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Abstract

Centralized power system planning covers time windows that range from ten to thirty

years. Consequently, it is the longest and most uncertain part of power system economics.

One of the challenges that power system planning faces is the inability to accurately predict

random events; these random events introduce risk in the planning process. Another

challenge stems from the fact that, despite having a centralized planning scheme, generation

plans are set first and then transmission expansion plans are carried out. This thesis

addresses these problems. A joint model for generation and transmission expansion for the

vertically integrated industry is proposed. Randomness is considered in demand, equivalent

availability factors of the generators, and transmission capacity factors of the transmission

lines. The system expansion model is formulated as a two-stage stochastic program with

fixed recourse and probabilistic constraints. The transmission network is included via a

DC approximation. The mean variance Markowitz theory is used as a risk minimization

technique in order to minimize the variance of the annualized estimated generating cost.

This system expansion model is capable of considering the locations of new generation and

transmission and also of choosing the right mixture of generating technologies.

The global tendency is to move from regulated power systems to deregulated power

systems. Power pool electricity markets, assuming that the independent system operator

is concerned with the social cost minimization, face great uncertainties from supply and

demand bids submitted by market participants. In power pool electricity markets, ran-

domness in the cost and benefit functions through random demand and supply functions

has never been considered before. This thesis considers as random all the coefficients of

the quadratic cost and benefit functions and uses the mean variance Markowitz theory to

minimize the social cost variance. The impacts that this risk minimization technique has

on nodal prices and on the elasticities of the supply and demand curves are studied.

All the mathematical models in this thesis are exemplified by the six-node network

proposed by Garver in 1970, by the 21-node network proposed by the IEEE Reliability

Test System Task Force in 1979, and by the IEEE 57- and 118-node systems.
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help during the cold Canadian winters. Also, my deepest gratitude to his wife, Barbara
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Chapter 1

Introduction

Electric power systems, regardless whether they are under a centralized or a liberalized

regime, are exposed to a number of variations from various random events. The general

meaning of uncertainty is the inability to accurately predict random events [1]. This

inability to predict such random events is the one that introduces risk into power system

economics.

Power system operation can be divided into two major functions: power system dy-

namics and power system economics. Power system dynamics covers time windows that

range from fractions of a second to many minutes. The three components of power system

dynamics, and their time intervals in brackets, are: i) transient stability (cycles to ten

seconds), ii) dynamic stability (one to ten seconds), and iii) long-term dynamics (seconds

to minutes). Power system economics covers time windows ranging from several minutes

to several years. The functions covered by power system economics are: i) corrective con-

trol actions (real time), ii) economic dispatch (five to ten minutes), iii) unit commitment

(one day to one week), iv) hydrothermal coordination (short-range, one day to one week;

long-range, one week to one year [2]), v) pumped storage scheduling (one week), vi) fuel

purchases (months to years), vii) maintenance scheduling (one year), and viii) power sys-

tem planning (ten to thirty years) [3]. Figure 1.1 shows the time frame of power system

economics.

For the case of a vertically integrated industry—where the generation, transmission, and

distribution sectors are monitored and operated by the utility’s central control system—

1
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Figure 1.1: Functions covered by power system economics.

power system planning is the one that faces greater uncertainty. Since the planning for

generation and transmission expansion ranges anywhere in between ten to thirty years,

random events such as load growth, cost of capital, capital cost of new equipment, devel-

opment of new technologies, cost of fuel, taxes, equivalent availabilities of the generating

units, transmission capacity factors of the transmission lines, and even regulatory inter-

vention introduce risk into the planning period [3].

For the case of a liberalized electricity industry—where the generation, transmission,

and distribution sectors are owned and operated independently—the pool electricity market

faces uncertainty from the suppliers’ and consumers’ bids submitted to the Independent

System Operator (ISO).

Acknowledging the presence of risk is not enough; mathematical models that minimize

risk are needed. To incorporate the effects of these sources of uncertainty into an optimiza-

tion model, one can use a combination of random variables, stochastic programming, and

probabilistic constraints. To minimize the effects of the risk caused by uncertainty, one

can use any risk minimization technique such as the minimum variance approach devised

by H. M. Markowitz in 1952 and widely used in financial engineering.
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1.1 Centralized Power System Planning

Planning decisions made in the past affect the performance of power systems now, and

planning decisions taken now will affect the performance of power systems in the future.

Since power systems are expected to keep on growing as time goes, mainly because of

technological advancement and population growth, power system planning is a key factor

in long-term power system economics. Power system planning has to be done in such a

way that the reliability of the system is not compromised. When to invest, how much

capacity to add, what type of generation is needed, and where to locate new transmis-

sion lines and generating units are important decisions in power system planning [4]. In

any decision making process, there are multiple choices which, in turn, produce multiple

outcomes. Decisions can be made under three different situations: i) under certainty,1 ii)

under uncertainty,2 and iii) under risk3 [5, 6].

Power system planning is a multiple attribute decision making problem and, due to its

long-term nature, all the investments made are irreversible [7]. The regulated electricity

industry is concerned with the simultaneous minimization of various criteria such as the

present worth of all future costs (including operating cost); cash flow deficiencies; environ-

mental impacts on air, water, and land; probability of not meeting the forecasted demand;

and social impacts of new construction. The challenge is that, most of the time, these

different minimization criteria are inconsistent, i.e., a plan that minimizes one does not

minimize any of the others [3].

In the regulated electricity industry, generation and transmission expansion are carried

out by the same agent. Motivated by quantity, not by price, and based on forecasted levels

of demand, the system planner chooses the optimal investment levels of various types of

power plants. After a generation plan is set, transmission expansion is carried out with the

advantage of knowing the opening and closing of generating stations. Hence, investments in

power system expansion are sequential in practice [8,9]. Usually, a constrained optimization

approach is chosen in order to minimize the investment cost while avoiding load shedding

1No randomness, future is assumed to be fully and perfectly known.
2Multiple foreseeable scenarios; their probabilities are known or estimated over a particular period of

time. Use of random variables.
3Risk minimization is incorporated.
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and maintaining system reliability.

There are two types of transmission investments. The first type of network investment

comes from enhancement/maintenance decisions on the existing network; these investments

may include the addition, replacement, or upgrade of elements like: i) relays and switches,

ii) remote monitoring and control equipment, iii) transformers, iv) substation facilities, v)

capacitor banks, vi) conductors on existing links, and vii) voltage levels on transmission

links. The second type of network investment, the one this work is concerned with, involves

the building of new transmission lines in either existent or new rights-of-way [10].

The first step in generation and transmission expansion planning is to evaluate as

many alternatives as possible. Some of these are the various possible configurations of

new transmission lines and/or generating plants. To do this at a reasonable computational

expense, the modeling has to be simplified. As the planning solution narrows just to a few

possibilities, the modeling accuracy can be increased, i.e., by including AC power flows,

losses, stability studies, transient analysis, line design studies, and so forth [4]. The models

presented in this work are intended to narrow the planning solutions.

1.2 Pool Electricity Markets

Since the appearance of the first decentralized power systems, Chile in 1982 and England

in 1991, much effort has been focused on the short-term period of power system economics

and on how to encourage competition among market participants. Most of the work has

been done under the strong assumption of having a perfectly known future. However,

in real life, many of the events involved in the market clearing process are random. For

instance, unpredictable changes in fuel prices can affect the variable generating cost of

suppliers, and changes in the economy can affect the price responsiveness of the demand.

These random events not only influence the random variables in the model—like power

flows, generation, and demand levels—but also the Locational Marginal Prices (LMPs).

The inability to accurately predict these random variations introduce risk into the market

clearing process. The greatest source of uncertainty, or risk, in a pool electricity market

comes from the coefficients of the quadratic cost and benefit functions.



Chapter 1. Introduction 5

1.3 Research Motivation

Most of the work that has been done in generation and transmission expansion for a verti-

cally integrated industry has been done in a deterministic way. Although the majority of

the referenced work acknowledges the stochastic nature of the generation and transmission

expansion problem, none has tried to develop a joint stochastic model for generation and

transmission expansion. Stochastic models have considerable advantages over determinis-

tic ones. One of these advantages is that the overall cost, investment and operational costs,

is lower than the overall cost of its deterministic counterpart and that the stochastic model

can meet the requirements for all the foreseeable scenarios, something that a deterministic

model cannot do.

Developing stochastic models is not enough. As stated before, the inability to perfectly

predict random events introduce risk into the planning process. Hence, an optimization

model that minimizes the risk from these random events is needed. The mean-variance

Markowitz theory can easily be applied; by means of a single risk factor in the objective

function, one can explicitly account for the trade-offs between the mean and the variance.

For the case of pool electricity markets, it is of paramount importance to develop

stochastic models. Since LMPs are one of the main components in computing important

parameters used in deregulated power system planning, it is needed to explore the effects

that risk minimization techniques have on them. It is also important to explore how the

elasticities of the supply and demand curves are affected by one’s position toward risk.

For the decentralized generation expansion case, profit-maximizing market participants

invest in new generation based on their expectation of energy prices, return on new invest-

ments, and demand growth. Therefore, generation expansion is motivated by price; the

revenues, based on LMPs, have to cover the capital and operating costs [11, 12]. When

load faces real-time prices and is elastic enough, high energy prices indicate high levels of

demand, and tight competitive supply and demand conditions. This, in turn, provides an

incentive to invest in new generation [13]. Hence, a more accurate computation of LMPs

that accounts for the uncertainty present in the supply and demand curves is needed.

For the decentralized transmission expansion case, there are numerous proposals in the

literature about how one should provide incentives to invest in new transmission. Some
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of these are spatial variations of LMPs [14, 15], Financial Transmission Rights (FTRs)

[10, 16, 17], and congestion costs [18] – [20]. If spatial variations of LMPs or FTRs are

to be used as an incentive for decentralized transmission expansion, then again it would

be better if the LMPs were computed taking into account the minimization of the risk

introduced by the random supply and demand curves. For the case of congestion costs,

since they are computed based on the assumption that the supply curves represent the

true marginal costs, and that the demand curves represent the true willingness to pay,

once more it would be better if the randomness in their parameters is taken into account.

1.4 Structure of the Thesis

This thesis is organized in five chapters and three appendices.

Chapter 2 takes a deterministic approach on how centralized power system planning is

carried out. All the foundations are laid in order to formulate the generation and trans-

mission expansion problem as an optimization model. A new model for joint generation

and transmission expansion is also presented.

In Chapter 3, a stochastic approach on centralized power system planning is taken.

Random events such as demand levels, equivalent availabilities of generating units, and

transmission capacity factors of transmission lines are considered. The mean-variance

Markowitz theory is introduced as a risk minimization technique. The use of probabilistic

constraints is also explained to account for randomness on the coefficients of some of

the constraints. Three new models are presented; one for generation expansion, one for

transmission expansion, and one for joint generation and transmission expansion. These

models are mixed-integer nonlinear optimization programs.

Chapter 4 opens with some comments on decentralized power system planning and de-

fines some economic terms used in this chapter. Afterwards, the mean-variance Markowitz

theory is applied to the clearing process of a pool electricity market. All the coefficients

of the cost and benefit functions are considered as random. A thorough analysis on the

effects that one’s position toward risk has on supply/demand levels, LMPs, and elasticities

of the supply and demand curves is also made.

Finally, Chapter 5 presents a summary on the contributions of this work and gives
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directions for future research.

Appendix A gives some background on stochastic programming. Appendix B explores

the possibility that generation and transmission expansion projects be considered as com-

petitors rather than as interchangeable options. Appendix C presents the system’s data

for all the numerical examples presented in this work. In Appendix D, to further validate

the models presented in this thesis, two large scale systems are solved; the one is a 57-node

system and the other is a 118-node system.



Chapter 2

Centralized Power System Planning:

A Deterministic Approach

Centralized planning in a vertically integrated industry plans for both generation and

transmission expansion. The common practice is that after a generation plan is set, trans-

mission expansion planning is carried out. In this sense, it can be said that generation

and transmission expansion “go walking hand in hand” since, by the time the transmission

planning is made, the location and timing for new generating units, and the closing of old

ones, is perfectly known. A deterministic approach to centralized power system planning

assumes that the future is either perfectly known, or it can be perfectly predicted. Hence,

all the forecasted parameters, like future demand, are fixed known values.

For the generation expansion case, the system planner decides the optimal investment

levels from various types of power plants; he has to choose from among different technolo-

gies. Therefore, generation expansion is motivated by quantity and relies on internalizing

these quantity decisions [21, 22]. For the transmission expansion case, the system planner

determines the timing, siting, and number of new circuits to be added. In both cases,

the cost of the expansion is then passed on to the consumers who are charged a regulated

tariff [23,24].

Since the vertically integrated electricity industry plans for both generation and trans-

mission, they can be considered as a complement of each other and in fact be combined

into a single planning methodology. When generation expansion planning is combined with

8
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transmission expansion planning, the main objective is to decide whether to invest in new

generation, new transmission, or a combination of both to ensure no load curtailment while

minimizing the variable generating cost. In the following sections, this is formulated as a

deterministic single-stage mixed-integer nonlinear programming problem.

This chapter is organized as follows. Section 2.1 explains the use of the Load Duration

Curve (LDC) in single nodal point generation planning, and when the transmission network

is considered. Capacity-based screening curves are discussed in order to explain how the

fixed and variable costs of a generating unit are obtained. The annual equivalent value

method is used to compute these costs. A simple static model is used to understand the

rationale behind generation expansion planning. Afterwards, a multistage model is stated

and fully explained. Finally, this multistage model is simplified into a single-stage model.

In Section 2.2, a linearized version of the AC power flow, the DC power flow, is obtained.

Using the DC power flow, a single-stage transmission expansion model is formulated. This

model assumes a fixed capacity factor for the generating units, i.e., only one operating

mode. Section 2.3 combines the generation and transmission expansion problems into one

single optimization model. The mixed-integer optimization model considers the various

operating modes represented by the LDC and incorporates the transmission network using

the DC model. Finally, Section 2.4 gives some concluding remarks.

2.1 Deterministic Generation Expansion

In this section, the basis are laid in order to formulate the deterministic generation ex-

pansion problem. Based on some of the most common models for generation expansion,

a multistage generation expansion model is stated and fully explained. At the end of this

section, the multistage model is simplified into a single-stage generation expansion model

for the vertically integrated electricity industry.

2.1.1 The Load Duration Curve

The demand for electricity varies over time. LDCs are used to represent the operating

conditions of a power system over time as long as the interest is only in the total capacity
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needed to meet future demands. LDCs are obtained from the hourly data of power demand

over a period of time.

The LDC plots the number of hours (percentage of hours per year) that the load equals

or exceeds a given level of demand (MW). An LDC can be thought as the probability of

finding load above a certain level. It is customary to show on the vertical axis of this curve

the load, and on the horizontal axis the duration either in hours or as a percentage of the

hours per year. The amount of energy to be generated by each unit equals the area under

the curve. A typical load duration curve is shown in Figure 2.1.

Figure 2.1: Typical load duration curve.

In [2], an example on how to construct a piecewise LDC is shown. A piecewise approx-

imation of the LDC is shown in Figure 2.2.

The LDC is used in the short-run to determine the optimal dispatch of generation

capacity. In the long-run, the LDC is used to decide the optimal level of investment in

new generation, the type of power plant, and the number of each type [25]. The LDC can

be used in generation expansion planning when all the load and all the generating units

are assumed to be connected at the same node (single nodal point generation planning),

or under the assumption that there is one LDC per major interconnecting node. In the

case of the single nodal point generation planning, the geographical factor and the cost of

transmission are ignored. The single nodal point generation planning is suitable when the

power system is either strong or spans over a small region [26]. Load can be represented
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Figure 2.2: Piecewise approximation of the load duration curve.

over a year (8760 hrs), over the life cycle of the generating plants, or over the representation

of two typical days per month (576 hrs) [4, 5]. By observing the LDC, it can be seen that

load is made up of a constant component (load that is always present) and a fluctuating

component (load that varies over time). The constant component is the base load demand

while the fluctuating component is made up of the mid load demand and the peak demand.

Note that, to satisfy the demand, some plants run all the time (base load plants), others

run about half the time (mid load plants), while others only run for a short period of time

during the high load demand (peaking plants). Peaking plants, like gas-fired combustion

or internal combustion units, have low fixed costs and high operating costs; base load

plants, like nuclear, hydroelectric, or coal fired units, have high fixed costs but very low

operating costs; and mid load plants, like old coal-fired or oil-fired units, are somewhere

in between. The capacity factor of a generating plant is determined by the load it serves.

The capacity factor is defined as the percentage of hours of the year a generating plant

serves a load [21,22,27].

2.1.2 Economic Assessment Methods

Economic assessment methods are used as a tool to select an optimal investment scheme

when many technologies are available to choose from. There are three different types of

economic assessment methods: i) the static assessment method, which ignores the time
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value of money; ii) the dynamic assessment method, which considers the time value of

money; and iii) the stochastic assessment method, which considers the time value of money

and uncertainty in some of the parameters. By using the probability distribution function

of the uncertain variables, a probabilistic analysis approach can be used with the stochastic

assessment method to valuate the profit of an investment.

When the time value of money is to be taken into consideration, one must bring all the

cash flow in different time frames to the same time frame, i.e., a payment in the future

at the end of the year n and a set of yearly instalments for n years can be brought to the

present in order to compare them.

The annual equivalent value method converts all the cost during the lifetime of a plant

(or the duration of the planning period) into an annual cost and then compares all the

different projects. The future cost F at the end for year n can be brought to the present

P using

P = F
1

(1 + i)n
, (2.1)

where i is the discount rate.

Once this is done, the annuities can be obtained using

A = P
i(1 + i)n

(1 + i)n − 1
, (2.2)

where A is the annual value [26].

2.1.3 Screening Curves

Screening curves can be used to identify the fixed and variable costs for a given generating

unit as a function of the capacity factor. As mentioned before, the capacity factor is

the percentage of the hours in the year that a generator serves a load, consequently, the

capacity factor is determined by the load. A screening curve plots the average cost vs. the

capacity factor. The two types of screening curves are: capacity-based and energy-based.

Capacity-based screening curves plot the average cost of using the capacity of the plant

and are represented with the curve ACCapacity = FC+cf×V C. This type of screening curves

can be used to determine optimal investment levels in different generating technologies

based on the optimal durations a certain technology should serve each operating mode.
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These curves can also be used to compare generation costs between different generating

technologies. Figure 2.3 shows a typical capacity-based screening curve.

Figure 2.3: Capacity-based screening curve.

From Figure 2.3, it can be seen that the capacity-based screening curve is formed by a

fixed component and a variable component. The fixed component is the investment cost.

Usually, the investment cost is annualized either over the plant life or the planning period.

The variable component is the variable operating cost whose biggest and most significative

part is the fuel cost. Since investment plans range from ten to thirty years, the annualized

fuel cost has to be levelized to take into account the effects of inflation. The uniform

levelized annual equivalent of the fuel cost is

LAfc = fc
1 −

[

(1+a)
1+i

]n

(i − a)

i(1 + i)n

(1 + i)n − 1
, (2.3)

where LAfc is the levelized annual fuel cost, fc is the fuel cost in the first year, a is the

inflation rate, i is the present worth rate, and n is the number of years of the levelization.

Equation (2.3) transforms an inflation series into annuities.

The following example shows how to obtain a capacity-based screening curve. Consider

a coal-fired generating unit with an investment cost of capacity of 1500 $/KW over a life

plant of twenty years. Assume a fuel cost of 2 $/MBtu, a heat rate of 9500 Btu/KWh, a

present worth rate of 10%, and a fuel price escalation of 6%.
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The fixed cost, computed from the investment cost of capacity using Equation (2.2), is

FC = 1500

(

0.1(1 + 0.1)20

(1 + 0.1)20 − 1

)

= 176.1894 $/KW-y = 0.1761894 M$/MW-y. (2.4)

During the first year, considering full time operation and with the fuel consumption

rate given, the fuel cost is

fc = (2)(9500)

(

$

MBtu

)(

Btu

KWh

)(

1 MBtu

1 × 106 Btu

)(

1 × 103 KWh

1 MWh

)(

8760 h

1 y

)

= 166440 $/MW-y

= 0.16644 M$/MW-y. (2.5)

The uniform levelized annual fuel cost, using equation (2.3), is

V C = LAfc = 0.16644
1 −

[

(1+0.06)
1+0.1

]20

(0.1 − 0.06)

0.1(1 + 0.1)20

(1 + 0.1)20 − 1

= (0.16644)(1.537)

= 0.2558 M$/MW-y. (2.6)

The capacity-based screening curve, from Equations (2.4) and (2.6), is

ACCapacity = 0.1761894 + cf × 0.2558 M$/MW-y. (2.7)

Energy-based screening curves show the average cost of the energy produced by a gener-

ating unit. They are represented by the curve ACEnergy = FC
cf

+V C. Energy-based screening

curves are very useful when assessing alternative technologies (nuclear, wind, solar or the

like) in electricity markets. The capacity factors for alternative technologies are technical

dependant rather than market dependant. This is because their variable costs are usually

below the market price so they run whenever they are technically capable. To asses the

economics of alternative technologies, the average cost of energy is compared with the

average price of the market. Figure 2.4 shows a typical energy-based screening curve.

It is worth mentioning that when comparing several technologies using either the

capacity-based or the energy-based screening curves, both curves intersect at the same

point, that is, at the capacity factor at which one generating unit becomes more economi-

cal than the other. For a detailed discussion on screening curves please refer to [4, 22].
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Figure 2.4: Energy-based screening curve.

2.1.4 Static Model

Having a static deterministic model implies that decisions are made only once and the

future is assumed to be perfectly known. These type of models are the easiest to implement

and the computational effort required to solve them is minimum. Deterministic models

are helpful, though, to identify all the different aspects involved in generation expansion

planning. Assuming a single nodal point generation planing, i.e., omitting the transmission

network, one can identify three basic parameters. These are: i) the investment cost, ii)

the operating cost, and iii) the capacity factor. The generation expansion problem, using

the LDC, is to find the type of power plant (coal, gas, oil, nuclear, hydro, renewable and

so forth) that minimizes the total cost of producing 1 MW during the time T of each

operating mode (base, mid, and peak load). Assuming that there is no existing generation,

this can be mathematically represented as

min {rntxntnnt + cfmqntgm,nt} , ∀ nt,m, (2.8)

where m ∈ M, nt ∈ Nt, and rnt and qnt are obtained from capacity-based screening curves.

A logical result to (2.8), just by looking at the LDC, is to cover the base load demand

(large values of Tm) with equipment that has low operating cost but hight investment cost,
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and the peak load demand (small values of Tm) with equipment that has low investment

cost but high operating cost.

2.1.5 Multistage Model

When having in view long-term periods of investment, there are at least four reasons why

the generation expansion problem may be addressed as a multistage program: i) long-term

evolution of equipment costs, ii) long-term evolution of the load curve, iii) appearance

of new technology, and iv) obsolescence of currently available equipment [5]. Based on

the models in [5, 28], and ignoring the transmission network, the following multistage

deterministic model is proposed.

The objective function to be minimized, Equation (2.9), is made up of the investment

cost in new generating units and the generating cost of existing and newly installed gen-

erating capacity over the planning period

min
∑

t,nt

rt
ntw

t
nt +

∑

t,m

cf t
m

(

∑

nt

qt
ntg

t
m,nt +

∑

et

qt
etg

t
m,et

)

. (2.9)

The installed capacity constraint, Equation (2.10), describes the actual installed capac-

ity of new technology that is available at each stage

wt
nt = wt−1

nt + xntn
t
nt, ∀ nt, t. (2.10)

The peak demand constraint, Equation (2.11), establishes that the capacity of the ex-

isting and newly installed generating units, affected by their equivalent availability, must

be at least equal to the peak demand of every stage

∑

et

αety
t
et +

∑

nt

αntw
t
nt ≥ P t, ∀ t. (2.11)

Equation (2.12) shows the power balance constraint. It establishes that the power

generated by the existent and newly installed generating capacity equals the power demand

of each operating mode for every stage

∑

nt

gt
m,nt +

∑

et

gt
m,et = Lt

m, ∀ m, t. (2.12)
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The budget constraint, Equation (2.13), places an upper limit in the fixed payments to

be made each stage
∑

nt

rt
ntw

t
nt ≤ Bt, ∀ t. (2.13)

Equations (2.14) and (2.15) are the derated capacity constraints ; they place an upper

limit in the power generated at each stage by the existing and newly installed generating

units that takes into account their derated capacity. The capacity of any generating unit

is affected by its equivalent availability. Because of a component failure, or a similar

condition, the output of an unit may be reduced. This type of outage results in the derating

of the unit. The equivalent availability of a generating unit accounts for such derating

outages [4]. It is worth mentioning that generating capacity is defined as the potential to

deliver power. Consequently, it is measured in watts and there is no inconsistency in units

∑

m

(gt
m,nt) − αntw

t
nt ≤ 0, ∀ nt, t, (2.14)

∑

m

(gt
m,et) − αety

t
et ≤ 0, ∀ et, t. (2.15)

The relationship between indices and sets is as shown in Equation (2.16)

et ∈ Et; m ∈ M; nt ∈ Nt; t ∈ T . (2.16)

The fact that yt
et can be updated at every stage accounts for changes in the existing

capacity, i.e., the decommissioning of some units. If it is assumed that the planning period

is less than the lifetime of the existing equipment, then yt
et remains unchanged.

It is worth mentioning that, in a stochastic model, there is a difference between stages

and periods. In a two-stage stochastic model, the first stage decisions (investment decisions)

are deterministic here-and-now decisions that do not change. The second stage decisions

(operational decisions) are reactions to these fist stage decisions. However, each stage can

be composed of several periods. For instance, if the whole planning period for the capacity

expansion problem is made up of 36 months, the first stage is composed, say, of 6 months

while the second stage is composed of 30 months. A Multistage model is needed if it is

foreseen that the investment decisions need to be adjusted in the future.



Chapter 2. Centralized Power System Planning: A Deterministic ... 18

2.1.6 Single-Stage Model

The following single-stage model is formulated as a benchmark in order to compare deter-

ministic single-stage models with stochastic two-stage models.

Objective function

min
∑

nt

rntxntnnt +
∑

m

cfm

(

∑

nt

qntgm,nt +
∑

et

qetgm,et

)

. (2.17)

Note that the parameters qet, qnt, and rnt in Equation 2.17 are obtained from capacity-based

screening curves using the annual equivalent value method. Note also that in Equation

(2.17), the annualized fixed cost of existing technology does not appear. This is because

that is a fixed constant value dependant solely on the existing generating capacity, therefore

it cannot be minimized.

Peak demand constraint

∑

et

αetyet +
∑

nt

αntxntnnt ≥ P. (2.18)

Power balance constraint

∑

nt

gm,nt +
∑

et

gm,et = Lm, ∀ m. (2.19)

Budget constraint
∑

nt

rntxntnnt ≤ B. (2.20)

Derated capacity constraints

∑

m

(gm,nt) − αntxntnnt ≤ 0, ∀ nt, (2.21)

∑

m

(gm,et) − αetyet ≤ 0, ∀ et. (2.22)

The relationship between indices and sets is shown in Equation (2.23)

et ∈ Et; m ∈ M; nt ∈ Nt. (2.23)



Chapter 2. Centralized Power System Planning: A Deterministic ... 19

2.2 Deterministic Transmission Expansion

The goal of transmission expansion in a vertically integrated electricity industry is to

minimize the operating cost of the existing generating units, and the investment cost in

new transmission while meeting operational constraints. This section presents the basis for

deterministic transmission expansion. A DC power flow model is used in order to formulate

a single-stage deterministic optimization model.

2.2.1 AC Power Flow in a Transmission Line

Power is defined as the rate of flow of energy. Since power is a flow, it is measured in watts.

Consider the π equivalent circuit for long and medium transmission lines shown in Figure

2.5. The complex power, Si-j, that flows in the transmission line that connects Node i to

Node j is

Si-j = Pi-j + jQi-j, (2.24)

where Pi-j is the active power and Qi-j is the reactive power.

Figure 2.5: π circuit for transmission lines.

The active power that flows from Node i to Node j is

Pi-j = Gi-j
[

|Vi|2 − |Vi||Vj| cos(δi − δj)
]

− Γi-j|Vi||Vj| sin(δi − δj), (2.25)
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where Gi-j = |Yi-j| cos θi-j and Γi-j = |Yi-j| sin θi-j are the conductance and the susceptance

of the transmission line i-j, respectively; Vi = |Vi| cos(δi) + j|Vi| sin(δi) is the voltage at

Node i; and Vj = |Vj| cos(δj) + j|Vj| sin(δj) is the voltage at Node j.

The reactive power that flows from Node i to Node j is

Qi-j = Γi-j
[

−|Vi|2 + |Vi||Vj| cos(δi − δj)
]

− Gi-j|Vi||Vj| sin(δi − δj) − |Vi|2|BCap|, (2.26)

where BCap = |BCap| sin(θCap), and θCap = π
2

[29].

The relationship between the admittance and the impedance is Yi-j = Z−1
i-j . From com-

plex variable theory, and defining Zi-j = Ri-j +jXi-j, the conductance and the susceptance

are

Gi-j =
Ri-j

R2
i-j + X2

i-j
, (2.27)

Γi-j = − Xi-j
R2

i-j + X2
i-j

. (2.28)

A linearized version of the AC power flow—the DC power flow—dropping Equation

(2.26) and keeping Equation (2.25), can be obtained under the assumption that the power

angle (δi − δj) is small in magnitude, and the voltage magnitudes at the sending and

receiving nodes are 1 p.u. If (δi − δj) is small one gets

cos(δi − δj) ≈ 1, (2.29)

sin(δi − δj) ≈ δi − δj. (2.30)

Under the previous assumptions, Equation (2.25) becomes

Pi-j = −Γi-j(δi − δj). (2.31)

Combining Equations (2.28) and (2.31), and assuming that the resistance of the line

is negligible, one gets the linearized version of the active power that flows from Node i to

Node j, that is

Pi-j =
1

Xi-j
(δi − δj). (2.32)
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2.2.2 Single-Stage Model

The single-stage deterministic model presented in this section is based on the initial work by

Garver [30], who used linear programming to solve a transportation model for transmission

expansion, and Villasana et al. [31], who used linear programming to solve a model which

combined DC power flows with the transportation model. The model in [32] and [33],

with some modifications, can be applied in a vertically integrated industry. It is assumed

that the rights-of-way where new lines can be built are given. The proposed single-stage

deterministic model is described next.

The objective function, Equation (2.33), minimizes the investment cost in new trans-

mission lines and in the annualized variable production cost with an assumed fixed capacity

factor for each existing generating unit

min
∑

i-j
ci-jni-j +

∑

et,h

qetget,h. (2.33)

The nodal balance constraint is shown in Equation (2.34)

Sf + g = d. (2.34)

The budget constraint, shown in Equation (2.35), imposes an upper limit on the invest-

ment to be made each year in new transmission lines

∑

i-j
ci-jni-j ≤ B. (2.35)

Equation (2.36) shows the power flow constraint for each transmission line; notice the

nonlinearity due to the multiplication of integer variables with continuous variables

fi-j − Γi-j(n
0
i-j + ni-j)(δi − δj) = 0, ∀ i-j. (2.36)

Equations (2.37) and (2.38) are the transmission line capacity constraints. The power

loading of a transmission line depends, among other things, on thermal limits. Thermal

limits are used to avoid damaging the conductor due to annealing and to avoid excessive

sag [4]

fi-j ≤ (n0
i-j + ni-j)f i-j, ∀ i-j, (2.37)

−fi-j ≤ (n0
i-j + ni-j)f i-j, ∀ i-j. (2.38)



Chapter 2. Centralized Power System Planning: A Deterministic ... 22

Stability limits are used to limit the power angle between sending and receiving nodes.

In uncompensated lines, it is common practice to limit the power angle to a value no

greater than 45◦ [34]. The stability constraint is shown in Equation (2.39)

− 1

4
π ≤ (δi − δj) ≤

1

4
π, ∀ i-j. (2.39)

The derated capacity constraint is shown in Equation (2.40)

get,h − αetyet,h ≤ 0, ∀ et, h. (2.40)

Upper and lower limit constraints can be added to limit the values of some variables of

the model such as the number of circuits to be added in each right-of-way, the capacity of

each generator that is effectively used, and the nodal angles at each bus. These constraints

are shown in Equations (2.41)–(2.43)

0 ≤ ni-j ≤ ni-j ∀ i-j, (2.41)

get,h ≥ 0 ∀ et, h, (2.42)

−2π ≤ δν ≤ 2π, ∀ ν. (2.43)

Equation (2.44) shows the relationship between indices and sets

et ∈ Et; h ∈ H; h, i, j, ν ∈ N ; i-j ∈ I; H, I ⊂ N . (2.44)

2.3 Deterministic Generation and Transmission

Expansion

As stated before, a vertically integrated industry plans for both generation and transmis-

sion expansion. Consequently, a joint model that plans for both at the same time can

be implemented. This section combines the two models for generation and transmission

expansion in a single-stage optimization model; the model assumes that there is one LDC

per node and includes the transmission network using a DC model.
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2.3.1 Single-Stage Model

If one wants to combine into one single optimization model the generation and transmis-

sion expansion problem, then one is interested in minimizing the investment cost in new

transmission lines and in new generating units as well as in the generation cost of existing

and newly installed generating capacity [35]. The following optimization model accounts

for the different operating modes present in the LDC while incorporating the transmission

network using a DC model.

Objective function

min
∑

i-j
ci-jni-j +

∑

nt,p

rntxntnnt,p +
∑

m

cfm

(

∑

et,h

qetgm,et,h +
∑

nt,p

qntgm,nt,p

)

. (2.45)

Budget constraint
∑

i-j
ci-jni-j +

∑

nt,p

rntxntnnt,p ≤ B. (2.46)

Unlike before, the budget constraint now considers an upper limit in the investment to be

made in new transmission lines and in new generating units.

Derated capacity constraints

∑

m

(gm,nt,p) − αntxntnnt,p ≤ 0, ∀ nt, p, (2.47)

∑

m

(gm,et,h) − αetyet,h ≤ 0, ∀ et, h. (2.48)

Nodal balance constraint

Sfm + gm = dm, ∀ m. (2.49)

Power flow constraint

fm,i-j − Γi-j(n
0
i-j + ni-j)(δm,i − δm,j) = 0, ∀ m, i-j. (2.50)

Notice the nonlinearity due to the multiplication of integer variables with continuous vari-

ables.

Transmission line capacity constraints

fm,i-j ≤ (n0
i-j + ni-j)f i-j, ∀ m, i-j, (2.51)

−fm,i-j ≤ (n0
i-j + ni-j)f i-j, ∀ m, i-j, (2.52)
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Stability constraint

− 1

4
π ≤ (δm,i − δm,j) ≤

1

4
π, ∀ m, i-j. (2.53)

Upper and lower limit constraints

0 ≤ ni-j ≤ ni-j, ∀ i-j, (2.54)

gm,et,h ≥ 0, ∀ m, et, h, (2.55)

gm,nt,p ≥ 0, ∀ m,nt, p, (2.56)

−2π ≤ δm,ν ≤ 2π, ∀ m, ν. (2.57)

Relationship between indices and sets

et ∈ Et; h ∈ H; h, i, j, p, ν ∈ N ; i-j ∈ I; m ∈ M; nt ∈ Nt; p ∈ P; H, I,P ⊂ N . (2.58)

2.4 Concluding Remarks

This chapter presents deterministic models for generation, transmission, and generation

and transmission expansion. The goal is to identify all the modelling parameters in order to

build more complex stochastic models and to have a benchmark to compare the stochastic

models presented in Chapter 3. The main contribution of this chapter is the joint single-

stage mixed-integer nonlinear program for generation and transmission expansion shown

in Section 2.3.1. This model includes the transmission network using a DC model and

assumes that there is one LDC per node. Hence, several operating modes (as many as

there are in the linearized LDC) can be considered in order to choose the right mixture of

generating technologies.



Chapter 3

Centralized Power System Planning:

A Stochastic Approach

Planning for the real life is full of random events. The longer the period over which these

events are forecasted, the greater the risk. One can shield against risk by implementing

stochastic models, using probabilistic constraints, and applying risk minimization tech-

niques. In centralized power system planning, the greatest source of uncertainty comes

from the inability to accurately predict the demand levels. Stochastic models can be im-

plemented in order to plan for all the foreseeable levels of demand. When planning for

generation and transmission expansion, it is important to consider randomness in param-

eters such as the equivalent availability factors of generating units and the transmission

capacity factors of transmission lines. These can be done by using probabilistic constraints.

In order to minimize the risk, the mean-variance Markowitz theory can be implemented.

This chapter builds on the deterministic models presented in Chapter 2 and presents

stochastic models for generation, transmission, and generation and transmission expansion

for the vertically integrated industry. By means of numerical examples, the superiority of

stochastic models with risk over deterministic models is stressed. Concepts such as the

Expected Value of Perfect Information (EVPI) and the Value of the Stochastic Solution

(VSS) are introduced as ways of quantifying uncertainty.

This chapter is organized as follows. Section 3.1 introduces the general concept of

the mean-variance Markowitz theory. In Section 3.2, the deterministic equivalent of a

25
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probabilistic constraint for the particular case of a normally distributed random variable

is obtained. Section 3.3 introduces the concepts of the VSS and the EVPI as a way

of quantifying the importance of randomness. In Section 3.4, a multistage stochastic

model for generation expansion is first introduced. Afterwards, using the block separability

property of the multistage model, a two-stage stochastic model is obtained. Using the

mean-variance Markowitz theory and probabilistic constraints, a two stage stochastic model

that minimizes risk and accounts for the randomness of the equivalent availability factors is

proposed. Some numerical examples are given. In Section 3.5, the transmission expansion

problem is stated as a two-stage stochastic program. Like in Section 3.4, a risk parameter is

introduced in the objective function and probabilistic constraints are included to account

for the random equivalent availabilities and the random transmission capacity factors.

The concepts of the VSS and the EVPI are illustrated by solving a six-node system. In

Section 3.6, the two-stage stochastic programs for generation and transmission expansion

are merged into a single optimization problem. The most complete model is a mixed-

integer nonlinear program that includes risk minimization and probabilistic constraints.

In this section, a six- and a 21-node systems1 are solved and the VSS and EVPI are also

obtained. Finally, Section 3.7 gives some concluding remarks.

3.1 Mean-Variance Markowitz Theory

Harry M. Markowitz developed the minimum variance portfolios theory in which the ob-

jective is to minimize the variance of the rate of return for a fixed expected rate of return.

This approach makes the trade-offs between the mean and the variance explicit [36] – [38].

The variance of any random variable gives information about how far, or how wrong [1],

that variable is from its mean. Large variance values imply that the random variable most

likely will be far off from its mean incurring then in greater risk. Hence, the minimum

variance approach can be viewed as a way of minimizing the risk in an investment project.

Minimizing the risk (minimizing the variance) implies higher cost. In order to account for

risk in a two-stage stochastic model,2 a risk factor along with the variance are incorporated

1A 57- and a 118-node system are presented in Appendix D.
2For a detailed discussion on stochastic models, please refer to Appendix A.
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into the objective function as follows [39]:

min f(x) + E{f(y)} + θrσ
2
f(y), (3.1)

where f(x) is the first-stage decision (deterministic part), E{f(y)} is the expected value

of the second-stage decision (stochastic part), and σ2
f(y) is the variance of the second-stage

decision. The parameter θr is a risk parameter and is chosen by the decision maker; it

weighs the importance that the minimization of the variance has in the objective function.

The higher the value of θr, the more important the minimization of the variance.

The variance term in Equation (3.1) can be replaced by the standard deviation as long

as θr is properly scaled.

3.2 Probabilistic Constraints

Some constraints in a stochastic program may be relaxed in the sense that they may not

need to hold surely ; instead, they may need to hold almost surely, say, with a reliability

level. These constraints are known as probabilistic constraints. The general formulation

for a single chance constraint is

Pr{A(ξ̃)x ≥ h(ξ̃)} ≥ α, (3.2)

where 0 < α < 1 is the minimum acceptable probability for meeting the constraint.

To incorporate probabilistic constraints into a recourse problem, i.e., the two-stage

stochastic problem with fixed recourse, they first need to be transformed into their deter-

ministic equivalents. The deterministic equivalent for the specific case of a single prob-

abilistic constraint when A(ξ̃) is a standard normally distributed random variable and

h(ξ̃) = 0 is

Āx − Φ−1(α)
√

xT Cx ≥ 0, (3.3)

where Ā is the mean value of A(ξ̃), C is the covariance matrix, and Φ−1(α) is the α-quantile3

of A(ξ̃). Please note that Equation (3.3) is only valid under these assumptions [5].

3For a random variable ξ, η is its α-quantile if and only if η = min{x | F (x) ≥ α} where 0 < α < 1 and

F (x) is the cumulative distribution function.
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3.3 Quantifying the Importance of Randomness

There are two values of interest when solving stochastic problems that can quantify the

importance of randomness. One is the value of the stochastic solution (VSS) and the other

is the expected value of perfect information (EVPI).

The VSS is defined as the difference between the expected result of using the Expected

Value Solution (EEV) and the objective function value of the stochastic problem consider-

ing all the possible scenarios (Stochastic Solution, SS, also referred as the here-and-now

solution). The EEV is obtained from solving the stochastic problem, but considering the

aggregate-level decisions fixed to the results obtained by the deterministic model with the

average demand (expected values) [5, 40], that is

VSS = EEV − SS. (3.4)

The VSS is the cost of ignoring uncertainty in choosing a decision [5]; in other words,

it computes the benefit of knowing the distributions of the stochastic variables [40].

The EVPI represents the loss of profit due to the presence of uncertainty or, in other

words, measures the maximum amount a decision maker would be ready to pay in return

for complete and accurate information about the future [5]. The EVPI measures the value

of knowing the future with certainty [40]. The EVPI is the difference between the stochastic

solution (SS) and the Wait and See Solution (WSS). The WSS is the mean value of all the

deterministic solutions for each one of the expected values, that is

EVPI = SS − WSS. (3.5)

3.4 Stochastic Generation Expansion

The random long-term evolution of equipment cost, the long term uncertainty in the evo-

lution of the LDC, the uncertainty on the appearance of new technologies, and the obso-

lescence of the existent equipment are enough reasons to justify a multistage stochastic

program to model the generation expansion problem. In the model shown in Section 2.1.5,

a number of variables can be considered as random. To give an example: the evolution of

equipment cost introduces randomness in the parameter rt
nt; evolution of fuel cost as well
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as other costs related with the production of energy also make the parameters qt
nt and qt

et

random; even the equivalent availabilities, αnt and αet, can be considered random since

some plants may not deliver their nominal output due to a derated outage which is totally

unpredictable. Another highly random parameter is the load Lt
m for each operating mode.

This leads to the formulation of the problem as a multistage stochastic model.

3.4.1 Multistage Model

Without any loss of generality, assume that only the levels of demand Lt
m are random4

and that the probabilities of their occurrences as well as their expected values are known.

Under these assumptions, the total capacity of new technology available at each stage wt
nt,

the capacity of new and existing technology effectively used gt
m,nt and gt

m,et, and the new

generating capacity added xntn
t
nt, become random variables dependent on the random

vector ξt whose elements are the different levels of demand Lt
m. Taking the expectation

with respect to the random vector ξ = (ξ2, . . . , ξ|T |), where the elements forming ξt are

the demands (Lt
1, . . . ,L

t
|M|), the multistage stochastic model can be written as

Objective function

min Eξ

{

∑

t,nt

rt
ntw

t
nt +

∑

t,m

cf t
m

(

∑

nt

qt
ntg

t
m,nt +

∑

et

qt
etg

t
m,et

)}

. (3.6)

Installed capacity constraint

wt
nt = wt−1

nt + xntn
t
nt, ∀ nt, t. (3.7)

Peak demand constraint

∑

et

αety
t
et +

∑

nt

αntw
t
nt ≥ P t, ∀ t. (3.8)

Power balance constraint

∑

nt

gt
m,nt +

∑

et

gt
m,et = Lt

m, ∀ m, t. (3.9)

4Only in this section and the following, bold font notation is used to indicate dependance on the random

outcome ω, i.e., below average, average, and above average level of demand.
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Budget constraint
∑

nt

rt
ntw

t
nt ≤ Bt, ∀ t. (3.10)

Derated capacity constraints

∑

m

(gt
m,nt) − αntw

t
nt ≤ 0, ∀ nt, t, (3.11)

∑

m

(gt
m,et) − αety

t
et ≤ 0, ∀ et, t. (3.12)

Indices and sets

et ∈ Et; m ∈ M; nt ∈ Nt; t ∈ T . (3.13)

However, making some simplifications and assumptions, the generation expansion prob-

lem can be transformed into a two-stage stochastic problem.

3.4.2 Two-Stage Model

The problem in (3.6)–(3.13) has a property known as block separable recourse. This prop-

erty makes possible to transform a multistage stochastic program with fixed recourse into

a two-stage stochastic program with fixed recourse. A multistage stochastic program has

block separable recourse when the decision vectors can be split into aggregate-level deci-

sions and detailed-level decisions.5 The block separable recourse property implies that the

detailed-level variables have no direct effect on future constraints or, in other words, it

implies that the linkage between consecutive stages is weak. The aggregate-level variables

can be grouped together and sent into the first stage. The first stage is then composed

of the aggregate-level decisions while the second stage is composed of the detailed-level

decisions. Because of this separation, a multistage stochastic problem can be transformed

into a two-stage stochastic problem.

In the generation expansion problem, it is assumed that future demands do not depend

on the past, i.e., having high levels of demand during several previous consecutive stages

does not necessarily imply that the demand in the following stages will be high too. Ca-

pacity carried over from stage t − 1 to stage t is not affected by the demand in stage t.

Therefore, the decision to install new generating capacity, xntn
t
nt, in the future does not

5Please refer to Appendix A for a detailed discussion.
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depend on the outcomes up to stage t. Decisions on the amount of capacity to be installed

can be made at the beginning of the planning period; consequently, the future only involves

reactions to these decisions. The same xntn
t
nt must be optimal for any realization of ξ.

The only remaining stochastic decisions, gt
m,et and gt

m,nt, are in the operation-level; these

stochastic decisions now depend solely on each stage’s capacity. The aggregate-level deci-

sions, xntn
t
nt and wt

nt, can be pulled together into the first stage while the detailed-level

decisions, gt
m,et and gt

m,nt, can be pulled together into the second stage [5].

The objective function6 of the two-stage stochastic model with fixed recourse is obtained

by carrying the aggregate-level decisions into the first stage and taking the expectation over

the detailed-level decisions. Define z as

z =
∑

m

cfm

(

∑

nt

qntgm,nt +
∑

et

qetgm,et

)

. (3.14)

The expectation over the detailed-level decisions is [41]

E {z} =
∑

k

prkzk

=
∑

k

prk

(

∑

m

cfm

(

∑

nt

qntgm,nt +
∑

et

qetgm,et

))

=
∑

k,m

prkcfm

(

∑

nt

qntgk,m,nt +
∑

et

qetgk,m,et

)

, (3.15)

where prk is the probability of occurrence of scenario7 k, K is the set of all foreseeable

scenarios, and k ∈ K.

The two-stage stochastic program with fixed recourse is formally stated in Equations

(3.16)–(3.22); it ignores the transmission network, i.e., single nodal point generation plan-

ning. This model considers randomness in the levels of demand (right hand side) through

the consideration of a number of foreseeable scenarios. The variables no longer depend on

T ; the random variables are now dependant on K.

6From now onward, the bold font notation is dropped in order to avoid cumbersome notation.
7It is assumed that a scenario is a possible occurrence that is given; this work is not concerned with

the technique used to generate these scenarios.
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Objective function

∑

nt

rntxntnnt +
∑

k,m

prkcfm

(

∑

nt

qntgk,m,nt +
∑

et

qetgk,m,et

)

. (3.16)

Peak demand constraint

∑

et

αetyet +
∑

nt

αntxntnnt ≥ P. (3.17)

Power balance constraint

∑

nt

gk,m,nt +
∑

et

gk,m,et = Lk,m, ∀ k,m. (3.18)

Budget constraint
∑

nt

rntxntnnt ≤ B. (3.19)

Derated capacity constraints

∑

m

(gk,m,nt) − αntxntnnt ≤ 0, ∀ k, nt, (3.20)

∑

m

(gk,m,et) − αetyet ≤ 0, ∀ k, et. (3.21)

Indices and sets

et ∈ Et; m ∈ M; nt ∈ Nt; k ∈ K. (3.22)

3.4.3 Deterministic Model vs. Two-Stage Stochastic Model

This section presents a numerical example that highlights the superiority of a two-stage

stochastic model over a single-stage deterministic model for generation expansion in a

vertically integrated industry.

The following assumptions are made: The transmission network is ignored. There are

two existing generating units and there are three different technologies to choose from.

The planning period is shorter than the life time of either the existing or new plants. The

LDC is obtained over a typical year, that is, over 8760 hours. Three operating modes are

considered: base, mid, and peak load demand. Each operating mode has three possible
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foreseeable scenarios: below, average, and above average demand. The expected values of

the equivalent availabilities, αet and αnt, are used. The budget constraint is not binding.

All the pertinent data is given in Appendix C.

The decision maker has to guess what the future demand would be. If a conserva-

tive approach is used, the decision maker invests for the average levels of demand. If a

pessimistic approach is used, the decision maker invests for the above average levels of

demand. Of course, a pessimistic approach implies higher investment cost but it satisfies

the demands for the three different scenarios, although not in an economical way. If the

decision maker wishes to save as much as possible in the investment, then he invests for

the below average levels of demand. To show how cost varies depending on the levels of

demand used in the investment plan, the single-stage deterministic generation expansion

problem, shown in Equations (2.17)–(2.23), is solved8 for each one of the three different

foreseeable scenarios. The results are shown in Tables 3.1–3.3. For the below average level

of demand, one unit of technology two is built. For the average level of demand, one unit

of technology one is built. For the above average level of demand, one unit of technology

one and one unit of technology two are built.

Table 3.1: Deterministic gen. exp., below average.

Operating Mode† et nt

1 3 2

B‡ 462.5 0.0 17.5

M⋆ 0.0 101.0 79.0

P∗ 0.0 80.0 0.0

Overall Cost: $155.877 M.

† in MW; ‡ Base, ⋆ Mid, and ∗ Peak.

An alternative to solve this problem, is to take into account the probabilities of occur-

rence of the three possible scenarios by solving the two-stage stochastic model with fixed

8The models in this section are implemented in the optimization software GAMS using the MINOS

solver [42].
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Table 3.2: Deterministic gen. exp., average.

Operating Mode† et nt

1 3 1

B‡ 222.5 0.0 317.5

M⋆ 240.0 0.0 0.0

P∗ 0.0 0.0 140.0

Overall Cost: $206.4916 M.

† in MW; ‡ Base, ⋆ Mid, and ∗ Peak.

Table 3.3: Deterministic gen. exp., above average.

Operating Mode† et nt

1 3 1 2

B‡ 162.5 0.0 437.5 0.0

M⋆ 300.0 0.0 0.0 0.0

P∗ 0.0 78.5 25.0 96.5

Overall Cost: $246.169 M.

† in MW; ‡ Base, ⋆ Mid, and ∗ Peak.

recourse shown in Equations (3.16)–(3.22). The solution satisfies the three possible levels

of demand and, hopefully, is cheaper than the pessimistic approach. The solution of the

stochastic model is shown in Table 3.4. The stochastic solution is to build one unit of

technology one and two units of technology two.

From the results it can be seen that the new capacity installed satisfies the three levels

of demand and, comparing the overall costs,9 $20.655 M are saved with respect to the

deterministic solution for the above average level of demand. The results also suggest the

decommissioning of the existing 200 MW of technology three.

9The overall cost equals the investment cost plus the expected variable generating cost.
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Table 3.4: Stochastic generation expansion.

Operating Mode† et nt

Below Average 1 3 1 2

B‡ 382.5 0.0 97.5 0.0

M⋆ 0.0 0.0 180.0 0.0

P∗ 80.0 0.0 0.0 0.0

Average

B‡ 462.5 0.0 77.5 0.0

M⋆ 0.0 0.0 240.0 0.0

P∗ 0.0 0.0 140.0 0.0

Above Average

B‡ 462.5 0.0 137.5 0.0

M⋆ 0.0 0.0 300.0 0.0

P∗ 0.0 0.0 25.0 175.0

Overall Cost: $225.514 M.

† in MW; ‡ Base, ⋆ Mid, and ∗ Peak.
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3.4.4 Two-Stage Model with Risk

In the generation expansion problem where risk minimization is introduced by means of

the mean-variance Markowitz theory, the interest is in the minimization of the investment

cost in new generation, the expected annualized production cost, and the variance of the

annualized production cost. An investor that chooses a solution with low variance but high

annualized production cost, is said to be risk averse (large values of θr). An investor that

chooses a solution with high variance but low annualized production cost, is said to be risk

preferring (small values of θr) [43].

The variance of z, as defined in Equation (3.14), is [6]

σ2
z = E{z2} − E2{z}

=
∑

k

prk

(

∑

m

cfm

(

∑

nt

qntgk,m,nt +
∑

et

qetgk,m,et

))2

−
(

∑

k,m

prkcfm

(

∑

nt

qntgk,m,nt +
∑

et

qetgk,m,et

))2

. (3.23)

From Equations (3.1), (3.15), and (3.23), the objective function of the two-stage stochas-

tic model incorporating the variance and the risk parameter is shown in Equation (3.24);

the constraints remain as in (3.17)–(3.22).

min
∑

nt

rntxntnnt +
∑

k,m

prkcfm

(

∑

nt

qntgk,m,nt +
∑

et

qetgk,m,et

)

+ θr







∑

k

prk

(

∑

m

cfm

(

∑

nt

qntgk,m,nt +
∑

et

qetgk,m,et

))2

−
(

∑

k,m

prkcfm

(

∑

nt

qntgk,m,nt +
∑

et

qetgk,m,et

))2






. (3.24)

It can be shown that, by varying the risk parameter θr, a wide range of solutions can

be obtained. The value of the risk parameter is to be chosen by the decision maker. The

risk parameter θr weighs the importance that the minimization of the variance as a risk

measure has. The larger the value of θr, the smaller the risk. Smaller risk implies higher

cost. In Table 3.5, some solutions are generated for different values of θr.
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Table 3.5: Annualized generating cost, θr varies, gen. exp.

Risk Parameter Mean† Std. Deviation† Overall Cost‡

θr = 0.00 125.045 21.735 211.895

θr = 0.03 128.134 18.633 214.984

θr = 0.04 129.920 17.79 216.770

θr = 0.05 132.791 15.275 219.641

θr = 0.06 136.679 12.729 223.529

θr = 0.10 144.457 7.637 231.307

† in $M-y; ‡ Investment cost plus annualized generating cost, in $M-y.

From the results one can observe that as the risk aversion increases, the overall cost

increases and the standard deviation decreases.10

10The square root of the variance is the standard deviation. Therefore,
√

σ2
z = σz is the standard

deviation.
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3.4.5 Two-Stage Model with Risk and Probabilistic Constraints

To consider randomness in the equivalent availability of the generating plants, one can

incorporate probabilistic (chance) constraints to the two-stage stochastic model. The der-

ated capacity constraints, Equations (3.20) and (3.21), can be modified so they hold almost

surely with a specific reliability level. Assuming that the equivalent availability factor is

a standard normally distributed random variable, the probabilistic derated capacity con-

straints are

∑

m

(gk,m,nt) − αntxntnnt + βg

{

σ2
αnt

(xntnnt)
2
} 1

2 ≤ 0, ∀ k, nt, (3.25)

∑

m

(gk,m,et) − αetyet + βg

{

σ2
αet

(yet)
2
} 1

2 ≤ 0, ∀ k, et. (3.26)

The parameter βg is the α-quantile of the standard normally distributed random variables

αet and αnt, assuming they are of the same technology. The value of βg depends on the

minimum desired probability of satisfying the random (chance) constraints, i.e., if βg equals

1.75, the probabilistic constraints are met with at least a 96% probability. As in the case

of θr, the decision maker is responsible for choosing the value βg.

Note that, if the variances of αnt and αet are known, Equations (3.25) and (3.26) can

be linearized. Hence, the linearized constraints are

∑

m

(gk,m,nt) − αntxntnnt + βgσαnt
xntnnt ≤ 0, ∀ k, nt, (3.27)

∑

m

(gk,m,et) − αetyet + βgσαet
yet ≤ 0, ∀ k, et. (3.28)

In Table 3.6, some solutions for the model represented by Equations (3.24), (3.17)–

(3.19), (3.22), (3.27), and (3.28) are shown. The parameter θr is fixed to a value of 0.05

while βg is allowed to vary. It can be seen that as the probability of meeting the chance

constraints increases, the overall cost also increases.

For different values of θr, and keeping βg fixed to a value of 1.3 (at least a 90% probabil-

ity the chance constraints are met), the mean and the standard deviation of the annualized

generating cost are obtained. The values are presented in Table 3.7. It can be observed

that a risk averse attitude implies higher investment and operational costs.
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Table 3.6: Annualized generating cost, βg varies, gen. exp.

Probability Mean† Std. Deviation † Overall Cost‡

≈ 76%; βg = 0.7 146.652 15.275 249.822

≈ 84%; βg = 1.0 153.248 15.275 264.578

≈ 90%; βg = 1.3 160.200 15.275 279.690

≈ 96%; βg = 1.74 175.078 15.275 302.728

† in $M-y; ‡ Investment cost plus annualized generating cost, in $M-y.

Table 3.7: Annualized generating cost, θr varies, gen. exp.

Risk Parameter Mean† Standard Deviation† Overall Cost‡

θr = 0.00 144.704 32.043 260.084

θr = 0.03 154.502 16.428 269.882

θr = 0.04 154.366 19.094 273.856

θr = 0.05 160.200 15.275 279.690

θr = 0.06 164.089 12.729 283.529

θr = 0.10 171.866 7.637 291.356

† in $M-y; ‡ Investment cost plus annualized generating cost, in $M-y.
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3.5 Stochastic Transmission Expansion

When planning an expansion in a transmission network, a decision maker faces the same

dilemma as when expanding generation. The level of demand is highly uncertain; to

provide a safe operation of the power system, the decision maker might adopt a pessimistic

approach and expand for the highest level of demand expected to happen, incurring then

in high investment costs. This situation calls for the implementation of stochastic models.

In the following sections, like it is done in the case of generation expansion, the trans-

mission expansion problem is stated first as a two-stage stochastic program, then it is

extended to incorporate risk in the objective function, and finally probabilistic constraints

are added to consider randomness in the transmission capacity factors of the transmission

lines.

3.5.1 Two-Stage Model

In this section, a two-stage stochastic model with fixed recourse is formulated for the trans-

mission expansion problem. This stochastic model considers uncertainty in the demand

side; it has as first-stage decisions the investment in new transmission, and as second-stage

decisions the annual estimate of generation in order to minimize the annualized variable

production cost11 of the existing generating plants based on the transmission capacity

added. The second stage objective can be thought as the minimization of the expected

annual production cost. Redefine z as

z =
∑

et,h

qetget,h. (3.29)

The expectation of z is

E {z} =
∑

k,et,h

prkqetgk,et,h. (3.30)

The two-stage stochastic model for transmission expansion in a vertically integrated

industry is formally stated next.

11A fixed capacity factor for each generating plant is assumed.
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Objective function

min
∑

i-j
ci-jni-j +

∑

k,et,h

prkqetgk,et,h. (3.31)

Nodal balance constraint

Sfk + gk = dk, ∀ k. (3.32)

Budget constraint
∑

i-j
ci-jni-j ≤ B. (3.33)

Power flow constraint

fk,i-j − Γi-j(n
0
i-j + ni-j)(δk,i − δk,j) = 0, ∀ k, i-j. (3.34)

Transmission line capacity constraints

fk,i-j ≤ (n0
i-j + ni-j)f i-j, ∀ k, i-j, (3.35)

−fk,i-j ≤ (n0
i-j + ni-j)f i-j, ∀ k, i-j. (3.36)

Stability constraint

− 1

4
π ≤ (δk,i − δk,j) ≤

1

4
π, ∀ k, i-j. (3.37)

Derated capacity constraint

gk,et,h − αetyet,h ≤ 0, ∀ k, et, h. (3.38)

Upper and lower limit constraints

gk,et,h ≥ 0, ∀ k, et, h, (3.39)

0 ≤ ni-j ≤ ni-j, ∀ i-j, (3.40)

−2π ≤ δk,ν ≤ 2π, ∀ k, ν. (3.41)

Indices and sets

et ∈ Et; h ∈ H; h, i, j, ν ∈ N ; i-j ∈ I; k ∈ K; H, I ⊂ N . (3.42)
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3.5.2 Deterministic Model vs. Two-Stage Stochastic Model

In this section, a numerical example for transmission expansion in a vertically integrated

industry is presented; it shows the advantages that a stochastic model has over a determin-

istic model. The VSS and the EVPI are also obtained. It is assumed that the generating

capacity remains constant over the planning period. The system to be expanded is the

classic test system proposed by Garver in 1970; it is shown in Figure 3.1 [30,44].

Figure 3.1: Six-node system to be expanded.

Three possible scenarios are considered: below average, average, and above average

level of demand. It is assumed that one can add up to five new transmission lines between

the pair of nodes that already have an interconnection. There are also two new rights-

of-way between Node 6 and Node 2, and between Node 6 and Node 4 in which five new

transmission lines can be built. Assume that the budget constraint is not binding. The

expected value of the equivalent availability factor of the generating units is used. All the

data is shown in Appendix C.

First, taking Node 1 as the slack12 node, the deterministic transmission expansion

12Also known as the swing bus; a definition taken from [45] is: “One bus, known as slack or swing bus,

is taken as reference where the magnitude and phase angle of the voltage are specified. This bus makes

up the difference between the scheduled loads and generated power that are caused by the losses in the
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problem shown in Equations (2.33)–(2.44) is solved13 for each one of the three different

foreseeable scenarios. Tables 3.8–3.13 show the results for the below average, average, and

above average levels of demand. For the below average level of demand, one new line is

built between Nodes 1 and 5, and 2 and 6; while two new lines are built between Nodes

4 and 6. For the average level of demand, two new transmission lines are built between

Nodes 1 and 5, and 4 and 6; and one new transmission line between Nodes 3 and 5, and 2

and 6. For the above average level of demand, two new transmission lines are built between

Nodes 1 and 5, and 4 and 6; and one new transmission line between Nodes 1 and 2, and 2

and 6.

Table 3.8: Deterministic, trans. exp., generation, six-node system, below.

Scenario Generation†

Below Average 1 3 6

370.0 0.0 370.0

† in MW; total cost: $210.569M.

Table 3.9: Deterministic, trans. exp., power flows, six-node system, below.

Scenario Power Flow†

Below Average pf1−2 pf1−4 pf1−5 pf2−3

63.6 37.4 178.9 31.1

pf2−4 pf2−6 pf3−5 pf4−6

−7.5 −100.0 −68.9 −180.0

† in MW; total cost: $210.569M.

network.”
13The models in this section are implemented in the optimization software GAMS using the MINOS

solver [42].
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Table 3.10: Deterministic, trans. exp., generation, six-node system, average.

Scenario Generation†

Average 1 3 6

550.0 0.0 370.0

† in MW; total cost: $282.083M.

Table 3.11: Deterministic, trans. exp., power flows, six-node system, average.

Scenario Power Flow†

Average pf1−2 pf1−4 pf1−5 pf2−3

87.2 62.1 280.6 −10.6

pf2−4 pf2−6 pf3−5 pf4−6

5.9 −78.1 −140.6 −171.9

† in MW; total cost: $282.083M.

Since the average level of demand is most likely to happen, a decision maker might

invest in the solution for the average level of demand. This expansion might be able to

support the load for the below average demand scenario but might not support, at least

not economically, the load for the above average demand scenario. Expanding the system

for the solution of the above average level of demand, might support the load for the three

different scenarios but at a high and uneconomical cost of $362.063 M. Taking a scenario

analysis approach, for a given level of demand, one can calculate the worst that could

happen—in terms of all the objectives—and then choose a solution that minimizes the value

of the worst-case loss. This should single out some point that is optimal in a pessimistic

minimax sense. An expansion project capable of meeting the highest foreseeable level of

demand may turn out to be a quite expensive solution in the long run [46]. Once more, a

better approach is to take into account the randomness of the stochastic variables. Tables

3.14 and 3.15 show the results for the stochastic model shown in Equations (3.31)–(3.42)
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Table 3.12: Deterministic, trans. exp., generation, six-node system, above.

Scenario Generation†

Above Average 1 3 6

675.5 54.5 370.0

† in MW; total cost: $362.063M.

Table 3.13: Deterministic, trans. exp., power flows, six-node system, above.

Scenario Power Flow†

Above Average pf1−2 pf1−4 pf1−5 pf2−3

180.5 76.7 268.3 7.2

pf2−4 pf2−6 pf3−5 pf4−6

24.7 −54.4 −98.3 −168.6

† in MW; total cost: $362.063M.

taking into consideration the randomness on the demand side. The expansion consists

on the building of one transmission line between Nodes 1 and 2, two transmission lines

between Nodes 1 and 5, and three transmission lines between Nodes 6 and 4.

It is easily seen that taking into account the randomness in the demand side produces

a transmission expansion plan that supports the three foreseeable levels of demand but at

an economical cost of $288.117 M. This implies savings of about $74 M with respect to the

deterministic above average level of demand solution. Once more, the best solution that a

decision maker can take is to use a stochastic model.

To obtain the VSS, the solution of the stochastic model is used. It is also needed to

solve the stochastic model again but with the values for the new transmission added, ni-j,

fixed to the result obtained by the deterministic solution with the average level of demand.

The EEV solution is shown in Tables 3.16 and 3.17.

From Equation (3.4), the VSS is
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Table 3.14: Stochastic, trans. exp., generation, six-node system.

Scenario Generation†

Below Average 1 3 6

370.0 0.0 370.0

Average

543.6 6.4 370.0

Above Average

669.1 60.9 370.0

† in MW; total cost: $288.117M.

EEV = $291.6854 M, (3.43)

VSS = EEV − $288.117 M

= $3.5684 M. (3.44)

This means that, by considering the random variations, the investment in building new

transmission lines is $288.117 M instead of $291.6854 M; which means that $3.5684 M are

saved.

To compute the EVPI, it is needed to obtain first the WSS; the WSS is the mean value

of all the deterministic solutions for each one of the foreseeable levels of demand.

From Equation (3.5), the expected value of perfect information is

WSS = (0.3 × $210.569 M) + (0.4 × $282.033 M) + (0.3 × $362.063 M)

= $284.623 M, (3.45)

EVPI = $288.117 − WSS

= $3.4942 M. (3.46)

If it were possible to know the future demand perfectly, the cost would be $284.623 M
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Table 3.15: Stochastic, trans. exp., power flows, six-node system.

Scenario Power Flow†

Below Average pf1−2 pf1−4 pf1−5 pf2−3

104.9 −7.0 182.1 27.9

Average

156.4 27.3 240.0 23.6

Above Average

190.9 58.2 270.0 −0.9

Below Average pf2−4 pf3−5 pf4−6

−63.0 −72.1 −280.0

Average

−37.3 −100.0 −250.0

Above Average

−8.2 −100.0 −220.0

† in MW; total cost: $288.117M.

instead of $288.117 M, saving up to $3.4942 M. Since it is impossible to know the future

demands in advance, the best that can be done is to take the SS as the best result.

These results show that the stochastic model, taking into account the randomness in

the stochastic variables, is a good approximation since it is not too far from the result

obtained by the WSS.
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Table 3.16: EEV solution, trans. exp., generation, six-node system, average.

Scenario Generation†

Below Average 1 3 6

370.0 0.0 370.0

Average

550.0 0.0 370.0

Above Average

574.5 155.5 370.0

† in MW; total cost: $291.685M.

Table 3.17: EEV solution, trans. exp., power flows, six-node system, average.

Scenario Power Flow†

Below Average pf1−2 pf1−4 pf1−5 pf2−3

50.1 30.8 199.2 10.8

Average

87.2 62.1 280.6 −10.6

Above Average

97.1 80.0 247.4 −72.9

Below Average pf2−4 pf2−6 pf3−5 pf4−6

−3.9 −96.8 −89.2 −183.2

Average

5.9 −78.1 −140.6 −171.9

Above Average

22.9 −52.9 −77.4 −167.1

† in MW; total cost: $291.685M.
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3.5.3 Two-Stage Model with Risk

A risk parameter can be incorporated into the objective function of the two-stage stochas-

tic model for transmission expansion using the mean-variance Markowitz theory. From

Equation (3.29), the variance of z is

σ2
z =

∑

k

prk

(

∑

et,h

qetgk,et,h

)2

−
(

∑

k,et,h

prkqetgk,et,h

)2

. (3.47)

Using Equations (3.30) and (3.47), the new objective function of the two-stage stochas-

tic model with fixed recourse that incorporates the risk parameter is

min
∑

i-j
ci-jni-j +

∑

k,et,h

prkqetgk,et,h

+ θr







∑

k

prk

(

∑

et,h

qetgk,et,h

)2

−
(

∑

k,et,h

prkqetgk,et,h

)2






; (3.48)

the constraints remain as in Equations (3.32)–(3.42).

Just like before, the risk parameter θr weighs how important the minimization of the

variance as a risk measure is. Table 3.18 shows some results as θr varies. As the risk

aversion increases, the standard deviation decreases, and the overall cost increases.

Table 3.18: Annualized generating cost, θr varies, trans. exp., six-node system.

Risk Parameter Mean† Std. Deviation† Overall Cost‡

θr = 0.00 270.617 56.815 288.117

θr = 0.01 279.745 46.050 297.245

θr = 0.02 289.146 36.2904 306.646

θr = 0.03 305.674 25.458 323.174

θr = 0.07 327.896 10.910 347.646

θr = 0.08 329.980 9.547 349.730

† in $M-y; ‡ Investment cost plus annualized generating cost, in $M-y.
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3.5.4 Two-Stage Model with Risk and Probabilistic Constraints

In the transmission expansion problem, not only the equivalent availability for each generat-

ing plant can be considered as random; the transmission capacity factor of the transmission

lines is random too. The actual capacity of a transmission line depends on exogenous en-

vironmental parameters and other contingencies such as random outages and discretional

security constraints implemented by the system operator. Consider Path 15 that connects

Northern and Southern California. The capacity of this link varies between 2,600 MW and

3,950 MW depending upon ambient temperature and remedial action schemes that are

in place to respond to unanticipated outages of generating plants and other transmission

lines [13].

To include these two random parameters into the two-stage stochastic model, three

probabilistic constraints are added; one for the equivalent availability of the generating

units αet, and two for the random transmission capacity factor αi-j. As before, it is

assumed that the mean and the variance of these parameters are known and that they are

standard normally distributed random variables.

Probabilistic transmission line capacity constraints

fk,i-j ≤ αi-j(n
0
i-j + ni-j)f i-j − βt

{

σ2
αi-j

(

(n0
i-i + ni-j)f i-j

)2
} 1

2

, ∀ k, i-j, (3.49)

−fk,i-j ≤ αi-j(n
0
i-j + ni-j)f i-j − βt

{

σ2
αi-j

(

(n0
i-i + ni-j)f i-j

)2
} 1

2

, ∀ k, i-j. (3.50)

Probabilistic derated capacity constraint

gk,et,h − αetyet,h + βg

{

σ2
αet

(yet,h)
2
} 1

2 ≤ 0, ∀ k, et, h. (3.51)

In Equations (3.49)–(3.51), βg and βt are the α-quantile of the standard normally

distributed random variables αet and αi-j, respectively. The parameters βg and βt are

chosen by the decision maker. Equations (3.49)–(3.51) are linearized next:

fk,i-j ≤ αi-j(n
0
i-j + ni-j)f i-j − βtσαi-j

(n0
i-j + ni-j)f i-j,∀ k, i-j, (3.52)

−fk,i-j ≤ αi-j(n
0
i-j + ni-j)f i-j − βtσαi-j

(n0
i-j + ni-j)f i-j,∀ k, i-j, (3.53)

gk,et,h − αetyet,h + βgσαet
yet,h ≤ 0, ∀ k, et, h. (3.54)
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Table 3.19 shows some results when θr is fixed to a value of 0.02 and βt is allowed to

vary. Table 3.20 shows some results when θr is fixed to a value of 0.02 and βg is allowed

to vary. Notice that as the probability of meeting the chance constraints increases, the

investment and annualized generating costs also increase.

Table 3.19: Annualized generating cost, βt varies, trans. exp., six-node system.

Probability Mean† Standard Deviation † Overall Cost‡

≈ 76%; βt = 0.7 291.532 37.632 309.032

≈ 84%; βt = 1.0 296.100 38.188 313.600

≈ 90%; βt = 1.3 289.146 36.290 310.646

≈ 96%; βt = 1.74 289.146 36.290 310.646

† in $M-y; ‡ Investment cost plus annualized generating cost, in $M-y.

Table 3.20: Annualized generating cost, βg varies, trans. exp., six-node system.

Probability Mean† Standard Deviation † Overall Cost‡

≈ 76%; βg = 0.7 320.122 40.438 332.372

≈ 84%; βg = 1.0 331.632 45.708 345.482

≈ 90%; βg = 1.3 351.082 38.188 367.182

≈ 96%; βg = 1.74 369.006 40.857 382.106

† in $M-y; ‡ Investment cost plus annualized generating cost, in $M-y.

For different values of θr, and keeping βg and βt fixed to a value of 1.3 (at least a 90%

probability the chance constraints are met), the mean and the standard deviation of the

annualized generating cost are obtained. The results are presented in Table 3.21. Notice

that as θr increases, the overall cost increases and the variance of the annualized generation

cost decreases.
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Table 3.21: Annualized generating cost, θr varies, trans. exp.,six-node system.

Risk Parameter Mean† Standard Deviation† Overall Cost‡

θr = 0.00 144.704 32.043 260.084

θr = 0.03 154.502 16.428 269.882

θr = 0.04 154.366 19.094 273.856

θr = 0.05 160.200 15.275 279.690

θr = 0.06 164.089 12.729 283.529

θr = 0.10 171.866 7.637 291.356

† in $M-y; ‡ Investment cost plus annualized generating cost, in $M-y.
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3.6 Stochastic Generation and Transmission

Expansion

In this section, the stochastic generation and transmission expansion models are combined

into one single model. First, a two-stage stochastic model is formulated in order to account

for the randomness in the demand levels. After that, a risk parameter is introduced into

the objective function using the mean-variance Markowitz theory. Finally, probabilistic

constraints are added to account for the randomness in the equivalent availability factors

and in the transmission capacity factors. The most complete model is a mixed-integer

nonlinear optimization problem. Two systems are solved to exemplify the models: a six-

and a 21-node system.

3.6.1 Two-Stage Model

In this two-stage stochastic model, the first-stage decisions are the investment in new

generation and transmission while the second stage decision is the annual estimate of

generation in order to minimize the annualized generation cost of the existing and possible

new generating plants based on the expansion made. Consequently, the second stage

objective can be thought as the minimization of the annualized production cost.

Redefine z as

z =
∑

m

cfm

(

∑

et,h

qetgm,et,h +
∑

nt,p

qntgm,nt,p

)

. (3.55)

The expected value of z is

E{z} =
∑

k

prkzk

=
∑

k

prk

(

∑

m

cfm

(

∑

et,h

qetgm,et,h +
∑

nt,p

qntgm,nt,p

))

=
∑

k,m

prkcfm

(

∑

et,h

qetgk,m,et,h

∑

nt,p

qntgk,m,nt,p

)

. (3.56)

In the two-stage stochastic model presented next, the investment cost in new transmis-

sion lines and in new generating units as well as the expected value of the generation cost
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of existing and newly installed generating capacity are minimized. The new objective func-

tion is shown in Equation (3.57). The budget constraint, Equation (2.46), and the upper

and lower limit constraint for the new circuits to be added in each right-of-way, Equation

(2.54), remain as in the deterministic model. All the other constraints are modified to take

into account all the different foreseeable scenarios of demand k ∈ K.

Objective function

min
∑

i-j
ci-jni-j +

∑

nt,p

rntxntnnt,p +
∑

k,m

prkcfm

(

∑

nt,p

qntgk,m,nt,p +
∑

et,h

qetgk,m,et,h

)

. (3.57)

Derated capacity constraints

∑

m

(gk,m,nt,p) − αntxntnnt,p ≤ 0, ∀ k, nt, p, (3.58)

∑

m

(gk,m,et,h) − αetyet,h ≤ 0, ∀ k, et, h. (3.59)

Nodal balance constraint

Sfk,m + gk,m = dk,m, ∀ k,m. (3.60)

Power flow constraint

fk,m,i-j − Γi-j(n
0
i-j + ni-j)(δk,m,i − δk,m,j) = 0, ∀ k,m, i-j. (3.61)

Transmission line capacity constraints

fk,m,i-j ≤ (n0
i-j + ni-j)f i-j, ∀ k,m, i-j, (3.62)

−fk,m,i-j ≤ (n0
i-j + ni-j)f i-j, ∀ k,m, i-j. (3.63)

Stability constraint

− 1

4
π ≤ (δk,m,i − δk,m,j) ≤

1

4
π, ∀ k,m, i-j. (3.64)

Upper and lower limit constraints

gk,m,et,h ≥ 0, ∀ k,m, et, h, (3.65)

gk,m,nt,p ≥ 0, ∀ k,m, nt, p, (3.66)

−2π ≤ δk,m,ν ≤ 2π, ∀ k,m, ν. (3.67)
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Indices and sets

et ∈ Et; h ∈ H; h, i, j, p, ν ∈ N ; i-j ∈ I;

k ∈ K; m ∈ M; nt ∈ Nt; p ∈ P; H, I,P ⊂ N . (3.68)

3.6.2 Deterministic Model vs. Two-Stage Stochastic Model

This section compares the deterministic models vs. the stochastic models by means of a

six- and a 21-node system.

A Six-Node System

Consider first a six-node system. It is a modification of the system shown in Section 3.5.2.

In the system shown in Figure 3.2, one can add up to five new transmission lines between

the pair of nodes that already have an interconnection. There are also two new rights-of-

way between Node 6 and Node 2, and between Node 6 and Node 4 in which up to five new

transmission lines can be built. There are three generators located at Nodes 1, 3, and 6,

all of which are of different technologies. New generation can be added at Nodes 2 and 4,

and there are three different technologies to choose from. The parameters for the existing

and new transmission lines, as well as for the installed and new generating capacity are

given in Appendix C. It is assumed that the budget constraint is not binding and Node 1

is taken as the swing bus.

At every node there are three different operating modes: i) base, ii) mid, and iii) peak.

Without any loss of generality, it is assumed that each operating mode at every node has

the same duration. Each operating mode has three forecasted levels of demand: i) below

average, ii) average, and iii) above average. These forecasted levels of demand are known to

happen with 30%, 40%, and 30% probability, respectively. All the pertinent data appears

in Appendix C.

By solving14 the deterministic model shown in Equations (2.45)–(2.58) for each one of

the three foreseeable levels of demand, one can see that the cost varies depending on which

level of demand is used in the investment plan. For instance, for the below average level

14All models presented in this section are implemented in the optimization software GAMS using the

SBB solver.



Chapter 3. Centralized Power System Planning: A Stochastic... 56

Figure 3.2: Six-node system to be expanded.

of demand the total cost is $151.161 M, for the average level of demand the total cost is

$202.272 M, and for the above average level of demand the total cost is $250.074 M.

The other approach to solve this problem, the stochastic approach, is to take into

account the probabilities of all the possible different levels of demand (possible scenarios).

The solution, shown in Tables 3.22 and 3.23, is obtained by solving the model shown in

Equations (2.46), (2.54), and (3.57)–(3.68). The total cost is now $209.674 M; by building

a new transmission line between Nodes 1 and 5, 2 and 3, 2 and 6, 3 and 5, and one

new generator of technology two at Node 4, the three foreseeable levels of demand are

satisfied and $40.4 M are saved with respect to the result obtained for above average level

of demand.

To obtain the EVPI, it is needed first to compute the WSS, which is the mean value

of all the deterministic solutions for each one of the foreseeable levels of demand. This is

shown in Equation (3.69).

WSS = (0.3 × $151.161M) + (0.4 × $202.272M) + (0.3 × $250.074M)

= $201.279M. (3.69)

From Equation (3.5), the EVPI is $8.395 M. If it were possible to know in advance the

future demand, the cost would be $201.279 M instead of $209.674 M, saving up to $8.395
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Table 3.22: Stochastic, gen. & trans. exp., generation, six-node system.

Operating Mode† Generator

Below Average 1 3 4 6

B‡ 448.9 31.1 0.0 0.0

B‡ + M⋆ 460.0 100.0 100.0 0.0

B‡ + M⋆ + P∗ 460.0 150.0 110.0 20.0

Average

B‡ 462.5 69.3 8.2 0.0

B‡ + M⋆ 462.5 124.0 183.5 10.0

B‡ + M⋆ + P∗ 462.5 206.7 230.8 20.0

Above Average

B‡ 462.5 96.7 40.8 0.0

B‡ + M⋆ 462.5 275.7 131.8 30.0

B‡ + M⋆ + P∗ 462.5 289.5 289.4 58.5

† in MW; ‡ Base, ⋆ Mid, and ∗ Peak.

M. Since it is impossible to know the future demand in advance, the best that can be done

is to take the SS as the best result. These results show that the stochastic model, taking

into account the probabilities of all the foreseeable scenarios, is a good representation of

the uncertainties faced by the investment plan since the result obtained by the SS is not

too far from the result obtained by the WSS.

To compute the VSS, one first needs to obtain the EEV. When trying to compute the

EEV, the problem becomes infeasible. Since the VSS is the cost of ignoring uncertainty,

one can add a set of slack variables in the nodal balance constraint to provide for any

generation deficiency. Also, these slack variables need to be included in the objective

function; each with a weighing coefficient that is at least greater than the most expensive

annualized variable generating cost. This is equivalent to assume that there is generating

capacity available at each bus ready to be used in the presence of a contingency but at a

greater cost. Hence, the EEV can be redefined as the solution of the stochastic problem,

but considering the number of new generating units and new transmission lines added fixed

to the results obtained by the deterministic model for the average level of demand plus the



Chapter 3. Centralized Power System Planning: A Stochastic... 58

Table 3.23: Stochastic, gen. & trans. exp., power flows, six-node system.

Operating Mode† Power Flow

Below Average pf1−2 pf1−4 pf1−5 pf2−3 pf2−4 pf2−6 pf3−5

B‡ 97.8 71.6 200.0 −71.1 8.9 80.0 −120.0

B‡ + M⋆ 100.0 80.0 190.0 −110.0 20.0 90.0 −100.0

B‡ + M⋆ + P∗ 100.0 80.0 190.0 −130.0 20.0 70.0 −80.0

Average

B‡ 99.8 72.7 200.0 −89.3 9.2 90.0 −110.0

B‡ + M⋆ 98.5 54.0 200.0 −104.0 −17.5 100.0 −90.0

B‡ + M⋆ + P∗ 99.2 43.2 200.0 −136.7 −34.2 100.0 −60.0

Above Average

B‡ 99.2 63.3 200.0 −96.7 −4.2 100.0 −100.0

B‡ + M⋆ 91.9 80.0 160.6 −176.3 28.1 100.0 −30.6

B‡ + M⋆ + P∗ 91.5 28.8 192.2 −151.7 −48.3 91.5 −22.2

† in MW; ‡ Base, ⋆ Mid, and ∗ Peak.

cost of providing for any energy deficiency. In this numerical example, there is a deficiency

of 600 MW for the base load mode and of 34.2 MW for the peak load mode of the above

average level of demand. Under the assumption that the annualized variable generating

cost of providing for any energy deficiency at every node is 1 $M/MW-y, the EEV is

$227.6820M. Therefore, form Equation (3.4), the VSS is $18.008M.
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A 21-Node System

This twenty-one-node system is a modification of the reliability test system proposed by the

IEEE Reliability Test System Task Force [47] in 1979. In the system shown in Figure 3.3,

one can add two new transmission lines between Nodes 2 and 4, and Nodes 2 and 6; three

new transmission lines between Nodes 3 and 13; and six new transmission lines between

Nodes 9 and 11, 9 and 12, 10 and 11, and 10 and 21. There is a mix of 13 generators of

four different technologies. New generation can be added at Nodes 2, 11, 13, 14, and 21,

and there are four different technologies to choose from. The parameters for the existing

and new transmission lines, as well as for the installed and new generating capacity are

given in Appendix C.

Like in the six-node system, at every node there are three different operating modes,

each of which has three forecasted levels of demand. These forecasted levels of demand

happen with 30%, 40%, and 30% probability, respectively. Appendix C gives all pertinent

data.

Solving the deterministic model for each one of the three foreseeable levels of demand,

one gets a total cost of $483.498 M, $664.737 M, and $815.467 M for the below average,

average, and above average levels of demand, respectively.

Using the stochastic approach, one gets the solution shown in Tables 3.24 and 3.25 at

a total cost of $679.8 M. The expansion consists on the building of a new transmission line

between Nodes 2 and 4, 2 and 6, 9 and 11, 10 and 21, one new generator of technology one

at Node 2, one new generator of technology three at Node 13, and two new generators of

technology four at Node 2. The three foreseeable levels of demand are satisfied and $135.667

M are saved with respect to the result obtained for above average level of demand. The

expected value of perfect information is $24.2157 M.
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Figure 3.3: 21-node system to be expanded.
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Table 3.24: Stochastic, gen. & trans. exp., generation, 21-node system.

Operating Mode† Node

Below Average 1 2 7 11 13 14 16 19 20 21

B‡ 0.0 421.0 0.0 0.0 0.0 0.0 181.5 370.0 277.5 0.0

B‡ + M⋆ 138.8 503.8 0.0 0.0 0.0 28.4 370.0 370.0 277.5 311.6

B‡ + M⋆ + P∗ 138.8 688.8 211.6 0.0 138.7 138.7 370.0 370.0 277.5 515.9

Average

B‡ 19.4 546.2 0.0 0.0 0.0 0.0 286.9 370.0 277.5 0.0

B‡ + M⋆ 138.8 666.0 0.0 0.0 107.2 0.0 370.0 370.0 277.5 470.6

B‡ + M⋆ + P∗ 167.1 693.8 289.5 393.1 138.7 138.7 370.0 370.0 277.5 581.6

Above Average

B‡ 82.2 625.3 0.0 0.0 0.0 0.0 370.0 370.0 277.5 0.0

B‡ + M⋆ 138.7 689.0 145.8 0.0 138.8 138.8 370.0 370.0 277.5 491.4

B‡ + M⋆ + P∗ 177.3 723.4 289.5 561.7 529.8 138.8 370.0 370.0 277.5 495.1

† in MW; ‡ Base, ⋆ Mid, and ∗ Peak.
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Table 3.25: Stochastic, gen. & trans. exp., power flows, 21-node system.

Operating Mode† Power Flow

Below Average pf1−2 pf1−5 pf1−3 pf2−4 pf2−6 pf3−9 pf3−13 pf4−9 pf5−10 pf6−10 pf7−8 pf8−9

B‡ −158.9 89.6 21.8 101.1 118.6 56.3 −113.2 68.6 58.3 58.6 −55.0 −69.3

B‡ + M⋆ −121.3 126.4 57.6 155.2 159.3 56.2 −124.6 103.2 76.4 63.3 −88.0 −99.7

B‡ + M⋆ + P∗ −200.0 147.3 83.1 198.8 193.1 43.6 −140.0 124.7 76.1 56.3 86.2 −31.6

Average

B‡ −200.0 119.8 42.6 138.5 156.7 61.5 −113.4 99.5 82.3 84.7 −66.0 −81.2

B‡ + M⋆ −188.4 152.7 83.3 200.0 196.0 56.5 −124.4 137.6 92.7 80.8 −105.6 −115.0

B‡ + M⋆ + P∗ −200.0 137.4 99.7 192.7 184.7 −7.2 −108.5 103.8 51.9 20.6 139.0 −21.0

Above Average

B‡ −200.0 151.1 65.6 174.3 192.3 65.9 −109.0 129.4 108.0 109.5 −75.9 −91.6

B‡ + M⋆ −198.3 151.2 81.1 200.0 196.8 51.2 −144.0 128.2 82.2 64.3 24.4 −61.0

B‡ + M⋆ + P∗ −198.4 149.3 77.0 191.2 200.0 19.5 −190.3 88.9 51.0 11.2 116.4 −55.4

Below Average pf8−10 pf9−11 pf9−12 pf10−11 pf10−21 pf11−21 pf12−14 pf13−14 pf13−19 pf14−15 pf14−17 pf15−16

B‡ −60.7 79.3 −100.0 9.9 −38.7 −27.1 −185.0 68.9 −320.8 −361.9 202.0 −209.7

B‡ + M⋆ −108.3 31.5 −93.7 45.6 −150.2 −108.9 −229.7 17.6 −364.3 −419.2 165.6 −268.4

B‡ + M⋆ + P∗ −53.2 20.9 −58.2 85.4 −200.0 −158.7 −252.0 12.7 −330.3 −353.7 153.5 −203.2

Average

B‡ −74.8 88.3 −100.0 21.7 −31.5 −29.5 −202.0 67.7 −347.6 −411.3 224.5 −259.0

B‡ + M⋆ −134.6 5.0 −72.3 70.5 −194.9 −147.6 −235.5 57.8 −341.4 −395.3 133.6 −243.3

B‡ + M⋆ + P∗ −45.2 −178.2 45.5 −5.3 −200.0 −108.8 −187.0 −34.7 −314.6 −302.7 100.0 −153.7

Above Average

B‡ −87.8 94.9 −96.3 34.4 −22.0 −31.2 −213.6 67.1 −367.5 −448.1 241.2 −295.8

B‡ + M⋆ −80.2 23.2 −73.1 78.5 −200.0 −154.9 −260.8 21.0 332.6 361.9 164.3 −211.1

B‡ + M⋆ + P∗ −64.2 −200.0 13.1 −69.4 −200.0 −73.5 −254.3 164.6 −261.6 −295.7 207.1 −140.8

Below Average pf15−20 pf16−19 pf17−18 pf18−21 pf19−20

B‡ −152.2 −174.5 122.0 65.8 −125.3

B‡ + M⋆ −150.8 −132.4 37.6 −52.4 −126.7

B‡ + M⋆ + P∗ −150.5 −166.7 −28.9 −157.2 −127.0

Average

B‡ −152.3 −147.6 128.5 61.0 −125.2

B‡ + M⋆ −152.0 −154.1 −20.0 −128.0 −125.5

B‡ + M⋆ + P∗ −149.0 −183.9 −118.9 −272.8 −128.5

Above Average

B‡ −152.4 −127.6 130.8 53.2 −125.1

B‡ + M⋆ −150.8 −164.1 −12.3 −136.5 −126.7

B‡ + M⋆ + P∗ −155.0 −230.9 −44.7 −221.6 −122.5

† in MW; ‡ Base, ⋆ Mid, and ∗ Peak.
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3.6.3 Two-Stage Model with Risk

To minimize the risk faced in the transmission and generation expansion problem, the

interest is focused in the minimization of the investment cost in new transmission and in

new generation, the expected annualized production cost, and in the minimization of the

variance of the annualized production cost.

The variance of z, as defined in (3.55), is

σ2
z = E{z2} − E2{z}

=
∑

k

prk

(

∑

m

cfm

(

∑

et,h

qetgk,m,et,h +
∑

nt,p

qntgk,m,nt,p

))2

−
(

∑

k,m

prkcfm

(

∑

et,h

qetgk,m,et,h +
∑

nt,p

qntgk,m,nt,p

))2

. (3.70)

The objective function of the two-stage stochastic model that incorporates the variance

and the risk parameter is shown in Equation (3.71). All the constraints remain the same

as in Equations (2.46), (2.54), and (3.58)–(3.68).

min
∑

i-j
ci-jni-j +

∑

nt,p

rntxntnnt,p

+
∑

k,m

prkcfm

(

∑

nt,p

qntgk,m,nt,p +
∑

et,h

qetgk,m,et,h

)

+ θr

{

∑

k

prk

(

∑

m

cfm

(

∑

et,h

qetgk,m,et,h +
∑

nt,p

qntgk,m,nt,p

))2

−
(

∑

k,m

prkcfm

(

∑

et,h

qetgk,m,et,h +
∑

nt,p

qntgk,m,nt,p

))2}

. (3.71)

3.6.4 Two-Stage Model with Risk and Probabilistic Constraints

Just like before, the derated capacity constraints can be modified to take into account a

random availability factor for the generating plants by means of a chance (probabilistic)

constraint. In like manner, the transmission line capacity constraints can be modified to

take into account a random transmission capacity factor. This is shown next.
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Probabilistic derated capacity constraints

∑

m

(gk,m,nt,p) − αntxntnnt,p + βg

{

σ2
αnt

(xntnnt,p)
2}

1
2 ≤ 0, ∀ k, nt, p, (3.72)

∑

m

(gk,m,et,h) − αetyet,h + βg

{

σ2
αet

(yet,h)
2}

1
2 ≤ 0, ∀ k, et, h. (3.73)

Probabilistic transmission line capacity constraints

fk,m,i-j ≤ αi-j(n
0
i-j + ni-j)f i-j − βt

{

σ2
αi-j

(

(n0
i-j + ni-j)f i-j

)2
} 1

2

,∀ k,m, i-j, (3.74)

−fk,m,i-j ≤ αi-j(n
0
i-j + ni-j)f i-j − βt

{

σ2
αi-j

(

(n0
i-j + ni-j)f i-j

)2
} 1

2

,∀ k,m, i-j. (3.75)

Note that, if the variances of αnt and αi-j are known, Equations (3.72)–(3.75) can be

linearized. Therefore, the linearized equations are

∑

m

(gk,m,nt,p) − αntxntnnt,p + βgσαnt
xntnnt,p ≤ 0, ∀ k, nt, p, (3.76)

∑

m

(gk,m,et,h) − αetyet,h + βgσαet
yet,h ≤ 0, ∀ k, et, h, (3.77)

fk,m,i-j ≤ αi-j(n
0
i-j + ni-j)f i-j − βtσαi-j

(n0
i-j + ni-j)f i-j,∀ k,m, i-j, (3.78)

−fk,m,i-j ≤ αi-j(n
0
i-j + ni-j)f i-j − βtσαi-j

(n0
i-j + ni-j)f i-j,∀ k,m, i-j. (3.79)

A Six-Node System

Consider the two-stage stochastic model described by Equations (3.71), (3.76)–(3.79),

(3.60), (3.61), (2.46), (2.54), and (3.64)–(3.68). Assume that the availability factor for

each generating plant and the transmission capacity factor for each transmission line are

standard normally distributed random variables.

The fist section of Table 3.26 shows some results for different values of θr when both βt

and βg are fixed to zero. From the first section of Table 3.26, just as expected, it can be

seen that as θr increases, the standard deviation decreases, and the overall cost increases.

Section two of Table 3.26 shows some results when θr = 0.03, βt = 0, and βg is allowed

to vary. Section three of Table 3.26 shows the results when θr = 0.03, βg = 0, and βt varies.

It can be seen that as the percentage of satisfying the probabilistic constraints increases,

the overall cost also increases. Finally, the last section of Table 3.26 shows the results

obtained when βg and βt are both fixed to a value of 1.3 (approximately 90% probability
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the chance constraints are met) and θr varies. Here it also can be observed the fact that a

lower standard deviation implies a higher overall cost.

A 21-Node System

As in the case of the six-node system, Table 3.27 shows different results when the pa-

rameters θr, βt, and βg take different values. It can be seen that as θr increases, the

standard deviation decreases, and the overall cost increases. It can also be seen that as

the percentage of satisfying the probabilistic constraints increases, the overall cost also

increases.
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Table 3.26: Annualized generating cost, gen. & trans. exp., six-node system.

Parameter Mean† Std. Deviation† Overall Cost‡

θr = 0.00 183.1240 39.3755 206.6740

θr = 0.01 190.5270 34.3488 208.3270

θr = 0.02 199.3320 24.2460 217.1320

θr = 0.03 184.1350 19.3914 213.8650

θr = 0.04 187.5800 16.6919 220.3100

θr = 0.10 201.7360 7.6376 231.4660

θr = 0.03, βt = 0

≈ 76%; βg = 0.7 139.5090 19.6373 233.8590

≈ 84%; βg = 1.0 147.1710 21.0679 241.5210

≈ 90%; βg = 1.3 156.8510 22.9015 256.9510

≈ 96%; βg = 1.74 223.9240 22.7380 278.1340

θr = 0.03, βg = 0

≈ 76%; βt = 0.7 132.4920 17.1334 236.0920

≈ 84%; βt = 1.0 134.2880 16.8008 235.6380

≈ 90%; βt = 1.3 125.7790 16.0178 235.6290

≈ 96%; βt = 1.74 131.1000 16.4021 236.9500

βg = 1.3, βt = 1.3

θr = 0.00 146.8630 33.1902 247.5130

θr = 0.01 148.0720 33.4241 246.4720

θr = 0.02 154.9880 15.6862 253.3880

θr = 0.03 158.5590 22.6046 256.9590

θr = 0.04 163.8580 19.0941 262.2580

θr = 0.10 181.3580 7.6377 279.7580

† in $M-y; ‡ Investment cost plus annualized generating cost, in $M-y.
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Table 3.27: Annualized generating cost, gen. & trans. exp., 21-node system.

Parameter Mean† Std. Deviation† Overall Cost‡

θr = 0.00 506.4300 93.7604 679.8000

θr = 0.01 546.9090 64.6354 701.3790

θr = 0.02 490.9730 38.1881 751.8830

θr = 0.03 510.4170 25.4588 771.3270

θr = 0.04 520.1390 19.0941 781.0490

θr = 0.10 537.6390 7.6376 798.5490

θr = 0.03, βt = 0

≈ 76%; βg = 0.7 562.6850 25.4588 858.1550

≈ 84%; βg = 1.0 563.6500 25.4588 943.2700

≈ 90%; βg = 1.3 614.8560 25.4588 947.1660

≈ 96%; βg = 1.74 706.1340 25.4588 1027.1940

θr = 0.03, βg = 0

≈ 76%; βt = 0.7 585.5910 25.4588 819.8610

≈ 84%; βt = 1.0 554.6780 25.4588 820.3580

≈ 90%; βt = 1.3 560.0070 25.4588 837.8970

≈ 96%; βt = 1.74 530.1170 25.4588 839.0570

βg = 1.3, βt = 1.3

θr = 0.00 593.7580 112.1040 875.3080

θr = 0.01 548.2870 66.9735 911.6770

θr = 0.02 592.0230 38.5400 955.4130

θr = 0.03 611.4670 25.4588 974.8570

θr = 0.04 621.1890 19.0941 948.5790

θr = 0.10 638.6890 7.6376 1002.0790

† in $M-y; ‡ Investment cost plus annualized generating cost, in $M-y.
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3.7 Concluding Remarks

Main contributions of this chapter are the three stochastic models for generation, trans-

mission, and generation and transmission expansion for the vertically integrated industry.

The most complete model is a two-stage mixed-integer nonlinear program that considers

randomness in the demand, equivalent availability factors, and transmission capacity fac-

tors; the latter are incorporated to the model by means of probabilistic constraints. The

mean-variance Markowitz theory is successfully applied as a risk minimization technique.

It is shown, through various numerical examples, that as the risk aversion increases (large

values of θr) the overall cost increases and the variance of the annualized generation cost

decreases; consequently, the risk is minimized. Also, as the probability of satisfying the

chance constraints increases, the overall cost increases. From the EVPI obtained from

the numerical examples, it is concluded that the stochastic models presented are a good

representation of the uncertainties faced by the investment plans since the SS is not far

from the WSS. An alternative to compute the VSS when the EEV becomes infeasible is

presented. By comparing the deterministic models with the stochastic models, this chapter

shows that even simple models can lead to significant savings and can be effectively applied

as a first step when planning a system expansion to narrow the wide range of possibilities

to just a few.



Chapter 4

Risk Minimization in Pool Electricity

Markets

In the idealized restructured electricity industry, market participants always find the eco-

nomic incentives to invest in new generation and in new transmission. In the real-world

this is not the case. The opening of this chapter, presents the state-of-the-art of generation

and transmission expansion planning in the re-regulated electricity industry. One of the

biggest challenges that the re-regulated electricity industry faces, is the high levels of un-

certainty in the supply and demand bids submitted to the ISO. Pool electricity markets, as

of today, are cleared under the strong assumption of having a perfectly known future. In

reality, the inability to predict what the supply and demand functions would be introduces

risk into the market clearing process. Therefore, to shield against that type of risk in order

to obtain a “closer-to-real-life” solution is an interesting problem. This chapter considers

random variations on the levels and on the slopes of the supply and demand functions.

Positive and negative correlations are considered between the corresponding coefficients of

the supply and demand curves. By means of the mean-variance Markowitz theory, the

risk introduced by these random variations is minimized. A comprehensive analysis of the

effects that the risk minimization has on the nodal spot prices, and on the point-elasticities

of the supply and demand curves is made. The non-linear optimization model presented

in this chapter is validated through a three-, a six-, and a 21-node system.1

1A 57- and a 118-node system are presented in Appendix D.
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This chapter is organized as follows. In Section 4.1, a review of the state-of-the-art of

generation and transmission expansion in the re-regulated electricity industry is presented.

Section 4.2 presents some economical definitions used in a power pool electricity market

and in power system planning. Section 4.3 sketches the general problem when there is ran-

domness in supply and demand functions; the expected social cost function is introduced.

In Section 4.4, an analysis of the effects that the mean-variance Markowitz theory as a

risk minimization technique has on the nodal prices and on the price-point elasticities of

the supply and demand functions is given. Section 4.5 presents the general formulation of

the risk minimization problem from supply and demand uncertainty for a pool electricity

market. An analysis of the dual variables is done and the effects on the nodal prices and

price-point elasticities is studied in a three-, a six-, and a 21-node system. Finally, Section

4.6 concludes.

4.1 A Few Words on Deregulation

Since the appearance of the first decentralized power systems, all the effort has been focused

on the short-term period of power system economics and on how to encourage competition

among market participants. When the consequences of ignoring power system planning

began to surface, the attention of market participants as well as of regulators turned to

power system planning. The concept of centralized system planning no longer exists in an

open access scheme.

Under a power-pool market-based operation, the concept of market-driven power system

expansion involves allowing market participants, without any regulatory intervention, to

invest in new generation, transmission, or a combination of both as a response to economical

signals such as spatial variations on LMPs. In a linearized power-flow model and ignoring

losses, spatial variations on LMPs indicate that the system is congested. The presence of

congestion does not necessarily mean that the reliability of the system is compromised;

it means that the power system cannot support the trading patterns that the market

participants are willing to make, i.e., consumers at load pocket nodes are prevented, by

system constraints, from importing cheap energy from producers at generation pocket

nodes. There is still no general consensus as for which economical signal should prompt
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any system expansion. Market-driven generation expansion is easier to implement, and

conceptually clearer, than market-driven transmission expansion.

For the decentralized generation expansion case, profit-maximizing market participants

invest in new generation based on their expectation of energy prices, return on new invest-

ments, and demand growth. Therefore, generation expansion is motivated by price; the

revenues, based on market prices, have to cover the capital and operating costs [11, 12].

When load faces real-time prices and is elastic enough, high energy prices indicate high

levels of demand, and tight competitive supply and demand conditions. This, in turn,

provides an incentive to invest in new generation [13]. Since demand is price-responsive in

an electricity market, there exists a correlation between load and price and this affects the

shape of the load duration curve, in fact, a price duration curve is sometimes proposed for

planning [3]. A price duration curve plots the number of hours that the price equals or

exceeds a preset price; it represents the price behavior of a power system over time.

A few problems may arise with transmission capacity expansion, especially when tran-

sitioning to deregulation. A power system that is designed to be operated by a vertically

integrated industry presents a specific set of power flow patterns. When competition is

introduced, these power flow patterns are altered. Market participants start to follow

competitive rules, causing the power flow patterns to change more frequently and more

significantly than ever before, making them to deviate from the flows that the original

system was meant to support. This new situation creates new bottlenecks, bringing up

system constraints that before deregulation were not restrictive and may create a heavily

congested system [23].

The situation that prevails in many electricity markets around the world is that trans-

mission expansion has not been able to keep up with the competition needed; in some cases,

the incentives are either low or nonexistent. Market regulators have been prone to use the

concept of regulated revenue through transmission access fees, providing no incentive to

eliminate congestion. The absence of such an incentive is because the transmission owner’s

income is always the same and it is not dependant on the performance of the grid [24].

For the decentralized transmission expansion case there are numerous, and sometimes

conflicting, proposals about what should incetivize transmission investments. Some of

these are: i) spatial variations on LMPs, ii) FTRs, and iii) congestions costs. With regards
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to the spatial variations on LMPs, [14] and [15] state that the main objective of transmis-

sion expansion under deregulation is to encourage competition among participants. LMPs

provide a good measure of the level of competitiveness in an electricity market. In an

ideal perfectly-competitive electricity market, the price of energy is the same throughout

the system and consumers are able to purchase energy from any producer without any

limitation. Therefore, according to [14] and [15], the ultimate goal of transmission expan-

sion is to equalize the LMPs throughout the system by totally alleviating the congestion,

that is, to achieve a flat price profile. The idea of a flat price profile as a goal for trans-

mission expansion rests in the fact that as a network becomes more and more congested,

the gap between LMPs grows larger and larger. When the gap between LMPs is large

enough, then the transmission system should be expanded. On the ground of FTRs, [16]

suggests that long-term FTRs can be used to create incentives for transmission expansion.

When a private investor makes an addition to the grid, it receives the revenues associated

with the expansion via FTRs allocated by the ISO; in this way, the investor can recover

its investment. In order for the private investor to recover its investment, [16] assumes

a small variation in the LMPs defining the FTRs, i.e., the ex-post transmission network

remains with a certain level of congestion. The right level of expansion of the transmission

grid is such that the remaining congestion revenue covers the investment of the expansion.

Since FTRs are granted to the market participants that are involved in the transmission

expansion to recover their investment [10], FTRs are to be rightly priced [17]. Because of

the presence of economies of scale, any transmission expansion tends to be lumpy and it

usually has a great effect on market prices. When the grid configuration is greatly affected

by the expansion, there is the possibility that the prices after the investment cannot longer

support it. Therefore, although the investment may be lumpy, it should be small enough

so it does not have a major impact on the market prices. Depending on the size of the

system, transmission investments can be made in modules, small enough to have a minimal

effect on the market prices after the expansion. Another undesirable effect of lumpiness

is that it can cause and under-investment in the transmission network. In any case, the

project chosen must never mitigate completely the congestion nor have a large effect on

LMPs. As stated above, after a transmission expansion is made, the fixed charges needed

to recover the investment may be greater than the ex-post congestion rents awarded to the
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investors. It has been suggested that a combination of access fees and long-term contracts

could recover the investment. Rightly priced FTRs, as a long-term guarantee, can be used

to prevent the imposition of access fees in order to pay for the transmission expansion.

Concerning congestion costs, [18] – [20] establish that the total congestion cost is a good

criterion to measure the level of expansion needed in a transmission network. In fact, any

system expansion, in generation or transmission, brings about a reduction in the conges-

tion costs [48]. The reduction in the congestion cost is a good way of measuring the social

value of the investment of any system expansion. The merchant investor must be granted

the reduction in the congestion cost (total surplus created by the expansion [13]) in order

to create proper incentives for the investments.2 There should be a compromise between

the congestion cost saving (social value of investment) and the transmission expansion

investment cost; this will define an acceptable level of congestion after the expansion

A sound new proposition is to develop a coordinated generation and transmission ex-

pansion plan. The concept of having a coordinated generation and transmission expansion

plan in a open access scheme, stems from the fact that generation and transmission in-

vestments can be treated as competitors. The condition of an import constrained area

can be alleviated either by reinforcing the transmission link that connects the import con-

strained area to the system, or by building cheap generation at the import constrained

area. Which investment plan is favored depends on which one of them has a greater social

value.3 An efficient power system expansion plan under an open access scheme should

encourage coordination between generation and transmission expansion due to their in-

trinsic interrelationship. Therefore, some regulation is still needed not only to achieve this

goal but also to oversee the transmission sector since, by nature, it should remain as a

monopoly. Certain measure of regulation is also needed because an economic transmission

investment made by market participants can affect the reliability of the system. Hence, the

proposal of any transmission expansion should be first submitted to the regulator agent

2This is under the assumption that the supply curves represent the true marginal costs and that the

demand curves represent the true willingness to pay, i.e., perfect competition.
3For a detailed discussion on the social value of an investment whether in generation or in transmis-

sion, and on how generation and transmission expansion projects are not interchangeable, please refer to

Appendix B
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for approval [17]. The goal of any regulatory mechanism is to reconcile the profit-driven

merchant investor’s goals with the reliability-oriented planner’s goals, and to reconcile the

private and the public interests [10,13,17,49].

4.2 Economic Implications of Generation and

Transmission Expansion

Basic economic theory states that, under perfect competition and ignoring transmission

constraints and losses, the quantity and the price for energy are determined by the in-

tersection of the supply and demand curves. This situation can be thought as two nodes

connected through a transmission line with capacity K large enough so it is not bind-

ing. One node is considered as a net supply,4 for having cheaper generation than the other,

while the other is considered as a net demand.5 The intersection of the supply and demand

curves as well as the consumer and producer surpluses are shown in Figure 4.1.

When the transmission capacity K limits the flow of power from the net supply node

to the net demand node, expensive generation from the net demand node has to be used

to satisfy the demand because of the inability to import cheap energy from the net supply

node; the cost of running more expensive generation from the net supply node is known

as congestion cost or redispatch cost [13]. Another way of understanding the congestion

cost is as the loss of social benefit computed as the difference between net benefits with-

out considering transmission capacity limits and considering them [19]. This out-of-merit

dispatch originates two market clearing prices, one for each node, ρS and ρD. When K is

binding the flow of power the transmission capacity shadow price, or the congestion price,

is defined as ζ = ρD − ρS. The congestion rent is the area defined by the congestion price

and the capacity of the line, that is ζK. When transmission capacity is increased, say

by ∆K, the congestion cost is reduced as shown in Figure 4.2. Hence, the social value

of the investment is the reduction of the congestion cost caused by the expansion. From

4ρ versus q; cost increases as demand increases. It is assumed that the curve reflects the true marginal

cost of production.
5q versus ρ; demand decreases as price increases. It is assumed that the curve reflects the true marginal

willingness to pay.
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Figure 4.1: Supply and demand curves.

Figure 4.2 it can be seen that the social value of the investment can be tracked down

by the changes in the producer and consumer surpluses and the change in the congestion

rent after the expansion is carried out.6 In the case of Figure 4.2, the consumer and the

producer surpluses are increased while the congestion rent decreases.

If losses are to be considered, and in the presence of congestion, the nodal prices have

three components: i) a component due to the cost of the marginal unit at a given swing

bus, ii) a component due to losses, and iii) a component due to congestion. With nodal

pricing all users pay indirectly for transmission through sale and purchase of power at the

various nodes [50]. Also, the merchandizing surplus, or network revenue, is made of two

parts: i) the congestion rent and ii) the cost of line losses. The merchandizing surplus can

be computed as the difference in full nodal prices connected through a transmission line

times the power that flows through the line. One way that the congestion rent component

can be computed is by using the congestion component of the full nodal price times the

power that flows through the line.

6Numerical examples are given in Appendix B.
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Figure 4.2: Effects of congestion.

4.3 The Expected Social Cost Function

The model presented in this chapter is for a double-sided pool electricity market where

the ISO clears the market and also manages congestion. The ISO receives as inputs the

bids of the generation and distribution companies, a double-sided pool electricity market,

while considering transmission constraints. The ISO then determines the optimal levels of

production and consumption, power flows, and LMPs that minimize the total social cost

given by the difference between the total generation cost and the total demand benefit

[48,51].

Assume a quadratic non-decreasing concave function as the consumer’s benefit and take

its derivative as the affine inverse demand function.

B(d) = b1d − 1

2
b2d

2, (4.1)

B′(d) = MB(d) = b1 − b2d, (4.2)

where d is the demand, and b1 and b2 are constants.

Assume also a quadratic non-decreasing convex function as the supplier’s variable gen-
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eration cost and take its derivative as the affine supply function.

C(g) = a1g +
1

2
a2g

2, (4.3)

C ′(g) = MC(g) = a1 + a2g, (4.4)

where g is the generation, and a1 and a2 are constants.

Figure 4.3: Two-node network.

The social cost function for the system shown in Figure 4.3 is

SC(g, d) = a1g +
1

2
a2g

2 −
(

b1d − 1

2
b2d

2

)

. (4.5)

Under the rather strong assumption of a perfectly known future, the minimization of

the social cost, Equation (4.5), renders the following closed form solution

g∗ = d∗ =
b1 − a1

a2 + b2

, (4.6)

ρ∗ =
a1b2 + a2b1

a2 + b2

. (4.7)

Note that g∗, d∗, and ρ∗, form part of the deterministic solution to the social cost mini-

mization problem. Unfortunately, the future cannot be perfectly predicted. A few decades

ago, [1] and [52] acknowledged randomness in the levels of demand that, in turn, originate

random vertical variations on the demand curve [53]. However, those results cannot be

directly applied to electricity markets since they deal with linear objective functions. In

this chapter, all the coefficients in Equations (4.1)–(4.4) are considered as random. Also,

an analysis on the effects that the mean-variance Markowitz theory has on the elasticities

of the supply and demand curves is made.

First, consider Equations (4.1) and (4.2) with the parameters b1 and b2 as random.

Random b1 accounts for vertical random variations of demand while b2 accounts for ran-

dom variations on the demand slope. Figures 4.4 and 4.5 show these two separate cases,

respectively.
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Figure 4.4: Random vertical variation of demand.

In like manner, in Equations (4.3) and (4.4), the random vertical variations of supply

are represented by a1 while the random variations on the supply slope are represented by

a2. Figures 4.6 and 4.7 show these two different cases, respectively.

Because the parameters a1, a2, b1, and b2 are considered as random, one no longer

can compute a deterministic social cost function. What needs to be computed now is an

expected, or average, social cost function. The expectation of any random variable gives

information about its value on the average.

The expected value of the social cost when b1, a1, and both b1 and a1 are random is

shown in Equations (4.8)–(4.10), respectively.

E{SC} = a1g +
1

2
a2g

2 −
(

E{b1}d − 1

2
b2d

2

)

, (4.8)

E{SC} = E{a1}g +
1

2
a2g

2 −
(

b1d − 1

2
b2d

2

)

, (4.9)

E{SC} = E{a1}g +
1

2
a2g

2 −
(

E{b1}d − 1

2
b2d

2

)

. (4.10)

The expected value of the social cost when b2, a2, and both b2 and a2 are random is
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Figure 4.5: Random variation on the demand slope.

shown in Equations (4.11)–(4.13), respectively.

E{SC} = a1g +
1

2
a2g

2 −
(

b1d − 1

2
E{b2}d2

)

, (4.11)

E{SC} = a1g +
1

2
E{a2}g2 −

(

b1d − 1

2
b2d

2

)

, (4.12)

E{SC} = a1g +
1

2
E{a2}g2 −

(

b1d − 1

2
E{b2}d2

)

. (4.13)

The expected social cost when b1 and b2; a1 and a2; and b1, b2, a1, and a2 are random

is shown in Equations (4.14)–(4.16), respectively.

E{SC} = a1g +
1

2
a2g

2 −
(

E{b1}d − 1

2
E{b2}d2

)

, (4.14)

E{SC} = E{a1}g +
1

2
E{a2}g2 −

(

b1d − 1

2
b2d

2

)

, (4.15)

E{SC} = E{a1}g +
1

2
E{a2}g2 −

(

E{b1}d − 1

2
E{b2}d2

)

. (4.16)

The inability to predict the random changes in a1, a2, b1, and b2, introduce risk in the

social cost function. The goal is then to somehow minimize the risk in the expected social

cost function that comes from uncertainties on the levels and on the slopes of the demand

and supply functions.
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Figure 4.6: Random vertical variation of supply.

4.4 Mean-Variance Markowitz Theory—Impacts of Risk

Minimization

Using the mean-variance Markowitz theory, the objective function that minimizes the mean

value of the social cost along with its variance is

min E{SC(g, d)} + θrσ
2
SC , (4.17)

where θr, like before, is the risk parameter that weighs the importance that the minimiza-

tion of the variance has.

4.4.1 Risk from supply and demand intercepts

As stated before, when there is uncertainty from the supply and demand levels, the in-

tercepts of the supply and demand functions are considered as random variables. The

variance of the social cost when b1, a1, and both b1 and a1 are random, assuming they are
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Figure 4.7: Random variation on the supply slope.

uncorrelated, is shown in (4.18)–(4.20), respectively.

σ2
SC = σ2

b1
d2, (4.18)

σ2
SC = σ2

a1
g2, (4.19)

σ2
SC = σ2

a1
g2 + σ2

b1
d2. (4.20)

For this particular situation, it is easy to obtain a closed-form solution. When only the

demand levels are random, the minimization of the expected social cost and its variance

renders

g∗ = d∗ =
E{b1} − a1

a2 + b2 + 2θrσ2
b1

, (4.21)

ρ∗ =
a2(E{b1} − a1)

b2 + 2θrσ2
b1

+ a2

+ a1. (4.22)

From Equation (4.21), one can see that as θr increases, the demand d decreases. From

Equation (4.22), since a1 < E{b1} (otherwise one would have no solution), as θr increases,

the price ρ decreases.

The effects of the mean-variance Markowitz theory as a risk minimization technique

can be seen from an analysis of the first order optimality conditions with respect to d. The
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Lagrangian for this simple problem is

L(g, d, ρ) = a1g +
1

2
a2g

2 − E{b1}d +
1

2
b2d

2 + θrσ
2
b1

d2 − ρ(g − d), (4.23)

and the first order optimality condition with respect to d is

ρ∗ = E{b1} − (b2 + 2θrσ
2
b1

)d. (4.24)

Equation (4.24) shows that the minimization of the social cost variance has the equivalent

effect of changing the slope of the demand function. As θr increases, the slope also in-

creases, and the demand function is less sensitive to price changes. This can be seen, using

Equations (4.21), (4.22), and (4.24), from the definition of demand price-point elasticity

for the current operating point, that is

|η| =

∣

∣

∣

∣

dd

dρ

ρ

d

∣

∣

∣

∣

=

∣

∣

∣

∣

a1(b2 + 2θrσ
2
b1

) + a2E{b1}
(a1 − E{b1})(b2 + 2θrσ2

b1
)

∣

∣

∣

∣

=

∣

∣

∣

∣

a1

a1 − E{b1}
+

a2E{b1}
(a1 − E{b1})(b2 + 2θrσ2

b1
)

∣

∣

∣

∣

. (4.25)

From Equation (4.25), with a1 < E{b1}, one can see that as θr increases the elasticity for

a given point decreases. In other words, a risk averse attitude (large values of θr) decreases

the elasticity of the demand curve for a given point.7

When only the supply levels are random, the minimization of the expected social cost

and its variance renders the following closed-form solution:

g∗ = d∗ =
b1 − E{a1}

a2 + 2θrσ2
a1

+ b2

, (4.26)

ρ∗ =
b2(E{a1} − b1)

a2 + 2θrσ2
a1

+ b2

+ b1. (4.27)

From Equation (4.26), one can see that as θr increases, the generation g decreases. From

Equation (4.27), since E{a1} < b1, as θr increases the price ρ also increases. Note that θr

has the opposite effect on the price with respect to the case of random demand.

7For the supply/demand point-elasticity, when |η| < 1 the supply/demand is inelastic and when |η| > 1

the supply/demand is elastic [54].



Chapter 4. Risk Minimization in Pool Electricity Markets 83

The Lagrangian for this simple problem is

L(g, d, ρ) = E{a1}g +
1

2
a2g

2 − b1d +
1

2
b2d

2 + θrσ
2
a1

g2 − ρ(g − d), (4.28)

and the first order optimality condition with respect to g is

ρ∗ = E{a1} + (a2 + 2θrσ
2
a1

)g. (4.29)

Equation (4.29) shows that the minimization of the social cost variance has the equivalent

effect of changing the slope of the supply function. As θr increases, the slope increases,

and the supply function becomes less sensitive to price changes. This again can be seen,

using Equations (4.26), (4.27), and (4.29), from the supply price-point elasticity for a given

point, with E{a1} < b1, that is

|η| =

∣

∣

∣

∣

dg

dρ

ρ

g

∣

∣

∣

∣

=

∣

∣

∣

∣

−b1(a2 + 2θrσ
2
a1

) + E{a1}b2

(E{a1} − b1)(a2 + 2θrσ2
a1

)

∣

∣

∣

∣

=

∣

∣

∣

∣

−
(

b1

E{a1} − b1

+
E{a1}b2

(E{a1} − b1)(a2 + 2θrσ2
a1

)

)∣

∣

∣

∣

. (4.30)

A risk averse attitude decreases the elasticity of the supply curve for a given point.

Finally, when both demand and supply levels are random, and assuming they are uncor-

related, the minimization of the expected social cost and its variance renders the following

closed-form solution:

g∗ = d∗ =
E{b1} − E{a1}

a2 + b2 + 2θr(σ2
a1

+ σ2
b1

)
, (4.31)

ρ∗ =
a2 + 2θrσ

2
a1

a2 + b2 + 2θr(σ2
a1

+ σ2
b1

)
(E{b1} − E{a1}) + E{a1}. (4.32)

From Equation (4.31), one can see that as θr increases, the demand d/generation g de-

creases.

The Lagrangian function is

L(g, d, ρ) = E{a1}g +
1

2
a2g

2 − E{b1}d +
1

2
b2d

2 + θr(σ
2
a1

g2 + σ2
b1

d2) − ρ(g − d). (4.33)

The first order optimality conditions with respect to d and g are as in Equations (4.24)

and (4.29), respectively. Just like before, the minimization of the social cost variance has
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the equivalent effect of changing the slopes of the demand and supply functions which, in

turn, affect their elasticities. As θr increases, both slopes increase, and the demand and

supply functions become less sensitive to price changes. A risk averse attitude decreases

the elasticity of both the demand and supply curves at a given point.

4.4.2 Risk from supply and demand slopes

A more challenging form of uncertainty, mathematically speaking, comes from random

variations in the slopes of the supply and demand functions. The variance of the social cost

when b2, a2, and both b2 and a2 are random, respectively, assuming they are uncorrelated,

is shown in Equations (4.34)–(4.36).

σ2
SC =

1

4
σ2

b2
d4, (4.34)

σ2
SC =

1

4
σ2

a2
g4, (4.35)

σ2
SC =

1

4

(

σ2
a2

g4 + σ2
b2

d4
)

. (4.36)

For this particular situation, it is rather difficult to obtain a closed-form solution for

the minimization of the expected social cost and its variance since the objective function

is a quartic equation. However, from the Lagrangian function, one can see the effects that

the minimization of the variance has on the supply and demand functions. For the case

when only b2 is a random variable, the lagrangian function and the first order optimality

condition with respect to d are

L(g, d, ρ) = a1g +
1

2
a2g

2 − b1d +
1

2
E{b2}d2 +

1

4
θrσ

2
b2

d4 − ρ(g − d), (4.37)

ρ∗ = b1 − E{b2}d − θrσ
2
b2

d3. (4.38)

From Equation (4.38), one can see that the minimization of the social cost variance has an

equivalent effect of reshaping the demand function. It transforms the demand curve from a

linear to cubic function. The more important the minimization of the variance, the larger

the effect the cubic term has on the demand function. The demand price-point elasticity

for a given point is

|η| =

∣

∣

∣

∣

E{b2}d + θrσ
2
b2

d3 − b1

E{b2}d + 3θrσ2
b2

d3

∣

∣

∣

∣

. (4.39)
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For the case when only a2 is a random variable, the Lagrangian function and the first

order optimality condition with respect to g are

L(g, d, ρ) = a1g +
1

2
E{a2}g2 − b1d +

1

2
b2d

2 +
1

4
θrσ

2
a2

g4 − ρ(g − d), (4.40)

ρ∗ = a1 + E{a2}g + θrσ
2
a2

g3. (4.41)

It can bee seen from Equation (4.41), just like before, that the minimization of the social

cost variance reshapes the supply function transforming it from a linear to a cubic function.

The more important the minimization of the variance, the larger the effect that the cubic

term has on the supply function. The supply price-point elasticity for a given point is

|η| =

∣

∣

∣

∣

E{a2}g + θrσ
2
a2

g3 + a1

E{a2}g + 3θrσ2
a2

g3

∣

∣

∣

∣

. (4.42)

When both slopes, b2 and a2, are considered as random, the effect on the supply and

demand functions is the same: the supply and demand function are reshaped and trans-

formed from linear to cubic functions, i.e., Equations (4.38) and (4.41). The price-point

elasticity for a given point is like in Equations (4.39) and (4.42).

4.4.3 Risk from supply and demand intercepts and slopes

When considering randomness in the intercepts and slopes of the supply and demand

curves, it is logical to assume that there exists a correlation between b1 and b2, and between

a1 and a2. The covariance is a measure of how much two random variables vary together.

The covariance is defined as σX,Y = E{XY } − E{X}E{Y }. If σX,Y > 0, Y increases as

X increases. If σX,Y < 0, Y decreases as X increases.

The variance of the social cost when the intercept and the slope of the demand function,

the supply function, and both the supply and demand functions are taken as random, is

shown in Equations (4.43)–(4.45), respectively.

σ2
SC =

1

4
σ2

b2
d4 − σb1,b2d

3 + σ2
b1

d2, (4.43)

σ2
SC =

1

4
σ2

a2
g4 + σa1,a2

g3 + σ2
a1

g2, (4.44)

σ2
SC =

1

4

(

σ2
a2

g4 + σ2
b2

d4
)

+ σa1,a2
g3 − σb1,b2d

3 + σ2
a1

g2 + σ2
b1

d2. (4.45)
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Again, it is difficult to obtain a closed-form solution of the minimization of the ex-

pected social cost and its variance. The Lagrangian function, and its first order optimality

condition with respect to d when only the intercept and the slope of the demand function

are considered as random are

L(g, d, ρ) = a1g +
1

2
a2g

2 − E{b1}d +
1

2
E{b2}d2

+ θr

(

1

4
σ2

b2
d4 − σb1,b2d

3 + σ2
b1

d2

)

− ρ(g − d), (4.46)

ρ∗ = E{b1} − E{b2}d − θr

(

σ2
b2

d3 − 3σb1,b2d
2 + 2σ2

b1
d
)

. (4.47)

Minimizing the social cost variance, from Equation (4.47), reshapes the demand function; it

goes from a linear function to a cubic function. The more important the risk minimization,

the bigger the impact the cubic and the quadratic terms have. The demand price-point

elasticity for a given point is

|η| =

∣

∣

∣

∣

(E{b2} + 2θrσ
2
b1

)d + θr(σ
2
b2

d3 − 3σb1,b2d
2) − E{b1}

(E{b2} + 2θrσ2
b1

)d + 3θr(σ2
b2

d3 − 2σb1,b2d
2)

∣

∣

∣

∣

. (4.48)

When only the intercept and the slope of the supply function are considered as random,

the lagrangian function and its first order optimality condition with respect to g are

L(g, d, ρ) = E{a1}g +
1

2
E{a2}g2 − b1d +

1

2
b2d

2 (4.49)

+ θr

(

1

4
σ2

a2
g4 + σa1,a2

g3 + σ2
a1

g2

)

− ρ(g − d),

ρ∗ = E{a1} + E{a2}g + θr

(

σ2
a2

g3 + 3σa1,a2
g2 + 2σ2

a1
g
)

. (4.50)

Similarly, the supply function, Equation (4.50), goes from a linear to a cubic function.

The supply price-point elasticity for any given fixed point is

|η| =

∣

∣

∣

∣

(E{a2} + 2θrσ
2
a1

)g + θr(σ
2
a2

g3 + 3σa1,a2
g2) + E{a1}

(E{a2} + 2θrσ2
a1

)g + 3θr(σ2
a2

g3 + 2σa1,a2
g2)

∣

∣

∣

∣

. (4.51)

When the intercepts and the slopes of both supply and demand curves are random

variables, the effect of the risk minimization is the same: the supply and demand functions

are transformed from linear to cubic functions, like in equations (4.47) and (4.50), and

their elasticities are like in Equations (4.48) and (4.51).
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4.5 General Formulation—An Analysis on

Dual Variables

The preceding analysis is for a simple radial network. It helps with the basic understanding

of social cost variance minimization. This section discusses the more general case for any

number of nodes and any number of lines. The mean-variance social cost minimization

problem, including transmission constraints, can be defined as [3, 55]

min fs(gs, ds) + f(gr,dr) + θr[vs(gs, ds) + v(gr,dr)] (4.52)

s.t. gs − ds + 〈e, gr − dr〉 = 0, (4.53)

H(gr − dr) ≤ f , (4.54)

where fs(gs, ds) = E{a1,s}gs + 1
2
E{a2,s}g2

s − (E{b1,s}ds − 1
2
E{b2,s}d2

s) is the expected social

cost function at the swing bus, f(gr,dr) =
∑|N |−1

ν

(

E{a1,ν}gν + 1
2
E{a2,ν}g2

ν −(E{b1,ν}dν −
1
2
E{b2,ν}d2

ν)
)

is the mean social cost function at every node except the swing bus, gr is

the reduced generation vector with elements gν , dr is the reduced demand vector with

elements dν , N is the set of all different nodes, vs(gs, ds) = 1
4
(σ2

a2,s
g4

s +σ2
b2,s

d4
s)+σa1,s,a2,s

g3
s −

σb1,s,b2,s
d3

s +σ2
a1,s

g2
s +σ2

b1,s
d2

s is the social cost variance function at the swing bus, v(gr,dr) =
∑|N |−1

ν

(

1
4
(σ2

a2,ν
g4

ν + σ2
b2,ν

d4
ν) + σa1,ν ,a2,ν

g3
ν − σb1,ν ,b2,ν

d3
ν + σ2

a1,ν
g2

ν + σ2
b1,ν

d2
ν

)

is the social cost

variance function at every node except the swing bus, θr is the risk factor, e is the unitary

vector, H is the transfer admittance matrix, and f is the maximum value for the power-

flow vector with elements fi-j.

The Lagrangian of the problem shown in Equations (4.52)–(4.54) is

L(gs, ds, g
r,dr, ρs,µ) = fs(gs, ds) + f(gr,dr)

+ θr[vs(gs, ds) + v(gr,dr)]

− ρs[gs − ds + 〈e, gr − dr〉]

− µT [H(gr − dr) − f ], (4.55)

µi-j ≤ 0, ∀ i-j ∈ I. (4.56)

The first-order optimality condition with respect to generation at the swing bus is

ρs =
dfs(gs, ds)

dgs

+ θr

dvs(gs, ds)

dgs

. (4.57)
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The first-order optimality condition with respect to generation at every node except

the swing bus is

∇gr f(gr,dr) + θr∇gr v(gr,dr) = ρse + HT µ, (4.58)

ρ = ρse + ω. (4.59)

The first-order optimality condition with respect to demand at the swing bus is

ρs = −dfs(gs, ds)

dds

− θr

dvs(gs, ds)

dds

. (4.60)

The first-order optimality condition with respect to demand at every node except the

swing bus is

−∇dr f(gr,dr) − θr∇dr v(gr,dr) = ρse + HT µ, (4.61)

ρ = ρse + ω. (4.62)

From Equation (4.57), one can see that the price at the swing bus now has two com-

ponents. The first component is the marginal cost of the generating unit at the swing bus

while the second component can be interpreted as the cost, originated by the randomness in

supply at the swing bus, of minimizing the social cost variance. Note that, from Equation

(4.59), the price at every other node is still affected by the congestion prices; the classical

concept of congestion rents remains unchanged [13, 56]. Equations (4.60) and (4.62) can

be interpreted in a similar way.

The minimization of the social cost variance, assuming that a1,s, a1,ν , a2,s, a2,ν , b1,s,

b1,ν , b2,s, and b2,ν are random variables, has a direct impact on the elasticities of the

marginal cost and benefit functions. The most drastic change is that it in fact changes the

supply/demand function from a linear to a cubic function.

Next, the mathematical model is evaluated8 with a three-, six-, and a 21-node system.

The numerical results are discussed and further insight is provided on the elasticities of

the supply and demand curves. All the pertinent data is given in Appendix C.

Without any loss of generality, it is assumed that the intercepts and slopes of the

demand functions are negatively correlated while the intercepts and slopes of the supply

functions are positively correlated.

8All models are implemented in the optimization software GAMS using the MINOS solver [42].
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A Three-Node System

The three-node system is shown in Figure 4.8. Take Node 3 as the slack node. All the

pertinent data is given in Appendix C.

Figure 4.8: Three-node system.

Table 4.1 shows some results when the demand levels are uncertain. One can see that,

as the risk aversion increases, the nodal prices, total demand, and social cost variance they

all decrease. The mean social cost increases as the risk aversion increases.

Table 4.2 shows some results when the supply levels are uncertain; as θr increases, the

nodal prices and mean social cost also increase; the demand levels, and social cost variance

they all decrease.

Finally, assume that there is uncertainty from the supply and demand levels. Table 4.3

shows some results. As θr increases, the mean social cost also increases; the price at the

swing bus (Node 3), the demand levels, and the social cost variance they all decrease.

Table 4.4 shows some results when only the slopes of the demand functions are random.

It can be seen that, as θr increases, the social cost variance decreases. It too can be observed

that the nodal prices, generation, and demand levels have an overall tendency to decrease

as θr increases.

In Table 4.5, some results are shown for the case when the supply slopes are taken as

random. As the risk aversion increases, the social cost variance decreases. Note that in

this case, the nodal prices increase as θr increases. However, the supply and demand levels

decrease as θr increases.
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Table 4.1: Random demand levels, three-node system.

Parameter θr = 0 θr = 0.0001 θr = 0.001 θr = 0.01

E{SC}† −3479.99 −3479.9 −3471.95 −3149.62

σ2
SC

‡ 156.58 154.75 139.93 70.67

ρ1
∗ 26.62 26.60 26.43 25.76

ρ2
∗ 33.07 32.99 32.30 28.14

ρ3
∗ 29.85 29.80 29.37 24.99

g1
⋆ 101.11 100.32 93.83 67.82

g2
⋆ 60.25 59.65 54.48 23.48

g3
⋆ 174.13 173.694 169.91 131.57

d1
⋆ 64.82 64.47 61.38 37.82

d2
⋆ 113.96 113.80 112.03 83.48

d3
⋆ 156.70 155.40 144.8 101.57

† in $/h, ‡ × 103 in $2/h2, ∗ in $/MWh, and ⋆ in MW.

Table 4.6 shows the case when there is randomness in the slopes of both the supply and

demand curves. Just as expected, a risk averse position decreases the social cost variance.

As θr increases, the supply and demand levels decrease. Unlike the two previous cases, the

nodal prices inconsistently go up and down. One has to remember that the congestion in

the transmission lines also varies as θr varies.

Table 4.7 gives some results when both the intercepts and slopes of the demand curves

are taken as random. It can be observed that as θr increases, the social cost variance,

nodal prices, generation, and demand levels they all decrease.

In Table 4.8, some results are presented for the case when the intercepts and slopes of

the supply functions are taken as random. It can be observed that the overall tendency of

the social cost variance, generation, and demand levels is to decrease as θr increases. Note

that the nodal prices have a tendency to increase as the risk minimization increases.

Finally, Table 4.9 gives some results when the intercepts and slopes of the supply and

demand functions are random variables. Notice that the nodal prices inconsistently go up

and down. The tendency that prevails is that as θr increases, the social cost variance,

generation, and demand levels they all decrease.
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Table 4.2: Random supply levels, three-node system.

Parameter θr = 0 θr = 0.0001 θr = 0.001 θr = 0.01

E{SC}† −3479.99 −3479.97 −3478.01 −3379.05

σ2
SC

‡ 63.93 63.49 59.85 39.19

ρ1
∗ 26.62 26.65 26.91 28.53

ρ2
∗ 33.07 33.07 33.12 33.60

ρ3
∗ 29.85 29.86 30.02 31.06

g1
⋆ 101.11 100.43 94.71 61.25

g2
⋆ 60.25 60.06 58.442 46.76

g3
⋆ 174.13 173.98 172.58 157.23

d1
⋆ 64.82 64.24 59.28 28.22

d2
⋆ 113.96 113.87 113.01 103.74

d3
⋆ 156.70 156.36 153.45 133.28

† in $/h, ‡ × 103 in $2/h2, ∗ in $/MWh, and ⋆ in MW.

Table 4.3: Random supply and demand levels, three-node system.

Parameter θr = 0 θr = 0.0001 θr = 0.001 θr = 0.01

E{SC}† −3479.99 −3479.81 −3464.77 −2974.53

σ2
SC

‡ 220.51 216.84 188.45 78.46

ρ1
∗ 26.62 26.63 26.72 27.57

ρ2
∗ 33.07 32.99 32.35 28.75

ρ3
∗ 29.85 29.81 29.53 26.39

g1
⋆ 101.11 99.65 88.32 48.32

g2
⋆ 60.25 59.46 52.91 20.43

g3
⋆ 174.13 173.54 168.42 122.33

d1
⋆ 64.82 63.89 56.54 21.64

d2
⋆ 113.96 113.70 111.12 78.77

d3
⋆ 156.70 155.06 141.98 90.67

† in $/h, ‡ × 103 in $2/h2, ∗ in $/MWh, and ⋆ in MW.
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Table 4.4: Random demand slopes, three-node system.

Parameter θr = 0 θr = 0.0001 θr = 0.001 θr = 0.01

E{SC}† −3480.02 −3468.34 −3287.16 −2525.75

σ2
SC

‡ 1026.20 738.48 295.82 34.55

ρ1
∗ 26.62 26.47 26.22 24.81

ρ2
∗ 33.07 32.27 29.65 27.00

ρ3
∗ 29.85 29.33 25.76 22.61

g1
⋆ 101.11 95.08 85.51 31.17

g2
⋆ 60.25 54.31 34.72 14.95

g3
⋆ 174.13 169.55 138.29 110.68

d1
⋆ 64.82 65.08 55.51 39.26

d2
⋆ 113.96 114.32 94.73 55.91

d3
⋆ 156.70 139.55 108.29 61.63

† in $/h, ‡ × 103 in $2/h2, ∗ in $/MWh, and ⋆ in MW.

Table 4.5: Random supply slopes, three-node system.

Parameter θr = 0 θr = 0.0001 θr = 0.001 θr = 0.01

E{SC}† −3480.02 −3430.99 −3063.17 −2278.06

σ2
SC

‡ 2732.60 1432.10 327.46 37.11

ρ1
∗ 26.62 26.99 28.34 31.17

ρ2
∗ 33.07 33.53 34.56 35.60

ρ3
∗ 29.85 30.26 31.45 33.65

g1
⋆ 101.11 103.97 91.24 60.00

g2
⋆ 60.25 61.35 54.84 35.27

g3
⋆ 174.13 146.38 96.97 53.58

d1
⋆ 64.82 57.77 31.78 0.00

d2
⋆ 113.96 105.16 85.39 65.27

d3
⋆ 156.70 148.77 125.89 83.59

† in $/h, ‡ × 103 in $2/h2, ∗ in $/MWh, and ⋆ in MW.
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Table 4.6: Random supply and demand slopes, three-node system.

Parameter θr = 0 θr = 0.0001 θr = 0.001 θr = 0.01

E{SC}† −3480.02 −3411.05 −2914.10 −1914.82

σ2
SC

‡ 3758.80 1919.40 406.72 39.32

ρ1
∗ 26.62 26.82 27.65 28.80

ρ2
∗ 33.07 32.81 31.23 28.80

ρ3
∗ 29.85 29.81 29.44 28.80

g1
⋆ 101.11 98.84 83.18 51.14

g2
⋆ 60.25 56.52 40.06 20.18

g3
⋆ 174.13 143.99 92.19 48.79

d1
⋆ 64.82 59.07 39.05 17.54

d2
⋆ 113.96 106.75 85.93 52.37

d3
⋆ 156.70 133.52 90.46 50.20

† in $/h, ‡ × 103 in $2/h2, ∗ in $/MWh, and ⋆ in MW.

Table 4.7: Random demand intercepts–slopes, three-node system.

Parameter θr = 0 θr = 0.0001 θr = 0.001 θr = 0.01

E{SC}† −3480.02 −3451.74 −3040.46 −1943.96

σ2
SC

‡ 2285.90 1535.10 468.05 40.05

ρ1
∗ 26.62 26.40 25.87 23.15

ρ2
∗ 33.07 31.74 27.82 25.28

ρ3
∗ 29.85 28.65 23.92 21.02

g1
⋆ 101.11 92.47 72.18 0.00

g2
⋆ 60.25 50.29 21.09 2.13

g3
⋆ 174.13 163.61 122.16 96.70

d1
⋆ 64.82 62.47 45.69 25.68

d2
⋆ 113.96 110.30 79.34 34.29

d3
⋆ 156.70 133.61 90.40 38.85

† in $/h, ‡ × 103 in $2/h2, ∗ in $/MWh, and ⋆ in MW.
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Table 4.8: Random supply intercepts–slopes, three-node system.

Parameter θr = 0 θr = 0.0001 θr = 0.001 θr = 0.01

E{SC}† −3480.02 −3416.75 −2941.71 −1967.68

σ2
SC

‡ 3536.30 1832.30 413.73 49.12

ρ1
∗ 26.62 27.14 28.90 34.82

ρ2
∗ 33.07 33.64 34.93 35.66

ρ3
∗ 29.85 30.39 31.91 35.24

g1
⋆ 101.11 101.38 79.17 48.19

g2
⋆ 60.25 59.52 46.33 22.38

g3
⋆ 174.13 143.16 90.86 46.63

d1
⋆ 64.82 54.84 21.10 0.00

d2
⋆ 113.96 102.99 78.27 64.20

d3
⋆ 156.70 146.22 116.99 53.01

† in $/h, ‡ × 103 in $2/h2, ∗ in $/MWh, and ⋆ in MW.

Table 4.9: Random supply and demand intercepts–slopes, three-node system.

Parameter θr = 0 θr = 0.0001 θr = 0.001 θr = 0.01

E{SC}† −3480.02 −3369.48 −2646.76 −1349.08

σ2
SC

‡ 5822.20 2782.50 543.67 40.31

ρ1
∗ 26.62 26.83 27.83 27.56

ρ2
∗ 33.07 32.30 29.11 27.56

ρ3
∗ 29.85 29.57 28.47 27.56

g1
⋆ 101.11 93.12 68.62 25.64

g2
⋆ 60.25 51.03 24.08 8.99

g3
⋆ 174.13 138.86 82.93 39.40

d1
⋆ 64.82 55.64 28.61 13.27

d2
⋆ 113.96 103.56 74.07 31.01

d3
⋆ 156.70 123.82 72.95 29.76

† in $/h, ‡ × 103 in $2/h2, ∗ in $/MWh, and ⋆ in MW.
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A Six-Node System

The six-node system used in this section is shown in Figure 4.9. It is a modification of the

system that appears Section 3.5.2. Take Node 6 as the slack node. All the pertinent data

is given in Appendix C. With this six node system, Equations (4.39), (4.42), (4.48), and

(4.51) are analyzed.

Figure 4.9: Six-node system.

Table 4.10 shows the case when the intercepts and slopes of the supply and demand

curves are random variables. It can be seen that the social cost variance, supply, and de-

mand levels decrease as the risk aversion increases. However, the nodal prices inconsistently

go up and down as θr increases.

Take the demand located at Node 5. Using Equation (4.39), the price-point elasticity

when b2 is a random parameter, one can see that as θr varies from 0.0001 to 0.01, |η| varies

from | − 30.51| to | − 1.96|. This shows then, that a risk averse position decreases the

elasticity of the demand curve.

Take now the supply function of the generator located at Node 1. Using Equation

(4.42), the price-point elasticity equation when a2 is considered as random, one can see

that as θr varies from 0.0001 to 0.01, |η| varies from |4.20| to |1.16|. This shows that a risk

averse position decreases the elasticity of the supply curve at the given operating point.
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Table 4.10: Random supply and demand intercepts–slopes, six-node system.

Parameter θr = 0 θr = 0.0001 θr = 0.001 θr = 0.01

E{SC}† −4410.36 −4268.72 −3341.10 −1715.58

σ2
SC

‡ 7499.40 3496.10 695.31 50.77

ρ1
∗ 28.33 29.24 32.29 31.61

ρ2
∗ 33.08 32.79 32.29 31.61

ρ3
∗ 33.45 33.29 32.29 31.61

ρ4
∗ 31.72 31.77 32.29 31.61

ρ5
∗ 33.83 33.80 32.29 31.61

ρ6
∗ 32.40 32.28 32.29 31.61

g1
⋆ 166.67 149.52 104.90 39.98

g3
⋆ 63.10 57.36 37.35 16.87

g6
⋆ 196.52 152.64 91.67 43.43

d1
⋆ 32.04 14.10 0.00 0.00

d2
⋆ 113.81 97.54 58.96 24.08

d3
⋆ 68.14 63.29 47.67 20.33

d4
⋆ 82.19 71.13 40.83 18.08

d5
⋆ 22.48 22.03 32.81 15.47

d6
⋆ 107.62 91.41 53.65 22.31

† in $/h, ‡ × 103 in $2/h2, ∗ in $/MWh, and ⋆ in MW.

Take now, for instance, the demand located at Node 2. With Equation (4.48), the

price-point elasticity when b1 and b2 are random, one can see that as θr varies from 0.0001

to 0.01, |η| varies from | − 3.52| to | − 1.03|. Once more, the elasticity of the demand

function decreases as the risk aversion increases.

Finally, take now the supply function of the generator located at Node 1. Using Equa-

tion (4.51), the price-point elasticity when a1 and a2 are taken as random, one can see that

as θr varies from 0.0001 to 0.01, |η| varies from |3.95| to | − 1.52|. Again, one can see that

as θr increases, the elasticity of the supply function at a given point decreases.
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A 21-Node System

The last numerical example is the 21-node system shown in Figure 4.10; it is a modification

of the system in Section 3.6.2. Take Node 21 as the slack node. All the pertinent data

appears in Appendix C. Table 4.11 shows how the nodal prices vary as the risk parameter

varies. Just as expected, as θr increases the social cost variance decreases and the expected

social cost increases.

Figure 4.10: 21-one-node system.
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Table 4.11: Random supply and demand intercepts–slopes, 21-node system.

Parameter θr = 0 θr = 0.0001 θr = 0.001 θr = 0.01

E{SC}† −13320.00 −13060.00 −10960.00 −5977.53

σ2
SC

‡ 15037.00 8200.00 2043.40 175.45

ρ1
∗ 28.17 28.88 31.79 30.78

ρ2
∗ 36.00 35.81 34.57 30.78

ρ3
∗ 33.37 33.14 33.50 30.78

ρ4
∗ 34.78 34.51 34.09 30.78

ρ5
∗ 33.51 32.88 32.12 30.78

ρ6
∗ 33.85 33.66 32.97 30.78

ρ7
∗ 25.52 25.98 27.98 30.78

ρ8
∗ 33.47 33.22 33.08 30.78

ρ9
∗ 33.77 33.45 33.69 30.78

ρ10
∗ 33.18 32.99 32.47 30.78

ρ11
∗ 28.90 29.70 32.69 30.78

ρ12
∗ 36.62 36.48 34.64 30.78

ρ13
∗ 30.21 30.27 30.06 30.78

ρ14
∗ 31.13 30.94 30.48 30.78

ρ15
∗ 31.96 31.49 30.95 30.78

ρ16
∗ 28.09 28.07 28.45 30.78

ρ17
∗ 33.20 33.02 31.15 30.78

ρ18
∗ 36.74 36.59 32.30 30.78

ρ19
∗ 28.63 29.24 29.18 30.78

ρ20
∗ 21.39 22.90 29.87 30.78

ρ21
∗ 24.63 27.14 31.26 30.78

† in $/h, ‡ × 103 in $2/h2, and ∗ in $/MWh
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4.6 Concluding Remarks

An analysis of the impact that the mean-variance Markowitz theory as a risk minimization

technique has on pool electricity markets is presented. Its importance is stressed due to

the fact that electricity markets face increased uncertainty from random parameters in

the supply and demand functions. If one is able to obtain marginal prices that consider

risk minimization, better planning schemes for the deregulated electricity industry can

be developed. This chapter shows that the mean-variance Markowitz theory has a direct

impact on the price-point elasticities of the supply and demand curves. The most drastic

change is that it transforms the linear supply and demand functions into cubic functions.

The more averse the position towards risk, the lesser the elasticity of the supply and demand

curves and the lesser the supply/demand levels. The nodal prices tend to vary as well as the

risk parameter varies. A marginal price analysis shows that now the price at the slack node

has two components: the one component is the marginal cost of the generating unit at that

bus and the other is a cost component due to the social cost variance minimization. This

marginal price analysis also shows that the concept of congestion prices remains unchanged.

This chapter presents a fresh analysis on the economical impacts of risk minimization in

power pool electricity markets.



Chapter 5

Conclusions

5.1 Summary of Contributions

The real world calls for more accurate models that take into account the effects of a variety

of random events. The inability to accurately predict these random events introduce risk

into the modeling process. Therefore, it is important not only to implement stochastic

models but also to minimize such risk. The main contribution of this work is the success-

ful application of the mean-variance Markowitz theory as risk minimization technique in

centralized power system planning and in the market clearing process of a pool electricity

market.

In Chapter 2, after addressing the goals for generation and transmission expansion in

a vertically integrated industry, a joint single-stage deterministic model for generation and

transmission expansion in a vertically integrated industry is proposed. The advantages of

this new model are:

◦ Extends the single-nodal point generation planning by way of incorporating a DC

model of the transmission network. This is done by assuming that there is a Load

Duration Curve per node.

◦ Unlike the common practice of setting first a generation expansion scheme and then

performing the transmission expansion planning, the joint planning for generation

and transmission expansion allows the coordination between expansion projects in

100
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order to attain the common goal of minimizing the annual estimate of generation

cost.

◦ This model incorporates important real-world constraints such as the derated capac-

ity constraints, the stability constraint, and considers the integer nature of generation

and transmission additions.

◦ The model indicates the location of new generation and transmission, and is able to

choose from among a set of different generating technologies in order to satisfy all

the operating modes considered in the Load Duration Curve.

In Chapter 3, all the deterministic models presented in Chapter 2 are modified to

become two-stage stochastic models. Through various numerical examples, the superiority

that stochastic models have over deterministic models is presented; important parameters

to quantify randomness such as the EVPI and the VSS are also presented. The main

contributions of Chapter 3 are listed below.

◦ The models for generation, transmission, and joint generation and transmission ex-

pansion are formulated as two-stage stochastic models. This is possible due to the

structural property of block separability that some multistage stochastic programs

have. Block separability allows the partitioning of the variables into aggregate-level

decisions and detailed-level decisions. The generation and transmission expansion

model has as aggregate-level decisions the investment in new generation and trans-

mission, and as detailed-level decisions the annual estimate of generation.

◦ The mean-variance Markowitz theory is implemented in all the models as a risk

minimization technique; this is done through a risk parameter that trades off variance

minimization with expected value minimization of the detailed-level decisions in the

objective function. Minimizing the variance is a way of minimizing the risk.

◦ To further include in the model the effects of random events, probabilistic constraints

are incorporated. These are the probabilistic transmission line capacity constraints

and the probabilistic generation derated capacity constraints.
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◦ The application of these models, particularly the joint generation and transmission

expansion model, is a first step in generation and transmission expansion planning in

order to evaluate as many alternatives as possible. Once the possibilities are narrowed

to just a few, more complex studies can be implemented, such as AC power flows,

losses, stability, transient analysis, line design, and so forth.

◦ All the stochastic models for generation, transmission, and joint generation and trans-

mission expansion that incorporate risk minimization and probabilistic constraints

are a new approach to centralized power system planning. The numerical examples

show that significant savings can be achieved and the expansion plan supports all

the possible foreseeable scenarios.

In Chapter 4, the mean-variance Markowitz theory is applied to the market clearing

process of a pool electricity market. All the coefficients of the quadratic cost and benefit

functions are considered as random. The main contributions of this chapter are outlined

below.

◦ Randomness in the nonlinear cost and benefit functions through random supply and

demand curves has never been considered in the literature before. An analysis of

the effects that the mean-variance Markowitz theory has, as a risk minimization

technique, on the elasticities of the supply and demand functions when the intercepts

and slopes are taken as random is made. It is shown that, as expected, when the risk

aversion increases, the price responsiveness of both the supply and demand curves

decreases.

◦ Through a dual variables analysis, it is shown that the classic definition of congestion

rents remains unchanged. It is also shown that, at the swing bus, the nodal price

has now two components. The first component is the marginal cost of the unit at

the swing bus and the second component is the cost due to the minimization of the

social cost variance.

◦ If one is able to obtain marginal prices that consider risk minimization, better planing

schemes can be developed for the deregulated electricity industry.
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◦ In an open access scheme, assuming the Independent System Operator is concerned

with the social cost minimization, the social value of an investment can be used as a

decision tool when comparing generation and transmission expansion projects. The

social value of an investment can be tracked down by the changes in the producer

and consumer surpluses, and the change in the congestion rent after an expansion

is made. Therefore generation and transmission expansion projects must be treated

as competitors since, in a strict sense, they are not interchangeable. Whichever plan

has a greater social value of investment should be chosen.

5.2 Directions for Future Research

There is one major extension proposed for this work; this is to formulate a coordinated

power system planning for the deregulated electricity industry. A coordinated power system

planning can be encouraged through competition between generation and transmission

expansion projects. There are several challenges to be addressed both in the formulation

and the implementation. Some of these are described next.

◦ Power system expansion needs to take into account the investment cost minimiza-

tion as well as the network operation social cost minimization. These two different

objectives are in different time scales. Power system operation is in the hourly time

domain (short-term) while generation and transmission investment costs are in the

yearly time domain (long-term). Usually, the operational problem is a double-sided

pool auction which receives as input the bids of generation companies, distribution

companies (consumers) and transmission constraints. The output of this operational

problem is the optimal level of production and consumption, power flow patterns,

and LMPs that minimize the total social cost. The overall formulation of power sys-

tem expansion planning has to bring together these two different time scales [20,57].

Other particular challenge when it comes to the problem formulation is the integer

nature of transmission line/gerating plant additions.

◦ Solution techniques depend on the models used to implement the power system

expansion problem. Planning models can be divided into heuristic, mathematical
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optimization, and meta-heuristic models. Mathematical optimization models are

solved with numerical optimization techniques to obtain an optimal expansion of

the system. Since the objective function and the constraints implemented on these

models are complex and usually non-linear, their solution is difficult and requires a

considerable computational effort. Numerical optimization techniques used to solve

these models are linear programming, dynamic programming, nonlinear program-

ming, mixed integer nonlinear programming, Benders decomposition, hierarchical

decomposition, interior point methods, bi-level programming, and Branch and Bound

algorithms. Economic equilibrium models can also be formulated as mathematical

programming problems [58] – [60]. Heuristic models use logical or empirical rules

to generate and classify the options during the search; usually these models can in-

teract with the user. Heuristic rules may include investment costs, operation costs,

constraint violations, curtailment costs and so forth. Mathematically speaking, an

heuristic model can obtain a good feasible solution (suboptimal) for the expansion

plan. The success of heuristic models is that they are solved with small compu-

tational effort. Some models used are genetic algorithms, object oriented models,

game theory, simulated annealing, expert systems, fuzzy set theory, greedy ran-

domized adaptive search procedure, neural networks, and tabu search algorithms.

Meta-heuristic models are a combination of mathematical optimization models and

heuristic models [11,16,19,20,23,33], [61] – [76].

◦ Liberalized power system planning faces greater uncertainty than centralized power

system planning. Unlike centralized planning, the siting and timing of new gener-

ation plants is unpredictable. Another source of uncertainty in liberalized power

system planning is the suppliers and consumers bids for energy. Consequently, af-

ter developing a coordinated generation and transmission expansion model for the

deregulated electricity industry, all these uncertainties need to be taken into account

and risk minimization techniques should also be implemented.



Appendix A

Stochastic Programming

Stochastic Programming is used when optimal decisions are to be taken when not all

the information is available, it is not known with certainty, or it cannot be perfectly

predicted. In real life many of the constraints in an optimization problem are not know with

accuracy, in fact, are dependant on environment-determining variables (random variables).

Therefore, deterministic optimization methods are no longer suitable to solve these type

of problems.

A classical application of stochastic programming in power systems is capacity expan-

sion of power plants. There are many mathematical models in the literature for stochastic

generation expansion [5, 28], [77] – [79].

This chapter is organized as follows: Section A.1 gives a brief introduction on random

variables. Section A.2 gives a comparison between deterministic and stochastic program-

ming. Section A.3 introduces the multistage stochastic program with fixed recourse and,

using the property of block separability, it is transformed into a two-stage program. Fi-

nally, a detailed analysis of two-stage stochastic programs with fixed recurse is presented

in Section A.4.

A.1 Random Variables

A random variable maps each point, or outcome ω, in the sample space Ω of a random

(chance) experiment to a point in the real line. A random variable takes on a given
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numerical value with some specified probability. Therefore, a random variable can be

thought as a function or rule of assignment. It is important to note that more than

one point in the sample space can be mapped into the same point on the real line. If

the mapping is to the n-dimensional Euclidean space, the mapping is called a random

vector [80]. A random variable1 can be written as

k = K(ω), (A.1)

where

◦ ω is an element in the sample space Ω,

◦ K is the random variable, and

◦ k is the numerical value of the random variable K assumed for a given element ω of

the sample space Ω.

Equation A.1 is depicted in Figure A.1.

Figure A.1: Random variable K(ω) = k.

Random variables can be discrete, continuous, or mixed. Discrete random variables take

on only a countable number of possible values. The probability that the discrete random

variable K takes on the value k can be expressed with the function fK [k] = Pr[ω ∈ Ω :

1It is customary in probability to denote the random variable by capital letters (X,Y,Z, or the like),

an arbitrary point in the sample space by lowercase Greek letters (ζ, ω, ν, or the like), and the value of the

random variable assumed for a given sample space element by the corresponding lowercase letter (x, y, z,

or the like) [81].
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K(ω) = k]. The function fK [k] assigns probabilities to points of the real line and its plot

is known as the Probability Mass Function (PMF). Continuous random variables take on

a continuum of values and it is assumed that any of these values occurs with infinitesimal

probability. The probability that the continuous random variable K takes on the value k

can be expressed with the function FK [k] = Pr[ω ∈ Ω : K(ω) ≤ k]. The function FK [k]

assigns probabilities to intervals of the real line and its plot is known as the Probability

Distribution Function (PDF). Mixed random variables take on a discrete set of values,

each with finite probability, as well as a continuum of values, a specific value of which has

infinitesimal probability [80,81].

From probability theory [5, 46, 82], a probability space (Ω,F , P ) describes the sample

space Ω and the family F of all possible events F with an associated probability measure

P . The sample space Ω is the set of all outcomes ω that a random experiment can have,

thus ω ∈ Ω. The outcomes can form subsets of Ω called events and are denoted by F , thus

F ⊂ Ω. To each event F ∈ F is associated a value P (F ) called a probability. Probabilities

can also be assigned to a specific outcome of a random variable. Some probability properties

are the following:

◦ 0 ≤ P (F ) ≤ 1.

◦ P (∅) = 0.

◦ P (Ω) = 1.

◦ P (F1 ∪ F2) = P (F1) + P (F2) if F1 ∩ F2 = ∅.

A.2 Deterministic vs. Stochastic Programming

A deterministic optimization problem [83,84] minimizes (or maximizes) the objective func-

tion g0 over the feasible set of solutions S. The feasible set of solutions S can be defined

as

S = {x ∈ ℜn | x ∈ X, gi(x) ≤ 0, ∀ i = 1, . . . ,m}, (A.2)

where
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◦ ℜn is the set of n-dimensional real vectors,

◦ X ⊂ ℜn, and

◦ gi(x) is a real-valued function on ℜn, ∀ i = 1, . . . ,m.

The deterministic optimization problem can be stated as

min z = g0(x) (A.3)

s.t. gi(x) ≤ 0, ∀ i = 1, . . . ,m, (A.4)

where x ∈ X ⊂ ℜn.

A deterministic optimization problem has the objective function g0(x) and all the con-

straints gi(x) well defined; hence, the future is assumed to be perfectly known. In real

life this is not possible since the future cannot be predicted with certainty; in fact, the

constraints gi(x) are also dependant on the random vector ξ̃, that is, gi(x, ξ̃).

The stochastic optimization problem can be stated as

min z(ω) = g0(x, ξ̃) (A.5)

s.t. gi(x, ξ̃) ≤ 0, ∀ i = 1, . . . ,m, (A.6)

where x ∈ X ⊂ ℜn minimizes the objective function on the corresponding set of feasible

solutions, and ξ̃ is a random vector2 that varies over a set Ξ ⊂ ℜq. In this formulation,

it is assumed that for every event F ∈ F and F ⊂ Ξ, the probability P (F ) is known and

is independent of x. The constraints are random variables, that is, gi(x, ·) : Ξ 7→ ℜ ∀ x, i

[46, 82].

A.3 Multistage Stochastic Programming with Fixed

Recourse

Decision problems are hardly solved in two stages; they usually are solved after taking

several decisions that adapt to outcomes as they evolve over time. A more suitable way to

2In ℜq one can only represent sets of the type I[a,b) = {x ∈ ℜq|ai ≤ xi < bi, i = 1, · · · , q}.
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model real life problems is by means of a multistage stochastic model with fixed recourse.

The following formulation is based on [5,78].

The multistage stochastic linear program with fixed recourse can be written as

min z = c1′x1 + Eζ2{min c2(ξ̃)
′
x2(ξ̃2) + · · · + EζH{min cH(ξ̃)

′
xH(ξ̃H)} · · · } (A.7)

s.t. W 1x1 = h1, (A.8)

T 1(ξ̃)x1 + W 2x2(ξ̃2) = h2(ξ̃), (A.9)

· · · ...

TH−1(ξ̃)xH−1(ξ̃H−1) + WHxH(ξ̃H) = hH(ξ̃), (A.10)

x1 ≥ 0, (A.11)

xt(ξ̃t) ≥ 0, ∀ t = 2, . . . , H, (A.12)

where3 c1 ∈ ℜn1 , and h1 ∈ ℜm1 are known vectors; W 1 ∈ ℜm1×n1 is a known matrix

(fixed recourse, not dependant on ξ̃). ct(ξ̃) ∈ ℜnt , ht(ξ̃) ∈ ℜmt , T t−1(ξ̃) ∈ ℜmt×nt−1 ,

and W t ∈ ℜmt×nt (known matrices) are for all t = 2, . . . , H; ξ̃ is defined on (Ξ,F , P ).

ζt(ξ̃)′ = (ct(ξ̃)′, ht(ξ̃)′, T t−1
1 (ξ̃), . . . , T t−1

mt
(ξ̃)) is a random Nt-vector on (Ξ, Σt, P ) for all

t = 2, . . . , H and Σt ⊂ Σt+1. Note that the dependance of xt on ξ̃t is not functional as

in the case of ct(ξ̃), T t−1(ξ̃), and ht(ξ̃); it indicates that the decisions xt(ξ̃t) are not the

same under different realizations up to time t of ξ̃t. Decisions xt(ξ̃t) are chosen so that the

involved constraints hold almost surely for all ξt ∈ Ξ.

Using the principles of dynamic programming, and with the stages of the stochastic

program going from 1 to H, one can define states for a deterministic dynamic program as

xt(ξ̃t). Note that the only interconnection between periods is through the realization of

xt(ξ̃t). For the last period, from Equations (A.7)–(A.12), one has

QH
(

xH−1, ζH(ξ̃)
)

= min cH(ξ̃)
′
xH(ξ̃) (A.13)

s.t. TH−1(ξ̃)xH−1 + WHxH(ξ̃) = hH(ξ̃), (A.14)

xH(ξ̃) ≥ 0. (A.15)

Letting Qt+1(xt) = Eζt+1

[

Qt+1(xt, ζt+1(ξ̃))
]

, ∀ t, the dynamic programming type of re-

3The superscript 1 is used only to stress that it is the first stage.
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coursion for t = 2, . . . , H − 1 is

Qt
(

xt−1, ζt(ξ̃)
)

= min ct(ξ̃)
′
xt(ξ̃) + Qt+1(xt) (A.16)

s.t. T t−1(ξ̃)xt−1 + W txt(ξ̃) = ht(ξ̃), (A.17)

xt(ξ̃) ≥ 0, (A.18)

where xt indicates the state of the system.

A.3.1 Block separable recourse

Multistage stochastic programs have, either naturally or by manipulation, a very particular

structural property: block separability. A multistage stochastic problem is in a way a set of

subproblems in a decision tree. The decision vector can be divided into an aggregate-level

decision vector and a detailed-level decision vector. Because of this partition in two of the

decision vector, the objective function and the constraint matrices are also partitioned in

two. The following definition is taken from [5].

A multistage stochastic linear program has block separable recourse if for all periods

t = 1, . . . , H and all ξ̃, the decision vectors, xt(ξ̃), can be written as xt(ξ̃) = (wt(ξ̃), yt(ξ̃))

where wt represents aggregate level decisions and yt represents detailed level decisions. The

constraints also follow these partitions:

1. The stage t objective contribution is ct′xt(ξ̃) = rt′wt(ξ̃) + qt′yt(ξ̃).

2. The constraint matrix W t is block diagonal:

W t =







At 0

0 Bt






. (A.19)

3. The other components of the constraints are random but we assume that for each

realization of ξ̃, T t(ξ̃) and ht(ξ̃) can be written:

T t(ξ̃) =







Rt(ξ̃) 0

St(ξ̃) 0






and ht(ξ̃) =







bt(ξ̃)

dt(ξ̃)






, (A.20)

where the zero components of T t correspond to the detailed level variables.
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A.3.2 Block separable multistage programs as two-stage pro-

grams

When a multistage stochastic program has block separable recourse, it is possible to trans-

form it into a two-stage stochastic program. Detailed-level variables have no direct effect

on future constraints. Aggregate-level variables can be grouped together and sent into

the first stage. The first stage is then composed of the aggregate-level decisions while

the second stage is composed of the detailed-level decisions. Because of this separation,

a multistage stochastic problem can be transformed into a two-stage stochastic problem.

Multistage stochastic integer programs can also be transformed into two-stage programs

as long as the integer variables are associated with the aggregate level decisions. For an

extensive discussion on how to transform multistage stochastic programs into two-stage

stochastic programs, please refer to [78].

A.4 Two-Stage Stochastic Programming with Fixed

Recourse

The following discussion is taken in part [5, 46,79,85].

The two-stage recourse problem incorporates the characteristics of the anticipative

model and the adaptive model of stochastic optimization. The two-stage recourse mathe-

matical model is a trade-off between the long-term anticipatory strategies and the short-

term adaptive adjustments.

A.4.1 Anticipative model

The anticipative optimization model is used to plan in view of all the possible future values

or realizations of ξ̃. To do this, the frequency of occurrence—or probabilities—of all the

possible values of ξ̃ are used.

One probabilistic feasibility definition of the stochastic problem that includes the mean4

4The mean or expectation can be thought as the average value of the random variable. The average

is weighed by the probabilities. In the case of a discrete random variable, the expectation is defined
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of the random variable gi(x, ·) can be defined as some x ∈ X that satisfies the constraints

gi(x, ξ̃) ≤ 0, ∀ i = 1, . . . ,m with a certain level of reliability

Pr {ξ̃ | gi(x, ξ̃) ≥ 0, ∀ i = 1, . . . ,m} ≥ α, (A.21)

where α ∈ (0, 1) is a preestablished reliability level, or x ∈ X can be in the mean of the

random variable gi(x, ·), that is,

E{gi(x, ξ̃)} ≤ 0, ∀ i = 1, . . . ,m. (A.22)

Another probabilistic feasibility definition that includes the mean and the variance5 of

the random variable gi(x, ·) is

E{gi(x, ξ̃)} + β
√

Var{gi(x, ·)} ≤ 0, (A.23)

where β is a positive constant.

A probabilistic optimality definition can be expressed in terms of the feasible x that

minimizes

Pr {ξ̃ | g0(x, ξ̃) ≥ α0}, (A.24)

where α0 ∈ (0, 1) is a preestablished reliability level, or x minimizes the expected value of

the future objective function

E{g0(x, ξ̃)}. (A.25)

A general formulation for stochastic optimization problems in the probability space

(Ξ,F , P ) is presented next:

min z = F0(x)

= E{f0(x, ξ̃)}

=

∫

f0(x, ξ̃)P (dξ̃) (A.26)

s.t. Fi(x) = E{fi(x, ξ̃)}

=

∫

fi(x, ξ̃)P (dξ̃) ≤ 0, ∀ i = 1, . . . ,m, (A.27)

as E{K} =
∑

Ω K(ω)Pr[ω]. In the case of a continuous random variable, the expectation is defined as

E{K} =
∫

Ω
K(ω)dP(ω) [80].

5The variance is the squared value of the standard deviation. The standard deviation σ can be thought

as the average spread about the mean of the random variable. Hence, the variance is defined as σ2
X =

Var(X) = E{X2} − E2{X} [81].
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where

◦ x ∈ X ⊂ ℜn,

◦ fi : ℜn × Ξ → ℜ, ∀ i = 1, . . . ,m,

◦ f0 : ℜn × Ξ → ℜ̄, and

◦ ℜ̄ is the set of extended real numbers [83].

A.4.2 Adaptive model

In contrast with the anticipative optimization model where a decision x is made in view of

all the possible future values of ξ̃, the adaptive model makes an observation before choosing

x.

An observation gives a partial description of the random vector ξ̃. Assume that B ⊂ F
is a collection of events that contains the information after an observation is made. The

decision x is a function of ξ̃, in turn, the values of ξ̃ depend on B, this in turn, implies that

the decision x is a function of B. The stochastic optimization problem for each ξ̃ ∈ Ξ can

be stated as

min z(ξ̃) = E{f0(x, ·)|B}(ξ̃) (A.28)

s.t. E{fi(x, ·)|B}(ξ̃) ≤ 0, ∀ i = 1, · · · ,m, (A.29)

where x ∈ X ⊂ ℜn, and E{·|B} is the conditional expectation given B.

When B = F (ξ̃ becomes completely known), the stochastic optimization problem for

all ξ̃ becomes

min z(ξ̃) = f0(x, ξ̃) (A.30)

s.t. fi(x, ξ̃) ≤ 0, ∀ i = 1, · · · ,m, (A.31)

where x ∈ X ⊂ ℜn.
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A.4.3 The recourse model

As mentioned before, the recourse model brings together the properties of the anticipative

model and the adaptive model. For the sake of simplicity, the two-stage stochastic linear

program with fixed recurse is analyzed, the same concepts apply for non-linear programs.

The general definition of a deterministic linear program is

min z = c′x (A.32)

s.t. Ax = b, (A.33)

x ≥ 0, (A.34)

where c, x ∈ ℜn; b ∈ ℜm; and A ∈ ℜm×n.

Assume that b is not known with certainty but its probability distribution function is

available. Under these circumstances, x cannot be found to satisfy the constraint Ax = b

for whatever value of b. The discrepancy to equate Ax and b is a random variable that

depends on x. Assume that a penalty function for such discrepancy is given. The objective

function can be defined as the minimization of the sum between c′x and the expected value

of the penalty function (or recourse function). The classic formulation, developed in 1955

by Beale and Dantzig, is

min z = c′x + E{Q(x, ξ̃)} (A.35)

s.t. Ax = b, (A.36)

x ≥ 0, (A.37)

where

Q(x, ξ̃) = min q(ξ̃)′y(ξ̃) (A.38)

s.t. T (ξ̃)x + Wy(ξ̃) = h(ξ̃), (A.39)

y(ξ̃) ≥ 0. (A.40)

Equations (A.35)–(A.37) are the first stage problem while Equations (A.38)–(A.40) are

the second stage problem. The first stage decisions are represented by x ∈ ℜn1 . Related

to x are the vector c ∈ ℜn1 , the vector b ∈ ℜm1 , and the matrix A ∈ ℜm1×n1 . In the
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second stage, the random vector ξ̃ is defined in the probability space (Ξ,F , P ). For a given

realization of the random vector ξ̃ the second stage data for q(ξ̃) ∈ ℜn2 , h(ξ̃) ∈ ℜm2 , and

T (ξ̃) ∈ ℜm2×n1 become available; each one of these is also a random variable. The matrix

W ∈ ℜm2×n2 is known as the recourse matrix. When the recourse matrix is dependant on

ξ̃, it is said that the problem has random recourse; when W is not dependant on ξ̃, it is

said that the problem has fixed recourse.

The set of feasible first stage decisions is

X = {x ∈ ℜn1 |Ax = b, x ≥ 0}. (A.41)

The set of dual feasible solutions for the second stage problem is

Π = {π ∈ ℜm2 |πW ≤ q}. (A.42)

The problem in Equations (A.35)–(A.40) can be restated as

min z = c′x + E{Q(x, ξ̃)} (A.43)

s.t. Ax = b, (A.44)

T (ξ̃)x + Wy(ξ̃) = h(ξ̃), (A.45)

x ≥ 0, (A.46)

y(ξ̃) ≥ 0. (A.47)

This problem, put in words is: Find the “here-and-now” solution x before the compo-

nents of b become known; when they become known, a recourse y must be found from the

second stage problem to minimize the penalty function.

Unlike q(ξ̃), h(ξ̃), and T (ξ̃), the dependence of y(ξ̃) is not functional; it only indicates

that different decisions y are taken depending of different realizations of ξ̃. It must be

noted that the expectation of the second stage objective Q is taken over all realizations of

the random vector ξ̃.



Appendix B

Generation v.s. Transmission

Expansion

In the idealized restructured electricity industry the concept of centralized power system

planning no longer exists. Market participants are responsible for the investment in new

generation and in new transmission. In this ideal world, market participants always find

economic incentives to promote a reliable and economic operation of the power system. In

the real world, only generation expansion has been left to market participants with fairly

acceptable results so far. Transmission expansion however, has not been able to keep up

with the participant’s trading patterns. To ensure a reliable and economic operation of

a power system, regulatory intervention has played a key role in assessing and evaluating

any proposed investment in new transmission. The ISO, in its role as system overseer,

faces the multi-objective problem of evaluating and inducing efficient investments by using

economical signals and issuing various types of orders. The ISO might choose as an objec-

tive the minimization of the social cost (maximization of social welfare), minimization of

local market power, the maximization of consumer surplus, the minimization of congestion

rents, the minimization of congestion cost, or even security measures [86]. As in the case

of centralized power system planning, these different optimization criteria are inconsistent.

In general, generation and transmission expansion projects can be either a substitute

or a complement of each other. The situation of an import constrained area can be al-

leviated either by reinforcing the transmission link that connects the import constrained

116
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area to the system, or by building cheap generation at the import constrained area. In a

strict sense, generation is not an exact substitute for transmission and vice versa. When

elastic demands are considered, upgrading the link between a generation and an import

constrained area causes an increase in demand and a decrease in expensive generation at

the import constrained area. This in turn causes an increase in the consumer surplus that

out weighs the decrease in the producer surplus at the import constrained area. Also,

it is of paramount importance to consider the effects that network upgrades have on the

transfer admittance matrix since the power that flows in the system is dependant on such

matrix. When modeling transmission expansion projects it is not enough to increase the

transmission limits but also to upgrade the transfer admittance matrix. All the previous

assertions are exemplified by a set of numerical examples.

Since transmission and generation are not an exact substitute for each other in a strict

sense, any investor faces the dilemma of choosing which investment to consider or if a

combination of both is better. This situation opens the door for competition between

generation and transmission investments.

B.1 Generation and Transmission Expansion Projects

are not Interchangeable

In this section, it is shown that generation expansion is not an exact substitute for trans-

mission and vice versa. Consider the two-node system shown in Figure B.1. Node 1 has

cheap generation while Node 2 has two generators and three elastic demands. At Node 2,

Generator 3 is less expensive than Generator 2.

Figure B.1: Two-node system.

The demand and supply functions are as in Equations (4.2) and (4.4), respectively. All
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the pertinent data is given in Appendix C.

This numerical example considers losses as the sum of the squared power flow of the

line times the resistance of the line over all the lines [3]. The objective function is the

minimization of the social cost. The constraints are the usual system constraints. The

solution is as shown in Figure B.2.

Figure B.2: Social Welfare 3311.959 $/h.

In the radial network an investor, either a new entrant or a participant of the market,

faces the dilemma of either upgrading the transmission line or building a generator at Node

2 that can provide cheap energy. Suppose first that the capacity of the transmission line is

doubled. When doubling the capacity of the transmission line, the susceptance is doubled

while the resistance is halved. This is shown in Figure B.3.

Figure B.3: Social Welfare 3459.168 $/h.

The social value of the investment can be tracked down by the changes in the consumer

and producer surpluses, the congestion rent, and the cost of losses. These results are shown

in Table B.1.

Now, instead of doubling the capacity of the line, assume that the investor decides to

build a 30 MW generator at Node 2 of the same technology of the one located at Node 1.

In this simple radial network, it is logical to substitute the expansion of the transmission
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Table B.1: Social value of the investment, trans. exp., two-node system.

Surplus

Before After ∆

Generator 1 12.753 51.012 +38.259

Generator 2 159.537 133.899 −25.638

Generator 3 2034.736 1932.44 −102.296

Demand 1 0.0 0.0 0.0

Demand 2 535.283 616.862 +81.579

Demand 3 401.414 472.447 +71.033

Congestion Rent

Before After ∆

134.712 183.209 +48.497

Cost of Losses

Before After ∆

33.5 69.201 +35.701

Social Value of the Investment: 147.135

All quantities in $/h

line with the building of a generator at the import constrained area since, in reality, such

an expansion opens the possibility to import 30 more megawatts from the generator at

Node 1. This situation is shown in Figure B.4.

It can be seen from Figures B.3 and B.4, that the nodal price, generation, and de-

mand levels at Node 2 are exactly the same. However, the social welfare for the case

of generation expansion is bigger than the one for transmission expansion. Even though

strengthening the transmission line or building a new generator provide exactly the same

30 more megawatts of cheap energy, in the case of transmission expansion the congestion

rent and the transmission losses are bigger due to the increased flow of power in the line

making the generation expansion option more attractive from the point of view of the social

welfare maximization. In the case of generation expansion, the cost of losses remains the

same with respect to the congested case without any expansion. The details are shown in
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Figure B.4: Social Welfare 3518.198 $/h.

Table B.2.

Table B.2: Social value of the investment, gen. exp., two-node system.

Surplus

Before After ∆

Generator 1 12.753 12.753 0.0

Generator 4 0.0 198.012 +198.012

Congestion Rent

Before After ∆

134.712 118.258 −16.454

Cost of Losses

Before After ∆

33.5 33.5 0.0

Social Value of the Investment: 206.236

All quantities in $/h

It can be seen that, for this case, a generation expansion increases the social welfare

more than the transmission expansion does and it actually reduces the congestion rent.
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In the radial case it is easy to track down from which generating unit comes the increase

of cheap energy due to the strengthening of the transmission line, in this case from generator

g1. Also, the change in the parameters of the transmission line does not alter the pattern

of the power flow; before and after the transmission expansion, 100% of the flow goes from

Node 1 to Node 2. However, these two conditions vanish in the presence of loop flows.

Consider the three-node network shown in Figure B.5. All three transmission lines are

identical. The data is shown in Appendix C.

Figure B.5: Three-node system.

With the minimization of the social cost as the objective function, considering losses,

taking Node 3 as the swing bus, and taking a limit of 30 MW at every line, one obtains

the solution shown in Figure B.6.

It can be seen, from Figure B.6, that Line 1–2 is congested. If the capacity of trans-

mission Line 1–2 is doubled, and considering the changes in the network parameters, one

gets the results shown in Figure B.7.

As before, the social value of the investment can be tracked down by the changes in the

consumer and producer surpluses, the congestion rent, and cost of losses. These results

are shown in Table B.3.

From the transfer admittance matrix [3], one can see how the power flows in the trans-

mission lines are related to the net power injections at every node excluding the swing

bus. Equations (B.1) and (B.2) show the transfer admittance matrices before and after
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Figure B.6: Social Welfare: 3416.542 $/h.

the transmission expansion, respectively.
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Note how drastically the patterns of the power flows in the transmission lines change.

For instance, before the expansion, the power that flows in the congested line, Line 1–2,

is given by one third of the net power injected at Node 1 minus one third the net power

injected at Node 2 whereas after the expansion, the power that flows in the line is given by

two fifths of the net power injected at Node 1 minus two fifths of the net power injected at

Node 2. Clearly, the changes in the parameters of the transmission lines must be considered

in system planning studies.

Now assume that instead of strengthening the link between Nodes 1 and 2, an investor

decides to build a generator at Node 2 of the same technology of the one at Node 1. The

solution obtained is shown in Figure B.8.
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Figure B.7: Social Welfare: 3548.612 $/h.

In the same fashion, the social value of the investment can be tracked down by the

changes in the consumer and producer surpluses, the congestion rent, and the cost of

losses. These results are shown in Table B.4.

Comparing Figures B.7 and B.8, one can see that the nodal prices and the levels of

generation and demand are similar but not the same. This is mainly because in the presence

of loop flows, it is not easy to track down from which generator, or set of generators,

comes the extra energy that flows to the import constrained area due to the transmission

expansion. Under these circumstances, the building of a transmission line cannot be exactly

replaced by the building of a generator at the import constrained area.

In essence, generation and transmission expansion projects are not interchangeable in

a strict sense. The presence of loop flows in a network makes it difficult to track down

from which generator, or set of generators, comes the extra energy that flows to the import

constrained area due to a transmission expansion plan. The numerical examples show

that, when planning a transmission expansion, it is not enough to modify the transmission

capacity limits; the changes in the transmission line parameters, like the impedance and the

resistance, have to be taken into account since these affect the transfer admittance matrix

of the system which in turn drastically affects the power flows patterns of the system.

Whenever considering a system expansion, generation and transmission investments must

be treated as competitors and not as interchangeable options.
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Table B.3: Social value of the investment, trans. exp., three-node system.

Surplus

Before After ∆

Generator 1 141.003 204.310 +63.307

Generator 2 253.571 192.828 −60.743

Generator 3 1685.113 1670.023 −15.09

Demand 1 104.217 72.216 −32.0

Demand 2 318.617 446.09 +127.473

Demand 3 678.042 691.929 +13.887

Congestion Rent

Before After ∆

174.219 170.455 −3.764

Cost of Losses

Before After ∆

61.512 100.105 +38.512

Social Value of the Investment: 131.582

All quantities in $/h

Figure B.8: Social Welfare: 3666.949 $/h.
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Table B.4: Social value of the investment, gen. exp., three-node system.

Surplus

Before After ∆

Generator 1 141.003 146.384 +5.381

Generator 2 253.571 195.097 −58.474

Generator 3 1685.113 1648.427 −36.686

Generator 4 0.0 235.227 +235.227

Demand 1 104.217 101.002 −3.215

Demand 2 318.617 440.582 +121.965

Demand 3 678.042 713.138 +35.096

Congestion Rent

Before After ∆

174.219 127.215 −47.004

Cost of Losses

Before After ∆

61.512 59.640 −1.871

Social Value of the Investment: 250.419

All quantities in $/h



Appendix C

Test Systems Data

This appendix presents all the data for the numerical examples throughout this work. All

the tables are self-contained in order to avoid excessive explanatory comments.

C.1 Data for Section 3.4.3

Table C.1: Existing generating capacity data.

Technology yet
† qet

‡ E{αet} σ2
αet

1 500 0.1664 0.925 0.04087

3 200 0.5781 0.965 0.01327

† in MW, ‡ in $M/MW-y

126
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Table C.2: New generating capacity data.

Technology xnt
† rnt

‡ qnt
‡ E{αnt} σ2

αnt

1 500 0.1737 0.1664 0.925 0.04087

2 100 0.0816 0.3723 0.965 0.01327

3 100 0.0405 0.5781 0.965 0.01327

† in MW, ‡ in $M/MW-y

Table C.3: Operating modes and probabilities of foreseeable scenarios.

Operating mode cfm Below Average† 30% Average† 40% Above Average† 30%

Base 1.00 480 540 600

Mid 0.60 180 240 300

Peak 0.25 80 140 200

† in MW.

C.2 Data for Section 3.5.2

Table C.4: Existing generating capacity data; six-node system.

et h yet,h
† qet

‡ E{αet} σ2
αet

1 6 400 0.1664 0.925 0.04087

2 1 700 0.3723 0.965 0.01327

3 3 500 0.5781 0.965 0.01327

† in MW, ‡ in $M/MW-y
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Table C.5: New transmission lines data; six-node system.

From: To: R† X† f i-j
‡ ci-j

⋆ E{αi-j} σ2
αi-j

2 6 0.075 0.30 100 3.0 1 0

4 6 0.080 0.30 100 3.0 1 0

† in p.u, 100 MVA base; ‡ in MW; ⋆ in $M/y.

Table C.6: Existing transmission lines data; six-node system.

From: To: R† X† f i-j
‡ ci-j

⋆ E{αi-j} σ2
αi-j

1 2 0.10 0.40 100 4.0 0.75 0.0085

1 4 0.15 0.60 80 5.6 0.45 0.0085

1 5 0.05 0.20 100 2.25 0.65 0.0085

2 3 0.05 0.20 100 2.25 0.75 0.0085

2 4 0.10 0.40 100 4.0 0.75 0.0085

3 5 0.05 0.20 100 2.25 0.85 0.0085

† in p.u, 100 MVA base; ‡ in MW; ⋆ in $M/y.

Table C.7: Different foreseeable scenarios and their probabilities; six-node system.

Node Below Average† 30% Average Demand† 40% Above Average† 30%

1 90 120 150

2 140 170 200

3 100 130 160

4 210 240 270

5 110 140 170

6 90 120 150

† in MW.
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C.3 Data for Section 3.6.2

The transmission lines data, existing and new, for the six-node system is as in Section C.2.

Table C.8: Existing generating capacity data, six-node system.

et h yet,h
† qet

‡ E{αet} σ2
αet

1 1 500 0.1664 0.925 0.04087

2 3 300 0.3723 0.965 0.01327

3 6 400 0.5781 0.965 0.01327

† in MW, ‡ in $M/MW-y

Table C.9: New generating capacity data, six-node system.

nt xnt
† rnt

‡ qnt
‡ αnt σ2

αnt

1 500 17.37 16.64 0.925 0.04087

2 300 8.16 37.23 0.965 0.01327

3 100 4.05 57.81 0.965 0.01327

† in MW, ‡ in $M/MW-y
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Table C.10: Below average level of demand, six-node system; 30%.

Operating Mode† Node

1 2 3 4 5 6

B‡ 80 80 80 80 80 80

B‡ + M⋆ 90 100 90 200 90 90

B‡ + M⋆ + P∗ 90 140 100 210 110 90

† in MW; ‡ Base, ⋆ Mid, and ∗ Peak.

Table C.11: Average level of demand, six-node system; 40%.

Operating Mode† Node

1 2 3 4 5 6

B‡ 90 90 90 90 90 90

B‡ + M⋆ 110 120 110 220 110 110

B‡ + M⋆ + P∗ 120 170 130 240 140 120

† in MW; ‡ Base, ⋆ Mid, and ∗ Peak.

Table C.12: Above average level of demand, six-node system; 30%.

Operating Mode† Node

1 2 3 4 5 6

B‡ 100 100 100 100 100 100

B‡ + M⋆ 130 140 130 240 130 130

B‡ + M⋆ + P∗ 150 200 160 270 170 150

† in MW; ‡ Base, ⋆ Mid, and ∗ Peak.
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Table C.13: Existing transmission lines data, 21-node system.

i j R† X† f i-j
‡ ci-j

⋆ E{αi-j} σ2
αi-j

1 2 0.0026 0.0139 200 1.47 0.95 0.0085

1 5 0.0218 0.0845 200 5.46 0.95 0.0085

1 3 0.0546 0.2112 200 12.39 0.95 0.0085

2 4 0.0328 0.1267 100 7.77 0.90 0.0085

2 6 0.0497 0.1920 100 11.34 0.90 0.0085

3 9 0.0308 0.1190 200 7.35 0.95 0.0085

3 13 0.0067 0.0519 200 12.48 0.90 0.0085

4 9 0.0268 0.1037 200 6.51 0.95 0.0085

5 10 0.0228 0.0883 200 5.67 0.95 0.0085

6 10 0.0139 0.0605 200 4.20 0.95 0.0085

7 8 0.0159 0.0614 200 4.20 0.95 0.0085

8 9 0.0427 0.1651 200 9.87 0.95 0.0085

8 10 0.0427 0.1651 200 9.87 0.95 0.0085

9 11 0.0061 0.0476 100 11.58 0.90 0.0085

9 12 0.0054 0.0418 100 10.38 0.90 0.0085

10 11 0.0061 0.0476 100 11.58 0.90 0.0085

10 21 0.0124 0.0966 100 21.78 0.90 0.0085

11 21 0.0111 0.0865 600 19.68 0.95 0.0085

12 14 0.0050 0.0389 600 9.79 0.95 0.0085

13 14 0.0022 0.0173 600 5.28 0.95 0.0085

13 19 0.0063 0.0490 600 11.88 0.95 0.0085

14 15 0.0033 0.0259 600 7.08 0.95 0.0085

14 17 0.0030 0.0231 600 6.48 0.95 0.0085

15 16 0.0018 0.0144 600 4.68 0.95 0.0085

15 20 0.0135 0.1053 600 23.58 0.95 0.0085

16 19 0.0033 0.0259 600 7.08 0.95 0.0085

17 18 0.0051 0.0396 600 9.93 0.95 0.0085

18 21 0.0028 0.0216 600 6.18 0.95 0.0085

19 20 0.0087 0.0678 600 15.78 0.95 0.0085

† in p.u, 100 MVA base; ‡ in MW; ⋆ in $M/y.
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Table C.14: Non-existing transmission lines data, 21-node system.

i j R† X† f i-j
‡ ci-j

⋆ E{αi-j} σ2
αi-j

2 4 0.0328 0.1267 100 7.77 0.90 0.0085

2 6 0.0497 0.1920 100 11.34 0.90 0.0085

3 13 0.0067 0.0519 200 12.48 0.90 0.0085

9 11 0.0061 0.0476 100 11.58 0.90 0.0085

9 12 0.0054 0.0418 100 10.38 0.90 0.0085

10 11 0.0061 0.0476 100 11.58 0.90 0.0085

10 21 0.0124 0.0966 100 21.78 0.90 0.0085

† in p.u, 100 MVA base; ‡ in MW; ⋆ in $M/y.

Table C.15: Existing generating capacity data, 21-node system.

h et yet,h
† qet

‡ E{αet} σ2
αet

1 3 40 0.5781 0.965 0.01327

1 4 150 0.2558 0.925 0.04087

2 3 40 0.5781 0.965 0.01327

2 4 150 0.2558 0.925 0.04087

7 2 300 0.3723 0.965 0.01327

11 2 600 0.3723 0.965 0.01327

13 2 60 0.3723 0.965 0.01327

13 4 150 0.2558 0.925 0.04087

14 4 150 0.2558 0.925 0.04087

16 1 400 0.1664 0.925 0.04087

19 1 400 0.1664 0.925 0.04087

20 1 300 16.64 0.925 0.04087

21 4 660 0.2558 0.925 0.04087

† in MW, ‡ in $M/MW-y
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Table C.16: New generating capacity data, 21-node system.

nt xnt
† rnt

‡ qnt
‡ E{αnt} σ2

αnt

1 400 0.1737 0.1664 0.925 0.04087

2 100 0.0816 0.3723 0.965 0.01327

3 400 0.0405 0.5781 0.965 0.01327

4 100 0.1761 0.2558 0.925 0.04087

† in MW, ‡ in $M/MW-y
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Table C.17: Below average level of demand, 21-node system; 30%.

Operating Mode† Node

1 2 3 4 5

B‡ 47.50 42.50 78.75 32.50 31.25

B‡ + M⋆ 76.00 68.00 126.00 52.00 50.00

B‡ + M⋆ + P∗ 108.30 96.90 179.55 74.10 71.25

6 7 8 9 10

B‡ 60.00 55.00 75.00 76.25 85.00

B‡ + M⋆ 96.00 88.00 120.00 122.00 136.00

B‡ + M⋆ + P∗ 136.80 125.40 171.00 173.85 193.80

11 12 13 14 15

B‡ 116.25 85.00 138.75 43.75 0.00

B‡ + M⋆ 186.00 136.00 222.00 70.00 0.00

B‡ + M⋆ + P∗ 265.05 193.80 316.35 99.75 0.00

16 17 18 19 20

B‡ 146.25 80.00 56.25 0.00 0.00

B‡ + M⋆ 234.00 128.00 90.00 0.00 0.00

B‡ + M⋆ + P∗ 333.45 182.40 128.25 0.00 0.00

21

B‡ 0.00

B‡ + M⋆ 0.00

B‡ + M⋆ + P∗ 0.00

† in MW; ‡ Base, ⋆ Mid, and ∗ Peak.



Appendix C. Test Systems Data 135

Table C.18: Average level of demand, 21-node system; 40%.

Operating Mode† Node

1 2 3 4 5

B‡ 57.00 51.00 94.50 39.00 37.50

B‡ + M⋆ 91.20 81.60 151.20 62.40 60.00

B‡ + M⋆ + P∗ 129.96 116.28 215.46 88.92 85.50

6 7 8 9 10

B‡ 72.00 66.00 90.00 91.50 102.00

B‡ + M⋆ 115.20 105.60 144.00 146.40 163.20

B‡ + M⋆ + P∗ 164.16 150.48 205.20 208.62 232.56

11 12 13 14 15

B‡ 139.50 102.00 166.50 52.50 0.00

B‡ + M⋆ 223.20 163.20 266.40 84.00 0.00

B‡ + M⋆ + P∗ 318.06 232.56 379.62 119.70 0.00

16 17 18 19 20

B‡ 175.50 96.00 67.50 0.00 0.00

B‡ + M⋆ 280.80 153.60 108.00 0.00 0.00

B‡ + M⋆ + P∗ 400.14 218.88 153.90 0.00 0.00

21

B‡ 0.00

B‡ + M⋆ 0.00

B‡ + M⋆ + P∗ 0.00

† in MW; ‡ Base, ⋆ Mid, and ∗ Peak.
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Table C.19: Above average level of demand, 21-node system; 30%.

Operating Mode† Node

1 2 3 4 5

B‡ 65.55 58.65 108.67 44.85 43.12

B‡ + M⋆ 104.88 93.84 173.88 71.76 69.00

B‡ + M⋆ + P∗ 149.45 133.72 247.77 102.25 98.32

6 7 8 9 10

B‡ 82.80 75.90 103.50 105.22 117.30

B‡ + M⋆ 132.48 121.44 165.60 168.36 187.68

B‡ + M⋆ + P∗ 188.78 173.05 235.98 239.91 267.44

11 12 13 14 15

B‡ 160.42 117.30 191.47 60.37 0.00

B‡ + M⋆ 256.68 187.68 306.36 96.60 0.00

B‡ + M⋆ + P∗ 365.76 267.44 436.56 137.65 0.00

16 17 18 19 20

B‡ 201.82 110.40 77.62 0.00 0.00

B‡ + M⋆ 322.92 176.64 124.20 0.00 0.00

B‡ + M⋆ + P∗ 460.16 251.71 176.98 0.00 0.00

21

B‡ 0.00

B‡ + M⋆ 0.00

B‡ + M⋆ + P∗ 0.00

† in MW; ‡ Base, ⋆ Mid, and ∗ Peak.
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C.4 Data for Section 4.5

The transmission network data for the six- and 21-node systems is as in Sections C.2 and

C.3, respectively. The only difference is the transmission capacity limits; all transmission

lines have a capacity limit of 50 MW.

Table C.20: Cost function data; three-node system.

Node ν E{a1,ν
†} E{a2,ν

‡} σ2
a1,ν

σ2
a2,ν

σa1,ν ,a2,ν

1 24 0.026 2.4 0.0026 0.0624

2 25 0.134 2.5 0.0134 0.3350

3 10 0.114 1.0 0.0114 0.1140

† in $/MWh, ‡ in $/MW2h.

Table C.21: Benefit function data; three-node system.

Node ν E{b1,ν
†} E{b2,ν

‡} σ2
b1,ν

σ2
b2,ν

σb1,ν ,b2.ν

1 30 0.052 3.0 0.0052 −0.1560

2 39 0.052 3.9 0.0052 −0.2028

3 38 0.052 3.8 0.0052 −0.1976

† in $/MWh, ‡ in $/MW2h.
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Table C.22: Transmission line data.

From: To: R† X† f i-j
‡

1 2 0.0015 0.3 30

3 1 0.0015 0.3 30

3 2 0.0015 0.3 30

† in p.u, 100 MVA base; ‡ in MW.

Table C.23: Cost function data; six-node system.

Node ν E{a1,ν
†} E{a2,ν

‡} σ2
a1,ν

σ2
a2,ν

σa1,ν ,a2,ν

1 24 0.026 2.4 0.0026 0.0624

2 25 0.134 2.5 0.0134 0.3350

3 10 0.114 1.0 0.0114 0.1140

† in $/MWh, ‡ in $/MW2h.

Table C.24: Benefit function data; six-node system.

Node ν E{b1,ν
†} E{b2,ν

‡} σ2
b1,ν

σ2
b2,ν

σb1,ν ,b2.ν

1 30 0.052 3.0 0.0052 −0.1560

2 39 0.052 3.9 0.0052 −0.2028

3 37 0.052 3.7 0.0052 −0.1924

4 36 0.052 3.6 0.0052 −0.1872

5 35 0.052 3.5 0.0052 −0.1820

6 38 0.052 3.8 0.0052 −0.1976

† in $/MWh, ‡ in $/MW2h.
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Table C.25: Cost function data; 21-node system.

Node ν E{a1,ν
†} E{a2,ν

‡} σ2
a1,ν

σ2
a2,ν

σa1,ν ,a2,ν

1 24 0.026 2.4 0.0026 0.0624

2 25 0.134 2.5 0.0134 0.3350

7 10 0.114 1.0 0.0114 0.1140

11 24 0.026 2.4 0.0026 0.0624

13 25 0.134 2.5 0.0134 0.3350

14 10 0.114 1.0 0.0114 0.1140

16 24 0.026 2.4 0.0026 0.0624

19 25 0.134 2.5 0.0134 0.3350

20 10 0.114 1.0 0.0114 0.1140

21 10 0.114 1.0 0.0114 0.1140

† in $/MWh, ‡ in $/MW2h.
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Table C.26: Benefit function data; 21-node system.

Node ν E{b1,ν
†} E{b2,ν

‡} σ2
b1,ν

σ2
b2,ν

σb1,ν ,b2.ν

1 30 0.052 3.0 0.0052 −0.1560

2 39 0.052 3.9 0.0052 −0.2028

3 37 0.052 3.7 0.0052 −0.1924

4 36 0.052 3.6 0.0052 −0.1872

5 35 0.052 3.5 0.0052 −0.1820

6 38 0.052 3.8 0.0052 −0.1976

7 30 0.052 3.0 0.0052 −0.1560

8 39 0.052 3.9 0.0052 −0.2028

9 37 0.052 3.7 0.0052 −0.1924

10 36 0.052 3.6 0.0052 −0.1872

11 35 0.052 3.5 0.0052 −0.1820

12 38 0.052 3.8 0.0052 −0.1976

13 30 0.052 3.0 0.0052 −0.1560

14 39 0.052 3.9 0.0052 −0.2028

15 37 0.052 3.7 0.0052 −0.1924

16 36 0.052 3.6 0.0052 −0.1872

17 35 0.052 3.5 0.0052 −0.1820

18 38 0.052 3.8 0.0052 −0.1976

† in $/MWh, ‡ in $/MW2h.
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C.5 Data for Section B.1

The transmission network data for the three-node system is as in Section C.4.

Table C.27: Cost and Benefit functions data; all systems.

Generator a1,ν a2,ν Demand b1,ν b2,ν

1 24 0.026 1 30 0.052

2 25 0.134 2 39 0.052

3 10 0.114 3 38 0.052

† in $/MWh, ‡ in $/MW2h.

The transmission line data is shown in Table C.28.

Table C.28: Transmission line data; two-node system.

From: To: R† X† f i-j
‡

1 2 0.0015 0.3 30

† in p.u, 100 MVA base; ‡ in MW.
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Large Test Systems

This appendix presents two large-scale systems in order to further validate the models

presented in this thesis; these systems are based on the IEEE 57- and 118-node systems

[87]. All the models are implemented using the optimization software GAMS using the

SBB and the MINOS solvers [42]. These models are solved using the NEOS server for

optimization [88]; in all cases, including the problems solved in Chapters 3 and 4, an

integer solution is obtained for the power system expansion problems and a locally optimal

solution is obtained for the power pool electricity market problems. For the power system

expansion problems, the most time consuming part is the branch and bounding process;

solving the nonlinear part poses no challenge.

D.1 A 57-Node System

The 57-node system has a mixture of four different generating technologies and it has eighty

transmission lines. For the generation and transmission expansion case, it is possible to add

generating capacity at every node; one can choose from among four different technologies.

Even though there are no new rights-of-way, it is possible to add up to five new circuits

between every pair of nodes that already have an interconnection. Three operating modes

are considered with three foreseeable scenarios each. These scenarios happen with a known

probability. All the random variables are assumed to be standard normally distributed.

Table D.1 shows some results when the two-stage stochastic model described by Equa-

142



Appendix D. Large Test Systems 143

tions (3.71), (3.76)–(3.79), (3.60), (3.61), (2.46), (2.54), and (3.64)–(3.68) is solved. The

parameters θr, βt, and βg are allowed to vary. Node 1 is taken as the slack node and the

budget constraint is not binding.

The general tendency observed is that as the risk aversion increases, the variance (stan-

dard deviation) of the generation cost decreases and the overall cost increases. In like man-

ner, as the probability of satisfying the chance constraints increases, the general tendency

is that the overall cost also increases.

Table D.2 shows some results when the model shown in Equations (4.52)–(4.54) is

solved taking Node 1 as the slack node. The intercepts and slopes of all the supply and

demand functions are taken as standard normally distributed random variables. There are

four suppliers and forty-two consumers.

Just as intended, by increasing the value of θr the social cost variance decreases. For

this particular case, the nodal price increases and the generation decreases at the slack

node as θr increases.
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Table D.1: Annualized generating cost, gen. & trans. exp., 57-node system.

Parameter Mean† Std. Deviation† Overall Cost‡

θr = 0.00 210.6300 67.4844 312.7500

θr = 0.02 158.5390 36.0964 321.9790

θr = 0.03 129.4960 24.6157 337.9360

θr = 0.04 179.3230 19.0941 361.6030

θr = 0.10 200.9350 7.6376 362.7250

θr = 0.03, βt = 0

≈ 76%; βg = 0.7 150.6730 25.4588 365.6230

≈ 84%; βg = 1.0 197.8930 25.4588 378.9430

≈ 90%; βg = 1.3 210.9800 25.4588 390.7400

≈ 96%; βg = 1.74 177.5320 25.4588 418.6120

θr = 0.03, βg = 0

≈ 76%; βt = 0.7 170.2940 25.4588 343.1390

≈ 84%; βt = 1.0 179.6750 25.4588 334.9550

≈ 90%; βt = 1.3 196.0680 25.4588 352.6380

≈ 96%; βt = 1.74 175.0800 25.4588 336.8700

βg = 1.3, βt = 1.3

θr = 0.00 237.7020 72.4940 347.9820

θr = 0.01 138.9420 41.3971 371.8620

θr = 0.02 191.5360 38.1881 371.296

θr = 0.03 186.0190 25.4588 418.9390

θr = 0.04 244.6230 19.0941 408.0630

θr = 0.10 214.8920 7.6376 447.8120

† in $M-y; ‡ Investment cost plus annualized generating cost, in $M-y.
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Table D.2: Randomness in supply and demand intercepts–slopes, 57-node system.

Parameter θr = 0 θr = 0.0001 θr = 0.001 θr = 0.01

E{SC}† −8050.29 −7781.21 −6169.20 −3394.88

σ2
SC

‡ 13078.00 6135.20 1140.2 95.24

ρ1
∗ 30.37 32.25 35.94 36.44

g1
⋆ 178.70 152.48 99.08 47.61

d1
⋆ 0.00 0.00 0.00 0.00

† in $/h, ‡ × 103 in $2/h2, ∗ in $/MWh, and ⋆ in MW
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D.2 A 118-Node System

The 118-node system has fifty-three generating units with a mixture of four different tech-

nologies. The system has one hundred and eighty-six transmission lines. It is possible to

add generating capacity at every node and there are four different technologies to choose

from. It is also possible to build up to five new circuits between every pair of nodes that

already have an interconnection; there are no new rights-of-way. Three operating modes

are considered; each one of which has three different foreseeable scenarios. These foresee-

able scenarios happen with a known probability. All the random variables are taken as

standard normally distributed.

Now, solving the two-stage stochastic model described by Equations (3.71), (3.76)–

(3.79), (3.60), (3.61), (2.46), (2.54), and (3.64)–(3.68) for the 118-node system one gets

the results shown in Table D.3. Node 69 is taken as the slack node. The execution time

ranges from 0.755 to 31.192 seconds when solved using the NEOS server for optimization.

Some of the model statistics are: 22,304 constraints, 11,178 non-linear variables, and 658

discrete variables.

From the results one can see that as the risk aversion increases, larger values of θr,

the variance (standard deviation) of the generation cost decreases and the overall cost

increases. The overall cost also increases as the probability of satisfying the probabilistic

constraints increases.

Table D.4 shows some results when the model shown in Equations (4.52)–(4.54) is

solved with Node 69 as the slack node. Just like before, the intercepts and slopes of all the

supply and demand functions are taken as standard normally distributed random variables.

There are fifty-three suppliers and ninety-two consumers.

It can be seen that, as θr increases, the social cost variance decreases. It also can be

seen that the generation level at the slack node decreases as the risk aversion increases.
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Table D.3: Annualized generating cost, gen. & trans. exp., 118-node system.

Parameter Mean† Std. Deviation† Overall Cost‡

θr = 0.000 595.398 75.9100 603.558

θr = 0.002 592.530 73.5726 608.850

θr = 0.010 553.937 51.3344 623.417

θr = 0.020 564.638 38.1881 634.118

θr = 0.0, βt = 0

≈ 76%; βg = 0.7 584.317 76.7450 659.077

≈ 84%; βg = 1.0 667.507 85.8750 691.987

≈ 90%; βg = 1.74 710.363 101.3930 779.843

θr = 0.01, βt = 0

≈ 90%; βg = 1.3 713.249 60.9740 756.629

≈ 96%; βg = 1.74 673.669 61.1553 812.629

θr = 0.0, βg = 0

≈ 76%; βt = 0.7 599.466 75.4894 607.626

≈ 84%; βt = 1.0 601.523 76.0043 609.683

≈ 90%; βt = 1.3 604.066 75.6499 612.226

≈ 96%; βt = 1.74 604.775 77.2193 612.935

θr = 0.01, βg = 0

≈ 76%; βt = 0.7 551.369 50.5973 620.849

≈ 90%; βt = 1.3 553.870 50.9000 624.820

θr = 0.02, βg = 0

≈ 90%; βt = 1.3 570.868 38.1881 640.348

βg = 0.7, βt = 0.7

θr = 0.01 603.539 55.4356 674.489

βg = 1.3, βt = 1.3

θr = 0.01 670.976 60.6844 741.926

† in $M-y; ‡ Investment cost plus annualized generating cost, in $M-y.
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Table D.4: Randomness in supply and demand intercepts–slopes, 118-node system.

Parameter θr = 0 θr = 0.0001 θr = 0.001 θr = 0.01 θr = 0.1

E{SC}† −72380.00 −69780.00 −53970.00 −27800.00 −9710.45

σ2
SC

‡ 133870.00 60138.00 11122.00 824.84 36.17

ρ69
∗ 30.02 30.66 30.92 30.06 28.93

g69
⋆ 175.66 144.54 88.66 41.96 16.21

† in $/h, ‡ × 103 in $2/h2, ∗ in $/MWh, and ⋆ in MW
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