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Abstract

There are a variety of domains where it is desirable to learn a representation of

an environment defined by a stream of sensori-motor experience. This dissertation

introduces and formalizes subjective mapping, a novel approach to this problem.

A learned representation is subjective if it is constructed almost entirely from the

experience stream, minimizing the requirement of additional domain-specific infor-

mation (which is often not readily obtainable).

In many cases the observational data may be too plentiful to be feasibly stored.

In these cases, a primary feature of a learned representation is that it be compact—

summarizing information in a way that alleviates storage demands. Consequently,

the first key insight of the subjective mapping approach is to phrase the problem

as a variation of the well-studied problem of dimensionality reduction. The second

insight is that knowing the effects of actions is critical to the usefulness of a repre-

sentation. Therefore enforcing that actions have a consistent and succinct form in

the learned representation is also a key requirement.

This dissertation presents a new framework, action respecting embedding (ARE),

which builds on a recent effective dimensionality reduction algorithm called maxi-

mum variance unfolding, in order to solve the newly introduced subjective mapping

problem. The resulting learned representations are shown to be useful for reasoning,

planning and localization tasks. At the heart of the new algorithm lies a semidefinite

program leading to questions about ARE’s ability to handle sufficiently large input

sizes. The final contribution of this dissertation is to provide a divide-and-conquer

algorithm as a first step to addressing this issue.
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Chapter 1

Introduction

There are only two mistakes one can make along the road to truth;

not going all the way and not starting.

Buddha

This dissertation examines the problem of learning a representation (or map) of an

environment from a stream of actions and observations. In particular, it formalizes

a novel approach—called subjective mapping—aimed at providing an agent with a

low-dimensional representation of its environment in which the agent’s actions have

a sensible interpretation. This approach is based on the intuition that learning a

representation of an environment can be phrased as a variation of the dimensionality

reduction problem. In addition, this dissertation develops the action respecting

embedding algorithm for solving the subjective mapping problem and demonstrates

the usefulness of the algorithm for a variety of applications, as well as addressing

some scaling issues. This chapter provides an overview of the domain and the

problem, explicitly delineates the contributions of this dissertation and provides an

outline of the remainder of the document.

1
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1.1 Domain

Imagine the prototypical artificially intelligent agent existing in some environment

(for an introduction see for example [RN03]), capable of taking actions and getting

observations in return. The agent’s data, a stream of actions and observations, is

expressed in the form:

z0, u1, z1, u2, z2, u3, z3, . . . , un−1, zn−1, un, zn

where z0 is the agent’s first observation, u1 is the first action the agent takes, z1

is the observation the agent gets after taking the first action, and so forth. Such

a sequence (where the agent has taken n actions and made n + 1 observations)

is a typical data set from an agent which might benefit from learning a useful

representation of its environment.

Although one could imagine a version of this model where the actions and

observations are arbitrarily complex data structures it will be easier (and sufficiently

powerful, for the most part) to restrict them. In this document, action labels are

nominal variables represented by integers (ui ∈ Zna , where na is the number of

distinct possible actions) while observations are continuous D-dimensional vectors

(zi ∈ RD) typically high-dimensional.

For example, imagine a wheeled robot with a mounted camera moving around in

a room. In this case the robot is the agent. The agent’s actions are to move forward

a certain distance or to turn right or left by a certain angle. The observations are

the images received from the camera. The data in this example is the interleaved
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sequence of action labels (ui) and images from the camera (zi). Take the same

robot and replace the camera with a laser range-finder and the resulting data will

still be in the same format—action labels (ui) and distance vectors (zi).

Another example of an agent is ImageBot: a square patch moving around in

an arbitrary image. The agent’s actions are to move the square in a direction or

to rotate the square or to alter the scale of the image. The current observation is

the portion of the image covered by the square. Again, the data is an interleaved

sequence of action labels and observations. ImageBot is a synthetic domain in-

spired by robotics applications (complex observations and simply described actions)

which will be used as the test domain in this dissertation. The ImageBot domain

will be described in detail in Section 3.3.1.

1.2 Problem

The goal is for an agent (as described in Section 1.1) to be able to learn a useful

representation of its environment, in other words a map1 of its environment (or at

least the portion it observes). While mapping is often considered a challenge specific

to robotics, in its general form it is actually one of the fundamental challenges of

artificial intelligence—learning a useful representation of an environment. Such a

task is important in robotics, reinforcement learning, planning, multi-agent games,

and other areas.

Ideally, an agent would learn a map that could be used by other agents (one

1The term map is used in the most common sense of the word, such as a road map or a map
of the inside of a building.
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that somehow corresponds to an ideal objective map), but in the most general case

there may be no requirement that the representation matches a known objective

representation (for example, a building floor plan)—it may be sufficient to learn a

map that is only useful to the agent alone. In this case, it should be possible to

learn a map wholly (or mostly) from the subjective stream of experience (the agent’s

stream of actions and observations). The use of additional objective information

should not be required or, at least, be minimized.

Subjective mapping will be defined (in Chapter 3) by identifying three key prop-

erties of a useful representation. It should be a compact representation: distilling

large quantities of information. Landmarks in the environment should be in one-to-

one correspondence with points in the representation. Finally, actions associated

with the environment should correspond to consistent transformations in the rep-

resentation. Note that the first two properties are the goals of the well-known

problem of dimensionality reduction, suggesting that good representations may be

obtained from modified dimensionality reduction algorithms.

1.3 Contributions

The contributions of this dissertation are as follows:

1. The introduction and formal definition of a new approach to learning a rep-

resentation of an environment, here called subjective mapping, motivated

through the articulation of three key properties of good maps (two of which

are also properties of the dimensionality reduction problem).
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2. The action respecting embedding (ARE) algorithm for solving the new problem—

the input to ARE is a stream of experience, the output a low-dimensional

representation of the environment associated with that stream.

3. Results from running the algorithm in a complex robotics-inspired test domain

which support the thesis that subjective mapping is a workable approach.

4. A method for learning operators corresponding to original actions in a repre-

sentation learned by ARE by solving a constrained regression problem.

5. Demonstrations of the empirical usefulness of such representations and oper-

ators in both planning (which in turn leads to a quantitative evaluation of

the learned representations) and localization tasks.

6. An effective way of scaling the ARE algorithm to handle larger input sizes

using a divide-and-conquer technique.

(Items 2 and 3 are a joint contribution; an earlier version appears in Ali Ghodsi’s

PhD thesis [Gho06] though in a considerably different form.)

1.4 Outline

The subjective mapping problem introduced in Section 1.2 can be thought of as

an extension of the problem of dimensionality reduction which consequently will

be reviewed in Chapter 2. Chapter 3 expands on the key characteristics of maps,

formally defines the problem of subjective mapping and introduces the test domain
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of this dissertation. Chapter 4 introduces the Action Respecting Embedding al-

gorithm for subjective mapping. Chapter 5 shows how operators corresponding to

actions can be extracted from the learned map and used for planning. Chapter 6

demonstrates localization in a learned representation. Chapter 7 addresses some

scaling issues with Action Respecting Embedding. Chapter 8 discusses alternate

approaches to mapping (learning representations) and how they relate to the new

subjective mapping approach presented in this document. Chapter 9 concludes.



Chapter 2

Background

To be conscious that you are ignorant is a great step to knowledge.

Benjamin Disraeli

This chapter summarizes a variety of dimensionality reduction concepts. This is

necessary as the problem of subjective mapping, which will be developed and for-

mally defined in Chapter 3, is essentially a variation of dimensionality reduction.

Additional related work is discussed in Chapter 8, once the original contributions

of the dissertation have been presented.

2.1 Dimensionality Reduction

Dimensionality reduction or manifold learning can be seen as the process of deriving

a set of degrees of freedom which can be used to reproduce most of the variability

of a data set. Consider, for example, a set of images produced by rotating a camera

through a range of different angles around an object. Clearly only one degree of

7
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Given a collection of high-dimensional inputs:

{z1, z2, z3, . . . , zn} : zi ∈ RD

compute outputs:
xi ∈ Rd : d � D

in one-to-one correspondence with the inputs.

Table 2.1: Formal definition of dimensionality reduction.

freedom is being altered so the images should lie along a one-dimensional continuous

curve through the image space.

A formal definition of the dimensionality reduction problem is provided in Ta-

ble 2.1. Solving the problem provides the d-dimensional coordinates of the input

points on a d-dimensional manifold (or subspace) embedded in the original D-

dimensional space. In the rotating camera example where the camera produces

256 × 256 RGB images (3 color values per pixel), the goal might be to go from

zi ∈ R256×256×3 to xi ∈ R1. If the camera rotates all the way around the object,

then two dimensions (xi ∈ R2) may be required in order to capture a circular man-

ifold. Figure 2.1 demonstrates a possible two-dimensional manifold resulting from

dimensionality reduction applied to a collection of images of a teapot viewed from

different angles.

2.2 Principal Components Analysis

One of the original algorithms for dimensionality reduction was principal compo-

nents analysis or PCA. PCA provides a sequence of best linear approximations to
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Figure 2.1: Images of a teapot on a 2-dimensional manifold (this example taken
from [WS04]).

a given high-dimensional observation. Although popular, its effectiveness is limited

by its global linearity.

The subspace output by PCA attempts to capture the maximum variability

in the data. Given a data set of n-dimensional vectors, PCA can be seen as a

two-step process. The first step is to to find a new orthonormal basis for the

vectors where the first dimension captures the most variation, the second dimension

captures the second most variation and so on. These new basis vectors are called

principal components or PCs. The second step is to then choose the first d axes
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(where preferably d � n) and project the high dimensional data onto this new

lower-dimensional subspace. The linear subspace specified by these d principal

components will hopefully capture either all of or the majority of the variation in

the data.
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Figure 2.2: A set of 2-dimensional points and their principal components.
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Figure 2.3: Points from Figure 2.2 projected onto the first principal component.

Figure 2.2 shows a collection of two dimensional data points as well as the new

2-dimensional orthonormal basis which maximizes the variance of the data points.
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Figure 2.3 shows the result of projecting those 2-dimensional data points down onto

the 1-dimensional subspace which corresponds to the first principal component.

There are a number of ways to derive PCA (see for example [Hot33]). Given

an D × n matrix X of centred data [xi, i ∈ 1 . . . n] where each of the n columns

corresponds to a D dimensional data vector,1 the principal components are the

orthonormal vectors which maximize retained variance when the data vectors are

projected onto them.

In order to capture as much variability as possible, choose the first principal

component, U1, to have maximum variance. This first principal component must

be a linear combination of X weighted by coefficients w = [w1, . . . , wn]:

U1 = wT X

var(U1) = var(wT X) = wT Sw

where S is the sample covariance matrix of X. Maximizing this with respect to w

will yield a solution for U1.

Since var(U1) could be made arbitrarily large by increasing the weights, a con-

strained optimization is necessary:

max
w

wT Sw subject to: wT w = 1

1A centred data matrix is one for which the columns have a mean of zero. Any collection of
data vectors can be centred without affecting the covariance structure. It is often preferable to
work with centred data as there is a straightforward relationship between inner products and the
covariance matrix.
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This can be reformulated as an unconstrained optimization in the standard way

by using a Lagrange multiplier:

L(w, λ) = wT Sw − λ(wT w − 1)

which can be differentiated with respect to w and set to 0 giving:

Sw = λw.

Multiplying by wT on the left gives:

wT Sw = wT λw = λwT w = λ,

since λ is scalar and wT w = 1 by the constraints. Therefore var(U1) is maximized

if λ is the largest eigenvalue of S.

The first principal component is the eigenvector of S corresponding to the largest

eigenvalue of S. Similarly, the second principal component is the eigenvector cor-

responding to the second largest eigenvalue of S, and so forth. In other words, the

first d principal components of a data set X are the d dominant eigenvectors of S,

the sample covariance matrix of X.

Since the data vectors are centred, S = XXT and the eigenvectors (and eigen-

values) of S can be recovered through singular value decomposition of X:

X = UΣV T (2.1)
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where the columns of U contain the required eigenvectors of XXT = S and the

diagonal of Σ contains the singular values of XXT = S which can be squared to

get the eigenvalues.2

2.2.1 Dual Principal Components Analysis

Given n points with D dimensions, XXT is a D×D matrix. Typically, n � D (as

might be the case with a collection of images) therefore there may be substantial

savings in computation time when using dual PCA—a version of PCA which re-

quires computation of the eigenvectors of of the n× n matrix XT X instead of the

D ×D matrix XXT .

In the singular value decomposition in Equation 2.1 the columns of U are the

eigenvectors of XXT while the rows of V are the eigenvectors of XT X. Further,

the top d eigenvectors in U will be in one-to-one correspondence with the first d

eigenvectors in V in the following way. Since V is orthogonal, multiplying Equation

2.1 by V T on the right yields:

XV = UΣV T V = UΣ

Since Σ is square and invertible (because it has nonzero entries on the diagonal)

one can convert between the top d eigenvectors as follows:

U = XV Σ−1.

2This is usually not necessary as the majority of the time the only interest in the eigenvalues
is in their ordering which is preserved with the singular values.
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This means that the principal components can also be found from the eigen-

vectors of XT X. Since this dual version of PCA depends on the number of points

not their dimensionality it is clearly preferable in situations where D is much larger

than n.

2.2.2 Kernel Principal Components Analysis

Kernel PCA is a non-linear generalization of PCA. In kernel PCA, kernels are used

to efficiently compute principal components in a high-dimensional feature space

that is related to the original input space by some non-linear mapping. Where

PCA finds an orthogonal transformation of the coordinate system in which the

input data is described, kernel PCA finds a similar orthogonal transformation in a

coordinate system which is a non-linear transformation of the space of the input

data. A key observation is that dual PCA is formulated in terms of dot products

between data points. This means that in a similar formulation of kernel PCA the

dot product is replaced by the inner product of points in a Hilbert space. This

is equivalent to performing PCA in a higher-dimensional space produced through

some non-linear mapping—where hopefully the low-dimensional latent structure is

globally linear with respect to this new feature space.

Figure 2.4 shows a collection of 2-dimensional points (marked with squares) with

an obvious 1-dimensional manifold—starting from the inner, lighter-coloured points

and spiralling out to the outer darker-coloured points. Clearly running PCA on

these points will not capture that manifold—the points projected onto the first PC

(marked with circles) are not in the desired order. If the points are projected into
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the 3-dimensional feature space shown in Figure 2.5 (again, marked with squares)

and PCA is run there, then the desired manifold is captured—the points projected

onto the first PC (again, marked with circles) are in the same order as the original

points along the spiral.

Figure 2.4: 2-dimensional points on a spiral manifold (squares) and their projec-
tions (circles) onto the first PC found by PCA.

Kernel PCA finds principal components by performing PCA in a feature space

H where Φ : RD → H maps D-dimensional points xi to D-dimensional points Φ(xi).

As before, start with an D × n matrix X of centred3 data [Φ(xi), i ∈ 1 . . . n]. An

analysis similar to that of dual PCA follows. The only place where Φ(x) appears is

in the singular value decomposition of X TX which is called the kernel matrix K.

All of the entries in K are of the form Kij = Φ(xi)
T Φ(xj). In other words it is

3Previously, it was argued that a non-centred X could always be converted into a centred X
without affecting the structure of the points and hence the principal components. Although more
difficult to show, this holds for kernel PCA as well.
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Figure 2.5: Points from Figure 2.4 mapped into 3 dimensional points (squares)
and their projections (circles) onto the first PC found by PCA in this new space.

a matrix of inner products in the space H. Note that K is an n × n matrix—the

dimensionality D of the feature space is no longer a concern. In fact, as long as

there is some way to compute the required inner products, Φ(xi)
T Φ(xj), it may not

be necessary to ever compute Φ(·) itself, or even necessarily know what the mapping

is. This is the standard “kernel trick” where any learning algorithm whose solution

can be expressed entirely in terms of inner products can be kernalized as long as

some way of determining corresponding inner products in feature space exists.

The example in Figures 2.4 and 2.5 uses a variation of a polynomial kernel
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where:

Φ


 x1

x2


 =


x2

1

x2
2

√
2x1y1


but Φ(x) never needs to be computed to run PCA. Instead only the inner product

needs to be computed:

〈Φ(x), Φ(y)〉 =
〈
(x2

1, x
2
2,
√

2x1x2), (y
2
1, y

2
2,
√

2y1y2)
〉

= x2
1y

2
1 + x2

2y
2
2 + 2x1x2y1y2

= (x1y1 + x2y2)
2

= 〈x, y〉2

which is expressed in terms of the original points.

Kernel methods and their applications in a wide variety of areas have been well

studied. A good starting point for more information would be [SS01] or [STC04].

2.3 Nearest Neighbour Methods

With dimensionality reduction, the goal is to map high-dimensional points to low

dimensional points on a manifold. If the resulting manifold, when embedded in the

higher dimensional space, is non-linear, it may be the case that points that are close

in high dimensional space may be quite far apart on the manifold. A majority of

dimensionality reduction techniques attempt to preserve some of the distances be-

tween high-dimensional points. If all such distances are preserved, then the results
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will be similar to PCA: a linear subspace. In fact, there is a linear dimensional-

ity reduction technique called multidimensional scaling (MDS [CC00]) which does

exactly this—attempts to find a low-dimensional embedding while preserving all

pairwise distances. Although the derivation of MDS is quite different from that of

PCA, the resulting embeddings end up being the same. In order to learn non-linear

manifolds, only a subset of these distances can be preserved.

Imagine that along with the high-dimensional input points a graph is also pro-

vided with a node for each input point and an edge connecting every pair of nodes

whose distances should be preserved. This graph is a neighbourhood graph, η. Ad-

ditionally, given the point zi, let Ni be the set of other points which correspond to

nodes connected to the zi node by an edge; let nNi
be the cardinality of that set;

and let Ni(j) be the jth point from that set (where 1 ≤ j ≤ nNi
).

There are a variety of methods for building η; the two most popular are:

1. k-nearest-neighbour graphs: each point is connected to the k closest points.

Algorithm 1 shows the complete details.

2. r-radius-neighbour graphs: each point is connected to points within distance

r.

The majority of methods that require such a neighbourhood graph η require

that η be connected. This can be ensured by using appropriately high values for k

or r.

Nearest neighbour techniques are prevalent in machine learning. A good source

of further coverage would be [DHS01].
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Algorithm 1: Building a k-nearest-neighbour graph

Input:
Data points: Z = {z1, z2, . . . , zn : zi ∈ Rd}
Number of neighbours: k ∈ Z where k ≥ 1
Distance metric: distance (x, y) ∼ Rd × Rd → R
Output: k-nearest neighbour graph η
Build neighbour sets (Ni):1

for i = 1 . . . n do
Z ′ = Z − zi

Create sequence Y by sorting Z ′ according to distance (·, zi)
Ni = {Y1, . . . , Yk}

Create graph η with nodes 1 . . . n and edges as follows:2

for i = 1 . . . n do
foreach z ∈ Ni do

add edge (zi, z) to η

return η3

2.3.1 Locally Linear Embedding

Locally linear embedding (LLE) [RS00] is an approach to non-linear dimensionality

reduction which computes a low-dimensional, neighbourhood preserving embedding

of high-dimensional data. A data set of dimensionality D, which is assumed to lie

on or near a smooth nonlinear manifold of dimensionality d � D, is mapped into

a single global coordinate system of lower dimensionality, d. The structure of this

system is determined by locally linear best fits.

Consider n d-dimensional real-valued vectors xi sampled from some underlying

manifold. Assume each data point and its neighbours are close to a locally linear

portion of the manifold. By a linear mapping, consisting of a translation, rota-

tion and rescaling, the high-dimensional coordinates of each neighbourhood can be

mapped to global internal coordinates on the manifold. Thus, the nonlinear struc-
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ture of the data can be identified by first computing the locally linear patches, then

computing the linear mapping to the coordinate system of the manifold.

The main goal here is to map the high-dimensional data points to the single

global coordinate system of the manifold such that the relationships between neigh-

bouring points are preserved. This is accomplished by the following three steps:

1. Identify neighbours of each data point xi (determine η using Algorithm 1).

2. Compute the weights that best linearly reconstruct xi from its neighbours.

3. Find the low-dimensional vector yi best reconstructed by those weights.

Given an η in Step 1, Step 2 must compute a locally linear geometry from each

local patch. This geometry is characterized by linear coefficients that reconstruct

each data point from its neighbours. These weights are obtained by solving:

min
w

n∑
i=1

∥∥∥∥∥xi −
k∑

j=1

wijxNi(j)

∥∥∥∥∥
2

(2.2)

Low-dimensional vectors that preserve these weights are obtained by solving:

min
Y

n∑
i=1

∥∥∥∥∥yi −
k∑

j=1

wijyNi(j)

∥∥∥∥∥
2

(2.3)

which can be reformulated as

min
Y

Tr
(
Y T Y L

)
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where

L = (I −W )T (I −W ).

The solution for Y can have an arbitrary origin and orientation. In order to make

the problem well-posed, these two degrees of freedom must be removed. Adding a

constraint that the coordinates to be centred (
∑

i yi = 0) and a constraint enforcing

unit covariance (Y T Y = I) accomplishes this.

The cost function can be optimized initially with the second of these two con-

straints. Under this constraint, the cost is minimized when the columns of Y T (rows

of Y ) are the eigenvectors associated with the lowest eigenvalues of L. Discarding

the eigenvector associated with eigenvalue 0 then satisfies the first constraint.

2.3.2 Isomap

Isomap [Ten98, TdSL00] is a non-linear extension of MDS. The goal of the algo-

rithm is to preserve some pair-wise distances and try to enforce that the remaining

distances are close to the geodesic distances.

Isomap takes as input a matrix of distances, D, and first identifies a graph, η,

of local distances by finding the k-nearest-neighbours (Algorithm 1). The distances

between neighbours are kept the same but non-neighbours have their distances

replaced with the length of the shortest path between those two points in the

neighbourhood graph. This graph distance is used as an approximation of the true

geodesic (“on the manifold”) distance between points. In fact, as the density of the

points increases, the difference between the actual geodesic and the graph distance

provably converges. Once D has been updated, it is converted into a kernel matrix
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K which can be used with kernel PCA to obtain an embedding.4 Algorithm 2 shows

the complete details.

Algorithm 2: Isomap

Input:
High-dimensional data points: Z = {z1, z2, . . . , zn : zi ∈ RD}
Number of neighbours: k ∈ Z where k ≥ 1
Distance metric: distance (x, y) ∼ Rd × Rd → R
Output: X = {x1, x2, . . . , xn : xi ∈ Rd} in correspondence to Z where

d � D
Create k-nearest-neighbour graph, η (see Algorithm 1). ;1

Create geodesic distance matrix D:2

if i and j are neighbours in η then
Di,j = distance (zi, zj)

else
Di,j = ∞

for k = 1 . . . n do
foreach i do

foreach j do
Di,j = min{Di,j, Di,k + Dj,k}

Create squared distance matrix S where Si,j = D2
i,j.3

Convert D to kernel matrix K = −HSH/2 where H is the centring matrix.4

Get X by running kernel PCA with the resulting kernel K.5

return X6

2.3.3 Maximum Variance Unfolding

The final algorithm to be summarized is maximum variance unfolding (MVU)

[WS04, WSS04]. This is a variation of kernel PCA where the kernel matrix is

learned from the data. Recall that kernel PCA requires a way of populating the

4Note that the K returned by Isomap may not necessarily be positive semidefinite and so may
not be a valid kernel (as per Section 2.3.3). Nonetheless, Isomap tends to work well in practice.
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entries (inner products) of the kernel matrix. It turns out that if K is positive

semidefinite then its entries must be inner products of points in some Hilbert space

(see for example [STC04]). MVU learns such a kernel matrix by solving a semidef-

inite program. As long as the semidefinite constraint is satisfied, K will be a valid

kernel and PCA can be applied. In addition to the positive-semidefinite constraint,

additional constraints are added to enforce that the kernel is centred and that

distances and angles between points and their neighbours (according to a neigh-

bourhood graph η) are preserved. In particular, if zi and zj are neighbours or share

a common neighbour, then the distance between them is preserved:

‖Φ(zi)− Φ(zj)‖2 = ‖zi − zj‖2

which can be written in terms of the kernel matrix as:

Kij − 2Kij + Kjj = ‖zi − zj‖2 .

The objective function maximizes the trace of K, which represents the variance

of the data points in the learned feature space. This objective with the above

constraints is MVU: a semidefinite program for learning K. Algorithm 3 shows the

complete details.

An attraction of MVU is that it is explicitly phrased as an optimization problem.

This means that the algorithm is readily modified by adding new constraints or

changing existing constraints. This will be of great benefit in developing the new

action respecting embedding algorithm in Chapter 4.
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Algorithm 3: Maximum variance unfolding (MVU)

Input:
High-dimensional data points: Z = {z1, z2, . . . , zn : zi ∈ RD}
Number of neighbours: k ∈ Z where k ≥ 1
Distance metric: distance (x, y) ∼ Rd × Rd → R
Output: X = {x1, x2, . . . , xn : xi ∈ Rd} in correspondence to Z where

d � D
Create k-nearest-neighbour graph, η (see Algorithm 1).1

Learn K by solving the following semidefinite optimization:2

max
K

Tr (K)

subject to: K � 0,∑
ij

Kij = 0,

and ∀ij ηij > 0 ∨ [ηT η]ij > 0

⇒ Kii − 2Kij + Kjj = distance (zi, zj) .

Get X by running kernel PCA with the resulting kernel K.3

return X4



Chapter 3

Problem: Subjective Mapping

I have an existential map.

It has “You are here” written all over it.

Steven Wright

This chapter develops and formalizes a new problem: subjective mapping. The

motivation for this new problem is the generic situation of an arbitrary agent (as

described in Section 1.1) whose experience is represented as an interleaved sequence

of observations and actions 〈z0, u1, z1, . . . , un, zn〉 that the agent has received up

through time n. At its essence, the subjective mapping problem is to take such a

stream of experience and learn a low-dimensional representation of the environment

in which actions have a sensible interpretation.

3.1 Qualities of Good Maps

The approach taken in this dissertation is based on three crucial observations:

25
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1. Maps involve the compression of information.

2. Maps must contain points corresponding to landmarks in the environment.

3. Maps must be useful in the context of an agent’s actions.

3.1.1 Compactness and Landmark Correspondence

Maps often provide a compact representation of the environment. In theory, the

collection of raw observations itself is a representation of the environment. Practi-

cally, for all but the most trivial cases, using raw observations as a representation is

often difficult for a variety of reasons—more importantly, trying to extract mean-

ingful information “on the fly” from a collection of raw observations is not tractable

in general. Intuitively, if one attempts to make a map of a house, one will wander

around collating a massive stream of visual information, memories, etc. then pro-

duce a two-dimensional piece of paper which (hopefully) effectively and succinctly

represents the house. In other words, the map summarizes a large quantity of

information.

Additionally, there must be correspondence between observations (or recogniz-

able landmarks) and points on the map. If it is not possible to associate observations

with specific points on a map then it is not possible for the agent to determine its

own location in the map. Such a map may serve other purposes, but its usefulness

is limited.

These first two properties are exactly the properties of the dimensionality re-

duction problem reviewed in Chapter 2 and formally stated in Table 2.1: Given a

set of n D-dimensional inputs {z1, z2, . . . , zn}, find a set of d-dimensional outputs
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{x1, x2, . . . , xn} in one-to-one correspondence with the inputs such that d � D.

However, there is nothing inherent in dimensionality reduction that enforces the

third property. In fact, actions do not even play a role in the dimensionality reduc-

tion problem description and so do not affect the resulting output.

3.1.2 Action Consistency

The final critical property of a good map is that the positions of the landmarks on

the map relative to each other must be sensible in the context of the agent’s actions

for the map to be useful. To expand on this observation requires clarification of the

term “useful” by examining the ways in which one commonly uses a map. Typically,

a map is used to answer the following questions:

1. Where am I on the map?

2. Where have I been on the map?

3. Where am I going on the map?

4. How do I get from location A to location B?

The answer to each of these questions is dependent on the set of actions the

agent is capable of taking in the environment being mapped. The question “Where

have I been?” is really asking for the path on the map which corresponds to the

stream of actions that has just been taken. The question “Where am I going?” is

really asking where a single action or a particular list of actions lead on the map.

Finally, the last question is a query for a list of actions (usually the shortest possible
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such list) which, when performed, will result in movement from point A to point B.

The answer to the first question may at first seem like a simple correspondence of

a position on the map to an agent’s position in the space being mapped, but this is

intrinsically tied with the actions that the agent has already taken. For example, a

road map is useful with respect to a collection of actions related to driving. If one

looks at a road map the relevant actions (for example, driving north 50 km) relate

in a clear intuitive manner to a corresponding transformation on the map.

In order to answer the above questions, a map must be made in the context

of a particular set of actions—the actions in the environment must correspond to

well-represented operators on the map. These operators must have the following

properties (in order of importance)—they must be:

1. defined,

2. consistent, and

3. simple.

In order for a map to be useful, it must be possible to determine what the effects

of an action will be regardless of where one is on the map. This means that the

result of an action must be defined for all points on the map. In the road map

example it is possible to determine, for any point on the map, the result of driving

north 100 meters.1

1Note that it is actually sufficient for the actions to be defined on some reasonable subset of
the map—it is not actually necessary, for example, for the “drive north” action to be defined on
the area of a map corresponding to a lake.
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Figure 3.1: Two maps, the left one simpler than the right (original images taken
from [Goo07]).

Note that the well-defined property exists for operators that are defined by a

lookup table. Arguably, however, such operators are not as useful as it may not

be possible to generalize the effects of operators in different parts of the map. It is

more useful if the actions on the map are (roughly) the same regardless of where

they take place. This is what is meant by the notion of consistency. A road map

has this property—regardless of what point is chosen on a map, the “drive north”

action corresponds to moving upwards on the map by a fixed amount.

Finally, the simpler the actions are on a map, the easier it is to use the map. For

example, examine the two maps in Figure 3.1. On the map on the right, walking

east in a straight line corresponds to a complex (but well-defined) spiral-like motion

around a particular point. On the map on the left, walking east in a straight line

corresponds to a straight translation to the left from the starting point. Arguably,

the map with the simpler action is the better of the two. In general, then, maps

are preferred where the representations of actions are as simple as possible.
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Given sequences of high-dimensional inputs and action labels:

〈z0, z1, z2, . . . , zn〉 and 〈u1, u2, u3, . . . , un〉

where:
zi ∈ RD and ui ∈ Zna

compute outputs:
xi ∈ Rd : d � D

in one-to-one correspondence with the inputs, ensuring that:

∀a ∈ Zna ∃fa(·) ∈ F : ui = a ⇒ fa(xi−1) ≈ xi,

where F is a class of functions chosen with some notion of simplicity.

Table 3.1: Formal definition of subjective mapping.

The first property (definition) is a necessity for a good map. If what the actions

correspond to on the map is not known then the map is useless. The next two

properties (consistency and simplicity) are not strictly necessary but are definitely

desirable to some extent.

To summarize, actions in the world should correspond to a transformation on

the map. Ideally this transformation should be both consistent, in other words

the same, for all parts of the map, as well as simple, in other words the class of

transformations should be easily represented and learned.

3.2 Formal Definition of Subjective Mapping

The problem of subjective mapping is formally stated in Table 3.1. The input

is a sequence of n + 1 D-dimensional inputs 〈z0, z1, z2, . . . , zn〉 and a sequence of
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n action labels 〈u1, u2, u3, . . . , un〉 where ui ∈ A = Zna and na is the number of

unique possible actions. ui represents the action taken between observations zi−1

and zi. The desired output is a sequence of d-dimensional points 〈x1, x2, . . . , xn〉

where d � D and for every a ∈ A there exists a simple function fa(·) where

ui = a ⇒ fa(xi−1) ≈ xi. Note that there are a variety of possible definitions of

simplicity which could be used to restrict the choice of fa. The exact details of

this (defined by the ≈ relation) are left to individual algorithms for solving this

problem.

3.3 Evaluation

Imagine that there is an algorithm to solve the stated problem (to learn a map).

Further, imagine that the output of that algorithm, the learned map, has a format

similar to the output of standard dimensionality reduction algorithms (a number of

low-dimensional points corresponding to a set of high-dimensional observations—

the original observations of the agent). How can the learned map be evaluated?

This problem is not unique to the subjective mapping situation; it arises with most

non-linear dimensionality reduction algorithms. Given a manifold, how can its

quality be evaluated? This section briefly addresses this issue.

In many situations, there may be some underlying generative manifold which

describes how the agent is moving in the environment. For example, although

the collection of images from a camera mounted on a track constitute very high-

dimensional data, the actual process that generates that data has but a few param-

eters: the position on the track and the direction the camera is pointed. It may be
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possible, when setting up an experiment, to track these parameters at the same time

as the observations are taken. If the points on the learned manifold are structured

similarly to those on this true underlying generative manifold, this provides quali-

tative evidence that the map is good. Alternately, if some clear relationship can be

reasoned between the structures of the points on the learned manifold and those

on the underlying generative manifold then again qualitatively the map is good.

Even if neither of these is the case, it does not necessarily mean that the learned

map is not good. Recall that the general problem is to learn a useful “subjective”

representation. This means that the structure of the map may not represent any-

thing that can be immediately related to the underlying generative manifold (if it

does, then the learned representation would correspond to an objective map which

would be good but is more than is required).

In general, these methods of evaluating a subjective mapping algorithm require

an experimental framework where the underlying generative manifold is known.

This largely motivates the choice of ImageBot as the primary test domain for this

dissertation.

3.3.1 The ImageBot Test Domain

This section details ImageBot, the test domain used throughout this dissertation.

Given an arbitrary image, imagine a virtual robot that can observe a small, square

patch on that image and also take actions to move this observable patch around on

the larger image. This “image robot”, ImageBot, provides a test domain with ob-
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Figure 3.2: A synthetic ImageBot environment (1000× 876 pixel image).

vious connections to robotic applications.2 Compare ImageBot to a wheeled robot

with a mounted camera. Both make complex high-dimensional image observations,

and both have action sets that can be simply described.

Figures 3.2 and 3.3 show sample images that can be used as ImageBot’s

“world”, one synthetic and one natural. For the experiments in this dissertation,

ImageBot is always viewing a 201 by 201 square patch of an image. ImageBot

is capable of eight distinct actions: four translation actions, two rotation actions,

2Note, ImageBot is similar to the “Roving Eye” domain from [PK97].
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Figure 3.3: A natural ImageBot environment (2048× 1536 pixel image).

and two zoom (global scaling) actions. The translation actions are “move forward”,

“move backward”, “move left” and “move right” each by 25 pixels. The rotation

actions are “turn left” and “turn right”, each by 22 and 1/2 degrees ( 1
16

of a circle).

The zoom actions are “zoom in” and “zoom out”, changing the scale of the image

by a factor of 8
√

2 (in other words eight “zoom in” actions doubles the scale of

the image). For the most part, these actions will be precise but the model can be

extended to a noisy ImageBot by adding zero-mean Gaussian noise to the mag-

nitude of change of the actions. Unless otherwise stated, the standard deviation of
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the added noise will be one tenth of the overall change (that is for the translation

actions the standard deviation of the added noise will be 2.5 pixels).

z1 z2 z3u1 u2( , , , , , . . .

1 1

Figure 3.4: Sample experience stream from the environment of Figure 3.3.

Figure 3.4 shows a sample stream of experience that ImageBot might have

on the image in Figure 3.3. The stream starts with image z1, then ImageBot

performs discrete action u1 (in this case the action arbitrarily labelled 1), then its

next observation is z2 and so on. Note that action label 1 clearly corresponds to a

shift to the right but the label itself is arbitrary as no semantic meaning should be

attached to the action labels.

3.4 Conclusion

Section 3.1 first listed a number of properties of useful maps that could be leveraged

for learning, then demonstrated the relationship between two of these properties

and the well-studied machine learning problem of dimensionality reduction. Sec-

tion 3.2 provided a formal definition of a new problem, subjective mapping, cast as

a variation of dimensionality reduction. Section 3.3 briefly discussed some of the

issues involved with evaluating possible solutions to the newly defined problem and

introduced a plausible synthetic testbed for testing subjective mapping algorithms.
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The remainder of the dissertation will be oriented towards showing that this

newly presented problem is a useful paradigm. The first step in this direction is to

create a new algorithm for the problem which is the focus of the next chapter.



Chapter 4

Solution: ARE

The value of an idea lies in the using of it.

Thomas Edison

This chapter introduces the action respecting embedding (ARE) algorithm for solv-

ing the problem of subjective mapping introduced in Chapter 3 and formally defined

in Table 3.1. The ARE algorithm is an extension of MVU (Algorithm 3 from Sec-

tion 2.3.3) with two key additions, the usage of a non-uniform neighbourhood graph

and the addition of action respecting constraints. ARE is compared with MVU on

a variety of test streams from the test domain introduced in Section 3.3.1 in order

to demonstrate its effectiveness.

4.1 Action Respecting Embedding

Action respecting embedding takes a sequence of high-dimensional data 〈z0, . . . , zn〉

along with a sequence of associated discrete actions 〈u1, . . . , un〉. Within the data

37
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it is assumed that action ui was taken between data points zi−1 and zi. The

final piece of input is a function distance (·, ·) defining a distance metric over the

high-dimensional data points. Often Euclidean distance is sufficient, but other

similarities or metrics could be used.

The overall structure of the ARE algorithm follows that of the MVU algorithm

reviewed in Section 2.3.3 and presented in full in Algorithm 3:

1. construct a neighbourhood graph, η

2. solve a semidefinite program to find the maximum variance embedding subject

to constraints

3. extract the final embedding from dominant eigenvectors of the learned kernel

ARE exploits the additional information provided by the action labels in two

key ways. First, the assumption that two high-dimensional points connected by

an action must somehow be near one another allows construction of non-uniform

neighbourhood graphs in step one. Second, additional action-respecting constraints

are added to the semi-definite program which enforce the actions to be distance-

preserving in the resulting manifold.

4.1.1 Non-Uniform Neighbourhoods

As seen before, many current non-linear manifold-learning techniques attempt to

preserve local properties of the original data where the notion of locality is defined

according to a neighbourhood graph. In most cases (including that of MVU) some

variation of a k-nearest neighbour graph is used—the neighbourhood of a point is
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determined by the k closest points in the input data set. Since the neighbourhood

graph must be connected for MVU to have a bounded solution, the choice of k may

be forced to be quite large and may consequently over-constrain the learned man-

ifold. This problem may still arise with the common variation of neighbourhood-

graph creation which considers all points within a specified distance threshold r

to be neighbours. A key drawback with these techniques is that they require a

globally uniform k (or r). However, in the subjective mapping case additional in-

formation is given relating the points in the input sequence: certain pairs of data

points are connected by an action. This fact can be used to build a more intuitive,

non-uniform neighbourhood graph.

The idea is based on the assumption that data points connected by an action

are nearby and therefore can be considered neighbours. This definition of closeness

is not global, as the distance between consecutive points in one portion of the input

stream may differ from the distance between consecutive points in another portion.

These assumed neighbours define a “neighbourhood ball” around each data point.

The radius of this ball is defined to be just large enough to encompass all other

data points explicitly connected by an action. In other words, to begin with the

radius of the ball around point zi is:

max (distance (zi−1, z) ,distance (z, zi+1)).

Now, for any pair of data points, if they are both in each other’s neighbourhood

ball then add an edge between them in the neighbourhood graph. If desired, the

connection density of this neighbourhood graph can be increased by enlarging the
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size of the action window: in other words define the radius of a neighbourhood ball

to be large enough to encompass all data points connected by a path in the stream of

length T . Algorithm 4 has the complete details. Figure 4.1 shows two-dimensional

points connected by actions and sample neighbourhood balls for T = 1.

Algorithm 4: Building a non-uniform-nearest-neighbour graph

Input:
Stream of experience:

Z =
〈
z0, z1, z2, . . . , zn : zi ∈ RD

〉
A = {1, 2, . . . , na} where na is the number of unique action labels
U = 〈u1, u2, . . . , un : ui ∈ A〉

Action window size: T ∈ Z : T ≥ 1
Distance metric: distance (x, y) ∼ Rd × Rd → R
Output: non-uniform neighbour graph η
Create graph η with nodes 0, 1 . . . n ;1

Fill in the adjacency matrix of η as follows:2

ηij = 1 ⇐⇒ ∃k, l such that

|k − i| < T, |l − j| < T,

distance (zi, zk) > distance (zi, zj) and

distance (zj, zl) > distance (zi, zj) .

return η3

Note that since the input data is a full sequence of actions, the neighbourhood

graph when T ≥ 1 must be connected. This satisfies a critical requirement that the

semidefinite optimization be bounded (or a solution may not exist).

4.1.2 Action-Respecting Constraints

The second contribution of ARE is the addition of action-respecting constraints.

Action labels, even without interpretation or implied meaning, should provide some
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b

a

Figure 4.1: The neighbourhood balls for 2-dimensional points a and b. The ar-
rows indicate actions in the original stream of experience. The white points are
those which determine the radii of the neighbourhood balls, note that the radii are
different (non-uniform). Since a is in b’s ball and b is in a’s ball, a and b will be
connected in the final non-uniform neighbourhood graph.

information about the underlying generation of the data. If there is some underlying

low-dimensional space which is generating the data, it is natural to expect that the

actions correspond to some simple operator on this generative space’s own degrees of

freedom. For example, a camera that is being panned left and then right has actions

that correspond to simple translations in the camera’s actuator space. The goal is

to constrain the learned representation so that the labelled actions correspond to

simple operators in it.

One possibility would be to enforce actions to correspond to linear transforma-

tions in the learned embedding. However, when scaling effects are allowed it can

lead to non-intuitive transformations like those on the right in Figure 3.1. Conse-

quently, it may be desirable to enforce the actions to also be non-expansive and



42 CHAPTER 4. SOLUTION: ARE

non-contractive. In particular, constrain each unique action label to correspond to

a rotation-plus-translation1 in the low-dimensional representation.

This constraint is formalized by first observing that rotation-plus-translations

are the set of distance-preserving transformations. A transformation f is distance-

preserving (and thus a rotation-plus-translation), if and only if:

∀x, x′ ‖f(x)− f(x′)‖ = ‖x− x′‖

Consider this in the context of an action-labelled data sequence. All actions

must be distance-preserving transformations in the learned representation. There-

fore, for any two data points zi and zj, the same action taken at each data point

must preserve the distance between them. Let φ(zi) denote data point zi in the

learned subspace, then action u’s corresponding low-dimensional operator or trans-

formation fu, must satisfy:

∀i, j ‖fu(φ(zi))− fu(φ(zj))‖ = ‖φ(zi)− φ(zj)‖ (4.1)

Now, let u = ui and consider the case where uj = ui. Then, fu(φ(zi)) = φ(zi+1)

and fu(φ(zj)) = φ(zj+1), so Constraint 4.1 becomes:

‖φ(zi+1)− φ(zj+1)‖ = ‖φ(zi)− φ(zj)‖ (4.2)

This constraint on distances can be converted to a constraint on inner products

1Rotations-plus-translations are the subset of linear transformations that do not involve scaling.
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(in other words a constraint on the learned kernel matrix K) as follows. Squaring

both sides of Equation 4.2 gives:

φ(zi+1)
T φ(zi+1)− 2φ(zi+1)

T φ(zj+1) + φ(zj+1)
T φ(zj+1)

= φ(zi)
T φ(zi)− 2φ(zi)

T φ(zj) + φ(zj)
T φ(zj)

Since φ(zi)
T φ(zj) = Kij this can be rewritten in terms of K to get the following

constraints:

∀i, j ui = uj ⇒ K(i+1)(i+1) − 2K(i+1)(j+1) + K(j+1)(j+1) = Kii − 2Kij + Kjj (4.3)

Constraint 4.3 can be added to MVU’s usual constraints to arrive at the opti-

mization and algorithm shown in Algorithm 5. There is a slight modification to

MVU’s usual neighbour constraint, changing strict equality into an upper bound.

This ensures that the constraints are feasible and that there will always be a so-

lution to the optimization by allowing the zero matrix to be a feasible solution.

Notice that the additional action-respecting constraints are still linear in the op-

timization variables Kij and so the optimization remains a semidefinite program.

Since the neighbourhood graph ηij is connected, the optimization is bounded, con-

vex and feasible, and therefore can be solved efficiently with any one of the various

general-purpose toolboxes available. The results in this dissertation are obtained

using CSDP in MATLAB [Bor99]. Additionally, these results use a variation of

Algorithm 5 with highly-penalized slack variables in MVU’s neighbourhood con-

straint to help improve solution stability, as recommended in the original MVU
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paper [WS04].

Algorithm 5: Action respecting embedding (ARE)

Input:
Stream of experience:

Z =
〈
z0, z1, z2, . . . , zn : zi ∈ RD

〉
A = {1, 2, . . . , na} where na is the number of unique action labels
U = 〈u1, u2, . . . , un : ui ∈ A〉

Action window size: T ∈ Z : T ≥ 1
Distance metric: distance (x, y) ∼ Rd × Rd → R
Output: X =

〈
x0, x1, x2, . . . , xn : xi ∈ Rd

〉
in correspondence to Z where

d � D
Create non-uniform-neighbour graph, η, using Algorithm 4.1

Learn K by solving the following semidefinite optimization:2

max
K

Tr (K)

subject to: K � 0,∑
ij

Kij = 0,

∀ij ηij > 0 ∨ [ηT η]ij > 0

⇒ Kii − 2Kij + Kjj ≤ distance (zi, zj) ,

and ∀ij ui = uj

⇒ K(i+1)(i+1) − 2K(i+1)(j+1) + K(j+1)(j+1)

= Kii − 2Kij + Kjj.

Get X by running kernel PCA with the resulting kernel K.3

return X.4

4.2 Choosing Manifold Dimensionality

The output of the first two steps of ARE (and of MVU) is a kernel matrix. This

matrix is then used with the kernel PCA algorithm to generate a low-dimensional
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subspace. This subspace has dimensionality equal to the number of data points

n + 1 (n in the case of MVU). If the number of data points is less than the dimen-

sionality of the input observations, then technically dimensionality-reduction has

been performed. It may be that this subspace itself will be useful as a map. In

general, however, PCA assumes that the data is noisy and that the basis vectors

corresponding to the smaller eigenvalues are really only capturing variation accord-

ing to this noise. Consequently, the final step involves choosing some number of

the top eigenvalues and taking the subspace defined by the corresponding principal

components (eigenvectors) as the final result. This admits the obvious question of

how to choose how many top eigenvalues to take? In other words, how does one

choose the dimensionality of the final representation? Two approaches are briefly

discussed here.

In some domains, prior information may exist to help answer this question. The

existence of a true underlying generative manifold (such as the actual positions after

each action of a robot with a mounted camera) may be hypothesized or known and

the dimensionality of that manifold may in turn be estimated or known. If the

actions in the underlying generative manifold are themselves distance preserving

then one would expect to capture them (or a linear transformation of them) with

ARE so the estimated dimensionality of the underlying generative manifold is a

good choice for the dimensionality of the final learned representation. Even if

the actions in the underlying generative manifold are not distance preserving it

may still be possible to reason about a corresponding space with only distance-

preserving operators that captures the same properties. If so, the dimensionality
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of this hypothesized space is a reasonable choice for the dimensionality of the final

learned representation.

If no such prior knowledge exists, then another approach, common to a variety

of eigenvalue/eigenvector based techniques, is to choose eigenvalues larger than a

certain threshold or choose the eigenvalues that are relatively larger than most oth-

ers. Another method is to sort the eigenvalues from largest to smallest, then select

eigenvalues from the start of this list until the sum of the selected eigenvalues is

larger than a previously-selected percentage of the total sum. One of the advan-

tages of MVU (and so, presumably, of ARE) is that it tends to have much more

distinct drops in relative eigenvalues compared to other methods (such as LLE or

Isomap) meaning that this approach is empirically acceptable. More details on the

eigenvalue falloff of MVU compared to other methods can be found in the original

MVU paper [WS04].

4.3 Results: Learned Representations

Figure 4.2: An ImageBot trajectory—moving 40 steps right, then 20 steps left.

Both MVU and ARE were applied to the ImageBot data from the trajectory

in Figure 4.2. As might be expected, the resulting manifold for both algorithms is

not surprising—essentially one-dimensional as the first eigenvalue of the resulting

kernel dominates the others. Of interest, however, is a plot of the trajectory on
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Figure 4.3: A manifold learned from the
trajectory in Figure 4.2.
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Figure 4.4: A manifold learned from
a trajectory similar to Figure 4.2 but
with “left” actions twice the magnitude
of “right” actions.

this manifold over time, which is shown in Figure 4.3. Note that the result from

MVU indicates that ImageBot moved in a jerky fashion and doubled back on itself

seven times. The trajectory on the manifold learned by ARE is markedly smoother

and corresponds almost exactly to ImageBot’s actual trajectory in the underlying

1-dimensional generative manifold. Despite not having any meaning attached to

the actions, ARE has clearly managed to learn a representation which captures the

essential properties of and relationships between ImageBot’s actions—in particu-

lar, that the two actions are opposites of each other in terms of direction and have

the same magnitude. The actions which generate the data can be subtly changed

so that the “backward” action moves twice as far as the “forward” action. The plot

in Figure 4.4 demonstrates that ARE is capable of learning a manifold that can

capture this property as well.

ARE can correctly handle periodic actions, such as rotation, as well. Figure 4.5
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Figure 4.5: A manifold learned from an ImageBot rotation trajectory.

shows the first two dimensions of a manifold corresponding to a trajectory consisting

of sixteen “rotate right” and eight “rotate left” actions. ARE essentially discovers

the representation (sin(θ), cos(θ)) and also captures the fact that the actions are

opposites and periodic.
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Figure 4.6: A more complex “A”-shaped trajectory and the resulting manifolds.

ARE continues to yield good results in the face of more complicated collections

of transformations. ARE and MVU were both run with the more complex trajec-
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tory shown on the left in Figure 4.6. The resulting manifolds are displayed on the

right in Figure 4.6. MVU, as with the previous example, fails to generate a man-

ifold in which the actions have a simple interpretation. Notice that again, ARE’s

manifold has a strong correspondence with ImageBot’s actual trajectory. ARE

again captures the relationships between the “forward” and “back” actions as well

as the “right” and “left” actions. More impressive still, the manifold captures the

independence and orthogonality of the “forward” and “back” pair of actions with

the “right” and “left” pair of actions. Again this is possible despite the fact that

none of this information was explicitly coded in the problem input.
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Figure 4.7: A manifold learned from an ImageBot trajectory with zoom actions.

In the example in Figure 4.7, ImageBot follows a variation of the “A”-shaped

trajectory. Instead of the “forward” and “back” actions, ImageBot uses the “zoom

in” and “zoom out” and the number of steps while zoomed in is doubled. In this

case it is no longer true that the two pairs of actions— “right/left” and “zoom

in/zoom out”— are independent, as the distance ImageBot moves when imple-

menting the first pair is dependent on ImageBot’s zoom level. Nonetheless, as
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Figure 4.7 demonstrates, ARE again learns a manifold that captures this relation-

ship. The left leg of the “A” corresponds to observations gathered after ImageBot

zoomed in while the right leg of the “A” corresponds to observations gathered while

ImageBot was zoomed out. In particular, note that the distance between con-

secutive points is less on the left leg than on the right, successfully capturing the

radial relationship between the two sets of actions.

forward 5turn right 8

start forward 10 turn right 8 forward 10

forward 5right 16
turn

Figure 4.8: An ImageBot trajectory with movement and rotation.

Figure 4.9: Two views of a manifold learned from the trajectory in Figure 4.8. The
black line corresponds to the “turn right” actions while the grey line corresponds
to the “move forward” actions.

Figure 4.8 shows an even more complicated trajectory. In this case, ImageBot

only moves forward and right. From the starting point, ImageBot moves forward
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ten steps, then turns right eight times (an about face), then moves forward another

ten steps, then turns right eight times (back to the initial position), then moves

forward five steps, turns right sixteen times (in a full circle), then moves forward

five steps. Figure 4.9 shows the results of ARE on this new trajectory. With the

previous examples, it is clear that the manifolds learned by ARE are similar in

structure to the underlying trajectory that ImageBot followed. This is no longer

the case; however, it is possible to determine the relationship between the learned

manifold and the original trajectory (as discussed in Section 3.3). Figure 4.9 shows

a “top” view and a “side” view of the three-dimensional manifold learned from the

trajectory in Figure 4.8. Here, the portion of the manifold corresponding to rotating

to the right is a black line while the portion corresponding to moving forward is a

light-gray line. The first observation (the starting point) is circled. The manifold

distinctly captures the structure of the original path, with two dimensions capturing

the rotation action and a third capturing the forward action. In Figure 4.6, the

original domain was one in which the actions were distance preserving so it is

unsurprising that the exact structure was, indeed, extracted. For the trajectory in

Figure 4.8 it is not immediately obvious what manifold will be learned which makes

the results in Figure 4.9 all the more impressive.

All of the results shown here were generated using Euclidean distance as the

distance metric, but recall that any metric could be used. It should be easy to

obtain similar, or possibly better, results using, for example, an image-specific

colour-histogram-based metric.

Up until now, the results have demonstrated that ARE can learn a qualita-
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tively good representation given a stream of experience. It remains to demonstrate

the robustness of the ARE algorithm. Figures 4.10 and 4.11 show representations

learned by ARE on a number of “A”-shaped trajectories (similar to that in Fig-

ure 4.6) which differ only in starting position. In Figure 4.10, ImageBot was run

with the image from Figure 3.3. In Figure 4.11, ImageBot was run with the image

from Figure 3.2. In both cases, roughly half of the learned representations clearly

correspond to the underlying “A”-shaped trajectory.

Interestingly, in almost all situations where ARE fails to capture a reasonable

manifold the neighbourhood graph is broken. The two obvious ways that this can

occur are when points are declared neighbours when they should not be or when

points that should be neighbours are not. The former case is perhaps reflective

of the problem of perceptual aliasing. For example, consider the environment in

Figure 3.3: any observation of the sky alone is likely to be quite close in Euclidean

distance to any other observation, even if the corresponding ImageBot positions

are far apart. Trying to learn a representation where such points are superimposed

seems doomed to failure. This problem is generally quite difficult and while it

poses interesting research questions it is not addressed further in this dissertation.

The latter case, while potentially damaging, is not necessarily as dire. If enough

structure is somehow captured in another part of the neighbourhood graph there

may still be enough to overcome the lack of structural information in the broken

part of the graph. Intuitively, the first case involves disinformation about the

environment while the second represents missing information. Missing constraints,

while not ideal, is potentially much less damaging than incorrect constraints.
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Figure 4.10: Multiple results in the non-synthetic environment of Figure 3.3.
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Figure 4.11: Multiple results in the synthetic environment of Figure 3.2.
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4.4 Conclusion

Section 4.1 carefully developed an algorithm called action respecting embedding

(ARE) for the problem of subjective mapping introduced in Chapter 3 and formal-

ized in Section 3.2. ARE builds on the MVU algorithm for dimensionality reduction

summarized in Section 2.3.3 with two important distinctions. The first is the use of

the non-uniform neighbour graph, introduced in Section 4.1.1, instead of the tradi-

tional nearest-neighbour method used by MVU and described in Section 2.3. The

second is the critical addition of the constraints developed in Section 4.1.2 which

enforce that the resulting low-dimensional manifold is a space in which the actions

correspond to distance-preserving transformations. Section 4.2 briefly discussed the

issue of choosing the dimensionality of the final result. Section 4.3 demonstrated

the results of ARE on a variety of different streams of experience from the test

domain described in Section 3.3.1.

This chapter demonstrated the effectiveness of ARE in learning representations

in the ImageBot domain that were similar to the underlying generative mani-

folds. It is important to note that ARE is able to extract properties of the un-

derlying actions that were not explicitly coded in the input. The results provide

solid qualitative evidence that subjective mapping is a useful approach to learning

a representation of an environment. Further, ARE greatly outperformed MVU in

learning the representations, supporting the key intuition that while dimensionality

reduction is necessary, alone it is insufficient for capturing environmental dynamics.

The next step in demonstrating the usefulness of the representations learned by the

ARE algorithm is to determine the effects of actions in those representations.





Chapter 5

Actions and Planning

Adventure is just bad planning.

Roald Amundsen

This chapter details the recovery of operators in the representations learned in

Chapter 4 corresponding to the original actions in the environment. Once these

operators are found they can be used with a representation to plan by finding paths

between landmarks. The effectiveness of a learned representation and operators

for planning provides a method for quantitative evaluation of subjective mapping

solutions.

5.1 Recovering Distance-Preserving Actions

ARE learns a representation with explicit constraints that the actions correspond

to distance-preserving transformations in that representation. The algorithm does

not, however, give those transformations; it only ensures that they exist. To increase

57
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the usefulness of the representation, these transformations need to be extracted.

For each unique action a there is a collection of data point pairs (xt, xt+1) which

are connected by that action. Put another way: there is a function fa where

fa(xt) ≈ xt+1, and such a function needs to be learned for each action. Because of

the distance-preserving constraints, fa can be represented as:

fa(xt) = Aaxt + ba = xt+1

Recall that transformations of the above form encode translation in the ba vec-

tor, and rotation and scaling in the Aa matrix. Aa and ba could be learned using

simple linear regression but scaling is not distance preserving so there is the addi-

tional constraint that Aa does not scale, in other words AT
a Aa = I. It turns out

that this is similar to the extended orthonormal Procrustes problem [SC70], but

without allowing for a global scaling constant. This section derives the solution to

the regression problem.

Let Xa be the d × n matrix whose columns are xt for all t such that at = a,

and let Ya be the d × n matrix whose columns are xt+1 for the same t. The goal

is to learn a rotation matrix Aa and a translation vector ba which maps Xa to Ya.

Formally, the following optimization problem needs to be solved:

min
Aa,ba

‖AaXa + bae
T − Ya‖

subject to: AT
a Aa = I

where e is a column vector of n ones.
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Recall that: ‖A‖F =
√

Tr (AAT ) : but since A must be square AT A = AAT so

the optimization can be rewritten as:

min
Aa,ba

Tr
(
(AaXa + bae

T − Ya)
T (AaXa + bae

T − Ya)
)

subject to: AT
a Aa = I.

The corresponding dual function is:

D(L) = min
Aa,ba

L(Aa, ba, Λ) (5.1)

where L is the Lagrangian function:

L(Aa, ba, Λ) = Tr
(
(AaXa + bae

T − Ya)
T (AaXa + bae

T − Ya)
)

+ Tr
(
Λ(AT

a Aa − I)
)

and Λ is a matrix of Lagrangian multipliers. The first part expands as follows:

Tr
(
(AX + beT − Y )T (AX + beT − Y )

)
= Tr

(
(XT AT + ebT − Y T )(AX + beT − Y )

)
= Tr(XT AT AX + XT AT beT −XT AT Y +

ebT AX + ebT beT − ebT Y +

−Y T AX − Y T beT + Y T Y )

= Tr
(
XT AT AX

)
+ Tr

(
XT AT beT

)
− Tr

(
XT AT Y

)
+Tr

(
ebT AX

)
+ Tr

(
ebT beT

)
− Tr

(
ebT Y

)
+Tr

(
−Y T AX

)
− Tr

(
Y T beT

)
+ Tr

(
Y T Y

)
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Since Tr (A) = Tr
(
AT

)
some terms (underlined) can be rewritten:

Tr
(
XT AT AX

)
+ Tr

(
ebT AX

)
− Tr

(
Y T AX

)
+Tr

(
ebT AX

)
+ Tr

(
ebT beT

)
− Tr

(
ebT Y

)
+Tr

(
−Y T AX

)
− Tr

(
ebT Y

)
+ Tr

(
Y T Y

)
Note that Tr (ebTbeT ) = nbTb so the simplified Lagrangian is:

L(Aa, ba, Λ) = Tr
(
Y T

a Ya

)
+ Tr

(
XT

a AT
a AaXa

)
+ nbT

a ba

−2Tr
(
Y T

a AaXa

)
− 2Tr

(
ebT

a Ya

)
+ 2Tr

(
ebT

a AaXa

)
+Tr

(
Λ(AT

a Aa − I)
)

The solution to the dual function in Equation 5.1 can be found by taking the

derivatives of L with respect to the unknowns and setting them to zero:

δL

δAa

= 2AaX
T
a Xa − 2YaX

T
a + 2bae

T XT
a + Aa(Λ + ΛT ) = 0 (5.2)

δL

δba

= 2nba − 2Yae + 2AaXae = 0 (5.3)

Solving Equation 5.3 for the translation vector gives:

ba =
Yae− AaXae

n
(5.4)
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Reordering Equation 5.2 and multiplying by AT
a

2
on the right gives:

(
2AaX

T
a Xa + Aa(Λ + ΛT )

) AT
a

2
=

(
2YaX

T
a − 2bae

T XT
a

) AT
a

2

AaX
T
a XaA

T
a + Aa(Λ + ΛT )

AT
a

2
= YaX

T
a AT

a − bae
T XT

a AT
a

Since the left hand side is symmetric, the right hand side must also be symmetric.

Substituting in Equation 5.4, the right hand side can be written as:

YaX
T
a AT

a −
(

Yae− AaXae

n

)
eT XT

a AT
a

= YaX
T
a AT

a −
(

Yaee
T XT

a AT
a − AaXaee

T XT
a AT

a

n

)
= YaX

T
a AT

a −
Yaee

T XT
a AT

a

n
+

AaXaee
T XT

a AT
a

n

= YaX
T
a AT

a − Ya

(
eeT

n

)
XT

a AT
a + AaXa

(
eeT

n

)
XT

a AT
a

where the last term is symmetric. Thus the rest of the expression must also be

symmetric. This can be simplified as:

(
Ya

(
I − eeT

n

)
XT

a

)
AT

a (5.5)

Since Equation 5.5 is symmetric, it should be equivalent to its transpose:

(
Ya

(
I − eeT

n

)
XT

a

)
AT

a = Aa

(
Ya

(
I − eeT

n

)
XT

a

)T

(5.6)



62 CHAPTER 5. ACTIONS AND PLANNING

Now find the singular value decomposition of the second term on the right:

V SW T = Ya

(
I − eeT

n

)
XT

a

and set the rotation matrix to be:

Aa = V W T (5.7)

Note that AT
a Aa = I as required. Equation 5.6 can then be rewritten as:

V SW T WV T = V W T WST V T

which is clearly true because W T W = I (since W is orthonormal) and S = ST

(since S is diagonal). Therefore Equations 5.4 and 5.7 are a solution to the dual

function in Equation 5.1. The dual optimization problem now is:

max
Λ

D(L)

but D(L) is constant with respect to Λ so the solution, D?, is easily computed by

plugging the derived Aa and ba into L. Now compute P by plugging the derived Aa

and ba into the primal objective. Clearly P = D? (the extra term in L is zero for

that Aa and ba) and P is feasible (since the constraint on Aa is satisfied). By weak

duality P = D? ≤ P ? where P ? is the optimal solution to the original optimization

therefore P must be an optimal solution. The derived Aa and ba combine to provide

the operator on the learned representation corresponding to the original action a.
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5.1.1 Results: Learned Transformations

Figure 5.1 shows the 2-dimensional representation generated by ARE in Figure 4.6.

The bold arrows show the result of applying each action from an arbitrary point on

the manifold. Clearly, the operators are capturing the essence of the actions used

to generate the data.
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Figure 5.1: Learned operators plotted on the manifold from Figure 4.6.

Figure 5.2 shows the representation from Figure 4.7 where zooming actions

replaced the forward and backward actions. Again, the bold arrows show the result

of applying each action from a point on the manifold. Again the operators are

capturing the dynamics of the environment; note in particular that the scale of the

left and right actions is now clearly dependent on the zoom level.

5.2 Planning

Now that a low-dimensional representation and operators in that representation

have been learned, all the pieces are in place to actually use the representation for
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Figure 5.2: Learned operators plotted on the manifold from Figure 4.7.

planning. The points on the learned representation are states or locations on the

map, and the operators recovered by the method of Section 5.1 define transitions be-

tween those states or locations. Furthermore, this new domain has two advantages

over the original data set. First, the dimensionality has been reduced drastically

(from 121, 203 to 2). Second, the functions learned in the new domain are simpler

than the corresponding functions in the high-dimensional domain. Learning such

functions in the original input space would most likely be intractable, or at the very

least require knowledge specific to ImageBot and its underlying image.

To begin with, note that some of the questions that maps are traditionally used

for can now be answered, namely: “Where will I be if take a particular action”

(Figure 5.1) or a particular set of actions (determined by successive application

of the appropriate operators). Further, while there is no semantic meaning given

with the input action labels, such meaning can now be derived. It can now be

quantitatively tested whether a pair of actions are opposites, such as the “forward”
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and “backward” actions or the “left” and “right” actions. Also, any two actions can

be tested for orthogonality or independence (such as the “forward” action and the

“right” action). If the learned representation captured some underlying structure

within the data, the learned operators will maintain that structure and therefore

relationships can be successfully hypothesized.

Further, given any two high-dimensional data points from the input data set (im-

ages, in the case of ImageBot), the shortest sequence of actions can be found that

will get from the state corresponding to the first image to the state corresponding

to the second. First, find the corresponding points in the low-dimensional represen-

tation. Next, find the shortest path between them using traditional search methods

and the set of learned operators. Since each operator in the low-dimensional space

corresponds to an action label in the original input data, the list of action labels

corresponding to the desired path can be returned. For the results in Sections 5.2.1

and 5.3, iterative-deepening depth-first search was used and the path whose final

point was closest to the desired goal was returned The quality of the path can be

demonstrated by starting ImageBot at the initial state and applying the sequence

of actions.

5.2.1 Results: Planning

Figure 5.3 shows an example of a path found by the described algorithm. The

initial state is indicated by a triangle pointing to the right and the desired goal

state is indicated by a triangle pointing to the left. The list of applied operators

corresponds exactly to an actual list of actions that would bring ImageBot from
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Figure 5.3: A plan on the manifold from Figure 4.6.

the initial state to the desired goal state. Even more impressive is that the path was

successfully found even though it involves moving through portions of the space that

ImageBot never actually observed—the learned map has captured enough of the

structure of ImageBot’s interaction with its environment to generalize the effects

of ImageBot’s actions throughout the space. The applications of successfully

being able to plan in this manner are numerous. At the very least, the final common

map question, “How do I get from location A to location B?”, has been answered.

5.3 Evaluation of Learned Representations

The goal of subjective mapping is to learn a useful representation, and until now

the method of evaluation has been solely qualitative. Now that the framework for

planning is in place, it can be used to provide a quantitative evaluation of a learned

representation.



5.3. EVALUATION OF LEARNED REPRESENTATIONS 67

Mean Distance Mean Goal Difference % Exact

ARE 133.5 1.5 94
MVU-d 133.5 85.0 16
MVU-l 133.5 105.0 2

Table 5.1: Quantitative evaluation based on planning performance.

Any potential plan can be tested by running another instance of ImageBot

with the plan’s action sequence. Ideally, ImageBot’s position after running the

plan should be the same as the position corresponding to the goal state. The

distance between the goal and result positions can be used as a metric of how

successful the plan was. Repeated measures of this metric for a collection of random

path-finding problems provides a quantitative measure of the usefulness or goodness

of a learned representation.

For the learned representation from Figure 4.6, 50 random pairs of points were

chosen and a shortest path between those points was learned as in Section 5.2.

For the purposes of comparison, the same method was used to find the shortest

path in the representation learned by MVU (using best-fit linear transformations

as operators (MVU-l) and best-fit distance-preserving transformations as operators

(MVU-d)). In each case, the resulting path was then run on ImageBot. The

distance between the predicted goal and the actual goal in the underlying generative

manifold is recorded along with the length of the path and whether the prediction

is exactly correct. The results are presented in Table 5.1. Unsurprisingly, the

performance of this task is much better when using representations learned by ARE

as opposed to those learned by MVU, providing quantitative evidence of success to

accompany the qualitatively good visualizations provided so far.
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5.4 Conclusion

Section 5.1 provided a method to recover a transformation for each possible ac-

tion from a representation learned by the ARE algorithm introduced in Chapter 4.

Further, Section 5.1.1 showed the application of this method to the specific rep-

resentations learned in Section 4.3. Section 5.2 demonstrated how the learned

representations and the recovered transformations can be used for a planning task.

Section 5.3 showed how the effectiveness of the resulting plans can be used to pro-

vide a quantitative evaluation of a learned representation.

This chapter demonstrates how the representations learned in Chapter 4 can

be used for planning. Operators which capture the dynamics of the actions can be

recovered in the new space. These operators combined with the learned representa-

tions can be used with simple search procedures to generate sequences of operators

corresponding to sequences of actions which achieve goals in the original environ-

ment. It is important to note that the resulting plans have high accuracy, even

though they can involve sequences of actions passing through unobserved portions

of the environment.



Chapter 6

Subjective Localization

We’re not lost.

We’re locationally challenged.

John M. Ford

This chapter demonstrates subjective localization with the representations learned

by ARE in Chapter 4 and the operators extracted in Chapter 5. In the mobile

robotics domain (a main motivation of this work) difficulties do not end with the

construction of a map. An agent must also be able to accurately and consistently

estimate its position on the map: the problem of localization. A general and

effective solution to this is Monte Carlo Localization (MCL), which will be reviewed

in Section 6.1.

The remainder of this chapter will focus on performing MCL in the newly

learned representation. ARE provides both a coordinate system and the actual

d-dimensional embedded points, x0, . . . , xn, that correspond to the trajectory the

robot followed in the data-gathering (map making) phase. This trajectory—along
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with the robot’s actual observations, z0, . . . , zn, and actions, u1, . . . , un1—can be

used to learn the required motion and sensor models for MCL from the data. Both

motion and sensor models will be learned in a similar fashion: first estimating the

expectation of a model, then using errors to estimate the noise.

6.1 Background: Monte Carlo Localization

Monte Carlo localization (MCL [FBDT99]) is a method for local position tracking

which estimates the posterior distribution of a robot’s pose conditioned on the ac-

tions and sensor readings. It relies on the Markovian assumption that the past and

future are conditionally independent given the present. MCL is an implementation

of a recursive Bayes filter. If xt is the location at time t, zt is the sensor data at

time t, and ut is the motion data at time t then the posterior distribution becomes:

Bel(xt) = p(xt|zT , uT ) (6.1)

where zT = z0, . . . , zt and uT = u1, . . . , ut. For objective localization the sensor data

is usually in the form of range data, such as laser range-finder readings; however,

any type of sensor for which the proper kind of model exists is admissible. The

motion data is usually obtained from the robot’s odometers, but again, any data

with an appropriate model will satisfy the equation.

For a recursive Bayes’ filter, a recursive formula is necessary so Equation 6.1 is
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converted by Bayes’ rule to:

Bel(xt) =
p(zt|xt, zT−1, uT )p(xt|zT−1, uT )

p(zt|zT−1, uT )
.

Since the denominator is constant relative to xt it can be replaced by a normalizing

constant Z. Also, by the Markovian assumption p(zt|xt, zT−1, uT ) = p(zt|xt) so the

belief can be rewritten as:

Bel(xt) =
1

Z
p(zt|xt)p(xt|zT−1, uT ).

The last term can be integrated over all states at time t− 1:

p(xt|zT−1, uT ) =

∫
p(xt|xt−1, zT−1, uT )p(xt−1|zT−1, uT−1)dxt−1.

Again by the Markovian assumption p(xt|xt−1, zT−1, uT ) = p(xt|xt−1, ut) while the

last term in the integral can be substituted with Equation 6.1. The final recursive

formula is:

Bel(xt) =
1

Z
p(zt|xt)

∫
p(xt|xt−1, ut)Bel(xt−1)dxt−1. (6.2)

p(xt|ut, xt−1) is called the motion model, the probability of a resulting pose given

a starting pose and an action. p(zt|xt) is called the sensor model, the probability

of receiving a particular sensor reading given the robot’s pose. If these two models

exist and the integral can be computed then Bayes’ filtering can be performed.

Since virtually all robots operate in a continuous space, the integral in Equa-

tion 6.2 is often impossible to compute directly. Instead MCL approximates the
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continuous space with a finite set of samples called “particles”. At each time-step

the set of samples is moved probabilistically according to the motion model, then

annotated with a weight determined by the sensor model (the weight is the proba-

bility of receiving the observed sensor reading given that the robot is at the location

represented by the particle). Finally, the particles are resampled according to this

weight. Re-sampling generates a new set of samples by choosing a particle with

probability proportional to its weight with replacement. Although MCL is only

provably correct as the number of samples approaches infinity, it is often accu-

rate for a relatively small number of samples. See [TFBD00] for a more detailed

derivation of MCL.

6.2 Motion Model

The motion model is the posterior distribution p(xt|ut, xt1). Since this model will

be used in a particle filter, it is only necessary to draw a sample, x̂, from the

model, given a ut and xt−1, i.e.: x̂ ∼ p(xt|ut, xt−1). First, separate the model into

an expectation plus a noise component:

x̂ ∼ E(xt|ut, xt−1) + η(xt|ut, xt−1). (6.3)

Now make the simplifying assumption that the noise depends only on the action

and not on the previous pose. This gives the form:

x̂ ∼ E(xt|ut, xt−1) + η(xt|ut).
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A model can now be constructed by learning the expectation component, then using

the sample errors to estimate the noise component.

Consider some action u. Every t where ut = u gives one sample, xt and xt−1,

from the distribution p(xt|u, xt−1). Using these sample points, a function over xt−1

is desired which provides a close estimate of xt. ARE explicitly includes constraints

that ensure such a function exists and is a simple rotation plus a translation in the

learned representation. These functions can be recovered as described in Section 5.1

and therefore the expected motion can be defined as:

E(xt|ut, xt−1) = Autxt−1 + but (6.4)

Since only the top d principal components of the output of ARE were included,

this model of the expected motion will not be exact. The errors in the learned

transformation can be used to build a model of the motion noise. Again consider

some action u, let ξu
t be the residual error for action u on xt:

ξu
t = Auxt−1 + bu − xt where

∑
t:ut=u

ξu
t = 0.

It is expedient to model the motion noise as a zero-mean multivariate Gaussian,

where the covariance matrix can be estimated directly from the samples ξu
t . For-

mally:

η(xt|ut) ∼ N(0, Σut), where Σut(i, j) =
∑

t:ut=u

ξu
t (i)ξu

t (j). (6.5)

Combining Equations 6.3, 6.4 and 6.5 gives the complete motion model.
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6.3 Sensor Model

The sensor model is the probability distribution p(zt|xt). In the context of a particle

filter, the density of the distribution at zt must be provided for a given xt. In

estimating this model from the data a few assumptions must be made. Notice that

ARE does not take images directly as its input, but rather uses an image’s distance

to every other image as a kind of feature representation. The same representation

will be used for new observations, computing a feature vector:

z̄t(i) = ‖zt − zi‖ ∀i = 1 . . . n.

The best way to view this feature vector is that it provides a crude estimate of

the “distance” of the robot’s pose to the previous poses, z0, . . . , zn. An additional

assumption is required that each of the components of the feature vector are in-

dependently distributed.1 That is, each component is an independent estimate of

the “distance” to a past pose. The final assumption is that this probability only

depends upon the distance to the specific past pose in the subjective representa-

tion,2 i.e., ‖xt− xi‖. These assumptions combine to give the following form for the

model. Let dti = ‖xt − xi‖:

p (zt|xt) = p (z̄t|xt) =
n∏

i=1

p (z̄t(i)|xt) =
n∏

i=1

p (z̄t(i)|dti) . (6.6)

1This assumption, while almost certainly incorrect, is similar to the common MCL assumption
(often necessary for tractability) that sensor readings are independent.

2This is not an unreasonable assumption, since ARE explicitly constrains distances in the
subjective representation ‖xi − xj‖ by observed image distances ‖zi − zj‖.
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Now it is necessary to estimate a model for the conditional random variable

z̄t(i)|dti. Consider again the training trajectory, each xt gives one sample for this

joint distribution: z̄t(i) and dti. To build a Gaussian model, for each previous obser-

vation i use regression to fit a low-degree polynomial determining the distribution

mean as a function of distance (µi(dti)).
3 Then take the mean of the squared errors

to estimate distribution variance (σ2
i ). This gives the following Gaussian density

function:

z̄t(i)|dti ∼ N
(
µi(dti), σ

2
i

)
. (6.7)

Combining Equations 6.6 and 6.7 gives the sensor model.

6.4 Results: Localization

The final step of the technique is to use the motion and sensor models with Monte

Carlo localization to track the robot’s position in the learned subjective space. The

only detail left to be addressed is the initial distribution for localization. Since test

data is processed after a single training run, the exact position in the subjective

representation, xn, is known. All the samples in MCL are initialized to this point.

In the end, the subjective localization procedure has three configurable param-

eters: the dimensionality of the subjective representation, d, the degree of the

polynomial used in the sensor model, and the number of particles used by MCL.

Overall, the procedure has a small number of parameters and can successfully lo-

calize in a number of different situations with a variety of parameter settings.

3This is very similar to the sensor model construction by Stronger and Stone [SS05].
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In all experiments, a dataset is gathered by executing a sequence of actions and

receiving the associated sequence of sensor readings. After each action, measure-

ment of objective location is taken—this is only used afterwards to evaluate the

localization accuracy. The sequence is split into two sets, training and test. The

training set is used by ARE to extract a subjective representation and associated

trajectory. Motion and sensor models are learned as described previously. Finally,

the models are used in MCL to localize given the test set. The mean of the particles

after every given action and observation is used as the estimated position in the

subjective frame of reference.

In order to extract a model of noise, the training data needs to contain examples

of executing the same action from approximately the same location. Since the points

after taking this action will be in various locations, the noise of the motion model

can then be reconstructed. Therefore, each dataset begins by taking repeated short

sequences of actions such as going forward three steps then backward three steps,

ensuring the training data includes a representation of noise in the robot’s actions.

Figure 6.1 shows an example “A” shaped path in objective coordinates. The

dotted line shows the training data (with the trajectory starting in the top left.

The solid line shows the test data, a reversed “A” continuing on from the last point

in the training data (at the bottom left). Note that this data has been generated

with a noisy version of ImageBot so the paths do not exactly line up.

Figure 6.2 shows results of using the data associated with the trajectory in Fig-

ure 6.1 with the described subjective localization technique. The dotted line shows

the trajectory that resulted from running ARE on the training data in the learned
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Figure 6.1: ImageBot’s “A” shaped
trajectory in objective coordinates.
The dotted line is the training data,
the solid line is the test data.

Figure 6.2: Subjective localization on the
trajectory from Figure 6.1. The dotted
line is ARE’s learned representation, the
solid line is predicted locations of the test
data using MCL.

frame of reference. The solid line is the predicted points from MCL (while receiving

images and actions from the test data). The cloud of points at bottom centre shows

the set of 100 particles in MCL at that point in the trajectory. The learned trajec-

tory corresponds strongly with the objective trajectory, and the localized trajectory

follows appropriately.

Preliminary results have also been generated from an actual robot following a

trajectory similar to that in Figure 4.2 (i.e. forward and backward only). Exper-

iments were performed on an ActivMedia Pioneer 3 DX8 robot equipped with an

ordinary web camera which returned 160 × 120 pixel images. Predefined discrete

actions were used to move the robot up and down a corridor with the image from

the camera being collected after each action was performed.

The observations from this trajectory are shown in Figures 6.3, 6.4 and 6.5.
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Figure 6.3: The first half of a training set of observations from a robot.

Figure 6.4: The second half of a training set of observations from a robot.
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Figure 6.5: The test set of observations from a robot.

Again, to build a model of noise the robot moves forwards and backwards a short

distance a couple of times to start with (Figure 6.3) before moving ten steps for-

ward, then ten steps back (Figure 6.4)—these observations are used to learn a

representation as described in Chapter 4. Finally, the robot again moved ten steps

forward, then ten steps back to generate a test set of observations to be used to

test the localization procedure described in this chapter.

ARE was run on the observations in Figures 6.3 and 6.4 and the associated

action labels. The grey line in Figure 6.6 plots the trajectory of the manifold over

time. Note that, as in Figures 4.3 and 4.4, the learned manifold is similar to the

underlying generative manifold. The black line in Figure 6.6 shows the localization

predictions (in other words the mean of the relevant particles) of the observations
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Figure 6.6: The grey line is a manifold learned from a robot moving forwards and
backwards (generating the observations in Figures 6.3 and 6.4). The black line is
the localization predictions of the observations in Figure 6.5.

from the training set (Figure 6.5) over time. Note that the localization procedure

is predicting positions on the manifold for the test observations that are very close

to where one would expect.

6.5 Conclusion

Section 6.1 provided a brief overview of the Monte Carlo localization method

(MCL). The two critical requirements of MCL are a motion model and a sensor

model. A generic motion model which could be used for a representation learned by

ARE was developed in Section 6.2 using the transformations recovered in Section

5.1. Similarly, a generic sensor model was developed in Section 6.3. Section 6.4

showed some results of running MCL in a learned representation, both in the Im-

ageBot test domain and on an actual robot with a mounted camera.
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This chapter has demonstrated how MCL can be applied to the representations

learned by the ARE algorithm of Chapter 4. If the representation is successful in

capturing the dynamics of the environment, then the generic motion and sensor

models should be sufficient for using MCL. The results bear this out, showing that

MCL can be used to successfully localize an agent in a representation after it has

been learned. This could be useful in the robotics domain where custom motion

and sensor models are normally required for localization tasks—replacing these

typically expensive custom models with generic ones that can be learned from the

data is highly desirable.





Chapter 7

Scaling: Manifold Merging

Divide each difficulty into as many parts

as is feasible and necessary to resolve it.

Rene Descartes

This chapter addresses scaling issues with the Action Respecting Embedding algo-

rithm presented in Chapter 4. Chapters 5 and 6 demonstrated the usefulness of

ARE-produced representations given a short stream of experience. Learning rep-

resentations for longer streams is desirable but as ARE requires the solving of a

semidefinite program, it may not scale well with the length of the stream—consider

that a rough bound on the time complexity for solving a semidefinite program is

O (m3) [Bor99] where m is the number of constraints and that ARE potentially adds

O (n2) constraints where n is the number of observations. This chapter provides a

divide-and-conquer algorithm which mitigates this issue.
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7.1 Divide-and-Conquer

One paradigm for dealing with any large problem is divide-and-conquer: split a

problem into smaller independent subproblems, solve the subproblems, and then

merge the subproblem solutions into the final answer. An obvious application of

this approach is to divide a long input stream 〈z1, u2, z2, . . . , un, zn〉 into tractable

sized substreams 〈z1, u2, . . . , um, zm〉, 〈zm, um+1, zm+1, . . . u2m, z2m〉, and so on, then

learn a representation for each substream with ARE. It only remains to describe

how to combine the individual representations into one global representation.

Figure 7.1 shows an “8”-shaped trajectory—clearly tractable for ARE. However,

if this trajectory is repeated 9 times (effectively creating a stack of 9 “8”-shaped

sequences), the resulting stream is too long for ARE to handle. The divide-and-

conquer approach begins by first breaking up the stream into tractable sized sub-

streams; in this case, taking each “8”-shaped sequence as a separate substream.

The only constraint is that the final point of a substream is the first point of the

next substream so there is one point of overlap between the substreams. ARE is

then used to learn a representation for each substream independently. With this

approach, the dimensionality, d, of all representations to be merged must be the

same. For this example, d = 2.

Figure 7.2 shows the representation learned by ARE for the first substream.

It quite clearly has captured the underlying structure of its actions. Figure 7.3a

shows the representation learned for the second substream, again reflective of the

underlying model.1 The first challenge is to combine these two representations into

1Note the representation in Figure 7.3b was clearly not as successful as the others. This will
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Figure 7.1: An “8”-shaped ImageBot
trajectory.
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Figure 7.2: A manifold learned from
the trajectory in Figure 7.1.
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Figure 7.3: Learned representations for the 2nd, 3rd and 4th “Figure 8”s.

a single joint representation.

7.2 Combining Representations

Given two separate manifolds 〈x1
1, . . . , x

1
m〉 and 〈x2

1, . . . , x
2
m〉 learned by ARE, this

section describes how to combine them into a single manifold. If there was a

mapping from one manifold to another, it could be used to map all the points

be addressed later.
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from one manifold into the other to create a joint manifold. Such a mapping

between manifolds should be linear in order to preserve the actions as scale-free

linear transformations.

One way to find this linear mapping is from a correspondence set: a set of points

which appear in both manifolds. For example, suppose two sets of points are given:

{y1
1, . . . , y

1
k} and {y2

1, . . . , y
2
k}, where y1

i is in the first manifold and corresponds with

y2
i in the second, giving k points of correspondence. The goal is to find a linear

mapping T that minimizes
∑k

i=1 ‖y1
i − Ty2

i ‖2 (the sum squared error in mapping

the points of correspondence from the second manifold into the first). This linear

mapping can be found using simple linear regression. Once T has been obtained, let

x1
m+i = Tx2

i for i = 1 . . . m, then 〈x1
1, . . . , x

1
2m〉 is the joint manifold. The final step

of the merging is to recompute the action transformations (as shown in Section 5.1)

in the newly merged representation.

To complete this procedure requires a set of points in correspondence. The

manifolds were constructed to have one known point in correspondence: x1
m and

x2
1. Let y1

1 = x1
m and y2

1 = x2
1. This single point of correspondence along with the

action transformations will generate the rest of the set. For i = 2 . . . m

y1
i = f 1

u2
i+1

(y1
i−1) y2

i = x2
i ,

where f 1
a is the transformation associated with action a in the first manifold. In

other words, project (based on the action transformations) a sequence of hypo-

thetical points where the second manifold will map into the first, then place these

hypothetical points in correspondence with the actual points in the second manifold
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Figure 7.4: The second manifold added
to first.
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Figure 7.5: The third manifold added by
projection.

to learn the linear transformation.

Returning to the concrete example, Figure 7.4 shows the results of applying this

procedure to combine the first and second manifolds from Figures 7.2 and 7.3a.

The representations returned by ARE for the first two substreams successfully

captured the underlying model. However, if an attempt is now made to merge

in the third substream, shown in Figure 7.3b, there is an apparent problem. It

appears that ARE has failed to learn a sensible representation for this portion of the

trajectory. Combining this representation with the others will likely only confuse

the resulting map. Rather than blindly merging the substreams, it is necessary to

identify instances where ARE has failed to produce a reasonable representation. A

quantitative measure for evaluating a manifold is required.
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7.3 Another Evaluation Technique

Given a manifold 〈x1, . . . , xm〉, a quantitative measure of the quality of the manifold

needs to be computed. The projection accuracy of the action transformations is

one such measure. For every action ui in the original input there is a corresponding

xi−1 and xi. The projection error for i is ‖xi − fui
(xi−1)‖—the distance between

the projected ith point using the action transformation and the actual ith point.

This error is scaled by the actual distance travelled. Taking the average over all

actions provides the following quantitative evaluation of a manifold,

ProjErr =
1

n− 1

n∑
i=2

‖xi − fui
(xi−1)‖

‖xi − xi−1‖
.

ProjErr has a natural interpretation as the average error in the action transfor-

mations as a percentage of the total distance travelled. The ProjErr values for

the manifolds in Figures 7.2–7.3c are 0.05, 0.1, 0.51, and 0.22, suggesting that this

quantity can be used to identify poor representations that should not be merged.

Limited experiments suggest a threshold of τ = 0.15 so for the following results

only manifolds with at most that ProjErr are merged.

If ProjErr is higher than the threshold τ , the corresponding manifold should

not be combined into the joint manifold, yet something still needs to be included

in the joint representation for this substream. As shown before, actions can be

projected ahead to create a hypothetical sequence of points for the correspondence

set. In the absence of a good manifold, these projected points can be used directly

as position estimates for the problematic substream. Figure 7.5 shows the result
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of projecting a hypothetical sequence instead of using the high ProjErr manifold

from Figure 7.3b.

7.4 Results: Merging

Here is the final divide-and-conquer algorithm: Split the large stream into many

tractable substreams, run ARE on each substream, then compute ProjErr for

each manifold generated by ARE. Next, combine the manifolds by checking if Pro-

jErr for the next manifold in the sequence is less than τ . If so, use projection to

generate points of correspondence, use linear regression to find a linear map, then

map the points from this manifold into the joint manifold. If ProjErr is too high,

project a hypothetical sequence for this substream using the action transformations.

Before discussing planning, first two of the resulting manifolds are shown. Fig-

ure 7.6 shows the final result of the algorithm applied to the stacked “8”-shaped

stream on the synthetic image (the running example throughout Section 7.2). Fig-

ure 7.7 shows the result of the algorithm on a stream of experience generated by

a random walk, also on the synthetic image. In both cases, the representation

appears to capture, to varying degrees, the underlying structure of the domain (in

particular that the four actions consist of two orthogonal pairs of opposing actions).

This is an impressive result due to the length of input streams. More importantly,

the resulting representations can be used for planning as shown in the next section.
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Figure 7.6: A merged representation for the “stacked 8’s” trajectory.

7.5 Results: Evaluation

This section evaluates the approach in a manner similar to that of Section 5.3. The

goal of subjective mapping is a useful representation, so again, the evaluation will

focus on using the representations for planning.

Experiments consist of two streams using the synthetic image from Figure 3.2

and one stream using the natural image from Figure 3.3 (used in Chapters 4 and

5). For the synthetic image, one stream involved the nine stacked “8”-shaped

trajectories and the other stream involved a random walk. For the natural image

the stream involved the nine stacked “8”-shaped trajectories. Each of the three
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Figure 7.7: A merged representation for a long random trajectory.

streams is nearly an order of magnitude longer than those presented in Chapter 4.

For each of the test streams fifty planning problems were generated by selecting

random start and goal points from the original input stream. For each problem,

best-first search was used with Manhattan distance as the heuristic to find a se-

quence of actions from start point to goal point, using the action transformations

as models. Figure 7.7 shows one example of start and goal points (labelled with

triangles) along with the resulting planned path overlaid on top of the learned man-

ifold. Next, the plan was executed in the ImageBot domain and the distance (in

pixels) between the start and goal point as well as the distance (in pixels) between

where the plan ended up and the goal point (called the “goal difference”) were
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Stream
Mean Distance Mean Goal Difference % Exact
D&C ARE D&C ARE D&C ARE

Stacked “8” (Synthetic) 340.88 166 33 32.5 32% 62%
Random (Synthetic) 393.16 139.17 76 59.17 16% 40%
Stacked “8” (Natural) 439.22 152 48 72.5 32% 36%

Table 7.1: Quantitative evaluation of merged representations based on path plan-
ning.

recorded. The number of times the predicted goal exactly matched the actual goal

was also recorded. The results for all streams are shown in Table 7.1 under the

heading “D&C”. The mean distance is the average distance between start and goal

points, the mean goal difference is the average distance between plan result and

actual goal and the percentage exact is the percentage of time that the plan result

and the actual goal are the same. Note that the agent’s actions adjust its position

by 25 pixels, so a 50 pixel mean goal difference means that on average the plan

ended two actions away from the goal. To provide some comparison, an additional

50 planning problems were generated where the start and goal points were within

the same substream. The planning task was then evaluated in the ARE manifold

for just that substream. These results, shown under the heading “ARE”, give an

idea of how useful typical ARE representations are when used for planning.

The planning results for the natural and synthetic stacked “8” streams are

about the same. The start and goal points were on average 14–18 actions away

and the plans get within two actions of the goal, or approximately 90% of the total

path. One third of the time it reaches the goal point exactly. The ARE plans for

these streams, although shorter problems, performed similarly, albeit with a higher

probability of reaching the goal point exactly. Planning with the representations
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learned from the random walk streams was more difficult. The problems are about

the same length, but the plans reach the goal half as often and end on average

three actions from the goal. This quantitative difference is not surprising, as the

stacked “8”-shaped stream ensures that each substream sees enough of each action

with enough overlap for ARE to be able to identify the underlying structure. This

will not be true for random streams. As a result more of the substream manifolds

may fall below the ProjErr threshold, resulting in a less accurate global mani-

fold. In general, the divide-and-conquer technique produces manifolds an order of

magnitude larger than is possible with ARE alone, while being roughly as useful

for planning as a single ARE manifold.

7.6 Conclusion

Section 7.1 illustrated the requirements for extending the ARE algorithm from

Chapter 4 using a divide-and-conquer approach. Section 7.2 demonstrated a way

to combine two representations learned by ARE requiring only one point of corre-

spondence between them. A shortcoming of the divide-and-conquer method is that

it is not always desirable to merge a particular learned representation as ARE might

not have worked sufficiently well for that particular substream. Consequently, Sec-

tion 7.3 introduced another way of evaluating a particular representation when it

is not possible to test plans as was proposed in Section 3.3. The ability to merge

representations combined with the ability to choose when a representation is ac-

ceptable for merging yielded the entire approach. Sections 7.4 and 7.5 show the

results of applying the new divide-and-conquer method to streams much longer
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than those from Chapter 4.

The divide-and-conquer algorithm presented in this chapter makes it possible

to learn representations with input sizes an order of magnitude larger than previ-

ously shown in Chapter 4. Despite the much-larger resulting representations, the

random planning task introduced in Chapter 5 is still relatively successful. This

demonstrates that ARE has the potential to be used in a wider range of possible

applications, with an extended range of possible input sizes.



Chapter 8

Related Work

Knowledge is of two kinds.

We know a subject ourselves, or we know where we can find information on it.

Samuel Johnson

This chapter summarizes some other approaches to learning representations and

how they relate to the new subjective mapping approach introduced in Chapter 3.

In all of these cases there is a trade-off between the power of the representation and

the computational cost of learning or using the representation. The methods will

be presented from most powerful (and most expensive) to least.

Section 8.1 briefly reviews work on modelling dynamical systems—equivalent to

learning an effective representation for such a system. These models can be arbi-

trarily powerful but often require the use of very long action/observation sequences

in order to learn them and the learning may be computationally intractable even

when given enough data.

In many situations, it is desirable to sacrifice some of this power in order to be

able to learn more quickly. Section 8.2 is a review of some work on learning maps

95
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from uninterpreted sensor information as well as some work on extracting repre-

sentations from multivariate time-series data. In both situations, prior knowledge

is used to reduce the amount of required training data but a large training curve

still remains.

Section 8.3 introduces probabilistic mapping methods for robotics including

simultaneous localization and mapping (SLAM), which simultaneously localizes and

builds maps using Monte Carlo methods. This method requires much less input

data in order to build a map, but, in turn, is very specific. The motion and sensor

models involved need to be customized for every actuator and sensor. Another way

of looking at this is that a large portion of the work, learning and calibrating the

sensor and motion models, is done before the agent is immersed in its environment.1

8.1 Dynamical Systems

There has been a great deal of work in modelling dynamical systems, which has

many similarities to the task of learning a representation of a system. The general

definition of a dynamical system is quite similar to the description of an agent in

Section 1.1. Such a system generates a sequence of observations O that is perceived

by an agent. If the agent is able to interact with the system it is called a controlled

system as opposed to an uncontrolled system [Jae98]. In the case of a controlled

system the agent affects the system through a collection of possible actions A.

The dynamical system is in a particular state and this state can change over time,

1This is not entirely true: the models are environment dependent so they must be developed
in a similar environment. For example, motion models constructed for a wheeled robot on carpet
may not be effective when used for a wheeled robot on asphalt.
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possibly dependent on what actions are taken. The current state of a system can

affect the effects of the actions as well as the probability of the next observation. It

will be necessary to differentiate between two notions of state: underlying state is

the current full description of the environment and everything in it, while state is an

agent’s representation of the current situation. From a mathematical point of view,

the state of a system can be represented by any sufficient statistic for predicting

the future of the system. This can be the underlying state or some other sufficient

statistic [LSS02].

The timescale associated with the system, as well as the observations and ac-

tions, can all be discrete or continuous. Further distinctions can be made between

systems that are completely observable as opposed to partially observable, and

systems which are deterministic as opposed to stochastic. Models with the latter

capabilities in each case are more powerful but also more computationally expensive

to learn.

Often, there is some reward function associated with the states of such a system.

If there is such a function then a natural goal is to try to find an optimal policy for

the system which is a distribution over actions given state (essentially determining

how the agent interacts with the system) that maximizes expected reward. If a

problem can be modelled in such a way it belongs in the reinforcement learning

paradigm (see for example [SB98]).

Markov chains (MCs) are models which represent uncontrolled, fully observable

dynamical systems [RN03]. They incorporate an independence assumption which

implies that a state is dependent only on the previous observation and the passing
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of time is modelled through a function which maps each state to a probability

distribution over all possible states. Markov decision processes (MDPs) extend

Markov chains to the controlled case [Put94]. The difference is that the function

now maps state-action pairs to a probability distribution over all possible states.

Both MCs and MDPs can be generalized to k-order Markov methods, where the

state is dependent not on the previous state but on the previous k states [RN03].

MCs and MDPs can clearly be viewed as models of their associated environment,

as their states correspond directly to the underlying states in the environment but

construction of these models requires explicit knowledge of these underlying envi-

ronmental states. This is not applicable to subjective mapping due to the desire

to specifically avoid the necessity of such knowledge, instead building representa-

tions from streams of observations (and actions). Arguably, if the underlying state

of the world is clearly and directly encoded in the observations then building a

representation of the environment becomes a simpler task.

To this end, Markovian processes can be modified to handle partially observ-

able systems. Hidden Markov Models (HMMS [Rab89]) are extensions of Markov

chains and Partially Observable Markov Decision Processes (POMDPS, [Ast65,

SS73, Son78]) are extensions of MDPs. These models postulate a set of underlying

states and assume that the system is in one of these states but that the observa-

tions are not enough to determine which state the system is currently in. Instead,

the agent maintains a probability distribution over these hidden states. This dis-

tribution is often called a belief state. Even if the model is known, learning these

belief states can be quite difficult (see for example [Mur00]) and in general there is
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no reason to believe that the model is available. There are a variety of model-free

approaches (see for example [Abe03]) as well as expectation-maximization (EM) al-

gorithms for simultaneously learning structure and transition probabilities ([Chr92])

but these only add to the computational expense of learning POMDPs.

Finally, there are newer representations of state such as predictive state rep-

resentations (PSRs [SJR04]), which can be further extended into Memory-PSRs

(mPSRs [JWS05]); Observable Operator model (OOMs [Jae98]); and Temporal-

Difference networks (TD nets [TS05]). The main idea in these cases is to model

the state of the system not only with histories but also with predictions over future

states. In general, these models can be arbitrarily powerful and consequently tend

to require large amounts of training data in order to learn them.

The definition of the subjective mapping problem from Table 3.1 is similar to

that of learning an MDP with three differences:

1. The requirement of mapping into Rd must be changed to mapping into S (an

arbitrary state space).

2. The line:

∀a ∈ Zna ∃fa(·) ∈ F : ui = a ⇒ fa(xi−1) ≈ xi,

must be altered to:

∀a ∈ Zna ∃fa(·) ∈ F : ui = a ⇒ fa(xi−1) = g(x),

where g(x) is a probability distribution function over Rd parameterized in
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some way by x. This allows for probabilistic actions, required for correspon-

dence to a probabilistic transition function.

3. The notion of “simplicity” must allow F to be the set of lookup tables (equiv-

alent to MDP transition functions).

This variation of subjective mapping is actually equivalent to the problem of

learning a general MDP. It can almost be extended to learning a general POMDP

but the details of learning belief states (distributions over states given observations)

are not trivially intertwined with the dimensionality reduction step. Still, this sug-

gests a number of workable approaches to scaling or modifying current (PO)MDP

techniques. Changing the degree of relaxation of each of the above constraints

should restrict the class of (PO)MDPs that can be learned. It would be interesting

to study the resulting tradeoffs in power and complexity.

8.2 Mapping From Raw Sensor Data

This section outlines two approaches towards learning representations that are more

restrictive than the methods for learning a general dynamical system. The first as-

sumes the representation is specifically of a spatial environment while the second

attempts to extract information from data using the assumption of temporal con-

tiguity.
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8.2.1 Mapping Spatial Environments

One approach to the problem is to explicitly design general models for a more spe-

cific task—that of building a cognitive map of a spatial environment. This is the

approach suggested by [Kui00] who proposes the spatial semantic hierarchy, con-

sisting of sensorimotor, control, procedural, topological and metrical levels. The

sensorimotor level details an agent’s interface with the environment via raw sense

and control vectors and must further extract important features from the raw ob-

served data. At the control level, action models must be learned to predict the

effects of the motor control vectors on those features. At the procedural or causal

level the continuous environment is abstracted into a model of discrete views and

discrete actions and the relationships between them. At the topological level a

finite state machine is constructed based on these sets and relationships, then at

the metrical level this state machine is annotated with distances to construct a

geometrically accurate map of the environment. The full hierarchy is hypothesized

not only as a useful model for robotic agents, but also a descriptive model of how

human agents model spatial environments.

Plausible procedures for the first three levels are detailed in [PK97]. Given

uninterpreted sense and control vectors (s and u), structure is identified in the

environment (defined exclusively by streams of these vectors) suitable for prediction

and navigation. This is done through three distinct steps:

1. Building a model of the sensors

2. Building a model of the motor apparatus



102 CHAPTER 8. RELATED WORK

3. Learning an abstracted (and discrete) set of behaviours

The first step is done by learning low level features (such as scalar, vector, ma-

trix, image and field features) from the raw sense vector, then applying feature

generators (using minimum, maximum and differentiation) to learn new features

from existing ones. For example, if a sense vector contains, among other things, a

collection of pixel intensities, then a group feature generator will attempt to identify

that that collection of features belongs together. Further, an image feature gen-

erator would then attempt to determine positional relationships between features

within an identified group (for example, that one pixel is above another). The group

feature generator requires distance metrics that can be used to recognize similar

sensors in different ways. The image feature generator also requires these metrics

and uses metric scaling to construct the image features.

The second task is done by characterizing the effects of the primitive actions u

on s using motion feature generators which relates actions to spatial and temporal

derivatives within groups of features—predicting the effects of motor control vectors

on features. This is done by:

• discretizing the continuous control vectors into representative motor control

vectors

• randomly executing these representative vectors while maintaining average

motion vector fields (AMVFs)

• using principal component analysis to extract the most important motion

effects
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• matching AMVFs with these motion effects to identify primitive actions

For the final step, an attempt is made to determine local state variables (for

example, the closest wall to a robot may be determined by the minimum distance

reading obtained from a group of distance sensors). Next, linear regression is used

to learn a static action model which predicts the effect of the learned primitive

actions on these local state variables. Now behaviours can be learned by relating

local state variables to arbitrarily chosen target values. Homing behaviours can

be learned that minimize an error signal while path-following behaviours can be

obtained by learning the correct feedback model for error correction. Finally, the

original environment can be discretized into actions (the finite set of homing and

path-following behaviours) and views (collections of similar sense vectors). Since

both actions and views are discrete, the agent can try all possible successive state-

action pairs to learn a complete graph of its state space. Note that if the number

of states and/or actions is large this step could be very time consuming.

Once the environment has been discretized into actions and views (similar to

the states in Section 8.1) the next step is to build a graph of the relationships

between various states (nodes) according to possible actions (edges). This occurs

at the fourth level of the hierarchy called the topological level. Finally, at the fifth

level (the metrical level) it may be desirable to annotate the edges of the result-

ing topological map with distances to obtain a metric map. Approaches to these

remaining levels in the spatial semantic hierarchy can be found in, for example,

[KB88]. However, already it can be seen that the first three levels of the hierar-

chy require a fair amount of training data in the form of observation and action
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sequences in order to learn the required models.

The ARE algorithm from Chapter 4 is not necessarily orthogonal to this ap-

proach. In particular, one could view the building of the non-uniform neighbour

graph from the stream of data as constructing a topological map of an environ-

ment. Correspondingly, the solving of the semidefinite program could be classified

as being in the metrical level of the spatial-semantic hierarchy (although that may

be a bit of an over-simplification). Indeed, it may be useful to look at whether

tools associated with various levels of the hierarchy can be used to improve upon

the subjective mapping solutions presented in this document (for example, to build

a better neighbour graph).

8.2.2 Learning Representations From Time-Series Data

Another approach relies on the assumption that the stream of observations (where

again each observation is a vector of real values) are close temporally and that

consecutive observations must therefore be close to each other. It is possible to

learn general structural abstractions from such time-series data to find meaningful

episodic structures. For example, imagine that the observation vectors are taken

from a distance-finder mounted on a robot that measures distances to objects within

a 180◦ frontal arc. The time series that corresponds to moving past an object has

a slow increase in values (as the object is approached) followed by a sharp drop to

a constant (after the object has been passed). If these characteristic patterns in a

multivariate time series can be grouped into similar experiences then a taxonomy

of robot experience can be learned.
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The clustering by dynamics (CBD [OSC00b]) method does this by first segment-

ing a multivariate time-series (each segment will hopefully represent a particular

episode, for example, moving towards an object). Next, every possible pair of

episodes is compared and similarity between them is measured after finding the

best temporal fit with respect to time warping (stretching and/or compressing the

temporal axis). These similarities can then be used to cluster the segments into

experience groups. Within each cluster a cluster prototype is found and used as

the generic representation of the episode associated with that cluster.

These prototypes can be used as planning operators (see [SOC00]) by using a

decision-tree induction algorithm to learn rules which map state-action pairs to

resulting states probabilistically. The states here correspond to observations and

features of these observations are used as decision variables.

There is some evidence that the learned episode prototypes correlate well with

prototypes chosen by human judges [OSC00a]. This implies that such methods may

be useful as descriptive models for human agents as well as for learning models for

artificial agents.

Finally, CBD can be used on raw speech data to identify individual words

[Oat02]. This leads to the interesting idea of combining co-occurrent streams of

differing sensory modality in order to extract further meaning from raw sensory

data. It may be possible to learn labels for raw sensor vectors from a corresponding

stream of natural language (for example, the identification of a cup may be learned

from a stream of visual data from a camera focused on a cup and a stream of raw

audio data saying “there is a cup”)[COB02].
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The subjective mapping problem shares a critical assumption with CBD: that

observations that are temporally close must be spatially close. Beyond that, the two

problems are quite different. CBD requires data with enough instances of repetition

to make time-series analysis viable and is not as reliant on the presence of actions.

8.3 Probabilistic Mapping in Robotics

Mapping is a key problem in mobile robotics where it is intimately tied to the prob-

lem of localization: estimating a robot’s position while it moves and senses in the

world. Knowledge of a robot’s position in its environment is one of the most basic

requirements for many autonomous tasks. One of the most successful approaches to

objective localization uses probabilities to model all aspects of a robot’s uncertainty,

including the current pose estimate, the effect of actions, and the information pro-

vided by sensors. Probabilistic inference can then be applied in a straightforward

fashion to maintain an estimate of the robot’s location. Approaches of this type of-

ten restrict the form of the models (for example, Gaussian distributions in Kalman

filters [Kal60]) or use various approximation techniques (such as the Monte Carlo

localization procedure reviewed in Section 6.1), to allow inference and localization

to be computationally feasible.

A prerequisite for all probabilistic approaches are models of the uncertainty in

the robot’s motion and sensors. Classical kinematics defines the expected global mo-

tion of the robot when a particular control is applied to it. But kinematics requires

many assumptions in its deterministic calculations (for example, infinite friction)

that do not hold in practice. Hence, robot motion is uncertain. Likewise, there are
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many uncontrollable and unpredictable factors (for example, acoustic reflectance

of a surface with sonar, or ambient lighting with vision) that affect readings from

sensors. Hence, robot sensing is also uncertain. Probabilistic models of these uncer-

tainties form the basis for inference (which drives the localization). Unfortunately,

these models are often not easy to build. They can require extensive knowledge

of the robot’s kinematics or sensors, which may not be known or easily described.

They may require time-consuming manual measurements to estimate characteris-

tics of noise or to build a map of sensor readings over the environment. Finally,

by definition, a well constructed model must be specific to the particular hardware

used. Modifying the robot platform invalidates these laboriously constructed mod-

els and new models must be created. For example, changing from a wheeled robot

to a legged robot obviously invalidates the motion model. Changing from a sonar

to a laser, or from a laser to a camera will require replacement of the sensor model.

Even minor changes, such as inflating the tires on the robot, or replacing its camera

with one of a different model, will require expert modifications to the various mod-

els. Recent work has examined techniques for automatically calibrating some of

these models (see for example [RT99], [MTKW02], [EP04], [SS05], [KBM06]), but

no current method exits to calibrate these models for objective localization without

considerable expert knowledge.

8.3.1 Simultaneous Localization and Mapping

Simultaneous localization and mapping (SLAM) is an extension of Monte Carlo

localization which tracks both uncertainty in the robot’s pose as well as uncertainty
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in the location of obstacles and landmarks [MTKW02]. It is the quintessential

example of objective mapping where the robot’s state representation is given, along

with partially specified models; in other words, the entire motion model and the

sensor’s noise model is commonly considered known. In many cases, where the

robot and environment is well studied and predictable, this has proven to be a very

effective approach. If the robot’s locomotion or sensing apparatus, or even aspects of

the environment, are not known a priori there can be no partially specified models.

Simultaneous localization and mapping with a completely unknown robot is perhaps

the “Grand SLAM” challenge, and it is not clear how current objective mapping

approaches could handle the complete absence of models and remain objective. As

the models are providing the critical connection between subjective and objective

quantities it may, in fact, be impossible.

Of the related work examined in this chapter, SLAM is perhaps closest related

to the subjective mapping problem of Chapter 3, unsurprising as the motivations

for this dissertation are rooted in the same motivations as SLAM. A fundamental

difference in the two approaches is that SLAM explicitly seeks to learn an objective

map, making its dependence on objective motion and sensor models a necessity.

SLAM has been an extremely successful approach to robotic mapping and in sit-

uations where models are available or where an objective map is necessary (to be

communicated to other agents or to human observers, for example) it is clearly the

correct approach. In cases where such models are not easily obtainable or where

a subjective map is sufficient, the subjective mapping paradigm introduced in this

dissertation provides an alternate and possibly better approach.



Chapter 9

Conclusion

In the end, everything is a gag.

Charlie Chaplin

Chapter 3 introduced and formalized the subjective mapping problem: to learn

a useful representation by extending dimensionality reduction techniques. Chap-

ter 4 developed the action respecting embedding algorithm—a solution to the new

problem—and provided qualitative evidence for the value of the subjective map-

ping approach. Chapter 5 presented a method for extracting the effects of actions

in learned representations and showed how these actions could then be used to

effectively find shortest paths. Experimental results in a random path-planning

task provided further quantitative evidence that subjective mapping and ARE can

be effective tools. Chapter 6 demonstrated that the learned representations could

be used for localization, demonstrating that subjective mapping and ARE can be

practically applicable in the domain of probabilistic mapping for robotics. Finally,

Chapter 7 introduced a divide-and-conquer procedure for merging representations,
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providing a way of overcoming the complexity issues that arise due to the semidef-

inite program at the heart of the action respecting embedding algorithm. This

chapter briefly discusses some avenues of future research and provides a summary

of other sources of information on subjective mapping and ARE.

9.1 Future work

9.1.1 Parameterized Actions

While there are a variety of domains where discrete action labels are sufficient for

an agent’s purposes, there are some situations where it may be highly desirable

to allow the use of continuous or parameterized actions. For example, imagine a

situation with a robot whose action set includes not merely “move forward” but

instead “move forward distance x”. The structured input of this variation of the

problem becomes:

z0, u1(p1), z1, u2(p2)..., un(pn), zn

where pi is the parameter of action ui.

There are some features of the current ARE algorithm that provide hope that it

may be modified to handle this new problem. Recall that in the learned represen-

tation it is possible to learn operators oi that corresponded to the original actions

ui. These operators are all of the form (Ai, bi) and when they are applied to a point

x on the manifold they yield a new point x′ = Aix = bi. For the sake of simplic-

ity, examine an operator with no translation component (in other words bi = 0).

In this particular case, one can easily answer the question “what happens if this
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operator is applied twice”: x′ = Ai(Aix) = A2
i x. This allows for the definition of a

new operator oi(2). Similarly, this can be extended to define any operator oi(r) for

some r ∈ R.

This is promising as it implies that the underlying method for representing trans-

formations on the learned manifold is already, in some sense, continuous. Trans-

formations correspond to discrete action labels but they are easily manipulated

with continuous variable multipliers. This suggests that parameterized actions are

plausible.

The argument above clearly applies to operators with only a translation com-

ponent (in other words Ai = 0). Problems may arise in parameterizing those

operators with both translation and rotation components, application of operator

oi twice yields Ai(Aix + bi) + bi = A2
i x + (Ab + b), repeated application clearly

continues to yield transformations of the correct form but the nested translation

term may be cumbersome to compute.

There is also an issue with learning a manifold from a collection of parameterized

actions. A first naive attempt would involve finding the lowest common denomina-

tor, l, of all the parameters for a particular action label, then re-expressing the input

as streams of discrete action labels, each corresponding to a parameterized action

with parameter l. This is almost a situation which allows for direct application of

the ARE algorithm. The operators corresponding to the new action labels would

also correspond to the parameterized actions where the parameters are applied as

described above. To do this still requires that the ARE algorithm be extended to

deal with the situation where the input stream is not perfectly interleaved, in other
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words z1, u1, u2, u3, u4, z4, . . .. This proposed method also has the obvious problem

that it will greatly blow up the number of actions which may be an issue despite

the promise of scalability delivered in Chapter 7.

9.1.2 Extending the Applications

Better planning

The planning results that have already been generated are impressive. One problem,

however, is that iterative deepening was used in searching the learned space. This

becomes problematic in cases where the desired plan is very long or in cases where

there are a large number of actions (resulting in a very high branching factor in the

search tree). Ideally, the search tree should be pruned by using something like an

A? algorithm. This raises the interesting question of what an admissible heuristic

would be in a space where the actions are distance preserving. An obvious first

step in this direction would be to design an admissible heuristic for a space where

the actions are simple translations (although even this seems not to be at trivial

task), then somehow extend it to a heuristic for general embeddings.

Better localization

The current results for localization, while quite good, have some potential for im-

provement. In general, there is uncertainty as to whether the gains are coming

from the choice of generic motion model or generic sensor model. This question

naturally leads to future work where the experiments are repeated with a baseline

sensor model, and then with a baseline motion model in order to separately evaluate
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the impact of the models. Additionally, it could be beneficial to try to formulate

a variety of other generic motion and sensor models to see if the technique can be

improved in some or all cases. In particular, while the motion model used seems

intuitively to be appropriate, it is not so clear that this is the case for the chosen

sensor model. A first step would be to ensure that the sensor model is, in fact,

doing something and, if not, replace it with a better one.

Embedding new points

One restriction on the planning algorithm so far is that it is unable to plan from or

to a new point. This is because of a problem that ARE has in common with most

other non-linear dimensionality-reduction techniques—it is unclear how to embed

new points. Given a new high-dimensional point, what is the corresponding point

on the learned representation? The analogous question in the subjective mapping

case is: Given a new observation (not seen before), what is the corresponding point

on the map? Clearly being able to answer this question would be tremendously

useful, and not just for planning.

If new points could be embedded then the learned representation could be used

for reinforcement learning. A representation could be learned and locations on that

representation could be annotated with the rewards associated with the correspond-

ing high-dimensional observations. This would allow a policy to be learned in the

representation. Without the ability to embed new points, however, there is no way

that a policy could be used in the original observation space.
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9.2 More Information

An overall summary of the subjective mapping problem and the ARE algorithm

can be found in the Nectar track of the 2006 AAAI proceedings [BWG06]. The

material in Chapter 4 appears in the 2005 ICML proceedings [BGW05]. An ear-

lier version appears in Ali Ghodsi’s PhD thesis [Gho06] in substantially different

form but it is joint work. Part of the material in Chapter 5 appears in the 2005

IJCAI proceedings [WBG05]. The material in Chapter 6 appears in the 2005 ISRR

proceedings [BWGM05].
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