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Abstract

With the advent of high-temperature superconductivity, it is now possible to
construct very high Q patch resonators. Because of their light weight, small volume

and low expense, they are widely used for satellite communications.

In high Q filters, say @ > 100, one in fact requires accurate analysis, with
an error of less than 1%. Such accuracy is normally not attainable by regular
numerical methods, such as moment method, for most arbitrarily shaped patches.
Such accuracy is attainable by two-dimensional (2D) methods, like modal or contour

integral, where 2 magnetic wall is considered at the edge of the structure.

This research starts with a fast 2D method, and analyzes a patch considering
a magnetic wall at the edge. Then the magnetic wall assumption is removed to
include the fringing field effect. This new formulation is three dimensional (3D), and
is based on a variational expression which guarantees the accuracy. Our modeling
is based on adding a correction term in the form of a line integral to a 2D method.
This new hybrid (2D/3D) method has the speed of computation for 2D methods
and the higher accuracy of regular numerical 3D methods.

To reduce the effect of circuit connection on the performance, gap coupling is
used in most high Q filters. In this work gap coupling is analyzed, and for a special
kind of gap structure a novel model is presented. This model is then added to our

hybrid method to analyze gap coupled patch resonators.

The new hybrid method is then extended to analysis of coupling between dif-
ferent patches. Compared with conventional numerical methods, our formulation

is more accurate and faster. Using this analysis, we are able to analyze high order

filters such as Chebyshev.

iv
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Chapter 1

Introduction

1.1 Motivation

Microstrip structures are the most widely used form of the planar microwave circuits
at the present time. They can be manufactured inexpensively in a compact form.
However, they are lossy as compared to waveguides. This disadvantage, their loss,
is not of major concern for many applications. The dominant loss mechanism in

planar microwave circuits is conductor loss.

Since the discovery of high temperature superconductivity (HTS) capable of
operating at temperatures above the boiling point of liquid nitrogen (77 K), a
major effort has been expanded into the development of loss-free microwave planar
circuits. The main advantage of using HTS for planar microwave filters lies in the
fact that HTS planar circuits of small size and weight can realize a resonator with
Q equal to or better than those achieved by bulky waveguide resonators. However,
HTS circuits need a cooling system, and cannot handle as much power as waveguide

circuits.
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Applications such as space communication systems, radio telescopes and mil-
itary infrared systems already utilize cryogenic cooling for various components.
Therefore addition of HTS microwave circuits may be relatively simple and inex-
pensive. Properties of HTS microwave circuits, such as light weight and high Q,

make them a proper candidate for satellite application.

In most communication systems, to fully utilize the allocated frequency spec-
trum, high Q filters with sharp cutoff are required. Using HTS in high Q filters
would satisfy this requirement. For instance, in mobile communication, high Q

filters are used for filter banks in cellular base stations [1].

When a microstrip circuit is realized with HTS, such as YBCO, on a substrate
with high permitivity, such as lanthanum aluminate, LaAlO;, the conductor loss
becomes extremely small and the dominant losses are typically those due to radia-
tion and surface wave modes [2]. The @ factor of 20000 or more was reported for

these circuits in [3].

Due to the fact that HTS microstrip or strip line filters are not amenable to
tuning or trimming mechanisms, we need a very accurate (i.e. error < 1%) computer
aided design and simulation tool. The available software packages use the numerical
methods to analyze the circuit, and invariably they have at least two or three
percents error in their analysis. Therefore, an alternate approach is sought to

analyze the high @ circuits.

On the other hand an accurate method of analysis could be useful in design
tools, if the analysis method is reasonably fast. Using such a method with an
optimization method can provide a useful design package. Therefore, in addition

to accuracy, the analysis should be fast.
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Figure 1.1: General structure of a planar circuit.

1.2 Definition of the problem

The general configuration of a microstrip filter is shown in Figure 1.1. The electro-
magnetic fields is concentrated between the metallic patch and the ground plane,
so this structure acts as a cavity. We may approximate that the cavity is enclosed
by a magnetic wall around the edge and two electric conductors at the top and
bottom. If the slab is thin and the dielectric constant, ¢,, is high, the assumption
of the magnetic wall is quite accurate. For low values of ¢, there will be radiation
field from the edge of the cavity, therefore, we will have radiation loss. The other
kind of loss, as mentioned earlier, is the conduction loss; it will be very low if HTS

circuit is used. Therefore, a high @ should be realized with HTS on high dielectric

constant substrate.

The patch resonator can be excited by different methods. A simple method is a
microstrip transmission line directly connected to the edge of the patch as shown in
Figure 1.1. A similar direct connection is a coaxial feed through the ground plane,

as shown in Figure 1.2-a.

While a patch may have very high unloaded @, such direct connections give a
low loaded Q. Therefore, coupling may also be achieved by using loose capacitive
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(a)
Figure 1.2: Other methods of feed for patch (a)Coaxial line feed (b)Gap coupling.

coupling between the patch and the line, Figure 1.2-b. In this case the impedance
of the line feed has very low effect on the patch. Therefore, this kind of connection

gives very high loaded @ and is useful for high @ patch resonators.

In this research, as a general planar structure, we consider the patch resonator
as a N-port circuit having direct coupling, by microstrip line or coax line, or indirect
capacitive coupling by gap. In this work, a new method is presented to analyze
the patch with direct feed line or coax. The gap coupling is also included in the

analysis using an accurate and simple model presented in this thesis.

1.3 Existing Methods

Patch resonators, like other microwave circuits, can be analyzed by different nu-
merical methods as collected by Itoh [4], such as finite difference method [5], finite
element method [6], transmission line matrix method (7], integral equation-moment
method using three-dimension (3D) Green’s functions (8], two-dimension (2D) pla-

nar circuit methods by Gupta (9, 10, 11], Okoshi [12] and others [13].

Numerical methods are chosen on the basis of trade-offs between accuracy,

speed, storage requirement and are often structure dependent. For example, fi-
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nite difference method and transmission line matrix method are usually suitable
for closed structures and also need long computation time. The error in these nu-
merical methods are around 5%. In this research, to have accurate results (less
than 1 % error), we present a new method which is a combination of planar circuit

method (2D analysis) and 3D moment method.

The most popular analyses of the microstrip patch resonators are planar circuit
methods [9, 12](2D analysis) and integral-equation moment method {8, 14](3D
analysis). However, microstrip structures were also analyzed using finite difference
methods {15, 16]. In the following sections those two methods, 2D and 3D analyses,
are briefly addressed.

1.3.1 Planar Circuit Methods - 2D Methods

In patches, the height of substrate (say along z) is much smaller than the wavelength
and the planar dimensions are comparable to the wavelength. Assuming no field
variation along the height direction, these patches are called 2D circuits by Okoshi
[12] and the methods making use of this fact are called 2D methods.

With the above assumption ( 3/0z = 0 ) the perfect magnetic wall can be con-
sidered around the edge of the patch [12]. Therefore, for regular shaped patches
there are analytical solutions, and for irregular shapes a numerical solution is avail-
able based on contour integral formulation. These methods are simple and fast in
comparison with 3D methods. However, the fringe field is ignored in 2D methods,

and they are not accurate enough(error around 5%) for analyzing high Q circuits.

There are different 2D methods in the literature, and most of them are briefly

explained in this section.
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Modal Method - Regular Shaped Patches

For canonical shaped patches the eigenfunctions (modes) of two dimensional wave
equation can be analytically obtained under the patch. Gupta presented the eigen-
functions of triangular patch [10] circular sectors, annular rings and annular sectors
(11] in strip line structure. Similar work was also done for microstrip structure [13].
The field and currents on the structure can be expanded in terms of the modes.
Then, the input impedance of the circuit, or Z matrix of multiport circuit, is ex-
pressed in terms of the modes. This method is called modal analysis and can be

used only for regular shaped patches [9, 12].

The simplicity of the modal method and its analytical solution are two advan-
tages of this method. However, in some cases, we have to use a huge number of

modes for convergence of solution and this makes the method very slow.

Contour Integral Method - Arbitrary Shape Patches

If the patch has an arbitrary shape, even with magnetic wall, the derivation of
eigenfunctions is difficult. In this case the impedance matrix of the circuit can be
obtained using the contour integral method developed by Okoshi (17] and Gupta
[9]. In this approach, Green’s theorem expressed in cylindrical coordinates and
Weber’s solution for cylindrical waves are used to convert the two-dimensional wave
equation into a contour integral. The resulting contour integral relates the voltages
and currents along the planar circuit periphery. Then, the impedance matrix can

be found in terms of these contour integrals.

In 1988, the contour integral method was used [18] to analyzed prod-fed and
strip-fed patch resonators. This method was also applied to planar devices in

anisotropic media [19].
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Multiport Network Methods (Segmentation - Desegmentation)

For the planar circuit with canonical shape, modal method can be used. On the
other hand, analysis of planar circuits with completely arbitrary shapes, for which
a Green’s function (mode) cannot be obtained, can be done by contour integral

method.

Between these two extreme cases, there is a class of planar circuits in which
the shape of the circuit is a composite of simple configurations. In these cases,
the 2D composite shapes can be decomposed into either all regular shapes or a
combination of some regular shapes. The process of breaking down a composite

shape into simpler shapes is called segmentation [17, 20].

The term segmentation refers to the network theoretic method for characterizing
a combination of multiport components when the individual characteristics of each
components is known. The implementation of this segmentation method may be

carried out in terms of S, Z, or Y-parameters.

In addition to the segmentation method, there is also a complementary pro-
cess called desegmentation [21], which is suitable for analyzing a special class of
planar circuit configurations. These circuits cannot be decomposed into regular
shapes, but by adding a regular shape, we end up with a regular shape. It has been
shown [22] that if the impedance matrices of the added segment to the original con-
figuration and the impedance matrix of the augmented configuration are known,
the impedance matrix of the original planar circuit can be obtained using deseg-
mentation formulation. This procedure is mainly used for 2D planar structures.

Segmentation procedure can also be done in terms of Z, Y and S-matrices.
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Other methods

Since 2D methods, modal or contour integral, are relatively simple and fast, some

researcher tried to enhance these methods using other techniques.

In modal method, the assumption of the magnetic wall, the edge effect is not
taken into account. In the 1960’s Wheeler [23, 24] defined equivalent width for
microstrip line using the (static field) conformal mapping to include the fringe field
at the edge of the microstrip line. Some researchers [25] used the Wheeler’s results
and effective dielectric constant in modal analysis to include the effect of the fringe
field in their analysis of the patch. This improvement is for the static field and
therefore, is only an approximation. This method is very useful, if a few percent
error can be tolerated in the results. However, the shape of frequency response

around the resonant frequency may not be accurate.

Other researchers [26] used effective dielectric constant in 2D modal method to
find the resonant frequency of a patch antenna. This is a fast and simple method
to find resonant frequency. In most empirical equations, to include the fringe fields

the effective dielectric constant has been used.

A more general method has been developed by Gupta and Abuzahra [27] to
analyze planar circuits including the radiation, fringe fields and coupling. This
method is called multi-network modeling (MNM). In this method the fields under
the patch and the external fields (radiated, surface waves and fringe field) are
modeled separately in terms of a multiport subnetwork. Then fields on both sides
of an interface are matched at a discrete number of points. In this approach,
the edge fields (fringing, surface wave and radiation) are modeled by introducing
equivalent edge admittance networks (EAN) connected to the edges of the patch.
This method was also developed to include the coupling between patches of a broad
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band microstrip antenna[28]. In this case, an EAN is placed between two patches

to include the coupling between patches.

1.3.2 Integral Equation Technique - 3D method

To consider the edge effect in patch resonators, for more accurate analysis, the
integral equation method using 3D Green’s function could be used. The speed of
this 3D method is less than 2D methods.

In this method the boundary conditions are formulated in the form of integral
equations. Mosig [29, 30] presented the formulation for mixed potential integral
equation to be used in analyzing the microstrip structures. The integral equations
can be solved by moment method [31] to find the currents on the structure. Then,
from these currents the Z-matrix of the circuit can be calculated. This numerical
method can analyze canonical or arbitrarily shaped patches considering the fringe

field at the edges.

In 1995, Mittra et al [32] developed a method based on moment method inte-
gral equation method using closed form Green’s function for multilayer structure,
complex image technique developed by Chow et al [33]. In this work the accurate
numerical analysis was presented, based on accurate Green'’s functions. They ana-
lyzed a patch resonator with an extra layer on the patch using the Green’s function

of a multilayer structure.

Using regular segmentation in moment method (e.g. each segment length =
A/20), we can get the results with 3 or 4 % error. This may count to 200 segments in
a patch and therefore, the computation will be time consuming. Finer segmentation
will substantially increase the computation time. In addition, sometimes it is not

possible to fit each segment in moment method into a curved boundary of the patch,
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Figure 1.3: Example of approximation of curved boundary.

e.g. Figure 1.3. Therefore, there will be truncation error at the edge of patch.

Recently, in most of microwave circuit simulators, such as Maxwell/Ansoft or
IE3D/Zeland, triangular segments are chosen near the edge. Therefore, a better
approximation for the curved boundary of the patch is achieved. However, there
is still truncation error at the edges. On the other hand the segments cannot be
very small, because the coefficient matrix will be ill condition and it reduces the
accuracy of the method. These two kinds of softwareare good for many application,
however, they are not very accurate for structure with high dielectric, or high Q

circuits.

The other commercial software, Sonnet, is also using moment method. This
software is accurate, if its segmentation (grid) fits the structure. Sonnet is accurate

enough and can be used for analyzing high Q circuits. However it is very slow.

1.4 Our New Method

In high @ circuits, we have to analyze the circuit very accurately (less than 1% er-
ror). The 2D methods, modal or contour integral, are fast and simple, as mentioned

in Section 1.3.1. However, with magnetic wall assumption they do not consider the
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fringe field. Therefore, the results of this method have errors more than 5 % which
are not suitable for high @ circuits. As mentioned in Section 1.3.2, to consider the
fringe field, 2 numerical method such as moment method with 3D Green’s func-
tions has to be used, e.g. Mittra [32]. However, the error of the results in this
method is still around 3 %, and in some structures, such as circular patch or square
patch with corner cut, there will be additional truncation error at the patch edge.
In addition, this numerical method cannot be employed in design tools because of

long computation time.

To overcome the above difficulties for analysis of high Q microstrip patch res-
onator, we present a novel method uses a combination of one of the above 2D
methods and with 3D moment method. Each method is used to compensate the

deficiency of the other one.

Our new method is a combination of 2D and 3D methods. This hybrid method
starts with 2D method, contour integral or modal. Then, to include the fringe field,
deletion of magnetic wall, we use a variational expression based on 3D Green’s

function. This variational expression increases the accuracy of our method.

Our method is very fast, because we use the fast convergent 2D methods for
the main area of the patch, and accurate, because we use 3D Green’s function and

variational formulation to include the fringe field around the patch.

1.5 Organization of Thesis

The new method developed in this research is explained in Chapter 3. Analysis
of gap coupling and coupling between patches, are explained as two major topics

related to high Q planar filters. In this thesis, there is no separate chapter for
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numerical results of our analysis. At the end of each chapter, some numerical

results are presented.
A brief description of each chapter is given below.

Chapter 2 - As a basis of our method, we use two methods, 2D and 3D methods.
In this chapter, these methods are explained in more details. There are also some
details on the segmentation method which will be used in analysis of coupling
between patches, Chapter 5. This chapter can be considered as background of our
work. Since we have no contribution on its material, this chapter can be skipped,

if the reader is familiar with these methods.

Chapter 3 - The major contribution of this research is presented in this chap-
ter. Our new hybrid method is explained, and a number of planar structures are
analyzed by our method. The new method is compared with different methods in

terms of accuracy and speed.

Chapter 4 - This chapter focuses on patch resonators with gap coupling. A new
model for gap coupling is presented in this chapter. This model of the gap is simple
and accurate. To analyze high Q filters with gap coupling, this model of the gap
is then added to our patch analysis presented in Chapter 3. A numerical result of

our method is compared with other methods.

Chapter 5 - As a next step of this research, coupling between patches is studied.
In this chapter, our new hybrid method is extended to analyze the coupling between
patches in higher order filters. The segmentation method has also been used in this

analysis.

Chapter 6 - In this chapter a new method is presented to calculate the 3D Green’s
functions of multilayer structures. This method is called simulated images and it

can be considered as a simplified complex images method developed by Prof Y.L.
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Chow and his associates in previous years. The simulated images method is used to

calculate the magnetic field required in our hybrid methods presented in Chapter
3 and Chapter 5.

Chapter 7 - This chapter concludes the thesis by reviewing some of the important
concepts of this research. As a future work, this chapter also proposes some areas

which require more research.

Appendix A to C - These appendices present some of the mathematical proofs

and derivation used in 2D analysis.

Appendix D - A closed form of Green’s function of multilayer structures in
frequency domain is listed in this appendix. Those formulas were extracted from

previous works of researchers [34] in our group.



Chapter 2

Available Methods

2.1 Introduction

As microwave technology evolves toward the use of higher frequencies and more
sophisticated circuits and components, a considerable theoretical effort is required
in order to improve the characterization and modeling of microwave structures. In
the set up of CAD techniques, usually one has to compromise between accuracy
and simplicity. To achieve accurate results, when using numerical methods, such
as moment method or finite difference method, a large number of computation and

CPU time are required.

The available techniques for analyzing microstrip, or in general planar, circuits
can be categorized into two broad classes: two dimensional field analysis techniques
based on the planar waveguide model of microstrip and full wave three dimensional

numerical analysis techniques.

The two-dimension (2D) approach includes a wide range of analyses such as

modal analysis, multiport network technique, and contour integral method. In

14
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modal analysis [9, 12] the Green’s function as applied to planar components of
regular shapes is expressed in terms of modes (eigenfunctions of wave equation) in
the planar structure. This analysis yields impedance matrix characterization of the
structure with reference to the number of ports that exist at selected locations on

the edges of, or inside, the structure.

Multiport network techniques are also known as segmentation and desegmenta-
tion methods [20, 21]. These techniques have been developed for two dimensional
analysis of microwave planar components, and microstrip antennas. These meth-
ods can also be applied to full wave analysis techniques (three dimensional fields)
based on mode matching approach. Multiport network techniques are suitable for

irregular shape structure composites of regular shapes.

Contour integral method allows analysis of generalized geometrical shapes un-
like the modal method (for regular shapes) and multiport network techniques (for
composites of regular shapes) [12].

The three-dimension (3D) approach can be divided into two categories: integral
equation analysis and differential equation analysis. The integral equation approach
employs moment method solution to find the current distribution on the metaliza-
tion of a structure {29, 32]. Characteristics of the structure are derived from this
current distribution. Both space domain and frequency domain formulation can be

used.

Differential equation based analysis, such as finite-difference {16] or transmis-
sion line matrix (TLM) [7], have been used extensively for time domain analysis
of microwave structures. These approaches are more generalized formulations, as
compared to integral equation based methods, for incorporating vertically oriented

currents in microwave structures, or structures in a closed region such as a box.
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X I VA i

Figure 2.1: The structure of a canonical shaped planar circuit.

However, larger computer memory and run times are often needed.

In this chapter the modal method, contour integral method, and multiport
network technique (segmentation - desegmentation method) are explained as the
2D analysis. Then, as a 3D analysis, the integral equation moment method is
explained. These methods, one of the 2D methods and 3D moment method, will
be the basis of our new hybrid method which is proposed in the next chapter.
Segmentation method is also part of our analysis in Chapter 5, when the structure

has more than one patch.

2.2 Modal Analysis - 2D Method [12]

Consider a thin canonical shaped conductor plate placed on top of a ground plane
with a spacing h as shown in Figure 2.1 with several coupling ports having widths
W;:, Wj,.... The rest of the periphery is assumed to be open-circuited. The z,y and
z coordinates are shown in Figure 2.1. When the spacing h is much smaller than
the wavelength and the dielectric is homogeneous and isotropic, we can assume that

89; =0 and H, = E, = E, = 0. Therefore, Maxwell’s equations are simplified to:
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6H, OJ8H, .

5z " oy vt (2:1)
OF, )
3y = —jwpH, (2.2)
0E, .
Bz = jwpH, (2.3)

where w, €, 4 are the angular frequency, permitivity and permeability of the sub-
strate, respectively. Note that for the structure in Figure 2.1, the other remaining
Maxwell’s equations become trivial. From the above three equations, (2.1) to (2.3),
we arrive at the following 2D Helmholtz equation, in terms of E, within the planar
circuit cavity
(V24+K)E. =0 (2.4)
where
52 52
—— 2 — — —
k=w/pe , V;= 522 T By
where k is the wavenumber in the substrate.
Next, we consider the boundary conditions. On the top and bottom plate if we

denote the surface current density by J, , then
J=axH (2.5)

when 7 = z, we have,

H=-J, , H,=J,

‘Therefore, we obtain from (2.1) and (2.5)

—V.J = jweE,
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On the peripheral magnetic wall, we first consider the case where no external
circuit is connected to the periphery. Therefore, the boundary condition along the

open boundary periphery of the circuit is

O0E,
on

where n is the local coordinate pointing outward and normal to the periphery.

0 (2.6)

If V denotes the voltage at each point of the circuit with respect to the ground

conductors,

V=E,h

therefore the problem to be solved is formulated as

(VZ+ KV =0 , in D (2.7)
v
5‘; = , O C (28)

where C and D are the periphery and the region inside the periphery, respectively,

as shown in Figure 2.1.

Equations (2.7) and (2.8) describe an eigenvalue problem. The nonzero solution
of (2.7) exists only for an infinite number of discrete values of k. These values
ko, ki, ... are called eigenvalues, and they correspond to resonant angular frequencies
wo, W1, ..., Where w; = ck; (c the velocity of light). To each eigenvalues, k;, a specific

field solution ®; exists and is called the eigenfunction.

Now we consider the case where external ports are present. At the junction
with external circuits, (2.8) is no longer valid. From (2.2), (2.3) and (2.5) we can
say that if an external circuit having admittance Y is connected to this port, Y is

related to the voltage V at the port as,
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_ Jwdadl Wy H.dl _ —iW fy 5% dl
TiwVdl ™ [pVd wph fiy V dl

where W is the width of the port, J, is the inward surface current density and

Y

(2.9)

normal to the contour C, and H, is the magnetic field intensity along C. All the
above integrals are performed along the periphery C.

If the circuit has several ports, assuming that the widths of the ports are much

smaller than the wavelength, we may define the terminal voltage v;, and terminal

current I; as

h
U = -I’V‘ w; .Ez dl (2.10)

I = /w; Jn dl (2.11)

Using the voltage and current of each port, we can define the impedance matrix of

the network. The elements of impedance matrix can then be defined as

Vi
Zi=1 (2.12)

To derive the expression for Z;;, we use the Green’s function of the structure, G,

which has a dimension of impedance. This Green’s function will be derived in terms

of modes in the structure. The Green’s function G, satisfies

V(z,y) = //;3 G(z,y|za, y0)J (Z0, Y0) dTo dyo (2.13)

where D is the region inside the structure, as shown in Figure 2.1. The open

boundary condition for G is

8G

5=

0 along C (2.14)

In planar circuits, current is injected from the periphery where coupling ports

are present. We are usually concerned only with the voltage along the periphery,
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we can express this voltage by a line integral in terms of current density along the

periphery as
V() = fo G(lllo)Ja(lo) dlo (2.15)
where ! and lp are used to denote distance along C.

Since J, is present only at coupling ports, the integral in (2.15) should be
calculated only over the widths of the ports. Thus we can compute the terminal

voltage defined in (2.10) directly from (2.15) as

1
v = W? /Wi /w,» G(Ulo)Ja(lo) dl d

_ I
- Z,: TATA /W. /W,_ G(lllo) dlo dl (2.16)

where
I = n 1
j /’J (lo) d o

I; represents the current flowing into the jth port on the circuit plate. In deriving
Equation (2.16), we assume that W;, W; << ), and therefore G does not vary ap-
preciably within W; and Wj, so that the average value of GJ,, can be approximated

as the product of the average of G and the average of J,.
Equation (2.16) shows that the ijth element of the impedance matrix of a
N —port planar circuit, i.e. Z;; = v;/I;, is given by

1
2 = /Wi /w,- G(lllo) dlo dI (2.17)

When the shape of the circuit is canonical (e.g. rectangular or circular), we
"can obtain the Green’s function of the wave equation analytically and derive the

equivalent circuit parameters directly from that Green’s function using (2.17). The
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Green’s function can be expressed in terms of eigenfunctions, ®,, and eigenvalues,

kn, as

) ®,.(z0,y0)Pn(z,
G(z,ylzo,30) = jwph ) ( (}c,y‘f kz( ) (2.18)

The details of how to derive the above Green’s function can be found in some
literatures [9, 12], and is briefly given in Appendix A. In Appendix C, the Green’s
function for some simple shapes is given based on the eigen function expansion
(2.18). As mentioned before, derivation of &, is practical only for canonical shapes.
The list of canonical shapes with their eigenfunctions and eigenvalues, ¢, and &,

are given in [20].

Setting (2.18) into (2.17), we find that element of the impedance matrix is

expressed as

Z:; _J“”"‘/ / o (’° (l) dlo di (2.19)

The above equation shows that the term havmg k. closest to k is the dominant
term. Therefore, when we are concerned only with the circuit characteristics at
frequencies close to the resonance point , we can simply use the predominating

term from (2.19) to simplify the analysis.

2.3 Multiport Network Method - 2D Method

Modal analysis of two dimensional planar components with regular shapes has been
‘presented in the last section. On the other hand, analysis for planar circuits with
completely arbitrary shapes, for which modal expansions of Green’s function cannot

be obtained, is discussed in the next section.
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Figure 2.2: (a) Planar circuit, composite of two canonical shapes, can be ana-
lyzed by segmentation method (b) Non-canonical planar circuit which will have a
canonical shape by adding a canonical shape, can be analyzed by desegmentation
method.

Between these two extreme cases, there is a class of planar circuits which the
shape of the circuit is a composite of canonical configurations, or removal of a
canonical shape from another canonical shape. Examples of these two types of this
class of circuits are shown in Fig. 2.2a and 2.2b. The method of analysis for these

structures are called segmentation and desegmentation {17, 20).

These two terms, segmentation and desegmentation, refer to the network meth-
ods for characterizing a combination of multiport components when the charac-
teristics of each component is known. The implementation of these methods can
be carried out in terms of S-parameters, Z-parameters or Y-parameters. Since
we present other methods of analysis based on Z-parameters, these methods are

explained based on Z-parameters.

These methods have been used extensively for analyzing the two-dimensional
planar circuits. As major 2D methods, and because of their application in our work

in Chapter 5, these methods are briefly explained.
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2.3.1 Segmentation method

The name of this method, segmentation, has been given by Okoshi and his col-
leagues [17]. The idea of this method is to divide a circuit configuration into simpler
segments which have regular shapes. The segmentation method gives us the overall
characteristic of the circuit when the characterization of each segment is known.
This is the main advantage of this method, and we do not need to analyze the

whole circuit. On the other hand, couplings between segments are not considered

in this method.

The basis of the segmentation approach is the transformation of the field match-
ing along the interface between two regions into an equivalent network connection
problem. Matching of the tangential magnetic field is realized by the current conti-
nuity condition enforced by Kirchoff’s current law. The continuity of the tangential
electric field is achieved by enforcing equivalence of voltages at the connected ports.
Therefore, the electromagnetic field problem is solved in terms of an equivalent net-

work interconnection problem.

Recently, the segmentation approach has also been applied to three dimensional
electromagnetic problems, such as full wave analysis of via hole ground in microstrip
[35]. In these cases, the structure is divided into various regions sharing common
interfaces. A network characterization of each region is obtained in terms of say Z
matrices. These matrices are then connected together by the segmentation proce-
dure to enforce the continuity of currents at the interface which corresponds to the

continuity of the tangential components of magnetic fields at the boundary.

The segmentation method was originally formulated in terms of 5 matrices of
each segments by Okoshi; however, it was found that a Z matrix formulation is more

efficient for microwave planar circuits. In this section, the segmentation method is
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| Pb

Figure 2.3: Port names in the segmentation method

described based on Z matrix formulation.

This method can be explained by considering the connection of the two segments
in Fig. 2.3. As shown in the figure, The ports of segment A on the common
boundaries with segment B are called g—ports. The corresponding ports on segment
B are called r—ports. The ports on segment A and B which are not on the common
boundaries are called p, and p, ports, respectively. The Z matrices of segments A

and B can be arranged as,

Zpure Zpq |
Za=| TP (2-20)
ZQPu 99
Zoion Zowr |
ZB = [ PsPb Ps (2.21)
Zrpy  Zer ]
The above Z matrices can be written together as,
Vo l=1 25 Z4 O (2.22)
V. Zp 0 2,

where
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H
, Ip= (2.23)

and
Zyoo O Z,, 0
Zpp = P ] v Zpg= Ped v Zpr = (2.24)
0 ZP&PL 0 ZP&'
As a result of the interconnections of ¢ and r ports, we can write,

V,=V, and I,=-I, (2.25)

Substituting (2.25) into (2.22) to eliminate Vg, V;, I; and I,, we obtain,

Vo = [Z4sl1, (2.26)

where

[qu’*'z"]_l[-quc ’ Zrm] (2-27)

ZP-P: 0 Zch
[Z AB] = +
0 me "me
It should be noted that higher accuracy can be obtained by increasing the
number of ports, i.e. g, on the common boundary. From the computational point
of view, the most time consuming step is the evaluation of the inverse of the matrix

of size (¢ x q), interconnected ports. Therefore, there is a trade off between speed

and accuracy.
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Figure 2.4: Planar circuit suitable to be analyzed by desegmentation method

2.3.2 Desegmentation method

The desegmentation method is a complementary method used for two dimensional
circuits. This method is applicable in cases where the addition of one or more
regular shapes to the shape of the circuit yields another regular shape, such as Fig.
2.4. This method was developed by Gupta [21, 20] in terms of S matrices or Z

matrices. In this section, this method is briefly explained based on Z matrices.

As shown in Figure 2.4, let a denote the shape of the circuit to be analyzed. On
the addition of one or more simple shape, called 3, a simple shape v is obtained.
The Z parameter of 8 and v can be found using modal method explained in last
section. The ports of @ which are not on common boundaries between a and 3 are
called p ports. The port of @ on common boundaries between a and B are called

g ports. The ports of 8 are called r when they are on the common boundary, and

called d when they are not.

The Z matrices for 8 and v, Z? and 27, can be evaluated using modal method

as,
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I,r er Zr IP I\’

= ! = 78 (2.28)
Va Zs 25, Iy I,

Vol | % Zo || B ) _p| Fo (2.29)
Vi Zyp 7 I I

For the circuit to be analyzed, @ shown in Figure 2.4, we have

-2 L
= = Z° (2.30)
Ve Zep Zgg I I,

where Z° is to be found from ZP and Z” defined in (2.28) and (2.29). As a result

and

of connection of the g ports to the corresponding r ports, we have

v, =V, (231)
and
IL+I1.=0 (2.32)

Using the segmentation procedure, Z” can be expressed in terms of Z* and Zh.

With some arrangement of submatrices, the submatrices of Z* can be found as,

Doy = —Zor— N (2.33)
Zpq = —ZpaZ;y(ZraZ;y) ' N (2.34)
ZQP = —N(thirzér)-lzﬁrzdp (2'35)

I
N

23, = 23, — Zpu(Z31 — Z04) " Zap (2.36)
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where
N = Z,4Z}4( 2523, — 202! 24, Zae (2-37)

To have more accurate results, we may increase the number of g ports. However,

this reduces the speed of calculation.

As mentioned before, this method can be use only for a special class of circuits,
and cannot be applied to arbitrarily shaped planar circuit. The contour integral is

a general method, and is explained in the next section.

2.4 Contour Integral Method - 2D Method

As opposed to the canonical shapes, we now consider an arbitrarily shaped planar
circuit having several coupling ports as shown in Figure 2.5. Solving the wave
equation (2.4) over the entire arbitrary area D inside the circuit periphery C will
require a long computer time. However, when we are concerned only with voltage
along the periphery, such a computation is not necessary. The wave equation can
be converted into a contour integral form which relates the voltage and current

along the circuit periphery.

Using Weber’s solution for cylindrical wave, the potential at a point on the
periphery is found to satisfy the following integral equation [9] (the details of the
derivation are given in Appendix B).

o(s) = % F e cos OB (kr)u(s0) + jeonh D (kr)Ja(s0)] dso (2.38)

where
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Figure 2.5: Configuration of arbitrarily shaped planar circuit.

H((,z) and H §” are the zero-order and first-order Hankel functions of the second

kind, respectively.

Ja(s,) denotes the current density in a port flowing into the periphery.

e s and s, denote the distance along contour C. The variable r denotes distance

between points M and L represented by s and sg.

© denotes the angle made by the straight line from point M to point L and

the normal at point L, as shown in Figure 2.5.

Equation (2.38) gives the relation between the voltage and current distributions
along the periphery. When J,(s0) is given, this equation is a Fredholm integral
equation of the second kind in terms of the voltage. To solve (2.38) with moment
-method, we divided the circuit periphery into N segments numbered as 1,2,..., N,
having widths Wy, Wy, ..., Wx. Coupling ports are assumed to occupy a segment or

if necessary, we may assume that a port occupies two or more segments.
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When we assume that the magnetic current (i.e. electric field intensity) is
constant over each width of these segments, the above integral equation results in

a system of matrix equations as [12]

N N

Z u,-,-Vj = Z h.'jIj 1= 1,2, ceey N (239)
i=1 Jj=1

where

k

uj; = 6;; — 2—1- /W' cos @Hfz)(kr) ds (2.40)

L _weh | ol HO(r)ds i (241)

T2 T - H(n(M) —144) i=j

1 1=9
;i = !
0 t#7
where 4 = 0.5772 is Euler’s constant. The second formula in Equation (2.41) has

been derived by integrating the asymptotic expression of Héz)(kr) for kr < 1,

assuming the ith segment is straight.

Solving (2.39) , we can obtain the voltage on each sampling point as
V=U'HI (2.42)

where Vand I denote column vectors consisting of V; and I;, and U and H are
N x N matrices consisting of u;; and h;;, respectively. If we consider that all N
segments on the periphery are coupling ports and the planar circuit is represented
by an N-port equivalent circuit, then, from the above relations, the impedance

matrix of the equivalent N-port circuit is obtained as

Z=U"'H (2.43)
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In practice, however, most of the N ports described above are open circuited. When
external admittances are connected to several of them and the rest of the ports are
left open circuited, the reduced impedance matrix can be derived without diffi-

culty, by constructing the impedance matrix by choosing only necessary elements

of (2.43).

2.5 Moment Method - 3D Method

The analysis of the patch filters like other MIC structures can be treated using the
well known electric field integral equation (EFIE) technique. In this method, the 3D
Green’s functions are used and the fringe field is automatically included. However,
this method is more complicated than 2D methods because of the calculation of

3D Green’s functions.

In 1968 Harrington [14] introduced a modified EFIE, called the mixed potential
integral equation (MPIE). The new formulation reduces the complexity of Green’s
function, however, two types of Green’s function should be calculated. In this
method the auxiliary magnetic vector potential A and the scalar electric potential
® represent the electric and magnetic fields intensities Eand H.

H=VxA
E=-— jwy.;{ -Ve
Then the MPIE can be written as

 x B(F) = 7 x [jwp / Ga(FIF).J(F) ds' + V f Gq(f"]i‘)&(:i) ds']  (2.44)

"where G4 and G, are Green’s function for the vector and scalar potentials. The
details of the Green’s functions are given in [36, 34]. The frequency domain Green’s
function of multilayer structure is listed in Appendix D.
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To apply EPIE or MPIE, we have to first compute the Green’s functions, and
then solve the integral equation by a numerical method. The first step can be done
using the simulated image technique which is explained in Chapter 6 of this thesis.

The resulting integral equation is most frequently solved using the moment method

[14].

The integral equation for the patch filter problem can be represented in the

operator form

LJ=g (2.45)

where L is the linear integral operator and J is the unknown current distribution on
the patch (a conductor). On the right hand side g, represents the known excitation
of the structure. The unknown current distribution J is expanded in terms of a

suitable set of chosen basis functions J,,

N
J=) IJ. (2.46)

n=1
where I, are the unknown coefficients to be found. Now the operator equation

(2.45) can be written as

N
n=l
Define the inner product as
< fifo>= / f.g ds (2.48)

By choosing an appropriate set of weighting functions w,,, one can take the

inner product of (2.47) with these w,, to form a set of N linear equations. That is

N
Z < W, LIy > Iy =< wp,g> , m=1,..,N (2.49)

n=1
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or, in the matrix form

[Zen]l1a] = [Vin] (2.50)
where
Zmn =< W, LI, > (2.51)
and
Vo =< wp,9 > (2.52)

Since [Znn] and [V,,] are known , we may solve for the the unknown current
distribution on the patch from (2.50), then the scattering parameters of the circuit
are computed. The details of how to choose the basis functions and weighting
functions, as well as details on the derivation of Z,,, and V,, are given in [37]. The
most time consuming part of the analysis is the calculation of the [Z,,,] elements,
(2.50). Based on MPIE formulation and applying method of moment, Z,,, has the
following form [14],

Zmn = jotilmln [ [ In($)GA(sls)Jn(s") ds ds'+

1
o / / (Tt (5) = Jom=(8))G(8]8")(Jnt (') = Ju-(s")) ds ds’ (2.53)
As it shows in (2.53), for each element of Z matrix, we have to calculate a few
double surface integrals. Therefore, this method is very slow, especially when the

number of segments is high.

This method could be used to analyze any kind of circuit, regardless of shape.
This is the most important advantage of this method. On the other hand, this
scheme is a numerical technique which typically gives a few percent error in the

final results. Due to this fact, this method is not suitable for high Q circuits.



Chapter 3

New Hybrid Method

3.1 Introduction

In a communication system, to fully utilize the allocated frequency spectrum, nar-
row band filters with sharp transient edges are required. In planar microwave cir-

cuits, a high temperature superconductor (HTS) patch satisfies such requirements

in its unloaded Q.

In high Q circuits, say @ > 100, one in fact requires analysis that is accurate to
less than 1% error. For most arbitrarily shaped patches, such accuracy is normally
not attainable by the numerical methods such as moment methods [29, 32] because
of segmentation and truncation error. On the other hand, to have more accurate
results these numerical methods are time consuming. Such high accuracy is attain-
able by modal method, for canonical patch shapes, or two-dimension (2D) planar

“circuit method (Okoshi’s method), for arbitrary shapes [12]. These latter methods
are fast; however, a magnetic wall is considered around the circuit and the fringing

field is also ignored.

34
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Other 2D methods, i.e. multiport network methods, explained in last chapter,
are not accurate enough for analyzing a high @ circuit. Not only the fringing
field is not included in those methods, but the interface between two segments is

approximated by a limited number of ports which reduces the accuracy of analysis.

In this research, for high @ circuits, we make use the advantages of both types
of methods. That is: 2D (modal or contour integral) method to have fast and
relatively accurate results, and then numerical method using three-dimension (3D)
Green’s function to remove the magnetic wall and include the fringing field for more
accurate results. In the second step, the formulation of the numerical method is

modified to have a fast procedure.

3.2 Our Proposed Method

Our method is based on a 2D method, modal or contour integral. First, using a 2D
method the parameters of the circuit, Z-matrix, are calculated very fast. Then, we
will remove the magnetic wall around the patch to include fringe fields and have
an accurate result. The later formulation is done through a variational method to

reduce the error.

3.2.1 The Cavity with Magnetic Wall - 2D formulation

Figure 3.1 shows the structure of a microstrip patch resonator. When a canonical
patch is considered, the 2D modal method can be used to analyze the structure.
Let us consider the element of Z-matrix of the structure calculated by a 2D method

as Zisz which are used in the next section.
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Figure 3.1: The structure of patch filter.

3.2.2 The Cavity with Magnetic Wall - 3D formulation

For the same cavity with magnetic wall, the same results as in the 2D method can

be obtained using 3D Green’s functions for the electric and magnetic currents.

The electric current J and magnetic currents M on the 3D cavity with magnetic

walls are given as:

J=nxH (3.1)
M=Ex# (3.2)
where H and E are the modal magnetic and electric fields, respectively. Therefore

J and M are modal currents. The total tangential electric field on the metallic

patch from 3D Green’s functions is given by,

E-..ti = Et(«i) + Et(Mx) (3.3)
This tangential electric field is zero on the patch except at the feed points. The input

impedance of the cavity with the magnetic wall can be calculated by a variational
formula [38] as
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Z2P — 1

. . 1 . .
ij = T, Jpaten EyJ; ds + — H,.M; ds (3-4)

T ,'I j JEdge

Since H, = 0 on the magnetic wall, the (3.4) reduces to

1 . -
2D __ i
2P =11 / E,.J; ds (3.5)

where I; and I; are currents at port 7 and j, respectively. Substituting (3.3) in

(3.5), yields

1

2D _ E (J- & (M. J:
zP = I (B + E(M:)).J; ds (3.6)
or
2P = [ B st = [ Ba)T, ds (3.1)
17 I;IJ’ Patch ! Iin ’

As a reminder, it should be mentioned that the left hand side of the above equation
Z‘?jD is calculated by 2D method, and on the right hand side electric fields are

calculated using 3D Green’s functions.

3.2.3 The Patch - Cavity without Magnetic Wall

The real patch structure is a 3D one with fringe field at the edges, and there is only
electric current J’ on the patch. The element of the Z matrix of the patch, similar

to (3.5), is

1 S T
Z,'j = FI_; /Patch Eg(J‘)JJ ds (3.8)
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where I] and I} are the input currents. Equation (3.8) is also variational. Let us
assume J; and J] are the ezact solution for the patch; however, we do not have the
exact solution. By replacing J' with J, the modal currents of the 3D cavity with
magnetic wall, we have a good variational approximation of element of Z matrix,

Z;; in (3.8). Therefore, we have,

1 - - -
Zi; = — i )-J; )
77 LI; Jpaten Ee(J:).J; ds (3.9)
Using (3.9) in (3.7) results
ZPP =27+ — B, (M:).J; d :
v J + I;‘IJ‘ Patch Et( ) JJ $ (3 10)
and reordering the above equation results,
,"=Z-2-D—— ) -.,'." .
Z;; by TT; Jpatch E(M;).J; ds (3.11)

The above expression shows that Z-parameter of a patch can be calculated
using the 2D modal method, and then corrected by removing the effect of magnetic

current to include the fringe field.

In Equation (3.11) The tangential electric field due to the magnetic current,
E-.,(JV-L), vanishes rapidly when we go far from the edges. This means that we need
to calculate the integration in (3.11) only on the patch surface close to the edges.
This property increases the speed of computations compared to the regular 3D
moment method. In the regular moment method, the integration for the matrix

coefficient (2.53) is carried over the entire area of the patch.

Although the integration on the patch in the second term of (3.11) is relatively
fast, it can be simplified further. Using reciprocity theorem between the patch and

the edge, we can change the last term in Equation (3.11), the integral, as,
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1 - -
Z{j = Z'-ZJD + ﬁ Edp Hg(JJ).Mg ds (3.12)
14y €

On the other hand, on the magnetic wall we have,

ﬁt = ﬁe(z) + ﬁt(MJ) =0 (3.13)
Using (3.13) in (3.12) yields,

1

Z; =2 —
7 I.'Ij Edge

2 H,(M;).M; ds (3.14)
which integrates not on the patch, but only along a line at the edge. So far in the
above procedure we considered a canonical patch, so we could use 2D modal method.
However, we can use 2D contour integral method for an arbitrary patch. In this case,
the magnetic current M in Equation (3.14) is not the modal current. Solving the
patch with PMC using 2D contour integral method, we find the magnetic current
on the edge , Equation (2.42), as well Zisz. Therefore, we are able to calculate both

terms in (3.14).

In Equation (3.14), Z,?jD is the ezact impedance of the patch with magnetic wall
(lossless cavity) and can be calculated very fast for canonical patches by modal
method or contour integral Okoshi’s method for arbitrary patches [12]. The second
term in Equation (3.14) is the correction with the magnetic wall deleted. The
solution Z;; in (3.14) is highly accurate because of: i) the variational principle
of (3.8), ii) since most of the error is in the correction term and this is a small
perturbation, one can actually afford a large relative error and still be accurate in

-the absolute value.

With the reduction from (3.11) to (3.14) and that Z,-sz is calculated very fast (2D

contour integral method for arbitrary patches, and analytical solution for canonical
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patches), the double surface integral is reduced to two line integrals over the strip

of magnetic current.

Regular integral equation - moment method [8, 14] uses Equation (3.8) which is a
double integral over the patch. If we want to have more accurate results in moment
method, it will be very time consuming, because of huge number of segments. The
accuracy of the results are around a few percent, say 5%, and cannot be much

improved because of numerical and truncation error.

To calculate H,(M)in (3.14), we used a Green’s function calculated by simulated
images method [39]. Simulated images is a very fast and simple method to calculate
Green’s functions in multilayer structures. The details of simulated images method

is given in Chapter 6.

3.3 Numerical Results

In this section, we present some numerical results to compare our method with
present methods. In this work, we use three methods to analyze the structure.

They are;

e 2D analysis, modal analysis for canonical shape patches or contour integral

(Okoshi’s) method for arbitrary shape patches
e Method of Moment (MoM) as a regular numerical method

e Our new hybrid method.

Since, we believe our method is accurate, the results of our method should

be compared with experimental results. In experiment, there are tolerances in
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dielectric constant and dimensions of a circuit. Therefore, the experimental results
may change from sample to sample. However, to verify our method, we need a
reliable result. Here, the results of our method are compared with the results of a

software called Sonnet, as a bench mark.

This software is very accurate in analyzing high Q circuits. Howevere, the
segmentation of the circuit (grid) should be fit to the circuit. The accuracy of

Sonnet is good, however, it is very slow. In this work, the Sonnet tesults are

provided by ComDev.

Sonnet considers the structure in a box. However, in our simulation, we use
the Green’s function of a multilayer structure. To compare our results with Sonnet
results, we consider a metallic plate as top cover and delete the real part of Z-

parameters to delete the radiation from the structure.

In this chapter, different examples are presented to verify our method. First,
we start with a one port patch antenna, and calculate the input impedance of the
antenna. Then some canonical shape patches, such as rectangular and circular
shapes, are analyzed. As an arbitrary shape filter, a dual mode filter is analyzed.

The last example, as a multiport network, a 3-way power divider is analyzed.

3.3.1 One Port Circuit, Patch Antenna

The modal or contour integral methods are widely used in microwave circuits be-
cause of their simplicity and high speed. However, for a patch antenna , a one port
patch, 2D methods are not applicable to find the input impedance. However, Lo et
al [40] used the results of 2D modal method, the magnetic current at the edge of
a patch, and calculated the far field pattern of the antenna using the 3D Green’s

funcion. Other methods such as moment method or finite-difference time-domain
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Figure 3.2: The rectangular patch antenna.

method [16] are the common methods for analyzing patch antenna.

Since our method considers the fringe field and radiation, the input impedance
of a patch antenna can be calculated by our method. A rectangular patch antenna
is shown in Figure 3.2. The dimensions of the patch are a = 16 mm, b = 12.45 mm,
and the position of line feed is b = 2.09 mm, and the dielectric constant is €, = 2.2,
with substrate thickness of h = 0.794 mm, and the width of feed line is w =
2.46 mm.

The S:, of the antenna is given in Figure 3.3. The experimental results from
[41] and moment method results are also shown in this figure. As we can see,
our method is more accurate in predicting the resonant frequency than moment
method. The difference between resonant frequencies from our method and the

experiment is about 0.7%. However, for moment method the difference is about

2.5%.

The speed of our analysis is very high, and for this example our method spends
about 6 sec. for each frequency. Moment method spends more than 70 sec. for
each frequency on the same machine which is a HP-Unix machine (series 735). This

shows that our method is more than 11 times faster than moment method.
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Figure 3.3: Return loss of the rectangular antenna.

3.3.2 2 Port Canonical Shape Filters

Rectangular Patch

A rectangular patch with 2 port direct feed is shown in Figure 3.4. For a rectangular
patch, the Z-matrix can be calculated analytically by 2D modal analysis. The

details are given in Appendix C.

To apply our method, we need the equivalent magnetic current around the edge

of the patch. This magnetic current can be derived from modal solution or from
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Figure 3.4: Rectangular patch filter.

2D Okoshi’s contour integral solution. To find the magnetic current from modal
solution, we can use waveguide theory. In T M., modes in rectangular wave guide

with magnetic wall, we have

E. = cos(k.z) cos(kyy) (3.15)
where
mr nx
=T k=T

So the magnetic current around the edge can be derived as,

M=Ex# , ontheEdge (3.16)

Using the above magnetic current in Equation (3.14), we can calculate the Z-

matrix of the structure. Then from Z-matrix, S-matrix can be calculated.

The dimensions of the structure shown in Figure 3.4 are a = 16.5 mm, b =
10 cm, and the two ports are connected to 50 § lines, width of feed lines is w =
0.635 mm. Two feed lines are located at the center of each side. The dielectric

constant is €, = 10 and height of the substrate is h = 0.635 mm.

The numerical results of our method are compared with the Sonnet results from

ComDev and moment method in Figures 3.5 and 3.6. As we can see the results of
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Rectangular patch filter
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Figure 3.5: The amplitude of S); for the rectangular patch filter.

our method are very accurate, and it predicts the resonant frequency as 3.07 GH:z

which is about 0.7% higher than the Sonnet result, 3.05 GHz.

As mentioned earlier, as an empirical method to find the resonant frequency of
a regular shape patch, the 2D modal method is used with the effective dielectric

constant. The effective dielectric constant can be found as [26],

&+1 e —1 10h

= -2 — 9, .
€e 5 + 2 1+ 3 ) 9.32 (3.17)
“and the resonant frequency is,
fi= —— =298 GHz (3.18)

VE2a
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Rectangular patch filter
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Figure 3.6: The amplitude of Sy, for the rectangular patch filter.
which is 2.3% lower than the Sonnet result. The resonant frequency from the

moment method, about 2.95 GHz, is 3.3% lower than the Sonnet result.

Similar to the first example, our method is also fast. For this example our

method is more than 12 times faster than moment method.

Circular Patch

The structure of a circular patch is shown in Figure 3.7. For a circular patch, the
' Z-matrix can also be calculated analytically. Similar to the rectangular patch in
the last section, we can calculate the magnetic current at the edge of the patch

based on the electric field under the patch as,
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Figure 3.7: Circular patch filter.
E = Jo(kap) cos(ng)z (3.19)

M = E x p = Jo(kap) cos(nd)d (3.20)

where J, is the Bessel function of first kind order n, and k, = 1.84/a for n = 1,
where a is the radius of the circular patch. Using the above current in our method

in Equation (3.14), we can easily calculate the Z-matrix of the circular patch.

For this structure, the radius of the circle is a = 5 mm, the dielectric constant
is €, = 10, and height of substrate is h = 0.635 mm, and the width of feed lines
is w = 0.635 mm. The results of our method and regular moment method and
Sonnet from ComDev, S;; and S,;, are shown in Figures 3.8 and 3.9. As we can
see our result is very accurate, especially in predicting the resonant frequency. The
error in resonant frequency in our method and moment method, in comparison with
Sonnet, are 0.9% and 1.7%, respectively. This shows the higher accuracy of our

| method in comparison with moment method, because of the edge of the circuit.

At the edge of circular patch, there is a truncation error in moment method. This
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Figure 3.8: The amplitude of Sy, for the circular patch

example can be solved by moment method using fine segmentation or more complex

segmentation. However, this makes the moment method very time consuming.

In terms of speed, for this example our method is much faster than moment
method. Our method spends 6 sec. for each frequency, and moment method spends

about 75 sec on HP-Unix machine (series 735). This shows that our method is more

than 12 times faster than moment method.
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Figure 3.9: The amplitude of S,; for the circular patch
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|
Figure 3.10: Dual mode patch filter.

3.3.3 Dual Mode Filters

The structure of a dual mode filter is shown in Figure 3.10. Since this structure
does not have a canonical shape, the 2D modal solution cannot be used, and we
have to use other 2D methods such as contour integral method or desegmentation
method. To analyze this structure with our method, we start with 2D contour
integral method, and the magnetic wall is then removed using the method explain

in Section 3.1.

The general shape of a dual mode filter is a square patch with corner cut, shown
in Figure 3.10. In this example the corner cut is symmetric, @ = 7.419 mm and
b = 6.426 mm. The dielectric height is h = 0.508 mm, and ¢, = 24. The width
of feed lines is w = 0.175 mm. This structure has been analyzed by 2D contour
integral method, our method and Sonnet from ComDev, and results, 51, and S2; are
shown in Figures 3.11 and 3.12. There is a good agreement between our results and
Sonnet results. The contour integral method result has a frequency shift, because

the fringe field is not considered in the analysis.

From the result of this example, we can easily say that our analysis is very

accurate. There is a very good agreement between our result and Sonnet result.
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Figure 3.11: The amplitude of 51, for the dual mode filter.

The error between 2D contour integral and ours (or Sonnet) is about 1.4%. As
mentioned earlier, since the circuit is in the box for Sonnet simulation, we delete
the real part of Z-matrix to delete the radiation from the circuit. As with other

examples, in this case our method is very fast.

This dual mode structure has been used in higher order filters, such as a Cheby-
chev filter, which will be analyzed in Chapter 5. The analysis of one patch element
was given in this chapter, and in Chapter 5, coupling between patch elements are

investigated.
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Figure 3.12: The amplitude of S>; for the dual mode filter.
3.3.4 Multiport circuits, Power divider

The last example of this section, a 3-way power divider, is analyzed as an example

of a multiport network. The microstrip sectorial 3-way power divider is shown in
Figure 3.13.

This structure has already been analyzed by Abouzahra and Gupta [42] based
on 2D modal method (Green’s function is represented as an expansion of eigen-
functions). However, their model is valid only if the sector angle a takes on certain

discrete values which is 7/m where m is an integer. The more general analysis was
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Figure 3.13: Power divider

done using contour integral method for any arbitrary value of a [43]. In both cases

a fringe field was not considered, because a 2D model was used.

To consider the fringe field and radiation loss, we use our method which is
the 2D contour integral method and the correction term, 3D line integral, which

removes the magnetic wall considered in the 2D method [44].

The parameters of the structure are as follows: r = 32 mm, a = 50°, ¢, = 2.2
and h = 0.79 mm. The responses of the power divider, S;; and S, are shown in
Figures 3.14 and 3.15. The experimental results from [43] are also shown in those
graphs. The error of our analysis is less than the error in 2D contour integral results.
The error of our analysis is about 0.6 % in comparison with the experimental results.
Other transmission responses, S3; and S,;, are also calculated, and they are very

close to Sz;, however, they are not shown here.

As we saw, in all examples, the proposed method gives more accurate results

than other methods. This method is also much faster than regular numerical meth-

ods.
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Figure 3.14: The amplitude of Sy, for the power divider
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Chapter 4

Gap Coupling

4.1 Introduction

Microstrip filters may have high unloaded Q. To ensure that the loaded @ remains
high, instead of direct connections, couplings by a narrow gap are frequently used to
link the patch to other parts of the circuit. Because of the high Q, high accuracies
are required to model both the patch itself and the gap coupling without sacrificing
the speed of computation. In the previous chapter, a new hybrid method was
presented for accurate analysis of a patch. In this chapter, an accurate method for

a narrow gap, a novel transmission line model, is presented.

A general structure of gap coupling is shown in Figure 4.1. The equivalent circuit
(r-model, which consists of three capacitors) of this gap was given in literature
for various microstrip-microstrip coupling {45, 46]. However, for planar circuit-
microstrip coupling no detailed data are available. The electrostatic field analysis
would become three dimensional and very difficult to perform. There are some

typical and experimental data are available in the literature [47]. Therefore, almost

55
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Figure 4.1: Ordinary structure of a gap coupling

in all cases the model of microstrip-microstrip coupling is used. To have a more
accurate analysis, one can apply the regular moment method for the patch filter

with gap structure.

In conventional gap coupling, Figure 4.1, the coupling between the patch and
feed network is very weak. To increase the coupling, the feed line should be put
very close to the patch. Because of manufacturing limitation, the line cannot be
put very close to patch. Therefore, a new gap structure was introduced in [48] as

shown in Figure 4.2a.

In this chapter, the gap structure shown in Figure 4.2a is modeled. This gap is
frequently quite narrow and is formed between a narrow microstrip and the patch.
To adequately consider the rapid field changes around the narrow gap and strip,
the segments in 2 moment method analysis have to be quite small. This makes the
number of segments in the structure impractically large. On the other hand the
accuracy of the moment method could be reduced because of very small segments

(small segmentation makes the coefficient matrix ill condition).

In this chapter a new method is presented [49, 50} to overcome such difficulty
so that the number of segments remains small and the accuracy remains high. To

verify the accuracy of the gap model, the result of our simulation is compared with

results from ComDev.
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Figure 4.2: General structure of a filter with gap coupling

4.2 Modeling of the Gap

The general of a gap coupling is shown in Figure 4.2a. In this structure, the gap
at A is formed between the narrow microstrip and the patch. Let us assume the
width of strip and gap as s and g respectively, and dimensions of the patch as [,
and [, as shown in Figure 4.2a. As an approximation if s,9 < lz,l, , which is
valid in most practical cases, the narrow strip and patch can be considered as a
transmission line. This transmission line consists of a strip and a half plane on top
of a dielectric. The narrow microstrip and the patch in fact form two transmission
line stubs, one on each side of the feed point A’ of the input port. Each stub is
shorter than A/4 so that their impedances are capacitive. This means that point
A’ is equivalently connected to point A by two capacitors in parallel, 2C. This
equivalence is presented at the other feed point, B-B’. The task now is to find the
~characteristic impedance of the line, Z,, and the propagation constant 8 of the

transmission line. Then the impedance of the each open circuit stub (above or

below A-A’) is,
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Figure 4.3: Structure of the transmission line

Z = —jZ,cot(Bl) = ]—:—C (4.1)

The second equality in Equation (4.1) is given since ! is smaller than A/4. Since
there are two stubs in parallel from A-A’, the equivalent capacitance is 2C as shown

in port B-B’.

In the next section, we present a new model to find the characteristic impedance
of the transmission line, Z,. In this analysis, the propagation constant, 3, of the
transmission line is also found. First, we consider a general structure for the gap,
and then a symmetrical gap (when s = g), as a special case, is also analyzed with

a simpler method and verified by the general method.

4.2.1 Parameters of the Transmission Line

As an approximation, the gap and the microstrip width are considered much nar-
rower than the dielectric substrate (g,s < k), this is valid in most practical cases.
As a results, the ground plane below the substrate may be neglected or, better,

dragged to minus infinity h — —oo. Now, as shown in Figure 4.3, the transmission



59

(b)

(@)

Figure 4.4 Conformal mapping z & w plane
tive half plane sitting on 2 half

p next to 2 conduc
ance of this transmiss

considered as a stri
jon line,

line can be
ric. To find the ch

aracteristic imped
d characteristic impedance

space of dielect
he line, and then fin

we can start with the capacitance of t

formal mapping- For sim-

of the line.
g which is shown in

ne, we use€ the con

To find the capacitance of the Ii
— s+

ras a =35 and b
thod {51}, z—plane

sformation:

ar notation simple
a.ttz-Christofer me will be tra,nsformed

y the following tran

plicity, let us make 0
re 4.4a. Using Schw

Figu
—plane, Figure 4.4b, b

tow
(4.2)

w = f . —
0 ,/t(t —a)(t— b)
— 0. As shown

a is fixed, je.z=0—"
the lower half space of z—plane 18
culate the above

Notice that in this transformation origi

in Figure 4.4, with th
ed to the inside regl

ion,

e above transformat
in w—plane. To cal

on of the rectangle

mapp
integral, (4.2), we simplify it as,



CHAPTER 4. GAP COUPLING 60

w = /zla dt
o Vby/t(1 - k2t)(1-t)

(4.3)

where

k? = (4.4)

o | R

Integral in (4.3) is in the form of Elliptic integral of the first kind. Elliptic integral
of the first kind is defined as [52],

1 psiné dt
F(k,¢) = - 4.5
(:9) 2/; V(1 — k2t)(1 — ) (43)
Therefore (4.3) can be written as
2
w= —2F(k9) (4.6)
where
¢ = arcsin(i) (4.7)

Using the rectangle in w—plane, Figure 4.4, the capacitance of the lower half space

(C1) of the transmission line (in z—plane) can be found as,

A
C[ = EOG,E (4.8)

The length A is transformed from the distance between points 1 and 2 in z—plane.

Hence, we have

a dt 2 2
A _/o Ny T Fkw/2) = 2K (k) (4.9)

where K (k) is the complete elliptic integral of the first kind. The length B is

transformed from the distance between points 1 and 4 in z—plane. So, we have

N dt I N
jB /0 e ZpF(ko0) = ZLK'(H) (4.10)
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where K'(k) is complete elliptic integral of the second kind. Finally, using (4.9)
and (4.10) in (4.8) the capacitance will be,

K(k
Cr= eoe,k% (4.11)

The capacitance of the upper half space of the transmission line can be found using

Equation (4.11) and setting ¢, = 1,

_ . K(k)
Cu=¢6 K'(k) (4.12)
Therefore, the total capacitance of the line is,
_ K (k)
C =e(l+ Er)K’(k) (4.13)

To find the effective dielectric constant e.ss, we first set the ¢, = 1 and find the

capacitance of the structure with the air, C,i,. Then, €.5¢ is found as follows,

C 1+e,

€eff = C . = 9 (4.14)
Therefore (4.13) can be written as,
K(k)
C = 2€,€e5f Ki(k) (4.15)

An accurate but simple expression of the ratio /K’ is available in the handbooks

[53] and is included here,

K(k) { x/In[2(1 + VF)/(1 - VF)] 0 <k <0.707 (4.16)

K'(k) | w201+ vVE)/(1 - VR)/m 0707 <k<1

where k' = /1 — k2. As a reminder, we defined k = \/a,/b = \/3/(3 + g). After
finding C in (4.13), we can easily find the characteristic impedance of the line.
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For any Quasi-TEM transmission line, the phase velocity and the characteristic

impedance can be written as,

(4.17)

and

L
Z,=\= .
Ve (4.18)
Where € = €,€.5¢. Using (4.17) in (4.18), we ha
VIE
o (4.19)

Using (4.13) in (4.19), the characteristic impedance can be written as,

7K' (k)

z, %<0l (4.20)

The impedance of the line is plotted for three different substrates (e.) in Figure 4.5.

Using (4.14), the propagation constant of the line can be written as,

B = w\/lo€obefs = w\/;toeo(l + €. )/2 (4.21)

Now, using Z, and [ defined by (4.21) and (4.20), the impedance of the open circuit
stub can be found using (4.1).

4.2.2 Symmetrical Gap

There is a special case in the gap structure, when the width of the strip is the
same as width of the gap, i.e. s = g, and we call it a symmetric gap structure.

The characteristic impedance of the transmission line in the symmetric case can be
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Figure 4.5: Impedance of line Z,(f) for three kinds of substrate (e,)

calculated by the general Equation (4.13). However, for this special case, we can
directly find the characteristic impedance of the transmission line more easily, using
another method. In this section, the characteristic impedance of the transmission
line is derived using a simpler method, and compare with the general method given

in the last section.

As in the general case, since the strip and gap are small in terms of wave-
length, the transmission line can be taken to be in a homogeneous dielectric with

an averaged dielectric constant of,

cers = (1 +&)/2

Similar to the general case, the propagation constant of the transmission line can

be written as

B = wy/poeo(1 + €)/2 (4.22)
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(a) b

Figure 4.6: Transmission Line with its dual

The transmission line can be considered as a strip next to a conductive half plate
sitting on a half space of dielectric. If we consider the dual of the transmission line,
we have the same structure, because s = g, as shown in Figure 4.6. It means that
the structure is self complementary. Through the Babinet’s principle, which has also
been used in complementary antenna, the relationship between the characteristic

impedance of these two lines is,

Z,. 2% =7q*/4 (4.23)

where Z, and ZZ are the characteristic impedance of the line and its dual. Since
the structure is the same as its dual, we have Z, = Z4. Therefore Equation (4.23)

reduces to

Z,=1/2 (4.24)

The result with this method in (4.24) agrees with the general solution in (4.20).

Using the result of the general analysis in the last section, for a symmetric gap we
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have,

§s=9g—k=0.707 - C = 2¢

_1 /e _
Z"‘z\/:"”/2

4.3 Effect of Ground Plane and Finite Dielectric

and then

When the gap width, g, and strip width, s, are not very small in comparison with
the height of dielectric, h, we should consider the effect of ground plane and finite
dielectric height. A similar investigation was done {54] for coplanar wave guide,
and it was found that if /s > 4, the effect of ground plane can be ignored (i.e.
h — oo ). For our practical example, from ComDev, h/s > 10, therefore we believe
considering the ground plane, and finite dielectric height does not effect our results.
However, it is possible to use image theory, to consider the ground plane effect, and
then with a similar method, we can find the capacitance of the structure for the

general case.

In this section, to include these effects a method is briefly outlined. Since we do
not include this general case in our analysis, the detail of the method is not given in
this section. This procedure can be added to our analysis, for accurate and general

analysis, as a future work.

For the analysis of this structure, Figure 4.3, we invoke the assumption that
total capacitance is the sum of the free space capacitance, the upper half-plane,
and the capacitance of the dielectric space, the lower half-plane. The free space
capacitance for the upper half-plane is exactly the same as before, C,,. However, to

Calculate Cj, we have to consider the effect of ground plane. To include this effect,
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Figure 4.7: Dual mode filter with gap coupling
the quasi-dynamic images [55| can be considered. If the dielectric is high, we can
choose a few images to have a fast convergent solution.

The capacitance of the line should be calculated including the images. Then,
the impedance of the line is derived using (4.19).

4.4 Numerical Results

In this section, to verify the presented method for modeling of gap structure, we
compare the results of our method with Sonnet results from ComDev. As mentioned
before, Sonnet results provided by ComDev have been used as a bench mark in our

research.

The structure of dual mode filter with gap coupling is shown in Figure 4.7.

In this structure, the symmetric gap, s = g, is considered. The dimensions are
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as follow: a = 7.419 mm, b = 6.368 mm, s = g = 58.42um, |, = 5.083 mm,

w = 0.175 mm. The substrate parameters are as follow: A = 0.508 mm, ¢, = 24.

It should be mentioned that Sonnet simulate the circuit is in a box. Therefore,
to comare our result with Sonnet, in our simulation the real part of Z-parameter is

removed to delete the radiation.

First, we analyzed the circuit without the gap using our new proposed method
in Chapter 3. Then the gap is added to the structure, with the capacitive model
explained in this Chapter. The return loss and insertion loss of the filter with
the gap are given in Figures 4.8 and 4.9. The Sonnet results from ComDev are
also shown in those Figures. As we can see, the results of our method agree with
Sonnet results. There is about 0.4% difference in resonant frequency. Our method,
especially the model for gap coupling, is very simple and fast in comparison with

other methods.

There are good agreement between the resonant frequency in Figures 4.8 and
4.9. However, the return loss and insertion loss in these two figures are not the
same as Sonnet results in pass bands. There are 5 dB difference in S;;, and 0.8 dB
difference in S;;. We believe this happened, because of the fringe field at the end

of open circuit stubs, in gap structure.

To include the eftect of fringing fields at the end of the open circuit stubs, the
length of stubs are increased by /2 = 0.254 mm. Considering longer stub length
in our analysis, we get a better results. The results of our analysis with longer stub

are shown in Figure 4.11 and 4.10. As we can see from the graph, in this case a

better result could be achieved.

In this case the resonant frequency moves toward lower frequencies, but there is

a better match in pass band. The error in resonant frequency is reduced to 0.2%.
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There is no difference between our analysis and Sonnet in pass band.

In these figures, the result of our simulation is not quite matched with Sonnet.
There is possibility of error in Sonnet results. We believe Sonnet did not simulate
the pass band since in dual mode filters usually there are two peaks and we can

hardly get a flat curved in pass band.

There are some other similar filters which was designed by ComDev. For those
structure better results were achieved, and our method was tested on those struc-

tures as well [56].

In this part of this research, we used two approximations to simplify our analy-
sis. First approximation was in calculation of capacitance of the transmission line
where the effect of ground plane was ignored. The second one was the open cir-
cuit stub model and ignoring the fringe field at the end of stub. In future, these

approximations may be improved to have more accurate analysis.



Chapter 5

Coupling between Patches

5.1 Introduction

A patch structure is one of the simplest structures in microwave circuits and an-
tennas. This structure is used as an element for complicated microwave circuits or

in antenna arrays.

With the increasing interest in using patch elements for manufacturing of mil-
limeter wave antennas, there is a need to accurately model the coupling as well as
radiation in order to predict the input and far field pattern of antenna. Printed
antennas tend to be formed into array of elements, and therefore coupling and feed
line effects should also be considered in the design procedure. Some general field
solving techniques which are used in the analysis of patch antenna such as FDTD
[15] or MoM ([57], can be applied to determine the characteristics of an array of
microstrip patches. However, these methods are very slow when the number of

elements increases and coupling between all elements are needed.

In some wide band antenna applications a patch is used with other elements

71
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which are patch parasitic elements. In those structures, the analysis of coupling

between the patch and different elements is important and should be accurately

considered in analysis.

In microwave circuits, patch filters may have more than patch elements, such as
4-pole filters shown in Figure 5.1. In these case, coupling between different patches

should be included in analysis of the filter.

In previous chapters, a new method was presented to analyze a single patch
structures. In this chapter, we extend our method to analyze structures with more
than one patch. In this analysis, the coupling between two patches is modeled by
a fast and accurate method. In compare with other numerical methods, such as

moment method, our presented method is faster and still accurate.

As examples for high order filters, we analyze 4-pole Chebyshev and Elliptic
dual mode filters. The results of our method are compared with Sonnet results, as

a bench mark, from ComDev.

5.2 Hybrid Method

In this section, a fast and accurate method is presented to analyze circuits with
two patches or more. A similar idea, as presented in Chapter 3, has been devel-
oped to calculate the coupling between blocks in the circuit. Our method can be

summarized into two steps.

First the circuit should be divided into simple blocks. The Z matrix of each
block should be calculated, for instance using the method explained in Chapter 3 for
each patch element. Using Z-parameters of these blocks, the multiport connection

method [58] is used to analyze the structure. From the mathematical point of
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Figure 5.1: 4-pole Chebyshev dual mode filter

view, the multiport connection method is almost the same as the segmentation
method described in Section 2.3. At this step, the analysis is not very accurate
and the coupling between blocks is ignored, and the structure is considered as
cascaded blocks. In the second step, we include the coupling between blocks using

a double line integral expression which is a very fast one, in comparison with regular

numerical methods.

5.2.1 Cascaded Blocks

To explain our method, we consider a 4-pole Chebychev filter shown in Figure 5.1,
as an example. This circuit can be considered as three blocks: two patches and
one connecting line, Figure 5.2. The first patch with two ports (1) and (2) can
be analyzed by our hybrid method explained in Chapter 3. The relation between

voltage and current of two ports is given by the Z matrix of the patch as,

v\ [ zh Z I (5.1)
Va2 Zgl Z'fz I
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Figure 5.2: Three blocks in 4-pole Chebyshev dual mode filter

where Z,?J- was defined in Section 3.1 as :

1
Zr =22 - T Jeam H(M;)M; ds + Z, é;; (5.2)
14, €

In the above equation, the third term is added only because of the gap coupling in

the patch shown in Figure 5.1. In Equation (5.2) Z, is the impedance of the gap, as

describe in Chapter 4, and should be added to the self term only (4;; is Kronecker
delta).

For the next block, the connecting line with two ports (3) and (4) Figure 5.2,

the relation between voltage and current of two ports is given by the Z matrix of

the line as,

Vs —jZ,cot(Bl) —3jZ,sec(Bl) I (53)
Ve —jZosec(Bl) —jZocot(Bl) | \ I '
where [ is the length of transmission line, and Z, and B are the characteristic

impedance and propagation constant of the line. In the above formulation, for

simplicity, a transmission model is considered for this piece of microstrip and the



CHAPTER 5. COUPLING BETWEEN PATCHES 75

radiation from the strip is ignored. Here, using this model is a good approximation
for our case in which the circuit is in a box. For general formulation, and including

the radiation, a general moment method may be used, as briefly explained in Section

2.4 [14].

Similarly, for the second patch, with ports (5) and (6) in Figure 5.2, the relation

between voltage and current of two ports is given by Z matrix of the second patch

v ZP. 7P I
Sh=| 7 e (5.4)
Ve Zé Zgs Ig

where Zf, is similar to (5.2), but calculated for the second patch.

as,

Now after finding the Z matrix of each block, (5.1), (5.3) and (5.4), we can use
the segmentation method describe in Section 2.3. The voltage and current variables
for the connected ports (i.e. 2,5 and 3, 4) and external ports (i.e. 1, 2) are grouped

separately, as shown in the following matrix equation,

(vi\ (22 o . zm o | 0 0 \ [ 1
Vs o 2z o 7% 0 0 Is
7 Z5 0 . 2z, 0 0 0 I,
Ve o 2%, o0 Z% 0 0 | I
Va 0 0 . 0 0 . —jZ,cot(Bl) —jZ,sec(Bl) I

\ V) \ o 0 o0 0 —jZosec(Bl) —jZocot(B) | \ I

(5-5)
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The advantage of the above formulation is the possibility of including coupling
between ports in future steps. The above coeflicient matrix (6 x 6) is divided into 9
submatrices for simplicity in matrix manipulations. Therefore, the above coefficient

matrix can be rewritten as,

Zaa. Zab Za.c
Zba Zp D (5-6)
an Zcb ch

All submatrices in (5.6) are 2 x 2, and the elements of these submatrices are defined

in the coefficient matrix in (5.5).

To connect the blocks and reduce the above matrix to the Z-matrix of the circuit,

we have to apply the boundary conditions which are:

Li=-I , I=—I (5.8)

Using (5.7) and (5.8) in (5.5), we can get the overall Z-matrix of the circuit
(between port 1 and port 6). This overall Z-matrix is calculated as,

Z = Zaa + (Zab - Zac)(be - Zbc - Zcb + ch)-l(an - Zba) (5-9)

It should be mentioned that in the above matrix equation all the submatrices are

defined in (5.5) and (5.6), and we have,

Zac=Zb<:=an=Zcb=0
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Therefore, (5.9) reduces to the following matrix equation,

Z = Zpa — Zab('be + ch)‘IZba (5.10)

Using the above Z-matrix, we can calculate other parameters, such as S-parameter,

of the circuit.

5.2.2 Mutual Couplings

In this section a general method is presented to calculate the coupling between
patches. However, for simplicity the method is explained for patches with two
ports as shown in Figure 5.1. The method is easily expandable for structures with
three port patches such as for the Elliptic filter which will be analyzed at the end
of this chapter.

In this structure, Figure 5.1, on each patch there are two sets of modes driven
by two ports. Therefore the coupling between two patches are coupling between
these modes. In this section, to calculate these couplings, a very fast method is

presented without sacrificing accuracy.

As we mentioned in the last step, Equation (5.5), the coupling between two
patches is ignored. To include the coupling between patches, we could calculate
the coupling between modes in two patches. Using variational expression, coupling

between modes can be written as:

1
P P, i P
Z;} = P /thz E(J{).J;7? ds (5.11)

where J! and J}? are currents on patch one and patch two,i=1,2 and j = 5,6

relates to ports of patch one and patch two, respectively. It is clear that the above
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integral is a double surface integral on the surface area of the patches; therefore, it

is very time consuming.

From the above variational expression, we have to calculate four coupling terms.
It should be mentioned that we use reciprocity, ZS‘P’ = Z;;’P ', so there are really
eight terms which should be put in the Z-matrix, (5.5). Therefore, the total Z-

matrix in (5.5) is changed to:

(zp,  zhh oz, ZRP 0 0 )
Zg" ZE Zgt Z& 0 0
z  ZRR .z, ZRD 0 0 512
zah z5 Zgh 2 0 0
0 0 ) 0 0 . —i% cot(Bl) —jZ,sec(Bl)
\ 0 0 . 0 0 . —JjZ,sec(Bl) —jZ,cot(Bl) )

As mentioned before, calculation of the coupling terms between two patches by
Equation (5.11), is a double surface integral on the surface area of two patches;
therefore, it is very time consuming. To increase the speed of the calculation,
without sacrificing the accuracy, we transform the double surface integral to a

double line integral, similar to the method explained in Chapter 3.

The expression in (5.11) is exact, if the currents are known. Since this expression
is variational, we could replace the current with an approximated one. The first
approximation for the currents is the one from 2D analysis. In 2D methods, each
patch can be modeled by a cavity with magnetic wall. Therefore, there will be

electric current J on the patch and magnetic current M on the magnetic wall
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(Edge). The total tangential electric field due to electric and magnetic currents of

each patch is zero. Therefore, for magnetic and electric currents of patch one, we

can write,

Etan(Jipl) + Etan(Mipl) =0 (5.13)

So, we can replace Eun(JF?) by —Epan( M) in (5.11):

1

Z8P = e /P  Eun(MP).J]? ds (5.14)
S

Using reciprocity between electric current on the second patch and the magnetic

current on the edge of the first patch, we can rewrite (5.14) as,

1

ZBP = o || s FanlI7)-ME ds (5.15)
LI ]

On the edge of the first patch (PMC), the tangential component of magnetic field

is zero, so we have H,a,,(sz) = —Hm“(MJm). Therefore, (5.15) reduces to

-1
P1P2 _ P P
ZETS = PR [ T (V)M s (5.16)

The above expression, (5.16), is a double line integral on the edges of the patches,
therefore, it is much faster than (5.11).

After finding coupling terms, using Z-matrix in (5.12), we can find the overall
Z-parameter of the circuit (between port 1 and port 6). In the same way as before,
to reduce the Z-matrix in (5.5) to the Z-matrix of the circuit, we have to apply the
boundary conditions in (5.7) and (5.8). Using the same procedure, the Z-parameter
of the circuit, can be found as (5.10). However, here the definition of matrices is

based on (5.6) and (5.12).
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5.3 Numerical Results

As a verification for our new presented method, in this section two structures are
analyzed by our method and the results are compared with the Sonnet results from
ComDev. As mentioned earlier, in experiment there are tolerances in dielectric and
dimension of a circuit. Therefore, the experimental results may change from sample
to sample. However, to verify our method, we need reliable results. As a bench
mark, we use Sonnet result provided by ComDev to compare with our simulated

results.

5.3.1 Chebyshev Filter

A 4-pole Chebyshev filter, shown in Figure 5.1, is analyzed by the method explained
in this Chapter. Then the numerical results of our method are compared with

Sonnet results from ComDev.

This filter was designed in a box, and the effect of box is considered in Sonnet.
However, in our simulation the Green’s function of multilayer structure has been
used. So, the top cover of box is considered as an infinite metallic layer in calculation
of the Green’s function. Since there is no radiation from the circuit in the box, we
delete the real part of Z-parameter of the circuit. The real parts of coupling terms
are also deleted to remove the radiation effect due to surface waves. However, the
real parts of coupling terms are very small in compare with the imaginary parts.
To show the effect of different part of the circuit; such as gap coupling, coupling
between patches, and box, the output of our simulation was presented in different

steps of simulation.

The Chebychev filter was design by ComDev, and it has equi-ripple in pass
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Figure 5.3: 2D contour integral method, and our 2D /3D method.

band. The filter was simulated by our method and very good results were achieved
[56]. In here similar structure will be analyzed, however, the frequency response is

not quite like a Chebychev filter.

The dimensions of each patch, defined in Figure 4.7, are a = 7.419 mm, b =
6.368 mm, s = g = 58.42 pm, |, = 5.083 mm, w = 0.175 mm, and the distance
between two patches is L; = 7.886 mm, Figure 5.1. The substrate height is A =

0.508 mm, and dielectric constant is €, = 24.

In the first step, we have to analyze one patch only with direct connection which
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Figure 5.4: Insertion loss of one patch with direct coupling and gap coupling.

is simply a dual mode filter. To analyze this dual mode filter, our hybrid 2D /3D
method presented in Chapter 3 is used. The results of 2D contour integral (CI)
analysis and 2D /3D method (our method) are shown in Figure 5.3. The capacitive

fringe field of the edge changes the input impedance and reduces the resonant

frequency by 2% (4.255 GHz to 4.165 GHz).

In the next step, to include the gap coupling, the transmission line model for
gap structure, explained in Chapter 4, is added. The results of simulation for one

patch with direct connection and gap coupling is given in Figure 5.4.
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Figure 5.5: Insertion loss of filter with and without coupling between patches.

As we can see in Figure 5.4, the gap coupling changes the input impedance for

better match. It increases the Q due to loose coupling [48].

At the next step, after adding a gap structure to one patch, we put two patches
in cascade with a connecting transmission line between them, Figure 5.1. When
the coupling between patches are not included, and the blocks are cascaded, we can
follow the procedure in Section 5.2.1. Considering coupling between two patches,
we apply the method explained in Section 5.2.2. The numerical results from these

two analyses are shown in Figure 5.5.
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Figure 5.6: Results of S,; from our method and Sonnet.

The result of our simulation using the new method to calculate coupling between
patches is also compared with Sonnet results from ComDev. Both results from our

method and Sonnet are shown in Figures 5.6 and 5.7.

As we can see, there is a good agreement between two results, especially in
resonance frequency. The difference in resonant frequency is around 0.1%, which
means our method is very accurate in predicting the resonant frequency. It should
be mentioned that Sonnet considers the metalization thickness in its analysis. How-

ever, in our analysis this thickness is ignored. The metalization thickness may be
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Figure 5.7: Results of Sy; from our method and Sonnet.

reduce the resonant frequency.

For this filter, Sonnet gives —1.25 dB ripple in pass band, and we get about
—2.25 dB ripple. There is also a maximum difference of 3 dB between Sonnet and
our method at two edges. This means that there is a voltage deviation of 0.8%

between two methods at those frequencies.

In terms of speed, our method is faster than Sonnet. For the results of this
filter Sonnet spends about 16 minutes and our method spends about 12 seconds for

each frequency. This means that ours is about 80 times faster than Sonnet. These
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Figure 5.8: IE3D and Momentum results for the structure with radiation (no box).

times were calculated based on HP-Unix system (series 735). We have to consider
that Sonnet is one of the best commercial software in the market, and uses advance

computer algorithms to increase the speed.

The difference between two results, our simulation and Sonnet, in Figure 5.6
and 5.7 is because of the box effect. In our analysis, we simulate the box by putting
a top metallic cover and delete the radiation. However, the effect of side walls in

box were not considered in our simulation.

The effect of box is very important in the characteristic of this structure. The
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Figure 5.9: Sy; from IE3D and Momentum simulations.

structure without box is also simulated using two other commercial softwares, IE3D
and Momentum. These two methods are based on moment method. The results

from these two methods are shown in Figure 5.8 and 5.9.

As we can see from the graphs in Figure 5.8 and 5.9, there is a radiation from
the structure with no box. At center frequency, say 4.15 GHz in IE3D simulation,
there is about —2 dB as reflected wave and —14.8 dB as transmitted. Therefore,
there is about —9.5 dB radiation loss. This value for Momentum is about —13 dB.

IE3D and Momentum are two programs that use moment method as their base
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of numerical calculation. However, their results are different especially in pass band.
This difference is due to error in the numerical method. These softwares are very
well known, however, they are not very accurate for structures with big radiating

elements.

From the result of Momentum (or IE3D) and Sonnet, it is clear that box has
an important role in the characteristics and performance of the circuit, and should

be modeled more accurately.

5.3.2 Elliptic Filter

Another structure is a 4-pole Elliptic filter designed by ComDev [59], and shown in
Figure 5.10. The structure was analyzed by our new method and good agreement

between our result and Sonnet was achieved [56].

In here a similar structure is analyzed. The numerical result of our method is
compared with Sonnet result which is our bench mark as explained. The dimension

of this structure is the same as the one in previous section, and L, = 1.81 mm,

Figure 5.10.

To analyze this filter, we follow the procedure explained in Section 5.2. However,
each patch element is considered as a three port network, therefore the Z-matrix
of each patch is a 3 x 3 matrix, in Equations (5.1) and (5.4). In analyzing this
filter, similar to Chebyshev, the coupling between each patch and connecting lines
are ignored. The coupling between two lines is also ignored, in the formulation. In
the simulation, we found that the coupling between those two lines does not effect

the results.

The Elliptic filter is also designed in a box, and we simulate the effect of the
box by deleting the real part of the Z-matrices. The response of the Elliptic filter is
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Figure 5.10: 4-pole Elliptic filter.

very similar to Chebyshev one, so in this section the response of the whole circuit

is presented, and the responses of each block is not presented.

The result of our simulation using the new method in calculation of coupling
between patches is compared with Sonnet results from ComDev. Both results from
our method and Sonnet are shown in Figure 5.11 and 5.12. It is clear from the
graphs, there is a good agreement between two results, especially in the resonant
frequency. The difference in resonant frequency is around 0.2%, which means our
method is accurate in predicting the resonant frequency. As mentioned before, in

our analysis we do not consider the metalization thickness, and this may be a source

of error in resonant frequency.

As mentioned before, Sonnet considers the structure in a box, and we did not
accurately model the box. The difference between results of our simulation and

Sonnet is due to box effect. To have a better result, we have to use Green’s function
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Figure 5.11: S, for Elliptic filter from our method and Sonnet.

of multilayer structure in a box.

Similar to the Chebychev filter, the coupling between lines are ignored in the
simulation of this Elliptic filter. The simulation was also done considering the

coupling between two lines, and the same result was achieved.

For this filter, our method spends 15 seconds and Sonnet spends 20 minutes.
This means our method is about 80 times faster than Sonnet. The speeds of two
methods are based on HP-Unix system (series 735). As we expected, our method

is very fast. The accuracy is not sacrificed for the speed, and the method has good
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Figure 5.12: Results of S;; from our method and Sonnet.

accuracy. This means our algorithm can compete with one of the best commercial

CAD tools in this area.



Chapter 6

Simulated Images

6.1 Introduction

To analyze patch resonators with our method, we have to calculate the magnetic
(or electric) field due to magnetic current on the edge of patches. To calculate the
field in a multilayer structure, we can use the complez images technique. However, a
new and simpler method is developed in this work, and used in our hybrid method
to analyze patch resonators. This new method which is also fast, is called the

simulated images technique.

To avoid time consuming numerical Sommerfeld integrals in calculating spatial
Green’s functions in multilayer structure, Chow et al [33] developed the complex
images technique to arrive at a closed form spatial Green’s function for the thick
microstrip substrate. This technique was also developed for calculation of Green’s
functions of a multilayer structure [60]. The complex images technique consid-
ers the spectral Green’s function to be the result of three factors: quasi-dynamic

images, surface wave and complex images. Quasi-dynamic images, developed by

92
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Chow [55], are used to model near field potentials, replacing the traditionally uti-
lized Sommerfeld integrals and dominating the spectral Green’s function in the
region immediately adjacent to the source. The surface waves contribution mani-
fests itself in the form of poles in the Green’s function which dominate the function
in the far field regions on the surface of the substrate. The remaining part of the
Green’s function dominating the intermediate region between near and far field,

is represented as complex images having complex amplitudes as well as complex

locations.

Sophisticated as they sound, compler images, are derived from curve fitting in
the spectral domain of a multilayer medium, and are therefore non unique. This non
uniqueness leads to the possibility of complex images with fixed real locations which
do not require the complicated and computationally expensive Prony’s method to
solve for the amplitudes and locations of complex images. Such images may be
called simulated images [39]. This Chapter shows that with nearly three or four
simulated images positioned in the static image locations, the simulated images
technique results in a Green’s function as accurate as that derived using the complex
images technique. The new technique has a very good accuracy, specially in the low
frequency range. It can be used at higher frequencies; however, higher a number
of images should be considered to include the far field and higher frequency effects,
such as surface wave effect. On the other hand, the fixed image locations lead to

fast and convenient computations which can be used for wide band (e.g. digital)

applications.

In this chapter, we start with a brief review of Green'’s function in the spectral
domain. The simulated images method is then explained, and at the end some

numerical results are presented.
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6.2 Green’s Functions of Multilayer Structure

The spatial domain Green’s functions are represented by the Sommerfeld integral

[61] as

- 4_11E/ G(k,) H (K,p) k, dk, (6.1)

where G and G are the Green’s functions in the spatial and spectral domains, re-
spectively, H(?) is the Hankel function of the second kind. The Sommerfeld integral
given in (6.1) cannot be integrated analytically, except for a few special cases. The
integrand of (6.1) is also an oscillatory and slowly decaying function, so the numer-
ical calculation is very time consuming if not impractical for many configurations.
Moreover, the singularities of the integrand (correspond to the surface wave poles
of the spectral Green’s function) add to the complexity of evaluating such an inte-
gral. In the next section, a method is explained to approximate the evaluation of
the Green’s function in the spectral domain and calculate the integral to find the
spatial Green’s function. Before that, we have to derive the Green’s function in the

spectral domain.

To derive the spectral domain Green’s functions for a multilayer medium shown
in Figure 6.1, we can use a multisection transmission line model. The propagation
through the line sections, layers, is simply given by a chain product of a series of
wave transmission matrices [A]. The details of this method is given in [60]. Using
this method all Green’s functions can be derived in the spectral domain. Here, the
most common two Green’s functions, vector and scalar potentials for a horizontal

electric dipole are listed.
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where the subscripts s and f refer to source and field layers, and the transfer
functions, T, have superscripts for transmissions of TE or TM waves.

For the vertical electric dipole, there is another vector potential Green’s func-

tion:

r '—k:: Hs (l"szs

zzx = TH "]
2kes sk, pe M

oTH
:E) (6.4)
f

d

The closed form Green’s functions, in the spectral domain, for vector and scalar
potentials of a horizontal electric dipole (HED), vertical electric dipole (VED),
horizontal magnetic dipole (HMD) and a vertical magnetic dipole (VMD) located
in an arbitrary layer of a planar layered medium are listed in Appendix D. In the
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following section, our method is explained to calculate these Green’s functions in

the spatial domain.

6.3 Simulated Images Technique

As mentioned before, the approximation of Green’s function by images are not
unique, and different sets of images can be used. Therefore, the simulated images
method and the complex images method are similar. In this section only the details
of simulated images are presented, and for details of complex images you may read

some references in the literatures [33, 62].

As mentioned, evaluating the Sommerfeld integral (6.1) is very difficult or im-
possible. However, this integral has an analytical solution for a specific case. If the
spectral domain representation of the Green’s function G, is a complex exponential
then an analytical evaluation of the integral becomes possible via the Sommerfeld

identity which is,

€

—jlkr =kl o
— = [ i B (op) by (6.5)

where r = /p? + 22 and k, = ,/k? — k2. Therefore, if the spectral Green’s function

can be approximated in terms of complex exponentials, then the Green’s function

in the spatial domain can be derived analytically.

The contributions of the direct term and surface waves in the spectral Green’s
function are in the form of e~7*+!#l/k,;, and can be calculated analytically. There-

fore, they are excluded from the Green’s function to be approximated.
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= = = 1
G=Go+ G + —277‘7:_!}?1 (6.6)

The first two components in (6.6), Go and G,., are the effects of the direct term
(or first quasi dynamic image) and surface waves. The last term, F, is the left over
spectral domain quantity that the quasi-dynamic part and surface waves part do not
cover. Since the first two terms in (6.6), can be evaluated, F} is known. To use the
Sommerfeld identity, the complex image method approximated this term, Fy, with
several complex images, images with complex amplitude and complex locations. In
the simulated images technique, the approximation of the last term, F}, is done
using simulated images which have complex amplitudes and fixed real locations, as

is shown below,

Fy =Y aie (6.7)
i=1

where q;, the amplitude of the images, are complex, and b;, the location of quasi-
dynamic images, are real numbers and known. To find a;, we choose n points in k.,
plane and calculate both sides of (6.7) at each of these n points. Therefore, we will
have n equations for a; , ¢ = 1,...,n. Solving this n equations with n unknowns,

we can find a;.

The surface wave contributions for thin layered structures are small, so the exclu-
sion of the surface wave contribution is not critical for such geometries. Meanwhile,

the extraction of the surface poles could improve the approximation for geometries

with thick layers.

All the Green’s functions in the spectral domain are functions of k, (or k.),
except Az, given in Equation (6.4) and F,. (See Appendix D). Therefore, the
above approximation, (6.7), can be applied for all kinds of Green’s functions except
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A,z and F,;. The problem with these two functions is an extra parameter which
is the wave number in &, k.. To handle these two cases, k. is excluded from the
approximation, and its effect is considered in the spatial domain (after obtaining the
spatial domain representations of A../k. and F,./k;) by differentiating analytically

with respect to z.

The simulated image method is simpler than the complex images technique,
because Prony’s method is not employed (Prony’s method is used to find two sets
of complex unknowns in (6.7), a; and b;). We also require fewer sampling points
and have fewer unknowns in comparison with the complex images technique. This

makes our new method simpler and also faster.

In the simulated images technique, we have more freedom in choosing sampling
points in the k, plane. In complex images method, we have to choose specific points

on k. plane, because of Prony’s method.

In comparison with the regular quasi-static image method, this new approach
also simplifies the quasi-static or near field analysis. Instead of using tens of real
images required by the quasi static method, we may use only a few, say three or

four, simulated images.

6.4 Numerical Results

The closed form Green’s function in the spatial domain using simulated images can
be used for multilayered geometries having an arbitrary number of layers with arbi-
trary parameters and general (electric or magnetic, horizontal or vertical) sources.
To verify the accuracy of our new simulated images method, in this section some

numerical results of this method are compared with complex images or numerical
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Figure 6.2: Microstrip structure.

integration.

In this section, this technique is used to calculate a few Green’s functions for
two structures. One is a simple microstrip structure, Figure 6.2, and the second

one is a multilayer structure, Figure 6.7, with two dielectric layers on top of the

ground plane.

6.4.1 Microstrip Structure

A microstrip structure is shown in Figure 6.2 with a dielectric height of 1 mm
and dielectric constant ¢, = 12.6. The spatial vector and scalar potential Green's
functions, A;, and Q., defined in (6.2) and (6.3) are calculated using simulated
images. In this case four images are located at the position of the first four quasi-
static images. The results are presented in Figure 6.3 and Figure 6.4. These two
functions are also calculated using complex images method [33) and shown in Figure
6.3 and Figure 6.4. As we can see from the Figures, there is a very good agreement
between the results of the simulated images technique and complex image method.

However, the simulated images method is about 2 times faster.

The four simulated images are located at b; = —2:h where h = substrate thick-
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ness and 7 = 1 to 4. The amplitudes of the images are plotted in Figure 6.5 and
Figure 6.6. They do not include the source or quasi-dynamic image at z = 0. Fig-
ures 6.5 and 6.6 show the variations of the amplitudes of the simulated images of

the vector and scalar potentials, 4., and Q..

It is observed that beyond 6.7 GHz, when the first simulated image is one electric
radian from the source, the image amplitudes begin to vary with frequency. Below
6.7 GHz, the amplitudes of the simulated images are near constant but are not
equal to those of the quasi-dynamic images. For good accuracy the quasi-dynamic

images may number 80, for ¢, = 12.6, instead of just the first four.

The advantage of slowly varying image amplitudes with frequency, Figures 6.5
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Figure 6.6: The amplitude of images for Q.

and 6.6, makes the simulated images a better choice for interpolation and rapid
convergence in the analysis of many wide band (e.g. digital) applications. We can
find the amplitude of these images at a few frequencies, and use a curve fitting
to find an expression for image amplitudes as a function of frequency. Then the

expression can be used over the frequency range to calculate the Green’s functions.

6.4.2 Multilayer Structure

Another geometry which is investigated in this section consists of a substrate and
a superstrate, and modeled as a 4-layer structure, the ground plane and air are

considered as two layers. The parameters of the layers are: conductor (PEC), as a
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Figure 6.7: Geometry of structure with 2-layer dielectric.

first layer, €, = 10, €2 = 2, €,3 = 1, by = 0.75 mm and h; = 1.5 mm as shown in

Figure 6.7.

Two dipoles are considered in this structure, and some of the Green’s functions
related to these two sources are calculated. The horizontal dipole (HED) is located
at the air-dielectric interface, and the vertical dipole (VED) is located in the middle
of the top layer (h2/2). In all cases, the observation points are chosen at the source

plane, which is the worst case as far as the convergence of the Green’s functions

are concerned.

For the VED in the structure, the A,. Green’s function is calculated. Figure
6.8 shows the magnitude of [ A..dz with respect to the distance k,p. In this fig-
ure , [ A,zdz is given instead of A,., because the approximation is performed on
Az /K- in the spectral domain, as explained. In this figure the results are shown for
the simulated images technique and numerically evaluating the corresponding Som-
merfeld integrals at a frequency of 1 GHz. As it is shown, the results of simulated
images method is very accurate. The numerical calculation of the Green’s function

is very time consuming and difficult; however, the simulated images method is very
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Figure 6.8: The amplitude of [ A,.dz for 2-layer dielectric structure.

simple and much faster. In terms of accuracy, our new method is very accurate, as

we can see in Figure 6.8.

For the HED which is located at the air-dielectric interface of the structure,
as usual the two most useful Green'’s function A.. and Q. are evaluated. Figures
6.9 and 6.10 show the magnitude of A.. and @, respectively. In these figures the
results are shown for the simulated images technique and complex images method
at two frequencies of 1 and 5 GHz. As we can see, there is a good agreement
between two methods, and the accuracy of the simulated images method is the

same as complex image method. However, the simulated images method is simpler

and faster.
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In this section a few examples were shown to illustrate the accuracy of the new
developed simulated images. Other Green’s functions of a multilayer structures
can also be evaluated with this simple method. Other Green’s factions are not
presented in this thesis, because the calculation of Green’s functions was a minor

area in this research.
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

A new method has been developed to analyze high @ planar patch filters. The
proposed method is a hybrid method which is a2 combination of the two-dimension
(2D) methods (modal or contour integral) and the numerical moment method using
three-dimension (3D) Green’s functions of multilayer structures. We start with a 2D
method, and analyze the patch filter ignoring fringing fields, considering a magnetic
wall around the patch. This model of 2D patch, comprising of electric current on
the patch and magnetic current around the patch on the wall, can be viewed as a
3D structure, i.e. cavity with a magnetic wall. The magnetic wall is then removed
to consider the fringing fields at the edge of the patch. This correction term is

formulated in terms of a line integral only around the patch, on the edge.

This new method has the following two main advantages. First, it is fast com-
pared with regular numerical methods, such as integral equation-moment method.

Basically, there are two steps in this method. The first is a 2D method, followed

107



CHAPTER 7. CONCLUSION AND FUTURE WORK 108

by a correction term using 3D Green’s functions. Both of these two steps are fast,
because a 2D method is either using an analytical expression (in modal method)
or applying a line integral (in contour integral method), and the correction term is
a double line integral on the edge of patch, that is much faster than double surface
integrals in the regular moment method. Our new method is also faster than the
multiport network method (segmentation or desegmentation methods). The later
method needs matrix inversion, and for better accuracy it would be time consuming

if the number of ports is large.

The second advantage of this method is accuracy which is necessary in analyzing
high Q patch filters. In this method accuracy was not sacrificed for speed. The 2D
method, as a first step, is accurate for the structure with magnetic wall (no fringe
field). The edge effect, fringing field, is taken into account using a variational
expression by removing the magnetic wall. Since this expression is variational, and
we use the result of 2D analysis in this variational expression, the correction term
would also be accurate. On the other hand this correction term is relatively small

and we can afford to have larger relative error.

Most high Q circuits have gap coupling to reduce the load effect on Q. In
this work, a model is presented for the gap structure in patch filters with gap
coupling. This model of the gap is used with our hybrid method to analyze the
whole circuit. The gap is formed between a strip and the patch. This structure
can be considered as a transmission line. Therefore, the impedance of the gap is
the impedance of transmission line stubs. The parameters of this transmission line
are found using conformal mapping. The advantage of this model for the gap is
its simplicity and speed. In our analysis, we increased the length of the strip to
include the fringing field effect. In regular numerical methods, such as the moment

method, a huge number of segments should be used for accurate results, and this
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makes the moment method very time consuming. However, very fine segmentation
may reduce the accuracy of moment method, because of ill condition of matrix

coefficient

High order patch filters use more than one patch element. In this research the
coupling between patches is investigated. Extending the same method for one patch
element filter, hybrid method, we could consider the coupling between two patches.
To calculate the coupling between patches, we found a double line integral which
should be performed around the edges of patches. The new method, developed in
this thesis, makes the analysis very fast. In the moment method, coupling between
patches was performed using a double surface integral on the surface of the patches,
and this makes the moment method very slow. Our method is accurate and fast in
analyzing a structure with more than one patch element or having large metallic

area.

In this work, we need to calculate the Green’s function of multilayer structures.
The complex image method which was developed at the University of Waterloo by
Prof. Y.L.Chow, was simplified to a new method called simulated tmages method.
This new method approximates the Green’s function by images located at the
fixed real locations which are the locations of quasi-static images but with complex
amplitude. The simulated images method is simpler and faster than the old method,

and has the same accuracy.

7.2 Future Work

In order to improve some parts of this work and as a continuation of the present

approach, the following topics of research could be considered for future work.
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i- To reduce the radiation loss, most of the microwave filters are enclosed by a
box, specially high @ filters. To analysis a circuit in a box, we have to use proper
Green’s functions. In this work, to simulate a structure in a box, we used Green'’s
functions of a multilayer structure and deleted the real part (radiation) of the Z-
parameters. This is not accurate enough for all the cases, because the effect of the
side walls of the box is not considered. As an important future step, the Green’s
function of multilayer structure in a box should be developed, and used with our
new presented method. There are some works by Dr. Faraji-Dana and Prof. Y.L.
Chow in formulation of Geen’s function of multilayer structure in a box [63], and

we can make use of those works.

ii- In analyzing the gap structure, Chapter 4, to calculate the parameter of the
transmission line between strip and half plane, we ignored the effect of the ground
plane, when the strip is narrow. For gap structures with large strip (s > h/4), our
approximation is not good, and we have to include the effect of the ground plane.
As mentioned in Chapter 4, for more accurate analysis quasi-dynamic images should

be considered in the analysis.

iii- In Chapter 4, to calculate the impedance of the gap, an open stub model
has been used. To include the fringing fields at the end of the open stub, we just
increased the length of stub by 5%. To improve the accuracy of the analysis, a

more accurate model should be found for this structure.

iv- With the presented method, we can analyze structures with more patches
and gap couplings. Examples of these high @ circuits are 2-pole Chebyshev filters,
or 3-pole split resonators [64] used in high power high temperature superconduc-
tors planar filter designed by Dr. Mansour’s research group at ComDev. These

structures could be analyzed using our method.
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v- The accuracy and speed of our method should enable us to make many
iterative computations, within a limited time, of the analysis for the synthesis and
optimization of high order filter. As the next step of this work, our method can be

used in an optimization algorithm to design (high Q) patch filters.



Appendix A

Expansion of Green’s Function by

Eigenfunctions

In Section 2.2, when a 2D modal analysis was presented, we used the expansion
of Green’s function by eigenfunctions, Equation (2.18). In this appendix, this

relationship is derived in detail.

The wave equation for the structure is given as follow, with the Neumann type

boundary condition given in Equation (2.3),

(V2 +E)V =0 (A.1)

Let the eigenvalues and eigenfunctions of the above wave equation be denoted
by k. and ¢, , respectively. As we know, any function satisfying (A.1) can be
expanded by a set of ¢, . Therefore, The Green’s function G(z,y|zo,yo) can be

expressed as

G(:B, y|207 yO) = Z An ¢n (A.2)
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The remaining problem is how to compute the coefficients An.

As a preliminary step, we show first that G satisfies a differential equation
(V2 + k)G = —jwph §(z — z0)8(y — yo) (A.3)

where & denotes a delta function. To prove the above equation, we integrate this
after multiplying both sides by the fictitious injection current i(zo,yo). Then we
obtain from the left hand side

//(V2 + k%)G(z, y|zo, o) i(z0, Yo) dzo dyo = (V2 + K \V(z,y) (A.4)

and from the right hand side

- jwyh/ /i(zo,yo) §(z — £0)8(y — yo) dzo dyo = —jwph i(z,y) (A.5)

Therefore, (A.2) can be proved if we can show that, with the presence of fictitious

current i(Zq,%0), (V2 + k?)V = 0 would become
(V2 + KV = —jwph i(z,9) (A.6)

This equation can easily be proved if we rewrite Maxwell’s equation in (2.1), and

add —i(z,y) to the displacement current density jweE; , as

0H, O0H.
Oz Oy

= jweE, — i(z,y) (A.7)

and modify the computation performed to derive (2.4) from (2.1). Similar to (2.4),
the Equation in (A.3) can be proved [9].

Next we substitute (A.2) into (A.3) and use (V? 4 k2)¢n = 0 to obtain

S An(k? — k2)$n = —jwph §(z — £0)8(y — ¥o) (A.8)
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We multiply both sides of the above equation by @, , integrate both sides in
the region D, and finally use the ortho-normalizing condition. Then, the Green’s

function can be derived given in terms of the eigenfunctions as [9]

. ®,.(z0,y0)®n(z,y
G(z,ylzo,%0) = jwph ) ( °k,y°_) kz( ) (A.9)




Appendix B

Weber’s Solution Using
Cylindrical Waves

The Green’s theorem expressed in cylindrical coordinates and Weber’s solution for
cylindrical waves are used to convert the two dimensional wave equation into a

contour integral [9].

This approach proceeds by considering the two functions v and w, which satisfy
(V24 kv =0 (B.1)

in D, where D is a two dimensional region inside a contour C as shown in Figure
2.5, and v stands for » and w. Setting v =vandw = H((,z)(kr), zeroth-order Hankel

function of the second kind, into Green’s theorem, which is

/(u— - w——) dse = //D(uvzw —wV)ds =0 (B.2)

we obtain

GHP(kr) 2y, OV B
/C (v(s0) =5 = — H(kr)3-) dso = 0 (B.3)
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when the point P is located outside the contour C. If point P is inside the contour
C, p becomes a singular point for w, and the area integral in (B.2) does not vanish.

Applying Green’s theorem to the region that excludes the singular point, we get

(2) r 2 r 2 v
[ 0120 )2 g = [ (o) 22 1) 2
(B.4)

where C, stands for the contour surrounding the excluded small circular area whose
radius is chosen to be §. Here, we have also used dn = —3r on C;. When H{?(kr)
is replaced by its small argument expression, which holds for k7 < 1, and when
v and Ov/0n are taken to be constant on C, the right-hand side of (B.4) can be

written as

/ [—;—v(so) ( ln ﬁ)av] dsg = —4jv(s) + 4761n il g% (B.5)

when the term § tends to zero, the second term on the right-hand side of (B.5)

vanishes. Thus for a point inside the contour C we obtain

v (2) T
4jv(s) = /C[Hg”(kr)%; _v(so)w—°&l(k—)-] dso (B.6)

This equation gives the potential at point P in the region D in terms of v and
Ov/On along the contour C that surrounds D.

When the point P is on the contour C, the right-hand side of (B.6) is reduced

by a factor 2 and may be written as

v (2) T
o) = 5= [ 1) 5 — v(oa) T (B.7)
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Combining the above equation with

dv .
= Jwphd, (B.8)

which is used in (2.9), and

(2)
%’—) = —kcos® H{(kr) (B.9)

therefore, we obtain

v(s) = % f (k cos @ H P (kr)V (so) + jwphHS (kr)Ja(s0)] dso (B.10)



Appendix C

2D Green’s Functions of Regular

Patches

As mentioned in Section 2.2 , the Green’s function of simple shaped patches can
be found using an eigenfunction, modal, expansion. In our proposed method for
analyzing patch filters, Chapter 3, a 2D modal method should be used. If we have
a simple patch, we may use the modal method. Therefore, in this Appendix, the
Green’s function of simple patches is briefly listed [20]. As an example of Z matrix

using 2D Green’s function, the Z matrix of a rectangular patch is also driven.

In this section, the height of substrate is & with dielectric of permittivity e. In

the expressions that follow, o; is given by

118
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lr—dl __i
B

Figure C.1: Two port rectangular patch filter

C.1 Rectangular Patch

The Green’s function for a rectangular circuit having dimensions a x b as shown in

Figure C.1, is

wph & & _ OmOn
G(z,y|z0,¥0) = i # Z Z T 2 cos(k.z,) cos(kyy,) cos(kzz) cos(kyy)
m=0n=0 "
(C.1)

where

k. =mnfa , ky=nn/b

C.1.1 Z-matrix of a Rectangular Patch

The Z-matrix of a rectangular patch shown in Figure C.1, using (2.17) and (C.1),

can be written as

-] 2 2

]wy.h'w, .
Zy = Z Z k2+ — k2 :i , t=1,2 (C.2)

m=0n=0 "z v
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and
h /——— 2
Z12 = Z21 = ]w# wl Z Z( l)m k2 n k:n fnl .fn2 (03)
m=0 n=0
where
sin(kyw; /2
o COS(kydi)—ky(Tfml n 7”5 0
nt —

1 n=20

C.2 Circular Patch

For the circular patch with radius a, shown in Figure C.2a, the 2D Green’s function

can be derived as,

G(ps ¢|pm ¢o) = jwen'a.z (C4)
. -~ o'an(kmnP)Jn(kmnPO) cos[n(qb - ¢0)]
Jorh X 2 et~ n k2 (2, — K)T2(omm)
where J, is Bessel’s function of the nth order, and kmn satisfy
7]
—é;J,,(kmnp)lp:a =0 (C.5)

The subscript m in km, represents the mth root of (C.5).

C.3 Annular Ring

An annular ring patch with radius a and b, @ < b is shown in Figure C.2b. The 2D

Green’s function for this structure is
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b
(a) (b)
Figure C.2: (a) Circular Patch (b)Annular Ring
h
G(P, ¢!poa ¢o) = jwen’(bz — az) -+ (C.G)
Jjwith Z Z T Frnn(p)Fmn(po) cos(n($ — )]

i (b2 — n2/R2 ) F2(b) — (@ — n?/RE, ) FRA(a)|(KE, — K)
where

Frn(p) = NL(kmna)Jn(kmnp) — Jp(Emna) Nu(kmnp) (C.7)

and k., are solutions of
T (kmna) _ Ji(kmnb)
N!(kmna) " N!(kmnb)

In the above relations N, is Neumann'’s function of order n and J;, and N, are first

(C.8)

derivatives with respect to the arguments.

C.4 Circular Sector

A circular sector with radius a and sector angle a is shown in Figure C.3a. The 2D
Green’s for this structure can be derived only if the sector angle a takes on certain

discrete values which is 7/p and p is an integer.
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(a)

Figure C.3: (a)Circular Sector (b)Annular Sector

2ph
G(p, #lpor $o) = Goena? (C.9)
= UmUan.(kmn.po)Jn.(kmn.p) cos(nig,) cos(ni¢)
pivenh 3 3 2 [ Ko | (Ko, — K2)72, (hrun2)
where n; = np and kn,n; is given by
2J (kmnp)lp=a =0 (C.10)
ap n{®mnp)lp=a = .

C.5 Annular Sector

An annular sector patch is shown in Figure C.3b. Similar to a circular sector patch,

the 2D Green'’s function can be derived only for alpha = 7/p.

_ 2ph
G(p, #lpo, b0) = o 5 — a7) + (C.11)
: S T Frns (p) Frnns(P0) (c08(ni) — cos(nio))
stk 2 2 B = 2 KV Fo®) ~ (07 — 2R (@] (R, — )
where n; = np and Fi,, is defined in (C.7). The values of knn; are obtained from

(C.8).
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C.6 Equilateral Triangle

An equilateral patch is shown in Figure C.4a. The 2D Green’s function is

. > had Tl(moa yo)T(:B: y) + T2($o7 yo)Tz(:C y)
G(Z,Y|ZorYo) = djwph D Y : C.12
me—co ne—co 16v/372(m? + mn + n?) — 9\/23)a2k2 )

where

2nlz 2r(m — n)y
\/—a.) cos{ 3a

2rme 27r(n - 2mne 27r(l m)y

(=1 cos(= =)o — DYy 1 (~1)e cos(~7=) cos(

Ti(z,y) = (—1) cos( ) (C.13)

%)

and

2rlz . 27r(m—n)y)

T(e,y) = (~1)sin( ) sin(=—5 (C.14)
+ (-1 Sln(2:;—%) (2"(1; Dyy 4 (- 1)"5111(\/_ )si (2”(13;"1)11)

and [ = —(m + n).

C.7 Right-Angled Isosceles Triangle

The 2D Green’s function for the right angled isosceles triangle shown in Figure

C.4b is given as

]w;Lh omaT (2, Y)T (To) Yo)
G(p,9) = Eﬁ; (m? + n2)x? — a?k? (C.15)
where

nwy

T cos Y 4 (—1)tmn) cos = it
a

T(z,y) = cos b

Ccos
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1y \y
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a2

\y
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/ =7 ="
(a)

(b) (c)

a/2

Figure C.4: Triangle patches, (a)Equilateral (b)Right-angled isosceles (c)30° —
60° right-angled

C.8 30° — 60° Right-Angled Triangle

A patch with 30° — 60° right-angled triangle shape is shown in Figure C.4c. The

2D Green’s function for the structure is as follow,

_ . > = Tl(zoa yo)Tl(Iv y)
G(zy ylzoa yo) = 8.70)#11. m;@ n=z_°° 16\/57‘-2("-,,2 T mn o+ nz) — 9\/§a2k2

(C.16)

where Ty (z,y) is defined in (C.14).



Appendix D

Green’s Functions

One method of defining Green’s functions for electric or magnetic fields is Green’s
function of scalar and vector potentials. The relations between fields and potentials

are as follow,

E=-VxF (D.1)
H=VxA (D.2)
5.(V.,87) = —V.F (D.3)
5.(V.8) =-V.4 (D.4)

Where E and H are electric and magnetic fields, respectively. A and F are
electric and magnetic vector potentials, ®; and &7, are electric and magnetic scalar

potentials.
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In multilayer structures, and in spectral domain (k; and k), vector and scalar

potentials can be written as follow,

- 1 I
Age = ——=TH D.5
2]kz; 1hs TE ( )
e —'kz Hs [‘sza aTTE
Az:: = - T D.6
2] kz, #fkp( I-l:; TM aZf ) ( )
- 1 ll’lkf . 6T1{{M
qe —_
¥ =y R, (D7)
U |4
Azz - 2jkz, TTM (D.8)
. 1 0TY
Zc = _ ™™ (D.g)
2jk3, 02,024
- 1 €
e — —_"TT .
2jkza €f ™ (D 10)
- €, OTY
Fo.= ke Thg — j——FX :
2]kzak ( TE —J €5 aZf (D 11)
. 1 e, k% oTY,
qm __ 3 |4 ik Y TE
@z 2sz‘k2( TTM zn a f ) (D.12)
- 1 H
Foo=-—T (D.13)

25k., TE
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- 1 8Tf
e IE (D.14)
2]/‘:“ 32,62f
where TTE and TTM are the transmission coefficients from the source plane, z,,

to field plane, z¢, and k., and k., are wavenumbers in two planes, field and source

planes. We also have,

k2= K2 + k2 (D.15)

key = /e k2 — k2 (D.16)

where k, is the wave number in free space, and the imaginary part of k., is always

negative.
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