
UTILIZING CHANNEL STATE INFORMATION

FOR ENHANCEMENT OF WIRELESS

COMMUNICATION SYSTEMS

By

Abdorreza Heidari

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Doctor of Philosophy

in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2007

c© Abdorreza Heidari 2007



I hereby declare that I am the sole author of this thesis. This is a true

copy of the thesis, including any required final revisions, as accepted by my

examiners.

I understand that my thesis may be made electronically available to the

public.

ii



Abstract

One of the fundamental limitations of mobile radio communications is their time-

varying fading channel. This thesis addresses the efficient use of channel state infor-

mation to improve the communication systems, with a particular emphasis on practi-

cal issues such as compatibility with the existing wireless systems and low complexity

implementation.

The closed-loop transmit diversity technique is used to improve the performance of

the downlink channel in MIMO communication systems. For example, the WCDMA

standard endorsed by 3GPP adopts a mode of downlink closed-loop scheme based

on partial channel state information known as mode 1 of 3GPP [1]. Channel state

information is fed back from the mobile unit to the base station through a low-

rate uncoded feedback bit stream. In these closed-loop systems, feedback error and

feedback delay, as well as the sub-optimum reconstruction of the quantized feedback

data, are the usual sources of deficiency.

In this thesis, we address the efficient reconstruction of the beamforming weights

in the presence of the feedback imperfections, by exploiting the residual redundancies

in the feedback stream. We propose a number of algorithms for reconstruction of

beamforming weights at the base-station, with the constraint of a constant transmit

power. The issue of the decoding at the receiver is also addressed. In one of the

proposed algorithms, channel fading prediction is utilized to combat the feedback de-

lay. We introduce the concept of Blind Antenna Verification which can substitute the

conventional Antenna Weight Verification process without the need for any training
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data. The closed-loop mode 1 of 3GPP is used as a benchmark, and the performance

is examined within a WCDMA simulation framework. It is demonstrated that the

proposed algorithms have substantial gain over the conventional method at all mobile

speeds, and are suitable for the implementation in practice. The proposed approach

is applicable to other closed-loop schemes as well.

The problem of (long-range) prediction of the fading channel is also considered,

which is a key element for many fading-compensation techniques. A linear approach,

usually used to model the time evolution of the fading process, does not perform

well for long-range prediction applications. We propose an adaptive algorithm using

a state-space approach for the fading process based on the sum-sinusoidal model.

Also to enhance the widely-used linear approach, we propose a tracking method for

a multi-step linear predictor. Comparing the two methods in our simulations shows

that the proposed algorithm significantly outperforms the linear method, for both

stationary and non-stationary fading processes, especially for long-range predictions.

The robust structure, as well as the reasonable computational complexity, makes the

proposed algorithm appealing for practical applications.
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Chapter 1

Introduction

1.1 Background

The challenge for the new generation of mobile radio systems is no longer to connect

two parties for a conversation, but rather to provide various types of wireless services

such as voice, data, and multimedia. This requires transmission of large quantities

of data in densely-populated wireless and mobile networks. A much higher spectral

efficiency is therefore needed because of the bandwidth limitations. Multiple antenna

techniques, which are used in the Third (3G) and the Fourth Generation (4G) of

communication systems, are known to enhance the capacity and the quality of the

wireless communication by exploiting the available spatial diversity [2].

One of the fundamental limitations of mobile radio communications is their time-

varying channel fading, which results in dramatic fluctuations in the received signal

power. The traditional wireless systems are usually designed to provide good trans-

mission quality for the worst channel conditions, leading to inefficient utilization of

the channel capacity. If the receiving conditions for the users are somehow known

in advance, then adaptive methods can be used to increase the spectral efficiency.
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CHAPTER 1. INTRODUCTION 2

By the growing use of multi antenna systems and their need for higher spectral effi-

ciency, adaptive transmission methods can be considered as the heart of the emerging

communication systems.

The Third Generation of mobile communications is intended to increase the system

performance, which is required to meet the rising demand for internet and wireless

services. In particular, the 3rd Generation Partnership Project (3GPP) [3] and the

3rd Generation Partnership Project Two (3GPP2) [4] have developed the Wideband

Code-Division Multiple Access (WCDMA) [5] and CDMA2000, respectively. The

improvement of the downlink capacity is one of the main challenges of the 3G sys-

tems because many of the proposed services are expected to be downlink-intensive.

Therefore, the closed-loop transmit diversity technique has been considered which is

typically suitable for downlink applications [6].

The closed-loop transmit diversity technique is used to improve the performance

of the downlink channel in multi-input multi-output (MIMO) communication sys-

tems. The closed-loop scheme uses partial Channel State Information (CSI) which is

fed back from the mobile unit to the base station through a low-rate (and usually)

uncoded feedback bit stream. There are three major imperfections which affect the

closed-loop systems [7]: feedback delay, feedback error, and sub-optimal reconstruction:

• Feedback delay has been shown to drastically affect the performance of closed-

loop systems [8, 9] as the transmitter has to use outdated CSI. This problem

gets worse as the mobile speed increases because the channel is changing more

rapidly.

• A closed-loop scheme is sensitive to the errors in the feedback channel [10, 11,
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12]. Other than decreasing the closed-loop gain, feedback error causes another

more serious problem. For decoding purposes, the receiver needs to know ex-

actly what weights have been applied at the transmit antennas. However, the

receiver is not normally aware of the location of the errors in the feedback chan-

nel, which causes mismatch at the receiver. To mitigate this problem in practice,

an Antenna-weight Verification algorithm [13, 1] is applied which needs some

extra training data at the receiver for each user.

• The reconstruction schemes used in closed-loop systems are usually not optimal

due to simplifications of the algorithms, and ignoring the feedback error and

delay.

These imperfections diminish the performance of closed-loop systems and must be

properly addressed to provide the possibility for the efficient use of the appealing

closed-loop techniques in practice.

Channel fading prediction can be used to improve the performance of telecommu-

nication systems in various ways. Prediction of the rapidly changing fading envelope

of a mobile radio channel enables a number of capacity improving techniques like

resource allocation and link adaptation. Having estimates of future samples of the

fading coefficients enhances the performance of many tasks at the receiver and/or

at the transmitter, including adaptive coding and modulation, channel equalization,

the decoding process of data symbols, and antenna beamforming. In particular, the

performance of adaptive coding and modulation techniques strongly depends on the

performance of the fading prediction algorithm [14], and usually a long-range pre-

diction algorithm is required [15]. Another application of the fading prediction is to
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compensate for the effect of feedback delay in closed-loop communication systems [16],

as is addressed in chapter 3. An extensive literature survey on the subject of fading

modeling and prediction can be found in [15].

The time-varying mobile fading channel can be estimated from the received data to

obtain observation samples of the impulse response of the channel. These observations

are then used to predict the future samples of the channel fading. The most widely

used mobile fading model, called Jakes model [17], and its derivatives are based on the

correlation properties of the fading signal. This model works for the rich scattering

environments and could be properly utilized by linear prediction, e.g. using auto-

regressive (AR) models. But a practical fading model is made of a few scatters [18] in

many environments, and also the stationarity assumption of Jakes model is no longer

valid in time-varying systems. Therefore, we focus on a non-stationary fading model,

namely the sum-sinusoid model [19, 15]. This model can capture the time-varying

properties of the fading signal, and is developed based on the mechanism of signal

scattering in a mobile environment.
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1.2 Summary of the Dissertation

Chapter 2 addresses the efficient reconstruction of the beamforming weights in the

presence of feedback error, with the constraint of a constant transmit power. In this

research, some joint source-channel coding (JSCC) techniques are adopted to improve

the performance of the feedback-utilized beamforming schemes by taking advantage

of the residual redundancy available in the quantized channel state information. By

using MAP (Maximum A Posteriori) and MMSE (Minimum Mean Square Error)

approaches, we propose a number of algorithms for reconstruction of beamforming

weights at the base station for the closed-loop mode 1 of the 3GPP standard. Of

course the proposed approach could be used for the enhancement of any closed-loop

communication system which uses quantized channel feedback.

Chapter 3 also considers the issue of feedback delay, and proposes two approaches

to improve the performance. One is based on using a channel predictor at the re-

ceiver to compensate for the delay, and using the method proposed in chapter 2 to

compensate for the feedback error. Another approach deals with both feedback error

and delay in a unified reconstruction algorithm using JSCC techniques, by taking

advantage of the redundancy available in the stream of the channel state informa-

tion. Furthermore, we introduce the concept of Blind Antenna Verification which

can substitute for the conventional Antenna Weight Verification process without the

need for any training data. This concept is used in a joint beamforming and antenna

verification algorithm which addresses the problem of beamforming and decoding in

a closed-loop system. It is demonstrated that the proposed algorithms outperform

the conventional methods at all mobile speeds, regardless of the quality of channel

estimation. The structure of the proposed methods is suitable to be used in practical
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mobile radio systems, and particularly can be considered as a contribution to the

3GPP standard.

Chapter 4 addresses the problems of modeling and prediction for fading channels.

First, a multi-step predictor is presented for a popular linear approach. Then a

tracking algorithm for coefficients of the multi-step linear predictor is proposed. In

the next parts, a new approach is introduced. Based on the sum-sinusoidal fading

model, a state-space method is proposed and is utilized to construct an adaptive

Kalman filter. For updating the doppler frequencies, an acquisition-tracking approach

is applied. Furthermore, a progressive forecasting method is used for the multi-step

prediction of the state vector. The simulations compare the two fading prediction

methods, for both Jakes fading and the generated time-varying fading. It is shown

that the performance difference is significant, especially at high mobile speeds and

for long-range predictions.



Chapter 2

Feedback Error in Closed-loop
Wireless Systems

The closed-loop transmit diversity technique is used to improve the performance of

the downlink channel in MIMO communication systems. The WCDMA standard

endorsed by 3GPP adopts a mode of downlink closed-loop scheme based on partial

channel state information known as mode 1. The information is fed back from the

mobile unit to the base station through a low-rate uncoded feedback bit stream. In

this chapter, several reconstruction techniques are introduced to improve the perfor-

mance of mode 1 of 3GPP in the presence of feedback error, by taking advantage of

the redundancy available in the bitstream of channel state information. We propose a

number of algorithms for reconstruction of beamforming weights at the base-station,

with the constraint of a constant transmit power. The performance is examined

within a simulated WCDMA framework. It is demonstrated that the proposed al-

gorithms have substantial gain over the conventional method for low, moderate and

high mobile speeds. It is also shown that the proposed algorithms can substitute for

the Antenna Weight Verification process done at the mobile unit in some cases. The

proposed approach is applicable to other feedback schemes as well.

7
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2.1 Introduction

Transmit diversity techniques are widely used for high-demand downlink applica-

tions [6]. Transmit diversity can be used with or without using Channel State Infor-

mation (CSI) at the transmitter, which is called closed-loop or open-loop, respectively.

In the 3G evolution, open-loop techniques such as Orthogonal Transmit Diversity [6]

and Space-Time Transmit Diversity [20], and closed-loop techniques such as Switched

Transmit Diversity and beamforming (also called Transmit Adaptive Array) [6] have

been considered. 3GPP has included Alamouti Space-Time Coding [21], and one

beamforming mode as parts of the FDD (Frequency Division Duplex) WCDMA down-

link system [1]. Generally speaking, open-loop schemes are more robust as they do not

need any CSI, whereas closed-loop schemes provide a higher capacity which is needed

for the new services. Closed-loop schemes are known to be effective for low-speed

mobile users, but fail at high mobile speeds [6].

A beamforming scheme enables the transmit array to beamform the transmit

signal according to a particular channel state. In a MIMO system, when there is

adequate CSI available at the transmitter, beamforming strategy is optimal in terms

of the system capacity [22]. With beamforming, the transmissions from different

antenna elements at the base station add constructively at the receiver, improving

the received SNR. However, this improvement requires that the transmitter has a

fairly accurate knowledge of the parameters of the channel to the intended receiver.

This is difficult to achieve as these parameters are time-varying. Furthermore, in a

practical communication system, feedback data is subject to imperfections such as

quantization noise [23], feedback error [23, 10] and feedback delay [24]. Maintaining

the closed-loop performance by using the available imperfect feedback data is an
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important issue for practical systems.

This chapter presents methods to mitigate the problems of the closed-loop mode 1

of 3GPP in the presence of feedback error, and to improve the performance of the

underlying weight reconstruction algorithm. There are few studies that address the

problems of the closed-loop mode of the 3GPP standard, e.g. [25]. Here, we propose an

approach to enhance the performance of mode 1 of 3GPP at different mobile speeds.

Our approach is applicable to other closed-loop schemes similarly. It is shown that the

proposed algorithms result in substantial savings in the base-station transmit power

in comparison with the suggested reconstruction scheme for mode 1 in the 3GPP

standard. The algorithms are compatible with the current standard framework, and

they are appropriate for the practical mobile systems in terms of robustness and

complexity. Our assumptions and simulation parameters are consistent with the

FDD WCDMA closed-loop mode.

The structure of the rest of this chapter is as follows: Section 2.2 includes a gen-

eral description of a closed-loop system, as well as our notations and channel model.

In Section 2.2.2, some conventional channel feedback schemes are examined, and

Section 2.2.6 introduces our feedback model. Section 2.3 describes the algorithm of

mode 1 of the 3GPP standard, and its problems and challenges in the presence of feed-

back error. Section 2.5 explains our approach to reconstruct the beamforming weights,

and elaborates on the proposed methods and algorithms. Finally, Section 2.6 shows

the simulation results and compares the performance of our proposed algorithms with

the conventional methods in various conditions. Here is a list of notations used in

this chapter (and the next one): [·](k) refers to the k’th element of a vector, [·]H is the

Hermitian transform, and C is the set of complex numbers.
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Figure 2.1: Closed-loop mode of a 3GPP system

2.2 Closed-loop Systems

Figure 2.1 shows a functional diagram of the closed-loop modes1 of the downlink

3GPP standard [1]. A general description of the feedback system follows. After

the channel is estimated in the receiver by using the transmitted pilots, the CSI is

quantized and sent back to the transmitter. The transmitter computes the required

beamforming coefficients and applies them to the transmit antennas. In practice, the

feedback channel has a low rate. Furthermore, there is delay and potential errors

in the feedback channel. In spite of these imperfections in the feedback data, the

closed-loop schemes perform significantly better than the open-loop schemes at low

mobile speeds [6].

1Namely, mode 1 and mode 2. Mode 2 is no longer part of the 3GPP standard.
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Consider a system with M transmit antennas and one receive antenna. A flat fad-

ing channel is considered from each transmit antenna to the receive antenna. Drop-

ping the time indices for simplicity, we write

r = hTx + η, (2.1)

where r is the received signal at the receiver,

h = [h(1) · · · h(M)]T ∈ CM (2.2)

is the channel coefficients complex vector, where h(m) represents the channel between

the m-th transmit antenna and the receive antenna,

x = [x(1) · · · x(M)]T ∈ CM (2.3)

represents the channel input vector. η is a complex circularly symmetric AWGN

(Additive White Gaussian Noise) with the variance N0, η ∼ N (0, N0). There is a

constraint on the total transmit power, E[‖x‖2] =
∑M

m=1 E[
∣∣x(m)

∣∣2] ≤ M .

2.2.1 Channel Model

For the channel model, we consider a Rayleigh fading model, and so h(m), m =

1, · · · ,M , are zero-mean independent, identically distributed, circularly symmetric

Gaussian random variables. Each coefficient is expressed as

h(m) = α(m)ejφ(m)

, (2.4)

where α(m) and φ(m) are the amplitude and the phase, respectively. It is well-known

that α(m) has a Rayleigh distribution [26]

p(α(m) = a) = a e−a2/2, a ≥ 0 (2.5)
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and φ(m) has a uniform distribution,

p(φ(m) = θ) =
1

2 π
, 0 ≤ θ < 2 π. (2.6)

It is also known that the autocorrelation function of the fading for the two-

dimensional isotropic scattering and an omni-directional receiving antenna is given

by [27]

R(t, t− δ) =
E[h(t)h∗(t− δ)]

σ2
h

= J0(2πfdδ), (2.7)

where σ2
h is the fading power, J0(·) is the first-kind Bessel function of the zero order,

fd is the doppler frequency, and δ is the time difference.

The Jakes fading generator [17], which is a popular simulator for mobile fading

channels, has been proposed based on the properties given in (2.5-2.7). It utilizes

a number of low-frequency oscillators to generate a fading signal for a given mobile

speed. The original Jakes model generates a non-stationary signal. For the sim-

ulations, we use a modified Jakes fading generator suggested in [27] to generate a

stationary signal.

In our analysis in this chapter, we assume that all the elements of the channel

vector h are known at the receiver. This assumption allows for a better comparison

between different schemes in the presence of feedback error, regardless of the channel

estimation errors. It is noteworthy that in the 3GPP systems, there is a separate Com-

mon Pilot Channel (CPICH), with a relatively large proportion of the base station

power, which allows each receiver to accurately estimate its channel coefficients [13],

and this supports the above assumption.
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2.2.2 Beamforming

In a closed-loop system, channel input x should be appropriately selected according to

the channel state [28]. Controlling the channel input can be accomplished with a con-

ventional beamformer which applies some weights to the transmitted signal for each

antenna. Assuming two transmit antennas and one receive antenna, a beamforming

scheme can be expressed as

x = ws, (2.8)

where

w = [w(1), w(2)]T ∈ C2, (2.9)

and s is the transmitted symbol. It is assumed that ‖w‖2 = 1, which means the

beamformer does not change the transmit power.

2.2.3 Decoding at the Receiver

The received signal r is a complex number which is the superposition of the signals

from different antennas, as well as the noise, i.e.,

r = hTws + η (2.10)

= (
2∑

m=1

h(m)w(m))s + η. (2.11)

In the decoding process at the receiver, the combining weight v ∈ C is applied as

[26]

z = vHr = vHhTws + vHη, (2.12)

where z is used to calculate the output LLR (Log-Likelihood Ratio) values (refer to

[29] for further information on different combining schemes in WCDMA). It has been
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shown [30] that to minimize the average probability of error in a MIMO system (and

therefore in a MISO system like ours), w and v should be jointly selected to maximize

the instantaneous SNR. Noting (2.12), we have

SNRinst =
∣∣hTw

∣∣2 Es

N0

(2.13)

where Es = E[|s|2]. It is observed that the SNR does not depend on v in the case

that there is one receive antenna (the case considered in the current work).

For the selection of w, several schemes are introduced in the literature, for ex-

ample refer to [28]. A number of conventional schemes to select w are given in the

next sections. As will be shown later, the accuracy in the calculation of v plays an

important role in the overall system performance. To address this problem, conven-

tionally an Antenna Weight Verification algorithm is utilized which is explained in

Section 2.4.1. Specifically, we will tackle this issue in the next chapter, and introduce

a novel blind method in Section 3.3.1.

2.2.4 Ideal Feedback

Maximizing the instantaneous SNR in (2.13), the optimum weights are found as

wideal = arg max
w

∣∣hTw
∣∣2 , (2.14)

subject to the constraint ‖w‖2 = 1, which results in [31] wideal = h∗
‖h‖ .

2.2.5 Co-Phase Feedback

The Ideal Feedback requires phase and amplitude information of the beamforming

vector. A Co-phase Feedback scheme corrects the phases of the signals received from
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different channels and adds them coherently, without using the amplitude information

of the channel. The Co-phase Feedback algorithm may be shown as follows: w(1) =

1√
M

, and w(m) = 1√
M

e−j(φ(m)−φ(1)) for m = 2, · · · ,M .

It has been shown that Ideal Feedback and Co-phase Feedback schemes enhance

the (average) received SNR by a factor of M and 1 + (M − 1)π
4
, respectively, with

respect to the transmit SNR (SNRtx = Es

N0
) [24, 31]. This SNR gain is used as a

figure of merit in an uncoded system. For M = 2, the SNR gains are 3.0 dB and

2.5 dB, respectively. Therefore, by using the phase-only information, we are losing

only 0.5 dB of SNR (and at maximum 1.0 dB for large number of transmit antennas).

This confirms that the channel phase information is usually more important than the

amplitude information.

2.2.6 Quantized Co-phase Feedback

In practice, a limited capacity is available in the feedback channel. Therefore, for

the quantization of the CSI, an efficient source-coding scheme is used. There are a

variety of works on the quantization of feedback data, e.g. [32, 28, 33, 34, 35]. In this

work, we focus on the closed-loop systems with the (quantized) co-phase feedback.

It is assumed that M = 2, hence hn = [h
(1)
n , h

(2)
n ] and wn = [w

(1)
n , w

(2)
n ], where n is

the time index. It is also assumed that the first beamforming weight is constant, i.e.,

w
(1)
n = 1√

2
, and w

(2)
n is constructed from the feedback data.

Figure 2.2 shows the block diagram of a quantized co-phase2 feedback system.

In the figure, φn = ∠h
(2)
n − ∠h

(1)
n is the co-phase information, φ̃n is the quantized

co-phase, and In is the respective index. In is sent through the feedback channel

2The term co-phase refers to the phase difference between the two channels.
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Weight Reconstruction

Feedback Channel

Equivalent

Quantizer Index Mapping

Algorithm

Jn

φ̃n Inφn

ŵ
(2)
n

Figure 2.2: Block diagram of a quantized co-phase feedback system

and Jn is received at the base station, possibly delayed and/or noisy (In and Jn are

also called feedback symbols in the sequel). Jn could be a hard-decided symbol or

a soft-output of the channel. For an error-free feedback channel, Jn = In. Here,

a memoryless feedback channel is assumed which makes our analysis easier. This

assumption is valid in practice as the feedback has a low symbol rate.

At the transmitter, the phase information is used to calculate the beamforming

weights, whereas the transmit power is constant. Hence, it is assumed w
(1)
n = 1√

2
and

∣∣∣w(2)
n

∣∣∣ = 1√
2
. In an ideal co-phase feedback system, ∠w

(2)
n = −φn.

2.3 Closed-Loop Mode 1 of 3GPP

The 3GPP standard has a closed-loop mode, called mode 1, which is adopted from

the co-phase feedback scheme. Mode 1 is initially designed to provide service for low

to moderate mobile speeds [36]. Whereas its performance degrades at higher mobile

speeds. Improving the performance at higher mobile speeds is of great importance as

it helps to accommodate a larger number of mobile users. This is one of the objectives

of this chapter (and the next chapter) which is achieved by using the feedback data
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Figure 2.3: The framing structure and the quantizers of mode 1 of 3GPP

more efficiently in reconstructing the underlying beamforming vector. A detailed

description of mode 1 comes next.

The closed-loop mode 1 of the 3GPP standard [1] is an example of the model

introduced in Section 2.2.6. In mode 1, the quantization of the phase φn is subject to

a special framing structure as shown in Fig. 2.3. Each (uplink) frame has a duration

of 10 msec and includes 15 slots. Each slot contains a number of data symbols

depending on the data rate. For each slot, one bit of feedback data is sent from

the mobile unit which results in a feedback stream of 1500 bits per second. The

feedback bit is determined by one of the two one-bit quantizers Q0 and Q1, according

to Fig. 2.3, where Q0 = {0, π} and Q1 = {π/2,−π/2}. Showing the relative place of

each slot in a frame, we use a framed time index, τ = n mod 15, hence in a frame,

τ = 0, 1, · · · , 14.
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φ̂

n
ŵ

(2)
n J

n

Figure 2.4: Block diagram of the weight reconstruction for mode 1 of 3GPP

2.3.1 Weight Reconstruction Algorithm

At the base station, after a hard-decision unit, the received feedback data bits are

mapped to φ̂n phase stream according to Fig. 2.3, i.e., φ̂n ∈ Q
τ mod 2

. The weight

w
(2)
n is constructed from the two recent phases, one from a Q0 slot and one from a Q1

slot. The reconstruction scheme can be shown as

ŵ(2)
n =





1
2
(ejφ̂n + ejφ̂n−1), τ 6= 0

1
2
(ejφ̂n + ejφ̂n−2), τ = 0.

(2.15)

Note that at each time, equation (2.15) selects the ŵ
(2)
n from a set of 4 predefined

weights. This construction also guarantees that
∣∣∣ŵ(2)

n

∣∣∣ = 1√
2

for all n.

It is observed from Fig. 2.3 that φ̃n (and similarly φ̂n) can attain one of four values,

φ̃n ∈ {−π/2, 0, π/2, π}. Therefore, index In could be defined as In ∈ {0, 1, 2, 3},
respectively. It is notable that these 2-bit symbols are constructed from the 1-bit

feedback and the time information τ . Furthermore, equation (2.15) shows that the

weight reconstruction block of mode 1 can be depicted as shown in Fig. 2.4. It is

observed that the weight reconstruction algorithm has been separated into different

parts in the standard, and can be potentially improved through a joint design, i.e.,

calculation of ŵ
(2)
n directly from the sequence of Jn.
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2.4 Effect of Feedback Error

One of the major problems associated with the downlink beamforming is the presence

of errors in the (uncoded) feedback stream. If a feedback command for the base station

becomes corrupted during the transmission in the uplink slot, an incorrect antenna

weight vector will be applied at the transmitter. There are two consequences for such

an error as follows.

First, the received signal power is smaller [23] because a non-optimum weight is

applied. However, simulations show that the performance degradation due to this

effect is rather small. The second consequence is much more serious. Assume that ŵ

is applied at the transmitter. Similar to (2.12), we have

z = vHhT ŵs + vHη (2.16)

where z is the decoding metric. Hence, the receiver should be able to calculate

hT ŵ (called dedicated channel estimate [37]) for calculation of the optimum v. The

mobile unit obtains the dedicated channel estimate by combining the estimates for

the individual antennas from the common pilots with the assumed weight vector w.

However, each time a feedback error occurs, w at the mobile unit is different from the

actual ŵ that is applied at the base station, because the mobile unit is unaware of the

error occurrence in the feedback channel. Each of these mismatches in the dedicated

channel estimate can potentially result in an error in the decoding process. Therefore,

an error floor proportional to the feedback error is imposed on the performance.

The loss of the closed-loop gain because of the feedback error (the first effect) has

been analyzed in [23]. To minimize the effect of the mismatch problem (the second

effect), a technique called Antenna weight Verification (AV) [37] has been suggested.
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The AV technique is explained in the next section.

2.4.1 Antenna Weight Verification

In an Ideal AV, the mobile unit always knows the exact weight ŵ applied at the base

station. Ideal AV theoretically eliminates the mismatch effect, but it is practically

impossible to implement when the feedback information is corrupted. In a practical

AV algorithm, the mobile station considers the possibility of an erroneous feedback

transmission. This is done by a hypothetical comparison between the common-pilot-

based channel estimate and the one obtained from a few training symbols in the

dedicated channel which include the effect of ŵ. An AV algorithm for mode 1 of 3GPP

has been suggested in the annex to [1], and the performance of the AV algorithm has

been analyzed in [38]. A trellis-based AV algorithm has been proposed in [13] to

improve the performance of the verification process.

However, the AV technique has some drawbacks. Applying an AV algorithm

requires extra calculations at the mobile unit, and also requires special dedicated

preamble bits to be transmitted to all the users. Also, the structure of an AV algo-

rithm is based on the beamforming scheme applied at the transmitter, which means

that the AV algorithm is different for each beamforming algorithm. Furthermore, AV

can not decrease the loss of the closed-loop gain (first effect), as it is implemented at

the mobile unit. Due to these problems, there is a tendency to find an alternative

technique for AV (for example see [39]).

In the next section, we introduce a new approach to improve the performance

of the beamforming scheme, especially in the presence of feedback error. In this

approach, the redundancies available in the feedback data are exploited to find an
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improved estimate of the antenna weight, without the need for any preamble data

sequence. Our approach helps solving both of the aforementioned problems, as it

provides a better reconstruction scheme for the weights. It decreases the effect of the

feedback error which reduces the mismatch effect. It is notable that our algorithms

can be used along with an AV algorithm. However, the performance results show

the possibility of using our algorithms without the need for an AV algorithm in some

cases. Comparison between the conventional method in conjunction with the Ideal AV

and one of our algorithms show that at low to moderate mobile speeds, our algorithm

achieves the same performance without using AV.

2.5 Efficient Reconstruction of the Beamforming

Weight

In the sequel, a feedback link consistent with Fig. 2.2, and defined in Section 2.2.6

is assumed. The framing structure and the quantization scheme of mode 1 of the

3GPP standard, described in Section 2.3, is preserved here. However, more efficient

reconstruction algorithms are presented. Unlike the method suggested in the stan-

dard, effect of feedback error is considered in the reconstruction algorithms. Feedback

delay is not considered here and is the subject of the next chapter. The next section

elaborates on an MMSE criteria for the reconstruction which results in a number

of proposed algorithms. Also, using a MAP (Maximum A Posteriori) criteria, other

algorithms are presented.



CHAPTER 2. FEEDBACK ERROR IN CLOSED-LOOP COMMUNICATIONS22

µ 1 2 3 4

4µ 4 16 64 256
Codebook Size 4 12 32 80

Table 2.1: Codebook size

2.5.1 MMSE Approach

The fundamental theorem of estimation states that given the received sequence Jn =

[J1, J2, · · · , Jn−1, Jn], the Minimum Mean-Squared Error (MMSE) estimate of the

weight is ŵ
(2)
n = E

[
w

(2)
n |Jn

]
. It has been shown [40, 41] that the above formula can

be approximated by the following expression:

ŵ(2)
n
∼=

∑
E

[
w(2)

n |In−µ+1
n

]
P

(
In−µ+1

n | Jn

)
, (2.17)

where the summation is over all the possible µ-fold sequences of In−µ+1
n , where

In−µ+1
n = [In−µ+1, · · · , In−1, In]. In the MMSE sense, the formula is asymptotically

optimum for sufficiently large values of µ [40].

In equation (2.17), E
[
w

(2)
n |In−µ+1

n

]
is a non-linear estimator for the weight. In

fact it defines a codebook as

wCB(in−µ+1
n ) = E

[
w(2)

n |In−µ+1
n = in−µ+1

n

]
, (2.18)

where in is a possible realization of In. It is shown in Appendix A that the code-

book has (µ + 1) 2µ codewords, which is less than 4µ possible codewords. This is

because there are some constraints on the value of in imposed by the framing struc-

ture discussed earlier. Table 2.1 shows the codebook size for some typical values of

µ.
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γ (Markov order) 0 1 2 3 4

V = 1 kmph 0.01 0.78 1.61 1.67 1.69
V = 5 kmph 0.01 0.78 1.48 1.53 1.55
V = 25 kmph 0.01 0.76 1.12 1.14 1.16
V = 100 kmph 0.01 0.73 0.75 0.76 0.78

Table 2.2: Redundancies R(γ) for different memory depths γ, and different mobile
speeds

2.5.2 Trellis Structure

For capturing the redundancies in the feedback bitstream, we assume that the bit-

stream follows a Markov model of order γ. A trellis structure is set up based on the

Markov model to exploit the redundancies. The states of the trellis are defined as

Sn = In−γ+1
n . There are totally (γ + 1) 2γ possible states (See Appendix A). Given

a value for γ, The trellis is specified by the probabilities of the state transitions,

P (Sn|Sn−1), or equivalently, by the conditional probabilities P (In|Sn−1). These are

the A Priori Probabilities (APP) of the Markov model, and can be calculated and

stored as a lookup table.

To find a proper value for γ, we examine the redundancies defined as R(γ) =

2 − H(In|Sn−1), where H(In|Sn−1) is the average conditional entropy. Table 2.2

shows typical redundancies for values of γ = 0, 1, 2, 3, 4, at different mobile speeds in

the range of our interest. As expected, it is observed that redundancies are higher

for larger values of γ. However, for γ ≥ 2, redundancies do not increase significantly,

which means there is no significant residual redundancy [42] left in the sequence after

that depth. Hence, we use γ = 3 in our simulations which is a small value, yet

captures most of the redundancies. The resulting trellis, which has 32 states, is used

in some of our algorithms.
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To implement (2.17), a proper value of µ is also required. Considering (2.18),

the value of µ should be chosen to include the number of feedback symbols that

carry some useful information about the codeword. The redundancies are limited to

a certain depth, beyond which a larger µ does not improve the performance. With

experiment, the value is chosen as µ = 3.

2.5.3 Time-Dependency of the Trellis

As discussed in Section 2.3, the quantization process is subject to the framing struc-

ture of mode 1 which is time-dependent. In each slot, In can adopt one of the four

values {0, 1, 2, 3}, which represents a 2-bit value. One of these bits is the information

bit which is transmitted via feedback channel, and the other bit is specified by the

slot number. In other words, given the time slot, In attains one of two possible val-

ues. Therefore, the trellis structure is periodically time-dependent. Fig. 2.5 shows all

possible paths on a typical trellis for γ = 2.

As discussed in Appendix A, there are total (γ + 1)2γ possible states. However,

some states occur only at the frame-boundary, whereas the others can occur within a

frame. In other words, in each time slot specified by τ , some states never happen. For

2γ states (corresponding to nwin = 0, 2, 4, · · · , 12, in Fig. 2.6), the next symbol could

be any of the four possible values because those states can occur both in the middle of

a frame and at the boundary. Assuming that the slot number is known, these states

can be split into two categories subject to the different framing effects. Hence, given

the slot number τ , each state is connected to only two states, as can be observed in

Fig. 2.5. Therefore, it is appropriate to use P (Sn|Sn−1, τ) instead of P (Sn|Sn−1) to

capture the time-dependency of the trellis. Because there are less possible paths on
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Figure 2.5: Time-based trellis for the case γ = 2

the trellis, the time-based approach can decrease the complexity of the trellis by a

factor of 2 (γ + 1).

2.5.4 Normalized-MMSE Algorithm (NMMSE)

We are dealing with the estimation of a complex variable with a constant amplitude, as
∣∣∣ŵ(2)

n

∣∣∣ = 1√
2
. However, there is no control on the amplitude of the MMSE estimate ŵ

(2)
n

provided by (2.17). Hence, we need an MMSE estimator with a constant amplitude

constraint, which is introduced in Lemma 1, next.

Lemma 1. Consider the random variable w with |w| = β. Assume that ŵnormal is

the constant-amplitude MMSE estimation of w. Given
∣∣ŵnormal

∣∣ = α, then

ŵnormal = α
E[w]

|E[w]| . (2.19)
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Figure 2.6: Calculation of the number of states

Proof. See Appendix B.

According to Lemma 1, we can always calculate the needed antenna weight using

the MMSE solution of (2.17) as

ŵ(2) normal
n =

1√
2

ŵ
(2)
n∣∣∣ŵ(2)
n

∣∣∣
. (2.20)

Implementing (2.17), the probabilities of the possible states of the trellis are re-

quired at each time. We have assumed a Markov model and a memoryless feedback

channel, so using the BCJR algorithm [43] the states probabilities can be computed

recursively by [40]

P (Sn|Jn) = C · P (Jn|In)·
∑

Sn−1→Sn

P (In|Sn−1)P (Sn−1|Jn−1) (2.21)

where the summation is over all the possible transitions from the states at time n− 1

to Sn, and C is the normalizing factor such that
∑

Sn
P (Sn|Jn) = 1. P (In|Sn−1)’s are

available as APP, and P (Jn|In)’s are the channel transition probabilities. Assuming

a Binary Symmetric Channel (BSC) with the error probability of pe for transmitted

feedback bits, the equivalent feedback channel (Fig. 2.2) is represented by P (Jn|In),
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where P (In|In) = 1 − pe, P (Jn|In) = pe if Jn 6= In but both belong to the same

quantization set, otherwise P (Jn|In) = 0.

For simplicity, we assume that µ ≤ γ. Then the required probabilities in (2.17)

are directly calculated using (2.21), as

P
(
In−µ+1

n | Jn

)
=

∑
P (Sn|Jn), (2.22)

where summation is over all the states Sn that include the In−µ+1
n sequence. This

assumption eliminates the need for the backward recursion of the BCJR algorithm.

2.5.5 Non-Linearly-Estimated Weight Algorithm (NLW)

Simplifying the MMSE algorithm, assume that the feedback stream is error-free. In

this case, equation (2.17) reduces to a codeword selection, and lemma 1 is used to

guarantee the weight normalization. Because the codeword is a non-linear estimator

of the weight in comparison with the linear codewords of the standard, we call the

algorithm the NLW algorithm.

In NLW algorithm, the received feedback sequence is taken as the estimate of the

transmitted sequence, în = jn, where jn is the hard-decided received feedback symbol,

and it is used to generate the index for the codeword, i.e.,

ŵ(2)
n = wCB

(
î
n−µ+1

n

)
, (2.23)

which is applied to (2.20). NLW algorithm is generally suboptimum, however it is

asymptotically optimum for the error-free feedback case.
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2.5.6 Sequence MAP Algorithm (SMAP)

The Sequence MAP decoder [40, 44] receives the sequence Jn and determines the

most probable transmitted sequence as în = arg max P (In|Jn), using the trellis of

Section 2.5.2. Considering the memoryless property of the feedback channel, the

following branch metric can be obtained for the respective trellis [40],

m
(
Jn, Sn−1

In−→ Sn

)
= log {P (Jn|In) P (In|Sn−1)} , (2.24)

which is used within the well-known Viterbi algorithm to find the solution. The

estimated sequence is applied to (2.23), then the beamforming weight is calculated

by (2.20). Note that SMAP algorithm could be used to exploit the trellis with a lower

computational complexity in comparison with the MMSE solution.

2.5.7 Soft-Output Methods (Soft-SMAP and Soft-NMMSE)

The use of soft feedback data [45] can potentially improve the performance of the

SMAP and NMMSE algorithms. In the soft methods, it is assumed that instead

of hard-decided bits of feedback data, soft-output (noisy) symbols are available. In

other words, instead of a BSC feedback channel, an AWGN channel with binary

input is assumed. The noise power is selected to keep the hard-decision feedback

error probability the same for the two cases.

2.5.8 Implementation and Complexity

Note that the algorithms which have been proposed here are real-time, and decide on

the needed antenna weight without any delay. Receiving the most recent feedback

symbol Jn, each algorithm calculates ŵ
(2)
n to be applied at the transmitter. At the
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receiver, the transmitted feedback sequence In = in is available. Hence, to calculate

the combining variable vn, the receiver calculates its estimate of the weights using

the codebooks, as in the error-free case. In other words, the base station uses one

of the proposed algorithms to calculate the weights, while the mobile unit just needs

to select the in−µ+1
n -th weight out of a normalized codebook (similar to the NLW

algorithm).

The codebook and APP are calculated off-line. The calculation process of the

codebooks for different channel models is the same, as explained in Section III-A. We

use Jakes fading model, and these codebooks are calculated once for each mobile speed

corresponding to different doppler frequencies, using sufficient amount of training

data. For selecting the proper codebook, an estimate of the mobile speed is required.

There are various algorithms suggested for a general mobile speed estimation [46] or

in particular for 3G systems [47, 48]. It is shown in the simulation results that for

the estimation accuracies reported in the above references, the performance of our

algorithms do not change significantly. In other words, the proposed algorithms are

robust to the mobile speed estimation error. Therefore, a small number of codebooks,

corresponding to a small number of mobile speeds, are sufficient to cover the entire

range.

Regarding the computational complexity, our algorithms use known methods like

Viterbi algorithm and forward recursion of the BCJR algorithm with small memory

depths. Therefore, the complexity is relatively low. Furthermore, these algorithms

are implemented at the base station where complexity is not of great concern. Even

though, using the time-dependency of the trellis, the complexity of our trellis-based

algorithms could be further decreased. Table 2.3 shows the requirements of each of
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Our NLW SMAP, NMMSE,
Algorithm: Algorithm Soft-SMAP Soft-NMMSE

codebook Yes Yes Yes
APP Yes Yes

Trellis Processing Viterbi Forward-BCJR

Table 2.3: Implementation requirements of our algorithms at the base station

our algorithms at the base station. At the mobile unit, only codebooks are required,

as the NLW algorithm is implemented regardless of the specific algorithm used at the

base station.

2.6 Numerical Results

2.6.1 Simulation Parameters

For the testing and comparison of the algorithms, we have simulated a communication

system similar to the downlink of FDD WCDMA [5]. Fig. 2.7 represents our complete

system, including the channel coding and the details of the feedback system. As

channel code, Turbo coding [49] is used which parameters are suggested by the 3GPP

standard [50] as shown in Table 2.4. In CDMA systems including WCDMA, there is

a power control scheme intended to eliminate the slow fading. Therefore, we assume

that slow fading is compensated by power control. Table 2.5 is a summary of the

parameters of our simulations. Also it is assumed (only in this chapter) that the

channel estimation is ideal. The other parameters, that may change in different

simulations, are specified in each case. Also no antenna verification is used with the

closed-loop algorithms, unless stated otherwise.
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Figure 2.7: Block diagram of our feedback system
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Coding Rate 1/3
No. of Memory Elements 3

Constituent Encoders Gbwd = 1 + D2 + D3

(Convolutional) Gfwd = 1 + D + D3

Output Pattern (P/S) · · · , Xk, Zk, Z
′
k, · · ·

Table 2.4: Turbo code parameters

Carrier Frequency 2.15 GHz
Modulation QPSK
Transmitter 2 Antennas

Receiver 1 Antenna
Data Rate 15000 bps

Feedback Rate 1500 bps
Channel Model Modified Jakes

Channel Coding Turbo Code
Code Rate 1/3

Frame Length 300 (20 msec)
Bit Interleaving One Frame
Power Control Not applied

Table 2.5: Simulation parameters
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2.6.2 Simulation Results

As a measure of performance, we use Frame Error Rate (FER), which is appropriate

for a coded communication system. The overall performance of the system is de-

termined by the interplay of feedback error rate, and mobile speed. Feedback error

degrades the beamforming performance, and can result in an error floor effect as men-

tioned before. On the other hand, increasing the mobile speed improves the decoding

performance in the forward link (as a result of increasing the fading diversity [26]),

but generally degrades the performance of the feedback reconstruction algorithms to

different extents. Therefore, given a feedback error rate, algorithms perform variously

over different mobile speeds.

The following algorithms have been considered in the simulations: Standard

(closed-loop mode 1 of 3GPP), NLW, SMAP, Soft-SMAP, NMMSE, and Soft-NMMSE,

which are in the ascending order of complexity. It is assumed that γ = 3 and µ = 3.

Figs. 2.8 and 2.9 show the FER performance of the algorithms versus transmit SNR

for 5% feedback error, and for the mobile speeds of V = 1, 5, 25 and 100 kmph.

Figs. 2.10 and 2.11 similarly show the FER in 10% feedback error.

It is observed from Figs. 2.8-2.11 that our algorithms outperform the standard

and result in significant savings in the transmit power. Regarding the relative gain of

the algorithms, Figs. 2.12 and 2.13 show the required-SNR for a fixed FER versus the

mobile speed, in 5% and 10% of feedback error, respectively. The plots include the

standard algorithm with an Ideal AV, explained in Section 2.4.1. The performance of

standard-IAV is the best performance which is achievable by using an AV algorithm

along with the standard algorithm, hence it is a performance bound on using an AV

algorithm. It is observed that NMMSE and Soft-NMMSE perform similar or even
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Figure 2.8: FER versus transmit SNR in 5% feedback error for V = 1 and 5 kmph
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Figure 2.12: Required SNR versus mobile speed for FER=5e-3 in 5% feedback error

better than the standard-IAV bound for low to moderate mobile speeds. Fig. 2.12

shows that our approach can decrease the transmit power by more than 2 dB for low

to high mobile speeds. This gain is higher for a smaller target FER or for a higher

feedback error rate.

Regarding the effect of mobile speed and feedback error rate on the performance,

following observations can be made from Figs. 2.8 - 2.13: At low mobile speeds, the

reconstruction algorithms perform in this ascending order: first Standard, then NLW,

and then the rest of the algorithms (which utilize APP) perform similarly, in particular

at low SNR’s. With increasing speed, the performance of the algorithms starts to

differ. Soft-NMMSE and NMMSE algorithms outperform their SMAP counterparts.

As expected, utilizing soft output improves the performance of the corresponding
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Figure 2.13: Required SNR versus mobile speed for FER=5e-2 in 10% feedback error

algorithms. At high mobile speeds, the channel changes rapidly, and the redundancy

in the feedback bit stream diminishes. Therefore, the SMAP approach reduces to

Maximum Likelihood detection (see Equation (2.24)), and Soft-SMAP performs like

SMAP (This phenomenon is similarly observed from Fig. 9 in [40]). However, the

Soft-NMMSE algorithm still utilizes the soft-outputs efficiently, and substantially

outperforms the other algorithms. Note that in each algorithm, the effect of error

floor on FER is higher for a larger feedback error rate, and at higher SNR’s. The Soft-

NMMSE algorithm provides the best performance at all mobile speeds and feedback

error rates.
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Actual Speed (kmph) 3 5 10 25 50 75 100
Lower Estimate 1 1 5 15 40 60 80
Higher Estimate 5 10 15 30 60 90 125

Table 2.6: Actual, lower and higher estimates of the mobile speed

2.6.3 Sensitivity to the Speed Estimation Error

As explained before, codebook and APP are chosen using an estimate of the mobile

speed. Hence, the effect of the estimation error on the performance is investigated. As

an example, we consider the Soft-NMMSE algorithm, which has the best performance

among our algorithms and uses both codebook and APP. At a given mobile speed, we

apply the codebooks related to a higher and a lower mobile speed to the algorithm,

as shown in Table 2.6. The estimation errors used in the table are higher than the

ranges reported for speed estimation algorithms [46, 47, 48]. The results shown in

Fig. 2.14 indicate that the algorithm is not sensitive to the mobile speed estimation

error. Therefore, a limited number of codebooks can be used to cover the entire range

of the mobile speeds.

2.7 Conclusion

The closed-loop transmit diversity, which uses a combination of transmit diversity

and channel feedback, is recognized as a promising approach to achieve high data

rates in mobile communications. In 3GPP systems, however, the performance of

the closed-loop scheme is limited, which is the result of the rate limit and error

in the feedback channel and also the non-optimum weight reconstruction algorithm

suggested in the standard. In this chapter, we propose an approach to improve the

performance of the closed-loop system in the presence of feedback error, without
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changing the structure of the standard. We have introduced a number of algorithms

to improve the performance of mode 1 of 3GPP. It has been shown that our algorithms

can provide significant gains over the conventional approach at all mobile speeds. The

performance of our algorithms, which do not need any preamble, are usually good

enough such that an AV algorithm is no longer required. Though, an AV could be

used along with our algorithms for further improvement. Moreover, our proposed

algorithms are implemented mostly at the base station, as opposed to AV which

increases the complexity of the mobile unit.



Chapter 3

Feedback Delay in Closed-loop
Wireless Systems

The closed-loop transmit diversity technique is used to improve the performance of

the downlink channel in MIMO communication systems. In these closed-loop systems,

feedback delay and feedback error, as well as the sub-optimum reconstruction of the

quantized feedback data, are the usual sources of deficiency. We address the efficient

reconstruction of the beamforming weights in the presence of the feedback imperfec-

tions, by exploiting the residual redundancies in the feedback stream. Focusing on

the issue of feedback delay, we propose two approaches to improve the performance.

One is based on using a channel predictor at the receiver to compensate for the delay,

and using a JSCC method (similar to the one introduced in the previous chapter)

to compensate for the feedback error. Another approach deals with the feedback

imperfections in a unified reconstruction algorithm using JSCC techniques. Further-

more, we introduce the concept of Blind Antenna Verification which can substitute

the conventional Antenna Weight Verification process without the need for any train-

ing data. The closed-loop mode 1 of the 3GPP standard is used as a benchmark,

and the performance is examined within a WCDMA simulation framework. It is

43
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demonstrated that the proposed algorithms outperform the conventional methods at

all mobile speeds, and are suitable for the implementation in practice.

3.1 Introduction

In a downlink closed-loop system, the transmitter receives the required CSI through

a limited-capacity feedback channel from the receiver. The feedback data is a low-

rate bitstream resulting from rough quantization of the CSI at the receiver. There

are three major imperfections which affect the closed-loop systems: feedback delay,

feedback error, and sub-optimal reconstruction. Feedback delay has been shown to

drastically affect the performance of closed-loop systems [8, 9, 51, 24, 52], as the

transmitter has to use outdated CSI. This problem gets worse as the mobile speed

increases because the channel is changing more rapidly.

The feedback data is usually uncoded, or has a low-rate coding. Hence, a closed-

loop scheme is sensitive to the errors in the feedback channel as explained in the

previous chapter. Other than decreasing the closed-loop gain, feedback error causes

another more serious problem. For decoding purposes, the receiver needs to know

exactly what weights have been applied at the transmit antennas. However, the re-

ceiver is not normally aware of the location of the errors in the feedback channel,

which causes mismatch at the receiver. This mismatch imposes an error floor on the

system performance which is proportional to the feedback error rate as each feedback

error can potentially result in symbol errors in the respective slot. In many research

works, an impractical assumption is made that the receiver somehow knows the exact

transmitter weights at all times. Ratifying this problem in practice, an Antenna-

weight Verification algorithm, also called Antenna Verification algorithm (AV), [1] is
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applied which needs some extra training data at the receiver for each user. There

are a few works in the literature on the AV problem, such as [13, 53, 38]. These

articles address the problem for the closed-loop modes of the 3GPP standard, when

the dedicated training data is available. In this chapter, we are interested in the AV

problem without using any extra training, i.e, in a blind fashion. A recent paper [54]

deals with a similar problem, however, for a single transmit-antenna selection system.

Optimizing the signaling assignment, it has been shown that verification of the se-

lected antenna at the receiver is crucial when the feedback is erroneous. Furthermore,

a number of blind and non-blind AV methods have been proposed for the antenna

selection system [54].

The reconstruction schemes used in closed-loop systems are usually not optimal

due to simplifications of the algorithms, and ignoring the feedback error and delay.

Our focus here is on Mode 1 of 3GPP [1] (as described in Section 2.3) which only feeds

back the phase information of the channel with a special quantization scheme. Despite

all the imperfections, Mode 1 has a good performance at low mobile speeds, but it fails

at higher speeds. In the previous chapter, the efficient reconstruction of beamforming

weight in the presence of feedback error is addressed. Some JSCC techniques are

used to improve the performance of Mode 1 of 3GPP, by taking advantage of the

redundancy available in the CSI stream.

In this chapter, we consider the problem of feedback delay, as well as feedback

error, in a closed-loop system. To solve this problem, we propose two approaches.

One approach uses predicted channel values to compensate for the effect of feedback

delay, and uses the JSCC method for the feedback error. In the other approach, a

unified JSCC framework deals with the feedback imperfections. Exploiting the novel
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concept of Blind Antenna Verification, this method only uses the feedback bitstream

and does not need any type of training data. The performance of the algorithms is

examined in the framework of the closed-loop mode 1 of the 3GPP standard. For

the channel model, we consider spatially-uncorrelated Rayleigh fading channels. In

the simulations, we use a separate Jakes fading generator introduced in [27] for each

channel.

3.2 Efficient Reconstruction of the Beamforming

Weight

In the sequel, we assume the framing structure and the quantization scheme of the

closed-loop mode 1 of the 3GPP standard [1], as described in the previous section.

However, our approach can be used for any other feedback scheme as well.

3.2.1 MMSE Solution in the presence of Feedback Delay and

Error

In the previous chapter, the MMSE algorithm in the presence of noisy feedback is

introduced. The best algorithm is obtained when soft-output is used (i.e., assuming

that Jn is available before a hard-decision operation), and it is called SoftNMMSE

(Soft-Normalized-MMSE). In the following, a similar approach is pursued when the

feedback data is delayed as well.

Assuming a delay of d symbols in the feedback channel (d is a non-negative inte-

ger), the sequence Jn−d is available at the base station at time n. The fundamental
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theorem of estimation states that given Jn−d,

ŵ(2)
n = E

[
w(2)

n

∣∣Jn−d

]
(3.1)

is the minimum mean-squared error (MMSE) estimate of the weight w
(2)
n . Similar

to (2.17), the formula can be approximated by the following form:

ŵ(2)
n
∼=

∑
E

[
w(2)

n

∣∣In−µ+1
n

]
P

(
In−µ+1

n

∣∣ Jn−d

)
, (3.2)

where the summation is over all the possible µ-fold sequences of In−µ+1
n . In (3.2),

E
[
w

(2)
n

∣∣∣In−µ+1
n

]
is a codebook, and the probability part can be computed as explained

in Section 3.2.2. The estimated complex antenna weight should have a constant

amplitude. Hence, according to Lemma 1, the antenna weight can be calculated

using the MMSE solution of (3.1) or (3.2) as

ŵ(2) normal
n =

1√
2

ŵ
(2)
n∣∣∣ŵ(2)
n

∣∣∣
. (3.3)

3.2.2 Markov Model

For capturing the residual redundancies [42] in the feedback stream, we assume that

the bitstream follows a Markov model of order γ. A trellis structure is set up based

on the Markov model to exploit the redundancies. The states of the trellis are defined

as Sn = In−γ+1
n . The trellis is specified by the probabilities of the state transitions,

P (Sn|Sn−1), which are the A Priori Probabilities (APP) of the Markov model.
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3.2.3 Calculation of the A Posteriori Probabilities at Trans-

mitter

The probability P
(
In−µ+1

n

∣∣ Jn−d

)
in (3.2) could be calculated by using the state

probabilities given the received feedback data, P (Sn|Jn−d). In the absence of feed-

back delay, this calculation reduces to P (Sn|Jn) as in the previous chapter which

is the estimation of the state probabilities at time n given the feedback symbols

up to time n. In the following, we present a recursive algorithm for calculation of

P (Sn|Jn−d). Note that this formulation has a predictive nature as well, because the

last d feedback symbols are not available due to the feedback delay. In other words,

this is a joint prediction and estimation method, and so the resulting algorithm is

called SoftNMMSE-JP, where JP stands for Joint Prediction.

Let

P (Sn|Jn−d) = C1 · P (Sn, Jn−d)

= C1 · P (Jn−d−1) · P (Sn|Jn−d−1)

·P (Jn−d|Sn, Jn−d−1) (3.4)

= C2 · P (Sn|Jn−d−1) · P (Jn−d|In−d) (3.5)

for d ≤ γ − 1, where C1 and C2 are normalizing variables. The term P (Sn|Jn−d−1)
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can be written as follows

P (Sn|Jn−d−1) =

∑
· · ·

∑
Sn−1

P (Sn|Sn−1, Jn−d−1) · P (Sn−1|Jn−d−1)

=
∑

· · ·
∑

Sn−1

P (Sn|Sn−1) · P (Sn−1, Sn−2|Jn−d−1)

=
∑
Sn−1

P (Sn|Sn−1) ·
∑

· · ·
∑

Sn−2

P (Sn−1, Sn−2|Jn−d−1)

=
∑
Sn−1

P (Sn|Sn−1) · P (Sn−1|Jn−d−1). (3.6)

Therefore, P (Sn|Jn−d) can be calculated recursively as

P (Sn|Jn−d) = C2 · P (Jn−d|In−d)

·
∑
Sn−1

P (Sn|Sn−1) · P (Sn−1|Jn−d−1). (3.7)

Another approach to overcome the feedback delay is introduced in the following

section.

3.2.4 Channel Prediction at the Receiver

If the receiver calculates the feedback symbols by using the future channel states, it

can cancel out the effect of the delay in the feedback channel. This approach can be

implemented by using d-step predicted values of the channel coefficients, and these

values can be computed by applying a short-range fading prediction algorithm [15,

55, 56] to the current channel values. Here we use an Auto Regressive (AR) model

of order 3 to predict the fading samples, and SoftNMMSE is used to deal with the

feedback error. The resulting algorithm is called SoftNMMSE-LP where LP stands

for Linear Prediction.
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In practice, channel coefficients are estimated using some pilots, training bits,

etc. which usually introduce some error in the available channel coefficients. Note

that these channel estimates are used to generate feedback symbols, calculate the LLR

values for the decoding process, etc. Therefore, the quality could have a direct impact

on the overall performance of a closed-loop system. Here, the channel estimation error

is modeled as an Additive White Gaussian Noise (AWGN), and SNRz is defined as

the ratio of the average channel fading power, E[|hn|2], to the noise power. The effect

of SNRz on the performance of different algorithms is examined in the simulations.

3.3 Antenna Weight Verification

Section 2.4 explains the two effects of the feedback error on the performance. To min-

imize the mismatch effect, a technique called Antenna Weight Verification (AV) has

been suggested as explained in Section 2.4.1. In this method, some extra preamble

bits are transmitted to each user. These bits are used to estimate the dedicated chan-

nel which includes the effect of possible feedback errors. The drawbacks of using AV

techniques are the need for the preamble bits for each user, and the extra complexity

at the mobile unit.

In the next section, we introduce a novel technique called Blind Antenna Ver-

ification (BAV) which does not need any extra preamble bits. This blind method

processes the feedback symbols, which means that the proposed method has a low

complexity in comparison with symbol-based1 blind approaches (such as the blind

1By a symbol-based method, we mean that a method that needs to perform calculations on the
sequence of data symbols. On the other hand, the proposed method in this chapter only needs a
slot-by-slot calculation. The complexity of these two approach is proportional to symbol rate and
feedback rate, respectively.
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antenna selection verification methods introduced in [54]). Using the proposed BAV

in conjunction with the SoftNMMSE-JP algorithm provides an efficient closed-loop

algorithm in the presence of feedback imperfections, as shown in the numerical results.

3.3.1 Blind Antenna Verification

Consider Fig. 2.7. At the transmitter, the best estimate of the optimum beamforming

weight, in the MMSE sense, is

ŵn = E[wn|Jn−d]. (3.8)

Transmitter applies the weight to the transmit signals. At the receiver, an estimate of

ŵn is required for the decoding process, for example, for the calculation of v in (2.12).

Assume that the receiver uses w̃n. Hence, w̃n needs to be as close to ŵn as possible.

In the following, we introduce a theorem to address this problem. Two lemmas are

introduced beforehand which are used to prove the theorem.

Lemma 2. The following sequence

wn ↔ In−d ↔ Jn−d (3.9)

constitutes a Markov chain.

Proof. See Appendix C.

Lemma 3. Assume that X ↔ Y ↔ Z constitutes a Markov chain. Then,

E [E[X|Y ]|Z] = E[X|Z]. (3.10)

Proof. See Appendix D.
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Note that the inner E[·] of the left side of (3.10) and the E[·] of the right side are

with respect to X, and the outer E[·] of the left side is with respect to Y .

Theorem 1 (Joint Beamforming and Blind Antenna Verification). In a closed-loop

system, the following criteria are desired:

1. Select w̃n to

minimize E‖w̃n −wn‖2 (3.11)

given In−d which is available at the receiver.

2. Select ŵn to

minimize E‖ŵn − w̃n‖2 (3.12)

given Jn−d which is available at the transmitter.

The following system satisfies both criteria:

w̃n = E[wn|In−d], (3.13)

ŵn = E[wn|Jn−d]. (3.14)

Proof. From criterion 1, according to the fundamental theorem of estimation (3.13)

is obtained. The transmitter should find an estimate of w̃n as given in (3.12). Let

us call this weight ˆ̃wn. Again, by using the fundamental theorem of estimation, from

criterion 2 we can write

ˆ̃wn = E[w̃n|Jn−d]. (3.15)

In the following, we will show that ˆ̃wn = ŵn where ŵn is introduced in (3.14), and

this concludes the proof.
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According to Lemma 2,

wn ↔ In−d ↔ Jn−d (3.16)

constitutes a Markov chain. Hence we can write

ˆ̃wn = E[w̃n|Jn−d] (3.17)

= E
[
E[wn|In−d]

∣∣ Jn−d

]
(3.18)

= E[wn|Jn−d] (3.19)

= ŵn, (3.20)

where Lemma 3 is used to derive (3.19). The result shows that if the transmitter uses

(3.14), and the receiver uses (3.13), both criteria are satisfied.

Note that theorem 1 does not explicitly use the optimal beamforming criterion

(i.e., minimize E‖ŵn −wn‖2, as is used in the previous chapter), however this cri-

terion is satisfied by (3.14). This means that beamforming goal and AV goal are

jointly achieved by using the theorem. This method does not need any dedicated

(i.e., user-specific) training sequence at the receiver and so it is a blind solution for

the AV problem. For the implementation of the solution introduced in Theorem 1,

the receiver calculates (3.13) which could be done similar to (3.2). However, it does

not need any trellis processing because the probabilities are fixed. The required

P (Sn|In−d) can be calculated as shown in Appendix E.

3.4 Numerical Results

The block diagram of the simulated feedback system is shown in Fig. 2.7. The sim-

ulation parameters are summarized in Table 2.5. The feedback bitstream is BPSK
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modulated (uncoded) and added with White Gaussian Noise with the variance of

σ2
n = 0.370 (equivalent to the feedback error of 5%). A feedback delay D = 2 is

assumed. The following algorithms are compared: Standard, SoftNMMSE-JP-BAV,

SoftNMMSE-LP, and SoftNMMSE-IP. Standard refers to the closed-loop mode 1 of

the 3GPP standard, as explained in Section 2.3. The algorithm SoftNMMSE-JP-BAV

is an implementation of Theorem 1 which is a combination of the Joint Prediction

approach of Section 3.2 and Blind Antenna Verification. The algorithm SoftNMMSE-

LP uses the approach in Section 3.2.4 which applies a linear predictor of order 3 for

channel prediction. Finally, the algorithm SoftNMMSE-IP (where “IP” stands for

Ideal Channel Prediction) uses the same approach as Section 3.2.4, but assumes that

the required future channel coefficients are perfectly available without the effect of

channel estimation and channel prediction errors. Therefore, SoftNMMSE-IP can be

considered as a performance bound for dealing with feedback delay. It is notable

that SoftNMMSE-JP-BAV and SoftNMMSE-LP are enhancements to the closed-loop

mode 1 of 3GPP, and they are compatible with the standard.

Figs. 3.1 - 3.2 show the FER performance curves versus transmit SNR at four

different mobile speeds (V=1, 5, 25, and 100 kmph), for SNRz = 40 dB representing

the case where the channel estimation has a good quality (for example, when powerful

channel pilots are available). Similarly, Figs. 3.3 - 3.4 shows the FER performance

curves for SNRz = 10 dB representing the case with poor channel estimation quality

(for example, when blind channel estimation is used at the receiver).

It is observed that both proposed approaches significantly outperform the Stan-

dard algorithm at all mobile speeds. For the case of high SNRz, the channel prediction

approach acts better than the joint approach which only uses the feedback bitstream.
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However, when SNRz is low, the joint approach acts better, since the predicted chan-

nel values are not very accurate in this case.

For high SNRz and low mobile speeds, both approaches have the same performance

and offer about 1 dB gain over the Standard algorithm. When the mobile speed is low,

channel is changing slowly and the roughly quantized CSI has enough information

about the channel. Also, the channel prediction algorithms act very well as the

channel values have significant time-correlation. In other words, the effect of feedback

delay vanishes for low mobile speeds. Therefore, as it is observed in Fig. 3.1 for V=1

kmph, both approach touch the “SoftNMMSE-IP” performance. As the mobile speed

increases (and/or for larger feedback delays), the increasing effect of feedback delay

causes the performance curves to split.

It is observed that at high mobile speeds, our joint approach significantly outper-

forms the Standard algorithm, for both poor and good quality of channel estimation.

This shows that our joint prediction algorithm can be used to increase the range

of mobile speeds where the closed-loop algorithm can be effectively applied. The

algorithm only needs the calculations once per each feedback slot (i.e., the total com-

plexity is proportional to the feedback rate which is much less than the data symbol

rate), and the algorithm has a reasonable complexity, mostly needed at the base sta-

tion. Both approach proposed in this chapter are similarly applicable to any other

MIMO closed-loop system.

3.5 Conclusion

The performance of the closed-loop transmit diversity is limited, which is the result

of the rate limit, delay, and error in the feedback channel and also the non-optimum
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weight reconstruction algorithms. In this chapter, we propose two approaches to

improve the performance of the closed-loop system, particularly in the presence of

feedback delay. We address the problem of the decoding mismatch at the receiver

by proposing a Blind Antenna Verification algorithm. It is shown in a theorem that

using the optimal reconstruction at the transmitter and the blind antenna verification

algorithm (at the receiver) is a jointly optimal approach to achieve the beamforming

goal and the antenna verification goal. A number of algorithms are introduced, and it

has been shown that our algorithms can provide significant gains over the conventional

method at all mobile speeds, and also for both good and poor quality of the channel

estimation at the receiver.



Chapter 4

Modeling and Prediction of Fading
Channels

A key element for many fading-compensation techniques is a (long-range) predic-

tion tool for the fading channel. A linear approach, usually used to model the time

evolution of the fading process, does not perform well for long-range prediction appli-

cations. In this chapter, we propose an adaptive channel prediction algorithm using a

state-space approach for the fading process based on the sum-sinusoidal model. Also

to enhance the popular linear approach, we propose a tracking method for a multi-

step linear predictor. Comparing the two methods in our simulations show that the

proposed algorithm significantly outperforms the linear method, for both stationary

and non-stationary fading processes, especially for long-range predictions. The self-

recovering structure, as well as the reasonable computational complexity, makes the

proposed algorithm appealing for practical applications1.

1The material presented in this chapter has partly been filed as a patent [57].

61
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4.1 Introduction

In this chapter, we address the problem of channel fading modeling and prediction.

Channel fading prediction can be used to improve the performance of telecommunica-

tion systems. Having estimates of future samples of the fading coefficients enhances

the performance of many tasks at the receiver and/or at the transmitter, includ-

ing adaptive coding and modulation, channel equalization, the decoding process of

data symbols, and antenna beamforming. In particular, the performance of adap-

tive coding and modulation techniques strongly depends on the performance of the

fading prediction algorithm [14], and usually a long-range prediction algorithm is

required [15]. The prediction tool even allows applying non-causal algorithms to

optimize the closed-loop schemes. Another application of the fading prediction is to

compensate for the effect of feedback delay in closed-loop communication systems [16].

An extensive literature survey on the subject of fading modeling and prediction can

be found in [15].

Consider a single-path2 flat fading channel from a transmit antenna to a receive

antenna. The channel fading coefficient hn is zero mean (subscript n is the time

index), with the variance σ2
h = 1. Fig. 4.1 shows the block diagram for prediction

of a fading channel. The channel coefficients are estimated from the received signal

series {yn}, where the nature of yn could be different depending on the application.

Usually yn is a pilot signal which is appropriately designed for channel estimation,

as in 3G systems. In some applications, yn is the modulated user data which is used

by a blind channel estimation algorithm. The subject of channel fading estimation

2If the path delay variations are not negligible in comparison with the symbol period, the same
analysis could be applied to each resolved multipath component.
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Figure 4.1: The general block diagram of a channel prediction scheme

is well-established in the literature and will not be addressed here. We assume that

the channel estimate hn is shown as hn = hn + vn, where vn is the estimation error

modeled as a zero mean Gaussian noise [58] with the variance σ2
v . As an indicator for

the estimation quality, the observation SNR is defined (like the previous chapter) as

SNRz = σ2
h/σ

2
v = 1/σ2

v .

For prediction of a future sample of the channel using the past measurements, a

model is needed to represent the dynamics of the channel. Having the series of the

channel measurements {hn}, the parameters of the model are estimated or updated,

and the future fading sample is predicted as shown in Fig. 4.1. The model selection

and extraction of the parameters, as well as the prediction algorithm, are explained

in the sequel.

Many processes are represented with a linear model, i.e. an auto-regressive moving-

average (ARMA) model. In this context, an approximate low-order AR model is often

used as it can capture most of the fading dynamics. For example, see the MMSE lin-

ear predictor proposed in [59], and the channel tracking algorithms utilizing Kalman

filter in [60] and [61]. Linear models are known to be optimal for Gaussian signals.

Also linear models are easy to use and have a low complexity, however, they fail to

show the true time behavior of a channel fading process. The Gaussian assumption
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for the fading signal is only valid for a rich-scattering area, i.e., when the number of

dominant scatterers are significant. However, in many mobile environments, there are

a few main scatterers which construct the fading signal [18]. Also the time-varying

nature of the fading signal is in contrast with the Gaussian assumption in any case.

Overall, the linear models do not perform well for long-range predictions as shown in

the literature (for example, see [62]). The block-adaptive linear predictors are widely

used, however for a fast time-varying channel (or for a long block length), the model

parameters become outdated towards the block end. This problem can be ratified to

some extent by updating the linear coefficients more frequently using adaptive meth-

ods [15]. Other than the linear approach, some other prediction approaches have

been used for fading channels. Article [62] uses a (nonlinear) quadratic approach and

shows that while it has good modeling properties, it is very sensitive to the model

changes. Nonlinear methods have usually high complexities and they are hard to an-

alyze. Furthermore, they are usually difficult to be adaptively applied. In this work,

we utilize a nonlinear model as explained in the following. By applying an equivalent

state-space model, we avoid the problems of nonlinear processing.

When the receiver, the transmitter, and/or the scatterers are moving, each scat-

tered component undergoes a doppler frequency shift given approximately by [19]

f(k) = fd cos(θ(k)) (4.1)

where θ(k) is the incident radiowave angle of the k’th component with respect to the

motion of the mobile and fd is the maximum doppler frequency defined as fd = V
C

fc,

where fc is the carrier frequency, V is the mobile speed and C is the speed of light.

Assuming Nsc scatterers, the complex envelop of the flat fading signal at the receiver
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is

h(t) =
Nsc∑

k=1

ρ(k) ej(ω(k) t+φ(k)) + ζ(t) (4.2)

where for the k’th scatterer, ρ(k) is the (real) amplitude, φ(k) is the initial phase,

ω(k) = 2πf(k), and ζ(t) is the model error. The phase φ(k) can be absorbed in the

amplitude as α(k) = ρ(k) ejφ(k). According to (4.2), a fading channel can be modeled

as sum of a number of sinusoids. This so-called sum-sinusoidal model relies on the

physical scattering mechanism [17]. Previously, this model has been used for predic-

tion of the channel fading [63, 64, 65, 66]. In this work, we use the sum-sinusoidal

model in a Kalman filtering framework. This model is adaptively updated [67] to

follow the changes in the scattering environment. Unlike most of the works in the

literature, we propose a complete adaptive modeling and prediction algorithm for

time-varying fading channels. Also we present an enhanced adaptive linear algo-

rithm, then compare their performance. It is shown here how these two approach

perform in a real situation with practical assumptions.

Assuming a two-dimensional isotropic scattering and an omni-directional receiving

antenna, it is known that the autocorrelation function of the fading process can be

written as [17]

Rh(t, t− τ) =
E[h(t)h∗(t− τ)]

σ2
h

= J0(2πfdτ), (4.3)

where fd is the maximum doppler frequency, J0(·) is the first-kind Bessel function of

the zero order, and τ is the time difference. A Rayleigh fading process with the above

correlation property is called the Jakes fading [17, 27]. We examine the performance

of the algorithms with the Jakes fading, and also with a non-stationary fading which

is generated by a ray-tracing approach.

In the next two sections, the linear approach and the proposed approach are
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presented. Then, the algorithms are compared in the simulation results.

4.2 Linear Approach

To model a fading process, a linear model is widely used. An AR (Auto Regressive)

model of order NAR is recursively defined as follows

hn+1 =

NAR∑
i=1

a(i) hn−i+1 + ξn+1 (4.4)

where a = [a(1), a(2), · · · , a(NAR)]T is the AR coefficients vector, and ξn+1 is the

model error which has a zero mean.

The time evolution of an AR model can also be shown as a state-space model [60,

68] as follows





hn = Bhn−1 + qn

zn = mhn + un

(4.5)

where

hn = [hn, hn−1, · · · , hn−NAR+1]
T (4.6)

is the fading regressor at time n, B is the transition matrix defined as

B =

(
aT

INAR−1×NAR−1 0NAR−1×1

)
, (4.7)

and qn is the noise vector defined as qn = [ξn, ξn−1, · · · , ξn−NAR+1]
T representing the

model error. m is known as the measurement matrix which is defined as

m = [1, 0, · · · , 0]1×NAR
, (4.8)
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un is the observation noise, and zn is the system output (which is substituted by the

observed values for implementation).

It is easy to show that

ĥn+1|n = Bhn, (4.9)

where ĥn+1|n is the prediction of hn+1 given the observations up to the time n, i.e.,

ĥn+1|n = E [hn+1|zn, zn−1 · · · ].

4.2.1 The Linear Prediction Algorithm (LP)

Assuming an AR model of the order NAR, a 1-step linear predictor is shown as follows

ĥn+1|n =

NAR∑
i=1

a(i) hn−i+1, (4.10)

where hn is the channel estimate as defined before. Minimizing the mean square

error (MSE), E

[∣∣∣hn+1 − ĥn+1|n
∣∣∣
2
]
, provides the prediction coefficients a via solving

the Yule-Walker equations [69].

For the Jakes fading, a is analytically available [70]. In practice, a is estimated us-

ing the fading samples using one of the well-known methods such as Levinson method,

Burg method, or Prony method. In a non-stationary environment, the coefficients

are frequently updated to follow the model variations.

Here, the linear coefficients are estimated using a Least-Squares approach and

solving the equations by the Levinson-Durbin recursion over a window length of TAR.

The estimates are updated every TAR samples. Fig. 4.2 shows the flowchart of the

algorithm.
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Figure 4.2: Block diagram of the linear prediction algorithm (LP)
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4.2.2 D-step Versus 1-step Prediction

To perform a D-step prediction, the 1-step predictor could be used D times recur-

sively. However, we are interested in a direct D-step prediction method because it is

easier to analyze and to implement. Furthermore, this is particularly helpful in the

tracking mode as it is addressed in Section 4.2.3. Equation (4.10) can be extended to

provide a D-step linear predictor as follows

ĥn+D|n =

NAR∑
i=1

a(D)(i) hn−i+1. (4.11)

The superscript “(D)” indicates that the variable is related to the D-step predictor.

Calculation of the coefficients of the 1-step predictor, a, was explained before. For

the D-step predictor,

a(D) = [a(D)(1), a(D)(2), · · · , a(D)(NAR)]T (4.12)

can be computed using a. From the state-space model, it is shown [71] that ĥn+D|n =

BD hn, similar to (4.9). Hence,

ĥn+D|n = m ĥn+D|n (4.13)

= mBD hn. (4.14)

By comparing (4.14) and (4.11) it is observed that a(D) = (mBD)T , meaning a(D)T

is the first row of BD. Therefore, to obtain the coefficients of the D-step predictor,

the calculation steps are as follows:

a → B → BD → a(D) (4.15)
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4.2.3 Tracking

In a non-stationary environment, the model is changing and the assumption of a

fixed model over the observation window results in a performance degradation. A

low-complexity adaptive algorithm is desired to track the changes of an over time.

An LMS algorithm is used as in [15]

an+1 = an + µAR hH
n en (4.16)

where en = hn− ĥn. Note that we have added the time index n for an in the tracking

mode signifying that it is changing at each time step.

As explained in Section 4.2.2, a
(D)
n is calculated using an, which requires the

calculation of BD
n . In the tracking mode, this calculation is needed whenever an is

updated, which can impose a high computational complexity. In Appendix F, we

propose a method to decrease the complexity. Using this method, the final equation

for tracking a D-step linear predictor is similar to the LMS algorithm of (4.16), and

is as follows

a
(D)
n+1 = a(D)

n + µAR G(D)
n hH

n en, (4.17)

where G
(D)
n is an NAR × NAR matrix. Appendix F explains the structure and the

calculation of G
(D)
n .

4.3 The Proposed Approach

Consider the fading model shown in (4.2). Assuming a sampling rate of fs = 1/Ts,

the fading samples can be written as

hn =
Nsc∑

k=1

α(k) ejω(k)nTs + ζn (4.18)
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where hn = h(nTs), and n is the time index. In many mobile environments, there are

a few main scatterers which construct the fading signal [18]. Whereas in some urban

areas there could be up to eight or even more contributing components in the fading

signal [72]. In any case, the sum-sinusoidal model of (4.18) can represent the fading

signal. Note that the Jakes model is a special case of the sum-sinusoidal model, and

is mathematically valid only for a rich-scattering environment.

4.3.1 Estimation of the Model Parameters

Estimation of the parameters of a sum-sinusoidal model is a well-known problem [73],

particularly in the areas like acoustic and speech processing, and signal processing in

communications. In this work, we are interested in a practical and efficient solution

with complexity constraints, for modeling the mobile fading channel.

A majority of the works on channel modeling use a statistical approach to capture

the channel behavior. However, the fading model (4.18) could be observed as a

deterministic equation, and a handful of articles have used this approach to capture

the behavior of the fading process, e.g., refer to [63, 64, 65, 66]. Assuming Nsc

scatterers, there are 2 Nsc unknown parameters to be determined in the model given

in (4.18). As a systematic solution, only 2 Nsc fading samples are required to form an

equation set. Solving the equation set provides ω(k) and α(k), for k = 1, · · · , Nsc. As

this approach uses only a few noisy measurements of the fading process, it could result

in poor estimation of the parameters. Article [64] uses an ESPIRIT algorithm to find

the doppler frequencies, and then solves a set of linear equations using the Least-

Squares method to estimate the complex amplitudes. Alternatively, article [63] uses

the Root-MUSIC method to find the doppler frequencies. To estimate the amplitudes,
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the Least Squares and the Bayesian methods are used in [65] assuming that the

doppler frequencies are known. As another solution, [65] assumes an AR model for

each α(k), estimates the AR coefficients using a Modified Covariance method, and

constructs a Kalman filter on the AR model to estimate the amplitudes [65].

In this chapter, we propose a new approach to estimate and track the parameters.

We utilize the fact that the doppler frequencies usually change slower compared to

the complex amplitude variations when the setting of the scattering environment

is the same. Generally speaking, this is because the doppler frequency variations

are the result of any acceleration of the mobile movement, however the complex

amplitudes change even when the mobile is moving at a constant velocity as the

distances are changing. Therefore, we separate the tracking of ω(k)’s and α(k)’s

which have different dynamics. The details of the proposed method follows.

Assuming a constant scattering model, the Fourier transform of the fading sig-

nal shown in (4.18) can provide the estimates of the model parameters, as different

scattering components are decoupled in the frequency domain. Fourier analysis can

provide an accurate estimation of ω(k)’s if they do not change significantly and the

observation window is not too short. In practice, the ω(k)’s change slowly with time.

Therefore, a high-resolution method is required to estimate the doppler frequencies

using a short window of recent measurements, as in [63, 64, 65]. Furthermore, these

estimates need to be performed frequently which imposes a high computational com-

plexity. However, this problem can be solved by an adaptive filter. We utilize a

tracking loop to follow the slow variations of ω(k)’s at each fading sample. Therefore,

unlike the window-based methods, the doppler frequencies are up-to-date at each

sample. A sudden change in the frequencies may occasionally happen, for example, if
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the mobile path abruptly changes. In this case, the frequencies are estimated again.

Because of the robustness of this approach, the initial estimates of the frequencies do

not need to be very accurate. Therefore, we can use a simple Fourier analysis to do

this.

Fourier analysis can provide rough estimates for the amplitudes as well. However,

α(k)’s usually change fast, and these changes may even be significant over a few

fading samples. Therefore, a vigilant algorithm is needed for tracking the α(k)’s.

Knowing ω(k)’s, we construct a Kalman filter based on the sum-sinusoidal model to

efficiently follow the α(k) variations. The state-space model is introduced in the next

two sections.

4.3.2 The State-Space Model

A time evolution model is a useful tool for the prediction of a process. A well-known

form of an evolution model known as the state-space model can be written as





xn = An xn−1 + qn

zn = mn xn + vn

(4.19)

where xn is an Nray × 1 state vector at time n, An is an Nray × Nray matrix which

controls the transition of the state vector in time, and qn is a noise vector with

the covariance Qn = E[qn qH
n ], which represents the model error. The mn is the

measurement matrix, vn is the observation noise, and zn is the system output (which

is substituted by the observed values for implementation). In practical systems, An,

Qn and mn are usually constant or slowly time-varying. A well-known state-space

representation of an AR model can be found in Section 4.2. We propose a new

state-space model for the mobile fading in the following.
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Considering the sum-sinusoidal process given in (4.18), we propose the following

state-space model:

An = diag
[
ejωn(1) Ts , ejωn(2) Ts , · · · , ejωn(Nray) Ts

]
(4.20)

and

mn = [1, 1, · · · , 1]1×Nray , (4.21)

where Nray is the model order which is the number of the assumed scatterers (ideally,

Nray = Nsc). The zn in (4.19) is substituted with the available measurement of the

fading sample, i.e., zn = hn. Therefore, the state vector xn consists of the complex

envelops of the scattering components. A Kalman filter can utilize the state-space

model to estimate the state xn at each time. An extension of this state-space model

to MIMO and multipath channels is presented in Appendix G.

4.4 The Proposed Algorithm

Here we propose an adaptive algorithm for fading prediction (which is called “KF”).

Fig. 4.3 shows the flowchart of the algorithm, and a description of the main blocks

follows.

4.4.1 Kalman Filtering

Kalman Filtering is an estimation method which is commonly used in communication

systems (for example, see [60, 74, 61]). Assuming a state-space model, Kalman filter

efficiently estimates the state vector xn using the observation samples. The estimation

of the state vector given the observations at the time n, shown as xn|n, is optimal in
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Figure 4.3: Block diagram of proposed prediction algorithm (KF)



CHAPTER 4. MODELING AND PREDICTION OF FADING CHANNELS 76

the MMSE sense. This estimate is used to predict the future samples of the fading

signal.

In the following, the Kalman equations [71] are presented, and Table 4.1 defines

the variables used in the Kalman equations.

Prediction part:

xn|n−1 = An xn−1|n−1 (4.22)

Pn|n−1 = An Pn−1|n−1A
T
n + Q (4.23)

Update part:

kn = Pn|n−1 mH
n

(
mn Pn|n−1 mH

n + σ2
v

)−1
(4.24)

xn|n = xn|n−1 + kn

(
zn −mn xn|n−1

)
(4.25)

Pn|n = Pn|n−1 − kn mn Pn|n−1 (4.26)

The presented Kalman filter works properly as long as the assumed model repre-

sented by An is valid. In the transient times when the model is changing, the Kalman

filter may lose the track of the state. A threshold is imposed on the magnitude of the

error term in (4.25), εn = zn −mn xn|n−1, to prevent large invalid changes. Namely,

if |εn| > Tε then ε′n = Tε εn/ |εn| is used instead. A larger threshold causes less distor-

tion of the error signal in the tracking mode, while a smaller threshold means that

the Kalman filter will converge more quickly to the new model when the scattering

environment is changing. A threshold of Tε = 4 σv, selected by try and error, is used

here. To decrease the transient time, the estimates of α(k)’s from the Fourier analysis

are applied as initial values to the Kalman filter.

Regarding the computational complexity, this is a low complexity Kalman filter

to implement. The inversion of equation (4.24) is a scalar inversion (not a matrix
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Q The covariance matrix of the model noise
zn The observation sample

xn|n−1 The a priori estimate of the state xn (i.e.,
the estimation of the state at the time n
given the observations upto the time n−1)

xn|n The a posteriori estimate of the state xn

(i.e., the estimation of the state at the time
n given the observations upto the time n)

Pn|n−1 The covariance matrix of the a priori error
Pn|n The covariance matrix of the a posteriori

error

Table 4.1: Variables used in the Kalman filter

inversion), and most of the other equations only need vector calculations as mn is a

constant vector.

4.4.2 Model Acquisition

The current parameters for the fading model are estimated according to Section 4.3.1.

We apply the Fourier method to estimate ω(k), k = 1, · · · , Nray using an FFT algo-

rithm [70].

Acquisition could be done frequently to keep up-to-date with the doppler fre-

quency changes. To decrease the required computations, it may be done only when

the scattering model has significantly changed. The proposed algorithm enters the ac-

quisition mode when the error trend exceeds a threshold as explained in Section 4.4.5.

Furthermore, the algorithm does not allow two consecutive acquisitions to happen

very closely (less than TAcq apart), because after each acquisition, other blocks of the

algorithm need some time to converge to the new model parameters.
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4.4.3 Tracking the Doppler Frequencies

An adaptive algorithm is used to track the fine changes of the doppler frequencies.

Using a gradient-based approximation, the following LMS algorithm is derived in

Appendix H,

ωn+1(k) = ωn(k) + µKF=
[
xH

n|n(k) en

]
, (4.27)

where = is the imaginary operator, and

en = zn − hn|n (4.28)

is the Kalman estimation error, where

hn|n = mn xn|n. (4.29)

Note the entanglement of the two tracking mechanisms which avoids any possible

disparity between the doppler frequencies and the amplitudes on a sample by sample

basis.

4.4.4 Prediction

Given the current state xn, which carries all the information about the past, the future

channel state should be predicted. It has been shown [71] that given a constant state

transition matrix An, the MMSE estimate of the D-step prediction is

x̂n+D|n = AD
n xn|n. (4.30)

where x̂n+D|n is the estimate of the state vector at the time n + D, given the obser-

vations until the time n. However, the doppler frequencies slowly change, resulting
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in slight changes from An+1 to An+D. It is shown in Appendix I that considering the

model changes over time, the optimal predictor is

x̂n+D|n = An+D · · ·An+2An+1 xn|n. (4.31)

At the time n, the matrices An+2, · · · ,An+D are not known. However, they can

be estimated by assuming the same trend for the doppler frequency changes over

the next D samples. Utilizing the tracking model of (4.27), the following estimate is

obtained (see Appendix J for the proof),

An+D · · ·An+2An+1 = AD
n diag[ej

D(D+1)
2

δwnTs ], (4.32)

where

δwn = wn+1 −wn (4.33)

which can be calculated using (4.27).

Using the predicted state x̂n+D|n, the fading sample at the time n + D can be

obtained as ĥn+D|n = mn x̂n+D|n.

4.4.5 Calculation of the Error Trend

We use an exponential window for calculation of the error trend from the sample

errors as follows

En+1 = λEn + (1− λ) |en|2 , (4.34)

where λ is the forgetting factor (0 ¿ λ < 1). We set the λ to a value that the effect

of each error sample is decayed to one percent over the observation window, i.e.,

λNwin = 0.01. (4.35)
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4.5 Implementations and Numerical Results

Table 4.2 shows the simulation parameters. We use a wide-sense stationary (WSS)

version of the Jakes fading [27] (which uses 14 low-frequency sinusoids) to examine

the performance of the underlying algorithms. The Jakes fading is only valid for a

rich scattering environment. Furthermore, because the Jakes fading is stationary, it

can not model the changes in the scattering environment. To test the algorithms

in a more realistic setting, we use a Ray-Tracing (RT) simulation environment as

explained in [68]. The mobile is randomly moving vertically and horizontally in the

scattering area, comprising of three buildings, and experiences different combinations

of signal rays. At each point of the mobile path, it undergoes a different doppler

frequency and a different signal power for each ray it receives. The generated fading,

called “RT fading”, can closely resemble the channel in a real mobile environment,

and is used to examine the performance of the algorithms as well. The following two

sections show the details of the implementation for LP and KF algorithms in our

simulations.

4.5.1 Our Implementation of LP Algorithm

L1: Start

• Set n = 0

L2: Estimate the LP coefficients

• Estimate an from the Yule-Walker equations

• Calculate a
(D)
n from (4.15)
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• Set nAcq = n

L3: Set n = n + 1

L4: Linear Prediction

• Calculate ĥn+D|n by (4.11)

L5: Acquisition time?

• If n− nAcq = TAR, then Goto L2

L6: Tracking the LP coefficients

• Calculate an+1 by (4.16)

• Calculate a
(D)
n+1 from (4.15)

L7: Goto L3

4.5.2 Our Implementation of KF Algorithm

L1: Start

• Set n = 0

L2: Model Acquisition

• Estimate ωn(k)’s and αn(k)’s using FFT

• Calculate An by (4.20)

• Set nAcq = n

L3: Set n = n + 1
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L4: Kalman filter

• Calculate xn|n from (4.22)-(4.26)

L5: Predict the state vector

• Calculate (4.32)

• Calculate x̂n+D|n by (4.31)

L6: Error check

• Calculate En+1 by (4.34)

• If En+1 ≥ EThr and n− nAcq ≥ TAcq, then Goto L2

L7: Tracking the Doppler frequencies

• Calculate (4.29)

• Calculate the sample error by (4.28)

• Calculate ωn+1(k)’s by (4.27)

L8: Goto L3

4.5.3 Simulation Results

To demonstrate how different parts of the proposed KF algorithm works, we show the

results for a sample of RT fading at the mobile speed of V = 25 kmph in Figs. 4.4 -

4.6 as follows. Fig. 4.4 and Fig. 4.5 show the doppler frequencies ωn(k)’s and the

magnitudes of the complex amplitudes αn(k)’s, respectively, and Fig. 4.6 depicts the

trajectories of |en|2 and En. For the RT fading sample used in this case, the fading
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Figure 4.4: Estimation and tracking of the doppler frequencies

environment changes around the time samples of 0.2,1.35,1.55 and 2.0×104, corre-

sponding to the times of change in the mobile direction. As explained before, when

the scattering environment significantly changes, the algorithm detects the change

through the error calculations and enters the acquisition mode. Consequently, the

frequency unit, and then the Kalman filter converge to the parameters of the new

model. This switch between the acquisition and tracking is clearly observable in the

plots at the aforementioned times.

The two prediction algorithms (LP and KF) are compared here, with respect to the

average MSE versus the prediction depth. The results are reported for various linear

orders NAR, and various scattering orders Nray, respectively (Nray is an approximation

of Nsc in (4.18)). Fig. 4.7 shows the results for the Jakes fading for the mobile speeds
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Figure 4.5: Kalman tracking of the amplitudes
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fc 2.15 GHz
fs 1500 Hz

SNRz 10 dB

Table 4.2: Simulation parameters

of V = 25 and V = 100 kmph. It is observed that KF significantly outperforms LP

if Nray is large enough (here, for Nray ≥ 8), while LP fails at high prediction depths

regardless of the linear order NAR.

Fig. 4.8 shows the results for RT fading for V = 25 and V = 100 kmph. It is

observed that KF always outperform LP. For a linear predictor, the MSE is directly

related to the correlation properties of the fading, i.e., a lower correlation results in

a higher MSE. The fading correlation is not monotonic, therefore the MSE versus

D plot may not be increasing at high mobile speeds as observed in Fig. 4.8 for

V = 100 kmph. It is also observed that increasing Nray does not always improve

the performance. In conclusion, the simulations show that the proposed prediction

algorithm can perform very well in realistic mobile environments, and it significantly

outperforms the adaptive linear algorithm.

4.6 Conclusion

In this chapter, we have proposed a new method for prediction of fading channels. The

doppler frequencies are estimated and updated by an acquisition-tracking method,

and the amplitudes are updated by a Kalman filter. Because of its self-recovering na-

ture, the algorithm is robust to the uncertainties such as the changes of the scattering

environment, and the accuracy of the channel estimates (or observation SNR). The

proposed algorithm has a reasonable complexity. Most of the existing algorithms have
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a window-based structure requiring frequent high-complexity computations, while the

proposed method has a sample-by-sample structure resulting in a steady flow of low-

complexity calculations. The simulation results show the significant advantage of the

algorithm over the conventional linear method, especially at high mobile speeds, and

low observation SNR’s.



Chapter 5

Conclusion and Future Work

This dissertation considers the problem of the efficient use of the channel state in-

formation in wireless and mobile communication systems. Considering the real con-

ditions in such systems, various practical solutions are sought using the theoretical

methods.

The closed-loop transmit diversity, which uses a combination of transmit diversity

and channel feedback, is recognized as a promising approach to achieve high data rates

in mobile communications. In the existing networks, however, the performance of the

closed-loop scheme is limited, which is the result of the rate limit, error, and delay in

the feedback channel, and also the non-optimum weight reconstruction algorithms.

In Chapter 2, we propose an approach to improve the performance of a closed-

loop system in the presence of feedback error, without changing the existing structure

(of the standard). We introduce a number of algorithms, using MAP and MMSE

approaches, to improve the performance of mode 1 of 3GPP. It has been shown that

our algorithms can provide significant gains over the conventional approach at all

mobile speeds. The performance of our algorithms, which do not need any preamble,

are usually good enough such that an Antenna Weight-Verification (AV) algorithm

89
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is no longer required. Though, an AV could be used along with our algorithms for

further improvement. Moreover, our proposed algorithms are implemented mostly at

the base station, as opposed to AV which increases the complexity of the mobile unit.

Chapter 3 also considers the issue of feedback delay. We propose two approaches

to improve the performance. One is based on using a channel predictor at the receiver

to compensate for the delay, and using the method proposed in Chapter 2 to com-

pensate for the feedback error. Another approach deals with both feedback error and

delay in a unified reconstruction algorithm. Furthermore, we address the problem

of the decoding mismatch at the receiver by proposing a Blind Antenna Verification

(BAV) algorithm, which can substitute for the conventional AV process without the

need for any training data. It is shown in that using the optimal reconstruction at the

transmitter and the BAV algorithm (at the receiver) is a jointly optimal approach

to achieve both the beamforming goal and the AV goal. A number of algorithms

are introduced, and it is demonstrated that the proposed algorithms outperform the

conventional methods at all mobile speeds, regardless of the quality of channel esti-

mation. The structure of the proposed methods is suitable for the use in practical

mobile radio systems, and particularly can be considered as a contribution to the

3GPP standard. Of course the proposed approaches in Chapter 2 and 3 could be

used for the enhancement of any MIMO closed-loop communication system which

uses quantized channel feedback.

Chapter 4 addresses the problems of modeling and prediction of mobile fading

channels. First, a multi-step predictor is presented for a (linear) AR model, and a

tracking algorithm for coefficients of the multi-step linear predictor is proposed. In

the next parts, we propose a new method for prediction of fading channels, based
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on a proposed state-space representation of the sum-sinusoidal model. The doppler

frequencies are estimated and updated by an acquisition-tracking method, and the

amplitudes are updated by a Kalman filter. Furthermore, a progressive prediction

method is used for the multi-step prediction of the state vector. The algorithm is

robust to the uncertainties such as the changes of the scattering environment and the

accuracy of the channel estimates, and has a reasonable complexity. The simulations

compare the two fading prediction methods, and show the significant advantage of

the new method for both stationary and non-stationary fading. This performance

advantage is larger at higher mobile speeds, and for longer predictions.
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5.1 Future Work

The research presented in this dissertation may be continued in several directions. A

number of the these continuations are described in the following.

5.1.1 MIMO Channel Modeling and Prediction

Based on Singular Value Decomposition, the MIMO channel can be split into inde-

pendent sub-channels which allows efficient decoding of the transmitted data signal.

Givens decomposition [75] can be utilized to convert the channel unitary matrix to a

number of scalar parameters (of two different types) which are used in the subsequent

processing. By dealing with the scalar parameters, the reconstruction of the unitary

matrix can be analyzed using the feedback information.

For the prediction of the scalar parameters, proper models for the two parameter

types are needed to be found. This modeling has not been done before, and is

not analytically straightforward. Using an statistical approach, some models and the

corresponding predictors can be developed. The modeling efficiency may be improved

by inspecting other linear and nonlinear methods as well. This approach can be

extended to the OFDM channels which are being used in the new generation of mobile

radio systems. The research work suggested in this section is already completed in

part [76].

MIMO Channel Quantization

The proposed method for modeling a MIMO channel is suitable for development of

MIMO precoding schemes, adaptive transmission methods, etc., where the channel



CHAPTER 5. CONCLUSION AND FUTURE WORK 93

state information is partially required at the transmitter. In this direction, an effi-

cient quantization method [77, 78] is needed for the equivalent scalar parameters. To

combat the feedback delay and feedback error in these systems, the methods intro-

duced in chapter 2 and 3 can be similarly applied. Furthermore, the optimal resource

allocation (e.g., number of bits for each parameter) at different conditions is open for

research.

5.1.2 Precoding for MIMO Channels

The problem of adaptive transmission and precoding for MIMO channels has been

widely studied in the literature. However, the suggested designs are not usually opti-

mal in practice, because they do not consider the error, delay or even the quantization

error in the available feedback information. Furthermore, the optimal decoding is such

systems is rarely addressed. Using the techniques introduced in this dissertation, new

MIMO precoding schemes can be designed for practical conditions.

5.1.3 New Generation of Closed-loop Schemes

We proposed a joint beamforming and decoding scheme using imperfect feedback,

which is compatible with the 3GPP standard, in chapter 3. Dropping the assumption

of the compatibility with the 3GPP standard, new closed-loop schemes can be devel-

oped for the next generation of mobile systems. Design of new quantization schemes

by considering the feedback imperfections is a vast and challenging area of research.



Appendix A

Calculation of the Number of

States (or the Codebook Size)

Consider the framing structure of mode 1 of 3GPP, depicted in Fig. 2.6. In the figure,

each slot shows the quantizer used according to Section 2.3. At time slot n, the current

state is composed of γ symbols, from the starting slot number nwin = n−γ +1 to the

slot number n, which is shown by dashed sliding windows. The windows shown in the

figure correspond to the case γ = 3, but our discussion is for any value of 0 < γ < 15.

For a given window, specified by nwin, there are 2γ possible states. Depending on the

window position, there are two cases:

Case 1: For nwin = 0, 1, · · · , 15 − γ, the window is within one frame, and the

symbols are selected from Q0 and Q1, consecutively. Therefore, for all of the odd

nwin’s, the sequence of possible subsets are the same. This is also the case for all

even nwin’s. Hence, there are two possible sequences of subsets for this range of nwin,

resulting in 2× 2γ different states.

94



APPENDIX A. CALCULATION OF THE NUMBER OF STATES 95

Case 2: For nwin = 16 − γ, · · · , 14, the window is in two neighboring frames.

The symbols are also selected from Q0 and Q1 consecutively, except for the slots at

the boundary of the two frames where symbols are selected from two consecutive Q0.

Therefore, for each nwin in the range, the sequences of possible subsets are unique,

and different from case 1. Hence, there are 14−(16−γ)+1 = γ−1 possible sequences

of subsets for this range of nwin, resulting in (γ − 1) 2γ different states.

Adding up the possible states of the two cases, it leads to (γ +1) 2γ possible states

for the structure of mode 1 of 3GPP. Note that a similar deduction could be done to

calculate the codebook size by replacing γ with µ, which results in (µ + 1) 2µ.



Appendix B

Proof of Lemma 1

The variable ŵnormal = αejφ̂ should be estimated using the random variable w = βejφ,

where α and β are real positive constants. In the MMSE sense, it turns out to

minimizing the following criterion

E
[∣∣w − ŵnormal

∣∣2
]

(B.1)

= E

[∣∣∣βejφ − αejφ̂
∣∣∣
2
]

(B.2)

= α2 + β2 − 2αβ E
[
cos(φ− φ̂)

]
(B.3)

or maximizing

E
[
cos(φ− φ̂)

]
(B.4)

= E
[
cos φ cos φ̂ + sin φ sin φ̂

]
(B.5)

= E[cos φ] cos φ̂ + E[sin φ] sin φ̂ (B.6)

which results in

tan φ̂ =
E[sin φ]

E[cos φ]
, (B.7)
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where 



E[cos φ] ≥ 0 ⇒ −π
2

< φ̂ ≤ π
2

E[cos φ] < 0 ⇒ π
2

< φ̂ ≤ 3π
2

(B.8)

Finding the phase information of ŵnormal, i.e., ejφ̂ = cos φ̂ + j sin φ̂, from (B.7), it is

easy to show that in both cases of (B.8),

ejφ̂ =
E[ejφ]

|E[ejφ]| . (B.9)

Therefore,

ŵnormal = α ejφ̂ = α
E[ejφ]

|E[ejφ]| = α
E[w]

|E[w]| . (B.10)



Appendix C

Proof of Lemma 2

Using the data processing theorem, we know that

wn ↔ In−d ↔ Jn−d (C.1)

forms a Markov chain, because the feedback sequence In−d is calculated from the

weight sequence wn at the receiver, and Jn−d, which is received at the transmitter

after passing through the feedback channel, is an (stochastically) impaired version of

In−d. Therefore, for the conditional PDF’s, it can be written

f
(
wn|In−d, Jn−d

)
= f

(
wn|In−d

)
. (C.2)

Now, the following integration of both sides
∫
· · ·

∫

wn−1

f
(
wn|In−d, Jn−d

)
dwn−1 =

∫
· · ·

∫

wn−1

f
(
wn|In−d

)
dwn−1, (C.3)

results in

f
(
wn|In−d, Jn−d

)
= f

(
wn|In−d

)
, (C.4)
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meaning that

wn ↔ In−d ↔ Jn−d (C.5)

is a Markov chain.



Appendix D

Proof of Lemma 3

As a property of a Markov chain,

f(x|y, z) = f(x|y), (D.1)

where f(·) is the PDF of the respective random variable. Hence,

EY [EX [X|Y ]|Z] = (D.2)
∫ (∫

xf(x|y)dx

)
f(y|z)dy (D.3)

=

∫ ∫
xf(x|y)f(y|z)dxdy (D.4)

=

∫ ∫
xf(x|y, z)f(y|z)dxdy (D.5)

=

∫ ∫
xf(x, y|z)dxdy (D.6)

=

∫
xf(x|z)dx (D.7)

= EX [X|Z]. (D.8)
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Appendix E

Derivation of the State

Probabilities for Receiver

The probability values of P (Sn|In−d) are needed at the receiver for the calculation of

the weight. We can write

P (Sn|In−d) = P (Sn|Sn−d) (E.1)

= P (Sn|Sn−d), (E.2)

where P (Sn|Sn−d) is the d-step transition probability which is calculated once as

follows

P (Sn|Sn−d) = P (Sn|Sn−d) (E.3)

=
∑

· · ·
∑

Sn−d−1
n−1

P (Sn|Sn−1) ·

P (Sn−1|Sn−2) · · ·P (Sn−d−1|Sn−d). (E.4)
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Appendix F

Multi-step Tracking of the AR

Coefficients

Assume that δn is the increment vector

an+1 = an + δn. (F.1)

From (F.1) and (4.7), we may write

Bn+1 = Bn + ∆n (F.2)

where

∆n =

(
δT
n

0(NAR−1)×NAR

)
(F.3)

For the D-step predictor, we write

BD
n+1 = BD

n + ∆(D)
n . (F.4)

The structure of ∆
(D)
n may not exactly be as shown in (F.3), however, we show the

first row of ∆
(D)
n as δ

(D)
n .
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Assuming a sufficiently large sampling frequency, an is slowly changing with the

time index n, and δn has a small norm. Therefore,

BD
n+1 = (Bn + ∆n)D (F.5)

∼= BD
n +

D∑
i=1

Bi−1
n ∆nB

D−i
n (F.6)

where (F.6) is approximated by neglecting the terms in which ∆n has a power larger

than one. Hence,

∆(D)
n

∼=
D∑

i=1

Bi−1
n ∆nB

D−i
n (F.7)

From (F.4) we may write

a
(D)
n+1 = a(D)

n + δ(D)
n , (F.8)

which corresponds to the operation of the first rows of the matrices. Now, δ
(D)
n can

be calculated using δn as follows,

δn → ∆n → ∆(D)
n → δ(D)

n . (F.9)

It is observed from (F.7) that each element of ∆
(D)
n is a linear combination of the

elements of ∆n (or equivalently δn). Therefore, each element of δ
(D)
n is a linear com-

bination of δn and so we can write

δ(D)
n = G(D)

n δn (F.10)

where matrix G
(D)
n represents the linear combinations. Matrix G

(D)
n is a function

of Bn or equivalently a function of the elements of an. As an example, G
(D)
n for

D = 1, 2, 3 are shown in (F.11)-(F.13), when NAR = 3:
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G(1)
n =




1 0 0

0 1 0

0 0 1




, (F.11)

G(2)
n =




2 an(1 ) 1 0

an(2 ) an(1 ) 1

an(3 ) 0 an(1 )




, (F.12)

G(3)
n =




3 an(1 )2 + 2 an(2 ) 2 an(1 ) 1

2 an(1 ) an(2 ) + an(3 ) 2 an(2 ) + an(1 )2 an(1 )

2 an(1 ) an(3 ) an(3 ) an(1 )2 + an(2 )



· · · (F.13)

It is observed that the analytical form of G
(D)
n is more complicated for a larger

D. For most applications an is slowly changing, hence G
(D)
n may be recalculated

only in the acquisition mode. This approximation can be further simplified if G
(D)
n is

calculated for a fixed typical channel. For example, for the channel a = [1, 0, · · · , 0]T ,

G
(D)
n has a simple form; when NAR = 3,

G(D)
n ≈




D D − 1 D − 2

0 1 1

0 0 1


 . (F.14)

Our simulations show that the performance does not change significantly with this

approximation in a wide range of mobile speed and D.



Appendix G

Extension of the Proposed Fading

Model

We provided a state-space model for a single-path SISO channel in Section 4.3.2.

To extend the model to MIMO and/or multipath channels, the same approach can

be used. Assume there is a total of Nch different channels, where each one uses Nray

sinusoids. Furthermore, assume that each channel has Nmp resolvable multipath. The

model can be shown as follows,





Xn = An Xn−1 + Qn

Zn = Mn Xn + Vn

(G.1)

Each variable plays the same role as in (4.19). Xn is a NchNray×Nmp matrix which is

constructed by stacking the state vectors of different channels and different multipath
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components as follows

Xn =




xn(1, 1) xn(1, 2) · · · xn(1, Nmp)

xn(2, 1) xn(2, 2) · · · xn(2, Nmp)
...

...
...

xn(Nch, 1) xn(Nch, 2) · · · xn(Nch, Nmp)




(G.2)

where xn(i, j) is the Nray×1 state vector of the j-th multipath of the i-th channel. An

is a square matrix with NchNray diagonal elements containing the doppler frequencies,

Zn and Vn are Nch×Nmp matrices which contain the observation and the observation

noise for each channel at time n, respectively. Mn is a Nch×NchNray matrix as depicted

in the following,

Mn =




1

1
. . .

1




(G.3)

containing Nch “1”-vectors defined as

1 = [1, 1, · · · , 1]1×Nray
(G.4)



Appendix H

Tracking Algorithm for the

Doppler Frequencies

Considering the definition of xn in (4.19), from (4.18) it can be written

ĥn =
Nsc∑

k=1

xn−1(k) ejωn(k)Ts , (H.1)

as the phase-shifts of the sinusoidal terms up to the time n−1 are absorbed in xn−1(k).

Assume the cost function

Cn = E

[∣∣∣hn − ĥn

∣∣∣
2
]

(H.2)

= E
[|en|2

]
, (H.3)

where

en = hn − ĥn. (H.4)

Hence, a gradient-based tracking algorithm can be implemented as

wn+1(k) = wn(k)− µ0
∂Cn

∂wn(k)
. (H.5)
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To derive the LMS algorithm, we can write

∂Cn

∂wn(k)
≈ ∂ |en|2

∂wn(k)
(H.6)

=
∂(eH

n en)

∂wn(k)
(H.7)

= 2< [
(−j Ts xn−1(k) ejωn(k)Ts)H en

]
(H.8)

= 2< [
(−j Ts xn(k))H en

]
(H.9)

= 2< [
j Ts xH

n (k) en

]
(H.10)

= −2 Ts=
[
xH

n (k) en

]
(H.11)

where < and = are the real and imaginary operators, respectively. Equation (H.6)

is obtained by replacing the E[·] of the error term in (H.3) with the instantaneous

value. Now, we can write the LMS algorithm as follows

wn+1(k) = wn(k) + µ= [
xH

n (k) en

]
, (H.12)

where µ = 2 Ts µ0 is the step size.



Appendix I

Multi-step Prediction of the State

Vector

Assume the state-space model shown in (4.19). The state at the time n+D could be

written as

xn+D = An+D xn+D−1 + qn+D (I.1)

= An+D (An+D−1 xn+D−2 + qn+D−1) + qn+D (I.2)

= An+DAn+D−1xn+D−2 + An+Dqn+D−1 + qn+D. (I.3)

Continuing this calculation results in

xn+D = An+DAn+D−1 · · ·An+1xn +

An+DAn+D−1 · · ·An+2qn+1 + · · ·

+An+Dqn+D−1 + qn+D (I.4)
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Hence, for prediction of xn+D given the available observation data up to the time n,

from (I.4), we have

x̂n+D|n = E [xn+D|zn] (I.5)

= An+DAn+D−1 · · ·An+1E [xn|zn] +

0 + · · ·+ 0 + 0 (I.6)

= An+DAn+D−1 · · ·An+1 xn|n (I.7)

using the fact that E[qi|zn] = 0, i > n.

Finally, the fading sample at the time n + D can be predicted as

ĥn+D|n = E [hn+D|zn] (I.8)

= E [mn+D xn+D + vn+D|zn] (I.9)

= mn+D x̂n+D|n (I.10)

= mn+D An+DAn+D−1 · · ·An+1 xn|n. (I.11)



Appendix J

Tracking the Multi-step Transition

Matrix

Consider the proposed state-space model described in Section 4.3.2. Implement-

ing (I.11), it can be written

An+D · · ·An+1 = diag
[
ej{ωn+D(1)+···+ωn+1(1)}Ts , · · · , ej{ωn+D(Nray)+···+ωn+1(Nray)}Ts

]
(J.1)

The doppler frequencies are slowly changing. To track these changes, we assume

a first order model and use linear extrapolation to write

wn+d
∼= wn + d δwn, d = 1, 2, · · · , D. (J.2)

where δwn = wn+1 −wn. Consequently,

An+D · · ·An+1 = diag
[
ej{D ωn(1)+(D+···+2+1) δωn(1)}Ts ,

· · · , ej{D ωn(Nray)+(D+···+2+1) δωn(Nray)}Ts
]

(J.3)

= AD
n diag

[
ej

D(D+1)
2

δwnTs

]
. (J.4)
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