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Abstract

Surprisingly, Fourier series on certain fractals can have better convergence properties

than classical Fourier series. This is a result of the existence of gaps in the spectrum of

the Laplacian. In this work we prove a general criterion for the existence of gaps. Most

of the known examples on which the Laplacians admit spectral decimation satisfy the

criterion. Then we analyze the infinite family of Vicsek sets, finding an explicit formula

for the spectral decimation functions in terms of Chebyshev polynomials. The Laplacians

on this infinite family of fractals are also shown to satisfy our criterion and thus have gaps

in their spectrum.
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Chapter 1

Introduction

In harmonic analysis on the circle T, we have the following classical results about the

convergence of Fourier series ([15]).

Theorem 1.1 (M. Riesz) For 1 < p < ∞ and f ∈ Lp(T), the partial sums Sn(f) of the

Fourier series converge to f in Lp.

Note that this theorem is generally not true for p = 1, and for a continuous function, f ,

the convergence need not be uniform, both due to the L1 unboundedness of the Dirichlet

kernel.

On the other hand, if we let kn be a summability kernel, such as Fejér’s kernel, and let

σn(f) = kn ∗ f , then σn(f) converges to f in Lp for 1 ≤ p < ∞ and converges uniformly to

f in C(T).

Another classical result is the Littlewood-Paley theorem (see [9] and references therein).

Theorem 1.2 (Littlewood-Paley) For each 1 < p < ∞, there exist constants Ap and Bp

such that

Ap‖f‖p ≤ ‖(
∑

N∈Z
|S̃Nf |2)1/2‖p ≤ Bp‖f‖p,

1
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where S̃Nf is the N-th dyadic partial sum of the Fourier series of f , defined by

S̃Nf =





∑

2N−1≤|j|<2N

f̂(j)eijx if N > 0,

f̂(0) if N = 0,∑

−2N−1≤|j|<−2N

f̂(j)eijx if N < 0.

The Littlewood-Paley theorem can be viewed as a generalization of Parseval’s formula

to Lp as we can rewrite this formula as

‖f‖2 = ‖(
∑

N∈Z
|f̂(N)|2)1/2 = ‖(

∑

N∈Z
|f̂(N)eiNx|2)1/2‖2.

One might ask how far we can generalize the above results when the underlying space

is a fractal? To answer this question, we first need to find an orthonormal basis for the

L2 space of functions on the fractal to form Fourier series. A natural choice would be

eigenfunctions of the Laplacian, like the exponentials, cosines and sines in the classical

case. This leads to the question of how to define a natural Laplacian on fractals.

Generally speaking, there are two ways to define a Laplacian on fractals. One is from

a probabilistic point of view and the other is from an analytic point of view, and they are

complementary to each other.

The first example of a Laplacian on fractal was defined on the Sierpinski gasket SG as a

diffusion process by S. Kusuoka and S. Goldstein ([20] and [11]). J. Kigami constructed the

Laplacian analytically, both as a renormalized limit of difference operators and through a

weak formulation using the theory of Dirichlet forms [16]. Later, the theory of Laplacians

was extended to other fractals, including nested fractals and p.c.f. self-similar sets by T.

Lindsrøm [22] and J. Kigami [17].

Analysis on fractals has bloomed since then and many classical results of smooth anal-

ysis have found their analogues on the “rough” objects (see [18] and [33] and references

therein). In particular, the spectrum and eigenfunctions of the Laplacian on the Sierpinski

gasket were studied by M. Fukushima and T. Shima in [10] and [30] using the so-called
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spectral decimation method, which originated in physics literature ([1], [27] and [29]) and

was generalized by T. Shima [30] and A. Teplyaev [26]. The spectra of Laplacians on a

number of other fractals, including the the level-3 Sierpinski gasket SG3 [8], the infinite

Sierpinski gasket [34], and the Pentagasket [2] has been analyzed either numerically or

using the spectral decimation method.

There are startling difference from the smooth analysis. For example, there exist lo-

calized eigenfunctions [10]; there are eigenvalues with multiplicities higher than any given

integer [33]; and the Weyl ratio, π(x)

xd/2 with π(x) being the eigenvalue counting function,

does not have a limit for any choice of d ([10] and [19]).

One of the most striking results is that there can be gaps in the spectrum of the

Laplacian. (For a given infinite sequence α1 ≤ α2 ≤ · · · ≤ αk ≤ · · · , we say that there

exist gaps in the sequence if lim sup
k≥1

αk+1

αk

> 1.) This result was proved for the standard

Laplacian on SG by M. Gibbons, A. Raj and R. Strichartz in [12] using results obtained

by M. Fukushima and T. Shima [10].

The existence of gaps is an interesting phenomenon in itself, but it also has important

applications to harmonic analysis on fractals. As R. Strichartz said in [32], “· · · the fractal

world resembles the smooth world to some degree, but everything is worse.” However,

“when it comes to the convergence of Fourier series, things might be better · · · .” More

precisely, he proved that the Fourier series (along a subsequence of the eigenvalues where

the gaps occur) on the Sierpinski gasket converge for 1 ≤ p < ∞ and the Littlewood-

Paley theorem holds for 1 < p < ∞. One explanation of the convergence result is that

the Dirichlet kernel behaves more like a summability kernel because of the gaps in the

spectrum [32].

In Chapter 3 of this work, we prove general theorems giving criteria for the existence

of gaps that is related to properties of the spectral decimation function. The known

examples, including SG and SG3, are shown to satisfy our criterion, as does the infinite

family of fractals, called the n-branch tree-like fractals.
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In Chapters 4 and 6 we analyze in detail the infinite (symmetric) family of Vicsek sets.

These are an interesting family of fractals whose Laplacians have been studied in a number

of papers [14], [25], [26] and [30]. We verify that our criterion for gaps applies to this family

as well. We also determine the ordering of the Dirichlet eigenvalues. This is the first infinite

family to be analyzed whose spectral decimation functions have unbounded degrees. In

Chapter 5, we use hypergraph theory to establish an upper bound for the Dirichlet and

Neumann eigenvalues of the normalized (graph) Laplacian on a special class of self-similar

graphs. In Chapter 2, we review basic techniques in the spectral decimation method.



Chapter 2

Spectral decimation method

2.1 P.C.F. self-similar sets and self-similar measures

Let {Fs}s∈S be a set of contraction maps with contraction ratios cs, where S is a finite set

with cardinality |S|. The unique non-empty compact set satisfying

K =
⋃

1≤s≤|S|
FsK

is called a self-similar set. Its Hausdorff dimension d is the exponent such that
∑|S|

s=1 cd
i =

1. We denote Wn(S) = Sn, the collection of words of length n. Further we let W∗(S) =

∪n≥0Wn(S).

For w = w1w2 · · ·wn ∈ Wn(S), let

Fw = Fw1 ◦ Fw2 ◦ · · · ◦ Fwn ,

and Kw = FwK. F∅ is the identity map on K.

We assume that there exists a continuous surjection π : SN → K satisfying π◦s = Fs◦π
for every s ∈ S, where s denotes the map from SN to SN defined by s(w1w2 · · · ) =

5
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sw1w2 · · · . (π is usually the map π(w) =
⋂∞

n=1 Fw|n(K), where w|n = w1 · · ·wn ∈ Wn [18].)

The critical set C and the post critical set P are defined respectively by

C = π−1(
⋃

s,t∈S,s6=t

(Ks ∩Kt)), P =
⋃
n≥1

σn(C),

where σ : SN → SN is the one-sided shift map which removes the first letter of a given

word. A connected self-similar set is called post critically finite (abbreviation p.c.f.) if

the post critical set is finite [18]. Roughly speaking, those fractals are connected, but not

too much. We can control the connectedness by a finite set.

We take G0 = (V0, E0) to be the complete graph on V0, where V0 is defined as

V0 = π(P).

Then define the set of vertices at step m, Vm, recursively by

Vm =
⋃
s

FsVm−1

and define the edge relation (x, y) ∈ Em (or x ∼m y) to hold if there exist a word w of

length |w| = m such that x, y ∈ FwV0. It is not hard to see that the Vm’s build up an

ascending chain:

V0 ⊆ V1 ⊆ V2 ⊆ · · · .

Set

V∗ =
⋃
m

Vm

and call the elements in V∗ vertices and the elements in V0 boundary points. It is clear

that V∗ is dense in K under the usual Euclidean metric and so we can use the sequence

of finite sets Vm to approximate K. Moreover, for continuous functions defined on K it is

sufficient to understand their values on V∗.

Examples of p.c.f. self-similar sets include the Sierpinski gasket SG, the level-3 Sier-

pinski gasket SG3 [8], the Vicsek set VS [25], and the tree-like fractal [30]. We describe

the constructions of those sets below.
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Example 1. (The Sierpinski Gasket SG) Let q1 = (0, 0), q2 = (1, 0), and q3 =

(1/2,
√

3/2). Let F1, F2, F3 be three contraction maps from R2 to R2 defined by

Fs(x) = qs + 1/2(x− qs), 1 ≤ s ≤ 3.

The Sierpinski gasket SG is defined as the unique compact K such that K =
⋃

1≤s≤3 Fs(K).

It has Haudorff dimension log 3
log 2

. Write ṡ = (s, s, · · · ). Then the critical set

C = {(13̇), (31̇), (12̇), (21̇), (23̇), (32̇)}

and the post critical set

P = {(1̇), (2̇), (3̇)}.
(See Examples 5.15 in [3].)

We can also think of this fractal as being constructed in the following fashion. We

start with the equilateral triangle with vertices q1, q2 and q3, then remove the open middle

inscribed equilateral triangle of 1/4 the area. Remove the corresponding open middle

inscribed triangles from each of the remaining 3 equilateral triangles and continue this

way.

Clearly V0 = {q1, q2, q3}. The first step graph G1 = (V1, E1) is shown in the following

figure.
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Example 2. (The level-3 Sierpinski Gasket SG3) To get the level-3 Sierpinski gasket,

instead of bisecting the sides of a triangle and keeping the three of the four smaller triangles,

we trisect the sides and keep the six of the nine smaller triangles. Then we repeat this

process. See the following figure for the first step graph.
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For this fractal, V0 is the same as in the case of SG.

Example 3. (The Vicsek Set VS) For the Vicsek set, we start with a square with four

corners q1, q2, q3 and q4, cut it into 3 × 3 equal pieces, and keep the four corner squares

and the one in the center. Then we repeat the process. In this case, V0 = {q1, q2, q3, q4}.
See Section 4.1 for more details. The first step graph is shown in the following figure.

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡@
@

@
@

@
@

@
@

@
@

@
@

@

¡
¡

¡
¡¡

¡
¡

¡
¡¡@

@
@

@@

@
@

@
@@

q1 q2

q3q4

Example 4. (The Tree-Like Fractal) For the tree-like fractal, we stick 3 branches of

length 1/2 to the middle of a unit interval with end points q1 and q2. We then repeated this

process to each of the five intervals. V0 consists of the two end points of the unit interval,

q1 and q2. See Example 3 in Section 3.2 for more details. Below is the first step graph of

this fractal.
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For any given self-similar set K, we choose a set of probability weights {pi}i=1,··· ,|S| so

that pi > 0 for all i = 1, · · · , |S| and
∑|S|

i=1 pi = 1. Then we define a measure µ on K so

that

µ(Kw) = pw = pw1 · · · pwm

for any w = w1 · · ·wm ∈ W∗. This µ is called a self-similar measure on K. It is the

unique probability measure satisfying

µ =

|S|∑
i=1

piµ ◦ F−1
i .

2.2 Laplacian on finite graphs

For any set S, we use `(S) to denote the set of real valued functions on S and

`0(Vm) = {f ∈ `(Vm) : f(p) = 0 for p ∈ V0}.

For two sets U and V , we define

L(U, V ) = {A : `(U) → `(V ) and A is linear}.

In particular, L(V ) means L(V, V ).

Let G be a simple, finite graph with the set of vertices V (G) and the set of edges E(G).

We say that two vertices x, y are neighbors if they are connected by exactly one edge,
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denoted by e(x, y), in the graph. For any vertex x, deg x is called the vertex degree of

x in the graph and

deg x =
∑

e(x,y)∈E(G)

1

We will assume that the graph G does not have any isolated points and so deg x is always

positive.

First we give the notions of standard Laplacian and normalized Laplacian defined on

the graph G.

Definition 2.1 Given a function f ∈ `(V (G)), the graph (non-normalized) Lapla-

cian of f at a vertex x is defined as

∆f(x) =
∑

e(x, y)∈E(G)

(f(y)− f(x)),

and the normalized (probability) Laplacian is defined as

∆̂f(x) =
1

deg x

∑

e(x, y)∈E(G)

(f(y)− f(x)).

The symmetric matrix D corresponding to ∆ is called the Laplacian matrix and it has

the expression

Di,j =





− deg xi, if i = j,

1, if i 6= j and e(xi, xj) ∈ E(G),

0, otherwise,

for xi, xj ∈ V (G).

Suppose we are given a self-similar p.c.f. set K. Assume that K can be approximated

by a sequence of graphs Gm = (Vm, Em), where G0 is the complete graph with vertices V0

in the post-critical set and Gm is obtained from Gm−1 by applying the contraction maps

Fj to Gm−1 and identifying points that are identical in K. More precisely,

Vm =
⋃

w∈Wm

Fw(V0) (m ≥ 1),
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and K = ∪Vm. Furthermore, we denote V 0
m = Vm \ V0 and V 0

∗ = ∪m≥0Vm \ V0.

Let D be the Laplacian matrix (a difference operator) on G0 = (V0, E0). By using the

bijection Fw|V0 : V0 → Bw = Fw(V0), we can identify `(Bw) with `(V0) and hence regard

D as an element of L(Bw). Let Rw ∈ L(Vm, Bw) be the restriction map to Bw, that is

Rwf = f |Bw . We then construct a matrix Hm ∈ L(Vm) such that

Hm =
∑

w∈Wm

Rt
wDRw.

It is clear that Hm = ∆m, where ∆m is the graph Laplacian on Vm as in Definition 2.1.

Furthermore, if we define a measure µ̂m on Vm by

µ̂m(x) = (
∑

w∈Wm

Rt
w(−D)Rw)x,x,

then µ̂m(x) = deg x and it is (−Hm)x,x. The normalized Laplacian on Vm satisfies

∆̂mf(x) =
Hmf(x)

µ̂m(x)
,

for f ∈ `(Vm).

More generally, we can take D to be a symmetric matrix with row sums zero, and

entries that are positive off the diagonal and negative on the diagonal. Choose r =

(r−1
1 , r−1

2 , · · · , r−1
|S|) ∈ `(S) and call the number r−1

0 :=
∑

s∈S r−1
s the measure fac-

tor. The reason of this terminology will be apparent later.

We define Hm by

Hm =
∑

w∈Wm

r−1
w Rt

wDRw (2.2.1)

and call (Hm, r) the generalized/combinatorial Laplacian with weight r on the

graph Gm. Decompose Hm into

Hm =

[
Tm J t

m

Jm Xm

]
, (2.2.2)
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where Tm ∈ L(V0), Jm ∈ L(V0, V 0
m) and Xm ∈ L(V 0

m). In particular, write T = T1, J = J1

and X = X1.

If we define a more general measure µ̂m on Vm as

µ̂m(x) = (
∑

w∈Wm

r−1
w Rt

w(−T )Rw)x,x,

then we can also generalize our definition of the normalized Laplacian on Gm to

∆̂mf(x) :=
Hmf(x)

µ̂m(x)
,

for f ∈ `(Vm).

As a convention, if we do not specify what the weight vector r is, we will always

assume that Hm and ∆̂m are the generalized non-normalized Laplacian and the normalized

Laplacian respectively on the graph Gm.

2.3 The spectral decimation function and forbidden

eigenvalues

From now on, we shall assume that our p.c.f. fractal K, generated by the graphs Gm, is

connected and

#(Bs ∩ V0) ≤ 1 for every s ∈ S, (2.3.1)

where Bs = Fs(V0).The latter assumption implies that all vertices in V0 are no longer

neighbors in G1 = (V1, E1), so T is a diagonal matrix.

We define the diagonal matrices M and W such that Mi,i = −Xi,i and W =

[
−T 0

0 M

]
,

where X and T are as in (2.2.2). It is clear that

∆̂0 = −T−1D,

∆̂1 = W−1H1.
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We also denote G(λ) = (X + λM)−1 if the inverse matrix exists.

Definition 2.2 The generalized Laplacian (Hm, r) is said to have a strong harmonic

structure if there exist rational functions KD(λ) and KT (λ) such that when X + λM is

invertible, then

T − J t(X + λM)−1J = KD(λ)D + KT (λ)T. (2.3.2)

We call KD(0)−1 the energy renormalization constant.

We denote

F := {λ ∈ R : KD(λ) = 0 or det(X + λM) = 0}
and call elements in F the forbidden eigenvalues. Moreover, we let

Fk := {λ ∈ F : λ is an eigenvalue of − ∆̂k}
and call the elements in Fk the forbidden eigenvalues at step k or initial eigenvalues

at step k. We call the function

R(λ) :=
λ−KT (λ)

KD(λ)

the spectral decimation function.

Example 5. (The Sierpinski gasket) In this case, the set of boundary points V0 =

{(0, 0), (1, 0), (1/2,
√

3/4)}. We take D to be the Laplacian matrix on V0, i.e.

D =



−2 1 1

1 −2 1

1 1 −2


 ,

and r = (1, 1, 1). The matrix corresponding to the standard Laplacian on V1 is

H1 =




−2 0 0 0 1 1

0 −2 0 1 0 1

0 0 −2 1 1 0

0 1 1 −4 1 1

1 0 1 1 −4 1

1 1 0 1 1 −4




.
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Hence

T =



−2 0 0

0 −2 0

0 0 −2


 ,

J =




0 1 1

1 0 1

1 1 0


 ,

X =



−4 1 1

1 −4 1

1 1 −4


 .

It follows then

(X + λM)−1 =
1

2(4λ− 5)(2λ− 1)




4λ− 3 −1 −1

−1 4λ− 3 −1

−1 −1 4λ− 3




and

T − J t(X + λM)−1J =
1

(4λ− 5)(2λ− 1)
×



−2(8λ2 − 12λ + 3) 3− 2λ 3− 2λ

3− 2λ −2(8λ2 − 12λ + 3) 3− 2λ

3− 2λ 3− 2λ −2(8λ2 − 12λ + 3)


 .

From this, we can easily see that H1 has a strong harmonic structure and we can read off

the functions KD and KT :

KD(λ) =
3− 2λ

(4λ− 5)(2λ− 1)
, KT (λ) =

2λ

2λ− 1
.

Hence the spectral decimation function is

R(λ) = λ(5− 4λ),
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and the forbidden eigenvalues are 1/2, 5/4, and 3/2.

Suppose we are given a p.c.f. self-similar set (also satisfying our assumption (2.3.1))

and the generalized Laplacian has a strong harmonic structure. We then have the following

spectral decimation property for the normalized Laplacian.

Proposition 2.3 (Shima [30]) Suppose the generalized Laplacian has a strong harmonic

structure. We have the following collective results:

(1) If f is an eigenfunction of −∆̂m+1 with eigenvalue λ, i.e. −∆̂m+1f = λf , and λ 6∈ F,

then −∆̂mf |Vm = R(λ)f |Vm,

(2) Conversely, if −∆̂mf = R(λ)f , and λ 6∈ F, then there exists a unique extension f of f

such that −∆̂m+1f = λf .

Proof. The full proof of this proposition can be found in [30]. Here we only show the case

when m = 1. In other words, we shall prove the following claim:

For λ 6∈ F, λ is an eigenvalue of −∆̂1 iff R(λ) is an eigenvalue of −∆̂0.

Before we prove the claim, let us first recall the notion of Schur complement from linear

algebra. For a block structured matrix

I =

[
A B

C D

]
,

with D invertible, the Schur complement of D in I is defined as A − BD−1C. One

important property of the Schur complement is that there exists an invertible matrix, say

P , such that

P

[
A B

C D

]
P t =

[
A−BD−1C 0

0 D

]
.

We are going to use this property to prove our claim.

Note that

H1 + λW =

[
T − λT J t

J X + λM

]
,
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so the Schur complement of X +λM in H1 +λW is (T −λT )−J t(X +λM)−1J and hence

there exists an invertible matrix P such that

P (H1 + λW )P t =

[
(T − λT )− J tG(λ)J 0

0 X + λM

]
.

If the Laplacian has a strong harmonic structure, it follows that

P (H1 + λW )P t =

[
KD(λ)D + (KT (λ)− λ)T 0

0 X + λM

]
.

Hence for those λ’s which are not forbidden eigenvalues (i.e. KD(λ) 6= 0 and X + λM is

invertible), we have

H1 + λW is singular iff KD(λ)D + (KT (λ)− λ)T is singular.

or equivalently,

W (W−1H1 + λ) is singular iff KD(λ)T (T−1D +
KT (λ)− λ

KD(λ)
) is singular.

As W and KD(λ)T are invertible, the theorem follows by noting that −W−1H1 = −∆̂1

and T−1D = −∆̂0.

¤

For the spectral decimation function, we have the following property.

Proposition 2.4 (Shima [30]) The spectral decimation function R satisfies

R(0) = 0, and R′(0) =
1

KD(0)r0

> 1, (2.3.3)

where we recall that r−1
0 =

∑
s∈S r−1

s is the measure factor.

Proof. For any set U , we denote the constant function 1 on U by 1U . Since

0 = H11V1 =

[
T J t

J X

][
1V0

1V1\V0

]
,
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we have the equations

{
T1V0 = −J t1V1\V0

J1V0 = −X1V1\V0

We let λ = 0 in (2.3.2), and rewrite (2.3.2) as

J tX−1J = T −KD(λ)D −KT (λ)T.

Then we multiply both sides by 1t
V0

on the left and 1V0 on the right. Applying the above

equations to the left-hand side of the resulting equality, we obtain

1t
V0

(J tX−1J)1V0 = 1t
V0

J tX−1(−X1V1\V0)

= −1t
V0

J t1V1\V0

= 1t
V0

T1V0 .

Since 1t
V0

T1V0 = Tr(T ), we have

1t
V0

(J tX−1J)1V0 = Tr(T ). (2.3.4)

On the other hand, notice that the sum of each column of the Laplacian matrix D is 0.

Therefore,

1t
V0

D1V0 = 0.

It follows that

1t
V0

(T −KT (0)T −KD(0)D)1V0 = (1−KT (0))Tr(T ) (2.3.5)

Comparing (2.3.4) and (2.3.5), we must have

Tr(T ) = (1−KT (0))Tr(T ).

Since Tr(T ) 6= 0, KT (0) must be zero. It was proved in [30] that KD(0) > 0, hence

R(0) =
0−KT (0)

KD(0)
= 0.
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Then we note that

d

dλ
(X + λM)−1 = −(X + λM)−1M(X + λM)−1

Hence differentiating both sides of (2.3.2) with respect to λ at 0 gives us

J tX−1MX−1J = K ′
D(0)D + K ′

T (0)T. (2.3.6)

Again, we multiply both sides of (2.3.6) by 1t
V0

on the left and 1V0 on the right. The

left-hand side of (2.3.6) then becomes

1t
V0

(J tX−1MX−1J)1V0 = −1t
V1\V0

X t(X−1MX−1)(−X1V1\V0)

= 1t
V1\V0

M1V1\V0 = Tr(M).

The second equality above holds because X is a symmetric matrix.

On the other hand, after multiplying on the left by 1t
V0

and 1V0 on the right, the right-

hand side of (2.3.6) becomes

1t
V0

(K ′
D(0)D + K ′

T (0)T )1V0 = 1t
V0

K ′
T (0)T1V0

= Tr(T )K ′
T (0).

Therefore,

K ′
T (0) =

Tr(M)

Tr(T )
.

Note that

R′(0) =
1−K ′

T (0)

KD(0)

= [KD(0)]−1(1− Tr(M)

Tr(T )
)

= [KD(0)]−1Tr(H1)

Tr(T )

Note that by Definition (2.2.1),

H1 =
∑

w∈W1

r−1
w Rt

wDRw.
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It follows that
Tr(H1)

Tr(T )
= r−1

0 ,

the measure factor. Hence we obtain

R′(0) =
1

KD(0)r0

.

By Theorem 4.10 in [17], we know that for some s ∈ S, rs < KD(0)−1. We thus have

R′(0) > 1.

¤

Let

ρ = R′(0) =
1

KD(0)r0

and call it the Laplacian renormalization constant.

2.4 Laplacians on fractals and spectral decimation

We can define a (normalized) Laplacian ∆ on K as a limit of the normalized discrete

Laplacians ∆̂m.

Definition 2.5 Let

D = {u ∈ C(K) : there exists a function f ∈ C(K) and

lim
m→∞

ρm∆̂mu(x) = f(x) uniformly for x ∈ V∗ \ V0}.

We then define the (normalized) Laplacian on the fractal K by

∆u = f,

where f is the function appearing above.
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If we choose D to be the Laplacian matrix on the complete graph G0 and all ri to be 1,

then the corresponding ∆ is called the standard (normalized) Laplacian on K.

This Laplacian can also be obtained through a weak formulation. We use the notation

(· , ·)µ to denote the inner product on L2(K; µ) with self-similar measure µ whose prob-

abilities are given by pi = ri

r0
. For a finite set U , we denote the ordinary inner product on

`(U) by < ·, · >.

Let µm = rm
0 µ̂m. Then it can be shown that {µm}m≥0 is weakly convergent to the

self-similar measure µ. The weak formulation of the Laplacian on K is defined as follows.

Definition 2.6 The Laplacian on the p.c.f. self-similar set K is defined as the self-adjoint

operator ∆µ on L2(K; µ), which is characterized by the following relation:

−(∆µf, f)µ = lim
m→∞

−ρm(f, ∆̂mf)m,

where (·, ·)m means the inner product on `(Vm) weighted by µm.

The inner product on the right-hand side of the equality in the definition can indeed

be described in terms of Dirichlet forms.

Definition 2.7 Let (Hm, r) be a strong harmonic structure and let ρ be the Laplacian

renormalization constant. Define the quadratic form Em on `(Vm) by

Em(f, f) = −ρm < f, Hmf > .

Put

G0 = {f ∈ `0(V∗) : lim
m→∞

Em(f |Vm , f |Vm) < ∞}.
Define (E , G0) by

E(f, f) = lim
m→∞

Em(f |Vm , f |Vm), for f ∈ G0

The associated bilinear form is defined by the usual polarization identity:

E(f, g) = 1/4[E(f + g, f + g)− E(f − g, f − g)].
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Then (E , G0) is a local Dirichlet form on L2(K; µ) and ∆µ as defined in Definition 2.6 is the

operator associated with it. The Dirichlet form is an analog of
∫ |∇f |2dx in the classical

case (see [20] for definitions and properties of Dirichlet forms.) Recall that the classical

Laplacian can be defined through the identity

∫
|∇f |2dx = −

∫
f∆(f)dx.

for f with zero boundary values.

These two formulations of Laplacian described above are indeed equivalent ([18] and

[33]).

Remark 2.8 To define a Laplacian on a p.c.f fractal, we do not need a strong harmonic

structure. Instead, we only require (2.3.2) to hold for λ = 0; i.e., there exists a number

KD(0), such that

T − J t(X + λM)−1J = KD(0)D.

We then define a Laplacian as the renormalized limit of the discrete Laplacian in the same

way as in Definition 2.5 and Definition 2.6, where the renormalization constant is still

ρ = 1
KD(0)r0

.

In some cases, spectra of Laplacians, with either Dirichlet or Neumann boundary con-

ditions, can be obtained through a process called spectral decimation. Here by Dirichlet

boundary condition, we mean the eigenfunction is zero on the boundary V0, both for the

discrete Laplacian and the Laplacian on the fractal, defined as a renormalized limit of

the discrete Laplacians. The Neumann boundary condition needs a few words to explain.

For discrete Laplacians, we imagine the graph Gm being imbedded in a lager graph by

reflecting in each boundary vertex and we impose the step m eigenvalue equation on the

even extension of the eigenfunction. (For the normalized Laplacian, the Neumann bound-

ary condition simply means that we treat all boundary points the same as other (interior)

points.) The Neumann boundary condition on the fractal means that the normal derivative

of the function f on V0 is zero, where the normal derivative of f is defined as follows.
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Definition 2.9 Let x ∈ V0 and f be a continuous function of K. We say the normal

derivative of f , ∂nf(x), exists if the limit

lim
m→∞

ρm∆̂mf(x)

exists and we then define

∂nf(x) = lim
m→∞

ρm∆̂mf(x).

The definition of normal derivatives corresponding to the non-normalized Laplacian is

similar.

We continue to let ρ be the Laplacian renormalization constant and Fk be the set of

forbidden eigenvalues appearing at step k.

We start with an element in the set of forbidden eigenvalues F, say α, and suppose it

is an eigenvalue of the discrete Laplacian −∆̂i for some i and associated with an eigen-

function fi. By Proposition 2.3, we can extend α := λi to λi+1 by applying inverses of the

function R which appeared in that proposition. We will also obtain an eigenfunction fi+1

corresponding to −∆̂i+1 whose restriction back to Vi is fi. This iterative process can be

repeated over and over again as long as we do not encounter any of the forbidden eigen-

values. Thus we will have a sequence {λk}∞k≥i and a function f defined on V∗ =
⋃

m≥0 Vm

whose restriction is an eigenfunction of the discrete Laplacian at any step. We call this

function defined on V∗ a pre-eigenfunction. Shima proved (Proposition 3.1 in [30]) that

if the limit

ρi lim
m

ρmλm (2.4.1)

converges to some positive number κ, then it must be an eigenvalue of the Laplacian −∆

on the fractal and the associated pre-eigenfunction is extended to an eigenfunction on the

fractal belonging to κ.

This method certainly gives us a lot of eigenvalues of the Laplacian, but not necessarily

all of them. However, if it does happen that all eigenvalues are constructed this way, then

we say that the Laplacian admits spectral decimation.
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Definition 2.10 For a p.c.f. self-similar set K, we say that the Laplacian, −∆, with

Dirichlet boundary conditions, admits spectral decimation with spectral decimation

function R if all eigenvalues of −∆ are of the form

ρi lim
m→∞

ρmφw(x), x ∈ Fi+1 and i ∈ N ∪ {0},

where w = wm · · ·w1 is a word of length m with each wj ∈ {0, · · · , #(inverse functions of R)−
1}, and φw = φwm · · ·φw1 with φk being the k + 1-th inverse functions of R from bottom to

top. In particular, φ0 is the bottom inverse function of R.

Remark 2.11 (1) Note that in the above definition, φw has to be chosen such that the

limit exists. As Shima proved [30], if φ0(z) < z for all positive real numbers z on its

domain, then the existence of the limit is equivalent to the condition that after finite steps,

we only apply the bottom inverse function φ0.

In fact, if φ0(z) < z, then φ
(n)
0 (z), the n iterations of φ0, is decreasing in n and so

converges. But the limit is a fixed point of φ0 and so it is 0. Hence after applying φ0

certain times, the resulting value will be close to 0. Proposition 2.4 then tells us

φ0(z) =
1

ρ
z + O(z2), as z → 0.

Hence the limit (2.4.1) exists if we only apply φ0 after finite steps to do the extensions.

Conversely, if we do not apply φ0 after finite steps, then φw(z) with |w| = m does not

converge to 0 as m →∞. Since ρ > 1, limm ρmφw(z) does not exist.

Therefore, we conclude that if φ0(z) < z for all positive z on its domain, all eigenvalues

of −∆ must be of the form

ρi lim
m→∞

ρmφ
(m−j)
0 φw′(z), (2.4.2)

where z ∈ Fi+1, |w′| = j, and i ∈ N ∪ {0}.

(2) This definition can be applied to Laplacians with Neumann boundary conditions with

F and Fi replaced by F ∪ {0} and Fi ∪ {0} since constant functions are always Neumann

eigenfunctions corresponding to eigenvalue zero.
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We denote the functions

y0(z) = lim
m→∞

ρmφ
(m)
0 (z), if w = 0, (2.4.3)

yw(z) = lim
m→∞

ρmφ
(m−j)
0 φw(z), if |w| = j, wj 6= 0, (2.4.4)

for all z such that the limits on the right-hand side exist. We are particularly interested

about properties of the function y0, which will be used in the proof of our criteria for

finding spectral gaps.

Lemma 2.12 If φ0 is strictly convex on [0, b], where b is the largest forbidden eigenvalue,

and φ0(b) < b, then y0 exists, is convex on its domain, strictly increasing and continuous.

Proof. We first note that y0(z) is well-defined for all 0 ≤ z ≤ b because the strict convexity

of φ0 and φ0(0) = 0 gives
φ0(z)

z
<

φ0(b)

b
< 1,

for all z in [0, b] and hence by the comments in the previous remark this is enough to prove

y0 exists.

We note that continuity follows from convexity. We now prove convexity. We choose

z1 and z2 from the domain of φ0 with 0 ≤ z1 < z2 and let 0 < t < 1. Since φ0 is (strictly)

convex, so is φ
(m)
0 for all m. Hence,

t y0(z1) + (1− t) y0(z2)

y0

(
t z1 + (1− t) z2

) = lim
m

t φ
(m)
0 (z1) + (1− t) φ

(m)
0 (z2)

φ
(m)
0

(
t z1 + (1− t) z2

) ≥ 1.

Next we prove that y0 is strictly increasing. Since y0(0) = 0, there is no loss of generality

in taking 0 < z1 < z2. By the strict convexity of φ0,

φ0(z1)

z1

<
φ0(z2)

z2

,

which we rewrite as
φ0(z2)

φ0(z1)
>

z2

z1

.
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Repeated applications of this inequality gives

y0(z2)

y0(z1)
= lim

m

φ
(m)
0 (z2)

φ
(m)
0 (z1)

≥ z2

z1

> 1.

¤

Shima has proved the following theorem about the relationship between strong har-

monic structure and spectral decimation.

Theorem 2.13 (Shima [30]) Suppose the Laplacian −∆ has a strong harmonic structure.

If

|S| < 1

KD(0)r0

, (2.4.5)

then −∆ admits spectral decimation with a rational function R.

If we take all ri to be 1, then 1/r0 = |S|. By Theorem 4.10 in [17], we know that for

some s ∈ S, rs < KD(0)−1. Therefore KD(0) < 1 and |S| < 1
KD(0)r0

. Hence we have the

following corollary.

Corollary 2.14 If a Laplacian has the strong harmonic structure and all ri = 1, then it

admits spectral decimation.

The eigenfunctions of the Laplacian on the fractal K, with either Dirichlet or Neumann

boundary conditions, form an orthonormal basis for L2(K, µ) and thus we can decompose

any function f ∈ L2 as

f =
∞∑

j=1

cjuj with cj =

∫

K

fujdµ,

where {cj} are the the eigenvalues of the Laplacian and {uj} are the corresponding eigen-

functions. We call this sum the Fourier series of f and its partial sums converge to f in

L2 norm.



Chapter 3

Criteria for spectral gaps

First let us define what we mean when we say there exist gaps for a given sequence.

Definition 3.1 Let α1 ≤ α2 ≤ · · · ≤ αk ≤ · · · be an infinite sequence. We say that there

exist gaps in the sequence if lim sup
αk+1

αk

> 1.

M. Gibbons, A. Raj and R. Strichartz proved there were gaps in the spectrum of

the standard Laplacian on the Sierpinski gasket SG in [12]. Together with a suitable

heat kernel estimate (see [13]) and using a generic argument developed by X. Duong, E.

Ouhabaz and A. Sikora ([7], Theorem 3.1 and 6.2), R. Strichartz proved the following

theorems concerning convergence of the Fourier series on SG and the Littlewood-Paley

theorem.

With either Dirichlet or Neumann boundary condition, there is a complete orthonormal

basis of eigenfunctions, say −∆uj = λjuj, j = 1, 2, · · · , and every L2 function f has a

Fourier series

f =
∞∑

j=1

cjuj, with cj =

∫

SG
fujdµ,

where µ is the Hausdorff measure on SG.

26
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Theorem 3.2 (Theorem 1 in [32]) Let {Nm} be a sequence of integers such that
λNm+1

λNm

− 1

is bounded away from zero. Then the partial sums of the Fourier series SNmf converge to

f as m →∞ in Lp for f ∈ Lp (1 ≤ p < ∞) and uniformly if f is continuous.

Theorem 3.3 (Theorem 2 in [32]) Let 1 < p < ∞. Let

Sf(x) = (
∞∑

m=1

|Smf(x)|2)1/2,

for

Smf(x) =
Nm∑

j=Nm−1+1

cjuj(x),

where {Nm} is the same sequence as in the above theorem. Then there exist constants Ap

and Bp such that

Ap ‖ f ‖p≤‖ Sf ‖p≤ Bp ‖ f ‖p .

The argument used to prove the above two theorems can be applied to any other fractals

where there exist gaps in the spectrum of the Laplacian and the heat kernel estimates

specified in [7] are satisfied.

In this chapter we shall give three criteria for the existence of gaps in the spectrum

of Laplacians on fractals which admit spectral decimation. We continue to denote by R

the spectral decimation function, F the set of forbidden eigenvales and ρ the Laplacian

renormalization constant.

The proofs of the theorems we give are similar. In all cases, we show there are gaps in

the spectrum between numbers Ak and Bk, where Ak, Bk are of the form

Ak = ρk lim
m→∞

ρmφ
(m−1)
0 (x),

Bk = ρk lim
m→∞

ρmφ
(m−1)
0 (y)

with x, y consecutive elements of the set R−1(F).
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Following the proofs of the theorems we will give examples of fractals to which the

theorems can be applied. The first theorem applies to the Sierpinski gaskets, SG and SG3.

It is shown in [12] that there are two sequences where we can find gaps for SG and our

first theorem detects one of them. Slightly modifying the conditions of the first theorem,

we obtain a second theorem which can be used to find the other sequence for SG where

gaps are already known to occur. The third theorem can be used to prove the existence

of gaps for the tree-like fractals (see [30] or Section 2.1, Example 4). In Chapter 4 we will

show the infinite Vicsek sets satisfy the criterion for the first theorem, so there are gaps in

the spectrum for the standard Laplacian on these fractals, as well.

3.1 Gap Theorems

In our gap theorems, we assume the Laplacian on the fractal admits spectral decimation.

Note Shima’s approach makes it clear that the spectral decimation function, R, associ-

ated with a given Laplacian, is a rational function. As usual, we let Fk = {λ ∈ F :

λ is an eigenvalue of − ∆̂k}, be the set of forbidden/initial eigenvalues appearing at step

k. We restrict the domain of R to the nonnegative real line. Suppose R has n + 1 inverse

functions and we denote the n + 1 branches of the inverse function of R(λ) from bottom

to top by φ0, · · · , φn as usual.

Theorem 3.4 Let b be the largest forbidden eigenvalue. There exist gaps in the spectrum

of the generalized Laplacian on the fractal if the following conditions are satisfied:

(1) R−1([0, b]) ⊆ [0, b];

(2) φ1(x) is defined and decreasing on [0, b];

(3) φ0(x) is strictly convex and φ0(b) < φ1(b);

(4) there exists k0 such that for all k ≥ k0 and all x ∈ Fk, φ1(b) ≤ x.
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Proof. Let

Ak = ρk lim
m→∞

ρmφ
(m)
0 (b),

Bk = ρk lim
m→∞

ρmφ
(m−1)
0 φ1(b).

The first condition tells us that we can further iterate φ0(b) and φ1(b) by inverse functions

of R. By Remark 2.11, Lemma 2.12 and the assumptions on φ0 and φ1, the two limits

defining Ak and Bk exist and so Ak and Bk are well-defined for any k.

Since φ0 is strictly convex, by Lemma 2.12, we know that A0 and B0 are different and

B0 > A0. Since Bk

Ak
= B0

A0
> 1, it is sufficient to show that there is no eigenvalue between

Ak and Bk for all k greater than some k0 as given in condition (4).

As the Laplacian admits spectral decimation, by Definition 2.10 and Remark 2.11, all

eigenvalues must be of the form

ρi lim
m→∞

ρmφ
(m−j)
0 φw(x),

where i, j ∈ N ∪ {0}, |w| = j, and x ∈ Fi+1. Hence it suffices to prove the following two

claims:

(i) For i ≥ 0 and x ∈ Fi+1,

Bk ≤ ρi lim
m→∞

ρmφ
(m−j)
0 φw(x) ≤ Ak+1,

where φw = φwj
◦ · · · ◦ φw1 for w = wj · · ·w1 with wj 6= 0, |w| = j, and i + j = k + 1;

(ii) For all k ≥ k0 − 1 and x ∈ Fk+2 ⊆ F, we have

Bk ≤ ρk+1 lim
m→∞

ρmφ
(m)
0 (x) ≤ Ak+1.

Once our claims are proved, only the eigenvalues limm→∞ ρmφ
(m)
0 (x) with x ∈ F1, and

the eigenvalues ρk+1 lim
m→∞

ρmφ
(m)
0 (x) with x ∈ Fk+2 and k < k0 − 1 could lie in ∪[Aj, Bj].

As there are only finitely many such eigenvalues, this will not affect the existence of gaps

in the sequence.
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It is easy to see that the second inequality of (ii) follows directly from the monotonicity

of φ0. The the left-hand side inequality of (ii) reads

ρk lim
m→∞

ρmφ
(m−1)
0 φ1(b) ≤ ρk+1 lim

m→∞
ρmφ

(m)
0 (x),

which is equivalent to

lim
m→∞

ρmφ
(m−1)
0 φ1(b) ≤ ρ lim

m→∞
ρmφ

(m)
0 (x),

If we replace m by m′ = m− 1 on the right-hand side of the last inequality, we have

lim
m→∞

ρmφ
(m−1)
0 φ1(b) ≤ lim

m→∞
ρmφ

(m−1)
0 (x).

The last inequality is true because condition (4) implies that φ1(b) ≤ x for all those

forbidden eigenvalues which can appear at step k0 or later.

To show (i), note that Fi+1 ⊆ F and

ρi lim
m→∞

ρmφ
(m−j)
0 φw(x) = lim

m→∞
ρmφ

(m−i−j)
0 φw(x).

It is sufficient to prove the following stronger inequalities:

(i’) For x ∈ F,

Bk ≤ lim
m→∞

ρmφ
(m−k−1)
0 φw(x) ≤ Ak+1,

where φw = φwj
◦ · · · ◦ φw1 for w = wj · · ·w1 with wj 6= 0.

To show the right-hand side inequality of (i’), note that φw(x) ≤ b for any w and x by

condition (1). Hence

lim
m→∞

ρmφ
(m−k−1)
0 φw(x) ≤ lim

m→∞
ρmφ

(m−k−1)
0 (b)

= lim
m→∞

ρm+k+1φ
(m)
0 (b) = Ak+1.

Now we are only left with the left-hand side inequality of (i’), which is

ρk lim
m→∞

ρmφ
(m−1)
0 φ1(b) ≤ lim

m→∞
ρmφ

(m−k−1)
0 φw(x),
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where |w| = j, wj 6= 0, x ∈ F. Because of the monotonicity of φ0, it is sufficient to

show φ1(b) ≤ φw(x) = φwj
◦ φw′(x), where |w′| = |w| − 1, wj 6= 0, and x ∈ F. Note that

to make φw(x) the smallest, wj has to be 1. Since x ≤ b and φ1 is decreasing, we have

φ1(b) ≤ φw(x).

¤

Remark 3.5 (1) It is possible that Ak and Bk are not true eigenvalues in the spectrum, but

this will not affect the existence of gaps. What is important is that there is no eigenvalue

between Ak and Bk for sufficiently large k. Indeed, if Ak and Bk are not true eigenvalues,

then there are even larger gaps between the greatest (true) eigenvalue less than Ak and the

least eigenvalues greater than Bk.

(2) We can check the strict convexity of φ0 by verifying if R is increasing and strictly

concave on the image of φ0. This fact can be seen either from the formula

φ′′0(λ) = − R′′(φ0(λ))

[R′(φ0(λ))]3

or by direct proof.

We further remark that the strict convexity of φ0 in our proof of the theorem is used to

verify that A0 and B0 exist and are distinct.

(3) Recall that we have shown φ0(0) = 0 and φ′0(0) = 1
ρ

> 0 in Chapter 2, where ρ is

the Laplacian renormalization constant, so φ0 is always increasing on its domain. Because

we divide the branches of the inverse function according to where the function turns, as long

as R is continuous on [0, a], where a is the least positive root of R, φ1 will be decreasing.

Next we use the above theorem to prove the existence of gaps for the Sierpinski gasket,

SG, and the level-3 Sierpinski gasket, SG3.
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Example 1. (The Sierpinski Gasket SG) For the Sierpinski gasket, the spectral deci-

mation function is

R(λ) = λ(5− 4λ).

(See [34], [30] or Section 2.3.) Hence the inverse functions are

φ0(λ) =
5−√25− 16λ

8
,

φ1(λ) =
5 +

√
25− 16λ

8
.

The set of forbidden eigenvalues, F, is known to be {1/2, 5/4, 3/2}. (In [12], the spectral

decimation function is λ(5 − λ) and the forbidden eigenvalues are 2, 5, and 6 because of

the normalization factor 4.) 1/2 does not appear as a forbidden eigenvalue at any step

k ≥ 2 (see Chapter 3 in [33]), so Fk ⊆ {5/4, 3/2} for k ≥ 2.

It is clear that 3/2 is in the domain of φ0 and φ1, R−1([0, 3/2]) = [0, 5/4] ⊆ [0, 3/2],

and φ1 is decreasing. The strict convexity of φ0 can be easily obtained either by checking

φ′′0 > 0 or verifying R′′ < 0 and φ0 is increasing on its domain, as mentioned in Remark

3.5. The last condition is also satisfied since φ1(3/2) = 3/4 < 5/4, the smallest forbidden

eigenvalue in Fk for k ≥ 2. Hence all conditions of Theorem 3.4 are satisfied and so there

are gaps in the spectrum at two different places.

Note that φ0(3/2) = 1/2 and 1/2 does not appear as a forbidden eigenvalue at any step

k ≥ 2, so Ak = 5k limm→∞ ρmφ
(m)
0 (3/2) for k ≥ 2 is not a true eigenvalue in the spectrum.

But this does not affect the existence of gaps, as we pointed out in Remark 3.5. Indeed,

we can replace Ak by the greatest eigenvalue less than Ak, say A′
k, and obtain larger gaps.

We claim

A′
k = 5k lim

m→∞
5mφ

(m)
0 (5/4) for k ≥ 2.

To see this, we first note that since φl(x) ≤ 5/4 for all x ∈ [0, 3/2] and l = 0, 1, it follows

that if i + j = k + 1 and x ∈ Fi+1,

5i lim
m→∞

5mφ
(m−j)
0 φw(x) ≤ A′

k+1, |w| = j, and wj 6= 0.

Furthermore, as 5/4 is the second largest forbidden eigenvalue, we have

5k+1 lim
m→∞

5mφ
(m)
0 (x) ≤ A′

k+1
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for x ∈ Fk+2 \ {3/2}. These observations establish the claim and show there are gaps in

(A′
k, Bk) for Bk = 5k limm→∞ 5mφ

(m−1)
0 φ1(3/2), as previously proven in [12].

Example 2. (Level-3 Sierpinski Gasket SG3) The spectrum of the standard Laplacian

on this fractal has been studied by S. Drenning in [8]. The spectral decimation function is

R(λ) =
6λ(λ− 1)(4λ− 3)(4λ− 5)

6λ− 7

and the forbidden eigenvalues are 3±√5
4

, 3/4, 7/6, 5/4, and 3/2. The set of forbidden

eigenvalues at step k, Fk, is equal to {3/4, 5/4, 3/2} for k ≥ 2.

In his paper, Drenning claimed that the numerical data suggested that there are gaps

in the spectrum, but there was no proof to support his claim. Now we can apply Theorem

3.4 to this example and prove that his claim is correct.

As R is continuous on [0, 7/6), φ1 is decreasing. Note that R(λ) = 0 has four real roots

0, 3/4, 1, and 5/4. Furthermore,

R(λ)− 3/2 =
3(4λ2 − 6λ + 1)(16λ2 − 24λ + 7)

12λ− 14
,

and it has four real roots 3±√2
4

, 3±√5
4

. Since

R−1([0, 3/2]) = [0, max{largest root of R(λ), largest root of R(λ)− 3/2}]

= [0,
3 +

√
5

4
],

which is contained in [0, 3/2], the first condition of Theorem 3.4 is satisfied.

To check the third condition of the theorem, we note that R is differentiable on

(−∞, 7/6) and

R′(x) =
6(288x4 − 1024x3 + 1290x2 − 658x + 105)

(6x− 7)2
.

Using Maple, we find that R′ are has only two real roots, 0.2880979998 and 0.8900943083,

correct to six decimal places. The first turning point of R is 0.2880979998 and so the range
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of φ0 is contained in [0, 0.3]. Using Maple again, we find

R′′(x) =
12(1728x4 − 7104x3 + 10752x2 − 7056 + 1673)

(6x− 7)3

and the only two real roots of R′′ are 0.5988200688 and 1.314052020. Particularly, this

tells us that the sign of R′′ remains unchanged on [0, 0.3]. We can easily check that it is

negative, so R is strictly concave from 0 to 0.3. Therefore condition (3) is satisfied.

Note that φ1(3/2) is equal to the second root of R(λ)− 3/2 = 0. Thus φ1(3/2) = 3−√2
4

,

which is less than 3/4, the smallest element in Fk for k ≥ 2, so the last condition of the

theorem is satisfied. Therefore, by Theorem 3.4, there exist gaps in the spectrum.

In [12], it is shown that there exists a second sequence of gaps for SG. We can slightly

modify our conditions in Theorem 3.4 and identify those gaps.

Theorem 3.6 Let a and b be the two largest forbidden eigenvalues in F. There exist gaps

in the spectrum of the generalized Laplacian if the following conditions are satisfied:

(1) R−1([0, b]) ⊆ [0, a];

(2) φ1(x) is defined and decreasing on [0, b];

(3) φ0(x) is strictly convex;

(4) there exists k0 such that for all k ≥ k0 and all x ∈ Fk, φ1(a) ≤ x.

Proof. The proof is quite similar to the above theorem. Let

Ak = ρk lim
m→∞

ρmφ
(m−1)
0 φ1(b),

Bk = ρk lim
m→∞

ρmφ
(m−1)
0 φ1(a).

We can show that all eigenvalues of the form

ρi lim
m→∞

ρmφ
(m−j)
0 φw(x), with |w| = j, wj 6= 0, i + j = k + 1,

are between Bk and Ak+1, except the case when w = 1 and x = b when we obtain Ak. The

rest of the proof is almost identical to that of Theorem 3.4.
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¤

Example 3. (Sierpinski Gasket SG) In Example 1 we actually verified that the con-

ditions of Theorem 3.6 were satisfied with b = 3/2, a = 5/4, and k0 = 2. Therefore there

are gaps between

Ak = 5k lim
m→∞

ρmφ
(m−1)
0 φ1(3/2)

and

Bk = 5k lim
m→∞

ρmφ
(m−1)
0 φ1(5/4)

as discovered in [12].

In Example 2 (SG3), condition (1) of the second theorem is not satisfied, so it does not

apply in this setting.

We have the following alternative criterion to determine whether there are gaps in the

spectrum. We shall use it to prove the existence of gaps for the tree-like fractals which will

be introduced after the proof of the theorem.

Theorem 3.7 Suppose α ≤ β are two consecutive forbidden eigenvalues in F. Let c ≥ b be

such that R−1([0, b]) ⊆ [0, c], where b is the largest forbidden eigenvalue. If the following

conditions are satisfied, then there must be gaps in the spectrum.

(1) φ1(x) ≥ β, for all x ∈ [0, c];

(2) φ0(c) ≤ α;

(3) φ0(x) is strictly convex.

Proof. The proof of this theorem is also very similar to previous theorems.

For k ≥ 0, we let

Ak = ρk lim
m→∞

ρmφ
(m)
0 (α),

Bk = ρk lim
m→∞

ρmφ
(m)
0 (β).

By the same reasoning as in the previous theorems, we can prove that both Ak and Bk

exist and Bk

Ak
= B0

A0
> 1 for any k. We claim there is no eigenvalue between Ak and Bk for

any k and hence there are gaps in the spectrum.
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Let k > 1, i + j = k, |w| = j, and wj 6= 0. We claim that for all x ∈ Fi+1 ⊆ F, for

which φ
(m−j)
0 φw(x) is defined,

Bk ≤ ρi lim
m→∞

ρmφ
(m−j)
0 φw(x) ≤ Ak+1.

Note that the left-hand side inequality above reads

ρk lim
m→∞

ρmφ
(m)
0 (β) ≤ ρi lim

m→∞
ρmφ

(m−j)
0 φw(x),

which is equivalent to

lim
m→∞

ρmφ
(m)
0 (β) ≤ lim

m→∞
ρm+i−kφ

(m−j)
0 φw(x).

Since i − k = −j, if we let m′ = m − j on the right-hand side, then it would follow that

this is equivalent to

lim
m→∞

ρmφ
(m)
0 (β) ≤ lim

m→∞
ρ(m)φm

0 φw(x).

As φ0 is increasing on its domain, it suffices to show that

φw(x) ≥ β, wj 6= 0, x ∈ Fi+1.

By (1), φi(x) ≥ β for all x ∈ [0, c], so this is clearly true.

The right-hand side inequality reads

ρk+1 lim
m→∞

ρmφ
(m)
0 (α) ≥ ρi lim

m→∞
ρmφ

(m−j)
0 φw(x),

which is equivalent to

lim
m→∞

ρm+k+1−iφ
(m)
0 (α) ≥ lim

m→∞
ρmφ

(m−j)
0 φw(x).

Again, notice that k − i = j and let m′ = m + j + 1 on the left-hand side. We would have

lim
m→∞

ρmφ
(m−j−1)
0 (α) ≥ lim

m→∞
ρmφ

(m−j)
0 φw(x).

Hence it suffices to show that

φ0(φw(x)) ≤ α
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for all w. Since R−1([0, b]) ⊆ [0, c] and φ0 is increasing, the largest possible value on the

left-hand side is φ0(c). Hence the last inequality is true by (2) and we have the desired

result.

¤

Example 4. (The n-branch tree-like fractal) This infinite family of fractals is obtained

by sticking n−2 intervals of length 1/2 to the middle of a unit interval and then repeating

this process (sticking n − 2 branches to each interval obtained in the previous step with

half of its length). We let V0 = {p1, p2} be the set of boundary points and G0 = (V0, E0)

be the complete graph on V0. Let V1 \V0 = {q1, q2, · · · , qn−1}, the set of vertices in V1 \V0,

where q1 is the only point on the line segment p1p2; in other words, q1 is the only point

in V1 \ V0 connected with p1 and p2. See the graph in Section 2.1, Example 4 for the case

when n = 5.

For this infinite family of fractals there are more general Laplacians which admit

spectral decimation (see [30] when n = 5). Indeed, we can choose a weighted vector

r = (1, 1, r−1, · · · , r−1)︸ ︷︷ ︸
n−2

with r > 0 so that the weights on the two outer branches are 1

and the weights on all (n− 2) inner branches are r. (If we take r to be 1, then we would

have the standard Laplacian.)

Let D be the Laplacian matrix on the complete graph G0 and H1 be the matrices

representing the graph Laplacians on V0 and V1 respectively (see Chapter 2 for the definition

of Hm). We can see that D =

[
−1 1

1 −1

]
and

H1 =

[
T J t

J X

]
.
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Here T is a diagonal matrix with Ti,i = Di,i and J is the incidence matrix of V0 and V1 \V0;

i.e., if qi is a neighboring point of pj, then Ji,j = 1; otherwise Ji,j = 0. Hence

J =




1 1

0 0
...

...

0 0




(n−1)×2

The matrix X is a square matrix with

X =




−(2 + (n− 2)r) r r · · · r

r −r 0 · · · 0
...

...

r 0 0 · · · −r




(n−1)×(n−1)

and M is a diagonal matrix with Mi,i = −Xi,i, so

X + λM =




(2 + (n− 2)r)(λ− 1) r r · · · r

r (λ− 1)r 0 · · · 0
...

...

r 0 0 · · · (λ− 1)r




(n−1)×(n−1)

Therefore the normalized Laplacian for any function f on V1 \ V0 is

∆̂f(q1) =
1

2 + (n− 2)r
[f(p1) + f(p2) + r

n−1∑
i=2

f(qi)]− f(q1)

and for 2 ≤ i ≤ n− 1,

∆̂f(qi) = f(q1)− f(qi).

Recall that the spectral decimation function R is given by

R(λ) =
λ−KT (λ)

KD(λ)
,

where KD and KT are defined by

T − J t(X + λM)−1J = KD(λ)D + KT (λ)T
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Denote G(λ) = (X + λM)−1 if the inverse matrix exists. We can easily see that

KD(λ) = (−J tG(λ)J)1,2.

Since

(J tG(λ)J)1,2 =
∑

k, j

J t
1,kGk,jJj,2 = G1,1,

we have that

KD(λ) = −G(λ)1,1 =
−1

det(X + λM)
[(λ− 1)r]n−2.

So now the question is to find det(X + λM). Expanding by the last row of det(X + λM),

we have that

det(X + λM) =

∣∣∣∣∣∣∣∣∣∣

(2 + (n− 2)r)(λ− 1) r r · · · r

r (λ− 1)r 0 · · · 0
...

...

r 0 0 · · · (λ− 1)r

∣∣∣∣∣∣∣∣∣∣
(n−1)×(n−1)

= (λ− 1)r

∣∣∣∣∣∣∣∣∣∣

(2 + (n− 2)r)(λ− 1) r r · · · r

r (λ− 1)r 0 · · · 0
...

...

r 0 0 · · · (λ− 1)r

∣∣∣∣∣∣∣∣∣∣
(n−2)×(n−2)

+ (−1)nr

∣∣∣∣∣∣∣∣∣∣

r r r · · · r

(λ− 1)r 0 0 · · · 0
...

...

0 0 · · · (λ− 1)r 0

∣∣∣∣∣∣∣∣∣∣
(n−2)×(n−2)

= (λ− 1)r

∣∣∣∣∣∣∣∣∣∣

(2 + (n− 2)r)(λ− 1) r · · · r

r (λ− 1)r · · · 0
...

r 0 · · · (λ− 1)r

∣∣∣∣∣∣∣∣∣∣
+ (−1)2n−3r2((λ− 1)r)n−3
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We expand by the last row again and we see that the last equation is equal to

(λ− 1)r(λ− 1)r

∣∣∣∣∣∣∣∣∣∣

(2 + (n− 2)r)(λ− 1) r · · · r

r (λ− 1)r · · · 0
...

r 0 · · · (λ− 1)r

∣∣∣∣∣∣∣∣∣∣
(n−3)×(n−3)

+ (λ− 1)r · r

∣∣∣∣∣∣∣∣∣∣

r r · · · r

(λ− 1)r 0 · · · 0
...

0 · · · (λ− 1)r 0

∣∣∣∣∣∣∣∣∣∣
(n−3)×(n−3)

− r2((λ− 1)r)n−3

= ((λ− 1)r)2

∣∣∣∣∣∣∣∣∣∣

(2 + (n− 2)r)(λ− 1) r · · · r

r (λ− 1)r · · · 0
...

r 0 · · · (λ− 1)r

∣∣∣∣∣∣∣∣∣∣

− 2r2((λ− 1)r)n−3

Repeatedly expanding by the last column, eventually we will have

det(X + λM) = ((λ− 1)r)n−3

∣∣∣∣∣
(2 + (n− 2)r)(λ− 1) r

r (λ− 1)r

∣∣∣∣∣− (n− 3)rn−1(λ− 1)n−3

= (λ− 1)n−3rn−2[(2 + (n− 2)r)λ2 − 2(2 + (n− 2)r)λ + 2].

Therefore,

KD(λ) = − λ− 1

(2 + (n− 2)r)λ2 − 2(2 + (n− 2)r)λ + 2
.

Since

T − J tG(λ)J = KD(λ)D + KT (λ)T,

we have

KT (λ) =
T1,1 − (J tG(λ)J)1,1 −KD(λ)D1,1

T1,1

= 1−KD(λ) + G1,1

= 1− 2KD(λ).
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It follows then

R(λ) =
λ−KT (λ)

KD(λ)
= −(2 + (n− 2)r)λ(λ− 2).

Moreover, the forbidden eigenvalues, by definition, are zeros of KD and det(X + λM). If

we let α1 = 1 −
√

(n−2)r
2+(n−2)r

and α2 = 1 +
√

(n−2)r
2+(n−2)r

, then the set of forbidden eigenvalues

F is {1, α1, α2}.

We will use our second theorem to show that there are gaps in the spectrum of the

Laplacian on this infinite family of fractals. Let φ0, φ1 be the 2 branches of the inverse

function of R(λ) from bottom to top

φ0(x) = 1−
√

2 + (n− 2)r − x

2 + (n− 2)r
,

φ1(x) = 1 +

√
2 + (n− 2)r − x

2 + (n− 2)r
.

Note that φi(x) ≤ 2 for all x ≥ 0 and i = 0, 1 and the domain of φ0 and φ1 (restricted

to [0, ∞]) contains [0, 2] for any n and r. Hence we can take b = α2 < 2 and c = 2 in

Theorem 3.7 and the condition R−1([0, b]) ⊆ [0, c] is satisfied. Let α = α1 and β = 1.

Clearly φ1(x) ≥ 1 = β for all x ∈ [0, 2] and so (1) is satisfied. As φ0(2) = α1, condition

(2) is satisfied. As before, condition (3) of the strict convexity of φ0 can be obtained by

checking R′ > 0 and R′′ < 0 on Im(φ0).

Note that φ1(x) is always greater than 1, hence the last condition in Theorem 3.4 cannot

be met.

Theorem 3.7 says there are gaps between Ak and Bk, with

Ak = ρk lim
m→∞

ρmφ
(m)
0 (α),

Bk = ρk lim
m→∞

ρmφ
(m)
0 (β).

We can calculate ρ, the Laplacian renormalization constant by recalling that it is defined

as the product of the energy renormalization constant and the measure factor. The energy

renormalization constant is KD(0)−1, which one can easily see is 2. The measure renormal-

ization factor is the sum of all the weights and equals 2+(n−2)r. Thus ρ = 2(2+(n−2)r).
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In Chapter 4, we shall show that our first criterion for gaps, Theorem 3.4, applies to

an infinite family of fractals, the n-branch Viesek set VSn, as well.



Chapter 4

Spectral decimation function for the

standard Laplacian on VSn

In this chapter, we shall obtain the spectral decimation function for the standard Laplacian

on an infinite family of fractals, the n-branch Vicsek sets VSn, in terms of the Chebyshev

polynomials. We will then apply Theorem 3.4 in Chapter 3 to prove that there exist gaps

in the spectrum of the standard Laplacian.

4.1 Spectral decimation function

We begin by recalling the definition of the Vicsek set, VS. It is a p.c.f. self-similar set,

which is constructed from the 1/3-similitudes, F1, · · · , F5: R2 → R2 with

F1(x) =
x

3
, F2(x) =

x

3
+

2

3
(1, 0), F3(x) =

x

3
+

2

3
(1, 1),

F4(x) =
x

3
+

2

3
(0, 1), F5(x) =

x

3
+

2

3
(1/2, 1/2).

43
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The Vicsek set VS is the unique compact set satisfying

VS =
5⋃

s=1

Fs(VS).

It is easy to see that both the critical set C and the post critical set P are finite (see

Example 5.15 in [3]).

The Hausdorff dimension of the Vicsek set is log 5
log 3

. Each similitude, Fi, has a unique

fixed point pi, namely, p1 = (0, 0), p2 = (1, 0), p3 = (1, 1), p4 = (0, 1), p5 = (1/2, 1/2).

Moreover, the set of boundary points, V0, can be proved to be {p1, p2, p3, p4}. The set of

m step vertices, Vm, is defined as
⋃

w∈Wm
Fw(V0) for all m ∈ N. Each Vm is a subset of

VS and V∗ :=
⋃∞

m=1 Vm is dense in VS, so we can use the sequence (Vm)m∈N as a set of

increasingly refined “grids” to approximate VS.

We now define the n-branch Vicsek set, VSn, with the same four boundary points

p1, p2, p3, and p4, but with n squares in each of the four directions. See the following

figure for the first step graph of VS3.
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With this notation, VS = VS2. Let N = 4n−3 and λ = 1
2n−1

. We have N λ-similitudes

F1, · · · , FN : R2 → R2. We define V0, Vm = Vm(n), and V∗ = V∗(n) as in the Vicsek set

with 5 replaced by N . In particular, we let

V1 \ V0 = {q1, q2, · · · , q12(n−1)}

denote the set of vertices in V1 \ V0. The n-branch Vicsek set VSn is the unique compact

fixed point of
⋃N

s=1 Fs. It is also a p.c.f. self-similar fractal (see [26]) with Hausdorff

dimension log N
log λ

.

In this chapter we will derive a formula for the spectral decimation function for the

standard Laplacian with Dirichlet boundary condition on the n-branch Vicsek set VSn.

To be precise, we will prove the following theorem.

Theorem 4.1 Define

fn(λ) := Tn(3λ− 1)− 3Tn−1(3λ− 1), (4.1.1)

gn(λ) := Un−1(3λ− 1)− Un−2(3λ− 1), (4.1.2)

hn(λ) := Un−1(3λ− 1)− 3Un−2(3λ− 1), (4.1.3)

ln(λ) := Un−1(3λ− 1) + Un−2(3λ− 1). (4.1.4)

where Tn and Un are Chebyshev polynomials of the first and the second kind defined by the

same recurrence relation

Pn+1(x) = 2xPn(x)− Pn−1(x), (4.1.5)

with initial conditions T0(x) = 1, T1(x) = x and U0(x) = 1, U1(x) = 2x. Then the spectral

decimation function R is

R(λ) =
λ−KT (λ)

KD(λ)
= λgn(λ)hn(λ) (4.1.6)

and

3R(λ)− 4 = fn(λ)ln(λ), (4.1.7)

Moreover, the forbidden eigenvalues are 4/3, and zeros of fn and gn. (See the Appendix

for background about Chebyshev polynomials.)
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The proof of this theorem will require a number of preliminary results.

We first establish some useful properties of the functions related to the spectral deci-

mation function of the general Vicsek set which will be used in the proof of Theorem 4.1

and in applying the gap theorem.

We first fix n. Denote y = 3λ−1. Then the functions fn, gn, hn, and ln can be rewritten

as

fn(λ) = Tn(y)− 3Tn−1(y) (4.1.8)

gn(λ) = Un−1(y)− Un−2(y) (4.1.9)

hn(λ) = Un−1(y)− 3Un−2(y) (4.1.10)

ln(λ) = Un−1(y) + Un−2(y) (4.1.11)

We will use αi, βi, γi and ξi to represent roots of fn, gn, ln and hn respectively. First,

let us find the explicit expressions for βi and γi. If we let y = 3λ − 1 = cos θ, then using

the definition for gn and the subtraction formula for sine functions, we have

gn(λ) = Un−1(cos θ)− Un−2(cos θ)

=
sin nθ − sin(n− 1)θ

sin θ

=
cos 2n−1

2
θ

cos θ
2

Hence gn(λ) = 0 would imply that 2n−1
2

θ = kπ− π
2

or θ = 2k−1
2n−1

π, where k = 1, 2, · · · , n−1.

Since deg(gn) = n − 1, these are all the roots of gn. If we order the roots of gn such that

β1 < β2 < · · · < βn−1, then we would have

βi =
1 + cos 2(n−i)−1

2n−1
π

3

for i = 1, 2, · · · , n− 1. Similarly, we can prove that γi, the roots of ln, has the expression

γi =
1 + cos 2(n−i)π

2n−1

3
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with i = 1, 2, · · · , n− 1 and these are all the roots of ln. Clearly, βi and γi are positive

and less than 2/3. Moreover, we have the following three facts about the distributions of

αi, βi, γi and ξi.

Proposition 4.2 (a) The function fn has exactly n real roots α1, α2, · · · , αn and if we

naturally order them, then αi and βi are alternating and

0 < α1 < β1 < α2 < · · · < αn−1 < βn−1 < 2/3 < αn < 1 (4.1.12)

(b) If we naturally order all the n−1 roots γ1, · · · , γn−1 of the function ln, then α1, · · · , αn

and γ1, · · · , γn−1 are alternating and

0 < γ1 < α1 < γ2 < · · · < γn−1 < αn−1 < 2/3 < αn < 1. (4.1.13)

(c) The function hn has exactly n− 1 roots ξ1, · · · , ξn−1 and if we naturally order them,

then β1, · · · , βn−1 and ξ1, · · · , ξn−1 are alternating and

0 < β1 < ξ1 < β2 < · · · < ξn−2 < βn−1 < 2/3 < ξn−1 < 1. (4.1.14)

Proof. Note that to show (a), it suffices to show the following:

(i) For all 1 ≤ i ≤ n − 2, fn(βn−i) is positive if i is even and it is negative when i is

odd, so there exists at least one root of fn between βi and βi+1. This will give us at least

n− 2 roots of fn.

(ii) fn(0)fn(β1) < 0, so there exists at least one root between 0 and β1.

(iii) fn(2/3)fn(1) < 0, so there exists at least one root between 2/3 and 1.

In total, (i), (ii) and (iii) account for n roots of fn, which is exactly the degree of fn.

Hence we have found all the roots of fn. Moreover, if we can show that (i), (ii) and (iii)

are all true, then clearly they are distributed as we described in (a).
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To show (i), we note that for 1 ≤ i ≤ n− 2,

fn(βn−i) = cos n
(2i− 1)π

2n− 1
− 3 cos(n− 1)

(2i− 1)π

2n− 1

= cos[(i− 1/2)π +
(i− 1/2)π

2n− 1
]− 3 cos[(i− 1/2)π − (i− 1/2)π

2n− 1
]

=

{
4 sin (i−1/2)π

2n−1
, if i is even,

−4 sin (i−1/2)π
2n−1

, if i is odd.

Hence (i) is proved.

For (ii), we note that

fn(0) = Tn(−1)− 3Tn−1(−1)

= cos nπ − 3 cos(n− 1)π

= 4(−1)n

and by the same argument as in the proof of (i), we can prove that

fn(β1) =

{
4 sin (n−3/2)π

2n−1
, if i is even,

−4 sin (n−3/2)π
2n−1

, if i is odd.

It follows that the product fn(0)fn(β1) is always negative as desired.

By the equality fn(1) = Tn(2)− 3Tn−1(2) and the recursive formula for the Chebyshev

polynomials, we know that

fn(1) = Tn−1(2)− Tn−2(2).

Hence fn(1) is positive as Tn(x) is increasing with n when x > 1. Direct evaluation gives

fn(2/3) = Tn(1)− 3Tn−1(1) = −2 and (iii) is proved.

Both (b) and (c) can be proved in a similar fashion. To show (b), it suffices to show

that

fn(γn−i) =

{
−2 cos iπ

2n−1
, if i is even,

2 cos iπ
2n−1

, if i is odd.
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To show (c), we note that

hn(βn−i) =

{
2 cot (i−1/2)π

2n−1
, if i is even,

−2 cot (i−1/2)π
2n−1

, if i is odd.

Hence hn(βn−i)hn(βn−i−1) is always negative. Since Un−1(1) = n, we know that hn(2/3) =

Un−1(1) − 3Un−2(1) = −2n + 3 < 0 for all n ≥ 2. On the other hand, using the fact that

the Chebyshev polynomials Un(x) are increasing in n for x ≥ 1 and their recursive formula,

we know that

Un−1(2)− 3Un−2(2) = 2 · 2Un−2(2)− Un−3(2)− 3Un−2(2)

= Un−2(2)− Un−3(2)

is always positive and so the product hn(2/3)hn(1) is always negative as we expected.

¤

We continue to use D to denote the Laplacian matrix on the complete graph G0 =

(V0, E0), where E0 denotes the set of edges, and let H1 = H1(n) be the matrices repre-

senting the standard graph Laplacians on V1 = V1(n). Hence

D =




−3 1 1 1

1 −3 1 1

1 1 −3 1

1 1 1 −3


 .

We decompose H1 as usual

H1 =

(
T J t

J X

)
,

where T is a diagonal matrix with

Ti,i = −( the number of neighboring points of pi)

and J is the incidence matrix of V0 and V1 \ V0; i.e., if qi is a neighboring point of pj, then

Ji,j = 1, otherwise Ji,j = 0. Hence there are 3 entries equal to 1 on each column of J and
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the rest are 0. The matrix X is a square matrix with Xi,i= -(the number of neighboring

points of qi). Moreover, if qi is a neighboring point of qj, then Xi,j = 1; otherwise, Xi,j = 0.

Define M to be the diagonal matrix with Mi,i = −Xi,i.

It is easy to see that all diagonal entries of T − J t(X + λM)J are identical and all the

off diagonal entries are the same. Consequently, the standard Laplacian on the n-branch

Vicsek set has a strong harmonic structure and so by Theorem 2.13, it admits spectral

decimation.

Recall that the spectral decimation function is given by

Rn(λ) = R(λ) =
λ−KT (λ)

KD(λ)
,

where KD and KT are defined to be

T − J t(X + λM)−1J = KD(λ)D + KT (λ)T.

We let ν(i) represent the i-th column of J . We can also think ν(i) as a function defined

on V1 \ V0, whose values are only 0 and 1.

It follows that

KD(λ) = (KD ·D + KT · T )2,1

= (T − J t(X + λM)−1J)2,1

= − < ν(2), u >,

where u = (X + λM)−1ν(1). Here we remark that we can choose any non-diagonal entries

to get the same result.

So now the question is how to find u = (X + λM)−1ν(1). We shall solve the equation

(X + λM)u = ν(1) to determine u, but first let us solve the homogeneous equation (X +

λM)u = 0 to find the expression of det(X + λM) and hence a subset of the forbidden

eigenvalues. (Recall that forbidden eigenvalues are those λ’s such that det(X + λM) = 0

and KD(λ) = 0. We shall later show that in the case of VSn, the roots of det(X +λM) = 0

are actually all of the forbidden eigenvalues.)
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Notations: For any set V , we continue to denote all linear functions on V as `(V ) and

all linear functions on V with zero boundary conditions `0(V ). In the case of VSn, the

values of u ∈ `0(V1) on the j-th branch of VSn (where j = 1, 2, 3 or 4) are written as

u(xi, j) := ui,j,

u(y′i, j) := u′i,j,

u(y′′i , j) := u′′i,j,

where u(xi, j) is the function value of u on the i-th vertex on the diagonal (counting from

the outside to the inside) of the j-th branch (1 ≤ i ≤ n), u(y′i, j) is the value of u on the

i-th vertex below the diagonal of the j-th branch (1 ≤ i ≤ n− 1), and u(y′′i , j) is the value

of u on the i-th vertex above the diagonal of the j-th branch (1 ≤ i ≤ n− 1).

Recall that the normalized discrete Laplacian ∆̂m on the m-step graph is defined as

∆̂mu(x) =
1

deg x

∑
y∼mx

(u(y)− u(x)),

for u ∈ `(Vm \ V0), where y ∼m x means that x and y are neighboring points in the m-step

graph. Therefore, the Dirichlet eigenvalue problem ∆̂1u = −λu (i.e. (X + λM)u = 0) is

given explicitly by the following system:





u1,j = 0,

ui,j + (3λ− 3)u′i,j + u′′i,j + ui+1,j = 0,

ui,j + u′i,j + (3λ− 3)u′′i,j + ui+1,j = 0,

ui−1,j + u′i−1,j + u′′i−1,j + (6λ− 6)ui,j + u′i,j
+u′′i,j + ui+1,j = 0,

un−1,j + u′n−1,j + u′′n−1,j + (6λ− 6)un,j +
4∑

k=1,k 6=j

un,k = 0,

(4.1.15)

where 1 ≤ j ≤ 4, the second and the third equations hold for 1 ≤ i ≤ n−1, and the fourth

equation holds for 2 ≤ i ≤ n− 1.



52

To simplify system (4.1.15), we introduce new variables

u+
i,j :=

u′i,j + u′′i,j
2

,

u−i,j :=
u′i,j − u′′i,j

2
.

Then we add and subtract the second and the third equations in (4.1.15) and rewrite the

last two equations to get the following system.




u1,j = 0,

(3λ− 4)u−i,j = 0,

ui,j + (3λ− 2)u+
i,j + ui+1,j = 0,

ui−1,j + 2u+
i−1,j + (6λ− 6)ui,j + 2u+

i,j + ui+1,j = 0,

un−1,j + 2u+
n−1,j + (6λ− 7)un,j +

4∑

k=1

un,k = 0,

(4.1.16)

where 1 ≤ i ≤ n− 1 for the second and the third equations, and the fourth equation holds

for 2 ≤ i ≤ n − 1. Take i to be i − 1 and i respectively in the third equation above and

add them together, then subtract the fourth equation. We obtain a new equation

(3λ− 4)[u+
i−1,j − 2ui,j + u+

i,j] = 0.

Similarly, we can use the last equation in (4.1.16) to subtract the third equation for i = n−1

to obtain another equation

(3λ− 4)[−u+
n−1,j + 2un,j] +

4∑

k−1

un,k = 0.

Thus we have the following system equivalent to system (4.1.15)





u1,j = 0,

(3λ− 4)u−i,j = 0, (1 ≤ i ≤ n− 1),

ui,j + (3λ− 2)u+
i,j + ui+1,j = 0, (1 ≤ i ≤ n− 1),

(3λ− 4)[u+
i−1,j − 2ui,j + u+

i,j] = 0, (2 ≤ i ≤ n− 1),

(3λ− 4)[−u+
n−1,j + 2un,j] +

∑4
k−1 un,k = 0,

(4.1.17)
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where 1 ≤ j ≤ 4.

We shall solve system (4.1.17) under the assumption λ 6= 4/3. We will soon see that

this condition forces the four branches of the eigenfunction u to be mutually proportional.

Moreover, there is a recursive formula for computing each non-zero branch of u; such a

formula is valid for all eigenvalues λ 6= 4/3. These facts will follow from the first (boundary

condition), the third and the fourth equations in (4.1.17).

We make an easy remark before we move on: by the second equation in (4.1.17) and

the assumption λ 6= 4/3, we see that u−i,j = 0, or equivalently: u′i,j = u′′i,j(= u+
i,j). Due again

to λ 6= 4/3, we have that the first four equations are equivalent to the following system:





u1,j = 0,

u−i,j = 0,

ui,j + (3λ− 2)u+
i,j + ui+1,j = 0 (1 ≤ i ≤ n− 1),

u+
i−1,j − 2ui,j + u+

i,j = 0.

(4.1.18)

Let us fix j and write out the above when n = 4:





u1,j = 0,

u1,j + (3λ− 2)u+
1,j + u2,j = 0,

u+
1,j − 2u2,j + u+

2,j = 0,

u2,j + (3λ− 2)u+
2,j + u3,j = 0,

u+
2,j − 2u3,j + u+

3,j = 0,

u3,j + (3λ− 2)u+
3,j + u4,j = 0.

(4.1.19)

Reading from top to bottom, we see that all occurring variables can eventually be expressed

as a product of some polynomial in λ and u+
1,j. This is the same as saying that the space

of solutions to the above system (4.1.19) is 1-dimensional. So as j varies from 1 to 4, it

follows that the four branches of u are indeed mutually proportional.
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We shall ultimately obtain the polynomials fn(λ) and gn(λ) from (4.1.18) and the last

equation in (4.1.17). However, it seems to be helpful to solve (4.1.19) first, even though

we may not be interested in the solution itself.

Recall that all variables are of the form u+
1,j times a polynomial in λ. Hence we may

write: 



ui,j := (−1)i−1pi−1(λ) · u+
1,j 1 ≤ i ≤ n,

u+
i,j := (−1)i−1qi−1(λ) · u+

1,j 1 ≤ i ≤ n− 1
(4.1.20)

for some polynomials pi and qi, which do not depend on j. (Note that we index pi and qi

so that deg pi = deg qi = i.) We begin with p0(λ) = 0 and q0(λ) = 1, which follow from

u1 = 0 · u+
1 and u+

1 = 1 · u+
1 . From (4.1.18), we have

{
ui+1 = −ui − (3λ− 2)u+

i ,

u+
i+1 = 2ui+1 − u+

i .
(4.1.21)

We derive the linear recurrence relations{
pi(λ) = pi−1(λ) + (3λ− 2)qi−1(λ)

qi(λ) = 2pi(λ) + qi−1(λ)
(4.1.22)

with initial conditions p0 = 0, q0 = 1.

Lemma 4.3 pi and qi have the expressions:
{

pi(λ) = (3λ− 2)Ui−1(3λ− 1),

qi(λ) = Ui(3λ− 1)− Ui−1(3λ− 1) = gi+1(λ).

Proof. It is a straightforward induction.

¤

Finally we combine the last equation in (4.1.17) with the solutions on the four branches

(4.1.20) to determine exactly how the values of u on the four branches are related. Put

(4.1.20) into (4.1.17) to get

(3λ− 4)[−(−1)n−2qn−2(λ)u+
1,j + 2(−1)n−1pn−1(λ)u+

1,j] +
4∑

k=1

(−1)n−1pn−1(λ)u+
1,k = 0.
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Hence

(3λ− 4)(2pn−1(λ) + qn−2(λ))u+
1,j + pn−1(λ)

4∑

k=1

u+
1,k = 0.

By our recurrence relation (4.1.22), we have the four equations

(3λ− 4)qn−1(λ)u+
1,j + pn−1(λ)

4∑

k=1

u+
1,k = 0, (1 ≤ j ≤ 4). (4.1.23)

Those equations are equivalent to the following linear combinations:

• For each j = 2, 3, or 4, it is easy to see that

(3λ− 4)qn−1(λ)(u+
1,1 − u+

1,j) = 0.

As λ 6= 4/3, this simplifies to

qn−1(λ)(u+
1,1 − u+

1,j) = 0, j = 2, 3, 4. (4.1.24)

• On the other hand, summing all four equations in (4.1.23), we have

[(3λ− 4)qn−1(λ) + 4pn−1(λ)]
4∑

k=4

u+
1,k = 0. (4.1.25)

Recall that

qn−1 = gn(λ) = Un−1(3λ− 1)− Un−2(3λ− 1)

and we define

f ∗n(λ) := (3λ− 4)qn−1(λ) + 4pn−1(λ).

(We shall prove that indeed f ∗n = fn in the next lemma). Now (4.1.24) and (4.1.25) are

equivalent to





gn(λ)(u+
1,1 − u+

1,2) = 0,

gn(λ)(u+
1,1 − u+

1,3) = 0,

gn(λ)(u+
1,1 − u+

1,4) = 0,

f ∗n(λ)(
∑4

k=1 u+
1,k) = 0.

(4.1.26)
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Note that if u+
1,j=0 for j = 1, · · · , 4, then substituting this back into the second equation

in (4.1.19) (the case when j = 4, or (4.1.18) in general), we can see that u2,j = 0. Then

the third equation gives u+
2,j = 0 and so on. Hence we obtain that

u = 0 if u+
1,1 = u+

1,2 = u+
1,3 = u+

1,4 = 0,

(4.1.26) implies that if λ 6= 4/3 is an eigenvalue, then f ∗n(λ) = 0 or gn(λ) = 0.

Lemma 4.4 f ∗n has the expression:

f ∗n(λ) = Tn(3λ− 1)− 3Tn−1(3λ− 1) = fn(λ). (4.1.27)

Proof. By the definitions of pn and qn and Lemma 4.3, we have

f ∗n(λ) = (3λ− 4)qn−1(λ) + 4pn−1(λ)

= (y − 3)Un−1(y) + (3y − 1)Un−2(y),

where y = 3λ−1. It is enough to show the above equality holds for y = cos θ. Let y = cos θ

and then the right-hand side of the last equality becomes

(cos θ − 3)
sin nθ

sin θ
+ (3 cos θ − 1)

sin(n− 1)θ

sin θ
= cos nθ − 3 cos(n− 1)θ

= Tn(y)− 3Tn−1(y)

¤

Using this Lemma, we can change f ∗n back to fn in (4.1.26). Hence we have the fol-

lowing two cases about the λ-eigenspace of−∆̂1, or equivalently, solutions to (X+λM) = 0.

Case 1: Assume λ 6= 4/3 is a root of fn(λ). Then by (4.1.12), gn(λ) 6= 0. By (4.1.26),

we have u+
1,1 = u+

1,2 = u+
1,3 = u+

1,4. Hence the values of u are completely symmetric and so

the λ-eigenspace is 1-dimensional. As the first three equations in (4.1.26) suggest, we can

construct an eigenfunction in the following way. We first determine it values in one of the
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four directions and then let the values in the other three directions be the same as in that

direction.

Case 2: Assume λ 6= 4/3 is a root of gn(λ). Then fn(λ) 6= 0 and (4.1.26) says that∑4
k=1 u+

1,k = 0. This implies that the λ-eigenspace is 3-dimensional. From the last equa-

tion in (4.1.26), we know that a basis of three eigenfunctions in the eigenspace can be

chosen as follows. We let u+
1,1 = 1, u+

1,3 = −1, and u+
1,2 = u+

1,4 = 0. Then substituting those

values of u+
1,j back into (4.1.20), we obtain an eigenfunction for −∆̂1 corresponding λ, a

root of gn. It is easy to see that that this eigenfunction has opposite values on the main

diagonal (we call it antisymmetric) and zeros on the sub-diagonal. Later we will use this

kind of eigenfunction to build three eigenfunctions for each discrete Laplacian −∆̂m. Two

other eigenfunctions of −∆̂1 can be obtained similarly by letting u+
1,1 = 1, u+

1,2 = −1 (or

u+
1,4 = −1 resp.), and u+

1,3 = u+
1,4( or u+

1,2 resp.) = 0.

The above result also shows that roots of fn and g3
n are zeros of det(X + λM). Since

from (4.1.18) on, we were solving the Dirichlet eigenvalue problem (X + λM)u = 0 under

the assumption λ 6= 4/3, the only other zero of det(X + λ) must be 4/3.

Note that det(X + λM), fn and gn are all polynomials. It follows that

det(X + λM) = cfn(λ)g3
n(λ)(3λ− 4)8n−9, (4.1.28)

for some non-zero constant c.

Next we shall solve (X + λM)u = v by choosing a special v. Let u ∈ `(V1 \ V0). Recall

our change of coordinates

u+
i,j =

u′i,j + u′′i,j
2

,

u−i,j =
u′i,j − u′′i,j

2
.

We perform a kind of “averaging” through the four branches by introducing another change
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of coordinates:





si,1 = ui,1 + ui,2 + ui,3 + ui,4,

si,2 = ui,1 − ui,2,

si,3 = ui,1 − ui,3,

si,4 = ui,1 − ui,4.

We can also do the same operations for s+
i,j. Then the inverse coordinate change is





ui,1 = 1/4(si,1 + si,2 + si,3 + si,4),

ui,2 = 1/4(si,1 − 3si,2 + si,3 + si,4),

ui,3 = 1/4(si,1 + si,2 − 3si,3 + si,4),

ui,4 = 1/4(si,1 + si,2 + si,3 − 3si,4),

and similarly for u+
i,j (1 ≤ j ≤ 4). For any function v ∈ `(V1 \ V0), we can write

j = 1 : ti,1 = vi,1 + vi,2 + vi,3 + vi,4, t+i,1 = v+
i,1 + v+

i,2 + v+
i,3 + v+

i,4,

j = 2, 3, 4 : ti,j = vi,1 − vi,j, t+i,j = v+
i,1 − v+

1,j.

We shall choose a special v and ti,j and t+i,j will then be the new changed variables. For

example, if v = v(1) is the function on V1 \ V0 corresponding to the first column of J ,

i.e. v′1,1 = v′′1,1 = v2,1 = 1 and the remaining entries are 0, then for all 1 ≤ j ≤ 4,

t1,j = 0, t+1,j = 1, t2,j = 1, t+i,j = 0 (i ≥ 2), ti,j = 0 (i > 2), and v−i,j = 0 (1 ≤ i ≤ n− 1).

Next we shall solve the equation (X + λM)u = v for v = v(1) and u ∈ `(V1 \ V0).

Performing the same actions as we did in (4.1.16), we can see that this is equivalent to the

following system:





ui,j + (3λ− 2)u+
i,j + ui+1,j = v+

i,j (1 ≤ i ≤ n− 1),

ui−1,j + 2u+
i−1,j + (6λ− 6)ui,j + 2u+

i,j + ui+1,j = vi,j

(2 ≤ i ≤ n− 1),

un−1,j + 2u+
n−1,j + (6λ− 7)un,j +

∑4
k=1 un,k = vn,j,

(3λ− 4)u−i,j = v−i,j (1 ≤ i ≤ n− 1),

By summing together all four equations when j = 1 and subtracting two equations when
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j 6= 1, and the change of coordinates, we see that it is also equivalent to




si,j + (3λ− 2)s+
i,j + si+1,j = t+i,j (1 ≤ i ≤ n− 1),

si−1,j + 2s+
i−1,j + (6λ− 6)si,j + 2s+

i,j + si+1,j = ti,j

(2 ≤ i ≤ n− 1),

sn−1,j + 2s+
n−1,j + (6λ− 7 + 4δ1,j)sn,j = tn,j,

(3λ− 4)u−i,j = v−i,j (1 ≤ i ≤ n− 1)

Under the new system of coordinates, the matrix A representing X +λM is the direct sum

of the following five blocks:

A0 =




3λ− 4

3λ− 4
. . .

3λ− 4




4(n−1)×4(n−1)

,

a diagonal matrix of size 4(n− 1)× 4(n− 1) which corresponds to the last equation in the

above system, and for j = 1, 2, 3, and 4,

Aj =




3λ− 2 1 0 0 0 0 0 0 0 0

2 6λ− 6 2 1 0 0 0 0 0 0

0 1 3λ− 2 1 0 0 0 0 0 0

0 1 2 6λ− 6 2 1 0 0 0 0
. . . . . . . . .

0 0 0 0 0 · · · 0 1 3λ− 2 1

0 0 0 0 0 · · · 0 1 2 6λ− 7 + 4δ1,j




(2n−2)×(2n−2)

.

The augmented matrix for the equation (X + λM)u = v is

[Aj|v] =




3λ− 2 1 0 0 0 0 0 0 0 0 t+1,j

2 6λ− 6 2 1 0 0 0 0 0 0 t2,j

0 1 3λ− 2 1 0 0 0 0 0 0 t+2,j

0 1 2 6λ− 6 2 1 0 0 0 0 t3,j

. . . . . . . . .

0 0 0 0 0 · · · 0 1 3λ− 2 1 t+n−1,j

0 0 0 0 0 · · · 0 1 2 6λ− 7 + 4δ1,j tn,j




,
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which can be row-reduced into the form



3λ− 2 1 0 · · · 0 0 0 t+1,j

3λ− 4 −2(3λ− 4) 3λ− 4 · · · 0 0 0 t+1,j − t2,j + t+2,j

0 1 3λ− 2 · · · 0 0 0 t+2,j

0 0 3λ− 4 · · · 0 0 0 t+2,j − t3,j + t+3,j

. . . . . .
...

0 0 0 · · · 1 3λ− 2 1 t+n−1,j

0 0 0 · · · 0 3λ− 4 −2(3λ− 4)− 4δ1,j t+n−1,j − tn,j




,

and

[A0|v] =




3λ− 4 v−1,j

3λ− 4 v−2,j

. . .
...

3λ− 4 v−n−1,j




.

In the special case when v is the function corresponding to the first column of J , our linear

system becomes




3λ− 2 1 0 · · · 0 0 0

3λ− 4 −2(3λ− 4) 3λ− 4 · · · 0 0 0

0 1 3λ− 2 · · · 0 0 0

0 0 3λ− 4 · · · 0 0 0
. . . . . .

0 0 0 · · · 1 3λ− 2 1

0 0 0 · · · 0 3λ− 4 −2(3λ− 4)− 4δ1,j







s+
1,j

s2,j

s+
2,j

s3,j

...

s+
n−1,j

sn,j




=




1

0

0

0
...

0

0




and



3λ− 4

3λ− 4
. . .

3λ− 4







u−1,j

u−2,j
...

u−n−1,j




=




0

0

0

0


 ,
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which implies that when λ 6= 4/3, u−i,j = 0 for all i, j. By clearing all unnecessary factors

3λ− 4, whenever possible, we have the following system





(3λ− 2)s+
1,j + s2,j = 1

s+
1,j − 2s2,j + s+

2,j = 0

s2,j + (3λ− 2)s+
2,j + s3,j = 0

. . . . . . . . .

sn−1,j + (3λ− 2)s+
n−1,j + sn,j = 0

(3λ− 4)s+
n−1,j − [2(3λ− 4) + 4δ1,j]sn,j = 0

(4.1.29)

The first 2n−3 equations allow us to write all unknowns si,j and s+
i,j (i > 1 and 1 ≤ j ≤ 4)

in terms of s+
1,j as

s+
i,j = (−1)i−1[ai(λ)s+

1,j + bi(λ)],

si,j = (−1)i−1[ci(λ)s+
1,j + di(λ)],

for some polynomials ai, bi, ci and di.

Lemma 4.5 If (X +λM)u = v(1) and si,j and si,j are defined as above, then for i > 1 and

1 ≤ j ≤ 4,

s+
i,j = (−1)i−1[(Ui−1(y)− Ui−2(y))s+

1,j − 2Ui−2(y)], (4.1.30)

si,j = (−1)i−1[(y − 1)Ui−2(y)s+
1,j − (Ui−2(y)− Ui−3(y))], (4.1.31)

where y = 3λ− 1. For i = 1, we have

s+
1,1 =

(2y − 2)Un−2(y)− 4Un−3(y)

(2y2 − 3y − 1)Un−2(y)− (y − 3)Un−3(y)
(4.1.32)

s+
1,j =

2Un−2

Un−1 − Un−2

(2 ≤ j ≤ 4). (4.1.33)

Proof. We rewrite the first equation in 4.1.29 as

(−1) + (3λ− 2)s+
1,j + s2,j = 0
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and we use the fictitious unknown ŝ1,j = −1, so that we achieve a more symmetric equation

ŝ1,j + (3λ− 2)s+
1,j + s2,j = 0.

This, together with the other equations

{
si,j + (3λ− 2)s+

i,j + si+1,j = 0

s+
i,j − 2si+1,j + s+

i+1,j = 0

imply that ai, bi, ci, and di satisfy the recurrence relations





ai+1 = (6λ− 3)ai + 2ci,

bi+1 = (6λ− 3)bi + 2di,

ci+1 = (3λ− 2)ai + ci,

di+1 = (3λ− 2)bi + di,

(4.1.34)

with the initial conditions a1 = 1, b1 = 0, c1 = 0, d1 = −1. In terms of the matrices

A =

[
6λ− 3 2

3λ− 2 1

]
=

[
2y − 1 2

y − 1 1

]

and

Xi =

[
ai bi

ci di

]
,

(4.1.34) can be written as Xi+1 = AXi with

X1 =

[
1 0

0 −1

]

Then the unique solution to (4.1.34) is clearly given by Xi = Ai−1X1. Hence our proof will

be finished once we have proved that

Ak =

[
Uk(y)− Uk−1(y) 2Uk−1(y)

(y − 1)Uk−1(y) Uk−1(y)− Uk−2(y)

]



63

To prove this claim, we use induction on k ≥ 1. When k = 1, note that U0 = 1 and

U1 = 2y, so recursive formulas for Chebyshev polynomials gives us U−1 = 0. Hence

[
U1 − U0 2U0

(y − 1)U0 U0 − U−1

]
=

[
2y − 1 2

y − 1 1

]
= A.

Next we assume that our claim is true for k. Hence by the induction assumption, we have

Ak+1 =

[
2y − 1 2

y − 1 1

][
Uk − Uk−1 2Uk−1

(y − 1)Uk−1 Uk−1 − Uk−2

]

=

[
(2yUk − Uk−1)− Uk 2(2yUk−1 − Uk−2)

(y − 1)Uk (2yUk−1 − Uk−2)− Uk−1

]

=

[
Uk+1 − Uk 2Uk

(y − 1)Uk Uk − Uk−1

]

Here we have used the recursive identity Uk+1 = 2yUk − Uk−1 for Chebyshev polynomials

in the last equality. Hence the claim is proved.

Having expressed all our unknowns in terms of the single variable s+
1,j, we can solve for

s+
1,j by making use of the very last equation:

(3λ− 4)s+
n−1,j − [2(3λ− 4) + 4δ1,j]sn,j = 0.

We first solve for s+
1,j when j = 2, 3, 4. Since δ1,j = 0, the above equation simplifies to

s+
n−1,j = 2sn,j. Substituting the expressions for s+

n−1,j and sn,j from (4.1.30) and (4.1.31),

and using the identity Uk+1 = 2yUk − Uk−1, we have that for j = 2, 3, and 4,

s+
1,j =

2Un−2

Un−1 − Un−2

.

Next we solve for s+
1,1, starting from (6λ − 4)sn,1 − (3λ − 4)s+

n−1,1 = 0 or (2y − 2)sn,1 −
(y − 3)s+

n−1,1 = 0 as y = 3λ− 1. Again, using what we have shown in the first part of the

lemma, we can find that

s+
1,1 =

(2y − 2)Un−2 − 4Un−3

(2y2 − 3y − 1)Un−2 − (y − 3)Un−3

.
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Moreover, we can further simplify the denominator by the identity Tn = yUn−1 − Un−2 so

that

s+
1,1 =

(2y − 2)Un−2 − 4Un−3

Tn − 3Tn−1

=
2(Tn−1 − Un−2 − Un−3)

Tn − 3Tn−1

¤

Remark 4.6 Notice that our formula does not hold for the boundary variables s1,j = 0

(the formula would give s1,1 = U−2(y), which is -1 if we use the recursive formulas for

Chebyshev polynomials). But this is not a major issue as we only consider functions on

V1 \ V0 and so boundary values are irrelevant.

Before we compute KD and λ−KT , we derive some formulas for future use.

Lemma 4.7 The following three formulas can be obtained from properties of Chebyshev

polynomials.

(i) 1 + s+
1,1 = (y + 1)

Un−1(y)− 3Un−2(y)

Tn(y)− 3Tn−1(y)
. (4.1.35)

(ii)

∣∣∣∣∣
Tn−1 − Un−2 − Un−3 Un−2

Tn − 3Tn−1 Un−1 − Un−2

∣∣∣∣∣ = 2, for any n ≥ 1. (4.1.36)

(iii) s+
1,1 − s+

1,2 =
4

fn(λ)gn(λ)
. (4.1.37)

Proof. To prove (4.1.35), we first substitute the expression for s+
1,1 and regroup the numer-

ator to obtain

LHS =
(Tn − 3Tn−1) + 2(Tn−1 − Un−2 − Un−3)

Tn − 3Tn−1

=
(Tn + Un−2)− (Tn−1 + Un−3)− 3Un−2 − Un−3

Tn − 3Tn−1

.

Then use the formula

Tn = yUn−1 − Un−2 (4.1.38)



65

and the recursive formula to simplify the right-hand side of the last equation to

yUn−1 − yUn−2 − 3Un−2 − (2yUn−2 − Un−1)

Tn − 3Tn−1

Simplifying this gives us
(y + 1)Un−1 − 3(y + 1)Un−2

Tn − 3Tn−1

and the desired result follows.

To show (4.1.36), we first do the column operation C1 + y × C2 → C1 to obtain

LHS =

∣∣∣∣∣
Tn−1 − Un−2 + (yUn−2 − Un−3) Un−2

(Tn + yUn−1)− (Tn−1 + yUn−2)− 2Tn−1 Un−1 − Un−2

∣∣∣∣∣ .

Then by formula (4.1.38) and the formula

Tn = yUn − yUn−1, (4.1.39)

we can simplify this determinant to
∣∣∣∣∣

2Tn−1 − Un−2 Un−2

(Un − Un−1)− 2Tn−1 Un−1 − Un−2

∣∣∣∣∣ .

A row operation and column operation and the identity 2Tn = Un − Un−2 give
∣∣∣∣∣

2Tn−1 − Un−2 Un−2

(Un − Un−1)− Un−2 Un−1

∣∣∣∣∣ =

∣∣∣∣∣
2Tn−1 Un−2

Un − Un−2 Un−1

∣∣∣∣∣

= 2

∣∣∣∣∣
Tn−1 Un−2

Tn Un−1

∣∣∣∣∣ .

Furthermore, the recursive formula gives
∣∣∣∣∣

Tn−1 Un−2

Tn Un−1

∣∣∣∣∣ =

∣∣∣∣∣
Tn−1 Un−2

2yTn−1 − Tn−2 2yUn−2 − Un−3

∣∣∣∣∣

= 2y

∣∣∣∣∣
Tn−1 Un−2

Tn−1 Un−2

∣∣∣∣∣−
∣∣∣∣∣

Tn−1 Un−2

Tn−2 Un−3

∣∣∣∣∣

=

∣∣∣∣∣
Tn−2 Un−3

Tn−1 Un−2

∣∣∣∣∣ ,
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Since this is true for all n, we know that this determinant will eventually be

∣∣∣∣∣
T0 U−1

T1 U0

∣∣∣∣∣

Substituting the expressions U−1 = 0, U0 = 1, T0 = 1 and T1(y) = y, we see that the

above determinant is equal to 1.

Formula (4.1.37) follows directly from the expressions for s+
1,j, fn, and gn, and the result

of (4.1.36).

¤

Now we are ready to prove Theorem 4.1 about the expressions of the spectral decimation

function R(λ) and 3R(λ)− 4 at the beginning of this chapter.

Proof of Theorem 4.1. First, recall that at the beginning of this chapter we mentioned

that

KD = (T − J t(X + λM)−1J)2,1

= − < ν(2), u >,

where ν(j) is the j-th column of J and u = (X + λM)−1ν(1). By the definition of ν(2), we

know that

< ν(2), u > = u
′
1,2 + u

′′
1,2 + u2,2

= 2u+
1,2 + u2,2.

By the change of coordinates, we have that

u+
1,2 = 1/4(s+

1,1 − 3s+
1,2 + s+

1,3 + s+
1,4)

= 1/4(s+
1,1 − s+

1,2),

where the last equality holds because Lemma 4.5 shows s+
1,j are the same for j = 2, 3, and
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4. The same reasoning shows that

u2,2 =
1

4
(s2,1 − 3s2,2 + s2,3 + s2,4)

=
1

4
(s2,1 − s2,2)

=
1

4
([1− (y − 1)s+

1,1]− [1− (y − 1)s+
1,2])

= −1

4
(y − 1)(s+

1,1 − s+
1,2)

Hence (4.1.37) and (iii) of Lemma 4.7 implies

KD = − < ν(2), u >

= −(2u+
1,2 + u2,2)

=
y − 3

4
(s+

1,1 − s+
1,2)

=
3λ− 4

fn(λ)gn(λ)
.

As for λ−KT (λ), we first note that since the diagonal entries of D and T are -3,

−3KD(λ)− 3KT (λ) = (KD ·D + KT · T )1,1

= (T − J tG(λ)J)1,1

= −3− < ν(1), u >,

where we recall that G(λ) = (X + λM)−1, ν(1) is the first column of J and u = G(λ)ν(1).

It follows that

3(λ−KT (λ)) = 3λ− 3 + 3KD− < ν(1), u > (4.1.40)

= 3λ− 3− 2(u+
1,1 + 3u+

1,2)− (u2,1 + 3u2,2).

Our change of variables gives that

u+
1,1 + 3u+

1,2 = s+
1,1

u2,1 + 3u2,2 = s2,1

s2,1 = 1− (3λ− 2)s+
1,1
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Substitute these back into (4.1.40) and use (4.1.35) to get

3(λ−KT ) = 3λ− 3− 2s+
1,1 − 1 + (3λ− 2)s+

1,1

= (3λ− 4) + (3λ− 4)s+
1,1

= (3λ− 4)[(y + 1)
Un−1(y)− 3Un−2(y)

Tn(y)− 3Tn−1(y)
]

= (3λ− 4) · 3λ · hn(λ)

fn(λ)
.

Thus we have shown

λ−KT = (3λ− 4) · λ · hn(λ)

fn(λ)
.

By the definition of the spectral decimation function R, we have

R(λ) =
λ−KT (λ)

KD(λ)
= λ · gn(λ) · hn(λ).

Lastly, we compute 3R(λ)− 4. Equivalently, we show

3(λ−KT (λ))− 4KD(λ) = (3λ− 4)
ln(λ)

gn(λ)
.

Note that

3(λ−KT (λ))− 4KD(λ) = 3λ− 3−KD− < ν(1), u >

= 3λ− 3+ < ν(2), u > − < ν(1), u >

= 3λ− 3 + (2u+
1,2 + u2,2)− (2u+

1,1 + u2,1)

We first regroup the terms on the right-hand side to obtain

3λ− 3− 2(u+
1,1 − u+

1,2)− (u2,1 − u2,2).

Then using our change of variables and the first equation in (4.1.29), we see that the last

expression above is equal to

3λ− 3− 2s+
1,2 − s2,2

= 3λ− 3− 2s+
1,2 − (1− (3λ− 2)s+

1,2)
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Simplifying and applying Lemma 4.5 gives us

(3λ− 4)(1 + s+
1,2)

= (3λ− 4)
Un−1(y) + Un−2(y)

Un−1(y)− Un−2(y)

= (3λ− 4)
ln(λ)

gn(λ)
.

Thus

3R(λ)− 4 =
3(λ−KT )− 4KD

KD

=

(3λ−4)ln
gn

3λ−4
fngn

= fn(λ)ln(λ).

By definition, the forbidden eigenvalues are the zeros of KD, namely 4/3, and the zeros

of det(X + λM), which are 4/3, and the zeros of fn and gn. This completes the proof of

the theorem.

¤

Remark 4.8 As far as we are aware, this is the first infinite family to be analyzed whose

spectral decimation function grows unboundedly in degree.

As a byproduct, since eigenfunctions of−∆̂1 corresponding to different eigenvalues must

be orthogonal, we can get an interesting corollary about a new property of the Chebyshev

polynomials.

Corollary 4.9 Suppose λ and µ are either different roots of fn or different roots of gn.

Then
n−1∑
i=1

(pi(λ)pi(µ) + qi−1(λ)qi−1(µ)) = 0,

where pi and qi are defined in Lemma 4.3.
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4.2 Gaps in the spectrum of the Laplacian on VSn

In this section, we shall prove that our gap theorem, Theorem 3.4 in Chapter 3, applies to

the infinite family of fractals VSn and so there exist gaps in the spectrum of the standard

Laplacian.

Proposition 4.10 There exist gaps in the spectrum of the standard Laplacian on VSn.

Proof. Let αi, βi, γi and ξi represent roots of fn, gn, ln and hn respectively as in the

previous section. By Proposition 4.2, we know that αi and βi, αi and γi, βi and ξi are all

alternating. It follows that the set of forbidden eigenvalues

F = {α1, · · · , αn, β1, · · · , βn−1, 4/3}
with α1 the smallest forbidden eigenvalue and 4/3 the largest. Also R(λ) = 0 has exactly

2n− 1 real roots 0, β1, · · · , βn−1, ξ1, · · · , ξn−1 and R(λ)− 4/3 = 0 has exactly 2n− 1

real roots α1, · · · , αn, γ1, · · · , γn−1. Hence [0, 4/3] is in the domain of every branch of

the inverse function.

As both the last root of R and R−4/3 occur before x = 1, it is clear that R−1[0, 4/3] ⊆
[0, 1], so the first condition is also satisfied for this infinite family of fractals.

Since the spectral decimation function R is a polynomial and its bottom inverse function

φ0 is increasing, the second inverse function must be decreasing and so the second condition

of the theorem is satisfied.

To check the strict convexity of φ0, we first note that the polynomial R has odd degree

d := 2n−1 ≥ 3, has positive leading coefficient, and has precisely d real zeros δ1 < · · · < δd.

By Rolle’s Theorem, we see that R′ has 2n− 2 real zeros µi such that δ1 < µ1 < δ2 < µ2 <

· · · < µd−1 < δd. The same reasoning shows that R′′ has 2n − 3 real zeros νj such that

µ1 < ν1 < µ2 < · · · < ν2n−3 < µ2n−2. In particular, µ1 < ν1. Since deg(R′) is even and

deg(R′′) is odd, we see that R′ ≥ 0 and R′′ < 0 throughout Im(φ0) = (−∞, µ1]. But the

inverse of an increasing and strictly concave function is strictly convex. Hence the third

condition is also satisfied.



71

From (4.1.13) we know that α1 is the second smallest root of R(λ) − 4/3 = 0, so

φ1(4/3) = α1. Because all other forbidden eigenvalues are greater than α1 by (4.1.12),

we have that φ1(4/3) is less than or equal to all forbidden eigenvalues and so the last

condition of the theorem holds. Therefore the gap theorem tells us that there exist gaps

in the spectrum of the Laplacian on VSn for n = 2, 3, · · · .

¤

B. Hambly and T. Kumagai have proved in [13] that the necessary heat kernel estimate

holds for the standard Laplacian on VSn. Hence we can obtain the following immediate

corollaries using the same argument by R. Strichartz.

Corollary 4.11 Let {Nm} be a sequence of integers such that
λNm+1

λNm

− 1 is bounded away

from zero. Then the partial sums of the Fourier series SNmf converge to f as m →∞ in

Lp for f ∈ Lp (1 ≤ p < ∞) and uniformly if f is continuous.

Corollary 4.12 Let 1 < p < ∞. Let

Sf(x) = (
∞∑

m=1

|Smf(x)|2)1/2,

for

Smf(x) =
Nm∑

j=Nm−1+1

cjuj(x),

where uj are either Dirichlet or Neumann eigenfunctions of the Laplacian and {Nm} is the

same sequence as in the above theorem. Then there exist constants Ap and Bp such that

Ap ‖ f ‖p≤‖ Sf ‖p≤ Bp ‖ f ‖p .



Chapter 5

Hypergraphs and Laplacians

M. Fukushima and T. Shima [10], and R. Strichartz [33] proved that when K is the Sierpin-

ski gasket, 3/2 is a Dirichlet (and Neumann) eigenvalue of the discrete Laplacian, −∆̂m, at

any step m > 1, of multiplicity 3m−3
2

. Similarly, when K = VSn, the n-branch Vicsek set,

we can prove that 4/3 is always a Dirichlet (and Neumann) eigenvalue of −∆̂m (m ≥ 1) by

constructing independent eigenfunctions. Moreover, using the same argument as in [33],

it can be shown that the multiplicity of 4/3 is of order Nm, where N is the number of

contraction maps.

Existence of such eigenvalues with large multiplicity are of special interest. Let

ρ(λ) = #{eigenvalue α : α ≤ λ}

be the eigenvalue counting function (by multiplicity). If there exist such eigenvalues, then

limλ→∞
ρ(λ)
λd does not exist for any d ([19] and [30]). This is quite different from the classical

smooth analysis.

Note that the forbidden eigenvalue 3/2 has the form |V0|
|V0|−1

for V0 being the set of

boundary points of the fractal SG (resp. 4/3 in VSn). In this chapter, we shall study the

nature of the eigenvalue |V0|
|V0|−1

of the Laplacian on finite graphs, built up from complete

graphs of |V0| vertices. In doing so, it appears natural to borrow some concepts from
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the theory of hypergraphs. A standard reference on hypergraph theory is C. Berge [4].

However, this chapter is self-contained. All the necessary definitions are given in the next

section.

5.1 Definitions and Notations

Here we restrict ourselves to finite hypergraphs. First we give a set-theoretic definition.

Definition 5.1 A hypergraph is a pair H = (V,E), where V is a finite non-empty set

and E is a set of subsets of V such that

(1) e 6= ∅ for every e ∈ E; and

(2)
⋃

E = V .

Members of V are called vertices of H. Members of E are called hyperedges (or simply

edges) of H.

Remark 5.2 Whereas condition (1) is a natural one to make, condition (2) is related to

the notion of duality, which we will not discuss here.

Examples. The step-1 graph of the Sierpinski gasket, SG, can be viewed as a hy-

pergraph with 6 vertices, as in the traditional graph theory, and 3 hyperedges. Here we

think each of the three sets of vertices, {q1, p2, p3}, {q2, p1, p3} and {q3, p1, p2}, (or the three

corresponding small triangles) as a hyperedge. In contrast, as an ordinary graph, it has 9

edges.
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Similarly, the finite graphs of SG3, VSn, the pentagasket (see [2] for the definition of

pentagasket and the spectral analysis of the Laplacian on it), and many other fractals

are hypergraphs, where we can think of each of the triangles, squares, or pentagons as a

hyperedge.

Given a hypergraph H = (V,E), let us write V = (x1, · · · , xn) and E = (e1, · · · , em)

as ordered lists. The space L(V, E) of real functions f : E × V → R can be identified with

the space of m × n real matrices f =
(
fe,x

)
. The incidence matrix of H is the matrix

A ∈ L(V, E) defined by

Ae,x =





1 if x ∈ e

0 if x 6∈ e.

Let `(V ) (or `(E)) be the space of real functions on V (resp. on E). Then the incidence

matrix A becomes the linear transformation A : `(V ) → `(E), defined by

Au(e) =
∑
x∈e

u(x),

for u ∈ `(V ).

Definition 5.3 The hypergraph degree of a vertex x ∈ V is defined by

degH(x) = #{e ∈ E : x ∈ e}.

This definition generalizes the notion of degree in traditional graph theory, however,

hyperdegree and degree need not be the same. For example, if x is any of the three interior
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points of the step-1 graph of SG, then degH(x) = 2, while degG(x) = 4.

Next we introduce a subclasses of hypergraphs which contain the finite graphs of many

known examples of fractals.

Definition 5.4 A hypergraph H is k-uniform for every e ∈ E, |e| = k, where k ≥ 0 is

an integer.

The finite graphs of SG, VSn, or the pentagasket are uniform hypergraphs, with each

hyperedge containing 3, 4 or 5 vertices. In graph theory, a simple graph (a graph with no

loops and no repeated edges) is just a 2-uniform simple hypergraph.

5.2 The Laplacian on hypergraphs

We fix a hypergraph H = (V, E) and a set of real positive weights W = {re : e ∈ E}.
Define diagonal matrices S ∈ L(E) and M̃, N1, N ∈ L(V ) by

Se,e = re,

M̃x,x =
∑
e3x

re,

(N1)x,x =
∑
e3x

|e| re,

Nx,x =
∑
e3x

(|e| − 1
)
re.

Thus, N1 = M̃ + N . We may think of the entries of M̃ as weighted hypergraph degrees.

Indeed, setting re = 1 gives M̃x,x = degH(x).

The Laplacian with weights W is the operator ∆ ∈ L(V ) given by

∆u(x) =
∑
e3x

re

∑
y∈e

[u(y)− u(x)].

The associated normalized Laplacian is defined by ∆̂ = N−1∆.
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Lemma 5.5 −∆ is a positive operator, whose kernel contains at least the constant function

1 ∈ `(V ).

Proof. For u, v ∈ `(V ), we have the formula

(−∆u, v)V =
∑
e∈E

re

∑

{x,y}⊂e

[u(x)− u(y)] [v(x)− v(y)].

Hence −∆ is positive. It is clear that ∆1 = 0.

¤

Our true starting point is:

Lemma 5.6 For a general hypergraph H,

At S A = N1 + ∆, (5.2.1)

where A is the incidence matrix of the hypergraph. If H is k-uniform, then

At S A = M̃
(
k + (k − 1)∆̂

)
. (5.2.2)

Proof. We first observe that when H is k-uniform, then N1 = kM̃ and N = (k− 1)M̃ , and

(5.2.2) follows from (5.2.1).

To prove (5.2.1), let u ∈ `(V ) and x ∈ V .

∆u(x) =
∑
e3x

re

∑
y∈e

[u(y)− u(x)]

=
∑
e3x

re

∑
y∈e

u(y)−
∑
e3x

re |e|u(x)

=
(∑

e∈E

∑
y∈V

(At)x,eSe,eAe,y u(y)
)
− (N1)x,x u(x)

=
∑
y∈V

(AtS A)x,y u(y)−
∑
y∈V

(N1)x,y u(y)

= (AtS A−N1)u(x).
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Hence ∆ = AtS A−N1, as desired.

¤

For the rest of this chapter, we maintain the assumption that H is a k-uniform hyper-

graph. We rewrite (5.2.2) as

M̃−1AtSA = k + (k − 1)∆̂. (5.2.3)

From this, we draw several conclusions about the spectrum of −∆̂.

Proposition 5.7 For a k-uniform hypergraph H and the normalized Laplacian −∆̂,

(a) σ(−∆̂) ⊂ [0, k
k−1

].

(b) ker
(

k
k−1

+ ∆̂
)

= ker(A).

Proof. We begin with the observation that the spectra of −∆̂ = −N−1∆ and M̃−1(AtSA)

lie within [0,∞). These follow from the simple fact that a product M−1X, where M and

X are positive operators, is positive with respect to the shifted inner product 〈u, v〉 =

(u,Mv)V .

By the Spectral Mapping Theorem, there is a bijection f : σ(−∆̂) → σ(M̃−1AtSA)

given by f(λ) = k − (k − 1)λ. Since f−1(0) = k
k−1

, it follows that σ(−∆̂) ⊂ [0, k
k−1

]. This

proves (a).

For (b), note that since S is positive, we can write AtSA = (S1/2A)t(S1/2A). Then for

u ∈ `(V ),

u ∈ ker
(
k + (k − 1)∆̂

) ⇔ u ∈ ker
(
AtSA)

⇔ u ∈ ker
(
S1/2A)

⇔ u ∈ ker(A).

The last equivalence holds, since S is invertible.

¤
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Remark 5.8 For k ≥ 2, this improves upon L. Malozemov and A. Teplyaev who proved

in [26] that 2 is an upper bound of σ(−∆̂). Since we know that 3/2, 4/3 are eigenvalues

of the discrete Laplacian on SG and VSn respectively, our estimate of k
k−1

is sharp.

Corollary 5.9 The multiplicity of k
k−1

as an eigenvalue of −∆̂ satisfies

mult
( k

k − 1

)
= nullity(A) ≥ max{|V | − |E|, 0}.

Proof. The equality follows from (b) of the preceding proposition. For the inequality, note

that rank(A) ≤ |E| (since A has |E| rows) and also that nullity(A) = |V | − rank(A).

¤

5.3 Neumann and Dirichlet

In this final section, we consider applications of the previous results to finite graphs of

fractals which can be viewed as hypergraphs, such are SG, VSn, the pentagasket and the

tree-like fractal. Our main question is the multiplicity of k
k−1

as a Neumann eigenvalue or

as a Dirichlet eigenvalue of the normalized Laplacian −∆̂.

The Neumann problem is the easy one here: as the Laplacian equation is obeyed by

boundary points, as well as any others, Corollary 5.9 directly applies. The equality in

Corollary 5.9 hold for SG, SG3 and VSn. It would be interesting to find general criteria

for ensuring this.

We now turn to the Dirichlet problem. Since the set V0 of boundary points is generally

non-empty, we must redefine the Laplacian as an operator on the space `0(V ) = {u ∈
`(V ) : u|V0 = 0} to conform with the fractal setting. Fortunately, the results in §5.2 apply

to the Dirichlet case as well. The approach we propose below reduces the previous section

to nothing but a specialization of the Dirichlet case with V0 = ∅.
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We begin with a hypergraph H = (V, E). A subset V0 ⊂ V fixed in advance is referred

to as the set of boundary points. For convenience, denote the set of interior points by

V ◦ = V \V0. Define the diagonal matrices M̃◦, N◦
1 , N◦ ∈ L(V ◦) in the same way as their

relatives in L(V ), except for the necessary restriction to V ◦. Define A◦ ∈ L(V ◦, E), also

by restricting A to V ◦ × E.

The Dirichlet Laplacian ∆◦ ∈ L(V ◦) can be written as

∆◦u(x) =
∑
e3x

re

∑
y∈e

[u(y)− u(x)],

for u ∈ `0(V ), x ∈ V ◦. The associated normalized Dirichlet Laplacian is ∆̂◦ =

(N◦)−1∆◦. We remark that in the definition of ∆◦, the dummy variable y is intended to

cover all elements of V , including those of V0. As a result, the coefficient of u(x) in this

expression is the same regardless of whether V0 is empty.

The positivity of −∆◦ holds, generalizing Lemma 5.5. The “energy form” E◦(u, v) =

(−∆◦u, v)V ◦ is modified to

E◦(u, v) =
∑
e∈E

re

∑

{x,y}⊂e∩V ◦
[u(x)− u(y)] [v(x)− v(y)]

+
∑
e∈E

re |e ∩ V0|
∑
x∈e

u(x) v(x).

However, in general ∆◦ may be invertible (and hence ∆◦1 6= 0).

Lemma 5.6 extends to the current situation.

Lemma 5.10 For a general hypergraph H with boundary points,

(A◦)t S A◦ = N◦
1 + ∆◦. (5.3.1)

If H is k-uniform, then

(A◦)t S A◦ = M̃◦(k + (k − 1)∆̂◦). (5.3.2)

Proof. The argument is virtually unchanged.

¤
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Proposition 5.11 For a k-uniform hypergraph H with boundary points V0,

(a) σ(−∆̂◦) ⊂ [0, k
k−1

].

(b) ker
(

k
k−1

+ ∆̂◦) = ker(A◦).

Proof. Same as that of Proposition 5.7.

¤

Corollary 5.12 The multiplicity of k
k−1

as an eigenvalue of −∆̂◦ satisfies

mul
( k

k − 1

)
= nullity(A◦) ≥ max{|V ◦| − |E|, 0}.

Example 1. (Sierpinski Gasket) M. Fukushima and T. Shima [10] and R. Strichartz

[33] proved that

M (N)
m (3/2) =

3m + 3

2
(5.3.3)

M (D)
m (3/2) =

3m − 3

2
, (5.3.4)

where M
(N)
m (λ) and M

(D)
m (λ) are multiplicities of λ as an Neumann and Dirichlet eigenvalues

respectively. Notice that if we let Vm and E ′
m be the set of vertices and hyperedges, then

|Vm| = 3m+1 + 3

2
,

|E ′
m| = 3m.

We get the lower bounds on the multiplicity of 3/2 by Corollary 5.9 and Corollary 5.12.

Thus these inequalities are sharp.

Example 2. (n-branch Vicsek Set) For the m-step graphs of the n-branch Vicsek set VSn,

the corollaries imply

M (N)
m (4/3) ≥ 2(4n− 3)m + 1

M (D)
m (4/3) ≥ 2(4n− 3)m − 3.
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Indeed, if we let Vm and E ′
m be the set of vertices and hyperedges, then

|Vm| = 3(4n− 3)m + 1,

|E ′
m| = (4n− 3)m.

The inequalities above follow from Corollary 5.9 and Corollary 5.12.



Chapter 6

Ordering the Dirichlet eigenvalues on

VSn

In this chapter, we prove the ordering of the Dirichlet eigenvalues in Theorems 6.3 and 6.5.

6.1 Notation

We shall fix n from now on and always write N = 2 n− 2, due to the frequent occurrence

of this symbol. Let R(λ) be the spectral decimation function, with its 2 n− 1 inverses

φ0, φ1, · · · , φN

listed in increasing order. Let

ρ = R′(0) = (2 n− 1) (4 n− 3)

be the Laplacian renormalization constant (recall that it is the product of the energy

renormalization constant, which is KD(0)−1 = 2n − 1, and the measure factor, which is

4n− 3, the number of contraction maps for the standard Laplacian). The list of forbidden
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eigenvalues is

F = {α1 < β1 < α2 < β2 < · · · < αn−1 < βn−1 < αn < 4/3 },

where αi, βj (i = 1, · · · , n, j = 1, · · · , n−1) are roots of Tn(3x−1)−3Tn−1(3x−1) = 0 and

Un−1(3x−1)−Un−2(3x−1) = 0 respectively, with Tn and Un being Chebyshev polynomials

of the first kind and the second kind.

Define the set of 2n− 1 symbols

Σ = {0, 1, 2, · · · , N},

and let W = Σ∗ be the set of finite words on Σ (including the empty word). For any word

w ∈ W of length j ≥ 0, where w = wj . . . w1 with w1, . . . , wj ∈ Σ, we set φw = φwj
◦. . .◦φw1 .

For µ ∈ [0, 4/3], we define

λw(µ) = lim
m→∞

ρm φ
(m−j)
0 ◦ φw(µ).

Then the spectral decimation tells us that the entire set of Dirichlet eigenvalues of −∆ is

a subset of

Λ∗ = {ρk λw(µ) : k ≥ 0, w ∈ W, µ ∈ F}.

Clearly, for any word w we have λw = λ0···0w. Define an equivalence relation ∼ on W

as follows to reduce this redundancy: v ∼ w iff there exists u ∈ W such that v = 0 · · · 0u
and w = 0 · · · 0u (the number of leading 0’s need not be equal). Note that v ∼ w implies

λv = λw.

Let W∼ denote the set of equivalence classes of W under ∼, whose members we shall call

reduced words. Each member [u] of W∼ contains a unique word of shortest length. As a

rule, we shall generally denote the class [u]∼ by this shortest word. Perhaps an occasional

exception is the class [0]∼, whose shortest word is the empty word, but we prefer to let

0 denote [0]∼. We now define the length |w| of a class w ∈ W∼ to be the length of the

shortest word in w. For example, the class 0 = 00 = 000 = · · · has length 0, and the class

0011 = 011 = 11 has length 2.
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From now on, we shall work entirely on W∼. For w ∈ W∼, there is no ambiguity in

writing

λw(µ) = lim
m→∞

ρm φ
(m−|w|)
0 ◦ φw(µ).

6.2 The refinement of Λ∗

In this section, we shall show that all αi’s cannot be an eigenvalue (neither Dirichlet nor

Neumann) of the discrete Laplacian −∆̂m for all m > 1. Therefore numbers of the form

ρk λw(αi) with k ≥ 1 cannot be in Λ∗ and the set of Dirichlet eigenvalues of −∆ must be

a subset of

Λ := {ρk λw(µ) : w ∈ W, µ ∈ F if k = 0 and µ ∈ F \ {αi}n
i=1 if k ≥ 1}.

Theorem 6.1 For each 1 ≤ i ≤ n, αi is not an eigenvalue of the discrete Laplacian −∆̂m

for all m > 1. In other words, αi 6∈ Fm for all m > 1. Therefore, ρlλv(αi) 6∈ Λ for all

l > 0.

Proof. We shall use a dimension count argument to prove this theorem. We do the

Neumann case first.

Since deg R = 2n − 1, it has 2n − 1 inverse functions. Hence when we extend one

eigenvalue to the next step, we will normally have 2n − 1 continued eigenvalues for the

discrete Laplacian in the next step. But there are two exceptional cases. Recall that

R(λ) = λgn(λ)hn(λ), with deg gn = deg hn = n− 1. Hence when we extend the eigenvalue

0 from one step to the next step, the resulting values will include roots of gn, which

are forbidden eigenvalues, so we can get only (2n − 1) − (n − 1) = n ways to extend 0.

Similarly, since R(λ)−3/4 = 1/4fn(λ)ln(λ), with deg fn = n, and roots of fn are forbidden

eigenvalues, there are only (2n− 1)− n = n− 1 ways to extend 4/3.

Notice that the extensions of αi’s and βi’s cannot be another forbidden eigenvalue.

For instance, if we assume φk(αi) = αj, then by applying R on both sides, we would
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have αi = R(αj) = 4/3, and this is a contradiction. The proof is similar for the other

cases. Moreover, the extensions using different φw are also distinct because the ranges of

φw([0, 4/3]) are different. So there are always 2n−1 ways to extend the eigenvalues except

for the cases mentioned in the above paragraph. Next, we find all the eigenvalues for the

discrete Laplacians at each step.

At step 0, we know by inspection that there are two eigenvalues, 0 and 4/3, of −∆̂0,

with multiplicity of 1 and 3. At step 1, as pointed above, there are n continued eigenvalues

from 0 and n − 1 (3(n − 1) counted by multiplicity) from 4/3. By Example 2, Section

5.3, the multiplicity of 4/3 at step m is M
(N)
m (4/3) ≥ 2(4n− 3)m + 1. Hence M

(N)
1 (4/3) ≥

2(4n− 3) + 1, we have found n + 3(n− 1) + 2(4n− 3) + 1 = 3(4n− 3) + 1 eigenvalues and

these must be all of the Neumann eigenvalues as #(V1) = 3(4n− 3) + 1.

We now investigate the general case. We first consider eigenvalues in the 0-series

(continued eigenvalues from 0). Let am be the number of eigenvalues in the 0-series at

step m. Since there are n ways to extend 0 and 2n− 1 ways for all other eigenvalues, am

should satisfy

a0 = 1, am+1 = (2n− 1)am − (n− 1).

Therefore,

am =
(2n− 1)m + 1

2
.

We then look at eigenvalues in the first 4/3-series (eigenvalues extended from 4/3 as

an initial eigenvalue of −∆̂0). We have showed that when we extend 4/3 from step 0 to

step 1, there are 3(n − 1) continued eigenvalues, counted by multiplicity. When those

3(n − 1) extended eigenvalues are extended to eigenvalues of −∆̂2, the total number of

those eigenvalues will be 3(n − 1)(2n − 1) since the degree of R is 2n − 1 and we will

not encounter any forbidden eigenvalues this time and from then on. In general, the total

number of those extended eigenvalues at step m is 3(n− 1)(2n− 1)m−1. That is the whole

story of the eigenvalues in first 4/3-series.

For eigenvalues in the second 4/3-series (eigenvalues extended from 4/3 as an initial

eigenvalue of −∆̂1), note that 4/3 has multiplicity at least 2(4n− 3) + 1 for −∆̂1. Hence
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when we extend 4/3 to eigenvalues of −∆̂2, it will give us at least (n − 1)[2(4n − 3) + 1]

eigenvalues and when we extend it to eigenvalues of −∆̂3, the number is at least (n −
1)(2n − 1)[2(4n − 3) + 1]. In general, when we extend 4/3 to eigenvalues of −∆̂m, it will

give us at least (n− 1)(2n− 1)m−2[2(4n− 3) + 1] eigenvalues ( n− 1 ways to extend 4/3

to −∆̂2 and 2n− 1 for the rest). That completes the story for the second 4/3-series.

In general, there are at least (n − 1)(2n − 1)m−1−k[2(4n − 3)k + 1] eigenvalues for the

k-th 4/3-series, where 0 ≤ k ≤ m− 1.

Now if we can prove that the number of all those extended eigenvalues plus the multi-

plicity of 4/3 as an initial eigenvalue of −∆̂m is equal to the number of vertices of Vm, then

we can say that we have found all of the Neumann eigenvalues since #(Vm) = 3(4n−3)m+1.

In other words, it is sufficient to show the following:

3(4n− 3)m + 1 (6.2.1)

=
(2n− 1)m + 1

2
+ 3(n− 1)(2n− 1)m−1

+(n− 1)(2n− 1)m−2[2(4n− 3) + 1]

+(n− 1)(2n− 1)m−3[2(4n− 3)2 + 1] + · · ·
+(n− 1)[2(4n− 3)m−1 + 1] + 2(4n− 3)m + 1

Note that if we break the square bracket, then we will obtain a geometric series from all

the constant terms 1:

(n− 1)(2n− 1)m−2 + (n− 1)(2n− 1)m−3 + · · ·+ (n− 1) = (n− 1)
1− (2n− 1)m−1

1− (2n− 1)

=
(2n− 1)m−1 − 1

2
.

Together with the first two terms on the right-hand side of (6.2.1), the sum is (4n−3)(2n−
1)m−1. Therefore, we need to show the following identity

(4n−3)(2n−1)m−1+2(n−1)[(2n−1)m−2(4n−3)+· · ·+(4n−3)m−1]+2(4n−3)m+1 = 3(4n−3)m+1,

or equivalently,

(4n− 3)(2n− 1)m−1 + 2(n− 1)[(2n− 1)m−2(4n− 3) (6.2.2)

+ · · ·+ (4n− 3)m−1] = (4n− 3)m.
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We shall prove this identity by induction. It is clear that this is true for m = 2. Now

suppose it is true for m > 2. When m becomes m + 1, the left-hand side changes to

(4n− 3)(2n− 1)m + 2(n− 1)[(2n− 1)m−1(4n− 3) + · · ·+ (2n− 1)(4n− 3)m−1 + (4n− 3)m]

Taking out the common term (2n − 1) except for the last term and using the induction

hypothesis, we have

(2n− 1){(4n− 3)(2n− 1)m−1 + 2(n− 1)[(2n− 1)m−2(4n− 3)

+ · · ·+ (4n− 3)m−1]}+ 2(n− 1)(4n− 3)m

= (2n− 1)(4n− 3)m + 2(n− 1)(4n− 3)m

= (4n− 3)m+1

and we are done.

For the Dirichlet case, we first note that we can only start with step 1 as the Dirichlet

boundary condition will give us a zero function on V0. At step 1, recall that |X + λM | =
Cfn(λ)gn(λ)(λ− 4/3)8n−9. Hence the eigenvalues of −∆̂1 are α1, · · · , αn of multiplicity 1,

β1, · · · , βn−1 of multiplicity 3 and 4/3 of multiplicity 8n− 9.

We then consider possible initial eigenvalues at step m for m ≥ 2. Again, from Example

2 in Section 5.3, we know that the multiplicity of 4/3 as a Dirichlet eigenvalue of −∆̂k

is at least 2(4n − 3)k − 3. Hence 4/3 is an initial eigenvalue of −∆̂k for any k. Other

initial eigenvalues are β1, · · · , βn−1 with multiplicity (at least) 3 since we can construct

three eigenfunctions for each βi (1 ≤ i ≤ n − 1) as follows. Indeed, for each βi, we can

use one of the eigenfunctions corresponding to −∆̂1, the one which is antisymmetric on

the main diagonal (see Case 2 on page 56), as our building block. We can think the values

of this eigenfunction on the upper main diagonal as the positive side of a battery and the

lower main diagonal as the negative side. Then at any step m ≥ 2, we can connect a chain

of those batteries up to the center square to get values of an eigenfunction on the upper

main diagonal. Then for each of the other directions, we can take minus values of the

upper main diagonal to get three independent eigenfunctions.

Therefore at step m ≥ 2, the total number of initial eigenvalues of −∆̂m is at least

2(4n− 3)m − 3 + 3(n− 1).
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Next we investigate the continued eigenvalues at step m ≥ 2. Clearly for each 1 ≤ i ≤ n,

any continued eigenvalue in the αi-series will have multiplicity 1. Hence the total number

of all eigenvalues in the αi-series for all i is n(2n − 1)m−1. (For each i, there are 2n − 1

ways to extend at each step and there are n such series).

For the first 4/3-series (eigenvalues extended from 4/3 which appear as an initial eigen-

value corresponding to −∆̂1 with multiplicity 2(4n−3)−3 = 8n−9), there are n−1 ways

to extend 4/3 at step 2 and 2n − 1 ways to extend in the following m − 2 steps, so the

total number of eigenvalues in this series is (n − 1)(2n − 1)m−2[2(4n − 3) − 3]. Similarly,

the second 4/3-series (eigenvalues extended from 4/3 which appears as an initial eigenvalue

corresponding to −∆̂2 with multiplicity 2(4n−3)2−3)) has (n−1)(2n−1)m−3[2(4n−3)2−3]

eigenvalues. In general, for the k-th 4/3-series (1 ≤ k ≤ m− 1), the total number of eigen-

values in that series is (n−1)(2n−1)m−1−k[2(4n−3)k−3]. The total number of eigenvalues

of this type at step m is

(n− 1)(2n− 1)m−2[2(4n− 3)− 3] + (n− 1)(2n− 1)m−3[2(4n− 3)2 − 3]

+ · · ·+ (n− 1)(2n− 1)[2(4n− 3)m−2 − 3] + (n− 1)[2(4n− 3)m−1 − 3]

Breaking the square bracket and using (6.2.2), it can simplified to

(4n− 3)m − (4n− 3)(2n− 1)m−1

− [3(n− 1)(2n− 1)m−2 + 3(n− 1)(2n− 1)m−3 + · · ·+ 3(n− 1)]

and this is the (least) total number of the continued eigenvalues in all the 4/3-series.

Notice that each βi can appear as an initial eigenvalue at any step with multiplicity

(at least) 3. We fix i and consider the first βi-series (eigenvalues extended from βi cor-

responding to −∆̂1 with multiplicity 3). There are 2n − 1 ways to extend at each step,

so the total number of eigenvalues in that series is 3(2n− 1)m−1. Similarly, the second βi

series (eigenvalues extended from βi which appears as an initial eigenvalue corresponding

to −∆̂2 with multiplicity 3) has 3(2n− 1)m−2 eigenvalues. In general, for the k-th βi-series

(1 ≤ k ≤ m− 1) there are 3(2n− 1)m−k eigenvalues in that series. Summing for i from 1

to m− 1, the total number of continued eigenvalues corresponding to each βi is

3(2n− 1)m−1 + 3(2n− 1)m−2 + · · ·+ 3(2n− 1).
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So the number of continued eigenvalues for all βi-series is

(n− 1)[3(2n− 1)m−1 + 3(2n− 1)m−2 + · · ·+ 3(2n− 1)].

Combining all results we have had above, we obtain that the total number of eigenvalues

of −∆̂m (m ≥ 2) is at least

2(4n− 3)m − 3 + 3(n− 1)︸ ︷︷ ︸
ini e-val of 4/3 and βi

+ n(2n− 1)m−1

︸ ︷︷ ︸
ctd e-val from all αi at step 1

+ (4n− 3)m − (4n− 3)(2n− 1)m−1 − [3(n− 1)(2n− 1)m−2 + · · ·+ 3(n− 1)]︸ ︷︷ ︸
ctd e-val from 4/3

+ 3(n− 1)(2n− 1)m−1 + 3(n− 1)(2n− 1)m−2 + · · ·+ 3(n− 1)(2n− 1)︸ ︷︷ ︸
ctd e-val from all βi

Note that the last m− 2 terms cancel with the first m− 2 terms in the square bracket and

an easy calculation shows that the above expression is equal to 3(4n − 3)m − 3, which is

equal to #(Vm \ V0). Therefore we have found all Dirichlet eigenvalues for −∆̂m.

Therefore we have proved that α1, · · · , αn can only be initial eigenvalues at step 1 with

multiplicity 1.

¤

In the proof of the above theorem, we actually found the multiplicities of the Dirichlet

eigenvalues of the Laplacian.

Corollary 6.2 The multiplicities of the Dirichlet eigenvalues are as follows:

M
(D)
m

(
λv(αi)

)
= 1 for all 1 ≤ i ≤ n,

M
(D)
m

(
ρlλv(βj)

)
= 3 for all l, v and 1 ≤ j ≤ n− 1,

M
(D)
m

(
ρlλv(4/3)

)
= 2(4n− 3)l+1 − 3 if v1 = 1, 3, · · · , or 2n− 3 and zero otherwise.
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6.3 Ordering of the eigenvalues

In this section we shall prove a proposition about the ordering on Λ. To do this, we first

define several operations on reduced words.

We need the notion of parity of (reduced) words. A word w = wj . . . w1 ∈ W∼ is said

to be odd (resp. even) if w contains an odd (resp. even) number of the odd symbols 1, 3,

. . . , N − 1. For example, 1 and 203 are odd, while 0 and 1032 are even. The sign of w is

sgn(w) := (−1)w1+···+wj = (−1)(# of odd digits in w).

Clearly, w is even if and only if sgn(w) = +1.

We make the simple remark that φw is a strictly increasing (resp. strictly decreasing)

function on the interval [0, 4/3] if w is even (resp. odd) as the spectral decimation function

R is a polynomial.

Fix w = wj . . . w1 ∈ W∼, where we choose wj > 0. The right shift of w is the word w′

(or σ(w)) obtained by deleting w1:

w′ := wj · · ·w2 ∈ W∼.

The most important operation on W∼ is the successor operator w → w+. For w =

wj · · ·w1, consider

s = w1 + sgn(w′) ∈ Σ ∪ {−1, N + 1}.
Then we define w+ ∈ W∼ recursively by

w+ :=





w′ · s if s ∈ Σ,

(w′)+ · w1 if s 6∈ Σ.

We proceed with some examples using n = 3 (and N = 4).

Example 1. Let w = 1230, so that w′ = 123 and w1 = 0. Then sgn(w′) = +1,

which tells us to increase w1 by 1, provided that the resulting digit s still lies in Σ. Since
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s = 1 ∈ Σ, we end up with w+ = 1231. The next several successors are 1232, 1233 and

1234. We shall determine (1234)+ in Example 3.

Example 2. Let w = 1224, so that w′ = 122 and w1 = 4. This time sgn(w′) = −1, so

we shall decrease w1 by 1 if we can. The result is w+ = 1223. The next several successors

are 1222, 1221 and 1220.

Example 3. What if s = w1 + sgn(w′) 6∈ Σ ? For instance, (1234)+ = (123)+ 4 = 1224,

whereas (1220)+ = (122)+ 0 = 1210.

Example 4. Here we take n = 2. It should be clear that iterating + gives the following

list of immediate successors starting from 0:

0 → 1 → 2 → 12 → 11 → 10 → 20 → 21 → 22 → 122 → 121 → 120 →
110 → 111 → 112 → 102 → 101 → 100 → 200 → 201 → 202 → 212 →
211 → 210 → 220 → 221 → 222 → 1222

It is easy to see by induction that w 7→ w+ changes just one digit wi, say, of w into

wi ± 1. It follows that

sgn(w+) = −sgn(w).

Regarding length, we see that |w| ≤ |w+|. Also, inequality holds only when w = Nk =

N · · ·N for some k ≥ 0; in that case, w+ = 1w and |w+| = |w|+ 1.

For v, w ∈ W∼, we write v <+ w if w = (v+)···+. For instance, in Example 4 above, we

have

0 <+ 1 <+ 2 <+ 12 <+ · · · <+ 1222.

For two eigenvalues λ, µ ∈ Λ, we write

λ ≺ µ

if λ < µ and if there does not exist any ν ∈ Λ such that λ < ν < µ (i.e. λ and µ are

consecutive eigenvalues.) The meaning of the converse Â should be clear.
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Recall that if i ∈ Σ and k ≥ 0, we write ik = i · · · i (repeated k times) and if w ∈ W∼,

w1 will mean the last digit of w (except if w = 0, when we say that w1 = 0.)

The ordering of the eigenvalues is stated in the following theorem.

Theorem 6.3 (1) For any w ∈ W∼ and µ, ν ∈ [0, 4/3],

λw(µ) < λw+(ν).

(2) Let w be even. Then

λw(α1) ≺ · · · ≺ λw(αi) ≺ λw(βi) ≺ λw(αi+1) ≺ · · · ≺ λw(αn) ≺ λw(4/3).

If w is odd, then all occurrences of ≺ in the above are replaced with Â.

(3) Let w be even. Then for any integers 0 ≤ i < k,

ρi λw·Nk−i(4/3) ≺ ρi+1 λw·Nk−i−1(4/3).

If w is odd, then ≺ is replaced with Â. In particular, for any even w where w1 6= N , for

any k 6= 0, we have ρk λw(4/3) ≺ ρk λw+(4/3).

(4) For any odd w, let us write w = v · 0l, where v1 6= 0 and l ≥ 0. Define the inte-

ger

p = dv1/2e ∈ {1, · · · , n− 1}.
Then

λw(α1) ≺ ρl+1 λv′(βp) ≺ λw+(α1).

Before proving the theorem we mention some simple facts.

Lemma 6.4 For any w ∈ W∼ and v ∈ W , λw is continuous and strictly monotone on

[0, 4/3] and λwv = ρ|v| λw ◦ φv.
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Proof. In Section 3.2 we proved φ0 is strictly convex and thus by Lemma 2.12, λ0 is convex,

strictly increasing and continuous on [0, 4/3]. Then λw = ρ|w| λ0 ◦ φw is strictly monotone

being a composite of strictly monotone functions.

The fact that λwv = ρ|v| λw ◦ φv is obvious.

¤

Now we are ready to prove Theorem 6.3.

Proof. (1) We prove the claim by induction on the length of w.

If |w| = 0, then w = 0 and w+ = 1. Since φ0(µ) < φ1(ν), it follows that

λ0(µ) = ρ λ0

(
φ0(µ)

)
< ρ λ0

(
φ1(ν)

)
= λ1(ν).

For |w| > 0 we shall treat two cases.

Case 1: s ∈ Σ. If w′ is even, then s > w1 and hence φw1(µ) < φs(ν). As λw′ is strictly

increasing,

λw(µ) = ρ λw′
(
φw1(µ)

)
< ρλw′

(
φs(ν)

)
= λw+(ν).

Likewise, if w′ is odd, then s < w1 and φw1(µ) > φs(ν). Since λw′ is strictly decreasing,

the inequality shown above remains unchanged.

Case 2: s 6∈ Σ. As |w′| < |w|, by induction we have λw′
(
φw1(µ)

)
< λ(w′)+

(
φw1(ν)

)
.

Therefore,

λw(µ) = ρ λw′
(
φw1(µ)

)
< ρλ(w′)+

(
φw1(ν)

)
= λw+(ν).

(2) This follows trivially, by the monotonicity of λw.

(3) By induction, it is enough to prove that

λwNk

(
4/3

)
< ρ λwNk−1

(
4/3

)
.
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The proof of this statement is easy:

λwNk

(
4/3

)
= ρ λwNk−1

(
φN(4/3)

)
= ρ λwNk−1(αn) < ρλwNk−1

(
4/3

)
.

The case where w is odd is just as obvious.

(4) Given p = dv1/2e, as in the hypothesis, we write t = 2 p− 1.

Claim: v ≤+ v′t ≤+ v+. (In fact, if v′ is even, then v′t = v, while if v′ is odd, then

v′t = v+.)

To see this, note that since v is odd, it follows that v′ is even iff v1 is odd. If v′ is even

then v1 = 2p − 1 and t = v1, so v′t = v. Alternatively, if v′ is odd, then t = v1 − 1 and

v′t = v+.

Together with (1) this implies

λv

(
φ

(k)
0 (α1)

)
< λv(0) ≤ λv′t(0) ≤ λv+(0) < λv+

(
φ

(k)
0 (α1)

)
.

Multiplying the terms above by ρk gives

ρk λv

(
φ

(k)
0 (α1)

)
< ρk λv′t(0) < ρk λv+

(
φ

(k)
0 (α1)

)

⇔ λv0k(α1) < ρk+1 λv′
(
φt(0)

)
< λv+0k(α1)

⇔ λw(α1) < ρk+1 λv′(βp) < λw+(α1)

where the last statement is due to the fact that βp = φ2 p−1(0).

¤

For each even word w, write

w = uNk and w+ = v0l,

where k, l ≥ 0 and u1 6= N , v1 6= 0. Set p = dv1/2e. Define sets Λ
(r)
w as follows. Let

Λ(1)
w = {λw(αi), λw(βj) : i = 1, · · · , n; j = 1, · · · , n− 1},

Λ(3)
w = {λw+(αi), λw+(βj) : i = 1, · · · , n; j = 1, · · · , n− 1}.
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By Theorem 6.3 (2), the order of the elements in Λ
(1)
w is

λw(αi) < λw(βi) < λw(αi+1),

and in Λ
(3)
w is

λw+(αi) > λw+(βi) > λw+(αi+1),

for i = 1, · · · , n− 1. We also define

Λ(2)
w = {ρiλuNk−i(4/3), ρjλu+Nk−j(4/3) : i, j = 1, · · · , k}

Λ(4)
w = {ρl+1λv′(βp)}.

Since u is even, by Theorem 6.3 (3), the order of elements in Λ
(2)
w is

ρiλuNk−i(4/3) < ρjλuNk−j(4/3)

ρiλu+Nk−i(4/3) > ρjλu+Nk−j(4/3)

for 0 ≤ i < j ≤ k, and

ρkλu(4/3) < ρkλu+(4/3).

Finally, we define the “w-subsequence”, Λw, for even words w as

Λw =
4⋃

r=1

Λ(r)
w .

For two sets S and T , we write S - T if the largest element in S is less than the

smallest element in T .

Theorem 6.3 implies that if i < j, then Λ
(i)
w - Λ

(j)
w and if u and v are even words with

u <+ v, then Λ
(i)
u - Λ

(j)
v for all i and j.

Theorem 6.5 The set of Dirichlet eigenvalues of Laplacian on VSn is given by

Λ =
⋃

w even

Λw.
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Proof. Let w → w− denote the inverse of w → w+.

If µ = λv(αi) or µ = λv(βi), then µ ∈ Λ
(1)
w or Λ

(3)
w for some even word w.

If µ = ρk λv

(
4/3

)
and v is even, set w = vNk. If v is odd, take w = (vNk)−. Then µ ∈ Λ

(2)
w

in either case.

If µ = ρl+1 λv(βp) and v is even, choose t = 2 p− 1. If v is odd, choose t = 2 p. Set u = vt.

In both cases, u is odd and p = dt/2e. Taking w = (u0p)−, we see that µ ∈ Λw.

As these are all the possibilities for elements of Λ, the desired result follows.

¤

Remark 6.6 We remind the reader that the multiplicities of the eigenvalues were calcu-

lated in Corollary 6.2.

6.4 Weyl’s Theorem

In this section, we describe the asymptotic behavior of the Dirichlet spectrum. We first

consider a bottom part in the spectrum. There are 3(4n − 3)m − 3 eigenvalues corre-

sponding to −∆m for any m. If we extend those eigenvalues by using φ0, then we will

have the smallest eigenvalues for −∆m+1 because the largest of those continued eigenval-

ues is φ0(4/3) = γ1 < β1, the smallest initial eigenvalue. Therefore, if we extend those

3(4n − 3)m − 3 eigenvalues by using φ0 for each m′ > m and pass to the limit, we will

obtain the smallest 3(4n − 3)m − 3 eigenvalues for the Laplacian on VSn. Note that the

largest of those eigenvalues on V Sn is xm := ρm−1λ0(4/3).

Define the Dirichlet eigenvalue counting function

π(x) = {λ : λ is a Dirichlet eigenvalue and λ ≤ x}.

Recall that in the classical case, when D is a bounded domain in Rd, then π(x) has a

remarkable property shown by Weyl [21]:

π(x) = Cxd/2 + o(xd/2).
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In contrast, Shima proved the following theorem in [30].

Theorem 6.7 Let deg R denote the degree of the spectral decimation function R. If

deg R < |S| < ρ, then

0 < lim inf
λ→∞

π(λ)

λds/2
< lim sup

λ→∞

π(λ)

λds/2
< ∞, (6.4.1)

where ds = 2 log |S|
log ρ

and ρ is the Laplacian renormalization constant.

The number ds is called the spectral dimension and it is not necessarily the same as the

Hausdorff dimension. Indeed, in our problem, ds = 2 log(4n−3)
log(2n−1)(4n−3)

while the Hausdorff

dimension is log(4n−3)
log(2n−1)

.

Since π(xm) = 3(4n− 3)m − 3,

3(4n− 3)

(λ0(4/3))ds/2
= lim

m→∞
π(xm)

x
ds/2
m

≤ lim sup
x→∞

π(x)

xds/2

On the other hand, since the multiplicity of xm is 2(4n− 3)m − 3,

lim
x→x−m

π(x) = (4n− 3)m.

Hence

lim inf
x→∞

π(x)

xds/2
≤ (4n− 3)

(λ0(4/3))ds/2

and therefore limx→∞
π(x)

xds/2 does not exist. Furthermore, given any x, choose m such that

x ∈ [xm−1, xm]. As xm

xm−1
= ρ,

π(xm−1)

(4n− 3)x
ds/2
m−1

≤ π(x)

xds/2
≤ (4n− 3)π(xm)

x
ds/2
m

.

Letting x →∞, we obtain an alternative proof of the inequalities (6.4.1) for VSn.



Appendix A

Chebyshev polynomials

In this section, we will give definitions and some basic properties of the special functions,

the Chebyshev polynomials. A good reference is Chebyshev polynomials by Theodore J.

Rivlin [28].

Definition A.1 The Chebyshev polynomials of the first kind, Tn, are defined by the trigono-

metric identity:

Tn(x) = cos(nθ)

for n a nonnegative integer, x = cos θ, and 0 ≤ θ ≤ π.

As

cos nθ =

dn/2e∑

k=0


(−1)k

dn/2e∑

j=k

(
n

2j

)(
j

k

)
 cosn−2k θ, (A.0.1)

Tn(x), defined above by its value in [−1, 1], is a polynomial of degree n and hence, by

analytic continuation, it is defined for all x (indeed for all complex numbers x). Let us list

98
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the first few of them:

T0(x) = 1,

T1(x) = x,

T2(x) = 2x2 − 1,

T3(x) = 4x3 − 3x,

T4(x) = 8x4 − 8x2 + 1,

T5(x) = 16x5 − 20x3 + 5x,

We can also develop a closed-form generating formula for Chebyshev polynomials of

the first kind. Since

cos nθ =
einθ + e−inθ

2

=
(cos θ +

√
cos2 θ − 1)n + (cos θ +

√
cos2 θ − 1)−n

2
,

if we replace cos θ with x, we can alternatively write:

Tn(x) =
(x +

√
x2 − 1)n + (x +

√
x2 − 1)−n

2
.

For any a > 1, the map y → ay+a−y

2
is an increasing function, thus Tn(x) is increasing in n.

Chebyshev polynomials of the second kind are defined by

Un(x) =
1

n
T ′

n(x) =
sin(n + 1)θ

sin θ
, (x = cos θ)

and are structurally quite similar to the Dirichlet kernel. The first few Chebyshev polyno-

mials of the second kind are

U0(x) = 1

U1(x) = 2x

U2(x) = 4x2 − 1

U3(x) = 8x3 − 4x

U4(x) = 16x4 − 12x2 + 1

U5(x) = 32x5 − 32x3 + 6x
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Chebyshev polynomials of both kinds satisfy the same recurrence relation

Pi+1(x) = 2xPi(x)− Pi−1(x), (A.0.2)

but with different initial conditions T0(x) = 1, T1(x) = x and U0(x) = 1, U1(x) = 2x.

They are closely related by the following equations, which will be used often in Chapter 4.

T
′
n(x) = nUn−1(x) (A.0.3)

Tn(x) =
1

2
(Un(x)− Un−2(x)) (A.0.4)

Tn+1(x) = xTn(x)− (1− x2)Un−1(x) (A.0.5)

Tn(x) = Un(x)− xUn−1(x) (A.0.6)

Tn(x) = xUn−1(x)− Un−2(x) (A.0.7)

Moreover, the Chebyshev polynomials are solutions to the Pell equation:

T 2
n − (x2 − 1)U2

n−1 = 1.

Hence for fixed x > 1, the Chebyshev polynomials of the second kind are also increasing

in n.
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