
Model Driven Service Description and

Discovery Framework for Carrier

Applications

by

Nikolaos Giannopoulos

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Master of Applied Sciences

in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2007

c©Nikolaos Giannopoulos, 2007

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,

including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

The most dominant architecture in the contemporary business domain is Service Oriented

Architecture (SOA). The large number of the existing service description and discovery

systems available today, including the ones proposed in research proposals, reveals an

increasing need for adaptive, semantically enriched and context-aware, wide-area service

discovery. This need will become more intense in the years to come as the number of

available services increases rapidly. The main reason behind the existence of a plethora of

such systems is that before these initiatives, the standard in service discovery was taking

into account only the syntactic descriptions of the services, causing conflicts when services,

with similar syntactic descriptions, needed to be evaluated.

The research solutions available today offer efficient and accurate discovery at the syn-

tactic, functional semantic and non-functional semantic level. However, the problem is

that there is no general consensus yet regarding service discovery. Research by its very

nature, leads to point solutions rather than complete systems.

Based on these observations, we propose an adaptive service description and discovery

framework for carrier applications, enabling the model-driven specification of services and

client profiles, and also, for allowing the dynamic configuration of the services to meet

specific quality requirements defined by the clients. The framework was implemented in

the context of Model Driven Development, to ensure platform independence at the level of

the specification of services. The framework takes the union of the point solutions offered

by research proposals in the area of service description and discovery, creates an abstract

model, and can compile that model to platform specific code. More specifically, services

for carrier applications can be specified in a platform independent way both in terms of

iii

service signatures (syntactic properties) and in terms of the functionality and the QoS

service characteristics (semantic properties). A model transformation framework allows

for the creation of a platform specific model for the description of services in a specific

technology platform (e.g., Web services). The framework is extensible to accommodate

future extensions. In addition, as a proof of concept, we designed and developed an Eclipse

Rich Client Platform (RCP) prototype tool, implementing our proposal.

iv

Acknowledgements

My deepest gratitude goes to my supervisor, Professor Kostas Kontogiannis, for his guid-

ance, advice and trust he showed towards me all this time. Without him this thesis would

have never been realized. I was truly honored to be one of his graduate students and to

be able to collaborate with him for the past two years. Most importantly I am grateful

that I got to know not only a great person but also a good friend. The experiences and

knowledge I gained during this period cannot be measured in any way and I feel privileged

having the opportunity to experience everything. I know for a fact that this was the most

important and exciting journey of my life until now.

I would also like to thank the readers of my thesis Professors Paul A.S. Ward and Paul

P. Dasiewicz, for their valuable contribution, comments and suggestions.

Words cannot describe my appreciation and love towards my family that supported me

in this journey and were always by my side.

Finally my deepest and sincere thanks go to Susan. Without her I would have never

made it thus far. She was the one that gave my stay in Canada a special and priceless

meaning that will always be in my heart and memories.

v

Dedication

To my beloved father and mother, Kostas Giannopoulos and Eleni Giannopoulou. I owe

everything to you.

vi

Contents

1 Introduction 1

1.1 Motivation - Problem Description . 1

1.2 Thesis Contributions . 4

1.3 Thesis Layout . 6

2 Related Work 7

2.1 Model Driven Development . 7

2.1.1 Model Transformations . 9

2.2 Service Oriented Architecture . 13

2.3 Semantic Web . 14

2.4 Semantic Web Realization Initiatives . 16

2.4.1 Ontologies . 16

2.4.2 OWL-S . 17

2.4.3 Web Service Modeling Framework 18

2.4.4 WSDL-S . 19

2.4.5 Semantic Annotations for WSDL 20

2.4.6 Other approaches . 21

vii

2.5 Semantic Web Service Selection . 22

3 PIM for Carrier Applications 27

3.1 Platform Independent Model UML Diagrams 27

3.2 Platform Independent Model Documentation 30

4 Semantic Service Description Framework 36

4.1 Context Definition . 36

4.2 Semantic Description UML Diagrams . 37

4.3 Semantic PIM Documentation . 40

5 PSM for Web Services in Carrier Applications 60

5.1 Platform Specific Model UML Diagrams 60

5.2 Platform Specific Model Documentation 66

6 Model Transformation Framework 84

6.1 Phase 1: PIM to PSM . 86

6.1.1 A Model Describing Model Transformations 88

6.1.2 Implementing the Model Describing Model Transformations 97

6.2 Phase 2: PSM to extended WSDL . 99

6.3 A Simple Example . 100

7 Service Selection Framework 104

7.1 A∗ Algorithm . 106

7.2 An A∗ Algorithm Example for Service Selection 109

7.2.1 Client Preferences . 110

viii

7.2.2 Web Service Descriptions . 110

7.2.3 A∗ Algorithm Walkthrough . 112

7.3 Integrating the Service Selection Framework in Workflows 118

8 A Case Study 120

8.1 Tool’s Architecture . 121

8.2 Operational Profile . 124

8.2.1 Graphical User Interface . 124

8.3 Carrier Services and a Working Example 126

8.3.1 Parlay X Web Services Specification 126

8.3.2 A Working Example . 130

9 Conclusions and Future Work 139

9.1 Thesis Contributions . 140

9.2 Future Work . 142

A Full Version of PIM 143

A.1 PIM Full UML Diagrams . 143

A.2 PIM Full Documentation . 145

ix

List of Tables

3.1 Syntactic PIM Lite Version Documentation 30

4.1 Semantic PIM Documentation . 42

5.1 PSM Documentation . 66

A.1 Syntactic PIM Full Version Documentation 145

x

List of Figures

2.1 Basic concepts of model transformation . 10

3.1 Syntactic PIM Lite Version . 28

4.1 Semantic PIM Part 1 . 38

4.2 Semantic PIM Part 2 . 38

4.3 Semantic PIM Part 3 . 39

4.4 Semantic PIM Part 4 . 39

5.1 Syntactic PSM Part 1 . 62

5.2 Syntactic PSM Part 2 . 62

5.3 Syntactic PSM Part 3 . 63

5.4 Semantic PSM Part 1 . 63

5.5 Semantic PSM Part 2 . 64

5.6 Semantic PSM Part 3 . 64

6.1 Model Transformation Framework . 85

6.2 PIM to PSM Transformation Engine . 87

6.3 Model Describing Model Transformations Part 1 88

xi

6.4 Model Describing Model Transformations Part 2 90

6.5 Model Describing Model Transformations Part 3 92

6.6 Model Describing Model Transformations Part 4 95

6.7 Model Describing Model Transformations Part 5 96

6.8 Model Describing Model Transformations Part 6 96

6.9 Model Describing Model Transformations Part 7 97

6.10 Implementing the Model Describing Model Transformations 98

6.11 PIM Service Model . 102

6.12 PSM Service Model . 102

6.13 Abstract Definitions File . 103

6.14 Concrete Definitions File . 103

6.15 Semantic Definitions File . 103

7.1 A∗ Example Client Preferences . 110

7.2 A∗ Example “ServiceA” Description . 111

7.3 A∗ Example “ServiceB” Description . 112

7.4 A∗ Example Search Tree . 113

7.5 A∗ Search Tree Snapshot 1 . 114

7.6 A∗ Search Tree Snapshot 2 . 114

7.7 A∗ Search Tree Snapshot 3 . 115

7.8 A∗ Search Tree Snapshot 4 . 116

7.9 A∗ Search Tree Final Path . 116

7.10 The Service Selection Framework in Workflows 118

8.1 Demonstration Tool’s Architecture . 123

xii

8.2 Tool Snapshot . 124

8.3 Third Party Call PIM Model . 132

8.4 Transform PIM to WSDL Wizard . 133

8.5 A Client’s PIM Model . 135

8.6 Service Selection Demo Wizard . 136

8.7 Service Selection Process Results . 137

A.1 Syntactic PIM Full Version Part 1 . 143

A.2 Syntactic PIM Full Version Part 2 . 144

A.3 Syntactic PIM Full Version Part 3 . 144

A.4 Syntactic PIM Full Version Part 4 . 145

xiii

Chapter 1

Introduction

1.1 Motivation - Problem Description

Services can be defined as entities that add value from enhancing the capabilities of things

(such as customizing, distributing, etc.) and interactions between things. The interpre-

tation of what a service is varies according to the application domain. In the telecom

industry, the connectivity is considered to be a service, in the banking industry, a bank

account is considered to be a service, in the computing field a service is a well-defined API

and so on. Services, within the context of the current thesis, are software components

with a well-defined interface (API) and properties used to describe, discover and invoke

the service. The API of such a service can be accessed over a network protocol.

A technology-specific specialization of a service is a Web service. The World Wide

Web Consortium (W3C)1 defines a Web service as “a software system designed to support

interoperable Machine to Machine interaction over a network”. Web services are frequently

1http://www.w3.org/

1

2 Model Driven Service Description and Discovery Framework for Carrier Applications

just Web APIs that can be accessed over a network, such as the Internet, and executed

on a remote system hosting the requested services2. In the consumer domain, people are

interacting with a variety of heterogeneous devices, such as desktop computers, laptops

(e.g., e-mailing, instant messaging, video conferencing, file transferring), ATMs, etc. In

addition, the emergence of mobile devices, such as cell phones and palmtops, facilitates

key everyday activities of a person [32]. All of these devices have a common characteristic,

that is to provide the desired functionalities to their users, by utilizing a number of external

services including, in some cases, Web services. Other examples of Web services are Google3

and Amazon4 that utilize Web services in order to process client requests on their websites.

In the business domain, the use of service-oriented systems is rapidly replacing the

existing traditional approaches. In particular, a service centric architectural style known

as Service Oriented Architecture (SOA) is the most prominent one. SOA offers a number

of important qualities. It aligns business people with IT people to use the same or similar

terminology. It is the current trend, allowing business people to visualize software under

a different perspective. Software can be treated as higher level services providing abstrac-

tions of what a software component is, facilitating business people in the understanding of

software components. SOA involves three major activities: service provision, service dis-

covery and service consumption. Service discovery, in the context of SOA, has a number

of interesting opportunities such as combining services in workflows, introducing and using

user profiles, introducing a more efficient context of service invocation, and allowing future

enhancements in utilizing service discovery.

However, the core problems of the traditional approaches even after the introduction

2http://en.wikipedia.org/wiki/Web service
3http://www.google.com/
4http://www.amazon.com/

Introduction 3

of the service-oriented systems are unaltered. The underlying technology may change, but

the basic issues remain. There is a plethora of research proposals addressing the issue of

service description and service discovery. Examples of such proposals are DHCP5, UPnP6,

SLP7, UDDI8, X.5009, etc. There is significant work on non-functional semantic discovery

and selection included in [15], [37] and [14]. Although each of the existing proposals

contributes significantly in the area of service description and discovery, there is not yet

an approach that can be considered a strong candidate to become a standard in the near

future. That is the reason we chose to implement our framework in the context of Model

Driven Development (MDD), to enable us to abstract the common aspects of existing

techniques in an abstract model that can be re-deployed according to the requirements

of a business domain, so business doesn’t need to keep changing its code each time the

technology changes.

MDD is the current trend in defining new frameworks and techniques or implementing

new software, because it offers a number of important qualities [59]. First, it is advocated

that it reduces the cost of software development by generating code and artifacts from

models, increasing developer productivity. Second, high-level models are kept free of irrel-

evant implementation detail, making it easier to handle changes in the underlying platform

technology and its technical architecture, thus improving maintainability. Third, it aims to

improve reusability, adaptability and consistency. Fourth, it reduces the risk of error prone

code when thoroughly tried and tested transformations are repeatedly re-used. Fifth, it

improves the stakeholders’ communication, because models are easier to comprehend than

5http://en.wikipedia.org/wiki/Dynamic Host Configuration Protocol
6http://en.wikipedia.org/wiki/Universal Plug and Play
7http://en.wikipedia.org/wiki/Service Location Protocol
8http://en.wikipedia.org/wiki/Universal Description Discovery and Integration
9http://en.wikipedia.org/wiki/X.500

4 Model Driven Service Description and Discovery Framework for Carrier Applications

technology specific artifacts. Sixth, it improves the design communication and allows the

design models to be always synchronized with the implementation. Seventh, it captures the

expertise of the developers more efficiently. Eight, models become important long-term as-

sets of each organization. Finally the developers may start the development process before

the targeted platforms have been decided, accelerating the development process.

The model-driven development of service descriptions is the novelty of the current

thesis.

1.2 Thesis Contributions

This thesis aims to address the aforementioned problems by proposing a model-driven

service description and discovery framework for carrier applications, consisting of the nec-

essary tools and techniques. The major contributions of this thesis are:

1. The design of a syntactic-based service interface description specification; the specifi-

cation defines the syntactic details (e.g., the operations of the service, the parameters

of the operations, etc.) of a service in a service-oriented environment;

2. The design of a semantic-based service description specification; the specification de-

fines the semantic details (e.g., preconditions, quality of service, management policies,

etc.) of a service in a service-oriented environment;

3. The design of a Platform Independent Model (PIM) for service-oriented systems

containing the aforementioned syntactic and semantic specifications; the PIM will

provide the means for a thorough categorization of services based on both their

functional and non-functional characteristics;

Introduction 5

4. The design of a Platform Specific Model (PSM) for Web Services accommodating

the specifications defined in the PIM in a platform-specific manner; the PSM essen-

tially corresponds to an extended WSDL 1.1 metamodel; the extensions contain the

semantic-specific definitions of the metamodel that are not included in the WSDL

1.1 specification;

5. The design and implementation of a transformation model, in the context of OMG’s

Meta-Object Facility (MOF)10, describing the transformations and mappings between

the PIM model and the PSM model; the transformation model was implemented

using the ATL model transformation language;

6. A second transformer, transforming the generated PSM models into WSDL 1.1 source

code; keep in mind that the code will conform to an extended version of the WSDL

1.1 specification because it will include all the semantic information specified for the

service;

7. The design of a PIM model for the definition of a client’s profile including the client’s

location, his/her personal information and preferences;

8. The definition of an adaptive service selection framework; the adaptiveness is added

with the introduction of the semantic information in both the service and the client

descriptions, and, additionally, with the introduction of different policies defining the

service selection process (the algorithm); these policies will be implemented using the

Factory design pattern, allowing the effortless addition of new policies as necessary;

the framework allows the dynamic configuration of the Web Services to meet specific

10http://www.omg.org/mof/

6 Model Driven Service Description and Discovery Framework for Carrier Applications

quality requirements defined by the clients;

1.3 Thesis Layout

The rest of the thesis is organized as follows. Chapter 2 provides a survey of existing

research in areas related to the work presented in this thesis, which includes a discussion

on Model Driven Development (MDD), Service Oriented Architecture (SOA), Semantic

Web, Semantic Web realization initiatives (e.g., Ontologies, WSMF etc.), semantic Web

Service selection and model transformations. Chapter 3 presents the Platform Independent

Model (PIM) for service-oriented systems (PIM Lite), specified for the purposes of this

thesis. The description of the full version of our PIM is contained in Appendix A. Chapter

4 provides the description of the semantic service description framework, used to define

semantic specific information for both the services and their clients. Chapter 5 describes

the Platform Specific Model (PSM) for Web Services in carrier applications, specified for

the purposes of this thesis. Chapter 6 discusses the model transformation framework that

includes two phases: the first phase includes the transformation from PIM to PSM and the

second phase includes the transformation from PSM to source code. Chapter 7 presents the

service selection framework. Chapter 8 provides a case study implementing everything we

propose, as a proof of concept. Finally, Chapter 9 presents the conclusions and discusses

avenues for future work.

Chapter 2

Related Work

2.1 Model Driven Development

One of the major problems, the software engineering community faces, is software com-

plexity. As stated in [48], this inherent complexity is enhanced from the contemporary

competitive market pressures and the continuous pursuit of greater productivity, under

the pressure of tight delivery deadlines. As the demands of the modern society and indus-

try grow every day, the complexity of the software will increase with them.

Everyone who has programming experience is aware of how demanding it is to write

code for complex applications. It is even more demanding and challenging to understand

code written by another programmer and sometimes it is even difficult to understand code

written by you some time ago. In addition, large industrial software programs need to

be fault tolerant, meaning that they should be able to continue their operation in the

presence of programming faults. Being fault intolerant would mean that the simplest error

inside the code could cause unpredictable effects in the behavior of the program itself.

7

8 Model Driven Service Description and Discovery Framework for Carrier Applications

When a software program becomes complex, a programmer would turn to abstracting some

components in the code in order to make it more readable and more easily maintainable.

This is where MDD comes into play facilitating this task.

Model driven development was introduced as a solution to the aforementioned prob-

lems. Initially, the software engineering community questioned the practical value and

the potential of software modeling. It was considered just another way to introduce and

communicate high-level design ideas and that its only use would have been in the early

stages of the development [18]. Once these stages would have passed the models would act

as documentation without any further value. During the last few years however, this trend

has changed and MDD has been exploited more efficiently and it is rapidly maturing.

The essential artifacts in model driven development are the models. They play a crucial

role in the software development process. MDD provides the framework to transform high-

level software models to other high-level or lower-level software models. In practice, this

is used to transform high-level Platform Independent Models (PIMs) to other high-level

Platform Specific Models (PSMs). Moreover, these PSMs can then be transformed to

source code, as source code itself can be considered a certain type of a model. The weight in

this case falls to the transformers that handle the transformations between the models. An

obvious advantage of this approach, assuming the transformers are implemented correctly,

is that all the models, participating in the transformations, and the source code are in

complete synchronization. Additionally, the programming process is radically accelerated

and effectively assisted. The most important and dominant initiative supporting MDD

is UML 21. An engineering model of some system is an abstraction of that system that

highlights some of its properties from a specific viewpoint. As stated in [48], an engineering

1http://www.uml.org/

Related Work 9

model should satisfy at least four requirements: it must hide all irrelevant information; it

must be easily understandable; it must be accurate; finally, it must allow anyone studying

it to predict the behavior of the system.

What makes MDD unique is that it raises the level of abstraction of the specifications,

as it brings the specifications closer to the problem domain and further away from the

implementation domain, it raises the level of automation, allowing the transformation from

high-level model constructs to source code, and, finally, it increases the product quality

and the productivity of development. These were the reasons we chose to adopt MDD in

our framework.

2.1.1 Model Transformations

Model transformations are essential in Model Driven Development. There are two major

model transformation types, namely model-to-model and model-to-text transformations.

However, since text can be considered a type of model, both categories, essentially, fall

under the model-to-model category. A model is an abstraction of a system or its environ-

ment, or both. In software engineering, the term model is often used to refer to abstractions

above program code, such as requirements and design specifications. Due to the fact that

models are an abstraction mechanism, there is a wide range of software development ar-

tifacts as potential transformation models, such as UML models, interface specifications,

data schemas, component descriptors, and program code. A very good graphical notation

of what is included in a model transformation is provided in [10].

Figure 2.1 provides an overview of the main concepts involved in model transformations.

In the example, a simple transformation engine reads an input model conforming to a source

10 Model Driven Service Description and Discovery Framework for Carrier Applications

Transformation
Engine

Source Metamodel Transformation
Definition

Source Model

Target Metamodel

Target Model

Refers to Refers to

Reads Writes

Conforms to Conforms toExecutes

Figure 2.1: Basic concepts of model transformation

metamodel, and writes a target model conforming to a target metamodel, according to the

transformation rules defined in the transformation definition module. A transformation is

defined with respect to the metamodels. The transformation definitions, executed by the

transformation engine, contain rules specifying the transformations (mappings) from the

elements of the source metamodel to the elements of the target metamodel. In general, a

transformation may have multiple source and target models.

Some of the applications of model transformations include [10]: generating lower-level

models, and eventually code, from higher-level models; mapping and synchronizing among

models at the same level or different levels of abstraction; creating query-based views

of a system; model evolution tasks such as model refactoring; and finally, reverse engi-

neering of higher-level models from lower-level models or code. The current standard for

model transformations is QVT (Queries/Views/Transformations) [23] defined by the Ob-

ject Management Group (OMG)2. Although there have been many approaches to model

transformations over the last three years, there are no industrial-strength and mature

model-to-model transformation systems available. A very thorough and extensive survey

is presented in [10]. There is a wide variety of existing model transformation approaches.

2http://www.omg.org/

Related Work 11

The most important ones are the following:

• VIATRA (VIsual Automated model TRAnsformations) framework [58]. It is the core

of a transformation-based verification and validation environment for improving the

quality of systems, designed using the UML, by automatically checking consistency,

completeness, and dependability requirements.

• Kent Model Transformation language [3]. This language aims to be a declarative

specification language, with the option to provide constructive parts if required. The

semantics of the language are a combination of relations (OCL relations) and terms

from OMG’s QVT. It provides a Model Driven Development Environment in which

Models and Transformers may be manipulated as first class entities.

• ATL (Atlas Transformation Language) [30]. A simple but powerful Java-like trans-

formation language. A very popular approach. This is the language we used to

describe our model-to-model transformations.

• Kermeta [41]. Transforms a MOF-compliant source model (conforming to a MOF

metamodel) to a MOF-compliant target model (conforming to a MOF metamodel).

The transformations are specified with a transformation model.

• The Core, Relations, and Operational languages, described in the final adopted QVT

specification [23]. QVT (Queries/Views/Transformations) is a standard for model

transformations defined by the Object Management Group. The QVT standard

only addresses model-to-model transformations. The models must conform to any

MOF 2.0 metamodel. All transformations of type model-to-text or text-to-model are

presently outside the scope of QVT.

12 Model Driven Service Description and Discovery Framework for Carrier Applications

• Andro-MDA [1]. An extensible generator framework that adheres to the Model

Driven Architecture (MDA) paradigm. It enables models from UML tools to be

transformed into deployable components for various platforms (e.g., J2EE, Spring,

.NET etc.). AndroMDA comes with a host of ready-made cartridges that target to-

day’s development toolkits like Axis, jBPM, Struts, JSF, Spring and Hibernate. It

also contains a toolkit for building your own cartridges or customize existing ones.

• openArchitectureWare (oAW) [2]. A modular MDA/MDD generator framework im-

plemented in Java. It supports parsing of arbitrary models, and a language family

to check and transform models as well as generate code based on them. It has strong

support for EMF (Eclipse Modeling Framework) based models but can work with

other models, too (e.g., UML2, XML or simple JavaBeans). At the core there is a

workflow engine allowing the definition of generator/transformation workflows. A

number of pre-built workflow components can be used for reading and instantiating

models, checking them for constraint violations, transforming them into other models

and then finally, for generating code.

• Fujaba (From UML to Java And Back Again) [43]. It supports the generation of Java

source code from UML models, producing an executable prototype. In addition, it

offers reverse engineering (to some extend so far, not for productive use), so that

Java source code can be parsed and represented within UML.

• JET (Java Emitter Templates) [44]. A powerful tool for generating source code. It

is part of Eclipse Modeling Framework (EMF) project. With JET you can use a

JSP-like syntax (actually a subset of the JSP syntax) that makes it easy to write

templates that express the code you want to generate. JET is a generic template

Related Work 13

engine that can be used to generate SQL, XML, Java source code and other output

from templates. Another popular approach. This approach was used in our model-

to-text transformations.

Since it is not our purpose to provide a survey of the existing techniques, for more infor-

mation please refer to the survey paper [10].

2.2 Service Oriented Architecture

Service Oriented Architecture3 is an architectural style that gains great momentum inside

the software engineering community. SOA offers a number of desirable properties in the

business domain [31], as it offers loosely coupled, business-oriented, networked services,

which enable flexibility and interoperability. We have to note that these properties where

offered in the past by technologies such as CORBA4 as well.

Although, SOA predates Web Services, currently SOA and Web Services are linked

together. An SOA architecture may contain Web Services, which are well defined and

independent of the state of other Web Services. These services can communicate with

each other, passing messages, using various communication protocols such as SOAP5. The

desired functionalities are either offered by standalone services or groups of services that

collaborate with each other. However, SOA does not depend on Web Services. In addition

to the services, in SOA, there are the service consumers. Each Web Service provides a

description of its functionalities (usually using WSDL), stored in a repository, and the

3http://en.wikipedia.org/wiki/Service-oriented architecture
4http://www.corba.org/
5http://www.w3.org/TR/soap/

14 Model Driven Service Description and Discovery Framework for Carrier Applications

candidate consumers of these Web Services chose the appropriate Web Services according

to their needs. SOA is currently considered a very modular and well-defined architecture.

2.3 Semantic Web

In the context of the current thesis, the technologies composing the traditional Web Ser-

vices Technology Stack are the following [19]: Simple Object Access Protocol (SOAP),

Web Service Description Language (WSDL) and Universal, Description, Discovery and In-

tegration (UDDI). SOAP enables the communication with a Web Service. WSDL describes

the Web Service interface6. UDDI is a repository enabling publishing and discovering of

Web Service specifications and capabilities7. However, none of these technologies offers

formal semantic descriptions causing the tasks of discovering, selecting, composing, and

binding of Web Services to require manual human intervention. In addition, none of these

technologies is mandatory.

Tim Berners-Lee introduced the concept of Semantic Web in 2001. The vision of

Semantic Web was to act as a complement for the current Web, which is mostly under-

standable by humans [56]. The intention was to extend the web information in a way to

be interpretable and recognizable by machines. By adding semantics in the web content

in a standardized way, the machines would be able to understand the content and use it

as needed. The application range of Semantic Web is vast, and as a result it has attracted

a lot of research and studies around this field. The standard fundamental building blocks

of semantic-based systems are the domain specific ontologies. The current standard for

6http://www.w3.org/TR/wsdl
7http://www.uddi.org/

Related Work 15

specifying ontologies is the Web Ontology Language (OWL)8, issued by World Wide Web

Consortium (W3C)9.

In a service-oriented environment, the architecture may include Web Services. The

current standard for describing Web Services is the Web Services Description Language

(WSDL), issued also by W3C. However, WSDL can be used only for the syntactic descrip-

tion of a Web Service. Missing semantic information creates a bottleneck in automating

the discovery, invocation, composition and contracting of Web Services. Semantic Web

can play a crucial role in automating these activities. By using ontologies or other means,

we are able to add semantics to our Web Services and as a result take a step forward

automating the discovery, invocation, composition, and contracting of Web Services. With

this way, we advance from Web Services to Semantic Web Services. In the next section

we will discuss why we didn’t eventually use ontologies in our framework, but instead we

chose to extend the WSDL to support semantic-specific information.

Unfortunately, semantic Web Services do not currently receive the necessary attention

from the software engineering community as stated in [27]. It is strongly suggested that the

functionalities offered by the Web Services should be semantically annotated, in addition

to adding semantics to the data created or consumed by the Web Services. Even if the

Web content was somehow perfectly annotated it would have been insufficient to enable the

Semantic Web vision, not only by the lack of machine access to Web content, but rather

the lack of content itself and additionally the dependence of the content to the state of the

business offering the content. Although ontologies seem to be a fairly efficient approach

towards specifying Semantic Web Services, in the next section we will explain why we chose

8http://www.w3.org/TR/owl-features/
9http://www.w3.org/

16 Model Driven Service Description and Discovery Framework for Carrier Applications

a different approach.

2.4 Semantic Web Realization Initiatives

In this section we will present the most important contemporary initiatives to annotate

semantically the web related content. We must clarify in advance that none of these

approaches is a standard until the time of this writing. In this respect, we propose an

approach that is an amalgamation of the most prominent specification protocols to se-

mantically annotate Web content. Our intention is not to provide an exhaustive list of

Web Service-related semantic properties but to provide an initial list of properties and

most importantly provide the framework and the foundations to enable the extension of

our approach to accommodate additional semantics that another researcher may come up

with. This is the reason why the proposed framework is fully extensible. There are a num-

ber of available proposals in an effort to establish an efficient approach to add semantics.

One way of adding semantic-specific information is through the use of ontologies. There

are three approaches in this direction, namely OWL-S, WSMF and WSMO. Another ap-

proach would be to extend WSDL with semantic-specific information. There are also two

approaches in this area, namely WSDL-S and SAWSDL. We will present these approaches

in the following sub-sections.

2.4.1 Ontologies

The term “ontology” has been thoroughly discussed and explained in nowadays, thus we

will provide a brief definition of the term based on the definition provided in [25]. Ontol-

ogy is defined as an explicit specification of a conceptualization. The term originates from

Related Work 17

philosophy, and it is used to describe anything that has existence and can be represented.

An ontology contains entities and relationships associating different entities. The associ-

ated entities may belong to the ontology that is been specified, or may belong to different

ontologies. Additionally, there exist formal definitions describing the entities, assigning

specific meanings to each entity, as well as formal axioms constraining the interpretation

and defining the well-formed use of the terms specified inside the ontology. Ontologies can

be considered as well-defined vocabularies used in the representation and sharing of knowl-

edge. The current standard for the definition of ontologies is Web Ontology Language

(OWL).

2.4.2 OWL-S

OWL-S [36] is a Web Service ontology, which enables Web Service providers to specify

their Web Services both syntactically and semantically, by supplying them with a core

set of markup language constructs. Using OWL-S, the Web Service descriptions become

interpretable by the computers, enabling the automation of Web Service tasks such as,

Web Service discovery, execution, composition and interoperation. OWL-S extends Web

Ontology Language (OWL), which is the current standard for specifying ontologies. It is

considered to be the most widely accepted and adopted language for specifying semantic

Web Service descriptions, it is a well-researched approach, and it is adopted by numerous

researchers in both academia and industry. It seems to be a very good candidate, if not

the best one, to become a standard in the future. In a nutshell, OWL-S contains three sub-

ontologies: the service profile ontology, presenting “what the service does”, the abstract

definition of the service; the service model ontology describing “how the service works”, the

18 Model Driven Service Description and Discovery Framework for Carrier Applications

concrete definition of the service; finally, the service grounding ontology, presenting “how

the service is accessed”. The service profile ontology can participate in service advertis-

ing, constructing service requests and matchmaking, the service model may participate in

service invocation, enactment, composition, monitoring and recovery, whereas the service

grounding ontology associates the service with specific communication protocols such as

SOAP, providing all the necessary information. There is an overlap between OWL-S and

WSDL and thus these two specifications can be combined in a way that would produce a

more detailed and accurate description of a Web Service.

2.4.3 Web Service Modeling Framework

Web Service Modeling Framework (WSMF) [17] is a modeling framework for describing

Web Services. It includes two basic principles: strong decoupling of its components and the

presence of a strong mediation service facilitating the communication between its compo-

nents. WSMF targets mainly e-commerce applications. WSMF consists of four elements:

ontologies, that provide the terminology used by the rest of the components; goal repos-

itories, defining the issues that should be addressed by the Web Services; Web Service

descriptions; and finally, mediators, that bypass interoperability problems, such as medi-

ation of data structures when a Web Service provides an input for a second Web Service,

however, not in the right format. Since OWL-S seems to be dominating in this area we will

not further elaborate on the description of WSMF. For more information you can consult

[17].

The Web Service Modeling Ontology (WSMO) [12] is based on WSMF and it is an

ontology used in describing semantic Web Services. The ontology refines and extends

Related Work 19

WSMF, providing ontological specifications for the core elements of semantic Web Services.

2.4.4 WSDL-S

WSDL-S [4] is currently at a proposal stage, issued by the University of Georgia, aiming

to add semantic expressiveness in Web Service descriptions, which is essential to represent

the requirements and capabilities of Web Services. It acknowledges the importance of

adding semantics in the Web Service descriptions, because these semantics would improve

software reusability and discovery, facilitate the composition of Web Services and enable

the integration of legacy applications as part of business process integration. It recognizes

the lack of semantic expressiveness in WSDL, due to the fact that WSDL offers only

syntactic expressiveness, and proposes the exploitation of the extensibility of WSDL, by

introducing extensibility elements in various parts of a WSDL document. They assume that

formal semantic models for Web Services already exist and they propose to reference these

external definitions from inside the WSDL document using extensibility elements. They

add semantic information in the inputs, outputs and operations of a Web Service. They

additionally introduce the concepts of preconditions and effects for operations, Web Service

categorization, and finally, two attributes, “modelReference” and “schemaMapping”. The

attribute “modelReference” is used to specify the association between a WSDL entity

and a concept in some semantic model. It can be added to a complex type, element,

operation, as well as to the extension elements (precondition and effect). The attribute

“schemaMapping” is added to XSD elements and complex types, for handling structural

differences between the schema elements of a Web Service and their corresponding semantic

model concepts.

20 Model Driven Service Description and Discovery Framework for Carrier Applications

They argue that their approach is better than OWL-S for two reasons: firstly, the users

will be able to specify both syntactic and semantic information from inside the WSDL

document, which is an advantage since the developer community is already familiar with

WSDL; secondly, their approach is agnostic to ontology representation languages, enabling

the users to chose the language they prefer, which could be, for example, UML and not

OWL, unlike OWL-S that imposes OWL as the ontology language. Although this approach

is quite similar to ours, it differs in the way it introduces new semantics. Our approach

is totally ontology agnostic, and it allows the users to extend our schema that defines

the semantic properties of the Web Services according to their needs. Nevertheless, these

properties could be as well specified inside an ontology. However, the advantages of the

WSDL-S language are definitely accurate and valid for our approach as well.

2.4.5 Semantic Annotations for WSDL

SAWSDL [16] initiative was started by W3C in April 2006 and is still in progress. It is the

successor of WSDL-S. The goal of this initiative is to develop a framework to enable the

semantic annotation of Web Services. It exploits the WSDL 2.0 extension mechanisms to

achieve its goals. It recognizes the ambiguity when describing Web Services using WSDL,

due to the fact that it is possible to have two Web Services with similar WSDL descriptions

offering totally different services. They argue that this ambiguity can be resolved by adding

semantic annotations inside the WSDL documents where necessary. SAWSDL is based on

WSDL-S and it, likewise, offers mechanisms for referencing concepts defined in external

semantic models. As a result, like WSDL-S, SAWSDL is agnostic to semantic represen-

tation languages. In addition, it enables semantic annotations for Web Services not only

Related Work 21

for discovering them but also for invoking them. SAWSDL introduces three extensibility

attributes to WSDL 2.0 elements: the attribute “modelReference” that specifies the asso-

ciation between a WSDL component and a concept in some semantic model; this attribute

is used to annotate XML Schema complex type definitions, simple type definitions, element

declarations, and attribute declarations as well as WSDL interfaces, operations, and faults;

finally, two additional attributes are introduced, named “liftingSchemaMapping” and “low-

eringSchemaMapping”, that are added to XML Schema element declarations, complex type

definitions and simple type definitions for specifying mappings between semantic data and

XML, that can be used during service invocation.

2.4.6 Other approaches

In [11], the author introduces a lightweight WSDL extension for the description of QoS

characteristics of a Web Service. His approach is the following: he creates a WSDL meta-

model in accordance to the WSDL specification (the XML schema of the specification); he

introduces terms related to QoS characteristics for Web Services, using various resources

from the literature; he creates classes corresponding to these terms; finally he adds these

classes in his metamodel, extending the WSDL metamodel he created initially. The new

metamodel is called Q-WSDL (QoS-enabled WSDL).

In [55], the authors introduce an automated software tool that uses model-driven ar-

chitecture (MDA) techniques to generate an OWL-S description of a Web Service from a

UML model. The transformations are performed using XSLT10.

10http://www.w3.org/TR/xslt

22 Model Driven Service Description and Discovery Framework for Carrier Applications

2.5 Semantic Web Service Selection

Initiatives such as OWL-S, WSMF, WSMO, WSDL-S and SAWSDL, that were discussed

in the previous paragraphs, provide a framework for semantically annotating Web Services,

thus enabling the semantic discovery and selection of Web Services, omitting, however, to

propose possible concrete selection mechanisms. Service selection is distinct from service

discovery. Service discovery involves the discovery of Web Services published in registries

such as UDDI. Service selection involves the algorithms that are followed in order to choose

(select) a Web Service among a number of available Web Services after these Web Services

have been discovered according to some criteria. There are numerous proposals regarding

selection mechanisms in the literature and we will briefly discuss the most important ones.

The “Matchmaker” system, a semantic Web Services discovery system, is introduced in

[54]. The system offers a semantic matching algorithm comparing the IOPEs (Input, Out-

put, Precondition and Effect in Profile Ontology of OWL-S) of Web Service descriptions,

stored in a repository, with those in a client’s request. However, the preconditions and

effects are still not efficiently integrated into the algorithm. It introduces semantic match-

ing degrees, namely “exact” (if the requested and the advertised concepts are the same

or if the requested concept is an immediate subclass of the advertised concept), “plugIn”

(if the advertised concept subsumes the requested concept, then the advertised concept

is assumed to encompass the requested one or in other words the advertised concept can

be plugged instead of the requested one), “subsumes” (if the requested concept subsumes

the advertised one, then the provider may or may not completely satisfy the requester)

and “fail” (no subsumption relation between the requested and the advertised concepts).

The search algorithm is based on a capability-based search mechanism [53], enabled by

Related Work 23

OWL-S. However, the algorithm is primarily focused on the semantic similarities between

Web Service descriptions and requests containing a single input and a single output. As

a result, it lacks in handling multiple inputs and outputs and it is not able to provide

alternative Web Services that may match (partially or totally) the request.

The algorithm introduced in [54] is extended and enhanced by its creators in [52]. They

present an OWL-S Integrated Development Environment (OWL-S IDE) [51], an eclipse-

based development environment, which provides a development and execution environment

for OWL-S. The tool combines existing Web Service frameworks with semantic web frame-

works. It supports development of OWL-S descriptions, as well as advertisement, discovery,

and execution of OWL-S Web Services. They extend UDDI registry with OWL-S discovery

features. The enhanced algorithm includes the newly introduced OWL-S service product

and service classification properties. The service classification property is used to represent

the categories to which Web Services belong, utilizing OWL concepts to represent their

categories as opposed to syntactic codes (string-based) used in UDDI, thus offering more

efficient matching.

In [42], an annexed algorithm is proposed that extends the algorithm presented in [54],

by arranging the returned Web Service descriptions according to the usability of these

Web Services. It can handle multiple inputs and outputs and is able to return alternative

Web Service descriptions when more than one Web Services are matched against the user’s

request. The algorithm includes three steps: the first step involves the semantic matching

of the Web Service descriptions with the client’s request, and it is the same as the one

used in the “Matchmaker” system; in the second step, the algorithm predicates the input

usability of each Web Service by comparing the number of the required (requested) inputs

against the number of the Web Service inputs, meaning that if these numbers differ most

24 Model Driven Service Description and Discovery Framework for Carrier Applications

probably the Web Service will differ functionality-wise compared to the user’s requested

functionality. The same idea is followed in calculating the output usability of each Web

Service; finally, in the third step the matched Web Service descriptions are arranged based

on their semantic matching and their usability.

A conceptual distributed multi-registry service discovery architecture that supports

discovery of semantic Web Service descriptions in dynamic environments is proposed in

[20]. It aims to enable the deployment of a coherent, bandwidth-efficient, and robust

service discovery infrastructure for both Local Area Networks (LANs) and Wide Area Net-

works (WANs). This work, however, is preliminary. By dynamic environments they mean

surroundings that change frequently, in which both the service descriptions and service

topologies may change. They acknowledge the need of utilizing semantic service descrip-

tions when selecting services, as a more efficient and robust approach. They additionally

argue that there is no coherent infrastructure for Web Service discovery that supports

the contemporary needs. The proposed system basically consists of three different roles,

namely client nodes, service nodes, and registry nodes, matching the three roles known

from the service-oriented architecture, namely consumer, provider, and registry. These

nodes of course may be inter-connected to each other. It may be also possible for nodes to

engage in several roles simultaneously. They aim to build a generic, layered architecture

that can be used with different registry information models and languages. Consequently,

from the service selection perspective, they propose that it should be possible to use differ-

ent query evaluation or matchmaking strategies, as well as registry cooperation strategies,

without, however, proposing a concrete strategy.

The development of a mixed semantic Web Service discovery and composition frame-

work is presented in [45]. The framework has been validated in the context of SAP’s Guided

Related Work 25

Procedures11. The framework does not attempt to fully automate all decisions. It assumes

the lack of rich and accurate annotations of Web Services and client requests, thus offering

assistance by suggesting solutions, identifying inconsistencies, and completing some of the

user’s decisions. The functions offered by the framework have the form of services. These

services are namely Semantic Discovery, Semantic Dataflow Consolidation and Semantic

Control Flow Consolidation. Semantics are expressed using ontologies, which are specified

in OWL, while the services are described using a slightly modified fragment of OWL-S.

The users can enter desirable descriptions of services using a wizard that allows users to

specify desired service profile attributes (e.g., IOPEs) in relation to loaded ontologies. The

underlying reasoning framework is a combination of semantic reasoning functionality and

of service composition planning functionality based on the GraphPlan algorithm12.

A framework for Semantic Web Service discovery and planning is proposed in [8]. It

is based on currently emerging technologies such as ontological knowledge bases, OWL,

OWL-S, WSDL, Description Logic (DL)13, etc. Two knowledge bases are created: a back-

ground knowledge base (a domain ontology specified in OWL) and an OWL-S Web Service

knowledge base. The background knowledge base defines concepts and terms used for de-

scribing Web Services. The Web Service knowledge base stores Web Service descriptions.

An agent uses the OWL-S API [49] to extract Web Service metadata, and applies a DL

inference engine, called Racer [26], for reasoning with the metadata with respect to a given

background knowledge base. Reasoning tasks performed by Racer include profile match-

making, input/output subsumption testing (comparing and matching them semantically),

and preconditions/effects analysis, which are basic mechanisms for Web Services discovery

11http://www.sap.com/solutions/netweaver/cafindex.epx
12http://www.cs.cmu.edu/ avrim/graphplan.html
13http://en.wikipedia.org/wiki/Description logic

26 Model Driven Service Description and Discovery Framework for Carrier Applications

and invocation planning. The authors provide a prototype system as well.

An ontology-based rating model for service quality, facilitating the semantic Web Ser-

vices discovery, is proposed in [50]. The ratings will be provided by reliable third-party

organizations. Service providers will describe their services using OWL-S, which includes

a mechanism for adding ratings. These descriptions will be used in matchmaking along

with the service consumers’ requests and preferences. Service consumers will specify their

desired set of rating classifications by using rating classification terms defined in the rating

model. The matching algorithm can be described as follows: a single rating classification

P could be a match to a single rating classification Q in terms of exact match, specialized

match, generalized match, and failed match, if P is equivalent concept to Q, P is subsumed

by Q, Q is subsumed by P, and P has none of the former relations mentioned with Q

exist, respectively. In addition, the service consumers can assign a priority to each rating

classification in accordance with their preferences. The algorithm will return a ranked set

of available services that will pass the matchmaking procedure.

Important work on service selection is also presented in [15] and [37]. A general ob-

servation from searching in the literature for semantic Web Service selection algorithms

is that most research efforts are focused in specifying a framework realizing the semantic

Web Service discovery and composition without paying attention to the actual selection

algorithms that will be used during the Web Service selection process. Most importantly

there is no de-facto standard integrating the existing technologies together for automation

or semi-automation of Web Services discovery. The novelty in the current thesis, com-

pared to the proposals in the literature, comes from adopting the MDD initiative in our

framework.

Chapter 3

PIM for Carrier Applications

Model transformations are destined to be applied between source and target models. In this

respect, each of these models has to conform to a schema or a domain model (metamodel).

In this chapter we present the domain model that the service description source models

have to conform to. The metamodel is a Platform Independent Model (PIM). A PIM is

a model of a software or business system that is independent of the specific technological

platform used to implement it1.

3.1 Platform Independent Model UML Diagrams

Our PIM was designed and implemented especially for the needs of service-oriented car-

rier applications. The metamodel was compiled by analyzing the abstract classes of the

CORBA [21], .Net [39], J2EE [5], and WSDP [40] frameworks, the EDOC [22], and IBM’s

Service UML profile [29]. In addition, we consulted a survey of adaptive middleware

1http://en.wikipedia.org/wiki/Platform-independent model

27

28 Model Driven Service Description and Discovery Framework for Carrier Applications

provided in [47]. However, due to the fact that the PIM was created by analyzing and

abstracting the concepts of a wide variety of technologies, some of the concepts defined

in it were not needed in our framework, since we targeted, on the platform-specific side,

the Web Services for carrier applications. This is the reason why we distinguish between

two PIM versions namely PIM Full Version and PIM Lite Version. The lite version of our

PIM is of course a subset of the full version, however, for completeness we provide the

diagrams depicting both versions. Nevertheless, the full version of our PIM can be used in

other research approaches dealing with carrier applications. The full version of the PIM is

shown in Appendix A in figures A.1, A.2, A.3 and A.4. The PIM concepts not used in our

framework will not be described in this chapter, however they are provided in Appendix

A. The lite version of our PIM is shown in figure 3.1.
<< ecoremodel >>

PIM

Exception

- name :String

TransactionException

DataElement

- name :String

InOutOutIn

Parameter

Service

- name :String
- documentation :String [0..1]

Operation

- name :String
- parameterOrder :String [0..1]

Client

packageContents+

*
{ordered }

Element

DataElementType

- name :String

ProcessComponent

Schema

- prefix :String
- namespace :String
- location :String [0..1]

PackageContentPackage

- targetNamespace :String

dataElementTypes+
*

{ordered }

parameters+*{ordered }

services+

1..*
{ordered }

operations+

*
{ordered }

transactionExceptions+

*

*type+

*type+

0..1

Figure 3.1: Syntactic PIM Lite Version

PIM for Carrier Applications 29

The root element of the PIM is the “Package” class, representing the notion of a package

containing entities. The package must have a namespace attached, which is a unique

identifier of its definition. A package may contain operations, services, clients (all subclasses

of “ProcessComponent” class, that represents active processing entities), or schemas. A

client is an entity that may query for, select, or use services. A service must have a

name, and may provide a brief documentation of its role. A service contains operations,

however more that one services may use an operation. An operation must have a name,

and contains input, output and/or input/output parameters, and may throw transaction

exceptions. An operation may specify the order of its parameters, when it is used with an

RPC-binding, because it might be useful to be able to capture the original RPC function

signature. Both parameters and transaction exceptions must have a name and a type.

We made the exception type attribute optional in case someone will introduce a different

type of exception besides transaction exceptions in the future. However, for a transaction

exception, the type attribute is necessary. The parameter and transaction exception types

are contained in schemas. A schema must have a prefix, a namespace and may indicate the

physical location of the file containing it. If the location is omitted, it means the schema is

available on the World Wide Web. This model can be extended for a specific application

domain by subclassing the “Service” class. For example, for carrier applications we can

specialize the “Service” class with services obtained from the Parlay X specification of Web

services for the telecom domain.

We have to make clear that the domain model (metamodel), shown in figure 3.1, as well

as its full version presented in Appendix A, describes the syntactic (functional) entities

of our framework. The metamodel specifying the semantic (non-functional) entities is

presented in Chapter 4. The two metamodels (syntactic and semantic) are complementary

30 Model Driven Service Description and Discovery Framework for Carrier Applications

and should be considered as one.

3.2 Platform Independent Model Documentation

We will now provide the documentation of the lite version of our PIM to facilitate the

comprehension of the proposed model.

Table 3.1: Syntactic PIM Lite Version Documentation

Class Name Package.
Semantics Defines a structural container for “top level” model elements.
Extends None.
Attributes targetNamespace: String (required)

The namespace of the service definition.
Associations PackageContent (zero or more)

The model element(s) within the package.

Class Name PackageContent (abstract).
Semantics An abstract capability that represents an element that may be placed

in a package and thus referenced from other elements of the package.
Extends None.
Attributes None.
Associations None.

Class Name ProcessComponent (abstract).
Semantics A ProcessComponent represents an abstract active processing unit (it

does something).
Extends PackageContent .
Attributes None.
Associations None.

Class Name Exception (abstract).
Semantics When defining a service it is useful to declare the exceptions that may

be thrown or events that may occur as a result of an erroneous state.
Continued on next page

PIM for Carrier Applications 31

Table 3.1 – continued from previous page
Extends None.
Attributes name: String (required)

The name of the exception.
Associations DataElementType (zero or one)

When the exception is a data type then this association is used to define
its type (e.g., XML schema element, simpleType, complexType etc.).

Class Name TransactionException.
Semantics The exceptions thrown during the execution of transactions.
Extends Exception .
Attributes None.
Associations None.

Class Name Schema.
Semantics Represents an external imported XML schema declaration to be used

inside a WSDL document. The elements of a schema are used when
defining a service, for example when defining the parameters of the
operations.

Extends PackageContent .
Attributes prefix: String (required)

The prefix used when referencing the schema.
namespace: String (required)
The URI representing the “targetNamespace” attribute of a schema.
location: String (optional)
When importing a schema as an external document the “location” at-
tribute is used to indicate the location, in the local file system, of the
file containing the schema. If it is omitted it means that the schema is
accessible over the Internet.

Associations DataElementType (zero or more)
The XML schema “element” element(s) declared inside the schema.
These elements will be used when defining the service.

Continued on next page

32 Model Driven Service Description and Discovery Framework for Carrier Applications

Table 3.1 – continued from previous page
Class Name Element.
Semantics Represents the “element” element in an XML schema document. The

“complexType” and “simpleType” elements define data types, not ac-
tual data elements. The distinction between these two is analogous to
the difference between a class and an instance of that class. The data
elements are defined using the “element” element.

Extends DataElementType .
Attributes None.
Associations None.

Class Name Service.
Semantics In a service-oriented architecture, we need a clear understanding of the

term service. This is achieved by defining the class Service.
Extends ProcessComponent .
Attributes name: String (required)

The name of the service.
documentation: String (optional)
A brief documentation (description) of the service.

Associations Operation (zero or more)
The operation(s) of the service.
PreConditions (zero or one)
The preconditions of the service that need to be satisfied before the
service is executed. This is part of the semantic information of the ser-
vice and as a result the association is shown in the semantic metamodel
presented in chapter 4, in figure 4.1.
ServiceContext (zero or one)
The context of the service. This is part of the semantic information
of the service and as a result the association is shown in the semantic
metamodel presented in chapter 4, in figure 4.1.
PointsOfAvailability (zero or more)
The location(s) the service is available. This is part of the semantic
information of the service and as a result the association is shown in
the semantic metamodel presented in chapter 4, in figure 4.2.

Continued on next page

PIM for Carrier Applications 33

Table 3.1 – continued from previous page
ServiceLocation (zero or one)
The physical location of the service. This is part of the semantic in-
formation of the service and as a result the association is shown in the
semantic metamodel presented in chapter 4, in figure 4.2.

Class Name Operation.
Semantics Represents an operation of a service.
Extends ProcessComponent .
Attributes name: String (required)

The name of the operation.
parameterOrder: String (optional)
Operations do not specify whether they are to be used with RPC-like
bindings or not. However, when using an operation with an RPC-
binding, it is useful to be able to capture the original RPC function
signature. For this reason, an operation may specify an order of pa-
rameter names via the “parameterOrder” attribute. The value of the
attribute is a list of message part names separated by a single space.
Note that this information serves as a “hint” and may safely be ignored
by those not concerned with RPC signatures. Also, it is not required
to be present, even if the operation is to be used with an RPC-like
binding.

Associations Service (one or more)
The service(s) containing the operation.
Parameter (zero or more)
The parameter(s) associated with the operation.
TransactionException (zero or more)
The transaction exception(s) associated with the operation.

Class Name DataElement (abstract).
Semantics DataElement is the abstract super type of all parameters and global

data sources defined and used by the service. It defines some kind of
information.

Extends None.
Attributes name: String (required)

The name of the data element.
Continued on next page

34 Model Driven Service Description and Discovery Framework for Carrier Applications

Table 3.1 – continued from previous page
Associations DataElementType (exactly one)

The type of the data element.

Class Name DataElementType (abstract).
Semantics DataElementType is the abstract super type of all elements that can

be types of a DataElement.
Extends None.
Attributes name: String (required)

The name of the type.
Associations None.

Class Name Parameter (abstract).
Semantics The abstract super type of the parameters of an operation.
Extends DataElement .
Attributes None.
Associations None.

Class Name InOut.
Semantics Represents the “in/out” parameters. If a parameter appears in both

the input and output, it is an “in/out” parameter. The value of an
“in/out” argument is sent in the input and is modified from the reply.
An “in/out” argument is therefore both an “in” and “out” argument.

Extends Parameter .
Attributes None.
Associations None.

Class Name In.
Semantics Represents the “in” parameters. If a parameter appears in only the

input, it is an “in” parameter. “In” arguments are sent in the input
but do not change as a result of the method invocation. This is a direct
mapping of the pass-by-value semantics of arguments in Java method
calls.

Extends Parameter .
Attributes None.
Associations None.

Continued on next page

PIM for Carrier Applications 35

Table 3.1 – continued from previous page
Class Name Out.
Semantics Represents the “out” parameters. If a parameter appears in only the

output message, it is an “out” parameter. “Out” arguments appear
in the method signature, but their value is not sent with the input
message. However, a new value for the argument may appear in the
response and, if so, the argument is modified from the returned value.

Extends Parameter .
Attributes None.
Associations None.

Class Name Client.
Semantics Represents the possible clients that may query for or use a service.
Extends ProcessComponent .
Attributes None.
Associations ClientProfile (zero or one)

The profile of the client. This is part of the semantic information
of the client and as a result the association is shown in the semantic
metamodel presented in chapter 4, in figure 4.1.

Chapter 4

Semantic Service Description

Framework

The framework proposed in this dissertation allows for the specification of both syntactic

and semantic descriptions of services. The syntactic side was presented in Chapter 3. We

will now present the semantic service description framework.

4.1 Context Definition

The framework is expressed with a domain model (metamodel) containing all the semantic

information. The ultimate goal of the metamodel is to add context-awareness in our

framework in both the client and the service side. However, context is a term quite abstract

and its interpretation varies according to the application domain. Several definitions for

context exist in literature. A very concise definition is given in [13], in which context is

defined as “any information that can be used to characterize the situation of entities (i.e.,

36

Semantic Service Description Framework 37

whether a person, place or object) that is considered relevant to the interaction between a

user and an application, including the user and the application themselves”.

4.2 Semantic Description UML Diagrams

In accordance to the context definition presented in the previous paragraph and by con-

sulting the OMG’s “UML Profile for Modeling Quality of Service and Fault Tolerance

Characteristics and Mechanisms” [24], the W3C’s “QoS for Web Services: Requirements

and Possible Approaches” [33], IBM’s article “Understanding quality of service for Web

services” [35] and W3C’s article “Enabling Open, Interoperable, and Smart Web Services:

The Need for Shared Context” [34], we compiled the metamodel presented in this chapter.

Keep in mind that this metamodel is complementary to the one presented in Chapter 3, and

that these two metamodels should be considered as one. In addition, although we provide

a quite long list of semantic-oriented properties, we must clarify that our purpose is not

to provide an exhaustive list of semantic-oriented properties but to provide the framework

for anyone who wishes to update/modify this list according to his/her needs. This is why

we propose an easily extensible metamodel.

The proposed metamodel depicting the properties of our semantic service selection

framework is shown in figures 4.1, 4.2, 4.3 and 4.4.

38 Model Driven Service Description and Discovery Framework for Carrier Applications

ClientLocation

(from PIM)

Client

(from PIM)

Client

(from PIM)

<< ecoremodel >>

PIM

PreConditions

ClientPreferences

- chargeLimit :double [0..1]

PersonalInformation

- name :String
- dateOfBirth :String [0..1]
- title :String [0..1]
- phone :String [0..1]
- fax :String [0..1]
- email :String [0..1]
- webURL:String [0..1]
- id :int

ClientProfile

Client

(from PIM)

clientProfile+
0..1

personalInformation+

0..1

ClientLocation

(from PIM)

clientPreferences+

0..1
clientLocation+

0..1

PrivacyPolicy

(from PIM)

- sharePersonalInformation :boolean [0..1]

privacyPolicy+ 0..1

qualityOfService+

0..1

EnvironmentStateDescription

(from PIM)

clientLocation+*
{ordered }

ServiceContext

(from PIM)

Service

- name :String
- documentation :String [0..1]

preConditions+

0..1

serviceContext+0..1

QualityOfService

(from PIM)

Figure 4.1: Semantic PIM Part 1

<< ecoremodel >>

PIM

PointsOfAvailability

ServiceLocationClientLocation

CountyProvinceState

City Region Country

Location

Neighborhood

Address

- streetName :String [0..1]
- streetNumber :String [0..1]
- postalCode :String

QualityOfServiceVariable

- weight :double [0..1]

QualityOfService

SecurityPolicy

- minimumAgeOfClients :int [0..1]

PrivacyPolicy

- sharePersonalInformation :boolean [0..1]

ManagementPolicy

<< enumeration >>

PaymentMethod

- visa :String
- mastercard :String

ServiceCharacteristics

- implementationLanguages :String [0..1]
- supportedLanguages :String [0..1]
- supportedOperatingSystems :String [0..1]
- hardwareDetails :String [0..1]
- chargeAmount :double [0..1]
- chargeUnit :String [0..1]
- paymentMethods :PaymentMethod [0..1]

ServiceContextVariable

ServiceContextEnvironmentStateDescriptionPlace

- name :String [0..1]
- code :String [0..1]

serviceContextVariables+

*
{ordered }

qualityOfServiceVariables+*
{ordered }

countries+
*

{ordered }

regions+

*
{ordered }

cities+

*
{ordered }

addresses+ *
{ordered }

neighborhoods+

* {ordered }

Service

(from PIM)

- name :String
- documentation :String [0..1]

pointsOfAvailability+ *
{ordered }

serviceLocation+ 0..1

Figure 4.2: Semantic PIM Part 2

Semantic Service Description Framework 39

QualityOfServiceVariable

(from PIM)

- weight :double [0..1]

<< ecoremodel >>

PIM

Low

Medium

High

QualityLevel

- id :String

PacketLoss

DelayVariation

NetworkDelay
Dependability Security Accessibility Coherence

Capacity

Performance

Interoperability

Regulatory

NetworkRelatedQoS

ScalabilityEfficiencyDemandExceptionHandlingRobustness

QualityOfServiceVariable

- weight :double [0..1]

disjointWith+
*
{ordered }

*

low+

0..1

medium+

0..1

high+

0..1

Figure 4.3: Semantic PIM Part 3

<< ecoremodel >>

PIM

NonRepudiation DataEncryption

Auditability

TraceabilityAccountability

Confidentiality

Authorization Authentication

TransactionalIntegrity

DataIntegrity

Accuracy

MaintainabilitySafety

Reliability

TimeToRepair

AvailabilityTransactionTime

ExecutionTime

LatencyResponseTime

ProcessingThroughput

CommunicationThroughputInputDataThroughput

Performance

(from PIM)
Dependability

(from PIM)

Security

(from PIM)

Figure 4.4: Semantic PIM Part 4

40 Model Driven Service Description and Discovery Framework for Carrier Applications

4.3 Semantic PIM Documentation

We will now provide the documentation of the metamodel, shown in the previous para-

graph, to facilitate the comprehension of the proposed model.

A client may specify a profile containing his/her location, personal information (e.g.,

name, phone, etc.), the maximum amount a service should charge, and/or personal pref-

erences. A client’s personal preferences may include his/her desired quality of service

characteristics and/or his/her desired privacy policies. The specification of the desired

QoS characteristics is achieved by choosing the appropriate QoS characteristics, selecting

the quality level of these characteristics (one of high, medium or low) and assigning a

weight to each characteristic, representing the degree of importance this characteristic has

for the client. A client’s preferable privacy policies include policies a service should satisfy,

such as sharing its clients’ personal information with other services, to avoid using services

violating his/her desired privacy policies.

A service provider may choose to specify preconditions, when describing a service,

or attach some context to the service’s description. For now, the preconditions include

only the allowed client locations, however, it is very easy to extend the metamodel to

accommodate new preconditions as needed. The service’s context includes a number of

properties (variables). A service provider may specify the service’s characteristics, such as

the service’s charge amount, the payment methods etc., or attach management policies for

the service. We have defined two types of management policies namely privacy policies

and security policies. A service description may of course include the QoS characteristics

(variables) of the service. Each characteristic is associated with a quality level (high,

medium or low), or a combination of quality levels (low and medium, medium and high

Semantic Service Description Framework 41

etc.). Furthermore, a service description may include the physical location of the service

and/or the points of availability of the service. The attributes of the “location” property,

used by both the service providers and the clients, were compiled from the Where Am I

Language (WAIL) [38]. The level of granularity WAIL provides is at the level of a street

address. This is only a proposed way to specify the location. For example, we might

have used coordinates to specify the location. Keep in mind that it is very easy to modify

our framework to include any desired changes. We have provided a quite long list of QoS

characteristics, compiled from the literature. However, it is not our intention to provide an

exhaustive list of QoS variables, but to provide the framework for specifying QoS variables.

The framework offers extension points facilitating the specification of new QoS prop-

erties or policies as needed. As shown in figure 4.3, each QoS property is a subclass of

the abstract class “QualityOfServiceVariable”. In this respect, any new QoS property can

be introduced in our framework by representing the desired QoS property as a class and

by specifying it as a subclass of “QualityOfServiceVariable” class. The selection policies

are hardcoded in our framework, however it is very easy to introduce new policies since

we used the “Factory” design pattern to specify our existing policies. New policies can be

introduced by specifying a class containing the new policy algorithm (implementing our

“Policy” interface class). After specifying the policy class we only need to specify a class

calling the desired policy (implementing our “PolicyCreator” interface class). With this

modular approach the introduction of new policies is facilitated to a great extent. Another

approach to introduce new policies could have been the subclassing of the abstract class

“ManagementPolicy” shown in figure 4.2.

Notice that by using our framework, both the service providers and the clients, use

a common terminology for their descriptions. This enables the framework to query over

42 Model Driven Service Description and Discovery Framework for Carrier Applications

existing service descriptions and choose the most appropriate services according to the

profile of a client. The formal description of the metamodel is shown in table 4.1.

Table 4.1: Semantic PIM Documentation

Class Name ClientProfile.
Semantics The profile of a client.
Extends None.
Attributes None.
Associations ClientLocation (zero or one)

The physical location of the client.
PersonalInformation (zero or one)
The personal information of the client.
ClientPreferences (zero or one)
The preferences of the client.

Class Name PersonalInformation.
Semantics The personal information of a client.
Extends None.
Attributes name: String (required)

The name of a client.
dateOfBirth: String (optional)
The date of birth of a client.
title: String (optional)
The title (e.g., profession, client category, role) of a client.
phone: String (optional)
The phone number of a client.
fax: String (optional)
The fax number of a client.
email: String (optional)
The email address of a client.
webURL: String (optional)
The personal web page of a client.
id: Integer (required)
The identification number of a client, used for verification purposes.

Continued on next page

Semantic Service Description Framework 43

Table 4.1 – continued from previous page
Associations None.

Class Name EnvironmentStateDescription (abstract).
Semantics It is an abstraction of all elements that form (describe) the state of the

environment, such as the context of a service, the preferences of a client
etc.

Extends None.
Attributes None.
Associations None.

Class Name ClientPreferences.
Semantics The preferences of a client.
Extends EnvironmentStateDescription .
Attributes chargeLimit: double (optional)

The maximum amount a service should charge.
Associations PrivacyPolicy (zero or one)

The desired privacy policies that a service should satisfy.
QualityOfService (zero or one)
The desired QoS properties a service should satisfy. This would be the
ideal configuration of a service.

Class Name Preconditions.
Semantics The preconditions that need to be satisfied before the execution of the

service.
Extends None.
Attributes None.
Associations ClientLocation (zero or more)

Clients having these physical locations are allowed to have access to
the service.

Class Name ServiceContext.
Semantics The information related to the context of the service.
Extends EnvironmentStateDescription .
Attributes None.
Associations ServiceContextVariable (zero or more)

The variable(s) composing the context of a service.

Continued on next page

44 Model Driven Service Description and Discovery Framework for Carrier Applications

Table 4.1 – continued from previous page
Class Name ServiceContextVariable (abstract).
Semantics An abstraction of the variables belonging to the context of a service.
Extends None.
Attributes None.
Associations None.

Class Name ServiceCharacteristics.
Semantics A list of simple characteristics of a service.
Extends ServiceContextVariable .
Attributes implementationLanguages: String (optional)

The programming languages used to implement the service (e.g., Java).
supportedLanguages: String (optional)
The languages that the service interface supports (e.g., English).
supportedOperatingSystems: String (optional)
The operating systems the service supports (e.g., Windows XP).
hardwareDetails: String (optional)
Details about the hardware the service’s software runs on top.
chargeAmount: double (optional)
The amount the service charges per use.
chargeUnit: String (optional)
The money unit of the amount specified in the previous attribute (e.g.,
euro).
paymentMethods: PaymentMethod (optional)
The possible payment methods (visa or mastercard in our model).

Associations None.

Class Name ManagementPolicy (abstract).
Semantics A management policy is a set of rules that is specified by a user or

a computing entity to restrict or guide the execution of actions. For
example, in the context of system security, a system administrator may
use policies to define who has the right to execute what services; in the
context of privacy protection, a user may use policies to restrict the
type of personal information that can be shared by the public services.

Extends ServiceContextVariable .
Attributes None.
Associations None.

Continued on next page

Semantic Service Description Framework 45

Table 4.1 – continued from previous page

Class Name PrivacyPolicy.
Semantics Policies regarding the handling of personal information of the clients.
Extends ManagementPolicy .
Attributes sharePersonalInformation: Boolean (optional)

Indicates whether the service should be allowed to share the clients’
personal information.

Associations None.

Class Name SecurityPolicy.
Semantics Policies specifying groups of users who are not allowed to use the ser-

vice.
Extends ManagementPolicy .
Attributes minimumAgeOfClients: Integer (optional)

Indicates the minimum age of the clients that are allowed to use the
service.

Associations None.

Class Name Location (abstract).
Semantics An abstraction of all the elements denoting location.
Extends EnvironmentStateDescription .
Attributes None.
Associations Country (zero or more)

A list of countries forming the location of an entity. The “country”
element is the root of a series of elements (e.g., province, city, address
etc.) describing the location of an entity.

Class Name ClientLocation.
Semantics The location of a client.
Extends Location .
Attributes None.
Associations None.

Class Name ServiceLocation.
Semantics The location of a service.
Extends Location .
Attributes None.
Associations None.

Continued on next page

46 Model Driven Service Description and Discovery Framework for Carrier Applications

Table 4.1 – continued from previous page

Class Name PointsOfAvailability.
Semantics The locations the service is available.
Extends Location .
Attributes None.
Associations None.

Class Name Place (abstract).
Semantics An abstraction denoting anything which can be considered a place, such

as a city.
Extends EnvironmentStateDescription .
Attributes name: String (optional)

A name by which this place is known.
code: String (optional)
A well-known code by which this place is known; when applied to a
Country, the value must be an ISO 3166-1 country code; when applied
to a Region, the value must be an ISO 3166-2 region code.

Associations None.

Class Name Country.
Semantics An internationally-recognized country; anything which has an ISO

country code.
Extends Place .
Attributes None.
Associations Region (zero or more)

A list of regions contained in the country.

Class Name Region (abstract).
Semantics A subdivision of a Country with a well-known name and area.
Extends Place .
Attributes None.
Associations City (zero or more)

A list of cities contained in the region.

Class Name State.
Semantics A type of Region used in federal systems such as the United States.
Extends Region .
Attributes None.

Continued on next page

Semantic Service Description Framework 47

Table 4.1 – continued from previous page
Associations None.

Class Name Province.
Semantics A type of Region used in federal systems such as Canada.
Extends Region .
Attributes None.
Associations None.

Class Name County.
Semantics A type of Region; usually a subdivision of a larger Region containing

several Cities.
Extends Region .
Attributes None.
Associations None.

Class Name City.
Semantics A subdivision of Region corresponding to a center of population, such

as a city, town, village, etc. Does not necessarily correspond to an
actual municipal government.

Extends Place .
Attributes None.
Associations Neighborhood (zero or more)

A list of neighborhoods contained in the city.
Address (zero or more)
A list of addresses contained in the city.

Class Name Neighborhood.
Semantics A subdivision of a City.
Extends Place .
Attributes None.
Associations None.

Class Name Address.
Semantics A specific home, office, apartment, place of business, etc.
Extends Place .
Attributes streetName: String (optional)

The name of the street.
Continued on next page

48 Model Driven Service Description and Discovery Framework for Carrier Applications

Table 4.1 – continued from previous page
streetNumber: String (optional)
The number of the street.
postalCode: String (required)
The postal code of the address.

Associations None.

Class Name QualityOfService.
Semantics A container of all the QoS variables.
Extends EnvironmentStateDescription , ServiceContextVariable .
Attributes None.
Associations QualityOfServiceVariable (zero or more)

The contained list of QoS variables.

Class Name QualityOfServiceVariable (abstract).
Semantics An abstraction of all QoS variables. We have to clarify that all QoS

variables, in our framework, are measured upon the quality level they
are offered (one or more values from “High”, “Medium”, or “Low”),
regardless the typical unit each QoS variable may be measured upon.
When the standard measurement unit for a QoS variable is provided in
its description, it is provided for the better understanding of the QoS
variable itself.

Extends None.
Attributes weight: double (optional)

The weight a client can attach to a QoS variable denoting the impor-
tance of the specific variable for the client. The attribute is used in the
service selection process performed by the framework.

Associations High (zero or one)
Denotes high quality level.
Medium (zero or one)
Denotes medium quality level.
Low (zero or one)
Denotes low quality level.

Continued on next page

Semantic Service Description Framework 49

Table 4.1 – continued from previous page
Class Name Performance (abstract).
Semantics The performance of a web service represents how fast a service request

can be completed. It can be measured in terms of throughput (the
number of web service requests served in a given time interval), re-
sponse time, latency, execution time, transaction time, and so on. In
general, high quality web services should provide higher throughput,
faster response time, lower latency, lower execution time, and faster
transaction time.

Extends QualityOfServiceVariable .
Attributes None.
Associations None.

Class Name InputDataThroughput.
Semantics Represents the arrival rate of user data input channel, software or hard-

ware, averaged over a time interval. The rate unit for this throughput
is bit/sec.

Extends Performance .
Attributes None.
Associations None.

Class Name CommunicationThroughput.
Semantics Represents the rate of user data output to a channel averaged over a

time interval. The rate unit for this throughput is bit/sec.
Extends Performance .
Attributes None.
Associations None.

Class Name ProcessingThroughput.
Semantics Represents the amount of processing able to be performed in a period

of time. The unit of rate is instructions/sec.
Extends Performance .
Attributes None.
Associations None.

Class Name ResponseTime.
Semantics The time required to complete a web service request.
Extends Performance .

Continued on next page

50 Model Driven Service Description and Discovery Framework for Carrier Applications

Table 4.1 – continued from previous page
Attributes None.
Associations None.

Class Name Latency.
Semantics The round-trip delay (RTD) between sending a request and receiving

the response.
Extends Performance .
Attributes None.
Associations None.

Class Name TransactionTime.
Semantics Represents the time that passes while the web service is completing

one complete transaction. This transaction time may depend on the
definition of web service transaction.

Extends Performance .
Attributes None.
Associations None.

Class Name ExecutionTime.
Semantics The time taken by a web service to process its sequence of activities.
Extends Performance .
Attributes None.
Associations None.

Class Name Dependability (abstract).
Semantics Dependability is the property of computer systems such that reliance

can justifiably be placed on the service it delivers. It includes QoS
characteristics such as: availability, reliability, safety, maintainability,
accuracy and integrity.

Extends QualityOfServiceVariable .
Attributes None.
Associations None.

Continued on next page

Semantic Service Description Framework 51

Table 4.1 – continued from previous page
Class Name Availability.
Semantics Availability is the quality aspect of whether the Web Service is present

or ready for immediate use. It represents the probability that a service
is available. Larger values represent that the service is always ready to
use while smaller values indicate unpredictability of whether the service
will be available at a particular time.

Extends Dependability .
Attributes None.
Associations None.

Class Name TimeToRepair.
Semantics Time-to-repair (TTR) is associated with availability . TTR represents

the time it takes to repair a service that has failed. Ideally smaller
values of TTR are desirable.

Extends Dependability .
Attributes None.
Associations None.

Class Name Reliability.
Semantics Web services should be provided with high reliability. Reliability rep-

resents the ability of a web service to perform its required functions
under stated conditions for a specified time interval. The reliability is
the overall measure of a web service to maintain its service quality. The
overall measure of a web service is related to the number of failures per
day, week, month, or year. Reliability is also related to the assured and
ordered delivery for messages being transmitted and received by ser-
vice requestors and service providers. (Associated with Maturity and
Recoverability).

Extends Dependability .
Attributes None.
Associations None.

Class Name Safety.
Semantics Expresses how safe the use of the Web Service is.
Extends Dependability .
Attributes None.
Associations None.

Continued on next page

52 Model Driven Service Description and Discovery Framework for Carrier Applications

Table 4.1 – continued from previous page

Class Name Maintainability.
Semantics Expresses how well the service is maintained.
Extends Dependability .
Attributes None.
Associations None.

Class Name Accuracy.
Semantics Web services should be provided with high accuracy. Accuracy here

is defined as the error rate generated by the Web Service. The num-
ber of errors that the service generates over a time interval should be
minimized.

Extends Dependability .
Attributes None.
Associations None.

Class Name DataIntegrity.
Semantics Integrity for web services should be provided so that a system or compo-

nent can prevent unauthorized access to, or modification of, computer
programs or data. Data integrity defines whether the transferred data
is modified in transit.

Extends Dependability .
Attributes None.
Associations None.

Class Name TransactionalIntegrity.
Semantics Integrity for web services should be provided so that a system or compo-

nent can prevent unauthorized access to, or modification of, computer
programs or data. Transactional integrity refers to a procedure or set
of procedures, which is guaranteed to preserve database integrity in a
transaction.

Extends Dependability .
Attributes None.
Associations None.

Class Name Coherence.
Semantics Coherence includes characteristics about concurrent and temporal con-

sistency of data and software elements.
Continued on next page

Semantic Service Description Framework 53

Table 4.1 – continued from previous page
Extends QualityOfServiceVariable .
Attributes None.
Associations None.

Class Name Capacity.
Semantics Web services should be provided with the required capacity. Capacity

is the limit of the number of simultaneous requests, which should be
provided with guaranteed performance. Web services should support
the required number of simultaneous connections.

Extends QualityOfServiceVariable .
Attributes None.
Associations None.

Class Name Scalability.
Semantics Sometimes the same service is not produced with the same quality

level when the number of software elements increase. The capacity
of software elements is limited to a minimum and maximum number
of elements. Scalability refers to the ability to consistently serve the
requests despite variations in the volume of requests. Web services
should be provided with high scalability. Scalability represents the
capability of increasing the computing capacity of service providers
computer system and systems ability to process more users requests,
operations or transactions in a given time interval. It is also related to
performance. Web services should be scalable in terms of the number
operations or transactions supported.

Extends QualityOfServiceVariable .
Attributes None.
Associations None.

Class Name Efficiency.
Semantics The capability of the software to produce their results with the mini-

mum resource consumption.
Extends QualityOfServiceVariable .
Attributes None.
Associations None.

Continued on next page

54 Model Driven Service Description and Discovery Framework for Carrier Applications

Table 4.1 – continued from previous page
Class Name Demand.
Semantics Demand is the characterization of how much of a resource or a service

is needed.
Extends QualityOfServiceVariable .
Attributes None.
Associations None.

Class Name Robustness.
Semantics Web services should be provided with high robustness. Robustness

represents the degree to which a web service can function correctly
even in the presence of invalid, incomplete or conflicting inputs. Web
services should still work even if incomplete parameters are provided
to the service request invocation.

Extends QualityOfServiceVariable .
Attributes None.
Associations None.

Class Name ExceptionHandling.
Semantics Web services should be provided with the functionality of exception

handling. Since it is not possible for the service designer to specify all
the possible outcomes and alternatives (especially with various special
cases and unanticipated possibilities), exceptions should be handled
properly. Exception handling is related to how the service handles
these exceptions.

Extends QualityOfServiceVariable .
Attributes None.
Associations None.

Class Name Accessibility.
Semantics Accessibility represents whether the web service is capable of serving

the clients requests. It may be expressed as a probability measure
denoting the success rate or chance of a successful service instantiation
at a point in time. There could be situations when a Web service is
available but not accessible. High accessibility of Web services can be
achieved by building highly scalable systems.

Extends QualityOfServiceVariable .
Attributes None.

Continued on next page

Semantic Service Description Framework 55

Table 4.1 – continued from previous page
Associations None.

Class Name Interoperability.
Semantics Web services should be interoperable between the different development

environments used to implement services so that developers using those
services do not have to think about which programming language or
operating system the services are hosted on.

Extends QualityOfServiceVariable .
Attributes None.
Associations None.

Class Name Security (abstract).
Semantics Security is the quality aspect of the Web service of providing confi-

dentiality and non-repudiation by authenticating the parties involved,
encrypting messages, and providing access control. Web services should
be provided with the required security. With the increase in the use
of web services, which are delivered over the public Internet, there is a
growing concern about security. The web service provider may apply
different approaches and levels of providing security policy depending
on the service requestor. Security for web services means providing
authentication, authorization, confidentiality, accountability, traceabil-
ity/auditability, data encryption, and non-repudiation.

Extends QualityOfServiceVariable .
Attributes None.
Associations None.

Class Name Authorization.
Semantics Users (or other services) should be authorized so that they only can

access the protected services.
Extends Security .
Attributes None.
Associations None.

Class Name Authentication.
Semantics Users (or other services) who can access service and data should be

authenticated.
Extends Security .

Continued on next page

56 Model Driven Service Description and Discovery Framework for Carrier Applications

Table 4.1 – continued from previous page
Attributes None.
Associations None.

Class Name Confidentiality.
Semantics Data should be treated properly so that only authorized users (or other

services) can access or modify the data.
Extends Security .
Attributes None.
Associations None.

Class Name Accountability.
Semantics The supplier can be hold accountable for their services.
Extends Security .
Attributes None.
Associations None.

Class Name Traceability and Auditability.
Semantics It should be possible to trace the history of a service when a request

was serviced.
Extends Security .
Attributes None.
Associations None.

Class Name DataEncryption.
Semantics Data should be encrypted.
Extends Security .
Attributes None.
Associations None.

Class Name NonRepudiation.
Semantics A user cannot deny requesting a service or data after the fact. The

service provider needs to ensure these security requirements.
Extends Security .
Attributes None.
Associations None.

Continued on next page

Semantic Service Description Framework 57

Table 4.1 – continued from previous page
Class Name NetworkRelatedQoS (abstract).
Semantics To achieve desired QoS for web services, the QoS mechanisms operating

at the web service application level must operate together with the
QoS mechanisms operating in the transport network, which are rather
independent of the application. In particular, application level QoS
parameters should be mapped appropriately to corresponding network
level QoS parameters. Basic network level QoS parameters include
network delay, delay variation, and packet loss.

Extends QualityOfServiceVariable .
Attributes None.
Associations None.

Class Name NetworkDelay.
Semantics The average length of time a packet traverses in a network. The net-

work delay can be handled by a good network design that minimizes
the number of hops encountered and by the advent of faster switching
devices like Layer 3 switches and tag switching system such as MPLS
systems and ATM switches.

Extends NetworkRelatedQoS .
Attributes None.
Associations None.

Class Name DelayVariation.
Semantics The variation in the inter-packet arrival time (leading to gaps, known

as jitter, between packets) as introduced by the variable transmission
delay over the network. Removing jitter requires collecting packets in
buffers and holding them long enough to allow the slowest packets to
arrive in time to be played in correct sequence. Jitter buffers may cause
additional delay, which is used to remove the packet delay variation as
each packet transits the network.

Extends NetworkRelatedQoS .
Attributes None.
Associations None.

Continued on next page

58 Model Driven Service Description and Discovery Framework for Carrier Applications

Table 4.1 – continued from previous page
Class Name PacketLoss.
Semantics The Internet does not guarantee delivery of packets. Packets will

be dropped under peak loads and during periods of congestion. Ap-
proaches used to compensate for packet loss include replay of the last
packet, and transmission of redundant information. Out of order pack-
ets may need to be re-ordered at the receiver.

Extends NetworkRelatedQoS .
Attributes None.
Associations None.

Class Name Regulatory.
Semantics Regulatory is the quality aspect of the Web service in conformance

with the rules, the law, compliance with standards, and the established
service level agreement. Web services use a lot of standards such as
SOAP, UDDI, and WSDL. Strict adherence to correct versions of stan-
dards (for example, SOAP version 1.2) by service providers is necessary
for proper invocation of Web services by service requestors.

Extends QualityOfServiceVariable .
Attributes None.
Associations None.

Class Name QualityLevel (abstract).
Semantics An abstraction of the available quality levels for QoS variables.
Extends None.
Attributes id: String (required)

The id for a specific quality level of a QoS variable. It must have the
form “QoS Name”+“QualityLevel” (e.g., “SecurityHigh”).

Associations QualityLevel (zero or more)
When a service provider wishes to indicate that a specific quality level
of a QoS variable is disjoint with a set of other QoS variables, then
he/she uses the “disjointWith” association.

Class Name High.
Semantics Represents the high quality level.
Extends QualityLevel .
Attributes None.
Associations None.

Continued on next page

Semantic Service Description Framework 59

Table 4.1 – continued from previous page

Class Name Medium.
Semantics Represents the medium quality level.
Extends QualityLevel .
Attributes None.
Associations None.

Class Name Low.
Semantics Represents the low quality level.
Extends QualityLevel .
Attributes None.
Associations None.

Chapter 5

PSM for Web Services in Carrier

Applications

In this chapter, we present the domain model (metamodel) that the generated models

of our model transformations have to conform to. In addition to model transformations,

these models participate in the semantic service selection framework that will be described

in Chapter 7. The metamodel is a Platform Specific Model (PSM). A platform-specific

model is a model of a software or business system that is linked to a specific technological

platform (e.g., a specific programming language, operating system or database)1.

5.1 Platform Specific Model UML Diagrams

Our PSM was implemented especially for the needs of Web Services in carrier applications.

The current standard for describing Web Services is the Web Services Description Lan-

1http://en.wikipedia.org/wiki/Platform-specific model

60

PSM for Web Services in Carrier Applications 61

guage (WSDL) 1.1. WSDL 1.1 defines an XML grammar for describing network services

as collections of communication endpoints capable of exchanging messages. The operations

and messages are described abstractly, and then bound to a concrete network protocol and

message format to define an endpoint. Related concrete endpoints are combined into ab-

stract endpoints (services). WSDL provides bindings allowing to use WSDL in conjunction

with other technologies such as SOAP 1.1, HTTP GET/POST, or MIME. However, WSDL

is limited allowing only syntactic descriptions of Web Services. The syntactic side of our

PSM was compiled by analyzing the Web Services Description Language (WSDL) 1.1 spec-

ification [9], as well as a number of book chapters related to WSDL [57], [6], [7] and a paper

proposing a basic profile for WSDL [28].

WSDL is fully extensible, by providing “extensibility elements” as a mechanism to ex-

tend the language as needed. We needed, in our descriptions, the addition of semantic

information into our models. We already discussed how we achieved that in the PIM dis-

cussed in chapters 3 and 4. In the PSM, we used the “extensibility elements” mechanism

to extend the WSDL-specific metamodel with the semantic metamodel discussed in Chap-

ter 4. In a nutshell, we made the root element of our semantic metamodel presented in

Chapter 4 (the “EnvironmentStateDescription” class) a subclass of the class “Extensibili-

tyElement” of our PSM. In that way we integrated the metamodel presented in Chapter 4

into our PSM. Keep in mind of course that the classes describing the client were excluded

from the PSM. Another more technical detail was that we had to make the “PreCondi-

tions” class a subclass of “ExtensibilityElement” class, because the “PreConditions” class

was not a subclass of “EnvironmentStateDescription” class.

To conclude, our approach in compiling the PSM was to analyze the WSDL 1.1 speci-

fication to form the syntactic-side descriptions of the PSM and we integrated the semantic

62 Model Driven Service Description and Discovery Framework for Carrier Applications

metamodel, presented in Chapter 4, in the WSDL-specific PSM using the extensibility

mechanisms provided by WSDL. As a result, the semantic metamodel presented in Chap-

ter 4 is shared by both the PIM and the PSM in our framework. The PSM is shown in

figures 5.1, 5.2, 5.3, 5.4, 5.5 and 5.6.
<< ecoremodel >>

PSM

Binding

- name :String

Port

- name :String

Service

- name :String

Types

Message

- name :String

Import

- namespace :String
- location :String

PortType

- name :String

ExtensibilityElement

- required :boolean [0..1]
ExtensibleDocumented

ExtensibleAttributesDocumented

Documented

- documentation :String [0..1]

Type

- name :String

Definitions

- targetNamespace :String [0..1]
- name :String [0..1]

Element

- name :String

Schema

- prefix :String
- namespace :String
- schemaLocation :String [0..1]

schemas+

*
{ordered }

elements+

*
{ordered }

types+

*
{ordered }

extensibilityElements+

*
{ordered }

portTypes+

*
{ordered }

imports+

*
{ordered }

messages+ *
{ordered }

types+0..1

schemas+

*
{ordered }

services+

*
{ordered }

ports+

*
{ordered }

binding+bindings+

*
{ordered }

type+

Figure 5.1: Syntactic PSM Part 1

ClientLocation

(from PSM)

<< ecoremodel >>

PSM

HTTPOperation

- location :String

HTTPBinding

- verb :String

HTTPAddress

- location :String

HTTPUrlEncoded

HTTPUrlReplacement

SOAPFault

- name :String
- use:UseChoice [0..1]
- encodingStyle :String [0..1]
- namespace :String [0..1]

SOAPAddress

- location :String

SOAPOperation

- style :StyleChoice [0..1]
- soapAction :String [0..1]

<< enumeration >>

UseChoice

- literal :String
- encoded :String

<< enumeration >>

StyleChoice

- document :String
- rpc :String

SOAPBinding

- style :StyleChoice [0..1]
- transport :String

BindingOperation

- name :String

BindingOperationFault

- name :String

BindingOperationMessage

- name :String [0..1]

Part

- name :String

Fault

- name :String

Param

- name:String [0..1]

Operation

- name :String
- parameterOrder :String [0..1]

PortType

(from PSM)

- name :String

operations+

*
{ordered }

ExtensibleDocumented

(from PSM)

ExtensibleAttributesDocumented

(from PSM)

input+

0..1
output+

0..1

Message

- name :String

message+

faults+

*
{ordered }

message+

parts+*
{ordered }

Element

(from PSM)

- name :String

Type

(from PSM)

- name :String

element+

0..1

type+

0..1

faults+

*{ordered }
input+

0..1

output+ 0..1
Binding

(from PSM)

- name :StringbindingOperations+

* {ordered }

ExtensibilityElement

- required :boolean [0..1]

Figure 5.2: Syntactic PSM Part 2

PSM for Web Services in Carrier Applications 63

<< ecoremodel >>

PSM

MIMEPart

- name :String

MIMEContent

- type :String [0..1]

MIMEMultipartRelated

MIMEXml

SOAPBody

- use:UseChoice [0..1]
- encodingStyle :String [0..1]
- namespace :String [0..1]

SOAPHeaderFault

- use:UseChoice
- encodingStyle :String [0..1]
- namespace :String [0..1]

SOAPHeader

- use:UseChoice
- encodingStyle :String [0..1]
- namespace :String [0..1]

ExtensibilityElement

- required :boolean [0..1]

Message

(from PSM)

- name :String

message+

message+

soapHeaderFaults+*
{ordered }

Part

(from PSM)

- name :String

parts+
*

{ordered }

part+

part+ part+

0..1

mimeContent+ *

{ordered }

parts+*

{ordered }

part+

0..1

mimeXml+ *
{ordered }

mimeMultipartRelated+
* {ordered }

Figure 5.3: Syntactic PSM Part 3

<< ecoremodel >>

PSM

PointsOfAvailability

ServiceLocation

ClientLocation

CountyProvince

State

City
Region Country

Location

Neighborhood

Address

- streetName :String [0..1]
- streetNumber :String [0..1]
- postalCode :String [0..1]

QualityOfServiceVariable

QualityOfService

SecurityPolicy

- minimumAgeOfClients :int [0..1]

PrivacyPolicy

- sharePersonalInformation :boolean [0..1]

ManagementPolicy

<< enumeration >>

PaymentMethod

- visa :String
- mastercard :String

ServiceCharacteristics

- implementationLanguages :String [0..1]
- supportedLanguages :String [0..1]
- supportedOperatingSystems :String [0..1]
- hardwareDetails :String [0..1]
- chargeAmount :double [0..1]
- chargeUnit :String [0..1]
- paymentMethods :PaymentMethod [0..1]

ServiceContextVariable

ServiceContext
EnvironmentStateDescriptionPlace

- name :String [0..1]
- code :String [0..1]

serviceContextVariables+*{ordered }

qualityOfServiceVariables+*{ordered }

countries+*
{ordered }

regions+

*
{ordered }

cities+

*
{ordered }

addresses+ *
{ordered }

neighborhoods+*
{ordered }

PreConditions

(from PSM)

clientLocation+ *
{ordered }

ExtensibilityElement

(from PSM)

- required :boolean [0..1]

Figure 5.4: Semantic PSM Part 1

64 Model Driven Service Description and Discovery Framework for Carrier Applications

QualityOfServiceVariable

(from PSM)

<< ecoremodel >>

PSM

Low

Medium

High

QualityLevel

- id :String

PacketLoss

DelayVariation

NetworkDelay

Dependability Security Accessibility Coherence

Capacity

PerformanceInteroperability

Regulatory

NetworkRelatedQoS

ScalabilityEfficiencyDemandExceptionHandlingRobustness

QualityOfServiceVariable

(from PSM) *

disjointWith+

*
{ordered }

high+

0..1

medium+

0..1
low+

0..1

Figure 5.5: Semantic PSM Part 2

<< ecoremodel >>
PSM

NonRepudiation

DataEncryption

AuditabilityTraceabilityAccountabilityConfidentiality

Authorization

Authentication

TransactionalIntegrity

DataIntegrity

AccuracyMaintainabilitySafety

Reliability

TimeToRepair

Availability

TransactionTime

ExecutionTime

LatencyResponseTime

ProcessingThroughput

CommunicationThroughput

InputDataThroughput

Performance

(from PSM) Dependability

(from PSM)

Security

(from PSM)

Figure 5.6: Semantic PSM Part 3

The syntactic side of our PSM essentially corresponds to the elements defined in the

WSDL 1.1 specification. A WSDL document describes a Web Service in terms of the

operations that it provides, the data types that each operation requires as inputs and can

return in the form of results and the exceptions each operation may throw. WSDL is

agnostic about the way in which the service is provided at the protocol level. In WSDL,

PSM for Web Services in Carrier Applications 65

the abstract definition of endpoints and messages is separated from their concrete network

deployment or data format bindings. Instead, the Web Service is first defined in abstract

terms and then mapped onto one or more specific protocols by the use of bindings. This

separation allows the reuse of abstract definitions, such as messages, which are abstract

descriptions of the data being exchanged, and port types, which are abstract collections

of operations. A WSDL file may also contain a set of addresses at which a bound service

can be accessed. WSDL allows elements representing a specific technology (referred to

as extensibility elements) under various elements defined by WSDL. The most important

elements used in a WSDL document are:

• Definitions: the root element of a WSDL document.

• Types: contains customized schema definitions.

• Message: an abstraction of the exchanged data during the execution of the operations

of the service.

• Operation: an abstract description of an operation supported by the service.

• Port Type: an abstract set of operations.

• Binding: a concrete protocol and data format specification for a particular port type.

• Port: a single endpoint defined as a combination of a binding and a network address.

• Service: a collection of related endpoints.

• Extensibility Element: elements representing a specific technology, extending the

Web Service description.

66 Model Driven Service Description and Discovery Framework for Carrier Applications

We have defined all the semantic-specific elements that are needed inside the PSM as

extensibility elements, thus enabling us to reuse and integrate the metamodel presented

in Chapter 4 inside the PSM. This is shown in figure 5.4, where the root element of the

semantic metamodel is defined as a subclass of the “ExtensibilityElement” class.

5.2 Platform Specific Model Documentation

We will now provide the documentation of our PSM to facilitate the comprehension of the

proposed model.

Table 5.1: PSM Documentation

Class Name Documented (abstract).
Semantics This type is extended by component types to allow them to be docu-

mented. WSDL uses this optional element as a container for human
readable documentation. The content of the element is arbitrary text
and elements (“mixed” in XSD). The documentation element is allowed
inside any WSDL language element. In our metamodel, we handle doc-
umentation only for the “Service” element.

Extends None.
Attributes documentation: String (optional)

The documentation.
Associations None.

Class Name ExtensibleAttributesDocumented (abstract).
Semantics This type is extended by component types to allow attributes from

other namespaces to be added.
Extends Documented .
Attributes None.
Associations None.

Continued on next page

PSM for Web Services in Carrier Applications 67

Table 5.1 – continued from previous page
Class Name ExtensibleDocumented (abstract).
Semantics This type is extended by component types to allow elements from other

namespaces to be added.
Extends Documented .
Attributes None.
Associations ExtensibilityElement (zero or more)

The contained extensibility element(s).

Class Name ExtensibilityElement (abstract).
Semantics This type is extended by elements from other namespaces to allow them

to be added under WSDL component types.
Extends None.
Attributes required: Boolean (optional)

States whether the element is required or not.
Associations None.

Class Name Definitions.
Semantics The root element of every WSDL file must be a <definitions> element.
Extends ExtensibleDocumented .
Attributes name: String (optional)

The WSDL specification describes this attribute as lightweight docu-
mentation for the content of the file. It is typically not used by software
that parses WSDL files with the intent of generating code. In particu-
lar, this attribute does not provide the name of the web service, which
is obtained instead from the <service> element.
targetNamespace: String (optional)
This attribute is similar to the one used in XML Schemas. The “tar-
getNamespace” attribute is a convention of XML Schema that enables
the WSDL document to refer to itself. The value of this attribute is
a URI that becomes the XML namespace for the elements used to de-
scribe the services, ports, messages, and bindings defined in the file. It
is not necessary (or possible) to explicitly state the namespace when
declaring these objects, because they will automatically be associated
with the target namespace.

Continued on next page

68 Model Driven Service Description and Discovery Framework for Carrier Applications

Table 5.1 – continued from previous page
Associations Import (zero or more)

The <import> element(s) contained in the <definitions> element.
Types (zero or one)
The optional <types> element declared in a WSDL document and
contained in the <definitions> element.
Message (zero or more)
The <message> element(s) declared in a WSDL document and con-
tained in the <definitions> element.
PortType (zero or more)
The <portType> element(s) declared in a WSDL document and con-
tained in the <definitions> element.
Binding (zero or more)
The <binding> element(s) declared in a WSDL document and con-
tained in the <definitions> element.
Service (zero or more)
The <service> element(s) declared in a WSDL document and contained
in the <definitions> element.
Schema (zero or more)
The schema(s) used in the WSDL document.

Class Name Schema.
Semantics Represents an external imported XML schema declaration to be used

inside a WSDL document. The elements of a schema are used when
defining a service, for example when defining the parameters of the
operations.

Extends None.
Attributes prefix: String (required)

The prefix used when referencing the schema.
namespace: String (required)
The URI representing the “targetNamespace” attribute of a schema.

Continued on next page

PSM for Web Services in Carrier Applications 69

Table 5.1 – continued from previous page
schemaLocation: String (optional)
When importing a schema as an external document the “schemaLoca-
tion” attribute is used to indicate the location, in the local file system,
of the file containing the schema. When the attribute has a value then
the schema is imported inside the <types> element. If it is omitted it
means that the schema is accessible over the Internet, and it is declared
under the <definitions> element.

Associations Element (zero or more)
The XML schema “element” element(s) declared inside the schema.
Type (zero or more)
The XML schema “type” element(s) declared inside the schema.

Class Name Element.
Semantics Represents the “element” element in an XML schema document. The

“complexType” and “simpleType” elements define data types, not ac-
tual data elements. The distinction between these two is analogous to
the difference between a class and an instance of that class. The data
elements are defined using the “element” element.

Extends None.
Attributes name: String (required)

The name of the element.
Associations None.

Class Name Type.
Semantics Represents the “type” element in an XML schema document.
Extends None.
Attributes name: String (required)

The name of the type.
Associations None.

Class Name Service.
Semantics A <service> element groups together a set of related ports. A WSDL

document may contain several <service> elements, which are distin-
guished from each other by their “name” attributes.

Extends ExtensibleDocumented .
Continued on next page

70 Model Driven Service Description and Discovery Framework for Carrier Applications

Table 5.1 – continued from previous page
Attributes name: String (required)

The “name” attribute provides a unique name among all services de-
fined within in the enclosing WSDL document.

Associations Port (zero or more)
The <port> element(s) contained in the <service> element. If a service
has several ports that share a port type, but employ different bindings
or addresses, the ports are alternatives.

Class Name Operation
Semantics Represents an operation of a Web Service. An operation may have

input (zero or one), output (zero or one), and fault (any number) mes-
sages. An input message describes the type of message (e.g., SOAP)
a client should send to the Web Service. An output message describes
the type of message (e.g., SOAP) a client should expect to get back.
A fault message describes any error messages (e.g., SOAP) that the
Web Service might send back to the client. A fault message is sim-
ilar to a Java exception. WSDL supports four styles of Web Service
messaging: one-way (the operation contains a single input but no out-
put or fault messages, e.g., the client sends a message to the server,
to which there is no reply), request-response (the operation contains a
single input, followed by a single output, followed by zero or more fault
elements, e.g., the operation consists of a message sent from the client
to the server, followed by either a response message from the server or
a message that reports one of several possible error conditions), solicit-
response (the operation contains a single output followed by a single
input element, followed by zero or more fault elements, e.g., same as
request-response, except that the server sends the first message to the
client, thus reversing their roles) and notification (the operation con-
tains a single output but no input or fault elements, e.g., a message
sent from the server to the client, to which there is no reply. Such an
operation might be used to report an event within the server that the
client might need to be aware of).

Extends ExtensibleDocumented .
Attributes name: String (required)

The name of the operation. The value of the attribute is required to
be unique within its enclosing <portType> element.

Continued on next page

PSM for Web Services in Carrier Applications 71

Table 5.1 – continued from previous page
parameterOrder: String (optional)
Operations do not specify whether they are to be used with RPC-like
bindings or not. However, when using an operation with an RPC-
binding, it is useful to be able to capture the original RPC function
signature. For this reason, an operation may specify an order of pa-
rameter names via the “parameterOrder” attribute. The value of the
attribute is a list of message part names separated by a single space.
The value of the “parameterOrder” attribute must follow specific rules
described in the WSDL 1.1 specification. Note that this information
serves as a “hint” and may safely be ignored by those not concerned
with RPC signatures. Also, it is not required to be present, even if the
operation is to be used with an RPC-like binding.

Associations Param-Input (zero or one)
The optional input of an operation. The input must reference exactly
one <message> element and has an optional attribute “name: String”.
The “name” attribute provides a unique name among all input elements
within the enclosing port type.
Param-Output (zero or one)
The optional output of an operation. The output must reference ex-
actly one <message> element and has an optional attribute “name:
String”. The “name” attribute provides a unique name among all out-
put elements within the enclosing port type.
Fault (zero or more)
The fault element(s) of an operation. Note that only a service-defined
exception can be listed as a fault element. The fault element must
reference exactly one <message> element and has a required attribute
“name: String”. Each fault element must be named to allow a binding
to specify the concrete format of the fault message. The name of the
fault element is unique within the set of faults defined for the operation.

Continued on next page

72 Model Driven Service Description and Discovery Framework for Carrier Applications

Table 5.1 – continued from previous page
Class Name Import.
Semantics WSDL allows associating a namespace with a document location using

an import statement. The <import> element allows the separation
of the different elements of a service definition into independent docu-
ments, which can then be imported as needed. Use of this technique
is recommended, in order to allow different Web Services to share the
same data types or to separate the definition of a Web Service and
its protocol bindings from the elements that provide the address of a
server that offers the service. This technique helps writing clearer ser-
vice definitions, by separating the definitions according to their level of
abstraction. It also maximizes the ability to reuse service definitions
of all kinds. As a result, WSDL documents structured in this way are
easier to use and maintain.

Extends ExtensibleAttributesDocumented .
Attributes namespace: String (required)

The namespace into which the definitions from the included file are
to be imported. The value of this attribute must match the target
namespace defined in the imported schema document.
location: String (required)
A URI that indicates where the imported definitions will be found.
This is usually an absolute URL. For example, it could be a relative
filename. The specification requires that published WSDL documents
use absolute URIs.

Associations None.

Class Name Types.
Semantics The customized data types that are used in the messages exchanged by

a web service and its clients are defined using the WSDL <types> ele-
ment, and are referenced from the <message> elements. It is possible
to use type definitions found in external schema documents instead of
(or as well as) defining types within the WSDL document itself. The
WSDL specification recommends the use of XML schema as the pre-
ferred schema language, and existing software tools that parse WSDL
currently expect to find XML schema elements here.

Extends ExtensibleDocumented .
Attributes None.

Continued on next page

PSM for Web Services in Carrier Applications 73

Table 5.1 – continued from previous page
Associations Schema (zero or more)

The contained schema definition(s).

Class Name Message.
Semantics The messages that the service expects to receive or send to its clients.

The <message> elements describe the data that is exchanged between
the Web Service and its clients in terms of the data types defined within
the type elements. In concrete terms, each message defined here cor-
responds to a SOAP message when SOAP is used as the underlying
communications mechanism. A message consists of logical parts, each
of which is associated with a definition within some type system.

Extends ExtensibleDocumented .
Attributes name: String (required)

The attribute provides a unique name among all messages defined
within the enclosing WSDL document.

Associations Part (zero or more)
The logical part(s) composing the message.

Class Name Part.
Semantics An item of data that is part of the message. Usually, a single <part>

element is used for each method call parameter or return value. A
binding may reference the name of a part in order to specify binding-
specific information about the part. In general, the data type associated
with a part is declared using either a type or an element attribute, only
one of which may be specified. However, in the WSDL specification, it
is suggested that only element attributes should be used.

Extends ExtensibleAttributesDocumented .
Attributes name: String (required)

The attribute provides a unique name among all the parts of the en-
closing message.

Associations Element (zero or one)
The data type associated with the <part> element using the “element”
attribute.

Continued on next page

74 Model Driven Service Description and Discovery Framework for Carrier Applications

Table 5.1 – continued from previous page
Type (zero or one)
The data type associated with the <part> element using the “type” at-
tribute (e.g., xsd: int). It can be either an XML schema “simpleType”
or an XML schema “complexType”.

Class Name PortType.
Semantics A port type is a named set of abstract operations and the abstract

messages involved. The operations that a web service provides are
represented by <operation> elements. These operations are grouped
together as child elements of a <portType> element. You can think
of a ¡portType¿ as corresponding to the service endpoint interface, and
therefore to the Java interface when the service is implemented in Java.
An <operation> element is equivalent to a Java method within that
interface.

Extends ExtensibleAttributesDocumented .
Attributes name: String (required)

The attribute provides a unique name among all port types defined
within in the enclosing WSDL document.

Associations Operation (zero or more)
The abstract operation(s) of the web service declared inside the
<portType> element.

Class Name Binding.
Semantics A binding defines message format and protocol details for operations

and messages defined by a particular port type. There may be any num-
ber of bindings for a given port type. A <binding> element contains
<operation> elements, similar to the <portType> element. In fact, a
<binding> is specific to a particular <portType>: Its <operation>,
<input>, <output> and <fault> elements describe the implementa-
tion details of the corresponding <portType>. Since SOAP is the most
commonly used binding for Web Services, the WSDL specification de-
scribes a set of elements that can be used to specify a SOAP binding,
but recognizes that it may need to be extended to meet future require-
ments. The specification also defines elements that can be used to bind
a Web Service onto HTTP. A binding must specify exactly one protocol
and must not specify address information.

Continued on next page

PSM for Web Services in Carrier Applications 75

Table 5.1 – continued from previous page
Extends ExtensibleDocumented .
Attributes name: String (required)

The attribute provides a unique name among all bindings defined within
in the enclosing WSDL document.

Associations PortType (exactly one)
A binding references the port type that it binds using the “type” at-
tribute.
BindingOperation (zero or more)
The contained <operation> element(s). A <binding> element con-
tains an <operation> element for each operation in its associated
<portType>, and each <input>, <output>, and <fault> element in
the port type operation also has a corresponding input, output, or fault
element here.

Class Name BindingOperation.
Semantics Represents an operation defined inside a <binding> element. An op-

eration element within a binding specifies binding information for the
operation with the same name within the binding’s port type.

Extends ExtensibleDocumented .
Attributes name: String (required)

The name of the operation.
Associations BindingOperationMessage-Input (zero or one)

The optional input of a binding operation. The input has an optional
attribute “name: String”.
BindingOperationMessage-Output (zero or one)
The optional output of a binding operation. The output has an optional
attribute “name: String”.
BindingOperationFault (zero or more)
The fault element(s) of a binding operation. Note that only a service-
defined exception can be listed as a fault element. The fault element
has a required attribute “name: String”. Each fault element must be
named to allow a binding to specify the concrete format of the fault
message.

Continued on next page

76 Model Driven Service Description and Discovery Framework for Carrier Applications

Table 5.1 – continued from previous page
Class Name Port.
Semantics The port element describes how to locate an instance of the port type.

It maps a binding of a port type to a URI (address) that can be used
to access it using the protocol associated with the binding. Clients to
connect to the web service use port addresses.

Extends ExtensibleDocumented .
Attributes name: String (required)

The attribute provides a unique name among all ports defined within
in the enclosing WSDL document.

Associations Binding (exactly one)
A port is associated with a binding via its “binding” attribute. The ac-
tual address is specified using an element that is specific to the bindings
protocol. Here, the “soap:address” element from the SOAP binding is
used to provide the URL at which the service endpoint interface for the
port can be accessed.

Class Name SOAPBinding.
Semantics WSDL includes a binding for SOAP 1.1 endpoints, which supports the

specification of protocol specific information such as an indication that
a binding is bound to the SOAP 1.1 protocol, a way of specifying an
address for a SOAP endpoint, the URI for the SOAPAction HTTP
header for the HTTP binding of SOAP, the transport protocol used
to carry the SOAP messages, whether each operation is RPC-style or
document-style, for each part of the input, output, and fault messages
associated with the operation, how they are encoded etc.. If there are
any parts that appear in an attachment, then the MIME binding is
used in conjunction with the SOAP binding to describe the structure
of the message.

Extends ExtensibilityElement .
Attributes style: StyleChoice (optional)

This attribute is a default that specifies whether the operations in this
binding are RPC-style or document-style. It takes the value “rpc”
or “document”, as appropriate. Each operation can override this de-
fault if necessary. If this attribute is omitted, then the style of each
operation is taken to be “document” unless otherwise stated in the
<soap:operation> element.

Continued on next page

PSM for Web Services in Carrier Applications 77

Table 5.1 – continued from previous page
transport: String (required)
Although HTTP is currently the protocol most commonly used to carry
SOAP messages, other protocols such as SMTP or even FTP could also
be used. The “transport” attribute supplies a URI that identifies the
underlying transport protocol.

Associations None.

Class Name SOAPOperation.
Semantics Each <operation> element within a binding normally contains a

<soap:operation> element that specifies SOAP-related information re-
lating to that operation.

Extends ExtensibilityElement .
Attributes style: StyleChoice (optional)

The attribute indicates whether the operation is RPC-oriented (mes-
sages containing parameters and return values) or document-oriented
(message containing document(s)). If the attribute is not specified,
it defaults to the value specified in the soap:binding element. If the
soap:binding element does not specify a style, it is assumed to be “doc-
ument”.
soapAction: String (optional)
The value of this attribute is a URI that becomes the value of the
SOAPAction header for the operation. SOAP over HTTP requires that
this header be present, even if the service implementation does not
use it. If the service does not make use of SOAPAction, then the
value should be supplied as an empty string. For other protocols, this
attribute should not be supplied at all.

Associations None.

Class Name SOAPBody.
Semantics The soap:body element specifies how the message parts appear inside

the SOAP Body element. The parts of a message may either be abstract
type definitions, or concrete schema definitions. If abstract definitions,
the types are serialized according to some set of rules defined by an
encoding style. Each encoding style is identified using a list of URIs,
as in the SOAP specification.

Extends ExtensibilityElement .
Continued on next page

78 Model Driven Service Description and Discovery Framework for Carrier Applications

Table 5.1 – continued from previous page
Attributes use: UseChoice (optional)

Indicates whether the message parts are encoded using some encoding
rules, or whether the parts define the concrete schema of the message.
In conjunction with the optional “encodingStyle” attribute they specify
how the types listed for the message parts are to be serialized into the
message. If “use” has the value “literal”, then the associated data is
serialized according to its schema in the <types> section of the WSDL
document. The value “encoded” specifies that an encoding scheme or
series of encoding schemes whose URIs are given by the “encodingStyle”
parameter, are used to serialize the data. Although these attributes
partly determine the way in which the parts are represented within the
SOAP message, the operation style also affects the final encoding.
encodingStyle: String (optional)
A list of URIs, each separated by a single space. The URIs represent
encodings used within the message, in order from most restrictive to
least restrictive (exactly like the encodingStyle attribute defined in the
SOAP specification).
namespace: String (optional)
It supplies the URI for the namespace to be applied to XML elements
created from this part that do not have an explicit namespace assigned
as a result of the encoding in use. It may be omitted if not required.

Associations Part (zero or more)
Indicates which parts appear somewhere within the SOAP Body por-
tion of the message (other parts of a message may appear in other por-
tions of the message such as when SOAP is used in conjunction with
the multipart/related MIME binding). If the parts attribute is omit-
ted, then all parts defined by the message are assumed to be included
in the SOAP Body portion.

Class Name SOAPFault.
Semantics The soap:fault element specifies the contents of the contents of the

SOAP Fault Details element. It is patterned after the soap:body el-
ement. The fault message must have a single part. The use, encod-
ingStyle and namespace attributes are all used in the same way as with
soap:body, only style=“document” is assumed since faults do not con-
tain parameters.

Continued on next page

PSM for Web Services in Carrier Applications 79

Table 5.1 – continued from previous page
Extends ExtensibilityElement .
Attributes name: String (required)

Relates the soap:fault to the wsdl:fault defined for the operation.
use: UseChoice (optional)
Same as SOAPBody.
encodingStyle: String (optional)
Same as SOAPBody.
namespace: String (optional)
Same as SOAPBody.

Associations None.

Class Name SOAPHeader, SOAPHeaderFault.
Semantics The soap:header and soap:headerfault elements allow header to be de-

fined that is transmitted inside the Header element of the SOAP En-
velope. It is patterned after the soap:body element. It is not neces-
sary to exhaustively list all headers that appear in the SOAP Envelope
using soap:header. The soap:headerfault elements appear inside the
soap:header elements.

Extends SOAPHeader extends ExtensibilityElement .
Attributes The use , encodingStyle and namespace attributes are all used in

the same way as with soap:body, only style=“document” is assumed
since headers do not contain parameters. Additionally, the “use” at-
tribute is required.

Associations Message (exactly one), Part (exactly one)
Together, the “message” attribute and the “part” attribute reference
the message part that defines the header type.

Class Name SOAPAddress.
Semantics The SOAP address binding used to give a port an address (a URI). A

port using the SOAP binding must specify exactly one address. The
URI scheme specified for the address must correspond to the transport
specified by the soap:binding.

Extends ExtensibilityElement .
Attributes location: String (required)

The URI.
Associations None.

Continued on next page

80 Model Driven Service Description and Discovery Framework for Carrier Applications

Table 5.1 – continued from previous page

Class Name HTTPAddress.
Semantics The location attribute that specifies the base URI for the port. The

value of the attribute is combined with the values of the location at-
tribute of the http:operation binding element.

Extends ExtensibilityElement .
Attributes location: String (required)

The URI.
Associations None.

Class Name HTTPBinding.
Semantics WSDL includes a binding for HTTP 1.1s GET and POST verbs in order

to describe the interaction between a Web Browser and a web site. This
allows applications other than Web Browsers to interact with the site.
The protocol specific information may be specified such as an indication
that a binding uses HTTP GET or POST, an address for the port or a
relative address for each operation (relative to the base address defined
by the port).

Extends ExtensibilityElement .
Attributes verb: String (required)

The value of the required verb attribute indicates the HTTP verb.
Common values are GET or POST, but others may be used. Note that
HTTP verbs are case sensitive.

Associations None.

Class Name HTTPOperation.
Semantics The <http:operation> element contains the location attribute.
Extends ExtensibilityElement .
Attributes location: String (required)

The location attribute specifies a relative URI for the operation. This
URI is combined with the URI specified in the http:address element of
the port, to form the full URI for the HTTP request. The URI value
must be a relative URI.

Associations None.

Continued on next page

PSM for Web Services in Carrier Applications 81

Table 5.1 – continued from previous page
Class Name HTTPUrlEncoded.
Semantics The http:urlEncoded element indicates that all the message parts are

encoded into the HTTP request URI using the standard URI-encoding
rules. The names of the parameters correspond to the names of the
message parts. This may be used with GET to specify URL encoding,
or with POST to specify a FORM-POST.

Extends None.
Attributes None.
Associations None.

Class Name HTTPUrlReplacement.
Semantics The http:urlReplacement element indicates that all the message parts

are encoded into the HTTP request URI using a replacement algorithm.
Extends None.
Attributes None.
Associations None.

Class Name MIMEMultipartRelated.
Semantics The <mime:multipartRelated> element signals that this binding rep-

resents a SOAP with attachments message. The WSDL description
for a message that contains one or more attachments consists of a
set of <mime:part> elements wrapped in a <mime:multipartRelated>
element, where the namespace prefix mime is mapped to the URI
http://schemas.xmlsoap.org/wsdl/mime.

Extends ExtensibilityElement .
Attributes None.
Associations MIMEPart (zero or more)

The mime:part element(s) contained in a mime:multipartRelated ele-
ment.

Class Name MIMEPart.
Semantics The mime:part element describes each part of a multipart/related mes-

sage. MIME elements appear within mime:part to specify the concrete
MIME type for the part. If more than one MIME element appears
inside a mime:part, they are alternatives.

Extends None.
Continued on next page

82 Model Driven Service Description and Discovery Framework for Carrier Applications

Table 5.1 – continued from previous page
Attributes name: String (required)

The name of the part.
Associations MIMEMultipartRelated (zero or more)

The mime:part may contain mime:multipartRelated elements.
MIMEContent (zero or more)
The mime:part element may contain zero or more mime:content ele-
ments.
MIMEXml (zero or more)
The mime:part element may contain mime:mimeXml elements.

Class Name MIMEContent.
Semantics To avoid having to define a new element for every MIME format, the

mime:content element may be used if there is no additional information
to convey about the format other than its MIME type string.

Extends ExtensibilityElement .
Attributes type: String (optional)

The type attribute contains the MIME type string. A type value has
two portions, separated by a slash (/), either of which may be a wildcard
(*). Not specifying the type attribute indicates that all MIME types
are acceptable.

Associations MIMEPart (zero or one)
The “part” attribute is used to specify the name of the message part.
If the message has a single part, then the part attribute is optional.

Class Name MIMEXml.
Semantics To specify XML payloads that are not SOAP compliant (do not have a

SOAP Envelope), but do have a particular schema, the mime:mimeXml
element may be used to specify that concrete schema.

Extends ExtensibilityElement .
Attributes None.
Associations MIMEPart (zero or one)

Refers to a message part defining the concrete schema of the root XML
element. The attribute may be omitted if the message has only a single
part. The part references a concrete schema using the element attribute
for simple parts or type attribute for composite parts.

PSM for Web Services in Carrier Applications 83

As already mentioned, the semantic metamodel presented in Chapter 4 is shared by both

the PIM and the PSM in our framework. As a result, figures 5.4, 5.5 and 5.6 depicting the

semantic-specific elements of the PSM are essentially identical with figures 4.2, 4.3 and 4.4

in Chapter 4 respectively. The only difference is that the PSM excludes the elements that

describe the clients. The excluded elements are not needed in Web Service descriptions.

Since these diagrams are essentially identical the documentation of the elements contained

in these diagrams is the same as the one provided in Chapter 4, and as a result, for space

efficiency, we will not describe it again here.

Chapter 6

Model Transformation Framework

The model transformation process in our framework is a two-step procedure. The first

phase involves the transformation of a PIM model to a PSM model and the second phase

involves transforming the generated PSM model to WSDL code. The second phase is

considered a model transformation phase since code itself can be treated as a model. The

model transformation framework is shown in figure 6.1.

When a service provider wishes to generate a description of his/her service, in order

to advertise it in a repository, he/she must have the necessary information to achieve

that goal. This information includes the details of the service (such as operations, inputs,

outputs, etc.), context details (such as location of the service, points of availability, etc.),

and additional semantics (such as the QoS characteristics of the service (e.g., performance

metrics)). In addition to this information, the service provider has our PIM domain model

for service-oriented systems, presented in chapters 3 and 4, at his/her disposal to describe

the service. Using the PIM, in accordance with the service and context details and the rest

of the semantics, the service provider creates a PIM service model describing the service.

84

Model Transformation Framework 85

Service Details

Context Details

Other Semantics

PIM Domain

Model

Create PIM

Specification

for Service

For Service
Oriented Systems

PIM Service

Model

PSM Domain

Model

For Web
Services

Configuration

Files

Transform PIM

to PSM(x)

Transform PIM

to PSM(y)

ATLText File, SOAP
Details

PSM Service

Model(x)

PSM Service

Model(y)

...

Tranformation1 Tranformation2 Tranformation3

WSDL
Deployment

Descriptors
UDDI

...

Figure 6.1: Model Transformation Framework

The PIM service model conforms to the PIM domain model. The service provider should

also create a configuration file that will be used in the PIM to PSM transformation process.

This configuration file contains SOAP specific information, such as the address that the

service is accessible to. These are the only tasks a service provider has to perform in our

framework. The rest of the tasks are automatically invoked and processed.

The created PIM service model and the configuration file are fed to the PIM to PSM

transformation engine. The transformation engine generates the PSM service model cor-

responding to the PIM service model. The generated PSM models conform to the PSM

86 Model Driven Service Description and Discovery Framework for Carrier Applications

domain model presented in chapters 4 and 5.

In the next phase the PSM service model is fed into the PSM to extended-WSDL trans-

formation engine. The engine generates the WSDL code corresponding to the PSM service

model. Keep in mind that the code is an extended version of WSDL that includes se-

mantic information. The transformation engine could be extended to generate deployment

descriptors, UDDI specific files, or any other additional files as needed.

A more elaborate description of the automated tasks following the PIM service model

creation is presented in the following paragraphs.

6.1 Phase 1: PIM to PSM

As already mentioned, after the PIM service model and the configuration files are created,

they are fed into our PIM to PSM transformation engine. The PIM to PSM transformation

engine was implemented using the ATL language1 and its operations are shown in figure 6.2.

The transformation engine receives as input a PIM service model conforming to our

PIM domain model that serves as the metamodel of the service model. All the metamod-

els used in our transformations conform to the Ecore meta-metamodel. The goal is to

transform instances (models) of our PIM domain model to instances (models) of our PSM

domain model. The model transformations are performed in accordance to a number of

transformation rules. We developed a model describing these transformation rules. The

model is presented in the next paragraph. A concrete implementation of the model de-

scribing the transformation rules was created using the ATL language. We chose the ATL

language to implement our transformation engine simply because it is probably the most

1http://www.eclipse.org/m2m/atl/

Model Transformation Framework 87

SWEN University of Waterloo 9

Transformation Process

Ecore

ATL

PIM.ecore PSM.ecore

PIM2PSM.atl

SourceModel.pim TargetModel.psm

conformsToconformsTo

conformsTo

conformsTo

conformsTo

Transformation

Figure 2. Overview of the PIM to WSDL ATL transformation

conformsTo

Figure 6.2: PIM to PSM Transformation Engine

widely used free model-to-model transformation tool to date. The ATL language serves as

a “transformation” metamodel, in accordance with the PIM and PSM metamodels. The

ATL metamodel conforms to the Ecore meta-metamodel as well.

Figure 6.2 introduces the files that will be handled during the execution of the PIM to

PSM transformation. These files encode the models (SourceModel.pim, TargetModel.psm),

the metamodels (PIM.ecore, PSM.ecore) and the transformation rules (PIM2PSM.atl).

The figure presents the transformation of a source file, containing the PIM service model

(SourceModel.pim) conforming to PIM.ecore file, to a target file, containing the generated

PSM service model conforming to PSM.ecore file. The transformations are performed

in accordance with the rules defined in the PIM2PSM.atl file that conforms to the ATL

language. The metamodels contained in the files PIM.ecore and PSM.ecore, as well as the

ATL language itself, conform to the Ecore meta-metamodel.

At the end of the transformation process the PSM service model will be produced.

The generated model contains all the necessary information for generating the WSDL

88 Model Driven Service Description and Discovery Framework for Carrier Applications

documents. In the next phase the generated PSM service model is fed to the PSM to

WSDL transformation engine.

6.1.1 A Model Describing Model Transformations

We will now present the model describing the model transformations taking place in our

framework. Due to the fact that both the PIM and the PSM are quite large metamodels,

the number of rules describing the transformations between them is quite large as well.

This is why we broke down the rules into smaller packages, one package for each rule.

Each package contains on top the rule number, e.g., “R1” means “Rule 1”, “R1.1”

means the rule executed after “R1” etc. Figure 6.3 shows the order in which the rules are

executed.

Rule 1 Rule 2

Rule 2.1 Rule 2.2

Rule 3

Rule 3.1

Rule
3.1.1

Rule
3.1.2

Rule
3.1.3

Rule
3.1.4

Rule
3.1.5

Rule
3.1.6

Rule
3.1.7

Combination of Rule
3.1.5 and Rule 3.1.6

Rule
3.1.8

Rule 3.2

Rule
3.2.1

Rule
3.2.2

Rule
3.2.3

Rule 3.3

Rule
3.3.1

Rule
3.3.1.1

Rule
3.3.1.2

Rule
3.3.1.3

Rule
3.3.1.4

Rule
3.3.1.5

Rule
3.3.1.6

Rule
3.3.1.7

Rule
3.3.1.8

Rule
3.3.1.9

Rule
3.3.1.10

Rule
3.3.1.11

Rule
3.3.1.12

Rule
3.3.1.35

Rule
3.3.1.36

Rule
3.3.2

Rule
3.3.3

Rule
3.3.4

...

Rule
3.3.1.1.1

Rule
3.3.1.1.2

Rule
3.3.1.1.3

Rule 3.4

Rule
3.4.1

Rule
3.4.1.1

Rule
3.4.1.1.1

Rule
3.4.1.1.2

Rule
3.4.1.1.3

Rule
3.4.1.1.1.1

Rule
3.4.1.1.1.1.1

Rule
3.4.1.1.1.1.2

Rule 3.5 Rule 3.6

Rule 3

Figure 6.3: Model Describing Model Transformations Part 1

Model Transformation Framework 89

Each package contains the source class(es) of the PIM service model to be transformed,

the target class(es) of the PSM service model that are generated, red arrows denoting the

source and the generated classes (a red arrow begins from a source class and points at

the generated class) and finally black associations that represent the generated associa-

tions of the PSM. Each class has as name the metamodel that belongs to plus the name

of the class in that metamodel that corresponds to separated by the “!” character. For

example, the PIM class “Definitions” would have as its name “PIM!Definitions”. In ad-

dition, each class contains the attributes that participate in the transformations, either

as source or as generated attributes. Consider, for example, in figure 6.4 the “R1” pack-

age corresponding to the first rule. The rule describes that the class “Package” of the

PIM will be transformed to classes “Definitions” and “Types” of the PSM. In addition,

the “targetNamespace:String” attribute of the class “PSM!Definitions” will be generated

from the “targetNamespace:String” attribute of the “PIM!Package” class. Furthermore,

the containment association between classes “PSM!Definitions” and “PSM!Types” will be

generated as well. The same idea is followed with the rest of the transformation rules.

We have just described rule R1 above. We will now present the rest of the rules both

graphically and by providing a brief description for each one:

• Rule R2: Each “Schema” class of the PIM will be transformed to a class “Schema”

of the PSM. In addition, the attributes “prefix:String”, “namespace:String” and

“schemaLocation:String” of the class “PSM!Schema” will be generated from the “pre-

fix:String”, “namespace:String” and “location:String” attributes of the “PIM!Schema”

class. Furthermore, the containment association between classes “PSM!Definitions”

and “PSM!Schema” will be generated as well.

90 Model Driven Service Description and Discovery Framework for Carrier Applications

R1

targetNamespace:String
PIM!Package

targetNamespace:String
PSM!Definitions

PSM!Types

R2

prefix:String
namespace:String
location:String

PIM!Schema
prefix:String
namespace:String
schemaLocation:String

PSM!Schema

PSM!Definitions

R3

binding

type

name:String
documentation:String

PIM!Service

name:String
PSM!PortType

name:String
PSM!Binding

name:String
PSM!Port

name:String
documentation:String

PSM!Service

name:String
PSM!Definitions

R2.2

name:String
PIM!DataElementType

PIM!Element

name:String
PSM!Element

PSM!Schema

R2.1

prefix:String
namespace:String
location:String

PIM!Schema
prefix:String
namespace:String
schemaLocation:String

PSM!Schema

PSM!Types

R3.1

PSM!PortType

PSM!Binding

name:String
parameterOrder:String

PIM!Operation
name:String
parameterOrder:String

PSM!Operation

name:String
PSM!BindingOperation

R3.1.1

name:String
PIM!Operation

name:String
PSM!Message

PSM!Param

message

PSM!BindingOperationMessage

PSM!Definitions

PSM!Operationinput

PSM!BindingOperationinput

R3.1.3

name:String
PSM!Message

PSM!Definitions

PIM!TransactionException

name:String
PIM!Exception

R3.1.2

name:String
PIM!Operation

name:String
PSM!Message

PSM!Param

message

PSM!BindingOperationMessage

PSM!Definitions

PSM!Operationoutput

PSM!BindingOperationoutput

Figure 6.4: Model Describing Model Transformations Part 2

• Rule R2.1: The rule is executed if the “location” attribute of the “PIM!Schema” class

has a value. In the same way as in rule R2, the class “PSM!Schema” is generated

but this time it is placed under the “PSM!Types” class. The reason is that when a

schema is located in an external file (instead of being accessible on the Web), then

it is declared inside both the WSDL <Definitions> and <Types> elements.

• Rule R2.2: The rule generates a “PSM!Element” class for each “PIM!Element” class.

In addition, the “name:String” attribute of the “PSM!Element” class is generated

from the corresponding attribute of the “PIM!Element” class. Furthermore, the

“PSM!Element” class is added under the “PSM!Schema” class.

• Rule R3: From the “PIM!Service” class the “PortType”, “Port”, “Service”, and

“Binding” classes of the PSM are generated. In addition, the “name:String” at-

tribute of the “PSM!Port”, “PSM!PortType”, “PSM!Service”, “PSM!Definitions”,

and “PSM!Binding” classes is generated from the “name:String” attribute of the

“PIM!Service” class, and the “documentation:String” attribute of the “PSM!Service”

Model Transformation Framework 91

class is generated from the corresponding attribute of the “PIM!Service” class. Fur-

thermore, the “PSM!PortType”, “PSM!Binding” and “PSM!Service” classes are added

under the “PSM!Definitions” class, the “PSM!Port” class is added under the

“PSM!Service” class and the “binding” and “type” attributes of classes “PSM!Port”

and “PSM!Binding” take the appropriate values.

• Rule R3.1: The rule generates a “PSM!Operation” and a “PSM!BindingOperation”

class for each “PIM!Operation” class. In addition, the “name:String” attribute of

the generated classes is generated as well from the corresponding attribute of the

“PIM!Operation” class. The “parameterOrder:String” attribute of the

“PSM!Operation” is generated from the corresponding attribute of the “PIM!Operation”.

Furthermore, the “PSM!Operation” class is added under the “PSM!PortType”, and

the “PSM!BindingOperation” is added under the “PSM!Binding” class.

• Rule R3.1.1: The rule generates the request messages for each operation (if applica-

ble). It generates the “PSM!Message”, “PSM!Param” and “PSM!BindingOperationMessage”

classes from the “PIM!Operation” class. The “name:String” attribute of the “PSM!Message”

is generated from the corresponding attribute of the “PIM!Operation” class. The

“message” attribute of the “PSM!Param” is generated appropriately, the “PSM!Message”

is added under the “PSM!Definitions”, the “PSM!Param” is added under the “PSM!Operation”

(as input), and the “PSM!BindingOperationMessage” is added under the

“PSM!BindingOperation” (as input).

• Rule R3.1.2: The rule generates the response messages for each operation (if ap-

plicable). It is almost the same as rule R3.1.1 with the difference that the classes

“PSM!Param” and “PSM!BindingOperationMessage” are added as outputs under

92 Model Driven Service Description and Discovery Framework for Carrier Applications

the classes “PSM!Operation” and “PSM!BindingOperation” correspondingly.

• Rule R3.1.3: The rule generates the exception messages for each operation (if appli-

cable). It generates a “PSM!Message” class for each “PIM!TransactionException”

class. The “name:String” attribute of the “PSM!Message” is generated from the cor-

responding attribute of the “PIM!TransactionException” class. The “PSM!Message”

is added under the “PSM!Definitions” class.

R3.1.4

faults

faults

name:String
PIM!Operation

PSM!Message

message

PSM!Operation

PSM!BindingOperation

name:String
PSM!Fault

name:String
PSM!BindingOperationFault

PIM!TransactionException

name:String[1]
PIM!Exception

R3.1.5

name:String
PIM!Operation

PIM!In

name:String
PSM!Part element

PSM!Element

PSM!Message

name:String
PIM!DataElement

PIM!Parameter

name:String
PIM!DataElementTypetype

R3.1.6

name:String
PIM!Operation

PIM!Out

name:String
PSM!Part element

PSM!Element

PSM!Message

name:String
PIM!DataElement

PIM!Parameter

name:String
PIM!DataElementTypetype

R3.1.8

PIM!TransactionException

name:String
PSM!Partelement

PSM!Element

PSM!Message

name:String
PIM!DataElement

PIM!Parameter

name:String
PIM!DataElementTypetype

R3.2

style:StyleChoice
transport:String

PSM!SOAPBinding

location:String
PSM!SOAPAddress

PIM!Service

PSM!Binding

PSM!Port

R3.2.1

use:UseChoice
PSM!SOAPBody

PSM!BindingOperationMessage

R3.2.2

name:String
PSM!BindingOperationFault

name:String
use:UseChoice

PSM!SOAPFault

R3.2.3

PSM!BindingOperation

style:StyleChoice
soapAction:String

PSM!SOAPOperation

R3.3

PIM!ServiceContext

PSM!ServiceContext

PSM!Definitions

R3.3.1

PIM!QualityOfService

PSM!ServiceContext

PSM!QualityOfService

PIM!QualityLevel

*

*disjointWith

PSM!QualityLevel

*

*

disjointWith

Figure 6.5: Model Describing Model Transformations Part 3

• Rule R3.1.4: The rule completes the generation of the exception messages for each op-

eration (if applicable). It generates the “PSM!Fault” and “PSM!BindingOperationFault”

classes from the “PIM!Operation” and “PIM!TransactionException” classes. The

“name:String” attribute of the “PSM!Fault” and “PSM!BindingOperationFault” classes

is generated from the corresponding attribute of the “PIM!TransactionException”

class. The “message” attribute of the “PSM!Fault” is generated appropriately, the

“PSM!Fault” is added under the “PSM!Operation” (as fault), and the

“PSM!BindingOperationFault” is added under the “PSM!BindingOperation” (as fault).

Model Transformation Framework 93

• Rule R3.1.5: The rule generates the parts of the request messages. It generates the

“PSM!Part” class from the “PIM!Operation” and “PIM!In” classes. The “name:String”

attribute of the “PSM!Part” is generated from the corresponding attribute of the

“PIM!In” class. The “element” attribute of the “PSM!Part” is generated appropri-

ately. The “PSM!Part” is added under the appropriate “PSM!Message” class.

• Rule R3.1.6: The rule generates the parts of the response messages. It gener-

ates the “PSM!Part” class from the “PIM!Operation” and “PIM!Out” classes. The

“name:String” attribute of the “PSM!Part” is generated from the corresponding at-

tribute of the “PIM!Out” class. The “element” attribute of the “PSM!Part” is gener-

ated appropriately. The “PSM!Part” is added under the appropriate “PSM!Message”

class.

• Rule R3.1.7: The rule generates the parts of the messages corresponding to the

input/output parameters of an operation. It is a combination of rules R3.1.5 and

R3.1.6.

• Rule R3.1.8: The rule generates the parts of the exception messages. It generates the

“PSM!Part” class from the “PIM!TransactionException” class. The “name:String”

attribute of the “PSM!Part” is generated from the corresponding attribute of the

“PIM!TransactionException” class. The “element” attribute of the “PSM!Part” is

generated appropriately. The “PSM!Part” is added under the appropriate

“PSM!Message” class.

• Rule R3.2: The rule and its sub-rules generate the SOAP specific classes. It generates

the “PSM!SOAPBinding” and “PSM!SOAPAddress” classes from the “PIM!Service”

94 Model Driven Service Description and Discovery Framework for Carrier Applications

class. The “style:StyleChoice” and “transport:String” attributes of the “PSM!SOAPBinding”

as well as the “location:String” attribute of the “PSM!SOAPAddress” class are gen-

erated appropriately receiving default values. The “PSM!SOAPBinding” is added un-

der the “PSM!Binding” and the “PSM!SOAPAddress” is added under the “PSM!Port”.

• Rule R3.2.1: The rule generates a “PSM!SOAPBody” class for each

“PSM!BindingOperationMessage” class. The “use:UseChoice” attribute of the

“PSM!SOAPBody” is generated appropriately receiving a default value. The

“PSM!SOAPBody” class is added under the “PSM!BindingOperationMessage”.

• Rule R3.2.2: The rule generates a “PSM!SOAPFault” class for each

“PSM!BindingOperationFault” class. The “use:UseChoice” attribute of the

“PSM!SOAPFault” is generated appropriately receiving a default value and the

“name:String” attribute of the “PSM!SOAPFault” class is generated from the corre-

sponding attribute of the “PSM!BindingOperationFault” class. The “PSM!SOAPFault”

class is added under the “PSM!BindingOperationFault”.

• Rule R3.2.3: The rule generates a “PSM!SOAPOperation” class for each

“PSM!BindingOperation” class. The “style:StyleChoice” and the “soapAction:String”

attributes of the “PSM!SOAPOperation” are generated appropriately receiving de-

fault values. The “PSM!SOAPOperation” class is added under the “PSM!BindingOperation”.

• Rule R3.3: The rule generates the “PSM!ServiceContext” class from the

“PIM!ServiceContext”. The “PSM!ServiceContext” is added under the “PSM!Definitions”

class.

• Rule R3.3.1: The rule generates the “PSM!QualityOfService” class from the

Model Transformation Framework 95

“PIM!QualityOfService” and the “PSM!ServiceContext” classes. The “PSM!QualityOfService”

is added under the “PSM!ServiceContext”. The “disjoint” attribute of the

“PSM!QualityOfService” is generated for each “PSM!QualityOfService” class appro-

priately from the corresponding attribute of the “PIM!QualityOfService” class.

R3.3.1.1

PSM!QualityOfService

PIM!Robustness

PSM!Robustness

R3.3.1.2

PSM!QualityOfService

PSM!ExceptionHandling

PIM!ExceptionHandling

R3.3.1.3

PSM!QualityOfService

PSM!Demand

PIM!Demand

R3.3.1.4

PSM!QualityOfService

PSM!Efficiency

PIM!Efficiency

R3.3.1.5

PSM!QualityOfService

PIM!Scalability

PSM!Scalability

R3.3.1.6

PSM!QualityOfService

PIM!NetworkDelay

PSM!NetworkDelay

R3.3.1.7

PSM!QualityOfService

PIM!Regulatory

PSM!Regulatory

R3.3.1.8

PSM!QualityOfService

PIM!Interoperability

PSM!Interoperability

R3.3.1.9

PSM!QualityOfService

PIM!Capacity

PSM!Capacity

R3.3.1.10

PSM!QualityOfService

PIM!Coherence

PSM!Coherence

R3.3.1.11

PSM!QualityOfService

PIM!Accessibility

PSM!Accessibility

R3.3.1.12

PSM!QualityOfService

PIM!InputDataThroughput

PSM!InputDataThroughput

R3.3.1.14

PSM!QualityOfService

PIM!Authentication

PSM!Authentication

R3.3.1.13

PSM!Availability

PIM!Availability

PSM!QualityOfService

R3.3.1.15

PSM!QualityOfService

PIM!DelayVariation

PSM!DelayVariation

R3.3.1.16

PSM!QualityOfService

PIM!PacketLoss

PSM!PacketLoss

R3.3.1.17

PSM!QualityOfService

PIM!CommunicationThroughput

PSM!CommunicationThroughput

R3.3.1.22

PSM!QualityOfService

PIM!TransactionTime

PSM!TransactionTime

R3.3.1.18

PSM!QualityOfService

PIM!ProcessingThroughput

PSM!ProcessingThroughput

R3.3.1.19

PSM!QualityOfService

PIM!ResponseTime

PSM!ResponseTime

R3.3.1.20

PSM!QualityOfService

PIM!Latency

PSM!Latency

R3.3.1.21

PSM!QualityOfService

PIM!ExecutionTime

PSM!ExecutionTime

R3.3.1.23

PSM!TimeToRepair

PIM!TimeToRepair

PSM!QualityOfService

Figure 6.6: Model Describing Model Transformations Part 4

• Rules R3.3.1.1-R3.3.1.36: As already mentioned, the PIM and PSM metamodels of

our framework share the semantic part of their definitions that is responsible for

describing the semantic information of a service. The shared (common) metamodel

was presented in Chapter 4. In order to take advantage of this in our transformations,

when we transform the semantic part of our PIM to the corresponding semantic part

of the PSM, we essentially copy the semantic part of the PIM to the semantic part

of the PSM since they use a common vocabulary. This takes place in rules R3.3.1.1-

R3.3.1.36, as well as in the rest of the remaining rules. For example, rule R3.3.1.1

generates a “PSM!Robustness” class for each “PIM!Robustness” class and adds the

“PSM!Robustness” class under the “PSM!QualityOfService” class.

96 Model Driven Service Description and Discovery Framework for Carrier Applications

R3.3.1.29

PSM!TransactionalIntegrity

PIM!TransactionalIntegrity

PSM!QualityOfService

R3.3.1.24

PSM!Reliability

PIM!Reliability

PSM!QualityOfService

R3.3.1.25

PSM!Safety

PIM!Safety

PSM!QualityOfService

R3.3.1.26

PSM!Maintainability

PIM!Maintainability

PSM!QualityOfService

R3.3.1.27

PSM!Accuracy

PIM!Accuracy

PSM!QualityOfService

R3.3.1.28

PSM!DataIntegrity

PIM!DataIntegrity

PSM!QualityOfService

R3.3.1.30

PSM!QualityOfService

PIM!Authorization

PSM!Authorization

R3.3.1.34

PSM!QualityOfService

PIM!Auditability

PSM!Auditability

R3.3.1.31

PSM!QualityOfService

PIM!Confidentiality

PSM!Confidentiality

R3.3.1.32

PSM!QualityOfService

PIM!Accountability

PSM!Accountability

R3.3.1.33

PSM!QualityOfService

PIM!Traceability

PSM!Traceability

R3.3.1.35

PSM!QualityOfService

PIM!DataEncryption

PSM!DataEncryption

R3.3.1.36

PSM!QualityOfService

PIM!NonRepudiation

PSM!NonRepudiation

R3.3.2

implementationLanguages:String
supportedLanguages:String
supportedOperatingSystems:String
hardwareDetails:String
chargeAmount:Integer
chargeUnit:String
paymentMethods:PaymentMethods

PIM!ServiceCharacteristics
implementationLanguages:String
supportedLanguages:String
supportedOperatingSystems:String
hardwareDetails:String
chargeAmount:Integer
chargeUnit:String
paymentMethods:PaymentMethods

PSM!ServiceCharacteristics

PSM!ServiceContext

R3.3.3

PSM!ServiceContext

sharePersonalInformation:Boolean
PSM!PrivacyPolicy

sharePersonalInformation:Boolean
PIM!PrivacyPolicy

R3.3.4

PSM!ServiceContext

minimumAgeOfClients:Integer
PSM!SecurityPolicy

minimumAgeOfClients:Integer
PIM!SecurityPolicy

R3.4

PSM!PreConditions

PIM!PreConditions

PSM!Definitions

R3.4.1

PIM!ClientLocation

PSM!PreConditions

PSM!ClientLocation

Figure 6.7: Model Describing Model Transformations Part 5

• Rest of the rules: The rest of the rules have as their responsibility to transform

(essentially copy) the rest of the semantic descriptions contained in the PIM to the

corresponding semantic descriptions of the PSM.

R3.4.1.1

PSM!Location

PIM!Country

name:String
code:String

PSM!Place

PSM!Country

name:String
code:String

PIM!Place
R3.4.1.1.1

PSM!Country

PIM!County

name:String
code:String

PIM!Place

PIM!Region

PSM!County

name:String
code:String

PSM!Place

PSM!Region

R3.4.1.1.2

PSM!Country

PIM!State

name:String
code:String

PIM!Place

PIM!Region

PSM!State

name:String
code:String

PSM!Place

PSM!Region

R3.4.1.1.3

PSM!Country

PIM!Province

name:String
code:String

PIM!Place

PIM!Region

PSM!Province

name:String
code:String

PSM!Place

PSM!Region

R3.4.1.1.1.1

PIM!City

name:String
code:String

PIM!Place

PSM!City

name:String
code:String

PSM!Place

PSM!Region

R3.4.1.1.1.1.1

PIM!Neighborhood

name:String
code:String

PIM!Place

PSM!Neighborhood

name:String
code:String

PSM!Place

PSM!City

R3.4.1.1.1.1.2

name:String
code:String

PIM!Place
name:String
code:String

PSM!Place

PSM!City

streetName:String
streetNumber:String
postalCode:String

PIM!Address
streetName:String
streetNumber:String
postalCode:String

PSM!Address

R3.5

PSM!Definitions

PIM!PointsOfAvailability

PSM!PointsOfAvailability

R3.6

PSM!Definitions

PIM!ServiceLocation

PSM!ServiceLocation

Figure 6.8: Model Describing Model Transformations Part 6

Model Transformation Framework 97

R3.3.1.1.1

PSM!QualityOfServiceVariable

id:String
PIM!High

id:String
PSM!High

R3.3.1.1.2

PSM!QualityOfServiceVariable

id:String
PIM!Medium

id:String
PSM!Medium

R3.3.1.1.3

PSM!QualityOfServiceVariable

id:String
PIM!Low

id:String
PSM!Low

Figure 6.9: Model Describing Model Transformations Part 7

6.1.2 Implementing the Model Describing Model Transforma-

tions

We implemented the model describing the model transformations, presented in the pre-

vious paragraph, using the ATL language. The ATL is a simple but powerful Java-like

transformation language. The implementation of our model using ATL was quite straight-

forward. The best way to show the simplicity of the ATL language is by providing an

example. Consider the rules R2, R2.1 and R2.2 presented in the previous paragraph. The

graphical representation of the rules and their ATL implementation is shown in figure 6.10.

As already mentioned, rule R2 (implemented in ATL in rule “SchemaTransformation”)

transforms each “Schema” class of the PIM to a class “Schema” of the PSM. In addition,

the attributes “prefix:String”, “namespace:String” and “schemaLocation:String” of the

class “PSM!Schema” will be generated from the “prefix:String”, “namespace:String” and

“location:String” attributes of the “PIM!Schema” class. Furthermore, the “PSM!Schema”

class will be placed under the “PSM!Definitions” class.

Rule R2.1 (implemented in ATL in rule “ImportTransformation”) is executed if the

“location” attribute of the “PIM!Schema” class has a value. In the same way as in rule

R2, the class “PSM!Schema” is generated but this time it is placed under the “PSM!Types”

class. The reason is that when a schema is located in an external file (instead of being

accessible on the Web), then it is declared inside both the WSDL <Definitions> and

98 Model Driven Service Description and Discovery Framework for Carrier Applications

R2

prefix:String
namespace:String
location:String

PIM!Schema
prefix:String
namespace:String
schemaLocation:String

PSM!Schema

PSM!Definitions

R2.2

name:String
PIM!DataElementType

PIM!Element

name:String
PSM!Element

PSM!Schema

R2.1

prefix:String
namespace:String
location:String

PIM!Schema
prefix:String
namespace:String
schemaLocation:String

PSM!Schema

PSM!Types

rule SchemaTransformation {
from

schema : PIM!Schema
to

schemaPSM : PSM!Schema (
prefix < − schema.prefix,
namespace < − schema.namespace,
schemaLocation < − schema.location

)
do {

if schema.location = ‘’
then 0
else thisModule.ImportTransformation(schema)
endif;
thisModule.definitionsElement().schemas < − schemaPSM;
schema.dataElementTypes − > iterate(element; res : Integer = 0
| thisModule.ElementHandling(element,schemaPSM));

}
}

lazy rule ImportTransformation {
from

schema : PIM!Schema
to

schemaPSM : PSM!Schema (
prefix < − schema.prefix,
namespace < − schema.namespace,
schemaLocation < − schema.location

)
do {

thisModule.definitionsElement().types.schemas < − schemaPSM;
}

}

lazy rule ElementHandling {
from

element : PIM!Element,
schema : PSM!Schema

to
elementPSM : PSM!Element (

name < − element.name
)

do {
schema.elements < − elementPSM;

}
}

1

Figure 6.10: Implementing the Model Describing Model Transformations

<Types> elements.

Rule R2.2 (implemented in ATL in rule “ElementHandling”) is executed for all the

elements declared in a schema. The rule generates a “PSM!Element” class for each

“PIM!Element” class. In addition, the “name:String” attribute of the “PSM!Element”

class is generated from the corresponding attribute of the “PIM!Element” class. Further-

more, the “PSM!Element” class is added under the appropriate “PSM!Schema” class.

Lazy rules describe sub-rules. Rules R2.1 and R2.2 are sub-rules. In the same way as the

one shown in figure 6.10, we implemented the model describing the model transformations,

presented in the previous paragraph, using the ATL language.

Model Transformation Framework 99

6.2 Phase 2: PSM to extended WSDL

After the PSM service model is generated by the PIM to PSM transformation engine, a

second transformation phase takes place. The transformation takes as input the PSM ser-

vice model and generates the WSDL code containing all the information specified by the

service provider when he/she initially created the PIM service model. All the information

of course is taken from the PSM service model. Keep in mind that the WSDL used to de-

scribe the Web Services in our framework is an extended version of WSDL. The extensions

encompass all the semantic information a Web Service may need in our framework.

Generating source code is a powerful and timesaving procedure, that can help reducing

the amount of tedious, redundant, and error-prone programming. However, programs that

write code can quickly become very complex and hard to understand. One way to reduce

complexity and increase readability is to use templates. The Eclipse Modeling Framework

(EMF) project2 provides a tool for generating source code, called JET (Java Emitter

Templates) [44]. With JET we can use a JSP-like syntax (actually a subset of the JSP

syntax) that makes it easy to write templates that express the code we want to generate.

JET is a generic template engine that can be used to generate any type of source code,

including WSDL, from templates. The generated WSDL documents were validated by the

Eclipse Web Tools Platform (WTP)3 and the XMLSpy tool4.

2http://www.eclipse.org/modeling/emf/
3http://www.eclipse.org/webtools/main.php
4http://www.altova.com/products/xmlspy/xml editor.html

100 Model Driven Service Description and Discovery Framework for Carrier Applications

6.3 A Simple Example

Consider the following example: A “StockQuote” service provides a “GetTradePrices”

operation. A “GetTradePrices” SOAP 1.1 request may be sent to the service via the

SOAP 1.1 HTTP binding. The operation receives as input a ticker symbol of type string

and an application-defined “TimePeriod” structure containing a start and end time, and

returns an array of stock prices recorded by the service within that period of time, as well

as the frequency at which they were recorded. The RPC signature that corresponds to

this service has input parameters “tickerSymbol” and “timePeriod” followed by the output

parameter “frequency”, and returns an array of floats. The service offers high safety.

A service provider would describe this service in a PIM service model by specifying the

following information:

• Specify the namespace of the service description: e.g., http://example.com/stockquote.

• Specify the name of the service: e.g., “StockQuote”.

• Add the documentation of the service if necessary: e.g., “A stock quote service”.

• Specify schemas as necessary. For each schema:

– Define the namespace of the schema: e.g., “http://example.com/stockquote/schema”.

– Define the location of the file containing the schema if the schema is available

locally: e.g., “StockQuoteSchema.xsd”.

– Specify the schema’s elements used in the service definition.

• Define the operations as necessary. For each operation:

Model Transformation Framework 101

– Define the name of the operation: e.g., “GetTradePrices”.

– Associate the operation with the service through the “services” attribute.

– Define the parameters (input, output or exceptions) of the operation. For each

parameter:

∗ Define the name of the parameter: e.g., “tickerSymbol”.

∗ Define the type of the parameter. The type must be included in one of the

namespaces defined.

∗ Follow the last two steps for each input, output and exception parameter.

– After defining the parameters of the operation define the “parameterOrder”

attribute of the operation if necessary.

• Create a configuration file containing the SOAP address at which the service will be

accessible: e.g., “http://localhost:9080/services/StockQuote”.

• Specify the semantic information: e.g., High Safety.

After the service provider finishes the service description he/she may invoke the PIM

to WSDL transformation. The transformation will execute initially the PIM to PSM

transformation generating the PSM service model and then it will execute the PSM to

WSDL transformation generating the WSDL code. Figures 6.11 and 6.12 show the PIM

service model describing the “StockQuote” service and the generated PSM service model.

The generated WSDL code is separated in three files: a file containing the abstract

definitions of the Web Service, a file containing the concrete specifications and specific

service bindings for the Web Service and a file containing the semantic information of the

102 Model Driven Service Description and Discovery Framework for Carrier Applications

Figure 6.11: PIM Service Model Figure 6.12: PSM Service Model

Web Service. Figures 6.13, 6.14 and 6.15 show the generated WSDL documents containing

the description of the service.

Model Transformation Framework 103

Figure 6.13: Abstract Definitions File Figure 6.14: Concrete Definitions File

Figure 6.15: Semantic Definitions File

Chapter 7

Service Selection Framework

Imagine the case where a client needs to perform a specific task online, such as booking

a flight ticket. This task requires more than one Web Services to collaborate in order to

process the client’s request; a Web Service for checking the availability of the seats in the

specific flight, another for booking the seat, another for charging the client’s credit card

and so on. We can assume that workflow templates exist describing possible scenarios, such

as booking a flight ticket. A workflow template is a set of mock-up Web Services and their

execution order, describing a specific task. Let’s consider the workflow template describing

the booking of a flight ticket. The next step, after finding the right workflow template,

would be to instantiate it. For each mock-up Web Service of the workflow there may

be many implementations available on the Web, possibly from different service providers,

having nearly identical syntactic service descriptions. The question that arises is how are

we going to choose the best Web Service from the ones available. Thats where the semantic

descriptions of the Web Services come into play.

In our framework, each client has a profile describing his/her preferences including the

104

Service Selection Framework 105

semantic requirements Web Services should satisfy according to the client. In addition, each

Web Service, using the extended WSDL descriptions, will have a set of semantics associated

with it. What is left is to find an algorithm to match the preferences of the client to the

available Web Service implementations. We propose a service-matching framework based

on a number of client and service non-functional characteristics.

Since our intention is to propose a framework and not a specific algorithm, we spec-

ified policies containing different matching algorithms that may be used for now in our

framework. However, the framework is easily extensible to accommodate new policies and

algorithms. To make our service selection framework extensible we used the “Factory” de-

sign pattern1 that enables us to specify each policy in a very modular and extensible way.

The common algorithm used in our policies is based on the A∗ algorithm, presented in [46].

Each policy combines the A∗ algorithm with additional algorithms to form interesting and

useful selection policies. We have specified three policies. It is a common sense that in

order a client to be able to use a Web Service, the Web Service itself should be available

in the area where the client is located. The first policy checks the availability of the Web

Service in the area where the client is located. If the Web Service is available in the client’s

area then the A∗ algorithm is performed on the preferences of the client, regarding the

QoS characteristics the Web Service should satisfy, and the actual QoS characteristics of

the Web Service. A client may have an identification number allowing him/her to use Web

Services that are not available to the public. As a security requirement, the authority

handling the client requests could specify a specific requirement regarding the valid iden-

tifications of the clients that would be able to access specific Web Services. The second

policy checks the identification number of the client. If a client is verified then the A∗

1http://gsraj.tripod.com/design/creational/factory/factory.html

106 Model Driven Service Description and Discovery Framework for Carrier Applications

algorithm is performed on the preferences of the client, regarding the QoS characteristics

the Web Service should satisfy, and the actual QoS characteristics of the Web Service.

When a Web Service charges the clients, every time they use the specific service, it makes

sense that the charging amount would differ according to the time of the day the request

is performed. The third policy checks the time at the client’s location, when the request is

submitted, and adjusts the charging amount accordingly. After the amount is calculated,

the A∗ algorithm is performed on the preferences of the client, regarding the QoS char-

acteristics the Web Service should satisfy, and the actual QoS characteristics of the Web

Service.

The service selection framework receives as input a client’s profile, the descriptions of

the candidate services and the policy under which the selection process should be per-

formed, and finds the best Web Service according to the client’s profile and returns the

optimal QoS configuration of the Web Service, in case there are alternative possible con-

figurations, as well as a relative score to indicate how close the configuration is to the

clients preferences. In addition, it returns the rest of the candidate Web Services with

their corresponding optimal configurations and scores.

7.1 A∗ Algorithm

We will describe how we integrated the A∗ algorithm in our policies and we will provide an

example showing the algorithm in practice. A client may specify in his/her profile a number

of QoS characteristics that should be satisfied by the candidate Web Services. In the client’s

profile, each QoS characteristic Ci specified, is associated with a tuple <qi, wi> where qi is

the desired quality level (one of “high”, “medium”, or “low”) and wi is the corresponding

Service Selection Framework 107

weight (any number) representing the degree of importance the QoS characteristic has for

the client. Likewise, a service provider, when defining the description of his/her service,

may specify a number of QoS characteristics that the Web Service satisfies associating

each QoS variable with one or more quality levels (e.g., “high” or “medium”, “high” or

“low”, etc.), meaning that whenever the service provider specifies more than one quality

levels for a QoS variable, they will be alternatives. Additionally, a service provider may

place constraints between QoS variables, by specifying that the quality level of a specific

QoS variable is disjoint with the quality level of another QoS variable (e.g., high quality

of accuracy may be disjoint with high quality of latency).

The algorithm works as follows:

1. Get the QoS characteristics requested by the client in his/her profile and place them

in a list.

2. Sort the list according to the weight of each QoS characteristic (from higher to lower

values).

3. Starting from the first node of the list a search tree is constructed. The root of the

tree is the “Root” node, which is essentially an empty node. Each level of the tree

corresponds to a QoS characteristic. Each node in the tree indicates a quality level of

the QoS variable, a path from the root to the node represents the combined quality

levels of the service being evaluated, and the depth of the tree equals to the number

of QoS variables requested by the client. The tree is organized according to the

relative QoS weights in the client’s profile. The heavier the weight of a QoS variable

is, the closer to the root is placed as a node. The least weighted QoS variable forms

the target nodes. Keep in mind, there will probably be missing nodes representing

108 Model Driven Service Description and Discovery Framework for Carrier Applications

quality levels that can never be achieved due to the constraints placed by the service

provider (using the “disjoint with” attribute described earlier).

4. Each node of the tree contains, among other information, three numbers, namely

g(n), h(n) and f(n). g(n) is the accumulated deviation so far when considering up to

the nth quality, h(n) is the minimum possible deviation to reach the desired quality

levels from the nth to the kth (last) quality and f(n) is the estimated total deviation

cost of path when considering up to the nth quality (f(n)=g(n)+h(n)).

5. Create an empty list (called “open” list) and add the starting (“Root”) node to the

open list. Repeat the following:

(a) Find the node with the lowest f(n) inside the open list. We refer to this node

as the “current” node. In case of a tie select the node compared last.

(b) If the current node is a target node (a leaf node of the tree), then the algorithm is

completed, else remove the current node from the open list and add the children

of the node in the open list calculating the g(n), h(n) and f(n) for each child.

The g(n) is calculated as follows: each node contains information regarding

the desired quality level requested by the client, and the actual quality level

offered by the service. When a client requests a QoS that is not contained in

the description of the service, the algorithm assumes that the offered quality

level is “low”. For each node, a “cost” is estimated. Each quality level is

given a specific value (“High”=3, “Medium”=2 and “Low”=1). The algorithm

subtracts the numbers corresponding to the desired quality level and the actual

quality level of the service. If, for example, the client requests a “High” quality

Service Selection Framework 109

for a specific characteristic, and the service offers “Low” then the result will be

2. There are three possible subtraction results: 0, 1 or 2. Each result is given

a cost. For 0 the cost is 1, for 1 the cost is 5 and for 2 the cost is 9. The

g(n) is calculated as the weight given by the user for the specific QoS variable

multiplied by the cost. Since g(n) is the accumulated deviation, we add to it

the g(n-1) (the g(n) of the “current” node (the parent of child)). The h(n)

is calculated as the remaining distance to achieve the goal (the number of the

remaining QoS variables to be processed) multiplied by the least weight of these

remaining QoS variables. The f(n) is the sum of the g(n) and h(n).

(c) Return to step (a).

The algorithm returns the node that was selected last (a leaf (target node) of the tree)

and the f(n) value of that node. By traversing the search tree backwards, we get the con-

figuration of the Web Service that matches better the preferences of the client. Moreover,

the f(n) of the last calculated node is the “final score” of the matching process. The Web

Service with the lowest “final score” is the best according to the client’s preferences. Al-

though the algorithm might seem a bit confusing, it will become clearer with the example

presented in the next paragraph.

7.2 An A∗ Algorithm Example for Service Selection

Consider a scenario where a client is searching for a Web Service, for example a flight book-

ing service. In the scenario, there are two Web Services available satisfying the syntactic

requirements posed by the client. However, one of these Web Services can be selected and

110 Model Driven Service Description and Discovery Framework for Carrier Applications

that is where the semantic requirements set by the client come into play.

7.2.1 Client Preferences

The client wishes the service to have at least the following QoS characteristics:

• High latency with 0.35 weight.

• High accuracy with 0.4 weight.

• High safety with 0.25 weight.

Keep in mind the “High”, “Medium” and “Low” values refer to the offered quality level of

each QoS characteristic. The PIM object diagram depicting the preferences of the client

is shown in figure 7.1.

: Client

: ClientProfile

: ClientPreferences

: QualityOfService

weight=0.35
: Latency

weight=0.25
: Safety

weight=0.4
: Accuracy

: High

: High

: High

Figure 7.1: A∗ Example Client Preferences

7.2.2 Web Service Descriptions

Consider the first Web Service matching the syntactic specifications of the request. The

service offers high, medium or low latency (as alternatives), high, medium or low accu-

Service Selection Framework 111

racy and finally high, medium or low safety. Moreover, the service provider specifies, as

constrains, that high latency is disjoint with high safety in his/her domain. Additionally,

high accuracy is disjoint with high latency or medium latency. The PIM object diagram

depicting the service description is shown in figure 7.2.

name="serviceA"

: Service

: ServiceContext

: QualityOfService

: Latency

: Safety

: Accuracy

: High

: High

: High

: Medium

: Low

: Medium

: Low

: Medium

: Low

disjointWith

disjointWith

disjointWith

Figure 7.2: A∗ Example “ServiceA” Description

Consider the second Web Service matching the syntactic specifications of the request.

The service offers high, medium or low latency (as alternatives), and high, medium or low

accuracy. The description of the service provides no information regarding the “safety”

QoS characteristic. In this case, the framework assumes the offered quality level is low.

Moreover, the service provider specifies, as constrains, that high accuracy is disjoint with

high latency or medium latency in his/her domain. The PIM object diagram depicting the

service description is shown in figure 7.3.

112 Model Driven Service Description and Discovery Framework for Carrier Applications

name="serviceB"

: Service

: ServiceContext

: QualityOfService

: Latency

: Accuracy

: High

: High

: Medium

: Low

: Medium

: Low

disjointWith

disjointWith

Figure 7.3: A∗ Example “ServiceB” Description

7.2.3 A∗ Algorithm Walkthrough

We will describe how the algorithm works when comparing the client’s preferences against

the semantic information of the first Web Service. The A∗ algorithm would work as follows:

1. Sort the client’s QoS characteristics according to their weight. “Accuracy” would be

placed first, “Latency” would be placed second and “Safety” would be placed third.

2. Construct the search tree. The search tree is shown in figure 7.4. Notice there are

missing nodes due to the constraints placed by the service provider using the “disjoint

with” property.

Let us provide a walkthrough of the algorithm.

1. Create the “open” list and add the “Root” node in the list.

Service Selection Framework 113

Root

HighAccuracy Medium Low

Low HighLatency

Safety

Medium Low High Medium Low

High

Medium

Low

Medium

Low

High

Medium Low

High

Medium

Low

Medium

Low

High

Medium

Low

High

Medium

Low

Figure 7.4: A∗ Example Search Tree

2. The node with the lowest f inside the list (the only node) is the “Root”. It is selected

and set as the “current” node.

3. Since it is not a target node, the “Root” node is removed from the open list and its

children are considered. For each of the children we calculate the g(n), h(n) and f(n)

values. The children are placed in the open list. The open list is re-evaluated.

4. The node with the lowest f in the open list is the node “Accuracy High”, which is

selected and is set as the “current” node. A snapshot of the tree is shown in figure 7.5.

The selected node is highlighted in red.

5. Since it is not a target node, the “current” node is removed from the open list and

its children are considered. For each of the children we calculate the g(n), h(n) and

114 Model Driven Service Description and Discovery Framework for Carrier Applications

Root

High
Accuracy

weight=0.4
Medium Low

g=0.4

h=0.5

f=0.9

g=2.0

h=0.5

f=2.5

g=3.6

h=0.5

f=4.1

Figure 7.5: A∗ Search Tree Snapshot 1

f(n) values. The children are placed in the open list. The open list is re-evaluated.

6. The node in the open list with the lowest f is the node “Accuracy Medium”. That

means that we have to rollback and re-consider the specific node. A snapshot of the

tree is shown in figure 7.6. The selected node is highlighted in red.

Root

High
Accuracy

weight=0.4
Medium Low

g=0.4

h=0.5

f=0.9

g=2.0

h=0.5

f=2.5

g=3.6

h=0.5

f=4.1

Low
Latency

weight=0.35

g=3.55

h=0.25

f=3.8

Figure 7.6: A∗ Search Tree Snapshot 2

7. Since it is not a target node, the “current” node is removed from the open list and

its children are considered. For each of the children we calculate the g(n), h(n) and

Service Selection Framework 115

f(n) values. The children are placed in the open list. The open list is re-evaluated.

8. The node in the open list with the lowest f is the node “Latency High”. A snapshot

of the tree is shown in figure 7.7. The node is highlighted in red.

Root

High
Accuracy

weight=0.4
Medium Low

g=0.4

h=0.5

f=0.9

g=2.0

h=0.5

f=2.5

g=3.6

h=0.5

f=4.1

Low
Latency

weight=0.35

g=3.55

h=0.25

f=3.8

High Medium Low

g=2.35

h=0.25

f=2.6

g=3.75

h=0.25

f=4.0

g=5.15

h=0.25

f=5.4

Figure 7.7: A∗ Search Tree Snapshot 3

9. Since it is not a target node, the “current” node is removed from the open list and

its children are considered. For each of the children we calculate the g(n), h(n) and

f(n) values. The children are placed in the open list. The open list is re-evaluated.

10. The node in the open list with the lowest f is the node “Safety Medium”. A snapshot

of the tree is shown in figure 7.8. The node is highlighted in red.

11. Since the node is a leaf of the tree, it is a target node. That means that the algorithm

is completed and by traversing the tree backwards we can have the optimal configu-

ration of the Web Service. The f value of the final node is the relativity score of the

Web Service. As a result, the optimal configuration would be “Accuracy Medium”,

116 Model Driven Service Description and Discovery Framework for Carrier Applications

Root

High
Accuracy

weight=0.4
Medium Low

g=0.4

h=0.5

f=0.9

g=2.0

h=0.5

f=2.5

g=3.6

h=0.5

f=4.1

Low
Latency

weight=0.35

g=3.55

h=0.25

f=3.8

High Medium Low

g=2.35

h=0.25

f=2.6

g=3.75

h=0.25

f=4.0

g=5.15

h=0.25

f=5.4

Safety

weight=0.25
Medium Low

g=3.6

h=0

f=3.6

g=4.6

h=0

f=4.6

Figure 7.8: A∗ Search Tree Snapshot 4

Root

HighAccuracy Medium Low

Low HighLatency

Safety

Medium Low High Medium Low

High

Medium

Low

Medium

Low

High

Medium Low

High

Medium

Low

Medium

Low

High

Medium

Low

High

Medium

Low

Figure 7.9: A∗ Search Tree Final Path

“Latency High”, and “Safety Medium” with a score of 3.6. The final path of the

algorithm is shown in figure 7.9.

Service Selection Framework 117

By executing the algorithm against the second Web Service description using the same

client profile, the algorithm would return as the optimal configuration “Accuracy Medium”,

“Latency High”, and “Safety Low” with a score of 4.6. Since the score of “ServiceB” is

higher than the score of “ServiceA”, “ServiceA” is more appropriate according to the

requirements posed by the specific client. Higher score means greater deviation from the

client preferences, thus “ServiceA” was considered more suitable in our example.

118 Model Driven Service Description and Discovery Framework for Carrier Applications

7.3 Integrating the Service Selection Framework in

Workflows

Consider a workflow template describing a task, such as booking a flight ticket, as men-

tioned in the introduction of this chapter. Figure 7.10 presents a generic workflow template

as well as the integration of the service selection framework in such a workflow.

SWEN University of Waterloo 7

S
1

S
3

S
2

WS
3

WS
2

WS
1

WS
8

WS
7

WS
6

WS
5

WS
4

Service

Selection

Framework

Service

Selection

Framework

Service

Selection

Framework

User

Profile

User

Profile

User

Profile

WS
2

WS
5

WS
7

Figure 7.10: The Service Selection Framework in Workflows

The workflow template is composed of three dummy services S1 (a service for checking

the availability of the seats in the specific flight), S2 (a service for booking the seat) and S3

(a service for charging the client’s credit card). The purpose of this example of course is

not to provide a concrete scenario but just a demonstration of how our framework would

work with workflows. For service S1 there are three implementations available WS1, WS2

Service Selection Framework 119

and WS3. The descriptions of the service implementations are fed in the service selection

framework along with the user profile. The service selection framework chooses the best

implementation and returns the result. The same procedure is followed for services S2 and

S3. Now the selected Web Services can be executed using for example BPEL4WS2.

2http://www-128.ibm.com/developerworks/library/specification/ws-bpel/

Chapter 8

A Case Study

In the context of this thesis, we have developed, as proof of concept, a demonstration tool

containing everything we have discussed thus far. The tool was implemented on the Eclipse

platform as a Rich Client Platform (RCP) application. During the theoretical study, the

design and implementation of the tool, a number of technologies were studied and applied:

• Eclipse platform1: the Eclipse platform is a “general purpose” IDE (Integrated De-

velopment Environment), meaning that the basic version of the platform does not

provide any specialized functionality besides being a development platform, however,

it provides the foundations and a framework to create plug-ins that can be added to

the platform and extend its functionality.

• Rich Client Platform (RCP) technology2: RCP is the minimal set of Eclipse plug-

ins needed to build a platform application with a UI. RCP tools are implemented

inside the Eclipse platform but are capable of running outside the Eclipse platform

1http://www.eclipse.org/
2http://www.eclipse.org/home/categories/rcp.php

120

A Case Study 121

as standalone applications.

• Eclipse Modeling Framework (EMF)3: EMF is a modeling framework and code gen-

eration facility for building tools and other applications based on a structured data

model. From a model specification described in XMI, EMF provides tools and run-

time support to produce a set of Java classes for the model, a set of adapter classes

that enable viewing and command-based editing of the model, and a basic editor.

• ATL language4: the ATL project aims at providing a set of model-to-model trans-

formation tools.

• Java Emitter Templates (JET)5: JET enables us to use a JSP-like syntax (actually

a subset of the JSP syntax) that makes it easy to write templates that express the

code we want to generate.

In the next paragraphs we will present the architecture and the operational profile of the

tool.

8.1 Tool’s Architecture

Figure 8.1 presents the architecture of our tool. We use a UML component diagram

showing the components forming the architecture and the dependencies between them.

The components of the architecture are the following:

• PIM: the class interfaces corresponding to our PIM domain model as well as imple-

mentations of the interfaces and additional utility classes.

3http://www.eclipse.org/modeling/emf/
4http://www.eclipse.org/m2m/atl/
5http://www.eclipse.org/articles/Article-JET/jet tutorial1.html

122 Model Driven Service Description and Discovery Framework for Carrier Applications

• PSM: the class interfaces corresponding to our PSM domain model as well as imple-

mentations of the interfaces and additional utility classes.

• PIM Edit: includes adapters that provide a structured view and perform command-

based editing of the PIM model objects.

• PSM Edit: includes adapters that provide a structured view and perform command-

based editing of the PSM model objects.

• PIM Editor: the UI for the PIM editor. Essentially it is an EMF tree editor.

• PSM Editor: the UI for the PSM editor. An EMF tree editor for our PSM. The

PSM editor is optional since it is not needed to edit a PSM model at all. However,

it enables us to create PSM models from scratch if needed (for test purposes), and

it allows us to open and view a generated PSM model in an editor, which is more

efficient than reading the XMI of the model.

• PIM2PSM: the ATL transformation engine, which is the engine used in our PIM to

PSM transformations. The component contains the transformation rules.

• PSM2WSDL: the Java Emitter Templates plug-ins enabling the PSM to WSDL trans-

formations. The component contains the JET templates specifying the transforma-

tions.

• Policies and Algorithms: contains the service selection policies and algorithms.

• Eclipse RCP: a minimal set of Eclipse plug-ins providing the essential infrastructures

for the tool’s operation.

A Case Study 123

• The dependencies shown in the figure were created after studying each component

separately and by revealing the dependencies of each component with the rest of the

components of the system, using a feature provided by the Eclipse platform that

reveals these dependencies.

PIM
PIM Edit

PIM Editor

PSM

PSM Edit

PSM Editor

PIM2PSM

PSM2WSDL

Policies and
Algorithms

Eclipse RCP

Figure 8.1: Demonstration Tool’s Architecture

124 Model Driven Service Description and Discovery Framework for Carrier Applications

8.2 Operational Profile

In this section, we will provide a description of the GUI of the tool and a brief description

of the features offered by the tool.

8.2.1 Graphical User Interface

A snapshot of the tool is shown in figure 8.2.

Menu Bar
Tool Bar

Properties

View

Editor

Area

Navigator

View

Tree

Editor

Figure 8.2: Tool Snapshot

As shown in figure 8.2, the tool’s GUI is composed of the following parts:

A Case Study 125

• Menu Bar: the tool has three main menu tabs, “File”, “PIM Editor” or “PSM Editor”

depending on which editor is opened and “Help” menu tab.

– “File” tab contains the following options:

∗ Save: save the selected diagram.

∗ Reset Perspective: resets the layout of the GUI to its defaults.

∗ Transform PIM to WSDL: transforms a PIM model to WSDL source files.

∗ Service Selection Demo: a demo function of the service selection process.

∗ Exit: exit the tool

– “PIM Editor” and “PSM Editor” tabs contain the following options:

∗ Model editing functions such as “New Child” or “New Sibling” actions,

adding new child or sibling elements on selected elements in the tree editor.

The available elements presented in each function are calculated dynami-

cally from the PIM or PSM metamodel respectively.

∗ Validate: a function validating the current model against the metamodel it

conforms to.

∗ Refresh: refresh the tree editor.

– “Help” tab contains the “About” function, showing information related to the

tool.

• Tool Bar: the tool bar contains the “Save”, “Transform PIM to WSDL” and “Service

Selection Demo” functions.

• Navigator View: it shows the current resources (created client and/or service de-

scriptions) and enables the creation, opening and deletion of these resources.

126 Model Driven Service Description and Discovery Framework for Carrier Applications

• Editor Area: the area of the GUI where a client or service provider opens and edits

his/her descriptions graphically.

• Tree Editor: the tree editor containing the PIM or PSM model descriptions. The

tree editor comes with a context menu containing functions such as “New Child”,

“New Sibling”, “Undo”, “Redo”, “Cut”, “Copy”, “Paste”, “Delete”, “Validate” and

“Refresh”.

• Properties View: it shows the properties of each selected element in the tree editor.

Both the PIM and PSM descriptions can be edited using this view.

• The tool contains wizards for creating new PIM and PSM models, as well as activating

the “Transform PIM to WSDL” and “Service Selection Demo” functions.

8.3 Carrier Services and a Working Example

8.3.1 Parlay X Web Services Specification

The Parlay X Web Services Specification, Version 3.06 is a specification issued by the

Parlay Group. The Parlay Group is a multi-vendor consortium formed to develop open,

technology-independent application programming interfaces (APIs) that enable the devel-

opment of applications that operate across multiple, networking-platform environments.

The Parlay X 3.0 specification has been defined jointly between the European Telecom-

munications Standards Institute (ETSI), Parlay, and the Third Generation Partnership

Program (3GPP). It consists of twenty Web Services:

6http://www.parlay.org/en/specifications/pxws.asp

A Case Study 127

1. Common: specifies the common aspects of the Parlay X 3 Web Services.

2. Third Party Call: a Web Service for creating and managing a call initiated by an

application (third party call). The overall scope of this Web Service is to provide

functions to application developers to create a call in a simple way. Using the Third

Party Call Web Service, application developers can invoke call handling functions

without detailed telecommunication knowledge.

3. Call Notification: a Web Service for handling calls initiated by a subscriber in the

network. A (third party) application determines how the call should be treated.

The overall scope of this Web Service is to provide simple functions to application

developers to determine how a call should be treated. It is possible to request to

end the call, continue the call or re-route the call. Optionally, it is also possible to

request the media type(s) when the action is to re-route the call.

4. Short Messaging: a Web Service for sending and receiving SMS messages. The overall

scope of this Web Service is to provide to application developers primitives to handle

SMS in a simple way.

5. Multimedia Messaging: defines a Multimedia Messaging Web Service that can map

to SMS, EMS, MMS, IM, E-mail, etc.

6. Payment: supports payment reservation, pre-paid payments, and post-paid pay-

ments. It supports charging of both volume and currency amounts, a conversion

function and a settlement function in case of a financially resolved dispute.

7. Account Management: supports account querying, direct recharging and recharging

128 Model Driven Service Description and Discovery Framework for Carrier Applications

through vouchers. As a side effect, it may prevent subscribers from having their

account balance credits expire.

8. Terminal Status: provides access to the status of a terminal by requesting for the

status of a terminal or requesting for the status of a group of terminals or through

the notification of a change in the status of a terminal.

9. Terminal Location: provides access to the location of a terminal by requesting for

the location of a terminal, or requesting for the location of a group of terminals,

or through the notification of a change in the location of a terminal, or through

the notification of terminal location on a periodic basis. The location is expressed

through a latitude, longitude, altitude and accuracy.

10. Call Handling: provides a mechanism for an application to specify how calls are to

be handled for a specific number. It includes commonly utilized actions such as call

accepting (only accepting calls from a list of numbers), call blocking (blocking calls if

they are on a blocking list), conditional call forwarding (changing the destination of

a call to another number for a specific calling number), unconditional call forwarding

(changing the destination of a call to another number), and play audio (initiate audio

with the caller (e.g., an announcement or menu)).

11. Audio Call: allows media to be added/dropped for any ongoing call. This Web

Service also allows interaction with other call control Web Services (e.g., multimedia

conference, third party call), enabling delivery of multimedia to call participants in

an ongoing call.

A Case Study 129

12. Multimedia Conference: a simple Web Service that allows the creation of a multime-

dia conference and the dynamic management of the participants involved.

13. Address List Management: defines two related interfaces. The first interface manages

the groups themselves (creation, deletion, query and access right management). The

second interface manages the members within a group, supporting add, delete and

query operations. Addresses are not created using this service, they must already

exist.

14. Presence: allows for presence information to be obtained about one or more users

and to register presence for the same. It is assumed that the typical client of these

interfaces is either a supplier or a consumer of the presence information. An Instant

Messaging application is a canonical example of such a client of this interface.

15. Message Broadcast: provides operations for sending a broadcast message to the net-

work and a polling mechanism for monitoring the delivery status of a sent broadcast

message. It also provides an asynchronous notification mechanism for broadcast de-

livery status.

16. Geocoding: while the Parlay X Terminal Location Web Service provides access to the

geographical coordinates at which a terminal is located, the Geocoding Web Service

provides an additional level of refinement, allowing the service developer to work with

actual location addresses and the like.

17. Application-driven Quality of Service: enables applications to dynamically change

the quality of service (e.g., bandwidth) available on end user network connections.

Changes in QoS may be applied on either a temporary basis (i.e., for a defined period

130 Model Driven Service Description and Discovery Framework for Carrier Applications

of time), or as the default QoS to be applied for a user each time they connect to the

network.

18. Device Capabilities and Configuration: allows applications to get information about

device capabilities and push device configuration to a device.

19. Multimedia Streaming Control: controls the consumption of streaming multimedia

of a service provided to an end-user.

20. Multimedia Multicast Session Management: allows for a third party (e.g., applica-

tion) to control a multicast session, its members and multimedia stream, and obtain

channel presence information.

8.3.2 A Working Example

To validate our approach, we created a scenario using, in our syntactic side descriptions, one

specification from the Parlay X Web Services Specifications, Version 3.0. More specifically,

we chose to generate the WSDL descriptions for a “Third Party Call” Web Service. In a

nutshell, the “Third Party Call” Web Service specification defines that a Web Service with

name “ThirdPartyCall” has seven operations, namely “makeCallSession”, “addCallPartic-

ipant”, “transferCallParticipant”, “getCallParticipantInformation”, “getCallSessionInfor-

mation”, “deleteCallParticipant” and “endCallSession”. Each operation contains specific

inputs, outputs and exceptions. The Web Service uses SOAP as the messaging proto-

col and HTTP as the transport protocol. The contained operations are document-style

(soap:operation style=“document”), and the parts of the messages define the concrete

schema according to which they are serialized (soap:body use=“literal”). Finally, the Web

A Case Study 131

Service can be accessed using the address “http://localhost:9080/ThirdPartyCallService/

services/ThirdPartyCall”. In addition to the syntactic description of the Web Service, we

added semantic information. This information included the physical location of the Web

Service (country=Canada), the points of availability of the Web Service (country=Canada,

province=Ontario, city=Kitchener, postal code=N2H2H6), the information that the Web

Service would share the personal information of its clients if necessary, and finally, QoS

characteristics (Robustness=High, Capacity=Low | Medium, Accuracy=Low | Medium |
High, Coherence=Medium, Latency=Low |Medium | High, Safety=Low |Medium | High).

In addition, we specified that High Accuracy is disjoint with High Latency or Medium La-

tency or Medium Capacity, and High Latency is disjoint with High Accuracy or High

Safety. A snapshot of the PIM model containing the description of the specific service is

shown in figure 8.3.

In the same way, we created two more Web Service descriptions having identical syn-

tactic descriptions but altered semantic descriptions. The second Web Service (Service

B) had the same physical location (country=Canada), altered points of availability (coun-

try=Canada, province=Ontario, city=Waterloo, postal code=N2L3G1 and N2L3L1 as well

as country=Canada, province=Ontario, city=Guelph, postal code=N2L3XX), same pri-

vacy policies, and altered QoS characteristics (Robustness=High, Capacity=Low |Medium,

Accuracy=Low |Medium | High, Coherence=Medium, Latency=Low |Medium | High). In

addition, we specified that High Accuracy is disjoint with High Latency or Medium Latency

or Medium Capacity (same as before), and High Latency is disjoint with High Accuracy.

The third Web Service (Service C) had the same physical location (country=Canada),

altered points of availability (country=Canada, province=Ontario, city=Kitchener, postal

code=N2L3G1 and N2H2L4), same privacy policies, and altered QoS characteristics (Ro-

132 Model Driven Service Description and Discovery Framework for Carrier Applications

Figure 8.3: Third Party Call PIM Model

bustness=High, Capacity=Low | Medium, Accuracy=Low | High, Coherence=Medium,

Latency=Low | Medium | High, Safety=Low | Medium | High). In addition, we specified

that High Accuracy is disjoint with High Latency or Medium Latency or Medium Capacity,

and High Latency is disjoint with High Accuracy or High Safety (same as Service A).

The next step a service provider should follow after creating a Web Service description

is to transform the PIM model containing the Web Service description to its corresponding

WSDL source code descriptions. This can be achieved by invoking the “Transform PIM

A Case Study 133

to WSDL” wizard, shown in figure 8.4.

Figure 8.4: Transform PIM to WSDL Wizard

A service provider should additionally create a “configuration.txt” file containing SOAP

specific information (the address at which the Web Service can be accessed). This informa-

tion could not be included in the PIM model because it is technology-specific information.

Any technology-specific information required in future releases should be specified inside

the configuration file. After invoking, configuring and executing the “Transform PIM to

WSDL” wizard, four files are generated:

134 Model Driven Service Description and Discovery Framework for Carrier Applications

• The generated PSM model.

• A WSDL file containing the abstract definitions of the Web Service.

• A WSDL file containing the concrete specifications and specific service bindings for

the Web Service.

• A WSDL file containing the semantic information of the Web Service.

All WSDL files were validated by the Eclipse Web Tools Platform (WTP)7 and the XMLSpy

tool8. It should be noted that all the custom data types used in the Web Service descriptions

should be created in separate XML schema documents using one of the plethora of available

tools for specifying XML schemas. These data types can be imported in our tool as

necessary, but should be defined independently.

We described how a service provider can specify and generate the descriptions of his/her

Web Services. A client can specify in the same fashion his/her profile. This specification

doesn’t include transformations because a client’s PIM model contains all the information

that is needed when selecting the appropriate Web Services for a specific client in our

framework. In our example, we created a client with name “Nikolaos Giannopoulos” (how

modest is that...), ID=“123456789”, and location “country=Canada, province=Ontario,

city=Kitchener and postal code=N2H2ZZ”. The client specifies that a Web Service should

ideally have at least the following QoS characteristics: High Latency (weight 0.35), High

Accuracy (weight 0.4) and High Safety (weight 0.25). The weight, as already mentioned,

reveals how important a QoS characteristic is for the client. The PIM model containing

the profile is shown in figure 8.5.

7http://www.eclipse.org/webtools/main.php
8http://www.altova.com/products/xmlspy/xml editor.html

A Case Study 135

Figure 8.5: A Client’s PIM Model

Consider this client is searching to invoke a “Third Party Call” Web Service. In a

repository containing services A, B and C, all three of these services would have been can-

didates for the specific request. However, all three Web Services have identical syntactic

descriptions, so the question that arises is which of these services is the best for the specific

client? In order to answer that we will use the “Service Selection Demo” wizard demon-

strating how our framework would work under these conditions. The wizard is shown in

figure 8.6.

136 Model Driven Service Description and Discovery Framework for Carrier Applications

Figure 8.6: Service Selection Demo Wizard

We have already presented the policies that were defined in our framework. The au-

thority handling the client requests should create a policy configuration file (policyConfig-

uration.txt) that contains the policies each Web Service is compliant with. The “Service

Selection Demo” wizard updates dynamically the policies that can be used in the Web Ser-

vice selection process by reading the policy configuration file and by taking the intersection

of the specified policies. It is specified that service A is compliant with Policies 1, 2 and

3, service B is complaint with Policies 1 and 3, and service C is compliant with policies

A Case Study 137

1 and 2. When checking the client’s profile against Web Services A, B and C, only one

policy becomes available that is policy 1. As a reminder, policy 1 checks the availability

of each Web Service in the client’s location and if it is available it is tested against the A∗

algorithm. The results of the service selection process are shown in figure 8.7.

Figure 8.7: Service Selection Process Results

The best Web Service, according to the client’s profile, is service A with score 3.6. The

optimal configuration of the Web Service is Medium Accuracy, High Latency and Medium

Safety. Service B was not available in the client’s area, and service C had a worse score (3.8)

138 Model Driven Service Description and Discovery Framework for Carrier Applications

compared to service A. However, the optimal configuration for service C is returned as well

and it is High Accuracy, Low Latency and High Safety. This completes the demonstration

of our framework.

Chapter 9

Conclusions and Future Work

The software engineering community has come to the realization that the current status

of Web Service discovery and selection is inadequate for the contemporary needs of the

businesses and their clients. The problem arises when conflicting Web Service descriptions,

having almost identical syntactic descriptions, need to be evaluated when selecting the most

appropriate Web Service according to the requirements posed by a specific client request.

As of the time of this writing, there is no standard support for semantically annotating Web

Service descriptions. The use of semantically enhanced Web Service descriptions could solve

the problems arising when two or more services have similar descriptions, and furthermore,

it would enable a more sophisticated querying of Web Services from their potential clients.

The current trend in software development is the model-driven development, which will

dominate in the years to come. As a result, a proposal addressing the issue of semantically

annotating Web Services and selecting services using these annotations should be made in

the context of model-driven development.

There are a number of proposals in the literature addressing similar issues, presented

139

140 Model Driven Service Description and Discovery Framework for Carrier Applications

in Chapter 2; however, these proposals are mostly focused on specific areas of the prob-

lem domain without handling the problem as a whole. For example, there are proposals

addressing the issue of model-driven development of semantically enriched Web Services

using ontologies or extending WSDL, without, however, proposing a framework that would

utilize these descriptions to select, in some way, the best Web Services according to the

needs of the clients. There are other proposals addressing the issue of discovering Web

Services in an environment in which Web Services are semantically enriched, without,

however, proposing a framework to generate those semantically enriched descriptions.

We propose a concrete solution addressing the problem as a whole, and not just focusing

on specific areas of the problem domain. In this way, an authority interested in our

approach would have a full solution of the problem domain, without having to adopt

a solution from one provider addressing the model-driven development of semantically

enriched Web Service descriptions, and another solution addressing the discovery of these

services from another provider. When combining solutions from different sources, there is

a high risk of having interoperability and incompatibility issues. Our proposal, a model-

driven service discovery framework for carrier applications, does not only provide a full

proposal but is additionally fully extensible to accommodate future expansions as needed.

9.1 Thesis Contributions

The contributions of the thesis can be divided into two categories: the first category ad-

dresses the issue of generating semantically-enriched Web Service descriptions in a model-

driven manner, and the second category addresses the issue of selecting semantically-

enriched Web Services according to the preferences of the clients requesting the Web

Conclusions and Future Work 141

Services.

In our effort to address the model-driven generation of semantically enriched Web Ser-

vice descriptions, we specified a syntactic-based service interface description specification,

a semantic-based service description specification and integrated these two specifications

into a Platform Independent Model for service-oriented systems. In addition, we speci-

fied a Platform Specific Model for Web Services accommodating the specifications defined

in the PIM in a platform-specific manner (WSDL-specific), extending the WSDL-specific

definitions to include the semantic-specific definitions that are not included in the WSDL

1.1 specification. Furthermore, we designed a transformation model describing the trans-

formation rules and mappings between the PIM model and the PSM model and created a

concrete implementation of the transformation model using the ATL language. In order

to generate the extended WSDL documents we designed and implemented a second trans-

former, transforming the generated PSM models into WSDL 1.1 code, containing all the

syntactic and semantic information specified for the service.

In order to address the efficient selection of Web Services according to the specific needs

of each client, we designed a PIM model defining a client’s profile, including the client’s

location, his/her personal information and preferences. The created client profiles will

be used when selecting the appropriate Web Services for a client, based on the semantic

information included in the client’s profile. We propose an adaptive service selection frame-

work. The adaptiveness is justified with the introduction of the semantic information in

both the service and the client descriptions, and additionally with the introduction of dif-

ferent policies defining the service selection process. We propose a framework for defining

service selection policies, providing three predefined policies for demonstration purposes.

The proposed framework allows the dynamic configuration of the Web Services to meet

142 Model Driven Service Description and Discovery Framework for Carrier Applications

specific quality requirements defined by the clients.

The framework was specified in the context of Model Driven Development, targeting

carrier applications, thus being an innovating approach for Web Service description, dis-

covery and selection. For proof of concept and for demonstration purposes we designed

and developed an Eclipse Rich Client Platform (RCP) prototype tool.

9.2 Future Work

The purpose of the proposed framework is to provide the foundation of an innovating

approach to generate semantically enriched Web Service descriptions and at the same

time select the most appropriate Web Services according to the needs of their clients.

We designed the framework in such a way that can be easily extended to accommodate

new ideas and new approaches in future releases. Both PIM and PSM metamodels can

be extended if it is decided that the currently defined specifications do not completely

cover the solution domain. The semantic specifications may be easily extended to include

additional information. For example, someone may define additional QoS characteristics

or use a different approach in specifying the locations of Web Services and clients by

using coordinates instead of postal codes. New and more sophisticated policies and service

selection algorithms may be specified, enabling an even more accurate and robust service

selection methodology. Another interesting future extension would be to integrate our

framework in workflows, facilitating the instantiation of templated business workflows, as

presented in chapter 7.

Appendix A

Full Version of PIM

A.1 PIM Full UML Diagrams

targetNamespace:String
Package

name:String
PackageContent*

ElementImport

ChoreographyPolicy

OrchestrationPolicy

Policy

1

1..*

granularity:GranularityKind
isPersistent:Boolean
primitiveKind:String
primitiveSpec:String

ProcessComponent
*

subtypes

0..1

name:String
DataElement

Protocol

Workflow

PortOwner

name:String
isSynchronous:Boolean
isTransactional:Boolean
direction:DirectionType
postCondition:Status

Port

*

1

preCondition:Status
Transition

name:String
Node
**

*

11

source

11 target

kind:PseudostateKind
PseudoState

documentation:String
Service

AtomicService

AggregateService

Client

Middleware

PresentationLogic

BusinessLogic

Context

Behaviour

*

success
timeoutFailure
technicalFailure
businessFailure
anyFailure
anyStatus

<<enumeration>>
Status

program
owned
shared

<<enumeration>>
GranularityKind

initiates
responds

<<enumeration>>
DirectionType

choice
fork
initial
join
success
failure

<<enumeration>>
PseudostateKind

MultiPort

ProtocolPort

FlowPort

*

*

subtypes

0..1 1

1..*

uses

name:String
initial:String
isLocked:Boolean

PropertyDefinition

*

1

*

type

1

1

*

1

1

1..*

0..1
*

type

parameterOrder:String
Operation

*

*

GlobalData
Source

Parameter

InOut

Out

In

name:String
Exception

*

1..*

Figure A.1: Syntactic PIM Full Version Part 1

143

144 Model Driven Service Description and Discovery Framework for Carrier Applications

name:String
initial:String
isLocked:Boolean

PropertyDefinition

PropertyAttribute

*
ServiceDescriptionAttribute

BinderOps

Binder

ServiceDescription

ModifyOp

DeleteOp

AssociateOp

SubscribeOp

PublishOp

DiscoveryProtocol

1..*

1
1

1..*

DataElement

PersistentStorage*

1..*

RuntimeDeployment

ComponentRuntime

1..*

1..*

*

1

Functionality

OperationState

SystemState *

1

Behaviour

TransactionException

TransactionManager

Middleware

granularity:GranularityKind
isPersistent:Boolean
primitiveKind:String
primitiveSpec:String

ProcessComponent

Client

Protocol

Transaction1..*

1

1

*

1..*
1

1..*

1..*

*

0..1

Syntactic
Description

Semantic
Description

1..*

1

ServerSide
Description

ClientSide
Description

UserTransaction

SessionTransaction

DatabaseTransaction

1

*

Server

1

*

Transaction
Semantics

Messaging
Protocol

Message

Message
Payload

Message
Attribute

1

*

*

1..*

1

*

1

1..*

1

1

DataElement

name:String
DataElementType1

1..*

1..*

Exception

0..1

ContentTransfer
Protocol

type

type

*

*

Protocol

Figure A.2: Syntactic PIM Full Version Part 2

ApplicationDomain

Middleware

SystemState

AdaptiveMiddleware

MiddlewareLayer

AdaptiveProperty

ReflectionView

Structural
Reflection

QoS-Enabled

Dependable

Embedded

1

1

1..*

AdaptationType

Static

Dynamic

Customizable

Configurable

Tunable

Mutable

1..*

*

Host-
Infrastructure

Distribution

Common-
Services

Domain-
Services

*

1..*

Behavioural
Reflection

1

1..*

Figure A.3: Syntactic PIM Full Version Part 3

Full Version of PIM 145

name:String
PackageContentprefix:String

namespace:String
location:String

Schema
*

name:String
DataElementType

Element

Type

Protocol

documentation:String
Service1..*

1..*
PostConditions*

PackageContent
SelectionPolicy

* *

Figure A.4: Syntactic PIM Full Version Part 4

A.2 PIM Full Documentation

Table A.1: Syntactic PIM Full Version Documentation

Class Name Package.
Semantics Defines a structural container for “top level” model elements.
Extends None.
Attributes targetNamespace: String (required)

The namespace of the service definition.
Associations PackageContent (zero or more)

The model element(s) within the package.

Class Name PackageContent (abstract).
Semantics An abstract capability that represents an element that may be placed

in a package and thus referenced from other elements of the package.
Extends None.
Attributes name: String (optional)

The name of the element.
Associations Policy (exactly one)

The policy associated with each element.
ElementImport (zero or more)
The element(s) that might be imported into another package.
PackageContentSelectionPolicy (zero or more)
The selection policies associated with the element.

Continued on next page

146 Model Driven Service Description and Discovery Framework for Carrier Applications

Table A.1 – continued from previous page
Class Name ProcessComponent (abstract).
Semantics A ProcessComponent represents an abstract active processing unit (it

does something). Each ProcessComponent defines a set of ports for
interaction with other ProcessComponents and has a set of properties
that are used to configure the ProcessComponent when it is used.

Extends PackageContent , PortOwner .
Attributes granularity: GranularityKind (optional)

The GranularityKind defines the scope in which the component oper-
ates. Its values may be: program (the component is local to a program
instance (default)), owned (the component is visible outside of the scope
of a particular program but dedicated to a particular task or session
that controls its life cycle) and shared (the component is generally vis-
ible to external entities via some kind of distributed infrastructure).
isPersistent: Boolean (optional)
Indicates that the component stores session specific state across inter-
actions.
primitiveKind: String (optional)
Components implementation includes additional implementation se-
mantics defined elsewhere, perhaps in an action language or program-
ming language. If the component has an implementation specification,
primitiveKind specifies the implementation specific type, normally the
name of a programming language. If primitiveKind is blank, the com-
position is the full specification of the components implementation (the
component is not primitive).
primitiveSpec: String (optional)
If primitiveKind has a value, primitiveSpec identifies the location of
the implementation. The syntax of primitiveKind is implementation
specific.

Associations Port (zero or more) (via PortOwner)
The set of Ports on the ProcessComponent. Each port provides a con-
nection point for interaction with other components or services and
realizes a specific protocol. The protocol may be simple and use a
“FlowPort” or the protocol may be complex and use a “ProtocolPort”.
If allowed by its protocol, a port may send and receive information.

Continued on next page

Full Version of PIM 147

Table A.1 – continued from previous page
Supertype (zero or one), Subtypes (zero or more)
A ProcessComponent may inherit specification elements (ports, prop-
erties, states etc.) from a supertype. That supertype must also be a
ProcessComponent. A subtype component is bound by the contract of
its supertypes but it may add elements, override property values, and
restrict referenced types.
PropertyDefinition (zero or more)
To make a component capable of being reused in a variety of conditions
it is necessary to be able to define and set properties of that compo-
nent. PropertyDefinition represents the list of properties defined for
this component.
Exception (zero or more)
The exception(s) associated with the ProcessComponent.
RuntimeDeployment (one or more)
The runtime deployment environment(s) associated with the Process-
Component.

Class Name Exception (abstract).
Semantics When defining a service it is useful to declare the exceptions that may

be thrown or events that may occur as a result of an erroneous state.
Extends None.
Attributes name: String (required)

The name of the exception.
Associations DataElementType (zero or one)

When the exception is a data type then this association is used to define
its type (e.g., XML schema element, simpleType, complexType, etc.).

Class Name TransactionException.
Semantics The exceptions thrown during the execution of transactions.
Extends Exception .
Attributes None.
Associations TransactionManager (one or more)

The transaction manager(s) handling the exception.

Continued on next page

148 Model Driven Service Description and Discovery Framework for Carrier Applications

Table A.1 – continued from previous page
Class Name Schema.
Semantics Represents an external imported XML schema declaration to be used

inside a WSDL document. The elements of a schema are used when
defining a service, for example when defining the parameters of the
operations.

Extends PackageContent .
Attributes prefix: String (required)

The prefix used when referencing the schema.
namespace: String (required)
The URI representing the “targetNamespace” attribute of a schema.
location: String (optional)
When importing a schema as an external document the “location” at-
tribute is used to indicate the location, in the local file system, of the
file containing the schema. If it is omitted it means that the schema is
accessible over the Internet.

Associations DataElementType (zero or more)
The XML schema “element” or “type” element(s) declared inside the
schema. These elements will be used when defining the service.

Class Name Element.
Semantics Represents the “element” element in an XML schema document. The

“complexType” and “simpleType” elements define data types, not ac-
tual data elements. The distinction between these two is analogous to
the difference between a class and an instance of that class. The data
elements are defined using the “element” element.

Extends DataElementType .
Attributes None.
Associations None.

Class Name Type.
Semantics The complexType and simpleType elements inside an XML schema

declaration define data types. The class is an abstract grouping of
both complex and simple types.

Extends DataElementType .
Attributes None.
Associations None.

Continued on next page

Full Version of PIM 149

Table A.1 – continued from previous page

Class Name Service.
Semantics In a service-oriented architecture, we need a clear understanding of the

term service. This is achieved by defining the class Service.
Extends ProcessComponent .
Attributes documentation: String (optional)

A brief documentation (description) of the service.
Associations Operation (zero or more)

The operation(s) of the service.
PostConditions (zero or more)
The post-conditions of the service. The post-conditions describe the
effects of the service after it is executed.
Protocol (one or more)
The messaging, discovery or content transfer protocols associated with
the service.
PreConditions (zero or one)
The preconditions of the service that need to be satisfied before the
service is executed. This is part of the semantic information of the ser-
vice and as a result the association is shown in the semantic metamodel
presented in Chapter 4, in figure 4.1.
ServiceContext (zero or one)
The context of the service. This is part of the semantic information
of the service and as a result the association is shown in the semantic
metamodel presented in Chapter 4, in figure 4.1.
PointsOfAvailability (zero or more)
The location(s) the service is available. This is part of the semantic
information of the service and as a result the association is shown in
the semantic metamodel presented in Chapter 4, in figure 4.2.
ServiceLocation (zero or one)
The physical location of the service. This is part of the semantic in-
formation of the service and as a result the association is shown in the
semantic metamodel presented in Chapter 4, in figure 4.2.

Class Name Operation.
Semantics Represents an operation of a service.
Extends ProcessComponent .

Continued on next page

150 Model Driven Service Description and Discovery Framework for Carrier Applications

Table A.1 – continued from previous page
Attributes parameterOrder: String (optional)

Operations do not specify whether they are to be used with RPC-like
bindings or not. However, when using an operation with an RPC-
binding, it is useful to be able to capture the original RPC function
signature. For this reason, an operation may specify an order of pa-
rameter names via the “parameterOrder” attribute. The value of the
attribute is a list of message part names separated by a single space.
Note that this information serves as a “hint” and may safely be ignored
by those not concerned with RPC signatures. Also, it is not required
to be present, even if the operation is to be used with an RPC-like
binding.

Associations Service (one or more)
The service(s) containing the operation.
DataElement (zero or more)
The data element(s) associated with the operation.

Class Name DataElement (abstract).
Semantics DataElement is the abstract super type of all parameters and global

data sources defined and used in the service. It defines some kind of
information.

Extends None.
Attributes name: String (required)

The name of the data element.
Associations DataElementType (exactly one)

The type of the data element.
PersistentStorage (zero or more)
The persistent storage medium(s) (e.g. databases, files) in which the
DataElement is stored.
RuntimeDeployment (exactly one)
The runtime deployment environment in which the data element is
used.

Class Name DataElementType (abstract).
Semantics DataElementType is the abstract super type of all elements that can

be types of a DataElement.
Extends None.

Continued on next page

Full Version of PIM 151

Table A.1 – continued from previous page
Attributes name: String (required)

The name of the type.
Associations None.

Class Name Parameter (abstract).
Semantics The abstract super type of the parameters of an operation.
Extends DataElement .
Attributes None.
Associations None.

Class Name GlobalDataSource (abstract).
Semantics An abstract class representing data sources that have a more global

character than the parameters of an operation.
Extends DataElement .
Attributes None.
Associations None.

Class Name InOut.
Semantics Represents the “in/out” parameters. If a parameter appears in both

the input and output, it is an “in/out” parameter. The value of an
“in/out” argument is sent in the input and is modified from the reply.
An “in/out” argument is therefore both an “in” and “out” argument.

Extends Parameter .
Attributes None.
Associations None.

Class Name In.
Semantics Represents the “in” parameters. If a parameter appears in only the

input, it is an “in” parameter. “In” arguments are sent in the input
but do not change as a result of the method invocation. This is a direct
mapping of the pass-by-value semantics of arguments in Java method
calls.

Extends Parameter .
Attributes None.
Associations None.

Continued on next page

152 Model Driven Service Description and Discovery Framework for Carrier Applications

Table A.1 – continued from previous page
Class Name Out.
Semantics Represents the “out” parameters. If a parameter appears in only the

output message, it is an “out” parameter. “Out” arguments appear
in the method signature, but their value is not sent with the input
message. However, a new value for the argument may appear in the
response and, if so, the argument is modified from the returned value.

Extends Parameter .
Attributes None.
Associations None.

Class Name Client.
Semantics Represents the possible clients that may query for or use a service.
Extends ProcessComponent .
Attributes None.
Associations PresentationLogic (exactly one)

The PresentationLogic associated with the specific client.
ClientSideDescription (exactly one)
The client’s syntactic description of the service.
ClientProfile (zero or one)
The profile of the client. This is part of the semantic information
of the client and as a result the association is shown in the semantic
metamodel presented in Chapter 4, in figure 4.1.

Class Name Port (abstract).
Semantics A port realizes a simple or complex conversation for a ProcessCompo-

nent or Protocol. All interactions with a ProcessComponent are done
via one of its ports. When a component is instantiated, each of its
ports is instantiated as well, providing a well-defined connection point
for other components. Each port is connected with collaborative com-
ponents that speak the same protocol. Multi-party conversions are
defined by components using multiple ports, one for each kind of party.

Extends Node .
Attributes name: String (required)

The name of the port. The name will, by default, be the same as the
name of the protocol role it realizes.

Continued on next page

Full Version of PIM 153

Table A.1 – continued from previous page
isSynchronous: Boolean (required)
A port may interact synchronously or asynchronously. A port, which
is marked as synchronous, is required to interact using synchronous
messages and return values.
isTransactional: Boolean (required)
Indicates that interactions with the component are transactional and
atomic (in most implementations this will require that a transaction be
started on receipt of a message). Non-transactional components either
maintain no state or must execute within a transactional component.
direction: DirectionType (required)
Indicates that the port will either initiate or respond to the related
type. An initiating port will send the first message. Note that by
using ProtocolPorts a port may be the initiator of some protocols and
the responder to others. The values of DirectionType may be initiates
(this port will initiate the conversation by sending the first message), or
responds (this port will respond to the initial message and (potentially)
continue the conversation).
postCondition: Status (optional)
The status of the conversation indicated by the use of this port. This
status may be queried in the postCondition of a transition.

Associations None.

Class Name FlowPort.
Semantics A FlowPort is a port that defines a data flow in or out of the port on

behalf of the owning component or protocol.
Extends Port .
Attributes None.
Associations DataElement (zero or one)

The type of data element that may flow into or out of the port.

Class Name ProtocolPort.
Semantics A protocol port is a port that defines the use of a protocol. A protocol

port is used for potentially complex two-way interactions between com-
ponents, such as is common in B2B protocols. Since a protocol has two
“roles” (the initiator and responder), the direction is used to determine
which role the protocol port is taking on.

Continued on next page

154 Model Driven Service Description and Discovery Framework for Carrier Applications

Table A.1 – continued from previous page
Extends Port .
Attributes None.
Associations Protocol (exactly one)

The protocol to use, which becomes the specification of this port’s
behavior.

Class Name MultiPort.
Semantics A MultiPort combines a set of ports which are behaviourally related.

Each port owned by the MultiPort will “buffer” information sent to
that port until all the ports within the MultiPort have received data,
at this time all the ports will send their data. Owned ports will not
forward data until all sub-ports have received data.

Extends Port , PortOwner .
Attributes None.
Associations None.

Class Name Protocol (abstract).
Semantics A protocol defines a type of conversation between two parties, the initia-

tor and responder. One protocol role is the initiator of the conversation
and the other the responder. However, after the conversation has been
initiated, individual messages and sub-protocols may be initiated by
either party. The ports of a protocol are specified with respect to the
responder. Within the protocol are sub-ports. Each port contained by
a protocol defines a sub-action of that protocol until ultimately every-
thing is defined in terms of FlowPorts. A protocol must be used by two
ProtocolPorts to become active. The protocol specifies the conversa-
tion between two ProcessComponents (via their ports). Each compo-
nent that is using that protocol must use it from the perspective of the
“initiating role” or the “responding role”. Each of these components
will use every port in the protocol, but in complementary directions.
For example, a protocol “X” has a flow port “A” that initiates a mes-
sage and a flow port “B” that responds to a message. Component “Y”,
which responds to protocol “X” will also receive “A” and initiate “B”.
But, Component “Z”, which initiates protocol “X” will initiate message
“A” and respond to message “B”.

Extends PackageContent , PortOwner .
Continued on next page

Full Version of PIM 155

Table A.1 – continued from previous page
Attributes None.
Associations Port (zero or more) (via PortOwner)

The ports, which define the sub-actions of the protocol. For example,
a “call Return” protocol may have a “call” FlowPort and a “return”
FlowPort.
Supertype (zero or one), Subtypes (zero or more)
A Protocol may inherit specification elements from a supertype. That
supertype must also be a Protocol.
Service (one or more)
The service(s) using the protocol.

Class Name PropertyDefinition.
Semantics To allow for greater flexibility and reuse, ProcessComponents may have

properties that may be set when the ProcessComponent is used. A
PropertyDefinition defines that such a property exists, its name, and
type.

Extends None.
Attributes name: String (required)

The name of the property being modeled.
initial: String (optional)
An expression indicating the initial and default value.
isLocked: Boolean (optional)
If true, the property may not be changed.

Associations DataElement (exactly one)
The type of the property.
PropertyAttribute (zero or more)
The PropertyAttribute(s) owned by the PropertyDefinition.

Class Name PortOwner (abstract).
Semantics An abstract meta-class used to group the meta-classes that may own

ports: ProcessComponent, Protocol and MultiPort.
Extends None.
Attributes None.
Associations Port (zero or more)

The owned ports.

Continued on next page

156 Model Driven Service Description and Discovery Framework for Carrier Applications

Table A.1 – continued from previous page
Class Name ElementImport.
Semantics Defines an “alias” for one element within another package.
Extends PackageContent .
Attributes None.
Associations PackageContent (exactly one)

The element to be imported.

Class Name Policy (abstract).
Semantics Describes the notion of policies that may be specified.
Extends None.
Attributes None.
Associations PackageContent (one or more)

The elements belonging to the policy.

Class Name ChoreographyPolicy (abstract).
Semantics An abstract class that owns Nodes and Transitions. A Choreography-

Policy specifies the ordering of port activities. The order in which ac-
tions of the ProcessComponent’s ports do something may be specified
using ChoreographyPolicy. The ChoreographyPolicy of a ProcessCom-
ponent specifies the external temporal contract of the ProcessCompo-
nent (when it will do what) based on the actions of its ports and the
ports in protocols of its ports.

Extends PackageContent , Policy .
Attributes None.
Associations Node (zero or more)

The Port(s) and/or PseudoState(s) to be choreographed.
Transition (zero or more)
The transition(s) between nodes.

Class Name Node (abstract).
Semantics Node is an abstract element that specifies something that can be the

source and/or target of a transition and thus ordered within the chore-
ographed process.

Extends None.
Attributes name: String (required)

The name of the node.
Associations None.

Continued on next page

Full Version of PIM 157

Table A.1 – continued from previous page

Class Name Transition.
Semantics The contractual specification that the related nodes will activate based

on the ordering imposed by the set of transitions between nodes.
Extends None.
Attributes preCondition: Status (required)

A constraint on the transition such that it may only fire if the prior
node terminated with the referenced condition.

Associations Source Node (exactly one)
The source node that is transferring control and/or data.
Target Node (exactly one)
The target node to which data and/or control will be transferred.

Class Name PseudoState.
Semantics PseudoState specifies starting, ending, or intermediate states in the

ChoreographyPolicy of the contract of a protocol or ProcessComponent.
Extends Node .

Continued on next page

158 Model Driven Service Description and Discovery Framework for Carrier Applications

Table A.1 – continued from previous page
Attributes kind: PseudostateKind (required)

• Choice: splits an incoming transition into several disjoint outgo-
ing transitions. Each outgoing transition has a guard condition
that is evaluated after prior actions on the incoming path have
been completed. At least one outgoing transition must be enabled
or the model is ill-formed.

• Fork: splits an incoming transition into several concurrent out-
going transitions. All the transitions fire together.

• Initial: the default target of a transition to the enclosing compos-
ite state.

• Join: merges transitions from concurrent regions into a single
outgoing transition. Join PseudoState will proceed after all its
incoming Transitions have triggered.

• Success: the end-state indicating that the choreography ended in
success.

• Failure: the end-state indicating that the choreography ended in
failure.

Associations None.

Class Name OrchestrationPolicy.
Semantics The orchestration policy associated with a workflow.
Extends Policy .
Attributes None.
Associations Workflow

The workflow for which the policy is defined.

Class Name AtomicService.
Semantics An atomic service is a function that is well-defined, self-contained, and

does not depend on the context or state of other services. It cannot be
decomposed into sub-services.

Extends Service .
Continued on next page

Full Version of PIM 159

Table A.1 – continued from previous page
Attributes None.
Associations None.

Class Name AggregateService.
Semantics A composition of atomic services or other aggregate services in order

to form and define a new service.
Extends Service .
Attributes None.
Associations Service (zero or more)

The services contained in the aggregate service.

Class Name Workflow.
Semantics A workflow is a formal definition of the steps required by a process and

the sequence in which the steps occur. In the context of our metamodel
it defines the execution order of a set of services.

Extends AggregateService .
Attributes None.
Associations Transition (zero or more)

The Transition(s) contained in the workflow.
OrchestrationPolicy
The OrchestrationPolicy defined for the workflow.

Class Name Behaviour.
Semantics Describes the behaviour of ProcessComponents (e.g., services, middle-

ware etc.) either from the middleware perspective (business logic) or
from the perspective of a client (presentation logic).

Extends PropertyDefinition .
Attributes None.
Associations Context (exactly one)

The context under which the behaviour exists.

Class Name Context.
Semantics The context under which the behaviour of a ProcessComponent exists

(e.g., location of client).
Extends None.
Attributes None.

Continued on next page

160 Model Driven Service Description and Discovery Framework for Carrier Applications

Table A.1 – continued from previous page
Associations Behaviour (exactly one)

The behaviour that corresponds to the specific context.

Class Name BusinessLogic.
Semantics The behaviour of a middleware from the perspective of a middleware.

BusinessLogic may include where the business logic is, what communi-
cations are taking place, what transactions are failing, how many are
being handled, what peers it depends on are not behaving etc. All the
critical knowledge about what is happening is in the business logic.

Extends Behaviour .
Attributes None.
Associations Middleware (exactly one)

The middleware associated with the specific BusinessLogic.

Class Name Middleware.
Semantics Middleware is connectivity software that encapsulates a set of services

residing above the network operating system layer and below the user
application layer. Middleware facilitates the communication and co-
ordination of application components that are potentially distributed
across several networked hosts. Moreover, middleware provides applica-
tion developers with high-level programming abstractions, for example,
use of remote objects instead of socket programming. In this manner,
middleware can hide interprocess communication, mask the heterogene-
ity of the underlying systems (hardware devices, operating systems, and
network protocols), and facilitate the use of multiple programming lan-
guages at the application level. Middleware can also be considered as
“glue” that enables integration of legacy applications, effectively im-
plementing the session and presentation layers (layers 5 and 6) of the
ISO OSI reference model.

Extends ProcessComponent .
Attributes None.
Associations BusinessLogic (one or more)

The BusinessLogic(s) specified for the middleware.
Transaction (zero or more)
The transaction(s) associated with the middleware.

Continued on next page

Full Version of PIM 161

Table A.1 – continued from previous page
Class Name PresentationLogic.
Semantics How to present the information (e.g., VoiceXML).
Extends Behaviour .
Attributes None.
Associations Client (zero or more)

The client(s) associated with the specific PresentationLogic.

Class Name PropertyAttribute.
Semantics A set of attributes associated with one or more PropertyDefinitions.
Extends None.
Attributes None.
Associations None.

Class Name ServiceDescriptionAttribute.
Semantics A set of attributes associated with one or more ServiceDescriptions.
Extends PropertyAttribute .
Attributes None.
Associations ServiceDescription (one or more)

The service description(s) associated with the attribute.

Class Name SystemState.
Semantics Describes a state of a system.
Extends None.
Attributes None.
Associations ReflectionView (one or more)

The reflection view(s) associated with a given state.

Class Name OperationState.
Semantics A state of a system related to its operation.
Extends SystemState .
Attributes None.
Associations Functionality (exactly one)

The functionality of a service that the OperationState is associated
with.

Class Name Functionality.
Semantics The functionality of a service.
Extends Behaviour .

Continued on next page

162 Model Driven Service Description and Discovery Framework for Carrier Applications

Table A.1 – continued from previous page
Attributes None.
Associations OperationState (zero or more)

The operational state(s) associated with the functionality.
ServiceDescription (zero or more)
The service description(s) associated with the specific functionality.

Class Name ServiceDescription.
Semantics The description of a service. The description can be either syntactic or

semantic. For example, consider a stock quote service, which takes as
input a string denoting the stock symbol and returns the stock quote as
a number. The syntactic information denotes that the input parameter
is a string and the output is a number, whereas semantic information
conveys the real world meaning of the string and the number in the
context of stock quote markets. Depending on whether the service re-
questor is an end-user, a developer or a machine, different kinds of
service description are required. For the end-user, only semantic de-
scription is needed whereas developers or machines need both semantic
and syntactic information.

Extends PropertyDefinition .
Attributes None.
Associations ServiceDescriptionAttribute (one or more)

The attribute(s) of the service description.
Functionality (zero or more)
The functionality(s) associated with the service.
Binder (zero or more)
The Binder(s) attached to a specific ServiceDescription.
RuntimeDeployment (exactly one)
The runtime deployment environment associated with the specific Ser-
viceDescription.

Class Name Binder.
Semantics Binds a service description to one or more discovery protocols.
Extends None.
Attributes None.

Continued on next page

Full Version of PIM 163

Table A.1 – continued from previous page
Associations ServiceDescription (exactly one)

The service description on which the Binder is attached.
DiscoveryProtocol (one or more)
The discovery protocol(s) on which the Binder is attached.
BinderOps (one or more)
The set of operations associated with the Binder.

Class Name DiscoveryProtocol.
Semantics Used in UDDI (Universal Description, Discovery and Integration). The

protocol used to discover web services.
Extends Protocol .
Attributes None.
Associations Binder (exactly one)

The Binder attached to the discovery protocol.

Class Name BinderOps.
Semantics A set of operations associated with a binder.
Extends None.
Attributes None.
Associations Binder (exactly one)

The Binder associated with the operations.

Class Name PublishOp.
Semantics The operation of publishing a service.
Extends BinderOps.
Attributes None.
Associations None.

Class Name SubscribeOp.
Semantics The operation of subscribing for a service.
Extends BinderOps.
Attributes None.
Associations None.

Class Name AssociateOp.
Semantics The operation of associating with a service.
Extends BinderOps.
Attributes None.

Continued on next page

164 Model Driven Service Description and Discovery Framework for Carrier Applications

Table A.1 – continued from previous page
Associations None.

Class Name DeleteOp.
Semantics The operation of deleting a service.
Extends BinderOps.
Attributes None.
Associations None.

Class Name ModifyOp.
Semantics The operation of modifying a service.
Extends BinderOps.
Attributes None.
Associations None.

Class Name PersistentStorage.
Semantics The persistent storage mediums (e.g., databases, files) used to store

information (DataElement(s)).
Extends None.
Attributes None.
Associations DataElement (one or more)

The data element(s) stored in the persistent storage medium.

Class Name RuntimeDeployment.
Semantics The runtime deployment environment in which the middleware, the

web services, the databases and the clients interact.
Extends None.
Attributes None.
Associations DataElement (one or more)

The exchanged data element(s) that participate in the operation of the
runtime deployment environment.
ServiceDescription (one or more)
The service description(s) associated with the runtime deployment en-
vironment.
ProcessComponent (one or more)
The ProcessComponent(s) associated with the runtime deployment en-
vironment.

Continued on next page

Full Version of PIM 165

Table A.1 – continued from previous page
Class Name ComponentRuntime.
Semantics ComponentRuntime is a collection of runtime deployment environ-

ments.
Extends RuntimeDeployment .
Attributes None.
Associations RuntimeDeployment (zero or more)

The runtime deployment environments contained in the Componen-
tRuntime.

Class Name SyntacticDescription.
Semantics Syntactic information is concerned with the implementation aspects

of a service and thus tailored towards the programmers’ requirements.
Associated with WSDL.

Extends ServiceDescription .
Attributes None.
Associations None.

Class Name SemanticDescription.
Semantics Semantic information is concerned with the conceptual aspects of a

service aiming to facilitate end-users by shielding off the lower level
technical details, as well as to facilitate developers to find services that
best match their needs and to enable automatic service selection and
composition.

Extends ServiceDescription .
Attributes None.
Associations None.

Class Name ClientSideDescription.
Semantics The SyntacticDescription from the perspective of a client.
Extends SyntacticDescription .
Attributes None.
Associations Client (zero or more)

The client(s) associated with this description.

Class Name ServerSideDescription.
Semantics The SyntacticDescription from the perspective of a server. Related

with the web-service deployment.
Continued on next page

166 Model Driven Service Description and Discovery Framework for Carrier Applications

Table A.1 – continued from previous page
Extends SyntacticDescription .
Attributes None.
Associations Server (zero or more)

The server(s) associated with this description.

Class Name Server.
Semantics The server in a service-oriented environment.
Extends ProcessComponent .
Attributes None.
Associations ServerSideDescription (exactly one)

The server’s syntactic description of the service.

Class Name TransactionManager.
Semantics The manager responsible for handling transactions.
Extends None.
Attributes None.
Associations TransactionException (one or more)

The transactional exception(s) possibly thrown by the manager.
Transaction (one or more)
The transactions handled by the manager.

Class Name Transaction.
Semantics A transaction occurring in a service-oriented environment.
Extends None.
Attributes None.
Associations TransactionManager (exactly one)

The transaction manager handling the transaction.
Middleware (exactly one)
The middleware associated with the transaction.
TransactionSemantics (exactly one)
The semantic description of the transaction.

Class Name DatabaseTransaction.
Semantics The transactions performed in the context of databases. Mostly used in

conjunction with Java Database Connectivity (JDBC). A JDBC trans-
action is controlled by the transaction manager of the DBMS.

Extends Transaction .
Continued on next page

Full Version of PIM 167

Table A.1 – continued from previous page
Attributes None.
Associations None.

Class Name SessionTransaction.
Semantics Related to Bean-Managed Transactions. In a bean-managed transac-

tion, the code in the session or message-driven bean explicitly marks
the boundaries of the transaction.

Extends Transaction .
Attributes None.
Associations None.

Class Name UserTransaction.
Semantics The transactions performed using HTTP requests by the users.
Extends Transaction .
Attributes None.
Associations None.

Class Name TransactionSemantics.
Semantics The semantic description of a transaction.
Extends None.
Attributes None.
Associations Transaction (exactly one)

The transaction described by the semantics.
MessagingProtocol (one or more)
The messaging protocol(s) associated with the semantic description of
a transaction.

Class Name MessagingProtocol (abstract).
Semantics The messaging protocol used in a transaction. Usually it is a SOAP

protocol.
Extends Protocol .
Attributes None.
Associations TransactionSemantics (exactly one)

The transactional semantics associated with the protocol.
Message (zero or more)
The message(s) exchanged in the context of a protocol.

Continued on next page

168 Model Driven Service Description and Discovery Framework for Carrier Applications

Table A.1 – continued from previous page
Class Name Message.
Semantics The message(s) exchanged in a service-oriented environment.
Extends None.
Attributes None.
Associations MessagingProtocol (exactly one)

The protocol defining the messages role.
MessageAttribute (zero or more)
The attribute(s) of the message.
MessagePayload (zero or more)
The information contained in the message.

Class Name MessageAttribute.
Semantics The attributes of a message.
Extends None.
Attributes None.
Associations Message (one or more)

The message(s) containing the attribute.

Class Name MessagePayload.
Semantics The information contained in a message.
Extends None.
Attributes None.
Associations Message (exactly one)

The message containing the information.

Continued on next page

Full Version of PIM 169

Table A.1 – continued from previous page
Class Name AdaptiveMiddleware.
Semantics Developing distributed applications is a difficult task for several rea-

sons. First, writing code for interprocess communications is tedious
and error prone. Low level socket programming and marshalling and
un-marshalling messages are examples of such code. Second, supporting
multiple interacting platforms is difficult. Many heterogeneous hard-
ware devices, computer networks, operating systems, and programming
languages have emerged during the last two decades. Distributed appli-
cations are more likely than stand-alone applications to involve hetero-
geneous technologies. Third, adapting to dynamic changing conditions
is hard to achieve without the right tools and techniques. Emerging
distributed applications often involve multimedia communication, mo-
bility, embedded computing, group communications, and high availabil-
ity. Addressing these issues means that systems must adapt to changing
conditions, such as unexpected security attacks, hardware failures, and
dynamic network environments. To tackle the first two problems, mid-
dleware was invented. Traditionally, middleware hides the underlying
details of interprocess communication and heterogeneous technologies
from the application developers using a “black-box” paradigm such as
encapsulation in object-oriented programming. Although traditional
middleware solves these problems to some extent, it is limited in its
ability to support adaptation. Adaptive middleware has evolved from
traditional middleware to solve all the three problems together. Adap-
tive middleware enables modifying the behaviour of a distributed ap-
plication after the application is developed in response to some changes
in functional requirements or operating conditions.

Extends Middleware .
Attributes None.
Associations ApplicationDomain (exactly one)

The application domain of the middleware.
AdaptiveProperty (zero or more)
The adaptive properties of the middleware.
AdaptionType (zero or more)
The adaptation type(s) characterizing the middleware.

Continued on next page

170 Model Driven Service Description and Discovery Framework for Carrier Applications

Table A.1 – continued from previous page
MiddlewareLayer (one or more)
The layers composing the middleware.

Class Name AdaptiveProperty.
Semantics In addition to the foundation provided by the design and use of tra-

ditional middleware platforms, numerous advances in programming
paradigms have also contributed to the design of adaptive middleware.
The class represents the properties that play key roles in supporting
adaptive middleware.

Extends None.
Attributes None.
Associations AdaptiveMiddleware (one or more)

The adaptive middleware having the property.

Class Name ReflectionView.
Semantics Reflection refers to the ability of a program to reason about, and possi-

bly alter its own behaviour or structure. Reflection enables a system to
“open up” its implementation details for such analysis without compro-
mising portability or revealing the unnecessary parts. In other words,
reflection exposes a system implementation at a level of abstraction
that hides unnecessary details, but still enables changes to the system
behaviour or structure.

Extends AdaptiveProperty .
Attributes None.
Associations SystemState (exactly one)

The systems state associated with the reflection property.

Class Name StructuralReflection.
Semantics Structural reflection enables modifying the structure of a system.
Extends ReflectionView .
Attributes None.
Associations None.

Class Name BehaviouralReflection.
Semantics Behavioural reflection enables modifying the behaviour of a system

(e.g., encrypting requests before transmitting them over a network).
Extends ReflectionView .

Continued on next page

Full Version of PIM 171

Table A.1 – continued from previous page
Attributes None.
Associations None.

Class Name MiddlewareLayer.
Semantics The layers a middleware is composed of.
Extends None.
Attributes None.
Associations None.

Class Name Host-Infrastructure.
Semantics The host-infrastructure layer resides directly atop the operating system

kernel and provides a higher-level API than the operating system API
that hides the heterogeneity of hardware platforms, operating systems
and, to some extent, network protocols. Host-infrastructure middle-
ware provides generic services to the upper middleware layers by en-
capsulating functionality that would otherwise require much tedious,
error-prone, and non-portable code, such as socket programming and
thread communication primitives.

Extends MiddlewareLayer .
Attributes None.
Associations None.

Class Name Distribution.
Semantics The distribution layer resides atop the host-infrastructure layer and

provides a high-level programming abstraction, such as remote method
invocation, to application developers. Using the distribution layer, de-
velopers can write distributed applications similar to stand-alone ap-
plications. Moreover, this layer hides the heterogeneity of network pro-
tocols and, to some extent, the heterogeneity of operating systems and
programming languages.

Extends MiddlewareLayer .
Attributes None.
Associations None.

Continued on next page

172 Model Driven Service Description and Discovery Framework for Carrier Applications

Table A.1 – continued from previous page
Class Name Common-Services.
Semantics The common-services layer resides atop the distribution layer and pro-

vides functionality such as fault tolerance, security, load balancing,
event propagation, logging, persistence, real-time scheduling, and trans-
actions. The high-level services provided in this layer can be reused in
different applications.

Extends MiddlewareLayer .
Attributes None.
Associations None.

Class Name Domain-Services.
Semantics The domain-services layer resides atop the common-services layer and

is tailored to a specific class of distributed applications. Unlike the
common-services layer, the high-level services in this layer can be reused
only for a specific domain.

Extends MiddlewareLayer .
Attributes None.
Associations None.

Class Name AdaptionType.
Semantics Adaptive middleware can be categorized with respect to the type of

adaptation it provides. If middleware enables adaptation during the
application compile or startup time, we call it static middleware. If
middleware enables adaptation during the application run time, we
call it dynamic middleware. Static middleware is divided further into
customizable and configurable middleware. Dynamic middleware can
be divided into tunable and mutable middleware.

Extends None.
Attributes None.
Associations AdaptiveMiddleware (one or more)

The adaptive middleware associated with the specific type.

Class Name Static.
Semantics If middleware enables adaptation during the application compile or

startup time, we call it static middleware.
Extends AdaptionType .
Attributes None.

Continued on next page

Full Version of PIM 173

Table A.1 – continued from previous page
Associations None.

Class Name Dynamic.
Semantics If middleware enables adaptation during the application run time, we

call it dynamic middleware.
Extends AdaptionType .
Attributes None.
Associations None.

Class Name Customizable.
Semantics Customizable middleware enables adapting an application during the

application compile (or link) time so that a developer can generate cus-
tomized (adapted) versions of the application. Note that a customized
version is generated in response to the functional and environmental
changes realized after the application development time.

Extends Static.
Attributes None.
Associations None.

Class Name Configurable.
Semantics Configurable middleware enables adapting an application during the

application startup time, enabling an administrator to configure the
middleware in response to the functional and environmental changes
realized after the application compile time.

Extends Static.
Attributes None.
Associations None.

Class Name Tunable.
Semantics Tunable middleware enables adapting an application after the applica-

tion startup time (but before the application is actually being used).
Doing so enables an administrator to fine-tune the application in re-
sponse to the functional and environmental changes that occur after
the application is started. We also define a variation of tunable mid-
dleware, repeatedly-tunable middleware that enables repeated-tuning
of applications during run time.

Extends Dynamic.
Continued on next page

174 Model Driven Service Description and Discovery Framework for Carrier Applications

Table A.1 – continued from previous page
Attributes None.
Associations None.

Class Name Mutable.
Semantics Mutable middleware is the most powerful type of adaptive middleware

that enables adapting an application during run time. Hence, the mid-
dleware can be dynamically adapted while it is being used. The main
difference between tunable middleware and mutable middleware is that
in the former, the middleware core remains intact during the tuning pro-
cess whereas in the latter, there is no concept of fixed middleware core.
Therefore, mutable middleware are more likely to evolve to something
completely different and unexpected.

Extends Dynamic.
Attributes None.
Associations None.

Class Name ApplicationDomain.
Semantics Categorizes adaptive middleware with respect to application domain.

Most adaptive middleware projects support one of these three main
application domains: QoS-oriented systems, dependable systems, and
embedded systems.

Extends None.
Attributes None.
Associations AdaptiveMiddleware (exactly one)

The adaptive middleware associated with the application domain.

Class Name QoS-Enabled.
Semantics QoS-oriented middleware supports real-time and multimedia applica-

tions, such as avionics systems, video conferencing and Internet tele-
phony, that are required to meet deadlines and adhere to some QoS
contracts, which define the acceptable levels of QoS.

Extends ApplicationDomain .
Attributes None.
Associations None.

Continued on next page

Full Version of PIM 175

Table A.1 – continued from previous page
Class Name Dependable.
Semantics Dependable middleware supports critical distributed applications that

are required to be correctly operational, such as military command and
control and medical applications.

Extends ApplicationDomain .
Attributes None.
Associations None.

Class Name Embedded.
Semantics Embedded middleware supports applications that are required to have

small footprints to be able to run on very limited memory devices,
including set-top boxes, smart phones, hand-held devices, industrial
controllers, and scientific instruments.

Extends ApplicationDomain .
Attributes None.
Associations None.

Class Name ContentTransferProtocol (abstract).
Semantics A protocol defining the rules and implementation details of attaching

and transferring content along with messages.
Extends Protocol .
Attributes None.
Associations None.

Class Name PackageContentSelectionPolicy.
Semantics The selection policy defining the service selection rules.
Extends None.
Attributes None.
Associations PackageContent (zero or more)

The element(s) involved in the policy.

Class Name PostConditions.
Semantics The post-conditions of a service. The post-conditions describe the ef-

fects of the service after it is executed. Although the post-conditions
are part of the semantic description of a service, since they are not
included in our framework they were added in this diagram.

Extends None.
Continued on next page

176 Model Driven Service Description and Discovery Framework for Carrier Applications

Table A.1 – continued from previous page
Attributes None.
Associations None.

Bibliography

[1] AndroMDA 3.2. Available at http://www.andromda.org.

[2] openArchitectureWare (oAW). Available at http://www.openarchitectureware.org/.

[3] D. H. Akehurst, W. G. Howells, and K. D. McDonald-Maier. Kent Model Transfor-

mation Language. In Proceedings of Model Transformations in Practice Workshop,

MoDELS Conference, Montego Bay, Jamaica, 2005.

[4] Rama Akkiraju, Joel Farrell, John Miller, Meenakshi Nagarajan, Marc-Thomas

Schmidt, Amit Sheth, and Kunal Verma. Web Service Semantics - WSDL-S. Novem-

ber 2005. Available at http://www.w3.org/Submission/WSDL-S/.

[5] Eric Armstrong, Jennifer Ball, Stephanie Bodoff, Debbie Bode Carson, Ian Evans,

Dale Green, Kim Haase, and Eric Jendrock. The J2EE 1.4 Tutorial. December 2005.

Available at http://java.sun.com/j2ee/1.4/docs/tutorial/doc/.

[6] Bill Burke, Sacha Labourey, and Richard Monson-Haefel. Enterprise JavaBeans, 4th

Edition. OReilly, June 2004.

[7] Ethan Cerami. Web Services Essentials, Distributed Applications with XML-RPC,

SOAP, UDDI & WSDL. OReilly, February 2002.

177

178 Model Driven Service Description and Discovery Framework for Carrier Applications

[8] S. Chaiyakul, K. Limapichat, A. Dixit, and E. Nantajeewarawat. A Framework for

Semantic Web Service Discovery and Planning. In Cybernetics and Intelligent Systems,

2006 IEEE Conference, pages 1–5, June 2006.

[9] Erik Christensen, Francisco Curbera, Greg Meredith, and Sanjiva Weerawarana. Web

Services Description Language (WSDL) 1.1. March 2001. W3C Specification.

[10] K. Czarnecki and S. Helsen. Feature-based survey of model transformation approaches.

In IBM Systems Journal, volume 45, June 2006.

[11] A. D’Ambrogio. A Model-driven WSDL Extension for Describing the QoS of Web

Services. In Web Services, 2006. ICWS ’06. International Conference, pages 789–796,

September 2006.

[12] Jos de Bruijn, Christoph Bussler, John Domingue, Dieter Fensel, Martin Hepp,

Uwe Keller, Michael Kifer, Birgitta Knig-Ries, Jacek Kopecky, Rubn Lara, Holger

Lausen, Eyal Oren, Axel Polleres, Dumitru Roman, James Scicluna, and Michael

Stollberg. Web Service Modeling Ontology (WSMO). June 2005. Available at

http://www.w3.org/Submission/WSMO/.

[13] Anind K. Dey, Gregory D. Abowd, and Daniel Salber. A Conceptual Framework and

a Toolkit for Supporting the Rapid Prototyping of Context-Aware Applications. In

Human-Computer Interaction (HCI) Journal, volume 16, 2001.

[14] El-Sayed and Black. Semantic-based context-aware service discovery in pervasive-

computing environments, IEEE International Workshop on Services Integration in

Pervasive Environments. 2006.

Full Version of PIM 179

[15] Wang et al. A QoS selection model for semantic web services, ICSOC. 2006.

[16] Joel Farrell and Holger Lausen. Semantic Annotations for WSDL and XML Schema.

April 2007. Available at http://www.w3.org/TR/sawsdl/.

[17] D. Fensel and C. Bussler. The Web Service Modeling Framework WSMF. In Electronic

Commerce: Research and Applications, pages 113–137, 2002.

[18] M. Fowler. UML Distilled. Addison-Wesley, 2005.

[19] Andreas Friesen and Kioumars Namiri. Towards Semantic Service Selection for B2B

Integration. In Workshop proceedings of the sixth international conference on Web

engineering ICWE ’06. ACM Press, July 2006.

[20] T. Gagnes, T. Plagemann, and E. Munthe-Kaas. A Conceptual Service Discovery Ar-

chitecture for Semantic Web Services in Dynamic Environments. In Data Engineering

Workshops, 2006. Proceedings. 22nd International Conference, pages 74–83, 2006.

[21] Object Management Group. Common Object Request Broker

Architecture: Core Specification. March 2004. Available at

http://www.omg.org/technology/documents/formal/corba iiop.htm.

[22] Object Management Group. Enterprise Collaboration Archi-

tecture (ECA) Specification. Frebruary 2004. Available at

http://www.omg.org/cgi-bin/doc?formal/2004-02-01.

[23] Object Management Group. MOF QVT Final Adopted Specification. November 2005.

[24] Object Management Group. UML Profile for Modeling Quality of Service and Fault

Tolerance Characteristics and Mechanisms. May 2006. OMG Available Specification.

180 Model Driven Service Description and Discovery Framework for Carrier Applications

[25] Thomas Gruber. Toward Principles for the Design of Ontologies Used for Knowl-

edge Sharing. International Journal Human-Computer Studies, 43:907–928, November

1995.

[26] V. Haarslev and R. Moller. Description of the Racer System and its Applications. In

Int. Workshop on Description Logics (DL-2001), Stanford, USA, August 2001.

[27] Martin Hepp. Semantic Web and semantic Web services: father and son or indivisible

twins? Internet Computing, IEEE, 10:85–88, March-April 2006.

[28] Juanjuan Jiang and Tarja Systa. UML-Based Modeling and Validity Checking of

Web Service Descriptions. In Web Services, 2005. ICWS 2005. Proceedings. 2005

IEEE International Conference, July 2005.

[29] Simon Johnston. UML 2.0 Profile for Software Services. April 2005. Available at

http://www-128.ibm.com/developerworks/rational/library/05/419 soa/.

[30] F. Jouault and I. Kurtev. Transforming Models with ATL. In Proceedings of Model

Transformations in Practice Workshop (MTIP), MoDELS Conference, Montego Bay,

Jamaica, 2005.

[31] Maksym Korotkiy and Jan Top. Onto-SOA: From Ontology-enabled SOA to Service-

enabled Ontologies. In Telecommunications, 2006. AICT-ICIW ’06. International

Conference on Internet and Web Applications and Services/Advanced International

Conference, pages 124–130, February 2006.

[32] Julia Kuck and Melanie Gnasa. Context-Sensitive Service Discovery Meets Informa-

tion Retrieval. In Pervasive Computing and Communications Workshops, 2007. Per-

Full Version of PIM 181

Com Workshops ’07. Fifth Annual IEEE International Conference, pages 601–605,

March 2007.

[33] KangChan Lee, JongHong Jeon, WonSeok Lee, Seong-Ho Jeong, and Sang-Won Park.

QoS for Web Services: Requirements and Possible Approaches. November 2003. W3C

Working Group Note.

[34] Anne Thomas Manes. Enabling Open, Interoperable, and Smart Web

Services, The Need for Shared Context. March 2001. Available at

http://www.w3.org/2001/03/WSWS-popa/paper29.

[35] Anbazhagan Mani and Arun Nagarajan. Understanding qual-

ity of service for Web services. January 2002. Available at

http://www-128.ibm.com/developerworks/library/ws-quality.html.

[36] David Martin, Mark Burstein, Jerry Hobbs, Ora Lassila, Drew McDermott, Sheila

McIlraith, Srini Narayanan, Massimo Paolucci, Bijan Parsia, Terry Payne, Evren Sirin,

Naveen Srinivasan, and Katia Sycara. OWL-S 1.1 Release Technical Overview. Novem-

ber 2004. Available at http://www.daml.org/services/owl-s/1.1/overview/.

[37] Maximilien and Singh. A framework and ontology for dynamic web services selection,

IEEE Internet Computing. 2004.

[38] Dave Menendez. Where Am I Language (WAIL). 2002. Available at

http://www.eyrie.org/ zednenem/2002/wail/.

[39] Microsoft. Overview of the .NET Framework. Available at

http://msdn2.microsoft.com/en-us/library/a4t23ktk(VS.80).aspx.

182 Model Driven Service Description and Discovery Framework for Carrier Applications

[40] Sun Microsystems. Java Web Services Developers Pack (WSDP). January 2002.

Available at http://www.xml.com/pub/r/1315.

[41] P.A. Muller, F. Fleurey, and J.M. Jézéquel. Weaving Executability into Object-

Oriented Metalanguages. In ACM/IEEE 8th International Conference on Model

Driven Engineering Languages and Systems, Montego Bay, Jamaica, pages 264–278,

2005.

[42] Hyun Namgoong, Moonyoung Chung, Kyung il Kim, HyeonSung Cho, and Yunku

Chung. Effective semantic Web services discovery using usability. In Advanced Com-

munication Technology, 2006. ICACT 2006. The 8th International Conference, vol-

ume 3, February 2006.

[43] University of Paderborn Software Engineering. Fujaba Tool Suite 5. Available at

http://wwwcs.uni-paderborn.de/cs/fujaba/.

[44] R. Pompa. Java Emitter Templates (JET) Tutorial. May 2004. Available at

http://www.eclipse.org/articles/Article-JET/jet tutorial1.html.

[45] Jinghai Rao, D. Dimitrov, P. Hofmann, and N. Sadeh. A Mixed Initiative Approach to

Semantic Web Service Discovery and Composition: SAP’s Guided Procedures Frame-

work. In Web Services, 2006. ICWS ’06. International Conference, pages 401–410,

September 2006.

[46] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall,

1995.

Full Version of PIM 183

[47] S. M. Sadjadi and P. K. McKinley. A survey of adaptive middleware. December

2003. Technical Report MSU-CSE-03-35, Computer Science and Engineering, Michi-

gan State University.

[48] Bran Selic. Model-Driven Development: Its Essence and Opportunities. In Object and

Component-Oriented Real-Time Distributed Computing, 2006. ISORC 2006. Ninth

IEEE International Symposium, 2006.

[49] Evren Sirin and Bijan Parsia. The OWL-S Java API. 2004. Available at

http://iswc2004.semanticweb.org/posters/PID-CUIIDZKF-1090286595.pdf.

[50] N. Sriharee. Semantic Web Services Discovery Using Ontology-Based Rating Model. In

Web Intelligence, 2006. WI 2006. IEEE/WIC/ACM International Conference, pages

608–616, December 2006.

[51] N. Srinivasan, M. Paolucci, and K. Sycara. CODE: A Development Environment for

OWL-S Web services. In 3rd International Semantic Web Conference, 2004.

[52] N. Srinivasan, M. Paolucci, and K. Sycara. Semantic Web Service Discovery in the

OWL-S IDE. In System Sciences, 2006. HICSS ’06. Proceedings of the 39th Annual

Hawaii International Conference, volume 6, January 2006.

[53] K. Sycara, S. Widoff, M. Klusch, and J. Lu. LARKS: Dynamic Matchmaking among

Heterogeneous Software Agents in Cyberspace. In Autonomous Agents and Multi-

Agent Systems, pages 173–203, 2002.

184 Model Driven Service Description and Discovery Framework for Carrier Applications

[54] Katia Sycara, Massimo Paolucci, Anupriya Ankolekar, and Maveen Srinivasan. Auto-

mated discovery, interaction and composition of Semantic Web services. In Elsevier

Journal of Web Semantics, pages 27–46, 2003.

[55] J.T.E. Timm and G.C. Gannod. A model-driven approach for specifying semantic Web

services. In Web Services, 2005. ICWS 2005. Proceedings. 2005 IEEE International

Conference, volume 1, pages 313–320, July 2005.

[56] A Min Tjoa, Amin Andjomshoaa, Ferial Shayeganfar, and Roland Wagner. Semantic

Web challenges and new requirements. In Database and Expert Systems Applications,

2005. Proceedings. Sixteenth International Workshop, pages 1160–1163, August 2005.

[57] Kim Topley. Java Web Services in a Nutshell. OReilly, June 2003.

[58] D. Varró and A. Pataricza. Generic and Meta-Transformations for Model Transfor-

mation Engineering. In Proceedings of the 7th International Conference on the Unified

Modeling Language, Lisbon, Portugal, pages 290–304, 2004.

[59] Larry Yusuf, Mandy Chessell, and Dr. Tracy Gardner. Implement model-driven de-

velopment to increase the business value of your IT system. January 2006. Available

at http://www-128.ibm.com/developerworks/library/ar-mdd1/.

