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Abstract

This thesis focuses on designing Low-Density Parity-Check (LDPC) codes for
forward-error-correction. The target application is real-time multimedia commu-
nications over packet networks. We investigate two code design issues, which are
important in the target application scenarios, designing LDPC codes with low de-
coding latency, and constructing capacity-approaching LDPC codes with very low
error probabilities.

On designing LDPC codes with low decoding latency, we present a framework
for optimizing the code parameters so that the decoding can be fulfilled after only
a small number of iterative decoding iterations. The brute force approach for such
optimization is numerical intractable, because it involves a difficult discrete op-
timization programming. In this thesis, we show an asymptotic approximation
to the number of decoding iterations. Based on this asymptotic approximation,
we propose an approximate optimization framework for finding near-optimal code
parameters, so that the number of decoding iterations is minimized. The approx-
imate optimization approach is numerically tractable. Numerical results confirm
that the proposed optimization approach has excellent numerical properties, and
codes with excellent performance in terms of number of decoding iterations can be
obtained. Our results show that the numbers of decoding iterations of the codes
by the proposed design approach can be as small as one-fifth of the numbers of
decoding iterations of some previously well-known codes. The numerical results
also show that the proposed asymptotic approximation is generally tight for even
non-extremely limiting cases.

On constructing capacity-approaching LDPC codes with very low error proba-
bilities, we propose a new LDPC code construction scheme based on 2-lifts. Based
on stopping set distribution analysis, we propose design criteria for the resulting
codes to have very low error floors. High error floors are the main problems of previ-
ously constructed capacity-approaching codes, which prevent them from achieving
very low error probabilities. Numerical results confirm that codes with very low
error floors can be obtained by the proposed code construction scheme and the
design criteria. Compared with the codes by the previous standard construction
schemes, which have error floors at the levels of 10−3 to 10−4, the codes by the
proposed approach do not have observable error floors at the levels higher than
10−7. The error floors of the codes by the proposed approach are also significantly
lower compared with the codes by the previous approaches to constructing codes
with low error floors.
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Chapter 1

Introduction

Low-Density Parity-Check (LDPC) codes have attracted a lot of attention in re-
cent years. The codes have several properties, which make them favorable choices
for real-time and high-throughput communications. First, the codes are capacity-
approaching. Second, the codes can be efficiently decoded by parallel iterative
decoding algorithms with low latency.

This thesis focuses on designing LDPC codes for forward-error-correction. The
target application scenarios are real-time multimedia communications over packet
networks, which are next-generation cutting-edge technologies. Several code design
issues, which are crucial in the target applications, are investigated. We propose
novel code construction and design approaches, which are enabling technologies in
the application scenarios.

1.1 Real-Time Multimedia Communications Over

Packet Networks

During recent years, there have been increasing demands for real-time multimedia
communications over packet networks. One typical application is multimedia con-
ferencing, which is increasingly adopted in education, health-care, business manage-
ment etc. Other applications include Voice over IP, and digital video surveillance.
However, achieving real-time communications is a very challenging problem, certain
crucial enabling technologies are not available until recent years.

Compared with non real-time communication systems, real-time multimedia
communication systems present the following challenges.

1



• First, latency requirements in real-time communication systems are much
more stringent. While in a non real-time communication system, the la-
tency for signal processing, data compression, and error correction can be as
large as several seconds, the latency in the counter-part real-time systems is
usually within several milliseconds. In the state-of-the-art video conferenc-
ing and videophone systems, the latency is usually required to be no larger
than 50 milliseconds, and is desired to be within 10 milliseconds. Failing
to meet the latency requirements usually results in noticeable delays, which
makes the conversations impossible. For example, in the H.264 codec de-
veloped by W&W communication Inc. for real-time communications, the
latency is within two milliseconds, where parallel processing and high-speed
processing units are massively adopted to accelerate the encoding and decod-
ing speeds [42].

• Second, the transmission of compressed images and videos is less tolerant
of transmission errors because of error propagation. Therefore, the error
probability requirements are much more stringent.

1.2 System Description

In practical packet network communication systems, the transmission is impaired
by packet loss. The packet loss can be either caused by network congestion, or by
packet dropping at relay nodes, where check-sum errors are detected. In order to
compensate for lost packets, forward-error-correction schemes are usually adopted.
The forward-error-correction schemes introduce redundancy to the transmitted sig-
nals. Therefore, at the receiver end, the transmitted messages can be recovered,
even when only a fraction of the total transmitted packets is received.

The block diagram of the considered forward-error-correction scheme is shown in
Fig. 1.1. In this scheme, compressed multimedia signals are first encoded by LDPC
encoding. The coded bits are then grouped into packets. We call this process pack-
etization. The packets are transmitted through packet networks. At the receiver
end, the received bits are de-packetized, which is the inverse process of packeti-
zation. Finally, the transmitted messages are recovered from the received bits by
LDPC decoding. Here, we assume that the packetization scheme is a randomized
scheme, that is, for each transmitted codeword, the bits in the codeword are ran-
domly permuted and divided into different groups, where each group corresponds
to one packet. Hence, analogue to the random coding argument, the performance of

2
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the considered system corresponds to the average performance of all packetization
schemes.

Because of the randomized packetization scheme, the received signals at the
input ends of LDPC decoders can be considered as LDPC codewords with randomly
missing bits. Therefore, the data transmission processes from the output ends of
LDPC encoders to the input ends of LDPC decoders can be modeled as Binary
Erasure Channels (BEC). An example of BEC is shown in Fig. 1.2. The channel
takes binary inputs and outputs 0, 1, or e, where e stands for a missing bit. The
channel parameter ξ is the probability that a transmitted bit is lost. The channel
outputs a transmitted bit correctly with probability 1 − ξ, and outputs e with
probability ξ. We call the missing bits erasures. It can be checked that the capacity
is C = 1− ξ.

3



1.3 Problem Statement

In order to meet the above stringent requirements on decoding latency and error
probabilities, we consider the following design issues for LDPC codes.

• We consider the problem of optimizing code parameters (more precisely, the
degree distributions), so that the code can be successfully decoded after only
a small number of parallel iterative decoding iterations. We say that a code
has fast decoding speeds, if the code have the above property. We argue that
the problem is crucial because fast decoding speeds are equivalent to low
decoding latency, if the decoding is implemented by highly parallel hardware
implementations, which is necessary for real-time communication scenarios. It
should be noted that we give less considerations to total decoding complexity,
because total decoding complexity is a secondary design objective compared
with decoding latency, which must be designed to meet certain requirements.

• We consider the problem of designing LDPC codes with low error floors.
High error floors are the main problems of previously constructed capacity-
approaching LDPC codes, which prevent them from achieving very low error
probabilities.

1.4 Summary of Contributions

We present an asymptotic approximation to the number of decoding iterations for
capacity-approaching low-density LDPC codes. We also show by numerical exam-
ples that this approximation is tight for even non-extremely limiting cases. There-
fore, the approximation is tight for most practical code design scenarios, because
practical capacity-approaching codes always have low densities.

We present an approximate optimization framework for designing LDPC codes
with fast decoding speeds. The framework is based on the above asymptotic ap-
proximation to the number of decoding iterations. The direct optimization of the
code parameters is numerical intractable, because it involves a difficult discrete
optimization programming. The proposed approximate optimization approach is
numerical tractable.

We propose a new capacity-approaching LDPC code construction scheme based
on a series of random 2-lifts. We propose design criteria for the above 2-lift based
codes so that small stopping sets are largely avoided in the corresponding Tanner

4



graphs. According to previous research, high error floors are mainly the results
of the small stopping sets. Numerical results confirm that the resulting codes
have significantly lower error floors, compared with previously constructed capacity-
approaching codes in the literature.

1.5 Organization of this Thesis

This thesis is organized as follows. In Chapter 2, we provide a brief review of
LDPC codes, including the construction schemes, the decoding algorithms, and
the state-of-the-art performance analysis methods. In Chapter 3, we present our
approximate optimization approach to designing LDPC codes with fast decoding
speeds. In Chapter 4, we discuss the proposed code construction scheme by 2-lifts.
Conclusions will be provided in Chapter 5. We will discuss possible future research
in Chapter 6.
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Chapter 2

Introduction to Low-Density
Parity-Check Codes

In this chapter, we will provide a review of LDPC codes. In Section 2.1, we will dis-
cuss the Tanner graph representations, which are widely adopted graphical models
for LDPC codes. In Section 2.2, we will review the Richardson-Urbanke code en-
sembles. We will review factor graphs in Section 2.3. In Section 2.4, we will discuss
the message-passing algorithm, which is a parallel algorithm for marginal distri-
bution calculation. In Section 2.5, we will review the message-passing decoding
algorithm for LDPC codes, which is a special case of the general message-passing
algorithm.

In this chapter, we will also review the state-of-the-art LDPC design and perfor-
mance analysis methods. These methods can be divided into two main categories:
the asymptotic methods, and the finite-length methods. Each category of methods
has its strength and weakness. The two categories of methods complement each
other, and are both adopted in practical code design. The asymptotic methods
investigate the limiting behaviors of the decoding algorithms as the blocklengths
go to infinity. These asymptotic results provide insights on LDPC codes with long
blocklengths. One of the most important asymptotic methods is Density Evolution,
which will be reviewed in Sections 2.6, 2.7, and 2.8.

The finite-length methods, on the other hand, investigate the error probabil-
ity performance of codes with fixed blocklengths. The methods relate the error
probabilities to codeword-like structures, such as stopping sets, trapping sets, and
pseudo-codewords. We will present a brief introduction on stopping sets in Section
2.9. More detailed in-context exposition on stopping set based analysis will be
provided in Chapter 4.
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2.1 Tanner Graph

Low-Density Parity-Check codes were invented by Gallager in 1960s [13]. Unfor-
tunately, the codes were largely forgotten in the following three decades, because
the corresponding decoding is difficult to be implemented in hardware at that time.
However, LDPC codes become popular again in the first decade of the 21st cen-
tury. The reasons are two-fold. First, recent theoretical results have shown that
LDPC codes can approach Shannon capacity limit [23], [7]. Second, the hardware
implementation of the decoding algorithms are not difficult anymore nowadays due
to progress in electrical circuit technologies. The codes have already found many
applications in deep-space communications, satellite communications and wireless
communications.

Low-Density Parity-Check codes are linear block codes with sparse parity-check
matrices. More precisely, a linear block code C is a set of binary vectors xxx, such
that xxx ∈ C if and only if HHHxxx = 000, where HHH is a given matrix, 000 is the all zero
vector and all elements of xxx and HHH are in GF (2) (the Galois field of order two). A
Low-Density Parity-Check code is a linear block code, where each row and column
of the matrix HHH contains only a small number of non-zero elements.

Tanner graphs, which were invented by Tanner in 1980s [38], are widely adopted
graphical representations for LDPC codes. A Tanner graph is a bipartite graph with
one partition consisting of all variable nodes and the other partition consisting of all
check nodes. Each variable node represents one codeword bit and each check node
represents one parity-check constraint. There exists an edge between a variable
node and a check node if and only if the corresponding bit is involved in the parity-
check constraint.

An example of a Tanner graph is shown in Fig. 2.1. The corresponding parity-
check matrix is shown as follows:

HHH =




1 1 0 1 0 0
0 0 1 1 1 0
0 1 0 0 1 1


 (2.1)

In Tanner graph representation, the variable nodes are usually drawn as circles,
and the check nodes are usually drawn as squares.

2.2 Richardson-Urbanke Ensemble

The design and analysis of LDPC codes are usually based on ensembles. An LDPC
code ensemble is a set of codes with certain properties. Usually, it is easy to evaluate
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Figure 2.1: The Tanner graph representation

the average performance of a code ensemble or the performance of the majority of
codes in a code ensemble, while it is very difficult to determine the performance
of one particular code. In the first step of a typical LDPC code design procedure,
a code ensemble is found, so that the majority of codes in the code ensemble
have satisfactory performance. An LDPC code is usually randomly constructed by
uniformly choosing one code from the code ensemble. Note that after the code is
chosen, it is fixed in practical systems, despite that the code is randomly generated
and the analysis is ensemble based.

A Richardson-Urbanke LDPC code ensemble C(λ, ρ, n) is specified by three pa-
rameters: a left degree distribution λ(x), a right degree distribution ρ(x), and a
blocklength n [31]. The left and right degree distributions are polynomials

λ(x) =
dv∑
i=2

λix
i−1, ρ(x) =

dc∑
j=2

ρjx
j−1. (2.2)

An LDPC code is in the code ensemble C(λ, ρ, n), if and only if,

• the blocklength of the code is n;

• in the corresponding Tanner graph, the fraction of edges that are connected
to variable nodes with degree i is λi; and
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• in the corresponding Tanner graph, the fraction of edges that are connected
to check nodes with degree j is ρj.

The Richardson-Urbanke ensembles are also called standard or unstructured code
ensembles in the literature.

2.3 Factor Graphs

Factor graphs represent global product functions and illustrate how the global func-
tions can be factored into local functions. Since such global functions and decompo-
sitions are frequently observed in statistical physics, machine learning and artificial
intelligence, factor graphs have become a widely-adopted technical language in these
areas. We refer interested readers to [18] for a more complete survey on the topic.

In this thesis, we use factor graphs to represent global probability distribution
functions, which can be factored into conditional probability functions. Factor
graphs provide a convenient technical language to describe the message-passing
algorithm, which will be discussed in Section 2.4.

A factor graph is a bipartite graph with one partition consisting of function
nodes and the other partition consisting of variable nodes. Each function node rep-
resents one local function. Each variable node represents one variable. The global
function is the product of all the local functions. Edges indicate the involvement
between functions and variables; that is, there is an edge between one variable
node and one function node if and only if the variable is an argument of the local
function.

321

321x

f

x

ff

x

Figure 2.2: The factor graph
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An example of a factor graph is shown in Fig. 2.2. We use circles to represent
variable nodes and squares to represent function nodes. The factor graph represents
the probability distribution function of a binary sequence X1X2X3 with length
three. The random variables Xi, 1 ≤ i ≤ 3, are independent and identically
distributed with a probability distribution p(x). The global function is

fX1X2X3(x1, x2, x3) = fX1(x1)fX2(x2)fX3(x3), (2.3)

where, fXi
(·) = p(·), for i = 1, 2, 3, are the local functions.
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Figure 2.3: An example of factor graph representations of probability distributions
in LDPC decoding

In this thesis, we use factor graphs to represent probability distributions in the
decoding of LDPC codes. Let xxxn

1 = {x1, . . . , xn} denote the transmitted codeword.
Let yyyn

1 = {y1, . . . , yn} be the received channel outputs. Assume the channel is
memoryless. Define functions fj as,

fj(xxx
n
1 ) =

{
1, if jth parity check is satisfied
0, otherwise

(2.4)
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Define functions gi(xi, yi) as the conditional probability that yi is the channel out-
put, given that xi is transmitted. That is,

g(xi, yi) = P(yi received |xi transmitted ). (2.5)

The probability density function p(xxxn
1 , yyy

n
1 ) can be factored as,

p(xxxn
1 , yyy

n
1 ) = α

(
m∏

j=1

fj(xxx
n
1 )

)(
n∏

i=1

g(xi, yi)

)
, (2.6)

where α is a normalization constant, and m is the number of parity-checks. An
example of such a factor graph for LDPC decoding is shown in Fig. 2.3.

2.4 Message-Passing Algorithm

The message-passing algorithm is a parallel algorithm for marginal distribution cal-
culation. The algorithm is widely adopted in signal processing, machine learning,
artificial intelligence etc. For example, the BCJR algorithm and Kalman filter-
ing can all be considered as variations of the message-passing algorithms. In this
section, we present a brief introduction on the message-passing algorithms in the
prospective of LDPC decoding. We refer interested readers to [18] and references
therein for more general discussion.

The marginal distributions can be exactly calculated by the message-passing al-
gorithm in polynomial time, if the global probability distribution functions can be
represented by acyclic or tree-structured factor graphs, that is, the factor graphs do
not contain cycles. For the decoding of LDPC codes, the factor graphs are usually
cyclic. In such cases, the calculation of exact marginal probability distributions
is usually NP-hard. Message-passing algorithms on cyclic factor graphs are called
loopy propagations in machine learning. The loopy propagation message-passing al-
gorithm calculates the messages using the same set of rules of the message-passing
algorithms on tree-structured factor graphs. The calculated results are only ap-
proximate values of marginal distributions. However, this algorithm usually has
satisfactory performance for LDPC decoding. A review of rigorous analysis on this
loopy propagation message-passing algorithm will be provided in Sections 2.6, 2.7,
and 2.8. Throughout this thesis, we use the term message-passing algorithm to de-
note both the standard message-passing algorithm and loopy propagation message-
passing algorithm, when no ambiguity arises.
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In this section, we will first provide a review of the message-passing algorithm on
tree-structured factor graphs. We consider a factor graph with n variable nodes and
m function nodes. The global probability distribution function f can be factored
as follows:

f(x1, . . . , xn) =
m∏

j=1

fj(Xj), (2.7)

where Xj denotes the subset of variables, which are arguments of the j-th function
fj(·). The marginal distribution with respect to a variable Xi is,

fXi
(s) =

∑
x1

∑
x2

· · ·
∑
xi−1

∑
xi+1

· · ·
∑
xn

f(x1, . . . , xi−1, s, xi+1, . . . , xn). (2.8)

0

A

B
f x0 0

f0 x 0
m

mx 0 f

Figure 2.4: The interpretation of messages

In the message-passing algorithm, we define messages on all edges. The mes-
sages are partial calculation results for marginal distribution calculations. Consider
a function node f0 and a neighboring variable node x0. If we remove the edge be-
tween the nodes f0 and x0, the factor graph will become a graph consisting of
two unconnected smaller graphs. Consider the graph which contains the function
node f0. Denote the set of function nodes and variable nodes in the graph except
the function node f0 by A. Similarly, denote the set of function nodes and variable
nodes in the other graph except the variable node x0 by B. Denote the product
of all local functions in the set A and the function f0 as fA(·), while denote the
product of all local functions in the set B as fB(·).
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The message on the edge between f0 and x0, with a direction from the function
node f0 to the variable node x0, is defined as,

mf0→x0(s) =
∑
x1

∑
x2

· · ·
∑
xk

fA|x0=s(x0, x1, . . . , xk), (2.9)

where {x1, . . . , xk} denotes the set of variable nodes in the set A. The message
on the edge between f0 and x0, with a direction from the variable node x0 to the
function node f0, is defined as,

mx0→f0(s) =
∑
y1

∑
y2

· · ·
∑
yl

fB|x0=s(x0, y1, . . . , yl), (2.10)

where {y1, . . . , yl} denotes the set of variable nodes in the set B. Each message is a
function with a domain identical to the alphabet of the variable x0. The definition
of messages is illustrated in Fig. 2.4.

The message-passing algorithm computes messages in a recursive manner. For a
message with a direction from a variable node x0 to a function node f0, the message
mx0→f0(s) can be recursively calculated from the messages mfi→x0(s), i = 1, . . . , k,
where f0, f1, . . . , fk are all the neighboring functions nodes of the variable node x0.
It can be checked that

mx0→f0(s) =
k∏

i=1

mfi→x0(s). (2.11)

The message update rule is depicted in Fig. 2.5. Similarly, for a message with a di-
rection from a function node f0 to a variable node x0, the message mf0→x0(s) can be
recursively calculated from the messages mxi→f0 , i = 1, . . . , k, where x0, x1, . . . , xk

are all the neighboring variable nodes of the function node f0. It can be checked
that

mf0→x0(s) =
∑

x1,...,xk

(
f0|x0=s(x0, x1, . . . , xk)

k∏
i=1

mxi→f0(xi)

)
. (2.12)

The message update rule is depicted in Fig. 2.6. The calculating of all messages
can be decomposed into calculating messages with a direction from a leaf of the
factor graph in the above recursive manner. The latter ones can be easily calculated
directly.

The marginal distributions of each variable node can be determined from mes-
sages. Let x0 be a variable node. Assume that there are k neighboring function
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f
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B
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m

f1 x 0

mx 0 f0

fk x

Figure 2.5: The messages update rule for a message with a direction from a variable
node to a function node

nodes of x0. It can be checked that

fXi
(s) =

∑
x1

∑
x2

· · ·
∑
xi−1

∑
xi+1

· · ·
∑
xn

f(x1, . . . , xi−1, s, xi+1, . . . , xn)

=
k∏

i=1

mfi→x0(s). (2.13)

The marginal distribution calculation from messages is depicted in Fig. 2.7.

2.5 Message-Passing Decoding for LDPC Codes

Consider factor graphs for LDPC code decoding, such as the one shown in Fig.
2.3. If the factor graph is acyclic, then the marginal distribution for each codeword
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Figure 2.6: The messages update rule for a message with a direction from a function
node to a variable node

bit can be calculated by the standard message-passing algorithm. For a variable
x0, the bit-wise MAP (Maximum a Posterior) decoding algorithm outputs 1 if the
marginal distribution P(x0 = 1|yyyn

1 ) ≥ P(x0 = 0|yyyn
1 ), and 0 otherwise. Generally

speaking, factor graphs for practical LDPC codes are not trees. In these cases, a
parallel message-passing decoding procedure with a so called flooding schedule is
adopted. The decoding algorithm is an instance of loopy propagation.

Assume that the LDPC code has a blocklength n, and m parity-checks. Denote
the variable nodes corresponding to codeword bits by xi, i = 1 . . . , n. Denote
the function nodes corresponding to parity-check constraints by fj, j = 1, . . . , m.
Denote the function nodes corresponding to channel conditional probabilities by gi,
i = 1, . . . , n. The message-passing decoding algorithm for the LDPC code usually
follows the following flooding schedule for message updating. At each iteration,
the algorithm first updates all messages directed from variable nodes xi to function
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Figure 2.7: Calculating marginal distributions from messages

nodes fj, and then updates all messages directed from function nodes fj to variable
nodes xi. The messages directed from function nodes gi to variable nodes xi are
fixed during all iterations. The messages directed from variable nodes xi to function
nodes gi are not calculated, because the decoding decisions are independent of these
messages. The initial values of messages directed from function nodes fj to variable
nodes xi are all set to be one. That is, for a message directed from a function node
fj to a variable node xi,

mfj→xi
(0) = mfj→xi

(1) = 1. (2.14)

The initial values of messages directed from function nodes gi to variable nodes xi

are calculated according to the channel conditional probability distribution. That
is, for a message directed from a function node gi to a variable node xi,

mgi→xi
(0) = P (yi is received |0 is transmitted) (2.15)
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mgi→xi
(1) = P (yi is received |1 is transmitted) (2.16)

During each iteration, the message updating rule for a message directed from a
variable node x0 to a function node f0 is as follows:

mx0→f0(s) = mgi→x0(s)
k∏

i=1

mfi→x0(s), (2.17)

where, f0, f1, . . . , fk are all neighboring function nodes of x0 that correspond to
parity checks. Similarly, the message updating rule for a message directed from a
function node f0 to a variable node x0 is as follows:

mf0→x0(s) =
∑
x1

∑
x2

· · ·
∑
xk

(
f0(x0 = s, x1, . . . , xk)

k∏
i=1

mxi→f0(xi)

)
, (2.18)

where, x0, x1, . . . , xk are all neighboring variable nodes of f0.

For the special case of binary LDPC decoding, there exist more simple formula
for the message updating rules in Eqns. 2.17, and 2.18. We define the log-likelihood
ratios for messages as follows,

Λf0→x0 = ln

(
mf0→x0(0)

mf0→x0(1)

)
= loge

(
mf0→x0(0)

mf0→x0(1)

)
, (2.19)

Λx0→f0 = ln

(
mx0→f0(0)

mx0→f0(1)

)
= loge

(
mx0→f0(0)

mx0→f0(1)

)
, (2.20)

Λg0→x0 = ln

(
mg0→x0(0)

mg0→x0(1)

)
= loge

(
mg0→x0(0)

mg0→x0(1)

)
, (2.21)

where, mf0→x0 , mx0→f0 , mg0→x0 are messages. The hyperbolic trigonometric func-
tions are defined as,

sinh(x) =
ex − e−x

2
, (2.22)

cosh(x) =
ex + e−x

2
, (2.23)

tanh(x) =
sinh(x)

cosh(x)
=

ex − e−x

ex + e−x
=

e2x − 1

e2x + 1
. (2.24)

The message updating rules can be simplified into the following well known sum
law and tanh law (see for example [40]). Sketch proofs are provided in order to
make this chapter self-contained.
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Proposition 2.5.1 (sum law) For a message directed from a variable node x0 to
a function node f0, the message update rule can be written as

Λx0→f0 = Λg0→x0 +
k∑

j=1

Λfi→x0 , (2.25)

where, g0 is the neighboring function node that corresponds to the channel condi-
tional probability function, f0, f1, . . . , fk are all the neighboring function nodes of
x0 that correspond to parity checks.

Proof: By the definition of log-likelihood ratios.

Proposition 2.5.2 (tanh law) For a message directed from a function node f0 to
a variable node x0, the message update rule can be written as

tanh

(
Λf0→x0

2

)
=

k∏
i=1

tanh

(
Λxi→f0

2

)
, (2.26)

where, x0, x1, . . . , xk are all the neighboring variable nodes of f0.

Proof: By the definition of the function f0, we have

mf0→x0(0) =
∑

x1,...,xk:x1+...+xk=0

(
k∏

i=1

mxi→f0(xi)

)
, (2.27)

mf0→x0(1) =
∑

x1,...,xk:x1+...+xk=1

(
k∏

i=1

mxi→f0(xi)

)
. (2.28)

Therefore,

mf0→x0(0)−mf0→x0(1) =
k∏

i=1

(mxi→f0(0)−mxi→f0(1)) , (2.29)

mf0→x0(0) + mf0→x0(1) =
k∏

i=1

(mxi→f0(0) + mxi→f0(1)) . (2.30)
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By the definition of the tanh function,

tanh

(
Λf0→x0

2

)
=

mf0→x0
(0)

mf0→x0
(1)
− 1

mf0→x0
(0)

mf0→x0
(1)

+ 1
=

mf0→x0(0)−mf0→x0(1)

mf0→x0(0) + mf0→x0(1)

=
k∏

i=1

mxi→f0(0)−mxi→f0(1)

mxi→f0(0) + mxi→f0(1)

=
k∏

i=1

tanh

(
Λxi→f0

2

)
(2.31)

The proposition is proven.

For the special cases of BECs, the message update rules can be further simplified.
In this case, the log-likelihood ratios for messages can only take three values: +∞,
−∞, and 0. The message update rules in Eqns. 2.25, 2.26 can be simplified as
follows:

Λx0→f0 =





+∞, one of Λfi→x0 and Λg0→x0 is equal to +∞
−∞, one of Λfi→x0 and Λg0→x0 is equal to −∞
0, all of Λfi→x0 and Λg0→x0 are equal to 0

(2.32)

Λf0→x0 =





+∞, all Λxi→f0 6= 0, number of −∞ in Λxi→f0 is even
−∞, all Λxi→f0 6= 0, number of −∞in Λxi→f0 is odd
0, one of Λxi→f0 = 0

(2.33)

for each log-likelihood ratios Λx0→f0 , and Λf0→x0 during one iteration. It can be
checked that, in this special case, the message-passing algorithm is equivalent to a
parallel version of the edge deletion algorithm proposed by Luby [23].

2.6 Density Evolution

Density Evolution is an asymptotic method for calculating the limiting numbers of
incorrectly decoded bits, after certain decoding iterations, as the blocklengths go
to infinity [31]. The computed numbers of incorrectly decoded bits are accurate
approximations for these of LDPC codes with long blocklengths.

The theoretical foundations of Density Evolution are concentration Theorems
[31]. The concentration Theorems show that, after a given number of decoding
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iterations, the fractions of incorrectly decoded bits converge to their limiting values
with probabilities approaching one, as the blocklengths go to infinity, where the
code is uniformly chosen from a given code ensemble at random. The Theorems
are proven for the special case of regular LDPC codes [31]. It can be checked that
the Theorems can be trivially generalized to the cases of irregular LDPC codes.

One consequence of the concentration Theorems is an efficient approach to ap-
proximately calculating the decoding bit error probabilities. The decoding bit error
probabilities are approximated by their limiting values, which can be calculated
recursively. This approach of approximately calculating the decoding bit error
probabilities is called Density Evolution.

The concentration Theorems also imply that the performance of the major-
ity of codes in the code ensemble is close to the ensemble average performance.
For a properly designed code ensemble, majority of the codes in the ensemble are
codes with satisfactory performance. This analysis justifies the ensemble based
approaches to designing fixed codes in practical systems.

For many classes of channels, there exist ordering of the channels, such that
the channel with order α1 can be considered as a physically degraded channel of
the channel with order α2, if α1 < α2. Examples include Binary Input Additive
White Gaussian Noise (BIAWGN) channels, Binary Symmetric Channels (BSC),
and BECs. It has been shown that [31], for many classes of channels with such or-
dering, there exists a critical value α(λ, ρ) for each fixed pair of degree distributions
λ(x), ρ(x), such that

• the ensemble average bit error probabilities of C(λ, ρ, n) approach zero for all
channels with order α > α(λ, ρ) as the blocklength n go to infinity, and

• the ensemble average bit error probabilities of C(λ, ρ, n) are bounded away
from zero for all channel with order α ≤ α(λ, ρ).

This critical value α(λ, ρ) is a very important parameter for a LDPC code ensemble.
It is called a threshold for the pair of degree distributions λ(x), ρ(x) and can be
calculated by Density Evolution.

2.7 Density Evolution for BIAWGN Channels

In this section, we will review the Density Evolution for BIAWGN channels. A
BIAWGN channel is shown in Fig. 2.8. The input signal X takes values 1 or −1.
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Figure 2.8: Binary input additive white Gaussian noise channels.

The noise Z is white with Gaussian distribution N(0, σ2
n). The received signal is

Y = X + Z.

We will use the following notation.

• Let gi, fj, xi, Λgi→xi
, Λxi→fj

, Λfj→xi
be defined as in Section 2.5.

• Let hl
gi→xi

, hl
xi→fj

, hl
fj→xi

denote the probability density functions of the log-
likelihood ratios Λgi→xi

, Λxi→fj
, Λfj→xi

, after l decoding iterations.

• Let hl
g→x, hl

x→f , hl
f→x denote the probability distributions of messages aver-

aged over all variable nodes and check nodes, after l decoding iterations. It is
clear that hl

g→x corresponds to messages from gi to xi, hl
x→f corresponds to

messages from xi to fj, and hl
f→x corresponds to messages from fj to xi.

Because BIAWGN channels are symmetric and the LDPC codes are linear block
codes, the error probabilities are independent of the transmitted codewords. Hence,
in order to simplify the discussions, we can assume that the transmitted codeword
is the all zero codeword. We call a message mfj→xi

incorrect if Λfj→xi
< 0. The

fraction of incorrect messages, after l decoding iterations, is

∫ 0

−∞
hl

f→x(x)dx. (2.34)

Therefore, the performance of the code can be determined if we can calculate the
distribution hl

f→x(x).

However, calculating the distribution hl
f→x or even the asymptotic limit is quite

difficult, because hl
f→x is a function and the computation is in an infinite dimen-

sional space. One potential solution is based on Monte Carlo methods, which have
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high computational complexities. There are alternative computationally efficient
approaches based on approximating the distribution hl

f→x by parametric probabil-
ity distributions, for example, the Gaussian approximation approach [6] and the
semi-Gaussian approach [1]. We will review the Gaussian approximation approach
to illustrate the basic principle. In Section 2.7.1, we will discuss the so called sym-
metric conditions, which can be used to simplify the computation in the Gaussian
approximation approach. The Gaussian approximation method will be reviewed in
Section 2.7.2.

2.7.1 Symmetry

In this section, we will show that in Density Evolution for BIAWGN channels the
distribution functions are all symmetric functions. These results were first proven
in [31]. However, our presentation here is slightly different.

Definition: A probability density function h(x) for a log-likelihood ratio Λf→x is
said to be symmetric if the following equation holds,

h(−x) = e−xh(x). (2.35)

We will need the following notation. Assume X is a random variable. The
probability density function of X is h(x). Assume that h(x) is a symmetric function.
Define a random variable Z as,

Z = − ln(tanh(|X/2|)). (2.36)

Define the functions F+
h and F−

h as follows:

F+
h (z) = P(Z ≤ z,X > 0), (2.37)

F−
h (z) = P(Z ≤ z,X < 0). (2.38)

Define f+
h (z) and f−h (z) as

f+
h (z) =

d

dz

(
F+

h (z)
)
, (2.39)

f−h (z) =
d

dz

(
F−

h (z)
)
. (2.40)

In the sequel, we will use X, Z to denote the random variables, and x, z to denote
their realizations.
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Proposition 2.7.1 The function in Eqn, 2.36 is not a one-to-one mapping. There-
fore, the function is not invertible. However, there exist the following partial inverse
functions (inverse functions by restricting the domain).

X =

{ − ln tanh(Z/2), if X > 0
ln tanh(Z/2), if X < 0

(2.41)

Lemma 2.7.2 There exist the following formula for the functions f+
h (z), and f−h (z).

f+
h (z) =

h(x)

sinh(z)
=

1

sinh(z)
h(− ln tanh(z/2)), (2.42)

where z = − ln tanh(x/2), x > 0,

f−h (z) =
h(x)

sinh(z)
=

1

sinh(z)
h(ln tanh(z/2)), (2.43)

where z = − ln tanh(−x/2), x < 0.

Proof: If x > 0, z = − ln(tanh(x/2)), and we have,

x = ln

(
ez + 1

ez − 1

)
= − ln(tanh(z/2)). (2.44)

Define two variables x′ and z′, such that x′ > 0, x′, z′ are functions of each other,
and satisfy the following equations,

x′ = − ln(tanh(z′/2)), (2.45)

z′ = − ln(tanh(x′/2)). (2.46)

By the standard formula for transformations of variables,

f+
h (z) =

∣∣∣∣
(

dx′

dz′

∣∣∣∣
z′=z

)∣∣∣∣ h(x) =

∣∣∣∣
−1

sinh(z)

∣∣∣∣ h(x)

=
1

sinh(z)
h(− ln tanh(z/2)). (2.47)

Similarly, if x < 0, z = − ln(tanh(−x/2)), and we have,

x = ln

(
ez − 1

ez + 1

)
= ln(tanh(z/2)). (2.48)

23



Define two variables x′ and z′, such that x′ < 0, x′, z′ are functions of each other,
and satisfy the following equations,

x′ = ln(tanh(z′/2)), (2.49)

z′ = − ln(tanh(−x′/2)). (2.50)

By the standard formula for transformations of variables,

f−h (z) =

∣∣∣∣
(

dx′

dz′

∣∣∣∣
z′=z

)∣∣∣∣ h(x) =

∣∣∣∣
1

sinh(z)

∣∣∣∣ h(x)

=
1

sinh(z)
h(ln tanh(z/2)) (2.51)

Lemma 2.7.3 Let h(x) be a probability density function. Let the functions f+
h (z)

and f−h (z) be defined as in Eqn. 2.39, and 2.40. Then, the density function h(x) is
symmetric, if and only if, the functions f+

h (z) and f−h (z) satisfy

tanh(z/2)f+
h (z) = f−h (z), for z > 0. (2.52)

Proof: The direction ⇒:

f−h (z) =
1

sinh(z)
h(ln tanh(z/2))

(a)
=

1

sinh(z)
h(− ln tanh(z/2)) tanh(z/2)

= tanh(z/2)f+
h (z), (2.53)

where (a) follows from the fact that h(x) is a symmetric function.

The direction ⇐:

In the case that x > 0, let us define

z = − ln(tanh(|x/2|)). (2.54)
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We have

h(−x)
(a)
= f−h (z) sinh(z)

(b)
= f+

h (z) sinh(z) tanh(z/2)

(c)
= h(x) tanh(z/2)

= e−xh(x), (2.55)

where, (a) and (c) follow from Lemma 2.7.2, and (b) follows from the hypothesis.

Similarly, we can show that the h(−x) = e−xh(x), for x < 0.

Lemma 2.7.4 Let h(x), h1(x), and h2(x) be probability density functions, such that
h(x) = h1(x) ∗ h2(x), where ∗ stands for convolution. Suppose that the functions
h1(x) and h2(x) are symmetric. Then the function h(x) is also symmetric.

Proof: By the definition of convolution

h(x) =

∫ ∞

−∞
h1(x− y)h2(y)dy (2.56)

We have

h(−x) =

∫ ∞

−∞
h1(−x− y)h2(y)dy

=

∫ ∞

−∞
h1(x + y)h2(y) exp(−x− y)dy

(a)
=

∫ ∞

−∞
h1(x− z)h2(−z) exp(−x + z)dz

=

∫ ∞

−∞
h1(x− z)h2(z) exp(−z) exp(−x + z)dz

= e−x

∫ ∞

−∞
h1(x− z)h2(z)dz = e−xh(x), (2.57)

where (a) follows from the change of variable y = −z.

Lemma 2.7.5 Let x1, x2 be two independent random variables. Assume the prob-
ability density function of x1 is h1(x1), and the probability density function of x2 is
h2(x2). Define x as a random variable such that tanh(x/2) = tanh(x1/2) tanh(x2/2).
Denote the probability density function of x by h(x). If h1(x) and h2(x) are sym-
metric, then h(x) is symmetric.
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Proof: It can be checked that

f+
h (z) = f+

h1
(z) ∗ f+

h2
(z) + f−h1

(z) ∗ f−h2
(z), (2.58)

f−h (z) = f+
h1

(z) ∗ f−h2
(z) + f−h1

(z) ∗ f+
h2

(z). (2.59)

Because h1(x) and h2(x) are symmetric, we have

f−h1
(z) + f+

h1
(z) = tanh(z/2)f+

h1
(z) + f+

h1
(z) =

2ez

ez + 1
f+

h1
(z), (2.60)

f−h1
(z)− f+

h1
(z) = tanh(z/2)f+

h1
(z)− f+

h1
(z) =

−2

ez + 1
f+

h1
(z), (2.61)

f−h2
(z) + f+

h2
(z) = tanh(z/2)f+

h2
(z) + f+

h2
(z) =

2ez

ez + 1
f+

h2
(z), (2.62)

f−h2
(z)− f+

h2
(z) = tanh(z/2)f+

h2
(z)− f+

h2
(z) =

−2

ez + 1
f+

h2
(z). (2.63)

Consequently, we have,

(
f−h1

(z) + f+
h1

(z)
) ∗ (

f−h2
(z) + f+

h2
(z)

)
=

∫ ∞

−∞

2et

et + 1
f+

h1
(t)

2e(z−t)

e(z−t) + 1
f+

h2
(z − t)dt

=

∫ ∞

−∞

4ez

(et + 1)(e(z−t) + 1)
f+

h1
(t)f+

h2
(z − t)dt

= ez

∫ ∞

−∞

4f+
h1

(t)f+
h2

(z − t)

(et + 1)(e(z−t) + 1)
dt, (2.64)

(
f−h1

(z)− f+
h1

(z)
) ∗ (

f−h2
(z)− f+

h2
(z)

)
=

∫ ∞

−∞

−2

et + 1
f+

h1
(t)

−2

e(z−t) + 1
f+

h2
(z − t)dt

=

∫ ∞

−∞

4

(et + 1)(e(z−t) + 1)
f+

h1
(t)f+

h2
(z − t)dt

=

∫ ∞

−∞

4f+
h1

(t)f+
h2

(z − t)

(et + 1)(e(z−t) + 1)
dt. (2.65)

26



Note that

f+
h (z) =

1

2

(
(f−h1

(z) + f+
h2

(z)) ∗ (f−h2
(z) + f+

h2
(z)) + (f−h1

(z)− f+
h1

(z)) ∗ (f−h2
(z)− f+

h2
(z))

)

=
ez + 1

2

∫ ∞

−∞

4f+
h1

(t)f+
h2

(z − t)

(et + 1)(e(z−t) + 1)
dt, (2.66)

f−h (z) =
1

2

(
(f−h1

(z) + f+
h1

(z)) ∗ (f−h2
(z) + f+

h2
(z))− (f−h1

(z)− f+
h1

(z)) ∗ (f−h2
(z)− f+

h2
(z))

)

=
ez − 1

2

∫ ∞

−∞

4f+(t)g+(z − t)

(et + 1)(e(z−t) + 1)
dt. (2.67)

Therefore,

f−h (z) =
ez − 1

ez + 1
f+

h (z) = tanh(z/2)f+
h (z) (2.68)

The Lemma follows from Lemma 2.7.3.

Theorem 2.7.6 In the message-passing decoding, if the probability density func-
tions hl

g→x, i ≥ 1, are symmetric, and the probability density function hl
x→f is

symmetric, then the probability density functions hl+1
f→x, and hl+1

x→f are also symmet-
ric.

Proof: The theorem follows from Lemma 2.7.4, and Lemma 2.7.5.

Theorem 2.7.7 For BIAWGN channels, the probability density functions h1
g→x,

h1
x→f are symmetric. Furthermore, all density functions hl

x→f , hl
f→x, l ≥ 2, are

symmetric.

Proof: We will first show that hl
g→x, l ≥ 0, are symmetric. Let x denote the

transmitted signal, y denote the received signal, and σn denote the noise variance.
By the definition of BIAWGN channels,

P(y|x = −1) =
1√

2πσn

exp

{
−(y + 1)2

2σ2
n

}
, (2.69)

P(y|x = 1) =
1√

2πσn

exp

{
−(y − 1)2

2σ2
n

}
. (2.70)
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By the definition of log-likelihood ratios,

Λg→x = ln

(
P(y|x = −1)

P(y|x = 1)

)
=
−2y

σ2
n

. (2.71)

By the assumption that the all-zero codeword is transmitted, Λg→x is Gaussian
distributed,

hl
g→x = N

(
2/σ2

n, 4/σ
2
n

)
. (2.72)

It can be checked that the above normal distribution is symmetric.

By definition, h1
f→x = δ(x). Hence, the density function h1

x→f is symmetric and
equal to h1

g→x. The theorem follows from Theorem 2.7.6.

2.7.2 Gaussian Approximation

As mentioned earlier, the computation of the density functions hl
f→x, and hl

x→f

is in infinite dimensional spaces. The computational complexities of Monte-Carlo
approaches are too high, which make these approaches unpractical.

Density Evolution with Gaussian approximation is a reduced-complexity scheme
on approximately calculating the probability density functions. In such schemes,
the distributions hl

f→x and hl
x→f are approximated by Gaussian distributions. Since

a Gaussian distribution can be specified by its two parameters, the recursive calcula-
tion of distributions in infinite dimensional spaces can be reduced to the recursively
calculation of the distribution parameters in finite dimensional spaces.

A first thought on this problem may suggest that two parameters need to be
recursively calculated for each distribution. A careful examination shows that the
calculation on one parameter for each distribution is sufficient. This is because
the distributions are symmetric. If a Gaussian distribution h(x) = N(m,σ2) is
symmetric, then σ2 = 2m. The distribution can be uniquely determined by its
mean value.

Let us denote the mean of the log-likelihood ratios from check nodes to variables
nodes at l-th iteration by µl

c→v. For an irregular LDPC code with the left degree
sequence λ(x) =

∑
i λix

i−1 and right degree sequence ρ(x) =
∑

j ρjx
i−1. The mean

µl
c→v can be calculated recursively as follows [6],

µl+1
c→v =

dc∑
j=2

ρjφ
−1


1−

[
1−

dc∑
i=2

λiφ
(
µg→v + (i− 1)µl

c→v

)
]j−1


 , (2.73)
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where, dv and dc are the maximal left and right degrees, µg→v is the mean of the
log-likelihood ratios of messages from channel output nodes to variable nodes, and
the function φ(x) is defined as,

φ(x) =

{
1− 1√

2πx

∫∞
−∞ tanh(u

2
)e−

(u−x)2

4x du, x > 0

1, x = 0
(2.74)

2.8 Density Evolution for BECs

In the message-passing decoding for BECs, the log-likelihood ratios Λc→v and Λv→c

can only take values ∞, −∞ or 0. A message is said to be an erasure, if the corre-
sponding log-likelihood ratio is 0. Let us consider the irregular LDPC codes with the
left degree sequence λ(x) =

∑
i λix

i−1 and right degree sequence ρ(x) =
∑

j ρjx
j−1.

Let p
(l)
e,c→v (p

(l)
e,v→c) denote the probability that a message from a check node to a

variable node (a variable node to a check node) is erasure along a randomly chosen

edge during the l-th iteration. The erasure probability p
(l)
e,c→v can be calculated as,

p(l)
e,c→v =

dc∑
j=2

P(c has degree j)P
(
m(l)

c→v is erasure | the degree of c is j
)

=
dc∑

j=2

ρj

{
1− [1− p(l)

e,v→c]
j−1

}
= 1−

dc∑
j=2

ρj

[
1− p(l)

e,v→c

]j−1
. (2.75)

The erasure probability p
(l)
e,v→c can be calculated as,

p(l)
e,v→c =

dv∑
i=2

P(v has degree i)P(mv→c is erasure | the degree of v is i)

=ξ

dv∑
i=2

λi

[
p(l−1)

e,c→v

]i−1
, (2.76)

where ξ is the channel parameter.

In summary,

p(l)
e,v→c = ξ

dv∑
i=2

λi

{
1−

dc∑
j=2

ρj

[
1− p(l−1)

e,v→c

]j−1

}i−1

= ξλ
(
1− ρ

(
1− pi−1

e,v→c

))
(2.77)
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The code can be successfully decoded with high probability if and only if

ξλ (1− ρ (1− x)) < x, (2.78)

for all 0 < x ≤ ξ.

2.9 Finite-Length Analysis

Density Evolution is a very powerful asymptotic analysis method for LDPC codes.
However, the method has certain limitations. In particular, the error probabilities
of finite-length codes can not be determined by the asymptotic analysis (although
the limiting error probabilities as the block length goes to infinity can be determined
by Density Evolution).

The finite-length methods denote several recently proposed approaches on esti-
mating the error probabilities of finite-length codes. These finite-length methods
relate the error probabilities to codeword-like structures, such as stopping sets,
trapping sets, and pseudo-codewords. Therefore, error probabilities of finite-length
codes can be determined by these analysis methods. Finite-length analysis methods
are extremely powerful in dealing with error-floor problems, which will be discussed
extensively in Chapter 4.

Since the first finite-length analysis method was proposed by Di, Proietti, Telatar,
Richardson, and Urbanke [10], many similar analysis methods have been proposed
and some of them are quite involved. It is not realistic to present all these methods
in detail. We refer interested readers to [12] [27] [33] for the discussions on trap-
ping sets and pseudo-codewords; and [4] [11] [9] [21] [20] [29] for the corresponding
weight distribution calculations.

In Chapter 4, we will present a stopping set analysis of the proposed code
construction scheme. The definition of stopping sets is given as follows. More
detailed discussions will be presented in the context.

Definition: A nonempty variable node set S is called a stopping set if every check
node in the Tanner graph is not singly connected to the variable nodes in S. We
define the weight of a stopping set S to be its cardinality.
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Chapter 3

Designing LDPC Codes with Fast
Decoding Speeds

In this chapter, we consider the problem of designing LDPC codes with fast message-
passing decoding speeds. By fast decoding speeds, we mean that the bit error
probabilities drop significantly after only a small number of decoding iterations
in message-passing decoding. Such codes are desirable, because they have less
decoding computational complexities and decoding delay.

A direct approach to finding LDPC codes with fast decoding speeds is solving
a constrained optimization problem. The optimization variables are the code pa-
rameters. The objective function is the number of decoding iterations, which can
be approximately calculated by Density Evolution. The constraints include the
fixed code rate, the condition ensuring that the code can be successfully decoded,
and the valid ranges of the code parameters. However, the direct approach is diffi-
cult analytically, because the objective function is discrete and not differentiable.
All local searching based optimization algorithms fail, because local searching is
not efficient on high-dimensional discrete functions. The global optimization algo-
rithms are available only for optimization problems with certain structures, which
are unfortunately not present in our optimization problem.

In this chapter, we propose an alternative solution to the problem. We present
an asymptotic approximation to the number of decoding iterations. The asymp-
totic approximation is differentiable. The asymptotic approximation results in an
approximate optimization approach to designing codes with good decoding speed.
Instead of minimizing the number of decoding iterations directly, the approximate
optimization approach minimizes the asymptotic approximation. Numerical results
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confirm that the number of decoding iterations and its asymptotic approximation
are consistent.

One essential ingredient of proving the asymptotic approximation is the sat-
isfaction of the flatness condition. We prove that density-efficient and capacity-
approaching LDPC codes satisfy a so called flatness condition. By capacity-approaching,
we mean that the code rate is close to the channel capacity. By density-efficient, we
mean that the density of the parity-check matrix is low. In this chapter, we only
consider codes with efficiently low parity-check matrix density and low maximal
left and right degrees. The codes with high parity-check matrix density or high
maximal degrees are not practical in implementations.

The proposed asymptotic approximation provides a closed-form relation be-
tween the number of decoding iterations and the code parameters. This closed-
form relation make it possible for further in-depth discussions on decoding speeds.
Based on this closed-form relation, we investigate the conditions for the optimal
degree distributions in the sense of decoding speeds. Based on numerical obser-
vations, we conjecture that the optimal codes, in terms of decoding speeds, are
right-concentrated. Here, right-concentrated means that the degrees of check nodes
concentrate around the average right degree. Using the asymptotic approximation,
we show that the conjecture is true for certain special cases.

There is much research in the literature related to LDPC decoding complexity.
Tradeoffs between density and performance have been investigated in [13], [17],
[34], and [35]. Optimization frameworks for decoding complexity are also discussed
in [37] [41]. However, it should be noted that, in this chapter, the considered
problem is significantly different from these in the previous discussions. We consider
minimizing the number of decoding iterations as the sole design objective, which
is crucial in the target application scenarios. To our best knowledge, this problem
has not been considered previously in the literature.

The remainder of this chapter is organized as follows. In Section 3.1, we present
preliminary materials, which will be used in the later discussions in this chapter. In
Section 3.2, we discuss the flatness condition and asymptotic approximation to the
number of decoding iterations. In Section 3.3, we discuss the proposed approximate
optimization approach for finding codes with good decoding speeds. In Section 3.4,
we present numerical examples of designing codes with fast decoding speeds. In
Section 3.5, we discuss the conditions for optimal degree distributions in the sense
of decoding speeds. Some conclusions for this chapter are presented in Section 3.6.
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3.1 Preliminary

In this chapter, we consider randomly generated LDPC codes. A Richardson-
Urbanke ensemble C(λ, ρ, n) has three parameters: the left degree distribution λ(x),
the right degree distribution ρ(x), and the codeword length n. The Tanner graph
of the random code is generated by growing edges from variable and check nodes
according to the degree distributions. If the codeword length is sufficiently long,
the design code rate is

R = 1−
∫ 1

0
ρ(x)dx∫ 1

0
λ(x)dx

. (3.1)

In the case of BECs, the message erasure probability P
(l)
e after the l-th iteration

can be approximately calculated by Density Evolution as in Eqn, 2.76. Asymptot-
ically with the codeword length, the code can be successfully decoded with high
probability if and only if

ξλ(1− ρ(1− x)) < x, for any x ∈ (0, ξ]. (3.2)

Previous research has shown that LDPC codes with bounded degrees can not
achieve the channel capacity. There exists a tradeoff between the parity-check
matrix density and the achievable rate [13] [34]. In the case of BEC, Shokrollahi
[35] showed the following bound for achievable rate:

(1− ξ)a ≤ ∆R

ξ + ∆R
, (3.3)

where, a is the average right degree,

1/a =

∫ 1

0

ρ(x)dx, (3.4)

and ∆R is the gap between the achievable rate to the channel capacity. This lower
bound of the gap to the capacity decreases exponentially as the average degree
increases. In the same paper, Shokrollahi also showed that this bound is tight.
That is, there exist codes with an exponentially decreasing gap to the capacity
with respect to linearly growing average degrees.
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3.2 Flatness Condition and Asymptotic Approx-

imation to the Number of Iterations

In this section, we prove that density-efficient capacity-approaching LDPC codes
satisfy a necessary condition - the flatness condition. Based on the flatness con-
dition, we further derive an asymptotic approximation to the number of decoding
iterations.

3.2.1 Notation and Definition

Consider a BEC with channel parameter ξ. Consider a LDPC code with left degree
distribution λ(x) and right degree distribution ρ(x). Denote the average right
degree by a. Define b = 1/a. Let R denote the code rate. The gap between the
capacity and the code rate is ∆R = C − R. We define a function B(∆R, b, x) as
follows:

B(∆R, b, x) =

√
2∆R

(ξ + ∆R)(1− ξ)ρ(1− x)
. (3.5)

We define the decoding convergence time Tη to be the maximal l such that the
message erasure probability is greater than the probability level η after l decoding
iterations. For any left and right degree distributions λ(x) and ρ(x), we define

F (λ, ρ, η) ,
∫ ξ

η

dx

x− ξλ(1− ρ(1− x))
. (3.6)

Throughout Section 3.2, the derivatives are taken with respect to x.

3.2.2 Main Theorems

Let us consider a BEC with channel parameter ξ. Consider a sequence of degree
distribution pairs:

(λ1, ρ1), · · · , (λn, ρn), · · · (3.7)

where,

λn(x) =
∑

i

λnix
i−1, (3.8)
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ρn(x) =
∑

j

ρnjx
j−1, (3.9)

are respectively the left and right degree distributions satisfying the successfully
decoding condition ξλn(1 − ρn(1 − x)) < x, for all x ∈ (0, ξ]. Each pair of degree
distributions defines a code ensemble. Let an denote the average right degree for
the n-th code. Define bn = 1/an. Let Rn denote the rate of the n-th code. Let
∆Rn denote the gap between the capacity and the code rate for the n-th code,
∆Rn = C − R. Further assume that the maximal degrees of λn and ρn are upper
bounded by kvan and kcan respectively, where kv and kc are constants. Then we
have the following theorem.

Theorem 3.2.1 If bn is strictly decreasing with limn→∞ bn = 0, and ∆Rn is strictly
decreasing with

lim
n→∞

∆Rn

(bn)15
→ 0. (3.10)

Then, the derivative of ξλn(1−ρn(1−x)) with respect to x converges to 1 uniformly
with respect to x in the interval (0, ξ], as n →∞.

Proof: The proof is in Appendix 3.A.

According to this theorem, the function ξλ(1−ρ(1−x)) becomes flat as the code
rate approaches the channel capacity and the parity-check matrix density remains
sufficiently low. Based on this conclusion, we prove the following theorem, which
shows an asymptotic approximation to the decoding convergence time Tη.

Theorem 3.2.2 Let η be a fixed probability level, 0 < η < ξ. Suppose that bn is
strictly decreasing with limn→∞ bn = 0, and ∆Rn is strictly decreasing with

lim
n→∞

∆Rn

(bn)15
→ 0. (3.11)

Then, as n →∞, the ratio

F (λn, ρn, η)/Tη (3.12)

goes to 1.

Proof: The proof is in Appendix 3.B.

Remark In the above theorems, we assume that ∆Rn decrease polynomially with
respect to bn. According to Section 3.1, in the most efficient tradeoffs, ∆Rn de-
creases exponentially with respect to bn. Therefore, the conditions 3.10, 3.11 are
not stringent.
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3.3 Approximate Optimization

A brute force approach to finding the LDPC code with minimal decoding conver-
gence time Tη and a fixed gap to the capacity is solving the following constrained
optimization problem:

min Tη(λ, ρ, ξ) (3.13)

subject to

ξλ(1− ρ(1− x)) < x, for x ∈ (0, ξ] (3.14)

∫ 1

0
ρ(x)dx∫ 1

0
λ(x)dx

= 1− C + ∆R (3.15)

∑
i

λi = 1,
∑

j

ρj = 1, λi ≥ 0, and ρj ≥ 0 (3.16)

λi = 0 for all i > dv, ρj = 0 for all j > dc (3.17)

In the above, C is the channel capacity, and 0 < ∆R < C is a fixed gap to the
channel capacity. The condition in Eqn. 3.14 is the successful decoding condition.
The condition in Eqn. 3.15 imposes that the code rate is C−∆R. The constraints in
Eqn. 3.16 come from the probability nature of degree distributions. The conditions
in Eqn. 3.17 impose that the maximal left degree is at most dv, and the maximal
right degree is at most dc.

However, the above optimization problem is not tractable. The objective func-
tion Tη is not differentiable. This brings in convergence problems for optimization
algorithms. To get around these difficulties, at this point, we invoke Theorem 3.2.2
and replace Tη by F (λ, ρ, η). This yields the following approximate optimization
problem:

min F (λ, ρ, η) (3.18)

subject to

ξλ(1− ρ(1− x)) < x, for x ∈ (0, ξ] (3.19)
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∫ 1

0
ρ(x)dx∫ 1

0
λ(x)dx

= 1− C + ∆R (3.20)

∑
i

λi = 1,
∑

j

ρj = 1, λi ≥ 0, and ρj ≥ 0 (3.21)

λi = 0 for all i > dv, ρj = 0 for all j > dc (3.22)

Because of the nice numerical properties of the objective function, the approxi-
mate optimization problem can be efficiently solved by most local searching based
algorithms. We use a sequential quadratic programming algorithm [3] to solve the
optimization. Another alternative optimization algorithm with similar performance
is also adopted. In this alternative optimization algorithm, the program in Eqns.
3.18, 3.19, 3.20, 3.21, 3.22 is solved by iteratively fixing one of the degree distribu-
tions λ(x) and ρ(x) and optimizing the other degree distribution. The numerical
results will be presented in Section 3.4.

3.4 Numerical Result

In this section, we present numerical examples of designing codes with fast decoding
speeds for different rates, and channel parameters. The purpose of these numerical
examples is to confirm our theoretical discussions. In all the numerical examples,
the probability level η is chosen to be 10−3.

Example 1: We design an LDPC code for a BEC with parameter ξ = 0.48. The
code rate is 0.48. The left and right degree distributions are as follows:

λ(x) = 0.1863x + 0.4143x2 + 0.0512x8 + 0.3482x15 (3.23)

ρ(x) = 0.5330x6 + 0.4670x7 (3.24)

The function ξλ(1−ρ(1−x)) is shown in Fig. 3.1 as the solid line. The dashed line
shows the straight line y = x. The two functions are also shown in Fig. 3.2 on a
log scale. The decoding convergence time Tη is 47. The asymptotic approximation
F (λ, ρ, η) = 47.9400. As predicted by the theoretical discussions, Tη ≈ F (λ, ρ, η).
We also construct practical codes according to the designed degree distributions.
The codeword length is 32k bits (i.e., the codeword length is 32 × 1024 = 32768
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bits). The simulation results on bit erasure probabilities are shown in Fig. 3.3.
The bit erasure probabilities after different numbers of iterations are shown as the
dash-dot curve. The bit erasure probabilities approximately calculated by density
evolution are shown as the solid curve. The results show that the approximate
bit error probability calculation by density evolution is accurate. The decoding
convergence time is 44 for the practical code, which has been accurately predicted
by density evolution.
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Figure 3.1: The function ξλ(1− ρ(1− x)) in the Example 1
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Figure 3.2: The function ξλ(1− ρ(1− x)) in the Example 1
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Figure 3.3: The bit erasure probabilities in Example 1, the X-axis shows the number
of iterations, the Y -axis shows the bit erasure probabilities at each iteration.

Example 2: We design an LDPC code for the BEC with parameter ξ = 0.48. The
code rate is 0.5. The left and right degree distributions are as follows:

λ(x) = 0.2452x + 0.2982x2 + 0.1112x5 + 0.3454x15 (3.25)

ρ(x) = 0.3398x6 + 0.6602x7 (3.26)

The function ξλ(1 − ρ(1 − x)) is shown in Fig. 3.4 as the solid line. The dash
line shows the straight line y = x. The two functions are also shown in Fig.
3.5 on a log scale. The decoding convergence time Tη = 107. The asymptotic
approximation F (λ, ρ, η) = 108.7363. Tη ≈ F (λ, ρ, η). We construct practical
codes according to the above degree distributions. The codeword length is 32k
bits. The simulation results on bit erasure probabilities after different numbers of
iterations are shown in Fig. 3.6 as the dash-dot curve. The bit erasure probabilities
approximately calculated by density evolution are shown as the solid curve. The
decoding convergence time for the practical code is 100.
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Figure 3.4: The function ξλ(1− ρ(1− x)) in the Example 2
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Figure 3.5: The function ξλ(1− ρ(1− x)) in the Example 2
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Figure 3.6: The message erasure probabilities in the Example 2, the X-axis shows
the number of iterations, the Y -axis shows the message erasure probabilities at each
iteration.

Example 3: In this numerical example, we compare the code ensembles with fast
decoding speeds by the proposed approach with certain previously well-known
code ensembles. The purpose of this numerical example is to show that capacity-
approaching codes can have significantly different performance in terms of decoding
speeds. The considered channel is a BEC with channel parameter ξ = 0.46. A code
ensemble with fast decoding speeds is designed by the proposed approach. The rate
is 0.5018. The left and right degree distributions are as follows:

λ(x) = 0.1819x + 0.4101x2 + 0.0152x7 + 0.3928x15 (3.27)

ρ(x) = 0.0891x6 + 0.9109x7 (3.28)

We compare the codes designed by the proposed approach with the Heavy-
tail/Poisson code ensembles, which are previously well-known capacity-approaching
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ensembles [23] [36]. The code ensemble has rate 0.5017. The left and right degree
distributions are as follows [36] :

λ(x) =0.3014x + 0.1507x2 + 0.1005x3 + 0.0753x4 + 0.0604x5+

0.0502x6 + 0.0431x7 + 0.0377x8 + 0.0335x9 + 0.0301x10+

0.0274x11 + 0.0251x12 + 0.0232x13 + 0.0215x14 + 0.0201x15 (3.29)

ρ(x) =0.0060x + 0.0213x2 + 0.0502x3 + 0.0887x4 + 0.1255x5+

0.1479x6 + 0.1495x7 + 0.1321x8 + 0.1039x9 + 0.0735x10+

0.0472x11 + 0.0278x12 + 0.0151x13 + 0.0077x14 + 0.0036x15 (3.30)

The decoding convergence time Tη by density evolution is 47 for the code by the
proposed approach and 263 for the Heavy-tail/Poisson codes.

We construct practical codes from the two code ensembles with various block-
lengths. We depict the bit error probabilities of the codes in Figs. 3.7, 3.8, 3.9,
3.10, where the two codes in each figure have the same block length. The decod-
ing convergence times for practical codes in the code ensemble with degree dis-
tributions in Eqns 3.27 and 3.28 are approximately 40. The decoding convergence
times for practical codes in the Heavy-tail/Poisson code ensemble are approximately
120 − 160. The numerical results show that the codes by the proposed design ap-
proach have significantly faster decoding speeds compared with the codes from the
Heavy-tail/Poisson ensemble. This example shows that capacity-approaching codes
can have significantly different performance in terms of decoding speeds.

In this numerical example, the decoding convergence times for practical codes
from Heavy-tail/Poisson ensembles are not accurately predicted by the density evo-
lution approach. We believe that this is because density evolution is more accurate
for estimating bit error probabilities after a small number of decoding iterations and
less accurate for estimating bit error probabilities after a large number of decoding
iterations. In our design framework, we consider density evolution as a reliable
method for estimating bit error probabilities, because we only consider codes with
fast decoding speeds. In other words, the decoding convergence times of the codes
with fast decoding speeds can be accurately estimated by density evolution, be-
cause their bit error probabilities approach zero quickly after only small numbers
of decoding iterations.
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Figure 3.7: The bit error probabilities of two codes in Example 3, the X-axis
shows the number of iterations, the Y -axis shows the bit error probabilities at each
iteration. The blocklengths are 32k.
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Figure 3.8: The bit error probabilities of two codes in Example 3, the X-axis
shows the number of iterations, the Y -axis shows the bit error probabilities at each
iteration. The blocklengths are 16k.
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Figure 3.9: The bit error probabilities of two codes in Example 3, the X-axis
shows the number of iterations, the Y -axis shows the bit error probabilities at each
iteration. The blocklengths are 8k.
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Figure 3.10: The bit error probabilities of two codes in Example 3, the X-axis
shows the number of iterations, the Y -axis shows the bit error probabilities at each
iteration. The blocklengths are 4k.

Some more examples of designing codes with fast decoding speeds are summa-
rized in Tables 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9. For a BEC with channel
parameter ξ = 0.5, we design three code ensembles with rates 0.46, 0.47, and 0.48.
The left degree distributions are shown in Table 3.1. The right degree distributions
are shown in Table 3.2. The decoding convergence time and the asymptotic approx-
imation are shown in Table 3.3. For a BEC with channel parameter ξ = 0.75, we
design three code ensembles with rates 0.21, 0.22, and 0.23. The left degree distri-
butions are shown in Table 3.4. The right degree distributions are shown in Table
3.5. The decoding convergence time and the asymptotic approximation are shown
in Table 3.6. For a BEC with channel parameter ξ = 0.25, we design three code
ensembles with rates 0.71, 0.72, and 0.73. The left degree distributions are shown
in Table 3.7. The right degree distributions are shown in Table 3.8. The decoding
convergence time and the asymptotic approximation are shown in Table 3.9. These
numerical examples show that the asymptotic approximation is generally tight for
practical non-extremely limiting cases.
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degree rate=0.46 rate=0.47 rate=0.48
2 0.1951 0.2209 0.2307
3 0.4215 0.3683 0.3008
4 0 0 0
5 0 0 0
6 0 0 0.1422
7 0 0 0
8 0 0.0875 0
9 0 0 0
10 0.0410 0 0
11 0.0347 0 0
12 0 0 0
13 0 0 0
14 0 0 0
15 0 0 0
16 0.3076 0.3233 0.3263

Table 3.1: the left degree distributions for the design examples where ξ = 0.5.

degree rate=0.46 rate=0.47 rate=0.48
2 0 0 0
3 0 0 0
4 0 0 0
5 0 0 0
6 0 0 0
7 1 0.8462 0.8632
8 0 0.1538 0.0509
9 0 0 0
10 0 0 0
11 0 0 0
12 0 0 0
13 0 0 0
14 0 0 0
15 0 0 0
16 0 0 0.0858

Table 3.2: the right degree distributions for the design examples where ξ = 0.5.
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rate Tη F (λ, ρ, η)
rate=0.46 48 50.80
rate=0.47 67 69.63
rate=0.48 114 117.89

Table 3.3: the numbers of decoding iterations and the asymptotic approximations
for the design examples where ξ = 0.5.

degree rate=0.21 rate=0.22 rate=0.23
2 0.2762 0.1743 0.3344
3 0.4461 0.4579 0.3058
4 0 0 0
5 0 0.0601 0
6 0 0.1809 0
7 0 0 0.1252
8 0 0 0
9 0 0 0
10 0 0 0
11 0 0.1268 0
12 0 0 0
13 0.1645 0 0
14 0.1133 0 0
15 0 0 0
16 0 0 0.2346

Table 3.4: the left degree distributions for the design examples where ξ = 0.75.
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degree rate=0.21 rate=0.22 rate=0.23
2 0 0 0
3 0 0.2470 0
4 0.9585 0.5308 0.6462
5 0 0 0.3538
6 0 0 0
7 0 0 0
8 0 0 0
9 0 0 0
10 0 0 0
11 0 0 0
12 0.0219 0 0
13 0.0196 0 0
14 0 0 0
15 0 0 0
16 0 0.2222 0

Table 3.5: the right degree distributions for the design examples where ξ = 0.75.

rate Tη F (λ, ρ, η)
rate=0.21 66 69.48
rate=0.22 114 117.37
rate=0.23 147 151.63

Table 3.6: the numbers of decoding iterations and the asymptotic approximations
for the design examples where ξ = 0.75.
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degree rate=0.71 rate=0.72 rate=0.73
2 0.0847 0.1211 0.2915
3 0.5058 0.4414 0.0100
4 0 0 0.3869
5 0 0 0
6 0 0 0
7 0 0 0
8 0 0 0
9 0 0 0
10 0 0 0
11 0 0 0
12 0 0 0
13 0 0 0
14 0 0 0
15 0 0 0
16 0.4094 0.4374 0.3116

Table 3.7: the left degree distributions for the design examples where ξ = 0.25.

degree rate=0.71 rate=0.72 rate=0.73
2 0 0 0
3 0 0 0
4 0 0 0
5 0 0 0
6 0 0 0
7 0 0 0
8 0 0 0
9 0 0 0
10 0 0 0
11 0 0 0
12 0 0 0
13 0 0 0.2431
14 0.4068 0 0.5178
15 0.5932 0.7957 0.2391
16 0 0.2043 0

Table 3.8: the right degree distributions for the design examples where ξ = 0.25.
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rate Tη F (λ, ρ, η)
rate=0.71 25 26.63
rate=0.72 34 35.30
rate=0.73 87 98.46

Table 3.9: the numbers of decoding iterations and the asymptotic approximations
for the design examples where ξ = 0.25.
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3.5 Right-Concentrated Degree Distribution

In this section, we discuss the conditions for the optimal degree distributions in the
sense of convergence speeds. In the literature, majority of the previously reported
degree distributions with satisfactory performance are right-concentrated. In our
numerical experiments, we find that optimal degree distributions in the sense of
convergence speeds tend to be right-concentrated. Therefore, we conjecture that
right-concentrated degree distributions are optimal or near-optimal in the sense of
decoding convergence speeds. In this section, we show that the conjecture is true
for certain special cases.

3.5.1 Low-Erasure-Probability-Region Convergence Speed
Analysis

In practical applications, the probability level η is generally small. The number
of decoding iterations while the erasure probability is in a low erasure probability
region may constitute a large fraction of the decoding convergence time. In other
words, the decoding speed in the low erasure probability region dominates the
overall decoding speed.

We show in this section that if the average right degree is fixed, then the right-
concentrated degree distributions have optimal decoding speed in the low erasure
probability region.

Note that the relation between P
(l)
e and P

(l+1)
e can be also written as follows:

y = ρ(1− P (l)
e ) (3.31)

y = 1− λ−1(P (l+1)
e /ξ) (3.32)

where, y is an auxiliary variable. The iterative process of P
(l)
e is illustrated in

Fig. 3.11. To increase the decoding speed, we need to move the curve ρ(1 − x)
upward and the curve 1−λ−1(x/ξ) to the left. Moving the curve ρ(1−x) upward is
equivalent to making the function ρ(1−x) larger. Moving the curve 1−λ−1(x/ξ) to
the left is equivalent to making the function λ(1−x) smaller. To have fast decoding
speed in the low message erasure probability region, we need to make ρ(x) large for
x near 1 and λ(x) small for x near 0.

We need the following auxiliary lemma for proving the main theorem in this
section.
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Figure 3.11: The iteration process of erasure probabilities

Lemma 3.5.1 Let γ(x) be a degree distribution with average degree a and maximal
degree d ≥ 4. Assume γi−1 > 0 and γi+1 > 0, for 2 < i < d. Construct another
degree distribution γ̂(x) with the same average and maximal degrees as follows:

γ̂(x) =γ(x) + βxi+1 −
{

(i− 1)

2i
βxi +

(i + 1)

2i
βxi+2

}

(3.33)

where β is a sufficiently small positive real number such that γ̂(x) is well defined.
Then, we have

γ(x) < γ̂(x), for
i− 1

i + 1
< x < 1 (3.34)

γ(x) > γ̂(x), for 0 < x <
i− 1

i + 1
(3.35)

Proof: The proof is in Appendix 3.C.
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Theorem 3.5.2 Let d be a positive integer. Let x be an arbitrary real number,
x > 1− 2

d+1
. Then the degree distribution with average degree a and maximal degree

d which maximizes the function γ(x) is

γ(x) = γix
i−1 + γi+1x

i (3.36)

where i = bac is the largest integer smaller than a.

Proof: The proof is in Appendix 3.D.

The above Theorem implies that the degree distributions with fast decoding
speed at the low erasure probability region are right-concentrated.

3.5.2 Asymptotic Approximation Based Analysis

In this section, we discuss the condition for the optimal degree distributions in the
approximate constrained optimization problem in Eqns. 3.18, 3.19, 3.20, 3.21, 3.22.
We have the following theorem, which shows that the optimal degree distributions
are right-concentrated in certain special cases.

Theorem 3.5.3 Let (λ∗, ρ∗) be the solution of the constrained optimization problem
in Eqns. 3.18, 3.19, 3.20, 3.21, 3.22. Further assume that ξ ≤ 1− e−2/dc, then ρ∗j
are non-zero only for two j’s.

Proof: The proof is in Appendix 3.E.

3.6 Conclusion

In this chapter, we present a framework for designing LDPC codes with fast de-
coding speeds. Both the theoretical discussions and numerical results show that
density-efficient capacity-approaching codes satisfy the flatness condition. Asymp-
totically, the decoding convergence time Tη can be approximated by the function
F (λ, ρ, η). The asymptotic approximation is generally tight for practical scenarios.
We conjecture that the optimal degree distributions in the sense of decoding speeds
are right-concentrated. We prove that the conjecture is true for certain special
cases.

56



3.A The Proof of Theorem 3.2.1

Proof: In the proof of the theorem, we need the following technical lemmas. The
proofs of these lemmas can be found in Appendix 3.F to 3.M.

Proposition 3.A.1

ρ(1− x) ≤ (−1)[ρ(1− x)]′ ≤ kca

1− ξ
ρ(1− x), for any x ∈ (0, ξ] (3.37)

Proposition 3.A.2

[ρ(1− x)]′′ ≤ (−1)
kca

1− ξ
[ρ(1− x)]′, for any x ∈ (0, ξ]

Proof: Similar to that of Proposition 3.A.1.

Lemma 3.A.3

∫ 1

0

ρ(1− x)dx−
∫ ξ

0

[
1− λ−1(x/ξ)

]
dx =

b∆R

ξ + ∆R
(3.38)

where λ−1(·) denotes the inverse function of λ(x) throughout this chapter.

Lemma 3.A.4

1− λ−1(x/ξ)

ρ(1− x)
≥ 1−

√
kcB(∆R, b, x), for any x ∈ (0, ξ) (3.39)

Lemma 3.A.5

|[λ(1− ρ(1− x))]′′| ≤ k2
vk

2
cρ(1− x)2a4

(1− ξ)2
+

kvk
2
cρ(1− x)a3

(1− ξ)2
(3.40)
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Lemma 3.A.6 Let b5 + b2 < ξ and b5 < x < ξ − b2. Then,

[1− λ−1(x/ξ)]′

[ρ(1− x)]′
≥ 1 +

−kcb

2(1− ξ)
−

√
kcB(∆R, b, x)a2

(3.41)

[1− λ−1(x/ξ)]′

[ρ(1− x)]′
≤ 1 +

√
kcB(∆R, b, x)a5 +

kcb
4

2(1− ξ)

(
1 +

b5

1− ξ

)kca

(3.42)

Lemma 3.A.7 Let x0 ∈ (0, ξ) and x1 = ξλ(1− ρ(1− x0)). Then,

[ξλ(1− ρ(1− x0))]
′ ≤ [ρ(1− xi)]

′

[1− λ−1(xi/ξ)]′
(3.43)

for i = 0, 1.

Lemma 3.A.8 For x ∈ (0, ξ),

x− ξλ(1− ρ(1− x)) ≤
√

−2b∆R

(ξ + ∆R)[ρ(1− x)]′
(3.44)

Lemma 3.A.9 If b < (1− ξ)/kc, then

ρ(1− ξ + b2) ≤ 2kc(1− ξ)∆R

(ξ + ∆R)(1− ξ − kcb2)
(3.45)

The rest of the proof is divided into three steps.

Step I: We will define a partition of the interval (0, ξ].

For any n, we partition the interval (0, ξ] into three subintervals (0, ζ0], (ζ0, ζ1],
and (ζ1, ξ], where

ζ0 = 2b5
n (3.46)

ζ1 = 1− ρ−1
n

(
(bn)5

)
(3.47)

we claim that the partition is well-defined for sufficiently large n. That is,
ζ0 < ζ1 for sufficiently large n. Note that

ρn(1− ζ0) = ρn

(
1− 2(bn)5

)
=

kcan∑
j=2

ρnj

(
1− 2(bn)5

)j−1
(3.48)
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Lower bounding [1− 2(bn)5]
j−1

by [1− 2(bn)5]
kcan−1

, we have

ρn(1− ζ0) ≥
[
1− 2(bn)5

]kcan−1
(3.49)

This lower bound of ρn(1− ζ0) goes to 1, as n goes to infinity. Hence

ρn(1− ζ0) → 1 (3.50)

On the other hand,
ρn(1− ζ1) = (bn)5 → 0 (3.51)

Since ρn(1 − x) is a monotonously decreasing function, we conclude that ζ0 < ζ1

for sufficiently large n.

We claim that ζ1 < ξ−(bn)2 for sufficiently large n. According to Lemma 3.A.9,

ρn

(
1− ξ + (bn)2

)
= o

(
(bn)15

)
(3.52)

while by definition
ρn(1− ζ1) = (bn)5 (3.53)

Hence ζ1 < ξ − (bn)2. The claim is proven.

Step II: In this step, we show that the derivative of the function ξλn(1−ρn(1−x))
converges to 1 uniformly in the subinterval (ζ0, ζ1). That is, for any ε > 0, there
exists an N , such that for any n ≥ N , x ∈ (ζ0, ζ1),

∣∣[ξλn(1− ρn(1− x))]′ − 1
∣∣ ≤ ε. (3.54)

We will show that the function [ξλn(1− ρn(1− x))]′ is upper bounded and this
upper bound goes to 1 uniformly as n goes to infinity. According to Lemma 3.A.7,

[ξλn(1− ρn(1− x))]′ ≤ [ρn(1− x)]′

[1− λ−1
n (x/ξ)]′

(3.55)

According to lemma 3.A.6,

[1− λ−1
n (x/ξ)]′

[ρn(1− x)]′
≥ 1− kcbn

2(1− ξ)
−

√
kcB(∆Rn, bn, x)(an)2 (3.56)

Also note that
∆Rn = o

(
(bn)15

)
(3.57)

B(∆Rn, bn, x) = o
(
(bn)5

)
(3.58)
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We conclude that

[1− λ−1
n (x/ξ)]′

[ρn(1− x)]′
≥ 1 + O(bn) (3.59)

Therefore, the function [ξλn(1− ρn(1− x))]′ is upper bounded,

[ξλn(1− ρn(1− x))]′ ≤ 1

1 + O(bn)
(3.60)

This upper bound goes to 1 as n goes to infinity.

We claim that for x ∈ (ζ0, ζ1],

x− ξλn(1− ρn(1− x)) = o
(
(bn)5.5

)
(3.61)

Hence for x ∈ (ζ0, ζ1],
ξλn(1− ρn(1− x)) > (bn)5 (3.62)

for sufficiently large n. Denote ξλn(1−ρn(1−x)) by y. According to Lemma 3.A.8,

∆x = x− y ≤
√

−2bn∆Rn

(ξ + ∆Rn)[ρ(1− x)]′
(3.63)

Bounding [ρn(1− x)]′ as in Proposition 3.A.1, we have

∆x = x− y ≤
√

2bn∆Rn

(ξ + ∆Rn)[ρ(1− x)]
(3.64)

Note that
ρn(1− x) ≥ ρn(1− ζ1) = (bn)5 (3.65)

∆Rn = o
(
(bn)15

)
(3.66)

We have

∆x = o
(
(bn)5.5

)
(3.67)

Therefor for sufficiently large n,

ξλn(1− ρ(1− x)) = x−∆x ≥ ζ0 −∆x > (bn)5 (3.68)
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We will show that the function [ξλn(1− ρn(1− x))]′ is also lower bounded and
this lower bound converges to 1 as n goes to infinity. Note that

[ξλn(1− ρn(1− x))]′ =
[ρn(1− x)]′

[1− λ−1
n (y/ξ)]′

=

{
[ρn(1− y)]′

[1− λ−1
n (y/ξ)]′

}{
[ρn(1− x)]′

[ρn(1− y)]′

}
(3.69)

where y = ξλn(1 − ρn(1 − x)). For sufficiently large n, we bound the second term
as follows:

[ρn(1− x)]′

[ρn(1− y)]′
≥

(
1− x

1− y

)kcan−1

≥
(

1− x

1− x + b5.5
n

)kcan−1

(3.70)

We have the following lower bound for [ξλn(1− ρn(1− x))]′

[ξλn(1− ρn(1− x))] ≥ [ρn(1− y)]′

[1− λ−1
n (y/ξ)]′

(
1− x

1− x + b5.5
n

)kcan−1

(3.71)

Since y ≥ (bn)5, according to Lemma 3.A.6 we have,

[ρn(1− y)]′

[1− λ−1
n (y/ξ)]′

→ 1 as n →∞ (3.72)

Also (
1− x

1− x + b5.5
n

)kcan−1

→ 1 (3.73)

as n →∞. We conclude that this lower bound for [ξλn(1− ρn(1− x))]′ converges
to 1 as n goes to infinity.

From the above, we conclude that [ξλn(1−ρn(x))]′ converges to 1 uniformly for
x ∈ (ζ0, ζ1] as n goes to infinity.

Step III: In this step, we show that the function [ξλn(1 − ρn(1 − x))]′ also
converges to 1 uniformly in the subintervals (0, ζ0) and (ζ1, ξ].

For x ∈ (0, ζ0), according to Lemma 3.A.5,

|[ξλn(1− ρn(1− x))]′′| ≤ k2
vk

2
c [ρn(1− x)]2 a4

n

(1− ξ)2
+

kvk
2
cρn(1− x)a3

n

1− ξ
≤ O(a4

n) (3.74)

while the length of this interval is 2b5
n. Hence [ξλn(1 − ρn(1 − x))]′ converges to 1

uniformly for x ∈ (0, ζ0).
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For x ∈ (ζ1, ξ), according to Lemma 3.A.5,

|[ξλn(1− ρn(1− x))]′′| ≤ k2
vk

2
c [ρn(1− x)]2 a4

n

(1− ξ)2
+

kvk
2
cρn(1− x)a3

n

1− ξ
= O(b2

n); (3.75)

while the length of this interval is bounded by 1. Hence [ξλn(1− ρn(1− x))]′ also
converges to 1 uniformly in the interval (ζ2, ξ). The theorem is proven.

3.B The Proof of Theorem 3.2.2

Proof: According to Theorem 3.2.1, the derivative of ξλn(1−ρn(1−x)) converges
uniformly to 1 for x ∈ (0, ξ] as n goes to infinity. Thus, there exists an εn such that

∣∣[x− ξλn(1− ρn(1− x))]′
∣∣ ≤ εn, (3.76)

for x ∈ (0, ξ), and εn → 0 as n →∞. We define

yk+1 = ξλn(1− ρn(1− yk)) (3.77)

for k = 0, 1, 2, . . ., with y0 = ξ. Then, the decoding convergence time

Tη = max{k : yk ≥ η}. (3.78)

We can upper bound the function F (λn, ρn, η) as follows,

F (λn, ρn, η) =

∫ ξ

η

dx

x− ξλn(1− ρn(1− x))

(a)

≤
Tη+1∑

k=1

∫ yk−1

yk

dx

x− ξλn(1− ρn(1− x))

(b)
=

Tη+1∑

k=1

yk−1 − yk

ζk − ξλn(1− ρn(1− ζk))

(c)

≤
Tη+1∑

k=1

yk−1 − yk

(1− εn)(yk−1 − yk)
=

Tη + 1

(1− εn)
(3.79)

In the above inequalities, (a) follows from the fact that the integral on the right
hand side is on a larger interval; (b) follows from the Mean-Value Theorem, where
ζk is a real number between yk and yk−1. The inequality (c) holds, because
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ζk − ξλn(1− ρn(1− ζk)) can be bounded as follows by using the Mean-Value The-
orem,

ζk − ξλn(1− ρn(1− ζk)) = yk−1 − ξλn(1− ρn(1− yk−1))

+ (ζk − yk−1)
d

dx

∣∣∣∣
x=κk

[x− ξλn(1− ρn(1− x))]

= yk−1 − yk + (ζk − yk−1)
d

dx

∣∣∣∣
x=κk

[x− ξλn(1− ρn(1− x))]

≥ yk−1 − yk − (ζk − yk−1)εn

≥ (1− εn)(yk−1 − yk) (3.80)

where κk is a real number between ζk and yk−1.

Similarly, we can also lower bound the function F (λn, ρn, η) as follows,

F (λn, ρn, η) =

∫ ξ

η

dx

x− ξλn(1− ρn(1− x))

≥
Tη∑

k=1

∫ yk−1

yk

dx

x− ξλn(1− ρn(1− x))

=

Tη∑

k=1

yk−1 − yk

ζk − ξλn(1− ρn(1− ζk))

≥
Tη∑

k=1

yk−1 − yk

(1 + εn)(yk−1 − yk)
=

Tη

1 + εn

(3.81)

Combining the two equations 3.79, and 3.81, we have

1

1 + εn

≤ F (λn, ρn, η)

Tη

≤ 1

1− εn

(
1 +

1

Tη

)
(3.82)

It is easy to show that Tη →∞, as n →∞. The theorem follows.

3.C The Proof of Lemma 3.5.1

Proof: We can check that γ̂(x) is a valid degree distribution,
∑

i γ̂i = 1 and the

average degree is a,
∫ 1

0
γ̂(x) = 1/a.
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Note that i−1
i+1

and 1 are two roots of the polynomial

x− (i + 1)

2i
x2 − (i− 1)

2i
=

γ̂(x)− γ(x)

xi
(3.83)

Hence, for 0 < x < i−1
i+1

,

γ̂(x) < γ(x), (3.84)

for i−1
i+1

< x < 1,

γ̂(x) > γ(x). (3.85)

3.D The Proof of Theorem 3.5.2

Proof: We prove the theorem by contradiction. Assume that the degree distribu-
tion γ(x) is nonzero for more than three indices or is nonzero for two non-consecutive
indices. Then, either one of the following two cases happens.

Case 1: There exist three consecutive indices i − 1, i, i + 1 such that γi−1, γi,
and γi+1 are nonzero.

Note that

x > 1− 2

d + 2
>

i− 1

i + 1
(3.86)

According to Lemma 3.5.1, we can constructed another degree distribution γ̂(x)
such that γ̂(x) > γ(x). This contradict to the hypothesis that γ(x) is optimal.

Case 2: There exist positive integers i and j such that γi, γj are nonzero,
i < i + 1 < j, and γk = 0 for any k, i < k < j.

The conditions of Lemma 3.5.1 is also satisfied in this case. Define γk(x) for
each k, i < k < j, as:

γk(x) = xk−1 − (k − 1)

2k
xk−2 − (k + 1)

2k
xk (3.87)

We can find real numbers αi+1, αi+2, · · · , αj−1 such that αk > 0, for i < k < j, and
the polynomial

γ̂(x) = γ(x) +

j−1∑

k=i+1

αkγ
k(x) (3.88)
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is a valid degree distribution. For example, we can set αk = kβ, for i < k < j,
where β is an arbitrary real number. The degree distribution γ̂(x) has average right
degree a. Since γk(x) > 0 for each k, we have

γ̂(x) > γ(x) (3.89)

This contradicts to the hypothesis that γ(x) is optimal.

The theorem follows from the discussions in the two cases.

3.E The Proof of Theorem 3.5.3

Proof: The optimal ρ∗j must also be the solution to the following constrained op-
timization problem with λi being fixed and equal to λ∗i .

min

∫ ξ

η

dx

x− ξλ∗(1− ρ(1− x))
(3.90)

subject to

ξλ∗(1− ρ(1− x)) < x, for any x ∈ (0, ξ] (3.91)

∫ 1

0
ρ(x)dx∫ 1

0
λ∗(x)dx

= 1− C + ∆R (3.92)

∑
j

ρj = 1, ρj ≥ 0 (3.93)

ρj = 0, for all j > dc (3.94)

According to the Karush-Kuhn-Tucker condition [5], ρ∗j satisfy the following
equation, for all j with nonzero ρ∗j ,

∂

∂ρj

∣∣∣∣
ρ=ρ∗

F (λ∗, ρ, η) + α
∂

∂ρj

∣∣∣∣
ρ=ρ∗

[ ∫ 1

0
ρ(x)dx∫ 1

0
λ∗(x)dx

]
+ β

[
∂

∂ρj

∣∣∣∣
ρ=ρ∗

∑
j

ρj

]
= 0,

(3.95)
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where α, β are constants. This is equivalent to

j
∂

∂ρj

∣∣∣∣
ρ=ρ∗

F (λ∗, ρ, η) +
α∫ 1

0
λ∗(x)dx

+ βj = 0 (3.96)

After finding the derivative of F (λ, ρ, η), we can rewrite the above equation as
follows:

∫ ξ

η

g(x)j(1− x)j−1dx =
α∫ 1

0
λ∗(x)dx

+ βj (3.97)

where

g(x) =

ξ
∑

i

{
λ∗i (i− 1)

[
1−∑

j ρ∗j(1− x)j−1
]i−2

}

{
x− ξ

∑
i

[
λ∗i

(
1−∑

j ρ∗j(1− x)j−1
)i−1

]}2 (3.98)

It can be checked that, in the interval (0, 1 − e−2/dc ], j(1 − x)j−1 is a concave

function with respect to j. Hence
∫ ξ

η
g(x)j(1−x)j−1dx is also concave with respect

to j. There exist at most two j’s which satisfy Eqn. 3.97. The theorem follows.

3.F The proof of Proposition 3.A.1

Proof: The lower bound of (−1)[ρ(1− x)]′ follows from the fact that

(−1)[ρ(1− x)]′ =
kca∑
j=2

ρj(j − 1)(1− x)j−2

≥
kca∑
j=2

ρj(1− x)j−2

≥
kca∑
j=2

ρj(1− x)j−1 = ρ(1− x)

(3.99)
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Note that the maximal right degree is bounded by kca. The upper bound follows
from

(−1)[ρ(1− x)]′ =
kca∑
j=2

ρj(j − 1)(1− x)j−2

≤ (kca)
kca∑
j=2

ρj(1− x)j−2

≤ kca

1− x

kca∑
j=2

ρj(1− x)j−1

≤ kca

1− ξ

kca∑
j=2

ρj(1− x)j−1

=
kca

1− ξ
ρ(1− x) (3.100)

3.G The proof of Lemma 3.A.3

Proof: Using the change of variables x = 1− v, we have

∫ 1

0

ρ(1− x)dx =

∫ 1

0

ρ(v)dv = b (3.101)

Using the change of variables x = ξλ(u), we have

∫ ξ

0

λ−1(x/ξ)dx =

∫ 1

0

ξuλ′(u)du = ξ − bξ

ξ + ∆R
(3.102)

The lemma follows.

3.H The Proof of Lemma 3.A.4

Proof: Let us denote x by x0 for convenience and define

c , 1− 1− λ−1(x/ξ)

ρ(1− x)
(3.103)
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xρ(1−   )

-1
x1−λ  (   /ξ)

1x0x 10 ξ

Figure 3.12: The geometrical interpretation of x0 and x1

x1 , x0 − cρ(1− x0)

[ρ(1− x0)]′
(3.104)

The geometric meaning of x1 is shown in Fig. 3.12. The number x1 is the x
coordinate of the intersection point of the horizontal line y = 1 − λ−1(x0/ξ) and
the straight line tangent to the curve y = ρ(1− x) at the point (x0, ρ(1− x0)).

The shadowed region in Fig. 3.12 is smaller than the shadowed region in Fig.
3.13. The area of the shadowed region in Fig. 3.12 is

(−1)c2 [ρ(1− x0)]
2

2[ρ(1− x0)]′
(3.105)

The area of the shadowed region in Fig. 3.13 is

∫ 1

0

ρ(1− x)dx−
∫ ξ

0

[
1− λ−1(x/ξ)

]
dx =

b∆R

ξ + ∆R
(3.106)

Hence

c2 ≤ −2b∆R[ρ(1− x0)]
′

(ξ + ∆R) [ρ(1− x0)]
2 (3.107)
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ξ0 1

1−λ  (   /ξ)x
-1

ρ(1−   )x

Figure 3.13: The geometrical interpretation

We further bound (−1)[ρ(1 − x0)]
′ as in Proposition 3.A.1. This gives us the

following bound

c ≤
√

2kc∆R

(ξ + ∆R)(1− ξ)ρ(1− x0)
(3.108)

The lemma follows.
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3.I The Proof of Lemma 3.A.5

Proof: We can write [λ(1− ρ(1− x))]′′ as follows:

[λ(1− ρ(1− x))]′′ =


kva∑
i=3

λi(i− 1)(i− 2)

[
1−

∑
j

ρj(1− x)j−1

]i−3



[∑
j

ρj(j − 1)(1− x)j−2

]2

−

∑

i

λi(i− 1)×
[
1−

∑
j

ρj(1− x)j−1

]i−2



[
kca∑
j=3

ρj(j − 1)(j − 2)(1− x)j−3

]

(3.109)

Hence, we have the following bound:

|[λ(1− ρ(1− x))]′′| ≤


kva∑
i=3

λi(i− 1)(i− 2)

[
1−

∑
j

ρj(1− x)j−1

]i−3

×

[∑
j

ρj(j − 1)(1− x)j−2

]2

+


∑

i

λi(i− 1)×
[
1−

∑
j

ρj(1− x)j−1

]i−2

×

[
kca∑
j=3

ρj(j − 1)(j − 2)(1− x)j−3

]
(3.110)

Applying the following bounding,

(i− 1) < kva, (3.111)

(i− 2) < kva, (3.112)

(j − 1) < kca, (3.113)

(j − 2) < kca, (3.114)

70



we have

|[λ(1− ρ(1− x))]′′| ≤ k2
vk

2
ca

4×


kva∑
i=3

λi

[
1−

∑
j

ρj(1− x)j−1

]i−3



[∑
j

ρj(1− x)j−2

]2

+kvk
2
ca

3


∑

i

λi

[
1−

∑
j

ρj(1− x)j−1

]i−2

×

[
kca∑
j=3

ρj(1− x)j−3

]
(3.115)

Note that 


kva∑
i=3

λi

[
1−

∑
j

ρj(1− x)j−1

]i−3

 ≤ 1 (3.116)


∑

i

λi

[
1−

∑
j

ρj(1− x)j−1

]i−2

 ≤ 1 (3.117)

we have

|[λ(1− ρ(1− x))]′′| ≤ k2
vk

2
ca

4

[∑
j

ρj(1− x)j−2

]2

+

kvk
2
ca

3

[
kca∑
j=3

ρj(1− x)j−3

]
(3.118)

Further applying the following upper bounds for
∑

j ρj(1− x)j−2 and
∑kca

j=3 ρj(1−
x)j−3,

∑
j

ρj(1− x)j−2 =

∑
j ρj(1− x)j−1

1− x
≤ ρ(1− x)

1− ξ
, (3.119)

kca∑
j=3

ρj(1− x)j−3 ≤
∑kca

j=2 ρj(1− x)j−1

(1− x)2
≤ ρ(1− x)

(1− ξ)2
, (3.120)
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we have,

|[λ(1− ρ(1− x))]′′| ≤ k2
vk

2
cρ(1− x)2a4

(1− ξ)2
+

kvk
2
cρ(1− x)a3

(1− ξ)2
. (3.121)

3.J The Proof of Lemma 3.A.6

Proof: Let x0 ∈ (b5, ξ−b2). For all x ∈ (0, ξ), x 6= x0, we have the following Taylor
series expansion,

1− λ−1(x/ξ)− ρ(1− x) = 1− λ−1(x0/ξ)− ρ(1− x0)+{[
1− λ−1(x0/ξ)

]′ − [ρ(1− x0)]
′
}

(x− x0)+

{[
1− λ−1(ζ/ξ)

]′′ − [ρ(1− ζ)]′′
} (x− x0)

2

2
, (3.122)

where ζ is a real number between x0 and x. According to the hypotheses, ξλ(1 −
ρ(1− x)) < x. This implies 1− λ−1(x/ξ)− ρ(1− x) < 0, and

1− λ−1(x0/ξ)− ρ(1− x0)+{[
1− λ−1(x0/ξ)

]′ − [ρ(1− x0)]
′
}

(x− x0)+

{[
1− λ−1(ζ/ξ)

]′′ − [ρ(1− ζ)]′′
} (x− x0)

2

2
< 0. (3.123)

Note that [1 − λ−1(ζ/ξ)]′′ > 0. Therefore, we have the following more convenient
inequality:

1− λ−1(x0/ξ)− ρ(1− x0)+{[
1− λ−1(x0/ξ)

]′ − [ρ(1− x0)]
′
}

(x− x0)

− [ρ(1− ζ)]′′
(x− x0)

2

2
< 0. (3.124)

Setting x = x0+b2 in the above inequality and applying the fact that [ρ(1−x0)]
′ < 0,

with a little algebra, we have,
{

[1− λ−1(x0/ξ)]
′

[ρ(1− x0)]′
− 1

}
≥ b2[ρ(1− ζ)]′′

2[ρ(1− x0]′
+

[λ−1(x0/ξ) + ρ(1− x0)− 1]

b2[ρ(1− x0)]′
. (3.125)
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To prove the lower bound in the lemma, we will bound the two terms in the right
hand side of Eqn. 3.125 separately.

We bound the first term as follows. Because [ρ(1 − x)]′′ is a monotonous de-
creasing function,

[ρ(1− ζ)]′′ ≤ [ρ(1− x0)]
′′, (3.126)

which, combined with Proposition 3.A.2, implies

[ρ(1− ζ)]′′ ≤ (−1)kca

(1− ξ)
[ρ(1− x0)]

′. (3.127)

Thus, the first term in the right hand side of Eqn. 3.125 can be lower bounded as,

b2[ρ(1− ζ)]′′

2[ρ(1− x0]′
≥ −kcb

2(1− ξ)
. (3.128)

We bound the second term in the right hand side of Eqn. 3.125 as follows. The
second term in the right hand side of Eqn. 3.125 can be rewritten as,

ρ(1− x0)− 1 + λ−1(x0/ξ)

b2[ρ(1− x0)]′
=

(−a2)

{
ρ(1− x0)− 1 + λ−1(x0/ξ)

ρ(1− x0)

}{
ρ(1− x0)

(−1)[ρ(1− x0)]′

}
. (3.129)

According to Lemma 3.A.4,

ρ(1− x0)− 1 + λ−1(x0/ξ)

ρ(1− x0)
≤

√
kcB(∆R, b, x0). (3.130)

According to Proposition 3.A.1

{
ρ(1− x0)

−[ρ(1− x0)]′

}
≤ 1. (3.131)

Hence, the second term in the right hand side of Eqn. 3.125 can be lower bounded
as,

ρ(1− x0)− 1 + λ−1(x0/ξ)

[ρ(1− x0)]′b2
≥ −

√
kcB(∆R, b, x0)a

2. (3.132)

Substituting Eqns. 3.132 and 3.128 into Eqn. 3.125 gives the lower bound in
the lemma.
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In the following, we will prove the upper bound in the lemma. Setting x = x0−b5

in Eqn. 3.124, with a little algebra, we have

[1− λ−1(x0/ξ)]
′

[ρ(1− x0)]′
− 1 ≤1− λ−1(x0/ξ)− ρ(1− x0)

b5[ρ(1− x0)]′
+
−b5[ρ(1− ζ)]′′

2[ρ(1− x0)]′
. (3.133)

Due to Lemma 3.A.4 and Proposition 3.A.1, the first term at the right hand side
of Eqn. 3.133 can be bounded as,

1− λ−1(x0/ξ)− ρ(1− x0)

[ρ(1− x0)]′b5
≤a5

√
kcB(∆R, b, x)ρ(1− x0)

(−1)[ρ(1− x0)]′

≤
√

kcB(∆R, b, x)a5. (3.134)

Note that the maximal right degree is bounded by kca. Hence

[ρ(1− ζ)]′′ ≤[ρ(1− x0)]
′′
[

1− ζ

1− x0

]kca−2

≤[ρ(1− x0)]
′′
[
1− x0 + b5

1− x0

]kca−2

≤[ρ(1− x0)]
′′
[
1 +

b5

1− ξ

]kca

. (3.135)

By bounding [ρ(1− ζ)]′′ as in Proposition 3.A.2, the second term at the right hand
side of Eqn. 3.133 can be bounded by

(−1)
[ρ(1− ζ)]′′b5

2[ρ(1− x0)]′
≤ kcb

4

2(1− ξ)

(
1 +

b5

1− ξ

)kca

. (3.136)

Substituting Eqns. 3.134 and 3.136 into Eqn. 3.133 gives the upper bound in the
lemma.

3.K The Proof of Lemma 3.A.7

Proof: Notice that

[ξλ(1− ρ(1− x0))]
′ =

[ρ(1− x0)]
′

[1− λ−1(x1/ξ)]′
. (3.137)
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Because [ρ(1− x)]′ and [1− λ−1(x/ξ)]′ are monotonously increasing,

[ρ(1− x1)]
′

[1− λ−1(x1/ξ)]′
≥ [ρ(1− x0)]

′

[1− λ−1(x1/ξ)]′
, (3.138)

[ρ(1− x0)]
′

[1− λ−1(x0/ξ)]′
≥ [ρ(1− x0)]

′

[1− λ−1(x1/ξ)]′
, (3.139)

The Lemma follows.

3.L The Proof of Lemma 3.A.8

ξ0 1x x

1−λ  (   /ξ)x
-1

ρ(1−   )x

01

(x   ,y   )1 1

Figure 3.14: The geometrical interpretation of x0 and x1.

Proof: Denote x by x0 for convenience. Define

x1 = ξλ(1− ρ(1− x0)), (3.140)
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y0 = ρ(1− x0), (3.141)

y1 = y0 − (x0 − x1)[ρ(1− x0)]
′. (3.142)

The geometric meaning of x0, x1, y0, and y1 is shown in Fig. 3.14. The point
(x1, y1) is the intersection of the vertical straight line x = x1 and the straight line
tangent to the curve ρ(1− x) at the point (x0, y0).

The area of the shadowed region in Fig. 3.14 is

−1

2
[ρ(1− x0)]

′(x0 − x1)
2. (3.143)

The shadowed region in Fig. 3.14 is smaller than the shadowed region in Fig. 3.13,

−1

2
[ρ(1− x0)]

′(x0 − x1)
2 ≤ b∆R

ξ + ∆R
. (3.144)

The lemma follows.

3.M The Proof of Lemma 3.A.9

Proof: Define

x0 = ξ − b2, (3.145)

y0 = ρ(1− x0), (3.146)

x1 = x0 +
y0

(−1)[ρ(1− x0)]′
. (3.147)

Because b < (1− ξ)/kc,

x1 =x0 +
y0

(−1)[ρ(1− x0)]′
≥ x0 +

(1− ξ)y0b

kcρ(1− x0)

≥x0 +
(1− ξ)b

kc

> ξ. (3.148)

The geometric meaning of x1 is shown in Fig. 3.15. The point (x1, 0) is the
intersection of the x-axis and the straight line tangent to the curve y = ρ(1− x) at
the point (x0, y0).
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10 ξ

Figure 3.15: The geometrical interpretation of x1

The shadowed region in Fig. 3.15 is smaller than the shadowed region in Fig.
3.13. For the area of the shadowed triangle region in Fig. 3.15, the width is x1− ξ,
the height is (x1 − ξ)y0/x1 − x0, and the area is

y0(x1 − ξ)2

2(x1 − x0)
(3.149)

Because this area is monotonously increase with respect to x1, applying the bound
for x1 in Eqn. 3.148, we have the following lower bound of the area

y0b

2kc(1− ξ)
(1− ξ − kcb)

2 . (3.150)

This lower bound is less than the area of the shadowed region in Fig. 3.13

y0b

2kc(1− ξ)
(1− ξ − kcb)

2 ≤ b∆R

ξ + ∆R
. (3.151)

The lemma follows.
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Chapter 4

Constructing LDPC Codes by
2-Lifts

In this chapter, we propose a new code construction scheme based on random 2-
lifts. The motivation is to construct Low-Density Parity-Check codes with low error
floors.

All previously constructed LDPC codes exhibit error floor phenomenon under
message-passing decoding. That is, the bit error probabilities decrease very slowly
as the signal-to-noise ratio increase. The error floors are caused by small subgraphs
with certain structures in the corresponding Tanner graphs [33], [27], [10], [12]. In
the special case of BEC, the error floors are caused by small stopping sets.

In order to understand and predict the error probability performance of LDPC
codes, previous research has presented several analysis on stopping set distributions
and codeword distributions [4], [29], [20], [21], [13], [11], [9]. It has been shown
that capacity-approaching codes over BECs by the standard construction have low-
weight codewords with high probabilities [11], [9]. The contributions of low-weight
codewords to the error probabilities have also been calculated [29], [11]. For a BEC
with channel parameter ε, it has been shown that [11, Corollary 2],

E[PB] ≥ C0, E[Pb] ≥ C1

n
, (4.1)

for sufficiently large n, where

• PB denotes the block error probability,

• Pb denotes the bit error probability,
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• E[·] denotes the expectation with respect to the randomness in the code con-
struction,

• n denotes the blocklength, and

• C0, C1 are constants, C0, C1 only depend on λ(x), ρ(x) and ε.

The right hand sides of Eqn. (4.1) are the contributions of codewords with weights

less than νBPn, where νBP only depends on ε, λ(x), ρ(x) (note that codewords are
a special class of stopping sets, more precisely, supports of codewords are stopping
sets). The analysis is consistent with the previous numerical observations that
capacity-approaching codes by the standard construction have high error floors.

Based on the above analysis, it has been conjectured that capacity-approaching
and achieving low error probabilities in the error floor regions are conflicting design
objectives [11], [9]. However, to the best of our knowledge, the conjecture is neither
proved nor disproved up-to-date. Nevertheless, finding code ensembles with both
capacity-approaching performance and low error floors has both theoretical and
practical significance.

In this chapter, we propose a new LDPC code construction scheme based on a
series of random 2-lifts. The resulting code ensembles are expurgated code ensem-
bles of the standard LDPC code ensembles. We present an analysis of stopping set
distributions of the resulting codes in terms of graph expansion properties. Our
result states that low-weight stopping sets in the resulting codes are typically the
results of stopping sets with weak graph expansion properties in the base graphs.
Based on this analysis, we propose design criteria for the proposed 2-lift based
codes, such that small stopping sets are largely avoided, and as a consequence,
the resulting codes have low error floors. According to the design criteria, small
stopping sets with weak graph expansion properties should be avoided in the base
graphs. More detailed explanations will be provided in Section 4.3.

We present numerical results on proposed capacity-approaching LDPC codes
over BECs. The numerical results show that the resulting codes by the proposed
construction have significantly lower error floors compared with the codes by the
standard construction.

There are also other related previous works on constructing LDPC codes by
lifts and expansion properties of lift graphs. A code construction scheme was pro-
posed in [39], where the resulting Tanner graphs are the N -lifts of small sized
protographs. The major difference between this work and the previous works on lift
based constructions lies in the different design methodologies. More precisely, the
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main contribution of this chapter is the design criteria. For general discussions on
graph expansions, 2-lifts etc., we refer interested readers to [14], [2] and references
therein.

The error floor problem has attracted much attention previously. The previous
research on this problem mainly focused on girth-conditioning algorithms and al-
gebraic LDPC code constructions. The girth-conditioning approach constructs the
LDPC codes in a way so that the Tanner graphs do not contain short cycles, or
equivalently, the codes have high girths, where the girth of a graph is defined to be
the length of the shortest cycle in the graph. This approach is based on a heuris-
tic argument that the message-passing algorithms are exact on acyclic graphs. Its
effects on alleviating the error floor problem is empirically observed. However, the
improvement is marginal. The algebraic LDPC code construction approach brings
significant improvement in terms of error floor. However, this class of codes usually
can not come close to Shannon capacity limits. We refer interested readers to [28]
and references therein for the related discussions.

The rest of this chapter is organized as follows. In Section 4.1, we introduce
notation and backgrounds. The proposed code construction scheme is shown in
Section 4.2. In Section 4.3, we present the analysis on stopping set distributions.
Based on the analysis, a set of design criteria is presented. The proof of the main
Theorems is shown in Sections 4.4, and 4.5. We present numerical results in Section
4.6. Conclusions are given in Section 4.7.

4.1 Notation and Preliminary

We will use the following widely adopted graph-theoretical notation throughout this
chapter. Given a graph G, we use the notation G = (V,E) to denote that V is the
set of all vertices and E is the set of all edges. We use (u, v) to denote the undirected
edge between two vertices u and v. For a set of vertices S in a graph G = (V, E),
we denote the neighborhood of S by N(S), N(S) = {u : (u, v) ∈ E, v ∈ S}. We
use |S| to denote the cardinality of a set S. We say that a graph G′ = (V ′, E ′) is
a subgraph of G = (V,E) induced by V ′, if V ′ ⊂ V and E ′ is the set of edges in E
joining two vertices in V ′.

We will need the following notation on graph expansion properties in our later
discussions. Let G denote a Tanner graph.

Definition: We say that a variable node set S in G has β vertex expansion prop-
erty, if |N(S)| ≥ β|S|.
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Definition: Let S denote a variable node set in G. Let Ñ(B) denote the set of
check nodes connected to nodes in a variable node set B at least twice. We say
that S has (η, γ) uniform-edge-distribution property if for each subset B ⊂ S with
|B| ≤ η|S|, we have

|Ñ(B)| ≤ γ|B|. (4.2)

Definition: Given a graph G = (V, E), a graph Ĝ = (V̂ , Ê) is said to be an N -lift
of G if the following conditions hold.

• The vertex set V̂ is the union of N disjoint vertex sets V1, . . . , VN , where
V1, . . . , VN have the same cardinality as V . That is, V̂ = V1 ∪ · · · ∪ VN , and
|V | = |V1| = · · · = |VN |.

• There exists a covering map π : V̂ → V . That is, π is a surjective map such
that the cardinality of π−1(v) is independent of v.

• For any undirected edge (u, v) in the graph G, if a vertex u1 ∈ π−1(u) ⊂ V̂ ,
then u1 is connected to exactly one vertex in π−1(v).

We call the graph G the base graph of Ĝ. In the following, we say that a graph
Ĝ is a uniform random 2-lift of a graph G, if Ĝ is randomly chosen as one of the
2-lifts of G with equal probability.

An N -lift can also be visualized as an operation of copying-N-times and edge-
permutating. By “edge-permutating”, we mean the operation of deleting edges
(u1, v1), (u2, v2), and adding edges (u1, v2), (u2, v1), where u1, u2 are the two copies
of the same vertex u, and v1, v2 are the two copies of the same vertex v. A graph
Ĝ is an N -lift of a graph G, if Ĝ can be obtained from G by copying-N -times and
edge-permutating any number of times.

Some examples of 2-lift graphs are shown in Fig. 4.1. The 2-lifts in the sub-
graphs 4.1b, 4.1c are both the 2-lifts of the base graph in Fig. 4.1a. The 2-lift
graph in Fig. 4.1b is obtained by copying the base graph two times without any
edge permutation. The 2-lift graph in Fig. 4.1c is obtained by copying the base
graph two times and permuting one pair of edges.

We use He(x) to denote the binary entropy function with base e,

He(x) = −x loge (x)− (1− x) loge(1− x). (4.3)

Similarly, H2(x) denotes the binary entropy function with base 2. We denote the
set difference of two sets A, and B as A\B, A\B = {u|u ∈ A, u /∈ B}. Throughout
this chapter, we assume all graphs are simple graphs; that is, the graphs do not
contain loop and parallel edges.
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(a) the base graph

(b) a 2-lift without edge permutation

(c) a 2-lift with one edge permutation

Figure 4.1: Examples of N -lift
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4.2 Code Construction Scheme

We propose the following LDPC code construction scheme. A small sized Tanner
graph is first constructed by computational searching or algebraic construction.
We denote this Tanner graph by G0 and call it the protograph. The Tanner graph
of the resulting code is obtained by recursively applying the uniformly random 2-
lift procedure several times. That is, we construct a sequence of Tanner graphs
G1, . . . , Gk, . . . , GM , such that Gk is a uniform random 2-lift of Gk−1, for k =
1, . . . , M . The graph GM is the Tanner graph of the resulting code.

4.3 Stopping Set Distribution Analysis

In this section, we will present an analysis on stopping set distributions. We will
need the following notation.

• As with Section 4.2, we denote the sequence of Tanner graphs obtained in the
code construction scheme by G0, G1, . . . , GM .

• Denote the covering map from Gk to Gk−1 by πk(·).
• Denote the number of variable nodes in the protograph by n0.

• Denote the minimal weight of stopping sets in the protograph by d0. That
is, the cardinalities of all stopping sets in G0 are greater than or equal to d0,
and there exists one stopping set with cardinality d0.

• Denote the collection of stopping sets in Gk with cardinality w by A(Gk, w).

• For a stopping set S in the graph Gk, k ∈ {0, . . . , M − 1}, let B(S, θ) denote

the collection of stopping sets Ŝ in Gk+1 with |Ŝ| = (1+θ)|S|, and πk+1(Ŝ) =

S, where πk+1(Ŝ) is equal to {πk+1(u) : u ∈ Ŝ} by definition.

Proposition 4.3.1 If Ŝ is a stopping set in a 2-lift Gk, then the set S = π(Ŝ) is
a stopping set in the base graph Gk−1.

Corollary 4.3.2 The minimal weight of stopping sets in GM is greater than or
equal to d0.
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Proposition 4.3.3 Let S be a variable node set in Gk−1, and Ŝ be the variable
node set Ŝ = {u : πk(u) ∈ S} in Gk. If S is a stopping set, then Ŝ is a stopping
set in Gk.

By Proposition 4.3.1 and the linearity of expectation, we have the following
recursive formula for the expected stopping set distribution:

E [|A(Gk+1, w)||Gk] =
∑

S ′, w′,
S ′ ∈ A(Gk, w

′),
w/2 ≤ w′ ≤ w

E [|B(S ′, w/w′ − 1)||Gk] . (4.4)

As discussed in the previous sections, in order for the resulting codes to have low
error floors, E [|A(Gk+1, w)||Gk] should be minimized for small cardinalities w.
However, due to difficulties in exactly calculating the left hand side of Eqn. (4.4),
we will investigate E [|B(S ′, θ||Gk] for different types of stopping sets S ′ instead. It
is clear that a stopping set S ′ is problematic if E [|B(S ′, θ||Gk] takes large values
for θ ≈ 0, because S ′ introduces small stopping sets in the lift graph with large
probabilities.

In order to gain insights into the properties of the function E [|B(S ′, θ||Gk], it
is worthwhile to consider the following example. Let us consider a stopping set
S, such that all variable nodes in S have degree two, and the variable nodes in S
and their neighboring check nodes form a single cycle. It can be checked that for
any stopping set Ŝ in Gk+1 with πk+1(Ŝ) = S, the variable nodes in Ŝ and their
neighboring check nodes form either a single cycle or two cycles with the same
length. Hence,

E [|B(S, θ||Gk] =





1, θ = 1,
1, θ = 0,
0, otherwise.

(4.5)

The important insight we obtain from the example is that the function E [|B(S, θ||Gk]
is generally not continuous (or can be approximated by a continuous function) with
respect to θ. Therefore, it is unlikely that there exists a general analytic formula
for E [|B(S, θ||Gk]. However, we will show an insightful bound for E [|B(S, θ||Gk],
which is tight for certain special cases.

Subsequently, we say that a variable node set S has strong graph expansion
properties, if the set S satisfies the following Condition (A) with a large β and a
small γ.
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Condition A: Let β, γ, η, d be real numbers, 0 < β, 0 < η < 1, and d > 0.
We say that a set S in a Tanner graph G satisfies Condition (A) with respect to β,
γ, η, d, if the following conditions hold:

• the set S has β vertex expansion property;

• the set S has (η, γ) uniform-edge-distribution property; and

• the neighboring check nodes N(S) of S in the graph G have an average degree
less than d in the subgraph induced by S ∪N(S).

Theorem 4.3.4 Let S be a stopping set in the Tanner graph Gk. Assume that the
set S satisfies Condition (A) with respect to β, η, γ, d. Let θ be a real number such
that θ|S| is an integer, θ ≤ η. Then, the conditional expectation E [|B(S, θ)||Gk] is
upper bounded as follows.

E [|B(S, θ)||Gk] ≤ exp {[He(θ) + (1− θ) loge 2

−2(β − γθ)

(
1

2

)(βd/(β−γθ))
]
|S|

}
. (4.6)

Proof: The proof will be provided in Section 4.4.

Theorem 4.3.5 Let S be a stopping set in the Tanner graph Gk. Assume that
the set S satisfies Condition (A) with respect to β, η, γ, d. Let θ0 be a positive real
number, such that θ0 ≤ η, and for all 0 < θ ≤ θ0,

He(θ) + (1− θ) loge 2− 2(β − γθ)

(
1

2

)(βd/(β−γθ))

≤ −∆, (4.7)

where ∆ is a positive real number. Then, with high probability, there is no stopping
set Ŝ with πk+1(Ŝ) = S, |Ŝ| ≤ (1 + θ0)|S| in Gk+1, if |S| is sufficiently large.

Proof: The proof will be provided in Section 4.5.

Consider a stopping set S with strong graph expansion properties. According
to Theorem 4.3.4,

E [|B(S, θ)||Gk] ≤ exp {[He(θ) + (1− θ) loge 2

−2(β − γθ)

(
1

2

)(βd/(β−γθ))
]
|S|

}

≈ 0 (4.8)
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for small θ. According to Theorem 4.3.5, with high probability, there is no stopping
set Ŝ in Gk+1, πk+1(Ŝ) = S, with cardinality less than (1 + θ0)|S|. The above
discussion implies that stopping sets with strong graph expansion properties are
less problematic in terms of introducing low-weight stopping sets.

Based on the above discussion, we propose the following design criteria for
designing codes with low error floors:

• the protograph should have a large minimal weight of stopping sets;

• the protograph should not contain low-weight stopping sets with weak graph
expansion properties.

4.4 Proof of Theorem 4.3.4

We first consider a randomly generated variable node set Ŝ in the graph Gk+1

chosen from all variable node sets A, satisfying πk+1(A) = S, and |A| = (1 + θ)|S|
with equal probability. Let E denote the random event that the set Ŝ is a stopping
set. We can bound the probability of this random event as follows.

P{E} (a)
=

∑
G

P(Gk+1 = G)P(E|Gk+1 = G)

(b)
=

∑
G

P(Gk+1 = G)
n1(G)

n2(G)

(c)

≥
∑

G

P(Gk+1 = G)
n1(G)

exp {[He(θ) + loge(2)(1− θ)]|S|}
= exp {−|S|He(θ)− (loge 2)(1− θ)|S|}E [|B(S, θ)||Gk] (4.9)

In the above inequality, (a) follows from the total probability theorem, where G
denotes the realization of the random graph Gk+1; (b) follows from a simple counting
argument on the discrete probability space where n1(G) denotes the number of
stopping sets A in G with πk+1(A) = S, |A| = (1 + θ)|S|, and where n2(G) denotes
the number of variable node sets A in G with πk+1(A) = S, |A| = (1 + θ)|S|; (c)
follows from the fact that the number of variable node sets A, πk+1(A) = S with
cardinality (1 + θ)|S| is

( |S|
θ|S|

)
2(1−θ)|S| (4.10)
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and the Stirling approximation [8, page 284]

2nH2(k/n)

n + 1
≤

(
n

k

)
≤ 2nH2(k/n) (4.11)

Given the variable node set Ŝ, let S1 denote the set of variable nodes u in S with
π−1(u) ⊂ Ŝ. Let S0 = S\S1. It is clear that |S1| = θ|S|, |S0| = (1− θ)|S|. Let the
set C denote the set of check nodes c such that c is in N(S), and c is connected to

S1 no more than once. We further consider an arbitrary chosen check node set Ĉ in
Gk+1 such that πk+1(Ĉ) = C, |Ĉ| = |C|. It is clear that for each pair of check nodes

c1, c2 ∈ π−1
k+1(c) with c ∈ C, exactly one of c1, c2 is in Ĉ. By the assumptions,

|Ĉ| ≥ (β − γθ)|S|. (4.12)

Let mj denote the number of check nodes c ∈ Ĉ such that πk+1(c) is not con-
nected to any variable node in S1, and πk+1(c) has degree j in the subgraph induced
by variable node set S and its neighboring check node set N(S). Let nj denote the

number of check nodes c ∈ Ĉ such that πk+1(c) is connected to exactly one variable
node in S1, and πk+1(c) has degree j in the subgraph induced by variable node set
S and its neighboring check node set N(S).

The probability that the set Ŝ is a stopping set can be upper bounded as follows.

P{E}
(a)

≤
∏

j

{
1− j

(
1

2

)j
}mj∏

j

{
1−

(
1

2

)j−1
}nj

= exp

{∑
j

mj loge

[
1− j

(
1

2

)j
]}

exp

{∑
j

nj loge

[
1−

(
1

2

)j−1
]}

(b)

≤ exp

{
(−1)

∑
j

mjj

(
1

2

)j
}

exp

{
(−1)

∑
j

nj

(
1

2

)j−1
}

(c)

≤ exp

{
(−2)

∑
j

mj

(
1

2

)j
}

exp

{
(−2)

∑
j

nj

(
1

2

)j
}

(d)

≤ exp

{
(−2)

(∑
j

mj + nj

) (
1

2

)(βd/(β−γθ))
}

(e)

≤ exp

{
(−2)(β − γθ)|S|

(
1

2

)βd/(β−γθ)
}

(4.13)
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The right hand side of (a) is the probability that the check node set Ĉ does not

contain any check node that is connected to Ŝ exactly once. The inequality (b)
follows from the inequality loge(1 − x) ≤ −x, for 0 < x < 1. The inequality (c)
follows from the fact that the degree j is always greater than or equal to two. The
inequality (d) follows from the convexity of exponential functions and the fact that
the average of degree j is less than βd/(β − γθ). The inequality (e) follows from
the inequalities (4.12).

The Theorem follows from the inequalities (4.9), and (4.13).

4.5 Proof of Theorem 4.3.5

Let M denote the number of stopping sets in Gk+1, such that πk+1(Ŝ) = S, |Ŝ| ≤
(1 + θ0)|S|. Let E denote the random event that there exists a Ŝ, such that

πk+1(Ŝ) = S, |Ŝ| ≤ (1 + θ0)|S|.
According to the assumptions and Theorem 4.3.4, we have

E[M|Gk] =

i<θ0|S|∑
i=0

E [B (S, i/|S|) |Gk]

≤
i<θ0|S|∑

i=0

exp {−∆|S|}

≤ (θ0|S|+ 1) exp {−∆|S|} . (4.14)

By the Markov inequality, we have

P[E] ≤ E[M|Gk] ≤ (θ0|S|+ 1) exp {−∆|S|} . (4.15)

This upper bound of P[E] is close to one for sufficiently large |S|. The theorem
follows.

4.6 Numerical Results

In this section, we present simulation results for the proposed code construction
scheme. We construct capacity-approaching LDPC codes with varying rates, block-
lengths, and degree distributions by the proposed code construction scheme. The
protographs are obtained by exhaustive searching, such that low-weight stopping
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sets with weak graph expansion properties are avoided. We compare the codes by
the proposed construction scheme with random codes by the standard construction
and high-girth codes by the PEG construction schemes [15], [16].

We depict the block error probabilities of various LDPC codes with degree
distributions in Table 4.1 in Figs. 4.2, 4.4, 4.6. The bit error probabilities are
shown in Figs. 4.3, 4.5, 4.7. The rates of the codes are 0.5. The blocklengths are
4k bits, 8k bits, and 16k bits. The protograph is shown in Table 4.5. The degree
distributions are obtained by the numerical optimization algorithm in Chapter 3.

We depict the block error probabilities of various LDPC codes with degree
distributions in Table 4.2 in Figs. 4.8, 4.10, 4.12. The bit error probabilities are
shown in Figs. 4.9, 4.11, 4.13. The blocklengths are 4k bits, 8k bits, and 16k bits.
The degree distributions are obtained by LdpcOpt, an on-line degree distribution
optimizer for LDPC code ensembles [19]. The rates of the random codes by the
standard construction and high-girth codes are 0.5. The rates of the 2-lift based
codes are 0.4688. The code rate is slightly lower than the design rate, due to that
the coefficients of the degree distributions are rounded to integers in the protograph
construction.

We depict the block error probabilities of various LDPC codes with degree
distributions in Table 4.3 in Figs. 4.14, 4.16, 4.18. The bit error probabilities are
shown in Figs. 4.15, 4.17, 4.19. The blocklengths are 4k bits, 8k bits, and 16k bits.
The degree distributions are obtained by LdpcOpt. The rates of the random codes
by the standard construction and high-girth codes are 0.75. The rates of the 2-lift
based codes are 0.7188.

We depict the block error probabilities of various LDPC codes with degree
distributions in Table 4.4 in Figs. 4.20, 4.22, 4.24. The bit error probabilities are
shown in Figs. 4.21, 4.23, 4.25. The rates of the codes are 0.25. The blocklengths
are 4k bits, 8k bits, and 16k bits. The degree distributions are obtained by the
numerical optimization algorithm in Chapter 3.

In all the figures, the error probabilities of the codes by the proposed construc-
tion are represented by solid curves, the error probabilities of the codes by the
standard construction are represented by solid curves marked with triangles, the
error probabilities of the high-girth codes are represented by solid curves marked
with circles. Due to the numerical difficulties in accurately estimating very low
error probabilities, error probabilities for certain channel parameters are not shown
in the figures.

From the above numerical results, we can see that the capacity-approaching
codes by the standard construction have high error floors as predicted theoretically.
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The error floors can be lowered by girth-conditioning. However, the improvement is
marginal. Both the code by the standard construction and high-girth codes exhibit
high error floors. The error floors in block error probabilities are usually higher
than 10−5, and the error floors in bit error probabilities are usually higher than
10−7. On the other hand, 2-lift based codes do not exhibit any error floor higher
than 10−5 in block error probability and 10−7 in bit error probability. The codes
by the proposed construction schemes significantly outperform the other codes in
the error floor regions (in some cases, also in waterfall regions). The proposed code
construction scheme provides a promising approaching to designing LDPC codes
with very low error probabilities.

left distribution right distribution
degree coefficient degree coefficient

2 0.189633 2 0
3 0.480613 3 0
4 0 4 0
5 0 5 0
6 0 6 0
7 0 7 0.869345
8 0 8 0.130655
9 0 9 0
10 0 10 0
11 0 11 0
12 0.103197 12 0
13 0.226557 13 0
14 0 14 0
15 0 15 0
16 0 16 0

Table 4.1: The degree distributions for one code ensemble with rate 0.5. The degree
distributions are obtained by numerical optimization methods in Chapter 3.
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left distribution right distribution
degree coefficient degree coefficient

2 0.285486 2 0
3 0.313850 3 0
4 0 4 0
5 0 5 0
6 0 6 0
7 0 7 1
8 0.199606 8 0
9 0 9 0
10 0 10 0
11 0 11 0
12 0 12 0
13 0 13 0
14 0 14 0
15 0.201058 15 0
16 0 16 0

Table 4.2: The degree distributions for one code ensemble with rate 0.5. The degree
distributions are obtained by LdpcOpt [19].
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left distribution right distribution
degree coefficient degree coefficient

2 0.133279 2 0
3 0.513769 3 0
4 0 4 0
5 0 5 0
6 0 6 0
7 0 7 0
8 0 8 0
9 0 9 0
10 0 10 0
11 0 11 0
12 0.252823 12 0
13 0.100129 13 0
14 0 14 0
15 0 15 1
16 0 16 0

Table 4.3: The degree distributions for one code ensemble with rate 0.75. The
degree distributions are obtained by LdpcOpt [19].
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left distribution right distribution
degree coefficient degree coefficient

2 0.223581 2 0
3 0.422349 3 0
4 0 4 0.487896
5 0 5 0.422673
6 0 6 0
7 0 7 0
8 0.129514 8 0
9 0 9 0
10 0 10 0
11 0 11 0
12 0 12 0
13 0 13 0
14 0 14 0
15 0 15 0
16 0.224556 16 0.089431

Table 4.4: The degree distributions for one code ensemble with rate 0.25. The
degree distributions are obtained by numerical optimization methods in Chapter 3.
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


0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0
0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0
0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1
0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1
1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1
1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0
1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1
0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0
0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0
0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0
1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1
0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0
0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0
0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0
1 1 1 0 1 1 0 1 0 1 1 1 1 1 1 1
1 0 1 1 1 1 0 1 1 1 1 1 0 1 1 0
1 1 1 1 1 1 0 1 1 1 1 0 0 1 1 0
0 1 1 1 0 1 0 1 1 1 1 0 1 1 1 1




Table 4.5: The parity-check matrix corresponds to a protograph obtained by compu-
tational searching. The rows correspond to variable nodes. The columns correspond
to parity-check equations.
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Figure 4.2: Block error probabilities of various LDPC codes. The code rate is 0.5.
The block length is 16k bits. The numbers on X-axis represent varying channel
parameters. The numbers on Y -axis represent the error probabilities.
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Figure 4.3: Bit error probabilities of various LDPC codes. The code rate is 0.5.
The block length is 16k bits. The numbers on X-axis represent varying channel
parameters. The numbers on Y -axis represent the error probabilities.
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Figure 4.4: Block error probabilities of various LDPC codes. The code rate is 0.5.
The block length is 8k bits. The numbers on X-axis represent varying channel
parameters. The numbers on Y -axis represent the error probabilities.
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Figure 4.5: Bit error probabilities of various LDPC codes. The code rate is 0.5.
The block length is 8k bits. The numbers on X-axis represent varying channel
parameters. The numbers on Y -axis represent the error probabilities.
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Figure 4.6: Block error probabilities of various LDPC codes. The code rate is 0.5.
The block length is 4k bits. The numbers on X-axis represent varying channel
parameters. The numbers on Y -axis represent the error probabilities.
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Figure 4.7: Bit error probabilities of various LDPC codes. The code rate is 0.5.
The block length is 4k bits. The numbers on X-axis represent varying channel
parameters. The numbers on Y -axis represent the error probabilities.
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Figure 4.8: Block error probabilities of various LDPC codes. The code rate is 0.5.
The block length is 16k bits. The numbers on X-axis represent varying channel
parameters. The numbers on Y -axis represent the error probabilities.
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Figure 4.9: Bit error probabilities of various LDPC codes. The code rate is 0.5.
The block length is 16k bits. The numbers on X-axis represent varying channel
parameters. The numbers on Y -axis represent the error probabilities.
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Figure 4.10: Block error probabilities of various LDPC codes. The code rate is 0.5.
The block length is 8k bits. The numbers on X-axis represent varying channel
parameters. The numbers on Y -axis represent the error probabilities.
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Figure 4.11: Bit error probabilities of various LDPC codes. The code rate is 0.5.
The block length is 8k bits. The numbers on X-axis represent varying channel
parameters. The numbers on Y -axis represent the error probabilities.
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Figure 4.12: Block error probabilities of various LDPC codes. The code rate is 0.5.
The block length is 4k bits. The numbers on X-axis represent varying channel
parameters. The numbers on Y -axis represent the error probabilities.
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Figure 4.13: Bit error probabilities of various LDPC codes. The code rate is 0.5.
The block length is 4k bits. The numbers on X-axis represent varying channel
parameters. The numbers on Y -axis represent the error probabilities.

106



0.1 0.15 0.2 0.25 0.3
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

channel parameters

E
rr

or
 P

ro
ba

bi
lit

y

block error probability

 

 

code by 2−lifts
random code
high−girth code

Figure 4.14: Block error probabilities of various LDPC codes. The code rate is 0.75.
The block length is 16k bits. The numbers on X-axis represent varying channel
parameters. The numbers on Y -axis represent the error probabilities.
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Figure 4.15: Bit error probabilities of various LDPC codes. The code rate is 0.75.
The block length is 16k bits. The numbers on X-axis represent varying channel
parameters. The numbers on Y -axis represent the error probabilities.
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Figure 4.16: Block error probabilities of various LDPC codes. The code rate is 0.75.
The block length is 8k bits. The numbers on X-axis represent varying channel
parameters. The numbers on Y -axis represent the error probabilities.
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Figure 4.17: Bit error probabilities of various LDPC codes. The code rate is 0.75.
The block length is 8k bits. The numbers on X-axis represent varying channel
parameters. The numbers on Y -axis represent the error probabilities.
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Figure 4.18: Block error probabilities of various LDPC codes. The code rate is 0.75.
The block length is 4k bits. The numbers on X-axis represent varying channel
parameters. The numbers on Y -axis represent the error probabilities.
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Figure 4.19: Bit error probabilities of various LDPC codes. The code rate is 0.75.
The block length is 4k bits. The numbers on X-axis represent varying channel
parameters. The numbers on Y -axis represent the error probabilities.
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Figure 4.20: Block error probabilities of various LDPC codes. The code rate is 0.25.
The block length is 16k bits. The numbers on X-axis represent varying channel
parameters. The numbers on Y -axis represent the error probabilities.
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Figure 4.21: Bit error probabilities of various LDPC codes. The code rate is 0.25.
The block length is 16k bits. The numbers on X-axis represent varying channel
parameters. The numbers on Y -axis represent the error probabilities.
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Figure 4.22: Block error probabilities of various LDPC codes. The code rate is 0.25.
The block length is 8k bits. The numbers on X-axis represent varying channel
parameters. The numbers on Y -axis represent the error probabilities.
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Figure 4.23: Bit error probabilities of various LDPC codes. The code rate is 0.25.
The block length is 8k bits. The numbers on X-axis represent varying channel
parameters. The numbers on Y -axis represent the error probabilities.
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Figure 4.24: Block error probabilities of various LDPC codes. The code rate is 0.25.
The block length is 4k bits. The numbers on X-axis represent varying channel
parameters. The numbers on Y -axis represent the error probabilities.
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Figure 4.25: Bit error probabilities of various LDPC codes. The code rate is 0.25.
The block length is 4k bits. The numbers on X-axis represent varying channel
parameters. The numbers on Y -axis represent the error probabilities.
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4.7 Conclusion

In this chapter, we propose a new construction scheme for LDPC codes based on
a series of random 2-lifts. We propose design criteria for the resulting codes to
have low error floors. The design criteria state that stopping sets with weak graph
expansion properties should be avoided in the base graphs. Numerical results show
that the codes by the proposed construction have significantly lower error floors
compared with codes by the standard construction and the high-girth codes, while
at the same time, maintain capacity-approaching performance.
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Chapter 5

Conclusion

LDPC codes have received much attention in recent years. The advantages of
the codes include capacity-approaching performance, and highly-efficient parallel
decoding algorithms. LDPC codes are enabling technology for many new applica-
tions. However, a lot of design issues still need to be addressed, so that, optimality
in terms of many aspects are achieved.

In this thesis, we consider the problem of designing LDPC codes for real-time
multimedia communications. We investigate two code design issues: designing
LDPC codes with fast decoding speeds, and constructing LDPC codes by 2-lifts
with the motivation of designing LDPC codes with low error floors.

For the issue of designing LDPC codes with fast decoding speeds, we present
a tractable optimization framework based on an asymptotic approximation. Nu-
merical results confirm that the asymptotic approximation is tight for even non-
extremely-limiting cases. The optimized codes by the proposed approach have
significantly faster decoding speeds compared with un-optimized codes.

For the issue of constructing LDPC codes by 2-lifts, we present an analysis on
the distributions of low-weight stopping sets. Based on the analysis, design criteria
for designing codes with low error floors are presented. Numerical results confirm
that the resulting codes do not have visible error floors.
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Chapter 6

Future Research

This thesis focuses on designing LDPC code for real-time multimedia communi-
cations over packet networks. However, the proposed code design principle and
construction schemes can be further generalized to other application scenarios. In
addition, there are still many design issues needed to be addressed in the future.
Some promising future research directions are listed as follows:

• The design of LDPC codes with fast decoding speeds for other important
channel can be investigated. The asymptotic approximation for the number
of decoding iterations can be generalized to the cases of other channels. For
example, the case of binary-input memoryless symmetric channels has been
considered in [37].

• The design of 2-lift based codes with low error floors for other channels can
be investigated.

• The design of 2-lift based codes with other hardware implementation consid-
erations can be investigated. The examples of the hardware implementation
considerations include power consumption, wiring complexity etc.
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