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ABSTRACT

The increasing use of polyethylene in diverse applications motivates the need for un-
derstanding how its molecular properties relate to the overall behaviour of the material.
Although microstructure and mechanical properties of polymers have been the subject of
several studies, the irreversible microstructural rearrangements occurring at large defor-
mations are not completely understood. The purpose of this thesis is to describe how the
concepts of Continuum Damage Mechanics can be applied to modelling of polyethylene
materials under different loading conditions.

The first part of the thesis consists of the theoretical formulation and numerical
implementation of a three-dimensional micromechanical model for crystalline polyethyl-
ene. Based on the theory of shear slip on crystallographic planes, the proposed model is
expressed in the framework of viscoplasticity coupled with degradation at large deforma-
tions. Earlier models aid in the interpretation of the mechanical behaviour of crystalline
polyethylene under different loading conditions; however, they cannot predict the mi-
crostructural damage caused by deformation. The model, originally due to Parks and
Ahzi (1990), was further developed in the light of the concept of Continuum Damage
Mechanics to consider the original microstructure, the particular irreversible rearrange-
ments, and the deformation mechanisms. Damage mechanics has been a matter of in-
tensive research by many authors, yet it has not been introduced to the micromodelling
of semicrystalline polymeric materials such as polyethylene. Regarding the material rep-
resentation, the microstructure is simplified as an aggregate of randomly oriented and
perfectly bonded crystals. To simulate large deformations, the new constitutive model
attempts to take into account existence of intracrystalline microcracks.

The second part of the work presents the theoretical formulation and numerical
implementation of a three-dimensional constitutive model for the mechanical behaviour
of semicrystalline polyethylene. The model proposed herein attempts to describe the
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deformation and degradation process in semicrystalline polyethylene following the ap-
proach of damage mechanics. Structural degradation, an important phenomenon at large
deformations, has not received sufficient attention in the literature. The modifications to
the constitutive equations consist essentially of introducing the concept of Continuum
Damage Mechanics to describe the rupture of the intermolecular (van der Waals) bonds
that hold crystals as coherent structures. In order to model the mechanical behaviour,
the material morphology is simplified as a collection of inclusions comprising the crys-
talline and amorphous phases with their characteristic average volume fractions. In the
spatial arrangement, each inclusion consists of crystalline material lying in a thin lamella
attached to an amorphous layer. To consider microstructural damage, two different ap-
proaches are analyzed. The first approach assumes damage occurs only in the crystalline
phase, i.e., degradation of the amorphous phase is ignored. The second approach con-
siders the effect of damage on the mechanical behaviour of both the amorphous and
crystalline phases.

To illustrate the proposed constitutive formulations, the models were used to pre-
dict the responses of crystalline and semicrystalline polyethylene under uniaxial tension
and simple shear. The numerical simulations were compared with experimental data
previously obtained by Bartczak et al. (1994), G‘Sell and Jonas (1981), G‘Sell et al. (1983),
Hillmansen et al. (2000), and Li et al. (2001). Our model’s predictions show a consis-
tently good agreement with the experimental results and a significant improvement with
respect to the ones obtained by Parks and Ahzi (1990), Schoenfeld et al. (1995), Yang
and Chen (2001), Lee et al. (1993b), Lee et al. (1993a), and Nikolov et al. (2006). The
newly proposed formulations demonstrate that these types of constitutive models based
on Continuum Damage Mechanics are appropriate for predicting large deformations and
failure in polyethylene materials.
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CHAPTER

ONE

Introduction

1.1 Micromechanical modelling of polyethylene

Mechanical and structural components are usually subjected to complex interaction of
load and environmental conditions that can cause failure. Although the number of struc-
tural failures is low, the incurred costs as well as the human and environmental conse-
quences are considerable. There has been an increased interest in gaining insight not
only into the macroscopic behaviour of materials but also into the different processes
occurring at the microstructural level that may affect end-use mechanical performance.

The research presented in this thesis concerns the micromechanical modelling of
the behaviour of semicrystalline polyethylene. Particularly, the study involves the de-
velopment and implementation of a micromechanical model for describing the damage
processes in polyethylene materials. The mechanical properties of these materials are
studied considering not only the original microstructure but also the particular mecha-
nisms activated at various steps in the plastic deformation. Since macromolecules in
polyethylene materials are capable of adopting two basic arrangements, the crystalline
and amorphous phases, microscopic degradation processes are modelled taking consis-
tently into account the participation of these two regions.

The mechanical behaviour of polymers has been the subject of considerable studies
in the past. An important aim of polymeric materials research consists in developing
mathematical models for understanding the dependence between the various structural
and morphological factors and the mechanical properties at the microscopic level. Also,
of particular interest is the improvement of material processability and product perfor-
mance; for instance, in industrial and medical applications.

1
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As indicated by Budiansky (1983), the adjective micromechanical is commonly used
to designate a class of analytical models which emphasize the relation between the macro-
scopic state of a material and its microstructure. Implicit to this definition is that the
change of the macroscopic state of a material is related to the irreversible rearrange-
ments of its microstructure. A precise definition of what constitutes a microstructure is
dependent on the considered material, problem, scale, selected resolution and required
accuracy. The microstructure of polymeric materials and its changes are, in general, non-
deterministic. The same is true for the fluctuations in stresses and strains attributable to
the random geometry and chemical composition of the microstructure.

The mechanical performance of polyethylene materials depends not only on op-
erating conditions but also on many phenomena occurring at the microscopic level (e.g.,
G‘Sell and Dahoun, 1994; Lin and Argon, 1994; Schrauwen, 2003; G‘Sell et al., 2002). In
recent years, there has been an increasing concern in developing reliable experimental
techniques and mathematical models to investigate the mechanical response of polyeth-
ylene and other polymeric materials at different length scales. This particular interest
is due to the many practical applications where polyethylene in its different grades is
taking the place of other materials. These applications include packing films, containers,
and pipes. In a variety of studies, constitutive equations have been proposed to describe
experimental observations and to predict molecular features and macroscopic properties
in polymeric materials. Researchers have focussed on understanding the nonlinear be-
haviour of crystalline and semicrystalline polyethylene by relating microstructure with
the macroscopic performance under both small (Nikolov and Doghri, 2000; Nikolov et al.,
2002) and large (Cowking et al., 1968; Cowking and Rider, 1969; Keller and Pope, 1971;
Young et al., 1973; Parks and Ahzi, 1990; Lee et al., 1993a; Lin and Argon, 1994; Ahzi et al.,
1994; Lee et al., 1995; Argon, 1997; Hiss et al., 1999), deformations. Lee et al. (1993a,b)
and Argon (1997) pioneered the micromechanically-based modelling of semicrystalline
polyethylene at large deformations. Other micromechanical models accounting for the
physical microstructure of kinematically constrained polycrystals have been proposed by
Parks and Ahzi (1990); Ahzi et al. (1994); Lee et al. (1995); Schoenfeld et al. (1995); van
Dommelen et al. (2000). Although these existing constitutive models are able to predict
the mechanical behaviour of polyethylene partially, to our knowledge, researchers have
not investigated the application of Continuum Damage Mechanics Theory (e.g., Rabot-
nov, 1969; Kachanov, 1986; Lemaitre, 1996) to this problem.
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1.2 Objectives and scope

The object of this thesis is twofold. First, the thesis is concerned with the development
and numerical implementation of a damage model for crystalline polyethylene. Second,
it is related to the introduction of a damage-coupled constitutive model for describing
the links between the microstructural degradation processes and the macroscopic stress-
strain response of semicrystalline polyethylene.

The goal of the first part of the thesis is to consider damage and texture evolution
related to deformation by chain and transverse slip in idealized 100% crystalline poly-
ethylene. To simulate large deformation, the micromechanical model proposed earlier by
Parks and Ahzi (1990) is modified to take into account the effects of atomic debonding on
the overall mechanical behaviour, neglecting the contribution from the amorphous phase.
This part is devoted to the following aims:

1. Description of a constitutive law for the mechanical behaviour of crystalline poly-
ethylene using concepts from Continuum Damage Mechanics

2. Implementation of the model into a computer program

3. Estimation of the material parameters using information available in the literature

4. Numerical solution of uniaxial tension and simple shear cases to predicting (1) the
macroscopic behaviour and typical stress-strain curves, (2) the damage accumu-
lation at the different stages of deformation, and (3) the influence of damage on
texture evolution of the different slip systems

5. Comparison of the model results with those obtained numerically by Parks and
Ahzi (1990) and Yang and Chen (2001), and experimentally by Hillmansen et al.
(2000) and G‘Sell et al. (1983)

In the second part, a damage-coupled model for the amorphous polyethylene ma-
terial is considered. The constitutive equations are developed using the incompressible
non-Gaussian network theory and Arruda and Boyce’s (1993) eight-chain model. The
microscopic deterioration of a representative volume element is modelled considering an
isotropic damage variable. The evolution of this variable is linked to the evolution of the
deformation and growth processes of small voids (volume discontinuities in the form of
cavities) in the amorphous polymer material.

Once the micromechanical constitutive equations for the crystalline and amor-
phous phases have been developed, a damage model for composite inclusion is proposed.
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The improved model takes into account the fact that the presence of crystallites confines
the amorphous phase. Additionally, the micromechanical model should not only be able
to reproduce the mechanisms of deformations and texture evolution in semicrystalline
polyethylene but also to give physical insight into the damaged microstructure of this
material. In this part, the work involves:

1. Description of a model based on Continuum Damage Mechanics for the amorphous
phase of semicrystalline polyethylene

2. Development of the combined behaviour model for both crystalline and amorphous
phases in a composite inclusion

3. Description of (1) the compatibility and traction equilibrium conditions on the in-
terface of the composite inclusion, and (2) the local-global inclusion interaction law
that relates the mechanical behaviour of each composite inclusion to the imposed
boundary conditions for an aggregate of inclusions. Implementation of the homog-
enization technique.

4. Numerical implementation of the constitutive equations

5. Numerical simulation of uniaxial tension and simple shear problems to evaluate the
composite model

6. Comparison of the model results with those obtained by Lee et al. (1993b) and
Nikolov et al. (2006)

1.3 Contributions of the thesis

The overall research effort of the thesis focuses on two major topics containing the fol-
lowing original work:

1. The theoretical formulation and numerical implementation of a three-dimensional
micromechanical model for crystalline polyethylene (no amorphous phase consid-
ered). Based on the theory of shear slip on crystallographic planes, the proposed
model is expressed in the framework of viscoplasticity coupled with degradation
at large deformations. Earlier models aid in the interpretation of the mechanical
behaviour of crystalline polyethylene under different loading conditions; however,
they cannot predict the microstructural damage caused by deformation. The model,
originally due to Parks and Ahzi (1990), was further developed in the light of the
concept of Continuum Damage Mechanics to consider the original microstructure,



1.4 Chapter contents 5

the particular irreversible rearrangements, and the deformation mechanisms. Dam-
age mechanics has been a matter of intensive research by many authors, yet it has
not been introduced to the micromodelling of semicrystalline polymeric materials
such as polyethylene. Regarding the material representation, the microstructure
is simplified as an aggregate of randomly oriented and perfectly bonded crys-
tals. To simulate large deformations, the new constitutive model attempts to take
into account existence of intracrystalline microcracks. The following journal and
conference papers show the novel contributions to the modelling of polyethylene:
Alvarado-Contreras et al. (2005, 2006a,b, 2007a,e)

2. The theoretical formulation and numerical implementation of a three-dimensional
constitutive model for the mechanical behaviour of semicrystalline polyethylene
(both crystalline and amorphous phases). In this part of the work, the model
attempts to describe the deformation and degradation process in semicrystalline
polyethylene following the approach of damage mechanics. Structural degrada-
tion, an important phenomenon at large deformations, has not received sufficient
attention in the literature. The modifications to the constitutive equations consist es-
sentially of introducing the concept of Continuum Damage Mechanics to describe
the rupture of the intermolecular (van der Waals) bonds that hold crystals as co-
herent structures. In order to model the mechanical behaviour, the material mor-
phology is simplified as a collection of inclusions comprising both the crystalline
and amorphous phases with their characteristic average volume fractions. In the
spatial arrangement, each inclusion consists of crystalline material lying in a thin
lamella attached to an amorphous layer. To consider microstructural damage, two
different approaches are analyzed. The first approach assumes damage occurs only
in the crystalline phase, i.e., degradation of the amorphous phase is ignored. The
second approach considers the effect of damage on the mechanical behaviour of
both the amorphous and crystalline phases. Papers currently under review (with
abstracts) or in preparation for presenting the proposed model for semicrystalline
polyethylene include: Alvarado-Contreras et al. (2007c,b,d, 2008)

1.4 Chapter contents

The present thesis is divided into eight chapters. The first part, comprising Chapters 2 and
3, is the exposition and development of the fundamentals of micromechanical modelling
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of polymeric materials. The following four chapters present the proposed models and
details of the numerical implementation. The last chapter summarizes the conclusions.
In detail, the thesis is organized as follows:

Chapter 2 introduces a literature review of the physical-chemical structure of semi-
crystalline polyethylene. The chapter provides a brief summary of the molecular weight
distribution, thermoplastic and thermosetting behaviour, and types of polyethylene ma-
terials. Aspects of the mechanics of deformation in crystalline and amorphous phases of
polyethylene are also presented.

Chapter 3 reviews the models developed to date for describing the micromechani-
cal behaviour of polyethylene materials. Different models for predicting small and large
deformations in semicrystalline polyethylene and large deformations in idealized 100%
crystalline polyethylene are introduced.

Chapter 4 describes how the concepts of Continuum Damage Mechanics can be
applied to modelling of crystalline polyethylene. The material is analyzed from a mi-
croscopic viewpoint and considered as an aggregate of crystals. The model regards the
crystals as rigid-viscoplastic and incorporates the effects of atomic debonding on the
overall mechanical behaviour. To illustrate the capability of the proposed model, two
simulations are carried out to capture the macroscopic stress-strain behaviour and tex-
ture evolution under uniaxial tension and simple shear loading conditions. The results
are compared with experimental data and numerical simulations from other references.

Chapter 5 presents the numerical implementation of the model proposed for crys-
talline polyethylene, as well as, a study on the influence on the model performance of
the assumptions regarding aggregate size, crystal orientations, and material parameters.
Consequently, a detailed explanation of the algorithms and a general description of ma-
terial modelling in terms of microstructure evolution are given.

Chapter 6 concentrates on the modelling of semicrystalline polyethylene at large
deformations. Using damage-coupled models for the crystalline and amorphous phases,
the main challenge within this chapter is the prediction of mechanical behaviour of
semicrystalline polyethylene considering a more detailed description of the complex mi-
crostructure and of the degradation processes occurring in the material. Uniaxial tension
and simple shear cases are solved numerically using the proposed constitutive model and
the results are compared against experimental and numerical data found in the literature.

Chapter 7 contains the description of the algorithms used for modelling the semi-
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crystalline material. Additionally, some of the model parameters are analyzed to gain
insight into their influence on the stress state and damage evolution.

Chapter 8 presents the major conclusions of the present research work, discusses
the main contributions, and suggests some recommendations for future research.

1.5 Notation

For simplicity, equations are written using index notation (e.g., Malvern, 1969). By means
of the range convention, vectors can be expressed as vi, where the index i labels the
coordinate directions 1, 2, and 3. Second- and fourth-order tensors such as stresses and
compliances are respectively written as σij and Mijkl, where all the indexes range from
1 to 3 to give correspondingly nine and 81 components. In the expressions, we use
the Einstein summation convention, where a repeated index implies summation over
the index range. Therefore, the product rules for tensors can be written as Aij = bi cj

(tensor product), Aij = Bik Ckj (inner product), and Aij = Bijkl Clk (double inner product).
Additionally, the volume average of a quantity and the inverse of a tensor are given as
〈•〉 and (•)−1, respectively. Other notations are defined as they appear in the sections.





CHAPTER
TWO

Structure and plastic deformation
of polyethylene

2.1 Introduction

Polymers are materials made of large molecules, and they can be shaped into a variety of
products. The molecules that compose polymers are long hydrocarbon chains that give
them many of their useful mechanical and chemical properties (Andrews, 1972). Polyeth-
ylene represents one of the most important polymeric materials which has now become
ever-present in applications in modern life. The first part of this chapter is principally
concerned with the physical and chemical structures, molecular weight distributions,
thermoplastic and thermosetting behaviour, and types of semicrystalline polyethylene.
Likewise, some aspects of the mechanisms of deformation in the crystalline and amor-
phous phases of polyethylene are presented.

2.2 Structure of polyethylene

Polymers, from the Greek words poly and mer meaning many and part, respectively, are
substances consisting of macromolecules made of many small units or monomers chemi-
cally joined end to end. Polyethylene, the simplest hydrocarbon polymer, is a macro-
molecular solid in which the molecular units are long chain-like molecules with car-
bon and hydrogen atoms forming a zigzag arrangement along a backbone, as shown in
Figure 2.1. In polyethylene chains, the monomer unit is an ethylene (C2H4 or CH2 = CH2),
a colourless gas composed of two double-bonded carbon atoms and four hydrogen
atoms. A typical polyethylene molecule may contain from hundreds to millions of these
monomers (Young, 1981).

9
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The most elemental structure of any polyethylene material is a linear long chain. In
a chain, carbon atoms are covalently bonded1 together using two of their four bonds per
atom; the remaining bonds are covalently shared with two hydrogen atoms. Another type
of bond is the van der Waals bonding, which is attributed to the attraction that all molecules
have for each other (Coulombic attraction). Van der Waals forces are dependent upon
molecule masses and distances. Since molecules are so small, van der Waals attractions
occur at very short distances; even then, these forces are quite weak and several times
lower than those corresponding to covalent bondings.

Figure 2.1: Segment of a polyethylene molecule showing
the zigzag backbone structure.

The chemical reaction in which macromolecules are made is known as polymeriza-
tion. One of the most common types of polymerization is the chain-growth polymerization.
It is a three-step process involving two chemical species, as shown in Figure 2.2. The
first species is an ethylene monomer, added in high concentration. The other species
is a catalyst or initiator, which starts the polymerization reaction. It is added in rela-
tively low concentrations and under appropriate conditions of temperature and pres-
sure. A common catalyst is a peroxide (R2O2), which is a molecule or functional group2

containing an oxygen-oxygen single bond. In the peroxide polymerization of ethylene,
the oxygen-oxygen bond with a bond enthalpy3 of 146 kJ mol−1 decomposes before the
carbon-carbon (348 kJ mol−1) or carbon-hydrogen (412 kJ mol−1) bonds to form a pair of
free-radicals (electrons), denoted by • in Figure 2.2. The first step, initiation, occurs when a
free-radical reacts with an ethylene monomer and initiates the chain. The double carbon-
carbon bond in an ethylene monomer breaks apart and pairs up to the free-radical. The
other radical site is transferred to the terminal carbon atom, so one free-radical leads to

1Two atoms that are covalently bonded will each other contribute at least one electron to the bond. The
shared electron is considered to belong to both atoms.

2Functional groups are specific groups of atoms within molecules responsible for the characteristic chemical
reactions of those molecules.

3The bond enthalpy is the energy required to break a chemical bond, and is usually expressed in units of kJ
mol−1 and measured at 298 K.
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another with a monomer unit attached to it. The next step, propagation, is a repetitive op-
eration in which the growing chain is formed. The double bonds of successive ethylene
monomers are opened up as they are added to the reactive polyethylene radical chain.
The free electrons are successively passed to each ethylene end as they are linked to the
growing chain. The last step, termination, occurs after the addition of many ethylene units
when two radical chains pair up together. Because chains quickly become so long, the
presence of initiator fragments on chain ends has no influence on material properties.
Polymer chains with only one type of monomer, as the case explained herein, are known
as homopolymers. On the other hand, the resulting polymer is called copolymer when its
molecules are made of two or more different species, arranged into diverse configurations
or patterns along the chains.

2.2.1 Polyethylene chemical structure

Polyethylene properties depend not only on overall chain lengths, but also on the way
monomers are ordered along chains. Depending on the polymerization conditions such
as temperature, pressure, and catalyst type, monomers in a polymer can be arranged in
a number of different ways: linear, branched, or crosslinked, as illustrated in Figure 2.3.
Linear polymers are made up of long continuous chains without any side attachments;
that is, mer units are joined together end to end in single chains. Branched polymers have
a chain structure that consists of chain molecules with side molecular chains branching
from them. In polyethylene, branching may occur by the replacement of some of the
hydrogen atoms by covalently bonded polyethylene chains. A branched structure tends
to increase the tie-molecule density (Butler et al., 1997). The concept of a tie-molecule
will become clear in the following subsection. Crosslinked polymers occur when linear
chains are joined to one another at various positions by covalent bonds (Horie et al.,
2004), forming three-dimensional network-type molecules (Jenkins et al., 1996). This
process is accomplished by breaking molecule bonds through a radiation-, chemical-, or
silane compound-induced crosslinking method (Lewis, 2001).

2.2.2 Polyethylene physical structure

When a polyethylene melt cools, molecules arrange themselves into two distinct physical
structures: crystalline and amorphous. The two phases are chemically indistinguishable
from each other; however, they form separate discrete regions. Because polyethylene
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Figure 2.2: Possible polymerization scheme for ethylene.
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Figure 2.3: Schematic representation of linear, branched,
and crosslinked molecular structures.

contains both phases, it is known as a semicrystalline polymer. The crystalline phase, em-
bedded within amorphous material, is only possible if chains adopt highly ordered and
aligned arrangements. These structures form thin lamellae with thickness orders of mag-
nitude smaller than extended chain dimensions. Crystallinity is favoured in symmetrical
and linear polymer chains; however, it is never completely present. The amorphous
phase consists of anisotropic and highly entangled molecules, which could not be re-
solved during the crystallization process. The entanglements and lamellae adjacent to
the amorphous material form the physical crosslinks of the network (Brady and Thomas,
1989).

Polyethylene crystals form by folding molecules alternately up and down and
by arranging the straight segments between folds into periodic arrays. Consequently,
crystalline regions are denser than amorphous ones. Lamella thicknesses range from 20
to 170 Å, and lateral dimensions are from one to 50 µm long. Straight segments between
folds may include only few tens of monomers (Lin and Argon, 1994). The structure of
polyethylene crystals is orthorhombic, as shown in Figure 2.4. The lengths a=7.41 Å,
b=4.94 Å, and c=2.55 Å are the lattice parameters of the polyethylene crystal, where the
c-axis is parallel to the main molecule axis (Bunn, 1944, 1954).

Locally, crystalline and amorphous phases are packed together forming spherulitic
structures, as the one shown in Figure 2.5a. A spherulite consists of several lamellae
growing along the b-axis. Lamellae are separated by layers of amorphous material and
bound together by the so-called tie-molecules, as shown in Figure 2.5b. Tie-molecules
are chains long enough to run through several neighbouring lamellar and amorphous
regions, giving the required cohesiveness to prevent the two phases from separating
under loading (Brown and Ward, 1983). Two more different molecular morphologies have
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Figure 2.4: An orthorhombic polyethylene crystal (Keller, 1968).

been identified experimentally, known as loose loops and cilia, shown also in Figure 2.5b.
A loose loop is a molecule with both ends within the same lamella and the central part
in the amorphous material. On the other hand, a cilium is a short chain with one end
within a lamella and the other one in the amorphous material. Apparently, none of
these two morphologies contributes significantly to increasing entanglement density or
material strength.

Figure 2.5: (a) Polyethylene spherulite in the undeformed state (Lee et al., 2003)
and (b) different interlamellar molecules (adapted from Callister, 1996)

2.2.3 Molecular weight distribution

Unlike other chemical compounds, polymers do not have a unique molecular weight,
but rather, a distribution of molecular weights. Depending on the way a polymer is pro-
duced, the resulting molecules differ not only in degree of branching or composition, but
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also in molecular weight. A molecular weight distribution denotes the statistical distribu-
tion of molecule weights in a material and characterizes the number or weight of chains
with n repeating monomers. Molecular weight distributions can be narrow, broad, skewed,
or multi-modal, as illustrated in Figure 2.6. When closely grouped around some mean
molecular weight, the distribution is termed narrow. A greater dispersion of weights
around the average indicates a broader distribution. A skewed distribution is an unequal
distribution of heavier or lighter molecules to either side of the average. Modality is an
indication that there is more than one classes of molecular weight in the distribution. Ma-
terials with two classes are bi-modal, and those with multiple classes are multi-modal.
The molecular weight distribution has a considerable impact on the mechanical prop-
erties of polymers (e.g., Popov and Bal‘tenas, 1974; Perkins et al., 1976; Rennie, 1997;
Carr et al., 1998). For instance, at low molecular weights, mechanical strengths can be
so low that the material is not suitable to carry loads. On the other hand, at high mo-
lecular weights, strengths increase up to certain saturation values beyond which material
processability becomes extremely difficult (e.g., Capaccio and Ward, 1975; Nichetti and
Manas-Zloczower, 1999).

Figure 2.6: Typical molecular weight distributions: narrow, skewed, and bimodal.

2.2.4 Thermoplastic and thermosetting behaviour

Depending on their behaviour at elevated temperatures, polymers can be separated into
two different groups: thermoplastics and thermosettings. Thermoplastic polymers are sub-
stances that can withstand many melting and solidifying cycles with only minimal degra-
dation of their properties after each cycle. This characteristic makes thermoplastics suit-
able for remoulding and reuse. Molecules in thermoplastic polymers are linear or slightly
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branched, but not crosslinked. On the other hand, thermosetting polymers are sub-
stances that harden permanently and do not soften under heat. The molecular structure
is crosslinked through covalent bonding, creating a permanent network where only lim-
ited chain entanglements and vibrational chain motion occur at elevated temperatures,
but flow or melting are not possible (Acharya and Bassani, 2000). Thermosetting poly-
mers may exhibit some softening upon temperature increases, but cannot be remoulded
because they just decompose or burn when heated. As expected, thermoset materials are
generally stronger than thermoplastic materials.

2.2.5 Low- and high-density polyethylene

Polyethylene can be categorized as a family of similar materials made in low- and high-
density forms. According to the American Society for Testing and Materials (ASTM),
polyethylene materials can be classified into four distinct types; however, polyethylene
manufacturers use different material designations based mostly on density or molecular
weight, as shown in Table 2.1

Table 2.1: ASTM and industrial polyethylene density-based classification.

ASTM Industrial
Type Density Terminology Acronym

I 0.910 - 0.925 low ULLDPE, LLDPE, LDPE

II 0.926 - 0.940 medium MDPE

III 0.941 - 0.959 high HDPE

IV 0.960 and above high - homopolymer HMWPE, UHMWPE

Low-density polyethylene (LDPE), the first synthesized polyethylene, is made by a
high pressure process using a free-radical initiator (oxygen or a peroxide). Its molecules
have long side chain branches on 1.5 to 2.5 percent of the carbon atoms. Thus, the
structure is predominantly amorphous with crystallinity as low as 45 percent, and a
density ranging from 0.91 to 0.93 g/cm3. LDPE is the most widely used of all plas-
tics, because of its low manufacturing costs and good performance. It is flexible, tough,
and chemically-resistant and is mostly used in food and industrial packaging (Pickover,
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1983). Medium-density polyethylene (MDPE), produced either by low- or high-pressure,
has average densities from 0.93 to 0.94 g/cm3 and is from 70 to 90 percent crystalline.
It is produced by chromium-silica, metallocene, or Ziegler-Natta catalysts. This material
is extensively used in gas and water pipes. High-density polyethylene (HDPE) is made
by Ziegler-Natta catalysts at lower pressures and moderate temperatures. Molecules in
HDPE have a linear structure (700 to 1,800 monomer units per molecule) with very few
short branched chains. As a result, molecules align into more compact arrangements
with 70 to 90 percent crystalline regions, and the material has densities of 0.94 g/cm3

and above. HDPE is stiffer, stronger, abrasion resistant, and less translucent than low-
and medium-density polyethylene. HDPE is formed into grocery bags, blow-moulded
household and industrial bottles, injection-moulded food containers, high performance
piping, and other durable and disposable goods.

Figure 2.7: Crystal structure classification of polymers (Bensason et al., 1996).

Existing technology allows making closely related polyethylene materials with
properties between LDPE and HDPE, but improved molecular weight or branching type
specifications. The most used materials are: ultra low-density polyethylene (ULDPE), lin-
ear low-density polyethylene (LLDPE) (Kim et al., 1992), high molecular weight polyethylene
(HMWPE), ultra high molecular weight polyethylene (UHMWPE) (Kim et al., 1992; Lewis,
2001), crosslinked polyethylene (PEX) and high density crosslinked polyethylene (HDXLPE).
For instance, ULDPE and LLDPE are made by a conventional Ziegler-Natta process; how-
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ever, molecules show longer and more branches than HDPE. These materials are about
50 percent crystalline with densities lower than 0.915 g/cm3 (Dohrer et al., 1988). This
results in a soft, flexible, and strong material for a wide range of temperatures. The main
applications are containers, coatings, wraps packaging, and wire sheaths. UHMWPE,
also known as high modulus or high performance polyethylene, has molecular weights
ranging in the millions (3-6 million) and a highly crystalline structure (close to 85%).
Its outstanding toughness and chemical and wear resistance make the material excellent
for applications such as machinery parts, bearings, gears, artificial joints (Kurtz, 2004),
among others. The product can easily be recycled.

Figure 2.7 shows the arrangements of the crystal lamellae at different density lev-
els. When density increases, stiffness, hardness, and strength also increases. Increases
in these mechanical properties are usually considered beneficial for some purpose, but
increasing density also has some drawbacks. For instance, by increasing density, the
polymer material becomes less ductile, more sensitive to impact, and more sensitive to
cracking; no desired characteristics for some practical applications.

2.3 Plastic deformation of polyethylene

Deformation is one of the key phenomena altering the mechanical properties of semi-
crystalline polyethylene (Kasatkin and Grinyuk, 1968; Hobeika et al., 2000), because of
the microstructural changes it induces. Deformation depends not only on the loading
conditions, but also on the material morphology. The elastic and inelastic behaviour of
polyethylene have been the subject of several experimental and numerical studied on the
macro- and micro-scales. At the macroscopic scale, for instance, a typical stress-strain
curve for uniaxial tension at room temperature shows three major deformation regions,
as illustrated in Figure 2.8. First, the material exhibits a linear elastic behaviour. Under
increasing loading, the initial reversible response eventually gives way to an inelastic be-
haviour. At the beginning of this region, the stress remains more o less constant despite
the large deformations. At the end, the stress rises abruptly under limited deformation
before the material fails.

At the microscopic scale, deformation mechanisms are different for the crystalline
and amorphous phases. The elastic deformation of semicrystalline polyethylene at room
temperature is related to the reversible changes in the equilibrium interatomic and inter-
molecular distances. On the other hand, the inelastic response begins with deformation
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of the amorphous component, as shown in Figure 2.8. At low strain, amorphous regions
carry less stress and deform considerably more rapidly than crystallites. The deforma-
tion mechanisms in the amorphous regions are a combination of interlamellar sliding and
separation. As deformation progresses, the amorphous phase hardens due to network
locking, and the crystalline phase starts deforming by various crystallographic processes
up to large inelastic strains. Because of continuity conditions, deformation mechanisms
acting in the amorphous regions must continue to occur as crystalline lamellae deform si-
multaneously. After a certain deformation level, the molecular network cannot be pulled
out any further, and lamellae start to break up gradually into mosaic blocks. One of the
most notorious differences between the behaviour of the two phases is that deformation
of the amorphous regions is partially reversible, while no evidence of reversibility has
been found in the lamellae at room temperature (Bartczak et al., 1992b,a).

Figure 2.8: Typical stress-strain curve and the corresponding
microstructural changes for a uniaxial loading case.

2.3.1 Deformation of crystalline lamellae

The network stretching is accompanied by characteristic changes in the texture and frag-
mentation of the original lamellae. As mentioned before, lamellae are tightly bound by
tie-molecules to some of their neighbouring ones. When a spherulite deforms, lamellae
develop texture along certain slip systems, becoming preferentially oriented relative to
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the loading direction. The observed inelastic deformation mechanisms in polyethylene
crystallites involve predominantly crystallographic slip and, to a lesser degree, twinning
and stress-induced martensitic transformations (e.g., Bowden and Young, 1974; Argon, 1997).
When constraints imposed by the local neighbourhood permit, slip can result in larger
levels of inelastic deformation than any other mechanism (e.g., Krause and Hosford,
1989; Bartczak et al., 1992a,b, 1994, 1996a). Sets of two vectors are used to identify the
available slip systems; a normal and a tangential vector representing the slip plane (hkl)
and slip direction [uvw], respectively. The slip plane is the crystallographic plane along
which gliding takes place. The nature of the material requires that the most preferred
slip planes contain the molecular chains. The slip direction is the direction in the slip
plane in which deformation occurs.

Figure 2.9: Crystal deformation mechanisms by (left) chain
and (right) transverse slip.

Two slip categories operate in the orthorhombic unit cell of polyethylene crystals;
these are, the chain and transverse slip systems, as shown in Figure 2.9. Crystal defor-
mation by chain slip involves a translation of molecules past each other parallel to the
chain direction. It follows that the chain slip systems are given by (100)[001], (010)[001],
and {110}[001], as illustrated in Figure 2.10. On the other hand, transverse slip involves
the sliding of molecules over each other in a direction perpendicular to the chain axes.
Experiments carried out on polyethylene materials have established that transverse slip
occurs in the (100)[010], (010)[100], and {110} 〈11̄0〉 slip systems (Figure 2.10). Chain slip
and transverse slip can occur simultaneously on a common slip plane.
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Figure 2.10: Slip systems in a polyethylene crystal.

Before transferring the material into a fibrillar morphology4 (Peterlin, 1971), lamel-
lae can experience large stresses along the chain directions, and crystals can react with
two distinct distorting structural changes: twinning (Frank et al., 1958) and martensitic
transition (Yamada et al., 1971); however, experiments have shown no evidence for the oc-
currence of twinning or martensitic transformation in anything more than trace amounts
and at very late stages of deformation (e.g., Bartczak et al., 1992a,b, 1994, 1996a; Galeski
et al., 1992).

Twinning may occur in polymer crystals if the crystal structure is of sufficiently
low symmetry. In polyethylene crystals, the two basic twinning modes expected to occur
are the {310} and {110}. The {110} twinning mode produces a rotation of the lattice by
-67◦ about 〈001〉; whereas the {310} one rotates the lattice by 55◦ about 〈001〉 (Bevis and
Crellin, 1971). Martensitic transformations occur as crystals change from orthorhombic
to monoclinic (Russell et al., 1997). This deformation mechanism happens only in certain
crystal orientations and leaves the crystal’s chains inextensible.

2.3.2 Deformation of amorphous layers

For the morphology of a crystalline-amorphous material held together by tie-molecules,
three modes of interlamellar deformation have been identified experimentally: interlamel-
lar shear, interlamellar separation, and lamella-stack rotation. These deformation mechanisms,
and hence the associated strengths, depend upon the detailed material structure; includ-
ing the number and distribution of active tie-molecules and the lateral dimension of
lamellae. These modes are also nearly reversible, which is consistent with the hypothesis

4Transformation process at the late stage of deformation in which molecules align along the loading direc-
tion after lamella fragmentation and just before rupture.
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that tie-molecules should become extended with straining and tend to return to their
coiled geometries once stresses are released (Bowden and Young, 1974).

Figure 2.11: Deformation modes in amorphous phase.

Deformation by interlamellar shear (Figure 2.11a) involves simple shear of the in-
terlamellar material with the shear direction being parallel to lamellae. This process
results in a gradual alignment of molecules along the shear direction. When compared
with other deformation modes, interlamellar shear is the easiest mechanism to activate in
the early phase of straining at room temperature (Cowking and Rider, 1969; Keller and
Pope, 1971). Interlamellar separation (Figure 2.11b) refers to changes on the interlamel-
lar spacing. In bulk, the amorphous material has to flow into the interlamellar gaps;
otherwise, large density changes in the form of crazing occur (Lin and Argon, 1994).
Besides the rubbery-like behaviour, reversibility is also governed by the residual stresses
resulting from the block-like relative displacements of lamellae. In contrast, irreversible
interlamellar separation is associated with voiding or interlamellar rupture due to the
stress component normal to the lamellae. As shown in Figure 2.11c, lamellae, in the form
of stacks, are free to rotate in a process similar to flow alignment, and the surrounding
amorphous material is able to take up any distortion caused by deformation. Lamella
rotation is geometrically necessary in the overall kinematics of deformation and does not
constitute an independent mechanism (Bowden and Young, 1974; Lin and Argon, 1994).
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Existing micromechanical constitutive models
for the behaviour of polyethylene

3.1 Introduction

Significant progress has been made in both experimental and modelling aspects of the
nonlinear behaviour and deformation mechanisms of polyethylene materials. There are
a number of articles dealing with experimental observations and testing methodologies
for polyethylene to understand the links between its molecular and macroscopic proper-
ties, using mostly small- and wide-angle X-rays. Extensive reviews and references can
be found in Cowking et al. (1968), Keller (1968), Cowking and Rider (1969), Keller and
Pope (1971), Young et al. (1973), Bowden and Young (1974), Bartczak et al. (1992a,b, 1994,
1996a,b), Lin and Argon (1994), Argon (1997), Hiss et al. (1999), Bartczak (2002, 2005a,b),
Galeski and Bartczak (2003), Lee et al. (2003), Bartczak and Kozanecki (2005), Bartczak
and Lezak (2005), Argon et al. (2005), among others. Likewise, relatively recent attempts
to model semicrystalline polymeric materials as well as their crystalline and amorphous
phases have been reported in Parks and Ahzi (1990, 1991), Ahzi et al. (1994), Lee et al.
(1995), Schoenfeld et al. (1995), Tomita et al. (1997), Ahzi (1999), Tomita (2000), Nikolov
and Doghri (2000), Nikolov et al. (2002), van Dommelen et al. (2000, 2003b,a, 2004), Tomita
and Uchida (2003), Nikolov et al. (2006), and van Dommelen et al. (2007). In these pub-
lications, different constitutive formulations for small and large deformation behaviour
from a microscopic viewpoint using either elasto- or rigid-viscoplastic frameworks are
proposed. Even though these models aid in the interpretation of structural observations
under different loading conditions, no specific attention is given to the degradation pro-
cesses taking place in the material microstructure (e.g., G‘Sell and Dahoun, 1994; G‘Sell

23



24 Chapter 3. Existing micromechanical models

et al., 2002). The aim of this chapter is to present the general ideas behind the most cited
micromechanical models proposed for describing the behaviour of polyethylene.

3.2 Large deformation models

Microstructure-based modelling of polyethylene faces the challenge of efficiently repre-
senting the properties and interplays of crystalline and amorphous regions. Much re-
search has been focused on understanding the viscoplastic behaviour of semicrystalline
polymers by relating the macroscopic behaviour to the morphology. In the following
sections, a summary of the models proposed to date for describing the micromechanical
behaviour of polyethylene in large deformation is given.

3.2.1 Idealized 100% crystalline models

Micromechanical models accounting for the physical microstructure of kinematically con-
strained polycrystals (Groves and Kelly, 1963; Cotton and Kaufman, 1991) have been pro-
posed by Parks and Ahzi (1990), Ahzi et al. (1994), Lee et al. (1995), Schoenfeld et al.
(1995), and van Dommelen et al. (2000). These models neglect the contribution from the
amorphous phase, crystal interactions, and lamella geometry. Nevertheless, the results
of the mechanical response and crystallographic texture for different modes of loading
capture reasonably the main trends of the experiments.

Parks and Ahzi (1990) proposed a so-called constrained hybrid model for simulating
the stress-strain behaviour and texture evolution of polycrystals under nonhomogeneous
deformations. To determine the local mechanical response, the model takes account of
molecule inextensibility and of low crystal symmetry. Based on a Taylor-type approach
(Taylor, 1934), the model handles through a projection tensor (mapping tensor) the internal
constraints that leave crystals with less than five independent slip systems. The projection
tensor formulation allows each crystal to deform as its slip systems permit and neigh-
bouring crystals to accommodate the remainder of deformation. As a consequence, local
compatibility is ignored partially. The stress state is obtained by approximating the global
stress as an average of the projection of the constraint (local) stresses. Parks and Ahzi’s
model has been used to predict the mechanical behaviour of polyethylene, olivine, bis-
muth strontium calcium copper oxide (Ahzi et al., 1993), NiAl polycrystals (Ahzi, 1999),
Nylon-6, poly(ethylene terephthalate), and polypropylene (Ahzi et al., 1994); however, it
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has been proved that the model predicts a faster texture development than that observed
experimentally.

Ahzi et al. (1994) and Lee et al. (1995) re-formulated the model proposed by Parks
and Ahzi (1990). These models provide explicit solution of the kinematic constraints
associated with the insufficiency of independent slip systems; however, Lee et al.’s for-
mulation can only be applied to crystals in which the number of physically distinct slip
systems equals the number of independent ones. Ahzi et al. used the model to simulate
plane strain compression and uniaxial compression of 100% crystalline polyethylene and
other low symmetry crystals without pyramidal slip, while Lee et al. studied numerically
the behaviour of idealized poly(ethylene terephthalate) under plain strain compression.
Following Asaro and Needleman’s work, Schoenfeld et al. (1995) developed a constitu-
tive model to describe both elasticity and rate dependent crystallographic slip of low
symmetry crystalline materials. The total deformation is split into an elastic compo-
nent which contains lattice stretching and a plastic component which describes crystallo-
graphic slippage. By including elasticity, predictive capabilities are expanded to include
a broader range of phenomena occurring at small deformations. A modified Taylor-type
model ensures equilibrium and compatibility and achieves the interaction law between
the macroscopic and local deformations. Van Dommelen et al. (2000) formulated also
a viscoplastic constitutive model for kinematically constraint crystals based on the crys-
tallographic slip theory; however in their approach, a finite element solution strategy
enforces the kinematic restrictions by an approximate weighting method. Simulations
only for an idealized material with three physically distinct slip systems are analyzed.

3.2.2 Semicrystalline models

The microstructure of semicrystalline polyethylene consists of crystalline and amorphous
regions locally associated with each other in sandwich-like morphological structures. The
constitutive models presented herein are based on two-phase composite inclusions con-
sisting of crystalline lamellae attached to amorphous material, as shown in Figure 3.1.
Proposed by Ahzi et al. (1990) and Lee et al. (1993a,b), these inclusions have been used
successfully to describe from a micromechanical viewpoint the development of
deformation-induced texture. A material point is supposed to be the centre of a represen-
tative volume element conformed by a collection of randomly oriented inclusions. Crys-
talline and amorphous phases are treated separately, and each inclusion behaviour is de-
scribed by using either a Sachs- or a Taylor-type homogenization technique (e.g., Sanchez-
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Palencia and Zaoui, 1985). Both crystalline and amorphous phases are assumed to be in-
compressible (Fellahi et al., 1995; Addiego et al., 2006) and insensitive to pressure defor-
mation (Kitagawa et al., 1992; Fanggao et al., 1996). Crystalline lamellae are considered
deforming by crystallographic slip and modelled by the constitutive relations used for
small-molecule crystals (Asaro and Needleman, 1985). The amorphous phase is treated
as an entangled molecular material lying on lamellar surfaces. Plastic deformations oc-
cur by molecular segment rotation (Argon, 1973). Amorphous polyethylene is in rubbery
state at room temperature; so, the proposed models use Rubber Elasticity Theory (Treloar,
1975) to relate hardening and entropy changes through some measure of deformation, as
proposed by Boyce et al. (1988a,b, 1989).

Figure 3.1: Schematic illustration of the two-phase composite
inclusion, as proposed by Lee et al. (1993a,b).

Lee et al. (1993a,b) and Argon (1997) pioneered the micromechanical modelling of
semicrystalline polymers. In their work, the authors proposed novel models as efficient
tools for understanding in a quantitative way the interplay between the microstructure
and mechanical behaviour of high density polyethylene at large deformations. These for-
mulations neglect elasticity. The kinematics and morphological details of the deformation
processes are investigated in different modes of loading conditions: uniaxial tension and
compression, simple shear, and plane strain compression. To obtain the composite inclu-
sion behaviour, different local-global interaction laws are presented. Lee and coworkers
proposed a Sachs-type and two self-consistent-like hybrid interaction models to relate
the local (inclusion) deformations and stresses to the corresponding macroscopic fields.
Argon used a modified Sachs-like model that achieves local-global equilibrium, but satis-
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fies compatibility only as a global volume average of the deformations of the individual
inclusions. Lee et al. and Argon’s model predictions are in satisfactory agreement with
experimental observations, proving the relevance of the models to estimate mechanical
properties of semicrystalline materials when using reasonable microstructural parame-
ters.

In an attempt to expand modelling capabilities, van Dommelen et al. (2003b) modi-
fied Lee and coworkers’ model and incorporated elasticity through an anisotropic fourth-
order elastic modulus tensor for the crystalline phase and a generalized neo-Hookean
relationship (e.g., Salençon, 2001) for the amorphous one. This model has the ability
to capture the stress-strain behaviour during monotonic and cyclic loading, anisotropy
evolution, and crystallinity effects on the initial modulus, yield stress, and post-yield be-
haviour. Van Dommelen et al. investigated four interaction models: Taylor, Sachs, and
two Taylor-Sachs hybrids, to relate the local and global fields. Only uniaxial compression
of initially isotropic high density polyethylene is considered as deformation mode.

A multiscale modelling scheme developed by van Dommelen et al. (2003a) incor-
porates the influence of the mechanics and geometry of spherulites into the constitutive
equations to provide further insight into the deformation mechanisms of semicrysta-
lline polymers. The proposed approach expands the simulation steps into three different
scales: micro, meso, and macro, as a way of bridging the morphological and continuum
scales. At the microscale, the constitutive properties are developed based on the amor-
phous and crystalline microstructures, and the stress-strain state is homogenized through
a hybrid iteration scheme. Each material point is represented by a spherulite, which is
an assembly of preferentially oriented composite lamellae linking the lower and interme-
diate scales. The spherulite structures are modelled by finite elements to relate the inter-
and intra-lamellar deformation mechanisms to the macroscopic (upper level) behaviour
of the material.

Recently, Nikolov et al. (2006) developed a model built on the micromechanical
framework proposed by Lee et al. (1993a,b). In contrast to Lee and coworkers’ approach,
Nikolov adopts an inclusion constitutive model in which interlammelar shear is intro-
duced as an additional deformation mechanisms to overcome the kinematic deficien-
cies of the crystalline structure. The morphological texture is described by the inclusion
shape change under an applied deformation gradient. The overall behaviour is obtained
through a tangent self-consistent scheme. The stress-strain response and texture evolu-
tion for uniaxial tension and compression and simple shear are simulated, and the results
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are compared with experimental data and some of the previous numerical models. The
model predictions are in satisfactory agreement with most of the aspects observed exper-
imentally.

Figure 3.2: Schematic illustration of the two-phase composite
inclusion, as proposed by Nikolov and Doghri (2000).

3.3 Small deformation models

Nikolov and Doghri (2000) and Nikolov et al. (2002) proposed constitutive models in
which the influences of the microstructure on the initial elastic properties and yield
strengths are of particular interest. Nikolov and Doghri proposed a model for simu-
lating small deformations in high density polyethylene. The formulation is valid when
crystallinity is high enough; so, the hypothesis of small deformations is satisfied. As in
large deformation models, a collection of randomly oriented composite inclusions is used
to represent a material point. Each inclusion consists of crystalline lamellae attached to
amorphous material. The crystalline phase behaviour is assumed as viscoplastic and de-
scribed by the constitutive equations proposed by Asaro and Needleman (1985). For the
amorphous phase, a viscoplastic model is proposed. Following Wissbrun (1985), each
amorphous layer is modelled as a polydomain structure, as shown in Figure 3.2. Defor-
mation of the amorphous phase is represented as shrinkage and sliding with respect to
each other of the microdomains. To satisfy the hypothesis of incompressibility, the num-
ber of microdomains grows when their sizes decrease. Hardening and normal pressure
effects are ignored. The rubber-like stretching of tie molecules is incorporated in the
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model through an intermediate phase linking the crystalline and amorphous materials.
To obtain the stress-strain behaviour, a two-step homogenization scheme is used; first,
the homogenization of the phases behaviour within a single inclusion, and then, of all
inclusions using a Taylor model. Nikolov et al. (2002) proposed an improved version
of their former model to include some minor modifications in the constitutive equations
and material parameters to allow unloading. In this model, Nikolov et al. use a simi-
lar homogenization approach for the inclusions, but predict the overall behaviour by the
simple Sachs assumption of uniform stress in the collection of composite inclusions.





CHAPTER
FOUR

Damage-coupled model for crystalline polyethylene 1

4.1 Introduction

Polyethylene is never completely crystalline. Nevertheless, as a first modelling approach,
the analysis presented herein is exclusively confined to the crystalline phase, and no at-
tempt is made to include the amorphous phase contribution. The interplay between the
two phases will be the subject of Chapter 6. Thus, polyethylene microstructure is thought
of as an aggregate (collection) of discrete and randomly oriented crystals, as schemat-
ically shown in Figure 4.1. Each crystal is considered as a three-dimensional assembly
of molecules arranged into an orthorhombic lattice structure (Bunn, 1954). In a lattice,
molecules are kept together by van der Waals forces, and the leading deformation mech-
anism is crystallographic slip along specific crystallographic planes (Bowden and Young,
1974). Accordingly, in the model, Continuum Damage Mechanics provides a framework
for describing crystal fragmentation caused by the debonding of the crystallographic
planes (Séguéla, 2001). Hence, damage as well as hardening are given in terms of the
slip systems and related to the macroscopic behaviour throughout material parameters.
The evolution of the microstructure properties is also an aspect considered in the model.
To characterize the overall behaviour, homogenization of stresses and deformations is
defined as volume averaging over the crystals.

4.2 Finite deformations

Before presenting the model formulation, the following section briefly reviews the fi-
nite deformation theory applicable to the micromechanics of crystal plasticity. In gen-

1This chapter is based on Alvarado-Contreras et al. (2005, 2006b, 2007a)
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Figure 4.1: Schematic representation of the material idealization.

eral, upon loading, a body changes its shape as well as its position and orientation. In
Figure 4.2, Bo ⊂ R3 and B ⊂ R3 denote respectively the reference and current (deformed)
configurations for a continuous body. In the reference configuration, a representative
material point Po occupies a spatial point with a position vector Xi. In the deformed
configuration at some time t, the particle originally at Po sets at point P with a position
vector x. Mathematically, assuming that deformation is smooth, the deformation function
xi = xi(Xj êj, t) describes the motion by mapping points Xi ∈ Bo onto points xi ∈ B.
To define how material points move in relation to neighboring points, the deformation
gradient tensor can be defined as

Fij =
∂xi

∂Xj
(4.1)

where it is assumed that det(Fij êi êj) > 0.

Supposing that the deformation gradient is a continuous one-to-one function with
continuous partial derivatives to whatever order is required, the necessary and sufficient
condition for the inverse to exist is that its Jacobian does not vanish. In an appropriate
kinematic framework for large deformations, the deformation gradient is decomposed
into elastic and plastic components (Lee, 1969)

Fij =
∂xi

∂xp
k

∂xp
k

∂Xj
= F∗ik Fp

kj (4.2)
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Figure 4.2: Kinematics of finite deformation (Lee, 1969; Zbib and Aifantis, 1988).

As shown in Figure 4.2, Fp
ij introduces the so-called intermediate configuration Bp.

Thus, upon unloading the body from the current configuration B, the elastic deforma-
tion can be completely recovered while no additional plastic deformation takes place.
Therefore, xp

i = xp
i (Xj êj, t) is a continuous one-to-one function mapping material points

xi ∈ B onto points xp
i ∈ Bp. In Equation 4.2, the elastic deformation gradient F∗ij can be

further decomposed into strain and rotation such that

F∗ij = Qik Fe
kj (4.3)

where Fe
ij causes purely elastic deformations and Qij is an orthogonal tensor correspond-

ing to the orientation of certain material characteristics (Zbib and Aifantis, 1988).

After calculating the material time derivative of the deformation gradient ∂ẋi
/

∂Xj,
the velocity gradient Lij can be written as

Lij =
∂ẋi

∂Xk

∂Xk
∂xj

= Ḟik Fkj
−1 (4.4)

In view of the fact that Qij may exist even in the absence of elastic deformations; i.e.,
Fe

ij ∼ Iij, the total deformation rate is given by the symmetric part of Lij

Dij = sym(Lij) (4.5a)

therefore,
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Dij = Qik sym(Ḟe
kl F

e
lm
−1) Qjm + Qik sym(Fe

kl Ḟ
p
lmFp

mn
−1

Fe
nq
−1) Qjq (4.5b)

where De
ij = Qik sym(Ḟe

kl F
e
lm
−1) Qjm and Dp

ij = Qik sym(Fe
kl Ḟ

p
lmFp

mn
−1

Fe
nq
−1) Qjq denote

the elastic and plastic deformation rates, respectively (Zbib and Aifantis, 1988). Therefore,

Dij = De
ij + Dp

ij (4.6)

Conversely, the total spin is defined as the skew-symmetric part of Lij

Wij = skw(Lij) (4.7a)

therefore,

Wij = Q̇ikQjk + Qik skw(Ḟe
kl F

e
lm
−1) Qjm + Qik skw(Fe

kl Ḟ
p
lmFp

mn
−1

Fe
nq
−1) Qjq (4.7b)

where Wm
ij = Q̇ikQjk is the rigid-body spin tensor, and We

ij = Qik skw(Ḟe
kl F

e
lm
−1) Qjm

and Wp
ij = Qik skw(Fe

kl Ḟ
p
lmFp

mn
−1

Fe
nq
−1) Qjq are the elastic and plastic spins, respectively.

Consequently,

Wij = Wm
ij + We

ij + Wp
ij (4.8)

4.3 Proposed damage model

Continuum Damage Mechanics, originated by Kachanov (1958), describes the influence
of microstructural changes in the mechanical response of solids. These changes consist
mainly of the nucleation and growth of small defects distributed throughout a solid
prior to its final failure (Krajcinovic, 1996). To explain decreases in stiffness and strength,
damage mechanics uses the so-called damage variables. These variables represent an
averaged, statistical, or homogenized measurement of thousands of atomic imperfections
caused by billions of atomic debonds (Krajcinovic, 1995; Bolotin, 1999). Several damage
definitions are possible for consideration (e.g., Zyczkowski, 2000; Zheng and Betten,
1996). Depending on the nature of the problem, damage variables are characterized in
terms of stresses, strains, and/or some other associated internal state variables (Lemaitre,
1984), and are written as scalars, or second-, or fourth-order tensorial functions.
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In this paper, the deformation mechanisms in polyethylene crystals are described
by the theory of crystallographic slip (Bassani, 1994). The crystal structure found in
polyethylene materials has a unit cell of orthorhombic geometry characterized by crys-
tallographic slip systems along planes parallel to the chain axis. Each crystal possesses
only four possible slip planes, each one with a chain and a transverse slip direction, as
shown in Figure 4.3. Thus, eight slip systems are available to accommodate any given
deformation. The three indices enclosed in parentheses (hkl) and the three indices en-
closed in square brackets [uvw] represent the slip direction and the plane Miller indices,
respectively.

Figure 4.3: Slip systems in a polyethylene crystal.

4.3.1 Formulation

The aspects and mechanisms of damage processes in polyethylene materials are quite
complex and are still only partially understood. Throughout the present work, the dam-
age variable attempts to describe the mechanisms that render the displacement field caus-
ing discontinuous shear flow. These discontinuities are attributed to the intracrystalline
debonding and subsequent crystal fragmentation (Bowden and Young, 1974; Hiss et al.,
1999; Peterlin, 1971; Lustiger and Markham, 1983; G‘Sell and Dahoun, 1994; Kazmierczak
et al., 2005). Based on the slip theory, a damage variable is introduced and coupled with
the constitutive model. Within this study framework, this variable describes the loss of
load-carrying capacity attributed to the failure of van der Waals bonds along the slip
systems during loading. Covalent bonds are assumed stable; therefore, molecule frac-
ture is not included in the model. To describe the damage process in a crystallographic
plane, a schematic representation of the concepts involved is given in Figure 4.4. Con-
sider a crystal deforming by shear, as sketched in Figure 4.4a. Once the critical resolved
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shear stress in the slip direction is exceeded, slip becomes translation along the plane
(Figure 4.4b). Since an irreversible rearrangement of the microstructure occurs and the
number of van der Waals bonds decreases (Figure 4.4c), the associated degradation pro-
cess is described mathematically by a scalar variable Ωα related to the fraction of atomic
debonds; therefore,

Figure 4.4: Idealized damage mechanisms for crystal slip systems.

Ωα ≡ Current number of atomic debonds
Initial number of atomic bonds

(4.9)

where α = {1, 2, . . . , 8} is the slip system index. Let ∆Aα be a small surface area on the
α-slip system. Assuming that the number of atomic bonds is proportional to the corre-
sponding atomic plane area, a mechanical damage measurement may be expressed as

Ωα ≡ Total area of defects
Initial area

=
∆Aα

Ω
∆Aα

(4.10)

Let ∆Ãα = ∆Aα − ∆Aα
Ω be the effective area of resistance once slippage has occurred.

The damage variable can be likewise written as

Ωα = 1− ∆Ãα

∆Aα
(4.11)

From Equation 4.11, it can be seen that damage takes theoretical values of 0 ≤ Ωα ≤ 1,
where the limits represent an original and a fractured slip system, respectively.

The application of the damage variable to crystal slip systems is straightforward.
For a given slip system, the effective shear stress τ̃α can be approximated as the ratio
between the shear force ∆Vα on the plane and the effective shear area ∆Ãα; therefore,

τ̃α ≡ lim
∆Ãα→0

∆Vα

∆Ãα
=

dVα

dÃα
(4.12)
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The effect of slip system degradation is established by introducing the damage
variables into the constitutive equation with the concept of effective state variables. As
pointed out by Lemaitre and Dufailly (1987),

The principle of strain equivalence states that any strain constitutive equation of a
damaged material is written exactly as for a virgin material except that the stress is
replaced by the effective stress.

Therefore, by assuming the existence of a fictitious undamaged material, the effective
shear stress can be written as a function of the nominal shear stress τα

τ̃α ≡ ∆Vα

(1−Ωα)∆Aα
=

τα

1−Ωα
(4.13)

where ∆Aα is the initial shear area of the slip system.

In crystal plasticity, it is assumed that shear strain rates are independent of the
resolved shear stresses acting on other systems (Hutchinson, 1976). Thus, as used in
numerous crystal mechanics models, the constitutive equation connecting the slip rate
and resolved shear stress on a slip system is chosen to be a power-law relationship, as
follows

γ̇α = γ̇0

(
τ̃α

gα

)n
(4.14)

where γ̇0 and gα are the reference shear strain rate and current reference shear strength,
respectively, and n is a positive parameter representing the inverse of the microscopic
rate sensitivity.

Figure 4.5 illustrates the stress-strain relationship given by Equation 4.14 for as-
sorted values of n. This graph suggests that inelastic deformations are always present on
the slip systems as long as shear stresses are not identically equal to zero, but if τα < gα,
the relationship gives a negligibly small value of shear rate (Ahzi et al., 1994).

Accordingly, substituting Equation 4.13 into 4.14, the effective stress-strain rela-
tionship is written as a function of the nominal shear stress

γ̇α = γ̇0

[
τα

(1−Ωα)gα

]n
(4.15)

Supposing that the stress state applied to the aggregate of crystals is given by the
Cauchy stress tensor σij, the shear stress on the crystallographic planes can be determined
by resolving σij onto the slip systems using Continuum Mechanics
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Figure 4.5: Schematic representation of the power law stress-strain rate
relation for five different values of n (Ahzi et al., 1994).

τα = sα
i σijnα

j = σijTα
ji (4.16)

where nα
i and sα

i are a pair of orthogonal unit vectors defining the slip plane normal and
the slip direction, respectively. The product Tα

ij = nα
i sα

j is the so-called Schmid tensor,
which can be interpreted as a slip system orientation tensor. Then, decomposing the
Schmid tensor into symmetric and skew-symmetric components

Rα
ij = sym(Tα

ij) = 1
2(sα

i nα
j + nα

i sα
j ) (4.17a)

and

Aα
ij = skw(Tα

ij) = 1
2(sα

i nα
j − nα

i sα
j ) (4.17b)

and decomposing the Cauchy stress tensor into deviatoric and spherical components

σij = Sij + σkk Iij (4.18)

the resolved shear stress is reduced to the expression

τα = SijRα
ji (4.19)
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Equation 4.19 implies that the spherical stresses have no influence on the resolved shear
stresses.

Molecule inextensibility plays an important role in determining the behaviour of
crystalline polyethylene samples. In polymer crystals, plastic deformation Dp

ij vanishes
along molecule direction ci. This means that ciD

p
ijcj = Dp

ijCji = 0, where Cij = cicj

(Schoenfeld et al., 1995). When crystals experience large plastic deformations, the contri-
bution of the elastic component of the velocity gradient to the total one can be ignored.
Hence, the total deformation rate Dij in Equation 4.6 is interpreted solely as the plastic
deformation rate; i.e., Dij

∼= Dp
ij, and the total spin Wij in Equation 4.8 as the sum of the

rigid-body spin and plastic spin tensor; i.e., Wij
∼= Wm

ij + W p
ij . As pointed out by Asaro

(1983), the plastic component of the velocity gradient Lij is given by the contributions of
the shear strain rates γ̇α on all slip systems. Therefore, by using the additive decomposi-
tion of the Schmid tensor, slip-based kinematic equations for the plastic deformation and
spin are given as

Dp
ij = ∑α

γ̇αRα
ij (4.20a)

and

W p
ij = ∑α

γ̇α Aα
ij (4.20b)

where the summation is over all slip systems.

For constrained crystals, Parks and Ahzi (1990) assumed that deviatoric stresses
Sij have the unique additive decomposition given as

Sij = Sc
ij + S∗ij (4.21)

in which Sc
ij is a stress component aligned with the inextensible direction; therefore,

Sc
ij ∝ Cij, and S∗ij is an orthogonal sub-transformation, where Sc

ijS
∗
ij = 0. Using the above

decomposition and given that Rα
ijCij = 0, the resolved shear stress reduces to

τα = S∗ijR
α
ji (4.22)

From Equations 4.13 and 4.22 and ignoring elastic deformations, a pseudo-linear rela-
tionship between the microscopic deviatoric stress and deformation rate can be further
expressed as

Dij = MijklS∗lk (4.23)
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where Mijkl is the fourth-order compliance tensor given by

Mijkl = γ̇0 ∑α

1
(1−Ωα)gα

∣∣∣∣
S∗mnRα

nm
(1−Ωα)gα

∣∣∣∣
n−1

Rα
ijR

α
kl (4.24)

4.3.2 Damage evolution law

The state equation (Equation 4.23) makes the model more realistic but also more difficult
to handle numerically, as it requires the choice of a damage evolution law. In general,
a damage evolution law is a non-negative function of the stress, strain, and/or other
appropriate internal state variables, i.e.,

Ω̇ = Ω̇(σij, εij, internal state variables) (4.25)

where Ω̇ = dΩ
/

dλ, and λ > 0 is a monotonically increasing time-type parameter
(Kachanov, 1986).

Damage should be associated with phenomena causing it; however, some sim-
plifications are required for computational convenience. In the proposed model, it is
postulated that damage occurs when resolved forces acting on crystal planes are high
enough to overcome the intermolecular (secondary) bonds (bond strengths), which hold
molecules together into a coherent structure. No rupture of the covalent (primary) bonds
between hydrogen and carbon atoms is considered. As a result, in a crystal, damage is a
quantity that varies from one slip system to another and depends only on the local stress
states. Strain and temperature influence is ignored, and monotonous loading is assumed.
Subsequently, Equation 4.25 is a function such that Ω̇ = Ω̇(σij, Ω). Using a power-law re-
lationship, the following damage evolution law is introduced into the model,

dΩα

dτα
=





Ω̇0

∣∣∣∣
τα

(1−Ωα)gα

∣∣∣∣
m

if dτα > 0 (damage loading)

0 otherwise (damage neutral loading)
(4.26)

where Ω̇0 and m denote the reference damage rate and damage rate sensitivity, respec-
tively.

4.3.3 Slip system hardening

When slip systems deform plastically, the density of structural imperfections increases
impeding molecules to move and, consequently, leading to an increase of the stress re-
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quired to sustain shear slip. As described by Lemaitre and Chaboche (1994), damage
and hardening processes can be considered independent of each other. Since the model
regards the material as idealized 100% crystalline, it is assumed that the reference shear
strength gα increases with strain. In this work, hardening rate of slip systems is assumed
to evolve with deformation according to the following relation

ġα = ∑β
hαβγ̇β (4.27)

where hαβ is a hardening matrix. This matrix describes the hardening interaction of the
slip systems. Thus, the diagonal terms represent self-hardening, and the off-diagonal
terms represent latent hardening (Hutchinson, 1976; Asaro, 1983). Due to the lack of
experimental information, it is assumed that the critical resolved shear stresses increase
proportionally to the total shear strain. Therefore, hαβ = h, and the evolution of harden-
ing in Equation 4.27 is rewritten as (Hutchinson, 1976)

ġα = h ∑β
γ̇β (4.28)

The hardening modulus h used in this model has the following form

h = h0 sech2(h0γ̂
/

c) (4.29)

where h0 and c are slip system parameters representing the hardening rate and saturation
shear strength, respectively, and γ̂ is the equivalent plastic strain, related to the second
invariant D̄ijD̄ij of the deformation rate as

γ̂ =
∫ t

0

√
2D̄ijD̄ij dt (4.30)

4.4 Crystal average

In crystal plasticity, the overall mechanical response is usually obtained by averaging the
respective microscopic values of deformation, stress, and any other internal variable over
the number of crystals in an aggregate. Constitutive evolution equations are related to
macroscopic quantities through assumptions regarding both equilibrium and compatibil-
ity. The average scheme assumes that crystals can accommodate any deformation state.
However, for materials deforming by crystallographic slip, the minimum number of dis-
tinct slip systems to permit an arbitrary deformation is five. Orthorhombic polyethylene
crystals have fewer slip systems available than required and also show differences in slip
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Table 4.1: Designation of slip systems in polyethylene crystals.

Slip system Slip plane Slip direction
α {hkl} 〈uvw〉
1 [010]
2

(100)
[001]

3 [100]
4

(100)
[001]

5 [11̄0]
6

(110)
[001]

7 [110]
8

(11̄0)
[001]

system shear strengths. Due to these features, Parks and Ahzi (1990) and Schoenfeld et al.
(1995) proposed a modified Taylor model to define interaction laws taking into account
crystal constraints.

4.4.1 Macroscopic deformation rate

As shown in Table 4.1, eight slip systems along the (hk0)-type planes are available to ac-
commodate any given deformation. However, a constant volume process is only possible
when five independent slip systems are active. In polyethylene crystals, although eight
distinct slip systems are available to accommodate deformation, yet only four of those
systems are independent (e.g., Wecker, 1975; Cotton and Kaufman, 1991). Therefore,
extra kinematic constraints, beyond incompressibility, must be imposed to predict defor-
mation evolution. These constraints are easy to define once the directions along which
plastic deformation vanishes are identified (Lee et al., 1995; Schoenfeld et al., 1995).

In constrained crystals, it is natural to assume that the macroscopic deformation
rate is partitioned unequally among crystals. Let D̄ij and Dij be respectively the macro-
scopic and crystal deformation rates, where DijCji = 0. Thus, the proportionality relation
between D̄ij and Dij can be written as follows

Dij = KD
ijklD̄lk (4.31)
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where KD
ijkl is a fourth-order proportionality tensor depending on crystal orientations.

Parks and Ahzi (1990) postulated the existence of an intermediate deformation
rate D̃ij given by the following additive decomposition

D̃ij = Dij + Dc
ij (4.32)

in which Dc
ij represents the deformation rate along the inextensible direction accommo-

dated among other crystals in the aggregate, where DijDc
ji = 0. By using an enforcing

multiplier β, Dc
ij can be approximated as

Dc
ij = βCij (4.33)

Crystal and intermediate deformation rates relate through the inextensibility con-
straint, such as in the model proposed by Parks and Ahzi (1990),

Dij = PijklD̃lk (4.34)

For each crystal, Pijkl is a function of the chain direction vector ci, expressed as

Pijkl = Iijkl − 1
3C′ijC

′
kl (4.35)

Here, Iijkl is the fourth-order identity tensor given as

Iijkl = 1
2(δikδjl + δilδjk), (4.36)

and C′ij is the deviatoric part of Cij defined as

C′ij = cicj − 1
3 ckckδij (4.37)

To satisfy global compatibility, the macroscopic deformation rate must equal the
average deformation rate over the aggregate; thus,

D̄ij = 〈Dij〉 (4.38)

As a result, if Dij is given as in Equation 4.34,

D̄ij = 〈Pijkl〉D̃lk (4.39)

and, once again, on the crystal level

Dij = Pijkl〈Plknm〉−1D̄mn (4.40)
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This shows that the proportionality tensor KD
ijkl is

KD
ijkl = Pijmn〈Pnmkl〉−1 (4.41)

and that the macroscopic deformation rate D̄ij partitions unequally among the crystals,
partially fulfilling global compatibility.

4.4.2 Macroscopic spin

The plastic spin influences the overall behaviour of crystal aggregates as it governs the
development of crystallographic textures. In the proposed model, it is also assumed that
damage plays a role in controlling the rate of change of crystallographic axes. Let W̄ij

and Wij be the macroscopic and crystal spin, respectively. Since crystal spin requires
only three independent components, a full Taylor mean field hypothesis is adopted to
relate W̄ij and Wij. Consequently, the macroscopic spin simply equals the average one, as
follows (Parks and Ahzi, 1990; Schoenfeld et al., 1995)

W̄ij = 〈Wij〉 (4.42)

It is postulated that plastic spin W p
ij depends linearly on an empirical fourth-order

release tensorial function, which governs crystal rotation via the current crystal damage
state, R = R(Ωα). Therefore, after ignoring elastic spin, the total spin in Equation 4.8 can
be modified as

Wij = Wm
ij + RijklW

p
lk (4.43)

with W p
ij defined as in Equation 4.20b. In the current version of the model, a simplified

scalar release function is proposed governing crystal rotation based exclusively on the
crystal damage state, as follows

R = tanh(ζΩ̄) (4.44)

where Ω̄ = 1
8 ∑α Ωα is the crystal average damage, and ζ is a non-dimensional material

parameter adjusted to match experimentally measured texture development. Figure 4.6
illustrates the Ω̄ − R relationship given by Equation 4.44 for different values of ζ. This
graph suggests that ζ → ∞ for damage has only a slight influence on spin.
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Figure 4.6: Schematic representation of the release parameter
for three different values of ζ.

4.4.3 Macroscopic stress

Assuring global equilibrium, it is assumed that each crystal undergoes the same stress
state as the aggregate. Thus, by analogy with Equation 4.31, it is postulated the existence
of a proportionality relationship between the global and local stresses; therefore

S̄ij = KS
ijkl〈S∗lk〉 (4.45)

where KS
ijkl is a fourth-order transformation tensor, 〈S∗ij〉 is the average reduced stress,

and S̄ij is the deviatoric macroscopic stress. From global equilibrium, the stress S̄ij is
determined by averaging the crystal deviatoric Cauchy stress responses in the aggregate;
therefore,

S̄ij = 〈Sij〉 (4.46)

If the deviatoric stress for each crystal Sij is expressed as the additive decompo-
sition given in Equation 4.21, and the stress component Sc

ij associated with the kinematic
constraint is approximated as the projection of Sij onto the c-direction, Sc

ij = 3
2C′ikC′jlSlk

(Parks and Ahzi, 1990), the reduced stress can be written as

S∗ij = PijklSlk (4.47)
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where Pijkl is the projection tensor, as defined in Equation 4.35. Substituting Equation 4.47
into 4.46, the relationship between the average reduced stress and the macroscopic stress
can be expressed as

S̄ij = 〈Pijkl〉−1〈S∗lk〉 (4.48)

As a result, the proportionality tensor in Equation 4.45 can be approximated to the inverse
average projection tensor, as follows

KS
ijkl = 〈Pijkl〉−1 (4.49)

4.4.4 Macroscopic constitutive equation

Crystal aggregate response can be expressed in terms of an overall compliance tensor
relating the macroscopic deformation rate and deviatoric stress (Hutchinson, 1970),

D̄ij = M̄ijkl S̄lk (4.50)

where M̄ijkl is obtained by averaging the respective crystal compliance tensors (Equa-
tion 4.24)

M̄ijkl = 〈Mijkl〉 (4.51)

When D̄ij is imposed, crystal stress must satisfy the following local constitutive
equation

D̄ij = 〈Pijkl〉−1PlknmMmnpqS∗qp (4.52)

Then, if the average stress assures global boundary conditions, the solution satisfies the
global constitutive equation,

D̄ij = 〈Mijkl〉 〈Pklmn〉−1〈S∗mn〉 (4.53)

4.5 Numerical results and discussion

This section examines the capability of the model to represent the mechanical behaviour
of polyethylene based only on its crystalline microstructure. The theoretical responses
are obtained by numerical integration of the constitutive equations introduced above.
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Figure 4.7: Initial pole figures of the (100), (010), and (001) lattice directions.

Two simulations are carried out to validate the proposed model capturing the stress-
strain behaviour and texture evolution under uniaxial tension and simple shear loading
conditions. The results are compared with experimental data and numerical simulations
from other references (Parks and Ahzi, 1990; Hillmansen et al., 2000; Yang and Chen,
2001). A comparison between Parks and Ahzi’s (1990) and the proposed damage-coupled
models is shown in Appendix A. It is assumed that the number of crystals in the aggregate
is fixed as the material deforms. Calculations are carried out for an aggregate of 100
randomly oriented orthorhombic crystals. According to that, the distributions of the
(100), (010), and (001) poles are uniform, and the material can be considered as isotropic.
In the simulations, texture is fully determined by the poles of two non-parallel planes,
and crystal orientations are graphically described by the stereographic projections of the
poles onto a plane tangent to the projection sphere (e.g., see Chapter 2 of Kelly et al.,
2000). Figure 4.7 shows the initial pole figures in terms of the (100) and (001) poles.
Likewise, the velocity gradient L̄ij = D̄ij + W̄ij is prescribed, and crystal stresses and
orientation changes are determined. Then, the macroscopic stress state is calculated.

4.5.1 Uniaxial tension case

The aggregate behaviour is examined by deforming it under uniaxial tension. A constant
velocity gradient with axisymmetric boundary conditions is given as

L̄ij = γ̇



−0.5 0.0 0.0
0.0 1.0 0.0
0.0 0.0 −0.5




where γ̇ is a constant macroscopic strain rate equal to 0.001 s−1. The macroscopic spin is
null. For all crystals, the eight slip systems are active and their initial shear strengths are
adopted from the work of Parks and Ahzi (1990), as reproduced in Table 4.2. The model
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Table 4.2: Resolved shear strengths.

Slip system gα[MPa]

(100)[001] 7.2
(010)[001] 7.2
{110}〈001〉 7.2
(100)[010] 7.92
(010)[100] 12.96
{110}〈11̄0〉 12.96

Table 4.3: Material parameters for the simulations.

Parameter Uniaxial tension Simple shear

Strain rate sensitivity, n 5.0 5.0

Reference strain rate, γ̇0 [s−1] 0.001 0.001

Damage rate sensitivity, m 2.0 2.0

Reference damage rate, Ω̇0 [MPa−1] 0.05 0.05

Hardening modulus, h0 [MPa/s] 6.0 3.0

Saturation shear strength, c [MPa] 23.0 7.8

Spin release, ζ 30.0 17.5

parameters are set up from a tensile test reported in Hillmansen et al. (2000) and shown
in Table 4.3.

Figure 4.8 shows the predicted stress-strain curve for the given loading condition.
The aggregate behaviour under uniaxial tension is compared with the experimental re-
sponse from Hillmansen et al. (2000) as well as with the results of the viscoplastic model
in Parks and Ahzi (1990). As shown in Figure 4.8, the proposed model has the capability
to handle larger strains than the previous model in Parks and Ahzi (1990). Also, the
stress-strain curve is in good agreement with the experimental behaviour. In this curve,
three stages can be identified. First, the stress value is seen to increase moderately with
straining. Then, the stress rises sharply with limited deformation due to molecule reori-
entation towards the pulling direction. Finally, the idealized material becomes stiffer than
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the real one. This last aspect suggests the importance of the amorphous phase, a feature
ignored in the current formulation, in providing additional intracrystalline deformation
in real polyethylene. In addition, as seen in Figure 4.8, the stress-strain curve does not
capture the stress increase at the early states of deformation since the formulation does
not include the elastic contribution of the velocity gradient (De

ij = 0 and We
ij = 0 in Equa-

tions 4.6 and 4.8, respectively). Figure 4.9 gives the predicted average damage on the eight
slip systems. The solid and broken lines represent the solutions for the chain and trans-
verse slip systems, respectively. The figure shows that damage gradually evolves with
straining and exhibits a nonlinear behaviour while developing anisotropy in the material.
It is easy to see from the damage evolution plot that damage values on the (11̄0)[110] and
(110)[11̄0] systems are initially larger than those exhibited on the other systems; how-
ever, as straining progresses, damage on the (100)[001̄] system prevails. This is due to
the relatively rapid damage evolution corresponding to one of the weakest slip systems.
Figure 4.10 gives the predicted pole figures of the (001) and (100) lattice directions at
equivalent strains of 0.5, 1.0, and 1.4. These results match qualitatively those reported in
Parks and Ahzi (1990) and Schoenfeld et al. (1995), as shown in Figure 4.11. The predicted
textures confirm that with an increasing deformation, the (100) poles migrate towards the
radial direction while the (001) poles align along the straining direction.

4.5.2 Simple shear

The second simulation corresponds to the simple shear case. The constant velocity gra-
dient is given as

L̄ij = γ̇




0.0 1.0 0.0
0.0 0.0 0.0
0.0 0.0 0.0




where γ̇ is equal to 0.003 s−1. Unlike in the tension case, the macroscopic spin is not
null. The critical resolved shear stresses and material parameters are shown in Tables 4.2
and 4.3. The representative stress-strain curve for single shear is plotted in Figure 4.12
and compared with the experimental and numerical responses from G‘Sell et al. (1983)
and Yang and Chen (2001), respectively. From the figure, it can be seen that the predicted
stress-strain behaviour tends to overestimate stresses. For instance, the model overpre-
dicts the initial stress by about 50%. Nevertheless, when compared with Yang and Chen
(2001)’s model, our damage-coupled model has the capability of describing much larger
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Figure 4.8: Equivalent stress versus equivalent strain behaviour of
crystalline polyethylene under uniaxial tension.

Equivalent Strain

Figure 4.9: Average damage versus equivalent strain for the eight
slip systems. Uniaxial tension case.



4.5 Numerical results and discussion 51

Figure 4.10: Pole figures of the (001) and (100) lattice directions
at equivalent strains of 0.5, 1.0, and 1.4. The loading direction

is perpendicular to the paper plane.

Figure 4.11: Predicted crystallographic textures obtained by
(a) Parks and Ahzi (1990) and (b) Schoenfeld et al. (1995)

after equivalent strains of 1.0 and 0.9, respectively.
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deformations. In addition to significant straining, the curve also reveals that stresses
increase moderately between the equivalent strains of 0.0 and 4.5. Afterwards, stresses
drop reaching deformations larger than 8.0. As in the uniaxial tension case, the model
does not describe the initial elastic behaviour of the material. Figure 4.13 illustrates the
damage evolution obtained for each available slip system. Damage on the (11̄0)[110] and
(110)[11̄0] slip systems increases more rapidly than it does on the other systems. Again,
the trend of developing anisotropic damage is clearly observed. Figure 4.14 gives the
predicted pole figures of the (001) and (010) lattice directions at equivalent strains of 2.0,
4.0, and 8.0. In single shear, the (001) poles tend to revolve towards the shear direction
while the (010) poles orient perpendicular to that direction. For comparison purposes,
Figure 4.15 shows the crystallographic textures obtained by Parks and Ahzi (1990) at an
equivalent strain of 1.5.
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Figure 4.12: Equivalent stress versus equivalent strain behaviour of
crystalline polyethylene under simple shear.

Figure 4.13: Average damage versus equivalent strain for the eight
slip systems. Simple shear case.
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Figure 4.14: Pole figures of the (001) and (100) lattice directions
at equivalent strains of 2.0, 4.0, and 8.0. The loading direction

is indicated by the arrows.

Figure 4.15: Predicted crystallographic textures obtained by
Parks and Ahzi (1990) after an equivalent strain of 1.5.



CHAPTER

FIVE

Computational procedure for modelling
of crystalline polyethylene1

5.1 Introduction

This chapter is concerned with the numerical implementation of the damage-coupled
model for crystalline polyethylene proposed in the previous chapter. Consequently, a
detailed explanation of the algorithms is given to provide a more general description of
material modelling in terms of microstructure evolution. The present chapter is divided
into two sections. The first part highlights the most relevant equations of the proposed
constitutive law and deals with the main aspects of the numerical integration, whereas the
second one gives an overview on the influence of the aggregate description and material
parameters on the solutions.

5.2 Solution strategy

An outline of the numerical procedure for solving the constitutive model described in the
previous section is presented in this chapter. The aim of the integration algorithm is to
find material responses by an incremental procedure associated with discrete time steps.
Let ∆t ≡ tn+1 − tn be a time increment, where tn and tn+1 are two successive times. For
each time increment, the two problems to be solved correspond to (i) the integration of
the constitutive equations to determine local stress states and (ii) the integration of the
global problem to satisfy compatibility and equilibrium conditions. Since the material

1This chapter is based on Alvarado-Contreras et al. (2006a, 2007e)

55
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law involves nonlinear equations, iterative schemes are applied for solving the two prob-
lems. Crystal configurations and all internal variables from a previous time increment
are given. Crystal and global stresses at time tn+1 are obtained by solving the following
equation set

Dij = Pijkl〈Plkmn〉−1D̄nm (5.1)

Dij = MijklS∗lk (5.2)

S̄ij = 〈Pijkl〉−1〈S∗lk〉 (5.3)

D̄ij = 〈Mijkl〉S̄lk (5.4)

Thereafter, the stress-strain state satisfying the global equilibrium conditions for the cur-
rent time increment is used to integrate the associated internal variables

dgα

dγα
= h0sech2

(
h0

c
γ̂

)
(5.5)

dΩα

dτα
= Ω̇0

∣∣∣∣
τα

(1−Ωα)gα

∣∣∣∣
m

(5.6)

and to update the lattice orientations in an implicit way. The algorithm for solving the
constitutive model was implemented in computer code. To simplify the following equa-
tions and to show how data are stored and processed in the program, we adopt curly {•}
and square [•] brackets to represent column vectors and matrices, respectively.

5.2.1 Global deformation rate and spin tensors

For the discrete time implementation, a velocity gradient [L̄] is prescribed. As done in
crystal plasticity (Asaro and Rice, 1977), global deformation rate and spin are given as
the respective symmetric and skew-symmetric components of [L̄]. Therefore,

[D̄] = 1
2([L̄] + [L̄]T) (5.7)

and

[W̄] = 1
2([L̄]− [L̄]T) (5.8)

where the superscript T indicates the transpose.
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In a polyethylene crystal, slip occurs in four crystallographic planes and in two
directions per plane, as shown in Table 4.1. It is assumed that the vectors {nα} and
{sα} representing the slip systems are perpendicular to one another and remain so with
deformation. Therefore, when defined with respect to crystal axes, Schmid tensors are
constants with symmetric and skew-symmetric parts, given as

[Rα] = 1
2({sα}T{nα}+ {nα}T{sα}) (5.9)

and

[Aα] = 1
2({sα}T{nα} − {nα}T{sα}) (5.10)

Let a, b, and c be the lattice parameters of the polyethylene unit cell, and let h, k,
and l be the Miller indices of a set of normal planes {hkl}. The expression for describing
the normal directions {nα} used in Equations 5.9 and 5.10 is given as

{nα} =
h
/

a{ê1}+ k
/

b{ê2}+ l
/

c{ê3}√
(h

/
a)2 + (k

/
b)2 + (l

/
c)2

(5.11)

where {ê1}, {ê2}, and {ê3} are the three basis vectors. Likewise, let u, v, and w be
the Miller indices of the set of slip directions 〈uvw〉. The equation for identifying the
direction vectors {sα} is

{sα} =
ua{ê1}+ vb{ê2}+ wc{ê3}√

(ua)2 + (vb)2 + (wc)2
(5.12)

For computational purposes, symmetric second-order tensors are stored in six-
dimensional vectors. For instance, the deformation rate tensor can be written in vector
form as

{D} = {D1, D2, D3, D4, D5, D6}T

= {D11, D22, D33,
√

2D32,
√

2D31,
√

2D21}T (5.13)

Then, by using the following transformation matrix (Lequeu et al., 1987)

[T] =




1
/√

2 −1
/√

2 0 0 0 0

−1
/√

6 −1
/√

6
√

2
/√

3 0 0 0

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1




(5.14)



58 Chapter 5. Procedure for modelling of crystalline polyethylene

deviatoric second-order tensors are further reduced to five-dimensional vectors, e.g.,

{D} = {D1, D2, D3, D4, D5}T

= {
√

1
2(D11 − D22),

√
3
2 D33,

√
2D32,

√
2D31,

√
2D21}T (5.15)

Likewise, for the description of skew-symmetric second-order tensors, such as [W̄],
the following representation is used (Simo and Hughes, 1998)

{W} = {W1, W2, W3}T = {−W23, W13,−W12}T (5.16)

5.2.2 Crystal orientations

Let X1X2X3 and x1x2x3 be two orthogonal reference systems with a common origin. The
X1X2X3 coordinate system provides the sample reference frame with respect to which the
global deformation rate and stress are defined. Conversely, the x1x2x3 coordinate system
is associated with the crystal reference frame and attached to the respective principal
lattice axes, as shown in Figure 5.1. The relationship between the two systems is expressed
in terms of a second-order transformation tensor [Q], whose entries are formed by the
scalar components of the lattice vectors {a}, {b}, and {c}. Thus, any crystal orientation
can then be expressed in either reference basis by using the following square matrix

[Q] =



{a}T

{b}T

{c}T


 =




a1 a2 a3

b1 b2 b3

c1 c2 c3


 =




Q11 Q12 Q13

Q21 Q22 Q23

Q31 Q32 Q33


 (5.17)

Given the orthogonality condition of the lattice vectors, there are six dependen-
cies among the nine components of [Q]. Thus, only three independent parameters are
required for relating the reference and crystal orientations. An alternative scheme for
expressing the transformation tensor components is the so-called Euler angles. In this
approach, the Euler space E = {ϕ, θ, ψ} is spanned by three rotation angles taken in suc-
cession about the reference coordinate system. Here, ϕ represents a rotation about the
X3 axis, θ is the rotation about the transformed X2 axis, and ψ is the rotation about the
transformed X3 axis. Thus, the orientation of a certain crystal is fully described by using
only trigonometric functions, as follows (Craig, 1989)
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Figure 5.1: Relation between the sample and crystal
coordinate systems using Euler angles.

[Q] =




cos ϕ cos ψ− sin ϕ cos θ sin ψ sin ϕ cos ψ + cos ϕ cos θ sin ψ sin θ sin ψ

− cos ϕ sin ψ− sin ϕ cos θ cos ψ − sin ϕ sin ψ + cos ϕ cos θ cos ψ sin θ cos ψ

sin ϕ sin θ − cos ϕ sin θ cos θ




(5.18)

where the three independent rotation ranges are (Morawiec, 2004)

0 ≤ ϕ < 2π, 0 ≤ θ ≤ π, and 0 ≤ ψ < 2π (5.19)

For computational purposes, crystal aggregates are assumed to have initially iso-
tropic properties at the macroscopic level. According to this hypothesis, simulations
are based on a simple random sampling (Pang, 2006) of crystal orientations, generated
by assigning random numbers to the Euler angles. The crystal orientation generator is
implemented as follows

1. Generate a set of three numbers ri (i = 1, 2, 3) of random uniform distribution on
[0, 1]

2. Compute the three Euler angles

ϕ = 2πr1, θ = cos−1(2r2 − 1), and ψ = 2πr3 (5.20)
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Figure 5.2: Two-dimensional views of the Euler space with
the location of 400 randomly oriented crystals.

3. Calculate the corresponding rotation matrix [Q] as given in Equation 5.18

4. Repeat steps 1 to 3 to generate the rest of the crystal orientations

The outcome is a series of rotation matrices [Q], which are thought of as represent-
ing the crystals in the microstructure of a material point. An example of two-dimensional
views of the Euler angles of 400 randomly oriented crystals is given in Figure 5.2.

The spatial orientation of some crystallographic planes can be plotted by using a
stereographic projection (e.g., Schwarzenbach, 1996). First, it is assumed that crystals
lie centred inside a common unit sphere, as the one shown in Figure 5.3. Each one
of the intersection points of the particular normal vectors with the sphere is identified.
Then, the alternative representation is a projection of points from the sphere surface onto
a tangential plane to the sphere. If any point on the sphere surface is joined to the
reference point N, the line PN cuts the tangential plane at P′. This projection point is the
stereographic projection of P. The arrangement of projected points is referred to as a "pole
figure". Let X1, X2, and X3 be the coordinates of a point on the sphere, and let X′

1 and X′
2

be the coordinates of the same point on the projection plane. Then, let x2
1 + x2

2 + x2
3 = 1

and x3 = −1 be the equations of the unit sphere and projection plane, respectively. The
equation of the line joining the intersection and the projection points can then be written
as
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Figure 5.3: Projection of a three-dimensional onto a two-dimension
representation (Stereographic projection).

x1

X1
=

x2

X2
=

x3 − 1
X3 − 1

(5.21)

Therefore, the intersection point of this line with the projection plane is given as

X′
1 = − 2x1

x3 − 1
, and X′

2 = − 2x2

x3 − 1
(x3 6= 1) (5.22)

Using a polar coordinate system, the projection points can be defined by a radial
coordinate r and a polar angle ϕ, given in terms of x1, x2, and x3 as

r =
2

x3 − 1

√
x2

1 + x2
2, and tan ϕ =

x2

x1
(x1 6= 0) (5.23)

From Figure 5.3, it is evident that (i) the basic circle diameter is twice that of the
projected sphere, and (ii) a point above the equatorial plane (on the superior hemisphere)
projects outside the basic circle, and when the point approaches the reference point N
(i.e., x3 → 1), the projection draws out to infinity. Thus, first, the radial coordinate can
be normalized by dividing it by two, and then, points above the equatorial plane can be
projected towards the projection plane onto the inferior hemisphere. After that, the radial
coordinate is rewritten as
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r =
1

|x3|+ 1

√
x2

1 + x2
2 (5.24)

5.2.3 Constraint and projection tensors

An aggregate contains a fixed number of crystals denoted by Nc. For each one of the
crystals, the inextensible direction {c} and the constraint tensor {C} can be expressed as

{c} = {c1, c2, c3}T = {Q31, Q32, Q33}T (5.25)

and

{C} = {C1, C2, C3, C4, C5, C6}T

= {Q2
31, Q2

32, Q2
33,
√

2Q32Q33,
√

2Q31Q33,
√

2Q31Q32}T (5.26)

respectively, where Q3i are the components of the corresponding rotation matrix [Q], as
given in Equations 5.17 and 5.18.

To calculate the local and global projection tensors, the following steps are applied
to each one of the crystals at each time increment:

1. Compute the corresponding deviatoric constraint tensor,

{C′} = {C} − 1
3 tr{C}{ I } (5.27)

where tr{C} = C1 + C2 + C3, and { I } = {1, 1, 1, 0, 0, 0}T

2. Compute the crystal projection tensors,

[Pc] = [ I ]− 3
2{C′}{C′}T (5.28)

where [ I ] is the 6 × 6 identity matrix

3. Repeat steps 1 and 2 to define the rest of the projection tensors

4. Compute the global average projection tensor,

[P̄] = 1/Nc ∑c [Pc] (5.29)

where the summation is carried out over the total number of crystals in the aggre-
gate, c = 1, . . . , Nc

5. Compute the inverse global projection tensor [P̄]−1
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5.2.4 Crystal deformation rate and spin tensors

From the global deformation rate, an appropriate partition among the crystals can be
derived. If the aggregate is strained at its boundaries at a rate {D̄}, the local deformation
rate {D}is calculated according to

{D} = [Pc][P̄]−1{D̄} (5.30)

where [Pc] and [P̄]−1 are the crystal and inverse global projection tensors, respectively.
Then, the deformation rate tensor is rotated into the crystal axes by using the transfor-
mation

{Dc} = [Q̂]{D} (5.31)

Here, {Dc} designates the deformation rate tensor in crystal c, and [Q̂] is a 5×6 reduced
transformation matrix, defined as

[Q̂] = [T][Q̃] (5.32)

where [T] is the matrix defined in Equation 5.14, and [Q̃] is a matrix describing the coor-
dinate transformation from the global to the crystal basis, given as

[Q̃] =




Q2
11 Q2

12 Q2
13

√
2Q12Q13

Q2
21 Q2

22 Q2
23

√
2Q22Q23

Q2
31 Q2

32 Q2
33

√
2Q32Q33√

2Q21Q31
√

2Q22Q32
√

2Q23Q33 Q22Q33 + Q23Q32√
2Q11Q31

√
2Q12Q32

√
2Q13Q33 Q12Q33 + Q13Q32√

2Q11Q21
√

2Q12Q22
√

2Q13Q23 Q12Q23 + Q13Q22√
2Q13Q11

√
2Q11Q12√

2Q23Q21
√

2Q21Q22√
2Q33Q31

√
2Q31Q32

Q23Q31 + Q21Q33 Q21Q32 + Q22Q31

Q13Q31 + Q11Q33 Q11Q32 + Q12Q31

Q13Q21 + Q11Q23 Q11Q22 + Q12Q21




. (5.33)

Here, Qij are the components of the rotation matrix.
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5.2.5 Local iterative procedure

At the local level, the procedure is strain-driven. That is, the constitutive equation is
used to obtain an estimate of the crystal stress state for a given {Dc}. After resolving
individually all the crystals, the average stress state gives the macroscopic material re-
sponse. Consider a single crystal subjected to a local deformation rate {Dc}. Following
a Newton-Raphson iterative scheme, the reduced stress {S∗c }, the primary unknown, can
be determined by solving the following relationship

{Dc} = [M(S∗c )]{S∗c } (5.34)

During the iterations, updates are carried out on reduced stresses while the inter-
nal variables are kept constant and chosen to be the values at time tn. Therefore, given
the most recently updated reduced stress {S∗c }k, the numerical procedure to update the
crystal stress state consists of the following steps:

1. Compute the 5×5 crystal compliance tensor

[Mc]k = γ̇0 ∑α

|{S∗c }k{Rα}|n−1

[(1−Ωα)gα]n
{Rα}{Rα}T (5.35)

where the subscript k identifies the kth iterative approximation. For the first iterative
step, [Mc]k is computed by using an initial guess for the reduced stress.

2. Evaluate the equation system residual,

{H}k = {Dc} − [Mc]k{S∗c }k (5.36)

3. Compute the Jacobian matrix,

[ J ]k = ∂{H}k
/

∂{S∗c }k (5.37)

4. Solve the equation system,

[ J ]k{∆S∗c } = −{H}k (5.38)

where {∆S∗c } indicates the stress increment between iterations k and k + 1

5. Compute the new residual {H}k+1 based on the Newton-Raphson approach,

{H}k+1 = {H}k + [ J ]k{∆S∗c } (5.39)
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6. Update the reduced stress,

{S∗c }k+1 = {S∗c }k + {∆S∗c } (5.40)

7. Repeat steps 1 to 6 until the norm of the residual ‖{H}k+1‖ becomes smaller than
some adequate tolerance

8. Calculate the reduced stress state in the rest of the crystals using the same approach

5.2.6 Global reduced stress and compliance

The overall response is assumed to be described by a constitutive law similar to that
given in Equation 5.34. Reduced stress and compliance tensors are determined in the
local coordinate systems, and then, rotated onto the reference coordinate system. As-
suming that the aggregate is statistically homogeneous, the global stress and compliance
are calculated as the respective volume averages of {S∗c } and [Mc] over all the crystals.
The volume fraction is given as vc = Vc/V, where Vc and V represent the crystal and
aggregate volumes, respectively.

The following steps show how to achieve the global variables.

1. Compute the global compliance tensor,

[M̄] = ∑c vc[Q̂c]T[Mc][Q̂c] (5.41)

2. Compute the global stress,

{S̄∗} = ∑c vc[Q̂c]T{S∗} (5.42)

3. Compute the global deviatoric Cauchy stress,

{S̄} = [P̄]−1{S̄∗} (5.43)

5.2.7 Global iterative procedure

If the global deviatoric Cauchy stress {S̄} obtained from Equation 5.43 satisfies equilib-
rium, the solution is accepted, and the next time increment is evaluated. In case of no
convergence, corrections based on the successive substitution under-relaxation scheme
are performed, and the local iterative procedure is repeated using {S̄} as an updated es-
timate of the stress state for the following step. Once a suitable {S̄} is found, it is related
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to the global deformation rate {D̄} through the relationship {D̄} = [M̄]{S̄}, which can
be written in partitioned form as

{
{D̄g}
{D̄u}

}
=

[
[M̄]11 [M̄]12

[M̄]21 [M̄]22

] {
{S̄g}
{S̄u}

}
(5.44)

where {D̄g} and {S̄g} are the prescribed components of global deformation rate and
deviatoric Cauchy stress, while {D̄u} and {S̄u} are the corresponding deformation and
stress components to be calculated in the iterative process. [M̄]11, [M̄]12, [M̄]21, and [M̄]22

are compliance tensor partitions obtained from the partition scheme of {D̄} and {S̄}. The
following iterative algorithm contains the key steps for integrating the global problem.

1. Obtain the corrected stress corresponding to the prescribed components of {D̄g},
along with the condition {S̄g} = {0}

{S̄u}k+1 = ω [M̄]−1
12 {D̄g}+ (1−ω){S̄u}k (5.45)

where ω ∈ [0, 1] is an under-relaxation parameter. The explicit and implicit inte-
grations correspond to ω = 0 and 0 < ω ≤ 1, respectively (Simo and Hughes,
1998)

2. Compute the global equivalent stress,

σ̂k+1 =
√

3
2{S̄}T

k+1 · {S̄}k+1 (5.46)

3. Repeat the local and global procedures until the convergence condition |σ̂k+1 − σ̂k|
satisfies the required tolerance. The deformation rate residual is ignored for the
solution convergence.

5.2.8 Hardening and damage updating

After achieving global convergence, slip strength and damage values are updated before
attempting the next deformation step. The scalar nature of hardening and damage leads
to a straightforward integration procedure. In this approach, the integration algorithm
consists in:

1. Evaluate the total shear strain,

γ̂n+1 =
√

2{D̄}T{D̄}∆t + γ̂n (5.47)
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2. Evaluate the critical resolved shear stresses at tn+1,

gα
n+1 = gα

n + h0 sech2(h0γ̂n+1
/

c)∆γα (5.48)

3. Obtain the critical resolved shear stresses at tn+ω,

gα
n+ω = (1−ω)gα

n + ωgα
n+1 (5.49)

4. Obtain the resolved shear stress at tn+ω,

τα
n+ω = (1−ω)τα

n + ωτα
n+1 (5.50)

5. Obtain the damage for each slip system at tn+ω,

Ωα
n+ω = (1−ω)Ωα

n + ωΩα
n+1, (5.51)

setting Ωα
n+1 = Ωα

n in the first iterative step

6. Compute the damage rate at tn+ω according to the following damage evolution law:

Ω̇α
n+ω =





Ω̇0

∣∣∣∣
τα

n+ω

(1−Ωα
n+ω)gα

n+ω

∣∣∣∣
m

if ∆τα > 0

0 otherwise
(5.52)

where ∆τα =
∣∣τα

n+1

∣∣− |τα
n |

7. Compute a new approximation for Ωα
n+1,

Ωα
n+1

∣∣
k+1 = Ωα

n + Ω̇α
n+ω

∣∣
k ∆τα (5.53)

8. Repeat steps 5 to 7 until
∣∣∣Ωα

n+1

∣∣
k+1 − Ωα

n+1

∣∣
k

∣∣∣ becomes smaller than the required
tolerance

5.2.9 Crystal orientation updating

Plastic deformation causes a gradual and preferential crystal reorientation (texture),
changing significantly the material properties. Assuming that the lattice vectors {a},
{b}, and {c} rotate at the same lattice spin [W∗], the evolution of the crystallographic
axes can be written as (Asaro and Rice, 1977)

{ȧ} = [W∗]{a}, {ḃ} = [W∗]{b}, and {ċ} = [W∗]{c} (5.54)
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These are linear homogenous differential equations whose backward-Euler exponential
solution over the time increment from t to t + ∆t can be expressed through, e.g.,

{a}n+1 = exp (∆t [W∗]) · {a}n = exp [W ] · {a}n (5.55)

where the exponential of [W ] is defined and computed numerically by the tensorial
power series

exp[W ] = ∑∞
k=0

1
k!

[W ]k (5.56)

The simplest algorithm for updating the crystal orientations at time tn+1 from the
corresponding orientations at time tn is described by the following steps:

1. Evaluate the crystal release function

R = tanh (ζΩ̂) (5.57)

where Ω̂ is the average damage, given as Ω̂ = 1
8 ∑α Ωα

2. Compute the spin tensor at tn+1,

{W∗}n+1 = {W} − R{Wp} (5.58)

where {W p} = ∑α γ̇α{Aα}, with {Aα} vectorized as in Equation 5.16

3. Compute the spin tensor at tn+ω,

{W∗}n+ω = ω {W∗}n + (1−ω){W∗}n+1 (5.59)

4. Compute the incremental spin tensor,

{W} = ∆t{W∗}n+ω (5.60)

5. Approximate the exponential function as (e.g., see Chapter 2 of Angeles, 1988)

exp[W ] = [I] +
2

1 + |{w̃}|2
([W̃] + [W̃]2) (5.61)

where {w̃} is a unit rotation vector defined as

{w̃} =
{W}
|{W}| tan 1

2 |{W}| (5.62)

and [W̃] is a skew-symmetric matrix associated with the {w̃}
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[W̃] =




0 −w̃3 w̃2

w̃3 0 −w̃1

−w̃2 w̃1 0


 (5.63)

6. Update the local rotation tensor

[Q]n+1 = [Q]n · expT[W ] (5.64)

7. Repeat steps 1 to 6 to update the rest of the rotation tensors

5.3 Numerical examples

A number of simulations illustrate the performance of the algorithm described in the
previous section. For the tension loading case, it is assumed that deformation is imposed
along the sample X2-direction. Global spin is null, and global deformation rate and
deviatoric stress are of the following reduced forms

{D̄} = {?, D̄2, ?, ?, ?, ?}T, and {S̄} = {?, ?, ?, 0, 0, 0}T (5.65)

where D̄2 is the enforced deformation rate. The shear stress components S̄4, S̄5, and S̄6

are assumed to be null. The rest of the non-prescribed components, written as question
marks, are the associated unknowns. However, due to the loading conditions and the
deviatoric nature of the deformation rate, the components along the transverse direction
can be written as

D̄1 = D̄3 = − 1
2 D̄2 (5.66)

Note that the condition D̄4 = D̄5 = D̄6 = 0 is not satisfied; consequently, the com-
patibility conditions are partially fulfilled. In the stress tensor, normal components are
unknown; however, as in {D̄}, it can be assumed that

S̄1 = S̄3 = − 1
2 S̄2 (5.67)

All the simulations were carried out for aggregates of 250 randomly oriented or-
thorhombic crystals of the same volume. Unless indicated otherwise, the model and
material parameters used in the simulations are those listed in Table 5.1. The critical
shear strengths are taken as proposed in Parks and Ahzi (1990).
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Table 5.1: Material parameters for the simulations.

Parameter Uniaxial tension

Strain rate sensitivity, n 5.0

Reference strain rate, γ̇0 [s−1] 0.001

Damage rate sensitivity, m 2.0

Reference damage rate, Ω̇0 [MPa−1] 0.05

Hardening modulus, h0 [MPa/s] 6.0

Saturation shear strength, c [MPa] 23.0

Spin release, ζ 30.0

Under-relaxation parameter, ω 0.5

Time increment, ∆t [s] 5.0

Error tolerance 1.0×10−6

5.3.1 Influence of the number of crystals

In order to investigate the solution dependence on the number of crystals, 180 samples
were simulated. These samples were grouped into nine sets of 20 different aggregates
characterizing initially isotropic material points. The sets represent successive enlarge-
ment of the number of crystals. Each aggregate was generated by changing the crystal
orientations, as described in Section 5.2.2. Simulations were performed on the samples by
using identical model parameters and incremental displacements. The simulations were
carried out at a deformation rate D̄2 of 1×10−3/s. The effect of the number of crystals
on compliances was analyzed. Figure 5.4 shows the compliance ratio M̄33

/
M̄11 versus

the number of crystals at equivalent (inelastic) strains of 0.0 and 1.0. Likewise, Figure 5.5
illustrates similar plots, but in this case for the compliance ratio M̄11

/
M̄22. From the re-

sults, it can be seen that the band of the simulated ratios diminishes rapidly reaching a
steady width as the number of crystals increases. As can be seen, at least 100 crystals
are required to homogenize the material compliance (orientation dependence disappears
on the average) and to attain a reasonable representation of the aggregate. For example,
for the set of aggregates with 250 crystals, the mean values of the ratio M̄33

/
M̄11 at the

equivalent strains of 0.0 and 1.0 are 0.991 and 0.989, respectively. In both cases, the mean



5.3 Numerical examples 71

Figure 5.4: Global compliance ratio M̄33/M̄11 versus number of crystals at
the equivalent strains of 0.0 and 1.0.

values lie fairly close to the theoretical value of 1.0. On the other hand, the mean values
of the ratio M̄11

/
M̄22 at the same strains are 0.523 and 0.630. As expected, the mean

values illustrate how the ratio increases as material anisotropy evolves.

5.3.2 Influence of the crystal orientation

Probability plots and statistical distributions for a selection of normal and shear stresses
at an equivalent deformation of 1.0 are presented. Figure 5.6 shows the probability plots
used for assessing graphically whether the local stresses follow a theoretical distribution.
The stresses were plotted against a normal distribution. Based on the point patterns, it
appears that the stresses reasonably fit the presupposed distribution. Therefore, although
a few points show departures from the fitted lines, the assumption of normality seems be
reasonable for comparing the effects of initial crystal orientations on the overall macro-
response of the aggregate. Figure 5.7 shows the normal distributions fitted to the S∗11,
S∗22, and S∗12 components for 20 aggregate samples. All examples were performed under
the same loading conditions and material constants given in Table 5.1. Each aggregate
contains a total of 250 crystals differently oriented from sample to sample. As expected,
the distributions show that the mean axial stress S̄∗22 is positive ranging from 12.92 to
14.67 MPa. The mean transverse stress S̄∗11 is negative and ranges from -7.47 to -6.31 MPa.
Similarly, the mean shear stress S̄∗12 is approximately zero, varying from -0.33 to 0.38 MPa.
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Figure 5.5: Global compliance ratio M̄11/M̄22 versus number of crystals at
the equivalent strains of 0.0 and 1.0.

Respectively, for the three components, the standard deviations range from 5.19 to 6.13
MPa, from 4.76 to 5.71 MPa, and from 6.61 to 7.82 MPa. The results obtained show
that crystal orientations in an isotropic and representative large aggregate do not have
a considerable influence on the prediction of the reduced stress components. Similarly,
Figure 5.8 illustrates the normal distributions of three simulations performed on a 250
crystal aggregate. In these simulations, loading was applied alternately along one of the
three principal sample directions, while keeping crystal orientations invariant for each
case. It is apparent from the distributions shown that the resulting stress states are not
affected significantly by the loading direction in an initially isotropic aggregate.

5.3.3 Influence of the material parameters

Further insight into the model can be gained by considering the influence of the different
material parameters on the simulated mechanical behaviour of crystalline polyethylene.
Here, the simulations do not attempt to capture quantitatively all experimental details,
but instead, to predict the influence of four new adjustable material parameters in stress
and damage evolution. Other parameter combinations might lead to better agreement
with experimental results, yet parameter estimation by using appropriate statistical and
optimization algorithms is beyond the scope of this chapter. As measures of stress and
strain, the equivalent forms were calculated in the simulations; therefore,
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Figure 5.6: Probability distribution of the S∗11, S∗22, and S∗12
stress components on a 250-crystal aggregate.

Figure 5.7: Normal distributions showing the aggregate effects on a
selection of reduced stress components.
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Figure 5.8: Normal distributions showing the loading direction effects on a
selection of reduced stress components.

σ̂ =
√

3
2 S̄ijS̄ij (5.68)

and

ε̂ =
∫ t

0

√
2
3 D̄ijD̄ij dt (5.69)

The material parameters considered for the analysis are the damage rate Ω̇0, hard-
ening modulus h0, saturation shear strength c, and release ζ. All subsequent plots are
obtained at the same deformation rate of 1×10−3/s. First, we focus on the damage rate.
The effects of five trial values of Ω̇0 on material hardening are illustrated in Figure 5.9. The
figure shows the predicted stress-strain curves and damage evolution for the (100)[001]
slip system for the given rates. The curves reveal a significant influence of damage rate
on material response. The most noteworthy feature is the straining level where the curves
exhibit the sharp stress upturn. It is easy to see that the higher the Ω̇0, the more limited
the deformation, and for strains below 1.0, the lower the stress. Minor changes in the
initial tangent modulus ∂σ

/
∂ε were observed. Figure 5.10 compares four simulated tex-

tures corresponding to the (001) and (100) lattice directions at an equivalent strain of 1.5.
It can be seen that damage rate has also an important influence on the development of
texture. For instance, it is observed in Figure 5.10 that as Ω̇0 increases, the (001) and (100)
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poles rotate more rapidly towards the respective loading and transverse directions. The
strongest texture was presented for Ω̇0 = 0.1. Figure 5.11 shows the same lattice directions
at an equivalent stress of 40 MPa, revealing that damage rate variations have negligible
effects on textures when compared at an identical equivalent stress. Stress-strain and
damage plots illustrating the effects of hardening modulus h0 are given in Figure 5.12.
The results show that material behaviour depends on h0 quite significantly. It should be
noted that, as h0 increases, the tangent modulus ∂σ

/
∂ε at zero inelastic strain increases,

and the material becomes more highly stressed. Furthermore, for this particular exam-
ple, it is indicated that the stress-strain and damage plots come near a maximum as h0

approaches 40 MPa/s. In Figure 5.13, the corresponding pole figures for the different
hardening rates are plotted. The comparison of the predicted poles clearly shows the in-
fluence on the migration rate of the (001) and (100) poles, for an equivalent strain of 1.5.
Figure 5.14 shows how the predicted poles are not far from each other when compared
at the same stress level of 40 MPa. Additionally, note the nearly coinciding textures
of Figures 5.11 and 5.14. In a manner analogous to the analyses for the damage rate
and hardening modulus, the overall behaviour for different values of saturation shear
strength c were assessed, as shown in Figure 5.15. The results illustrate that as c increases
from 1.5 to 30, the overall stress levels rise rapidly and damage values climb sharply.
Additionally, the stress plateau disappears gradually when c is beyond 3.0. Neverthe-
less, the initial tangent modulus ∂σ

/
∂ε does not vary by a significant amount among

the curves. Comparisons of the pole figures are outlined in Figures 5.16 and 5.17. As
in previous cases, the choice of c also has a marked effect on the texture development.
Moreover, Figure 5.17 shows that saturation shear strength has also an important influ-
ence on texture even when poles are compared at the same stress level. This peculiarity
can be attributed to the fact that the model considers equal saturation shear strength for
all slip systems. Finally, Figures 5.18 to 5.20 show how an increasing release parameter
ζ influences stress and damage evolution as well as texture. Similar conclusions to the
ones discussed for the previous cases can be drawn.
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Figure 5.9: Curves revealing effects of increasing damage rate values Ω̇0 on (top) the
stress-strain behaviour and (bottom) the average damage for the (100)[001] slip system.

(Material parameters used: h0=10, c=6, and ζ = 20).
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Figure 5.10: Pole figures of the (001) and (100) lattice directions at an
equivalent strain of 1.5 for four different values of damage rate Ω̇0.

The loading direction is perpendicular to the paper plane.

Figure 5.11: Pole figures of the (001) and (100) lattice directions at an
equivalent stress of 40 MPa for four different values of damage rate Ω̇0.
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Figure 5.12: Curves revealing effects of increasing hardening rate values h0 on (top) the
stress-strain behaviour and (bottom) the average damage for the (100)[001] slip system.

(Material parameters used: Ω̇0=0.05, c=6, and ζ = 30).
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Figure 5.13: Pole figures of the (001) and (100) lattice directions at an
equivalent strain of 1.5 for four different values of hardening rate h0.

Figure 5.14: Pole figures of the (001) and (100) lattice directions at an
equivalent stress of 40 MPa for four different values of hardening rate h0.
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Figure 5.15: Curves revealing effects of increasing hardening rate values c on (top) the
stress-strain behaviour and (bottom) the average damage for the (100)[001] slip system.

(Material parameters used: Ω̇0=0.05, h0=6, and ζ = 30).
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Figure 5.16: Pole figures of the (001) and (100) lattice directions at an
equivalent strain of 1.5 for four different values of saturation shear strength c.

Figure 5.17: Pole figures of the (001) and (100) lattice directions at an
equivalent stress of 40 MPa for four different values of saturation shear strength c.
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Figure 5.18: Curves revealing effects of rotation release values ζ on (top) the
stress-strain behaviour and (bottom) the average damage for the (100)[001] slip system.

(Material parameters used: Ω̇0=0.05, h0=10, and c = 15).
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Figure 5.19: Pole figures of the (001) and (100) lattice directions at an
equivalent strain of 1.5 for four different values of rotation release ζ.

Figure 5.20: Pole figures of the (001) and (100) lattice directions at an
equivalent stress of 40 MPa for four different values of rotation release ζ .





CHAPTER

SIX

Damage-coupled model for semicrystalline polyethylene

6.1 Introduction

In this chapter, a detailed description of the proposed constitutive formulation for the me-
chanical behaviour of semicrystalline polyethylene is presented. The model attempts to
describe the deformation and degradation processes in polyethylene following a Contin-
uum Damage Mechanics approach and considering the interplay between the crystalline
and amorphous phases. For the crystalline phase, the proposed model is similar to the
one introduced in Chapter 4. For the amorphous phase, the constitutive model is devel-
oped within a thermodynamic framework able to describe the features of the material
behaviour. Hardening of the amorphous phase is considered into the model and asso-
ciated to different molecular configurations arising during the deformation process, as
suggested by Arruda and Boyce (1993). The equation governing the evolution of damage
in the amorphous phase is obtained by choosing a particular form based on the inter-
nal energy and entropy. The model generated within this damage-coupled framework is
used to simulate uniaxial tension and simple shear of a high density polyethylene. The
model predictions are compared with the experimental results reported by G‘Sell and
Jonas (1981) and G‘Sell et al. (1983) and with the numerical simulations obtained by Lee
et al. (1993b) and Nikolov et al. (2006).

6.2 Thermodynamic framework

The structure morphology of amorphous polyethylene can be regarded as a sort of ran-
domly oriented molecular chains connected by physical entanglements. When deformed

85
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Figure 6.1: Representation of a semicrystalline polymeric material
showing the amorphous phase structure in the (left) unstrained

and (right) strained states (Treloar, 1975).

below its glass transition temperature (Tg ≈ −70◦C), amorphous polyethylene is consid-
ered relatively rigid, stiff, and brittle. In contrast, above Tg, it becomes softer elastically
and tougher plastically. During stretching and once intermolecular resistances are over-
come, molecular chains have the freedom to rearrange and reorient themselves towards
the direction of maximum stretch, as illustrated in Figure 6.1. For a nonlinear analysis
of the mechanical behaviour, amorphous polyethylene has been classically considered
isotropic, incompressible, and rubber-like.

The equations required to describe the mechanical response as well as the pro-
cesses and changes occurring at the microstructural level are obtained in terms of classical
thermodynamics and statistical mechanics (Treloar, 1975). For describing the stress-strain
response of amorphous polyethylene, the energies controlling the variety of processes
and changes at the microstructural level are of particular interest. Let us consider as a
system the amorphous material to be analyzed. The first law of thermodynamics, a conse-
quence of conservation of energy, states the interconvertibility of mechanical and thermal
energies through the following postulate:

The change in the internal energy of a thermodynamic system is equal to the sum of
the heat energy exchanged with the surroundings and the work done on the system.

A mathematical approach to this conservation law can be written as

du = dq + dw, (6.1)

where u, q, and w are the internal energy, the heat absorbed or released by the system,
and the work done on it by external forces, respectively.



6.2 Thermodynamic framework 87

At a molecular level, the second law of thermodynamics states that a system al-
ways tends to change to a more disordered state. Therefore, energy tends to be trans-
formed into lower levels of availability before reaching a state of unavailability for further
work. The irreversibility condition given by the second law of thermodynamics states
that:

In all energy exchanges, if no energy enters or leaves the system, the energy of the
state will always be less than that of the initial state.

The central property of the second law is entropy, which is thought of as a measure or
index of the randomness of a system. Entropy is defined as

a function of the thermodynamic state of a system whose change in any reversible
process is equal to the energy dissipated at a temperature T.

On the basis of the second law of thermodynamics, the expression for the entropy change
of a system is given as the energy transferred as heat divided by the absolute temperature
(on the Kelvin scale) at which the transfer takes place; thus,

ds =
dq
T

(6.2)

Since T is always positive, ds has the same sign as that of dq. Entropy change can be
additively decomposed into two components; one related to the flux due to energy flow
se, and the other related to the internal entropy production due to irreversible processes
si (Nicolis and Prigogine, 1977); that is,

ds = dse + dsi (6.3)

The second law of thermodynamics establishes that any internal process occurring
spontaneously always increases the entropy of the system; i.e.,

dsi ≥ 0 (6.4)

where dsi vanishes at equilibrium. Therefore, the total entropy change can only be nega-
tive when,

dse < 0 and | dse |> dsi (6.5)

Thus, it can be seen that giving a sufficient amount of negative entropy flow the system
is able to maintain an ordered configuration.
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The thermodynamic potential that measures work availability is given by the
Helmholtz free energy ψ, which is defined as

dψ = du− Tds− sdT (6.6)

In the context of amorphous molecules, the energy associated with intermolecular in-
teractions remains practically constant compared to the change in the configurational
entropy. Likewise, it can be assumed that temperature remains unchanged during the
entire deformation process. Accordingly, du = 0 and dT = 0. Then, Equations 6.1 and 6.6
adopt the following forms proportional to the entropy change (Rosen, 1993)

dψ = −Tds (6.7a)

dw = −Tds (6.7b)

Therefore, after combining Equations 6.7a and 6.7b,

dψ = dw (6.8)

Entropy has a statistical definition given by the usual form of Boltzmann’s prin-
ciple, which says that entropy is proportional to the logarithm of the number of mi-
crostates1 available to the molecules from an observed initial macrostate B0 to a final
macrostate B f . Each microstate is equally likely; therefore,

s = k ln
Θ f

Θ0
= k ln Θ (6.9)

Here k is Boltzmann’s constant (k = 1.380662× 10−23JK−1). The thermodynamic proba-
bility Θ is closely connected to the corresponding function of distribution of molecular
configurations. Thus, from Equation 6.9, it can be seen that any change leading to a larger
number of molecular conformations corresponds to a larger increase of entropy, and con-
sequently, of the number of choices for the arrangement of the total energy (Lambert,
2002). Boltzmann’s constant k is introduced to make them mathematically identical.

6.2.1 Configurational entropy

The number of possible configurations Θ of a molecule is a key parameter for describing
the mechanical behaviour of amorphous polymers. According to the molecular chain

1Microstates refers to the different arrangements of the molecular chains.
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network theory, deformation is associated with a reduction of entropy in the system. A
common way to describe this phenomenon is to relate entropy to disorder. A strained
amorphous material has low entropy because its molecules are enforced to align along
certain directions in space. As constraints are removed and molecules are released, disor-
der increases and entropy rises. Since entropy is an extensive property2, the total entropy
in a system is obtained by simply summing the entropy contributions of each individual
chain.

An amorphous polymeric material can be considered as a three-dimensional net-
work of long flexible chains, randomly oriented and interconnected together by chemical
cross-links at the so-called junction-points. Using the affine deformation assumption3,
the junction-points are looked upon as discrete points of a continuum model. Junction
point fluctuations are negligible when compared to rigid-link ones.

An idealized lineal molecule can be thought of as an assembly of N carbon-carbon
backbone bonds of length ` connected by freely rotating pivots, as illustrated in Figure 6.2.
Let `

(j)
i (j = 1, . . . , N) be a set of N vectors representing the individual segments of a

molecule. As shown in Figure 6.3, the vector directions are assumed pointing from bond
C(j−1) to bond C(j), and the angle between two successive vectors is given as θ(j,j−1).
The chain size is evaluated based on the end-to-end distance, which is simply the vector
length connecting the first and last segments of the chain, as shown in Figure 6.2. This
end-to-end distance ranges between a minimum and a maximum value. The minimum
distance happens when a molecule’s ends are just touching and corresponds to the atomic
spacing (van der Waals radii) between the chain-end atoms. On the other hand, the
maximum value occurs when a molecule is fully extended, and all bonds lie in a straight
line; i.e., rmax = N`.

In the Euclidean space, the end-to-end vector ri for a particular molecule is given
by the vector sum over the bond segments; such as

ri = `
(1)
i + `

(2)
i + . . . + `

(N)
i (6.10)

It is reasonable to assume that for very large molecules, the vectorial segments
follow a random uniform distribution function, i.e., all vectors are of equal probability;
therefore,

2An extensive property varies directly with the amount of matter present.
3These models are referred to as affine because the entangled points are assumed to be fixed during defor-
mation and the average number of segments between entanglement points remains constant.
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Figure 6.2: (left) Schematic representation of a polymer chain, and
(right) end-to-end distance of a fully extended molecule.

Figure 6.3: Vector directions and angles in a polymer chain.
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`
(1)
i + `

(2)
i + . . . + `

(N)
i = 〈`i〉 ∼= 0i (6.11)

Nevertheless, the chain length can be estimated from the magnitude squared of the vector
ri (e.g., Eyring, 1932; Shaw and MacKnight, 2005); that is,

r2 = riri = ∑
j

`
(j)
i `

(j)
i + 2 ∑

k
∑
k<p

`
(k)
i `

(p)
i (6.12)

It follows immediately that `
(j)
i `

(j)
i is the square of segment `

(j)
i length since both vectors

point towards the same direction, and consequently, the cosine of the angle is equal to
unity; therefore,

∑
j

`
(j)
i `

(j)
i = `2 ∑

j
θ(j,j) = N`2 (6.13)

On the other hand, the second term of Equation 6.12 can be written as

`
(j)
i `

(k)
i = `2 cos θ(j,k) (6.14)

where if θ(j,k) follows a random uniform distribution, it cancels out; i.e.,

∑
k

∑
k<p

`
(k)
i `

(p)
i = `2 ∑

k
∑
k<p

cos θ(kp) = `2〈cos θ(kp)〉 ∼= 0 (6.15)

Thus, the mean end-to-end distance obtained from an ensemble of statistical segments
forming an equivalent-freely-jointed chain is given as (Treloar, 1975)

r =
√

N` (6.16)

Gaussian and non-Gaussian models are used to determine the number of config-
urations of a single chain, defined by N and ` (Wang and Guth, 1952). The Gaussian
model given in the following equation is relatively simple, but is only valid for small
deformations.

Θ = Θ0 exp
[
−3

2
N

( r
`

)2
]

(6.17)

A better prediction for the large strain range is achieved using non-Gaussian chain mod-
els (Flory, 1988). In 1952, Kuhn and Grün used non-Gaussian statistics theory to obtain
the probability density in the logarithmic form of a molecular chain composed by N
monomer segments of length ` (Treloar, 1975) as
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Θ = Θ0 exp

[
−N

(
r

N`
β− ln

β

sinh β

)]
(6.18)

where β = L−1(r/N`) is the inverse Langevin function4 with r/N` as the fractional
extension (Treloar, 1954).

Here, adopting the non-Gaussian model, the entropy of an idealized single chain can be
written as

s = k ln Θ = s0 − kN
(

r
N`

β + ln
β

sinh β

)
(6.19)

where s0 = −k ln Θ0 is the entropy value in the unperturbed state.

6.3 Back-stress tensor

When an amorphous polymeric material experiences a stress state that breaks the bonds
holding molecules together, its resistance to deformation increases. Initially, molecules
are randomly entangled; thus, the molecular network can be statistically assumed to be
isotropic. After yielding, short-range molecular motion takes place to accommodate the
imposed deformation, and chains stretch and align smoothly along a preferred direction.
As molecules stretch, a reduction of the configuration entropy, and consequently, an
increase of the internal strength for further deformation occur (Haward and Thackray,
1968). These phenomena can be expressed as kinematic hardening and represented as a
translation of the yield surface F with respect to the origin of the stress space; where a
back-stress tensor Hij indicates the current position of the surface, as shown in Figure 6.4.
The yield function governing the evolution of inelastic deformations can be expressed as

F = J2(σij − Hij)− σ0 ≤ 0 (6.20)

where J2 represents a distance in the stress space dependent on the Cauchy stress and
back-stress tensors, and σ0 is a reference strength.

To model how the amorphous material hardens, it is necessary to find a thermo-
dynamic-based formulation valid for large inelastic deformations and a simple molecular
description of the material by using some molecular chain network theory (e.g., Tomita

4 The Langevin function is defined as L(x) = cosh(x)− 1/x, and according to Cohen (1991), its inverse is
accurately approximated as L−1(z) ≈ z(3− z2)/(1− z2).
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Figure 6.4: Back-stress tensor: representation in stress space and in tension-compression.
The scales coincide on the principal axes (Lemaitre and Chaboche, 1994).

et al., 1997; Tomita, 2000). To represent the relation between hardening and microstruc-
ture development, the back-stress tensor can be associated to the change of free energy
by the so-called Clausius-Duhem inequality, obtained from the second law of thermody-
namics as follows,

HijLkj − ψ̇ ≥ 0 (6.21)

where the equality and inequality hold for reversible and irreversible processes, respec-
tively.

To calculate the back-stress tensor, it is assumed that the Helmholtz free energy ψ

can be expressed in terms of the left Cauchy-Green tensor Bij as a measure of deforma-
tion; thus,

ψ = ψ(Bij) (6.22)

where Bij is given in terms of the deformation gradient tensor Fij as

Bij = FikFjk (6.23)

Taking the time derivative of Equation 6.22, yields

ψ̇ =
∂ψ

∂Bij
Ḃij (6.24)
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The evolution equation of Bij gives that

Ḃij = ḞikFjk + Fik Ḟjk = LikBkj + BikLjk (6.25)

where Lij is the velocity gradient. Thus, if Dij = 1
2(Lij + Lji)

Ḃij = Bik(Lkj + Ljk) = 2BikDkj (6.26)

Because the velocity gradient can be expressed in terms of its symmetric and skew-
symmetric components, the first term of Equation 6.21 can be simplified as

HijLij = Hij(Dij + Wij) = HijDij (6.27)

Using Equation 6.24 and the results from Equations 6.26 and 6.27, the Clausius-Duhem
inequality for a reversible process can be written as

HijDij − 2
∂ψ

∂Bij
BikDkj =

(
Hij − 2

∂ψ

∂Bkj
Bki

)
Dij = 0 (6.28)

from which, the equation of state of the back-stress tensor can be obtained as

Hij = 2Bik
∂ψ

∂Bkj
(6.29)

If the Helmholtz free energy is given as in Equation 6.7a, the back-stress tensor can be
expressed in terms of the end-to-end distance, left Cauchy-Green tensor, and entropy as

Hij = −2T
ds
dr

Bik
∂r

∂Bkj
(6.30)

6.3.1 The eight-chain model

To capture the most important mechanical features of the amorphous material, the ran-
dom chain network is modelled as an assembly of idealized unit cells. Developed by
Arruda and Boyce (1993), one of the most widely used models is the eight-chain model.
In this model, it is assumed that each unit cell is an isotropic cube comprising eight
chains, which are linked at the cube centre and extended individually to each one of the
corners. Figure 6.5 illustrates the problem geometry in the undeformed and deformed
states, stretched in the principal strain frame.

The unstretched network includes chains of length r0 =
√

N` inside a cube of
initial dimension a0. From this geometry
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Figure 6.5: The eight chain network model in (left) the unstretched
and (right) stretched configurations.

a0 =
2
3

√
3r0 = 2

√
N
3

` (6.31)

When the cube is stretched, its edges measure λ1a0, λ2a0, and λ1a0 in the x1, x2, and
x3 directions, respectively. A chain vector from the centre of the cube to a corner has a
length

r =
a0

2
(λ2

1 + λ2
2 + λ2

3)
1/2 =

a0

2

√
II (6.32)

where II = λ2
1 + λ2

2 + λ2
3 = B2

ii is the left Cauchy-Green stretch tensor first invariant.

Substituting the unstretched length and Equation 6.31 into 6.32 gives the chain
length in terms of the number of links, the chain bond length, and the stretch first invari-
ant

r =
√

N
3

II` (6.33)

The eight-chain model is symmetric with respect to the three principal axes; there-
fore, the chains are stretched at the same extension ratio,

λ =
r
r0

=
√

II

3
(6.34)

The back stress tensor Hij is derived from Equation 6.30 by calculating the first
partial derivative of the end-to-end distance with respect to the left Cauchy-Green stretch
tensor as
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∂r
∂Bij

=
∂r
∂λ

∂λ

∂II

∂II

∂Bij
(6.35)

where

∂r
∂λ

= r0 =
√

N`

∂λ

∂II
=

1
6λ

∂II

∂Bij
= Iij

Then, if

ds
dr

= −k
β

`
(6.36)

and assuming that the random system exhibits a thermodynamical entropy correspond-
ing to a chain entropy ensemble; i.e., ssyst = ∑ s = ns, the back-stress tensor for the
network is expressed as

Hij = −2nT
ds
dr

Bik
∂r

∂Bkj
=

nkT
3

√
3N
II
L−1

(√
II

3N

)
Bij (6.37)

where n is the number of chains per unit volume (Arruda et al., 1995).

By definition, the deviatoric back-stress tensor is

H′
ij = Hij − 1

3 Hkk Iij (6.38)

Therefore,

H′
ij =

CR

3

√
3N
II
L−1

(√
II

3N

)
(Bij − 1

3 II Iij) (6.39)

Equation 6.39 provides the back-stress tensor of the network subjected to a deformation
represented by Bij, where CR = nkT is the rubbery shear modulus5.

5The rubbery shear modulus is related to the number average molecular weight MN through the expression
CR = ρRT/MN , where ρ and R are the density of the amorphous phase and gas constant, respectively
(Treloar, 1975).
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Inactive 
tie-molecule

Active 
tie-molecule

Undeformed state Deformed state

(a) (b) (c)

Figure 6.6: Idealized deformation mechanisms in amorphous
polyethylene (adapted from Lustiger and Markham, 1983).

6.4 Proposed damage model

Using Continuum Damage Mechanics, an isotropic damage variable can provide a ratio-
nal representation of the degradation progress taking place in the amorphous microstruc-
ture. Damage in amorphous polyethylene can be seen as the appearance of material dis-
continuities which decrease the effective areas that transmit internal forces. Tie-molecules
play an important role in connecting neighbouring crystallites and in transmitting inter-
nal loads (e.g., Takayanagi et al., 2003; Nitta and Takayanagi, 2003). However, large
deformations can lower the cohesive forces that maintain tie-molecules attached to the
crystalline material. Once a tie-molecule becomes inactive, it binds the lamellar material
and does not participate directly in the stress transmittance to rise hardening (Takayanagi
et al., 2003). This mechanism raises stresses in the still active tie-molecules, facilitating
the further disentanglement and pull-out of the network anchors and contributing signif-
icantly to the degradation of the mechanical behaviour of the material.
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6.4.1 Formulation

Based on the concept of the so-called damage variable, the number density6 of active
and inactive tie-molecules can be used to estimate the evolution of the fraction of dis-
continuities in the amorphous material. To illustrate the damage process in amorphous
polyethylene, consider the inclusion comprising amorphous and crystalline materials
shown in Figure 6.6a. When the inclusion deforms by interlamellar separation, the par-
tially stretched chain segments within the amorphous phase start to align parallel to
the loading direction, as given in Figure 6.6b. Once the chain segments reach their full
extended lengths, they lead to lamella fragmentation (not shown), cavitation, and detach-
ment of crystalline-amorphous interface, as illustrated in Figure 6.6c (e.g., Kazmierczak
et al., 2005; Argon et al., 2005).

In the reference configuration, the initial number density of tie-molecules is de-
fined as Λ. In the deformed configuration at some time t, the number density of inactive
tie-molecules (molecules unable to carry load) is expressed as ΛI . Then, the isotropic
damage variable representing the density of discontinuities in the material can be writ-
ten as

Ω =
Inactive tie-molecule number density
Initial tie-molecule number density

=
ΛI

Λ
(6.40)

Furthermore, if Λ̃ represents the remaining number density of tie-molecules at time t;
i.e., Λ̃ = Λ−ΛI , the damage variable can be rewritten as

Ω = 1− Λ̃
Λ

(6.41)

This damage measure takes magnitudes in the range from zero to unity; zero in the case
of no damage and unity for a completely damaged material.

Using the concept of effective stress and the proposed isotropic damage param-
eter, a mapping between the deviatoric Cauchy stress Sij and the effective stress S̃ij is
introduced as

S̃ij =
Sij

1−Ω
(6.42)

6The number density refers to the amount of molecules per volume
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6.4.2 Damage-coupled flow rule

To describe the yield condition, a shifted stress deviator SH
ij (Xuejun et al., 2001) is intro-

duced as

SH
ij = S̃ij − H′

ij (6.43)

where S̃ij is the effective stress tensor as defined in Equation 6.42, and H′
ij is the deviatoric

back-stress tensor describing the anisotropic resistance to plastic deformation (kinematic
hardening), respectively.

The plastic deformation rate is given by the normality law (Lemaitre and Chaboche,
1994)

Dij = α̇
∂F
∂σij

(6.44)

where α̇ is an arbitrary and a positive proportionality factor called the plastic multiplier,
and F is the yield function, given in terms of an equivalent stress σeq and a reference
strength σ0 as

F = F(σeq, σ0) = 0 (6.45)

If the yield surface is based on the von Mises criterion, i.e.,

F = σeq − σ0 (6.46)

the equivalent stress σeq can be defined as (Lemaitre, 1996)

σeq = J2(SH
ij ) =

(
3
2 SH

ij SH
ij

) 1
2 =

[
3
2

(
Sij

1−Ω
− H′

ij

) (
Sij

1−Ω
− H′

ij

)] 1
2

(6.47)

Therefore, the evolution of the yield surface can be written as

∂F
∂Sij

=
3

2(1−Ω)

Sij

1−Ω
− H′

ij

σeq
(6.48)

Likewise, it is postulated that the accumulated plastic strain rate

ṗ =
√

2
3 DijDij (6.49)
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is related to the plastic multiplier as (Lemaitre, 1996)

ṗ =
α̇

1−Ω
(6.50)

Using a power-law relationship, the accumulated plastic strain rate can be written
as a function of the equivalent stress as

ṗ = ε̇0

(
σeq

σ0

)n
(6.51)

where ε̇0 is a reference strain rate, σ0 is the amorphous material strength, and n is the
rate exponent.

Substituting Equations 6.48, 6.50, and 6.51 into 6.44, the constitutive equation for
the inelastic deformations in the amorphous material is given as

Dij = 3
2 ε̇0

(
σeq

σ0

)n−1
Sij

1−Ω
− H′

ij

σ0
(6.52)

6.4.3 Damage evolution law

A thermodynamics-based evolution law for damage is introduced to account for the
material damage accumulation. The force f required to stretch a single molecule from
its characteristic end-to-end length r to a deformed length r + dr is given in terms of the
amount of work w done (strain energy) as

f =
dw
dr

(6.53)

According to Equation 6.7a, the work done equals the increase in free energy of the mol-
ecule; thus, the force can be given in terms of entropy as

f =
dψ

dr
= −T

ds
dr

(6.54)

Therefore, postulating a relationship between the strain energy and the internal loads
required to overcome the molecular cohesion, damage can be described in terms of an
energy function, so the material is modelled as a continuum. Thus, using the eight-chain
model derived by Boyce and Arruda (2000), the required function can be expressed as

W = wnchains = CRN

[
β

√
II

3N
+ ln

β

sinh β

]
(6.55)
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Figure 6.7: Amorphous phase damage evolution for two different values of Ω∞ and α.

with nchains being the number of chains per unit volume.

The proposed evolution law for damage follows the formulation used by Fotiu
et al. (1990), which is of the form

Ω = Ω∞[1− exp(−αW2)] (6.56)

where Ω∞ and α are material parameters describing the asymptotic value of damage and
how fast damage evolves, respectively. Figure 6.7 illustrates graphically the proposed
relationship between Ω and W for two sets of material parameters.

6.5 Semicrystalline model

Polyethylene is a material with a complex microstructure in which neither amorphous
nor crystalline phase exists in the pure state. To model the mechanical behaviour, the
semicrystalline material morphology is simplified as a collection of inclusions compris-
ing the two phases by their characteristic average volume fractions. In the spatial ar-
rangement, each inclusion consists of crystalline material lying in a thin lamella attached
to an amorphous layer, as illustrated in Figure 6.8. The interface region interconnecting
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Figure 6.8: Schematic illustration of a two-phase composite inclusion

the two phases is the plane through which loads are carried and transferred by tie mol-
ecules. As shown in Figure 6.8, each composite inclusion is characterized by its crystalline-
amorphous interface normal ni, the crystalline lattice orientation; ai, bi, and ci, and the
crystalline and amorphous volume fractions; χc and χa (χa = 1 − χc). In the present
formulation, it is assumed that the constitutive models containing complete informa-
tion about the mechanical behaviour of each constituent are known (see Sections 4.3 and
6.4). After modelling the two materials independently, the inclusion behaviour is found
by applying some compatibility and equilibrium restrictions along the interface plane.
Then, by considering uniform stresses everywhere and suitable boundary conditions in
the aggregate, the behaviour of the material on the large scale can be determined.

In summary, the constitutive equations used to describe the mechanical behaviour
of the crystalline and amorphous phases of the material are:

Crystalline phase

1. Material law

Dij = MijklS∗lk (6.57)

where Mijkl is the fourth-order compliance tensor given by

Mijkl = γ̇0 ∑α

1
(1−Ωα)gα

∣∣∣∣
S∗mnRα

nm
(1−Ωα)gα

∣∣∣∣
nc−1

Rα
ijR

α
kl (6.58)

2. Damage evolution law
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Ω̇α = Ω̇0

∣∣∣∣
τα

(1−Ωα)gα

∣∣∣∣
m

(6.59)

3. Spin

Wij = W∗
ij + RWp

ij (6.60)

where

R = tanh(ζΩ̄) (6.61)

Amorphous phase

1. Material law

Dij = 3
2 ε̇0

(
σeq

σ0

)na−1
Sij

1−Ω
− H′

ij

σ0
(6.62)

2. Hardening law

H′
ij =

CR

3

√
3N
II
L−1

(√
II

3N

)
(Bij − 1

3 II Iij) (6.63)

3. Damage evolution law

Ω = Ω∞[1− exp(−αW2)] (6.64)

6.6 Inclusion volume-averaging

Let Li
ij, Lc

ij, and La
ij be the velocity gradients for the inclusion and for the crystalline and

amorphous phases, respectively. The velocity gradient of the inclusion can be expressed
as (Lee et al., 1993b)

Li
ij = χcLc

ij + (1− χc)La
ij (6.65)

If Di
ij and W i

ij are the symmetric and skew-symmetric components of the velocity gradient
for the inclusion, the inclusion deformation rate can be written as (Lee et al., 1993a)

Di
ij = sym(Li

ij) = χcDc
ij + (1− χc)Da

ij (6.66)
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and the inclusion spin as

W i
ij = skw(Li

ij) = χcWc
ij + (1− χc)Wa

ij (6.67)

Similarly, the inclusion Cauchy stress is given as (van Dommelen et al., 2003b)

σi
ij = χcσc

ij + (1− χc)σa
ij (6.68)

where the deviatoric part can be defined as (Lee et al., 1993a,b)

Si
ij = χcSc

ij + (1− χc)Sa
ij (6.69)

6.6.1 Interface conditions

On the interface between the amorphous and crystalline layers, kinematical coupling is
maintained by imposing compatibility on the velocity gradients. Assuming no slippage
at the crystalline-amorphous interface, the first interface compatibility condition can be
written as

Li
ijti = La

ijti = Lc
ijti (6.70)

where ti is an arbitrary vector on the interface plane, such that tini = 0. Consequently,
from Equations 6.65 and 6.70, the continuity conditions expressed in components relative
to the local coordinate system can be written as

Li
αβ = La

αβ = Lc
αβ (6.71a)

Li
3β = La

3β = Lc
3β (6.71b)

where the subscripts α and β range from 1 to 2 (In-plane components). Then, from
Equation 6.71a,

Di
αβ = Da

αβ = Dc
αβ (6.72a)

W i
12 = Wa

12 = Wc
12 (6.72b)

and assuming incompressibility in both phases; i.e., Da
ii = 0 and Dc

ii = 0,

Di
33 = Da

33 = Dc
33 (6.73)
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The possible discontinuous kinematic components are related by the inclusion-
averaged relations

Li
α3 = χcLc

α3 + (1− χc)La
α3 (6.74)

where the deformation rate components are given as

Di
α3 = Di

3α = χcDc
3α + (1− χc)Da

3α (6.75)

and the spin rate components as

−W i
α3 = W i

3α = χcWc
3α + (1− χc)Wa

3α (6.76)

From Equation 6.71b, it is obtained that

∆D3α = Da
3α − Dc

3α = Wa
3α −Wc

3α (6.77)

Thus, substituting Equation 6.77 into 6.76 and after some algebra, the remainder of the
conditions are written as

Wc
3α = W i

3α − (1− χc)∆D3α (6.78a)

Wa
3α = W i

3α + χc∆D3α (6.78b)

The second interface compatibility condition enforces traction equilibrium across
the interface, which is written as

σi
ijni = σa

ijni = σc
ijni (6.79)

As a result,

σi
3j = σa

3j = σc
3j (6.80)

with j ranging from 1 to 3. From Equation 6.80, the requirement of shear stress across the
interface can be expressed as

Si
3α = Sa

3α = Sc
3α (6.81)

and the restraint of normal stress as

Sa
33 + pa = Sc

33 + pc (6.82)

where pa and pc represent pressure in the amorphous and crystalline phases, respectively.
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6.6.2 Inclusion interaction law

Following Lee and coworkers (1993b), a material point is considered an aggregate of
composite inclusions subject to boundary conditions consistent with macroscopically ho-
mogeneous fields. To relate the volume-averaged behaviour of each inclusion to the
imposed boundary conditions, a local-global interaction law is formulated. The macro-
scopic deviatoric Cauchy stress, macroscopic deformation rate, and macroscopic spin are
represented as S̄ij, D̄ij, and W̄ij, respectively.

The Sachs model states that the macroscopic stress is equal to the stress in each
inclusion; hence, the inclusion deviatoric stress is approximated as

Si
ij = S̄ij (6.83)

Similarly, the inclusion spin is equalled to the macroscopic spin; consequently,

W i
ij = W̄ij (6.84)

To complete the interaction law, the macroscopic deformation rate is assumed
equal to the volume average deformation rate; therefore,

D̄ij = 〈Di
ij〉 = ∑i χiDi

ij (6.85)

where 〈•〉 denotes the volume average over the total number of inclusions Ni, and χi

represents the volume fraction of the ith inclusion.

The proposed model satisfies global equilibrium and compatibility trivially, be-
cause Si

ij = S̄ij and W i
ij = W̄ij , but local compatibility is not addressed. However, com-

parisons done by Lee et al. (1993b) between the Sachs model and other hybrid models
suggest that the Sachs model responses do not differ significantly from those obtained
with other models.

6.7 Numerical results and discussion

The goal of this section is to describe the overall mechanical behaviour of a semicrysta-
lline polyethylene material under uniaxial tension and simple shear. A distribution of
100 inclusions of equal volume fractions (χi=1.0) is considered in this analysis. The ori-
entation of each inclusion is numerically generated in a random manner by using Euler
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angles (See details in Chapter 7). All the inclusions are assumed to have the same mate-
rial properties, which are summarized in Table 6.1 for uniaxial tension and in Table 6.3 for
simple shear. For the given loading conditions, two different approaches are analyzed.
The first approach, identified as Model A, assumes damage occurs only in the crystalline
phase; i.e., degradation of the amorphous phase is ignored. The second approach, Model
B, considers the effect of damage on the mechanical behaviour of both phases. A com-
parison between Lee et al.’s (1993a) and Model B is shown in Appendix B. The slip systems
of the crystalline phase have shear strengths whose values are taken from Lee et al.
(1993a,b), for a reference resolved shear strength of 8.0 MPa, and presented in Table 6.2.
The model parameters are identified to describe as close as possible the experimental re-
sults reported by G‘Sell and Jonas (1981) for a sample of high density polyethylene tested
at 21◦C under uniaxial tension and by G‘Sell et al. (1983) for a simple shear case tested at
23◦C.

Table 6.1: Material parameters for the simulations under uniaxial tension.

Parameter Model Model Lee et al.’s
A B model

Crystalline phase

Strain rate sensitivity, nc 5.0 5.0 9.0

Reference strain rate, γ̇0 [s−1] 0.001 0.001 0.001

Damage rate sensitivity, m 2.0 2.0 NA

Reference damage rate, Ω̇0 [MPa−1] 0.0003 0.00025 NA

Spin release, ζ 6.0 8.0 NA

Crystallinity, χc 70 70 70

Amorphous phase

Strain rate sensitivity, na 5.0 5.0 9.0

Reference strain rate, γ̇0 or ε̇0 [s−1] 0.001 0.001 0.001

Strength τ0 or σ0, [MPa] 6.4 6.4 8.0

Number of rigid links, N 50 50 49

Rubbery shear modulus, CR 5.0 4.0 1.6

Critical damage, Ω∞ NA 0.8 NA

Damage rate, α NA 0.000005 NA
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Table 6.2: Resolved shear strengths.

Slip system gα[MPa]

(100)[001] 8.0
(010)[001] 20.0
{110}〈001〉 20.0
(100)[010] 13.3
(010)[100] 20.0
{110}〈11̄0〉 19.5

6.7.1 Uniaxial tension case

The aim of the first example is to demonstrate the capability of the model to describe the
stress-strain behaviour and texture evolution of a semicrystalline polyethylene material.
The numerical test is carried out under constant velocity gradient,

L̄ij = γ̇



−0.5 0.0 0.0
0.0 1.0 0.0
0.0 0.0 −0.5




where γ̇ is a macroscopic strain rate equal to 0.001 s−1.

The influence of damage on the overall mechanical behaviour is analyzed. As a
first approach, damage only on the crystallographic slip systems is considered in the
formulation (Model A). Therefore, the constitutive equations for the amorphous phase
are based on the original phenomenological model proposed by Lee et al. (1993a,b). The
damage-coupled model for the crystalline phase is described by Equations 6.57 to 6.61. On
the other hand, Model B is used to describe damage in both crystalline and amorphous
phases. Figures 6.9 to 6.19 show the responses obtained with these two approaches.

The simulation results are compared with two viscoplastic models (Lee et al.,
1993b; Nikolov et al., 2006) and experimental data (G‘Sell and Jonas, 1981), as illustrated
in Figures 6.9 and 6.10. It is seen that the predictions are in agreement with the exper-
imental data and that the proposed models are able not only to describe larger strains
than the models proposed by Lee et al. (1993a) and Nikolov et al. (2006), but also to rep-
resent the complete range of deformations. When comparing Figures 6.9 and 6.10, both
models give similar stress-strain response; however, the second model (Model B) predicts
slightly lower stress values at the early states of deformation (below 0.25).
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Figures 6.11 and 6.12 show the predicted deformation rate ratio D̂a/D̂c versus
equivalent strain for Model A and Model B, respectively. The discrete points represent
the results from Lee et al.’s (1993a; 1993b) models. As seen, for deformations below 0.5,
both proposed models determine that the amorphous phase deforms more rapidly than
the crystalline one; nevertheless, Model B predicts approximately a 10 times larger initial
ratio than Model A. For deformations above 0.5, the ratios exhibit values relatively close
to unity, while Lee et al.’s models estimate ratio values between 1.5 and 2.9, and 2.9
and 1.1, respectively. Likewise, Figures 6.13 and 6.14 show a stress comparison between
the numerical results of the proposed and the previous models. It can be seen that, as
in Lee et al.’s formulation, the stress ratio σ̂a/σ̂c increases as deformation progresses;
however, the most noteworthy feature in the proposed models is that the ratio evolves
much faster. This peculiarity can be attributed to the fact that damage lowers the load-
carrying capacity of the crystallographic slip systems as deformation increases.

The evolution of the maximum damage in the eight slip system is shown in Fig-
ures 6.15 and 6.16. It is found that damage progresses more rapidly when no damage
of the amorphous phase is postulated. For both models, the larger damage values are
displayed in the (010)[001], (110)[001], and (11̄0)[001] planes, all of them corresponding
to chain slip systems. The lower damage value is observed in the (100)[001] systems.
Figure 6.17 shows the evolution of the maximum damage in the amorphous phase, ob-
tained from the second approach model. As can be seen, at the beginning, damage
evolves moderately with deformation; then, it rises sharply once deformation of the
amorphous phase is limited due to the molecule reorientation.

The pole figures of the (100) and (001) planes as well as the morphological tex-
tures corresponding to a selection of total deformations are represented in Figures 6.18
and 6.19. The projections (001) and (100) are shown perpendicular to the loading direc-
tion; transverse directions are referred as RD. The numerical crystallographic textures
(Figures 6.18 and 6.19) are in good agreement with the measured pole figures from a
sample subjected to a tensile strain of 2.1 and allowed to undergo natural relaxation for
24 hours to a final strain of 1.8, as reported by Li et al. (2001) in Figure 6.20. It is seen
that as deformation progresses, a texture develops and the crystalline material becomes
preferentially oriented relative to the tensile axis. In this case, morphological (interface)
planes approach progressively the radial (transverse) directions. Figures 6.21 and 6.22
show the textures obtained numerically by Lee et al. (1993a) and Nikolov et al. (2006),
respectively, for comparative purposes.
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Figure 6.9: Equivalent stress versus equivalent strain behaviour of
semicrystalline polyethylene under uniaxial tension for Model A

(non-degradable amorphous phase model).

Figure 6.10: Equivalent stress versus equivalent strain behaviour of
semicrystalline polyethylene under uniaxial tension for Model B

(both phases degradable model).
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Figure 6.11: Deformation rate ratio versus equivalent strain
for Model A (non-degradable amorphous phase model).

Figure 6.12: Deformation rate ratio versus equivalent strain
for Model B (both phases degradable model).
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Figure 6.13: Equivalent stress ratio versus equivalent strain
for Model A (non-degradable amorphous phase model).

Figure 6.14: Equivalent stress ratio versus equivalent strain
for Model B (both phases degradable model).
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Figure 6.15: Maximum damage versus equivalent strain
for the eight slip systems (Model A).

Figure 6.16: Maximum damage versus equivalent strain
for the eight slip systems (Model B).
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Figure 6.17: Maximum damage versus equivalent strain
for the amorphous phase (Model B).
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Figure 6.18: Pole figures of the (001) and (100) lattice directions and the
morphological texture at equivalent strains of 0.5, 1.0, and 2.0 (Model A)

The loading direction is perpendicular to the paper plane.
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Figure 6.19: Pole figures of the (001) and (100) lattice directions and of the
morphological textures at the equivalent strains of 0.5, 1.0, and 1.95 (Model B)

The loading direction is perpendicular to the paper plane.
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Figure 6.20: Experimental pole figures of the (001) and (100) lattice directions
at an equivalent strain of 2.1, as reported by Li et al. (2001)

Figure 6.21: Pole figures of the (001) and (100) lattice directions and of the
morphological texture at an equivalent strain of 1.0,

as predicted by Lee et al.’s (1993b) model.

Figure 6.22: Pole figures of the (001) and (100) lattice directions
at the equivalent strains of 0.8 and 2.1, as predicted by

Nikolov et al.’s (2006) model.
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6.7.2 Simple shear

The second case analyzed corresponds to simple shear, where the velocity gradient along
the loading path is given as

L̄ij = γ̇




0.0 1.0 0.0
0.0 0.0 0.0
0.0 0.0 0.0




and where γ̇ is equal to 0.003 s−1. Table 6.3 shows the material parameters used in the
examples for the two modelling approaches.

The stress-strain curves obtained by using the first and second approach models
are depicted in Figures 6.23 and 6.24. The solid line corresponds to the best fit of the
models to the experimental data presented by G‘Sell et al. (1983). Likewise, these figures
also show the responses obtained by Lee et al. (1993b) and Nikolov et al. (2006). From the
figure, it is clear that the proposed and the other two viscoplastic models overestimate
the stress. For instance, the proposed models are in good agreement with the experi-
mental curve up to a deformation of 0.75; after that straining, the stress rises and the
numerical curve moves off the experimental one. Nevertheless, among the three numer-
ical predictions, the proposed damage-coupled model shows a better consistency with
the experimental observations. As suggested by Nikolov et al. (2006), the differences be-
tween the numerical and experimental behaviour can be attributed to the lack of accuracy
of the data obtained from a simple shear test in which the normal stress components are
not considered. It is likely that normal stress effects be more pronounced at very large
displacements.

Figure 6.25 shows the evolution of the maximum damage in the slip systems. As
seen in the figure, one of the most significant characteristics is the slope discontinuities
along the different damage curves. According to the model, deformation induces damage
with equally importance in the chain and transverse slip systems. Damage evolution
is lower in the (010)[100], (100)[010], and (100)[001] systems. Same conclusions can be
drawn for Figure 6.26, which illustrates the predictions from Model B.

The predicted pole figures are shown in Figures 6.28 and 6.29, and compared with
the experimental textures obtained by Bartczak et al. (1994), as illustrated in Figure 6.30.
In simple shear, the model predicts that the (001) and (100) axes align towards the shear
direction and plane, respectively. However, as deformation proceeds, the texture patterns
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do not become as concentrated as the ones predicted by Lee et al. and Nikolov et al.
(Figures 6.31 and 6.32). As expected, comparison of the damage-coupled models with
Lee et al.’s one shows that the morphological textures largely agree.

In simple shear, Model B predicts the maximum damage evolution for the amor-
phous phase, as illustrated in Figure 6.27. As in the uniaxial tension case, a moderate
damage increment is observed at low deformations; however, damage does not evolve at
large deformations as sharply as in Figure 6.17.

Table 6.3: Material parameters for the simulations under simple shear.

Parameter Model Model
A B

Crystalline phase

Strain rate sensitivity, nc 5.0 5.0

Reference strain rate, γ̇0 [s−1] 0.001 0.001

Damage rate sensitivity, m 2.0 2.0

Reference damage rate, Ω̇0 [MPa−1] 0.0003 0.00035

Spin release, ζ 2.0 2.0

Crystallinity, χc 70 70

Amorphous phase

Strain rate sensitivity, na 5.0 5.0

Reference strain rate, α̇0 or ε̇0 [s−1] 0.001 0.001

Strength τ0 or σ0, [MPa] 6.4 6.4

Number of rigid links, N 50 50

Rubbery shear modulus, CR 1.5 1.5

Critical damage, Ω∞ NA 1.0

Damage rate, α NA 0.00005
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Figure 6.23: Equivalent stress versus equivalent strain behaviour of
semicrystalline polyethylene under simple shear for Model A

(non-degradable amorphous phase model).

Figure 6.24: Equivalent stress versus equivalent strain behaviour of
semicrystalline polyethylene under simple shear for Model B

(both phases degradable model).
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Figure 6.25: Maximum damage versus equivalent strain
for the eight slip systems (Model A).

Figure 6.26: Maximum damage versus equivalent strain
for the eight slip systems (Model B).
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Figure 6.27: Maximum damage versus equivalent strain
for the amorphous phase (Model B).
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Figure 6.28: Pole figures of the (001) and (100) lattice directions and of the
morphological textures at the equivalent strains of 1.04, 1.73, and 2.48 (Model A).

The loading direction is indicated by the arrows.
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Figure 6.29: Pole figures of the (001) and (100) lattice directions and of the
morphological textures at the equivalent strains of 1.04, 1.73, and 2.05 (Model B).
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Figure 6.30: Experimental pole figures of the (001) and (100) lattice directions
at the equivalent strain of 1.04, 1.73, and 2.48, as reported by Bartczak et al. (1994).

Figure 6.31: Pole figures of the (001) and (100) lattice directions and of the
morphological texture at an equivalent strain of 2.0,

as predicted by Lee et al.’s (1993b) model.
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Figure 6.32: Pole figures of the (001) and (100) lattice directions
at the equivalent strains of 1.04 and 1.73, as predicted by

Nikolov et al.’s (2006) model.



CHAPTER

SEVEN

Computational procedure for modelling
of semicrystalline polyethylene

7.1 Introduction

This chapter is intended to present the numerical implementation of the damage-coupled
model for semicrystalline polyethylene proposed previously. Organized into two sec-
tions, the chapter outlines a comprehensive description of (i) how the constitutive equa-
tions describing the mechanical behaviour of the inclusion constituents are resolved (local
problem) and (ii) how the macroscopic stress-strain response is related to the microscopic
behaviour of the aggregate of inclusions (global problem). In the second section, some
numerical examples showing the influence of the different model parameters on the pre-
dictions for stresses, damage, and texture evolution are presented and discussed.

7.2 Solution strategy

The computation of the stress state involves a twice-iterative scheme. The first iteration
occurs in the calculation of the local stress state of each one of the inclusion constituents;
the amorphous and crystalline phases. The second iteration takes place to determine the
stress state that satisfies overall equilibrium in the aggregate at time tn+1. This last algo-
rithm uses a constant time increment, ∆t, where ∆t ≡ tn+1 − tn. For the local problem,
the equation set to be solved at time tn+1 is

Sa
ij = Sa

ij(S̄ij) (7.1)

Sc
ij = Sc

ij(S̄ij) (7.2)

127
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Da
ij =

3
2

ε̇0

(
σeq

σ0

)na−1
Sa

ij

1−Ω
− H′

ij

σ0
(7.3)

Dc
ij = MijklSc

lk (7.4)

where S̄ij is the global stress state, and Sa
ij, Sc

ij, Da
ij, and Dc

ij are the local stresses and
deformation rates for the amorphous and crystalline phases, respectively.

Once the local stresses and deformation rates are estimated, the equations to consider for
the global problem are

S̄ij = S̄ij(Sa
ij, Sc

ij) (7.5)

D̄ij = D̄ij(Da
ij, Dc

ij) (7.6)

7.2.1 Inclusion orientations

As illustrated in Figure 7.1, to characterize an inclusion, a set of two orthogonal coordinate
systems is specified relative to a fixed coordinate system X1X2X3. Let xi

1xi
2xi

3 and xc
1xc

2xc
3

be coordinate systems describing the inclusion and crystal orientations at any time t,
respectively. Using the approach adopted in Section 5.2.2, the rotation of the inclusion
coordinate system is given by three Eulerian angles: ϕ, θ, and ψ. This permits a second-
order transformation tensor [Qi] to be written as follows1:

[Qi] =




cos ϕ cos ψ− sin ϕ cos θ sin ψ sin ϕ cos ψ + cos ϕ cos θ sin ψ sin θ sin ψ

− cos ϕ sin ψ− sin ϕ cos θ cos ψ − sin ϕ sin ψ + cos ϕ cos θ cos ψ sin θ cos ψ

sin ϕ sin θ − cos ϕ sin θ cos θ




(7.7)

Then, to describe crystal orientations, the corresponding transformation tensors [Qc] are
defined following the steps:

1. Generate four independent random numbers ri (i=1,...,4) uniformly distributed on
[-1,1]

1As in Chapter 4, [•] and {•} are used to indicate the standard matrix and vector notations, respectively.
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Figure 7.1: Global, inclusion, and crystal coordinate systems.

2. Define the orientation of the vector {c} describing the molecule orientation in the
crystalline phase

c1 = r1

√
1− cos2 α, c2 =

√
1− cos2 α− n2

1, and c3 = cos α (7.8)

where α is the angle between the chain direction c and plane normal n, as shown in
Figure 7.1

3. Define an auxiliary vector with an orientation given by the random numbers ri

(i=2,3,4)

{u} = {u1, u2, u3}T = {r2, r3, r4}T (7.9)

4. Define the vectors {a} and {b} as

{a} =
{c} × {u}
|{c} × {u}| and {b} =

{c} × {a}
|{c} × {a}| (7.10)

5. Compute the transformation tensor representing the crystal orientation

[Qc] =



{a}T

{b}T

{c}T


 =




a1 a2 a3

b1 b2 b3

c1 c2 c3


 =




Q11 Q12 Q13

Q21 Q22 Q23

Q31 Q32 Q33


 (7.11)

6. Repeat steps 1 to 5 to generate the remainder of crystal orientations
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Once reduced to five-dimensional vectors, stresses {S} and deformation rates {D}
are supposed to be transformed under a change in coordinate system as

{D′} = [Q̃]{D} (7.12)

where [Q̃] is a 5×5 reduced transformation matrix given as a function of the rotation
matrix components of Equation 7.11 as

[Q̃] =




1
2(Q11 −Q21 −Q12 + Q22)√

3
6 (−Q11 −Q21 + 2Q31 + Q12 + Q22 − 2Q32)√

2
2 (Q41 −Q42)√
2

2 (Q51 −Q52)√
2

2 (Q61 −Q62)
√

3
6 (−Q11 + Q21 −Q12 + Q22 + 2Q13 − 2Q23)

1
6(Q11 + Q21 − 2Q31 + Q12 + Q22 − 2Q32 − 2Q13 − 2Q23 + 4Q33)√

6
6 (−Q41 −Q42 + 2Q43)√
6

6 (−Q51 −Q52 + 2Q53)√
6

6 (−Q61 −Q62 + 2Q63)
√

2
2 (Q14 −Q24)

√
2

2 (Q15 −Q25)
√

2
2 (Q16 −Q26)√

6
6 (−Q14 −Q24 + 2Q34)

√
6

6 (−Q15 −Q25 + 2Q35)
√

6
6 (−Q16 −Q26 + 2Q36)

Q44 Q45 Q46

Q54 Q55 Q56

Q64 Q65 Q66




(7.13)

7.2.2 Local iterative procedure

The local problem object is to determine the stress state of each one of the inclusions
in the aggregate. To do that, a Newton-Raphson iterative approach is used to solve
the constitutive equations governing the behaviour of the amorphous and crystalline
phases. After enforcing traction equilibrium across the amorphous-crystalline interface,
the principal unknowns of the local problem are the Sc

11, Sc
22, and Sc

12 stress components
of the crystalline phase. For each iteration, internal variables are assumed to remain
invariant and chosen to be at the values of the previous time step. Only local stresses are
updated by following the next iterative algorithm:



7.2 Solution strategy 131

1. Rotate the global stress into the inclusion coordinate system,

{S̄}i = [Q̃i]{S̄} (7.14)

2. Guess an initial trial stress,

{Sg} = {Sg
1 , Sg

2 , Sg
3}T (7.15)

3. Compute the stress state for the amorphous and crystalline phases,

{Sa} =
{

1
1− f c (S̄i

1 − f cSg
1),

1
1− f c (S̄i

2 − f cSg
2), S̄i

3, S̄i
4,

1
1− f c (S̄i

5 − f cSg
3)

}T

(7.16)

{Sc}i = {Sg
1 , Sg

2 , S̄i
3, S̄i

4, Sg
3}T (7.17)

4. Compute the amorphous deformation rate {Da} following the steps given in Sec-
tion 7.2.3

5. Compute the crystalline deformation rate {Dc} according to the steps given in Sec-
tion 7.2.4

6. Evaluate the equation system residual,




H1 =
√

2
2 (Dc

1 − Da
1)−

√
6

6 (Dc
2 − Da

2)
H2 =

√
2

2 (Dc
1 − Da

1) +
√

6
6 (Dc

2 − Da
2)

H3 = Dc
5 − Da

5

(7.18)

7. Compute the Jacobian matrix,

[ J ]k = ∂{H}k
/

∂{Sg}k (7.19)

8. Solve the equation system,

[ J ]k{∆Sg} = −{H}k, (7.20)

where {∆Sg} is the stress increment between iterative steps k and k + 1

9. Compute the new residual,

{H}k+1 = {H}k + [ J ]k{∆Sg} (7.21)

10. Update the reduced stress,

{Sg}k+1 = {Sg}k + {∆Sg} (7.22)
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11. Repeat steps 3 to 10 until the norm of the residual ‖{H}k+1‖ becomes smaller than
the given tolerance

12. Compute the inclusion deformation rate and stress states once local convergence is
reached, i.e.,

{Di} = (1− χc){Da}+ χc{Dc} (7.23a)

{Si} = (1− χc){Sa}+ χc{Sc} (7.23b)

13. Repeat above steps to calculate the local deformation and stress states for the re-
mainder of inclusions

7.2.3 Amorphous phase modelling

The following steps describe how deformation rates as well as back stress tensors and
damage evolution are determined. The constitutive equations for the amorphous phase
are determined in the inclusion coordinate system xi

1xi
2xi

3.

Back stress tensor and damage updating

1. Rotate the deformation gradient tensor from the global into the inclusion coordinate
system

[Fa] = [Qi][Fa][Qi]T (7.24)

2. Compute the left Cauchy-Green deformation tensor

[Ba] = [Fa] · [Fa]T (7.25)

3. Vectorize the left Cauchy-Green deformation tensor

[Ba] → {Ba}6 (7.26)

4. Compute the first invariant

I1 = Ba
1 + Ba

2 + Ba
3 (7.27)

5. Compute the Langevin function

L−1
(√

I1/3N
)

(7.28)
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6. Compute the deviatoric back stress tensor

{H′} =
CR

3

√
3N
II
L−1

(√
II

3N

)
({Ba} − 1

3 II{I}) (7.29)

7. Compute the strain energy,

W = CRN

[
β

√
II

3N
+ ln

β

sinh β

]
(7.30)

8. Compute damage value for the amorphous phase,

Ω = Ω∞[1− exp(−αW2)] (7.31)

Stress-deformation rate relationship

1. Compute the equivalent stress

σeq =

√√√√3
2

( {Sa}
1−Ω

− {H′}
)T

·
( {Sa}

1−Ω
− {H′}

)
(7.32)

2. Compute the amorphous deformation rate

{Da} =
3
2

ε̇0

(
σeq

σ0

)m−1
{Sa}

1−Ω
− {H′}

σ0
(7.33)

7.2.4 Crystalline phase modelling

The stress-deformation rate relationship and damage evolution for the crystalline phase
are obtained from the damage-coupled constitutive model proposed, assuming a defor-
mation driven case. The related equations are solved in the crystal coordinate system
xc

1xc
2xc

3.

Stress-deformation rate relationship

1. Rotate the crystal stress tensor from the inclusion to the crystal coordinate system

{Sc} = [Q̃c][Q̃i]T{Sc}i (7.34)
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2. Compute the reduced crystal stress tensor

{Sc∗} = {Sc
1i, 0, Sc

3i, Sc
4i, Sc

5i}T (7.35)

3. Compute the 5 × 5 crystal compliance tensor

[Mc]k = γ̇0 ∑α

|{Sc∗}k{Rα}|n−1

[(1−Ωα)gα]n
{Rα}{Rα}T (7.36)

4. Compute the crystal deformation rate

{Dc} = [M]{Sc∗} (7.37)

where {Dc} = {Dc
1, Dc

2, Dc
3, Dc

4, Dc
5}T

5. Rotate the deformation rate to the inclusion coordinate system

{Dc}i = [Qi][Qc]T{Dc} (7.38)

Damage updating

1. Compute the damage rate for each slip system according to the following evolution
law

Ω̇α
n+1 = Ω̇0

∣∣∣∣
{S∗c }{Rα}
(1−Ωα

n)gα

∣∣∣∣
m

(7.39)

2. Update Ωα
n+1,

Ωα
n+1 = Ωα

n + Ω̇α
n+1∆t (7.40)

7.2.5 Global iterative procedure

After solving individually the stress-strain state in all the inclusions, the global stress {S̄}
and deformation rate {D̄} are determined as the volume average of the corresponding
local variables, {Si} and {Di} The volume fraction is given as vi = Vi/V, where Vi and
V represent the inclusion and aggregate volumes, respectively. The following iterative
algorithm contains the key steps for integrating the global problem.

1. Compute the global deformation rate,

{D̄} = ∑i vi[Q̃i]T{Di} (7.41)
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2. Compute the global stress,

{S̄} = ∑i vi[Q̃i]T{Si} (7.42)

3. Compute the equivalent average and global deformation rate,

ˆ̄D =
√

2
3{D̄}T · {D̄} and D̂ =

√
2
3{D}T · {D} (7.43)

4. Correct the unknown stress components

S̄u
∣∣
k+1 = ωS̄ + (1−ω)S̄

∣∣
k (7.44)

where ω ∈ [0,1] is an under-relaxation parameter. The explicit and implicit integra-
tions correspond to ω = 0 and 0 < ω ≤ 1, respectively

5. Repeat the local and global procedures until
∣∣∣ ˆ̄D− D̂

∣∣∣ satisfies the required tolerance

7.2.6 Texture updating

During the iterative process, crystallographic and morphological texture at time tn+1 are
updated based on the corresponding ones at time tn, once the global problem is satisfied.
The new crystal orientations are described by following the steps outlined in Section 5.2.9.
On the other hand, interface plane orientations are updated according to the following
algorithm:

1. Update the deformation gradient tensor

[Fa]n+1 = [I −ωLa∆t]−1[I + (1−ω)La∆t][Fa]n (7.45)

Initially, [Fa]n=1 = [I]

2. Update the normal vector

{n}n+1 = [Fa]−T{n}n (7.46)

3. Update the in-plane vectors

{v}n+1 = [F]{v}n and {w}n+1 = {n} × {v}n (7.47)
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7.3 Numerical examples

In this section, the comparison of the influence of some of the model parameters on the
overall behaviour is carried out. In the first part, the influence of the number of rigid links
and of the tilt angle is studied. Then, in the second part, three examples of the influence
of the three sets of parameters; crystalline phase damage rate and release parameter,
amorphous phase damage rate and saturation damage, and rubber shear modulus and
amorphous phase strength, are reviewed. An aggregate of 100 randomly oriented com-
posite inclusions is considered for the simulations under uniaxial tension. As explained
in Section 5.3, global deformation rate and deviatoric stress are assumed to have reduced
forms, i.e.,

{D̄} = {?, D̄2, ?, ?, ?, ?}T, and {S̄} = {?, ?, ?, 0, 0, 0}T (7.48)

respectively, where D̄2 is the enforced deformation rate. The rest of the non-prescribed
components, written as question marks, are the associated unknowns. The deformation
rate components along the transverse directions are written as

D̄1 = D̄3 = − 1
2 D̄2 (7.49)

7.3.1 Influence of the number of rigid links

Figures 7.2 to 7.4 show the influence of the average number of rigid links between entan-
glement points N on the global stress response and on the amorphous and crystalline
phase damage, obtained in uniaxial tension after 0.5, 1.0, 1.5, 1.8, and 2.0 equivalent
strains. For instance, Figure 7.2 shows the evolution of the equivalent stress for values of
the number of links ranging from 10 to 200. From this figure, it is seen the model predicts
(i) no significant influence on the stress state at low straining levels (below 1.0) and (ii)
at large straining levels stress lessens as the number of links increases. This decrease
is less significant when N is larger than 50; a value from which the curves gradually
tend to level off. Figure 7.3 illustrates that damage evolution in the amorphous phase is
roughly analogous to what happens to the global stress; however, at large deformations,
damage continues decreasing slightly as the number of links increases. On the other
hand, Figure 7.4 confirms that damage evolution in the crystalline phase is not directly
affected by N. As can be seen, at least for the five responses shown, the damage values
stay relatively constant for a given straining level. That is because no interrelations were
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established between the number of rigid links and the damage evolution law proposed in
the model. As a final remark, the responses of stress and damage indicate that the num-
ber of rigid links is an important parameter from the material morphology contributing
to its mechanical behaviour. An explanation for the higher stress and damage values
at low number of rigid links is that entanglements tend to keep molecules associated
together, requiring more energy (larger forces) to stretch the molecular network.

7.3.2 Influence of the tilt angle

To test the sensitivity of the results to the ascribed tilt angle, its relative influence on the
global stress and damage on the material phases is displayed in Figures 7.5 to 7.7 for a
range of angles between 15 and 45◦ and for a selection of five different strain levels; ε̂=0.5,
1.0, 1.5, 1.8, and 2.0. No attempts to describe the interfacial structure or to explain its
mechanical properties were made. From the simulations, it can be inferred that tilt angle
does not affect significantly model predictions. For instance, as shown in Figure 7.5, no
significant changes of the global stress are observed for the deformations of 0.5, 1.0, 1.5,
and 1.8, and only a minor decrease is observed for a straining level of 2.0. Nevertheless,
no convergence is found when the tilt angle is larger than 35◦. Similar behaviour is
noticed in the damage plots (Figures 7.6 and 7.7). At large deformations, amorphous
phase damage decreases slightly as the tilt angle increases; while for the crystalline phase,
there is a gradual increase in damage between 15 and 30◦, and a more marked rise after
30◦.
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Figure 7.2: Influence of the number of rigid links
on the global stress response.

Figure 7.3: Influence of the number of rigid links
on the amorphous phase damage.
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Figure 7.4: Influence of the number of rigid links
on the crystalline phase damage.

Figure 7.5: Influence of the tilt angle on the
global stress response.
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Figure 7.6: Influence of the tilt angle on the
amorphous phase damage.

Figure 7.7: Influence of the tilt angle on the
crystalline phase damage.
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7.3.3 Influence of the damage rate Ω̇0 and release parameter ζ

Figures 7.8 to 7.10 illustrate how much numerical predictions of global stress, crystalline
phase damage, and texture are affected by the choice of the damage rate Ω̇0 and release
ζ parameters in the model. Considering damage rate values from 1.0×10−4 to 3.0×10−4

and release values from 4.0 to 8.0, the results shown were obtained assuming no dam-
age of the amorphous phase at an equivalent strain of 1.8. Figure 7.8 shows that upon
increasing the parameter values, global stress becomes larger. However, above a damage
rate of 2.5×10−4, global stress diminishes because of the damage levels reached; larger
than 0.7, as shown in Figure 7.9. The plot of Figure 7.9 reveals that the release parameter
does not have an important influence on damage evolution. From the contour plot of
Figure 7.9, it can be seen that for a constant value of damage rate, damage in the crys-
talline phase practically remains invariant as the release parameter increases. Contrarily,
as expected, damage rate increments speed up damage of the crystalline phase when the
release parameter is kept constant. Figure 7.10 presents the (001) texture for nine simu-
lations obtained by combining three different values of Ω̇0 and three values of ζ. It is
observed that as both Ω̇0 and ζ increase, the poles rotate more rapidly towards the load-
ing directions; the strongest texture occurs for the largest values of Ω̇0 and ζ. It confirms
the hypothesis that texture evolution can be numerically controlled by adjusting these
two parameters.

7.3.4 Influence of the damage rate α and saturation damage Ω∞

In the model, the parameters describing the damage evolution in the amorphous phase
are the damage rate α and saturation damage Ω∞. The influence of these two parameters
on global stress and damage of the amorphous phase is analyzed in Figures 7.11 and 7.12,
respectively. For values of damage rate and saturation damage ranging from 1.0×10−6

to 5.0×10−6 and from 0.75 to 0.95, respectively, the model results are quite more sensible
to variations of α than of Ω∞, as shown in Figures 7.11 and 7.12. Likewise, it can be seen
from the respective figures that as damage rate increases, the amorphous phase becomes
more highly damaged and the material carries less stress.
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Figure 7.8: Effects of increasing damage rate and release parameters
on the stress state.

Figure 7.9: Effects of increasing damage rate and release parameters
on damage of the crystalline phase.
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Figure 7.10: Effects of increasing damage rate and release parameters
on texture evolution.
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Figure 7.11: Effects of increasing damage rate and saturation damage
on the stress state.

Figure 7.12: Effects of increasing damage rate and saturation damage
on damage of the amorphous phase.
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Figure 7.13: Effects of increasing rubber shear modulus and amorphous phase strength
on the stress state.

7.3.5 Influence of the rubber shear modulus CR and amorphous phase
strength σ0

Figures 7.13 to 7.15 show the contour plots of the influence of the rubber shear modulus
CR and amorphous phase strength σ0 on the predicted global stress and damage evolution
of the constitutive phases. Considering that rubber shear modulus and amorphous phase
strength values range from 2.0 to 6.0 and from 10.0 to 20.0 MPa, the material becomes
more stressed as CR increases and σ0 decreases. Figures 7.14 and 7.15 display the effects
on the amorphous and crystalline phase damage. It is obvious from Figure 7.14 that
damage in the amorphous phase becomes a little more pronounced for large values of
strength. Similar behaviour is observed in the crystalline phase damage (Figure 7.15).
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Figure 7.14: Effects of increasing rubber shear modulus and amorphous phase strength
on the amorphous phase damage.

Figure 7.15: Effects of increasing rubber shear modulus and amorphous phase strength
on the crystalline phase damage.



CHAPTER

EIGHT

Conclusions and recommendations

8.1 Conclusions

In this thesis, damage-based micromechanical models for high density polyethylene were
proposed. The models predict the behaviour of polyethylene by relating mechanical
properties and microstructure. Micromolecular parameters such as crystallinity, crystal-
lite orientation, slip systems, and physical chain entanglements were considered in the
formulations. Large deformation behaviour under uniaxial tension and simple shear was
considered.

A three-dimensional micromechanical model considering progressive intracrys-
talline degradation was proposed in Chapter 4 to predict the overall stress-strain be-
haviour, texture evolution, and damage evolution in crystalline polyethylene. The gov-
erning constitutive equations were formulated considering the material microstructure.
A damage mechanism based on the slip theory and an atomic debonding hypothesis was
proposed to characterize the occurrence of crystal fragmentation. To incorporate damage
on the constitutive equations, the so-called effective stress from Continuum Damage Me-
chanics was used. The stress-strain relationships at the microstructural level were derived
in terms of a compliance tensor written as a damage and crystal orientation function. The
resulting compliance tensor together with the assumed damage evolution and hardening
laws provided the basic framework for the estimation of the effective behaviour of crys-
talline polyethylene.

To illustrate the proposed constitutive formulation, the model was used to predict
the responses of the crystal aggregate under uniaxial tension and simple shear loading
conditions. The results were compared with the experimental data reported by Hill-
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mansen et al. (2000) for the uniaxial tension case and by G‘Sell et al. (1983) for the sim-
ple shear case. Reasonable consistency is demonstrated between experimental curves
and numerical simulations. The proposed model demonstrates that these types of dam-
age constitutive models are appropriate for predicting large deformations and failure in
polyethylene materials. It is believed that the discrepancies can be ascribed in part to the
absence of the amorphous phase in the proposed formulation.

Aspects of the numerical implementation of the damage-coupled viscoplastic ma-
terial law for crystalline polyethylene were addressed in Chapter 5. The governing con-
stitutive equations were formulated considering the material microstructure as well as
hardening and texture evolution. Incorporating a damage mechanics approach allowed
to consider in the model the occurrence of crystal fragmentation. The material was repre-
sented as an aggregate of randomly oriented crystals. Representative numerical examples
demonstrate the robustness of the proposed algorithms and the predictive capability of
the model. The emphasis of the worked examples was placed on two aspects; first, the
solution dependence on the number of crystals and loading direction, and second, the in-
fluence of the newly proposed material parameters on the description of the stress-strain
behaviour and damage evolution.

The interplay between the material constituents is critical in the mechanical re-
sponse of polyethylene. Therefore, in any mechanical analysis of polyethylene, it is es-
sential to fully understand the deformation and failure mechanisms occurring at the mi-
crostructural level. In an attempt to expand the modelling capabilities of Lee et al.’s (1995)
model, a new approach, which reflects the mechanical failure of the crystalline and amor-
phous phases, was proposed in Chapter 6. For the crystalline phase, a damage-coupled
single crystal model based on the 100% crystalline formulation was chosen. Based on
the concepts of Continuum Damage Mechanics, crystallite damage is assumed caused
by the debonding of the crystallographic planes. On the other hand, for the amorphous
phase, the constitutive model formulated within a thermodynamic framework tends to
reproduce the different molecular configurations arising during the deformation process.
Damage in amorphous polyethylene was seen as the appearance of material discontinu-
ities which decrease the effective areas that transmit internal forces. The number density
of active and inactive tie-molecules was considered to estimate the evolution of the frac-
tion of discontinuities and the effective deviatoric stress. The corresponding damage
evolution law was obtained by choosing a particular form based on internal energy and
entropy. Besides the concepts behind the model, numerical simulations under uniaxial
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tension and simple shear were performed and compared with experimental data pre-
viously obtained by Bartczak et al. (1994), G‘Sell and Jonas (1981), G‘Sell et al. (1983),
and Li et al. (2001). The predictions obtained with the model show a consistently good
agreement with the experimental results and a significant improvement with respect to
the stress-strain predictions obtained by Lee et al. (1993b) and Nikolov et al. (2006).

In Chapter 7, a detailed explanation of the algorithms and numerical assumptions
used to solve the constitutive equations of the semicrystalline approach was presented.
The resolution of the so-called local and global problems was also described. For an un-
strained state, the material was considered to be homogeneous and isotropic. An aggre-
gate of inclusions was used to represent a material point. Each inclusion was assumed
to be made of amorphous and crystalline material in perfect contact. The mechanical
response of the equivalent homogenous medium was obtained by means of a volume
average. To identify the influence of the most important parameters of the model, a se-
ries of simulations were completed. First, the influence of the number of rigid links and
tilt angle on the stress-strain response was considered. Then, the influences of three sets
of parameters; crystalline phase damage rate and release parameter, amorphous phase
damage rate and saturation damage, and rubber shear modulus and amorphous phase
strength, were reviewed. From the analysis on the influence of the tilt angle, it can be
drawn that the model predictions are not sensitive to the values of the angle between
the lamellar normal and the direction of polyethylene chains in the crystalline phase.
Representative numerical examples demonstrate the influence of the material parame-
ters on the description of the stress-strain and damage evolution in the crystalline and
amorphous phases.

8.2 Recomendations

The proposed models should be regarded as a step forward for a better understand-
ing of the mechanisms involved in inelastic deformation and degradation of polymers.
Although the formulations adequately predict the material behaviour from a microme-
chanical viewpoint, many issues remain unsettled. The following comments list some
general recommendations for future research derived from this thesis.

• Even though the proposed models were validated against experimental data ob-
tained from samples of commercial polyethylene materials, the concepts and for-
mulations presented herein could be extended to study mechanical damage in other
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crystalline and semicrystalline polymeric materials

• The use of damage-coupled models to study creep in polymeric materials is a topic
that can be explored further in order to analyze long term behaviour from a micro-
scopic standpoint

• Although a general simple law that explains the mechanical behaviour of semicrys-
talline polyethylene is virtually inconceivable, the proposed models can be extended
to include some important aspects not treated in this thesis, such as (1) elasticity
and compressibility of the amorphous and crystalline phases, (2) contribution of
the interaction among inclusions, (3) anisotropic damage of the amorphous phase,
and (4) interdependence of damage evolution on the different slip systems

• Micromechanical modelling of polymers faces the challenge of efficiently repre-
senting the properties of crystalline and amorphous materials. The deformation
behaviour of polyethylene materials depends in a rather complex manner on fac-
tors related to the morphology and loading conditions. Finding ingenious means
to relate model parameters with physically measurable data is a major concern. For
instance, small- or wide-angle scattering, or videometric testing systems should be
used to observe the degradation processes occurring in the material as well as in
both the crystalline and amorphous phases as inelastic deformations proceeds

• Efforts should be directed at improving computational efficiency. For instance, de-
pending on the number of inclusions used, the models proposed herein can take
from 2 to 8 hours of computing time. Parallel computing can be thought of as an
alternative for the simultaneous execution of some of the programmed subroutines
on multiple processors not only to reduce processing time but also to solve larger
and more complex problems. Instead of solving a local problem after another, a
practical option can be based on the fact that the process of solving the response of
an aggregate at time tn could be divided into smaller inclusion sets, which may be
carried out concurrently
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