 1

or (j|m) = −1, we obtain

Φℓ(x, y) =

ℓ
∏

s=1
gcd(s,ℓ)=1

(s|m)=1

(x− ζs
ℓ y)

ℓ
∏

t=1
gcd(t,ℓ)=1

(t|m)=−1

(x− ζ t
ℓy). (1.16)

Since ℓ is odd, we have for ǫ = ±1 that

{ζj
ℓ , j = 1, . . . , ℓ, gcd(j, ℓ) = 1, (j|m) = ǫ} = {ζ2j

ℓ , j = 1, . . . , ℓ, gcd(j, ℓ) = 1, (j|m) = ǫ(2|m)}.

The result follows on considering x − ζs
ℓ y and x− ζ t

ℓy in (1.16) as a difference of squares,

and factoring.

QED.

Lemma 1.36 Let ℓ > 1 be a squarefree integer, and let m be an integer divisor of ℓ such

that ℓ/m is an odd integer. Then for N = ℓ or N = 2ℓ, we have

ΦN (x, y) = Φ
(1)
N,m(x, y)Φ

(2)
N,m(x, y), (1.17)
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where if N = ℓ and m is odd,

Φ
(1)
N,m(x, y) =

ℓ
∏

s=1
gcd(s,ℓ)=1

(s|m)=1

(
√
x− ζs

ℓ

√
y)

ℓ
∏

t=1
gcd(t,ℓ)=1

(t|m)=−1

(
√
x+ ζ t

ℓ

√
y), (1.18)

and

Φ
(2)
N,m(x, y) =

ℓ
∏

s=1
gcd(s,ℓ)=1

(s|m)=1

(
√
x+ ζs

ℓ

√
y)

ℓ
∏

t=1
gcd(t,ℓ)=1

(t|m)=−1

(
√
x− ζ t

ℓ

√
y); (1.19)

if N = 2ℓ and m is odd,

Φ
(1)
N,m(x, y) =

ℓ
∏

s=1
gcd(s,ℓ)=1

(s|m)=1

(
√
x−

√
−1ζs

ℓ

√
y)

ℓ
∏

t=1
gcd(t,ℓ)=1

(t|m)=−1

(
√
x+

√
−1ζ t

ℓ

√
y), (1.20)

and

Φ
(2)
N,m(x, y) =

ℓ
∏

s=1
gcd(s,ℓ)=1

(s|m)=1

(
√
x+

√
−1ζs

ℓ

√
y)

ℓ
∏

t=1
gcd(t,ℓ)=1

(t|m)=−1

(
√
x−

√
−1ζ t

ℓ

√
y); (1.21)

if N = 2ℓ and m is even,

Φ
(1)
N,m(x, y) =

4ℓ
∏

s=1
gcd(s,4ℓ)=1

(m|s)=1

(
√
x− ζs

4ℓ

√
y), (1.22)

and

Φ
(2)
N,m(x, y) =

4ℓ
∏

s=1
gcd(s,4ℓ)=1

(m|s)=1

(
√
x+ ζs

4ℓ

√
y); (1.23)

and where (s|m), (t|m), and (m|s) are Jacobi symbols, as defined in Definition 1.34.
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Proof This is essentially line (4), (5), and (7) of [23, Theorem 1]. Note that our notation

and exposition here differs from [23, Theorem 1]. In particular, we have replaced n by

ℓ, ψn,m(x) by Φ
(1)
N,m(x, y), we have defined explicitly Φ

(2)
N,m(x, y), and we have written the

indices for the products under the products. We present an argument based on Schinzel’s

proof of [23, Theorem 1].

Suppose that ℓ is odd, and m is odd. The equations (1.18) and (1.19) follow from

Lemma 1.35 (note in case m = 1 the product over t is empty). Furthermore, the equations

(1.20) and (1.21) follow from Lemma 1.17, together with Lemma 1.35. On the other hand,

if ℓ is even, then m is even since ℓ/m is odd. Let ℓ = 2k1 where gcd(k1, 2) = 1 since ℓ is

squarefree. Since ℓ is even, by Lemma 1.18 we have that

Φ2ℓ(x, y) = Φℓ(x
2, y2). (1.24)

Further, since ℓ = 2k1, and k1 is odd, we have by Lemma 1.17 that

Φℓ(x
2, y2) = Φk1(x

2,−y2) = Φk1(x,
√
−1y)Φk1(x,−

√
−1y). (1.25)

By (1.24) and (1.25), we obtain

Φ2ℓ(x, y) = Φk1(x,
√
−1y)Φk1(x,−

√
−1y). (1.26)

On noting that √
−1 = ζ2

8 ,

we see that we may further factor the right hand side of (1.26) in order to obtain

Φ2ℓ(x, y) = Φk1(
√
x, ζ8

√
y)Φk1(

√
x,−ζ8

√
y)Φk1(

√
x, ζ3

8

√
y)Φk1(

√
x,−ζ3

8

√
y). (1.27)

Schinzel verifies (see between lines (17) and (18) [23, page 558]) that the right hand side

of (1.27) is equal to the product of (1.22) and (1.23).

QED.

1.2.2 Proof of Theorem 1.1

Proof By Lemma 1.31, it suffices to compute the set R0 ∪ S0 ∪ T0, from which we may

deduce the set R0 ∪Q0. The computed set R0 ∪ S0 ∪ T0 of 216 elements appears in Table
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1.3 and Table 1.4. The proof consists of sieving out all Lehmer triples (n, α, β) such that

(α, β) is a real Lehmer pair, and un has more than one primitive divisor, from Table 1.3 and

Table 1.4. The remaining elements are the elements of the set R0 ∪Q0, and are tabulated

in Table 1.2.

Let un =
∏k

i=1 p
ai
i . Note that the result of calling the function ifactors(un,Easy) in

MAPLE, which is based on the Brillhart and Morrison factoring algorithm, will be either

of the form

[1, [[p1, a1], . . . , [pk, ak]]],

or of the form

[1, [[p1, a1], . . . , [pi, ai], [ℓ, 1]]],

where ℓ is a composite integer, and

[p1, a1], . . . , [pi, ai], i < k,

were “easy” to compute. In particular, the MAPLE function ifactors(un,Easy) uses

gcd(un, 720720)

and

gcd(un,

1699
∏

p=17

p).

Computing un(α, β) and calling the function ifactors(un,Easy) in MAPLE, for each

triple (n, L,M) from Table 1.3, we determine that all of the triples from Table 1.3 have at

least two primitive divisors, except for the triples

(117, 1,−3), (132, 33, 8), (132, 1,−8) (1.28)

and

(156, 39, 8), (156, 7,−8), (1.29)

the triples in Table 1.2, and the triples

(41, 41, 9), (43, 7,−9), (51, 5,−3),

(82, 5,−9), (86, 43, 9), (102, 17, 3),

(105, 21, 5), (140, 3,−8), (140, 35, 8)

(156, 2,−13), (156, 54, 13). (1.30)
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We call the function ifactors(un,pollard,n) in MAPLE for the triples (1.28) and the triples

in Table 1.2, the function ifactors(un,lenstra) in MAPLE for the triples (1.29), and Lemma

1.32 for the triples (1.30), in order to obtain

117, 1,−3, [819001577161, 173196209426761],

132, 33, 8, [29700133, 58739156810797],

132, 1,−8, [29700133, 58739156810797],

156, 39, 8, [18066827, 51378219047],

156, 7,−8, [18066827, 51378219047],

41, 41, 9, [1559, [.32...× 1023, 1]],

43, 7,−9, [947, [.11...× 1024, 1]],

51, 5,−3, [14281, [.10...× 1013, 1]],

82, 5,−9, [1559, [.85...× 1044, .26...× 1022]],

86, 43, 9, [947, [.14...× 1052, .12...× 1029]],

and

102, 17, 3 [14281, [.50...× 1032, .48...× 1026]],

105, 21, 5, [211, [.20...× 1020, 1]],

140, 3,−8, [139, [.20...× 1049, .24...× 1023]],

140, 35, 8, [139, [.20...× 1049, .24...× 1023]],

156, 2,−13, [157, [.80...× 1062, .15...× 1034]]

156, 54, 13, [157, [.80...× 1062, .15...× 1034]].

Note that the functions ifactors(un,pollard,n) and ifactors(un,lenstra) in MAPLE establish

a complete factorisation of un for the triples aforementioned, and as such we may conclude

that for those triples for which these functions are called, we have precisely one primitive

divisor, or at least two primitive divisors. Moreover, in each case, we listed the triple

together with a certificate vector v, which has the form [p], consisting of one primitive
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divisor, or the form [p1, p2], consisting of two primitive divisors, or the form [p, [ℓ, b]],

consisting of one primitive divisor and the corresponding [ℓ, b] as defined by Lemma 1.32.

Similarly, computing un(α, β) and calling the function ifactors(un,Easy) in MAPLE,

for each triple (n, L,M) from Table 1.4, we determine that all of the triples from Table 1.4

have at least two primitive divisors, except for the triples

(234, 13, 3), (1.31)

(259, 9,−7), (308, 56, 11), (308, 12,−11), (364, 56, 13), (364, 4,−13)

(518, 37, 7), (532, 38, 7), (532, 10,−7), (1860, 62, 15), (1860, 2,−15), (1.32)

and the triples

(165, 1,−11), (203, 1,−7), (210, 1,−5), (220, 22, 5), (220, 2,−5)

(330, 45, 11), (372, 7,−6), (372, 31, 6), (406, 29, 7), (420, 30, 7),

(420, 2,−7), (561, 51, 11), (583, 9,−11), (940, 47, 10), (940, 7,−10),

(1060, 53, 10), (1060, 13,−10), (1122, 7,−11), (1166, 53, 11), (1276, 58, 11),

(1276, 14,−11), (1508, 58, 13), (1508, 6,−13). (1.33)

We call the function ifactors(un,pollard,n) in MAPLE for the triple (1.31), and Lemma

1.32 for the triples (1.33), in order to obtain

234, 13, 3, [819001577161, 173196209426761],

and

165, 1,−11, [331, [.57...× 1057, .25...× 1013]]

203, 1,−7, [176611, [.44...× 1080, 1]]

210, 1,−5, [211, [.16...× 1043, .78...× 1023]]

220, 22, 5, [881, [.12...× 1050, .14...× 1014]]

220, 2,−5, [881, [.12...× 1050, .14...× 1014]],
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330, 45, 11, [331, [.14...× 10131, .64...× 1087]]

372, 7,−6, [373, [.94...× 10186, .75...× 10116]]

372, 31, 6, [373, [.94...× 10186, .75...× 10116]]

406, 29, 7, [176611, [.74...× 10164, .16...× 1085]]

420, 30, 7, [132973261, [.19...× 10156, .88...× 10112]],

420, 2,−7, [132973261, [.19...× 10156, .88...× 10112]]

561, 51, 11, [142228087, [.56...× 10339, .10...× 10127]]

583, 9,−11, [2333, [.38...× 10402, .12...× 1036]]

940, 47, 10, [194581, [.80...× 10592, .11...× 10349]]

940, 7,−10, [194581, [.80...× 10592, .11...× 10349]],

1060, 53, 10, [47701, [.86...× 10736, .29...× 10435]]

1060, 13,−10, [47701, [.86...× 10736, .29...× 10435]]

1122, 7,−11, [142228087, [.11...× 10688, .19...× 10475]]

1166, 53, 11, [2333, [.11 × 10785, .38...× 10418]]

1276, 58, 11, [19139, [.72...× 10911, .51...× 10493]]

and

1276, 14,−11, [19139, [.72...× 10911, .51...× 10493]]

1508, 58, 13, [459566017, [.13...× 101016, .11...× 10553]]

1508, 6,−13, [459566017, [.13...× 101016, .11...× 10553]].

On the other hand, for the triples (1.32), we first observe that by Lemma 1.26, the following
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pairs of Lehmer numbers have the same primitive divisors

u259(
3 +

√
37

2
,
3 −

√
37

2
) , u518(

3 +
√

37

2
,
−3 +

√
37

2
);

u308(
√

14 +
√

3,
√

14 −
√

3) , u308(
√

14 +
√

3,−
√

14 +
√

3);

u364(
√

14 + 1,
√

14 − 1) , u364(
√

14 + 1,−
√

14 + 1);

u532(

√
38 +

√
10

2
,

√
38 −

√
10)

2
) , u532(

√
38 +

√
10

2
,
−
√

38 +
√

10

2
);

u1860(

√
62 +

√
2

2
,

√
62 −

√
2)

2
) , u1860(

√
62 +

√
2

2
,
−
√

62 +
√

2

2
).

Hence, it suffices to consider only one Lehmer number in each pairing. Furthermore,

note that by Lemma 1.24 and Lemma 1.25, the primitive divisors of un coincide with

the prime factors of Φn(α, β), except possibly for P (n/ gcd(n, 3)). By Lemma 1.36, we

factor Φn(α, β) = Φ
(1)
N,κ(α, β)Φ

(2)
N,κ(α, β), where κ = k(M max{L − 4M,L}), and N =

ηκ
∏

p|n,p∤ηκ p, for each of the remaining triples (1.32), in order to obtain3

3The ∗ indicates that Φ
(j)
N,κ(α, β) is a prime number as determined by the MAPLE function isprime.
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Φ
(1)
259,−259(

3 +
√

37

2
,
3 −

√
37

2
)

= 4688186794612359348548460589916180894723400737849509490008963078078647137569,

∗Φ(2)
259,−259(

3 +
√

37

2
,
3 −

√
37

2
)

= 2560253291728767860552750122103255198933323101108540307556538691009,

Φ
(1)
308,154(

√
14 +

√
3,
√

14 −
√

3)

= 36719117012774411593795373075885082101401,

Φ
(2)
308,154(

√
14 +

√
3,
√

14 −
√

3)

= 1212886066088329232632423660041428753964355298041,

Φ
(1)
364,182(

√
14 + 1,

√
14 − 1)

= 2496645988012336074301209765985081733111928329,

∗Φ(2)
364,182(

√
14 + 1,

√
14 − 1)

= 11525121307558382647076296300816832852765266463808089,

Φ
(1)
532,266(

√
38 +

√
10

2
,

√
38 −

√
10

2
)

= 368956586335300162081912817177156057722610340294815943469126220024381,

Φ
(2)
532,266(

√
38 +

√
10

2
,

√
38 −

√
10

2
)

= 8213483633355603457368863499769725714729728684667572880477292382219135396021,

Φ
(1)
1860,930(

√
62 +

√
2

2
,

√
62 −

√
2

2
)

= 65263175209620882129621722222532598631677902835936764924439756666755560213965 · · ·
4618428464226880647434563514173237560119620874719055423722960780194820161,

Φ
(2)
1860,930(

√
62 +

√
2

2
,

√
62 −

√
2

2
)

= 1531507552436612570339953572710157714837872041220167757614626810463657235743 · · ·
057857894978949499647194588866521969104848023121915071216543924255296726014 · · ·
671624981879085017485584079041.

Since gcd(Φ
(1)
N,κ(α, β),Φ

(2)
N,κ(α, β)) = 1 and Φ

(j)
N,κ(α, β) > n for each (n,N, κ, α, β) presented

above and j ∈ {1, 2}, we deduce by Lemma 1.24 and Lemma 1.25 that un has at least two

primitive divisors for each of the triples (1.32).

QED.
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(n, L, M, v) (n, L, M, v) (n, L, M, v)

5, 5, 1, [11] 22, 49, 11, [197, 14783] 76, 2,−9, [457, 20521]

5, 9, 1, [11] 23, 7,−4, [137, 25253] 76, 38, 9, [457, 20521]

7, 3,−1, [13] 26, 12,−13, [131, 3821] 78, 13, 3, [79, 157]

7, 8,−7, [13, 419] 28, 4,−7, [281, 28729] 82, 5,−9, [1559]

7, 12,−25, [13, 883] 28, 32, 7, [281, 28729] 84, 2,−3, [337, 1429]

9, 1,−12, [19, 163] 30, 1,−1, [31] 84, 14, 3, [337, 1429]

10, 1,−1, [11] 30, 27, 5, [29, 2459] 86, 43, 9, [947]

10, 5,−1, [11] 30, 64, 15, [31, 15391] 91, 11,−13, [181, 50051]

11, 5,−11, [197, 14783] 33, 48, 11, [461, 46861] 92, 10,−9, [643, 827]

11, 8,−9, [89, 4091] 34, 1,−4, [307, 28663] 92, 46, 9, [643, 827]

12, 1,−6, [61] 35, 8,−5, [281, 4339] 94, 47, 9, [1787, 5923]

12, 1,−2, [13] 36, 1,−6, [37, 73] 102, 1,−4, [103, 409]

12, 2,−1, [13] 36, 25, 6, [37, 73] 102, 17, 3, [14281]

12, 4,−1, [11] 37, 37, 9, [1481, 18797] 105, 21, 5, [211]

12, 6, 1, [13] 38, 19, 4, [37, 151] 110, 45, 11, [220159501, 292589551]

12, 8, 1, [11] 39, 1,−3, [79, 157] 111, 37, 9, [223, 300367]

12, 9, 2, [13] 41, 41, 9, [1559] 114, 7,−3, [113, 569]

12, 25, 6, [61] 42, 5,−4, [83, 20327] 115, 3,−5, [229, 691]

13, 64, 13, [131, 3821] 43, 7,−9, [947] 117, 1,−3, []

14, 7, 1, [13] 44, 3,−2, [43, 571] 132, 1,−8, []

14, 36, 7, [13, 419] 44, 6,−11, [43, 3037] 132, 10,−11, [1321, 3167]

14, 112, 25, [13, 883] 44, 11, 2, [43, 571] 132, 33, 8, []

15, 4,−15, [31, 15391] 44, 50, 11, [43, 3037] 132, 54, 11, [1321, 3167]

15, 5, 1, [31] 46, 23, 4, [137, 25253] 140, 3,−8, [139]

15, 7,−5, [29, 2459] 47, 11,−9, [1787, 5923] 140, 35, 8, [139]

17, 17, 4, [307, 28663] 51, 5,−3, [14281] 143, 8,−11, [12011, 349207]

18, 49, 12, [19, 163] 51, 17, 4, [103, 409] 145, 29, 5, [1451, 108751]

19, 3,−4, [37, 151] 52, 5,−2, [727, 5147] 148, 5,−8, [149, 4441]

20, 1,−2, [41] 52, 13, 2, [727, 5147] 148, 37, 8, [149, 4441]

20, 4,−9, [19, 3739] 55, 1,−11, [220159501, 292589551] 156, 2,−13, [157]

20, 9,−10, [61, 5521] 57, 19, 3, [113, 569] 156, 7,−8, []

20, 9, 2, [41] 60, 4,−5, [59, 601] 156, 39, 8, []

20, 40, 9, [19, 3739] 60, 24, 5, [59, 601] 156, 54, 13, [157]

20, 49, 10, [61, 5521] 66, 4,−11, [461, 46861] 159, 5,−12, [317, 3499]

21, 21, 4, [83, 20327] 70, 28, 5, [281, 1889] 164, 9,−8, [11317, 150881]

22, 44, 9, [89, 4091] 74, 1,−9, [1481, 18797] 164, 41, 8, [11317, 150881]

Table 1.3: A table of candidate real Lehmer triples (n, L,M) ∈ R0 ∪ S0 ∪ T0 such that

n < 165, together with their certificate vectors v.
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(n, L, M, v) (n, L, M, v) (n, L, M, v)

165, 1,−11, [331] 372, 31, 6, [373] 1020, 51, 10, [1021, 2039]

165, 55, 12, [331, 659] 390, 60, 13, [333451, 696637889] 1034, 3,−11, [1033, 1110517]

172, 11,−8, [859, 54869] 396, 1,−8, [397, 6337] 1060, 13,−10, [47701]

172, 43, 8, [859, 54869] 396, 33, 8, [397, 6337] 1060, 53, 10, [47701]

177, 59, 12, [353, 13451] 406, 29, 7, [176611] 1122, 7,−11, [142228087]

182, 63, 13, [181, 50051] 420, 2,−7, [132973261] 1166, 53, 11, [2333]

183, 13,−12, [4027, 9151] 420, 30, 7, [132973261] 1218, 29, 7, [13399, 267961]

195, 8,−13, [333451, 696637889] 434, 3,−7, [433, 1303] 1254, 57, 11, [8779, 11287]

203, 1,−7, [176611] 462, 33, 7, [8779, 20327] 1276, 14,−11, [19139]

210, 1,−5, [211] 476, 6,−7, [1429, 2857] 1276, 58, 11, [19139]

217, 31, 7, [433, 1303] 476, 34, 7, [1429, 2857] 1378, 1,−13, [108863, 32622773]

220, 2,−5, [881] 517, 47, 11, [1033, 1110517] 1430, 55, 13, [1429, 5864431]

220, 22, 5, [881] 518, 37, 7, [] 1482, 5,−13, [2963, 5927]

222, 1,−9, [223, 300367] 532, 10,−7, [] 1508, 6,−13, [459566017]

230, 23, 5, [229, 691] 532, 38, 7, [] 1508, 58, 13, [459566017]

231, 5,−7, [8779, 20327] 546, 11,−7, [1093, 1637] 1534, 59, 13, [3067, 99709]

234, 13, 3, [] 561, 51, 11, [142228087] 1586, 9,−13, [4759, 298169]

259, 9,−7, [] 583, 9,−11, [2333] 1596, 1,−14, [105337, 28198129]

260, 6,−5, [1039, 967201] 609, 1,−7, [13399, 267961] 1596, 57, 14, [105337, 28198129]

260, 26, 5, [1039, 967201] 627, 13,−11, [8779, 11287] 1612, 10,−13, [6449, 88661]

273, 39, 7, [1093, 1637] 630, 1,−5, [187111, 1435141] 1612, 62, 13, [6449, 88661]

286, 52, 11, [12011, 349207] 689, 53, 13, [108863, 32622773] 1652, 3,−14, [24781, 2914129]

290, 9,−5, [1451, 108751] 715, 3,−13, [1429, 5864431] 1652, 59, 14, [24781, 2914129]

308, 12,−11, [] 741, 57, 13, [2963, 5927] 1708, 5,−14, [3702943, 9677914009]

308, 56, 11, [] 767, 7,−13, [3067, 99709] 1708, 61, 14, [3702943, 9677914009]

315, 21, 5, [187111, 1435141] 793, 61, 13, [4759, 298169] 1830, 61, 15, [1831, 18301]

318, 53, 12, [317, 3499] 820, 1,−10, [821, 36901] 1860, 2,−15, []

330, 7,−12, [331, 659] 820, 41, 10, [821, 36901] 1860, 62, 15, []

330, 45, 11, [331] 860, 3,−10, [859, 16339] 2067, 53, 13, [33073, 152959]

348, 5,−6, [349, 1741] 860, 43, 10, [859, 16339] 2460, 1,−10, [49201, 135301]

348, 29, 6, [349, 1741] 915, 1,−15, [1831, 18301] 2460, 41, 10, [49201, 135301]

354, 11,−12, [353, 13451] 940, 7,−10, [194581] 2745, 1,−15, [21961, 32941]

364, 4,−13, [] 940, 47, 10, [194581] 4134, 1,−13, [33073, 152959]

364, 56, 13, [] 1012, 2,−11, [1013, 4049] 4788, 1,−14, [4789, 67033]

366, 61, 12, [4027, 9151] 1012, 46, 11, [1013, 4049] 4788, 57, 14, [4789, 67033]

372, 7,−6, [373] 1020, 11,−10, [1021, 2039] 5490, 61, 15, [21961, 32941]

Table 1.4: A table of candidate real Lehmer triples (n, L,M) ∈ R0 ∪ S0 ∪ T0 such that

n ≥ 165, together with their certificate vectors v.



Chapter 2

Lehmer Numbers with at Least 2

Primitive Divisors

In this chapter, we establish a theorem on terms of Lehmer sequences, generated by a real

or complex Lehmer pair, with at least two primitive divisors, in the direction of solving

a part of Problem 1.28. More precisely, Schinzel [26] proved that there exists an absolute

constant n2 such that if L and M are integers such that L > 0, M 6= 0, L − 4M 6= 0,

gcd(L,M) = 1, (L,M) /∈ {(1, 1), (2, 1), (3, 1)}, (α, β) is the associated Lehmer pair, n > n2,

and n/(ηκ) is an odd integer, then un(α, β) has at least two primitive divisors. In this

chapter we show that we may take

n2 = 1.2 × 1010.

We highlight that the case where (α, β) is a complex Lehmer pair and γ = β/α lies on

the unit circle, requires delicate estimates and refined inequalities for linear forms in 2-

logarithms, and for the arithmetic functions φ(n) and ω(n).

34
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2.1 Statement of Theorem 2.1 and Preliminary Lem-

mas

First, by Lemma 1.1, we note that the following conditions

L > 0,

M 6= 0,

L− 4M < 0, (2.1)

gcd(L,M) = 1,

(L,M) /∈ {(1, 1), (2, 1), (3, 1)},

ensure that we have a complex Lehmer pair (α, β).

Theorem 2.1 Let L and M be integers satisfying conditions (1.12) or (2.1), (α, β) be the

corresponding Lehmer pair, and let κ and η be defined by equations (1.13) and (1.14). If

n ≥ 1.2 × 1010, and n/(ηκ) is an odd integer, then the nth term un(α, β) of the Lehmer

sequence has at least 2 primitive divisors.

We note that by Theorem 1.1, if L and M are integers satisfying conditions (1.12), then

the constant 1.2 × 1010 may be replaced by 31. Furthermore, if L and M are integers

satisfying conditions (2.1), then M > 0, for otherwise L− 4M > 0. It therefore suffices to

prove Theorem 2.1 in case (α, β) is a complex Lehmer pair, and M = αβ > 0. We now

state and prove the Lemmas we use to establish Theorem 2.1.

Lemma 2.1 Let n > 0, (α, β) be a Lehmer pair, and γ = β/α. Then

log |Φn(α, β)| = φ(n) log |α| −
∑

d|n

µ(n/d)=−1

log |1 − γd| +
∑

d|n

µ(n/d)=1

log |1 − γd|.

Proof Note that equation (1.11) from Lemma 1.20 may be written as

|Φn(α, β)| =
∏

d|n

|α|dµ(n/d)
∏

d|n

|1 − γd|µ(n/d).
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Since

φ(n) = n
∑

t|n

µ(t)

t
,

∏

d|n

|α|dµ(n/d) = |α|
P

d|n dµ(n/d)

= |α|
P

dt=n dµ(n/d)

= |α|n
P

t|n µ(t)/t

= |α|φ(n).

QED.

Lemma 2.2 Let L and M be integers satisfying conditions (1.12) or (2.1), and let κ and

η be defined by equations (1.13) and (1.14). Further, let n > 1 be an integer such that

n/(ηκ) is an odd integer, ν = ηκ
∏

p|n

p∤ηκ
p, ℓ = κ

∏

p|n,p∤ηκ p, and N = ν. Then

Φn(α, β) = Φ
(1)
N,κ(α

n/ν , βn/ν)Φ
(2)
N,κ(α

n/ν , βn/ν),

where Φn(α, β) is defined by equation (1.9), Φ
(1)
N,κ(α

n/ν, βn/ν) is defined by equations (1.18),

(1.20) or (1.22), and Φ
(2)
N,κ(α

n/ν , βn/ν) is defined by equations (1.19), (1.21), or (1.23).

Proof This is observed by Schinzel [24]. It follows directly from Lemmas 1.21 and 1.36.

QED.

Lemma 2.3 Let L and M be integers satisfying conditions (2.1), and let κ and η be de-

fined by equations (1.13) and (1.14). Further, let n > 4, n 6= 6, be an integer such that

n/(ηκ) is an odd integer, ν = ηκ
∏

p|n

p∤ηκ
p, ℓ = κ

∏

p|n,p∤ηκ p, and N = ν. Then the num-

bers δΦ
(1)
N,κ(α

n/ν , βn/ν) and δΦ
(2)
N,κ(α

n/ν , βn/ν), where δ = k(L)−(φ(n)/4−⌊φ(n)/4⌋), are relatively

prime rational integers. Note if 4|φ(n) or k(L) = 1, then δ = 1. Otherwise, n = 2qa for

some prime number q ≡ 3 (mod 4) and positive integer a, and δ = q−1/2.

Proof This is [24, Lemma 2]. For the note plainly if φ(n) ≡ 0 (mod 4) or κ(L) = 1, then

δ = 1. Otherwise, 4 ∤ φ(n), and κ(L) 6= 1. Since n 6= 1, 2, 4, and 4 ∤ φ(n), we have for
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some prime number q ≡ 3 (mod 4) and positive integer a that n = qa or n = 2qa. Suppose

n = qa. Since n ≡ 0 (mod κ)1, κ1 = 1 or κ1 = q. If κ1 = q, then η1 = 2, and 2|n, a

contradiction. If κ1 = 1, then since κ1 ≡ 0 (mod κ)(L), κ(L) = 1, a contradiction. Hence

n 6= qa. Let n = 2qa. Since n ≡ 0 (mod κ)(L), thus κ(L) = 2 or κ(L) = q. If κ(L) = 2,

then κ1 ≡ 2 (mod 4), hence η1 = 2, and 4|n, a contradiction. Thus κ(L) = q. Further, let

q = 3 + 4k, and note that the fractional part of φ(2qa)/4 = (3 + 4k)a−1(k + 1/2) is 1/2.

QED.

Lemma 2.4 Let L and M be integers satisfying conditions (2.1), and let κ and η be defined

by equations (1.13) and (1.14). Further, let n > 4, n 6= 6, be an integer such that n/(ηκ)

is an odd integer, ν = ηκ
∏

p|n

p∤ηκ
p, ℓ = κ

∏

p|n,p∤ηκ p, and N = ν. If

min(|Φ(1)
N,κ(α

n/ν , βn/ν)|, |Φ(2)
N,κ(α

n/ν , βn/ν)|) > n, (2.2)

then un has at least two primitive divisors.

Proof By Lemma 2.2 and Lemma 2.3, either

|Φn(α, β)| = |Φ(1)
N,κ(α

n/ν , βn/ν)||Φ(2)
N,κ(α

n/ν , βn/ν)|, (2.3)

where

Φ
(1)
N,κ(α

n/ν, βn/ν) ∈ Z,

Φ
(2)
N,κ(α

n/ν, βn/ν) ∈ Z,

and

gcd(Φ
(1)
N,κ(α

n/ν, βn/ν),Φ
(2)
N,κ(α

n/ν , βn/ν)) = 1, (2.4)

or n = 2qa for some prime q ≡ 3 (mod 4) and positive integer a, and

|Φ2qa(α, β)| = |q−1/2Φ
(1)
N,κ(α

n/ν , βn/ν)||q−1/2Φ
(2)
N,κ(α

n/ν , βn/ν)|q, (2.5)

where

q−1/2Φ
(1)
N,κ(α

n/ν , βn/ν) ∈ Z,

q−1/2Φ
(2)
N,κ(α

n/ν , βn/ν) ∈ Z,
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and

gcd(q−1/2Φ
(1)
N,κ(α

n/ν , βn/ν), q−1/2Φ
(2)
N,κ(α

n/ν , βn/ν)) = 1. (2.6)

By Lemma 1.25, the prime divisors of |Φn(α, β)| coincide with the primitive divisors of un

except for P (n/ gcd(n, 3)), which if it divides Φn(α, β), it divides Φn(α, β) with exponent

1. Plainly, if equation (2.2) holds, since n ≥ P (n/ gcd(n, 3)), then in equation (2.3),

Φ
(1)
N,κ(α

n/ν , βn/ν)

and

Φ
(2)
N,κ(α

n/ν , βn/ν)

have a prime divisor different from P (n/ gcd(n, 3)), and hence the result follows from

equation (2.4). Moreover, in case n = 2qa, equation (2.2) implies

|q−1/2Φ
(1)
N,κ(α

n/ν , βn/ν)| > 1

and

|q−1/2Φ
(2)
N,κ(α

n/ν , βn/ν)| > 1

in equation (2.5), and since q = P (2qa/ gcd(2qa, 3)), the result follows by equation (2.6)

and Lemma 1.25 in case n = 2qa.

QED.

Lemma 2.5 Let χ(r) be an arbitrary character modulo m, m > 1, c 6= 0 and let x ∈ C,

|x| = 1. Then
m
∏

r=1
gcd(r,m)=1

χ(r)=c

|x− ζr
m| < exp(2

√
m(logm)2).

Proof This is [24, Lemma 3].

QED.

Lemma 2.6 Let L and M be integers satisfying conditions (2.1), (α, β) be the associated

complex Lehmer pair, and let κ and η be defined by equations (1.13) and (1.14). Further,
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let n > 4, n 6= 6, be an integer such that n/(ηκ) is an odd integer, ν = ηκ
∏

p|n

p∤ηκ
p,

ℓ = κ
∏

p|n,p∤ηκ p, and N = ν. Then

max(|Φ(1)
N,κ(α

n/ν , βn/ν)|, |Φ(2)
N,κ(α

n/ν , βn/ν)|) < |α|φ(n)/2 exp(4
√
n(logn)2).

Proof We have three cases to consider, according to the residue of κ modulo 4. We prove

the case κ ≡ 1 (mod 4) for |Φ(1)
N,κ(α

n/ν , βn/ν)|. The other cases are similar. Let γ = β/α.

By equation (1.18), we have that

|Φ(1)
N,κ(α

n/ν , βn/ν)| =

ℓ
∏

s=1
gcd(s,ℓ)=1

(s|κ)=1

|
√
αn/ν − ζs

ℓ

√

βn/ν |
ℓ
∏

t=1
gcd(t,ℓ)=1

(t|κ)=−1

|
√
αn/ν + ζ t

ℓ

√

βn/ν |

=

ℓ
∏

s=1

gcd(s,ℓ)=1

|
√
αn/ν − (s|κ)ζs

ℓ

√

βn/ν |

=
ℓ
∏

s=1

gcd(s,ℓ)=1

|β|n/(2ν)|(γ−1)n/(2ν) − (s|κ)ζs
ℓ |,

from which it follows that

|Φ(1)
N,κ(α

n/ν , βn/ν)| = (|β|n/(2ν))φ(ℓ)
ℓ
∏

s=1

gcd(s,ℓ)=1

|(γ−1)n/(2ν) − (s|κ)ζs
ℓ |

= (|β|n/(2ν))φ(ℓ)
ℓ
∏

s=1
gcd(s,ℓ)=1

(s|κ)=1

|(γ−1)n/(2ν) − ζs
ℓ |

ℓ
∏

s=1
gcd(t,ℓ)=1

(t|κ)=−1

| − (γ−1)n/(2ν) − ζ t
ℓ|.

By Lemma 1.1, |α| = |β|, and | ± (γ−1)n/(2ν)| = 1. It follows by Lemma 2.5 that

|Φ(1)
N,κ(α

n/ν, βn/ν)| < (|α|n/(2ν))φ(ℓ) exp(4
√
ℓ(log ℓ)2).

Since ℓ ≤ n, it remains to show that

nφ(ℓ)

2ν
≤ φ(n)

2
,
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or equivalently, since κ ≡ 1 (mod 4), η = 1, and ℓ = ν, that

φ(ν)

ν
≤ φ(n)

n
.

Since ν =
∏

p|n p,

φ(ν)

ν
=
φ(n)

n
.

QED.

Lemma 2.7 Let L and M be integers satisfying conditions (2.1), (α, β) be the associated

complex Lehmer pair, and let κ and η be defined by equations (1.13) and (1.14). If n > 4,

n 6= 6, n/(ηκ) is an odd integer, and

log |Φn(α, β)| − (1/2)φ(n) log |α| − 4
√
n(logn)2 − logn > 0,

then the nth term un of the Lehmer sequence has at least 2 primitive divisors.

Proof By Lemma 2.4, it suffices to establish that

min(|Φ(1)
N,κ(α

n/ν, βn/ν)|, |Φ(2)
N,κ(α

n/ν , βn/ν)|) > n,

which, by Lemma 2.2, is equivalent to

|Φn(α, β)|
max(|Φ(1)

N,κ(α
n/ν , βn/ν)|, |Φ(2)

N,κ(α
n/ν, βn/ν)|)

> n. (2.7)

By Lemma 2.6, in order to prove equation (2.7), it suffices to show that

|Φn(α, β)|
|α|φ(n)/2 exp(4

√
n(log n)2)

> n. (2.8)

It remains to take the logarithm of both sides of inequality (2.8).

QED.

Lemma 2.8 Let n > 1. Then

∑

d|n

µ(n/d)=1

1 =
∑

d|n

µ(n/d)=−1

1 = 2ω(n)−1.
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Proof By [10, page 264],

∑

d|n

|µ(n/d)| = 2ω(n).

The result follows from the fact that

∑

d|n

µ(n/d)=1

1 +
∑

d|n

µ(n/d)=−1

1 =
∑

d|n

|µ(n/d)|,

and since
∑

d|n µ(d) = 0 for n > 1 that

∑

d|n

µ(n/d)=1

1 =
∑

d|n

µ(n/d)=−1

1.

QED.

Lemma 2.9 Let (α, β) be a complex Lehmer pair, γ = β/α, and n > 1. Then

∑

d|n

µ(n/d)=−1

log |1 − γd| ≤ 2ω(n)−1 log 2.

Proof Since |γ| = 1, it follows by the triangle inequality that |1 − γd| ≤ 2. It remains to

apply Lemma 2.8. QED.

Definition 2.10 Let K be a number field, and let α ∈ K. The minimal polynomial of α

is

f(X) =

d
∑

j=0

ajX
j = ad

d
∏

j=1

(X − α(j)),

where f(X) is nonzero and of smallest degree which has α as a root, has coprime coefficients

in K, and has positive leading coefficient.

Definition 2.11 The Mahler measure of α is

M(α) = |ad|
d
∏

j=1

max{1, |α(j)|}.
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Definition 2.12 The absolute logarithmic Weil height of α is

h(α) =
1

d
log M(α).

Lemma 2.13 Let ǫ be a non-zero algebraic integer. Then

M(ǫ) = 1

if and only if

ǫ is a root of unity.

Proof This is attributed to Kronecker. See Waldschmidt [35].

QED.

Lemma 2.14 Let (α, β) be a complex Lehmer pair. Then

h(β/α) = log |α| ≥ log 2

2
.

Proof By Lemma 1.1, we know that the minimal polynomial of γ = β/α is

αβX2 − (α2 + β2)X + αβ,

and that

|γ| = |γ−1| = 1.

If |αβ| = 1, then by Definition 2.11, M(γ) = 1, and by Lemma 2.13 it follows that γ is a

root of unity, a contradiction to the fact that (α, β) is a Lehmer pair. Hence, |αβ| ≥ 2, so

that

M(γ) ≥ 2,

It follows by Definition 2.12 that

h(γ) ≥ 1

2
log 2.
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On the other hand,

h(γ) =
1

2
log(|αβ|max{1, |γ|}max{1, |γ−1|})

=
1

2
log |αβ|

= log |β|
= log |α|,

from which we deduce our result.

QED.

Lemma 2.15 For any z = |z| exp(i arg z) ∈ C, with |z| = 1, and −π ≤ arg z ≤ π,

|z − 1| ≥ 2

π
| arg z|.

Proof Let arg z = θ. Then since |z| = 1, we must show that for −π ≤ θ ≤ π,

| exp(iθ) − 1| − 2

π
|θ| ≥ 0. (2.9)

Since exp(iθ) = cos θ + i sin θ, showing equation (2.9) is equivalent to showing that for

−π ≤ θ ≤ π,

√
2 − 2 cos θ − 2

π
|θ| ≥ 0. (2.10)

Recall the identity

cos θ = 1 − 2(sin(θ/2))2. (2.11)

Substituting identity (2.11) into equation (2.10), and making the change of variable θ = 2u,

we see that we are left to show for −π/2 ≤ u ≤ π/2, that

| sin u| ≥ (2/π)|u|.

By symmetry, it suffices to show that for u ∈ [0, π/2]

sin u ≥ (2/π)u. (2.12)
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First note that (2.12) holds for u = 0 and u = π/2. For u ∈ (0, π/2), let f(u) = sin u/u.

Since for u ∈ (0, π/2),

u2f ′(u) = cosu(u− tan u) < 0,

therefore for u ∈ (0, π/2),

f(u) > f(π/2).

QED.

Lemma 2.16 Let γ be a complex algebraic number with |γ| = 1, but not a root of unity,

log γ the principal value of the logarithm, and Λ = b1
√
−1π − b2 log γ, where b1, b2 are

positive integers. Further, let λ ∈ R, 1.8 ≤ λ ≤ 3,

ρ = exp(λ),

t =
1

6πρ
− 1

48πρ(1 + 2πρ/(3λ))
,

k =

(

1/3 +
√

1/9 + 2λt

λ

)2

,

D′ = [Q(γ) : Q]/2,

a = 0.5ρπ +D′h(γ),

B = max{527, b1, b2},

and

H = D′

(

log B + log

(

1

πρ
+

1

2a

)

− log
√

k + 0.886

)

+
3λ

2
+

1

k

(

1

6ρπ
+

1

3a

)

+ 0.023.

Then

log |Λ| > −(8πkρλ−1H2 + 0.23)a− 2H− 2 logH + 0.5λ+ 2 logλ− (D′ + 2) log 2.

Proof This is [4, Theorem A.1.3].

QED.

Lemma 2.17 Let d ∈ N, d′ = max{527, d}, (α, β) be a complex Lehmer pair, and γ =

β/α. Then

log |1 − γd| > −([(24.89)(log d′)2 + 0.23][log |α| + 9.503] + 2 log(d′ log d′) + 0.572).
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Proof By Lemma 2.15,

|1 − γd| ≥ 2

π
| arg γd|. (2.13)

Furthermore, we may assume that 0 < arg γ < π, replacing γ by its complex conjugate if

necessary. Put b2 = d and let b1 be the nearest even integer to d(arg γ)/π. Then 0 < b1 ≤ d,

and

| arg γd| = |b1
√
−1π − b2 log γ|.

By equation (2.13), it follows that

log |1 − γd| ≥ log |b1
√
−1π − b2 log γ| + log 2 − log π. (2.14)

Let λ = 1.8 in Lemma 2.16. Then

ρ = 6.04...,

t = 0.008...,

k = .2946...,

D′ = 1,

a = log |α| + 9.5027...,

B = max{527, b1, d},
d′ = max{527, d}.

By Lemma 2.14,

log |α| ≥ log 2

2
.

It follows that

H ≤ log d′ − 0.604...

< log d′.

By Lemma 2.16,

log |b1
√
−1π − b2 log γ| > −(c1(log d′)2 + 0.23)a− 2 log d′ − 2 log log d′ − c2,

where c1 = 24.88..., and c2 = 0.12.... By (2.14) and (2.15) we deduce the result.

QED.
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Lemma 2.18 Let n ≥ 527, (α, β) be a complex Lehmer pair, and γ = β/α. Then
∑

d|n

µ(n/d)=1

log |1 − γd| > −2ω(n)−1F (n, α),

where

F (n, α) = [(24.89)(logn)2 + 0.23][log |α| + 9.503] + 2 log(n logn) + 0.572.

Proof This follows directly from Lemma 2.8 and Lemma 2.17, since log d′ ≤ log n.

QED.

Lemma 2.19 For n > 6915878970,

φ(n) > (0.496866...)
n

log log n
. (2.15)

Moreover, (2.15) is false for n = 6915878970.

Proof This follows directly from the proof of [1, Proposition 4.1]. In particular, ordering

first the pairs (p(n), n), where p(n) = n/(φ(n) exp(γ) log log n), for the 6569 exceptions to

φ(n) >
n

(1.07) exp(γ) log logn
,

by p(n) in decreasing order, and then extracting the subset of these pairs ordered by n in

increasing order, we obtain a finite sequence of pairs (p(n), n),

(1.136..., 6915878970), (1.129..., 12939386460), ..., (1.0705..., 234576762718813941966540),

from which we deduce the result on noting

1

(1.13) exp(γ)
= 0.496866....

QED.

Lemma 2.20 For n ≥ 3,

ω(n) ≤ (1.38401...)
logn

log log n
,

with equality when n = 223092870.

Proof This is [18, Théorème 11].

QED.
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2.2 Proof of Theorem 2.1

Proof We already observed that it suffices to prove the theorem in case (α, β) is a complex

Lehmer pair and αβ > 0. We recall that γ = β/α.

By Lemma 2.1,

log |Φn(α, β)| = φ(n) log |α| −
∑

d|n

µ(n/d)=−1

log |1 − γd| +
∑

d|n

µ(n/d)=1

log |1 − γd|.

By Lemma 2.7, it suffices to show that

(1/2)φ(n) log |α| −
∑

d|n

µ(n/d)=−1

log |1 − γd| +
∑

d|n

µ(n/d)=1

log |1 − γd| − 4
√
n(log n)2 − log n > 0.

By Lemma 2.9, it suffices to show that

(1/2)φ(n) log |α| − 2ω(n)−1 log 2 +
∑

d|n

µ(n/d)=1

log |1 − γd| − 4
√
n(log n)2 − log n > 0.

By Lemma 2.18, it suffices to show for n ≥ 527, that

(1/2)φ(n) log |α| − 2ω(n)−1 log 2 − 2ω(n)−1F (n, α) − 4
√
n(logn)2 − log n > 0, (2.16)

where

F (n, α) = [(24.89)(logn)2 + 0.23][log |α| + 9.503] + 2 log(n logn) + 0.572.

By Lemma 2.14,
1

log |α| ≤
2

log 2
.

Hence,
F (n, α)

log |α| ≤ F1(n),

where

F1(n)

= (24.89(logn)2 + 0.23) (1 + 2(9.503)/ log 2) + (4/ log 2) log(n log n) + 2(0.572)/ log 2

= (707.37...)(logn)2 + (5.77...) log(n logn) + (8.18...).
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Multiplying equation (2.16) by 2(log |α|)−1, and applying Lemma 2.14, it suffices to show

that

φ(n) − 2ω(n)F ∗
1 (n) − (16/ log 2)

√
n(logn)2 − (4/ log 2) logn > 0, (2.17)

where

F ∗
1 (n) = 707.38(logn)2 + 5.78 log(n log n) + 10.19.

Since n > 1010,

√
n(log n)2

(

16

log 2
+

4

log 2
· 1√

n(log n)

)

<
√
n(log n)2

(

16

log 2
+

4

log 2
· 1√

1010(10 log 10)

)

= (23.083123...)
√
n(logn)2, (2.18)

and

F ∗
1 (n) = (log n)2

(

707.38 + 5.78
log(n logn)

(logn)2
+

10.19

(logn)2

)

< (log n)2

(

707.38 +
2(5.78)

(10 log 10)
+

10.19

(10 log 10)2

)

= (707.901...)(logn)2. (2.19)

Substituting inequalities (2.18) and (2.19) in (2.17), we see that it suffices to show that

φ(n) − (707.91)2ω(n)(logn)2 − (23.084)
√
n(logn)2 > 0.

By Lemma 2.19, and Lemma 2.20, it suffices to show that

(0.49686)
n

log log n
− (707.91)21.3841 log n/ log log n(logn)2 − (23.084)

√
n(logn)2 > 0.

Since n > 1010,

(1.3841 logn/ log log n) log 2 < (1.3841 log 2/ log(10 log 10)) logn

= (0.305866...) logn,
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and we see that it suffices to show that

(0.49686)
n

log logn
− (707.91)n0.306(log n)2 − (23.084)

√
n(log n)2 > 0,

or equivalently,

L(n) > 0,

where

L(n) =
0.49686

√
n

(log n)2 log log n
− 707.91

n0.194
− 23.084. (2.20)

Note that

L(1.1 × 1010) = −0.026...,

L(1.2 × 1010) = 1.206....

It suffices to show that L(n) is increasing for n > 1010. Since by definition (2.20),

L′(n)

=
0.49686n−1/2((1/2)(logn)2 log logn− log n(1 + 2 log log n))

(logn)4(log log n)2
+

707.91(0.194)

n1.194
,

= 0.49686

(

1

2
√
n(log n)2 log log n

− 1 + 2 log log n√
n(log n)3(log log n)2

)

+
707.91(0.194)

n1.194
,

and for n > 1010

1 + 2 log log n

(log n)(log log n)
< 0.1007...,

it follows that

L′(n) > 0,

for n > 1010.

QED.



Chapter 3

Classifying Lehmer Triples

In this chapter we extend Stewart’s algorithm [30, Theorem 2] for classifying Lehmer triples

with at least one primitive divisor, to an algorithm for classifying Lehmer triples with at

least two primitive divisors.

3.1 Statement of Theorem 3.1 and Preliminary Lem-

mas

Let (α, β) be a Lehmer pair,

κ = k(αβmax{(α− β)2, (α + β)2}),

and η be defined by (1.14).

Theorem 3.1 There are only finitely many triples (n, α, β), where n > 6, n 6= 12, (α, β) is

a Lehmer pair, and n/(ηκ) is an odd integer, such that un(α, β) has less than two primitive

divisors. Furthermore, these triples may be explicitly determined.

By Theorem 1.1, and the remark following the statement of Theorem 2.1, we see that it

suffices to prove Theorem 3.1 assuming αβ > 0. We now state and prove the Lemmas we

use to establish Theorem 3.1.

50
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Lemma 3.1 Let n > 4, n 6= 6. The nth term un of the Lehmer sequence has no primitive

divisor if and only if

|Φn(α, β)| ∈
{

{1, 2, 3, 6}, if n = 12;

{1, P (n/ gcd(n, 3))}, otherwise;

where Φn(α, β) is defined by equation (1.9), and P (·) is defined by Definition 1.22.

Proof This is implied by the proof of [30, Theorem 2]. See [4, Theorem 2.4].

QED.

Lemma 3.2 Let n > 4, n 6= 6 be a positive integer, (α, β) be a Lehmer pair such that

αβ > 0, and n/(ηκ) be an odd integer where κ = k(αβ(α+β)2) and η is defined by (1.14).

If the nth term un = un(α, β) of the Lehmer sequence has less than 2 primitive divisors,

then for (j = 1 and j = 2) in case un has no primitive divisors, and for (j = 1 or j = 2)

in case un has one primitive divisor, it follows that

|δΦ(j)
N,κ(α

n/ν , βn/ν)| ∈
{

{1, 2, 3, 6}, if n = 12;

{1, P (n/ gcd(n, 3))}, otherwise;
(3.1)

where

δ = k((α+ β)2)−(φ(n)/4−⌊φ(n)/4⌋),

ν = ηκ
∏

p|n

p∤ηκ
p, ℓ = κ

∏

p|n

p∤ηκ
p, and N = ν, Φ

(1)
N,κ(α

n/ν , βn/ν) is defined by equations (1.18),

(1.20) or (1.22), and Φ
(2)
N,κ(α

n/ν , βn/ν) is defined by equations (1.19), (1.21), or (1.23).

Proof By Lemma 2.2 and Lemma 2.3, it follows that

|Φn(α, β)| = |δΦ(1)
N,κ(α

n/ν , βn/ν)||δΦ(2)
N,κ(α

n/ν , βn/ν)|δ−2, (3.2)

where

δ = k((α+ β)2)−(φ(n)/4−⌊φ(n)/4⌋),

δΦ
(1)
N,κ(α

n/ν , βn/ν) ∈ Z,

δΦ
(2)
N,κ(α

n/ν , βn/ν) ∈ Z,
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and

gcd(δΦ
(1)
N,κ(α

n/ν , βn/ν), δΦ
(2)
N,κ(α

n/ν , βn/ν)) = 1. (3.3)

If un has no primitive divisor, then by Lemma 3.1, and equation (3.2), the result follows.

Suppose that un has exactly one primitive divisor p1. Since by Lemma 1.24 and Lemma

1.25, the prime divisors of |Φn(α, β)| coincide with the primitive divisors of un, except

possibly for P (n/ gcd(n, 3)), which exactly divides Φn(α, β) if at all, we see that p1|Φn(α, β).

Suppose p1 6= P (n/(gcd(n, 3)). By equations (3.2) and (3.3), we may assume without loss

of generality that

p1|δΦ(1)
N,κ(α

n/ν , βn/ν).

If |δΦ(2)
N,κ(α

n/ν , βn/ν)| 6= 1, let p be a prime divisor of δΦ
(2)
N,κ(α

n/ν , βn/ν), and so of Φn(α, β).

By equation (3.3), p 6= p1. By Lemma 1.24 and Lemma 1.25, it follows that

p =

{

2 or 3, if n = 12;

P (n/ gcd(n, 3)), otherwise;

from which we conclude (3.1).

Suppose now that p1 = P (n/ gcd(n, 3)). Then p1|n, from which it follows that

gcd(p1 + 1, n) = 1,

gcd(p1 − 1, n) = 1.

On the other hand, since p1 is a primitive divisor, p1 ∤ (α2 − β2)2, from which it follows by

Lemma 1.24 item 4 that

p1|up1−1up1+1.

Since gcd(up1−1, up1+1) = ugcd(p1−1,p1+1) = 1, therefore either

p1| gcd(up1−1, un) = ugcd(p1−1,n) = 1,

or

p1| gcd(up1+1, un) = ugcd(p1+1,n) = 1,

in either case, a contradiction.

QED.

Following Brent [6], we use Lemma 3.3.
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Lemma 3.3 Let F (x) =
∏n

s=1(x− ξs) =
∑n

s=0 asx
n−s, where a0 = 1. Then the coefficients

as, s = 1, ..., n may be computed recursively by the formulas

as = −1

s

s−1
∑

j=0

ps−jaj , ps−j =
n
∑

ℓ=1

ξs−j
ℓ . (3.4)

Proof See Kalman [13]. The formulas (3.4) are attributed to Newton (1707), and are

commonly called Newton’s identities.

QED.

Lemma 3.4 Let m,n ∈ N. Then

n
∑

h=1

gcd(h,n)=1

ζhm
n =

φ(n)µ(n/ gcd(n,m))

φ(n/ gcd(n,m))
.

Proof This is [10, Theorem 272].

QED.

Lemma 3.5 Let m,n ∈ N, m odd. Then

⌊n/2⌋
∑

j=1

gcd(j,n)=1

(ζj
n + ζ−j

n )m = φ(n)

(m−1)/2
∑

ℓ=0

(

m

ℓ

)

µ(n/ gcd(n,m− 2ℓ))

φ(n/ gcd(n,m− 2ℓ))
.

Proof We note first that by the binomial theorem and the fact that m is odd we have that

⌊n/2⌋
∑

j=1

gcd(j,n)=1

(ζj
n + ζ−j

n )m =

⌊n/2⌋
∑

j=1

gcd(j,n)=1

m
∑

ℓ=0

(

m

ℓ

)

ζj(m−ℓ)
n ζ−jℓ

n

=

⌊n/2⌋
∑

j=1

gcd(j,n)=1

(m−1)/2
∑

ℓ=0

(

m

ℓ

)

(ζj(m−2ℓ)
n + ζ−j(m−2ℓ)

n )

=

(m−1)/2
∑

ℓ=0

(

m

ℓ

)









⌊n/2⌋
∑

j=1

gcd(j,n)=1

ζj(m−2ℓ)
n +

⌊n/2⌋
∑

j=1

gcd(j,n)=1

ζ−j(m−2ℓ)
n









.
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It remains to observe that

⌊n/2⌋
∑

j=1

gcd(j,n)=1

ζ−j(m−2ℓ)
n =

⌊n/2⌋
∑

j=1

gcd(j,n)=1

ζ (n−j)(m−2ℓ)
n

=

n−1
∑

k=⌈n/2⌉

gcd(k,n)=1

ζk(m−2ℓ)
n ,

and to apply Lemma 3.4.

QED.

Lemma 3.6 If m,n ∈ N, m even. Then

⌊n/2⌋
∑

j=1

gcd(j,n)=1

(ζj
n + ζ−j

n )m =

m/2−1
∑

ℓ=0

(

m

ℓ

)

φ(n)µ(n/ gcd(n,m− 2ℓ))

φ(n/ gcd(n,m− 2ℓ))
+ ξ(n)

(

m

m/2

)

,

where

ξ(n) =

{

φ(n)/2, if n is odd;

φ(n/2), if n is even.

Proof As in the proof of Lemma 3.5, since m is even, we have that

⌊n/2⌋
∑

j=1

gcd(j,n)=1

(ζj
n + ζ−j

n )m =

m/2−1
∑

ℓ=0

(

m

ℓ

)

n−1
∑

j=1

gcd(j,n)=1

ζj(m−2ℓ)
n +

(

m

m/2

)

⌊n/2⌋
∑

j=1

gcd(j,n)=1

1.

It remains to apply Lemma 3.4 and to note that

⌊n/2⌋
∑

j=1

gcd(j,n)=1

1 = ξ(n).

QED.
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Lemma 3.7 Let χ (mod m) be a character of conductor f , and let a = ga0 ∈ N and

m = gm0 ∈ N, where g = gcd(a,m) and gcd(a0, m0) = 1. If f |m0, then

∑

x (mod m)

gcd(x,m)=1

χ(x)ζax
m =

φ(m)

φ(m0)
µ(m0/f)χ(m0/f)χ(a0)

∑

x (mod f)

χ(x)ζx
f .

Proof This is [11, Theorem IV, page 449].

QED.

Lemma 3.8 Let χ be a quadratic character of conductor f ∈ N, µ(f) 6= 0. Then

∑

x (mod f)

χ(x)ζx
f =

{ √
f, if χ(−1) = 1;√
−f, if χ(−1) = −1;

where
√
f > 0.

Proof This is [11, Theorem XI, page 471].

QED.

Lemma 3.9 Let n,m ∈ N, and let d be an odd divisor of n. If n/ gcd(n,m) ≡ 0 (mod d)

and µ(d) 6= 0, then

n
∑

h=1

gcd(h,n)=1

(h|d)ζhm
n =

φ(n)µ( n
d gcd(n,m)

)( n
d gcd(n,m)

|d)( m
gcd(n,m)

|d)
√
ǫd

φ(n/ gcd(n,m))
,

where

ǫ =

{

1, if d ≡ 1 (mod 4);

−1, if d ≡ −1 (mod 4).

Proof Let χ(h) = (h|d). Note that χ(h) is a quadratic character of conductor d, and

χ(h) = χ(h). Let m = gm0, and n = gn0, where g = gcd(m,n) and gcd(m0, n0) = 1. By

Lemma 3.7,

n
∑

h=1

gcd(h,n)=1

(h|d)ζhm
n =

φ(n)

φ(n0)
µ(n0/d)χ(n0/d)χ(m0)

d
∑

h=1

(h|d)ζh
d .
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By Lemma 3.8,
d
∑

h=1

(h|d)ζh
d =

{ √
d, if (−1|d) = 1;√
−d, if (−1|d) = −1.

It remains to note that d is odd and (−1|d) = (−1)(d−1)/2.

QED.

Lemma 3.10 Let n be an odd positive integer, ν be the greatest squarefree divisor of n,
d ≡ 1 (mod 4) be a divisor of ν, d = d2d3, and let m be an odd positive integer. Then

⌊ν/2⌋
∑

i=1

gcd(i,ν)=1

{

±(i|d)

√

d
n/ν
3 (ζi

ν + ζ−i
ν )

}m

= ±d
m(n/ν)+1

2
3

√

d2

(m−1)/2
∑

ℓ=0
ν

gcd(ν,m−2ℓ)
≡0 (mod d)

(

m

ℓ

)

φ(ν)µ( ν
d gcd(ν,m−2ℓ) )(

ν
d gcd(ν,m−2ℓ) |d)( m−2ℓ

gcd(ν,m−2ℓ) |d)

φ(ν/ gcd(ν, m − 2ℓ))
.

Proof By the binomial theorem and the fact that m is odd and (−1|d) = 1 we have that

⌊ν/2⌋
∑

i=1

gcd(i,ν)=1

{

±(i|d)
√

d
n/ν
3 (ζ i

ν + ζ−i
ν )

}m

= ±dm(n/ν)/2
3

⌊ν/2⌋
∑

i=1

gcd(i,ν)=1

(i|d)
m
∑

ℓ=0

(

m

ℓ

)

ζ i(m−ℓ)
ν ζ−iℓ

ν

= ±dm(n/ν)/2
3

⌊ν/2⌋
∑

i=1

gcd(i,ν)=1

(i|d)
(m−1)/2
∑

ℓ=0

(

m

ℓ

)

(ζ i(m−2ℓ)
ν + ζ−i(m−2ℓ)

ν ),

⌊ν/2⌋
∑

i=1

gcd(i,ν)=1

(i|d)
(m−1)/2
∑

ℓ=0

(

m

ℓ

)

(ζ i(m−2ℓ)
ν + ζ−i(m−2ℓ)

ν )

=

(m−1)/2
∑

ℓ=0

(

m

ℓ

)







⌊ν/2⌋
∑

i=1

gcd(i,ν)=1

(i|d)ζ i(m−2ℓ)
ν +

⌊ν/2⌋
∑

i=1

gcd(i,ν)=1

(i|d)ζ−i(m−2ℓ)
ν






,
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and

⌊ν/2⌋
∑

i=1

gcd(i,ν)=1

(i|d)ζ i(m−2ℓ)
ν +

⌊ν/2⌋
∑

i=1

gcd(i,ν)=1

(i|d)ζ−i(m−2ℓ)
ν

=

⌊ν/2⌋
∑

i=1

gcd(i,ν)=1

(i|d)ζ i(m−2ℓ)
ν +

ν−1
∑

k=⌈ν/2⌉

gcd(k,ν)=1

(k|d)ζk(m−2ℓ)
ν .

It remains to apply Lemma 3.9.

QED.

Lemma 3.11 Let n be an odd positive integer, ν be the greatest squarefree divisor of n, d

be a divisor of ν, d = d2d3, and let m be an even positive integer. Then

⌊ν/2⌋
∑

i=1

gcd(i,ν)=1

{

±(i|d)
√

d
n/ν
3 (ζ i

ν + ζ−i
ν )

}m

= d
m(n/ν)

2
3 φ(ν)





m/2−1
∑

ℓ=0

(

m

ℓ

)

µ(ν/ gcd(ν,m− 2ℓ))

φ(ν/ gcd(ν,m− 2ℓ))
+

1

2

(

m

m/2

)



 .

Proof This follows as in the proof of Lemma 3.6, on noting that since gcd(i, d) = 1 and

m is even, {±(i|d)}m = 1.

QED.

Lemma 3.12 Let n be an even positive integer, ν be the greatest squarefree divisor of n,
d ≡ 3 (mod 4) be a divisor of ν, d = d2d3, and let m be an odd positive integer. Then

⌊ν/4⌋
∑

i=1

gcd(i,ν/2)=1

{

±
√

−d
n/ν
3 (i|d)(ζi

ν/2 − ζ−i
ν/2)

}m

= ±(−1)
m+1

2 d
m(n/ν)+1

2
3

√

d2 ×

(m−1)/2
∑

ℓ=0
ν/2

gcd(ν/2,m−2ℓ)
≡0 (mod d)

(

m

ℓ

)

(−1)ℓφ(ν/2)µ( ν/2
d gcd(ν/2,m−2ℓ) )(

ν/2
d gcd(ν/2,m−2ℓ) |d)( m−2ℓ

gcd(ν/2,m−2ℓ) |d)

φ((ν/2)/ gcd(ν/2, m − 2ℓ))
.
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Proof By the binomial theorem and the fact that m is odd and (−1|d) = −1, we have

that

⌊ν/4⌋
∑

i=1

gcd(i,ν/2)=1

{

±
√

−dn/ν
3 (i|d)(ζ i

ν/2 − ζ−i
ν/2)

}m

= ±(−1)
m
2 d

m(n/ν)
2

3

⌊ν/4⌋
∑

i=1

gcd(i,ν/2)=1

(i|d)
m
∑

ℓ=0

(

m

ℓ

)

(−1)ℓζ
i(m−ℓ)
ν/2 ζ−iℓ

ν/2 ,

⌊ν/4⌋
∑

i=1

gcd(i,ν/2)=1

(i|d)
m
∑

ℓ=0

(

m

ℓ

)

(−1)ℓζ
i(m−ℓ)
ν/2 ζ−iℓ

ν/2

=

(m−1)/2
∑

ℓ=0

(

m

ℓ

)

(−1)ℓ







⌊ν/4⌋
∑

i=1

gcd(i,ν/2)=1

(i|d)ζ i(m−2ℓ)
ν/2 + (−1)m−2ℓ

⌊ν/4⌋
∑

i=1

gcd(i,ν/2)=1

(i|d)ζ−i(m−2ℓ)
ν/2






,

and

⌊ν/4⌋
∑

i=1

gcd(i,ν/2)=1

(i|d)ζ i(m−2ℓ)
ν/2 + (−1)m−2ℓ

⌊ν/4⌋
∑

i=1

gcd(i,ν/2)=1

(i|d)ζ−i(m−2ℓ)
ν/2

=

⌊ν/4⌋
∑

i=1

gcd(i,ν/2)=1

(i|d)ζ i(m−2ℓ)
ν/2 +

⌊ν/4⌋
∑

i=1

gcd(i,ν/2)=1

(−i|d)ζ−i(m−2ℓ)
ν/2

=

⌊ν/4⌋
∑

i=1

gcd(i,ν/2)=1

(i|d)ζ i(m−2ℓ)
ν/2 +

ν/2
∑

k=⌈ν/4⌉

gcd(k,ν/2)=1

(k|d)ζk(m−2ℓ)
ν/2 .

It remains to apply Lemma 3.9.

QED.
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Lemma 3.13 Let n be an even positive integer, ν be the greatest squarefree divisor of n,
d be an odd divisor of ν, d = d2d3, and let m be an even positive integer. Then

⌊ν/4⌋
∑

i=1

gcd(i,ν/2)=1

{

±
√

−d
n/ν
3 (i|d)(ζi

ν/2 − ζ−i
ν/2)

}m

= (−1)
m
2 d

m(n/ν)
2

3 φ(ν/2)





m/2−1
∑

ℓ=0

(

m

ℓ

)

(−1)ℓµ((ν/2)/ gcd(ν/2, m− 2ℓ))

φ((ν/2)/ gcd(ν/2, m − 2ℓ))
+

(−1)m/2

2

(

m

m/2

)



 .

Proof By the binomial theorem and the fact that m is even we have that

⌊ν/4⌋
∑

i=1

gcd(i,ν/2)=1

{

±
√

−dn/ν
3 (i|d)(ζ i

ν/2 − ζ−i
ν/2)

}m

= (−1)
m
2 d

m(n/ν)
2

3

⌊ν/4⌋
∑

i=1

gcd(i,ν/2)=1

m
∑

ℓ=0

(

m

ℓ

)

(−1)ℓζ
i(m−ℓ)
ν/2 ζ−iℓ

ν/2 ,

and

⌊ν/4⌋
∑

i=1

gcd(i,ν/2)=1

m
∑

ℓ=0

(

m

ℓ

)

(−1)ℓζ
i(m−ℓ)
ν/2 ζ−iℓ

ν/2

=

m/2−1
∑

ℓ=0

(

m

ℓ

)

(−1)ℓ







⌊ν/4⌋
∑

i=1

gcd(i,ν/2)=1

ζ
i(m−2ℓ)
ν/2 + (−1)m−2ℓ

⌊ν/4⌋
∑

i=1

gcd(i,ν/2)=1

ζ
−i(m−2ℓ)
ν/2






+

+(−1)m/2

(

m

m/2

)

⌊ν/4⌋
∑

i=1

gcd(i,ν/2)=1

1.

It remains to note (−1)m−2ℓ = 1 and to apply Lemma 3.4.

QED.

Lemma 3.14 Let n be an even positive integer, ν be twice the greatest squarefree divisor
of n, n/ν be an odd integer, d ≡ 2 (mod 4) be a divisor of ν/2, d = d2d3, and let m be an
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odd positive integer. Then

ν
∑

i=1
gcd(i,2ν)=1

(d|i)=1

{

±
√

d
n/ν
3 (ζi

2ν + ζ−i
2ν )

}m

=

±
(m−1)/2
∑

ℓ=0
2ν

gcd(2ν,m−2ℓ)
≡0 (mod 4d)

(

m

ℓ

)

d
m(n/ν)+1

2
3

√
d2φ(2ν)µ( 2ν

4d gcd(2ν,m−2ℓ) )χ( 2ν
4d gcd(2ν,m−2ℓ) )χ( m−2ℓ

gcd(2ν,m−2ℓ) )

φ(2ν/ gcd(2ν, m− 2ℓ))
,

where

χ(i) = (−1)(i−1)(i−1+d)/8(i|d/2).

Proof By the binomial theorem and the fact that m is odd we deduce that

ν
∑

i=1
gcd(i,2ν)=1

(d|i)=1

{

±
√

d
n/ν
3 (ζ i

2ν + ζ−i
2ν )

}m

= ±dm(n/ν)/2
3

(m−1)/2
∑

ℓ=0

(

m

ℓ

)













ν
∑

i=1
gcd(i,2ν)=1

(d|i)=1

ζ
i(m−2ℓ)
2ν +

ν
∑

i=1
gcd(i,2ν)=1

(d|i)=1

ζ
−i(m−2ℓ)
2ν













,

ν
∑

i=1
gcd(i,2ν)=1

(d|i)=1

ζ
i(m−2ℓ)
2ν +

ν
∑

i=1
gcd(i,2ν)=1

(d|i)=1

ζ
−i(m−2ℓ)
2ν =

2ν
∑

i=1
gcd(i,2ν)=1

(d|i)=1

ζ
i(m−2ℓ)
2ν ,

and

2ν
∑

i=1
gcd(i,2ν)=1

(d|i)=1

ζ
i(m−2ℓ)
2ν =

1

2

2ν
∑

i=1

gcd(i,2ν)=1

(d|i)ζ i(m−2ℓ)
2ν

=
1

2

2ν
∑

i=1

gcd(i,2ν)=1

(−1)(i−1)(i−1+d)/8(i|d/2)ζ
i(m−2ℓ)
2ν .
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It remains to apply Lemma 3.7 and Lemma 3.8 using the fact that χ(i) = (d|i) is a

quadratic character modulo 2ν of conductor 4d.

QED.

Lemma 3.15 Let n be an even positive integer, ν be twice the greatest squarefree divisor

of n, n/ν be an odd integer, d be a divisor of ν/2, d = d2d3, and let m be an even positive

integer. Then

ν
∑

i=1
gcd(i,2ν)=1

(d|i)=1

{

±
√

d
n/ν
3 (ζ i

2ν + ζ−i
2ν )

}m

=
d

m(n/ν)/2
3 φ(2ν)

2





m/2−1
∑

ℓ=0

(

m

ℓ

)

µ(2ν/ gcd(2ν,m− 2ℓ))

φ(2ν/ gcd(2ν,m− 2ℓ))
+

1

2

(

m

m/2

)





Proof By the binomial theorem and the fact that m is even, we note that

ν
∑

i=1
gcd(i,2ν)=1

(d|i)=1

{

±
√

d
n/ν
3 (ζ i

2ν + ζ−i
2ν )

}m

= d
m(n/ν)/2
3













m/2−1
∑

ℓ=0

(

m

ℓ

)

2ν
∑

i=1
gcd(i,2ν)=1

(d|i)=1

ζ
i(m−2ℓ)
2ν +

(

m

m/2

)

φ(2ν)

4













,

and

2ν
∑

i=1
gcd(i,2ν)=1

(d|i)=1

ζ
i(m−2ℓ)
2ν =

1

2

2ν
∑

i=1

gcd(i,2ν)=1

ζ
i(m−2ℓ)
2ν .

It remains to apply Lemma 3.4.

QED.
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Lemma 3.16 Let F (X, Y ) be a binary form with integer coefficients and with at least three

pairwise non-proportional linear factors in its factorisation over C. Let m be a non-zero

integer. If x and y are rational integers satisfying F (X, Y ) = m, then

max{|x|, |y|} ≤ C1|m|C2 ,

for some computable numbers C1 and C2 depending only on F .

Proof This is [28, Theorem 5.1]. We highlight that Baker (1968) established the first such

bound. Feldman (1971) and Baker (1973) independently established the stated result.

QED.

Lemma 3.17 Let f(x) be a polynomial with integer coefficients, and suppose that f(x)

has at least two simple roots. Further, let b ∈ Z, and let 3 ≤ m ∈ Z. If x ∈ Z and y ∈ Z

satisfy f(x) = bym, then

max{|x|, |y|} ≤ C,

for some computable number C, depending on b, m, and f .

Proof This is [28, Theorem 6.1]. We highlight that Baker (1969) established this bound.

QED.

Lemma 3.18 Let f(x) =
∏m

i=1(x−ri) and g(x) =
∏n

j=1(x−sj) be polynomials with integer

coefficients, and let R denote the resultant of f(x) and g(x). Then there exist polynomials

a(x) and b(x) with integer coefficients such that

a(x)f(x) + b(x)g(x) = R.

Proof This is proved in [31, page 104–105].

QED.

Lemma 3.19 Let n ∈ N, n > 2, L = Q(cos(2π/n)), M = Q(ζn), and let DL and DM

denote the discriminant of L and M respectively. Then Q ⊂ L ⊂M , and

DM ≡ 0 (mod DL),

DM = (−1)φ(n)/2 nφ(n)

∏

p|n p
φ(n)/(p−1)

.
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Proof Note that cos(2π/n) = (1/2)(ζn + ζ−1
n ), and that L is a real subfield of M . The

congruence for DM follows from the composition theorem on discriminants [12, page 443],

while the equality for DM is proved by Hasse [12, page 523–525].

QED.

Lemma 3.20 Let n ∈ N, n > 2, L′ = Q(sin(2π/n)), M ′ = Q(ζn,
√
−1), and let DL′ and

DM ′ denote the discriminant of L′ and M ′ respectively. Then Q ⊂ L′ ⊂M ′, and

DM ′ ≡ 0 (mod DL′),

DM ′ = −4
n2φ(n)

∏

p|n p
2φ(n)/(p−1)

.

Proof Note that sin(2π/n) = (−1/2)
√
−1(ζn − ζ−1

n ), and that L′ is a real subfield of M ′.

The congruence for DM ′ follows from the composition theorem on discriminants [12, page

443]. Moreover, in the notation of Lemma 3.19, since Q ⊂ M ⊂ M ′, [M ′ : M ] = 2, and

DM ′/M = −4, by the composition theorem on discriminants

DM ′ = Norm(DM ′/M)D
[M ′:M ]
M

= −4D2
M ,

from which we deduce the result by the formula for DM in Lemma 3.19.

QED.

Lemma 3.21 Let 2 ≤ c ∈ Z, (α + β)2 = z2
2, and αβ = z2

3, where z2 ∈ Z, z3 ∈ Z.

Φ3c(α, β) =

⌊3c/2⌋
∏

i=1

gcd(i,3c)=1

(z2 − (ζ i
3c + ζ−i

3c )z3)

⌊3c/2⌋
∏

i=1

gcd(i,3c)=1

(z2 + (ζ i
3c + ζ−i

3c )z3).

Proof This follows directly by definition, factoring a difference of squares, and pairing

(ζ i
3c , ζ−i

3c ).

QED.

Lemma 3.22 Let 2 ≤ c ∈ Z, (α + β)2 = d2z
2
2, and αβ = d3z

2
3, where (d2, d3) ∈

{(3, 1), (1, 3)}, z2 ∈ Z, z3 ∈ Z.

Φ2·3c(α, β) =

⌊3c/2⌋
∏

i=1

gcd(i,3c)=1

(
√

d2z2−
√
−1(ζi

3c−ζ−i
3c )
√

d3z3)

⌊3c/2⌋
∏

i=1

gcd(i,3c)=1

(
√

d2z2+
√
−1(ζi

3c −ζ−i
3c )
√

d3z3).
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Proof This follows directly by Lemma 1.17, factoring a difference of squares, and pairing

(ζ i
3c , ζ−i

3c ).

QED.

3.2 Proof of Theorem 3.1

Proof We first note that by Theorem 2.1, we have that n < 1.2 × 1010. We fix

6 < n < 1.2 × 1010, n 6= 12.

It follows by Lemma 3.2 for j ∈ {1, 2} that

δΦ
(j)
N,κ(α

n/ν , βn/ν) ∈ {±1,±P (n/ gcd(n, 3))}, (3.5)

where

δ = k((α+ β)2)−(φ(n)/4−⌊φ(n)/4⌋),

κ = k(αβ(α+ β)2),

ν = ηκ
∏

p|n,p∤ηκ

p,

ℓ = κ
∏

p|n,p∤ηκ

p,

N = ν.

Note that since κ is squarefree, we have three cases to consider, namely

κ ≡ 1, 2, 3 (mod 4).
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In case κ ≡ 1 (mod 4), note that Φ
(1)
N,κ(·) and Φ

(2)
N,κ(·) in equations (3.5) are defined by

equations (1.18) and (1.19), with

ν = κ
∏

p|n,p∤κ

p,

ℓ = ν,

N = ν,

x = αn/ν ,

y = βn/ν .

Note further that

(−s|κ) = (−1|κ)(s|κ),

and since κ ≡ 1 (mod 4) that

(−1|κ) = (−1)(κ−1)/2 = 1.

Hence, s and −s both appear in the product indexed by s. We may group the ℓth roots

of unity into φ(ℓ)/2 pairs (ζs
ℓ , ζ

−s
ℓ ) with respect to the index s, and similarly, φ(ℓ)/2 pairs

(ζ t
ℓ , ζ

−t
ℓ ) with respect to the index t. Then equations (1.18) and (1.19) become

Φ(1)
ν,κ(α

n/ν , βn/ν) =

⌊ℓ/2⌋
∏

s=1

gcd(s,ℓ)=1

(x1 − (s|κ)(ζs
ℓ + ζ−s

ℓ )x2), (3.6)

and

Φ(2)
ν,κ(α

n/ν , βn/ν) =

⌊ℓ/2⌋
∏

s=1

gcd(s,ℓ)=1

(x1 + (s|κ)(ζs
ℓ + ζ−s

ℓ )x2), (3.7)

where each of (3.6) and (3.7) is a binary form of degree φ(ℓ)/2 in x1 and x2,

x1 = αn/ν + βn/ν , (3.8)

and

x2 = (αβ)n/(2ν). (3.9)
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Since n/ν is an odd integer, we note the identity

αn/ν + βn/ν

α+ β
= ((α+ β)2)(n/ν−1)/2 −

(n/ν−1)/2
∑

k=1

(

n/ν

k

)

(αβ)kα
n/ν−2k + βn/ν−2k

α + β
. (3.10)

We observe that since (α, β) is a Lehmer pair, then by induction and the identity (3.10),

it follows that

αn/ν + βn/ν

α + β
= z1,

for some integer z1. Furthermore, since

(α + β)2 = k((α + β)2)z2
2 ,

for some integer z2, we write

x1 = z1z2
√

k((α + β)2).

On the other hand, since

αβ = k(αβ)z2
3

for some integer z3, we write

x2 = z
n/ν
3

√

(k(αβ))n/ν .

We define

f
(1)
n,k((α+β)2),k(αβ)(x, y)

=

⌊ν/2⌋
∏

s=1

gcd(s,ν)=1

(
√

k((α + β)2)x− (s|κ)
√

(k(αβ))n/ν(ζs
ν + ζ−s

ν )y),

f
(2)
n,k((α+β)2),k(αβ)(x, y)

=

⌊ν/2⌋
∏

s=1

gcd(s,ν)=1

(
√

k((α + β)2)x− (−1)(s|κ)
√

(k(αβ))n/ν(ζs
ν + ζ−s

ν )y).
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Then equations (3.6) and (3.7) become

f
(1)
n,k((α+β)2),k(αβ)(z1z2, z

n/ν
3 )

=

φ(ν)/2
∑

s=0

as(
√

k((α + β)2))φ(ν)/2−s(z1z2)
φ(ν)/2−s(z

n/ν
3 )s, (3.11)

and

f
(2)
n,k((α+β)2),k(αβ)(z1z2, z

n/ν
3 )

=

φ(ν)/2
∑

s=0

bs(
√

k((α + β)2))φ(ν)/2−s(z1z2)
φ(ν)/2−s(z

n/ν
3 )s. (3.12)

Because of Lemma 3.3, we may write the as’s and the bs’s in the form

a0 = 1,

as = −1

s

s−1
∑

j=0

p
(a)
s−jaj , s = 1, . . . , φ(ν)/2,

p
(a)
s−j =

⌊ν/2⌋
∑

i=1

gcd(i,ν)=1

{

(i|κ)
√

(k(αβ))n/ν(ζ i
ν + ζ−i

ν )

}s−j

, s− j = 1, . . . , φ(ν)/2,

and

b0 = 1,

bs = −1

s

s−1
∑

j=0

p
(b)
s−jbj , s = 1, . . . , φ(ν)/2,

p
(b)
s−j =

⌊ν/2⌋
∑

i=1

gcd(i,ν)=1

{

−(i|κ)
√

(k(αβ))n/ν(ζ i
ν + ζ−i

ν )

}s−j

, s− j = 1, . . . , φ(ν)/2.

We note that there are only finitely many equations (3.11) and (3.12), since n/κ is an odd

integer, and κ = k((α + β)2)k(αβ) since gcd(L,M) = 1. For the application of the next

two Lemmas, we let

d = κ,

d2 = k((α + β)2), (3.13)

d3 = k(αβ).
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It follows by Lemma 3.10 in case s− j ≡ 1 (mod 2), that

p
(a)
s−j =









(k(αβ))
(s−j)(n/ν)+1

2

(s−j−1)/2
∑

ℓ=0
ν

gcd(ν,s−j−2ℓ)
≡0 (mod κ)

(

s− j

ℓ

)

×

φ(ν)µ( ν
κ gcd(ν,s−j−2ℓ)

)( ν
κ gcd(ν,s−j−2ℓ)

|κ)( s−j−2ℓ
gcd(ν,s−j−2ℓ)

|κ)
φ(ν/ gcd(ν, s− j − 2ℓ))

)

√

k((α + β)2),

and that p
(b)
s−j = −p(a)

s−j. Since n/ν is odd and s− j is odd, we see that (s− j)(n/ν) + 1 is

even. Furthermore, we note that

φ(ν) ≡ 0 (mod φ(ν/ gcd(ν, s− j − 2ℓ))).

Hence, in case s − j ≡ 1 (mod 4), both p
(a)
s−j and p

(b)
s−j have the form u1

√

k((α + β)2) for

some integer u1. Similarly, by Lemma 3.11 in case s− j ≡ 0 (mod 2),

p
(a)
s−j = (k(αβ))

(s−j)(n/ν)
2 φ(ν) ×





(s−j)/2−1
∑

ℓ=0

(

s− j

ℓ

)

µ(ν/ gcd(ν, s− j − 2ℓ))

φ(ν/ gcd(ν, s− j − 2ℓ))
+

1

2

(

s− j

(s− j)/2

)



 ,

and p
(a)
s−j = p

(b)
s−j. Since s−j is even, we see that (s−j)(n/ν) is even. Furthermore, we note

that φ(ν) is even. Hence, in case s− j ≡ 0 (mod 2), both p
(a)
s−j and p

(b)
s−j have the form u2

for some integer u2. It follows from the above Newton’s identitites that as and bs have the

form

q1
√

k((α + β)2), if s ≡ 1 (mod 2);

q2, otherwise;

for some rational numbers q1 and q2.On the other hand, as and bs are elementary symmetric

functions of

±(s|κ)
√

(k(αβ))n/ν(ζs
ν + ζ−s

ν ),

and thus are algebraic integers. It follows that as and bs have the form

u3

√

k((α+ β)2), if s ≡ 1 (mod 2);

u4, otherwise;
(3.14)
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where u3 and u4 are integers.

Plainly, in case κ = 1, the coefficients of the equations (3.11) and (3.12) defining

f
(j)
n,k((α+β)2),k(αβ)(z1z2, z

n/ν
3 ), for j = 1 and j = 2, are integers. In case κ > 1, it follows from

κ ≡ 1 (mod 4), φ(κ) ≡ 0 (mod 4), and

φ(ν) = φ(κ)φ(
∏

p|n

p∤κ

p),

that φ(ν)/2 is an even integer. We observe (3.14), and the fact that φ(ν)/2 is an even

integer, imply that the coefficients of the equations (3.11) and (3.12) are integers.

By Lemma 3.16, for j = 1 and j = 2, we deduce that each of the equations

f
(j)

n,k((α+β)2),k(αβ)(z1z2, z
n/ν
3 ) = m, (3.15)

where f
(1)

n,k((α+β)2),k(αβ)(z1z2, z
n/ν
3 ) is defined by (3.11) and f

(2)

n,k((α+β)2),k(αβ)(z1z2, z
n/ν
3 ) is de-

fined by (3.12), and

m ∈ {±1,±P (n/ gcd(n, 3))}

is a non-zero integer, has only finitely many solutions in integers (z1z2, z
n/ν
3 ), whenever

each of f
(j)

n,k((α+β)2),k(αβ)(z1z2, z
n/ν
3 ), j = 1, 2 have at least three distinct roots.

Plainly, on recalling the identities

ζs
ν + ζ−s

ν = 2 cos(2πs/ν), (3.16)

− cos(2πs/ν) = cos(π − 2πs/ν),

it is easily seen that each of f
(j)

n,k((α+β)2),k(αβ)(z1z2, z
n/ν
3 ), j = 1, 2 has at least three distinct

roots whenever

φ(ν)/2 ≥ 3,

which is true provided we assume

∏

p|n

(p− 1) ≥ 6, (3.17)

since

∏

p|n

(p− 1) = φ(
∏

p|n

p) = φ(ν).
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In case κ ≡ 3 (mod 4), note that Φ
(1)
N,κ(·) and Φ

(2)
N,κ(·) in equations (3.5) are defined by

equations (1.20) and (1.21), with

ν = 2κ
∏

p|n,p∤2κ

p,

ℓ = ν/2,

N = ν,

x = αn/ν ,

y = βn/ν .

Note further that

(−s|κ) = (−1|κ)(s|κ),

and since κ ≡ 3 (mod 4) that

(−1|κ) = (−1)(κ−1)/2 = −1.

Hence, for every s appearing in the product indexed by s, there is a −s appearing in the

product indexed by t. We may group the ℓth roots of unity into φ(ℓ)/2 pairs (ζs
ℓ , ζ

−s
ℓ ) with

(s|κ) = 1 and (−s|κ) = −1. Then equations (1.20) and (1.21) become

Φ(1)
ν,κ(α

n/ν , βn/ν) =

⌊ℓ/2⌋
∏

s=1

gcd(s,ℓ)=1

(x1 − (s|κ)
√
−1(ζs

ℓ − ζ−s
ℓ )x2), (3.18)

and

Φ(2)
ν,κ(α

n/ν , βn/ν) =

⌊ℓ/2⌋
∏

s=1

gcd(s,ℓ)=1

(x1 + (s|κ)
√
−1(ζs

ℓ − ζ−s
ℓ )x2), (3.19)

where each of (3.18) and (3.19) is a binary form of degree φ(ℓ)/2 in x1 and x2, and x1 and

x2 are defined by equations (3.8) and (3.9) respectively, with respect to the definition of ν
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in this case. We define

f
(1)

n,k((α+β)2),k(αβ)(x, y)

=

⌊ν/4⌋
∏

s=1

gcd(s,ν/2)=1

(
√

k((α + β)2)x− (s|κ)
√

−(k(αβ))n/ν(ζs
ν/2 − ζ−s

ν/2)y),

f
(2)

n,k((α+β)2),k(αβ)(x, y)

=

⌊ν/4⌋
∏

s=1

gcd(s,ν/2)=1

(
√

k((α + β)2)x− (−1)(s|κ)
√

−(k(αβ))n/ν(ζs
ν/2 − ζ−s

ν/2)y).

Then equations (3.18) and (3.19) become

f
(1)
n,k((α+β)2),k(αβ)(z1z2, z

n/ν
3 )

=

φ(ν)/2
∑

s=0

λs(
√

k((α + β)2))φ(ν)/2−s(z1z2)
φ(ν)/2−s(z

n/ν
3 )s, (3.20)

and

f
(2)

n,k((α+β)2),k(αβ)(z1z2, z
n/ν
3 )

=

φ(ν)/2
∑

s=0

ρs(
√

k((α + β)2))φ(ν)/2−s(z1z2)
φ(ν)/2−s(z

n/ν
3 )s. (3.21)

Because of Lemma 3.3, we may write the λs’s and the ρs’s in the form

λ0 = 1,

λs = −1

s

s−1
∑

j=0

p
(λ)
s−jλj , s = 1, . . . , φ(ν)/2,

p
(λ)
s−j =

⌊ν/4⌋
∑

i=1

gcd(i,ν/2)=1

{

√

−(k(αβ))n/ν(i|κ)(ζ i
ν/2 − ζ−i

ν/2)

}s−j

, s− j = 1, . . . , φ(ν)/2,
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and

ρ0 = 1,

ρs = −1

s

s−1
∑

j=0

p
(ρ)
s−jρj , s = 1, . . . , φ(ν)/2,

p
(ρ)
s−j =

⌊ν/4⌋
∑

i=1

gcd(i,ν/2)=1

{

−
√

−(k(αβ))n/ν(i|κ)(ζ i
ν/2 − ζ−i

ν/2)

}s−j

, s− j = 1, . . . , φ(ν)/2.

We note that there are only finitely many equations (3.20) and (3.21), since n/(2κ) is an

odd integer, and κ = k((α + β)2)k(αβ). With respect to equations (3.13), it follows by

Lemma 3.12 in case s− j ≡ 1 (mod 2), that p
(λ)
s−j and p

(ρ)
s−j have the form u5

√

k((α + β)2)

for some integer u5, and by Lemma 3.13 in case s−j ≡ 0 (mod 2), that p
(λ)
s−j and p

(ρ)
s−j have

the form u6 for some integer u6. On the other hand, λs and ρs are elementary symmetric

functions of

±(s|κ)
√

−(k(αβ))n/ν(ζs
ν/2 − ζ−s

ν/2),

and thus are algebraic integers. It follows from the above Newton’s identities that λs and

ρs have the form

u7

√

k((α+ β)2), if s ≡ 1 (mod 2);

u8, otherwise;
(3.22)

where u7 and u8 are integers.

Since κ > 1, we consider the cases ω(κ) = 1 and ω(κ) > 1. Plainly, in case that

ω(κ) = 1, since φ(κ) ≡ 2 (mod 4), it follows that φ(ν)/2 is an odd integer, and that

δ =
1

√

k((α+ β)2)
.

On the other hand, in case that ω(κ) > 1, since φ(κ) ≡ 0 (mod 4), it follows that φ(ν)/2

is an even integer, and that

δ = 1.

We observe (3.22), and the above discussion on the parity of φ(ν)/2 and the value of δ,

together imply that the coefficients defining

δf
(j)

n,k((α+β)2),k(αβ)(z1z2, z
n/ν
3 ),
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for j = 1 and j = 2, where the coefficients of f
(j)

n,k((α+β)2),k(αβ)(z1z2, z
n/ν
3 ) are given by the

equations (3.20) and (3.21), are integers.

By Lemma 3.16, for j = 1 and j = 2, we deduce that each of the equations

δf
(j)

n,k((α+β)2),k(αβ)(z1z2, z
n/ν
3 ) = m, (3.23)

where f
(1)
n,k((α+β)2),k(αβ)(z1z2, z

n/ν
3 ) is defined by (3.20) and f

(2)
n,k((α+β)2),k(αβ)(z1z2, z

n/ν
3 ) is de-

fined by (3.21), and

m ∈ {±1,±P (n/ gcd(n, 3))}

is a non-zero integer, has only finitely many solutions in integers (z1z2, z
n/ν
3 ), whenever

each of f
(j)

n,k((α+β)2),k(αβ)(z1z2, z
n/ν
3 ), j = 1, 2 have at least three distinct roots.

Plainly, on recalling the identities

ζs
ν/2 − ζ−s

ν/2 = 2
√
−1 sin(4πs/ν)), (3.24)

− sin(4πs/ν) = sin(−4πs/ν),

it is easily seen that each of f
(j)
n,κ(z1z2, z

n/ν
3 ), j = 1, 2 have at least three distinct roots under

the assumption (3.17), since in this case φ(ν)/2 ≥ 3.

Finally, in case κ ≡ 2 (mod 4), note that Φ
(1)
N,κ(·) and Φ

(2)
N,κ(·) in equations (3.5) are

defined by equations (1.22) and (1.23), with

ν = 2κ
∏

p|n,p∤2κ

p,

ℓ = ν/2,

N = ν,

x = αn/ν ,

y = βn/ν .

Note further that by definition

(κ| − s) = (κ|s) = 1.

Hence, s and −s both appear in the product indexed by s. We may group the 4ℓth roots of

unity into φ(4ℓ)/4 pairs (ζs
4ℓ, ζ

−s
4ℓ ) with (κ|s) = 1 and (κ| − s) = 1. Then equations (1.22)
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and (1.23) become

Φ(1)
ν,κ(α

n/ν , βn/ν) =

2ℓ
∏

s=1
gcd(s,4ℓ)=1

(κ|s)=1

(x1 − (ζs
4ℓ + ζ−s

4ℓ )x2), (3.25)

and

Φ(2)
ν,κ(α

n/ν , βn/ν) =
2ℓ
∏

s=1
gcd(s,4ℓ)=1

(κ|s)=1

(x1 + (ζs
4ℓ + ζ−s

4ℓ )x2), (3.26)

where each of (3.25) and (3.26) is a binary form of degree φ(4ℓ)/4 in x1 and x2, and x1

and x2 are defined by equations (3.8) and (3.9) respectively, with respect to the definition

of ν in this case. We define

f
(1)
n,k((α+β)2),k(αβ)(x, y)

=

ν
∏

s=1
gcd(s,2ν)=1

(κ|s)=1

(
√

k((α + β)2)x−
√

(k(αβ))n/ν(ζs
2ν + ζ−s

2ν )y),

f
(2)

n,k((α+β)2),k(αβ)(x, y)

=
ν
∏

s=1
gcd(s,2ν)=1

(κ|s)=1

(
√

k((α + β)2)x− (−1)
√

(k(αβ))n/ν(ζs
2ν + ζ−s

2ν )y).

Then equations (3.25) and (3.26) become

f
(1)

n,k((α+β)2),k(αβ)(z1z2, z
n/ν
3 )

=

φ(2ν)/4
∑

s=0

γs(
√

k((α + β)2))φ(2ν)/4−s(z1z2)
φ(2ν)/4−s(z

n/ν
3 )s, (3.27)

and

f
(2)
n,k((α+β)2),k(αβ)(z1z2, z

n/ν
3 )

=

φ(2ν)/4
∑

s=0

δs(
√

k((α+ β)2))φ(2ν)/4−s(z1z2)
φ(2ν)/4−s(z

n/ν
3 )s. (3.28)
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Because of Lemma 3.3, we may write the γs’s and the δs’s in the form

γ0 = 1,

γs = −1

s

s−1
∑

j=0

p
(γ)
s−jγj, s = 1, . . . , φ(2ν)/4,

p
(γ)
s−j =

ν
∑

i=1
gcd(i,2ν)=1

(κ|i)=1

{

√

(k(αβ))n/ν(ζ i
2ν + ζ−i

2ν )

}s−j

, s− j = 1, . . . , φ(2ν)/4,

and

δ0 = 1,

δs = −1

s

s−1
∑

j=0

p
(δ)
s−jδj , s = 1, . . . , φ(2ν)/4,

p
(δ)
s−j =

ν
∑

i=1
gcd(i,2ν)=1

(κ|i)=1

{

−
√

(k(αβ)n/ν(ζ i
2ν + ζ−i

2ν )

}s−j

, s− j = 1, . . . , φ(2ν)/4.

We note that there are only finitely many equations (3.27) and (3.28), since n/(2κ) is an

odd integer, and κ = k((α + β)2)k(αβ). With respect to equations (3.13), It follows by

Lemma 3.14 in case s− j ≡ 1 (mod 2), that p
(γ)
s−j and p

(δ)
s−j have the form u9

√

k((α + β)2)

for some integer u9, and by Lemma 3.15 in case s−j ≡ 0 (mod 2), that p
(γ)
s−j and p

(δ)
s−j have

the form u10 for some integer u10. On the other hand, γs and δs are elementary symmetric

functions of

±
√

(k(αβ)n/ν(ζs
2ν + ζ−s

2ν ),

and thus are algebraic integers. It follows from the above Newton’s identities that γs and

δs have the form

u11

√

k((α + β)2), if s ≡ 1 (mod 2);

u12, otherwise;
(3.29)

where u11 and u12 are integers.
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Since n 6= 4 and κ ≡ 2 (mod 4), κ = 2κ′, where κ′ > 1, gcd(2, κ′) = 1, and φ(κ′) ≡ 0

(mod 2). It follows that φ(2ν)/4 is an even integer, which together with (3.29), implies

that the coefficients of the equations (3.27) and (3.28) are integers.

By Lemma 3.16, for j = 1 and j = 2, we deduce that each of the equations (3.15),

where f
(1)
n,k((α+β)2),k(αβ)(z1z2, z

n/ν
3 ) is defined by (3.27) and f

(2)
n,k((α+β)2),k(αβ)(z1z2, z

n/ν
3 ) is de-

fined by (3.28), has only finitely many solutions in integers (z1z2, z
n/ν
3 ), whenever each of

f
(j)
n,k((α+β)2),k(αβ)(z1z2, z

n/ν
3 ), j = 1, 2 have at least three distinct roots.

Plainly, on noting the identity

ζs
2ν + ζ−s

2ν = 2 cos(πs/ν),

it is easily seen that each of f
(j)

n,k((α+β)2),k(αβ)(z1z2, z
n/ν
3 ), j = 1, 2 has at least three distinct

roots whenever

φ(2ν)/4 > 3,

which holds provided we assume that
∏

2<p|n

4|n

(p− 1) ≥ 4, (3.30)

since for ν = 4ν ′, gcd(2, ν ′) = 1,

φ(2ν)/4 = φ(8ν ′)/4 = φ(ν ′),

and by (3.30)

φ(ν ′) ≥ 4.

In summary, in any case κ ≡ 1, 2, 3 (mod 4), we have shown that there are only finitely

many triples

(n, L,M) = (n, κ((α + β)2)z2
2 , κ(αβ)z2

3),

under the assumptions (3.17) and (3.30), which completes the argument. We now consider

the remaining cases.

Suppose that
∏

p|n

4∤n
(p − 1) = 4. Let n = 5c and n/ν = 5c−1, c ≥ 2. It suffices to show

that the equations

u2(z1z2)
2 + u3(z1z2)z

n/ν
3 + u4(z

n/ν
3 )2 = m1, (3.31)
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have finitely many solutions in integers z1z2, z3, where m1 ∈ {±1,±5}, and

(k((α+β)2), k(αβ), u2, u3, u4) ∈ {(1, 1, 1,±1,−1), (5, 1, 5,∓5, 1), (1, 5, 1,∓5(n/ν+1)/2, 5n/ν)}.

Moreover, if
∏

2<p|n

4|n
(p − 1) = 2, let n = 4 · 3c and n/ν = 3c−1, where c ≥ 2. It suffices to

show that the equations

u5(z1z2)
2 + u6(z1z2)z

n/ν
3 + u7(z

n/ν
3 )2 = m2 (3.32)

have finitely many solutions in integers z1z2, z3, where m2 ∈ {±1,±3}, and

(k((α + β)2), k(αβ), u5, u6, u7) ∈
{(2, 1, 2,∓2,−1), (1, 2, 1,∓2(n/ν+1)/2,−2n/ν), (6, 1, 6,∓6, 1),

(3, 2, 3,∓2(n/ν+1)/2 · 3, 2n/ν), (2, 3, 2,∓2 · 3(n/ν+1)/2, 3n/ν), (1, 6, 1,∓6(n/ν+1)/2, 6n/ν)}.

The finiteness result in either case n = 5c or n = 4 · 3c follows by Lemma 3.17, on recalling

equations (3.31) and (3.32), and noting that the equations (3.31) are solvable in integers

(z1z2, z3) for a given integer z3 provided

(u2
3 − 4u4)z

2n/ν
3 = w2

1 − 4m1, (3.33)

for some integer w1, while the equations (3.32) are solvable in integers (z1z2, z3) for a given

integer z3 provided

(u2
6 − 4u7)z

2n/ν
3 = w2

2 − 4m2, (3.34)

for some integer w2.

On the other hand, we consider the case that
∏

p|n

4∤n
(p−1) = 2. Let n = 3c, where c ≥ 2.

By Lemma 3.21, we have a factorisation

Φ3c(α, β) = f
(1)
3c (z2, z3)f

(2)
3c (z2, z3). (3.35)

It is easily seen that f
(j)
3c (z2, z3) ∈ Z for j = 1 and j = 2 by Lemma 3.3, Lemma 3.5, and

Lemma 3.6. By Lemma 3.18, any common divisor of f
(1)
3c (z2, z3) and f

(2)
3c (z2, z3) divides

the resultant of f
(1)
3c (z2, z3) and f

(2)
3c (z2, z3), and hence the discriminant of Q(ζ3c + ζ−1

3c ).
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By Lemma 3.19, the discriminant of Q(ζ3c + ζ−1
3c ) divides the discriminant of Q(ζ3c), and

by the formula for the discriminant of Q(ζ3c) in Lemma 3.19, we deduce that the greatest

common divisor of f
(1)
3c (z2, z3) and f

(2)
3c (z2, z3) divides 3αβ. Since gcd(u3c(α, β), αβ) = 1

and 3c ∤ (3 ± 1), it follows that

gcd(f
(1)
3c (z2, z3), f

(2)
3c (z2, z3)) = 1.

By an argument similar to the proof of Lemma 3.2, we deduce for j = 1 and j = 2 that

f
(j)
3c (z2, z3) = m, (3.36)

where m ∈ {±1,±3}. It remains to note that each f
(j)
3c (z2, z3) has at least three distinct

roots on recalling the identities (3.16), since 3c−1 ≥ 3. Hence Lemma 3.16 implies the

finiteness of the solutions (z2, z3) of equations (3.36). Moreover, the case n = 2 · 3c, where

c ≥ 2, follows similarly, but with Lemma 3.22, the argument underlying Lemma 3.12 and

Lemma 3.13, by Lemma 3.20, by the identites (3.24), and with respect to the implied

integer Thue equations

δf
(j)
2·3c(z2, z3) = m. (3.37)

QED.



Chapter 4

Determining the Exceptional Lehmer

Triples

In this chapter, we determine the triples (n, α, β) from Theorem 3.1, up to equivalence,

explicitly for

6 < n ≤ 30, n 6= 12,

by solving the implicated Thue equations (3.15) and (3.23), (3.36) and (3.37), and by

solving the Thue equations corresponding to the superelliptic equations (3.33) and (3.34).

Furthermore, we search for more exceptions among the small solutions of the aforemen-

tioned Thue equations, for

30 < n ≤ 500.

More precisely, we let

d2 = k((α+ β)2),

d3 = k(αβ),

L = d2z
2
2 ,

M = d3z
2
3 .

For the Thue equations (3.15) and (3.23), we code and execute Lemmas 3.10, 3.11, 3.12,

3.13, 3.14, and 3.15 in MAPLE in order to generate the coefficient vectors of the implicated

79
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binary forms. In practice, we do not solve the superelliptic equations (3.33) and (3.34),

but rather, we rewrite the equations (3.31) and (3.32), using the identity

f(1, d2, d3, z2, z3) = 1, (4.1)

f(n/ν, d2, d3, z2, z3) = d
(n/ν−1)/2
2 z

n/ν−1
2 −

(n/ν−1)/2
∑

k=1

(

n/ν

k

)

(d3z
2
3)kf(n/ν − 2k, d2, d3, z2, z3),

where

ν = ηκ
∏

p|n

p∤ηκ

p,

as equations in only the variables z2 and z3, and thereby we recover binary forms, with

nonzero discriminant. Similarly, we recover the coefficient vectors of the binary forms

implied by the Thue equations (3.36) and (3.37) by appealing to the identity (4.1), and

the equation

f(3c, d2, d3, z2, z3)z2 + u1z
3c

3 = m,

where m ∈ {±1,±3}, and in case n = 3c, c ≥ 2,

(d2, d3, u1) ∈ {(1, 1,±1)},

while in case n = 2 · 3c, c ≥ 2,

(d2, d3, u1) ∈ {(3, 1, 1,±1), (1, 3,±3(3c+1)/2)}.

In each case n = 3c, n = 2 · 3c, n = 5c, or n = 4 · 3c, c ≥ 2, solving the implicated Thue

equations gives us finitely many 4 tuples (d2, d3, z2, z3), from which we compute finitely

many candidate triples (n, L,M). For these candidates, we use the methods of the first

chapter in order to determine the triples (n, α, β) such that un has less than two primitive

divisors. On the other hand, for the Thue equations (3.15) and (3.23), we consider two

cases. In case n/ν = 1, we observe by identity (3.10) that z1 = 1, and we recover the finitely

many triples (n, L,M) directly from the solutions of the Thue equations as described above.

On the other hand, in case n/ν > 1, we consider n/ν = 3, 5, 7, ... in order. In each case,

we run over all divisors of z1z2 in order to form all finite possibilities (d2, d3, z1, z2, z
n/ν
3 ).
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For each of these 5 tuples (d2, d3, z1, z2, z
n/ν
3 ), we compute L and M , and retain those pairs

(L,M) which satisfy the identity (3.10) as candidates. For example,

L− 3M = z1,

in case

n/ν = 3.

We then recover the exceptions by the methods of the first chapter. Finally, we note

that we have already determined all of the exceptional triples (n, α, β), up to equivalence,

implied by Theorem 3.1, in case αβ < 0. The triples (n, α, β), up to equivalence, such that

αβ < 0, are tabulated in Table 1.2. Plainly, in case αβ < 0, L − 4M > 0, and (α, β) is a

real Lehmer pair.

4.1 Statement of Theorem 4.1

Theorem 4.1 Let L and M be integers satisfying the conditions L > 0, M 6= 0, L−4M 6=
0, gcd(L,M) = 1, and (L,M) /∈ {(1, 1), (2, 1), (3, 1)}, (α, β) be the associated Lehmer pair,

and let κ and η be defined by (1.13) and (1.14). If 6 < n ≤ 30, n 6= 12, n/(ηκ) is an

odd integer, and the triple (n, α, β) is not equivalent to a triple (n, α, β) from Table 4.1, or

Table 4.2, then un(α, β) has at least two primitive divisors.

4.2 Proof of Theorem 4.1

Before proving Theorem 4.1, we note first that finding all of the integer solutions of the Thue

equation F (X, Y ) = m in practice, where F (X, Y ) is a binary form with integer coefficients,

and with at least three pairwise non-proportional linear factors in its factorisation over C,

and m is a non-zero integer, can be achieved, subject to computational limitations, by

using the computer algebra system KASH [8]. In particular, using the KASH function

ThueSolve, which is an implementation of the Baker-Bilu-Hanrot [3] algorithm.

We use the KASH function ThueSolve in order to establish Theorem 4.1.
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(n, α, β) (n, L,M) p

∗7, (1/2) + (1/2)
√
−15, (1/2) − (1/2)

√
−15 7, 1, 4 13

∗7, (1/2) + (1/2)
√
−35, (1/2) − (1/2)

√
−35 7, 1, 9 41

∗7, (3/2) + (1/2)
√
−7, (3/2) − (1/2)

√
−7 7, 9, 4 13

∗7, 2 +
√
−77, 2 −

√
−77 7, 16, 81 167

∗7, (5/2) + (1/2)
√
−39, (5/2) − (1/2)

√
−39 7, 25, 16 71

7, (1/2)
√

3 + (1/2)
√

7, (1/2)
√

3 − (1/2)
√

7 7, 3,−1 13

∗9, (1/2) + (1/2)
√
−15, (1/2) − (1/2)

√
−15 9, 1, 4 19

∗9, (1/2) + (1/2)
√
−35, (1/2) − (1/2)

√
−35 9, 1, 9 53

∗9, (3/2) + (1/2)
√
−7, (3/2) − (1/2)

√
−7 9, 9, 4 17

*10 , (1/2) + (1/2)
√

5, (1/2) − (1/2)
√

5 10, 1,−1 11

10 , (1/2)
√

5 + (3/2), (1/2)
√

5 − (3/2) 10, 5,−1 11

∗13, (3/2) + (1/2)
√
−7, (3/2) − (1/2)

√
−7 13, 9, 4 181

13, (1/2)
√

13 + (1/2)
√
−3, (1/2)

√
13 − (1/2)

√
−3 13, 13, 4 4211

∗13, (7/2) + (1/2)
√
−3, (7/2) − (1/2)

√
−3 13, 49, 13 235871

14, (1/2)
√

7 + (1/2)
√

3, (1/2)
√

7 − (1/2)
√

3 14, 7, 1 13

14, (1/2)
√

7 + (3/2)
√
−1, (1/2)

√
7 − (3/2)

√
−1 14, 7, 4 13

14, (1/2)
√

7 + (1/2)
√
−29, (1/2)

√
7 − (1/2)

√
−29 14, 7, 9 13

∗14, 2 +
√
−3, 2 −

√
−3 14, 16, 7 127

∗14, (5/2) + (1/2)
√
−3, (5/2) − (1/2)

√
−3 14, 25, 7 251

14,
√

7 +
√
−2,

√
7 −

√
−2 14, 28, 9 113

14, (3/2)
√

7 + (1/2)
√
−37, (3/2)

√
7 − (1/2)

√
−37 14, 63, 25 379

14, (13/2)
√

7 + (1/2)
√
−753, (13/2)

√
7 − (1/2)

√
−753 14, 1183, 484 30757

15, (1/2)
√

5 + (1/2), (1/2)
√

5 − (1/2) 15, 5, 1 31

∗15, (3/2) + (1/2)
√
−7, (3/2) − (1/2)

√
−7 15, 9, 4 89

∗15, (3/2) + (1/2)
√
−11, (3/2) − (1/2)

√
−11 15, 9, 5 31

∗15, 2 +
√
−1, 2 −

√
−1 15, 16, 5 241

∗15, 2 +
√
−5, 2 −

√
−5 15, 16, 9 479

15, (7/2)
√

5 + (1/2)
√
−11, (7/2)

√
5 − (1/2)

√
−11 15, 245, 64 65521

Table 4.1: A table of all exceptional Lehmer triples (n, α, β) (up to equivalence) and

associate triples (n, L,M), such that L > 0, M 6= 0, L − 4M 6= 0, gcd(L,M) = 1,

(L,M) 6= (1, 1), (2, 1), or (3, 1), 6 < n < 18, n 6= 12, n/(ηκ) is an odd integer, and un(α, β)

has less than two primitive divisors, together with their primitive divisor p. Note that the

star ∗ indicates the Lehmer triples correspond to Lucas triples.
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(n, α, β) (n, L,M) p

∗18, (1/2) + (1/2)
√
−11, (1/2) − (1/2)

√
−11 18, 1, 3 17

18, (1/2)
√

3 + (1/2)
√
−13, (1/2)

√
3 − (1/2)

√
−13 18, 3, 4 17

∗18, 1 +
√
−2, 1 −

√
−2 18, 4, 3 19

18,
√

3 +
√
−22,

√
3 −

√
−22 18, 12, 25 251

18, (3/2)
√

3 + (1/2)
√
−37, (3/2)

√
3 − (1/2)

√
−37 18, 27, 16 127

∗20, (1/2) + (1/2)
√
−7, (1/2) − (1/2)

√
−7 20, 1, 2 19

∗20, (1/2) + (1/2)
√
−31, (1/2) − (1/2)

√
−31 20, 1, 8 179

∗20, (1/2) + (1/2)
√
−39, (1/2) − (1/2)

√
−39 20, 1, 10 179

20, (1/2)
√

5 + (1/2)
√
−3, (1/2)

√
5 − (1/2)

√
−3 20, 5, 2 61

20,
√

2 +
√
−7,

√
2 −

√
−7 20, 8, 9 461

∗20, 2, 1 20, 9, 2 41

20, (5/2)
√

5 + (1/2)
√
−3, (5/2)

√
5 − (1/2)

√
−3 20, 125, 32 37201

∗20, 2,−1 20, 1,−2 41

21, (1/2)
√

7 + (1/2)
√
−5, (1/2)

√
7 − (1/2)

√
−5 21, 7, 3 461

22, (1/2)
√

11 + (1/2)
√
−5, (1/2)

√
11 − (1/2)

√
−5 22, 11, 4 109

∗28, (1/2) + (1/2)
√
−7, (1/2) − (1/2)

√
−7 28, 1, 2 29

28,
√

2 +
√
−5,

√
2 −

√
−5 28, 8, 7 11311

28, 2
√

2 +
√
−1, 2

√
2 −

√
−1 28, 32, 9 4423

∗30, (1/2) + (1/2)
√
−11, (1/2) − (1/2)

√
−11 30, 1, 3 29

30, (1/2)
√

3 + (1/2)
√
−13, (1/2)

√
3 − (1/2)

√
−13 30, 3, 4 61

30, (1/2)
√

3 + (1/2)
√
−17, (1/2)

√
3 − (1/2)

√
−17 30, 3, 5 89

30, (1/2)
√

3 + (1/2)
√
−61, (1/2)

√
3 − (1/2)

√
−61 30, 3, 16 691

∗30, 1 +
√
−2, 1 −

√
−2 30, 4, 3 29

30, (1/2)
√

5 + (1/2)
√
−7, (1/2)

√
5 − (1/2)

√
−7 30, 5, 3 151

30,
√

3 +
√
−2,

√
3 −

√
−2 30, 12, 5 719

∗30, (1/2) + (1/2)
√

5, (1/2) − (1/2)
√

5 30, 1,−1 31

Table 4.2: A table of all exceptional Lehmer triples (n, α, β) (up to equivalence) and

associate triples (n, L,M), such that L > 0, M 6= 0, L − 4M 6= 0, gcd(L,M) = 1,

(L,M) 6= (1, 1), (2, 1), or (3, 1), 18 ≤ n ≤ 30, n/(ηκ) is an odd integer, and un(α, β) has

less than two primitive divisors, together with their primitive divisor p. Note that the star

∗ indicates the Lehmer triples correspond to Lucas triples.
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Proof We may assume κ > 0. Note that since 6 < n ≤ 30, n 6= 12, and n/(ηκ) is an odd

integer,

n ∈ {7, 9, 11, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 25, 27, 28, 29, 30}.

We generate the coefficient vectors of the implicated binary forms as described at the

beginning of this chapter, using MAPLE. The coefficient vectors, together with the triple

(n, d2, d3), and the discriminant of the implicated binary forms in case n ∈ {9, 18, 25, 27},
are tabulated in Tables 4.3 and 4.4. We solve the implicated Thue equations using the

KASH [8] function ThueSolve. We determine the exceptional triples (n, α, β) such that un

has one primitive divisor as described at the beginning of this chapter. We tabulate these

triples, up to equivalence, in Table 4.1, or Table 4.2, together with those we found in case

κ < 0, and tabulated in Table 1.2.

QED.

4.3 Searching for Exceptional Lehmer Triples

In this section we go beyond the range 6 < n ≤ 30, n 6= 12, in order to determine whether or

not there are other exceptional Lehmer triples outside of those already found and tabulated

in Table 1.2, and Table 4.1. We have determined that there are other exceptional Lehmer

triples outside of those we already found. More precisely, we compute the coefficients

of the implicated binary forms F (X, Y ) in the range 30 < n ≤ 500, as described at

the beginning of this chapter, and search for small solutions. For each |y| ≤ 100, and

m ∈ {±1,±P (n/ gcd(n, 3))}, we form P (X) = F (X, y)−m, and use the MAPLE function

factors in order to factor P (X) over the integers. Our findings are tabulated in Table 4.5.
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(n, d2, d3) Coefficient Vectors of Binary Forms, Discriminant (if applicable)

7, 1, 1 [1, 1,−2,−1], [1,−1,−2, 1]

9, 1, 1 [1, 0,−3, 1], [1, 0,−3,−1], 34

11, 1, 1 [1, 1,−4,−3, 3, 1], [1,−1,−4, 3, 3,−1]

13, 1, 1 [1, 1,−5,−4, 6, 3,−1], [1,−1,−5, 4, 6,−3,−1]

13, 13, 1 [2197,−2197, 169, 338,−52,−13, 1], [2197, 2197, 169,−338,−52, 13, 1]

13, 1, 13 [1,−13, 13, 338,−676,−2197, 2197], [1, 13, 13,−338,−676, 2197, 2197]

14, 7, 1 [7, 7, 0,−1], [7,−7, 0, 1]

14, 1, 7 [1, 7, 0,−49], [1,−7, 0, 49]

15, 1, 1 [1,−1,−4, 4, 1], [1, 1,−4,−4, 1]

15, 5, 1 [25,−25,−10, 10, 1], [25, 25,−10,−10, 1]

15, 1, 5 [1,−5,−10, 50, 25], [1, 5,−10,−50, 25]

17, 1, 1 [1, 1,−7,−6, 15, 10,−10,−4, 1], [1,−1,−7, 6, 15,−10,−10, 4, 1]

17, 17, 1 [83521,−83521, 4913, 19652,−6647, 0, 272,−34, 1],

[83521, 83521, 4913,−19652,−6647, 0, 272, 34, 1]

17, 1, 17 [1,−17, 17, 1156,−6647, 0, 78608,−167042, 83521],

[1, 17, 17,−1156,−6647, 0, 78608, 167042, 83521]

18, 3, 1 [3, 0,−3, 1], [3, 0,−3,−1], 34

18, 1, 3 [1, 0,−9, 9], [1, 0,−9,−9], 36

19, 1, 1 [1, 1,−8,−7, 21, 15,−20,−10, 5, 1], [1,−1,−8, 7, 21,−15,−20, 10, 5,−1]

20, 2, 1 [4,−4,−6, 6,−1], [4, 4,−6,−6,−1]

20, 1, 2 [1,−2,−6, 12,−4], [1, 2,−6,−12,−4]

20, 10, 1 [100,−100, 10, 10,−1], [100, 100, 10,−10,−1]

20, 5, 2 [25,−50, 10, 20,−4], [25, 50, 10,−20,−4]

20, 2, 5 [4,−20, 10, 50,−25], [4, 20, 10,−50,−25]

20, 1, 10 [1,−10, 10, 100,−100], [1, 10, 10,−100,−100]

21, 1, 1 [1,−1,−6, 6, 8,−8, 1], [1, 1,−6,−6, 8, 8, 1]

21, 21, 1 [9261,−9261, 1764, 882,−378, 42,−1], [9261, 9261, 1764,−882,−378,−42,−1]

21, 7, 3 [343,−1029, 588, 882,−1134, 378,−27], [343, 1029, 588,−882,−1134,−378,−27]

21, 3, 7 [27,−189, 252, 882,−2646, 2058,−343], [27, 189, 252,−882,−2646,−2058,−343]

21, 1, 21 [1,−21, 84, 882,−7938, 18522,−9261], [1, 21, 84,−882,−7938,−18522,−9261]

22, 11, 1 [121, 121, 0,−33,−11,−1], [121,−121, 0, 33,−11, 1]

22, 1, 11 [1, 11, 0,−363,−1331,−1331], [1,−11, 0, 363,−1331, 1331]

23, 1, 1 [1, 1,−10,−9, 36, 28,−56,−35, 35, 15,−6,−1], [1,−1,−10, 9, 36,−28,−56, 35, 35,−15,−6, 1]

Table 4.3: A Table of coefficient vectors of the implicated binary forms for 6 < n ≤ 23,

n 6= 12.
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(n, d2, d3) Coefficient Vectors of Binary Forms, Discriminant (if applicable)

25, 1, 1 [1, 0,−10, 0, 35, 1,−50,−5, 25, 5,−1], [1, 0,−10, 0, 35,−1,−50, 5, 25,−5,−1], 517

25, 1, 5 [1, 0,−50, 0, 875, 125,−6250,−3125, 15625, 15625, 3125],

[1, 0,−50, 0, 875,−125,−6250, 3125, 15625,−15625, 3125], 557

25, 5, 1 [3125, 0,−6250, 0, 4375,−125,−1250, 125, 125,−25, 1],

[3125, 0,−6250, 0, 4375, 125,−1250,−125, 125, 25, 1], 557

27, 1, 1 [1, 0,−9, 0, 27, 0,−30, 0, 9, 1], [1, 0,−9, 0, 27, 0,−30, 0, 9,−1], 322

28, 2, 1 [8, 8,−20,−20, 8, 8, 1], [8,−8,−20, 20, 8,−8, 1]

28, 1, 2 [1, 2,−10,−20, 16, 32, 8], [1,−2,−10, 20, 16,−32, 8]

28, 14, 1 [2744,−2744, 196, 588,−224, 28,−1], [2744, 2744, 196,−588,−224,−28,−1]

28, 7, 2 [343,−686, 98, 588,−448, 112,−8], [343, 686, 98,−588,−448,−112,−8]

28, 2, 7 [8,−56, 28, 588,−1568, 1372,−343], [8, 56, 28,−588,−1568,−1372,−343]

28, 1 ,14 [1,−14, 14, 588,−3136, 5488,−2744], [1, 14, 14,−588,−3136,−5488,−2744]

29, 1, 1 [1, 1,−13,−12, 66, 55,−165,−120, 210, 126,−126,−56, 28, 7,−1],

[1,−1,−13, 12, 66,−55,−165, 120, 210,−126,−126, 56, 28,−7,−1]

29, 29, 1 [17249876309,−17249876309, 594823321, 4758586568,−1435780430,−307667235,

200160523,−14145620,−7804480, 1658452,−37004,−20184, 2262,−87, 1],

[17249876309, 17249876309, 594823321,−4758586568,−1435780430, 307667235,

200160523, 14145620,−7804480,−1658452,−37004, 20184, 2262, 87, 1]

29, 1, 29 [1,−29, 29, 6728,−58870,−365835, 6902087,−14145620,−226329920, 1394758132,

−902490556,−14275759704, 46396219038,−51749628927, 17249876309],

[1, 29, 29,−6728,−58870, 365835, 6902087, 14145620,−226329920,−1394758132,

−902490556, 14275759704, 46396219038, 51749628927, 17249876309]

30, 3, 1 [9, 9,−6,−6,−1], [9,−9,−6, 6,−1]

30, 1, 3 [1, 3,−6,−18,−9], [1,−3,−6, 18,−9]

30, 15, 1 [225, 225, 60, 0,−1], [225,−225, 60, 0,−1]

30, 5, 3 [25, 75, 60, 0,−9], [25,−75, 60, 0,−9]

30, 3, 5 [9, 45, 60, 0,−25], [9,−45, 60, 0,−25]

30, 1, 15 [1, 15, 60, 0,−225], [1,−15, 60, 0,−225]

Table 4.4: A Table of coefficient vectors of the implicated binary forms for 23 < n ≤ 30.
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n, α, β n, L,M p

∗36, (1/2) + (1/2)
√
−7, (1/2) − (1/2)

√
−7 36, 1, 2 37

36, (1/2)
√

2 + (1/2)
√
−10, (1/2)

√
2 − (1/2)

√
−10 36, 2, 3 251

36, (1/2)
√

3 + (1/2)
√
−5, (1/2)

√
3 − (1/2)

√
−5 36, 3, 2 71

36,
√

2 +
√
−1,

√
2 −

√
−1 36, 8, 3 71

∗42, (1/2) + (1/2)
√
−11, (1/2) − (1/2)

√
−11 42, 1, 3 41

∗42, 1 +
√
−2, 1 −

√
−2 42, 4, 3 167

∗44, (1/2) + (1/2)
√
−7, (1/2) − (1/2)

√
−7 44, 1, 2 131

∗60, (1/2) + (1/2)
√
−7, (1/2) − (1/2)

√
−7 60, 1, 2 59

60, (1/2)
√

3 + (1/2)
√
−5, (1/2)

√
3 − (1/2)

√
−5 60, 3, 2 59

60, (1/2)
√

6 + (1/2)
√
−14, (1/2)

√
6 − (1/2)

√
−14 60, 6, 5 20639

60,
√

2 +
√
−1,

√
2 −

√
−1 60, 8, 3 2399

60,
√

2 +
√
−3,

√
2 −

√
−3 60, 8, 5 19681

84, (1/2)
√

3 + (1/2)
√
−5, (1/2)

√
3 − (1/2)

√
−5 84, 3, 2 1259

Table 4.5: A table of exceptional Lehmer triples (n, α, β) (up to equivalence) and associate

triples (n, L,M) we found, such that L > 0, M > 0, L − 4M 6= 0, gcd(L,M) = 1,

(L,M) 6= (1, 1), (2, 1), or (3, 1), 30 < n ≤ 500, n/(ηκ) is an odd integer, un(α, β) has less

than two primitive divisors, and |y| ≤ 100, together with their primitive divisor p. Note

that the star ∗ indicates the Lehmer triples correspond to Lucas triples. Furthermore, note

that these may not be all of the exceptional Lehmer triples in the range 30 < n ≤ 500,

because we have yet to consider |y| > 100 in the range 30 < n ≤ 500.



Chapter 5

Classifying Lucas Triples

One might expect that the conditions n > 6, n 6= 12 in Theorem 3.1 may be improved

when (α, β) is a Lucas pair, by analogy with Stewart’s work [30, Theorem 2]. However, we

expect that the conditions n > 6, n 6= 12 in Theorem 3.1 cannot be improved when (α, β)

is a Lucas pair. In this chapter, we show in Theorem 5.1 that the conditions n > 6, n 6= 12

in Theorem 3.1, cannot be improved, and so are best possible, when (α, β) is a Lucas pair,

under the assumption of two plausible conjectures.

5.1 Statement of Theorem 5.1 and Preliminary Con-

jectures

Let (α, β) be a Lucas pair, κ be defined by (1.13), and η be defined by (1.14).

Theorem 5.1 There are infinitely many triples (n, α, β), where n = 1, (α, β) is a Lucas

pair, and n/(ηκ) is an odd integer, such that un(α, β) has no primitive divisor. There are

infinitely many triples (n, α, β), where n ∈ {3, 4, 6}, (α, β) is a Lucas pair, and n/(ηκ) is

an odd integer, such that un(α, β) has one primitive divisor. If Conjecture 5.1 is true, then

there are infinitely many triples (n, α, β), where n = 5, (α, β) is a complex Lucas pair, and

n/(ηκ) is an odd integer, such that un(α, β) has one primitive divisor. If Conjecture 5.2

is true, then there are infinitely many triples (n, α, β), where n = 12, (α, β) is a complex

Lucas pair, and n/(ηκ) is an odd integer, such that un(α, β) has one primitive divisor.

88
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Conjecture 5.1 There are infinitely many prime numbers p > 5 such that

1

5



(1 +
√

5)

(

3 +
√

5

2

)2p

+ (1 −
√

5)

(

3 −
√

5

2

)2p

+ 3





is a prime number.

Conjecture 5.2 There are infinitely many prime numbers p > 5 such that

1

3

(

(1 +
√

3)(2 +
√

3)2p + (1 −
√

3)(2 −
√

3)2p + 1
)

is a prime number.

Remark on Conjecture 5.1 and 5.2

We begin by observing that

1

5



(1 +
√

5)

(

3 +
√

5

2

)2(809)

+ (1 −
√

5)

(

3 −
√

5

2

)2(809)

+ 3





= 12446621431030381415405301862363257781013596833501

92083343017891789193185773851514016621312897928267

48875624007132315418452099171324145310587700583341

64545325821460602474844901671257624222416610754405

32790160536095482324378838916768365657749775725754

10383441223406262901555610839260349827342419744709

00124616310478930921966463394055605713932564528271

29542629743623587531707484784078168595199682159158

59020513259295888907779445192916824749853188087217

78219733695472410512649922278306845179704832367710

32169875883990334212399550067220467475640093047177

94099792141880086556500425521887888378356216636237

54286768790367215254474044835996101347608965036844

802483082651599042830336959,
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a rational prime number as determined by the MAPLE function isprime. The truth of

Conjecture 5.1 is suggested by considerations of probability. The inequality [20, Corollary

1]

#{p ≤ x} > x

log x
, x ≥ 17,

implies the probability that a number m ≥ 17 is prime is at least 1/ logm. Therefore, the

total expectation of the number of primes q(p) of the form given by Conjecture 5.1, assum-

ing that there are no special reasons why a number q(n) of the form given by Conjecture

5.1 should be likely to be a prime number, which is a reasonable assumption since q(809)

is probably1 a prime number, is at least

∞
∑

p=7

1

log q(p)
>

1

8

∞
∑

p=7

1

p
, (5.1)

and
∑

p 1/p diverges [10, Theorem 19]. We observe that inequality (5.1) holds since

5q(p) − 3 < 42p+1 − 1

22p

q(p) < 42p+2

log q(p) < 8p.

Similarly, the truth of Conjecture 5.2 is suggested by considerations of probability. We

may assume that there are no special reasons why a number r(n) of the form given by

Conjecture 5.2 should be likely to be a prime number because r(n) is a prime number for

n ∈ {1, 4, 6, 16, 204, 246, 304, 357, 556, 2106, 2374, 2556, 2572, 2734, 6016},

as determined by the MAPLE function isprime.

5.2 Proof of Theorem 5.1

Proof

1One may “prove” q(809) to be a prime number by using the freely available elliptic curve primality

proving (ECPP) software by F. Morain [17].
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In case n = 1, we observe that since u1 = 1, the result follows from the fact that n/(ηκ)

is an odd integer implies κ = 1, and L > 0 and M > 0 may be chosen to be distinct squares

infinitely often.

Let L = d2z
2
2 , and M = d3z

2
3 , where d2 ∈ N, d3 ∈ N, z2 ∈ N, and z3 ∈ N.

In case n = 3, since n/(ηκ) is an odd integer implies d2 = d3 = 1, we deduce that

u3 = (z2 − z3)(z2 + z3).

There are infinitely many coprime solutions to the equations

z2 − z3 = 1,

z2 + z3 = p,

given by z2 = t + 1, z3 = t, t ∈ N, where p is a prime number, since there are infinitely

many odd prime numbers. Since p = L−M , p ∤ L(L− 4M)u1u2.

In case n = 4, since n/(ηκ) is an odd integer and (α, β) a Lucas pair implies (d2, d3) =

(1, 2), we deduce that

u4 = (z2 − 2z3)(z2 + 2z3).

There are infinitely many coprime solutions to the equations

z2 − 2z3 = 1,

z2 + 2z3 = p,

given by z2 = 2t + 1, z3 = t, t ∈ N, where p is a prime number, since there are infinitely

many prime numbers congruent to 1 (mod 4). Since gcd(u1u2u3, u4) = 1, and p = L−2M ,

p ∤ L(L− 4M)u1u2u3.

In case n = 6, since n/(ηκ) is an odd integer and (α, β) a Lucas pair implies (d2, d3) =

(1, 3), we deduce that

u6 = u3(z2 − 3z3)(z2 + 3z3).

There are infinitely many coprime solutions to the equations

z2 − 3z3 = 1,

z2 + 3z3 = p,
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given by z2 = 3t + 1, z3 = t, t ∈ N, where p is a prime number, since there are infinitely

many prime numbers congruent to 1 (mod 6). Since p = L− 3M , gcd(u1u2u3u4u5, p) = 1,

and p ∤ L(L− 4M)u1u2u3u4u5.

In case n = 5, we begin by noting that

u5(α, β) =
α5 − β5

α− β

= Φ5(α, β)

=

5
∏

j=1

gcd(j,5)=1

(α− ζj
5β)

= Φ
(1)
k(αβ)(

√
α,
√

β)Φ
(2)
k(αβ)(

√
α,
√

β),

where

Φ
(1)
k(αβ)(

√
α,
√

β) =

5
∏

s=1
gcd(s,5)=1

(s|k(αβ))=1

(
√
α− ζs

5

√

β)

5
∏

t=1
gcd(t,5)=1

(t|k(αβ))=−1

(
√
α + ζ t

5

√

β),

Φ
(2)
k(αβ)(

√
α,
√

β) =
5
∏

s=1
gcd(s,5)=1

(s|k(αβ))=1

(
√
α + ζs

5

√

β)
5
∏

t=1
gcd(t,5)=1

(t|k(αβ))=−1

(
√
α− ζ t

5

√

β).

Since 5/(ηκ) is an odd integer, and (α, β) is a Lucas pair, it suffices to establish the result

with k(αβ) = 1, α + β = x, and αβ = y2, for some integers x, y. It follows that

Φ
(1)
1 (

√
α,
√

β) =

5
∏

s=1
gcd(s,5)=1

(s|1)=1

(
√
α− ζs

5

√

β)

= (α + β − (ζ1
5 + ζ4

5)
√

αβ)(α + β − (ζ2
5 + ζ3

5)
√

αβ),

Φ
(2)
1 (

√
α,
√

β) =

5
∏

s=1
gcd(s,5)=1

(s|1)=1

(
√
α + ζs

5

√

β)

= (α+ β + (ζ1
5 + ζ4

5)
√

αβ)(α + β + (ζ2
5 + ζ3

5 )
√

αβ),
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and

u5(α, β) = f (1)(x, y)f (2)(x, y),

where

f (1)(x, y) = (x− (1/2)(−1 +
√

5)y)(x− (−1/2)(1 +
√

5)y)

= x2 + xy − y2,

f (2)(x, y) = (x+ (1/2)(−1 +
√

5)y)(x+ (−1/2)(1 +
√

5)y)

= x2 − xy − y2.

We observe that

gcd(f (1)(x, y), f (2)(x, y)) = 1

by Lemma 1.25 and Lemma 1.24, since any common divisor divides

(x2 − 3xy + y2) · f (1)(x, y) + (−x2 + xy + 3y2) · f (2)(x, y) = −22 · (αβ)2.

In summary, we have established the factorisation

u5(α, β) = (x2 + xy − y2)(x2 − xy − y2),

where α + β = x ∈ Z, αβ = y2, y ∈ Z, and

gcd(x2 + xy − y2, x2 − xy − y2) = 1.

Stewart [30, page 90] observed that

x2 − xy − (y2 + 1) = 0 (5.2)

is solvable in integers x and y for a given integer y whenever

z2 − 5y2 = 4, (5.3)
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for some z ∈ Z. Although equation (5.3) has infinitely many solutions by the theory of

Pell’s equation, Stewart argued that in fact it has infinitely many coprime solutions (z, y),

given in general, as p > 5 runs over the sequence of primes, by

zp + yp

√
5 = 2

(

3 +
√

5

2

)p

,

zp =

(

3 +
√

5

2

)p

+

(

3 −
√

5

2

)p

,

yp =
1√
5

((

3 +
√

5

2

)p

−
(

3 −
√

5

2

)p)

.

Each solution (zp, yp) of (5.3) gives rise to two solutions (xp, yp) of (5.2), namely

(xp, yp) =

(

yp + zp

2
, yp

)

,

and

(xp, yp) =

(

yp − zp

2
, yp

)

.

In particular, it is easily verified that

(

yp + zp

2

)2

− 4y2
p < 0,

and hence that (xp, yp) generate a complex Lucas pair. It suffices now to argue that for

infinitely many prime numbers p,

x2
p + xpyp − y2

p
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is a prime number q(p). To this end, we note that

(

yp + zp

2

)2

+

(

yp + zp

2

)

yp − y2
p

=
z2

p − y2
p

4
+ ypzp

=
1

4





4

5

(

3 +
√

5

2

)2p

+
12

5

(

3 +
√

5

2

)p(

3 −
√

5

2

)p

+
4

5

(

3 −
√

5

2

)2p


+

1√
5





(

3 +
√

5

2

)2p

−
(

3 −
√

5

2

)2p




=
1

5



(1 +
√

5)

(

3 +
√

5

2

)2p

+ (1 −
√

5)

(

3 −
√

5

2

)2p

+ 3



 ,

and appeal to Conjecture 5.1. We observe that for each prime p such that q(p) is prime,

q(p) is a primitive divisor. Note first if q(p) divides L(L− 4M) = x2
p(x

2
p − 4y2

p), then since

gcd(xp, yp) = 1, q(p)|x2
p or q(p)|(x2

p − 4y2
p), in either case a contradiction to the definition

of q(p). Further, we note that for 1 ≤ i < 5,

gcd(ui, q(p)) = gcd(ui, u5) = ugcd(i,5) = u1 = 1.

On the other hand, in case n = 12, we observe that

u12(α, β) =
∏

d|12

d6=1,2

Φd(α, β)

= Φ
(1)
k(αβ)(

√
α,
√

β)Φ
(2)
k(αβ)(

√
α,
√

β)
∏

d|12

d6=1,2,12

Φd(α, β),
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where

Φ
(1)
k(αβ)(

√
α,
√

β) =

24
∏

s=1
gcd(s,24)=1

(k(αβ)|s)=1

(
√
α− ζs

24

√

β),

Φ
(2)
k(αβ)(

√
α,
√

β) =
24
∏

s=1
gcd(s,24)=1

(k(αβ)|s)=1

(
√
α+ ζs

24

√

β).

Since 12/(ηk(αβ)) is an odd integer, and (α, β) is a Lucas pair, it suffices to establish the

result with k(αβ) = 2, α+ β = x, and αβ = 2y2, for some integers x, y. It follows that

Φ
(1)
2 (

√
α,
√

β) = (α + β − (ζ1
24 + ζ23

24 )
√

αβ)(α + β − (ζ7
24 + ζ17

24)
√

αβ),

Φ
(2)
2 (

√
α,
√

β) = (α + β + (ζ1
24 + ζ23

24 )
√

αβ)(α + β + (ζ7
24 + ζ17

24 )
√

αβ),

and

u12(α, β) = f
(1)
2 (x, y)f

(2)
2 (x, y)

∏

d|12

d6=1,2,12

Φd(α, β),

where

f
(1)
2 (x, y) = x2 − 2xy − 2y2,

f
(2)
2 (x, y) = x2 + 2xy − 2y2.

We observe that

gcd(f
(1)
2 (x, y), f

(2)
2 (x, y)) = 1

by Lemma 1.24 and Lemma 1.25, since any common divisor divides

(x2 + 6xy + 6y2) · f (1)
2 (x, y) + (−x2 − 2xy + 10y2) · f (2)

2 (x, y) = −23 · (αβ)2.

Plainly, the equation

x2 − 2xy − (2y2 + 1) = 0 (5.4)
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is solvable in integers x and y for a given integer y whenever

z2 − 12y2 = 4, (5.5)

for some z ∈ Z. The minimal solution of (5.5) is (z, y) = (4, 1), and thus the general

solution of (5.5) is given by (see [19, ex. 18, page 144])

zn + 2yn

√
3 = ±2(2 +

√
3)n.

It follows that

zn = (2 +
√

3)n + (2 −
√

3)n

yn =
1

2
√

3

(

(2 +
√

3)n − (2 −
√

3)n
)

.

Let p > 5 be a prime number, α0 = 2 +
√

3, and β0 = 2 −
√

3. Note that (α0, β0) is a real

Lucas pair, and that

zp = αp
0 + βp

0 = Φ2p(α0, β0)Φ2(α0, β0),

yp =
1

2
√

3
(αp

0 − βp
0) = Φp(α0, β0).

Plainly, zp ≡ 0 (mod 2), since 2|Φ2(α0, β0) = 4, and yp ≡ 1 (mod 2) by Lemma 1.25, since

p 6= 2, and all prime factors of Φp(α0, β0), aside from p, are congruent to ±1 (mod p).

Hence, as n runs through the primes p > 5, we find infinitely many solutions (zp, yp) of

(5.5) with zp even and yp odd, and hence, by equation (5.5), with zp and yp coprime. Each

solution (zp, yp) of (5.5) gives rise to two solutions (xp, yp) of (5.4), namely

(xp, yp) =

(

2yp + zp

2
, yp

)

,

and

(xp, yp) =

(

2yp − zp

2
, yp

)

.

In particular, it is easily verified that

(

2yp + zp

2

)2

− 8y2
p < 0,
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and hence that (xp, yp) generate a complex Lucas pair. It suffices now to argue that for

infinitely many prime numbers p,

x2
p + 2xpyp − 2y2

p

is a prime number r(p). To this end, we appeal to Conjecture 5.2, and note

(

2yp + zp

2

)2

+ 2

(

2yp + zp

2

)

yp − 2y2
p

= (1/4)z2
p + 2ypzp + y2

p

=
3

12

(

α2p
0 + 2αp

0β
p
0 + β2p

0

)

+
1

12

(

α2p
0 − 2αp

0β
p
0 + β2p

0

)

+
1√
3

(

α2p
0 − β2p

0

)

=
1

3

(

(1 +
√

3)(2 +
√

3)2p + (1 −
√

3)(2 −
√

3)2p + 1
)

.

Finally, as in case n = 5, we observe that for each prime p such that r(p) is prime, r(p)

is a primitive divisor. Plainly, r(p) does not divide L(L− 4M). Further, we note that for

1 ≤ i < 12,

gcd(ui, u12) = ugcd(i,12) ∈ {1, u3, u4, u6} = {1, L−M,L− 2M, (L−M)(L− 3M)},

and

u12 = (L−M)(L− 2M)(L− 3M)r(p),

together with the fact that r(p) > L− jM for j = 1, 2, 3 imply, for 1 ≤ i < 12, that

gcd(ui, r(p)) = 1.

QED.
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