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Abstract 

Pentaerythritol tetranitrate (PETN), a nitrate ester, is widely used as a powerful explosive and 

is classified as a munitions constituent of great concern by DoD in U.S.A.  It is an 

environmental concern and poses a threat to ecosystem and human health. Our objective was 

to examine potential remediation strategies for both PETN-contaminated water and soil.  

 

Flow-through iron columns were used to determine the potential for using granular iron to 

degrade PETN in aqueous phase. PETN transformation in both a 100% iron column and a 

30% iron and 70% silica sand column followed pseudo-first-order kinetics, with average 

half-lives of 0.26 and 1.58 minutes, respectively. Based on the identified intermediates and 

products, the reaction pathway was proposed to be a sequential denitration process, in which 

PETN was stepwisely reduced to pentaerythritol with the formation of pentaerythritol 

trinitrate (PETriN) and pentaerythritol dinitrate (PEDN). Although pentaerythrito 

mononitrate was not detected, an approximately 100% nitrogen mass recovery indicated that 

all nitro groups were removed from PETN. Nitrite was released in each denitration step and 

subsequently reduced to NH4
+ by iron. Nitrate was not detected during the experiment, 

suggesting that hydrolysis was not involved in PETN degradation. Furthermore, batch 

experiments showed that PETN dissolution was likely a rate-limiting factor for PETN 

degradation, especially in the case with high amount of iron. Using 50% methanol as a 

representative co-solvent, PETN solubility was greatly enhanced and thus the removal 

efficiency was improved. The results demonstrate the use of granular iron to remediate 

PETN-contaminated water.  

 

The biodegradability of aqueous PETN was examined with a mixed microbial culture 

from a site contaminated with PETN. The mixed culture was enriched and selected using a 

mineral medium containing acetate and yeast extract as carbon and nutrient sources in the 

presence of nitrate or sulfate. The final enrichment cultures were used as inocula for studying 

PETN biodegradation under nitrate-reducing and sulfate-reducing conditions. In addition, 

PETN degradation was tested using the original microbial culture under the mixed electron 
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acceptor conditions of nitrate and sulfate. The results showed that under all conditions tested, 

PETN was sequentially reduced, apparently following the same pathway as the abiotic 

reduction by granular iron. Pentaerythritol mononitrate, a suspected intermediate in the 

abiotic degradation by iron, was identified in this experiment. The presence of nitrate seemed 

not to affect the kinetics of PETN degradation, with both PETN and nitrate degrading 

simultaneously. However, the rate of nitrate reduction was much faster than PETN 

degradation. With respect to sulfate, its presence did not have an adverse effect on PETN 

degradation, indicated by the very similar degradation rates of PETN in the presence and 

absence of sulfate. Under all conditions, PETN appeared to act as a terminal electron 

acceptor for energy generation during biodegradation. A utilization sequence by bacteria in 

the order of nitrate, PETN, PETriN, PEDN and sulfate was clearly observed. The study in 

this phase demonstrated that under anaerobic conditions, with carbon sources provided, 

PETN can be effectively biodegraded by indigenous bacteria in contaminated soil, most 

likely by denitrifying bacteria.  

 

Based on the successful demonstration of abiotic and biotic degradation of PETN in the 

aqueous phase, both methods were further tested for remediating PETN-contaminated soil in 

both laboratory and pilot scale. In the laboratory, a systematic soil microcosm experiment 

was conducted using soil from a contaminated site and additions of either granular iron or 

organic materials, with deoxygenated Millipore water. Because of the high concentration in 

the contaminated soil, solid-phase of PETN was initially present in the microcosms. Two 

types of DARAMEND products, D6390Fe20 (containing 20% iron + 80% botanical 

materials) and ADM-298500 (100% botanical materials), were used as sources of carbon and 

other nutrients. During the 84-day incubation period, more than 98% was removed in all 

DARAMEND treatments, following pseudo-first-order kinetics with half-lives ranging 

between 8 and 18 days. The results clearly demonstrated that PETN can be effectively 

degraded under anaerobic conditions with the addition of carbon and possibly nutrients. As in 

the aqueous tests, the sequence of microbial utilization was nitrate followed by PETN and 

sulfate. In contrast to the tests with aqueous PETN, iron was not effective in removing PETN 
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in the contaminated soil, due to iron passiviation caused by the presence of high levels of 

nitrate in the soil. In addition, a slight enhancement was observed in a combined system of 

iron and biodegradation over biodegradation only. However, the extent of enhancement is not 

believed to be significant relative to the extra cost for iron addition.  

 

A pilot scale test was conducted at a PETN-contaminated site at Louviers, CO, a waste 

pond which had received waste water from PETN manufacture for over 20 years. The test 

involved 10 treatments, one control without amendment, one amended with iron (10%), eight 

with different types and amounts of organic carbon (1%, 2% and 4% of D6390Fe20; 2% and 

4% of ADM-298500 and 1%, 2% and 4% of brewers grain). Each treatment was performed 

in a plastic tub (45 cm wide × 90 cm long × 25 cm deep), containing approximately 18 cm 

thick layer of soil and 6-8 cm of standing water. Over 74 days, very little consistent reduction 

of PETN was found in the iron treatment, which was also due to iron passivation in the 

presence of nitrate in the soil. In contrast, significant removal of PETN (11,200 to 33,400 

mg/kg) was observed in the treatments amended with organic materials, and the extent of 

removal increased with increasing amounts of organic materials. The pilot test was consistent 

with the results of the laboratory experiments for iron and biodegradation with carbon 

addition. For biological treatment, the stoichiometric estimation suggests that the complete 

remediation in many of the treatments will be ultimately limited by carbon sources. 

 

Results of this study showed the great potentials of using granular iron to degrade PETN 

in solution and using indigenous bacteria present in contaminated soils to biodegrade PETN 

in both the solution and soil phase.  Both iron and biodegradation with carbon addition 

represent viable approaches for remediation of PETN-contaminated water and soil, though 

iron may not be appropriate in the presence of high concentration of nitrate. 
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Chapter 1 

Introduction 

1.1 Background  

1.1.1 Contamination of Organic Nitrate Explosives 

As a result of intensive military activities over the past century, contamination of soil and 

water with residues of explosives and related compounds is a widespread environmental 

concern (Gorontzy et al., 1994). Contamination sources are mainly associated with their 

manufacture, use, loading, storage and disposal processes. Their occurrence in the 

environment not only poses the risk of detonation but also a hazard to biological systems and 

human health because of their toxic and mutagenic effects (Bruns-Nagel et al., 1999; 

Honeycutt et al., 1996; Steevens et al., 2002). Depending on the organic structures to which 

the nitro groups are attached, organic nitrate explosives are categorized into three groups: 

nitroaromatics with NO2 groups bonded to carbon atoms on an aromatic ring (e.g. 

dinitrotoluene (DNT) and 2,4,6-trinitroluene (TNT)), nitramines with NO2 groups bonded to 

a nitrogen atom that is present within an alicyclic ring (e.g. hexahydro-1,3,5-trinitro-1,3,5 

triazine (RDX) and octahydro-1,3,5,7-tetranitro-1,3,5,7 tetrazocine (HMX)) and nitrate esters 

in which the NO2 groups are bonded to an oxygen atom attached to an aliphatic carbon (e.g. 

1,2,3-propanetriol trinitrate (NG) and pentaerythritol tetranitrate (PETN)). The estimation of 

suspect explosives-contaminated sites is in the thousands in the United States, and a much 

greater number in Europe and the former Soviet Union (Major et al., 1997). Under ambient 

environmental conditions, most explosives exhibit a resistance to natural attenuation 

processes including volatilization, biodegradation and hydrolysis, resulting in persistence in 

soil and groundwater (Twibell et al., 1984). An increased public awareness of the toxicity 

and risk associated with these compounds has stimulated research activities on the 

development of remediation technologies for cleaning up explosives-contaminated water and 

soil.  
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1.1.2 Nitrate Esters and PETN  

Nitrate esters are widely manufactured for two major industrial applications; primarily as 

secondary explosives in blasting caps and detonators. In addition, it is used as a coronary 

vasodilator in the treatment of heart disease. Nitrate esters commonly used for these two 

applications include pentaerythritol tetranitrate (PETN; 2,2-bis[(nitrooxy)methyl]-1,3-

propanediol dinitrate) and glycerol trinitrate (GTN; propane-1,2,3,-triyl trinitrate). PETN is 

synthesized by direct nitration of pentaerythritol with nitric acid using sulphuric acid as a 

catalyst. Current production data is not available, but the estimation by the NCI/SRI 

(National Cancer Institute/Socially Responsible Investing) shows that in 1973, 1.8~2.3×109 

kg of PETN were used for explosives and 2.3×104 kg were used for production of 

pharmaceuticals (Bucher, 1989). As for the environmental concern, GTN is toxic to 

mammals at levels of 30 to 1300 mg/kg (Wendt et al., 1978) and LC50 for aquatic organisms 

is between 1 and 3 mg/L (Urbanski, 1984). Currently, PETN is not vigorously regulated and 

the threshold limit value (TLV) and maximum workplace concentration (MAK) have not 

been established. However, short-term exposure may affect the cardiovascular system, 

resulting in lowering blood pressure, as indicated by medical observation (IPCS & CEC, 

2005). It is categorized as “toxic to aquatic organisms” (Drzyzga et al., 1995) and is 

classified by the U.S. DoD as a munitions constituent of great concern because of the 

widespread use and the potential environmental impact (DoD, 2002).  

 

Due to its low vapor pressure (1.035×10-10 mmHg) and low Henry’s law constant 

(1.2×10-11 atm·m3/mole), PETN is unlikely to disperse in the ambient air, and as a highly 

hydrophobic compound, it has very low water solubility (6 mg/L). PETN also has a low 

logKow of 1.61 (Chemical properties from Hazardous Substances Data Bank (HSDB), 2003), 

suggesting that it sorbs weakly to organic materials in the soil and sediment and therefore 

once dissolved it can be readily transported by groundwater. The structure of PETN (C-O-

NO2) is analogous to sulfate esters (C-O-SO3
-) and phosphate esters (C-O-PO3

2-), which are 

ubiquitous in the natural environment. However, nitrate esters have not been detected as 

naturally-occurring compounds and have only been introduced to the environment by human 
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activities. They appear to be recalcitrant to natural breakdown and pose a xenobiotic 

challenge to biological systems (White and Snape, 1993). For instance, in a PETN waste 

disposal pond in Louviers, Colorado, U.S.A., the PETN concentration has been consistently 

high over the past 20 years, indicating that no significant natural attenuation has occurred. 

Such persistence in soil also represents a potential source for groundwater contamination. 

There is an urgent need for developing effective remediation methods for such contaminated 

sites due to public health concerns and more stringent environmental regulations. 

1.1.3 Treatment Methods for Explosives 

The conventional treatment method for remediating explosives-contaminated soil is 

incineration. Because of the high cost and the associated disadvantages such as production of 

large volumes of unusable ash, increased attention has turned to alternative remediation 

methods, such as chemical reduction with metallic iron and bioremediation including 

composting, bioslurry and landfarming. Based on exhaustive review, Craig et al. (1995) and 

Lewis et al. (2004) concluded that composting and bioslurry are the most affordable and 

acceptable biological treatment methods for explosives-contaminated soil.   

1.1.3.1 Degradation of Explosives by Iron 

Granular iron is being used increasingly in permeable reactive barriers (PRBs) as a cost-

effective groundwater remediation technology because it is capable of reducing a variety of 

important pollutants. The contaminants examined most extensively for degradation by 

granular iron include chlorinated solvents (Gillham and O’Hanneisn, 1994; Matheson and 

Tratnyek, 1994), azo dyes (Weber, 1996; Cao et al., 1999; Nam and Tratnyek, 2000), 

nitroaromatic pesticides and explosives (Agrawal and Tratnyek, 1996; Hundal et al., 1997; 

Devlin et al., 1998; Keum and Li, 2004), nitrate (Huang et al., 1998; Zawaideh and Zhang, 

1998; Alowitz and Scherer, 2002) and high-valency toxic metals (Gould, 1982; Powell, 

1995; Blowes et al., 1997).  

 

The nitro group is a facile electron acceptor and previous studies have shown that iron is 

capable of reducing organic nitro compounds. Nitrobezene, a nitroaromatic compound, has 
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received a great deal of research interest in past years because of its high toxicity and 

structural simplicity (Agrawal and Tratnyek, 1996; Lavine et al., 2001; Scherer et al., 2001; 

Mu et al., 2004).  Agrawal and Tratnyek (1996) reported pseudo-first-order kinetics for 

nitrobenzene reduction by iron under anaerobic conditions. Nitrobenzene underwent 

sequential nitro reduction to aniline, producing intermediates of nitroso and hydroxylamine 

compounds.  The potential use of iron for degrading nitramine explosives has also been 

demonstrated (Hundal et al., 1997; Singh et al., 1998a; Oh et al., 2005). In a cast iron-water 

system (Oh et al., 2005), both RDX and HMX were transformed to formaldehyde, NH4
+, 

N2O and other soluble products. Methylenedinitramine (MDNA), an intermediate of both 

RDX and HMX reduction by iron, was also degraded to formaldehyde with iron. Glycerol 

trinitrate (GTN), a structurally related compound to PETN, has recently been demonstrated to 

undergo sequential denitration with concomitant release of nitrite in a batch experiment with 

cast iron (Oh et al., 2004). 1,2-dinitroglycerins, 1,3-dinitroglycerins, 1-mononitroglycerins 

and 2-mononitroglycerins were detected as the reduction intermediates in the experiment. 

Based on these, and particularly the findings on GTN, one would expect iron to have a high 

potential to remediate PETN-contaminated water. 

 

More recently, the use of iron has also been successfully extended to remediate 

contaminated soil. Under laboratory conditions, the ability of iron to remediate soil 

contaminated with TNT, RDX (Hundal et al., 1997; Singh et al., 1998a and 1999) and 

atrazine (Singh et al., 1998b) was reported. These findings suggest considerable potential for 

using granular iron as a practical method for in situ remediation of contaminated soil. In a 

pesticide spill site contaminated with metolachlor, the 5% addition of iron decreased 

metolachlor from 1789 to 504 mg/kg in 90 days. More effective reduction, 1402 to 13 mg/kg, 

was observed by using 5% iron with Al2(SO4)3 and CH3COOH. In addition to the direct 

reaction between iron and metolachlor, the presence of Al2(SO4)3 and CH3COOH altered the 

pH, redox potential and soil solution composition during corrosion of the iron surface, in turn 

facilitating reductive transformation (Comfort et al., 2001). In another field trial involving 70 

kg soil from a munitions wastewater disposal site, using iron (5%, w/w), RDX concentration 
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decreased to 540 mg/kg, resulting in a 96% removal from the average initial concentration of 

12,100 mg/kg within 120 d (Comfort et al., 2003).  

 

The reductive transformation of contaminants in Fe0-H2O systems has been demonstrated 

to be a surface-mediated process (Weber, 1996). Typically, five steps are involved in such 

surface reactions (Matheson and Tratnyek, 1994): (i) mass transport of reactant to the 

reactive surface from bulk solution; (ii) adsorption of reactant to the surface; (iii) chemical 

reaction at the surface; (iv) desorption of products from the surface; and (v) mass transfer of 

products back to the bulk solution. Any one or a combination of these steps may affect the 

overall kinetics. For compounds with fast reaction rates, the likelihood of mass transfer 

processes affecting the overall degradation kinetics is increased. The correlation between 

reaction rate and square root of mixing rate is commonly used to evaluate the influence of 

mass transport on degradation rate. The reduction of RDX (Fenton, 2001) and nitrobenzene 

(Agrawal and Tratnyek, 1996) by iron both were demonstrated to be mass transport limited 

reactions since the rate coefficient exhibited a linear relationship with respect to the square 

root of mixing rate. Further, Scherer et al. (2001) separated external mass transport rate from 

surface reaction rate by using a rotating disk electrode. For nitrobenzene, the measured rate 

coefficient for surface reaction (1.7×10-3 cm s-1) was almost 10 times faster than the mass 

transport rate coefficient (2 ×10-4 cm s-1), indicating a significant mass transport limitation on 

degradation kinetics for nitrobenzene. Of the many classes of compounds degraded by iron, 

compounds containing nitro groups such as RDX, TNT and nitrobenzene, generally exhibit 

much faster rates of reduction by iron than chlorinated solvents such as TCE and VC 

(Scherer et al., 2001), implying the increased potential for mass transport to limit the overall 

kinetics of contaminant reduction. The mass transfer limitation may be the case for PETN, 

being a similar compound to other organic nitrate contaminants, containing readily reducable 

nitro groups. 

1.1.3.2 Bioremediation of Explosives 

The persistence of explosives in the environment is associated with the fact that they are 

anthropogenic compounds and the occurrence of biologically-derived nitro-organic 
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compounds of similar structure is very rare in nature. This reduces the possibility for 

indigenous bacterial populations to have the capability of degrading these compounds. The 

most promising bacterial communities that could provide biotransformation pathways are the 

acclimated indigenous microbial communities which have been exposed to contaminants for 

a long period of time. Natural attenuation, the use of naturally selected microbial populations 

to incorporate contaminants into their primary metabolism as a source of carbon and energy, 

is an attractive model for remediation of xenobiotics. This scheme motivated many studies on 

isolating pure strains of bacteria which can derive energy and/or nutrients needed for 

microbial growth from organic contaminants. Other studies have focused on identifying 

necessary parameters for stimulating the activity.  

 

TNT is the most extensively studied nitrogen-containing explosive. Several reviews have 

been published on aerobic and anaerobic degradation of TNT (Ahmad and Hughes, 2000; 

Hawari et al., 2000; Esteve-Nuñez et al., 2001). Under aerobic conditions, microorganisms 

tend to transform TNT by reducing one or two nitro groups to hydroxylamino or amino 

groups. Generally, anaerobic bacterial strains are capable of reducing TNT to TAT, and some 

strains can use TNT as a sole nitrogen source. To date, no microorganism has been identified 

that is capable of using TNT as both a carbon and energy source. RDX and HMX, typical 

compounds of nitramines, have been demonstrated to resist aerobic degradation (McCormick 

et al., 1981). An exception was the finding of bacterial populations isolated from 

contaminated soil which were capable of using RDX as a sole source of nitrogen for growth 

under aerobic conditions (Binks et al., 1995; Coleman et al., 1998). Under anaerobic 

conditions, C. acetobutylicum was able to transform RDX into hydroxylamino and amino 

derivatives (Zhang and Hughes, 2003). Similarly, K. pneumoniae can degrade RDX to 

HCHO, CH3OH, CO2 and N2O through intermediary formation of methylenedinitramine 

(O2NNHCH2NHNO2) (Zhao et al., 2002).  Three species of the family Enterobacteriaceae, 

isolated from nitramines explosives-contaminated soil, can reduce both RDX and HMX 

under anaerobic conditions (Kitts et al., 1994). For nitrate esters, Marshall and White (2001) 

isolated four anaerobic bacterial species of P. putida, Arthrobacter, Klebsiella and 
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Rhodococcus from GTN-contaminated soil, all of which can use GTN as the sole nitrogen 

source.  Significantly, Rhodococcus sp. was capable of complete denitration of GTN.  

 

Microbial co-metabolism is frequently observed in transformation of xenobiotic non-

growth substrates and serves as a potential tool for remediation of recalcitrant synthetic 

compounds (Janke and Fritsche, 1985). Related studies have been performed on 

bioremediation of explosives using carbon amendments (e.g., starch, glucose, sucrose, or 

molasses). In anaerobic processes, the presence of additional substrate facilitates oxygen 

removal by growing aerobes and also serves as the electron donor for reduction of nitro 

groups.  Roberts et al. (1996) examined the ability of glucose, soluble starch, insoluble starch 

and acetate as external carbon sources to create anaerobic conditions for TNT removal. The 

addition of glucose induced the fastest decline and lowest redox potential and resulted in 

rapid and complete removal of TNT in the contaminated soil. In a soil slurry reactor, 

contaminants such as TNT, HMX and tetryl can all be effectively removed from 

contaminated soil by indigenous bacteria through co-metabolic processes with the addition of 

molasses for bacterial growth (Boopathy, 2000, 2001b and 2005).  

 

Most of the work has focused on nitroaromatics and nitramines, particularly on TNT and 

RDX. To date, no work has been reported on the target explosive of this study, PETN, 

regarding biodegradation as a remediation method.  

1.1.3.3 Iron-Microbial Treatment Approach 

Previous studies found that a Fe0-microbial treatment system may offer significant advantage 

over treatment with Fe0 alone or anaerobic bacteria alone for remediation of contaminated 

groundwater. Such synergistic effects to enhance treatment efficiency were reported for 

chlorinated solvents (Weathers et al., 1997; Gregory et al., 2000; Lampron et al., 2001), 

nitrate (Till et al., 1998; Kielemoes et al., 2000), chromium (Gandhi et al., 2002) and 

explosives (Oh et al., 2001; Wildman and Alvarez, 2001; Oh and Alvarez, 2002 and 2004).  
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For nitrate explosives, the benefits of an integrated system with iron and microorganisms 

may be a consequence of the following factors. First, iron corrosion can rapidly create 

anaerobic conditions that favor biotransformation of explosives. Second, the water-derived 

hydrogen gas, produced during anoxic iron corrosion, can serve as an electron donor to 

support biodegradation of explosives. In addition, reduction or removal of nitro groups by 

iron may result in the formation of products that are persistent with respect to iron, such as 

amino-derivatives from reduction of nitroaromatics, whereas these may be more susceptible 

to biotransformation, leading to a higher potential for complete mineralization of 

contaminants. Hundal et al. (1997) observed that iron pretreatment increased TNT 

mineralization, evidenced by greater CO2 production than microbial degradation processes 

alone. In addition, the presence of iron-reducing bacteria may reduce Fe(III) oxides that 

passivate iron surfaces, thus enhancing the reactivity of iron and the treatment efficiency. 

1.1.4 Previous Studies of PETN 

Bacterial metabolism of PETN was first recognized through medical applications. King and 

Fung (1984) found that PETN degradation in rat urine and feces was primarily of bacterial 

origin. PETN rapidly decayed, following pseudo-first-order kinetics, with a half-life of 20 

min after a short lag phase at 25ºC. The PETN appeared to undergo sequential denitration, as 

indicated by the formation of metabolites including tri-, di-, and mononitrated pentaerythritol 

(PETriN, PEDN and PEMN) and pentaerythritol during the 24 h period.  

 

Enterobacter cloacae PB2 (Binks et al., 1996) was isolated from a mixed microbial 

culture obtained from soil enrichments under aerobic and nitrogen-limiting conditions and 

was shown to be capable of metabolizing PETN. The pure culture was capable of aerobic 

growth with PETN as the only nitrogen source and utilized 2 atoms of nitrogen per mol of 

PETN, producing metabolites of pentaerythritol dinitrate, 3-hydroxy-2,2-bis-

[(nitrooxy)methyl] propanal and 2,2-bis-[(nitrooxy)methyl]-propanedial. The responsible 

enzyme, an NADPH-dependent PETN reductase, was isolated from cell extract and found to 

reductively release nitrite from PETN producing tri-, and dinitrate pentaerythritol. 

Enterobacter cloacae PB2 was also capable of slow aerobic growth using TNT as the sole 
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nitrogen source (French et al., 1998). The results suggest that the Enterobacter cloacae PB2 

and the PETN reductase could be useful for bioremediation of both nitrate esters and 

nitroaromatics contaminated soil and water. 

 

Phytoremediation is an alternative in-situ bioremediation technology used for cleaning up 

contaminated sites by green plants. Vanek et al. (2003) studied the phytoremediation of 

PETN in model systems of plant tissue cultures (Rheum palmatum, Saponaria officinalis and 

Populus simonii). The analysis of products suggested that PETN was fully degraded to 

penterythritol as an end product via sequential denitration in 10 days. The application, 

however, may be limited by the fact that the indigenous biodegradability of plants is less 

effective than those of adapted bacteria. This limitation might be overcome by incorporating 

bacterial nitroreductase genes into the plant genomes (French et al., 1999; Hannink et al., 

2001; Rosser et al., 2001).  However, this in-situ technology is still in the demonstration 

stage, and has many limitations such as dependence on location and season, soil depth and 

toxic effects caused by high concentrations of contaminants. The effectiveness would be less 

for contaminants with low solubility and weak adsorption to the soil sediments such as 

PETN. 

 

In summary, even though PETN is of environmental concern and may pose a threat to 

ecosystem and human health, it has received very little attention with respect to its fate in the 

environment and very limited information is available regarding remediation technologies for 

contaminated water and soil. Like many other explosives (Isayev et al., 2006), the electron-

withdrawing character of nitro groups on PETN would be responsible for the low 

susceptibility to typically advanced oxidative catabolism; therefore anaerobic conditions hold 

greater potential for remediation of explosives-contaminated sites. Thus, the potential 

remediation methods were tested under anaerobic conditions in this study.  
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1.2 Goal and Objectives 

The goal of this study was to develop an effective method to remediate PETN-contaminated 

water and soil. To achieve this goal, the following specific objectives were identified: 

 

1) Evaluate the potential use of granular iron for remediating PETN-contaminated water 

and determine its transformation kinetics;  

2) Determine intermediate products and thus elucidate the reaction pathways in the 

presence of granular iron; 

3) Investigate the potential rate-limiting factors in PETN degradation by iron and 

explore means of enhancement; 

4) Evaluate the biodegradability of PETN in aqueous phase under anaerobic conditions; 

5) Identify intermediate products and elucidate the pathway of PETN biodegradation; 

6) Determine the effects of other electron acceptors on PETN biodegradation; 

7) Evaluate the potential use of granular iron for remediating PETN-contaminated soil; 

8) Evaluate bioremediation of PETN-contaminated soil under anaerobic conditions, 

including the possible effects of carbon source amendments; 

9) Evaluate remediation of PETN-contaminated soil in an iron-microbial combined 

system; 

10) Test the effectiveness of laboratory-tested remediation methods in a pilot-scale study 

at a contaminated site. 

 

1.3 Scope of Research 

This study was conducted in four phases: 

 

Phase-I: Abiotic degradation of aqueous PETN by granular iron 

This phase was designed to fulfill objectives 1 to 3, including studies of degradation kinetics, 

identification of intermediate products, elucidation of the reaction pathways, and determining 

the rate-limiting factor. Laboratory iron column and batch experiments were used.  
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Phase-II: Biotic degradation of PETN in aqueous phase under anaerobic conditions 

This phase addressed objectives 4 to 6, to explore the biodegradability of aqueous PETN 

under anaerobic conditions, to elucidate the degradation pathway and further examine the 

effects of other electron acceptors such as nitrate and sulfate on PETN biodegradation. This 

phase involved the series enrichment procedures and aqueous microcosm batch tests. 

 

Phase-III: Remediation of PETN in contaminated soil in laboratory-scale experiments 

To achieve objectives 7 to 9, systematic laboratory soil microcosm experiments were 

conducted to evaluate the potential of using granular iron, biodegradation and iron-microbial 

integrated methods for remediation of PETN-contaminated soil.  

 

Phase-IV: Field demonstration at Louvier, Colorado 

Based on the laboratory results, a range of treatment options was proposed and tested in a 

field trial at a PETN-contaminated site. 
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Chapter 2 

Degradation of PETN by Granular Iron 

The objective of this study was to evaluate the use of granular iron for remediating PETN-

contaminated water. Using column procedures, we determined PETN reduction kinetics with 

iron, identified the intermediates produced by PETN degradation and proposed the reaction 

pathways. In additional batch experiments, the effect of mass transfer limitation on PETN 

degradation kinetics was examined and methods for enhancement were explored.  

2.1 Materials and Methods 

2.1.1 PETN Synthesis 

PETN used to conduct the experiments was synthesized in the laboratory by adding 

pentaerythritol to an excess nitrating solution consisting of concentrated HNO3 and H2SO4 in 

a ratio of 2:1. The solution was kept on ice to maintain the temperature below 25~30 ºC and 

was stirred occasionally over a 30 min period. The raw PETN was filtered, washed with DI 

water, and neutralized with sodium carbonate solution. PETN was purified by 

recrystallization with acetone and air-dried before use. The synthesized PETN was verified 

using an analytical standard (0.1 mg/mL in methanol) purchased from AccuStandard Inc. 

(New Haven, Connecticut). The analytical standard was also used for external calibration.  

2.1.2 Iron and Silica sand 

Granular iron was obtained from Connelly-GPM Inc. (Chicago, Illinois). It was used without 

pretreatment for the column experiments, but was immersed in either Millipore water or co-

solvent solution for 10 days before being used in the batch experiments. The iron material 

was characterized previously, containing 89.8% metallic iron and the surface was covered 

with various forms of iron oxide (data provided by Connelly-GPM Inc., 1998). The specific 

surface area of iron used in this study was 1.02 m2/g, measured by the BET (Brunauer-

Emmett-Teller) method using a Micrometrics Gemini III 2375 Surface Area Analyzer. 
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ASTM 20-30 sand was purchased from US Silica Company (Ottawa, Illinois). The sand was 

washed with 10% nitric acid, rinsed three times with Millipore water and oven dried before 

use. 

2.1.3 Column Experiments 

The configuration of the two columns used in this study was similar to that described in 

Gillham and O’Hannesin (1994). Each Plexiglas column was 30 cm long by 2.54 cm I.D. 

Along the column, 16 sampling ports were located at distances of 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 

11, 13, 17, 21, 25 and 29 cm from the influent end. Each sampling port consisted of a nylon 

Swagelok® fitting (0.16cm O.D.) with a 16G Luer-Lok® syringe needle. One column was 

packed with 100% Connelly iron (porosity =  0.59), and the other was packed with a mixture 

of 30% Connelly iron and 70% ASTM 20-30 silica sand by weight (porosity = 0.42). The 

ratios of surface area of iron to solution volume for the 100% and 30% iron columns were 

4.70 and 1.37 m2/mL, respectively.  

 

PETN solution was prepared by adding crystalline PETN to Millipore water, stirring for 

48 h followed by filtration. The concentration of PETN solution was therefore at its water 

solubility (6 mg/L). The solution was deoxygenated by sparging with nitrogen gas for 

approximately 2 h before being delivered to the column. During the entire period of the 

experiment, the solution was stored in a carboy with a headspace of nitrogen gas to prevent 

oxygen invasion. Flow rates, determined by measuring discharge over a period of time, were 

8.90 mL/min and 1.34 mL/min for the 100% and 30% iron columns, respectively. Aqueous 

samples were collected by clamping the effluent line to allow water to flow from the 

sampling port to a glass syringe. The solution was then transferred from the syringe to 

analytical vials for both organic (PETN and potential intermediates) and inorganic (NO3
-, 

NO2
- and NH4

+) analyses. Samples were collected periodically over time and data analysis 

was performed with only the concentration profiles obtained after the steady state had been 

achieved. 
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2.1.4 Batch Experiments 

Two batch experiments were conducted in this study. The first set (Fe0-H2O) was to examine 

the effect of PETN dissolution rate on PETN reduction kinetics by iron. The second set (Fe0-

co-solvent) was to examine the potential for using a co-solvent to enhance PETN solubility 

and thus to increase the rate of PETN reduction. The co-solvent used in this study was 50% 

water and 50% methanol. The set-up, pretreatment method and sampling procedures were 

identical for both batch experiments. Before initiating the degradation experiments, each 

batch vial was prepared in the sequence of weighing the empty vial, adding a specific amount 

of iron, filling the vial with deoxygenated Millipore water (first set) or co-solvent solution 

(second set), crimp-sealing with Teflon-lined silicon septum and cap leaving no headspace, 

and re-weighing. The vials were stored for 10 days to remove most of the pre-existing 

passive surface oxides by the auto-reduction processes (Odziemkowski et al., 2000; Ritter et 

al., 2002). In order to reduce abrasion of the iron surface during rotation, the iron particles 

were held in place by magnets, attached on opposite sides of the vials. 

 

The Fe0-H2O experiment consisted of 4 sets of vials in duplicate, each set with a different 

Fe/H2O ratio and 8 mg of PETN. Connelly iron in amounts of 20, 10, 5, or 1 g were added to 

60 mL glass vials, resulting in solution/iron ratios (g/g) of approximately 3, 6, 12, and 60. 

The Fe0-co-solvent experiment consisted of 5 sets of 40 mL glass vials in duplicate. Each 

pair contained 10 g of Connelly iron and 20, 35, 50, 65 or 80 mg/L of PETN. 

 

The reduction reaction was initiated by addition of PETN stock solution in acetonitrile 

(10,000 mg/L) via needle injection through the septum into the individual vials. In the first 

batch experiment, 8 mg PETN was introduced to all vials by spiking PETN stock solution 

and allowing it to recrystallize.  In the second batch experiment, a specific amount of PETN 

stock solution was injected into each set of vials to achieve the desired initial concentrations 

(20, 35, 50, 65 and 80 mg/L). Because of the co-solvent effect, PETN remained in solution. 

All vials were loaded onto an orbital rotator at 50 rpm. At particular elapsed times, duplicates 
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were sacrificed for organic and inorganic analyses.  PETN were analyzed for both batch tests 

and NO3
-, NO2

- and NH4
+ were analyzed only for the first set. 

2.1.5 Analytical Methods 

Concentrations of nitrate and nitrite were analyzed using a Dionex ion chromatograph 

(Dionex ICS 2000) equipped with an Ion-Eluent Generator and conductivity detector and a 

Dionex AS-40 autosampler. A Dionex IonPac AS18 column (4×250 mm) was used. The 

injection volume was 25 μL and the mobile phase was 30 mM KOH at a flow rate of 1.2 

mL/min. The detection limit for both nitrite and nitrate was 0.5 mg/L. 

 

Ammonium (NH4
+-N) analysis was performed using the phenate method, following the 

procedures described in Standard methods for the examination of water and wastewater 

(American Public Health Association, 1985). The absorbance at a wavelength of 630 nm was 

measured using a Beckman DU 530 UV/VIS spectrophotometer with a light path of 1cm. 

The detection limit was 0.1 mg/L. 

 

Analyses for PETN and intermediate products were performed using a series 1100 

Hewlett-Packard high performance liquid chromatograph (HPLC) equipped with a UV 

visible diode array detector, a quaternary pump, an autosampler and a degasser. A Zorbax 

SB-C18 column (3.5 μm particles, 4.6×150 mm) and a Zorbax guard column (5 μm particles, 

4.6×12.5 mm) were used. Aqueous samples were centrifuged in 1.5 mL vials for 5 min at 

10,000 rpm prior to being loaded onto the atuosampler. A water-methanol-acetonitrile 

mixture (40:50:10, v/v/v) was used as the mobile phase at a flow rate of 1.0 mL/min. The 

injection volume was 100 μL and the absorbance was measured at a wavelength of 210 nm. 

The detection limit for PETN was 0.1 mg/L. A series of PETN external standards was 

prepared using the analytical standard and analyzed with the samples for PETN 

quantification. Because standards for the intermediates were not commercially available, the 

intermediates were not quantified.  
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To identify unknown intermediates, fractions of unknown peaks appearing on the HPLC 

chromatogram were collected at the corresponding retention times through repeated 

injections and concentrated by air-drying. The samples were redissolved in acetonitrile and 

analyzed using the positive ion ammonia chemical ionization method, with a JEOL HX110 

double focusing mass spectrometer operated at a mass resolution of ~1000. The source 

temperature was 200oC with an electron energy of 200 eV. All samples were introduced by 

direct injection and heated when necessary.  

2.2 Results and Discussion 

2.2.1 PETN Degradation Kinetics 

The kinetics of PETN degradation was studied using the iron column tests. Distances along 

the column were converted to residence time, using the porosity and measured flow rate and 

assuming the columns were saturated and homogeneous. The measured PETN concentrations 

were normalized and plotted as C/C0 versus residence time. Figure 2.1 shows three 

concentration profiles for the 100% iron column, all measured after steady-state conditions 

had been reached. Fitting the first-order kinetic model to the data gave an average R2 value 

(correlation coefficient of a least-squares fit) of 0.96±0.005, indicating the kinetics of PETN 

degradation to be pseudo-first-order. The average rate constant was 2.70±0.22 min-1, giving a 

half-life of 0.26±0.02 min. Due to the extremely fast degradation rate in the 100% iron 

column, there may be a significant level of uncertainty in the measured rate constant. 

Consequently, the amount of iron was reduced to 30% in the second column. Figure 2.2 

shows four representative PETN concentration profiles in the second column, measured 

between 380 and 650 PV after the achievement of steady state. The pseudo-first-order model 

also fit the data well (R2 = 0.97±0.028). The average rate constant was 0.44±0.029 min-1, 

giving a half-life of 1.58±0.10 min. The corresponding surface area-normalized rate 

constants (kSA) for the 100% and 30% iron columns were (3.44±0.28) ×10-2 and (1.92±0.13) 

×10-2 L.m-2.h-1, respectively. These values are similar and in reasonable agreement with kSA 

values reported in the literatures for other explosives that had been tested with similar iron 

materials. For example, Oh et al. (2004, 2005) reported values of 1.65±0.30 ×10-2 L.m-2.h-1, 
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3.60±0.64 ×10-2 L.m-2.h-1 and 7.72±0.81 ×10-2 L.m-2.h-1 for nitroglycerin, RDX and HMX 

reduction by granular iron, respectively. These reported average rate constants for nitro-

compounds, including PETN, were almost 2 orders of magnitude faster than rate constants of 

dehalogenation of most chlorinated compounds by iron (~10-4 L.m-2.h-1) (Johnson et al., 

1996). Previous studies (Agrawal and Tratnyek, 1996; Burris, 1996; Hung et al., 2000; 

Scherer et al., 2001) have shown that the reduction of nitrobenzene, highly reactive in the 

presence of iron (kSA~1 L.m-2.h-1), was mass transport limited. The fact that the kSA values for 

a wide range of compounds falls within a narrow range further suggests the rate of 

degradation for these compounds to be limited by mass transport rather than by degradation 

rate. Thus, it is likely that the rate of degradation of PETN in the iron columns were mass 

transfer limited. The potential rate limiting factor will be considered further in section 2.2.5. 

2.2.2 Nitrogen Mass Balance 

In addition to PETN, NH4
+, NO2

- and NO3
- were measured to establish the nitrogen mass 

balance during the column experiments. No NO3
- was detected over the entire experiment. 

Figure 2.3 is typical of the concentration profiles of PETN, NH4
+ and NO2

- (expressed in 

relative moles of N) along the column, taken from the 30% iron column after 420 PV. PETN 

concentration decreased to the detection limit (100 μg/L) within 10 min. Concurrently, the 

concentration of NO2
- reached a maximum of 49% of the initial N and began to decline. 

Meanwhile, NH4
+ continued to accumulate over time. NO2

- gradually decreased to below the 

detection limit and the amount of NH4
+ approached a maximum towards the end of the 

column. Throughout the column, the nitrogen mass recovery, the ratio of the sum of the N in 

nitrogenous compounds including PETN, NH4
+ and NO2

- to the initial N in PETN, expressed 

in percentage, ranged from 84% to 104%. In particular, towards the end of the column, all of 

the N in the initial PETN was present as NH4
+, suggesting that all the nitro groups on PETN 

were reductively removed by the release of nitrite, which was subsequently reduced to NH4
+, 

as the final nitrogen-bearing product. The reduction of NO2
- by iron, producing NH4

+, was 

previously reported (Hu et al., 2001; Alowitz and Scherer, 2002).  
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A reproducible dip in the nitrogen mass balance occurred at about 4 to 5 min (Figure 2.3). 

The deficit was attributed to unidentified nitrogen-bearing intermediates. Three unknown 

peaks were observed on the HPLC chromatograms during PETN analyses, appeared at 

retention times of 1.3 (peak-1), 2.3 (peak-2) and 3.9 (peak-3) min (cf. 6.5 min for PETN) 

(Figure 2.4). All unknown peaks show similar trends of an initial increase to a maximum 

followed by a decrease, with eventual disappearance for peak-2 and 3 (Figures 2.5) and a 

plateau for peak-1 before exiting the column (Figure 2.6). The pattern of the appearance and 

disappearance of the unknown peaks suggests that they are intermediate products of PETN 

degradation. In addition, peak-3, 2 and 1 reached their maximum at 4.1, 5.8 and 8.5 min, 

suggesting sequential formation of intermediates. We noted that the area of peak-1 was 

apparently greater relative to peak-2 and 3. This was a consequence of the interference from 

nitrite, which eluted at the same time as peak-1. The similar profile of nitrite measurement by 

IC to peak-1 by HPLC indicates the presence of nitrite in the HPLC analysis; on the other 

hand, the dissimilarity at maximum and aftermost phase suggests the coexistent of peak-1 

rather than nitrite itself (Figure 2.6). Though a larger residence time would be helpful, the 

data suggests that unknown-1 may have approached a constant value towards the end of the 

column where the nitrite concentration was below detection limit.  

2.2.3 Identification of Intermediate Products  

Sample fractions of the three unknown peaks separated by the HPLC column were manually 

collected at the corresponding retention times in clean vials, air dried, re-dissolved in 

acetonitrile and analyzed by positive NH3-CI mass spectrometry. When ammonia is used as 

the reagent gas in chemical ionization, compounds react with ionized ammonia molecules to 

form [M+H]+ and /or [M+NH4]+ ions (van Leuken and Kwakkenbos, 1992). When pure 

PETN was analyzed by this method, five fragment ions at m/z of 334, 289, 244, 199 and 154 

appeared in the spectrum (Figure 2.7). The equidifferent value in this progression is 45, 

suggesting a stepwise replacement of nitrite by hydrogen on PETN. The molecular weights 

of the five fragments were consistent with PETN (MW=316), pentaerythritol trinitrate 

(MW=271), pentaerythritol dinitrate (MW=226), pentaerythritol mononitrate (MW=181) and 

pentaerythritol (MW=136) in [M+NH4]+ form. The mass spectrum of PETN suggests that the 
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molecular ion [M+NH4]+ form of PETN was not stable at the high temperature and lost 

nitrite groups during LC/MS analysis. When pure pentaerythritol of analytical grade was 

analyzed using this method, two fragment ions at m/z of 154 and 137 occurred in the 

spectrum (Figure 2.8), corresponding to the ionization products of pentaerythritol in both 

[M+H]+ and [M+NH4]+ form. The spectrum showed that the [M+H]+ ion was only about 10% 

of the quantity of [M+NH4]+ ion. These fragment ions of pure compounds were used to 

tentatively identify the reaction intermediates. 

 

Figures 2.9, 2.10 and 2.11 show the mass spectra of the three unknown peaks-1, 2, 3, 

analyzed by the same method. Figure 2.9 contains two major ions at m/z of 154 and 137, 

identical to the spectrum of pure pentaerythritol, indicating that unknown peak-1 was 

pentaerythritol. In Figure 2.10, the spectrum contains fragment ions at 154, 199 and 244, 

corresponding to the m/z of pentaerythritol, mononitrate and dinitrate pentaerythritol in 

[M+NH4]+ form. In Figure 2.11, the spectrum includes fragment ions at 154, 199, 244 and 

289, corresponding to the m/z of pentaerythritol, mononitrate, dinitrate, and tirnitrate 

pentaerythritol in [M+NH4]+ form. Since the reaction intermediates bear structural features in 

common with the parent compound PETN, they would behave consistently in LC/MS 

analysis with PETN.  Therefore, by comparing these spectra with the PETN spectrum, the 

two unknown chemicals in Figures 2.10 and 2.11 were identified as pentaerythritol dinitrate 

(peak-2) and pentaerythritol trinitrate (peak-3), which lost nitro groups stepwise during 

LC/MS analysis, similar to PETN. Because of the unavailability of analytical standards for 

pentaerythritol dinitrate and pentaerythritol trinitrate and the interference of nitrite with 

pentaerythritol, the identified intermediates could not be quantified in this study. Instead of 

concentration, the variation in peak size with reaction time was used to describe the behavior 

of the breakdown products (Figures 2.6 and 2.7). The production of identified pentaerythritol 

dinitrate and pentaerythritol trinitrate as transient intermediate products explains the 

reproducible early-time deficit in the nitrogen mass balance because their maximum peak 

areas coincide with the lowest range in the nitrogen mass recovery curve. 



 

 20

2.2.4 Degradation Pathway 

Based on the identified intermediate breakdown products, tri- and dinitrate pentaerythritol, 

and the final carbon-bearing end product, pentaerythritol, as well as the near 100% nitrogen 

mass balance, it is proposed that PETN degradation in the presence of iron follows a 

sequential reductive degradation pathway with the release of NO2
- in each denitration step 

(Figure 2.12), as shown in eq 2.1 to eq 2.4. The nitrite liberated from the stepwise reductive 

reactions was further reduced by iron, as in eq 2.5. Eq 2.6 indicates that stoichiometrically a 

total of 32 moles of electrons are required to degrade 1 mol of PETN to NH4
+ and 

pentaerythritol as the final reduction products. Thus, considering Fe2+ to be the final iron 

product, 16 moles of Fe0 would be required. In the iron column tests, the amount of iron 

significantly exceeded the stoichiometric requirement for complete reduction of PETN, and 

thus resulted in the pseudo-first-order kinetics of PETN degradation with respect to PETN 

concentration.  

C5H8(ONO2)4 + 2e- + H2O  →  C5H8(ONO2)3(OH) + NO2
- + OH-                                           (eq 2.1) 

C5H8(ONO2)3(OH) + 2e- + H2O  →  C5H8(ONO2)2(OH)2 + NO2
- + OH-                   (eq 2.2)     

C5H8(ONO2)2(OH)2 + 2e- + H2O  →  C5H8(ONO2)(OH)3 + NO2
- + OH-                   (eq 2.3) 

C5H8(ONO2) (OH)3 + 2e- + H2O  →  C5H8(OH)4 + NO2
- + OH-                                (eq 2.4) 

NO2
- + 6e- +6H2O → NH4

+ +8OH-                                                                             (eq 2.5) 

C5H8(ONO2)4 + 32e- + 28H2O  →  C5H8(OH)4 + 4NH4
+ + 36OH-                             (eq 2.6) 

 

The apparent absence of pentaerythritol mononitrate may be due to (i) the rate of 

conversion of pentaerythritol mononitrate to pentaerythritol was faster than its formation 

from pentaerythritol dinitrate; (ii) the amount of pentaerythritol mononitrate was very small, 

particularly with the low initial PETN concentration, resulting in the concentration being 

below the detection limit of HPLC analysis; or (iii) the analytical method used in this study 

was not sensitive to pentaerythritol mononitrate. Even though the lack of mononitrate 

pentaerythritol made the last denitration step in the degradation pathway somewhat uncertain, 

the complete nitrogen recovery indicated that all nitrite groups were removed.  
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Hydrolysis did not appear to be involved since NO3
- was not detected. If NO3

- were 

released, its slower reduction rate with iron compared to NO2
- would have made it detectable 

(Rahman et al, 1997; Alowitz and Scherer 2002). Nitrate was also not detected in the later 

batch experiment conducted at an initial concentration of 200 mg/L PETN (data not shown), 

which precludes the possibility of production of NO3
- below the detection limit (0.5 mg/L) 

caused by the low initial PETN concentration in the column experiments. 

 

The proposed pathway for PETN degradation is similar to that of glycerol trinitrate, 

another nitrate ester compound. Oh et al. (2004) showed that in the presence of cast iron, 

glycerol trinitrate was stepwise reduced to 1,2- and 1,3-dinitroglycerin and then 1- and 2-

mononitroglycerin and finally to benign products of glycerol and NH4
+. The reduction 

process was proposed to be reductive rather than hydrolytic because of the absence of NO3
- 

during the experiment, consistent with the observations of this study.  

2.2.5 Mass Transfer Considerations 

As described in section 1.1.3.1, the rate-limiting factor for PETN degradation could be any 

one of the five steps involved in the reduction of contaminants on the surface of iron. 

However, it is difficult to determine the relative rate of each step because many of the 

parameters can not be measured directly. As an alternative, we used the method of Arnold et 

al. (1999), in which the observed rate of reduction can be represented as the sum of 

contributions of mass transfer and surface reaction (eq 2.7 or eq 2.8), in which the mass 

transfer coefficient can be estimated independently.  

)11(11

geomSAmtobs kkk −

+=
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                                                          eq 2.7 
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−

−

+

••
=
α

                                                              eq 2.8 

where kobs is the overall reaction rate constant (s-1), observed by batch or column 

experiments; kmt (m.s-1) is the mass transfer rate coefficient; kSA-geom (m.s-1) is the surface-

area-normalized rate constant in which the geometric (external) specific surface area of the 
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particles is used rather than the BET specific surface area; α is the ratio of iron geometric 

surface area to solution volume (m-1). 

  

The difference between the rate of mass transfer (kmt) and the rate of surface reaction (kSA-

geom) can determine three potential kinetic domains: (i) mass transfer limited kinetics, where 

the mass transfer of contaminant to the iron surface is much slower than the reaction rate at 

the iron surface (kmt « kSA-geom, kobs ≈ αkmt); (ii) reaction limited kinetics, where the reaction 

of contaminant with iron at the surface is much slower than the rate of mass transfer (kSA-geom 

« kmt, kobs ≈ αkSA-geom); (iii) intermediate kinetics, where the mass transfer and reaction rates 

are similar (kSA-geom ≈ kmt, kobs ≈ 0.5 αkSA-geom or  0.5 αkmt). 

 

In this study, an empirical correlation (eq 2.9) developed to represent mass transport in 

packed-bed reactors (Scherer et al., 2001) was used to estimate the mass transfer rate 

coefficient (kmt) for PETN in the iron column.  

3/13/13/2 Re09.1 Sc
D

dk
Sh Pmt −=

•
= ε                                                              eq 2.9 

where  is the Sherwood number,  is the particle diameter (m), D is the diffusion 

coefficient of the reactant in water (m

Sh Pd
2/s). Reynolds number ( ν/Re Pud= ) and Schmidt 

number ( DSc /ν= ) are independent variables in the correlation, in which u is velocity 

(m/s), ν  is kinematic viscosity of the fluid (m2/s) and ε  is the porosity. For the 100% iron 

column, with fluid velocity of 4.96 ×10-4 m/s, particle diameter of 0.65 mm, porosity of 0.59, 

and a PETN diffusion coefficient of 5.65×10-6 cm2/s, the kmt value was computed using eq 

2.9 to be 6.72 ×10-4 m.min-1.  

 

kSA-geom was not determined, but as indicated by eq 2.8, a comparison of αkmt with kobs can 

be used as an indication of the relative magnitude of the mass-transfer limitation term. 

Assuming ideal spherical geometry, α, the ratio of iron geometric surface area to solution 

volume, was estimated to be 3.34×103 m-1 for the 100% iron column. With the calculated kmt 

value, the αkmt value is 2.24 min-1 (calculation shown in Table 2.1). From the kinetics 
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experiment, the average value of kobs for the 100% iron columns was 2.70 min-1. Therefore, 

in the 100% iron column, αkmt contributes 83% of kobs. It is clear that the contribution of αkmt 

to kobs is substantive, suggesting that the reduction of PETN could be at least partially limited 

by external mass transfer. 

2.2.6 Effect of Dissolution on Mass Depletion and Enhancement 

In the case of dissolved PETN, though the rate of degradation may be limited by mass-

transfer processes, the rate is nevertheless very high. However, in spite of the high rate 

constant, if solid-phase PETN is present, rates of mass depletion may be limited by the 

relatively low solubility of PETN (6 mg/L). In such cases, the mass depletion is likely to be 

controlled by the rate of PETN dissolution. The first batch experiment described in the 

method section, in which the initial PETN mass exceeded its solubility, was performed to 

evaluate this possibility. Figures 2.13 and 2.14 summarize the concentrations of PETN in the 

solution phase and the masses of nitrogenous reduction products (sum of N in NO2
- and NH4

+ 

divided by N in initial PETN) during PETN reduction processes for the four tests conducted 

with different loadings of iron at 20, 10, 5 and 1 g.   

 

In Figure 2.13, the data show a relatively slow decline in the aqueous concentration of 

PETN for all cases and an apparent inconsistency with the first-order kinetic model. In this 

test, when crystal PETN is present, the concentration of PETN in solution is a consequence 

of depletion by degradation and addition by dissolution. The decrease in concentration within 

the first 3 days suggests that dissolution of PETN was likely to be a limiting factor on its 

reductive transformation; if not so, the aqueous concentration should tend to remain constant 

or achieve stable at the level of its solubility. As a common trend for all cases, following the 

initially rapid decline in PETN concentration, the aqueous concentrations approached steady 

values (below solubility), suggesting equilibrium between the rates of degradation and 

dissolution. It is noted that the “equilibrium” concentration of PETN in solution over the 

entire experiment decreased with increasing iron loading. This is undoubtedly a consequence 

of a higher rate of depletion in the solution phase by the greater surface area concentration of 

iron. The consequently increased concentration gradient should enhance the rates of 
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dissolution and thus the rates of mass depletion. This is clearly reflected in the accumulated 

masses of the nitrogenous reduction products (Figure 2.14) over time, an indicator of mass 

depletion of PETN. For the 20 g iron test, with the lowest PETN concentration in solution, 

complete removal of PETN was achieved in 5 days. Progressively lower iron loadings 

resulted in progressively higher aqueous concentrations and thus lower rates of PETN 

removal. By day 8, the nitrogen mass recovery reached only 44% in the test with 1 g iron.  A 

linear increase in the nitrogen mass balance was observed after 2 or 3 d, especially in the 

tests with 10, 5, and 1 g iron, corresponding with the period during which the PETN 

concentration in solution was constant. This trend in the test with 20 g iron was not 

distinctive, which was likely due to the rapid and complete reduction of PETN before 

achieving steady state.  

 

Results suggest that the more iron present and thus the faster degradation rate, will result 

in the lower concentration of PETN at steady state, the more likely that the dissolution of 

PETN will limit the degradation process. Following this trend, one would expect the more 

significant limitation of dissolution on PETN mass removal when PETN degradation was 

conducted with more iron, such as the cases of column experiments.  

 

Under conditions where crystalline PETN is present, the primary limiting factor for PETN 

mass depletion is the dissolution process, with iron concentration being of secondary 

importance. Therefore, the potential for improving the rate of degradation by means of 

increasing PETN solubility was examined. Methanol (50%), as a co-solvent, was used for 

this purpose in the second batch experiment. Very similar pseudo-first-order disappearance 

of PETN was observed in the five batches (Figure 2.15), which were initiated with different 

PETN concentrations at 20, 35, 50, 65 and 80 mg/L. PETN was degraded to below detection 

limit after 12 h in all batches at an average half-life of 1.68±0.38 h. The results show that 

with the loading of iron used in this study, and within the concentration range from 20 to 80 

mg/L, the rate of PETN mass removal from solution can be increased when the aqueous 

PETN concentration increases.  
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Co-solvents, though effective in increasing mobility and solubility of hydrophobic 

contaminants, may also pose negative effects on degradation rates. To explore this potential 

effect, a supplemental parallel batch experiment using 10 g of iron and aqueous PETN (6 

mg/L), in the presence and absence of co-solvent, was conducted. The kSA was 8.81×10-3 and 

2.90×10-3 L.m-2.h-1 for PETN reduction in the water and co-solvent systems, respectively. 

Apparently, the degradation rate in the water system was about 3 times greater than that in 

the presence of co-solvent. The difference suggests a decrease in degradation rate caused by 

the presence of co-solvent. In a similar experiment, Clark II et al. (2003) found that the 

dechlorination rate by granular iron decreased with increasing co-solvent fractions. The 

decrease in degradation rate was attributed to a reduction in organic sorption on the iron 

surface.  

 

Despite the somewhat negative effect of the co-solvent, the rate of mass removal can still 

be enhanced by using a co-solvent. Given the kSA values of 1.60 ×10-3 and 8.81×10-3 L.m-2.h-1 

in the Fe0-co-solvent and Fe0-H2O system, 1.60 ×10-3 L and 8.81 ×10-3 L of PETN-

contaminated water can be completely treated in unit time with unit iron surface in the Fe0-

co-solvent and Fe0-H2O system, respectively. As a consequence, PETN mass removal in the 

Fe0-co-solvent system would be 0.13 mg (1.60 ×10-3 L of 80 mg/L PETN-contaminated 

water) whereas the mass depleted in the Fe0-H2O system was 0.05 mg (8.81 ×10-3 L of 6 

mg/L PETN-contaminated water). Therefore, using a co-solvent to increase PETN solubility 

can be an effective means to improve treatment efficiency when crystalline PETN is present.  

 

2.3 Conclusion 

This study demonstrated that granular iron can degrade PETN in the aqueous phase rapidly 

and effectively. The reductive reaction followed pseudo-first-order kinetics with a rate 

constant of 2.70±0.22 min-1 in the 100% iron column and 0.44±0.029 min-1 in the 30% iron 

column. In the presence of iron, PETN degradation proceeds through a reductive denitration 

process. Based on the detection of tri- and dinitrate pentaerythritol and pentaerythritol, as 

well as NO2
- and NH4

+, it appeared that PETN underwent sequential denitration with the 
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transient formation of trinitrate pentaerythritol and dinitrate pentaerythritol, releasing NO2
-, 

which was further reduced to NH4
+. Mononitrate pentaerythritol was not detected, leaving the 

last step of denitration unconfirmed. However, the nearly 100% nitrogen mass balance 

suggests that all nitro groups were removed. The kinetics of degradation in the column tests 

is, in part, mass-transfer limited. When solid PETN is present, the process of dissolution is 

likely to be the rate-limiting factor in mass depletion. Using a co-solvent, such as methanol, 

PETN solubility can be enhanced thus increasing the rates of mass removal. This study 

shows that granular iron is a viable and effective treatment method for remediating water 

containing PETN and when present in crystalline form the efficiency of removal can be 

greatly enhanced by introducing a co-solvent. 
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Figure 2.1: Normalized PETN concentration with time in the 100% iron column  
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Figure 2.2: Normalized PETN concentration with time in the 30% iron column  
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Figure 2.3: Masses of nitrogenous compounds (PETN, nitrite and ammonium) versus 

time in the 30% iron column after 420 PV 
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Figure 2.4: HPLC chromatogram of PETN (at 6.5 min) and unknown intermediate 

products (peak-1 at 1.3 min, peak-2 at 2.3 min and peak-3 at 3.9 min)  
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Figure 2.5: Changes in peak size (area) of unknown peak-2 (retention time = 2.3 min) 

and peak-3 (retention time = 3.9 min) versus time in the 30% iron column after 420 PV 
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Figure 2.6: Changes in peak size (area) of unknown peak-1 (retention time = 1.3 min) 

and nitrite concentration versus time in the 30% iron column after 420 PV 
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Figure 2.7: Positive ion NH3 CI mass spectrum of PETN (analytical standard) 
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Figure 2.8: Positive ion NH3 CI mass spectrum of pentaerythritol (analytical standard) 
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Figure 2.9: Positive ion NH3 CI mass spectrum of unknown peak-1 (retention time = 1.3 

min in HPLC Chromatography) 
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Figure 2.10: Positive ion NH3 CI mass spectrum of unknown peak-2 (retention time = 

2.3 min in HPLC Chromatography) 
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Figure 2.11: Positive ion NH3 CI mass spectrum of unknown peak-3 (retention time = 

3.9 min in HPLC Chromatography) 
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Figure 2.12: Proposed pathway for degradation of PETN by granular iron  
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Figure 2.13: Changes in aqueous PETN concentrations with time in batch tests with 

solid-phase PETN (200 mg/L) and 20, 10, 5 and 1 g iron  
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Figure 2.14: Masses of nitrogenous compounds (nitrite and ammonium) over time in 

batch tests with solid-phase PETN (200 mg/L) and 20, 10, 5 and 1 g iron 
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Figure 2.15: Changes in PETN concentrations in batch tests using methanol as a co-

solvent to increase initial PETN concentration to 20, 35, 50, 65 and 80 mg/L 
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Table 2.1: Calculation of mass transfer rate coefficient for 100% iron column 

 Column-1 

Packing material 100% Connelly iron 

Porosity (ε) 0.59 

Particle diameter ( ) -m Pd 6.5×10-4

Flow rate (q) - ml/min 8.9 

Fluid velocity (u) - m/s smcm
cm
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A
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Chapter 3 

PETN Biodegradation by Anaerobic Consortia in Liquid Culture 

The previous chapter demonstrated the abiotic degradation of PETN by granular iron. This 

chapter examined the potential for biotic degradation of PETN by using enrichment cultures 

prepared from PETN-contaminated soil. Generally, high levels of nitrate and sulfate are 

found in PETN-contaminated sites associated with its manufacture, as a consequence of the 

use of nitric acid and sulfuric acid in the process of PETN synthesis. Therefore this study 

specifically examined the biodegradability of PETN in the presence of nitrate, sulfate and 

mixture of nitrate and sulfate. The metabolites formed from biotransformation of PETN were 

characterized and a degradation pathway was proposed. Determination of the microbial 

population that degrades PETN and appropriate electron acceptor conditions can offer the 

prospect of optimizing bioremediation systems for PETN and other nitrate-ester 

contaminated sites. 

3.1 Materials and Methods 

3.1.1 Mineral Media 

The biodegradability of PETN under anaerobic conditions was tested in liquid culture. The 

mineral salt medium used for microbial enrichment in this study was modified from Cobb 

and Bouwer (1991), consisting of the following components (in mg/L): MgCl2
.6H2O (21.2), 

NH4Cl (74.6), CaCl2
.2H2O (36.7), KH2PO4 (24.6), K2HPO4 (25.3), Na2HPO4

.7H2O (34.1), 

and NaHCO3 (27.1). A 100-fold concentrated trace elements solution was added to this 

medium to give the following final concentrations (in mg/L): FeCl2
.4H2O (1.0), FeCl3

.6H2O 

(0.26), MnSO4
.H2O (0.13), H3BO3 (0.029), ZnCl2 (0.031), NiCl2 (0.025), Cu(NO3)2

.2.5H2O 

(0.025), CoCl2.6H2O (0.032), AlCl3.6H2O (0.022), Na2MoO4
.2H2O (0.034) and Na2SeO3 

(0.013).  
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In a preliminary test, acetate, as a common carbon source for most bacteria, was added to 

the above medium; however, the bacterial growth was not significant, especially for sulfate-

reducing enrichment. Therefore, yeast extract, rich in various nutrients as well as carbon, was 

added at 0.01% and 0.1% (w/w) for nitrate-reducing and sulfate-reducing enrichment, 

respectively, and a substantial enhancement in microbial activity and growth was observed. 

Therefore, for nitrate-reducing condition, the mineral medium was used with the addition of 

0.01% yeast extract, 300 mg/L acetate and 150 mg/L sodium nitrate. For sulfate-reducing 

condition, the mineral medium was amended with 0.1% yeast extract, 300 mg/L acetate and 

150 mg/L sodium sulfate. The medium used for mixed electron acceptor conditions was 

added with 0.1% yeast extract, 300 mg/L acetate, 150 mg/L sodium nitrate and 150 mg/L 

sodium sulfate. In each medium, acetate was stoichiometrically in excess for complete 

reduction of the electron acceptor(s) in the medium. 

 

Each type of medium was autoclaved at 121ºC for 1h, and deoxygenated with nitrogen gas 

using a sterilized sparger and tubing system to a DO level of < 0.2 mg/L. Since PETN 

decomposes during autoclaving, it was added to the media via a sterile syringe in the 

presence of a nearby open flame to a final concentration of 6 mg/L at the end of preparation.  

The final pH values of the media were 6.4~6.5. 

3.1.2 Enrichment Procedure 

The initial enrichment was prepared in a 160 mL serum bottle with 5 g PETN-contaminated 

soil from a site at Louviers, CO, U.S.A, which had received PETN wastewater for over 20 

years. Since the concentrations of nitrate and sulfate were high in the contaminated soil, the 

initial inoculation was conducted with sterile mineral medium containing 300 mg/L acetate in 

the absence of nitrate and sulfate. The bottle was sealed with autoclaved Teflon®-coated 

septa and aluminum crimp caps and incubated at room temperature. After 60 days, apparent 

turbidity and black precipitation were observed in the culture, and complete depletions of 

nitrate and sulfate were achieved. Then, two aliquots of 2 mL inocula were transferred to 60 

mL sterile serum bottles containing fresh nitrate-reducing medium and sulfate-reducing 

medium and PETN, respectively. The bottles were incubated in a 37ºC constant temperature 
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room and the bacterial growth was monitored by measuring the depletion of electron 

acceptors. The transfer process was repeated seven times, with each transfer occurring once a 

substantial growth of culture was evident and at least 50% electron acceptor in the medium 

was depleted. The finally enriched denitrifying and sulfate-reducing cultures were used as 

inocula for the study of PETN biotransformation under nitrate-reducing and sulfate-reducing 

conditions, respectively. The experiment under mixed electron acceptor conditions was 

performed with the inoculum from the initial liquid culture.  

3.1.3 Batch Experiments 

For each electron acceptor condition, two controls and two active cultures were established. 

Each treatment was conducted in a 250 mL sterile glass bottle with a screw cap fitted with a 

Mininert Valve™ (Precision Sampling Corporation, Baton Rouge, Louisiana). The controls 

included an uninoculated medium (set-1) and an inoculated medium sterilized by the addition 

of mercuric chloride (HgCl2) at a concentration of 100 mg/L (set-2). The active treatments 

were inoculated by the finally enriched cultures (10 mL) in the presence of and the absence 

of the electron acceptor(s) (set-3 and set-4). Initially, the bottles were filled with media 

leaving no headspace. The bottles were incubated in an anaerobic glovebox (5% H2 + 5% 

CO2 + 90% N2) for the entire experiment. Periodically, approximately 1 mL of aqueous 

sample was withdrawn from each bottle for inorganic and organic analyses. 

3.1.4 Analytical Methods 

Inorganic analyses of nitrate, nitrite and sulfate and organic analyses of PETN and possible 

intermediate products were performed using the same analytical methods described in 

Chapter 2. As well, the same LC/MS method was used for identification of intermediate 

products. 

3.2 Results and Discussion 

3.2.1 PETN Biodegradation in the Presence of Nitrate 

The concentrations of nitrate and PETN over time in the nitrate-reducing medium are shown 

in Figures 3.1 and 3.2, respectively. In both controls (set-1 and set-2), concentrations of 
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PETN and nitrate remained constant over time. The unchanged concentration in the 

uninoculated control (set-1) indicated that PETN was persistent in the absence of microbial 

activity and the sterilization procedure for media was effective. The constant concentration in 

the inoculated control sterilized by HgCl2 (set-2) suggested that no abiotic factor in the 

inoculated medium would affect the reduction of PETN. In the active culture with nitrate 

addition (set-3), nitrate was reduced to below the detection limit within the first 36 h. As 

nitrate decreased, nitrite accumulated to a maximum of about 79 mg/L at 36 h and then 

declined to the detection limit by 121 h. No nitrate or nitrite was observed in the test without 

nitrate addition (set-4). As seen in Figure 3.2, PETN gradually degraded in both active 

treatments (set-3 and 4) without a lag phase. Initially, PETN degraded at a similar rate in 

both active cultures but began to diverge after 61 h, with the “nitrate added” treatment (set-3) 

showing a higher rate of degradation. At the conclusion of the experiment (1240 h), 98% and 

59% of the initial PETN had been transformed in the tests with and without nitrate addition, 

respectively.   

 

It is clear that the rate of PETN degradation was significantly increased by the presence of 

nitrate in the medium (Figure 3.2). If PETN were degraded by the various denitrifying 

bacterial species in the enrichment, it is reasonable to propose that the enhancement in PETN 

removal is a consequence of a larger population of bacteria, stimulated by the greater amount 

of electron acceptors in set-3 containing 150 mg/L of nitrate and 6 mg/L of PETN, relative to 

the sole presence of PETN in set-4. With the greater amount of electron acceptor, particularly 

with nitrate, more energy would be produced, which would induce faster and larger bacterial 

growth. The more extensive microbial growth was noticeable in the visual observation of 

turbidity in the culture and also evidenced by the consumption of acetate (Figure 3.3). It is 

apparent that more acetate was consumed in the treatment with nitrate addition (set-3) than in 

the absence of nitrate (set-4) during the first 121 h, the time for complete denitrification. 

Following that, acetate was used at a similar rate in both treatments. The enhanced 

degradation rate by nitrate addition is consistent with the principle of enhanced 
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biodegradation by providing alternative electron acceptors to increase bacterial growth and 

consequently yield faster degradation rates for contaminants.  

 

The presence of nitrate does not appear to affect the kinetics of PETN degradation based 

on the shape of the PETN curves at the initial period (Figure 3.2). However, in the above 

experiment, nitrate only presented for a short period of time relative to the degradation of 

PETN. Thus, a supplemental experiment was conducted, in which nitrate concentration was 

maintained above 50 mg/L for a period of over 130 h by multiple additions (Figure 3.4). In 

this case, PETN initially degraded at the same rate as in the treatment with single addition of 

nitrate (set-3). However, after 121 h, when the majority of nitrate had been removed, PETN 

degradation was halted. Due to the multiple additions of nitrate, nitrite accumulated to a 

maximum of 350 mg/L after nitrate depletion, from then on no further decrease in nitrite 

concentration was observed. In contrast, nitrite decreased relatively quickly (about 100 h) in 

the culture with single nitrate addition (set-3, Figure 3.1). The temporary plateau for both 

PETN and nitrite reduction was believed to be a consequence of nitrite inhibition on 

denitrifying rather than carbon limitation since the concentration of acetate remained above 

300 mg/L by multiple additions. After a lag phase of 450 h, both nitrite and PETN showed 

significant declines in concentration, indicating the restored activity of bacteria. The 

concurrent onset of PETN and nitrite reduction suggests the degradation of nitrite and PETN 

to be undertaken by the same microbial consortium, likely to be denitrifying bacteria. This 

supports the explanation for the enhancement in the rate of PETN degradation by the extra 

presence of nitrate, which induced greater population of denitrifying bacteria to degrade 

PETN. Our results agree with previous research concerning the biotransformation of TNT, 

DNT and HMX by denitrifying enrichment cultures (Boopathy et al., 1998a and 2001a; 

Freedman et al., 1998). In this experiment, with multiple additions of nitrate, consistent with 

previous findings, the presence of nitrate, over an extended period of time, did not appear to 

affect PETN degradation; however, the consequent production of nitrite, particularly in large 

quantity, may temporarily delay PETN degradation.     
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In set-3, with the coexistence of nitrate and PETN, complete removal of the initial nitrate, 

at 160 mg/L, occurred within 36 h while it took 1240 h to achieve 98% removal of 6 mg/L 

PETN (Figure 3.5), indicating a much faster rate of nitrate reduction than PETN degradation. 

The faster degradation of nitrate was also observed in the experiment with multiple additions 

of nitrate. With multiple additions of nitrate, more than 1,000 mg/L was removed within 187 

h. After the inhibition phase, approximately 300 mg/L nitrite (41% of nitrate added) was 

reduced within 232 h while it took 667 h for 3.8 mg/L of PETN to be completely removed 

(Figure 3.4). Without knowledge of the redox potential for PETN, we can not define the 

thermodynamic favorability of PETN relative to nitrate/nitrite. However, nitrate/nitrite is a 

more structurally favorable molecule for microorganisms relative to PETN, which has a 

structure that does not occur naturally. This characteristic may reduce enzyme accessibility to 

PETN, explaining the much slower process of PETN degradation than nitrate/nitrite 

reduction.  

 

In both active treatments, regardless of fast or slow rate of degradation, as PETN 

degraded, the reduction products of trinitrate pentaerythritol and dinitrate pentaerythritol 

were detected, with a typical pattern of appearance and disappearance for being 

intermediates.  

3.2.2 PETN Biodegradation in the Presence of Sulfate 

Figures 3.6 and 3.7 show the concentrations of sulfate and PETN over the incubation period 

in the sulfate-reducing enrichment media. Sulfate remained constant in the two controls 

throughout the entire experiment. In the active culture with sulfate present (set-3), the onset 

of sulfate reduction occurred after 983 h and complete removal was achieved within the 

following 800 h (Figure 3.6). Figure 3.7 shows that relative to no decline in PETN 

concentration in the control treatments, PETN was completely degraded in both active 

treatments in the presence of (set-3) and absence of sulfate (set-4) within 800 h. Data shows 

insignificant difference between the active treatments with respect to the rate of degradation, 

suggesting that the presence of sulfate has no adverse effect on PETN degradation. 

 



 

 44

As PETN degradation in the nitrate-reducing media, pentaerythritol dinitrate and 

pentaerythritol trinitrate were observed during PETN degradation in both active cultures (set- 

3 and 4). Figure 3.8 plots the performances of these intermediates along with PETN and 

sulfate over time in the medium in the presence of sulfate (set-3). Sulfate shows a significant 

decrease after 1512 h, when both PETN and its intermediates were completely removed, 

suggesting that the presence of PETN and its intermediates may have temporarily delayed the 

onset of sulfate reduction. Similar to our results, Wani and Davis (2003) observed no sulfate 

reduction by biological activity during RDX removal, proposing an inhibition from RDX and 

its metabolic products. In addition, they observed similar RDX transformation rates in the 

presence and the absence of 100 mg/L sulfate in soil column studies.  

 

The occurrence of sulfate reduction in set-3, though delayed, suggests the presence of 

sulfate-reducing bacteria in all media. Most sulfate-reducing bacteria are also capable of 

utilizing nitrate or similar organic compounds as terminal electron acceptors for energy 

generation; it offers the possibility that PETN in the medium without sulfate (set-4) was 

degraded by sulfate-reducing bacteria. In the presence of sulfate (set-3), the observed 

degradation of PETN was completely independent of sulfate reduction, showing a 

predominant preference over sulfate reduction. This does not contradict with the presumption 

that sulfate-reducing bacteria may be responsible for degradation of PETN, because in the 

presence of mixed electron acceptors either sulfate or other electron acceptors may be the 

preferred electron acceptor depending on the species of sulfate-reducing bacteria. To further 

clarify the capability of sulfate-reducing bacteria to degrade PETN and examine the 

biodegradability of PETN under sulfate-reducing conditions, a supplementary experiment 

was conducted. It used the same medium and inoculum without initial addition of PETN. As 

seen in Figure 3.9, after 168 h lag phase, sulfate concentration in the culture was decreased 

rapidly from 168 to 11 mg/L within the following 90 h, indicating that sulfate-reducing 

bacteria was in its exponential growth phase. At this time, PETN (6 mg/L) and more sulfate 

(~100 mg/L) were added into the medium. Data show that sulfate reduction was immediately 

ceased and PETN was converted to an unknown product, differing from all those 
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intermediates observed in the previous experiments. The peak area of the unknown, more 

sensitive than PETN and intermediates in same HPLC analysis, persisted over time. Even 

though the new chemical is not identified, the results clearly suggest the inhibition effect of 

PETN on sulfate reduction, in other words, sulfate-reducing bacteria can not grow in the 

presence of PETN, and consequently are not capable of degrading PETN.  

 

Given the above evidence, it is conclusive to say that PETN can not be biodegraded under 

sulfate-reducing conditions and its degradation in the sulfate-reducing medium is a 

consequence of other bacterial species than sulfate-reducing bacteria. Since PETN was 

present during the enrichment procedures, PETN-acclimated bacteria were also stepwisely 

enriched with sulfate-reducing bacteria and would therefore be present in the inoculum, 

providing an explanation to independent degradation rate of PETN in the presence of sulfate, 

and further evidence for the proposal that the PETN-degrading bacteria belong to the 

denitrifying community. 

 

3.2.3 PETN Biodegradation in the Presence of Nitrate and Sulfate  

To better represent the conditions at contaminated sites, a bacterial liquid culture was used in 

this experiment that was derived from PETN-contaminated soil without enrichment and 

selection. Concentrations of nitrate, sulfate and PETN during the incubation period are 

presented in Figures 3.10, 3.11 and 3.12, respectively. In the two control treatments (set-1 

and 2), the concentrations of nitrate, sulfate and PETN all remained unchanged during the 

experiment. In contrast, all three underwent complete reduction in the active treatments. 

Nitrate was rapidly depleted within the first 37 h, at this point nitrite reached a maximum 

concentration of 72 mg/L then decreased to below the detection limit during the following 12 

h (Figure 3.10). Sulfate remained relatively constant during the initial 160 h, and the majority 

of sulfate was reduced between 160 and 306 h (Figure 3.11). Complete removal of PETN 

occurred in both active treatments, with an apparent faster rate of degradation in the 

treatment with addition of mixed electron acceptors (set-3) than in their absence (set-4) 

(Figure 3.12). It took 88 h and 614 h to achieve 100% removal of PETN for the treatments 
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with and without the addition of mixed electron acceptors, respectively. Since the presence of 

sulfate was demonstrated not to affect the processes of PETN degradation in the prior test 

(section 3.2.2), the improved degradation rate was attributed to the presence of nitrate. As 

discussed in section 3.2.1, the presence of nitrate led to a faster and greater microbial growth 

of denitrifying bacteria, resulting in an increase in the rate of PETN degradation. This may 

similarly explain the enhancement in PETN removal when mixed electron acceptors were 

present in the culture. 

 

Figure 3.13 summarizes the performances of nitrate, sulfate, PETN and observed 

intermediates of pentaerythritol dinitrate and pentaerythritol trinitrate in the culture amended 

with mixed electron acceptors (set-3). Nitrate was firstly fully reduced, followed by compete 

removal of PETN. As PETN degraded, pentaerythritol dinitrate and pentaerythritol trinitrate 

were sequentially produced and degraded with complete disappearance after 112 and 180 h, 

respectively. At the end of the sequence, sulfate reduction took place. This sequence of 

degradation highly suggests the utilization preference by the bacterial consortium in the order 

of nitrate, followed by PETN and its intermediate products, and finally sulfate. The delay in 

sulfate reduction by the presence of PETN and its metabolites in this experiment is consistent 

with the observations under sulfate-reducing conditions, indicating the involvement of 

denitrifying bacteria rather than sulfate-reducing bacteria in PETN degradation.  

3.2.4 Metabolic Processes of PETN Degradation by Anaerobic Bacteria 

The biodegradability of PETN was demonstrated under the electron acceptor conditions of 

nitrate or/and sulfate and three different processes may be responsible for its degradation: (i) 

PETN may serve as a primary substrate for bacterial growth. The carbon and nitrogen atoms 

in the PETN structure may support microbial growth as carbon and/or nitrogen sources. (ii) 

PETN may serve as an electron acceptor. The electron-deficient character of nitro groups on 

PETN makes it a good candidate as an electron acceptor. In this case, a carbon source 

(electron donor) is required for bacterial metabolic growth. (iii) PETN may be used via co-

metabolic processes. PETN may be reduced by a non-specific enzyme or co-factor from 

metabolism of primary substrates, providing no energy benefit to the microorganisms.  
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The results of this study suggest that PETN served as a terminal electron acceptor. In the 

inoculated set-4 for all conditions in which either nitrate or sulfate was absent in the culture, 

PETN was the only potential electron acceptor for microorganisms to gain energy from. If 

PETN can only be co-metabolized, no PETN degradation would be expected in set-4 and no 

further degradation of PETN would continue in set-3 at times when the reductions of other 

electron acceptors was not proceeding. Therefore, the observed microbial growth and PETN 

reduction in the above situations suggest that PETN functioned as an electron acceptor to 

provide energy for microbial growth and activity. This is in agreement with other aromatic 

compounds such as TNT, which can serve as a terminal electron acceptor in respiratory 

chains by Pseudomonas sp. strain JLR11 under anaerobic conditions (Esteve-Nunez et al., 

2000).  

 

Acetate was present in all enrichment media and the concentration was always much 

greater than PETN over the entire experiment. Therefore, it is reasonable to assume that the 

anaerobic bacteria would prefer to use easier and more available carbon sources for their 

growth, reducing the possibility of using PETN as a source of carbon. This is also consistent 

with no degradation of PETN in a supplemental test in which acetate and yeast extract were 

absent in the medium. To date, no microorganism has been identified that is capable of using 

PETN as a carbon source. NH4Cl and yeast extract, as the most favorable nitrogen sources 

for bacterial growth, were present in all media, therefore, their preference over PETN as 

nitrogen sources greatly reduced the possibility of using PETN as a nitrogen source. In 

general, the reported bacteria, which can use explosives as sole nitrogen source, are pure 

strain cultures isolated from enrichment under nitrogen-limiting conditions. As an example, a 

strain of Enterobacter cloacae, isolated under aerobic and nitrogen-limiting conditions, can 

utilize PETN as a sole source of nitrogen for bacterial growth (Binks et al., 1996). RDX and 

HMX can be used as the sole sources of nitrogen for growth by Desulfovibrio spp. in the 

absence of other nitrogen sources (Boopathy et al., 1998b).  
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3.2.5 Biodegradation Pathway 

Regardless the different electron acceptor conditions, the same intermediate products, 

pentaerythritol dinitrate and pentaerythritol trinitrate were observed during PETN 

degradation for all conditions. Both of the denitrated metabolites followed a trend of 

appearance and disappearance, consistent with sequential denitration (see Figures 3.8 and 

3.13). Besides the distinct peaks of di- and trinitrate pentaerythritol, an unknown peak 

occurred at similar retention time to pentaerythritol, with a much greater peak area than in the 

iron experiments. The peak was collected and analyzed by LC/MS using the same method as 

described in Chapter 2. The spectrum shows that the peak contains a mixture of various 

compounds, however, fragment ions at m/z of 154 and 199 were observed in the spectrum, 

corresponding to the ionization products of pentaerythritol and mononitrate pentaerythritol in 

[M+NH4]+ form. Thus the results suggest the presence of mononitrate pentaerythritol, as an 

intermediate product during PETN biotransformation. The fragment ion at m/z of 154 is also 

one of ionization products of pentaerythritol, the other fragment ion at 137 for pentaerythritol 

was observed with very small amount in the spectrum, indicating the potential presence of 

pentaerythritol during PETN biodegradation. Unfortunately, separation of mononitrate 

pentaerythritol and pentaerythritol from the mixed peak was not successful; therefore the 

dynamic trend for these two compounds can not be delineated. The presence of mono-, di- 

and trinitrate pentaerythritol and the potential presence of pentaerythritol suggest that three or 

four nitro groups are sequentially removed from PETN via biological reactions.  

 

Di- and trinitrate pentaerythritol and pentaerythritol were observed during abiotic PETN 

degradation by granular iron (chapter 2). The similar pattern of intermediates suggests an 

identical reaction pathway for both abiotic and biotic systems. The positive identification of 

mononitrate pentaerythritol in this study supports a complete denitration pathway for PETN 

degradation in both systems, in which PETN is sequentially reduced to pentaerythritol, with 

the formation of denitrated intermediates of tri-, di- and mononitrate pentaerythritol. A 

similar denitration pathway was found for the reduction of glycerol trinitrate (GTN), an 

analogous compound to PETN, by granular iron and anaerobic biodegradation. 
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Christodoulatos et al. (1997) reported that by using a mixed culture from an anaerobic 

digester, GTN was completely denitrated to glycerol via successive removal of nitrite from 

the parent compound, forming GDN (glycerol dinitrate) and GMN (glycerol mononitrate) as 

intermediates. Further, Oh et al. (2004) showed that in the presence of cast iron, GTN was 

stepwisely reduced to 1,2- and 1,3-dinitroglycerin and then 1- and 2-mononitroglycerin and 

finally to glycerol.    

3.3 Conclusion 

This study demonstrated that PETN can be biodegraded by indigenous bacteria present in 

contaminated soil and the results suggest that PETN was reduced by denitrifying bacteria, 

provided the medium was amended with organic carbon. PETN degradation under mixed 

electron acceptor conditions provided evidence for PETN biotransformation under anaerobic 

conditions in a mixed microbial population system, similar to the conditions that might be 

expected at contaminated field sites.  

 

The presence of nitrate did not appear to affect PETN degradation; however, addition of 

nitrate can stimulate faster and greater microbial growth of denitrifying bacteria, 

subsequently enhancing the rate of PETN degradation. The high level of nitrite, accumulated 

from nitrate reduction, may temporarily delay PETN degradation. Similar rates of PETN 

degradation were observed in the presence and the absence of sulfate, but the presence of 

PETN inhibited sulfate reduction. The results suggest that PETN served as a terminal 

electron acceptor for bacterial growth under all the conditions tested. Preferential utilization 

by microorganism was observed in the order of nitrate followed by PETN and its 

intermediates, and finally sulfate. Since nitrate is more readily reduced than PETN, the 

available carbon source (electron donor) is preferentially consumed by nitrate over PETN. 

Thus, in order to ensure efficient biotransformation of PETN, the supply of electron donor 

should be sufficient for both nitrate and PETN reduction.  

 

Mono-, di- and trinitrate pentaerythritol were detected as intermediate products under the 

various electron acceptor conditions, suggesting that PETN was sequentially denitrated, 
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liberating nitrite, which was further reduced to nitrogen. The degradation pathway in 

biological system is believed to be the same as in the abiotic degradation of PETN by 

granular iron. 

 

To date, the literature on the metabolism of PETN is very limited. I believe this is the first 

study of PETN biotransformation under various electron acceptor conditions. Although the 

study is not exhaustive with respect to the range in anaerobic conditions, the investigation 

under nitrate-reducing and sulfate-reducing conditions, in particular, will provide some basis 

for better understanding of field performance if the sites are also contaminated by nitrate and 

sulfate.  
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Figure 3.1: Changes in nitrate concentration in the control treatments (set-1 and set-2) 

and nitrate/nitrite concentration in the active medium in the presence of nitrate (set-3) 
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Figure 3.2: Changes in PETN concentration in the control treatments (set-1 and set-2) 

and the active media in the presence and absence of nitrate (set-3 and set-4) 
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Figure 3.3: Changes in acetate concentration in the active media in the presence of 

nitrate (set-3) and the absence of nitrate (set-4) 
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Figure 3.4: Changes in concentrations of nitrate, nitrite and PETN in the medium 

received multiple additions of nitrate, compared to PETN concentration in the medium 

with single nitrate addition (set-3) 
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Figure 3.5: Changes in concentrations of nitrate, nitrite and PETN in nitrate-reducing 

medium (set-3) 
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Figure 3.6: Changes in sulfate concentration in the control treatments (set-1 and set-2) 

and in the active medium in the presence of sulfate (set-3) 



 

 54

0.00

0.20

0.40

0.60

0.80

1.00

1.20

0 100 200 300 400 500 600 700 800
Time (h)

PE
TN

 C
on

c.
(C

/C
0)

set-1: uninoculated control
set-2: sterilized inoculated control
set-3: inoculated microcosm in the presence of sulfate
set-4: inoculated microcosm in the absence of sulfate  

Figure 3.7: Changes in PETN concentration in the control treatments (set-1 and set-2) 

and the active media in the presence and absence of sulfate (set-3 and set-4) 
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Figure 3.8: Changes in concentrations of PETN, PETriN, PEDN and sulfate in the 

active medium in the presence of sulfate (set-3) 
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Figure 3.9: Changes in concentrations of sulfate and new produced unknown 

compound in the supplementary experiment 
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Figure 3.10: Changes in nitrate concentration in the control treatments (set-1 and set-2) 

and nitrate/nitrite in the active medium in the presence of nitrate and sulfate (set-3) 
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Figure 3.11: Changes in sulfate concentration in the control treatments (set-1 and set-2) 

and in the active medium in the presence of nitrate and sulfate (set-3) 
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Figure 3.12: Changes in PETN concentration in the control treatments (set-1 and set-2) 

and the active media in the presence and absence of nitrate and sulfate (set-3 and set-4) 
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Figure 3.13: Changes in concentrations of nitrate, sulfate, PETN, PETriN and PEDN in 

the active medium in presence of nitrate and sulfate (set-3) 
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Chapter 4 

Remediation Strategies for PETN-Contaminated Soil:        
Laboratory Studies 

Chapters 2 and 3 demonstrated that both abiotic and biotic degradation of PETN can proceed 

in the aqueous phase. However, due to the low solubility, PETN tends to exist primarily in 

the solid phase at contaminated sites. Thus this chapter addressed remediation of PETN in 

contaminated soils. Iron may be an applicable remediation method based on the rapid rate of 

degradation in the solution phase; however, the rate of mass removal and thus the time to 

clean up is likely to be determined by the rate of PETN dissolution. The demonstrated PETN 

biodegradability in the aqueous phase suggests that bioremediation also has potential for 

remediating PETN-contaminated soil. Therefore, the goal of this study was to explore 

remediation strategies for PETN-contaminated soil. Three strategies were tested: (1) 

reductive transformation using granular iron, (2) anaerobic biodegradation stimulated by 

amendment with organic materials, and (3) a combination of iron and microbial processes.   

 

The findings should provide support for selecting a practical treatment method for PETN 

or other nitrate ester-contaminated sites and provide a basis for larger-scale field testing.  

4.1 Materials and Method 

4.1.1 PETN-Contaminated Soil 

The soil used in this study was obtained from a settling pond that had received waste water 

from a PETN manufacturing facility for more than 20 years. The inorganic and organic 

contamination was heterogeneously distributed in the soil at the base of the pond. The soil 

contained PETN concentrations ranging from 65 to 600 mg/kg and high levels of nitrate and 

sulfate, with each varying from 8,000~10,000 mg/kg. The presence of nitrate and sulfate in 

the soil was due to the use of nitric acid and sulfuric acid in the process of PETN synthesis. 

For the purpose of this study, the PETN concentration was increased to 4,500~5,000 mg/kg 
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by spiking with pure PETN powder. A portion of the soil was leached several times with 

Millipore water to reduce the level of nitrate and sulfate in order to minimize the 

accumulation of analytical errors from multiple dilutions. On average, the concentrations of 

nitrate and sulfate were decreased to 1,500 and 2,500 mg/kg, respectively. The soil was air 

dried and ground to pass a 2 mm sieve before use. Soil used in the sterile controls was triple-

autoclaved for 1 h at 121ºC on three consecutive days. The soil had a total organic carbon 

content of 0.41%, including PETN (0.12%). 

4.1.2 Iron and Organic Materials 

The granular iron was obtained from Connelly-GPM Inc. (Chicago, Illinois) and used 

without pretreatment (iron parameters same as in Chapter 2). DARAMEND materials 

(D6390 Fe20 and ADM-298500) were used as carbon amendments in the experiment and 

were provided by ADVENTUS Remediation Technologies (Mississauga, Ontario). The 

DARAMEND products are manufactured from naturally occurring plant materials, rich in 

carbon and nutrients. The precise composition is proprietary, but D6390 Fe20 has 20% (wt) 

fine-granular metallic iron while ADM-298500 has no metallic iron.  

4.1.3 Experimental Procedures  

A total of 15 treatments were tested: set-1 to set-6 contained different percentages of granular 

iron ranging from 2 to 10% (by weight), set-7 to set-14 tested the two types of organic 

materials (D6390 Fe20 and ADM-298500) at 1% and 2% levels, and one treatment, set-15, 

had a combination of 5% iron and 2% ADM-298500. The composition of each treatment is 

given in Table 4.1. Each treatment involved the same laboratory conditions with identical 

set-up and sampling procedures.  

 

Tests were conducted in 40 mL glass vials with screw caps fitted with Teflon-lined septa. 

The set-up procedure included the steps of: weigh empty vial, add 15 g PETN-contaminated 

soil, add desired amount of amendments (granular iron or DARAMEND materials), fill with 

deoxygenated Millipore water, create 10 mL headspace (5% H2 + 5% CO2 + 90% N2) by 

removing 10 mL of water in the anaerobic glovebox, cap and re-weigh the vial. The filled 
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vials were vortexed for 1 min and then kept in the dark at room temperature (25ºC) during 

the experiment. Triplicate vials were sacrificed for chemical analysis at each of the eight 

sampling times, requiring the preparation of 24 vials for each treatment. Before analysis, the 

vials were centrifuged for 15 min at 1,500 rpm. The aqueous solution was removed for 

inorganic analyses including nitrite, nitrate and sulfate. The soil was analyzed for PETN 

following the acetonitrile-sonication extraction method (US EPA Method 8330). Briefly, soil 

samples were first dried in air at room temperature to a constant weight, then ground and 

homogenized thoroughly in an acetonitrile-rinsed mortar to pass a 30 mesh sieve (0.6 mm).  

A 2 g sample of soil was placed in a 15 mL glass vial and 10 mL of acetonitrile was added. 

The vial was capped with a Teflon-lined cap, vortexed for 1 min and placed in a cooled 

ultrasonic bath for 18 h. After sonication and settlement, 5 mL of the supernatant was 

removed and well mixed with 5 mL CaCl2 solution (5 g/L). The supernatant of the mixture 

was transferred to a 1.5 mL HPLC vial for analysis. 

4.1.4 Analytical Methods 

Inorganic analyses for nitrate, nitrite and sulfate and organic analysis of PETN were 

performed using the same analytical methods described in Chapter 2.  

4.2 Results and Discussion 

4.2.1 Iron Treatments 

The iron treatments were all conducted with the leached soil, including sterilized and 

unsterilized controls without iron addition (set-1 and set-2), a treatment using autoclaved soil 

amended with 10% iron (set-3), and three treatments using unautoclaved soil amended with 

2%, 5% and 10% (w/w) iron (set-4 to set-6). The changes in PETN concentrations in the soil 

over the 93-day treatment period are shown in Figure 4.1. There was little or no PETN 

removal in the two controls, while 17%, 19% and 26% reductions were observed in the 

unsterilized soils containing 2%, 5% and 10% iron, respectively. A 19% removal was also 

observed in the autoclaved soil amended with 10% iron. Removal of PETN in the soils 

amended with iron (set-3 to set-6) relative to the persistence of PETN in the controls without 
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iron (set-1 and set-2) suggests that iron is capable of removing PETN from contaminated 

soil. However, while the degree of PETN removal in the soil was in the order of increasing 

iron content, it was not proportional. Furthermore, the rate of removal declined rapidly over 

time, with most of the removal occurring within the first 20 days of the experiment. While it 

is clear that granular iron can degrade PETN in the soil, the rates and degrees of removal are 

substantially lower than would be expected, based on the previous results of PETN 

degradation in aqueous solution. The results, with rapidly declining rates of removal at early 

time, suggest that the iron was being passivated.   

 

Although the leaching procedure reduced nitrate to less than 20% of the initial value, the 

concentration in the soil was still approximately 1,500 mg/kg. Even though nitrate can be 

reduced by granular iron to ammonia (Cheng et al., 1997; Huang et al., 1998), as an oxidizer, 

nitrate causes the formation of passive iron oxide films on the iron surfaces (Schlicker et al., 

2000; Ritter et al., 2003). Though iron was found to be very effective in degrading PETN in 

the aqueous phase (chapter 2), no nitrate was present in those tests. The relatively poor 

performance in the present tests is believed to be a consequence of passivation of the iron by 

the high nitrate concentration in the soil. 

 

The trends in nitrate concentration over time for the various treatments are shown in 

Figure 4.2. For the autoclaved treatments, there was a gradual but slight decline in nitrate 

concentration in the autoclaved soil without iron (set-1); however, in the autoclaved soil 

containing 10% iron (set-3), there was a 14% decline in the nitrate concentration over the 

first 10 days, followed by little or no further decline over the remainder of the test period. 

Though the data is sparse, this is consistent with reduction of nitrate at early time by the iron, 

resulting in passivation of the iron and thus no further reductive degradation by the iron. 

Comparing to Figure 4.1, this agrees with the trend in PETN in the autoclaved iron treatment, 

with an early and rapid decline in concentration followed by a much slower rate of PETN 

removal over the remainder of the test period. For the unautoclaved treatment without iron, 

nitrate did not decrease within the initial 10 days but showed a relatively steady decrease 
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over the remainder of the experiment. In all treatments with iron, both autoclaved and 

unautoclaved, there was a similar decline in nitrate concentration during the first 10 days of 

about 14 to 19%. In the autoclaved sample there was only a minor decline in nitrate 

concentration over the remainder of the experiment, while in all unautoclaved treatments 

with iron, there was a continuing decline in nitrate, with almost total consumption by day 93. 

The continued removal of nitrate following passivation of the iron suggests that nitrate is 

being consumed by denitrification. This has important consequences in that it indicates that 

the soil materials are biologically active, and that some portion of the organic carbon fraction 

of the soil is labile. Thus the generally low rates of PETN removal at late time (Figure 4.1) 

may also be a consequence of either biological activity or residual activity of the iron. The 

greater reduction in the PETN concentration in the soil with 10% iron compared to the 10% 

iron autoclaved treatment, suggests that PETN removal at late time is more likely a 

consequence of biological processes. From a comparison of Figures 4.1 and 4.2, 

denitrification appears to be the more competitive processes relative to PETN degradation. 

This is consistent with our previous findings (chapter 3) that rate of nitrate reduction exceeds 

the rate of PETN degradation. 

 

Based on the results of this study, granular iron did not prove to be an effective 

amendment for PETN removal due to passivation of the iron in the presence of high 

concentration of nitrate in the soil. Granular iron may however be effective for PETN 

contaminated soil if nitrate or other competing oxidants are not present. Furthermore, Lu 

(2005) showed that the change in the iron surface and the loss of iron reactivity due to nitrate 

is a reversible process. Thus, at some time after the nitrate is depleted, there is reason to 

expect that more effective degradation of PETN by the iron would proceed. The current 

study did not proceed for a sufficient period of time to explore this possibility.  

4.2.2 Enhanced Biodegradation 

The test of biodegradation with amendment of organic materials involved 8 treatments (set-7 

to set-14), as described in Table 4.1. During incubation, some characteristic biological 

phenomena were observed in the treatments with DARAMEND amendments. Within the 
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first 5 days, large quantities of gas were generated. Subsequently, the formation of black 

precipitates was observed in set-11 and set-12 after 12 days, and appeared in set-13 and set-

14 after 43 and 24 days, respectively. The distinctive odor of hydrogen sulfide was noticeable 

in the samples with black precipitates. None of the above biological phenomena was 

observed in the control treatments. The observation in the treatments amended with 

DARAMEND materials suggests intense microbial activity in the soil, and is consistent with 

denitrification and sulfate reduction processes.  

 

The concentrations of both nitrate and sulfate in the unautoclaved treatments are plotted in 

the Figures 4.3 and 4.4. In the unautoclaved controls without amendment, 894 of 1058 mg/kg 

of nitrate was removed in the leached soil and 1341 of 9296 mg/kg in the unleached soil by 

the end of the incubation period (93 days). In contrast, regardless of whether the soil was 

leached or unleached, nitrate concentrations in the treatments with both types of 

DARAMEND materials decreased to below the detection limit within the first 5 days (Figure 

4.3), which is consistent with the period of observed gas production.  Due to the frequency of 

sampling and high rate of nitrate removal, it is not possible to relate the rate of nitrate 

removal to the particular treatments. Nevertheless, nitrate in the leached soil is expected to be 

removed earlier than in the unleached soil because of the lower initial nitrate concentration. 

Though denitrification occurred in the controls without amendment for both leached and 

unleached soil, the rate and extent of nitrate removal was much lower than in the treatments 

with DARAMEND materials. The remarkable contrast indicates that though the organic 

carbon fraction in the soil is bioavailable to certain microbial activity and growth, it is not 

sufficient to support high rates of anaerobic activity, even for the energetically favorable 

reaction of nitrate reduction. Thus, the availability of carbon in the contaminated soil appears 

to be a limiting factor for anaerobic microbial activity.   

 

There was no decrease in the sulfate concentration in the control treatments without 

amendment. This is not surprising because the carbon source in the soil was not sufficient for 

complete nitrate reduction and thus other anaerobic processes, which are less 
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thermodynamically favorable, such as sulfate reduction, would not be expected to proceed. In 

contrast, appreciable declines in sulfate concentration were observed in the treatments 

amended with both types of DARAMEND materials. For all treatments, an unexpected rise 

in sulfate concentration occurred over the early time (Figure 4.4).  A subsequent test 

confirmed this to be a consequence of the rate of dissolution of the sulfate-containing 

minerals in the soil phase (data not shown). The onset of sulfate reduction took place after 12 

days in the leached soil, while the lag phase appeared to be much longer in the unleached 

soil, but in both cases, the onset of sulfate reduction was consistent with the time of 

appearance of black precipitates in the soils. In the treatments that used the unleached soil, 

after nitrate removal and a lag period, there was a relatively rapid decline in sulfate 

concentration, over a period of about 20 days, followed by a flattening of the curves, 

suggesting little or no further removal. In the leached soil, though the onset of sulfate 

reduction occurred earlier, the rate of reduction appears slower than in the unleached soil, 

and the plateau at later times of incubation also suggests little further reduction, particularly 

in the treatment containing 1% D6390Fe20. The trends in sulfate concentration, in particular 

the plateau observed in the unleached soil, suggest carbon limitation since much of the 

available carbon had been consumed by denitrification prior to the onset of sulfate reduction. 

 

PETN concentrations for all treatments are plotted in Figure 4.5. Little or no reduction in 

PETN concentration was observed in the sterilized and unsterilized controls without 

amendment (set-7 to set-9).  A 20% PETN removal was observed in the sterile treatment with 

DARAMEND amendment (set-10). Based on the shape of the curve, and particularly the 

significant delay in PETN removal, it is likely that the removal was a consequence of 

incomplete sterilization. In contrast, PETN was almost completely removed in all treatments 

in which DARAMEND materials were added (set-11 to set-14). The apparent difference 

indicates the requirement for a carbon source amendment in order to stimulate PETN 

degradation. This is consistent with the results of the aqueous PETN tests of Chapter 3. 
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As seen in Figures 4.3, 4.4 and 4.5, removal of nitrate, PETN and sulfate occurred 

predominantly during the early (0 to 5 d), middle (5 to 36 d) and late (36 to 105 d) phases, 

respectively, of the incubation period, suggesting that the majority of PETN degradation was 

not concurrent with other energy-yielding reactions (such as nitrate and sulfate reduction in 

this case), which would be a requirement for co-metabolic processes. The previous study on 

biodegradation of aqueous PETN suggests that PETN serves as a terminal electron acceptor 

(Chapter 3). Though the soil microcosms amended with DARAMEND materials represent a 

more complex system than the liquid culture, PETN is believed to function in the same way 

in both systems, i.e., acts as an electron acceptor during its biotransformation processes. The 

presence of DARAMEND materials in the soil, rich in carbon and nutrients, also greatly 

reduced the chance for PETN being used as a source of carbon and nitrogen. 

 

The addition of DARAMEND materials stimulated high levels of biological activity, 

including reductions of nitrate, PETN and sulfate. Figures 4.6 and 4.7 summarize the 

consumption of nitrate, PETN and sulfate in the leached and unleached soil amended with 

2% D6390Fe20. Although there was an overlap between PETN and sulfate reduction in both 

cases, particularly in the leached soil, a sequence of nitrate over PETN followed by sulfate 

reduction is consistent with that observed in the previous mineral medium experiment under 

mixed electron acceptors condition (refer to Figure 3.12).   

 

In this study, since sulfate concentration was still high in the soil by the conclusion of the 

test period, methanegenesis was not expected to be involved in PETN biodegradation.  

4.2.3 Kinetics and Controlling Parameters 

Generally, the kinetics of biodegradation processes can be described by empirical Monod 

equation involving variables of substrate concentration and bacterial growth rates and 

microbial population. However, the kinetics of PETN degradation in the treatments amended 

with DARAMEND materials all fit the pseudo-first-order kinetic model. This suggests that 

with respect PETN, the substrate concentration may be much smaller than the Ks in the 

Monod equation, which is the coefficient constant of half-saturation of the enzyme sites. The 
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estimated first-order half-lives were: 17.5 d (R2=0.984) for leached soil with 1% D6390Fe20, 

8.9 d (R2=0.960) for leached soil with 2% D6390Fe20, 14.4 d (R2=0.986) for original soil 

with 2% D6390Fe20 and 15.8 d (R2=0.984) for original soil with 2% ADM-298500.  

 

Referring to the half-lives, the degradation rate in the leached soil amended with 2% 

D6390Fe20 (set-11) was twice as fast as in the same soil with 1% D6390Fe20 (set-12). 

Though the evidence is sparse, it appears that the rate of PETN removal increases with 

increasing amount of amendment. This is not unexpected since increasing the organic 

amendment could induce greater microbial growth and activity, enhancing the rate of PETN 

reduction.  

 

Set-12 and set-13 are parallel treatments amended with the same type and amount of 

organic materials but were conducted with leached and unleached soil, respectively. Because 

of the leaching procedure, nitrate and sulfate concentrations in the leached soil were reduced 

to 1,500 mg/kg and 2,500 mg/kg from 8,000 mg/kg and 10,000 mg/kg in the original soil, 

respectively. The estimated half-lives for the leached soil treatment (set-12) and unleached 

soil treatment (set-13) were 8.9 d and 14.4 d, respectively. The appreciable difference reflects 

the effect of competing electron acceptors on PETN removal. That is, the lower 

concentration of competing electron acceptors leads to faster PETN biodegradation rates. The 

results in the mineral medium experiments and the evidence in this soil test both suggest that 

PETN serves as an electron acceptor during PETN biotransformation and its competitive 

capability for carbon appears to be intermediate between nitrate and sulfate. Since nitrate is 

more readily degraded than PETN, and thus a greater amount of the carbon sources would be 

used to complete denitrification in the unleached soil which contains higher concentration of 

nitrate. Consequently, less carbon was available for PETN degradation in the unleached soil 

compared with the leached soil, contributing to the slower degradation rate in the unleached 

soil. In fact, the result is equivalent to increasing the amount of amendment, which as 

discussed above, resulting in higher rate of PETN removal.   
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Two different types of DARAMEND products (D6390Fe20 and ADM-298500) were 

tested using the same soil in set-13 and set-14. The results show only a small difference in 

degradation rates, with half-lives of 15.8 d and 14.4 d in the material with and without iron 

respectively. The addition of iron provided little or no benefit, possibly as a consequence of 

passivation of the iron. 

4.2.4 Iron-Microbial Combined Method 

In order to enhance the efficiency of treatment, the third strategy for remediation of PETN-

contaminated soil was to combine two potential remediation methods. The combined 

treatment (set-15) was conducted with the leached soil, containing 5% granular iron and 2% 

ADM298500. Similar to the other four treatments with DARAMEND materials (set-10 to 

set-14), odorless gas was produced at early time, followed by the formation of black 

precipitates and the odour of hydrogen sulfide. Figure 4.8 includes the changes in 

concentrations of PETN, nitrate and sulfate over the incubation period. Complete nitrate 

removal was achieved within the first 5 days. The degradation of PETN followed pseudo-

first-order kinetics (R2=0.972), with an estimated half-life of 8.4 d. A substantial decrease in 

sulfate concentration occurred after 12 days. Though there was overlap, as noted previously, 

the results showed a similar trend in the order of nitrate, PETN and sulfate removal.  

 

The combined system is clearly superior to the iron treatment alone, which only achieved 

19% removal within the same period. A direct comparison with the bioremediation method 

can not be made since ADM298500 was not tested in the leached soil. However a reasonable 

comparison can be made with the results of leached soil with 2% D6390Fe20. The combined 

system showed a small (6%) improvement over the treatment without iron addition.  

 

The synergistic effect of an iron-microbial integrated system for explosive remediation 

was reported in previous studies (Oh et al., 2001; Wildman and Alvarez, 2001). In the 

combined system, microorganisms can use hydrogen gas derived from anoxic iron corrosion 

as an electron donor to support biotransformation of contaminants in soil. However, this 

benefit is not substantial in our case given that the production of hydrogen was dramatically 
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reduced due to iron passivation in the presence of high levels of nitrate. Relative to the long 

period of nitrate presence in the iron treatments, nitrate was rapidly removed within the first 

5 days in the combined system. Though the recovery of iron reactivity may occur, the 

recovery process is slow. For example, Lu (2005) observed early signs of recovery of iron 

reactivity for TCE degradation after 40 days of nitrate removal, and significant recovery was 

achieved after 140 days. Thus, the function of iron in the combined system is dramatically 

reduced by the presence of nitrate in the soil.  

 

In sum, considering the slight improvement in performance versus the added cost and 

complexity, for the soil of this study (contaminated with high concentration of nitrate), the 

use of the combined system does not appear to be warranted. 

4.3 Conclusion 

Three potential remediation methods for PETN-contaminated soil were tested: granular iron, 

bioremediation with addition of organic materials and a combination of the iron and 

microbial methods. Of these, the effectiveness of the iron treatments was seriously 

compromised by iron passiviation caused by the presence of high levels of nitrate in the soil. 

In both bioremediation and the combined methods, PETN at between 4,500 and 5,000 mg/kg 

was effectively removed by indigenous soil bacteria within 84 days. Though the iron-

microbial integrated method showed a slight enhancement in the rate of PETN removal 

compared with the organic amendment method, the combined method is not encouraged 

considering the balance between the small improvement in performance and high cost. 

 

In biological treatment, PETN biodegradation was substantially enhanced by the addition 

of organic carbon and the rate of PETN removal increased with greater amount of 

amendment. The results in this study also suggest that PETN serves as an electron acceptor 

during biotransformation and shows a utilization sequence by microorganism in the order of 

nitrate, PETN and sulfate, consistent with the previous findings in the liquid media. Since the 

co-contaminants of nitrate and sulfate in the soil also underwent biological reduction, 

consuming significant amount of the carbon amendment, thus the consumption of the carbon 
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amendment by co-contaminants should be considered in determining the amount of 

amendment required for complete PETN degradation.  

 

In summary, biological treatment with organic amendment appears to be the most 

effective strategy for remediation of PETN-contaminated soil, particularly in situation where 

high concentrations of nitrate are present. Though the experiment showed DARAMEND 

materials to be effective amending materials, other carbon sources, though not tested, may be 

equally effective.  
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Figure 4.1: Changes in PETN concentration over time in the presence of iron at 0, 2, 5 

and 10% in the soil microcosm experiments 
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Figure 4.2: Changes in nitrate concentration over time in the presence of iron at 0, 2, 5 

and 10% in the soil microcosm experiments 
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Figure 4.3: Changes in nitrate concentration over time in the soil microcosms with 

carbon amendments 
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Figure 4.4: Changes in sulfate concentration over time in the soil microcosms with 

carbon amendments  
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Figure 4.5: Changes in PETN concentration over time in the soil microcosms with 

carbon amendments 
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Figure 4.6: Changes in concentrations of PETN, nitrate and sulfate in the treatment 

using leached soil containing 2% D6390Fe20 (set-12)  
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Figure 4.7: Changes in concentrations of PETN, nitrate and sulfate in the treatment 

using unleached soil containing 2% D6390Fe20 (set-13) 

 

 

0.00

0.20

0.40

0.60

0.80

1.00

1.20

0 10 20 30 40 50 60 70 8
Time (d)

C
on

c.
 (C

/C
0)

0

PETN
Nitrate
Sulfate

 
Figure 4.8: Changes in concentrations of PETN, nitrate and sulfate in the treatment 

using leached soil containing 2% ADM298500 and 5% granular iron (set-15) 
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Table-4.1: Composition of the anaerobic microcosm experiments 

Method Treatment No. Soil/Pretreatment Amendment 
1 Autoclaved, leached soil None 
2 Leached soil None  
3 Leached autoclaved soil 10% Connelly iron 
4 Leached soil  2% Connelly iron 
5 Leached soil 5% Connelly iron 

Iron Amendment 

6 Leached soil 10% Connelly iron 
  

7 Autoclaved, leached soil None 
8 Leached soil None 
9 Original soil None 
10 Autoclaved, leached soil 2% ADM-298500 
11 Leached soil 1% D6390Fe20 
12 Leached soil 2% D6390Fe20 
13 Original soil 2% D6390Fe20 

Organic 
Amendment 

14 Original soil 2% ADM-298500 
    

Iron-Organic 
Amendment 15 Leached soil 2% ADM-298500 and 

5% Connelly iron 
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Chapter 5 

In Situ Anaerobic Bioremediation of PETN: A Pilot Study at 
Louviers, CO, U.S.A. 

The previous laboratory study demonstrated that PETN in soil can be biodegraded 

anaerobically by bacteria indigenous to the contaminated site, provided readily usable 

organic matter is added as an amendment. However, the laboratory tests can not simulate the 

heterogeneous conditions in the field and may not recognize other potential issues that could 

arise in the field. A pilot test, to serve as a small-scale field demonstration, is considered to 

be an essential step in proceeding full-scale remediation. This chapter described a scale-up 

pilot experiment based on the results of the laboratory tests. The objectives were to test the 

feasibility of removing PETN from the contaminated soil using iron and bioremediation 

methods under field conditions, and to evaluate the applicability of laboratory results to the 

field conditions. The results of this pilot test should indicate the degree to which the 

laboratory results are transferable to the field, the effect of environmental conditions on 

PETN removal and provide further evidence concerning remediation effectiveness for full-

scale treatment. 

 

The pilot test was conducted at a contaminated site at Louviers, CO, U.S.A. This site is 

believed to be typical of sites that have received long-term discharge of wastewater from the 

manufacture of PETN. Currently, the site is regulated under the Resource Conservation and 

Recovery Act (RCRA) solid waste management units (SWMUs) and is required to be 

decontaminated. 

5.1 Materials and Methods 

5.1.1 PETN-Contaminated Site 

The site is located approximately 40 km south of Denver in Louviers, Colorado. The region 

is underlain by alluvial terrace deposits (unconsolidated gravel, sand, silt and clay deposited 
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primarily by running water). The climate in the region is typical of the high range and 

foothill areas of the Rocky Mountains, with precipitation averaging approximately 40.9 cm 

per year and daytime temperatures ranging from -7ºC to 41ºC.  

 

The site consists of two solar ponds near a currently inactive explosives manufacturing 

facility, which had received wastewater from PETN production for over 20 years (between 

1967 and 1989). As part of the manufacturing process, wastewater effluent contaminated 

with PETN was discharged into two surface impoundments (settling ponds). The ponds, each 

119 m by 119 m, are lined with high-density PVC sheet with approximately 22 to 36 cm of 

clayey soil on top of the liner. The PETN concentration in the soil is highly heterogeneous, 

ranging from 1 to 200,000 mg/kg.  Because of the use of nitric acid and sulfuric acid in the 

process of PETN synthesis, nitrate and sulfate also vary from about 1 to 10,000 mg/kg in the 

soil. (Site information provided by James L. Beck and Mark Vetter of DuPont) 

5.1.2 Materials 

The granular iron (from Connelly) and DARAMEND materials (D6390 Fe20 and ADM-

298500) used in this pilot experiment are the same as those used in the laboratory microcosm 

study (Chapter 4). In addition, brewers grain was tested as an alternative carbon source, and 

was obtained from Teague Diversified, Inc (Ft. Morgan, CO. U.S.A.). It is a by-product from 

brewing, with a moisture content of 65% and is fibrous with high protein content. 

5.1.3 Experimental Approaches 

The trial consisted of the following 10 treatments (% by dry weight): a control (no 

amendment), 10% iron, 1%, 2% and 4% of D6390Fe20, 2% and 4% of ADM-298500, and 

1%, 2% and 4% of brewers grain. The final amendment percentages in the treatments were 

slightly different from the objective values, at 1.19%, 2.63% and 4.37% for D6390Fe20, 

2.32% and 5.81% for ADM-298500, and 1.33%, 2.99% and 6.38% for brewers grain (Table 

5.2). For convenience, the text will continue to use the objective concentrations (1%, 2% and 

4%), though the actual values are used in all calculation. 
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For each treatment, contaminated soil was first dug from the pond, and then thoroughly 

mixed with the desired amount of amendment material in a cement mixer. The original soil 

from the pond was under unsaturated condition, and thus water was added to improve 

mixing. The moisture contents for each treatment after mixing were 42.9% (control), 51.4% 

(10% iron), 45.5% (1% D6390Fe20), 51.2% (2% D6390Fe20), 40.2% (4% D6390Fe20), 

41.8% (2% ADM-298500), 42.0% (4% ADM-298500), 43.9% (1% brewers grain), 51.0% 

(2% brewers grain) and 61.2% (4% brewers grain). The mixture was transferred to a plastic 

tub (45 cm wide × 90 cm long × 25 cm deep) equipped with a float and valve to control the 

water level. Each tub contained an approximately 18 cm layer of soil with 6~8 cm of 

standing water (see Picture 5.1). The purpose of the water layer was to reduce oxygen 

invasion and thus assist in maintaining anaerobic conditions within the soil. The tubs were 

finally buried in the soil in the solar pond and the floats were connected by hoses to a nearby 

water source (tap water) (see Picture 5.2).  

 

At each sampling time, Eh and pH in the surface soil (depth between 5~8 cm) were first 

measured before sampling. Triplicate aliquots of sediment samples were collected at random 

locations in each tub at depths between 0~10 cm and 15~25 cm using a soil probe. The soil 

samples from each depth were mixed and subsampled in duplicate into plastic bottles with 

screw caps. Samples were stored in a freezer prior to shipping to the University of Waterloo. 

In the laboratory, each soil sample was first air-dried in a fume hood to a constant weight, 

and then PETN was extracted following the acetonitrile-sonication extraction method (US 

EPA method 8330) for PETN analysis (see details in section 4.1.3). PETN quantification was 

determined by HPLC. The remaining soil (air-dried soil passed through a 30 mesh sieve) was 

used for inorganic analyses including nitrite, nitrate and sulfate.  For this, approximately 1 g 

dry soil and 20 mL Millipore water were added to a 25 mL HDPE vial with a screw cap and 

the vial was placed on a mechanical shaker at 300 rpm for 1 h. Then the soil-water mixture 

was allowed to settle until the supernatant liquid was clear and IC analysis was performed on 

aliquots of this liquid.  
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5.1.4 Analytical Method 

Inorganic analyses of nitrate, nitrite and sulfate and organic analysis of PETN were 

performed using the same analytical methods as described in Chapter 2.  

5.2 Results and Discussion 

5.2.1 PETN Removal  

The distribution of PETN contamination at the site was very heterogeneous, resulting in 

different initial concentrations for the different treatments, ranging from 60,000 to 170,000 

mg/kg. The large variation in initial concentrations makes data interpretation less straight 

forward and thus the results are summarized in two ways. Figure 5.1 shows the decline in 

relative PETN concentration, which is the measured residual PETN concentration in the soil 

(C) normalized by its initial concentration (C0). Figure 5.2 shows the PETN mass removal, 

which is the cumulative PETN mass removed (mg/kg) over the test period. In both figures, 

the data represent the average of the PETN concentrations in the upper and lower soil 

samples, which individually, is the average of duplicate samples. Table 5.1 summarizes the 

final removal results for both the upper and lower samples in the treatments with organic 

amendments (tub 3 to tub 10) and includes the initial concentrations of PETN, nitrate and 

sulfate for the treatments.  

 

As indicated in Figures 5.1 and 5.2, there is a great deal of variation over time in the data 

for the control treatment, and also, to a lesser degree, for the iron treatment. These were the 

first two treatments that were prepared (control followed by iron treatment), and at the time 

the procedure for mixing the materials was not well established. We believe the variability in 

the control and iron treatments to be a consequence of high variability of the PETN 

concentration in the soil material and inadequate mixing in the initial stages of the 

preparation processes in the field. 

 

The data suggest a minor decrease of PETN in the control treatment; however, because of 

the high degree of variability, this is uncertain. It can nevertheless be said with a reasonable 
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degree of confidence, that if there were losses in the control, the losses were not substantial. 

Similar statement can be made with respect to the iron treatment. As indicated by the 

laboratory microcosm tests, the lack of decline in the PETN concentration in the iron 

treatments is undoubtedly a consequence of passivation of the iron by the presence of nitrate 

in the soil. With improvements in the mixing process (different mixer, addition of more water 

and longer mixing time), the trends in the organic amendment treatments (tub 3 to tub 10) 

were considerably more consistent. 

 

Appreciable declines in PETN concentration were observed in the treatments amended 

with organic materials (tub 3 to tub 10). The percentage removal at the end of the 74-day test 

period varied from 10% to 42%, with the greatest decline in concentration in the treatment 

containing 4% D6390Fe20. In terms of PETN mass removal, 11,195 to 33,397 mg/kg PETN 

were removed within 74 days, with the greatest mass removal in the treatment amended with 

4% brewers grain. In tubs 5, 7 and 10, D6390Fe20, ADM-298500 and brewers grain were 

added as carbon sources at the same percentage (4%). In terms of decline in PETN 

concentration, D6390Fe20 was the most favorable (42%), followed by brewers grain (20%) 

and ADM-298500 (17%) (Figure 5.1). The order changes to brewers grain, D6390Fe20 and 

ADM-298500 in terms of mass removal (Table 5.1, Figure 5.2). The assessment of 

performance is complicated by the great variability in initial concentrations in the treatments 

and thus it is difficult to define the best substrate for PETN remediation in the field. Indeed, 

all three carbon sources appeared to be effective in stimulating PETN bioremediation. 

Previous studies have demonstrated that DARAMEND® is an excellent carbon and nutrient 

source for stimulation of both aerobic and anaerobic biodegradation in soils contaminated 

with persistent organics such as chlorinated pesticides (toxaphene, DDT, dieldrin), wood 

preservatives (PAH, CP) and organic explosives (TNT, DNT, RDX, HMX) (Bucens et al., 

1996; Seech et al., 2002; EPA Evaluation Report, 1996). In this particular case, it is not clear 

that DARAMEND has any particular advantage over brewers grain, a readily available 

product from the local brewering industry. Regardless of how one expresses PETN removal 

and the types of organic material, the results clearly show that PETN can be effectively 
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degraded under anaerobic conditions through the addition of organic carbon and possible 

nutrients, provided by DARAMEND material or brewers grain. This observation is 

consistent with the previous laboratory results, which demonstrated the requirement of 

organic materials for PETN biodegradation in contaminated soil (chapter 4). The results 

suggest that the persistence of PETN in the waste pond is a consequence of an insufficient 

supply of labile organic carbon, necessary for PETN degradation, even though the indigenous 

bacteria in the contaminated soil had clearly acclimated to PETN. 

 

In addition, the trend of greater PETN removal with higher loading of carbon sources was 

observed for all three types of organic materials. For instant, approximately 16417, 21388 

and 27644 mg/kg of PETN were removed in the treatments amended with 1%, 2% and 4% 

D6390Fe20 over the test period, respectively (Figure 5.3). This suggests that increasing the 

amount of organic amendment would result in greater microbial growth and activity, leading 

to greater PETN removal. This observation is also consistent with the findings of the 

laboratory microcosm tests where the PETN degradation rate was twice as fast in the 2% 

D6390Fe20-fed microcosm as in the 1% D6390Fe20-fed microcosm. Based on the similarity 

in the trends of PETN removal, it is concluded that the degradation processes are similar 

between the laboratory microcosms and field tests. Previous laboratory results (chapters 3 

and 4) both indicate that PETN serves as an electron acceptor during degradation. Thus in the 

field test, consistent with laboratory results, the organic amendments served as electron 

donors to stimulate reductive degradation of PETN, which served as an electron acceptor, 

and PETN degradation followed a sequential denitration pathway. The most striking 

difference between the laboratory and the field results is the rate and degree of PETN 

removal. In the laboratory, with initial PETN concentration of 4,500 to 5,000 mg/kg in the 

treatments with organic amendments, nearly 100% removal occurred in 84 days following 

pseudo-first-order kinetics. In the field however, generally there was rapid removal during 

the first 40 days, but by the end of the experiment, the rates of removal decreased and 

deviated from the initial pseudo-first-order behavior (Figure 5.1). The decline in degradation 

rates might be a result of variability in biodegradability of various components in the carbon 
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sources, which originate from plant materials. Generally, the easiest degradable components 

were quickly used first.  

5.2.2 Inorganic Parameters and Other Factors 

Soil used in this pilot test contained 89 to 254 mg/kg of nitrate and 898 to 2399 mg/kg of 

sulfate. Their concentrations in the soil were monitored over the test period and are plotted in 

Figures 5.4 and 5.5. The data present the average of nitrate or sulfate concentrations in the 

upper and lower soil samples. Nitrate reduction appeared to occur in all the treatments and 

the extent of nitrate depletion increased with the loading of carbon sources. The control and 

iron treatments both showed a significant decline in initial concentration over the first 10 

days; however, because of the improper mixing, it is not certain that these trends are 

meaningful. Furthermore, in both cases, the concentrations increased at later time, adding to 

the possibility that the data is significantly affected by sample variability. As for sulfate 

concentration, no significant reduction was observed in the control and iron treatments 

whereas gradual and appreciable sulfate reduction was observed in the treatments amended 

with organic materials (tub 3 to tub 10). Unlike nitrate reduction, the extent of sulfate 

consumption did not increase significantly with increasing amounts of amendments.   

 

It is clear that the sequence of reduction of nitrate, PETN and sulfate in the pilot test is 

much less distinct than in the previous laboratory studies. Figure 5.6, as an example, presents 

the performance of PETN, nitrate and sulfate in the treatment amended with 4% D6390Fe20. 

Though nitrate is reduced most rapidly, there is essentially concurrent reduction of PETN, 

nitrate and sulfate. This considerable overlap in the reduction sequence is likely a 

consequence of the presence of microenvironment and the heterogeneity in the field soil.  

 

Besides the observed denitrification and sulfate reduction processes, algal growth was 

clearly observed in the treatments with organic amendments, with the greatest algal 

production in the treatments receiving the largest amendments (4% D6390Fe20, 4% 

ADM298500 and 4% brewers grain). There was no algal growth in the control and iron 

treatments. The difference suggests that the algal bloom was caused by the large addition of 
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nutrients (such as P and N) provided by DARAMEND materials and brewers grain. 

Interestingly, we found greater contrast in PETN removal between upper and lower soil 

samples in the treatments with higher loading of organic amendment (Table 5.1). Taking 

D6390Fe20 as an example, the removals for surface and subsurface soil were quite similar at 

low concentrations of amendment (s:b (surface: bottom) = 26%:27% for 1% D6390Fe20,  s:b 

= 28%:25% for 2% D6390Fe20). A more significant contrast was observed in the treatment 

with 4% D6390Fe20 (s:b = 52%:31%). A similar trend was observed in the other two types 

of carbon amendment, ADM298500 and brewers grain. This difference in effectiveness as a 

function of soil depth in the treatments with greater amendment (tubs 5, 7 and 10) is 

proposed to be a result of the extensive algal growth in the water layer. Since the algae 

growth will produce exudates and dead algae cells, which are highly labile carbon sources for 

bacteria, this may result in greater microbial activity and growth in the upper soil than in the 

lower soil, and thus explains the greater PETN removal in the surface soil.  

 

Besides PETN, the variation of concentration between the upper and lower samples was 

also observed for nitrate and sulfate. However, the variation for nitrate is not very significant 

(data not shown), while a more noticeable difference was observed for sulfate concentration, 

especially in the treatments with greater amounts of amendments. Similar to PETN 

degradation, more sulfate was reduced in upper soil than the lower soil in the high 

amendment treatments. For instance, at 1% brewers grain, 41% and 33% sulfate removal was 

observed in the upper and lower soil, while at higher amendment, 4%, for example, 71% and 

9% removal was observed for the upper and lower soil samples, respectively. This is believed 

to be a consequence of intensive algal growth in the upper water layer, same as explained for 

PETN.  

 

The field test proceeded from early August to mid October in 2006. The average ambient 

daytime temperature was 20ºC, varying from a high of 32ºC to a low of 16ºC. The 

temperature variation was not substantial over the period of the pilot experiment and is 

expected to be less in the soil. Thus temperature does not appear to be a factor in the 
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observed degradation of PETN. The pH in the soil was monitored throughout the test period 

for all the treatments and is plotted in Figure 5.9. Except for the control and iron treatments, 

where pH remained above 9, pH generally ranged between 6.3 and 8.4, an optimal range for 

microbial activity and growth. Therefore, pH at the contaminated site of this study was not a 

sensitive factor and adjustment with respect to pH was not required for promoting 

bioremediation. 

 

Besides pH, Eh was also measured as an indicator of redox potential in the soil. The data 

(not shown) showed an average range of 0 to -115 mV for the treatments with organic 

amendments, and a slightly lower potential of -65 to -130 mV for the iron treatment. Since 

the measurement was taken at a depth of approximately 5 cm in the 18 cm thick soil layer, 

lower redox potential may have occurred in the deeper soils. The Eh values and observed 

nitrate and sulfate reduction indicate anaerobic conditions for the entire period of the 

experiment.  

5.2.3 Practical Consideration of Carbon Amendment 

As shown in the previous chapters, PETN is used as an electron acceptor during 

biodegradation, and requires sufficient supply of electron donors to achieve complete PETN 

removal. For complete denitration of PETN, the theoretical requirement of organic material 

(electron donor) for each treatment can be estimated from the following stoichiometric 

equation:  

5 C6H10O5 + 6 C5H8(ONO2)4 = 6 C5H8(OH)4 + 12 N2 (g) + 30 CO2 + 13 H2O           eq 5.1 

C6H10O5, a representative formula for cellulose, is assumed to represent DARAMEND 

materials and brewers grain, based on their original composition of plant materials. They 

serve as electron donors during the process of PETN (C5H8(ONO2)4) degradation, in which 

PETN is completely denitrated to pentaerythritol (C5H8(OH)4) and the liberated nitrite is 

further reduced to nitrogen gas.  
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The “organic carbon availability index” is introduced in this study to quantify the 

adequacy of the carbon source in each treatment. This dimensionless number is the ratio of 

the actual addition of carbon sources and the stoichiometric estimation of organic carbon 

requirement. Theoretically, the complete removal of PETN can be achieved if the carbon 

availability index is greater than 1; otherwise, the carbon source is not sufficient and will 

limit PETN degradation. For instance, the initial PETN concentration in the treatment 

containing 4% D6390Fe20 was 66,438 mg/kg based on the analytical results using the 

acetonitrile-sonication extraction method. Using equation 5.1, the required amount of organic 

amendment was estimated to be 28,383 mg/kg or 2.8%. However, the value was based on the 

soil used in the standard analytical method, in which the soil was ground to pass through a 30 

mesh sieve (0.6 mm). Generally, the mass of the coarse particles, larger than 0.6 mm, in the 

soil sample accounts for half of the total mass of sample. Therefore, the number of 2.8% will 

be halved to 1.4% on the basis of dried field soil without sieving. As stated in the method 

section, the actual dose of D6390Fe20 in this treatment was 4.4% based on the dried 

untreated field soil. Therefore the organic carbon availability index for this treatment is 3.1 

(4.4% divided by 1.4%). Using the same method of estimation, Table 5.2 shows that the 

supply of organic carbon is sufficient for the treatments containing higher concentration of 

amendments at 2% or 4%, and is in deficit for the treatments amended with 1% D6390Fe20, 

2%ADM298500 and 1% brewers grain. 

 

Besides PETN, nitrate and sulfate are also effective electron acceptors, consuming 

electron donors in the soil. The preference for nitrate over PETN by microorganisms requires 

that sufficient carbon be added for complete denitrification, as well as for PETN degradation. 

Though the results in the mineral medium experiments clearly demonstrated that sulfate will 

not be reduced until PETN is fully removed, sulfate reduction was observed before complete 

PETN removal in both the laboratory microcosms and pilot scale tests conducted with soil.  

Thus, to be conservative, the organic carbon availability index for each treatment was 

reevaluated, taking the carbon requirement for both nitrate and sulfate into consideration 

(Table 5.3). The values are slightly less than the previous ratios in Table 5.2 because nitrate 
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and sulfate are both present in small amounts relative to the high concentrations of PETN in 

the soil. In practice, the need for carbon is likely to be greater than the stoichiometric values, 

due to the incomplete utilization of carbon sources. In addition, although the soil in each tub 

was covered with 6~8 cm of standing water in order to diminish oxygen invasion, the water 

layer was open to the atmosphere, allowing oxygen diffusion into the water, particularly 

during the occasional precipitation events. Therefore, the presence of oxygen, as a more 

energetic terminal electron acceptor, will also consume the added carbon sources, increasing 

the possibility of carbon limitation in many of the treatments. Based on the stoichiometric 

calculation, the “carbon bioavailability index” in the treatments amended with 1% or 2% 

organic material are smaller or slightly greater than 1, in order to achieve complete removal 

of PETN in those treatments, resupply of carbon sources may be required. Only the three 

treatments amended at 4%, whose carbon bioavailability index are much greater than 1, hold 

the potential for complete removal without reapplication of carbon sources.  

 

The stoichiometric estimation from the microbial-mediated redox reaction between 

organic carbon (electron donors) and PETN (electron acceptor) (eq 5.1) provides a 

theoretical minimum requirement of carbon sources for PETN degradation. Because high 

levels of nitrate are common at many sites contaminated with PETN and it is a more 

competitive electron acceptor than PETN, depletion of carbon by nitrate needs to be 

considered. Thus, knowledge of the distribution of PETN and other co-contaminants is 

necessary prior to successful implementation of field-scale remediation. In practice, the 

organic carbon sources need to be added in larger amount than the stiochiometric values, 

taking the utilization efficiency of organic carbon and additional consumption from oxygen 

into account. Based on the results in this study, DARAMEND materials and brewers grain all 

seem to be effective organic carbon sources for stimulating PETN degradation. Brewers 

grain may be the more cost-effective alternative due to its lower cost. Other sources of 

organic carbon were not tested but may be equally effective. 
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5.3 Conclusion 

This study involved pilot tests of PETN biodegradation at a PETN-contaminated site at 

Louvier, Colorado, U.S.A., building on the earlier laboratory experiments. Two remediation 

alternatives, granular iron and bioremediation, were evaluated for further scale-up tests. The 

iron-mediated method was not effective because of iron passivation by the presence of nitrate 

in the soil. Although the rates of PETN biodegradation in the pilot tests were slower than in 

the laboratory experiments, they were qualitatively similar. The stoichiometric estimation of 

carbon requirement suggests that PETN degradation in most treatments will be ultimately 

limited by carbon sources. More carbon sources are required to complete 100 % removal of 

PETN in the tests.  

 

In summary, the pilot tests clearly showed that PETN can be effectively biodegraded under 

anaerobic conditions provided with sufficient carbon sources. DARAMEND materials and 

brewers grain appears to be equally effective, suggesting other carbon sources may also be 

used for PETN remediation. The promising results in this study provide support for larger-

scale field test or full-scale treatment.  
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Figure 5.1: Average PETN percent removal in all treatments during the 74-day test. 

Data represents the average of removal in the upper and lower soil samples 
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Figure 5.2: Average PETN mass removal (mg/kg) in all treatments during the 74-day 

test. Data represents the average of removal in the upper and lower soil samples 



 

 88

-2000

2000

6000

10000

14000

18000

22000

26000

30000

0 10 20 30 40 50 60 70 80

Time (d)

R
em

ov
ed

 P
ET

N
 m

as
s 

(m
g/

kg
)

1% D6390Fe20 2% D6390Fe20 4% D6390Fe20

 
Figure 5.3: Average PETN mass removal (mg/kg) in the treatments amended with 1%, 

2% and 4% D6390 Fe20 during the 74-day test  
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Figure 5.4: Changes in average nitrate concentration in all treatments during the 74-

day test. Data represents the average of removal in the upper and lower soil samples 
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Figure 5.5: Changes in average sulfate concentration in all treatments during the 74-

day test. Data represents the average of removal in the upper and lower soil samples 
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Figure 5.6: Changes in average concentrations of PETN, nitrate and sulfate in the 

treatment amended with 4% D6390Fe20 during the 74-day test. Data represents the 

average of removal in the upper and lower soil samples   
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Figure 5.7: pH measurements in all treatments during 74-day test (the measurements 

taken at a depth of ~5 cm in the 18 cm thick soil layer) 
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Table 5.1:  PETN removal in the treatments amended with organic materials 

 

Tub 
# Amendments 

Nitrate 

(mg/kg)

Sulfate 

(mg/kg)

PETN 
Conc. 

(mg/kg)
Removal (%) Removed Mass 

(mg/kg) 

   Surface Bottom Surface Bottom
3 1% D6390Fe20 114 898 62837 26 27 16111 16724 
4 2% D6390Fe20 130 1232 80591 28 25 22898 19879 
5 4% D6390Fe20 254 1225 66438 52 31 34655 20634 
6 2% ADM298500 118 1452 111044 15 11 16209 12492 
7 4% ADM298500 218 1622 121808 25 9 30830 10940 
8 1% brewers grain 107 1741 130602 17 15 22202 19089 
9 2% brewers grain 89 1890 108177 18 9 19540 9770 
10 4% brewers grain 180 2399 167407 26 14 43198 23597 

 

 

Table 5.2:  Stoichiometric carbon requirement for PETN denitration 

C6H10O5, representing amended organic materials in the pilot tests, serves as electron donor, 

PETN (C5H8(ONO2)4) serves as electron acceptors. 

5 C6H10O5 + 6 C5H8(ONO2)4 = 6 C5H8(OH)4 + 12 N2 (g) + 30 CO2 + 13 H2O  

 

Tub 
# Amendments 

PETN 
Initial 
Conc. 

(mg/kg) 

Requirement 
for carbon 

source 
(mg/kg) 

Total need 
for carbon 

sources 
basis on 
fine soil 

(%) 

Total need 
for carbon 

sources 
basis on 
field soil 

(%) 

Actual 
addition 

of organic 
material 

(%) 

Carbon 
bioavaila

bility 
index 

1 Control (none) 147835 63157 6.32 3.16 0.00 0.00 

2 10% Connelly 
iron 84820 36236 3.62 1.81 0.00 0.00 

3 1% D6390Fe20 62837 26845 2.68 1.34 1.19 0.89 
4 2% D6390Fe20 80591 34430 3.44 1.72 2.63 1.53 
5 4% D6390Fe20 66438 28383 2.84 1.42 4.37 3.08 
6 2% ADM298500 111044 47440 4.74 2.37 2.32 0.98 
7 4% ADM298500 121808 52038 5.20 2.60 5.81 2.23 
8 1% Brewer grain 130602 55795 5.58 2.79 1.33 0.48 
9 2% Brewer grain 108177 46215 4.62 2.31 2.99 1.29 
10 4% Brewer grain 167407 71519 7.15 3.58 6.38 1.78 
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Table 5.3:  Stoichiometric carbon requirement for nitrate, sulfate and PETN 

C6H10O5, representing amended organic materials in the pilot tests, serves as electron donor, 

nitrate, sulfate and PETN serve as electron acceptors. 

5 C6H10O5 + 24 NO3
- = 12 N2 (g) + 30 HCO3

- + 6 H+ + 7 H2O  

C6H10O5 + 3 SO4
2- + H2O = 3 HS- + 6 HCO3

- + 3 H+         

5 C6H10O5 + 6 C5H8(ONO2)4 = 6 C5H8(OH)4 + 12 N2 (g) + 30 CO2 + 13 H2O  

 

  Initial Conc. (mg/kg) Requirement for carbon source (mg/kg) 
Tub 

# Amendments PETN Sulfate Nitrate PETN sulfate nitrate Total 

         
1 Control (none) 147835 1926 223 63157 1083 121 64362 

2 10% Connelly 
iron 84820 1019 172 36236 573 94 36903 

3 1% D6390Fe20 62837 898 114 26845 505 62 27412 
4 2% D6390Fe20 80591 1232 130 34430 693 71 35193 
5 4% D6390Fe20 66438 1225 254 28383 689 138 29211 
6 2% ADM298500 111044 1452 118 47440 817 64 48321 
7 4% ADM298500 121808 1622 218 52038 912 119 53069 
8 1% Brewer grain 130602 1741 107 55795 979 58 56833 
9 2% Brewer grain 108177 1890 89 46215 1063 48 47326 
10 4% Brewer grain 167407 2399 180 71519 1349 98 72966 

 

Tub 
# Amendments 

Total need for 
carbon source 
(%) basis on 
dry, fine soil 

Total need for 
carbon source 

(%) basis on dry, 
site soil 

Actual addition 
of organic 

material (%) 

Carbon 
bioavailability 

index 

1 Control (none) 6.44 3.22 0.00 0.00 
2 10% Connelly iron 3.69 1.85 0.00 0.00 
3 1% D6390Fe20 2.74 1.37 1.19 0.87 
4 2% D6390Fe20 3.52 1.76 2.63 1.49 
5 4% D6390Fe20 2.92 1.46 4.37 2.99 
6 2% ADM298500 4.83 2.42 2.32 0.96 
7 4% ADM298500 5.31 2.65 5.81 2.19 
8 1% Brewer grain 5.68 2.84 1.33 0.47 
9 2% Brewer grain 4.73 2.37 2.99 1.26 
10 4% Brewer grain 7.30 3.65 6.38 1.75 



 

 93

 
Picture 5.1: Configuration of each treatment in the field 

 

 
Picture 5.2: In situ pilot test at Louviers, CO, U.S.A.
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Chapter 6 

Conclusions and Recommendations 

This study, four experimental steps were undertaken to evaluate the potential remediation 

methods for PETN-contaminated water and soil.  

 

The potential of using iron to degrade PETN in the aqueous phase was demonstrated in 

the flow-through iron column experiments. In the 100% iron and 30% iron columns, aqueous 

PETN degraded with rate constants of 3.44±0.28 ×10-2 and 1.92±0.13 ×10-2 L.m-2.h-1, 

respectively, and the degradation profiles were highly consistent with pseudo-first-order 

kinetics. The observed intermediate and end products during PETN degradation were 

identified to be pentaerythritol trinitrate, pentaerythritol dinitrate and pentaerythritol. The 

suspected intermediate product of the last step of denitration, pentaerythritol mononitrate, 

was identified in the subsequent biotic tests. Based on the identified intermediates and nearly 

100% nitrogen mass balance, it is proposed that PETN was sequentially reduced to 

pentaerythritol, releasing NO2
- in each denitration step, which was further reduced to NH4

+ 

by iron. Though the degradation rate of aqueous PETN by iron is very high, PETN removal 

rate is limited by dissolution when present as solid phase. However, using a co-solvent, such 

as methanol, the solubility can be enhanced, thus the mass removal rate by iron can be 

increased accordingly.  

 

For PETN in the solution phase, the study also demonstrated the effectiveness of 

biological degradation of PETN under anaerobic conditions, provided a carbon amendment is 

used. The microbial culture used in this study, derived from a PETN-contaminated site, has 

been acclimated to degrade PETN. The commonly found electron acceptors, nitrate and 

sulfate, did not show any significant adverse effect on PETN degradation when excluding 

their consumption for carbon sources. PETN can be degraded simultaneously with nitrate, 

but at a much lower rate. PETN degraded at approximately equal rates regardless of the 

presence and absence of sulfate.  Pentaerythritol trinitrate, pentaerythritol dinitrate and 
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pentaerythritol mononitrate were identified as intermediates of degradation under all 

conditions tested. We propose that PETN followed the same degradation pathway in both the 

abiotic and biotic systems. The results suggested that PETN was consumed as an electron 

acceptor during its degradation. Although the energetic favorability of PETN is unknown, the 

data indicate a utilization order for microorganisms of nitrate followed by PETN and its 

intermediate products and finally sulfate. The preference of nitrate over PETN suggests that a 

sufficient amount of carbon source for both reductions is a requirement for complete 

degradation of PETN.  

 

The effective remediation methods for PETN in aqueous phase were further applied to 

PETN-contaminated soil in both laboratory and pilot scale experiments. The potential for 

granular iron to degrade aqueous PETN was not effectively transferred to the soil phase, 

mainly due to iron passivation caused by the presence of nitrate in the contaminated soil. 

However, the application of biodegradation in the soil was successful. In the laboratory tests, 

PETN at 4,500 mg/kg was removed by indigenous soil bacteria within 84 days in the 

microcosms amended with DARAMEND materials, serving as sources of carbon and other 

nutrients. In the pilot test conducted at Louvier, Colorado, U.S.A., significant removals of 

PETN were observed in the treatments in which a source of labile organic carbon, such as 

DARAMEND materials or brewers grain, was provided. Due to the unexpectedly high initial 

concentration of PETN in the field, the effectiveness of PETN remediation in the pilot tests 

will be ultimately reduced by carbon limitation. Complete removal could be expected when 

more organic material is added. The results of the laboratory tests and pilot tests are 

qualitatively similar, providing evidence and support for further larger-scale field tests and 

full-scale treatment. In addition, though an iron-microbial integrated method showed a slight 

enhancement in degradation rate relative to the biodegradation method alone, it is not 

encouraged considering the small improvement in performance and higher cost for iron.  

 

This research suggests that in the absence of nitrate, abiotic degradation by granular iron 

should be a viable and effective remediation method for PETN-contaminated water. Biotic 
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degradation by the addition of organic carbon is a better alternative for PETN-contaminated 

soil. The presence of nitrate at the contaminated sites requires particular consideration in both 

cases due to the iron passivation and its more competitive consumption of carbon sources 

relative to PETN. The availability of carbon sources is a key factor in designing efficient 

biological treatment system, the minimum amendment of organic carbon can be calculated 

from stoichiometry, as in this study. A more detailed investigation for the extent and 

variability of contaminations (PETN and nitrate) is strongly recommended in order to 

estimate a suitable addition of carbon sources. Based on the results of this study, a full-scale 

treatment should be considered. 
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