
Design of Stream Ciphers and
Cryptographic Properties of Nonlinear

Functions

by

Yassir Nawaz

A thesis

presented to the University of Waterloo

in fulfilment of the

thesis requirement for the degree of

Doctor of Philosophy

in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2007

c©Yassir Nawaz 2007

I hereby declare that I am the sole author of this thesis. This is a true copy of the

thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Block and stream ciphers are widely used to protect the privacy of digital informa-

tion. A variety of attacks against block and stream ciphers exist; the most recent

being the algebraic attacks. These attacks reduce the cipher to a simple algebraic

system which can be solved by known algebraic techniques. These attacks have

been very successful against a variety of stream ciphers and major efforts (for ex-

ample eSTREAM project) are underway to design and analyze new stream ciphers.

These attacks have also raised some concerns about the security of popular block

ciphers. In this thesis, apart from designing new stream ciphers, we focus on ana-

lyzing popular nonlinear transformations (Boolean functions and S-boxes) used in

block and stream ciphers for various cryptographic properties, in particular their

resistance against algebraic attacks. The main contribution of this work is the de-

sign of two new stream ciphers and a thorough analysis of the algebraic immunity

of Boolean functions and S-boxes based on power mappings.

First we present WG, a family of new stream ciphers designed to obtain a

keystream with guaranteed randomness properties. We show how to obtain a math-

ematical description of a WG stream cipher for the desired randomness properties

and security level, and then how to translate this description into a practical hard-

ware design. Next we describe the design of a new RC4-like stream cipher suitable

for high speed software applications. The design is compared with original RC4

stream cipher for both security and speed.

The second part of this thesis closely examines the algebraic immunity of Boolean

functions and S-boxes based on power mappings. We derive meaningful upper

bounds on the algebraic immunity of cryptographically significant Boolean power

functions and show that for large input sizes these functions have very low al-

gebraic immunity. To analyze the algebraic immunity of S-boxes based on power

mappings, we focus on calculating the bi-affine and quadratic equations they satisfy.

We present two very efficient algorithms for this purpose and give new S-box con-

structions that guarantee zero bi-affine and quadratic equations. We also examine

these S-boxes for their resistance against linear and differential attacks and provide

iii

a list of S-boxes based on power mappings that offer high resistance against linear,

differential, and algebraic attacks. Finally we investigate the algebraic structure of

S-boxes used in AES and DES by deriving their equivalent algebraic descriptions.

iv

Acknowledgements

I would like to thank my Ph.D. supervisor, Dr. Guang Gong for her guidance

and support during this work. I have always found her to be very caring and

encouraging. I would also like to thank Dr. Alfred Menezes, Dr. Anwar Hasan,

Dr. Mark Aagard, and Dr. Andrew Klapper for their suggestions and insightful

comments that have helped immensely in improving the quality of this thesis.

This research was largely supported by Natural Sciences and Engineering Re-

search Council of Canada (NSERC) Post Graduate Doctoral Scholarship. I would

like to thank NSERC for this generous support. I would also like to thank my

fellow researchers at the Communications Security Lab, especially, Kishan Gupta,

Nam Yul Yu, Katrin Hoeper, and Xinxin Fan. I have always benefited from having

academic discussions with them.

My family has also played a significant role in my success. I would like to

thank my wife, Shahla for her understanding and support. Most of all I would like

to thank my parents, especially my father, for inspiring and actively encouraging

me to pursue a doctoral degree. I therefore dedicate this thesis to my father, Dr.

Muhammad Nawaz Chaudhry.

v

Contents

1 Introduction 1

1.1 Requirements for Cryptography . 1

1.2 Cryptographic Primitives . 2

1.2.1 Symmetric Key Encryption 2

1.2.2 Public Key Encryption . 4

1.3 Design of Stream Ciphers . 5

1.3.1 Synchronous Stream Ciphers 5

1.3.2 Self-Synchronizing Stream Ciphers 6

1.3.3 Classical Stream Cipher Designs 7

1.3.4 Standardization of Stream Ciphers 9

1.4 Design of Block Ciphers . 10

1.5 Nonlinear Transformations in Cipher Design 11

1.6 Algebraic Attacks . 12

1.6.1 Boolean Functions and Algebraic Attacks 12

1.6.2 S-Boxes and Algebraic Attacks 14

1.7 Thesis Overview . 15

2 Definitions and Preliminaries 17

2.1 Finite Fields . 17

2.2 Boolean Functions . 18

2.3 Polynomial Functions: . 20

2.4 S-Boxes . 21

2.5 Sequences . 23

vi

3 WG Stream Ciphers 27

3.1 Background . 27

3.2 WG Transformation and Stream Ciphers 29

3.2.1 WG Transformation . 29

3.2.2 Practical Stream Cipher Design 30

3.3 WG Keystream Generator Family 31

3.3.1 WG Parameter Selection . 32

3.3.2 Finding Optimal Normal Basis in F2m 34

3.3.3 Resiliency of WG Transformation 35

3.3.4 Selection of LFSR Feedback Polynomial 36

3.3.5 Achieving Desired Linear Complexity 36

3.3.6 Internal State and Degree of WG Transformation 37

3.4 Application Specific Design of WG 38

3.5 WG-128 Keystream Generator . 39

3.5.1 Implementation of WG-128 41

3.5.2 Key Initialization and Re-synchronization 42

3.5.3 Security of WG-128 . 43

3.5.4 Hardware Implementation of WG-128 45

3.5.5 Software Implementation . 46

3.6 Conclusions . 47

4 RC4-like Keystream Generator 49

4.1 Background . 49

4.2 Original RC4 . 51

4.2.1 Description of RC4 . 51

4.2.2 Previous analysis of RC4 . 52

4.3 Proposed Modification to RC4 . 53

4.3.1 Pseudo-Random Generation Algorithm 53

4.3.2 Key Scheduling Algorithm 54

4.4 Security Analysis of RC4(n,m) . 55

4.4.1 Statistical Tests on the Keystream 56

4.4.2 Security of the Key Scheduling Algorithm 56

vii

4.4.3 Internal State of RC4(n,m) 56

4.4.4 Resistance to IV Weakness 57

4.4.5 Resistance to Mantin’s Distinguishing Attack 58

4.4.6 Resistance to Paul and Preneel’s Attack 58

4.4.7 Probability of Weak States 58

4.4.8 Forward Secrecy in RC4(n,m) 59

4.4.9 Cycle Property . 59

4.4.10 Randomness of the Keystream 59

4.5 Performance of RC4(n, m) . 61

4.6 Attack on RC4(n,m) . 62

4.7 Countermeasures and Future Work 62

5 Algebraic Immunity of Boolean Functions 65

5.1 Background . 66

5.2 Algebraic Immunity AI . 68

5.3 Monomial Trace Functions and Power Mappings 68

5.4 Some Well Known Power Mappings 69

5.5 Algebraic Immunity of Monomial Trace Functions 70

5.5.1 Impact of Theorem 1 on Algebraic and Fast Algebraic Attacks 75

5.6 Inverse Exponent . 76

5.7 Kasami and Kasami-Like Exponents 78

5.8 Niho and Dobbertin Exponents . 81

5.9 Comparative Study of our AI Bound 83

5.10 Generalization to Polynomial Functions 84

5.11 AI of WG and Hyper-bent Functions 85

5.12 Conclusions . 87

6 Algebraic Immunity of S-boxes 89

6.1 Background . 90

6.2 Bi-affine and Quadratic Equations for Power Mappings 92

6.2.1 Bi-affine Equations . 96

6.2.2 Quadratic Equations . 98

viii

6.3 AI of Cryptographically Significant Power Mappings 100

6.3.1 Power Mappings with Zero Bi-affine Equations 101

6.3.2 Power Mappings with Zero Quadratic Equations 104

6.3.3 Cryptographically Strong Kasami Like Power Mappings . . . 108

6.3.4 AI of Some Well Known Power Mappings 109

6.4 Experimental Results . 110

6.5 Cryptographically Significant Power Mappings 111

6.6 Bijective Power Mappings with MaximumQuadratic Equations . . . 118

6.7 Conclusions . 118

7 Equivalent Algebraic Descriptions of S-Boxes 121

7.1 Background . 121

7.2 Equivalent Polynomial Representations of Inverse S-box 122

7.3 Trace Representation of Inverse S-box 123

7.4 Linear Complexity of Inverse Component Sequences 126

7.5 Polynomial Representation of DES S-boxes 126

7.6 Trace Representation of DES S-boxes 128

7.7 Linear Complexity of DES S-Box Component Sequences 130

7.8 Conclusions . 133

8 Conclusions and Future Work 135

8.1 Summary of Contributions . 135

8.2 Future Work . 137

Bibliography 139

ix

List of Tables

3.1 WG keystream generators and their corresponding security levels . 39

4.1 The minimum number of rounds in the key scheduling. 56

5.1 AI bounds for Inverse, Kasami and Niho functions 84

5.2 Comparison of our AI bound with experimental results from [2] . . 84

5.3 AI of WG tranformations . 86

6.1 Run distribution in the binary representation of (2i + a) 107

6.2 Run distribution in the binary representation of (2k + 1)a 107

6.3 Power mappings with zero bi-affine equations 109

6.4 Power mappings with zero quadratic equations 110

6.5 Maximally nonlinear power mappings 111

6.6 Cryptographically significant mappings 113

7.1 Equivalent polynomial representation of Inverse S-Box 123

7.2 Trace representation of Inverse S-Box 124

7.3 Equivalent trace representation of Inverse S-Box 125

7.4 Polynomial representation of DES S-Box, S1, for x6 + x + 1 127

7.5 Polynomial representation of DES S-Box, S2, for x6 + x + 1 128

7.6 Polynomial representation of DES S-Box, S3, for x6 + x + 1 128

7.7 Polynomial representation of DES S-Box, S4, for x6 + x + 1 129

7.8 Polynomial representation of DES S-Box, S5, for x6 + x + 1 129

7.9 Polynomial representation of DES S-Box, S6, for x6 + x + 1 130

7.10 Polynomial representation of DES S-Box, S7, for x6 + x + 1 130

x

7.11 Polynomial representation of DES S-Box, S8, for x6 + x + 1 131

7.12 Trace representation of DES S-Box, S1, for x6 + x5 + x4 + x + 1 . . 131

7.13 Trace representation of DES S-Box, S2, for x6 + x5 + x4 + x + 1 . . 131

7.14 Trace representation of DES S-Box, S3, for x6 + x5 + x4 + x + 1 . . 132

7.15 Trace representation of DES S-Box, S4, for x6 + x5 + x4 + x + 1 . . 132

7.16 Trace representation of DES S-Box, S5, for x6 + x5 + x4 + x + 1 . . 132

7.17 Trace representation of DES S-Box, S6, for x6 + x5 + x4 + x + 1 . . 132

7.18 Trace representation of DES S-Box, S7, for x6 + x5 + x4 + x + 1 . . 133

7.19 Trace representation of DES S-Box, S8, for x6 + x5 + x4 + x + 1 . . 133

xi

List of Figures

1.1 General structure of a block cipher 3

1.2 General structure of a stream cipher 4

1.3 Synchronous stream cipher . 5

1.4 Self-synchronous stream cipher . 6

1.5 Combination generator . 7

1.6 Filter generator . 8

1.7 Clock controlled generator . 9

1.8 Advanced Encryption Standard (AES)-128 10

1.9 Algebraic attack on filter generator 13

3.1 Block diagram of WG keystream generator 31

3.2 Implementation of WG transformation: F229 → F2 41

3.3 Key initialization phase of WG cipher 44

4.1 The KSA and PRGA in RC4. 52

4.2 The modified KSA and PRGA for RC4(n,m). 54

xii

Chapter 1

Introduction

Cryptography is the science of providing secure services. Until 1970s cryptography

was considered the domain of military and governments only. However the ubiq-

uitous use of computers and the advent of internet has made it an integral part

of our daily lives. Today cryptography is at the heart of many secure applications

such as online banking, online shopping, online government services such as filing

personal income taxes, cellular phones, and wireless LANS (Local Area Networks)

etc. In this chapter we provide an introduction to some cryptographic primitives

which are used to design secure applications.

1.1 Requirements for Cryptography

Cryptography is generally used in practice to provide four services: privacy, au-

thentication, data integrity and non-repudiation. The goal of privacy is to ensure

that communication between two parties remain secret. This often means that the

contents of the communication are secret, however in certain situations the very

fact that communication took place must be a secret as well. Encryption is gener-

ally used to provide privacy in modern communication. Authentication of one or

both parties during a communication is required to ensure that information is being

exchanged with the legitimate party. Passwords are common examples of one-way

authentication in which users authenticate themselves to gain access to a system.

1

The modern authentication procedures are much more complex where individual

devices may need to authenticate themselves to previously unknown systems or de-

vices for communication. The goal of data integrity is to ensure that the contents of

a communication between two parties have not been altered by an attacker. Hash

functions and message authentication codes are generally used to ensure integrity of

a message. Non-repudiation is used to prevent a party from denying the existence

of a communication or a contract in future.

1.2 Cryptographic Primitives

A cryptographic primitive is a specific tool used to provide a cryptographic service.

Cryptographic primitives are used according to a well designed set of protocols

to ensure the overall system security. We can divide the cryptographic primitives

in two categories: symmetric key primitives and asymmetric key primitives. The

encryption schemes used for providing privacy are similarly divided into symmetric

key encryption and asymmetric key encryption or public key encryption.

1.2.1 Symmetric Key Encryption

In symmetric key encryption a secret key is shared between the sender and the

receiver. The word ”symmetric” refers to the fact that both sender and receiver

use the same key to encrypt and decrypt the information. The secret key must be

shared over a secure channel before the communication. Two types of cryptographic

primitives are used for symmetric key encryption: block ciphers and stream ciphers.

Block Ciphers: A block cipher is a symmetric key cryptographic primitive which

takes as input an n-bit block of plaintext and a secret key and outputs an n-bit

block of ciphertext using a fixed transformation. Figure 1.1 shows the general

structure of a block cipher. The common block sizes are 64 bits, 128 bits and 256

bits. For a fixed key the block cipher defines a permutation on the n-bit input.

The building blocks of modern block ciphers are substitutions and permutations.

Substitutions are generally performed to provide nonlinearity in the output and

2

Plaintext Block

Block

Cipher

Ciphertext Block

Key

Figure 1.1: General structure of a block cipher

permutations are used to diffuse the input and the key. These substitution and

permutation operations in a cipher are repeated several times to obtain a highly

nonlinear transformation of the input bits.

The two most famous block ciphers are DES (Data Encryption Standard) [31]

and AES(Advanced Encryption Standard) [26]. DES was designed in 1970 and has

been extensively used in the past three decades. It has a block size of 64 bits and a

secret key of 56 bits. AES was standardized in 2002 to replace DES since 56 bit key

is too small for the computing power of todays computers. AES has an increased

key length of 128, 192, or 256 bits and a block size of 128 bits.

Stream Ciphers: Unlike block ciphers, which encrypt large blocks of plaintext

using a fixed transformation, stream ciphers encrypt individual digits of plaintext

using a time-varying transformation. Figure 1.2 shows the general structure of a

stream cipher. The size of the digit can vary depending on the design constraints,

application and the underlying platform. A stream cipher usually consists of a

pseudo random generator. The generator takes as input a secret key and then

generates a pseudo random sequence of digits known as the running keystream.

The keystream digits are XORed with the plaintext digits to obtain ciphertext

digits.

3

Keystream

Generator

Secret Key

Running keystream

Ciphertext
Plaintext

Figure 1.2: General structure of a stream cipher

1.2.2 Public Key Encryption

Public or asymmetric key encryption uses two different keys for encryption and

decryption. The key used for the encryption is known as the public key since

everyone has access to it. Anyone can encrypt a message using this key, however the

encrypted message can only be decrypted using the private key that corresponds to

the public key used in encryption. Therefore only the person in possession of private

key can decrypt the message. The encryption process is therefore considered to be

one-way and hard to invert unless a trap door is used. This trap door is provided

by the private key. Public key encryption is very flexible however it requires the

existence of a trusted third party that can authenticate the public keys. Moreover

public key encryption schemes are very slow when compared to symmetric key

schemes and can not be used for bulk encryption. Most practical systems use a

combination of public and private key encryption. A public key scheme is first used

for the key agreement between two parties which then switch to faster symmetric

key encryption.

4

s
i

F

f

k

z
i

x
i

y
i

Figure 1.3: Synchronous stream cipher

1.3 Design of Stream Ciphers

Stream ciphers are commonly subdivided into two categories: synchronous and self-

synchronizing stream ciphers. The theory of finite state machines can be used to

describe both categories of stream ciphers [109].

1.3.1 Synchronous Stream Ciphers

In synchronous stream ciphers the keystream is generated from the key indepen-

dently of the plaintext and the ciphertext. Figure 1.3 shows the general structure

of a synchronous stream cipher. Let xi, yi, zi and si be the plaintext digit, cipher-

text digit, keystream digit and the internal state of the cipher at time i. Then the

encryption process can be described by the following equations

si+1 = F (k, si) (1.1)

zi = f(k, si) (1.2)

yi = xi + zi (1.3)

where F is the next-state function and f is the output function. The ciphertext

is obtained by the bitwise addition of the keystream digit and the plaintext digit.

The ciphertext at the receiver is decrypted by producing the same keystream and

adding it to the ciphertext. The correct decryption requires the sender and the

5

s
i

f

s
i

f

F F

k k

x
i y

i

z
i

x
iy

i

z
i

Figure 1.4: Self-synchronous stream cipher

receiver to be perfectly synchronized. A loss of synchronization means all plaintext

digits decrypted after the loss will be in error.

1.3.2 Self-Synchronizing Stream Ciphers

In self-synchronizing stream ciphers the keystream is generated from the key as well

as a fixed number of previous ciphertext digits. Figure 1.4 shows the general struc-

ture of a self-synchronizing stream cipher. The encryption by a self-synchronous

stream cipher can be described as

si = F (yi−1, yi−2, ..., yi−v) (1.4)

zi = f(k, si) (1.5)

yi = xi + zi (1.6)

The keystream produced at time i depends on v previous ciphertext symbols.

Therefore if there is a transmission error the cipher will resynchronize after v correct

symbols.

6

LFSR 1

LFSR m

LFSR 2

.

.

.

.

f
.

.

.

z
i

Figure 1.5: Combination generator

1.3.3 Classical Stream Cipher Designs

Most practical stream ciphers are based on linear feedback shift registers (LFSRs).

An LFSR of length n is an n stage register with a linear feedback function. During

its operation contents of each storage unit are shifted to the next unit and the

output of the feedback function is fed to the last storage unit. If the feedback

function of the LFSR is primitive and its initial state is a non-zero state, then

the output sequence produced by the LFSR has the maximum period of 2n − 1.

This sequence is known as the maximum-length sequence or simply m-sequence.

The m-sequences have very good randomness properties such as maximum period,

balance, ideal n-tuple distribution, ideal run distribution and ideal autocorrelation.

These properties make them ideal for use in stream ciphers. However m-sequences

have one drawback: their low linear complexity where linear complexity refers to

the length of the shortest LFSR required to generate that sequence. Berlekamp-

Massey algorithm provides an efficient way of computing the linear complexity

of a sequence. For an m-sequence of length 2n − 1 this algorithm only requires

2n consecutive symbols to determine the feedback polynomial of the LFSR and

hence the entire sequence. Therefore in practical stream cipher designs a large

linear complexity of the keystream is obtained by a nonlinear transformation of

the LFSR output sequence. These methods of transformation define three general

design categories of stream ciphers: combination generators, filter generators and

clock controlled generators. The three types of generators are shown in Figures 1.5,

1.6, and 1.7 respectively. In combination generator the output of several LFSRs is

7

s
n-1

. s
1

s
0

f

LFSR

z
i

Figure 1.6: Filter generator

combined by a Boolean function f to produce the keystream. To produce a random

and secure keystream the Boolean function must provide high nonlinearity and

satisfy certain criteria. We will discuss these criteria in more detail in Section 1.5.

Filter generators only use a single LFSR. The keystream is generated by filtering the

contents of the LFSR by a Boolean function. The design of filter and combination

generators using pure Boolean functions involves certain tradeoffs. Some designs

avoid these tradeoffs by using filters and combiners with memory. Two famous

examples are E0 [12] and SNOW [37].

The clock controlled generators destroy the linearity of the LFSR output by

using irregular clocking. Two popular clock controlled generators are the stop-and-

go generator and shrinking generator. In stop-and-go generator two LFSRs are

used. One is clocked regularly and its output is used to clock the second LFSR.

The output of second LFSR is the output of the generator. If the output of the

first LFSR is 1, second LFSR is clocked to produce a new symbol otherwise the

previous symbol is repeated. The shrinking generator also uses 2 LFSRs. Instead of

controlling the clocking of the second LFSR, one LFSR is used to shrink the output

of the second LFSR. If the output of the first LFSR is 1 second LFSR produces

an output symbol, otherwise the output symbol is discarded. Some stream cipher

designs combine irregular clocking with a filter or a combination generator for

example LILI 128 [16,30].

Although most stream ciphers are based on LFSRs, there are some stream

8

LFSR 1 Controller

LFSR 2

z
i

Figure 1.7: Clock controlled generator

ciphers which do not use LFSR as a component. RC4 is a very famous stream

cipher which falls into this category. The internal state of the cipher consists of a

permutation of 256 elements, numbered from 0 to 255, which changes with time.

The keystream is generated by selecting an element as an output from the state

randomly. Most of these stream ciphers are word oriented i.e. output several bits

in each cycle and have been specifically designed for software applications.

1.3.4 Standardization of Stream Ciphers

Stream ciphers have been used in many information processing applications. The

three significant ones are A5/1 [16] in GSM networks, E0 [12] in bluetooth standard

and RC4 [106] in WEP (802.11 wireless LAN standard). However practical attacks

have been discovered on all three encryption schemes [73,110,49].

Two major standardization efforts that included stream ciphers were the NESSIE

(New European Schemes for Signatures, Integrity and Encryption) project [89]

and the International Standards Organization’s ISO/IEC 18033 standard. Various

cryptographic primitives including a block cipher were standardized in the NESSIE

project. However all the stream cipher proposals submitted to NESSIE were re-

jected due to the discovery of cryptanalytic attacks. The ISO/IEC 18033 standard

on the other hand selected two stream ciphers: SNOW 2.0 [38] and MUGI [114].

In 2005 a new project, eSTREAM, was launched by ECRYPT (European Net-

work of Excellence for Cryptology) [36]. This is by far the largest effort ever under-

taken to design and identify secure and efficient stream ciphers. Researchers were

9

Round 1

Message M

K

E

Y

S

C

H

E

D

U

L

I

N

G

K

k0

Round 2

Round 3

Round 10k10

k3

k2

k1

Ciphertext C

S1 S2 S3 S15 S16

Linear Transformation

k3

128-bit input

128-bit output

One round of AES-128

8 8 8

Figure 1.8: Advanced Encryption Standard (AES)-128

invited to submit stream cipher proposals in two categories: High performance

software applications and hardware applications with restricted resources. These

submissions have been subjected to rigorous cryptanalysis and have resulted in the

enhancement of our understanding of stream cipher design. The final report of the

project is expected in January 2008. The WG stream cipher presented in Chapter 3

is one of the submissions to eSTREAM project.

1.4 Design of Block Ciphers

The encryption process in block ciphers consists of transforming the data in several

rounds of operations. Each round consists of two major operations: nonlinear

transformation to add confusion and linear transformation to add diffusion to the

input bits. In addition to this block ciphers have a key scheduling algorithm which

expands a secret key into several round keys. Figure 1.8 shows the high level design

of block cipher AES-128. The cipher has a key scheduling algorithm that takes

128-bit secret key as an input and expands it into eleven 128-bit round keys. The

10

encryption part of the algorithm consists of ten rounds. All rounds are identical

except the last round which is slightly different. For more details on the design

of AES please refer to [26]. The nonlinear transformation in each round consists

of several substitution boxes (or S-boxes). The 128-bit input to each round is

first divided into 16 byte sized chunks each of which is then transformed by a

nonlinear S-box. This is followed by a linear transformation of the entire 128-bit

block followed by the addition of the round key. The S-boxes constitute the only

nonlinear transformation in the AES-128. This is true for most block ciphers.

1.5 Nonlinear Transformations in Cipher Design

Nonlinear transformations are at the heart of symmetric cipher design. The non-

linear transformations usually consist of Boolean functions and S-boxes. In some

ciphers simple processor operations are used to create a highly nonlinear transfor-

mation.

Stream Ciphers: Most shift register based stream ciphers use nonlinear Boolean

functions to filter the shift register’s output. Some word oriented design also use S-

boxes, i.e., vector Boolean functions. Others use popular bitwise operations (such as

shift, rotate, AND and XOR etc) found on modern processors to obtain a nonlinear

transformation.

Block Ciphers: Almost all block ciphers use S-boxes to introduce nonlinearity

in the input bits. In some designs S-boxes with compact algebraic representations

are used whereas in other designs they are chosen randomly according to a fixed

criteria.

Boolean Functions: The Boolean functions used in stream ciphers must satisfy

certain properties to ensure resistance against various attacks. A Boolean function

must have high algebraic degree, high nonlinearity and good correlation immunity

to prevent various types of correlation attacks. It must also have high algebraic

immunity to provide resistance against the algebraic attacks.

11

S-Boxes: S-boxes are primarily used in block ciphers and are required to provide

resistance against linear and differential cryptanalysis. As a result of the alge-

braic attacks it is desirable to have S-boxes which do not satisfy very low degree

multivariate equations involving input and output bits.

1.6 Algebraic Attacks

The concept of algebraic attacks is not new however it has only been used recently

to attack practical ciphers. The idea is to use the plaintext, ciphertext pairs and

the structure of the cipher to derive a system of linear or nonlinear equations in

terms of the unknown key. The system can then be solved to recover the key. The

feasibility of the attack depends on the size and nature of the system of equations.

Several stream ciphers with high resistance to correlation and other attacks were

successfully attacked in [20,21,75,5]. However these attacks have been less successful

against popular block ciphers and are somewhat controversial. Still these attacks

have demonstrated that most of the popular block ciphers can be easily reduced to

a system of low degree multivariate equations. The difficulty of solving such system

is not very clear at the moment. Complexity or success of algebraic attacks against

a block or stream cipher depends heavily on the nonlinear transformation(s) used

in that cipher.

1.6.1 Boolean Functions and Algebraic Attacks

The success of the algebraic attacks against many LFSR based stream ciphers is

due to the discovery by Courtois et. al, that the Boolean functions used in these

ciphers have an undesirable property: the algebraic degree of these functions can

be reduced by multiplying them with appropriate low degree functions. In order to

understand the complete attack we consider a nonlinear filter generator shown in

Figure 1.9 with a binary LFSR of length n and Boolean function of algebraic degree

d. The generator is loaded with an n bit key, k, and it produces a keystream, z. We

assume that the attacker has access to a segment of keystream z and his goal is to

recover the secret key k that was loaded in the LFSR. Since the feedback polynomial

12

k (n-bit key)

f

LFSR

z
i

Linear transformation

L

Nonlinear function

Figure 1.9: Algebraic attack on filter generator

of the LFSR is linear the state update function consists of a linear transformation

L. The contents of the LFSR are filtered by a nonlinear function f to produce the

keystream. Since L, z, and f are known, for each keystream digit zi we can write

a nonlinear equation, i.e.,

f(k) + z0 = 0

f(L(k)) + z1 = 0

f(L2(k)) + z2 = 0

· · · · · ·

(1.7)

The only unknown in the above equations is the secret key k. However this is a

system of nonlinear equations and there are no efficient techniques for solving such

systems. One solution is to first linearize the system by replacing all the monomial

terms with degree 2 or higher with new variables. This will result in a system

of linear equations which can easily be solved by algorithms such as Gaussian

Elimination. To obtain a solvable system, there must be as many equations as

the number of unknown variables. The number of monomial terms in n variables

of degree ≤ d and therefore the number of distinct variables after linearizing the

system is
∑d

i=0

(
n
i

)
. This is the complexity of the attack and for a fixed n depends

on the algebraic degree d of the Boolean function.

13

Courtois showed in [20] that this complexity can be reduced if we can find low

degree multiple of function f , i.e., if we can find a Boolean function g such that

product f×g has degree less than deg(f), where deg(f) is the degree of function f .

Consider the nonlinear equation f(Li(k)) = 0; the overall degree of the equation is

deg(f). If we multiply this equation by g we get f(Li(k))× g = 0. Since the degree

of f × g < deg(f), the overall degree of the new equation is lower than deg(f).

Therefore the newer equation has fewer monomial terms and the complexity of

solving the linearized system is reduced.

1.6.2 S-Boxes and Algebraic Attacks

The algebraic attacks against block ciphers also come from the observation that

the S-boxes used in most block ciphers have an interesting algebraic property: they

can be expressed as an overdefined system of low degree multivariate algebraic

equations. Therefore by expressing all the S-boxes in a block cipher by low degree

multivariate equations, and expressing the linear transformations as linear multi-

variate equations we can reduce the entire block cipher to a system of low degree

algebraic equations. The solution of this system recovers the secret key of the ci-

pher. For example consider block cipher AES-128 as shown in Figure 1.8. The

encryption algorithm consists of 160 identical S-boxes. Each S-box has 8 binary

inputs and 8 binary outputs and can be expressed by 23 multivariate quadratic

equations. If each binary input and output of an S-box is represented as a binary

variable, we can obtain 16 × 23 = 3680 quadratic equations in 160 × 16 = 2560

variables. Similarly there are eleven 128 bit to 128 bit linear transformation layers

in AES which give us 11×128 = 1408 linear equations. Now we have an overdefined

system of quadratic equations the solution of which recovers the key. However the

exact complexity of solving such systems of algebraic equations is not known. There

are several algorithms that have been shown to solve small systems of quadratic

equations but they are based on heuristics and it is not known how well they scale

to large systems [25, 39, 40]. Still the property that most block ciphers can easily

be reduced to a simple but large system of quadratic equations is undesirable. We

will address this issue in Chapter 6.

14

1.7 Thesis Overview

This thesis is about the design of symmetric ciphers, in particular stream ciphers,

and the analysis of the cryptographic properties of the nonlinear transformations

used in these ciphers. The thesis is organized as follows.

We begin the thesis with an introduction to symmetric cryptography and brief

review of the combinatorial objects used in the design of block and stream ciphers.

In Chapter 2 we present the definitions that will be used in this thesis. In Chapter 3

we present WG, a family of new stream ciphers designed to obtain a keystream

with guaranteed randomness properties. We review the cryptographic properties of

the WG sequences and investigate the feasibility of constructing a practical stream

cipher based on these sequences. We show how to obtain a mathematical description

of a WG stream cipher for the desired randomness properties and security level,

and then how to translate this description into a practical hardware design. We

analyze the security of our design against various attacks and list the cryptanalysis

that has been performed on WG so far.

In Chapter 4 we describe the design of a new RC4-like stream cipher suitable

for high speed software applications. The attacks on the original RC4 stream

ciphers are reviewed and its performance limitations on modern 32/64 bit processors

is examined. This is followed by a new RC4-like stream cipher proposal which

attempts to exploit the 32/64 bit architecture of the modern processors. Finally

we present the distinguishing attacks and countermeasures proposed on our design

so far.

The second part of this thesis closely examines the algebraic immunity of Boolean

functions and S-boxes based on power mappings. We begin Chapter 5 by devel-

oping techniques to analyze Boolean functions based on power mappings in finite

fields. We then use these techniques to derive meaningful upper bounds on the

algebraic immunity of cryptographically significant functions, i.e., functions based

on inverse, Kasami, Niho, and Dobbertin exponents. We show that for large input

sizes these functions have very low algebraic immunity. Finally these results are

generalized, first to monomial trace functions, and then to all polynomial functions.

In Chapter 6 we turn our attention to the algebraic immunity of S-boxes based

15

on power mappings as they are widely used in modern block ciphers such as AES.

We first develop efficient techniques to count the number of bi-affine and quadratic

equations satisfied by S-boxes based on power mappings. From these techniques we

develop two algorithms and analyze various classes of S-boxes used in the design

of block and stream ciphers. This is followed by the construction of S-boxes that

satisfy zero or very small number of quadratic equations. Finally we examine these

S-boxes for their resistance against linear and differential attacks and provide a

list of S-boxes based on power mappings that offer high resistance against linear,

differential, and algebraic attacks.

In Chapter 7 we study algebraic structure of S-boxes used in AES and DES by

deriving their equivalent algebraic descriptions. We use these descriptions to deter-

mine the number of monomials in their polynomial and trace representations, and

linear complexity of the sequences that correspond to their component functions.

We conclude this thesis in Chapter 8 by summarizing the significance of our work.

We also propose how to extend this work in future.

16

Chapter 2

Definitions and Preliminaries

In this chapter we provide definitions and necessary preliminary material that will

be used in the thesis. Most of the definitions and concepts provided in this chapter

can be found in [52,67,65].

2.1 Finite Fields

• F2 = GF (2) is the finite field with 2 elements: 0 and 1.

• F2n = GF (2n) is the extension field of GF (2) with 2n elements.

• Fn
2 is the vector space over F2 with a set of all binary n-tuples.

• Zn is the ring of integers modulo n.

Trace Function: For positive integers n and m, let m | n, then the trace function,

Trn
m(x), from F2n → F2m is defined as:

Trn
m(x) =

n/m−1∑
i=0

x2mi

, x ∈ F2n .

17

Polynomial Basis: Consider the finite field F2m and let α be a root of the primitive

polynomial that generates F2m . Then {1, α, α2, · · ·, αm−1} is a polynomial basis of

F2m over F2.

Normal Basis: Consider the finite field F2m and let γ be an element of F2m such

that {γ, γ21
, γ22

, · · ·, γ2m−1} is a basis of F2m over F2. Then {γ, γ21
, γ22

, · · ·, γ2m−1}
is a normal basis of F2m over F2.

Cyclotomic Coset: A cyclotomic coset Cs modulo 2n − 1 is defined as

Cs = {s, s · 2, · · · , s · 2ns−1},

where ns is the smallest positive integer such that s ≡ s2nsmod (2n − 1). The

subscript s is chosen as the smallest integer in Cs, and s is called the coset leader

of Cs. The computations of cosets are performed in Z2n−1, the residue integer

ring modulo (2n − 1). For example the cyclotomic cosets modulo 15 are: C0 =

{0}, C1 = {1, 2, 4, 8}, C3 = {3, 6, 12, 9}, C5 = {5, 10}, C7 = {7, 14, 13, 11}, where

{0,1,3,5,7} are coset leaders modulo 15.

Hamming Weight: The Hamming weight of an integer i is the number of nonzero

coefficients in the binary representation of i and is denoted by H(i).

2.2 Boolean Functions

We consider the domain of an n-variable Boolean function to be the vector space

(Fn
2 , +) over F2, where + is used to denote the addition operator over both F2 and

the vector space Fn
2 = {x1, x2, · · · , xn|xi ∈ F2} and n is a positive integer.

Algebraic Normal Form: Any Boolean function has a unique representation as

a multivariate polynomial over F2, called the algebraic normal form (ANF),

h(x1, . . . , xn) = a0 +
∑

1≤i≤n

aixi +
∑

1≤i<j≤n

ai,jxixj + . . . + a1,2,...,nx1x2 . . . xn,

18

where the coefficients a0, ai, ai,j, . . . , a1,2,...,n ∈ F2.

Algebraic Degree: The algebraic degree, deg(h), of a Boolean function h is the

number of variables in the highest order term with non zero coefficient.

Affine Function: An n variable function l is called affine if it is of the form

l(x1, . . . , xn) = a0 +
∑

1≤i≤n aixi where the coefficients a0, ai ∈ F2. If a0 = 0, the

function is called linear.

Walsh Transform: The Walsh transform (WT) of an n-variable Boolean function

h is an integer valued function Wh : {0, 1}n → [−2n, 2n] defined by (see [67, page

414])

Wh(u) =
∑

w∈Fn
2

(−1)h(w)⊕〈u,w〉, u ∈ Fn
2 . (2.1)

{Wh(u)|u ∈ Fn
2} is called the spectrum of h. Note that Walsh transform of h(x) is

actually the Fourier transform of (−1)h(x).

Nonlinearity: Nonlinearity of a Boolean function h measures the distance of the

Boolean function from the set of all affine functions. The nonlinearity nl(h) of an

n-variable Boolean function h, can be written as

nl(h) = 2n−1 − 1

2
max
u∈Fn

2

|Wh(u)|.

Boolean functions used in stream ciphers must have high nonlinearity. A high

nonlinearity weakens the correlation between the input and output and prevents

the attacker from using using linear approximations of the function.

Correlation Immunity: Let X1, X2, ..., Xn be independent binary random vari-

ables with equal probability of 0 and 1. A Boolean function h(x1, x2, ..., xn) is said

to be t-th order correlation immune, if for each subset of t variables Xi1 , Xi2 , ..., Xit

with 1 ≤ i1 ≤ i2 · · · ≤ it ≤ n, the random variable Z = h(X1, X2, ..., Xn) is sta-

tistically independent of the random vector (Xi1 , Xi2 , ..., Xit). A Boolean function

19

which is t-th order correlation immune and is also balanced is called t-th resilient.

The Boolean function used in a nonlinear combiner must have high correlation

immunity. If the combiner function is not correlation immune then the attacker

can find correlations between the keystream and the contents of one of the LFSRs.

This allows the attacker to mount a divide and conquer attack in which internal

state of each LFSR is recovered independent of the other LFSRs.

2.3 Polynomial Functions:

Any non-zero polynomial function f : F2n → F2, can be represented as a sum of

trace functions [52, page 178]:

f(x) =
∑

k∈Γ(n)

Trnk
1 (Akx

k) + A2n−1x
2n−1, Ak ∈ F2nk , A2n−1 ∈ F2,

where Γ(n) is the set consisting of all coset leaders modulo 2n − 1, nk is the size of

the coset Ck, and Trnk
1 (x) is the trace function from F2nk → F2. If f(x) is balanced,

we have [52]

f(x) =
∑

k∈Γ(n)

Trnk
1 (Akx

k), Ak ∈ F2nk , x ∈ F2n . (2.2)

Algebraic Degree: The algebraic degree of a polynomial function, f , denoted by

deg(f), is given by the largest w such that Ak 6= 0 and H(k) = w.

Correspondence Between Boolean and Polynomial Functions: There is

a natural correspondence between Boolean functions h and polynomial functions

f [52, page 334]. Let {α0, . . . , αn−1} be a basis for F2n , then this correspondence is

given by:

h(x0, . . . , xn−1) = f(x), x =
n−1∑
i=0

xiαi, xi ∈ F2.

Monomial Function: A monomial or single trace term function is a function from

F2n → F2 that can be represented by a single trace term, f(x) = Trn
1 (βxt) where

20

β ∈ F2n and t is the coset leader of Ct.

Discrete Fourier Transform [52] : For f : F2n → F2, the Discrete Fourier

Transform (DFT) of f is defined as

Ak =
∑

x∈F∗2n

[f(x) + f(0)]x−k, k = 0, 1, . . . , 2n − 1.

The sequence (A)=Ak is also called the spectral sequence. The inverse DFT formula

is given as :

f(x) =
2n−1∑

k=0

Akx
k, x ∈ F∗2n .

Therefore given the output of the function f we can compute its polynomial repre-

sentation.

2.4 S-Boxes

An (n,m) S-box (or vector Boolean function) is a map F : Fn
2 → Fm

2 and has

component Boolean functions f1, · · · , fm.

Algebraic Degree: We define the degree of an (n,m) S-box, F , to be the minimum

of the degrees of all non zero linear combinations of its component functions.

Nonlinearity: Nonlinearity of an (n, m) S-box is defined as the minimum nonlin-

earity of all the non zero linear combinations of its component functions.

An S-box used in a block cipher must have high nonlinearity to prevent linear

cryptanalysis. In linear cryptanalysis an attacker exploits the probabilistic linear

relations between the input and output of an S-box. If the nonlinearity of an S-

box is low then these relations hold with high probability which leads to linear

approximation of the cipher that is used to recover the secret key. On the other

hand an S-box with high nonlinearity weakens these probabilistic relations and

make linear cryptanalysis very hard.

21

Maximally Nonlinear: Let F2n be the finite field with 2n elements. Consider a

mapping F : F2n → F2n . If n is odd F is called maximally nonlinear [34] if the

Walsh spectra of all nonzero linear combinations of its component functions have

precisely 3 values {0,±2
n+1

2 }. If n is even then it is conjectured [34] that maximum

achievable nonlinearity by F is 2n−1− 2
n
2 . If F achieves this nonlinearity then it is

called maximally nonlinear.

Differentially k-Uniform: A mapping F : F2n → F2n is called differentially k-

uniform [95] if each equation

F (x + a)− F (x) = b, where a ∈ F2n , a 6= 0, b ∈ F2n ,

has at most k solutions in F2n .

For a differentially k-uniform S-box used in a block cipher, k must be low to ensure

resistance against differential cryptanalysis. Differential cryptanalysis exploits the

scenario where a particular input difference to an S-box leads to a particular output

difference with high probability. It is clear from the definition above that if k is high

such a difference will always exist. Note that k is always even and the minimum

value of k is 2.

Almost Perfect Nonlinear (APN): F is called almost perfect nonlinear (APN)

if it is differentially 2-uniform. [34]. It is known that if n is odd and F is maximally

nonlinear then F is APN [17].

Lagrange Interpolation: F can be represented in the polynomial form as

F (x) =
2n−1∑
i=0

bix
i, bi ∈ F2n .

Given the evaluation of F (i) at all the 2n inputs where i = 0, 1, · · · , 2n−1, its poly-

nomial representation can be computed by computing the polynomial coefficients

bi using the following lagrange interpolation formula [52]:

22

bi =

{
F (0), i = 0∑

α∈F2n
F (α)α−i, 1 ≤ i ≤ 2n − 1

The above formula only holds if F (0) = 0. If F (0) 6= 0 then we can represent the

function in polynomial form as F (x) =
∑2n−1

i=0 dix
i, where the coefficients di are

gives as

di =





F (0), i = 0∑
α∈F2n

F (α)α−i, 0 < i < 2n − 1

b2n−1 + F (0), i = 2n − 1

2.5 Sequences

Binary Sequence: a = {ai}, ai ∈ F2, is a binary sequence over F2.

Periodic Sequences and Polynomial Functions: Let S be the set of all binary

sequences with period N | (2n − 1) and F be the set of all polynomial functions

from F2n to F2. Then for any sequence a = {ai} ∈ S there exists a polynomial

function f(x) in F such that

ai = f(αi), i = 0, 1, 2, · · · ,

where α is the primitive element of F2n . Note that f(x) is called the trace repre-

sentation of a.

m-sequence: If f(x) is a single trace term function with exponent t relatively

prime to n, then its corresponding sequence is called an m-sequence, i.e.,

a = Trn
1 (βαi) i = 0, 1, 2, · · · , β ∈ F∗2n .

Note that m-sequence has period 2n− 1 and is generated by an n stage LFSR with

a primitive feedback polynomial and a non-zero initial state.

23

Autocorrelation of Binary Sequences: Let a be a periodic binary sequence

with period N , then the autocorrelation function of of a is defined as

Ca(τ) =
N−1∑
i=0

(−1)ai+ai+τ , 0 ≤ τ ≤ N − 1

If the autocorrelation function of the sequence a is

Ca(τ) =

{
N, if τ ≡ 0 mod N

−1, otherwise

then a is said to have ideal two-level autocorrelation.

From a cryptographic view point two-level autocorrelation ensures that the attacker

can not find correlations between shifted versions of the same keystream. The def-

inition given above is for periodic autocorrelation however in a stream cipher the

length of the keystream used is only a fraction of the total period. In that situation

the attacker can only compute aperiodic autocorrelation. Analyzing aperiodic au-

tocorrelation is a hard problem and it is believed that sequences with good periodic

autocorrelation also have good aperiodic autocorrelation.

Orthogonal Functions: Let f(x) be a polynomial function from F2n to F2 with

f(0)=0. If we have

Cf (λ) =
∑

x∈F2n

(−1)f(λx)+f(x) =

{
0, if λ 6= 1

2n, if λ = 1

where λ ∈ F2n , then we say that f(x) is orthogonal over F. If f(x) is the trace rep-

resentation of a binary sequence a of period 2n−1 and Ca(τ) is the autocorrelation

function of a then Cf (λ) and Ca(τ) are related as follows

Cf (λ) = 1 + Ca(τ)

where λ = ατ . Also the trace representation of a binary sequence of period 2n − 1

with ideal two-level autocorrelation is an orthogonal function.

24

Linear Complexity of Binary Sequences: The linear complexity, LC, of a

binary sequence is defined as the size in bits of the shortest LFSR required to

generate that sequence.

The Berlekamp-Massey algorithm provides an efficient way of computing the linear

complexity of a sequence [72]. For an m-sequence of length 2n − 1 this algorithm

only requires 2n consecutive symbols to determine the feedback polynomial of the

LFSR and hence the entire sequence. Therefore the keystream produced by a

stream cipher must have large linear complexity.

Runs of Ones: For a binary string, λ consecutive ones (1’s) preceded by zero and

followed by zero is called a run of ones of length λ. We consider the runs of ones to

be cyclic. For example 1100011110011111 has two (not three) cyclic runs of ones.

25

Chapter 3

WG Stream Ciphers

In this chapter we present WG family of stream ciphers which have designed ran-

domness properties. The design of WG guarantees a keystream with ideal two-level

autocorrelation, balance, long period, ideal tuple distribution, and high and exact

linear complexity. We discuss how these properties are achieved by the proposed

design and show how to select various parameters to obtain a stream cipher for

the desired security level and efficient implementation. The security of WG against

time/memory/data tradeoff attacks, algebraic attacks and correlation attacks, is

evaluated. Finally we present WG-128 [87] as a concrete example of a WG stream

cipher with a key size of 128 bits.

3.1 Background

Traditionally many hardware oriented stream ciphers have been built using linear

feedback shift registers (LFSRs) and Boolean functions with compact Algebraic

Normal Forms (ANFs). This allowed for a very small and efficient implementation

in hardware. However following the discovery of algebraic attacks [20, 21, 75, 5],

using Boolean functions with compact ANFs is no longer secure. One way to

defeat the algebraic attacks is to use nonlinear feedback shift registers (NFSRs) or

more generally, update the state of the stream cipher nonlinearly. Many hardware

oriented stream ciphers in the eSTREAM project including F-FCSR, Grain, Mickey,

27

and Trivium, have been designed according to this approach [36]. Whereas the tools

to analyze the LFSR based stream cipher designs are well developed, the same is

not true for NFSRs. Some results exist for a class of NFSR’s known as feedback

with carry shift registers (FCSR) [61, 62, 63] but their use in the design of stream

ciphers is relatively new. Therefore the security of most of these stream ciphers

rely on the difficulty of analyzing the design itself. An alternative approach is

to design a stream cipher in such a way that it is very easy to analyze. This

allows the designers to explicitly prove various security properties of the design.

The WG family of stream ciphers have been designed using this approach. To

defeat the algebraic attacks on LFSR based stream ciphers, WG relies on nonlinear

Boolean functions with large number of inputs, high degree and complex ANF

forms. To overcome the implementation complexity of the Boolean function it has

been designed in polynomial form instead of ANF form. Implementation of such

functions require small finite field multipliers. This results in a moderate increase

in the hardware requirements, however the design is still practical.

A WG stream cipher consists of a WG keystream generator which produces

a long pseudo-random keystream. The keystream is XORed with the plaintext to

produce the ciphertext. From here onwards we will focus on the design and random-

ness properties of the WG keystream generators. The WG keystream generators

use Welch-Gong(WG) transformations as the filtering functions. The WG transfor-

mations have very large ANFs and can be implemented in polynomial form using

finite field arithmetic. These transformations correspond to the WG transformation

sequences that were discovered by Golomb, Gong, and Gaal in 1998 [94]. In 2002,

Gong and Youssef presented several cryptographic properties of WG transforma-

tion sequences. These properties make them an ideal candidate for cryptographic

use.

This chapter is organized as follows. In Section 3.2 we first show that it is im-

practical to use WG transformation sequence generators from [54,94] as keystream

generators in practical stream ciphers. We then examine the possibility of using

a small WG transformation as a filtering function in a nonlinear filter to build a

keystream generator. In Section 3.3 we show which cryptographic properties of the

28

WG transformation sequences can be preserved in this design. For the properties

that can not be preserved completely we list the possible tradeoffs. Then we show

how various parameters of the designs can be selected to design WG stream ciphers

for various security levels and application requirements. Finally in Section 3.5 we

present WG-128, as a concrete example of a WG keystream generator with a secret

key of size 128 bits. Note that WG-128 is a slightly modified version of the WG

stream cipher which is a phase 2 candidate in profile 2 of the ECRYPT stream

cipher project: eSTREAM [36].

3.2 WG Transformation and Stream Ciphers

3.2.1 WG Transformation

In this section we give a formal definition of WG transformation taken from [94].

Let n 6= 0 mod 3, and t(x) = x + xq1 + xq2 + xq3 + xq4 , x ∈ F2n , where qi’s are

defined as:

For n = 3k − 1

q1 = 2k + 1,

q2 = 22k−1 + 2k−1 + 1,

q3 = 22k−1 − 2k−1 + 1,

q4 = 22k−1 + 2k − 1,

(3.1)

and for n = 3k − 2

q1 = 2k−1 + 1,

q2 = 22k−2 + 2k−1 + 1,

q3 = 22k−2 − 2k−1 + 1,

q4 = 22k−1 − 2k−1 + 1.

(3.2)

29

Then a function

f(x) = Tr(t(x + 1) + 1), x ∈ F2n (3.3)

is called the WG transformation. Note that f(x) is a function from F2n → F2. Let

α be a primitive element of F2n . Let w = wi where

wi = f(αi) = Tr(t(αi + 1) + 1), i = 0, 1, . . .

Then w is called a WG sequence.

In [54] Gong et al. discussed various cryptographic properties of the binary

WG sequence w. The WG sequence has period 2n − 1, is balanced and has ideal

two-level autocorrelation. The linear complexity of the WG sequence (n(2dn/3e −
3)) increases exponentially with n and its cross correlation with an m-sequence is

only three valued. Furthermore if the basis used for computation of the sequence

in F2n is chosen properly, the Boolean function that corresponds to the the WG

transformation is also 1-resilient, i.e., the output of the WG transformation is not

correlated to any single input. Note that it is very difficult to design sequences

which have all the above cryptographic properties. Therefore the WG sequences

are well-suited for use as pseudo-random sequences in cryptography.

3.2.2 Practical Stream Cipher Design

Despite its cryptographic properties, generating WG sequence w is not very efficient

when it comes to practical cryptographic applications such as stream ciphers. Most

cryptographic applications require a secret key to be at least 128 bits. Also there

is a consensus among the designers of stream ciphers that the internal state of

the cipher must at least be twice the size of the secret key. This would require a

WG sequence generator to have an internal state of 256 bits. From Eqn. (3.3) it is

evident that a straight forward implementation of the WG sequence generator would

require computations in F2256 making it highly inefficient. In [54], the authors also

mentioned the possibility of using the WG transformation as a combining function

in combinatorial function generator or as a filtering function in filtering generator.

However this approach was not explored further. There are several questions that

30

s
1

s
2

. s
l-1

s
l

LFSR

z
i

WG

Transformation

m

Figure 3.1: Block diagram of WG keystream generator

must be answered to evaluate the security and performance of such generators:

• Is it possible to design the generator such that its output sequence has cryp-

tographic properties similar to those of WG sequence w?

• Which properties of the WG sequence can be preserved completely and for

the properties that can not be preserved completely what are the possible

tradeoffs?

• Can such generators provide the security and efficiency expected of a stream

cipher?

In this chapter we answer the above questions for a filter generator which uses WG

transformation as the filtering function. We show that by using a non-binary LFSR

and a small WG transformation, we can design a practical keystream generator that

can be used as a stream cipher. We also show how to choose the design parameters

to ensure that the generator has cryptographic properties of the WG sequence.

3.3 WG Keystream Generator Family

We first give an overview of the WG keystream generator family. A WG keystream

generator can be regarded as a nonlinear filter (see Figure 3.1). It consists of an

31

l stage LFSR with a primitive feedback polynomial over F2m . The LFSR gener-

ates a maximal length sequence over F2m which is filtered by a, F2m → F2, WG

transformation to generate the binary keystream. This simple design generates a

keystream which has period 2n−1, where n = lm and is easy to analyze for various

cryptographic properties. If the feedback polynomial of the LFSR and the param-

eters of the WG transformation are selected appropriately, the generator will be

efficient and the keystream will inherit most cryptographic properties of the WG

transformation sequence w.

3.3.1 WG Parameter Selection

In this section we show how to select various parameters of the WG keystream

generator. First we give a list of all the parameters and their relation to the desired

cryptographic properties. Then we outline the algorithms to find these parameters.

• For the F2m → F2 WG transformation, m 6= 0 mod 3 (see the definition of

WG transformation in Section 3.2).

• The efficiency of the WG keystream generator and most of its cryptographic

properties depend on the basis chosen for the computation of the WG trans-

form. Computation of t(x) (Eqn. (3.3)) in the WG transformation involves

exponentiations in F2m . If the field elements are represented in normal basis,

then raising an element to a power of 2 is as simple as a cyclic shift. Since

the exponents in t(x) involves such computations using normal basis is more

efficient than polynomial basis.

• The complexity of computing the WG transformation mainly resides in the

multiplications in F2m . The hardware implementation of a normal basis mul-

tiplier in F2m depends on the basis used to represent the field elements. The

normal basis for which the hardware complexity of the normal basis multi-

plier is minimum is known as the optimal normal basis (ONB). Using ONB

can further improve the hardware efficiency of the generator, however, this

requirement may not always be fulfilled as ONB do not exist for every m.

32

Also note that the generator can always be implemented using a polynomial

basis although it may increase the implementation complexity.

• It must be ensured that for the selected basis, the Boolean function that cor-

responds to the WG transformation is at least 1-order resilient. Otherwise a

different basis must be selected to ensure the resiliency of WG transformation.

• The most distinguishing feature of the WG keystream generator is the periodic

two-level autocorrelation of its keystream. It is known that this property of

the WG transform sequence w is inherited by the WG keystream generator.

Here we reproduce the proof for completeness. Let {ai} be the output of the

generator:

ai = f(bi), i = 0, 1, . . . and

u(x) = f ◦ Trn
m(x),

(3.4)

where u(x) is the composition of Trn
m(x) and f . Note that {bi} is the m-

sequence generated by the LFSR over F2m with the trace representation

Trm
n (x) and f is the WG transformation. It is known [52] that if f is an or-

thogonal function then the sequence that corresponds to u has two-level auto-

correlation. Since the WG transformation f is an orthogonal function [94,32]

the keystream generated by the generator has periodic two-level autocorre-

lation. To ensure that the keystream has this property the finite field com-

putations (in F2m) in the feedback polynomial of the LFSR and the WG

transformation must use the same basis.

• The linear complexity of the keystream depends on two parameters: n and

m. Therefore n and m must be selected to ensure that linear complexity is

sufficiently high. The exact formula for the linear complexity and tradeoff

between n and m are discussed in Section 3.3.5.

• Some general restrictions that apply to all keystream generators must also be

met. For example the size of the internal state should be at least twice the

33

size of the secret key. The algebraic degree of the filtering function and its

algebraic immunity must be high to prevent algebraic attacks and so on.

Now we show how to find various parameters and design a secure and efficient

WG keystream generator.

3.3.2 Finding Optimal Normal Basis in F2m

The number of normal bases in an extension field is usually quite large and therefore

one basis can be found easily. Here we provide an outline of an algorithm to find

an Optimal Normal Basis (ONB) in F2m . First we state the following fact:

Fact 1 [79]. Let δ be a primitive (2m + 1)th root of unity in F22m and γ = δ + δ−1.

If 2 is primitive in Z2m+1 or 2m + 1 is a prime congruent to 3 modulo 4 and 2

generates the quadratic residues in Z2m+1 then γ is an element of the subfield F2m

and N = [γ, γ21
, γ22

, · · ·, γ2m−1] is an ONB of the subfield F2m. We select the ONB

through the following steps:

• Construct the finite field, F22m , defined by a primitive polynomial of degree

2m over F2. Let α be the root of this polynomial. Find a primitive (2m+1)st

root of unity, δ, in this field and compute δ−1. Now γ = δ + δ−1.

• We have γ in F22m . According to Fact 1, γ also belongs to F2m . In order to

map γ to this subfield we define d = 22m−1
2m−1

and η = αd. Then η is a primitive

element of F2m .

• Find the minimum polynomial of η, say g(x), given by

g(x) =
m−1∏
i=0

(x− η2i

). (3.5)

g(x) is a polynomial of degree m over F2. Use g(x) as the defining polynomial

of F2m . Let β be the primitive root of g(x). Now we only need to define γ in

terms of β.

34

• To find γ in terms of β we need the following computation in F22m . Find i,

{i | γ = ηi, 1 ≤ i ≤ 2m− 2}. Once we know the desired i we can write γ = βi

in F2m .

• The ONB is now simply given as {γ, γ21
, γ22

, · · ·, γ2m−1}.

3.3.3 Resiliency of WG Transformation

The Boolean function that corresponds to the WG transformation depends on the

basis used for the computation of WG transformation. To find the basis that give

a resilient Boolean function we refer to [54]. First define the following terms:

Let c = e−1 mod 2m − 1, where e = 22t − 2t + 1, for 3t = 1 mod m. Let

D = {x ∈ F∗2m | Trn
1 (xc) = 0}. (3.6)

where F∗2m is the multiplicative group of F2m . Also let

Rγ = {(Trm
1 (λγ0), · · · , (Trm

1 (λγm−1)) ∈ F2m | λ ∈ D} (3.7)

where (γ0, γ1, · · · , γm−1) is a basis of F2m . Note that this basis is the same as

selected in Section 3.3.2. ONB is chosen for an efficient implementation however

the generator can be designed using a different basis as well. Now the necessary

condition for the resiliency of WG transformation is given in the following fact.

Fact 2 [54]. Let f(x) be the Boolean form of the WG transformation f(x). Then

f(x) is r-resilient if and only if all vectors in Wr = {w | 1 ≤ H(w) ≤ r} appear in

Rα, i.e., Wr ⊂ Rγ.

Since our design is a simple nonlinear filter, 1-order resiliency is sufficient for

the WG transformation. To check whether a selected basis {γ0, γ1, · · · , γm−1} gives

a Boolean function with 1-order resiliency, start by computing the set D. Note that

|D| = 2m−1 − 1. For each member of D compute the m-bit vector from Eqn. (3.7)

which gives the set Rγ. If set Rγ contains all m-bit distinct vectors with Hamming

weight exactly 1, the Boolean form of the WG transformation is 1-order resilient.

35

Otherwise discard the selected basis, select a new basis and check the resiliency of

the WG transformation under the new basis. Repeat the procedure until a proper

basis is found. It must be noted that since m is small and the number of bases

for which WG transformation is resilient is very large, finding a proper basis is not

difficult.

3.3.4 Selection of LFSR Feedback Polynomial

The LFSR feedback polynomial should be a primitive polynomial of degree l over

F2m . For the keystream to have two-level autocorrelation property, the computa-

tions in the feedback polynomial must be in the same basis as the WG transfor-

mation. To ensure the above we select the feedback polynomial in the following

way:

• Construct F2m from the defining polynomial g(x), where β is the root of g(x).

• γ defines the basis selected above and is therefore known. Pick a polynomial

of degree l with constant term as γ and all the other coefficients as either

0 or 1. Check if the selected polynomial is primitive over F2m . If not try a

different polynomial until a primitive polynomial is found.

3.3.5 Achieving Desired Linear Complexity

As shown in Eqn. (3.4), the keystream of the generator can be regarded as compo-

sition of the WG transformation and an m-sequence. Sequences generated in such

manner are also known as generalized GMW sequences [52]. The linear complexity

of the generalized GMW sequences can be determined exactly (see [52, page 66]).

Let us consider the F2m → F2 WG transformation, f . From [94],

f(x) =
∑
i∈I

Trn
1 (xi) (3.8)

36

where I = I1 ∪ I2 and for m = 3k − 1,

I1 = {22k−1 + 2k−1 + 2 + i |0 ≤ i ≤ 2k−1 − 3},
I2 = {22k + 3 + 2i |0 ≤ i ≤ 2k−1 − 2},

and for m = 3k − 2

I1 = {2k−1 + 2 + i |0 ≤ i ≤ 2k−1 − 3},
I2 = {22k−1 + 2k−1 + 2 + i |0 ≤ i ≤ 2k−1 − 3}.

Let LCWGK be the linear complexity of the WG keystream generator then from

Eqn. (3.8) and Eqn. (3.15) [52, page 66]

LCWGK = m×
∑
i∈I

lw(i). (3.9)

The linear complexity of the WG keystream generator is less than the linear com-

plexity of the WG transformation sequence with period 2n − 1. Some linear com-

plexity is sacrificed by using a smaller WG transformation(i.e., F2m → F2 instead

of F2n → F2) to achieve an efficient implementation. Note that linear complexity of

the WG keystream generator depends on n and m. If m, which determines the size

of WG transformation is fixed, linear complexity can be increased by increasing the

number of stages in the LFSR and vice versa.

3.3.6 Internal State and Degree of WG Transformation

To provide security against common attacks on stream ciphers, the keystream gen-

erator must meet some additional conditions. If K is the size of the secret key in

bits, then to provide protection against time/memory/data tradeoff attacks, the

size of the internal state (or length of LFSR in bits) must be at least 2K, i.e.,

n ≥ 2K. To provide protection against algebraic attacks the algebraic degree of

the WG transformation should be sufficiently high and it must not have any low

degree approximations [23]. The algebraic degree of the WG transformation in m

variables is given by dm/3e+ 1. Then according to [23] the complexity of the alge-

37

braic attack that recovers the secret key K of the WG generator is approximately

7/64 · (n
dm/3e+1

)log27
word operations. Therefore n and m must be chosen to keep

this complexity sufficiently high. However note that if a low degree approximation

of the WG transformation is found, the complexity of the algebraic attack will be

reduced. A meaningful low degree approximation of the WG transformation means

an approximation with degree less than the degree of WG transformation itself. We

have experimantally verified that WG transformations in 11, 13 and 14 variables

(which have algebraic degrees 5, 6 and 6 respectively) do not have low any degree

approximations. Note that the degree of the WG transformation is significantly less

than m. Therefore from the assertion made in [75] and our experimental results, on

WG transformation in 11, 13 and 14 variables, we conjecture that the probability

of the existence of such low degree approximation is negligible. Therefore we can

say that to prevent algebraic attacks, n and m must be selected so that

7/64 ·
(

n

dm/3e+ 1

)log27

> 2K .

3.4 Application Specific Design of WG

To design a WG keystream generator parameters m and l can be chosen according to

the target application. Table 3.1 shows various possible WG keystream generators.

Note that n is the size of the internal state (or LFSR) in bits, LCWGK is the linear

complexity of the generator and CAA is the complexity of the algebraic attack on

the generator. A ’Y’ in the column ONB indicates that optimal normal basis exist

for the corresponding m and a ’N’ indicates that it does not exist. All the designs

in Table 3.1 allow a secret key size of at least 80 bits. The linear complexity

of the generator can be selected according to the application requirements. For

example if the generator is to be used for encryption and decryption of packet

based data a very large linear complexity of the keystream may not be required.

Consider the design with m = 16, l = 16 and secret key K of length 100 bits.

The linear complexity in this case is 232.5 and therefore the maximum amount of

keystream that can be generated with one pair of secret key K and an initial vector

38

Table 3.1: WG keystream generators and their corresponding security levels

m l n LCWGK CAA ONB
11 16 176 224.7 281.7 Y
11 24 264 227.6 290 Y
11 32 352 229.6 295.8 Y
14 16 224 229.2 2101.1 Y
14 24 336 232.6 2111 Y
14 32 448 235 2118.1 Y
16 10 160 228.1 2105.3 N
16 16 256 232.5 2118.8 N
16 24 384 236.4 2130.4 N
11 32 512 239.3 2138.6 N
29 11 319 245 2182 Y

is approximately 232 (or 4 gigabits). Since the packet size in most packet based

communications applications is much smaller (a few bytes to a few kilobytes) and

the generator is re-initialized with a new initial vector for each packet, this linear

complexity is sufficiently high. Although ONB do not exist for m = 16, the WG

transformation can be implemented efficiently by using the subfield decomposition

of F216 [96]. A specific implementation of inversion in F216 is also given in [14]. Also

note that for packet based applications the re-initialization time of the generator is

very critical. We will show in the next section that WG keystream generators can

be re-initialized in only 2l steps. If an application requires a long keystream, then

a larger linear complexity can be obtained by increasing the size of l or m or both.

For example for m = 29 and l=11 the generator can easily handle a keystream of

length 245 bits.

3.5 WG-128 Keystream Generator

Now we give a concrete example of a 128-bit WG keystream generator: WG-128.

We derive all the parameters of the generator using the procedures given in the

previous section. We also show how to implement this generator and discuss its

39

security. The WG-128 keystream generator is shown in Figure 3.1. The generator

allows for a 128-bit secret key and 128-bit initial vectors(IVs). It consists of an 11

stage linear feedback shift register(LFSR) over F229 . The feedback polynomial of

the LFSR is primitive over F229 and is given by

p(x) = x11 + x10 + x9 + x6 + x3 + x + γ (3.10)

where γ = β464730077 and β is a root of g(x):

g(x) = x29 + x28 + x24 + x21 + x20 + x19 + x18 + x17 +

x14 + x12 + x11 + x10 + x7 + x6 + x4 + x + 1. (3.11)

We define S(1), S(2), S(3), .., S(11) ∈ F229 to be the state of the LFSR and the

internal state of the WG keystream generator. We denote the output of the LFSR

as bi = S(11− i), i = 0, 1, .., 10. Then for i ≥ 11, we have

bi = bi−1 + bi−2 + bi−5 + bi−8 + bi−10 + γbi−11, i ≥ 11 (3.12)

The output of the LFSR is filtered by a nonlinear WG transformation, F229 → F2,

to produce the keystream. All the elements of F229 are represented in normal basis

and all the finite field computations are performed in normal basis as well.

For WG transformation, consider F229 generated by the primitive polynomial

g(x) with β as its root. Let

t(x) = x + x210+1 + x219+29+1 + x219−29+1 + x219+210−1, x ∈ F229 . (3.13)

We can rewrite t(x) as

t(x) = x + x210+1 + x219+29+1 + x(x210−1)29

+ x219

(x210−1), x ∈ F229 . (3.14)

40

>> 9

>> 19

⊗>> 9

>> 10

⊗ ⊗

⊗

⊗

⊕ >
>

⊕
29

29 1

q
1

q
2

q
3

q
4

input

output

I

(.)210-1

Figure 3.2: Implementation of WG transformation: F229 → F2

Then the WG transformation is given as

f(x) = Tr(t(x + 1) + 1), x ∈ F229 . (3.15)

Note that Tr(1) = 1, therefore we can rewrite f(x) as

f(x) = Tr(t(x + 1)) + 1, x ∈ F229 . (3.16)

3.5.1 Implementation of WG-128

We first state a few facts about computation in F229 when field elements are repre-

sented in normal basis.

• If the field elements are represented in a normal basis, squaring can be done

by right cyclic shift.

• If γ is the generator of the normal basis then 1 =
∑28

i=0 γ2i
, i.e., the 29 bit

vector representing 1 is all ones vector. Therefore addition of a field element,

in normal basis representation, with 1 can be done by simply inverting the

bits of that element.

41

• The trace of all the basis elements is one, i.e., Tr(γ2i
) = 1 where 0 ≤ i ≤ 28.

Therefore the trace of any field element represented as a 29 bit vector can be

obtained by adding all the bits of the elements over F2 (i.e., XOR).

To facilitate the implementation of the WG transformation we provide a more

specific description in Figure 3.2. Note that Figure 3.2 comes directly from Eqns.

(3.14), (3.16), and the facts stated above. From the figure the output of the WG

transformation can be written as

output = ¤
⊕

((q1 ⊕ (q2 ⊕ (q3 ⊕ (q4 ⊕ I))))) (3.17)

where

q1 = (I À 9)⊗ ((I À 19)⊗ I)

q2 = (I210−1 À 9)⊗ I

q3 = I210−1 ⊗ (I À 19)

q4 = (I À 10)⊗ I

I = ¤(input).

The notation x ⊗ y means normal basis multiplication of x and y in F229 defined

by g(x). Similarly (x)210−1 means raising x to the power 210 − 1 in F229 defined by

g(x). Note that this calculation requires 4 multiplications in F229 . x⊕ y represents

the bitwise addition (XOR) of words x and y, and x À c represents the cyclic shift

of x, c stages to the right where c is a positive integer. The symbol ¤(x) means all

the 29 bits of x are complemented and
⊕

(x) means the addition of the 29 bits of

x over F2 (XOR) i.e., for x = (x0, .., x28),
⊕

(x) =
∑28

i=0 xi mod 2.

3.5.2 Key Initialization and Re-synchronization

The state of the LFSR is represented as S(1), S(2), S(3), .., S(11) ∈ F229 ; Each stage

S(i) ∈ F229 , is represented as S1,..,29(i) where 1 ≤ i ≤ 11. Similarly we represent

the key bits as k1,..,j, 1 ≤ j ≤ 128 and IV bits as IV1,..,m, 1 ≤ m ≤ 128. The key

and the IV are loaded into the LFSR as follows:

42

S1,..16(1) = k1,..,16 S17,..24(1) = IV1,..,8 S1,..8(2) = k17,..,24

S9,..24(2) = IV9,..,24 S1,..16(3) = k25,..,40 S17,..24(3) = IV25,..,32

S1,..8(4) = k41,..,48 S9,..24(4) = IV33,..,48 S1,..16(5) = k49,..,64

S17,..24(5) = IV49,..,56 S1,..8(6) = k65,..,72 S9,..24(6) = IV57,..,72

S1,..16(7) = k73,..,88 S17,..24(7) = IV73,..,80 S1,..8(8) = k89,..,96

S9,..24(8) = IV81,..,96 S1,..16(9) = k97,..,112 S17,..24(9) = IV97,..,104

S1,..8(10) = k113,..,120 S9,..24(10) = IV105,..,120 S1,..8(11) = k121,..,128

S17,..24(11) = IV121,..,128

All the remaining bits of the LFSR are set to zero. Once LFSR has been loaded

with the key and IV , the keystream generator is run for 22 clock cycles. This is

the key initialization phase of the cipher operation. During this phase the 29 bit

vector, given by

keyinitvec = ((q1 ⊕ (q2 ⊕ (q3 ⊕ (q4 ⊕ I))))) (3.18)

in Figure 3.2, is added to the feedback of the LFSR which is then used to update the

LFSR. The key initialization process is shown in Figure 3.3. Once the key has been

initialized the LFSR is clocked once and the 1 bit output of the WG transformation

gives the first bit of the running keystream. The linear complexity of the keystream

is slightly more than 245 (from Eqn. (3.9)), and therefore the maximum length of

the keystream allowed to be generated with a single key and IV is 245. After this

the cipher must be reinitialized with a new IV or a new key or both.

3.5.3 Security of WG-128

The keystream generated by the WG keystream generator is balanced, has period

2319 − 1, and has ideal two-level autocorrelation. The linear complexity of the

keystream is approximately 245.0415 and it has ideal t-tuple distribution where 1 ≤
t ≤ 11. The Boolean function that corresponds to F229 → F2 WG transformation

has algebraic degree 11 and its nonlinearity is 228−214 = 268419072. The size of the

WG internal state is 319 bits which is more than twice the largest possible key size,

therefore it is secure against time/memory/data tradeoff attacks. The complexity

43

⊕⊕⊕
γ

S(1) S(2)

⊕

⊕

S(11)

WG

Transformation

⊕

>> 9

>> 19

⊗>> 9

>> 10

⊗ ⊗

⊗

⊗

⊕ >
>

⊕29
29 1

q
1

q
2

q
3

q
4

input

output

I

(.)210-1

Figure 3.3: Key initialization phase of WG cipher

of the algebraic attacks as explained in Section 3.3.6 is approximately 2182 which is

much higher than the largest possible key space.

To analyze the resistance of WG stream cipher against correlation attacks we

have to consider the nonlinearity and resiliency of the WG transformation. The

WG transformation in WG-128 is 1-order resilient, i.e., the output of the WG

transformation or the keystream is not correlated to any single input bit of the

LFSR output.This suggests that WG cipher is secure against correlation attacks.

However we must consider more sophisticated correlation attacks in which WG

transformation is approximated by linear functions. These linear approximations

can then be used to derive a generator matrix of a linear code and its decoding can

be performed by a Maximum Likelihood (ML) decoding algorithm to recover the

internal state of LFSR. The exact details of the attack are beyond the scope of this

thesis and the reader is referred to [19] for more details. We will only use theoretical

bounds derived in [19] to make sure that our cipher is secure against these attacks.

Let f ′ be the Boolean function representation of WG transformation and l be a

linear function with minimum Hamming distance to f ′. Then the probability that

44

they produce the same output for a given input x is given by

P (f ′(x) = l(x)) =
229 − (228 − 214)

229
= 0.5000305. (3.19)

Using the results given in [19] the amount of keystream required for a successful

attack is given by

N ≈ (k · 12 · ln2)1/3 · ε−2 · 2 319−k
3 (3.20)

and decoding complexity is given by

Cdec = 2k · k · 2ln2

(2ε)6
, (3.21)

where ε = P (f ′(x) = l(x))−0.5 = 0.0000305 and k is the number of LFSR internal

state bits recovered. If we choose k to be very small, i.e., k = 5, the amount of

keystream required for the attack is approximately 2133, which is not a realistic

amount to collect. Moreover the complexity of pre-computation phase is more than

2266. Since the maximum keystream that can be produced with a single key and

IV is 245 we choose k = 274 to reduce N to this number. Now the complexity of

the decoding phase is approximately 2366. This analysis shows that the WG cipher

is secure against this kind of correlation attacks.

3.5.4 Hardware Implementation of WG-128

The normal basis multiplication in F229 is the most expensive operation in the hard-

ware implementation of WG-128. Depending on the type and number of multipliers

used, a wide variety of area versus speed tradeoffs are possible. An implementation

can range from using a single serial normal basis multiplier to multiple parallel

normal basis multipliers. While the underlying platform and speed requirements

will dictate an implementation, we suggest a straightforward implementation which

can achieve high speed with relatively less amount of hardware. A parallel normal

basis multiplier multiplies two elements in normal basis and produces the result in

one clock cycle. Therefore we suggest using 2 parallel normal basis multipliers. In

45

Figure 3.2, there are nine multiplications in the WG transformation and one in the

feedback of the LFSR. Therefore a keystream bit can be produced every 5th clock

cycle. Note that the cyclic shifts can be done by rearranging the connections to the

registers or the inputs of multipliers.

Several normal basis multipliers have been proposed in the literature [71, 113,

111, 102, 1, 103, 104]. As stated earlier the hardware complexity of a normal basis

multiplier depends on the basis used to represent the field elements. More precisely

it depends on the multiplication matrix CN of the chosen normal basis [79]. The

complexity is directly proportional to the number of ones in the CN matrix. To

facilitate the hardware implementation of a normal basis multiplier for WG trans-

formation we provide the CN matrix that corresponds to the chosen optimal normal

basis of F229 in Appendix A. The optimal normal basis multiplier given in [111] can

be implemented with 841 AND gates and 1218 XOR gates only. Note that this

is the best multiplier known to us presently. Any improvement in the efficiency

of normal basis finite field multiplier can increase the efficiency of the hardware

implementation of the WG keystream generator further.

3.5.5 Software Implementation

The software implementation of the WG cipher is straightforward. Since the ele-

ments of F229 can be represented within a single word of a 32 bit processor, each of

the addition, negation and shift operations can be performed by a single instruction.

The time consuming operations in software are the normal basis multiplications.

The exact implementation of the multiplier depends on the multiplication matrix.

Several algorithms exist for performing normal basis multiplication in software effi-

ciently [92,105]. We provide C implementations of the normal basis multiplication

and inversion [41] algorithms for the optimal normal basis over F229 in Appendix

A. The implementations are provided as examples and we do not claim them to be

the most efficient. Any normal basis multiplication and inversion algorithm can be

used for the software implementation of the cipher.

46

3.6 Conclusions

In this chapter we presented a family of keystream generators with ideal two-level

autocorrelation and other guaranteed randomness properties. We showed how WG

keystream generators can be designed to fulfil various application requirements.

Finally we presented WG-128 as a concrete example from the WG family and

evaluated its security and efficiency.

47

Chapter 4

RC4-like Keystream Generator

In Chapter 3 we proposed a stream cipher suitable for hardware applications. In

this chapter we propose a new and efficient stream cipher suitable for software

applications. The cipher is similar in design to the famous and widely used RC4

stream cipher and is therefore named RC4-like keystream generator. The proposed

generator produces 32 or 64 bits in each iteration and can be implemented with

reasonable memory requirements. It has a huge internal state and offers higher

resistance to state recovery attacks than the original 8-bit RC4. Further, on a 32-

bit processor the generator is 3.1 times faster than original RC4. We also show

that it can resist attacks that are successful on the original RC4. The generator is

suitable for high speed software encryption.

4.1 Background

RC4 was designed by Ron Rivest in 1987 and kept as a trade secret until it leaked

out in 1994. Unlike many stream ciphers that are based on LFSRs, the design of

RC4 is based on exchange-shuffle paradigm [66]. The design consists of a large

table/array that slowly changes with time under its own control. The popularity of

the design is due to its simplicity and ease of implementation. For the generators

based on such designs it is hard to theoretically establish the randomness properties

of the keystream [47]. RC4 consists of a table of all the N = 2n possible n-bit

49

words and two n-bit pointers. In original RC4 n is 8, and thus it has a huge state

of log2(2
8!× (28)2) ≈ 1700 bits. It is thus impossible to guess even a small part of

this state and almost all the techniques developed to attack stream ciphers based

on linear feedback shift registers (LFSR) fail on RC4. Although state recovery

attacks against RC4 have not been successful, several distinguishing attacks have

been found on RC4. A few attempts have also been made to improve the design of

RC4 against these attacks. Two significant ones are VMPC [118] and RC4A [98].

Both VMPC and RC4A have designs similar to RC4 and were shown to suffer

from similar distinguishing attacks [112]. Recently some stream ciphers have been

proposed that consist of a large internal state that changes under its own control

just like RC4. However the state update functions in these ciphers are more complex

and are designed to achieve a rapid change in state with time. Three ciphers that

fall in this category are HC-256 [115], Py [9], and MV3 [60].

When RC4 was developed most commercially available processors were either

8-bit or 16-bit. Using the word size n = 8 was suitable for these processors and the

amount of memory required to store the RC4 table was also feasible. Today the

processors have word lengths of 32 bits or 64 bits but the most common mode for

RC4 still uses n = 8. The reason is that for RC4 with n = 32 or n = 64, the size of

the memory required to store the table and the key initialization time are too high.

Still, since the modern processors have large word sizes it is of interest to design an

RC4-like stream cipher that can take advantage of a large word size.

We begin our design by modifying original RC4 algorithm so that it can exploit

the 32-bit and 64-bit processor architectures without increasing the size of the table

significantly. We call the proposed algorithm RC4(n,m), where n and m are defined

in Section 4.3. The algorithm is general enough to incorporate different word as

well as table sizes. For example with 32-bit word size a table of 256 words can be

used. We try to keep the original structure of RC4 as much as possible, however the

proposed changes affect some underlying design principles on which the security of

RC4 is based. Therefore we analyze the security of the modified RC4 and compare

it to the original RC4. We show that RC4(n,m) is faster than RC4 and is also

secure against several attacks that are successful on RC4.

50

The rest of the chapter is organized as follows. In Section 4.2 we give a brief

description of original RC4. In Section 4.3 we propose a modified RC4 keystream

generator. The security of the proposed generator is analyzed in Section 4.4 followed

by a performance analysis in Section 4.5. Finally we present the known attacks on

our proposed generator in Section 4.6 and possible countermeasures in Section 4.7.

4.2 Original RC4

In this section we give a description of the original RC4. We also give a brief

description of previous attacks on RC4.

4.2.1 Description of RC4

The RC4 algorithm consists of two parts: The key scheduling algorithm (KSA)

and the pseudo-random generation algorithm (PRGA). The algorithms are shown

in Figure 4.1 where l is the length of the secret key in bytes, and N is the size of

the array S or the S-box in words. A common keysize in RC4 is between 5 and

32 bytes. In most applications RC4 is used with a word size n = 8 and array size

N = 28. In the first phase of RC4 operation an identity permutation (0, 1, ..., N−1)

is loaded in the array S. A secret key K is then used to initialize S to a random

permutation by shuffling the words in S. During the second phase of the operation,

the PRGA produces random words from the permutation in S. Each iteration of

the PRGA loop produces one output word which constitutes the running keystream.

The keystream is bit-wise XORed with the plaintext to obtain the ciphertext. All

the operations described in Figure 4.1 are byte operations (n = 8). Most modern

processors however operate on 32-bit or 64-bit words. If the word size in RC4 is

increased to n = 32 or n = 64, to increase its performance, the size of array S

becomes 232 or 264 bytes which is not practical. Note that these are the array sizes

to store all the 32-bit or 64-bit permutations respectively.

51

KSA(K, S)

for i = 0 to N – 1
S[i] = i;

j = 0;
for i = 0 to N – 1

j = (j + S[i] + K[i mod l]) mod N;
Swap(S[i],S[j]);

PRGA(S)

i = 0;
j = 0;
while (1)

i = (i + 1) mod N;
j = (j + S[i]) mod N;
Swap(S[i],S[j]);
out = S[(S[i] + S[j]) mod N];

Figure 4.1: The KSA and PRGA in RC4.

4.2.2 Previous analysis of RC4

Cryptanalysis of RC4 attracted a lot of attention in the cryptographic community

after it was made public in 1994. Numerous significant weaknesses were discovered,

including Finney’s forbidden states [42], classes of weak keys [107], patterns that

appear with twice the expected probability (the second byte bias) [69], partial

message recovery [69], full key recovery attacks [44], analysis of biased distribution

of RC4 initial permutation [77], and predicting and distinguishing attacks [68].

Knudsen et al. have attacked versions of RC4 with n < 8 by their backtracking

algorithm [64]. The most serious weakness in RC4 was observed by Fluhrer et al.

in [44] where RC4 was proved to have a practical attack in the security protocol

WEP.

Two variants of RC4 have recently been proposed: RC4A [98] and VMPC [118].

RC4A works with two RC4 arrays and its keystream generation stage is slightly

more efficient than RC4’s, but the initialization stage requires twice the effort of

RC4’s. VMPC has several changes to the KSA, the IV integration, the round opera-

tion and the output selection. Note that RC4A and VMPC use n = 8 as parameter.

Maximov described in [74] a linear distinguisher for both the variants, requiring 258

data for RC4A and requiring 254 data for VMPC. Tsunoo et al. described in [112]

a distinguisher for RC4A and VMPC keystream generators, requiring 224 and 223

keystream prefixes respectively. For further weaknesses of RC4, and most of the

52

known attacks on it see [48,42,58,47,45,78,56,107,64,69,44,110,101,77,97,98,68,

8, 74, 112,70].

4.3 Proposed Modification to RC4

We now propose a modification to the original RC4 algorithm which enables us

to release 32 bits or 64 bits in each iteration of the PRGA loop. This is done by

increasing the word size to 32 or 64 while keeping the array size S much smaller

than 232 or 264. We will denote the new algorithm as RC4(n,m) where N = 2n is

the size of the array S in words, m is the word size in bits, n ≤ m and M = 2m.

For example RC4(8, 32) means that the size of the array S is 256 and each element

of S holds 32-bit words.

4.3.1 Pseudo-Random Generation Algorithm

If we choose n to be much smaller than m (m = 32 or 64) in RC4(n,m), then

this results in reasonable memory requirements for the array S. However now the

contents of the array S do not constitute a complete permutation of 32-bit or 64-

bit words. In RC4, a swap operation is used to update the state between outputs.

Using a swap to update the state in RC4(n,m) will not change the elements in

the array. Instead, to update the state we add an integer addition modulo 232 (264

for n = 64). This way of updating the state is the first difference between RC4

and RC4(n, m). Since the state will be updated by replacing a random element by

another random m-bit number, the swap operation is not needed. The index value

that is updated is the value used for computing the output value. Updating the

array with new values is important since the array is not a permutation and the

size of the array is only a small fraction of all the possible numbers in ZM .

The second main difference between original RC4 and this variant is the usage

of a third variable, k , in addition to i and j . This m-bit variable is used for two

reasons. First, to mask the output so that it does not simply represent a value

stored in the array. Second, to ensure that the new value in the update step does

53

KSA(K, S)

for i = 0 to N – 1
S[i] = ai;

j = k = 0;
Repeat r times
for i = 0 to N – 1
j = (j + S[i] + K[i mod l]) mod N;
Swap(S[i],S[j]);
S[i] = S[i] + S[j] mod M;
k = k + S[i] mod M;

PRGA(S)

i = 0;
j = 0;
while (1)
i = (i + 1) mod N;
j = (j + S[i]) mod N;
k = (k + S[j]) mod M;
out = (S[(S[i] + S[j]) mod N] + k) mod M;
S[(S[i] + S[j]) mod N] = k + S[i] mod M;

Figure 4.2: The modified KSA and PRGA for RC4(n, m).

not depend on just one or a few values in the array. The variable k is initialized in

the KSA and is key dependent.

4.3.2 Key Scheduling Algorithm

The key scheduling algorithm (KSA) in RC4 is used to permute the elements in the

array in a key dependent way. Each element is swapped with a random element. In

this variant of RC4 the elements will not be a permutation of a small set so a similar

modification is made to the KSA as to the PRGA. In order to achieve a high degree

of randomness in the key scheduling we keep the swap operation in the KSA. In

addition to the swap operation each word is updated through an integer addition.

We give some initial values, ai, for RC4(8, 32), in Appendix B. The modified KSA

and PRGA are given in Figure 4.2 where N = 2n, M = 2m, K is a vector of bytes

and l is the length of the key K in bytes. RC4(n,m) can use the same flexible span

of keysizes as RC4. The value of r in the KSA is motivated below and for a random

array with 256 32-bit numbers the value of r is 20.

We take the example of 256, 32-bit numbers to motivate the number of steps

used in the KSA. The array is initiated with 256 fixed 32-bit numbers and after

the key scheduling algorithm the goal is that without knowing any bits of the

54

key an attacker can not guess the number in any array position with probability

significantly greater than 2−32. Since the array only contains a small fraction of all

32-bit numbers, the entries need to be updated. We update as the sum of the two

swapped entries. After running through the array once, the probability that value

i is not updated is (
255

256

)256

≈ 0.37,

so a known value will be in the array with probability ≈ 0.37. The probability

that this value is not updated after r rounds is 0.37r. For a random array with 256

32-bit numbers the probability that a specific number is in the array is

1− (1− 2−32)256 ≈ 2−24

since a value can be present more than once in our case. We run the key initialization

a sufficient number of rounds so that any initial value remains unupdated with

probability ≤ 2−24. Hence, the number of rounds, r, we need in the initialization

satisfies (
255

256

)256r

= 2−24 ⇒ r ≈ 16.6.

For the case RC4(8, 32) we will take the value of r to be 20. Similarly the value

of r can be calculated for different array sizes and different numbers of bits. In

Table 4.1 we list the minimum number of rounds needed in the key scheduling such

that no number has significantly higher probability of being in the array than any

other number. We suggest to always use 20 rounds in the 32-bit version and always

40 rounds in the 64-bit version, when the array size is between 28 and 212.

4.4 Security Analysis of RC4(n,m)

In this section we analyze the security of RC4(n,m). We show that RC4(n, m) re-

sists all known significant attacks on RC4. We consider the resistance of the gener-

ator against state recovery attacks and the randomness properties of the keystream.

55

Mode r Mode r
RC4(8, 32) 16.6 RC4(8, 64) 38.7
RC4(9, 32) 15.9 RC4(9, 64) 38.1
RC4(10, 32) 15.2 RC4(10, 64) 37.4
RC4(11, 32) 14.6 RC4(11, 64) 36.7
RC4(12, 32) 13.9 RC4(12, 64) 36.1

Table 4.1: The minimum number of rounds in the key scheduling.

4.4.1 Statistical Tests on the Keystream

The keystream generated by the RC4(8, 32) stream cipher was tested with NIST’s

statistical tests [93]. No bias was found by any of the 16 tests from the NIST suite.

We tested 235 output bits from the generator.

4.4.2 Security of the Key Scheduling Algorithm

We choose the number of steps in the key scheduling algorithm such that the

probability that a specific number is not updated is smaller than the probability

that this number is present in a random array of size N with m-bit numbers. This

ensures that an attacker can not guess an array entry with probability significantly

higher than N/2m when key generation starts. However, even if r is small it is

unclear if an attacker can use the information about the values in the array in

an actual attack. This is because the first output is the sum of 20 · 256 + 2 for

RC4(n, 32) and 40 · 256+2 for RC4(n, 64) previous and current values in the array.

4.4.3 Internal State of RC4(n,m)

Like the original RC4, the security of RC4(n,m) comes from its huge internal state.

The size of the internal state of original RC4 is approximately 1700 bits. In case

of RC4(n,m) the internal state does not consist of a permutation and it may have

repetitions of words. The number of ways of putting 2m elements into N cells where

repetitions are allowed is (2m)N . Note, in RC4(n,m) we are using an m-bit variable

56

k, which can be thought of as another cell. Therefore the size of the internal state is

simply given by N2×(2m)N+1. For example for RC4(8, 32) this number is 8240 bits

which is much larger than original RC4. Recovering the internal state of RC4(n,m)

is therefore much harder than recovering the internal state of RC4.

4.4.4 Resistance to IV Weakness

Fluhrer, Mantin and Shamir showed in [44] a key recovery attack on RC4 if several

IVs were known. The attack will work if the IV precedes or follows the key. In [70],

Mantin showed that XORing the IV and the key also allows for a key recovery

attack in the chosen IV model. The attack in which the IV precedes the key relies

on the fact that the state at some point is in a resolved condition, which means that

with probability 0.05, we can predict the output and also recover one byte of the

key. Repeating the attack recovers another byte of the key etc. In RC4(n,m) this

attack will not be possible. In the resolved condition the value i must be such that

if X = Si[1] and Y = Si[X], then i ≥ 1, i ≥ X and i ≥ X + Y , where Si[V] is the

entry S[V] at time i. Moreover, Si[1], Si[X] and Si[X + Y] must be known to the

attacker. Since the array is updated 20 times for RC4(8, 32) and the key is used

in all iterations, an attacker will not know the state after one iteration. Hence,

the attacker can not know the state at a time when i > 1 in the last iteration

which would be necessary for the attack to work. With similar arguments, we can

conclude that the IV weakness in RC4 cannot be used for RC4(n,m) when the IV

follows or is XORed with the key.

Concatenating the IV and the secret key does not seem to introduce an ex-

ploitable weakness to the cipher. However, we still consider it better to use a hash

function on the secret key and IV and then use the hash value as session key. Then

no related keys will be used if the IV is e.g., a counter. This is the mode used in

SSL.

57

4.4.5 Resistance to Mantin’s Distinguishing Attack

In [69] Mantin and Shamir discovered that the second output byte of RC4 is ex-

tremely biased, i.e., it takes the value of zero with probability 2/N instead of 1/N .

This is due to the fact that if S0[2] = 0 and S0[1] 6= 2, the second output byte of

the keystream is zero with probability one. In RC4(n,m) the output is given by

out = (S[(S[i] + S[j]) mod N] + k) mod M , where we assume that k is uniformly

distributed. Therefore if S0[2] = 0 and S0[1] 6= 2 in RC4(n,m), the output word will

still be uniformly distributed due to k. Therefore Mantin’s distinguishing attack

does not apply to RC4(n,m).

4.4.6 Resistance to Paul and Preneel’s Attack

In [97] Paul and Preneel discovered a bias in the first two output bytes of the RC4

keystream. They observed that if S0[1] = 2, then the first two output bytes of RC4

are always different. Therefore the probability that the first two output bytes are

equal is (1 – 1/N)/N which leads to a distinguishing attack. In RC4(n,m) however

due to the uniform distribution of k, the above state does not affect the distribution

of the first two output bytes. Therefore this attack does not apply to RC4(n,m).

4.4.7 Probability of Weak States

RC4 has a number of weak states, called Finney states [42]. These states have very

short cycles, of length only 65280. The cipher is in a Finney state if j = i + 1 and

S[j] = 1. In this case the swap will be made between S[i] and S[i + 1] and both

i and j are incremented by 1. Since the RC4 next state function is an invertible

mapping and the starting state is not a Finney state, RC4 will never enter any of

these weak states. It is easy to see that RC4(n,m) also has weak states. When all

entries are even and k is even, then all outputs as well as all future entries will be

even, resulting in a biased keystream. The state update function in RC4(n,m) is

not an invertible mapping so it will always be possible to enter one of these weak

states. However the probability that all state entries, as well as k are even is very

58

low, 2−257. From this we can conclude that these weak states are of no concern to

the security of the cipher.

4.4.8 Forward Secrecy in RC4(n,m)

Like most of the keystream generators, RC4(n,m) keystream generator can also

be represented as a finite state machine. Suppose N = 2n, M = 2m and R =

Z2
N×ZN+1

M . The next state function is f : R → R. Let (i, j, k, x0, x1, · · · , xN−1) ∈ R

be any state, and (e, d, p, y0, y1, · · · , yN−1) ∈ R be the next state of the function

f . Then we have e = i + 1 mod N , d = j + xe mod N , p = k + xd, v = xe +

xd mod M , yv mod N = k + xe and yt = xt, ∀t 6= v mod N . Output of the cipher

is xv mod N + p. As seen above we can deterministically write down the value of

each parameter of the next state. So given a state (e, d, p, y0, y1, · · · , yN−1), we can

recover (i, j, k, x0, x1, · · · , xN−1) except xv because xv has been replaced. Therefore,

without the knowledge of xv the state function is non invertible.

4.4.9 Cycle Property

In original RC4 the state function is invertible. Non invertible state functions are

known to cause a significantly shorter average cycle length. If the size of the internal

state is s and the next state function is randomly chosen then the average cycle

length is about 2
s
2 . For a randomly chosen invertible next state function the average

cycle length is 2s−1, (see [43]). As s in RC4(8, 32) is huge (i.e., 8240) the reduction

in cycle length is not a problem.

4.4.10 Randomness of the Keystream

To analyze the keystream of RC4(n,m) we first state the security principles under-

lying the design of original RC4. The KSA intends to turn an identity permutation

S into a pseudorandom permutation of elements and PRGA generates one output

byte from a pseudorandom location of S in every round. At every round the secret

internal state S is changed by the swapping of elements, one in a known location

59

and another pointed to by a random index. Therefore we can say that the security

of original RC4 depends on the following three factors.

• Uniform distribution of the initial permutation of elements in S.

• Uniform distribution of the value of index pointer j.

• Uniform distribution of the index pointer from which the output is taken

(i.e., (S[i] + S[j]) mod N).

The above three conditions are necessary but not sufficient. The KSA uses a

secret key to provide a uniformly distributed initial permutation of the elements

in S. The value of the index pointer j is updated by the statement j = (j + S[i])

mod N . Since the elements in S are uniformly distributed the value of j is also

uniformly distributed. By the same argument (S[i]+S[j]) mod N is also uniformly

distributed. Note that the internal state of RC4 consists of the contents of array

S and the index pointer j. The state update function consists of an update of the

value of j and the update of the permutation in S through a swap operation given

by the statement Swap(S[i], S[j]). Since j is updated in a uniformly distributed

way, the selection of the locations to be swapped is also uniformly distributed. This

ensures that the internal state of RC4 evolves in a uniformly distributed way.

We now consider RC4(n,m). The first difference from original RC4 is that

whereas the array S in original RC4 is a permutation of all the 256 elements in Z28 ,

the array S in RC4(n,m) only contains 2n m-bit words out of 2m possible words in

Z2m . Consider the PRGA and assume that the initial permutation of 2n elements

in S is uniformly distributed over Z2m . Then the index pointer j is updated by the

statement

j = j + S[i] mod N

where j ∈ Z2n and S[i] ∈ Z2m . If the value of S[i] is uniformly distributed over Z2m ,

the value of index pointer j is also uniformly distributed over Z2n . This implies

that the value of the index pointer from which the output is taken (i.e., S[i] + S[j]

mod N) is uniformly distributed over Z2n . For the above properties to hold during

PRGA phase it is essential that the internal state of the RC4(n,m) evolves in a

60

uniformly distributed manner. Recall that in original RC4 the uniform distribution

of pointer j was the reason for the state to evolve uniformly since all the 256

elements in Z28 were present in the state. However in RC4(n,m) this is not the

case and the uniform distribution of j over Z2n is not sufficient. The state update

function also consists of the update of an element in S by integer addition modulo

M given by the statement

S[S[i] + S[j] mod N] = k + S[i] mod M.

Since both k and S[i] are uniformly distributed, the updated element in the state

is also uniformly distributed. The internal state of RC4(n,m) evolves in a uni-

formly distributed manner and therefore the output of the cipher is also uniformly

distributed, i.e., all the elements from Z2m occur with equal probability.

4.5 Performance of RC4(n,m)

RC4(n, 32) has been designed to exploit the 32-bit architecture of the current pro-

cessors. If n is chosen such that the corresponding memory requirements are reason-

able, RC4(n, 32) can give higher throughput than the original 8-bit RC4. We now

compare the performance of RC4(8, 32) with 8-bit RC4 and several other stream ci-

phers with similar designs. According to the NESSIE Performance Document [90],

RC4 throughput is about 1.1 bits/cycle on a Pentium III processor. The throughput

of eSTREAM submissions Py and HC-256, as reported by their designers, are 2.8

bits/cycle on a Pentium III and 1.9 bits/cycle on a Pentium 4 respectively. MV3 is

the most recent design and its reported throughput is 1.67 bits/cycle on a Pentium

IV. RC4(8, 32) however achieves a throughput of approximately 3.4 bits/cycle on

a Pentium IV. Therefore it is approximately 3.1 times faster than RC4 on 32-bit

machines. It is also considerably faster than HC-256, Py and MV3 primarily due

to its simple structure. We also implemented RC4(8, 64) on a 64-bit Ultrasparc IV

and found it to be approximately 6 times faster than the 8-bit RC4. This speedup

is significant when large files are encrypted.

Though the keystream generation is faster than original RC4, the key scheduling

61

algorithm is slower. This is due to the importance of sufficient randomness in the

initial state when keystream generation starts. In a situation where many small

packets are encrypted with different keys/IVs, RC4 might still be faster due to its

faster KSA.

4.6 Attack on RC4(n,m)

In Asiacrypt 2006 Paul and Preneel [100] presented a distinguishing attack on

RC4(8, 32). In their paper they referred to RC4(8,32) as GGNH. The attack con-

centrates only on the least significant bytes of the words in the table S. Let St[it]

denote eight least significant bits of the 32-bit word at location i in table S at

time t and let zt(l) denote the l-th bit in the 32-bit keystream word produced at

time t. If St[it] = St+1[jt+1] and St[jt] = St+1[it+1] then zt+1(0) = 0. It is easy

to see that if the above is true then we can write zt+1 = 2(k + St[it]) mod 232

which implies zt+1(0) = 0. We denote this event by E. Since our table size is 28

and we consider the table entries to be uniformly distributed, P [E] = 2−16 and

P [zt+1(0) = 0] = 1/2(1 + 2−16) which is greater than 0.5. Therefore by observing

the least significant bytes of the keystream words, the authors of [100] were able

to construct a distinguisher which has data and time complexity of O(232.89).

4.7 Countermeasures and Future Work

The above distinguishing attack shows that while the operations in RC4(n,m) are

mostly designed to break linearity over Z2, more operations are required to break

the linearity over Z232 and Z28 . This can be achieved through efficient bit-wise

operations available on all modern processors. A good target for these operations is

the update of the value k. The updated value of k must have a complex relation with

its previous value. This can be obtained by adding one or more bitwise operations

besides the addition modulo 232. Since k is used both in updating the table and

also computing the keystream word z, this should provide extra security against

the type of distinguishing attacks presented above. However the modified algorithm

62

has to be thoroughly analyzed for security. We intend to incorporate these changes

into our design in future and propose a newer version of the RC4-like keystream

generator.

It must be noted that the bitwise operations are very fast and the addition of two

or three bitwise operations will not affect the performance of the RC4(n,m). We

still expect it to be approximately 3 times faster than RC4 on 32-bit platforms. Note

that RC4, HC-256, and MV3 have throughputs which are less than 2 bits/cycle.

Although Py has a throughput of 2.8 bits/cycle, it was shown to be vulnerable to a

distinguishing attack [99]. To address the weakness, the designers of Py proposed

a new version of the cipher PyPy [10] with a reduced throughput of 1.4 bits/cycle

which again turned out to be vulnerable to another distinguishing attack [100].

Therefore we believe that with current designs being slower than 2 bits/cycle there

is considerable room for strengthening RC4(8, 32) by adding more operations to its

update function. Another area of improvement is the key scheduling of RC4(n, m).

It is much slower than that of RC4 since the entries of the array must be sufficiently

random before keystream generation starts. An improvement of the KSA would

also be an interesting future research direction.

63

Chapter 5

Algebraic Immunity of Boolean

Functions

We now turn our focus from the design of stream ciphers to the cryptographic

properties of nonlinear transformations used in these ciphers. In this chapter we

analyze the algebraic immunity of Boolean functions used in stream ciphers. In the

next two chapters we will analyze the algebraic immunity and other cryptographic

properties of the S-boxes used in block ciphers. We discussed the role of nonlin-

ear transformations in the design of symmetric ciphers in Chapter 1. Many LFSR

based stream ciphers use nonlinear Boolean functions to destroy the linearity of

the LFSR(s) output. Many of these designs have been broken by algebraic attacks.

Therefore from a designer’s point of view it is very important to understand the

algebraic properties of the nonlinear Boolean functions that make these designs

vulnerable to algebraic attacks. In this chapter we analyze a popular and crypto-

graphically significant class of nonlinear Boolean functions for their resistance to

algebraic attacks. We develop techniques to compute the algebraic immunity of

Boolean functions based on Power mappings and give meaningful bounds on the

algebraic immunity of functions based on Inverse, Kasami, Niho and Dobbertin ex-

ponents. The techniques developed in this chapter also give insight into the relation

between the polynomial form of Boolean functions and their algebraic immunity.

65

5.1 Background

The idea behind the algebraic attacks is to express the cipher as a system of multi-

variate equations whose solution gives the secret key. The complexity of the attack

depends heavily on the degree of these equations. For complete details of an al-

gebraic attack on an LFSR based stream cipher refer to Section 1.6. We begin by

looking at a brief history of these attacks. The algebraic attacks on stream ciphers

composed of LFSR(s) and a nonlinear combining function f were first proposed

by Courtois and Meier in [23, 24]. The authors presented several scenarios under

which low degree equations exist for ciphers using a combining function f with

small number of inputs. These low degree equations are obtained by producing

low degree multiples of f , i.e., by multiplying f with a low degree function g such

that fg is of low degree. In [75] Meier, Pasalic and Carlet reduced the scenarios

(given in [23, 24]) under which low degree equations can exist to two and showed

that existence of low degree equations is equivalent to the existence of low degree

annihilators of f or f + 1.

Krause and Armknecht extended algebraic attacks to combiners with memory

in [3]. They proved that algebraic equations always exist for such combiners and

also gave an upper bound on the degree of such equations in terms of their input

size and memory. In [21] Courtois further extended these attacks to combiners

with memory and several outputs and provided an upper bound on the degree of

equations for such combiners in terms of the size of their input, output and memory.

An improvement on the algebraic attacks called fast algebraic attacks was presented

in [20]. These attacks have been further examined in [4, 57]. The first algebraic

attack on a block cipher was discussed in [108]. In [25] Courtois and Pieprzyk

showed that AES can be attacked by solving a system of quadratic equations. This

is possible because the only nonlinear component in AES, i.e., the S-box, can be

expressed as a system of quadratic Boolean equations.

Since the existence of low degree equations for simple combiners, combiners

with memory, and even S-boxes is important for algebraic attacks, Armknecht

combined the three cases in [5]. He showed that finding low degree equations for

simple combiners, combiners with memory, and S-boxes can be reduced to the same

66

problem of finding low degree annihilators.

In other direction there is increasing interest in the construction of Boolean

functions with highest algebraic immunity. Some constructions have been pro-

posed [28,15,29] that can achieve maximum possible algebraic immunity dn
2
e, where

n is the number of inputs to the function. But the constructed function lacks cer-

tain cryptographic properties making it unsuitable to be used in a cryptosystem.

In the absence of a suitable construction the other option is to pick a function and

test it for low degree equations. However all current techniques for finding the low

degree equations are based on exhaustive search algorithms which are impractical

for larger values of n.

Most algorithms for finding the low degree equations are based on the theory

of Boolean functions. Even, polynomial functions and S-boxes, i.e., functions and

S-boxes designed over finite field F2n , n > 2, are analyzed according to this theory.

For example the filter function f : F216 → F2 used in the stream cipher SFINKS [14]

is a component of the inverse mapping in F216 . S-box used in AES [26] and stream

cipher SNOW [38] consists of inverse mapping in F28 . A power mapping from

F2n to F2n can be decomposed into n component functions, from F2n to F2, called

monomial trace functions.

In this chapter we use the theory of polynomial functions to analyze the algebraic

immunity of monomial trace function. This approach allows us to obtain meaningful

results that are very difficult to obtain from the theory of Boolean functions. For

example we derive upper bounds on the algebraic immunity of many monomial

trace functions that are much lower than the optimal upper bound presented in

the literature. We show that algebraic immunity of functions based on inverse,

Kasami, Niho and Dobbertin exponents [34] decreases drastically as n increases.

Moreover the existing algorithms to determine the algebraic immunity (and finding

low degree equations) of functions are very slow and are not practical for n > 25.

Our approach has no such limitation. The algebraic immunity of any monomial

trace function can be obtained directly from the formula regardless of the value

of n. Similarly the low degree equations required for the algebraic attack are also

obtained directly from the formula.

67

5.2 Algebraic Immunity AI
A Boolean function f is said to admit an annihilating function g, if f ∗ g = 0.

In [75] AI of f , denoted by AI(f), is defined as the minimum value of d such

that f or f + 1 admits an annihilating function of degree d. Proposition 1 of [75]

states that existence of relations of the form f ∗ g = h, where g and h have degree

at most d, means the existence of annihilating function g′ of degree at most d (as

f 2 ∗ g + f ∗ h = f ∗ g + f ∗ h = f ∗ (g + h) = 0). Therefore if for f we can find a

function g such that degree of f ∗ g is d then we can say that AI(f) ≤ d.

Fact 1. [23, Theorem 6.0.1] Let f be any Boolean function with n inputs. Then

there is a Boolean function g 6= 0 of degree at most dn
2
e such that f * g is of degree

at most dn
2
e.

Fact 1 shows that the upper bound on the AI of any Boolean function is dn
2
e.

To establish an upper bound on the AI of a polynomial function f we will try to

find multipliers g such that the degree of f ∗ g is less than dn
2
e.

5.3 Monomial Trace Functions and Power Map-

pings

Monomial trace functions are represented by a single trace term in polynomial form.

There are several compelling reasons to study the AI of monomial trace functions.

Any polynomial function can be expressed as a sum of monomial trace functions.

Therefore, for a constant multiplier g, theAI of any function f is upper bounded by

the maximum AI of any monomial trace function in its polynomial representation.

This bound may not always be tight but in certain cases it can reveal the weakness

of a function against algebraic attacks. Another important class of functions are

the functions that can be represented as monomial trace functions. These functions

can easily be constructed from a power mapping in a finite field. Therefore they can

be implemented efficiently and are good candidates for hardware oriented stream

ciphers. Power mappings can be represented as F : x → xa in F2n and are classified

68

based on exponent a. These mappings can easily be decomposed into monomial

trace functions:

Let {α0, ..., αn−1} and {β0, ..., βn−1} be dual bases of F2n . Then an S-box based

on power mapping (F : x → xa) can be represented as F (x) =
∑n−1

j=0 Trn
1 (βjx

2it)αj,

x 6= 0 and its component functions can be represented as monomial trace functions

of the form fj(x) = Trn
1 (βjx

2it), where a ∈ Ct [52, page 56]. It is conventional to

represent monomial trace functions in the form Trn
1 (βxt) where t is a coset leader

of Ct. Note that we can write a = 2−it for some i. So for any exponent a we can

write the monomial trace function in standard form as

f(x) = Trn
1 (βxa) = Trn

1 (βx2−it) = Trn
1 (β2i

xt),

since Trn
1 (x) = Trn

1 (x2). Next we look at some important power mappings.

5.4 Some Well Known Power Mappings

The discussion in this section is based on [34]. Some well known power mappings

that have been studied for use in S-boxes are Inverse, Gold, Kasami, Welch and Niho

(see also [46, 59, 35]). These mappings are cryptographically significant because of

their high nonlinearity. Gold and Kasami power functions are maximally nonlinear

(their nonlinearity is 2n−1 − 2
n−1

2) for odd n. Welch and Niho mappings are con-

jectured to be maximally nonlinear for odd n. For even n it is conjectured that for

all power mappings, maximum achievable nonlinearity is 2n−1 − 2
n
2 . If a mapping

achieves this nonlinearity it is called maximally nonlinear. For example inverse

mapping is maximally nonlinear for even n. Note that monomial trace functions

with the above mentioned exponents are simply the component functions of these

mappings. Therefore the nonlinearity of these monomial trace functions is greater

than or equal to the nonlinearity of their corresponding power mappings. More-

over, easy implementation and analysis of these monomial trace functions make

them suitable candidates for combining or filtering functions in stream ciphers [14].

69

5.5 Algebraic Immunity of Monomial Trace Func-

tions

We provide the following proposition that will be used to derive upper bounds on

the AI of monomial trace functions.

Proposition 1 Let f(x) = Trn
1 (βxt) and g(x) = Trm

1 (γxr) be monomial trace

functions, where x ∈ F2n, t and r are the coset leaders of cosets Ct and Cr. The

sizes of the cosets Ct and Cr are n and m respectively, m|n, and β ∈ F2n, γ ∈ F2m.

Then

deg(f(x)g(x)) = max
0≤i<m

H(r + t2−i)

Proof. Note both f(x) and g(x) are n variable Boolean functions. From the defini-

tion of trace function we can write (see also [51])

f(x)g(x) =
n−1∑
j=0

(βxt)2j
m−1∑

l=0

(γxr)2l

=
n−1∑
j=0

m−1∑

l=0

β2j

γ2l

xt2j+r2l

=
m−1∑

k=0

Trn
1 (γβ2k

xr+t2k

),

where the algebraic degree of f(x)g(x) is given by the largest w such that γβ2k 6= 0

and H(r + t2k) = w. Let k = m − i, we have t2k ≡ t2m−i ≡ t2−i mod 2n − 1.

Therefore

deg(f(x)g(x)) = max
0≤k<m

H(r + t2k) = max
0≤i<m

H(r + t2−i)

2

Proposition 1 shows that we only need to add r to the members of coset Ct, and

the highest Hamming weight of the resulting integers gives the maximum possible

degree of f(x)g(x).

In the following theorem we derive an upper bound on the AI of monomial

trace functions based on a property of the exponent t, i.e., the number of runs of

70

1’s in the binary representation of t.

Theorem 1 Let l = b√nc, k = n−bn
l
cl and f(x) = Trn

1 (βxt), where β ∈ F2n and

t is the coset leader of Ct. Let g(x) = Trm
1 (xr), where

m =

{
l, k = 0;

n, 0 < k < l
, and r =

{
1 +

∑n
l
−1

i=1 2il , k = 0

1 + 2k +
∑bn

l
c−1

i=1 2il+k , 0 < k < l
.

Then

deg(f(x)g(x)) ≤ ul +
⌈n

l

⌉
− 1, (5.1)

where u is the number of runs of 1s in the binary representation of t.

To prove Theorem 1 we need the following two lemmas.

Lemma 1 r is a coset leader modulo 2n − 1.

Proof. The above can be established by examining the binary representation of r.

Case: k = 0

︷ ︸︸ ︷
n

l l

r =
︷ ︸︸ ︷
00 · · · 01

︷ ︸︸ ︷
00 · · · 01

︷ ︸︸ ︷
00 · · · 01

2r = 00 · · · 10 00 · · · 10 00 · · · 10 > r

· · ·
2l−1r = 10 · · · 00 10 · · · 00 10 · · · 00 > r

2lr = 00 · · · 01 00 · · · 01 00 · · · 01 = r

Therefore r is the coset leader modulo 2n − 1.

71

Case: 0 < k < l

︷ ︸︸ ︷
n

l l k

r =
︷ ︸︸ ︷
00 · · · 01

︷ ︸︸ ︷
00 · · · 01

︷ ︸︸ ︷
00 · · · 01

︷ ︸︸ ︷
00 · · · 01

2r = 00 · · · 10 00 · · · 10 00 · · · 10 00 · · · 10 > r

· · ·
l k l

2lr =
︷ ︸︸ ︷
00 · · · 01

︷ ︸︸ ︷
00 · · · 01

︷ ︸︸ ︷
00 · · · 01

︷ ︸︸ ︷
00 · · · 01 > r

· · ·
l l k

2nr =
︷ ︸︸ ︷
00 · · · 01

︷ ︸︸ ︷
00 · · · 01

︷ ︸︸ ︷
00 · · · 01

︷ ︸︸ ︷
00 · · · 01 = r

Therefore r is the coset leader modulo 2n − 1. 2

Note: For k = 0, |Cr| = l and for 0 < k < l, |Cr| = n, where |Cr| is the size of the

coset Cr.

In Lemma 1 ︷︸︸︷ is used to indicate the size of a segment in bits. From here

onwards we will use ︷︸︸︷ to represent the size of the segment as before and ︸︷︷︸ to

represent the number of 1’s in the segment.

Lemma 2 H(r + t2−i) ≤ ul + dn
l
e − 1, 0 ≤ i ≤ m − 1 and r, t, u, and l are as

defined in Theorem 1.

Proof. Consider the binary representations of r and t. In Lemma 1, r consists

of bn
l
c identical l bit segments when k = 0. If k 6= 0, then k least significant bits

of r form an additional segment. All dn
l
e segments have Hamming weight 1. We

can segment t in the same way as r however these segments may or may not be

identical. We will represent a segment of r and t as r′ and t′ respectively. Now

let us consider the addition of r′ and t′. Initially we will restrict ourselves to the

case where the binary representation of t′ has at most one run. Now consider all

possible transitions in t′ with and without carry.

72

Case 1: 1 → 0 transition

j y j y ← carry

t′ =
︷ ︸︸ ︷
111 · · · 1 0 · · · 00 t′ =

︷ ︸︸ ︷
111 · · · 1 0 · · · 00

r′ = 000 · · · 00 · · · 01 r′ = 000 · · · 00 · · · 01

+ −−−−−−− + −−−−−−−
111 · · · 10 · · · 01 111 · · · 10 · · · 10

H(r′ + t′) = j + 1, j < l − 1 H(r′ + t′) = j + 1, j < l − 1

j y carry ← j y ← carry

t′ =
︷ ︸︸ ︷
111 · · · 11 0 t′ =

︷ ︸︸ ︷
111 · · · 11 0

r′ = 000 · · · 001 r′ = 000 · · · 001

+ −−−−−−− + −−−−−−−
111 · · · 111 000 · · · 000

H(r′ + t′) = j + 1, j = l − 1 H(r′ + t′) = 0, j = l − 1

Case 2: 0 → 1 transition

j y j y ← carry

t′ =
︷ ︸︸ ︷
000 · · · 0 1 · · · 11 t′ =

︷ ︸︸ ︷
000 · · · 0 1 · · · 11

r′ = 000 · · · 00 · · · 01 r′ = 000 · · · 00 · · · 01

+ −−−−−−− + −−−−−−−
000 · · · 10 · · · 00 000 · · · 10 · · · 01

H(r′ + t′) = 1, j < l H(r′ + t′) = 2, j < l

Case 3: No transition

← carry

t′ = 000 · · · 00 t′ = 000 · · · 00

r′ = 000 · · · 01 r′ = 000 · · · 01

+ −−−−− + −−−−−
000 · · · 01 000 · · · 10

73

H(r′ + t′) = 1 H(r′ + t′) = 1

carry ← carry ← ← carry

t′ = 111 · · · 11 t′ = 111 · · · 11

r′ = 000 · · · 01 r′ = 000 · · · 01

+ −−−−− + −−−−−
000 · · · 00 000 · · · 01

H(r′ + t′) = 0 H(r′ + t′) = 1

From the above cases it is clear that H(r′ + t′) achieves maximum value l for

1 → 0 transition (no carry case). For 0 → 1 transition the maximum value is 2

and when there is no transition it is 1. Now consider the following complete binary

representation of r and t.

l l l

t =
︷ ︸︸ ︷∗ ∗ · · · ∗ ∗

︷ ︸︸ ︷
1110 · · · 00

︷ ︸︸ ︷∗ ∗ · · · ∗ ∗
r = 0 0 · · · 0 1 0000 · · · 01 0 0 · · · 0 1

where * can be either 1 or 0.

First we assume that each segment t′ has at most one run. To get the maximum

possible value of H(r + t2−i) each segment with a 1 → 0 transition must contribute

l number of 1’s to the sum. Since there are u number of 1 → 0 transitions this

adds up to ul number of 1’s. For u number of 1 → 0 transitions there are at most

u segments with 0 → 1 transitions, each contributing a maximum of 2 number of

1’s to the sum, i.e., 2u number of 1’s. All the remaining dn
l
e− 2u segments with no

transitions can contribute at most single 1 to the sum. So the total contribution

is ul + 2u + dn
l
e − 2u = ul + dn

l
e. Now consider the first segment from right to

left that contains a 0 → 1 transition (right most segment with a 0 → 1 transition).

For this segment to contribute 2 number of 1’s to the sum it must receive a carry,

otherwise it will contribute a single 1 (see case 2). Since the right most segment

never receives a carry, the only way a carry can be generated between the right

most segment and the right most segment with a 0 → 1 transition is due to the

presence of a segment with all 1’s (see all cases without carry). However this all 1’s

74

segment contributes zero number of 1’s to the sum. Therefore we subtract 1 from

ul + dn
l
e. Therefore the maximum possible value of H(r + t2−i) is ul + dn

l
e − 1.

Suppose a segment t′ has more than one runs. Then it must contain a 1 → 0

transition. In our analysis of segments with single runs, we assumed that each

segment with a 1 → 0 transition must contribute l number of 1’s to the sum.

As the size of the segment is l the contribution of a segment with more than one

runs must be less than or equal to the contribution of the segment with one run.

Therefore H(r + t2−i) is upper bounded by ul + dn
l
e − 1.

2

Proof of Theorem 1.

The assertion follows directly from Lemma 1, Lemma 2 and Proposition 1. 2

5.5.1 Impact of Theorem 1 on Algebraic and Fast Algebraic

Attacks

From the point of view of algebraic attacks on LFSR based stream ciphers, Theo-

rem 1 is particularly significant. It not only gives the upper bound on the AI of

f , i.e., ul + dn
l
e − 1 but at the same time also gives the low degree multiplier g. In

Theorem 1 we give only one multiplier however we can get 2m− 1 distinct non zero

multipliers by taking g(x) = Trm
1 (βxr), where β ∈ F2m . Note only m of them are

linearly independent.

An improvement on the conventional algebraic attacks is the fast algebraic at-

tacks introduced by Courtois in [20] and later improved in [4, 57]. Functions with

high AI may fail to provide resistance against fast algebraic attacks if the degree of

the multiplier g is very low (see [2,13,27]). These attacks improve on conventional

algebraic attacks by adding a pre-computation step which reduces the complexity

of the online step of the attack. Usually the smaller the degree of g, the greater is

the improvement. From Theorem 1 degree of g is d n
b√nce, which is sufficiently small.

Therefore an LFSR based stream cipher using nonlinear function f is vulnerable to

fast algebraic attacks.

The first step in both algebraic and fast algebraic attacks is to find low degree

75

relations. The complexity of this step is roughly D2, D =
∑d

i=0

(
n
d

)
, where d is the

AI of f [2]. For large values of n (say > 30) and d (say > 15) this computation may

be infeasible. However Theorem 1 immediately gives several low degree relations

for many classes of monomial trace functions regardless of the value of n.

Remark 1 From Fact 1 we know that AI of any function is at most dn
2
e. Let v be

the degree of f(x), then, to obtain a meaningful upper bound on AI, deg(f(x)g(x)) ≤
min

(
v,

⌈
n
2

⌉)
. So we have the following condition on u,

u ≤ min

(
v − ⌈

n
l

⌉
+ 1

l
,

⌈
n
2

⌉− ⌈
n
l

⌉
+ 1

l

)
. (5.2)

For many cryptogaphically useful power mappings, u is very small. For example,

u = 1 for inverse, and u = 2 for Kasami, Gold, Welch and Niho. Therefore

Theorem 1 can give very useful bounds for these mappings. In fact in most cases

using the proof technique of Theorem 1 and exploiting the specific binary form

of each exponent, we can further improve this bound. Since functions with Gold

and Welch exponents have very small degrees (2 and 3 respectively) we will only

consider inverse, Kasami, Niho and Dobbertin exponents in this chapter.

5.6 Inverse Exponent

Inverse mappings x → x−1 in F2n can be decomposed in n monomial trace functions

of the form Trn
1 (βx−1). The degree of these monomial trace functions is n − 1.

Among all bijective Boolean functions, degree n−1 is only achieved by the monomial

trace functions with inverse exponent. The inverse exponent consists of a single

run of 1’s. From Theorem 1 its AI is upper bounded by l + dn
l
e − 1. However

in Theorem 2 we show that for inverse function this bound can be improved to

l + dn
l
e − 2.

Lemma 3 Let t = 2n−1 − 1. Then H(r + t2−i) ≤ l + dn
l
e − 2, 0 ≤ i ≤ m− 1 and

r is defined as in Theorem 1.

76

Proof. Consider the binary representation of r and t.

l l l

t =
︷ ︸︸ ︷
01 · · · 11

︷ ︸︸ ︷
11 · · · 11

︷ ︸︸ ︷
11 · · · 11

︷ ︸︸ ︷
11 · · · 11

r = 00 · · · 01 00 · · · 01 00 · · · 01 00 · · · 01

+ −−−−−−−−−−−−−−−−
10 · · · 01︸ ︷︷ ︸ 00 · · · 01︸ ︷︷ ︸ 00 · · · 01︸ ︷︷ ︸ 00 · · · 00︸ ︷︷ ︸

2 1 1 0

H(r + t) = dn
l
e. We can see that H(r + t2−i) is maximized when i = l − 2

l l l

t2−(l−2) =
︷ ︸︸ ︷
11 · · · 01

︷ ︸︸ ︷
11 · · · 11

︷ ︸︸ ︷
11 · · · 11

︷ ︸︸ ︷
11 · · · 11

r = 00 · · · 01 00 · · · 01 00 · · · 01 00 · · · 01

+ −−−−−−−−−−−−−−−−
11 · · · 11︸ ︷︷ ︸ 00 · · · 01︸ ︷︷ ︸ 00 · · · 01︸ ︷︷ ︸ 00 · · · 00︸ ︷︷ ︸

l 1 1 0

H(r + t2−(l−2)) = l + dn
l
e − 2. Therefore H(r + t2−i) ≤ l + dn

l
e − 2, 0 ≤ i ≤ n− 1.

2

Theorem 2 Let f(x) = Trn
1 (βx−1) and g(x) = Trm

1 (xr). Then

deg(f(x)g(x)) ≤ l +
⌈n

l

⌉
− 2 (5.3)

where β, m, r and l are the same as defined in Theorem 1.

Proof. From Lemma 3, t = 2n−1 − 1. Since Trn
1 (x) = Trn

1 (x2), we have

f(x) = Trn
1 (βx−1) = Trn

1 (βx2t) = Trn
1 (β2n−1

xt). (5.4)

From Lemma 1, r is a coset leader and from Lemma 3, Eqn.(5.4) and Proposition 1,

deg(f(x)g(x)) ≤ l + dn
l
e − 2. 2

77

In their Eurocrypt 2006 paper [2] Armknecht et al. experimentally determined

the exact AI of the monomial trace functions with inverse exponents for 12 ≤ n ≤
20. Their results are the same as the upper bound given in Theorem 2. This shows

that our bound is tight for these values of n. We believe that this bound is (very

likely) tight for all values of n. Also note that this bound on AI is much less than

theoretical optimal value dn
2
e for higher values of n (see Table 5.1).

5.7 Kasami and Kasami-Like Exponents

A Kasami exponent [59], e, is defined as e = 22s−2s+1, gcd(n, s)=1 and 1 ≤ s ≤ n
2
.

If we remove the condition gcd(n, s)=1 we can write é = 22s − 2s + 1, 1 ≤ s ≤ n
2
.

We will call é, the Kasami-like exponent. The motivation behind studying Kasami-

like exponents, instead of only Kasami exponents, comes from [2]. The authors

of [2] experimentally determined the AI of Kasami and Kasami-like exponents for

12 ≤ n ≤ 20. Based on their results, they suggested that such functions have high

AI. However we show that monomial trace functions with Kasami or Kasami-like

exponents have poor AI for larger values of n. Also by considering Kasami-like

exponents we get a much larger class of functions with AI upper bounds the same

as Kasami exponents.

An n variable monomial trace function with a Kasami-like exponent, f(x), can

be defined as f(x) = Trn
1 (βxé). The algebraic degree of f(x) is s+1. The Kasami-

like exponents consist of 2 runs of 1’s in their binary representation. From Theo-

rem 1 their AI is upper bounded by 2l + dn
l
e − 1. However in Theorem 3 we show

that this bound can be improved further.

Lemma 4 Let t = é2−s where é = 22s − 2s + 1, 1 ≤ s ≤ n
2
. Then

H(r + t2−i) ≤
{

l +
⌈

n
l

⌉
, s 6≡ 1 mod l

l +
⌈

n
l

⌉− 1, s ≡ 1 mod l

where 0 ≤ i ≤ m− 1 and r is defined in Theorem 1.

78

Proof. The binary representation of é is:

n− 2s s s

é = 22s − 2s + 1 =
︷ ︸︸ ︷
00 · · · 00

︷ ︸︸ ︷
11 · · · 11

︷ ︸︸ ︷
00 · · · 01 .

Let t = é2−s, then

s n− 2s s

t = 22s − 2s + 1 =
︷ ︸︸ ︷
00 · · · 01

︷ ︸︸ ︷
00 · · · 00

︷ ︸︸ ︷
11 · · · 11 .

Consider the addition of r and t.

Case 1: s 6≡ 1 mod l

The binary representation of t has 2 runs of 1’s out of which one run consists of

single 1. This 1 can only contribute a single 1 in any segment of r + t2−i. Now we

can see that H(r + t2−i) is maximized when i = l − 1.

l l l

t2−(l−1) =
︷ ︸︸ ︷
11 · · · 10

︷ ︸︸ ︷
00 · · · 00

︷ ︸︸ ︷
0 · · · 100

︷ ︸︸ ︷
001 · · · 11

︷ ︸︸ ︷
11 · · · 11

r = 00 · · · 01 00 · · · 01 0 · · · 001 000 · · · 01 00 · · · 01

+ −−−−−−−−−−−−−−−−−−−−−−
11 · · · 11︸ ︷︷ ︸ 00 · · · 01︸ ︷︷ ︸ 0 · · · 101︸ ︷︷ ︸ 010 · · · 01︸ ︷︷ ︸ 00 · · · 00︸ ︷︷ ︸

l 1 2 2 0

H(r + t2−(l−1)) = l + dn
l
e.

Case 2: s ≡ 1 mod l

When i = l−1, the run with a single 1, in the binary representation of t2−i, is always

at the least significant position of a segment. Therefore it does not contribute an

additional 1 in the corresponding segment of r + t2−i.

79

l l l

t2−(l−1) =
︷ ︸︸ ︷
11 · · · 10

︷ ︸︸ ︷
00 · · · 00

︷ ︸︸ ︷
0 · · · 001

︷ ︸︸ ︷
001 · · · 11

︷ ︸︸ ︷
11 · · · 11

r = 00 · · · 01 00 · · · 01 0 · · · 001 000 · · · 01 00 · · · 01

+ −−−−−−−−−−−−−−−−−−−−−−
11 · · · 11︸ ︷︷ ︸ 00 · · · 01︸ ︷︷ ︸ 0 · · · 010︸ ︷︷ ︸ 010 · · · 01︸ ︷︷ ︸ 00 · · · 00︸ ︷︷ ︸

l 1 1 2 0

H(r + t2−(l−1)) = l + dn
l
e-1. 2

Theorem 3 Let f(x) = Trn
1 (βxé), where é is a Kasami-like exponent. Then

deg(f(x)g(x)) ≤
{

l +
⌈

n
l

⌉
, s 6≡ 1 mod l

l +
⌈

n
l

⌉− 1, s ≡ 1 mod l

where β, l and g(x) are defined in Theorem 1.

Proof. Let t = é2−s, then

f(x) = Trn
1 (βxé) = Trn

1 (βxt2s

) = Trn
1 (β2n−s

xt), (5.5)

since Trn
1 (x) = Trn

1 (x2). The assertion follows directly from Lemma 4, Lemma 1,

Eqn.(5.5) and Proposition 1. 2

In [2] the exact AI of the monomial trace functions with Kasami-like exponents

for 12 ≤ n ≤ 20 is determined experimentally. For n = 19 the results agree with

our bound. For the remaining values of n the results are very close to our bound.

Remark 2 In Theorem 3 bound on AI is proved for Kasami-like exponents. Since

Kasami exponents are a subset of Kasami-like exponents these bounds also hold for

Kasami exponents. Note that these bounds are much lower than the optimal bound

dn
2
e for large n (see Table 5.1).

Remark 3 For cryptographic applications it is desirable for a Boolean function to

have high degree. Let f(x) = Trn
1 (βxe) be a maximum degree function such that e

80

is a Kasami exponent. If n is odd then degree of f(x) is n+1
2

and it is easy to see

that the binary representation of e consists of one run with a single 1 followed by

one run with a single 0. Only one of this run can contribute an additional 1 in a

segment of r + t2−i. Therefore the AI of an odd variable, highest degree monomial

trace function with Kasami exponent is upper bounded by l + dn
l
e − 1.

5.8 Niho and Dobbertin Exponents

First we consider Niho exponent. An n variable monomial trace function with Niho

exponent [35,91], f(x), can be defined as f(x) = Trn
1 (βxe), where e = 2s + 2

s
2 − 1,

n = 2s + 1 when s is even and e = 2s + 2
3s+1

2 − 1, n = 2s + 1 when s is odd. The

degree of Niho function in n variables is n+3
4

for n ≡ 1 mod 4 and n+1
2

for n ≡ 3

mod 4.

The Niho exponent consists of 2 runs of 1’s in its binary representation. From

Theorem 1 its AI is upper bounded by 2l + dn
l
e − 1. However we improve this

bound in Theorem 4.

Lemma 5 Let t = e be a Niho’s exponent. Then

H(r + t2−i) ≤





l +
⌈

n
l

⌉− 1, s ≡ 0 mod l, s is even or

s ≡ 1 mod l, s is odd

l +
⌈

n
l

⌉
, otherwise

where 0 ≤ i ≤ m− 1 and r is defined in Theorem 1.

Proof. The binary representation of t is:

s + 1 s
2

s
2

t = 2s + 2
s
2 − 1 =

︷ ︸︸ ︷
00 · · · 01

︷ ︸︸ ︷
00 · · · 00

︷ ︸︸ ︷
11 · · · 11, n = 2s + 1, s is even

s+1
2

s+1
2

s

t = 2s + 2
s
2 − 1 =

︷ ︸︸ ︷
00 · · · 01

︷ ︸︸ ︷
00 · · · 00

︷ ︸︸ ︷
11 · · · 11, n = 2s + 1, s is odd

81

The binary representation of t has 2 runs of 1’s out of which one run consists of

single 1. This 1 can only contribute a single 1 in any segment of r + t. As in

Lemma 4 it is easy to verify that H(r + t2−i) is maximized when i = l − 1. If

s ≡ 0 mod l and s is even or s ≡ 1 mod l and s is odd, then the run with a single

1, in the binary representation of t2−i, is always at the least significant position of

a segment. Therefore it does not contribute an additional 1 in the corresponding

segment of r + t (see Lemma 4). So H(r + t2−(l−1)) is given by l + dn
l
e − 1.

In all the other cases this 1 can contribute an additional 1 in the corresponding

segment of r + t, and therefore in such cases H(r + t2−(l−1)) is given by l + dn
l
e. 2

Theorem 4 Let f(x) = Trn
1 (βxe), where e is a Niho exponent. Then

deg(f(x)g(x)) ≤





l +
⌈

n
l

⌉− 1, s ≡ 0 mod l, s is even or

s ≡ 1 mod l, s is odd

l +
⌈

n
l

⌉
, otherwise

where β, l and g(x) are defined in Theorem 1.

Proof. The assertion follows directly from Lemma 5, Lemma 1, and Proposition 1.

2

Now we consider Dobbertin exponent. An n variable monomial trace function

with Dobbertin exponent [35], f(x), can be defined as f(x) = Trn
1 (βxe), where

e = 24s + 23s + 22s + 2s − 1 and n = 5s. The degree of f(x) is s + 3. The binary

representation of e has 4 runs of 1’s. From Theorem 1 its AI is upper bounded by

4l + dn
l
e − 1. However in Theorem 5 we show that AI of f(x) is upper bounded

by l + dn
l
e+ 2.

Theorem 5 Let f(x) = Trn
1 (βxe),where e is a Dobbertin exponent. Then

deg(f(x)g(x) ≤ l + dn
l
e+ 2

where β, l, and g(x) are defined in Theorem 1.

82

Proof. Let t = e. Then the binary representation of t is:

s s s s s

t =
︷ ︸︸ ︷
00 · · · 01

︷ ︸︸ ︷
00 · · · 01

︷ ︸︸ ︷
00 · · · 01

︷ ︸︸ ︷
00 · · · 00

︷ ︸︸ ︷
11 · · · 11

Using the proof techniques from Lemmas 3, 4 and 5 it can easily be verified that

maximum value of H(r + t2−i) is l + dn
l
e+ 2, where 0 ≤ i ≤ m− 1 and r is defined

in Theorem 1. Now the proof follows directly from Lemma 1, and Proposition 1. 2

Note that the degree of f(x) is very small. From Eqn. (5.2) this bound is only

useful if n ≥ 100. This might not be of practical significance at present but we

have provided the bound for the sake of theoretical interest.

5.9 Comparative Study of our AI Bound

Now we compare our bound on theAI with the bound given in Fact 1, and the exact

AI, obtained experimentally, in [2]. Table 5.1 shows how the upper bound on the

AI of monomial trace functions with Inverse, Kasami and Niho exponents decreases

as n increases. Table 5.2 compares our bound with the exactAI obtained in [2]. For

n = 16 and 20 (a * in table) functions with Kasami-like exponents were modified

in [2] to make them balanced. Therefore for n = 16 and 20 comparison with our

bound is not valid. Note that for n ≤ 20 our bound is tight for inverse exponent and

is very close to the exact AI for Kasami exponent. Also the experimental results

suggest that AI of Kasami exponent is better than inverse exponent. However it is

clear from Theorems 2 and 3 that the difference between the upper bound on their

AI is at most 2 irrespective of the value of n.

83

Table 5.1: AI bounds for Inverse, Kasami and Niho functions

f n deg(f) Bound from Fact 1 (
⌈

n
2

⌉
) Our bound on AI

Inverse 16 15 8 6
36 35 18 10
100 99 50 18

Kasami 16 8 8 8
36 18 18 12
100 50 50 20

Niho 15 8 8 8
35 18 18 12
99 50 50 20

Table 5.2: Comparison of our AI bound with experimental results from [2]

n Inverse Kasami
Exact AI Our bound s Exact AI Our bound

13 6 6 5 6 8
14 6 6 6 6 8
15 6 6 6 7 8
16 6 6 7 7∗ 8
17 7 7 7 8 9
18 7 7 8 8 9
19 7 7 8 9 9
20 7 7 9 9∗ 8
100 X 18 49 X 20

5.10 Generalization to Polynomial Functions

Any balanced polynomial function f(x) can be represented by Eqn. (2.2) which is

reproduced here as

f(x) =
∑

k∈Γ(n)

Trnk
1 (Akx

k), Ak ∈ F2nk , x ∈ F2n ,

84

which is simply a sum of monomial trace functions. If we only consider monomial

trace functions as multipliers the result in Theorem 1 can be generalized to all

balanced polynomial functions. Let uk be the number of runs of 1’s in the binary

representation of k and u = maxk∈Γ(n){uk} such that Ak 6= 0. Let g(x) be a

monomial trace function defined in Theorem 1. Then

deg(f(x)g(x)) ≤ ul +
⌈n

l

⌉
− 1.

To obtain a meaningful bound on AI of f , u must satisfy Eqn. (5.2). The above

result implies that AI of f is upper bounded by the maximum AI of the single

trace functions in the polynomial representation of f .

5.11 AI of WG and Hyper-bent Functions

So far in this chapter we have restricted our discussion to the AI of monomial

trace functions. In Section 5.10 we generalized our results to all polynomial func-

tions however this bound is not tight. In the absence of tight bounds for general

polynomial functions we present some experimental results on the AI of two other

cryptographically significant functions, i.e., WG and Hyper-bent.

We begin with the definition of a bent function. A bent function, f , is a function

from F2n → F2 for which [52]

f̂(λ) =
∑

x∈F2n

(−1)Tr(λx)+f(x) = ±
√

2n,∀λ ∈ F2n

where n is even and we write n = 2m. A bent function is called a hyper-bent

function [116] if,

f̂(λ, c) = ±2m,∀λ ∈ F2n , c : 0 < c < 2n − 1, gcd(c, 2n − 1) = 1

where

f̂(λ, c) =
∑

x∈F2n

(−1)Tr(λxc)+f(x).

85

Table 5.3: AI of WG tranformations

n deg(f) Total WG transformations No. of transfor-
mations whose
degree can be
reduced

deg(g) deg(fg)

7 4 18 0 - -
8 4 16 1 3 3
10 5 60 2 4 4
11 5 176 0 - -
13 6 631 0 - -

Hyper-bent functions are important cryptographic functions as they have the max-

imum nonlinearity (minimum distance from all affine functions). A hyper-bent

function f in n variables has degree d = n/2 where n is even. We have used the

algorithm given in [55] to test hyper-bent functions for algebraic immunity. Our

exhaustive search shows that all hyper-bent functions in 6 variables(n = 6 and

d = 3) have maximum AI. However our results for n = 8 and n = 10 show that

for about 10 percent of the hyper-bent functions AI = n− 1. We also tested some

functions with n = 12 but were not able to find a Hyper-bent function with AI
less than n− 1.

We introduced WG transformations and their cryptographic properties in Chap-

ter 3. These transformations are balanced with high linear complexity and are first

order resilient. The degree of a WG function in n variables is dn/3e + 1. We

tested all WG functions in n variables where 7 ≤ n ≤ 13. The results are shown

in Table 5.3. For each n we list the degree of the transformation, total number

of WG transformations, the degree of low degree multiplier g, if it exists, and the

degree of product f ∗ g. It is clear from the table that for n = 8 there is only one

transformation whose degree can be reduced by a multiplier g of degree 3. Similarly

for n = 10, two transformations exist whose degree can be reduced by multipliers

of degree 4. For n=7, 11, and 13 all WG transformations have AI equal to their

algebraic degree.

86

5.12 Conclusions

In this chapter we used the theory of polynomial functions to provide an upper

bound on AI of monomial trace functions. The low degree multiples were also

obtained directly from the formula for any n. This is particularly useful because

so far there are no known efficient algorithms to find the AI of a function with

large number of inputs. We improved the AI bound on inverse, Kasami, Niho and

Dobbertin functions and showed that their AI is very low. We also generalized our

results to polynomial functions. Finally we presented experimental results on the

AI of WG transformations and Hyper-bent functions. An interesting extension of

this research is to determine the lower bound on theAI of monomial trace functions.

However it seems to be more challenging as it requires proving the non-existence

of low degree multipliers.

87

Chapter 6

Algebraic Immunity of S-boxes

In this chapter we investigate the resistance of S-boxes against algebraic attacks.

Courtois defined this resistance in terms of the algebraic immunity of an S-box

which depends on the number and type of linearly independent multivariate equa-

tions it satisfies. This definition is controversial and some researchers believe that

the existence of such equations does not imply that a block cipher is vulnera-

ble to algebraic attacks. They argue that the system of multivariate equations

obtained in these algebraic attacks is hard to solve. On the other hand some algo-

rithms [25,39,40] have been successful in solving such systems but on a smaller scale.

These algorithms are mostly based on heuristics and it is difficult to say how well

they will scale to larger systems such as the one for AES. We believe that although

Courtois definition may not measure the complexity of solving such systems accu-

rately, the existence of these multivariate equations indicate an algebraic weakness

in the design of the S-box. Simple and abundant algebraic relations between the

input and output of nonlinear transformations are not desirable. Therefore we will

use the term algebraic immunity to refer to the absence of low degree multivariate

equations between the input and output of an S-box.

In this chapter our main focus is to develop techniques to find the number of lin-

early independent, multivariate, bi-affine and quadratic equations for S-boxes based

on power mappings. These techniques can be used to obtain the exact number of

equations for any class of power mappings. We present two algorithms to calcu-

89

late the number of bi-affine and quadratic equations for any (n, n) S-box based on

power mapping. The time complexity of both algorithms is only O(n2). To design

algebraically immune S-boxes we present four new classes of S-boxes that guaran-

tee zero bi-affine equations and one class of S-boxes that guarantees zero quadratic

equations. We also discuss the algebraic immunity of power mappings based on

Kasami, Niho, Dobbertin, Gold, Welch and Inverse exponents.

To design cryptographically strong S-boxes we also consider their resistance

against other powerful attacks, i.e., linear and differential cryptanalysis. We provide

two new conjectures about the nonlinearity and differentially k-uniform property

of Kasami and Kasami like exponents. Finally we solve an open problem to find

an (n, n) bijective nonlinear S-box with more than 5n quadratic equations and

conjecture that the upper bound on this number is n(n−1)
2

.

6.1 Background

We begin by reviewing the developments in the field of algebraic attacks on block

ciphers. The first algebraic attack on a block cipher was discussed in [108]. For

recent developments in the area of algebraic attacks on block ciphers see [5, 11, 21,

25, 80, 81]. In [25] Courtois and Pieprzyk showed that AES [26] can be attacked

by solving an overdefined system of algebraic equations. This is possible because

the only nonlinear component in AES, i.e., the S-box, can be expressed as an

overdefined system of algebraic equations. The authors presented an algorithm

called XSL to solve this system of multivariate equations and also introduced the

notion of algebraic immunity, Υ, of S-boxes where Υ is an important parameter

in measuring the complexity of the XSL algorithm. For a F2n → F2n S-box Υ is

defined as Υ = ((t− r)/n)d(t−r)/ne, where r is the number of equations and t is the

number of monomials in these equations. A lower value of r means a higher value

of Υ and therefore higher complexity of the algebraic attack. In [25] the authors

showed that for AES S-box Υ = 222.9 and claimed that for secure ciphers Υ should

be greater than 232.

Inspired by [25] Cheon and Lee [18] developed tools to calculate the number

90

of linearly independent multivariate equations for algebraic S-boxes. They used

their results to estimate the algebraic immunity Υ of maximally nonlinear power S-

boxes (based on Gold, Kasami and inverse exponents [34]). However Courtois et al.

disputed their results in [22] by showing that in most cases the number of linearly

independent multivariate equations calculated by them are incorrect. This was

done by experimentally finding the total number of quadratic equations for Gold

and Kasami power S-boxes. Power mappings are of interest because unlike random

permutations, they can be implemented in hardware without a lookup table. This

facilitates compact and fast implementations of S-boxes in hardware.

In [22, Appendix A] Courtois et al. also used the polynomial representation

of the algebraic S-boxes to prove that S-boxes based on inverse mapping in F2n

have 3n− 1 bi-affine equations and 5n− 1 quadratic equations. However they did

not generalize their results to other power S-boxes and only provided experimental

results for S-boxes based on Gold, Dobbertin, Niho, Welch and Kasami exponents.

The largest S-box experimentally tested by them was n = 17. In this chapter

we use the polynomial representations to develop techniques which can be used to

obtain the exact number of bi-affine and quadratic equations for any class of power

mappings. From these techniques we also develop two very simple algorithms which,

given an (n, n) S-box and the exponent of power mapping, calculate the exact

number of bi-affine and quadratic equations respectively. The time complexity

of both algorithms is O(n2) which is very small even for very large S-boxes (for

example n = 220). The algorithms currently available in the literature to find such

equations have time complexities that are exponential in n and therefore impractical

for n > 25. Note however that these algorithms find the actual equations whereas

our algorithms only calculate the number of such equations. Towards designing

S-boxes with highest algebraic immunity, we provide four classes of power S-boxes

that guarantee zero bi-affine equations and one class that guarantees zero quadratic

equations. We examine other cryptographic properties, i.e., nonlinearity, algebraic

degree and uniform differential property of these S-boxes and list cryptographically

strong power S-boxes for n = 8 and 10. We also provide two new conjectures

regarding the nonlinearity and uniform differential property of Kasami like power

91

mappings. In addition to this we solve an open problem given in [25, 22] to find

a bijective nonlinear (n, n) S-box with more than 5n quadratic equations. We

conjecture the upper bound on this number to be n(n−1)
2

for even n.

6.2 Bi-affine and Quadratic Equations for Power

Mappings

Let’s fix any arbitrary basis {α0, α1, · · · , αn−1} for F2n . Then F2n and Fn
2 are

isomorphic and can be used interchangeably. Consider F : F2n → F2n to be an

S-box based on a power mapping. Such S-boxes are classified according to the

exponent a of the power mapping such that y = F (x) = xa.

Proposition 2 Let h(x, y) =
∑

i,j ai,jxiyj be a bi-affine Boolean function in 2n

variables, where x =
∑n−1

i=0 xiαi, y =
∑n−1

i=0 yiαi and ai,j ∈ F2. Then h(x, y) has a

unique polynomial representation in F2n such that

h(x, y) =
n−1∑

k=0

Trn
1 (bkx

2k

y), bk ∈ F2n .

Proof. Let {α0, ..., αn−1} and {β0, ..., βn−1} be dual bases of F2n and x = x0α0 +

· · · + xn−1αn−1 and y = y0α0 + · · · + yn−1αn−1. Now we can write xi = Trn
1 (βix)

and yj = Trn
1 (βjy).

92

Therefore

h(x, y) =
∑
i,j

ai,jxiyj =
∑
i,j

ai,jTrn
1 (βix)Trn

1 (βjy)

=
∑
i,j

ai,j

n−1∑

k=0

Trn
1 (β2k

i βjx
2k

y)

=
n−1∑

k=0

Trn
1 (

∑
i,j

ai,jβ
2k

i βjx
2k

y)

=
n−1∑

k=0

Trn
1 (bkx

2k

y) where bk =
∑
i,j

ai,jβ
2k

i βj

2

Corollary 1 Let y = xa and h(x, y) =
∑

i,j ai,jxiyj +
∑

j vjyj be a Boolean func-

tion in 2n variables where ai,j, vj ∈ F2. Then h(x, y) has a unique polynomial

representation in F2n such that

h(x, y) =
n−1∑

k=0

Trn
1 (bkx

2k+a) + Trn
1 (cxa), bk, c ∈ F2n .

Proof. From proposition 2 we have
∑

i,j ai,jxiyj =
∑n−1

k=0 Trn
1 (bkx

2k
y) and we know∑

j vjyj = Trn
1 (

∑
j vjβjy) = Trn

1 (cy). Putting y = xa we have the proof.

2

Proposition 3 Let h(y) =
∑

i≤j ai,jyiyj be a Boolean function in n variables,

where ai,j ∈ F2. Then h(y) has a unique polynomial representation in F2n such

that:

• if n is even, n = 2m:

h(y) = Trn
1 (d0y)+

m−1∑

k=1

Trn
1 (dky

(2k+1))+Trm
1 (dmy(2m+1)), d0, dk ∈ F2n , dm ∈ F2m .

93

• if n is odd, n = 2m + 1:

h(y) = Trn
1 (d0y) +

m∑

k=1

Trn
1 (dky

(2k+1)), d0, dk ∈ F2n .

Proof. Let {α0, ..., αn−1} and {β0, ..., βn−1} be dual bases of F2n , x = x0α0 + · · · +
xn−1αn−1, and y = y0α0 + · · ·+ yn−1αn−1. Now we can write yj = Trn

1 (βjy).

Therefore

h(y) =
∑
i≤j

ai,jyiyj =
∑
i≤j

ai,jTrn
1 (βiy)Trn

1 (βjy)

=
∑
i≤j

ai,j

n−1∑

k=0

Trn
1 (β2k

i βjy
(2k+1))

=
n−1∑

k=0

Trn
1 (

∑
i≤j

ai,jβ
2k

i βjy
(2k+1))

Now consider the case when n is even. Note that y and y2 belong to the same

coset. Also for 1 ≤ k < m, y(2k+1) and y(2n−k+1) belong to the same coset. Note

that 2m + 1 belongs to the coset of length m, i.e., |C2m+1| = m. Therefore

h(y) = Trn
1 (d0y) +

m−1∑

k=1

Trn
1 (dky

(2k+1)) + Trm
1 (dmy(2m+1)),

where d0 =
∑

i≤j ai,j(βiβj)
2n−1

, dk =
∑

i≤j ai,j(β
2k

i βj + βiβ
2k

j), 1 ≤ k < m, and

dm =
∑

i≤j ai,jβ
2m

i βj. The proof for n odd is similar. 2

Corollary 2 Let y = xa and h(x, y) =
∑

i,j ai,jxiyj +
∑

i≤j ei,jyiyj +
∑

i viyi be a

quadratic Boolean function in n variables where ai,j, ei,j, vj ∈ F2. Then h(x, y) has

a unique polynomial representation in F2n such that:

94

• if n is even, n = 2m:

h(x, y) =
n−1∑

k=0

Trn
1 (bkx

2k+a)+Trn
1 (c′xa)+

m−1∑

k=1

Trn
1 (dkx

(2k+1)a)+Trm
1 (dmx(2m+1)a),

bk, dk, c
′ ∈ F2n , dm ∈ F2m .

• if n is odd, n = 2m + 1:

h(x, y) =
n−1∑

k=0

Trn
1 (bkx

2k+a) + Trn
1 (c′xa) +

m∑

k=1

Trn
1 (dkx

(2k+1)a), bk, dk, c
′ ∈ F2n .

Proof. From Corollary 1 we have

∑
i,j

ai,jxiyj +
∑

j

vjyj =
n−1∑

k=0

Trn
1 (bkx

2k+a) + Trn
1 (cxa).

From proposition 3, for even n, we have

∑
i≤j

ai,jyiyj = Trn
1 (d0x

a) +
m−1∑

k=1

Trn
1 (dky

(2k+1)) + Trm
1 (dmy(2m+1)).

Now we have

∑
i,j

ai,jxiyj +
∑

j

vjyj +
∑
i≤j

ai,jyiyj =
n−1∑

k=0

Trn
1 (bkx

2k+a) + Trn
1 ((c + d0)x

a)

+
m−1∑

k=1

Trn
1 (dkx

(2k+1)a) + Trm
1 (dmx(2m+1)a),

where c′ = c + d0. The proof for n odd is similar. 2

95

6.2.1 Bi-affine Equations

For a given power mapping y = xa we want to find the number of bi-affine equations

of the form

∑
i,j

ai,jxiyj +
∑

j

vjyj +
∑

i

uixi + z = 0, ai,j, vj, ui, z ∈ F2. (6.1)

Let h(x, y) be a bilinear function as defined in Corollary 1. Then

h(x, y) =
n−1∑

k=0

Trn
1 (bkx

2k+a) + Trn
1 (cxa), bk, c ∈ F2m (6.2)

=
∑

i

uixi + z.

Therefore the number of bi-affine equations, of the form as given in (6.1), is equal

to the number of functions h(x, y) that are affine (i.e.,
∑

i uixi + z).

h(x, y) in (6.2) will be affine in the following cases:

1. If for any 0 ≤ k ≤ n − 1, H(2k + a) = 1 then Trn
1 (bkx

2k+a) will give 2n

affine functions (as bk ∈ F2n). Note that only n of these functions are linearly

independent. Similarly if H(a) = 1 we will get n linearly independent functions.

2. If for any 0 ≤ k ≤ n − 1, H(2k + a) > 1 and 2k + a ∈ Ck′ where |Ck′| =

m′ < n, m′|n, then Trn
1 (bkx

2k+a) will give 2n−m′
affine functions. Note that

Trn
1 (bkx

2k+a) = Trm′
1 (Trn

m′(bkx
2k+a)) = Trm′

1 (x2k+aTrn
m′(bk)). Now Trn

m′(bk)

must be 0 for Trn
1 (bkx

2k+a) to be an affine function. Therefore we get 2n−m′

affine functions. Only n−m′ of these functions are linearly independent. The

same argument holds for Trn
1 (cxa).

3. Let A = {2k + a : 0 ≤ k ≤ n− 1, H(2k + a) > 1∧ 2k + a /∈ F2m′′ ,m′′ < n}. Now

we define S, the set of exponents such that

S =

{
A ∪ {a}, if H(a) > 1 ∧ a /∈ F2m′ , m′ < n

A, otherwise.

Note that S can be a multiset. If any two exponents from S belong to the same

96

coset then they will give 2(2−1)n = 2n affine functions. For example if 2k1 + a

and 2k2 + a (k1 6= k2) belong to the same coset then we can write 2k1 + a =

(2k2 + a)2l where 1 ≤ l ≤ n. Now we have a term Trn
1 ((bk1 + (bk2)

2l
)x2k1+a)

where bk1 + (bk2)
2l

can be zero in 2n ways. In general if there exist t exponents

that belong to the same coset , we will have 2(t−1)n affine functions.

4. If a ∈ C2n−1−1 then 2k + a = 2n − 1 for some 0 ≤ k ≤ n − 1. Then we

have Trn
1 (bkx

2n−1) = Trn
1 (bk) which can be 0 in 2n−1 ways. Therefore we have

n−1 linearly independent affine functions. Note C2n−1−1 is the only coset with

Hamming weight n− 1 and the inverse exponent belongs to this coset.

Based on the above 4 cases, we now give Algorithm 1 to compute the total

number of linearly independent bi-affine equations for a given power mapping y = xa

over F2n .

Algorithm 1 Computing number of linearly independent bi-affine equations
Input a, n.
Output Total number of independent bi-affine equations.
1: For given a and 2k +a, 0 ≤ k ≤ n−1, compute their coset leaders in array cst l

and their coset sizes in array cst s;
2: sort array cst l in ascending order and shuffle array cst s accordingly;
3: k ← 0, eqnum ← 0;
4: while k ≤ n do
5: if(H(cst l[k] = 0)): eqnum ← eqnum + (n− 1);
6: elseif(H(cst l[k] = 1)): eqnum ← eqnum + n;
7: elseif(cst s[k] < n)): eqnum ← eqnum + (n− cst s[k]);
8: else
9: while cst l[k] = cst l[k + 1] do

10: eqnum ← eqnum + n; k ← k + 1;
11: k ← k + 1;

Theorem 6 Let y = xa be a power mapping over F2n. Then using Algorithm 1,

the total number of linearly independent bi-affine equations can be computed in time

O(n2).

Proof. In Algorithm 1, step 1 takes time O(n2). Step 2 takes time O(nlog(n)) and

97

steps 4-10 take time O(n). Therefore total time complexity is O(n2). Correctness

of Algorithm 1 follows from the 4 cases discussed above.

6.2.2 Quadratic Equations

For a given power mapping y = xa we want to find the number of quadratic

equations of the form

∑
i,j

ai,jxiyj+
∑
i≤j

bi,jyiyj+
∑

i

viyi+
∑
i≤j

ci,jxixj+
∑

i

uixi+z = 0, ai,j, bi,j, ci,j, vi, ui, z ∈ F2.

(6.3)

Let h(x, y) be a quadratic function as defined in Corollary 2. Then

• if n is even, n = 2m:

h(x, y) =
n−1∑

k=0

Trn
1 (bkx

2k+a) + Trn
1 (c′xa) +

m−1∑

k=1

Trn
1 (dkx

(2k+1)a)

+Trm
1 (dmx(2m+1)a) (6.4)

=
∑
i≤j

ci,jxixj +
∑

i

uixi + z.

• if n is odd, n = 2m + 1:

h(x, y) =
n−1∑

k=0

Trn
1 (bkx

2k+a) + Trn
1 (c′xa) +

m∑

k=1

Trn
1 (dkx

(2k+1)a)

=
∑
i≤j

ci,jxixj +
∑

i

uixi + z.

Therefore the number of quadratic equations, of the form as given in (6.3), is equal

to the number of functions h(x, y) that are quadratic (i.e.,
∑

i≤j ci,jxixj+
∑

i uixi+z).

Consider n = 2m to be even then h(x, y) in (6.4) will be quadratic in the following

cases:

1. If for any 0 ≤ k ≤ n−1, 1 ≤ H(2k+a) ≤ 2 then Trn
1 (bkx

2k+a) will give n linearly

independent quadratic functions. If for any 0 ≤ k ≤ n− 1, 1 ≤ H((2k + 1)a) ≤

98

2 then Trn
1 (dkx

(2k+1)a) will give n linearly independent quadratic functions.

If 1 ≤ H(a) ≤ 2 then Trn
1 (c′xa) will give n linearly independent quadratic

functions. If ≤ H((2m + 1)a) ≤ 2 then Trm
1 (dmx(2m+1)a) will give m linearly

independent quadratic functions (as dm ∈ F2m).

2. If for any 0 ≤ k ≤ n−1, H(2k +a) > 2 and 2k +a ∈ Ck1 where |Ck1| = m1 < n,

m1|n, then Trn
1 (bkx

2k+a) will give 2n−m1 quadratic functions. If for any 1 ≤
k ≤ m− 1, H((2k + 1)a) > 2 and (2k + 1)a ∈ Ck2 where |Ck2| = m2 < n, m2|n,

then Trn
1 (dkx

(2k+1)a) will give 2n−m2 quadratic functions. If H(a) > 2 and

a ∈ Ck3 where |Ck3| = m3 < n, m3|n, then Trn
1 (c′xa) will give 2n−m3 quadratic

functions. If H((2m + 1)a) > 2 and (2m + 1)a ∈ Ck4 where |Ck4| = m4 < m,

then Trm
1 (dmx(2m+1)a) will give 2m−m4 quadratic functions.

3. Let

B = {2k + a : 0 ≤ k ≤ n− 1, H(2k + a) > 2 ∧ 2k + a /∈ F2m5 ,m5 < n}

∪{(2k + 1)a : 1 ≤ k ≤ m− 1, H((2k + 1)a) > 2 ∧ (2k + 1)a /∈ F2m6 ,m6 < n}.
Now we define the set of exponents T such that

T =

{
B ∪ {a}, if H(a) > 2 ∧ a /∈ F2m7 ,m7 < n

B, otherwise

Note T can be a multiset. If any two exponents from T belong to the same

coset then they will give 2(2−1)n = 2n quadratic functions. In general if there

exist t exponents that belong to the same coset, we will have 2(t−1)n quadratic

functions.

4. If a ∈ C2n−1−1 then 2k + a = 2n− 1 for some 0 ≤ k ≤ n− 1. Therefore we have

n− 1 linearly independent quadratic functions.

Note that odd n can be handled in the similar manner and Algorithm 2 can be

modified accordingly. Based on the above 4 cases, we now give Algorithm 2 to

compute the total number of linearly independent quadratic equations for a given

power mapping y = xa over F2n when n is even.

99

Algorithm 2 Computing number of linearly independent quadratic equations
Input a, n = 2m.
Output Total number of independent bi-affine equations.
1: For given a and 2k + a, 0 ≤ k ≤ n− 1, and (2k + 1)a, 1 ≤ k ≤ m− 1, compute

their coset leaders in array cst l and their coset sizes in array cst s;
2: Compute coset leader of (2m + 1)a in cstm l and its coset size in cstm s
3: sort array cst l in ascending order and shuffle array cst s accordingly;
4: k ← 0, eqnum ← 0;
5: while k ≤ n + m− 1 do
6: if(H(cst l[k] = 0)): eqnum ← eqnum + (n− 1);
7: elseif(H(cst l[k] ≤ 2)): eqnum ← eqnum + n;
8: elseif(cst s[k] < n)): eqnum ← eqnum + (n− cst s[k]);
9: else

10: while cst l[k] = cst l[k + 1] do
11: eqnum ← eqnum + n; k ← k + 1;
12: k ← k + 1;
13: if(H(cstm l) ≤ 2):eqnum ← eqnum + n;
14: elseif(cstm s < m):eqnum ← eqnum + (m− cstm s);

From the above discussion we have the following theorem.

Theorem 7 Let y = xa be a power mapping over F2n. Then using Algorithm 2, the

total number of linearly independent quadratic equations can be computed in time

O(n2).

6.3 AI of Cryptographically Significant Power Map-

pings

S-boxes which satisfy zero bi-affine and/or quadratic equations provide optimal re-

sistance against algebraic attacks and therefore are of great interest. In this section

we provide several S-box constructions that satisfy this criteria. A cryptographically

strong S-box must also have high nonlinearity, good uniform differential property,

and high algebraic degree to resist linear, differential, and higher order differential

attacks respectively. Unfortunately there are very few S-boxes that satisfy all the

100

above requirements and as n increases, finding these S-boxes becomes extremely

difficult. Therefore we identify classes of S-boxes which provably have all the above

mentioned properties. We also provide experimental results for smaller values of n

to identify good S-boxes and show various tradeoffs involved in the selection of an

S-box.

6.3.1 Power Mappings with Zero Bi-affine Equations

It is easy to see that the probability of a randomly chosen S-box having zero bi-

affine equations is high if n is large [25]. This holds true for S-boxes based on power

mappings as well. For example for n = 8, 18.8 percent power mappings have zero

bi-affine equations. For n = 16, 91.1 percent and for n = 25, 99.9 percent power

mappings satisfy this condition. However note that several highly nonlinear S-boxes

(for example inverse mapping) always have bi-affine equations and therefore it is

important to calculate the exact number of bi-affine equations an S-box satisfies. If

a power mapping is selected randomly then we can use Algorithm 1 in Section 6.2.1

to find the number of bi-affine equations it satisfies. Otherwise any one of the

following S-box constructions can be used. Consider the power mapping y = xa

over F2n . From Section 6.2.1, the three necessary and sufficient conditions for the

power mapping to have zero bi-affine equations are:

1. H(a) > 1 and H(2i + a) > 1, 0 ≤ i ≤ n− 1.

2. (2i + a)2l 6≡ (2i + a) mod 2n − 1, 0 ≤ i ≤ n− 1 and a2l 6≡ a mod 2n − 1, l < n.

3. (2i + a)2l 6≡ (2j + a) mod 2n− 1, i 6= j, 0 ≤ i, j ≤ n− 1 and a2l 6≡ (2k + a) mod

2n − 1, 0 ≤ k ≤ n− 1, l < n.

Now we provide four (n, n) power S-box constructions which have zero bi-affine

equations. The first construction, given in Theorem 8, consists of S-box based on

Kasami-like exponents (see Section 6.3.3). A subclass of these exponenets, called

Kasami exponents was studied by Dobbertin in [34] and mappings based on these

exponents were shown to be APN.

Theorem 8 Let n = 2m,n ≥ 8 and a = 2m+1 + 2m−1 − 1. Then power mapping

y = xa over F2n has no bi-affine equations.

101

Proof. Consider the binary representation of a and 2i.

m m

a =
︷ ︸︸ ︷
00 · · · 010

︷ ︸︸ ︷
011 · · · 11

2i = 00 · · · · · · 001︸ ︷︷ ︸ 0 · · · 0︸ ︷︷ ︸
i

1. H(a) > 1 and from the binary representation of a it is obvious that H(2i+a) >

1, 0 ≤ i ≤ n− 1.

2. If 2i + a,∈ Cz, 0 ≤ i ≤ n − 1 where |Cz| < n then |Cz| divides n. This

means that binary representation of 2i + a must contain at least 2 runs of 1’s

of the same length and 2 runs of 0’s of same length. We have 2 runs of 1’s

when i = 0,m − 1,m, m + 1,m + 2, 2m − 1. However in all these cases the

lengths of the 2 run’s of 1’s is always different. For all the other cases we get

3 runs of 1’s, however they will never be of the same length (we always have

1 run of length 1 and 1 run of length more than 1). Therefore |Cz| = n and

(2i + a)2l 6≡ (2i + a), l < n. Also it is evident from the binary representation of

a that a2l 6≡ (2k + a), k < l.

3. We know that if two integers b and c belong to the same coset then some cyclic

shift of binary representation of b gives c. H(2i +a) = i+2, 0 ≤ i ≤ m−1, i.e.,

all belong to distinct cosets. H(2i +a) = m, i = m−2,m+1 but the number of

runs of 1’s is different in the two cases. H(2i +a) = m+1,m ≤ i ≤ 2m−1, i 6=
m + 1. Although the Hamming weight in all these cases is same but either the

run’s of 1’s and 0’s are of different length or they appear in different order.

Therefore it is not possible to get one integer from the cyclic shift of the binary

representation of another element. Therefore for each 0 ≤ i ≤ n − 1, 2i + a

belongs to a distinct coset. Also H(a) = H(2i +a) only when i = m−2,m+1,

however in both cases the length of run’s of 0’s is different from a.

The three necessary and sufficient conditions for y = xa to have zero bi-affine

equations (from Section 6.3.1) are satisfied. 2

Note that this mapping is maximally nonlinear, has high algebraic degree and

good uniform differential property (See Section 6.3.3).

102

Theorem 9 Let n ≥ 8 and a = 1 + 2 +
∑r

i=3 2i, 3 ≤ r ≤ n − 3. Then power

mapping y = xa over F2n has zero bi-affine equations except when n = 8, r = 5.

Proof. Consider the binary representation of a

2 r + 1

a =
︷︸︸︷
00

︷ ︸︸ ︷
0 · · · 0

︷ ︸︸ ︷
1 · · · 1011

1. H(a) > 1 and from the binary representation of a, H(2i +a) > 1, 0 ≤ i ≤ n−1.

2. If 2i + a,∈ Cz, 0 ≤ i ≤ n − 1 where |Cz| < n then |Cz| divides n. This means

that for even n binary representation of 2i+a must contain at least 2 runs of 1’s

of the same length and 2 runs of 0’s of same length. We get 2 runs of 1’s when

i = 1, 3, r + 1, n− 1. Except for the case where n = 8, r = 5, i = 7, 2i + a can

never fulfill this condition. We get 3 runs of 1’s when 4 ≤ i ≤ n− 2, i 6= r + 1.

However we always have 1 run of 1’s of length 1 and one run of 1’s of length 2

so the above condition is not satisfied. More than 3 runs are impossible in the

binary representation of 2i + a. For odd n we must have at least 3 runs of 1’s

of same length in the binary representation of 2i + a which is impossible from

the above reasoning. Therefore |Cz| = n and (2i + a)2l 6≡ (2i + a), l < n. Also

it is evident from the binary representation of a that a2l 6≡ (2k + a), k < l.

3. We know that if two integers b and c belong to the same coset then some cyclic

shift of binary representation of b gives c. The binary representation of 2i + a

has 1 run of 1’s when i = 0, 2, however the length of the run is different for i = 0

and i = 2. We have 2 runs of 1’s when i = 1, 3, r + 1, n− 1, however either the

length of run’s of 1’s and 0’s is different in each case or the runs of 1’s and 0’s

appear in a different order. We have 3 runs of 1’s when 4 ≤ i ≤ n−2, i 6= r+1.

For each 4 ≤ i ≤ k, 2i + a will have a different Hamming weight. For each

k + 1 ≤ i ≤ n− 2, 2i + a has same Hamming weight but either the run’s of 1’s

and 0’s are of different length or they appear in different order. Therefore for

each 0 ≤ i ≤ n− 1, 2i + a belongs to a distinct coset. Also H(a) = H(2i + a)

only when i = 1, k, however in both cases the length of run’s of 1’s is different

from a.

103

The 3 necessary and sufficient conditions for y = xa to have zero bi-affine equations

(from Section 6.3.1) are satisfied. 2

The proof technique for Theorems 10 and 11 is similar to that of Theorems 8

and 9. So we provide the theorems without proof.

Theorem 10 Let n ≥ 8, and a = 1 +
∑r

i=2 2i = 2r+1 − 3, 3 ≤ r ≤ n − 3. Then

power mapping y = xa over F2n has zero bi-affine equations except when n is even

and r = n
2
− 1.

Theorem 11 Let n ≥ 8, and a = 1 + 2 + 22 +
∑r

i=4 2i = 2r+1 − 9, 4 ≤ r ≤ n− 3.

Then power mapping y = xa over F2n has zero bi-affine equations except for the

following: (n = 8, r = 5), (n = 9, r = 5, 6) and (n = 10, r = 7).

Several mappings in the constructions given above have good nonlinearity and

uniform differential property. For example consider the construction given in The-

orem 9. For n = 8 power mapping y = x11 has nonlinearity 96 and is differentially

10-uniform. For n = 10 power mapping y = x11 has nonlinearity 480 and is dif-

ferentially 10-uniform and for n = 12 power mapping y = x27 has nonlinearity 472

and is differentially 6-uniform. Similarly for construction given in Theorem 10 the

mapping y = x13 in F210 , has nonlinearity 480 and is differentially 4-uniform. For

n = 12, mapping y = x1021 has nonlinearity 1952 and is differentially 16-uniform.

6.3.2 Power Mappings with Zero Quadratic Equations

If a power mapping is selected randomly then we can use Algorithm 2 given in

Section 6.2.2 to calculate the number of quadratic equations it satisfies. Otherwise

we provide a construction below to obtain S-box with zero quadratic equations.

Consider the power mapping y = xa on F2n . We consider the case where n = 2m is

even. The case where n is odd is similar. From Section 6.2.2, the 3 necessary and

sufficient conditions for the power mapping to have zero quadratic equations are:

104

1.

H(a) > 2, and H(2i + a) > 2, and

H((2k + 1)a) > 2, and H((2m + 1)a) > 2, 0 ≤ i ≤ n− 1, 1 ≤ k ≤ m− 1.

2.

(2i + a)2l 6≡ (2i + a) mod 2n − 1, 0 ≤ i ≤ n− 1, l < n, and

a2l 6≡ a mod 2n − 1, l < n, and

(2k + 1)a2l 6≡ (2k + 1)a, mod 2n − 1, 1 ≤ k ≤ m− 1, l < n, and

(2m + 1)a2l1 6≡ (2m + 1)a, mod 2n − 1, l1 < m.

3. Let

C = {2i + a : 0 ≤ i ≤ n− 1} ∪ {(2j + 1)a : 1 ≤ j ≤ m− 1} ∪ {a} ∪ {(2m + 1)a}.

C can be a multiset. Then any two elements in C belong to different cosets

modulo (2n − 1).

Theorem 12 Let n ≥ 8, and a = 1 + 2 +
∑r

i=3 2i, 4 ≤ r ≤ n − 3. Then power

mapping y = xa over F2n has zero quadratic equations except for the following:

(n = 8, r = 5), (n = 9), (n = 10, r = 5) and (n = 12, r = 4, 8).

Proof. Consider the binary representation of a.

q l

a =
︷ ︸︸ ︷
00 · · · 0

︷ ︸︸ ︷
1 · · · 11 011

First we consider the case n = 2m, l < q. Tables 6.1 and 6.2 show the run

distribution (lengths of runs of 1’s and 0’s) of the binary representation of (2i +

a), 0 ≤ i ≤ n − 1 and (2k + 1)a, 1 ≤ k ≤ m − 1 respectively. For example a run

distribution 4, 3, 1, 2 represents the binary form 0000111011 which is 59 in decimal

representation. Note that underlined digits represent the length of run of 1’s. For

105

k = l in Table 6.2, there are three different cases for different values of l and for

k = l + 1 there are 2 different cases for different values of l.

1. From the binary representation of a, Table 6.1 and Table 6.2 it is obvious that

H(a) > 3, H(2i + a) > 2, H((2k + 1)a) > 2 and H((2m + 1)a) > 2, 0 ≤ i ≤
n− 1, 1 ≤ k ≤ m− 1.

2. If 2i + a, 0 ≤ i ≤ n − 1 ∈ Cz where |Cz| < n then |Cz| divides n and binary

representation of 2i + a is periodic with period |Cz|. It is clear from Table 6.1

that the binary representation of 2i + a is never periodic with period less than

n. The same reasoning holds for (2k +1)a, 1 ≤ k ≤ m− 1 (see Table 6.2). Also

from the binary representation of a it is obvious that |Ca| = n. Similarly it is

easy to check that (2m + 1)a2l1 6≡ (2m + 1)a mod 2n − 1, l1 < m.

3. If two integers b and c belong to the same coset then some cyclic shift of binary

representation of b gives c. This means that both b and c must have same

Hamming weight, the number of runs of 1’s and 0’s must be identical and they

must appear in the same order (cyclic). From the binary representations of a

and (2m + 1)a, Tables 6.1 and 6.2, it is clear that no two elements of the set C
(see item 3 of Section 6.3.2) belong to the same coset.

For n = 2m, l ≥ q, the run distribution of (2i + a) is the same as in Table 6.1.

If k < q then the run distribution of (2k + 1)a is the same as given in Table 6.2.

Therefore for k < q items 1, 2 and 3 hold with similar logic. For k ≥ q, (a2k + a)

may generate a carry which results in many possible run distributions depending

on the actual value of a. Therefore representing the run distribution of (a2k + a)

in a tabular form becomes cumbersome. It is tedious (but not very hard) to check

that items 1, 2 and 3 hold for k ≥ q as well. Proof for odd n is very similar. 2

It can be proved easily that if n is even and r = n−3 then power mapping y = xa in

Theorem 12 is bijective if and only if n 6≡ 0 mod 18. Also if r = n−5 then the above

mapping is bijective if and only if n 6≡ 0 mod 78. So if n < lcm(18, 78) = 234, then

by taking r to be either n−3 or n−5 we will always get a bijective S-box. Note that

bijective mappings exist for many other values of r as well when r is odd. Similar

conditions can be found for odd n easily. The power mapping in Theorem 12 is a

subset of the power mapping given in Theorem 9 and several mappings with good

106

Table 6.1: Run distribution in the binary representation of (2i + a)

i run distribution in(2i + a) i run distribution in(2i + a)
0 q,l + 1,2 l + 2 q − 1,1,1,l − 1,1,2
1 q,l + 1,1,1 l + 3 q − 1,l + 1,1,2
2 q,l + 3 l+4 q − 2,1,1,l,1,2
3 q − 1,1,l + 1,2 l + 5 q − 3,1,2,l,1,2
4 q − 1,1,l − 1,1,1,2 l + 6 q − 4,1,3,l,1,2

·· · · · · · · · · · · · · · · · · · ·
5 q − 1,1,l − 2,2,1,2 n− 1 1,q − 1,l,1,2
·· · · · · · · · · · · · · · · · · · ·

Table 6.2: Run distribution in the binary representation of (2k + 1)a

k run distribution in(2k + 1)a k run distribution in(2k + 1)a
1 q − 2,1,1,l − 1,3,1 l + 1 q − k,l + 2,1,l − 2,1,2 (l > 2)

q − 3,4,2,2 (l = 2)
2 q − 3,1,2,l − 2,2,3 l + 2 q − k,l + 1,2,l − 1,1,2
3 q − 4,1,3,l − 3,1,1,2,2 l + 3 q − k,l,1,l + 2,1,2
4 q − 5,1,4,l − 4,1,1,1,1,1,2 l + 4 q − k,l,1,2,1,l,1,2
5 q − 6,1,5,l − 5,1,1,1,2,1,2 l + 5 q − k,l,1,2,2,l,1,2
6 q − 7,1,6,l − 6,1,1,1,3,1,2 l+6 q − k,l,1,2,3,l,1,2
·· · · · · · · · · · · · · · · · · · · ·· · · · · · · · · · · · · · · · · · ·
l q − l − 1,1,l + 1,1,1,l − 3,1,2 (l > 3) m− 1 q − k,l,1,2,m− l − 4,l,1,2

q − 3,1,4,3 (l = 2)
q − 4,1,4,1,2,2 (l = 3)

nonlinearity and uniform differential property listed for Theorem 9 also belong to

the class given in Theorem 12.

107

6.3.3 Cryptographically Strong Kasami Like Power Map-

pings

A Kasami exponent [59], é, is defined as é = 22s−2s+1, gcd(n, s)=1 and 1 ≤ s < n
2
.

If we remove the condition gcd(n, s)=1 we can write e = 22s − 2s + 1, 1 ≤ s < n
2
.

We will call e, the Kasami like exponent. Suppose n = 2m, and we take s = m− 1

then we have e = 22m−2 − 2m−1 + 1 and a = 2m+1e = 2m+1 + 2m−1 − 1. Note that

a is the same exponent as in Theorem 8 which has zero bi-affine equations. Based

on our extensive experimental results we provide two new conjectures.

Conjecture 1 Let n = 2m, m is even, and a = 2m+1 + 2m−1 − 1. Then mapping

y = xa is maximally nonlinear.

The validity of Conjecture 1 has been verified up to n = 24. Note that since m is

even, gcd(m−1, n) = 1 and therefore the mapping y = xa is known to be APN [34].

Also this mapping is provably non-bijective.

Conjecture 2 Let n = 2m, m is odd, and a = 2m+1 + 2m−1 − 1. Then mapping

y = xa is differentially 4-uniform.

The validity of Conjecture 2 has been verified up to n = 22. Note that gcd(m −
1, n) = 2 and therefore the mapping y = xa is known to be maximally nonlinear [33].

Also this mapping is always bijective. Now we provide the following theorem with-

out proof. The proof technique is very similar to the one used in Theorem 12.

Theorem 13 Let n = 2m,n ≥ 8 and a = 2m+1 + 2m−1 − 1. Then power mapping

y = xa over F2n has 2n quadratic equations.

Note that this mapping has zero bi-affine equations (see Theorem 8), is maxi-

mally nonlinear, has high algebraic degree and good uniform differential property.

Therefore it is a suitable candidate for cryptographic applications.

108

Table 6.3: Power mappings with zero bi-affine equations

n a deg(F) nl(F) k − unf. n a deg(F) nl(F) k − unf.
8 11 3 96 10 10 71 4 464 6

23 4 96 16 79 5 480 4
29 4 96 10 89 4 472 6
61 5 96 16 109 5 448 34

10 13 3 480 4 119 6 464 6
19 3 468 6 125 6 448 34
23 4 472 6 151 5 464 6
43 4 464 6 175 6 464 6
47 5 448 34 191 7 464 6
53 4 432 34 221 6 448 34
59 5 464 6 245 6 464 6
61 5 464 6 251 7 432 34

6.3.4 AI of Some Well Known Power Mappings

Dobbertin investigated some well known power mappings in [34], i.e., Gold, Dob-

bertin, Niho, Welch, inverse and Kasami. The number of bi-affine and quadratic

equations for some of these power mappings have been found experimentally in [22]

(for n ≤ 17). However using the proof techniques given in Sections 6.3.1 and 6.3.2

the exact number of bi-affine and quadratic equations for the above power mappings

can be determined easily. For example Niho exponent e is defined as e = 2s+2
s
2−1,

n = 2s+1 when s is even and e = 2s +2
3s+1

2 −1, n = 2s+1 when s is odd. It can be

easily proved that power mapping y = xe has zero bi-affine equations for n ≥ 7 and

n quadratic equations for n > 7. Since power mapping based on Niho exponent is

maximally nonlinear and APN for odd n, it is a good choice for a cryptographically

strong S-box in odd number of variables.

The power mapping with Dobbertin exponent although APN is not maximally

nonlinear and its algebraic degree is only n
5

+ 3. The algebraic degrees of power

mappings with Gold and Welch exponents are 2 and 3 respectively. Therefore these

mappings may not be of cryptographic interest for large values of n.

109

Table 6.4: Power mappings with zero quadratic equations

n a deg(F) nl(F) k − unf. n a deg(F) nl(F) k − unf.
8 27* 4 80 26 10 105* 4 480 10
10 27* 4 472 6 111* 6 432 6

45* 4 432 6 117* 5 480 6
51* 4 432 8 123* 6 392 32
53 4 432 34 183* 6 448 32
75* 4 480 6 237* 6 480 4
87* 5 480 4 251 7 432 34

6.4 Experimental Results

In this section we give some cryptographically significant power mappings. Table 6.3

shows all bijective power mappings which have zero bi-affine equations for n = 8

and 10. The second column in the table lists the exponents a. Note that a is

always the coset leader. The other exponents in the same coset, although not

listed in the table, have same properties. The third, fourth and fifth columns show

the algebraic degree, nonlinearity and differential uniform property of the mapping

respectively. The AES S-box (inverse mapping) has degree 7, nonlinearity 112, and

is differentially 4-uniform. From Table 6.3 it is clear that for n = 8, no bijective

power mapping having zero bi-affine equations is as good as AES S-box. For n = 10

the optimal bijective power mapping with zero bilinear equations has exponent 79.

This mapping has the same nonlinearity and differential uniform property as the

inverse mapping, however there is a tradeoff between the degree and the number of

bilinear equations. The inverse mapping has 29 bi-affine equations and its degree is

9 whereas the mapping with exponent 79 has zero bilinear equations and its degree

is 5. Note that exponent 79 for n = 10 is the same as defined in Theorems 8 and 13.

Table 6.4 shows power mappings which have zero quadratic equations for n = 8

and 10. An ∗ in the second column indicates that the mapping is non-bijective.

From the table it is clear that for n = 8 and 10, there is no cryptographically good

bijective power mapping with zero quadratic equations.

Table 6.5 shows maximally nonlinear bijective power mappings for n = 8 and

110

Table 6.5: Maximally nonlinear power mappings

n a deg(F) nl(F) k − unf. bi-affine eqns. quadratic eqns.
8 31 5 112 16 16 36

91 5 112 16 16 36
127 7 112 4 23 39

10 5 2 480 4 10 40
13 3 480 4 0 20
17 2 480 4 15 40
25 3 480 8 5 10
41 3 480 8 5 5
49 3 480 8 5 15
79 5 480 4 0 20
107 5 480 8 5 15
181 5 480 4 15 35
205 5 480 4 10 40
511 9 480 4 29 49

10. Columns six and seven in the table give the number of bi-affine and quadratic

equations respectively. For n = 10, power mappings with exponents 41, 79, and

511 (affine equivalent of inverse exponent) are of cryptographic interest.

Tables 6.3, 6.4 and 6.5 are optimal in terms of bi-affine equations, quadratic

equations and nonlinearity respectively. Our experiments show that there does not

exist an S-box (for n ≤ 25) which is optimal in terms of all the properties listed in

Table 6.5. Therefore we must relax our criteria to obtain strong S-boxes.

6.5 Cryptographically Significant Power Mappings

To obtain cryptographically strong S-boxes we require that the S-box based on

power mapping F must have the following properties:

• Bijective.

• 2n−1 − 2
n
2
+1 ≤ nl(F) ≤ 2n−1 − 2

n
2 for n even, and 2n−1 − 2

n+1
2 ≤ nl(F) ≤

2n−1 − 2
n−1

2 for n odd.

111

• At most n bi-affine equations.

• At most differentially k-uniform where k ≤ 6.

• deg(F) ≥ 3.

For n = 8, no S-box satisfies the above criteria. Therefore we have listed an

S-box which satisfies all the above properties except that it is differentially 10-

uniform. A complete list of all S-boxes (for 7 ≤ n ≤ 15) based on power mappings,

that satisfy the above criteria, is given in Table 6.6.

112

Table 6.6: Cryptographically significant
mappings

n a deg
of
F

nl(F) diff-
k
unf

bi-
aff
eqns

quad
eqns

7 11 3 56 2 0 21
13 3 56 2 0 21
23 4 56 2 0 21
27 4 56 2 7 28
29 4 56 2 0 21

8 11 3 96 10 0 24
29 4 96 10 0 24

9 13 3 240 2 0 18
19 3 240 2 0 9
27 4 240 2 0 9
45 4 232 4 0 9
47 5 240 2 0 18
59 5 240 2 0 18
87 5 240 2 0 18
103 5 240 2 9 36
125 6 232 4 0 9

10 13 3 480 4 0 20
19 3 464 6 0 10
23 4 472 6 0 10
43 4 464 6 0 10
59 5 464 6 0 10
61 5 464 6 0 10
71 4 464 6 0 10
79 5 480 4 0 20
89 4 472 6 0 10
91 5 464 6 5 5
103 5 464 4 5 5
115 5 464 6 5 15
119 6 464 6 0 10
149 4 464 4 5 5
151 5 464 6 0 10
167 5 456 6 5 5
175 6 464 6 0 10

n a deg
of
F

nl(F) diff-
k
unf

bi-
aff
eqns

quad
eqns

191 7 464 6 0 10
205 5 480 4 10 40
215 6 464 6 5 5
223 7 472 4 5 5
235 6 464 6 5 5
239 7 456 6 5 5
245 6 464 6 0 10
347 6 464 6 5 15
367 7 472 4 5 5
379 7 464 6 5 5

11 11 3 960 6 0 22
13 3 992 2 0 22
21 3 960 6 11 11
29 4 960 6 0 11
35 3 992 2 0 11
37 3 960 6 0 0
43 4 992 2 0 22
47 5 960 6 0 22
49 3 960 6 0 22
51 4 960 6 0 0
53 4 960 6 0 0

11 55 5 960 6 0 0
57 4 992 2 0 22
67 3 960 6 11 22
71 4 960 6 0 11
73 3 960 6 11 11
75 4 960 6 0 11
79 5 960 4 0 11
81 3 960 6 0 0
83 4 960 6 0 0
85 4 960 6 11 11
95 6 992 2 0 22
99 4 960 6 11 11
101 4 968 6 0 0
103 5 960 6 0 11
107 5 992 2 0 11
111 6 968 6 0 0113

n a deg
of
F

nl(F) diff-
k
unf

bi-
aff
eqns

quad
eqns

113 4 960 6 0 11
117 5 992 2 0 11
121 5 960 6 0 22
125 6 960 6 0 11
139 4 960 6 0 0
143 5 992 2 0 22
149 4 960 6 0 0
151 5 992 2 0 22
153 4 960 6 11 22
157 5 976 6 0 0
159 6 960 6 0 11
167 5 968 6 0 0
171 5 960 6 0 11
173 5 960 6 0 11
179 5 968 6 0 0
181 5 960 6 0 0
183 6 960 4 0 11
185 5 960 6 0 0
187 6 960 6 0 0
189 6 960 6 0 22
191 7 960 6 0 11
201 4 960 6 0 0
203 5 968 6 0 0
205 5 960 6 0 11
213 5 960 6 0 0
215 6 960 6 0 0
217 5 960 6 0 0
219 6 960 6 0 0
221 6 960 6 0 11
223 7 968 6 0 0
229 5 960 6 0 0
231 6 992 2 11 44
247 7 960 6 0 0
249 6 992 2 0 11

n a deg
of
F

nl(F) diff-
k
unf

bi-
aff
eqns

quad
eqns

251 7 960 4 0 0
295 5 960 6 0 0
301 5 960 6 11 11

11 307 5 960 6 11 22
309 5 960 6 0 0
311 6 960 6 0 0
315 6 992 2 0 22
317 6 960 6 0 0
319 7 960 6 0 11
331 5 968 6 0 0
333 5 960 6 0 0
335 6 960 6 0 0
339 5 976 6 0 0
343 6 960 6 0 11
347 6 960 6 0 0
351 7 960 6 0 0
359 6 960 6 0 0
365 6 992 2 11 44
367 7 960 4 0 0
373 6 960 6 0 0
375 7 960 6 0 0
379 7 960 6 0 11
381 7 960 6 0 0
411 6 992 2 11 44
413 6 992 2 0 22
423 6 960 6 0 22
427 6 960 6 0 0
443 7 960 6 11 11
463 7 960 4 11 11
471 7 960 6 0 11
475 7 960 6 0 0
477 7 960 6 0 0
479 8 960 6 0 11
491 7 968 6 0 0

114

n a deg
of
F

nl(F) diff-
k
unf

bi-
aff
eqns

quad
eqns

493 7 960 6 0 11
495 8 960 6 11 11
507 8 968 6 0 0
687 7 960 6 11 11
695 7 960 4 0 0
703 8 960 4 11 11
727 7 960 6 0 0
735 8 960 6 0 0
751 8 960 6 0 0
763 8 968 6 0 0
767 9 960 6 11 22
879 8 960 6 11 11
959 9 960 6 11 11

12 73 3 1984 4 9 9
341 5 1952 6 10 10
731 7 1984 4 9 9
853 6 1952 6 10 10

13 13 3 4032 2 0 26
23 4 3968 6 0 13
35 3 3968 6 0 13
57 4 4032 2 0 26
61 5 3968 6 0 13
67 3 4032 2 0 13
71 4 4032 2 0 13

13 81 3 3968 6 0 0
87 5 3968 6 0 0
107 5 3968 6 0 0
111 6 3968 6 0 0
121 5 3968 6 0 13
133 3 3968 6 0 0
137 3 3968 6 0 0
147 4 3968 6 0 0
151 5 3968 6 0 0
171 5 4032 2 0 26

n a deg
of
F

nl(F) diff-
k
unf

bi-
aff
eqns

quad
eqns

185 5 3968 6 0 0
191 7 4032 2 0 26
197 4 3968 6 0 0
203 5 3968 6 0 0
205 5 3968 6 0 13
221 6 3968 6 0 0
225 4 3968 6 0 13
229 5 3968 6 0 0
231 6 3968 6 0 0
235 6 3968 6 0 0
241 5 4032 2 0 26
243 6 3968 6 0 0
269 4 3968 6 0 0
275 4 3968 6 0 0
281 4 3968 6 0 0
287 6 4032 2 0 26
291 4 3968 6 0 0
299 5 3968 6 0 0
303 6 3968 4 0 0
307 5 3968 6 0 0
309 5 3968 6 0 0
335 6 3968 6 0 0
339 5 3968 6 0 13
347 6 4032 2 0 13
357 5 3968 6 0 0
365 6 3968 6 0 0
367 7 4032 2 0 13
369 5 3968 6 0 0
375 7 3968 6 0 0
379 7 3968 6 0 0
395 5 3968 6 0 0
401 4 3968 6 0 0
405 5 3968 6 0 13
461 6 3968 6 0 0

115

n a deg
of
F

nl(F) diff-
k
unf

bi-
aff
eqns

quad
eqns

465 5 3968 6 0 0
467 6 3968 6 0 0
555 5 3968 6 0 0
581 4 3968 6 0 0
611 5 3968 6 0 0
613 5 3968 6 0 0
617 5 3968 6 0 0
627 6 3968 6 0 0
631 7 3968 6 0 0
635 7 4032 2 0 26
683 6 3968 6 0 13

13 703 8 3968 6 0 13
717 6 3968 6 0 0
723 6 4032 2 0 26
739 6 3968 6 0 0
749 7 3968 6 0 13
763 8 3968 6 0 0
797 6 3968 6 0 0
807 6 3968 6 0 0
809 5 3968 6 0 0
821 6 3968 6 0 0
855 7 3968 6 0 0
861 7 3968 6 0 0
911 7 4032 2 13 52
915 6 3968 6 0 0
919 7 3968 6 0 13
935 7 3968 6 0 0
941 7 3968 6 0 13
947 7 3968 4 0 0
949 7 3968 6 0 0
1001 7 3968 6 0 0
1243 7 4032 2 13 52
1245 7 4032 2 0 26
1247 8 3968 6 0 0

n a deg
of
F

nl(F) diff-
k
unf

bi-
aff
eqns

quad
eqns

1255 7 3968 6 0 0
1323 6 3968 6 0 0
1327 7 3968 6 0 0
1367 7 3968 6 0 13
1389 7 3968 6 0 0
1399 8 3968 6 0 0
1453 7 4032 2 13 52
1463 8 3968 6 0 0
1493 7 3968 6 0 0
1519 9 3968 6 0 0
1639 7 4032 2 13 52
1643 7 3968 6 0 13
1647 8 3968 6 0 0
1691 7 4032 2 0 26
1707 7 3968 6 0 0
1709 7 3968 6 0 0
1781 8 3968 6 0 13
1883 8 3968 6 0 0
1899 8 3968 6 0 0
1979 9 3968 6 0 0
2775 8 3968 6 0 0

14 13 3 8064 4 0 28
53 4 7936 6 0 0
71 4 7968 6 0 14
89 4 8000 6 0 0
139 4 7936 6 0 0
173 5 8000 6 0 0
205 5 8064 4 0 28
241 5 8064 4 0 28
319 7 8064 4 0 28
341 5 8000 6 14 14
355 5 7984 6 7 7
371 6 7968 6 7 7

14 437 6 7984 6 0 0

116

n a deg
of
F

nl(F) diff-
k
unf

bi-
aff
eqns

quad
eqns

553 4 7968 6 0 0
583 5 8000 6 0 0
593 4 7936 6 0 0
911 7 8000 6 7 7
923 7 7968 6 0 14
937 6 7936 6 0 0
947 7 8000 6 0 0
979 7 8064 4 0 28
1097 4 8000 6 7 7
1181 6 7968 6 0 0
1193 5 8000 6 7 7
1231 7 7968 6 0 0
1339 7 8064 4 0 28
1387 7 8000 6 7 7
1519 9 7968 6 0 0
1831 7 7936 6 0 14
1835 7 8000 6 0 14
1837 7 7984 6 0 0
1883 8 8000 6 0 0
1939 7 7968 6 7 7
1943 8 7968 6 7 7
2045 10 7968 6 0 14
2491 8 8000 6 0 14
2711 7 8000 6 7 7
2783 9 7936 6 0 0
2893 7 8064 4 14 56
2933 8 7968 6 0 0
2971 8 7992 6 7 7

n a deg
of
F

nl(F) diff-
k
unf

bi-
aff
eqns

quad
eqns

3061 9 7968 6 0 0
3277 7 8064 4 14 56
3499 8 8000 6 7 7
3509 8 8000 6 0 0
3517 9 7968 6 0 14
3743 9 7968 6 7 7
3797 8 7936 6 0 0
4015 10 7984 6 7 7
4031 11 7992 6 7 7
5467 8 7936 6 0 14
6007 10 8000 6 14 14

15 13 3 16256 2 0 30
73 3 16128 6 15 15
131 3 16256 2 0 15
241 5 16256 2 0 30
383 8 16256 2 0 30
521 3 16128 6 15 15
1371 7 16256 2 0 15
1935 8 16256 2 15 60
2033 8 16256 2 0 15
2523 8 16256 2 0 30
3671 8 16256 2 0 30
4717 7 16128 6 15 15
4791 8 16256 2 0 30
4815 8 16256 2 0 15
4941 7 16128 6 15 15
6555 8 16256 2 15 60

117

6.6 Bijective Power Mappings with Maximum

Quadratic Equations

It was stated to be an open problem in [25,22] to find a bijective nonlinear (n, n) S-

box that would give strictly more than 5n linearly independent quadratic equations.

We provide bijective nonlinear (n, n) S-boxes, where the number of linearly inde-

pendent quadratic equations is much larger than 5n. For example from Algorithm 2

it can be checked that for n = 12 exponent 683 gives 66 quadratic equations. Also

for n = 14, 16, 18, 20 and 24 , exponents 2731, 21847, 43691, 174763 and 2796203

give 91, 120, 153, 190 and 276 quadratic equations respectively. Now we give an

interesting experimental observation.

Conjecture 3 Let y = xa be a bijective nonlinear power mapping over F2n , n ≥
12 and n is even. Then the maximum number of linearly independent quadratic

equations are less than or equal to n(n−1)
2

.

The validity of the conjecture has been verified up to n = 24 and the upper bound
n(n−1)

2
is achieved for n = 12, 14, 16, 18, 20 and 24. For odd n, n ≥ 5, our experi-

mental results suggest that this upper bound is 5n. Also note that for non-bijective

power mappings the number of quadratic equations can be much higher than n(n−1)
2

.

6.7 Conclusions

In this chapter we developed techniques to calculate the number of multivariate

bi-affine and quadratic equations for S-boxes based on power mappings. We also

provided two simple and efficient algorithms which are practical even for very large

S-boxes. The S-box constructions given by us in Sections 6.3.1 and 6.3.2 have

provable optimalAI. We also gave experimental results for power S-boxes with high

algebraic immunity, nonlinearity, algebraic degree and good uniform differential

property. We identified two classes of Kasami like power mappings with good

AI. One class is known to be APN and we conjectured that it is also maximally

nonlinear. The second class is known to be maximally nonlinear and we conjectured

118

that it is also differentially 4-uniform. We also identified bijective nonlinear S-boxes

that have lowest AI and conjectured an upper bound on the number of quadratic

equations for such S-boxes.

119

Chapter 7

Equivalent Algebraic Descriptions

of S-Boxes

In this chapter we derive equivalent algebraic descriptions of the Inverse and DES

S-boxes to study their algebraic structure and other properties. We derive several

possible algebraic representations of these S-boxes by using different irreducible

polynomials. This study of alternative representation of these S-boxes gives us

good insight into their various algebraic properties.

7.1 Background

S-boxes are essential and often the most important building blocks of a symmetric

cipher. In most ciphers S-boxes are the only nonlinear components. The S-boxes in

a cipher may be all identical as in AES or they may be different from one another as

is the case in DES (Data Encryption Standard). Similarly for some ciphers S-boxes

are specified explicitly in algebraic terms, for example AES, and for other ciphers

simply the input output mapping is provided, i.e., DES. If an S-box is specified in

terms of an input/output table, we can derive an algebraic representation through

interpolation. We will use the tools from finite fields and sequence design to derive

and evaluate the algebraic properties of these S-boxes. The features of our interest

are the degree of the algebraic representations, number of monomial terms in their

121

polynomial and trace representations, and linear complexity of the sequences that

correspond to their component functions.

7.2 Equivalent Polynomial Representations of In-

verse S-box

The AES S-Box consists of multiplicative inverse in F28 , defined by the primitive

polynomial x8+x4+x3+x+1, followed by an affine transformation. S-Boxes used in

stream ciphers SNOW1 [37], SNOW2 [38] and SFINKS [14] also use multiplicative

inverse to obtain a highly nonlinear transformation. Therefore we will focus on

this transformation, i.e., F : X → X−1 in F28 defined by the polynomial x8 + x4 +

x3 + x + 1. Note that for the rest of this chapter inverse S-Box means the fixed

mapping defined above. Recall that a mapping over F2n can be represented in the

polynomial form as

F (x) =
2n−1∑
i=0

bix
i, bi ∈ F2n .

So we can represent the inverse mapping as X → X254 mod 255. This means that in

the polynomial representation coefficient b254 = 1 and all the remaining coefficients

are zero.

Youssef and Gong in [117] showed that for a given input and output of an S-box,

changing the defining polynomial of the finite field is equivalent to performing a

linear transformation at the input of the S-box. In order to see how this transfor-

mation affects the coefficients of the multiplicative inverse function we use Lagrange

interpolation (see Section 2.4). To see the effect of changing the defining polynomial

we first evaluate the function for all the 256 inputs using the irreducible polyno-

mial used in AES, i.e., m(x) = x8 + x4 + x3 + x + 1. Now we interpolate on this

output using a different irreducible polynomial g(x). Table 7.1 shows the function

calculated by interpolation where g(x) = x8 +x7 +x6 +x4 +x3 +x2 +1. The entries

correspond to the coefficients in hexadecimal format. For example the coefficient

b35 is obtained by selecting 3rd row and 5th column in the table which gives 5F.

122

Table 7.1: Equivalent polynomial representation of Inverse S-Box

g(x) = x8 + x7 + x6 + x4 + x3 + x2 + 1
0 1 2 3 4 5 6 7 8 9 A B C D E F

0 0 FE F5 E9 41 FD D9 E7 90 BF 10 EF 8F 4D AF 47
1 33 FC 78 9B 95 FD D4 C7 F1 AC 7D 49 EE 11 CC C1
2 2B 11 E4 36 C8 9 76 B9 AA E3 EF 13 13 62 EA C1
3 E8 81 83 65 73 5F 7B 7F 59 15 87 AB 95 71 C1 34
4 BD F6 F4 A3 E8 E2 98 15 3E 50 AA D5 88 AC FA C0
5 39 A1 36 0 9B 13 9A F1 8C 23 FD FB 64 62 FA C9
6 AE 84 E4 11 2A 46 D3 76 61 27 25 39 5B 78 DF 85
7 4B 9B 18 39 CB 3F 4A B0 27 F9 6E 93 B8 E7 4B 28
8 EA 92 58 86 6D 10 A9 79 A1 B2 9C 4E C3 8 9C 75
9 72 BA 49 2E CE B7 A 20 DE 2A 5B B4 67 4D EA 6A
A 3 89 6D 1 C0 7D 2B 33 B6 37 E6 B2 DF 1B 70 DF
B 90 4A EA 55 40 9F 4F F5 DC D 60 A9 E4 5C B8 A6
C 33 25 F1 8F D2 A7 B1 5B EA 6F 67 5B 62 3D 21 2F
D 70 A2 81 43 51 CF C6 4D 96 E8 B7 EA 22 A4 B9 BA
E 33 CB AB 2 B B8 16 23 74 DC 9A CD 34 EC 3A C3
F ED 2 BD B6 DC 17 5A 5A D5 7C 26 6D 9 8E 1 0

In decimal it translates to b53 = 95. Note that there was only one monomial term

in the original representation but after changing the irreducible polynomial all but

two monomial terms are nonzero. The representations of the inverse function under

all the 28 irreducible polynomials over F2 of degree 8 were obtained and they all

consist of large number of nonzero terms. We have not listed the remaining tables

in this thesis due to the lack of space.

7.3 Trace Representation of Inverse S-box

To compute the trace representation of the inverse S-box we first decompose the

inverse mapping of the S-box (from F28 → F28) into eight component functions as

follows:

F (x) = (f1(x), f2(x), f3(x), f4(x), f5(x), f6(x), f7(x), f8(x))

where each component function is a mapping from F28 → F2. Recall that if f is

balanced its trace representation given by

123

Table 7.2: Trace representation of Inverse S-Box

function Trace Representation
f1 Tr8

1(43x127)
f2 Tr8

1(80x127)
f3 Tr8

1(227x127)
f4 Tr8

1(3x
127)

f5 Tr8
1(172x127)

f6 Tr8
1(247x127)

f7 Tr8
1(86x127)

f8 Tr8
1(246x127)

f(x) =
∑

k∈Γ(n)

Trnk
1 (Akx

k), Ak ∈ F2nk , x ∈ F2n .

where Γ(n) is the set consisting of all coset leaders modulo 2n − 1, nk is the size of

the coset Ck, and Trnk
1 (x) is the trace function from F2nk → F2.

To compute the trace representation of these functions we use Discrete Fourier

Transform (see Section 2.3). The trace representation of each component function

under the AES defining polynomial x8 +x4 +x3 +x+1 is shown in Table 7.2. Note

that each function has only one trace term.

The trace representation of the component functions obtained by changing the

defining polynomial to x8 + x6 + x5 + x4 + 1 is shown in Table 7.3. The first

column lists k, the coset leaders modulo 255, and the remaining columns give the

corresponding coefficient, Ak, in the trace term for each component function. For

example the second row and second column in the table represents the trace term

Tr8
1(78x). The complete trace representation of the function is obtained by the

summation of all the trace terms in the given column. The trace representation

tables of inverse S-box for all 28 irreducible polynomials of degree 8 over F2 were

obtained and they all consist of large number of trace terms. We have not listed

the remaining tables in this thesis due to the lack of space.

124

Table 7.3: Equivalent trace representation of Inverse S-Box

g(x) = x8 + x6 + x5 + x4 + 1
k f1 f2 f3 f4 f5 f6 f7 f8

0 0 0 0 0 0 0 0 0
1 78 3A 9 A4 CD A5 8F BC
3 4A 22 B6 C7 2E 4E 4B 45
5 64 A 5C 66 2A 40 63 B
7 83 E9 21 D6 84 55 C1 98
9 F8 DC 75 60 4 F2 EB 16
11 DC 23 7A B4 F5 CC F0 7B
13 9 DF 6E C5 BF 6C 89 84
15 ED 10 A7 A2 3E 31 46 53
17 DB DB 1 97 BD BD 4C DA
19 CD 90 72 CA FA 18 4 86
21 4E 4C 89 32 9 F7 47 4
23 7F 90 B8 E6 47 30 90 A8
25 5A 9 3E 4A 7D EB B D
27 1F AD E7 78 9D 7B 70 94
29 50 4E E4 47 1A 5 6D F6
31 0 8B 6E DA B 2 B5 71
37 62 34 CB 53 53 C4 27 5F
39 6F 36 D9 F6 B2 BF FB 7A
43 8D 21 24 50 DD 57 8D EF
45 D3 89 77 47 43 C1 A1 FD
47 48 FB 64 49 3D F2 FE 71
51 DB DA DB DA BD 2A DB 66
53 3 92 2B F1 F6 66 C6 2B
55 44 2C 47 2D 6C 91 DE 37
59 72 C2 A7 DF 66 48 75 9D
61 D 10 7C 18 20 53 5A 79
63 AE 51 66 77 FE 2D 36 CB
85 DB DB DA DA 0 DB DB DA
87 2F 3D 21 E4 74 59 5F EF
91 0 30 6D 65 B4 84 1E F2
95 F8 7E BE 60 6 8B 40 73
111 34 2C 80 8F FE 57 4A D9
119 F1 97 BD DA 1 2A 4D DB
127 AA 23 BA 3 7E 56 25 57

125

7.4 Linear Complexity of Inverse Component Se-

quences

In Section 2.5 we defined the linear complexity of a binary sequence as the size in

bits of the shortest LFSR that generates that sequence. Another way to determine

the linear complexity of a binary sequence is through its Fourier spectrum using

the DFT [52]. Let a = ai be a sequence over F2 of period N where N divides 2n−1,

and let A = Ai be its spectral sequence, then the linear complexity of a is given by

LC(a) = |{k|Ak 6= 0, 0 ≤ k ≤ N}|.

In other words the linear complexity of the sequence is equal to the Hamming

weight of its spectral sequence. From the definition of the trace function it is

obvious that we can now determine the linear complexity of a sequence from the

trace representation of its corresponding function, i.e.,

LC(a) = |{k2i mod 2n − 1|Ak 6= 0, k ∈ Γ(n), i = 0, 1, . . . nk − 1}|.
If we consider the trace representation of the inverse S-box under the defining

polynomial x8 + x4 + x3 + x + 1, then each function has only one trace term.

This means that the binary sequence corresponding to each function has a linear

complexity of 8. However when we change the defining polynomial to x8 + x6 +

x5 + x4 + 1, the sequences corresponding to all functions except f1 and f5 have

linear complexity of 255 which is the maximum value of the linear complexity for

a sequence of length 28 − 1.

7.5 Polynomial Representation of DES S-boxes

DES is a 64 bit symmetric block cipher. It has 16 rounds and in each round only

half the bits i.e., 32 go through a keyed round function. The round function first

expands the 32 bit input to 48 bits followed by the addition of a 48 bit subkey. After

the key addition, input goes through 8 distinct S-boxes followed by a permutation

126

Table 7.4: Polynomial representation of DES S-Box, S1, for x6 + x + 1

F1 0 1 2 3 4 5 6 7

0 14 62 23 51 4 54 14 31
1 38 17 22 25 4 43 24 11
2 32 33 0 47 49 43 60 30
3 56 58 30 6 0 35 15 10
4 35 56 24 26 29 27 23 6
5 33 50 33 44 25 55 21 62
6 57 53 24 39 61 5 62 21
7 47 2 13 9 41 25 49 0

thus giving the output of the round function. Unlike AES the S-boxes are only

described in terms of input/output tables. Each S-box has a 6 bit input and 4 bit

output. For more details on DES please refer to [31]. Since the S-boxes of DES

are only specified as input/output tables, we can use Lagrange interpolation to find

an equivalent polynomial representation over F26 . Tables 7.4 through 7.11 show

the polynomial representation of the eight DES S-boxes (S1 through S8) obtained

by using the defining polynomial x6 + x + 1. Fi is the polynomial representation

of the S-Box Si. The 64 coefficients in the polynomial representation are arranged

in eight rows and eight columns and expressed in decimal format. For example in

Table 7.4 second row and first column lists coefficient b8 = 38.

The polynomial representation of S-boxes confirms the high algebraic degree

of the S-boxes as well as high number of nonzero monomial terms. Changing the

defining polynomial has little effect on the algebraic properties of the S-boxes. The

polynomial representation of the 8 S-boxes under all 9 irreducible polynomials of

degree 6 over F2 were obtained and they all consist of a large number of monomials.

We have not listed them here due to lack of space.

127

Table 7.5: Polynomial representation of DES S-Box, S2, for x6 + x + 1

F2 0 1 2 3 4 5 6 7

0 15 14 38 54 58 8 62 26
1 58 9 26 42 23 29 54 50
2 37 41 46 41 20 30 17 18
3 17 62 27 54 54 15 8 35
4 5 55 56 62 45 29 22 45
5 21 46 21 25 36 2 28 7
6 63 45 62 30 16 51 56 19
7 9 37 47 56 34 57 54 0

Table 7.6: Polynomial representation of DES S-Box, S3, for x6 + x + 1

F3 0 1 2 3 4 5 6 7

0 10 48 49 17 23 48 41 39
1 4 40 16 38 0 48 15 4
2 22 3 19 62 9 23 54 36
3 43 42 2 19 28 19 53 10
4 6 51 52 13 62 32 17 6
5 18 24 17 14 9 17 46 16
6 34 56 18 57 6 11 3 32
7 1 18 29 13 27 39 16 0

7.6 Trace Representation of DES S-boxes

To compute the trace representation of the DES S-boxes we first decompose the

input output mapping of each S-box (from F26 → F24) into 4 functions as follows:

Fi(x) = (fi1(x), fi2(x), fi3(x), fi4(x))

where i is the index of the S-box and each component function is a mapping from

F26 → F2 . Gong and Golomb in [50] computed the trace representation of all 32

component functions of the 8 DES S-boxes using the primitive polynomial x6+x+1.

128

Table 7.7: Polynomial representation of DES S-Box, S4, for x6 + x + 1

F4 0 1 2 3 4 5 6 7

0 7 1 50 37 23 21 39 58
1 28 2 60 16 47 7 32 61
2 8 4 39 2 2 23 23 24
3 45 57 2 3 55 26 14 31
4 56 41 3 10 34 49 12 26
5 41 33 31 34 9 3 8 44
6 46 40 14 2 45 25 3 61
7 6 46 52 6 10 45 37 0

Table 7.8: Polynomial representation of DES S-Box, S5, for x6 + x + 1

F5 0 1 2 3 4 5 6 7

0 2 44 52 61 61 48 40 12
1 15 13 57 51 23 62 46 36
2 51 15 17 36 42 20 57 20
3 55 25 13 52 11 25 36 63
4 29 35 54 57 18 45 28 43
5 28 59 18 51 55 37 36 61
6 20 18 9 62 58 35 18 25
7 4 3 62 2 24 41 48 0

In order to see the effect of changing the defining polynomial we compute the trace

representations of S-boxes with different irreducible polynomial: x6+x5+x4+x+1.

Tables 7.12 through 7.19 show the trace representations of eight DES S-boxes. Each

entry in the table represents a trace term and the coset leader k corresponding to

the trace term is listed in the top row, i.e., in Table 7.12 the third term in the first

function, f11, is Tr6
1(15x3).

129

Table 7.9: Polynomial representation of DES S-Box, S6, for x6 + x + 1

F6 0 1 2 3 4 5 6 7

0 12 21 35 44 24 34 12 57
1 21 13 53 6 18 31 30 9
2 47 24 5 34 56 39 56 50
3 45 36 11 30 13 51 16 53
4 19 52 21 60 0 3 63 57
5 34 53 32 19 14 63 13 38
6 35 15 28 42 50 18 34 61
7 22 31 6 27 26 1 52 0

Table 7.10: Polynomial representation of DES S-Box, S7, for x6 + x + 1

F7 0 1 2 3 4 5 6 7

0 4 60 51 30 36 15 42 3
1 2 51 8 9 19 2 0 13
2 22 27 58 57 21 31 2 40
3 58 45 27 58 60 9 30 48
4 50 63 44 7 11 27 13 23
5 43 51 20 34 50 48 60 52
6 38 32 3 39 25 21 2 32
7 29 18 40 61 52 28 5 0

7.7 Linear Complexity of DES S-Box Component

Sequences

In [50], Gong and Golomb also computed the linear complexity of all the 32 func-

tions associated with the 8 S-boxes using the defining polynomial x6 +x+1. Their

results showed that sequences corresponding to 21 functions had linear span 63

which is the maximal linear span for F26 and all the remaining sequences had lin-

ear span greater than 57. However when we change the defining polynomial to

x6 + x5 + x4 + x + 1 the linear complexity of the sequences changes slightly. Table

130

Table 7.11: Polynomial representation of DES S-Box, S8, for x6 + x + 1

F8 0 1 2 3 4 5 6 7
0 13 58 6 21 62 58 46 37
1 55 6 6 55 63 7 1 1
2 1 5 48 14 33 62 29 40
3 1 52 16 43 47 50 22 9
4 58 17 51 40 56 25 4 0
5 35 59 50 14 38 38 10 63
6 24 48 46 44 47 10 14 2
7 17 3 31 0 51 7 51 0

Table 7.12: Trace representation of DES S-Box, S1, for x6 + x5 + x4 + x + 1

F1 0 1 3 5 7 9 11 13 15 21 23 27 31

f11 0 32 15 49 15 10 45 12 23 0 62 0 28
f12 1 11 42 24 11 0 35 19 63 1 60 1 40
f13 1 0 0 4 3 37 53 7 52 56 16 11 40
f14 1 53 46 30 59 47 36 9 50 57 28 0 24

Table 7.13: Trace representation of DES S-Box, S2, for x6 + x5 + x4 + x + 1

F2 0 1 3 5 7 9 11 13 15 21 23 27 31

f21 1 16 58 10 33 1 21 40 24 1 6 11 2
f22 1 12 1 19 58 37 26 63 1 56 47 11 54
f23 1 49 45 58 8 47 59 34 54 57 16 1 54
f24 1 33 2 62 55 11 25 43 48 57 38 36 52

7.19 shows that the linear complexity of the sequences corresponding to the func-

tions f11,f12,f13, and f14 are 52, 55, 60 and 61 respectively. Although under this

polynomial the linear span of the functions is reduced, this reduction is minimal

and in our opinion does not signify a weakness.

131

Table 7.14: Trace representation of DES S-Box, S3, for x6 + x5 + x4 + x + 1

F3 0 1 3 5 7 9 11 13 15 21 23 27 31

f31 0 18 59 47 2 37 20 2 11 57 32 46 26
f32 1 49 24 14 0 46 24 32 13 56 55 47 42
f33 0 41 10 20 31 11 59 62 49 56 18 1 6
f34 1 51 63 55 4 11 33 50 13 0 4 11 48

Table 7.15: Trace representation of DES S-Box, S4, for x6 + x5 + x4 + x + 1

F4 0 1 3 5 7 9 11 13 15 21 23 27 31
f41 1 7 61 51 56 47 3 47 7 0 61 46 6
f42 1 9 17 29 53 10 3 58 25 1 11 37 6
f43 1 5 5 12 25 37 6 0 42 57 57 47 6
f44 0 53 59 61 3 46 40 30 52 1 15 36 6

Table 7.16: Trace representation of DES S-Box, S5, for x6 + x5 + x4 + x + 1

F5 0 1 3 5 7 9 11 13 15 21 23 27 31

f51 0 3 16 61 29 11 35 16 43 0 23 47 6
f52 1 44 43 21 31 1 47 55 14 1 51 10 40
f53 0 13 21 39 24 36 60 24 7 1 14 47 26
f54 0 19 27 29 3 47 27 54 31 0 50 1 52

Table 7.17: Trace representation of DES S-Box, S6, for x6 + x5 + x4 + x + 1

F6 0 1 3 5 7 9 11 13 15 21 23 27 31

f61 0 23 57 40 37 1 58 25 15 0 31 36 48
f62 0 55 55 45 2 36 45 49 18 56 36 37 54
f63 1 12 29 49 34 10 22 12 49 56 21 37 24
f64 1 11 9 55 14 11 1 45 45 0 3 0 44

132

Table 7.18: Trace representation of DES S-Box, S7, for x6 + x5 + x4 + x + 1

F7 0 1 3 5 7 9 11 13 15 21 23 27 31

f71 0 20 11 34 25 36 29 40 43 56 21 10 4
f72 0 5 53 23 8 11 8 44 22 0 52 37 28
f73 1 36 63 3 24 47 36 10 26 57 45 47 52
f74 0 62 55 54 22 47 42 58 2 0 61 1 30

Table 7.19: Trace representation of DES S-Box, S8, for x6 + x5 + x4 + x + 1

F8 0 1 3 5 7 9 11 13 15 21 23 27 31

f81 1 9 21 30 28 10 34 0 32 0 11 0 24
f82 0 0 58 41 60 37 52 15 52 0 1 47 54
f83 1 39 51 46 12 11 34 46 7 57 43 0 26
f84 1 26 3 47 1 10 18 56 43 0 12 1 44

7.8 Conclusions

The inverse S-box has a very simple algebraic description under its original defining

polynomial. The function is highly nonlinear however it is represented by only one

monomial term. Similarly the trace representations of its component functions

contain one term each which means a linear span of only 8. How and if this fact

can be used in the cryptanalysis of AES is not clear at this time. It is clear

however that changing the defining polynomial results in polynomial descriptions

that are very complex and trace representations that have large linear spans. This

implies that changing the defining polynomial may not be of much significance

from algebraic cryptanalysis viewpoint. DES S-boxes on the other hand are only

specified in terms of their input/output mapping without any algebraic descriptions.

The algebraic representations for all the irreducible defining polynomials have high

degrees and large number of monomial terms. Similarly trace representations of the

component functions have very large linear spans under all irreducible polynomials.

This implies a good design of DES S-box from an algebraic view point.

133

Chapter 8

Conclusions and Future Work

In this thesis we designed two new stream ciphers and analyzed nonlinear transfor-

mations based on power mappings for their resistance against algebraic attacks. In

this chapter we provide a summary of our contributions and also list the publica-

tions in which these contributions were presented. We also list directions in which

this work can be extended and provide some interesting open problems.

8.1 Summary of Contributions

Design and Analysis of WG Ciphers: We began this work by designing a

stream cipher suitable for hardware oriented applications. Our goal was to design

an efficient and secure stream cipher which produces a keystream with provable ran-

domness properties. We provided the theoretical background to explain our choice

of various mathematical transformations used in the design. This was followed by

specific guidelines on how to select the parameters and then design a WG cipher for

the required security and efficiency. The WG cipher designed for 128-bit security

was also submitted to the eSTREAM project in the hardware category. The design

and analysis of WG-128 was first presented in [86]. This report is also available at

the eSTREAM project webpage [87]. The theoretical background and guidelines

on how to design a WG cipher for desired security level are presented in [88].

135

Design and Analysis of RC4-like Keystream Generator: RC4-like keystream

generator has been designed for high speed software applications. Our design was

inspired by the simple and efficient design of the RC4 stream cipher. We designed

RC4-like keystream generator to address a specific deficiency in the original RC4

design, i.e., its inability to exploit the 32/64 bit architectures of the modern pro-

cessors. RC4-like keystream generator employs 32/64 bit instructions and it is

approximately 3.1 times faster than RC4 on 32-bit machines. We analyzed the se-

curity of our design and showed the our design is resistant to several distinguishing

attacks that are successful against RC4. We also showed that recovering the in-

ternal state of RC4-like keystream generator is much harder than the original RC4

cipher. The RC4-like keystream generator was presented in [53].

Algebraic Immunity of Boolean Functions Based on Power Mappings:

Following the design of stream ciphers we turned our attention to nonlinear trans-

formations, i.e., Boolean functions, used in stream ciphers. We investigated the

algebraic immunity of the Boolean functions based on power mappings. We devel-

oped techniques to analyze the algebraic degree of these functions in the polynomial

form. These techniques were then used to derive upper bounds on the algebraic

immunity of several well known Boolean functions. We proved that most of these

functions have low algebraic immunity. Finally we generalized our results to all

functions in the polynomial form. This work was first presented in [82] and was

then extended in [83].

Algebraic Immunity of S-Boxes Based on Power Mappings: In this con-

tribution we examined the resistance of S-boxes based on power mappings against

algebraic attacks. We developed techniques to find the number of bi-affine and

quadratic equations satisfied by an S-box based on power mappings. From these

techniques we developed two efficient algorithms to count the total number of these

equations for a given S-box. To design secure S-boxes we gave constructions that

guarantee zero bi-affine and quadratic equations. Finally we examined these S-

boxes for their resistance against linear and differential cryptanalysis and identified

several cryptographically strong S-boxes. The efficient algorithms to count the

136

number of bi-affine and quadratic equations were presented in [84]. An extension of

this paper which contains new S-box constructions and the list of cryptographically

strong S-boxes is available at [85].

Equivalent Algebraic Descriptions of S-Boxes: In our final contribution we

derived equivalent algebraic descriptions of inverse and DES S-boxes. We focused

on the polynomial and trace representations of these S-boxes. We computed the

number of monomials in these representations and derived the linear complexity of

their component functions. This provided us with an insight into their algebraic

structure and other cryptographic properties.

8.2 Future Work

In this section we discuss how the work presented in this thesis can be extended

in future. We list possible improvements on our results and also list some related

open problems.

Design of Stream Ciphers: The WG stream cipher presented in Chapter 3 filters

the output of an LFSR. Recently some stream ciphers have been proposed that

filter NLFSR or in general they have nonlinear state update functions [36]. These

designs are more efficient than the WG ciphers. However it is very difficult to

prove that they produce keystream with desired randomness properties. Therefore

there is a need to develop techniques to analyze these designs. This will increase

our understanding and confidence in such designs. Some open problems related

to stream ciphers that use nonlinear state updates are: designing state update

functions that guarantee long cycles, calculating the exact period of the keystream,

and establishing lower and upper bounds on the linear complexity of the keystream.

It was mentioned in Chapter 4 that RC4-like keystream generator is vulnerable

to a distinguishing attack. An obvious next step is to modify RC4-like keystream

generator to ensure that it is safe against such distinguishers. We proposed the

addition of a few bitwise instructions to break the linearity over Z232 . The final

design must be analyzed carefully to ensure that these modifications will make

137

RC4-like keystream generator safe against distinguishing attacks. The challenge

here is to maintain, as much as possible, the simplicity of the present design.

Improving Bounds on Algebraic Immunity of Boolean Functions: In Chap-

ter 5 we used the theory of polynomial functions to prove upper bounds on the al-

gebraic immunity of several well known functions. Experimental results show that

in some cases our bounds seem to be tight but in other cases, although very close,

our bounds are not tight. A possible extension of this work is to see if these bounds

can be improved. More interesting, however, is the problem of finding the lower

bounds on the algebraic immunity of these functions. It seems to be a hard prob-

lem. Proving an upper bound requires proving the existence of a single function

of particular polynomial form whereas proving a lower bound requires proving the

absence of all the functions of a particular polynomial form. The latter is a more

difficult problem. However this can help us design large functions with provable

high algebraic immunity.

Design of Block Ciphers Resistant to Algebraic Attacks: We have identified

several cryptographically strong S-boxes in Chapter 6. Some of these S-boxes satisfy

very small number of multivariate quadratic equations and their corresponding sys-

tem of equations is underdefined and very likely more difficult to solve. However an

interesting approach is to take an existing block cipher such as AES and replace it’s

S-box with another one that does not satisfy any multivariate quadratic equation.

Unlike the AES S-box, which is optimal in terms of providing resistance against

linear and differential cryptanalysis (but very poor against algebraic cryptanalysis),

the new S-box will likely decrease the resistance of the block cipher against these

two attacks. This decrease in resistance can be quantified and compensated by

increasing the number of rounds in the new design. Calculating this increase in the

number of rounds and evaluating the efficiency of the new design will provide an

interesting alternative. This can also address concerns related to the vulnerability

of many block ciphers to algebraic attacks.

138

Bibliography

[1] G. Agnew, R. Mullin, I. Onyszchuk, and S. Vanstone, An Implementation for a

Fast Public-Key Cryptosystem, Journal of Cryptology, vol. 3, pp. 63-79, 1991.

[2] F. Armknecht, C. Carlet, P. Gaborit, S. Kuenzli, W. Meier, O. Ruatta, Efficient

Computation of Algebraic Immunity for Algebraic and Fast Algebraic Attacks,

to appear in Advances in Cryptology - Eurocrypt 2006.

[3] F. Armknecht, Algebraic Attacks on Combiners with Memory, Advances in

Cryptology - CRYPTO 2003, LNCS 2729, pp. 162-176, Springer-Verlag, 2003.

[4] F. Armknecht, Improving Fast Algebraic Attacks Fast Software Encryption

2004, LNCS 3017, pp. 65-82, Springer-Verlag, 2003.

[5] F. Armknecht, On the Existence of Low-degree Equations for Algebraic Attacks,

Cryptology ePrint Archive, Report 2004/185, http://eprint.iacr.org/, 2004.

[6] E. Berlekamp, Algebraic Coding Theory, McGraw Hill, New York, 1968.

[7] S. W. Golomb, and G. Gong, Signal Design for Good Correlation: For Wireless

Communication, Cryptography, and Radar, Cambridge University Press, ISBN

0521821045, 2005.

[8] E. Biham, L. Granboulan, and P. Nguyen. Impossible and Differential Fault

Analysis of RC4. Fast Software Encryption 2005.

[9] E. Biham, and J. Seberry, Py (Roo) : A Fast and Secure Stream Cipher Us-

ing Rolling Arrays, eSTREAM: The ECRYPT Stream Cipher Project, Report

2005/023, Available at http://www.ecrypt.eu.org/stream/papers.html

[10] E. Biham, and J. Seberry, Py (Roo) : Pypy: Another Version of Py, eS-

139

TREAM: The ECRYPT Stream Cipher Project, Report 2006/038, Available at

http://www.ecrypt.eu.org/stream/papers.html

[11] A. Biryukov and C. D. Canniere, Block Ciphers and Systems of Quadratic

Equations, Fast Software Encryption 2003, LNCS 2887, pp. 274-289, Springer-

Verlag, 2003.

[12] Bluetooth Specification, version 1.1, Available at www.bluetooth.org/spec/.

[13] A. Braeken, J. Lano and B. Preneel, Evaluating the Resistance of Filters and

Combiners Against Fast Algebraic Attacks. Eprint on ECRYPT, 2005.

[14] A. Braeken, J. Lano, N. Mentens, B. Preneel and I. Verbauwhede, SFINKS: A

Synchronous Stream Cipher for Restricted Hardware Environments, eSTREAM

Project report 2005/026, Available at http://www.ecrypt.eu.org/stream/.

[15] A. Braeken and B. Preneel, On the Algebraic Immunity of Symmetric Boolean

Functions,Indocrypt 2005, LNCS 3797, pp.35-48, SPringer-Verlag, 2005.

[16] M. Briceno, I. Goldberg, and D. Wagner, A Pedagogical Implementation of

A5/1, http://www.scard.org, May 1999.

[17] F. Chabaud and S. Vaudenay, Links Between Differential and Linear Crypt-

analysis,Advances in Cryptology - Eurocrypt 1994, LNCS 950, pp. 356-365,

Springer-Verlag, 1995.

[18] J. Cheon and D. Lee, Resistance of S-Boxes Against Algebraic Attacks, Fast

Software Encryption 2004, LNCS 3017, pp. 83-94, Springer-Verlag, 2004.

[19] V. Chepyzhov, T. Johansson, and B. Smeets, A Simple Algorithm for Fast

Correlation Attacks on Stream Ciphers, Fast Software Encryption 2000, LNCS

1978, pp. 181-195, Springer-Verlag, 2001.

[20] N. Courtois, Fast Algebraic Attacks on Stream Ciphers with Linear Feed-

back, Advances in Cryptology-CRYPTO 2003, LNCS 2729, pp. 176-194, Springer-

Verlag, 2003.

[21] N. Courtois, Algebraic Attacks on Combiners with Memory and Several Out-

puts, ICISC 2004, LNCS 3506, pp. 3-20, Springer-Verlag, 2004.

[22] N. Courtois, B. Debraize and E. Garrido, On Exact Algebraic [Non]Immunity

140

of S-boxes Based on Power Functions, Cryptology ePrint Archive, Report

2005/203, http://eprint.iacr.org/, 2005.

[23] N. Courtois and W. Meier, Algebraic Attacks on Stream Ciphers with Linear

Feedback, Advances in Cryptology - Eurocrypt 2003, LNCS 2656, pp. 346-359,

Springer-Verlag, 2003.

[24] N. Courtois and W. Meier, Algebraic Attacks on Stream Ciphers with Linear

Feedback, Extended version of [23], available at http://cryptosystem.net/stream

[25] N. Courtois and Pieprzyk J., Cryptanalysis of Block Ciphers with Overdefined

Systems of Equations, Advances in Cryptology - Asiacrypt 2002, LNCS 2501.

Springer-Verlag, 2002.

[26] J. Daemen, and V.Rijmen, The Design of Rijndael, Springer-Verlag, 2002.

[27] D. K. Dalai, K. C. Gupta and S. Maitra. Notion of Algebraic Immunity and Its

Evaluation Related to Fast Algebraic Attacks, Second International Workshop,

Boolean Function: Cryptography and Applications 2006 (BFCA 06).

[28] D. K. Dalai, K. C. Gupta and S. Maitra, Cryptographically Significant Boolean

Functions: Construction and Analysis in Terms of Algebraic Immunity. Fast

Software Encryption 2005, LNCS 3557, pp. 98-111, Springer-Verlag, 2005.

[29] D. K. Dalai, S. Maitra and S. Sarkar, Basic Theory in Construction of Boolean

Functions with Maximum Possible Annihilator Immunity. To appear in Designs,

Codes and Cryptography.

[30] E. Dawson, A. Clark, J. Golic, W. Millan, L. Penna, and L. Simpson, The LILI-

128 Keystream Generator, Proceedings of First NESSIE Workshop, Heverlee,

Belgium, 2000.

[31] Data Encryption Standard (DES), emphFIPS PUB-43 U.S. Department

of Commerce/National Institute of Standards and Technology. Available at

http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf

[32] J. Dillon, and H. Dobbertin, New Cyclic Difference Sets with Singer Parame-

ters, Finite Fields and Their Application, 10(2004), pp. 342-389.

[33] H. Dobbertin, One-to-One Highly Nonlinear Power Functions on GF (2n). Ap-

141

plicable Algebra in Engineering, Communication and Computing, Vol. 9, pp. 139-

152, 1998.

[34] H. Dobbertin, Almost Perfect Nonlinear Power Functions on GF (2n): The

Welch Case. IEEE Transactions on Information Theory, Vol. 45, No. 4, pp.

1271-1275, 1999.

[35] H. Dobbertin, Almost Perfect Nonlinear Power Functions on GF (2n): The

Niho Case. Information and Computation, Vol. 151, pp. 57-72, 1998.

[36] eSTREAM - The ECRYPT Stream Cipher Project,

http://www.ecrypt.eu.org/stream/

[37] P. Ekdahl, and T. Johansson, SNOW-A New Stream Cipher, Proceedings of

First NESSIE Workshop, Heverlee, Belgium, 2000.

[38] P. Ekdahl, and T. Johansson, SNOW-A New Version of the Stream Cipher

SNOW, Selected Areas in Cryptography, 2002, LNCS 2595, pp. 47-61, Springer-

Verlag 2003.

[39] J. C. Faugère, A New Efficinet Algorithm for Computing Grobner Basis (F4),

Journal of Pure and Applied Algebra, Vol. 139, pp. 61-88, 1999.

[40] J. C. Faugère, A New Efficinet Algorithm for Computing Grobner Basis with-

out Reduction to Zero (F5), International Symposium on Symbolic and Algebraic

Computation, ACM Special Interest Group on Journal of Pure and Applied Al-

gebra, available at http://www-calfor.lip6.fr/ jcf/Papers/@papers/f5.pdf

[41] Gui-Liang Feng, A VLSI Architecture for Fast Inversion in GF(2m), IEEE

Transactions on Computer, vol. 38, No. 10, pp. 1383-1386, October 1989.

[42] H. Finney, An RC4 cycle that can’t happen, Post in sci.crypt, September 1994.

[43] P. Flajolet and A. M. Odlyzko. Random Mapping Statistics (Invited), Euro-

crypt ’89, vol. 434 of LNCS, pp. 329-354, Springer-Verlag, 1990.

[44] S. Fluhrer, I. Mantin, and A. Shamir. Weaknesses in the Key Scheduling Al-

gorithm of RC4. SAC 2001 Vol. LNCS 2259, pp. 1-24, Springer-Verlag, 2001.

[45] S. Fluhrer and D. McGrew. Statistical Analysis of the Alleged RC4 Keystream

Generator. Fast Software Encryption 2000 Vol. LNCS 1978, pp. 19-30, Springer-

Verlag, 2000.

142

[46] R. Gold, Maximal Recursive Sequences with 3 valued cross-correlation func-

tion, IEEE Transactions on Information Theory, Vol. 14, pp. 154-156, 1968.

[47] J. Golić. Linear Statistical Weakness of Alleged RC4 Keystream Generator,

Eurocrypt ’97, vol. 1233 of LNCS, pp. 226-238, Springer-Verlag, 1997.

[48] J. Dj. Golić. Iterative Probabilistic Cryptanalysis of RC4 Keystream Genera-

tor, ACISP’2000, Vol. 1841 of LNCS, pages 220–233. Springer-Verlag, 2000.

[49] J. Golić, V. Bagini, and G. Morgari, Linear Cryptanalysis of Bluetooth Stream

Cipher, EUROCRYPT-2002, LNCS 2332, pp. 238-255, Springer-Verlag 2002.

[50] G. Gong, and S. W. Golomb, Transform domain analysis of DES, IEEE Trans-

actions on Information Theory, vol. 45, No.6, pp. 2065-2073, Sep. 1999.

[51] S. W. Golomb and G. Gong, Hyper-Cyclotomic Algebra, Sequences and their

Applications, SETA’01, Discrete Mathematics and Theoretical Computer Sci-

ence, Springer, 2001, pp. 154-165. CORR 2001-33.

[52] S. W. Golomb, and G. Gong, Signal Design for Good Correlation: For Wireless

Communication, Cryptography, and Radar, Cambridge University Press, ISBN

0521821045, 2005.

[53] G. Gong, K. C. Gupta, M. Hell and Y. Nawaz, Towards a General RC4-

like Keystream Generator, Information Security and Cryptology, First SKOLIS

Conference, Vol. 3822 of LNCS, pp. 162-174, Springer Verlag, 2005.

[54] G. Gong, and A. Youssef, Cryptographic Properties of the Welch-Gong Trans-

formation Sequence Generators, IEEE Transactions on Information Theory, vol.

48, No. 11, pp. 2837-2846, Nov. 2002.

[55] G.Gong, On Existence and Invariant of Algebraic Attakcs, Technical report

CORR2004-16, Centre for Applied Cryptographic Research, University of Wa-

terloo, Available at http://www.cacr.math.uwaterloo.ca/

[56] A. Grosul and D. Wallach. A related key cryptanalysis of RC4. Department of

Computer Science, Rice University, Technical Report TR-00-358, June 2000.

[57] P. Hawkes, G. Rose, Rewriting Variables: The Complexity of Fast Algebraic

Attacks on Stream Ciphers, Advances in Cryptology - Crypto 2004, volume LNCS

3152, pp. 390-406, Springer-Verlag, 2004.

143

[58] R. Jenkins. Isaac and RC4, Available at

http://burtleburtle.net/bob/rand/isaac.html.

[59] T. Kasami, The Weight Enumerators for Several Classes of Subcodes of the

Second Order Binary Reed-Muller Codes, Infor. Contr., Vol. 18, pp. 369-394,

1971.

[60] N. Keller, S. Miller, I. Mironov, and R. Venkatesan, MV3: A New Word Based

Stream Cipher Using Rapid Mixing and Revolving Buffers, CT-RSA 2007, LNCS

4377, pp. 1-19, Springer-Verlag 2007.

[61] A. Klapper, and M. Goresky, Feedback Shift Registers, 2-Adic Span and Com-

biners with Memory, Journal of Cryptology, Vol. 10, pp. 111-147, 1997.

[62] A. Klapper, and J. Xu, Algebraic Feedback Shift Registers, Theoretical Com-

puter Science, Vol. 226, pp. 61-93, 1999.

[63] A. Klapper, Distribution Properties of d-FCSR Sequences, Journal of Com-

plexity, Vol. 20, pp. 305-317, 2004.

[64] L. Knudsen, W. Meier, B. Preneel, V. Rijmen, and S. Verdoolaege. Analy-

sis Methods for (Alleged) RC4. Asiacrypt ’98, vol. 1514 of LNCS, pp. 327-341,

Springer-Verlag, 1998.

[65] R. Lidl and H. Niederreiter, Introduction to Finite Fields and their Applica-

tions. Cambridge University Press, 1994.

[66] M. D. MacLaren and G Marsaglia. Uniform random number generation. J.

ACM, vol. 15, pp. 83–89, 1965.

[67] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error Correcting Codes.

North Holland, 1986.

[68] I. Mantin. Predicting and Distinguishing Attacks on RC4 Keystream Genera-

tor. Eurocrypt 2005, Vol. 3494 of LNCS, pp. 491-506, Springer-Verlag, 2005.

[69] I. Mantin and A. Shamir. A Practical Attack on Broadcast RC4. Fast Software

Encryption 2001, Vol. 2355 of LNCS, pp. 152-164, Springer-Verlag, 2001.

[70] I. Mantin. The Security of the Stream Cipher RC4. Master Thesis (2001) The

Weizmann Institute of Science

144

[71] L. Massey, and J. Omura, Computational Method and Apparatus for Finite

Field Arithmetic, US Patent No. 4,587,627, 1986.

[72] J. Massey, Shift-Register Synthesis and BCH Decoding, IEEE Transactions on

Information Theory, Vol. 15, No. 1, pp. 122-127, 1969.

[73] A. Maximov, T. Johansson, and S. Babbage, An Improved Correlation Attack

on A5/1, Selected Areas in Cryptography 2004,LNCS 3357, pp. 1-18, Springer-

Verlag, 2004.

[74] A. Maximov. Two Linear Distinguishing Attacks on VMPC and RC4A and

Weakness of the RC4 Family of Stream Ciphers. Fast Software Encryption 2005.

[75] W. Meier, E. Pasalic, and C. Carlet, Algebraic Attacks and Decomposition

of Boolean Functions, Advances in Cryptology EUROCRYPT-2004, LNCS 3027,

pp.474-491, Springer-Verlag, 2004.

[76] A. Menzes, P.Oorschot, and S. Vanstone, Handbook of Applied Cryptography,

CRC Press, 1997.

[77] I. Mironov. Not (So) Random Shuffle of RC4. Crypto2002, Vol. 2442 of LNCS,

pp. 304-319, Springer-Verlag, 2002.

[78] S. Mister and S. Tavares. Cryptanalysis of RC4-like Ciphers. SAC ’98, vol.

1556 of LNCS, pp. 131-143, Springer-Verlag, 1999.

[79] R. Mullin, I. Onyszchuk, and S. Vanstone, Optimal Normal Bases in GF(pn),

Discrete Applied Mathematics, vol. 22, pp. 149-161, 1989.

[80] S. Murphy and M. Robshaw, Essential Algebraic Structure within AES, Ad-

vances in Cryptology - Crypto 2002, LNCS 2442, pp.1-16, Springer-Verlag, 2002.

[81] S. Murphy and M. Robshaw, Comments on the Security of the AES and the

XSL Technique, Electronic Letters, Vol. 39, pp. 26-38, 2003.

[82] Y. Nawaz, G. Gong and K. C. Gupta, Upper Bounds on Algebraic Immunity

of Boolean Power Functions, Fast Software Encryption 2006, Vol. 4047 of LNCS,

pp. 375-389, Springer Verlag, 2006.

[83] Y. Nawaz, G. Gong and K. C. Gupta, Upper Bounds on Algebraic Immunity

of Boolean Power Functions, (Preprint)

[84] Y. Nawaz, K. C. Gupta, and G. Gong, Efficient Techniques to Find Alge-

145

braic Immunity of S-boxes Based on Power Mappings, Workshop on Coding and

Cryptography (WCC), Versailles, France, April 2007.

[85] Y. Nawaz, K. C. Gupta, and G. Gong, Algebraic Immunity of S-Boxes Based on

Power Mappings: Analysis and Construction, Cryptology ePrint Archive, Report

2006/322, http://eprint.iacr.org/, 2006.

[86] Y. Nawaz and Guang Gong, The WG Stream Cipher, Workshop on Symmetric

Key Encryption, Aarhus, Denmark, May 26- May 27, 2005.

[87] Y. Nawaz and Guang Gong, The WG Stream Cipher, eSTREAM:

The ECRYPT Stream Cipher Project, Report 2005/033, Available at

http://www.ecrypt.eu.org/stream/papers.html

[88] Y. Nawaz and Guang Gong, WG: A Family of Stream Ciphers with Designed

Randomness Properties, (Preprint)

[89] European project IST-1999-12324 on New European Schemes for Signature,

Integrity, and Encryption. www.cryptonessie.org/

[90] NESSIE partners, Performance of Optimized Impleentations of the NESSIE

Primitives, Technical Report NES/DOC/TEC/WP6/D21/2,2003. Available at

http://www.nessie.eu.org/nessie.

[91] Y. Niho, Multi-valued Cross-correlation Functions Between Two Maximal Lin-

ear Recursive Sequences, Ph. D. dissertation, Dept. Elec. Eng., Univ. Southern

California (USCEE Rep. 409), 1972.

[92] P. Ning, and Y. Yin, Efficient Software Implementation for Finite Field Multi-

plication in Normal Basis, ICICS 2001, LNCS 2229, pp. 177-188, Springer-Verlag,

2001.

[93] NIST statistical tests suite with documentation, Available at

http://stat.fsu.edu/∼geo/diehard.html.

[94] J. S. No, S. W. Golomb, G. Gong, H. K. Lee, and P. Gaal, Binary Pseu-

dorandom Sequences of period 2n − 1 with Ideal Correlation Properties, IEEE

Transactions on Information Theory, Vol. 44, No. 2, pp. 814-817, March 1998.

[95] K. Nyberg, Differentially Uniform Mappings for Cryptography, Advances in

Cryptology - Eurocrypt 1993, LNCS 765, pp.55-64, Springer-Verlag, 1994.

146

[96] C. Paar, Efficinet VLSI Architectures for Bit Parallel Computation in Galois

Fields, Doctoral dissertation, Institute for Experimental Mathemetics, University

of Essen, Germany, 1994.

[97] S. Paul and B. Preneel. Analysis of Non-fortuitous Predictive States of the RC4

Keystream Generator. Indocrypt 2003, vol. 2904 of LNCS, pp. 52-67, Springer-

Verlag, 2003.

[98] S. Paul and B. Preneel. A New Weakness in the RC4 Keystream Generator and

an Approach to Improve the Security of the Cipher. Fast Software Encryption

2004, Vol. 3017 of LNCS, pp. 245-259, Springer-Verlag, 2004.

[99] S. Paul and B. Preneel, Distinguishing Attack on Stream Cipher Py, Fast

Software Encryption 2006, Vol. 4047 of LNCS, pp. 405-421, Springer Verlag,

2006.

[100] S. Paul and B. Preneel, On the (In)security of Stream Ciphers Based on

Arrays and Modular Addition. Advances in Cryptology - ASIACRYPT 2006,

Vol. 4284 of LNCS, pp. 69-83, Springer-Verlag, 2006.

[101] M. Pudovkina. Statistical Weaknesses in the Alleged RC4 keystream genera-

tor. Cryptology ePrint Archive 2002-171, IACR, 2002.

[102] A. Reyhani-Masoleh, and A. Hassan, A New Construction of Massey-Omura

Parallel Multiplier over GF(2m), IEEE Transactions on Computers, vol. 51, No.

5, pp. 511-520, May 2002.

[103] A. Reyhani-Masoleh, and A. Hassan, Efficient Digit-Serial Normal Basis Mul-

tipliers over GF(2m), ACM Transactions on Embedded Computer Systems, special

issue on embedded systems and security, vol. 3, No. 3, pp. 575-592, Aug. 2004.

[104] A. Reyhani-Masoleh, and A. Hassan, Low Complexity Word-Level Sequential

Normal Basis Multiplier, IEEE Transaction on Computers, vol. 54, N0. 2, Feb.

2005.

[105] A. Reyhani-Masoleh, and A. Hassan, Fast Normal Basis Multiplication Using

General Purpose Processors, IEEE Transaction on Computers, vol. 52, N0. 11,

Nov. 2003.

147

[106] R. Rivest, The RC4 Encryption Algorithm, RSA Data Security, Inc., Mar.

1992.

[107] A. Roos. Class of weak keys in the RC4 stream cipher. Post in sci.crypt,

September 1995.

[108] I. Schaumuller-Bichl, Cryptanalysis of the Data Encryption Standard by the

Method of Formal Coding, Advances in Cryptology - Eurocrypt 1982, LNCS 149,

pp.235-255, Springer-Verlag, 1983.

[109] G. J. Simmons et al. Contemproary Cryptography: The Science of Informa-

tion Integrity IEEE Press, New York, USA ISBN 0-87942-277-7

[110] A. Stubblefield, J. Ioannidis, and A. Rubin. Using the Fluhrer, Mantin and

Shamir attack to break WEP. Proceedings of the 2002 Network and Distributed

Systems Security Symposium, pp. 17-22, 2002.

[111] B. Sunar, and C. Koc, An Efficient Optimal Normal Basis Type II Multiplier,

IEEE Transactions on Computers, vol. 50, No. 1, pp. 83-88, Jan. 2001.

[112] Y. Tsunoo, T. Saito, H. Kubo, M. Shigeri, T. Suzaki, and T. Kawabata. The

Most Efficient Distinguishing Attack on VMPC and RC4A. SKEW 2005.

[113] C. Wang, T. Troung, H. Shao, L. Deutsch, J. Omura, and I. Reed, VLSI Ar-

chitecture for Computing Multiplications and Inverses in GF(2m), IEEE Trans-

actions on Computers, vol. 34, No. 8, pp. 709-716, Aug. 1985.

[114] D. Watanabe, S. Furuya, H. Yoshida, and B. Preneel, A New Keystream Gen-

erator MUGI, Fast Software Encryption 2002, LNCS 2365, pp. 179-194, Springer-

Verlag, 2002.

[115] H. Wu, Stream Cipher HC-256, eSTREAM: The ECRYPT

Stream Cipher Project, Report 2005/011, Available at

http://www.ecrypt.eu.org/stream/papers.html

[116] A.M.Yousef and G.Gong, Hyper-bent Functions, Advances in Cryptology,

EUROCRYPT-2001, volume LNCS 2045, pp.406-419. Springer-Verlag, 2001

[117] A. Youssef, and G. Gong, On the Interpolation Attacks on Block Ciphers,

Fast Software Encryption 2000, LNCS 1978, pp. 109-120, Springer-Verlag 2001.

148

[118] B. Zoltak. VMPC One-Way Function and Stream Cipher. Fast Software En-

cryption 2004, vol. 3017 of LNCS, pp. 210-225, Springer-Verlag, 2004.

149

Appendix A

CN Matrix for Normal Basis Multiplier in F229




0 1 0

1 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0

0 0 0 1 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 1 0 1

0 1 1 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 1




150

C Implementation of a Normal Basis Multiplier in F229

Following is the C implementation (32 bit word size) of the normal basis multiplier for the
normal basis defined by γ in Section 3.5. The implementation is based on the algorithm
given in [92].

#define ROTL29(v, n)
(unsigned)(((v) ¿ (n)) | ((v) À (29 - (n))))& 0xFFFFFFF8

void mult(unsigned int a, unsigned int b, unsigned int* c){

unsigned int A[29], B[29];

/*precomputation*/
A[0]=a & 0xFFFFFFF8; B[0]=b & 0xFFFFFFF8;
A[1]=ROTL29(A[0], 1); B[1]=ROTL29(B[0],1);
A[2]=ROTL29(A[0], 2); B[2]=ROTL29(B[0],2);
A[3]=ROTL29(A[0], 3); B[3]=ROTL29(B[0],3);
A[4]=ROTL29(A[0], 4); B[4]=ROTL29(B[0],4);
A[5]=ROTL29(A[0], 5); B[5]=ROTL29(B[0],5);
A[6]=ROTL29(A[0], 6); B[6]=ROTL29(B[0],6);
A[7]=ROTL29(A[0], 7); B[7]=ROTL29(B[0],7);
A[8]=ROTL29(A[0], 8); B[8]=ROTL29(B[0],8);
A[9]=ROTL29(A[0], 9); B[9]=ROTL29(B[0],9);
A[10]=ROTL29(A[0], 10); B[10]=ROTL29(B[0],10);
A[11]=ROTL29(A[0], 11); B[11]=ROTL29(B[0],11);
A[12]=ROTL29(A[0], 12); B[12]=ROTL29(B[0],12);
A[13]=ROTL29(A[0], 13); B[13]=ROTL29(B[0],13);
A[14]=ROTL29(A[0], 14); B[14]=ROTL29(B[0],14);
A[15]=ROTL29(A[0], 15); B[15]=ROTL29(B[0],15);
A[16]=ROTL29(A[0], 16); B[16]=ROTL29(B[0],16);
A[17]=ROTL29(A[0], 17); B[17]=ROTL29(B[0],17);
A[18]=ROTL29(A[0], 18); B[18]=ROTL29(B[0],18);
A[19]=ROTL29(A[0], 19); B[19]=ROTL29(B[0],19);
A[20]=ROTL29(A[0], 20); B[20]=ROTL29(B[0],20);

151

A[21]=ROTL29(A[0], 21); B[21]=ROTL29(B[0],21);
A[22]=ROTL29(A[0], 22); B[22]=ROTL29(B[0],22);
A[23]=ROTL29(A[0], 23); B[23]=ROTL29(B[0],23);
A[24]=ROTL29(A[0], 24); B[24]=ROTL29(B[0],24);
A[25]=ROTL29(A[0], 25); B[25]=ROTL29(B[0],25);
A[26]=ROTL29(A[0], 26); B[26]=ROTL29(B[0],26);
A[27]=ROTL29(A[0], 27); B[27]=ROTL29(B[0],27);
A[28]=ROTL29(A[0], 28); B[28]=ROTL29(B[0],28);

/* multiplication */
*c=A[0] & B[1];
*cˆ= A[1] & (B[0] ˆB[21]);
*cˆ= A[2] & (B[6] ˆB[21]);
*cˆ= A[3] & (B[13] ˆB[18]);
*cˆ= A[4] & (B[11] ˆB[27]);
*cˆ= A[5] & (B[17] ˆB[20]);
*cˆ= A[6] & (B[2] ˆB[22]);
*cˆ= A[7] & (B[13] ˆB[25]);
*cˆ= A[8] & (B[9] ˆB[10]);
*cˆ= A[9] & (B[8] ˆB[14]);
*cˆ= A[10] & (B[8] ˆB[26]);
*cˆ= A[11] & (B[4] ˆB[14]);
*cˆ= A[12] & (B[17] ˆB[24]);
*cˆ= A[13] & (B[3] ˆB[7]);
*cˆ= A[14] & (B[9] ˆB[11]);
*cˆ= A[15] & (B[24] ˆB[26]);
*cˆ= A[16] & (B[19] ˆB[23]);
*cˆ= A[17] & (B[5] ˆB[12]);
*cˆ= A[18] & (B[3] ˆB[22]);
*cˆ= A[19] & (B[16] ˆB[27]);
*cˆ= A[20] & (B[5] ˆB[28]);
*cˆ= A[21] & (B[1] ˆB[2]);
*cˆ= A[22] & (B[6] ˆB[18]);

152

*cˆ= A[23] & (B[16] ˆB[25]);
*cˆ= A[24] & (B[12] ˆB[15]);
*cˆ= A[25] & (B[7] ˆB[23]);
*cˆ= A[26] & (B[10] ˆB[15]);
*cˆ= A[27] & (B[4] ˆB[19]);
*cˆ= A[28] & (B[20] ˆB[28]);

}

153

C Implementation of a Normal Basis Inverter in F229

The following C implementation (32 bit word size) uses the normal basis multiplication
to find inverse of an element in F229 . The following implementation is based on the
algorithm given in [41].

#define ROTL29(v, n)
(unsigned)(((v) ¿ (n)) | ((v) À (29 - (n))))& 0xFFFFFFF8
#define ROTR29(v, n) ROTL29(v, 29 - (n))

void inverse(unsigned int a, unsigned int* b){
b=a
/*4*/
b=ROTL29(b, 16);
mult(b, ROTR29(b, 8), b);
mult(b, a, b);
/*3*/
b=ROTL29(b, 8);
mult(b, ROTR29(b, 4), b);
mult(b, a, b);
/*2*/
b=ROTL29(b, 4);
mult(b, ROTR29(b, 2), b);
/*1*/
mult(b, ROTR29(b, 1), b);

}

154

Appendix B

Initial Values for RC4(8,32)

Initial values for RC4(8, 32) in hexadecimal format.
a0 = 144D4800 a1 = 32736901 a2 = 51988B02 a3 = 6FBEAD03

a4 = 8DE4CE04 a5 = AC0AF005 a6 = CA301206 a7 = E8553407

a8 = 067B5508 a9 = 25A17709 a10 = 43C7990A a11 = 61ECBA0B

a12 = 7F12DC0C a13 = 9E38FE0D a14 = BC5E1F0E a15 = DA84410F

a16 = F9A96310 a17 = 17CF8411 a18 = 35F5A612 a19 = 531BC813

a20 = 7240E914 a21 = 90660B15 a22 = AE8C2D16 a23 = CCB24E17

a24 = EBD87018 a25 = 09FD9219 a26 = 2723B31A a27 = 4649D51B

a28 = 646FF71C a29 = 8294181D a30 = A0BA3A1E a31 = BFE05C1F

a32 = DD067D20 a33 = FB2C9F21 a34 = 1951C122 a35 = 3877E223

a36 = 569D0424 a37 = 74C32625 a38 = 93E84726 a39 = B10E6927

a40 = CF348B28 a41 = ED5AAC29 a42 = 0C80CE2A a43 = 2AA5F02B

a44 = 48CB112C a45 = 66F1332D a46 = 8517552E a47 = A33C762F

a48 = C1629830 a49 = E088BA31 a50 = FEAEDB32 a51 = 1CD4FD33

a52 = 3AF91F34 a53 = 591F4035 a54 = 77456236 a55 = 956B8437

a56 = B490A538 a57 = D2B6C739 a58 = F0DCE93A a59 = 0E020A3B

a60 = 2D282C3C a61 = 4B4D4E3D a62 = 6973703E a63 = 8799913F

a64 = A6BFB340 a65 = C4E4D541 a66 = E20AF642 a67 = 01301843

a68 = 1F563A44 a69 = 3D7C5B45 a70 = 5BA17D46 a71 = 7AC79F47

a72 = 98EDC048 a73 = B613E249 a74 = D438044A a75 = F35E254B

a76 = 1184474C a77 = 2FAA694D a78 = 4ED08A4E a79 = 6CF5AC4F

a80 = 8A1BCE50 a81 = A841EF51 a82 = C7671152 a83 = E58C3353

a84 = 03B25454 a85 = 21D87655 a86 = 40FE9856 a87 = 5E24B957

a88 = 7C49DB58 a89 = 9B6FFD59 a90 = B9951E5A a91 = D7BB405B

a92 = F5E0625C a93 = 1406835D a94 = 322CA55E a95 = 5052C75F

a96 = 6F78E860 a97 = 8D9D0A61 a98 = ABC32C62 a99 = C9E94D63

a100 = E80F6F64 a101 = 06349165 a102 = 245AB266 a103 = 4280D467

a104 = 61A6F668 a105 = 7FCC1769 a106 = 9DF1396A a107 = BC175B6B

a108 = DA3D7C6C a109 = F8639E6D a110 = 1688C06E a111 = 35AEE16F

a112 = 53D40370 a113 = 71FA2571 a114 = 8F204772 a115 = AE456873

a116 = CC6B8A74 a117 = EA91AC75 a118 = 09B7CD76 a119 = 27DCEF77

155

a120 = 45021178 a121 = 63283279 a122 = 824E547A a123 = A074767B

a124 = BE99977C a125 = DCBFB97D a126 = FBE5DB7E a127 = 190BFC7F

a128 = 37301E80 a129 = 56564081 a130 = 747C6182 a131 = 92A28383

a132 = B0C8A584 a133 = CFEDC685 a134 = ED13E886 a135 = 0B390A87

a136 = 2A5F2B88 a137 = 48844D89 a138 = 66AA6F8A a139 = 84D0908B

a140 = A3F6B28C a141 = C11CD48D a142 = DF41F58E a143 = FD67178F

a144 = 1C8D3990 a145 = 3AB35A91 a146 = 58D87C92 a147 = 77FE9E93

a148 = 9524BF94 a149 = B34AE195 a150 = D1700396 a151 = F0952497

a152 = 0EBB4698 a153 = 2CE16899 a154 = 4A07899A a155 = 692CAB9B

a156 = 8752CD9C a157 = A578EE9D a158 = C49E109E a159 = E2C4329F

a160 = 00E953A0 a161 = 1E0F75A1 a162 = 3D3597A2 a163 = 5B5BB8A3

a164 = 7980DAA4 a165 = 97A6FCA5 a166 = B6CC1DA6 a167 = D4F23FA7

a168 = F21861A8 a169 = 113D83A9 a170 = 2F63A4AA a171 = 4D89C6AB

a172 = 6BAFE8AC a173 = 8AD409AD a174 = A8FA2BAE a175 = C6204DAF

a176 = E5466EB0 a177 = 036C90B1 a178 = 2191B2B2 a179 = 3FB7D3B3

a180 = 5EDDF5B4 a181 = 7C0317B5 a182 = 9A2838B6 a183 = B84E5AB7

a184 = D7747CB8 a185 = F59A9DB9 a186 = 13C0BFBA a187 = 32E5E1BB

a188 = 500B02BC a189 = 6E3124BD a190 = 8C5746BE a191 = AB7C67BF

a192 = C9A289C0 a193 = E7C8ABC1 a194 = 05EECCC2 a195 = 2414EEC3

a196 = 423910C4 a197 = 605F31C5 a198 = 7F8553C6 a199 = 9DAB75C7

a200 = BBD096C8 a201 = D9F6B8C9 a202 = F81CDACA a203 = 1642FBCB

a204 = 34681DCC a205 = 528D3FCD a206 = 71B360CE a207 = 8FD982CF

a208 = ADFFA4D0 a209 = CC24C5D1 a210 = EA4AE7D2 a211 = 087009D3

a212 = 26962AD4 a213 = 45BC4CD5 a214 = 63E16ED6 a215 = 81078FD7

a216 = 9F2DB1D8 a217 = BE53D3D9 a218 = DC78F4DA a219 = FA9E16DB

a220 = 19C438DC a221 = 37EA5ADD a222 = 55107BDE a223 = 73359DDF

a224 = 925BBFE0 a225 = B081E0E1 a226 = CEA702E2 a227 = EDCC24E3

a228 = 0BF245E4 a229 = 291867E5 a230 = 473E89E6 a231 = 6664AAE7

a232 = 8489CCE8 a233 = A2AFEEE9 a234 = C0D50FEA a235 = DFFB31EB

a236 = FD2053EC a237 = 1B4674ED a238 = 3A6C96EE a239 = 5892B8EF

a240 = 76B8D9F0 a241 = 94DDFBF1 a242 = B3031DF2 a243 = D1293EF3

a244 = EF4F60F4 a245 = 0D7482F5 a246 = 2C9AA3F6 a247 = 4AC0C5F7

a248 = 68E6E7F8 a249 = 870C08F9 a250 = A5312AFA a251 = C3574CFB

a252 = E17D6DFC a253 = 00A38FFD a254 = 1EC8B1FE a255 = 3CEED2FF

156

