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Abstract

Wireless Networks have been the topic of fundamental research in recent years

with the aim of achieving reliable and efficient communications. However, due to

their complexity, there are still many aspects of such configurations that remain as

open problems. The focus of this thesis is to investigate some throughput limits of

wireless networks. The network under consideration consists of n source-destination

pairs (links) operating in a single-hop fashion. In Chapters 2 and 3, it is assumed

that each link can be active and transmit with a constant power P or remain silent.

Also, fading is assumed to be the dominant factor affecting the strength of the

channels between transmitter and receiver terminals. The objective is to choose a

set of active links such that the throughput is maximized, where the rate of active

links are either unconstrained or constrained. For the unconstrained throughput

maximization, by deriving an upper bound and a lower bound, it is shown that in

the case of Rayleigh fading: (i) the maximum throughput scales like log n, (ii) the

maximum throughput is achievable in a distributed fashion. The upper bound is

obtained using probabilistic methods, where the key point is to upper bound the

throughput of any random set of active links by a chi-squared random variable.

To obtain the lower bound, a threshold-based link activation strategy (TBLAS) is

proposed and analyzed. The achieved throughput of TBLAS is by a factor of four

larger than what was obtained in previous works with centralized methods and with

multihop communications. When the active links are constrained to transmit with

a constant rate λ, an upper bound is derived that shows the number of active links

scales at most like 1
λ

logn. It is proved that TBLAS asymptotically almost surely
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(a.a.s.) yields a feasible solution for the constrained throughput maximization

problem. This solution, which is suboptimal in general, performs close to the

upper bound for small values of λ. To improve the suboptimal solution, a double-

threshold-based link activation strategy (DTBLAS) is proposed and analyzed based

on some results from random graph theory. It is demonstrated that DTBLAS

performs very close to the optimum. Specifically, DTBLAS is a.a.s. optimum when

λ approaches ∞ or 0. The optimality results are obtained in an interference-limited

regime. However, it is shown that, by proper selection of the algorithm parameters,

DTBLAS also allows the network to operate in a noise-limited regime in which the

transmission rates can be adjusted by the transmission powers. The price for this

flexibility is a decrease in the throughput scaling law by a factor of log log n. In

Chapter 4, the problem of throughput maximization by means of power allocation

is considered. It is demonstrated that under individual power constraints, in the

optimum solution, the power of at least one link should take its maximum value.

Then, for the special case of n = 2 links, it is shown that the optimum power

allocation strategy for throughput maximization is such that either both links use

their maximum power or one of them uses its maximum power and the other keeps

silent.
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Chapter 1

Introduction

Wireless Networks have been the topic of fundamental research in recent years

with the aim of achieving reliable and efficient communications. This has been

done assuming different network topologies, traffic patterns, protocol schemes, and

channel models [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12].

In a wireless network, a number of source nodes transmit data to their desig-

nated destination nodes through a shared wireless channel. From the information

theoretic point of view, a wireless network is a generalized version of the inter-

ference channel [13], whose capacity region has not been fully characterized yet.

Consequently, only a small fraction of the works in this field take a pure informa-

tion theoretic approach to the throughput of wireless networks [2, 3, 4]; instead,

most researchers base their throughput analyses on certain simplifying assumptions

including Gaussian signal transmission, linear receiver structures (which excludes

interference cancelation), and point-to-point coding (which excludes, for example,
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multi-access and broadcast schemes). In this case, interference at each receiver is

treated as additive white Gaussian noise (AWGN) and the signal to interference-

plus-noise ratio (SINR), along with the Shannon capacity formula, determine the

achievable rate of each link. We will follow this paradigm throughout this disser-

tation.

1.1 Large Single-Hop Wireless Networks

In a general network model, the information flow is routed through some interme-

diate nodes, named relay or router, to reach the final destination [1, 2, 3, 4, 5, 6,

7, 8, 9, 10, 11, 12]. Such a strategy is called multihop communications. Despite its

potential in enabling more efficient communications, routing adds complexity to the

communication systems. Furthermore, it induces delay in the network that cannot

be tolerated in some applications. Also, implicit in multihop communication is the

excess power consumption by the relay nodes. This latter issue can be a critical

disadvantage in applications where the total power is constrained. In this work, we

consider a network model in which data is transmitted directly from sources to their

corresponding receivers without utilizing any other nodes as routers. This model

includes single-hop ad hoc networks, cellular networks, and code division multiple

access (CDMA) systems as its special cases and has been extensively studied in the

literature. Due to the shared environment, simultaneous transmissions act as inter-

ference for each other. This issue is the main challenge in the design of single-hop

wireless networks. For works in the context of large wireless networks that have
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adopted this model see [14, 15, 16].

The focus of this dissertation is on investigating throughput scaling laws of large

single-hop wireless networks. The study of how the throughput of large wireless

networks scales with n, the number of nodes, was initiated by Gupta and Kumar

[1]. In that work, it is shown that a rate of 1/
√
n and 1/

√
n log(n) per node is

achievable in arbitrary and random networks1, respectively. An extension of this

result for the case that nodes are mobile or under delay constraints is provided

in [9]. The result of [1] was later improved in [5] by showing that even random

networks can achieve the rate of 1/
√
n per node.

1.2 Wireless Networks in Fading Environment

Most of the works analyzing the throughput of large wireless networks consider

a channel model in which the signal power decays according to a distance-based

attenuation law [1, 2, 3, 4, 5, 6, 7, 8]. However, in a wireless environment, the

presence of obstacles and scatterers adds some randomness to the received signal.

In addition, the power attenuation laws may not be valid when the receiver is not in

the far field of the transmitter, as in the dense networks. This random behaviour of

the channel, known as fading, can drastically change the scaling laws of a network

in both multihop [9, 10, 11, 12] and single-hop scenarios [14, Chapter 8],[15, 16, 17].

In [9], it is shown that for the same setup as in [1], the presence of fading de-

1In an arbitrary network, the nodes locations can be chosen optimally, but, in a random

network the nodes are located randomly.
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creases the order of the lower bound on rate-per-node by a factor of logn. In [10],

transmissions occur with a same constant rate and the objective is to maximize the

throughput. The proposed method is based on finding some noncolliding paths be-

tween the source-destination pairs such that only good enough links are traversed.

The number of these paths, the transmission rate, and the channel goodness crite-

rion are chosen such that the total throughput of the network is maximized. It is

shown that the throughput of the network strongly depends on the fading channel

distribution. A generalization of this work has appeared in [11], where the au-

thors consider a general fading model on top of a power decay law. The transport

capacity of wireless networks over fading channels has been investigated in [12].

In the context of single-hop wireless networks, [14, Chapter 8] considers a fre-

quency selective Rayleigh fading channel and seeks the minimum bandwidth such

that all communication links can support a certain rate. In [15], outage probability

and transmission capacity have been considered as performance metrics and the

effect of fading has been studied. Their study is based on some heuristic meth-

ods including random transmission and threshold based scheduling with or without

power control. In [16], the achievable throughput of a cellular system over fading

channel is studied when the number of cells (links) is limited, but each cell has an

infinitely large number of users to choose from. In [17], in addition to the random-

ness coming from the fading channels, the nodes’ locations follow a Poisson point

process. The objective is to accommodate the maximum density of users such that

a certain outage probability is not exceeded.

In this dissertation, we follow the model of [10, 14], where fading is assumed to
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be the dominant factor affecting the strength of the channels between nodes. Of

course, a realistic model of wireless network channels should take into account both

randomness and distance-based effects (see e.g. [11, 15]). However, this simplifying

assumption makes it possible to precisely analyze the effect of fading distribution

on the achievable throughput and obtain optimality results. Considering the more

general channel model can be the topic of future research.

1.3 Small Wireless Networks

Although the focus of this dissertation is on the large wireless networks, it is

worth mentioning that there are numerous works in the literature investigating

the throughput optimization in networks with arbitrarily small sizes. Based on the

network structure, throughput optimization can be executed in different ways, e.g.

by power control [18], bandwidth allocation [19, 20], transmission scheduling [21],

routing [22, 23], base station selection [24], etc. Among these various challenging

problems, power control has a prominent role in the past and ongoing research in

this area. In the last chapter of this dissertation, we address the problem of power

allocation for wireless networks.

1.4 Overview of the Dissertation

In Chapters 2 and 3, we consider a single-hop wireless network with fading channels.

Despite the randomness of the channel, we are only interested in events that occur
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with high probability, i.e., with probability tending to one as n→ ∞. The objective

is to maximize the throughput over all possible sets of active links, i.e., links which

are allowed to transmit simultaneously with a constant power P .

In Chapters 2, by deriving an upper bound and a lower bound, it is shown that

in the case of Rayleigh fading (i) the maximum throughput scales like log n (ii) the

maximum throughput is achievable in a distributed fashion. The upper bound is

obtained using probabilistic methods, where the key point is to upper bound the

throughput of any random set of active links by a chi-squared random variable.

To obtain the lower bound, a decentralized method for choosing the active links is

proposed and analyzed.

The unconstrained throughput maximization using the threshold based dis-

tributed method yields an average rate per active link that approaches zero as

n → ∞. In Chapter 3, it is assumed that each active link transmits with a con-

stant rate λ. An upper bound is derived that shows the number of active links scales

at most like 1
λ

log n. To obtain a lower bound, the decentralized method of Chap-

ter 2 is adopted and analyzed. It is shown that for small values of λ, the number of

supported links by this strategy meets the upper bound; however, as λ grows, this

number becomes far below the upper bound. To shrink the gap between the upper

bound and the achievability result, a modified method for choosing the active links

is proposed and analyzed based on some results from random graph theory. It is

shown that this modified strategy performs very close to the optimum. Specifically,

this strategy is asymptotically almost surely optimum when λ approaches ∞ or 0.

It turns out the optimality results are obtained in an interference-limited regime.
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It is demonstrated that, by proper selection of the algorithm parameters, the pro-

posed scheme also allows the network to operate in a noise-limited regime in which

the transmission rates can be adjusted by the transmission powers. The price for

this flexibility is a decrease in the throughput scaling law by a factor of log logn.

Chapter 4 addresses the problem of throughput maximization by means of power

allocation. In specific, it is shown that for n = 2 interfering links, the maximum

throughput is achieved when one of the links transmit with the maximum power

and the other one remains silent or both links transmit with the maximum power.

Chapter 5 presents a summary of the thesis contributions and provides some

possible directions for future research.
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Chapter 2

Unconstrained Throughput

Maximization

2.1 Introduction

In this chapter and the next one, we follow the model of [10, 14], where fading is

assumed to be the dominant factor affecting the strength of the channels between

nodes. Despite the randomness of the channel, we are only interested in events that

occur asymptotically almost surely, i.e., with probability tending to one as n→ ∞.

Such a deterministic approach to random wireless networks has been also adopted

in [5, 8], where the nodes’ locations are random.

We consider a single-hop scenario, i.e., a network structure in which the trans-

mitters send data to their corresponding receivers directly and without utilizing

other nodes as routers. It is assumed that each link can be active and transmit
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with a constant power P or remain silent. The objective is to maximize the through-

put over all sets of active links. We propose a threshold-based LAS in which each

link is active if and only if its channel gain is above some predetermined threshold.

The decision on being active can be made at the receivers, where their own channel

gains are estimated and a single-bit command data is fed back to the transmitters.

Hence, there is no need for the exchange of information between links. Conse-

quently, this method can be implemented in a decentralized fashion. We analyze

this method for a general fading model and show how to obtain the value of the

activation threshold to maximize the throughput. As examples, we derive closed

form expressions for the achievable throughput in Rayleigh, log-normal, and shadow

fading environments.

Using probabilistic methods, we derive an upper bound on the achievable through-

put when the channel is Rayleigh fading. Interestingly, this upper bound scales the

same as the lower bound achieved by the proposed strategy. This proves the asymp-

totic optimality of the proposed technique among all link activation strategies.

In addition to the channel modeling, [10] is a relevant work in the sense that

transmissions occur with the same power and the objective is to maximize the

throughput. However, they allow multihop communication in their scheme. Their

proposed scheme requires a central unit which is aware of all channel conditions

and decides on active source-destination pairs and the paths between them. Despite

this complexity, the achievable throughput of their method in the popular model of

Rayleigh fading is by a factor of 4 less than the value obtained in this work for a more

restricted configuration, i.e., single-hop networks with decentralized management.
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The rest of the chapter is organized as follows: In Section 2.2, the network

model and problem formulation are presented. By proposing a decentralized LAS,

a lower bound on the network throughput is derived in Section 2.3. In Section 2.4,

we prove the optimality of the proposed decentralized method in a Rayleigh fading

environment. Finally, we conclude the chapter in Section 2.5.

2.2 Network Model and Problem Formulation

We consider a wireless communication network with n pairs of transmitters and

receivers. These n communication links are indexed by the elements of Nn. Each

transmitter aims to send data to its corresponding receiver in a single-hop fashion.

The transmit power of link i is denoted by pi. It is assumed that the links follow

an on-off paradigm, i.e., pi ∈ {0, P}, where P is a constant. Hence, any power

allocation scheme translates to choosing the set of active links, which is denoted by

A. In other words,

pi =

⎧⎪⎨
⎪⎩

P if i ∈ A
0 if i /∈ A

. (2.1)

The process in which the set A is chosen is called a link activation strategy (LAS).

The channel between transmitter j and receiver i is characterized by the coeffi-

cient gji. This means the received power from transmitter j at the receiver i equals

gjipj. We refer to the coefficients gii and gji (j �= i) as direct channel coefficients

and cross channel coefficients, respectively. In this chapter and the next one, we

assume that the channel coefficients are independent identically distributed (i.i.d.)
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random variables drawn from a pdf f(x) with mean μ and variance σ2.

We consider an additive white Gaussian noise (AWGN) with limited variance η

at the receivers. The transmit signal-to-noise ratio (SNR) of the network is defined

as

ρ =
P

η
. (2.2)

The receivers are conventional linear receivers, i.e., without multiuser detection.

Since the transmissions occur simultaneously within the same environment, the

signal from each transmitter acts as interference for other links. Assuming Gaus-

sian signal transmission from all links, the distribution of the interference will be

Gaussian as well. Thus, according to the Shannon capacity formula [13], the max-

imum supportable rate of link i ∈ A is obtained as

ri(A) = log (1 + γi(A)) nats/channel use, (2.3)

where

γi(A) =
gii

1/ρ+
∑

j∈A
j �=i

gji
(2.4)

is the signal-to-interference-plus-noise ratio (SINR) of link i.

As a measure of performance, in this chapter we consider the throughput of the

network, which is defined as

T (A) =
∑
i∈A

ri(A). (2.5)

Also, the average rate per active link, or simply rate-per-link, is defined as

r̄(A) =
T (A)

|A| . (2.6)
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In this chapter, wherever there is no ambiguity, we drop the functionality of A from

the network parameters and simply refer to them as ri, γi, T , or r̄.

The problem of throughput maximization is described as

max
A⊆Nn

T (A). (2.7)

This problem is referred to as the unconstrained throughput maximization. We de-

note the maximum value of this problem by T ∗
u . Due to the nonconvex and integral

nature of the throughput maximization problem, its solution is computationally

intensive. However, in this chapter we propose and analyze a decentralized LAS

which leads to efficient solutions for the above problem. Indeed, we show that the

proposed strategy a.a.s. achieves the optimum solution of the throughput maxi-

mization problem in Rayleigh fading environment.

2.3 Achievability Results

In this section, to derive a lower bound on the network throughput, we propose a

simple heuristic LAS, which we call a threshold-based LAS (TBLAS). Due to the

randomness of the channel, the achievable throughput of the proposed strategy

is a random variable; however, our analyses yields a lower bound which is a.a.s.

achievable.

TBLAS: For a threshold Δ, choose the set of active links according to the

following rule

i ∈ A iff gii > Δ. (2.8)
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In this strategy, the quality of the direct channel of each link determines whether

that link is active or not. If each transmitter is aware of the threshold Δ and its

direct channel coefficient, it can individually determine its transmit power. Hence,

TBLAS can be implemented in a decentralized fashion.

The performance of TBLAS depends on the value of the threshold Δ; if Δ is

very large, the quality of the selected links will be very good, but the number of

such links is small and as a result, the achieved throughput will be small. On

the other hand, if Δ is very small, many links are chosen, but it causes a large

interference and again the throughput will be small. Thus, it is crucial to choose a

proper value for Δ. To obtain the optimum value of Δ, we should first know the

achievable throughput of TBLAS in terms of Δ.

Let k = |A| denote the number of active links chosen by TBLAS. Without loss

of generality, we assume that A = {1, 2, · · · , k}. By defining Ii =
∑k

j=1
j �=i

gji and

using (2.3), (2.4), and (2.5), the throughput can be lower bounded as

T >

k∑
i=1

log

(
1 +

Δ

1/ρ+ Ii

)
(2.9)

≥ k log

(
1 +

Δ

1/ρ+ 1
k

∑k
i=1 Ii

)
, (2.10)

where the first equality is based on the fact that gii > Δ for the active links and

the second one is the result of applying the Jensen’s inequality.

Let us define I = 1
k

∑k
i=1 Ii, which is the empirical average of the interference

terms. Unfortunately, since Var(Ii) = (k − 1)σ2 grows with k, we cannot apply

the law of large numbers to I. However, by applying the Chebyshev inequality, we
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obtain the upper bound

I < (k − 1)μ+ ψ, (2.11)

which holds a.a.s. for any ψ = ω(1). By using this upper bound in (2.10) we obtain

T > k log

(
1 +

Δ

μk + ψ

)
, a.a.s. (2.12)

Note that the constant 1/ρ − μ is absorbed in the function ψ. To make the lower

bound (2.12) as tight as possible, we should choose ψ as small as possible, e.g.

ψ = o(k). For such values of ψ, the lower bound (2.12) becomes an increasing

function of k. More precisely, we have the following lemma.

Lemma 1. Assume ψ is such that the function
ψ

k
is nonincreasing in k. For any

Δ and μ the function k log

(
1 +

Δ

μk + ψ

)
is increasing in k.

Proof. See Appendix A.

The lower bound in (2.12) is a function of Δ, which is a deterministic parameter

to be chosen optimally later, and k, which is a random variable. To remove the

randomness from this lower bound, we can replace k by a deterministic lower bound

and use Lemma 1 to obtain a deterministic lower bound on the throughput. We do

this in the following.

Assume the probability of a link being active is denoted by q. Due to our LAS,

which selects links with direct channel coefficients larger than Δ, we have

q = 1 − F (Δ), (2.13)
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where F (x) is the cumulative distribution function (cdf) of the channel coefficients.

Since the links are selected independently and with probability q, the number of

active links, k, is a binomial random variable with parameters n and q. Using the

Chebyshev inequality, it can be shown that k a.a.s. satisfies the lower bound

k > nq − ξ
√
nq, (2.14)

for any ξ = ω(1). By using (2.12), (2.14), and Lemma 1, we obtain the main result

of this section, which is an achievability result on the throughput.

Theorem 2. Consider a wireless network with n links and i.i.d. random channel

coefficients with pdf f(x), cdf F (x), and mean μ. Choose any Δ > 0 and define

q = 1 − F (Δ). Then, a throughput of

T
TBLAS

(Δ) = (nq − ξ
√
nq) log

(
1 +

Δ

μ(nq − ξ
√
nq) + ψ

)
(2.15)

is a.a.s. achievable by TBLAS for any ξ = ω(1) that satisfies ξ = o(
√
nq) and any

ψ = ω(1) that makes
ψ

k
a nonincreasing function in k.

Note that the achievable throughput T
TBLAS

(Δ) is a deterministic value. It

easily follows that under the conditions described in Theorem 2, the number of

active links and the achievable average rate-per-link in TBLAS scale as

k ∼ nq a.a.s. (2.16)

r̄ ∼ log

(
1 +

Δ

μ(nq − ξ
√
nq) + ψ

)
a.a.s. (2.17)

Note that the functions ξ and ψ can be chosen arbitrarily small. Hence, they

do not affect the order of the achievable throughput. As a result, (2.15) can be

15



simplified to

T
TBLAS

(Δ) ∼ nq log

(
1 +

Δ

μnq

)
. (2.18)

We will use (2.18) in the calculations in the rest of the chapter, except for the

special case of the Rayleigh fading model, where we use the original formula (2.15)

to show how ξ and ψ affect the order of the achievable throughput.

As specified in Theorem 2, the achievable throughput of TBLAS is a function

of the parameter Δ. Thus, Δ can be chosen such that the achievable throughput

is maximized. Let us define

Δ∗ = arg max
Δ

T
TBLAS

(Δ), (2.19)

and

T ∗
TBLAS

= max
Δ

T
TBLAS

(Δ) (2.20)

to be the optimum threshold and the maximum achievable throughput, respectively.

We also define k∗
DTBLAS

and r̄∗
DTBLAS

to be the number of users and the rate-per-link

corresponding to Δ∗.

It is worth mentioning that the above result on a.a.s. achievability of T ∗
TBLAS

was

derived for static channels. However, in time-varying channels, where the expected

value of T determines the actual throughput, we can easily conclude that

E[T ] > T ∗
TBLAS

, (2.21)

which holds asymptotically.

In general, the values of Δ∗ and T ∗
TBLAS

are functions of n, but how they scale

with n strongly depends on the channel distribution function f(x). Specifically,
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one needs to know the relation between q and Δ as well as the value of μ to obtain

Δ∗ and T ∗
TBLAS

. In the following, we provide some examples and show how the

achievable throughputs depend on the fading model.

2.3.1 Case Study

Rayleigh Fading

In a Rayleigh fading channel, the coefficients gji are exponentially distributed with

f(x) = e−x and μ = 1. Thus, using the corresponding cumulative distributed

function, the relation between q and Δ is described as q = e−Δ. By substituting

this value in (2.15), we obtain the function to be maximized as

T
TBLAS

(Δ)=
(
ne−Δ − ξ

√
ne−Δ

)
log

(
1 +

Δ

ne−Δ − ξ
√
ne−Δ + ψ

)
. (2.22)

The result of maximizing this function over Δ is given in the following corollary.

Corollary 3. In a wireless network with Rayleigh fading channels and n links,

under optimum operation conditions of TBLAS, we have

Δ∗ = log n− 2 log logn + log 2 +O

(
log log n

logn

)
, (2.23)

T ∗
TBLAS

= log n− 2 log logn + log(2/e) +O

(
log log n

log n

)
, (2.24)

k∗
TBLAS

=
1

2
log2 n(1 + o(1)), a.a.s., (2.25)

r̄∗
TBLAS

=
2

log n
(1 + o(1)), a.a.s. (2.26)

Proof. See Appendix B.1.
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As it is seen, ξ and ψ do not affect the dominant terms of the network param-

eters. Hence, instead of (2.22), we could start the optimization process with

T
TBLAS

(Δ) ∼ ne−Δ log

(
1 +

Δ

ne−Δ

)
. (2.27)

We will use this equation in the next chapter.

The throughput scaling order of logn is, by a factor of 4, larger than the value

obtained in [10] in a centralized and multihop scenario. It should also be noted that

the average rate-per-link approaches zero az n → ∞. We will address the issue of

nonzero-approaching rates in the next chapter.

Log-Normal Fading

Consider a network with channel coefficients drawn i.i.d. from a log-normal distri-

bution with pdf

f(x) =
1√

2πSx
e
−

(log x−M)2

2S2 , x ≥ 0 (2.28)

with S and M being the parameters of the distribution [10]. The following propo-

sition establishes the relation between q and Δ in the log-normal fading model for

large values of Δ.

Proposition 4. Assume X is a log-normal random variable with the pdf given in

(2.28) and let q = P(X > Δ). Then, for large values of Δ, we have

q ≈ S√
2π(log Δ −M)

e
−

(log Δ −M)2

2S2 . (2.29)
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Proof. By the definition of q, we have

q =

∫ ∞

Δ

1√
2πSx

e−
(log x−M)2

2S2 dx (2.30)

=

∫ ∞

log Δ

1√
2πS

e−
(x−M)2

2S2 dx (2.31)

=
1

2
erfc

(
log Δ −M√

2S

)
, (2.32)

where erfc(x) =
2√
π

∫∞
x
e−z2

dz is the complementary error function. By using the

approximation erfc(x) ≈ 1√
πx
e−x2

for large values of x, the result is obtained.

By substituting the value of q from Proposition 4 in (2.18), the throughput, as

a function of Δ, is obtained as

T
TBLAS

(Δ) =
S√
2π

n

u
e−

u2

2S2 log

⎛
⎝1 +

Bueue
u2

2S2

n

⎞
⎠ , (2.33)

where, for the brevity of notation, we have defined u = log Δ −M . Also, B is a

constant depending on the distribution parameters.

Lemma 5. In a wireless network with log-normal fading channels and n links,

under optimum operation conditions of TBLAS, we have

Δ∗ ∼ eM−S2

e
√

2S
√

log n, (2.34)

T ∗
TBLAS

∼ e−
3S2

2 e
√

2S
√

log n (2.35)

k∗
TBLAS

∼ e−
3S2

2√
8S

√
logne

√
2S

√
log n, a.a.s. (2.36)

r̄∗
TBLAS

∼
√

8S√
log n

, a.a.s. (2.37)

Proof. See Appendix B.2.
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The throughput scaling order of e
√

2S
√

log n is, by a multiplicative factor of

logn

log log n
, larger than what is obtained in [10] in a centralized and multihop scenario.

Also, the average rate-per-link approaches zero as n→ ∞.

Shadow Fading

Consider a network whose channel coefficients are drawn i.i.d. from the pdf [10]

f(x) = (1 − �) · δ(x) + � · δ(x− 1), (2.38)

where δ(·) is the Dirac’s delta function. For this distribution μ = �. This pdf simply

models a shadow fading environment in which, for any links, with probability 1−�

there exists an obstacle that completely suppresses the signal; with probability �

such an obstacle does not exist and the transmitted signal is received without any

fading effect.

For a constant �, since there are only two possibilities for the channel coefficients,

the threshold optimization is trivial; one should choose Δ∗ = 1 to maximize the

throughput. This gives q = � and consequently,

T
TBLAS

∼ n� log

(
1 +

1

n�2

)
. (2.39)

To complete the comparison with [10], we consider the scenario in which it is

possible to choose � as a function of n such that the throughput is maximized.

Intuitively, when � is very small, the effect of interference is low, but the number

of unblocked links is low as well, resulting in a small throughput. On the other

hand, if � is very large, there are many unblocked links, but the number of links
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interfering with each link is also high and the achieved throughput will be small

again. Thus, there should be some optimum value for � in between.

Lemma 6. In a wireless network with shadow fading channels and n links, the

optimum value of � for TBLAS and the corresponding throughput, number of active

links, and rate-per-link are obtained as

�∗ =
c√
n
, (2.40)

T ∗
TBLAS

∼ c log

(
1 +

1

c2

)√
n, a.a.s. (2.41)

k∗
TBLAS

∼ c
√
n, (2.42)

r̄∗
TBLAS

∼ log

(
1 +

1

c2

)
. (2.43)

where c ≈ 0.5050 is a constant.

Proof. See Appendix B.3.

As observed, the throughput scales as
√
n, which is smaller than the linear scal-

ing with n that was obtained in [10]. This shows the necessity of a multihop scheme

to achieve higher orders of throughput for the case of shadow fading. Interestingly,

with this network set-up, the average rate-per-link does not approach zero.

2.4 Optimality Result

In this section, we provide an upper bound on the throughput of the wireless

network. Hereafter, we restrict the discussions to the Rayleigh fading model. First,
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we need the following lemma that provides a lower bound on the number of active

links.

Lemma 7. In the optimum set of active links for the unconstrained throughput

maximization (2.7), the number of active links, k∗u, a.a.s. satisfies

k∗u ≥ log n

log log n

(
1 +O

(
1

log logn

))
. (2.44)

Proof. It can be shown that a.a.s.

gii ≤ logn + ϕ, ∀i ∈ Nn, (2.45)

for any ϕ = ω(1). By ignoring the interference term and using the above upper

bound, we obtain

T ∗
u ≤ k∗u log

(
1 +

log n+ ϕ

1/ρ

)
. (2.46)

Combining this upper bound with the lower bound in (2.24), we obtain

k∗u ≥ logn +O(log logn)

log

(
1 +

logn + ϕ

1/ρ

) (2.47)

=
log n

log logn

(
1 +O

(
1

log log n

))
, (2.48)

where it is assumed ϕ = o(log n).

Theorem 8. In a Rayleigh fading environment, the solution of the unconstrained

throughput maximization problem (2.7) is a.a.s. upper bounded as

T ∗
u ≤ logn + log log n(1 + o(1)). (2.49)
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Proof. Similar to Lemma 7, assume the number of active links yielding T ∗
u is denoted

by k∗u. For a randomly selected set of active links A with |A| = k∗u, the interference

term Ii =
∑

j∈A
j �=i

gji in the denominator of (2.4) has χ2(2k∗u−2) distribution. Hence,

we have

P(γi > x) =

∫ ∞

0

P (γi > x|Ii = z) fIi
(z)dz

=

∫ ∞

0

e−x(1/ρ+z) z
k∗

u−2e−z

(k∗u − 2)!
dz

=
e−x/ρ

(1 + x)k∗
u−1

. (2.50)

Consequently, by using (2.3), we obtain

P(ri > x) = P(γi > ex − 1)

=
e−(ex−1)/ρ

e(k∗
u−1)x

. (2.51)

By defining Xi = ri +
eri − 1

ρ(k∗u − 1)
and using (2.51), it can be shown that Xi is

exponentially distributed with mean 1
k∗

u−1
. On the other hand, from the definition

of Xi it is clear that Xi ≥ ri. Thus, the throughput T (A) =
∑

i∈A ri is upper

bounded as

T (A) ≤
∑
i∈A

Xi. (2.52)

Consequently, we have

P (T (A) > x) ≤ P

(∑
i∈A

Xi > x

)
(2.53)

(a)
= e−(k∗

u−1)x

k∗
u−1∑

m=0

((k∗u − 1)x)m

m!
(2.54)

(b)
< k∗ue

−(k∗
u−1)x ((k∗u − 1)x)k∗

u−1

(k∗u − 1)!
(2.55)

(c)≈
√
k∗ue

−(k∗
u−1)(x−1)xk∗

u−1, (2.56)
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where (a) is because
∑

i∈AXi has χ2(2k∗u) distribution, (b) is because the maximum

of the summand terms occurs at m = k∗u−1 for large enough x 1, and (c) is obtained

by applying the Stirling’s approximation for the factorial, i.e., m! ≈ √
2πmmme−m.

Assume L1 is the event that there exists at least one set A ⊆ Nn with |A| = k∗u

such that T (A) > x. We have

p(L1) ≤
(
n

k∗u

)
P (T (A) > x) (2.57)

<

(
ne

k∗u

)k∗
u √

k∗ue
−(k∗

u−1)(x−1)xk∗
u−1 (2.58)

< exp(E(x, k∗u)), (2.59)

where the first inequality is due to the union bound, the second inequality is due

to (2.56) and the Stirling’s approximation, and E(x, k∗u) is defined as

E(x, k∗u) = k∗u(log n− x− log k∗u + log x+ 2) +
1

2
log k∗u + x. (2.60)

For x = logn + log log n+ 2 log log log n, we have

E(x, k∗u) ≈ −k∗u(2 log log log n+ log k∗u − 2) +
1

2
log k∗u

+ logn+ log logn(1 + o(1)). (2.61)

Noting that the RHS of (2.61) is a decreasing function in k∗u, we can replace k∗u by

its lower bound from Lemma 7 to obtain the upper bound

E(x, k∗u) ≤ − log log log n

log log n
logn(1 + o(1)). (2.62)

1Since we are seeking an upper bound on the throughput, x is at least of order log n. This

value is large enough to satisfy the mentioned condition.
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Since the RHS of (2.62) goes to −∞ when n → ∞, from (2.59) we conclude that

p(L1) → 0. This means, with probability approaching 1, there does not exist any

set A that achieves a throughput larger than x = logn + log logn(1 + o(1)). This

completes the proof.

Comparison between the achievability result in Corollary 3 and the upper bound

in Theorem 8 reveals the following result.

Theorem 9. Consider a wireless network with n links and i.i.d. random channel

coefficients drawn from an exponential distribution with mean μ = 1. Then, the

maximum throughput a.a.s. satisfies

T ∗
u ∼ logn. (2.63)

Moreover, this maximum throughput scaling law is a.a.s. achieved by the distributed

TBLAS presented in Section 2.3.

2.5 Conclusion

In this chapter, the throughput of single-hop wireless networks with on-off strategy

is investigated in a fading environment. To obtain a lower bound on the throughput,

a decentralized LAS is proposed and analyzed for a general fading model. It is

shown that in the popular model of Rayleigh fading a throughput of order logn is

achievable, which is by a factor of four larger than what was obtained in previous

works with centralized methods [10]. Moreover, for the Rayleigh fading model, an
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upper bound of order logn is obtained that shows the optimality of the proposed

LAS.
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Chapter 3

Constrained Throughput

Maximization

3.1 Introduction

In Chapter 2, the unconstrained throughput maximization problem in a Rayleigh

fading environment has been investigated. It is shown that the maximum through-

put scales like logn. Also, a decentralized LAS, called the threshold-based link

activation strategy (TBLAS), is proposed that achieves this scaling law. The un-

constrained throughput maximization using the threshold based distributed method

yields an average rate per active link that approaches zero as n → ∞. The same

phenomenon has been observed in [1, 5, 9, 10]. Since most of the existing efficient

channel codes are designed for moderate rates, it is a drawback for a system to

have zero-approaching rates. Thus, from a practical point of view, it is appealing
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to assign constant rates to active communication links. In [6], it is shown that a

nondecreasing rate per node is achievable when nodes are mobile.

In this chapter, we consider the problem of constrained throughput maximiza-

tion in a Rayleigh fading environment. More specifically, the objective is to max-

imize the number of active links such that each active link can transmit with a

constant rate λ. We derive an upper bound that shows the number of active links

scales at most like 1
λ

logn. To obtain a lower bound, first, we examine the sim-

ple TBLAS of Chapter 2 and show that it is capable of guaranteeing rate-per-links

equal to λ. The number of active links provided by this method scales like Θ(logn).

The scaling factor is close to the optimum when λ is small. However, as λ grows

large, the scaling factor decays exponentially with λ, making it far below the up-

per bound 1
λ
. This inspires developing an improved LAS that works well for large

values of desired rates, as well. To this end, we propose a double-threshold-based

link activation strategy (DTBLAS).

DTBLAS is attained by adding an interference management phase to TBLAS.

This is done by choosing from good enough links only those with small enough

mutual interference. The analysis of DTBLAS is more complicated than that of

TBLAS. However, it can be carried out using some results from the random graph

theory. It is shown that DTBLAS performs very close to the optimum. Indeed,

its performance achieves the upper bound for large values of the demanded rate.

This shows the asymptotic optimality of DTBLAS for the constrained throughput

maximization problem.

In the scenarios described above, the interference power is much larger than
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the noise power and the rates become independent of SNR. In other words, the

network performs in an interference-limited regime. A natural question is whether

it is possible to have rate-per-links which depend on the SNR. The importance

of this scenario, which is called the noise-limited regime, is that the transmission

rate λ can be adjusted by adjusting the transmission power P . We show that

the answer to the above question is affirmative and the noise-limited regime can

be realized by using DTBLAS. However, the throughput achieved by this method

scales like log n
log log n

, which is by a factor of log logn less than what is achievable in

an interference-limited regime.

The rest of the chapter is organized as follows: In Section 3.2, network model

and problem formulation are presented. An upper bound on the throughput is

derived in Section 3.3. In Sections 3.4 and 3.5, achievability results via decentralized

and centralized schemes are presented. Some optimality results are provided in

Section 3.6. The operation of the network in a noise-limited regime is investigated

in Section 3.7. Finally, the chapter is concluded in Section 3.8.

3.2 Network Model and Problem Formulation

The network model is the same as in the previous chapter, except that here we only

consider a Rayleigh fading model, i.e. f(x) = e−x, with mean μ = 1 and variance

σ2 = 1.

Throughout this chapter, we assume all active links transmit with a same rate

λ. In this case, the throughput becomes proportional to the number of active
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links, i.e., T (A) = |A|λ. Hence, the problem of throughput maximization becomes

equivalent to maximizing the number of active links subject to a constraint on the

rate of active links, i.e.,

max
A⊆Nn

|A|

s.t. ri(A) ≥ λ, ∀i ∈ A
. (3.1)

This problem is referred to as the constrained throughput maximization. We denote

the throughput corresponding to the maximum value of this problem by T ∗
c .

Due to the nonconvex and integral nature of the throughput maximization prob-

lem, its solution is computationally intensive. However, in this chapter we propose

and analyze LASs which lead to efficient solutions for the above problem. Indeed,

we first show that the decentralized method of Chapter 2 is a.a.s. optimum when

λ is vanishingly small. Then, we propose a new LAS which is asymptotically opti-

mum for large values as well as small values of λ. Also, for moderate values of λ,

there is a small gap between the performance of the proposed LAS and a derived

upper bound. This shows the closeness of its performance to the optimum.

As in the previous chapter, we denote the number of active links by k instead

of |A|. Motivated by the result of Chapter 2 that shows the maximum throughput

scales like log n, we introduce the following definitions. The scaling factor of the

throughput is defined as

τ = lim
n→∞

T

logn
, (3.2)

Similarly, the scaling factor of the number of active links is defined as

κ = lim
n→∞

k

log n
. (3.3)
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3.3 Upper Bound

In this section, we obtain an upper bound on the optimum solution of (3.1). This

upper bound can be either presented as an upper bound on the throughput or as

an upper bound on the number of active links.

Theorem 10. Assume A∗
c is the solution to the constrained throughput maximiza-

tion (3.1) and k∗c = |A∗
c |. Then, the associated throughput and the scaling factor of

k∗c a.a.s. satisfy

T ∗
c < log n− log log n+ c, (3.4)

κ∗c <
1

λ
, (3.5)

for some constant c.

Proof. For a randomly selected set of active links A with |A| = k, similar to (2.50),

we have

P(γi > x) =
e−x/ρ

(1 + x)k−1
. (3.6)

Assume L2 is the event that there exists at least one set A ⊆ Nn with |A| = k

such that the constraints in (3.1) are satisfied. Also, assume γ0 is a quantity that

31



satisfies λ = log(1 + γ0). We have

P(L2)
(a)

≤
(
n

k

)
(P(ri ≥ λ))k (3.7)

=

(
n

k

)
(P(γi ≥ γ0))

k (3.8)

(3.6)
=

(
n

k

)
e−γ0k/ρ

(1 + γ0)k(k−1)
(3.9)

(b)

≤
(ne
k

)k e−γ0k/ρ

(1 + γ0)k(k−1)
(3.10)

= ek(log n−log k−λk+λ+1−γ0/ρ), (3.11)

where (a) is due to the union bound and (b) is the result of applying the Stirling’s

approximation for the factorial. It can be verified that there exists a constant c

such that if kλ = logn − log log n + c, then, the above upper bound approaches

zero for n → ∞. Hence, for the event L2 to have non-zero probability, we should

a.a.s. have

kλ < log n− log logn + c. (3.12)

This inequality holds for any feasible number of active links. By choosing k = k∗c ,

the upper bounds in the lemma are proved.

3.4 Lower Bound: A Decentralized Approach

To derive a lower bound, in this section, we consider the decentralized method of

Chapter 2, i.e. TBLAS, which was introduced in (2.8).

As before, T
TBLAS

denotes the achieved throughput of TBLAS. The following
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results, which were obtained in Chapter 2, are repeated here for simplicity.

T
TBLAS

∼ ne−Δ log

(
1 +

Δ

ne−Δ

)
, (3.13)

k
TBLAS

∼ ne−Δ, (3.14)

|k
TBLAS

− ne−Δ| < ξ
√
ne−Δ, a.a.s. (3.15)

If the rate of active links equal λ, the average rate per active link equals λ, as

well. To have r̄
TBLAS

= λ, we should choose Δ such that the throughput and the

number of active links both become proportional to logn. The following lemma

shows how to realize such a scenario.

Lemma 11. Assume the activation threshold for TBLAS is chosen to be Δ =

log n− log logn− logα for some α > 0. Then, a.a.s. we have

τ
TBLAS

= α log

(
1 +

1

α

)
(3.16)

κ
TBLAS

= α (3.17)

r̄
TBLAS

= log

(
1 +

1

α

)
+ o(1). (3.18)

Proof. With the specified value of Δ, we have ne−Δ = α logn. The values of τ
TBLAS

and κ
TBLAS

are readily obtained by substituting this value in (3.13) and (3.14) and

using the definitions (3.2) and (3.3), respectively. The value of r̄
TBLAS

is obtained

by using the definition (2.6).

Lemma 11 indicates that by a proper choose of α, an average rate-per-link equal

to λ is achievable; however, it does not guarantee that all active links are supported

by this rate. In other words, one may ask whether TBLAS is capable of satisfying
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the constraints in problem (3.1). The following lemma addresses this issue and

shows that a.a.s. the rate of all active links are highly concentrated around the

average value r̄.

Lemma 12. Assume the activation threshold for TBLAS is chosen to be Δ =

log n− log logn− logα for some α > 0. Then, a.a.s. we have

|ri − r̄| < 2

√
log log n

α3 log n
(1 + o(1)), ∀i ∈ A, (3.19)

where r̄ = log

(
1 +

1

α

)
.

To prove the lemma, we need the following result about the central limit theorem

(CLT ) for large deviations.

Theorem 13 ([25]). Let {Ym} be a sequence of i.i.d. random variables. Suppose

that Y1 has zero mean and finite positive variance ν and satisfies the Cramér’s

condition1. For Zm = 1√
mν

∑m
j=1 Yj, define Fm(y) = P(Zm < y). If y ≥ 0, y =

O(m1/6), then

1 − Fm(y) = [1 − Φ(y)] exp

(
θ3y

3

6
√
mν3

)
+O

(
e−y2/2

√
m

)
, (3.20)

where Φ(y) is the cdf of the normal distribution and θ3 = E(Y 3
1 ).

Proof of Lemma 12. From the definition of ri and the concavity of the log(·) func-

1A random variable Y satisfies the Cramér’s condition if its moment-generating function exists

in some interval with the center at the origin.
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tion, we have

|ri − r̄| =

∣∣∣∣log(1 + γi) − log

(
1 +

1

α

)∣∣∣∣ (3.21)

≤
∣∣∣∣γi − 1

α

∣∣∣∣ . (3.22)

Thus, to prove the lemma, it is sufficient to prove that a.a.s.

∣∣∣∣γi − 1

α

∣∣∣∣ < 2

√
log log n

α3 logn
(1 + o(1)), ∀i ∈ A, (3.23)

or equivalently

x− < γi < x+, (3.24)

where

x± =
1

α

(
1 ± 2

√
log logn

α log n
(1 + o(1))

)
. (3.25)

Here, we just prove the left-side inequality in (3.24). The other side can be proved

in a similar manner.

Let L3 denote the event that

γi > x−, ∀i ∈ A. (3.26)

In the following, we show that P(L3) → 1 as n→ ∞.

Denoting the cdf of γi conditioned on |A| = k by Fγ(x, k), the probability of
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the event L3 is obtained as

P(L3) =

n∑
k=0

P(|A| = k)P(L3||A| = k) (3.27)

(a)
=

n∑
k=0

P(|A| = k) (1 − Fγ(x−, k))
k (3.28)

(b)

≥
k+∑

k=k−

P(|A| = k) (1 − Fγ(x−, k))
k (3.29)

(c)
> (1 − Fγ(x−, k+))k+

k+∑
k=k−

P(|A| = k) (3.30)

= (1 − Fγ(x−, k+))k+ P(k− ≤ |A| ≤ k+), (3.31)

where (a) is because the channel gains are independent, (b) is valid for any 0 ≤
k− ≤ k+ ≤ n and (c) is due to the fact that (1 − Fγ(x, k))

k is a decreasing function

of k. According to (3.15), by choosing

k± = ne−Δ ± ξ
√
ne−Δ (3.32)

= α log n± ξ
√
α log n, (3.33)

for some ξ → ∞, we have P(k− ≤ |A| ≤ k+) → 1. Hence, to prove P(L3) → 1, it

is enough to show that (1 − Fγ(x−, k+))k+ → 1. However, due to the inequality

(1 − Fγ(x−, k+))k+ ≥ 1 − k+Fγ(x−, k+), (3.34)

it is enough to show that

k+Fγ(x−, k+) → 0. (3.35)

To prove (3.35), we provide an upper bound on k+Fγ(x−, k+) and show that it
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approaches zero as n→ ∞. We have

Fγ(x−, k+) = P(γi ≤ x−||A| = k+)

(a)
= P

⎛
⎜⎝ gii

1/ρ+
∑k+

j=1
j �=i

gji

≤ x−

⎞
⎟⎠

= P

⎛
⎜⎜⎝

k+∑
j=1
j �=i

gji ≥ gii

x−
− 1

ρ

⎞
⎟⎟⎠

(b)
< P

⎛
⎜⎜⎝

k+∑
j=1
j �=i

gji ≥ Δ

x−
− 1

ρ

⎞
⎟⎟⎠ , (3.36)

where (a) is based on A = {1, · · · , k+}, which has been assumed for simplicity of

notation, and (b) is due to the fact that, in TBLAS, gii > Δ for any i ∈ A. Let us

define Yj = gji − 1, which has the variance ν = 1. Thus, the right-hand-side (RHS)

of (3.36) translates to the complementary cdf (ccdf) of Z =
1√

k+ − 1

∑k+

j=1
j �=i

Yj, i.e.

(3.36) can be rewritten as

Fγ(x−, k+) < 1 − P(Z ≤ y), (3.37)

where

y =

Δ
x− − 1

ρ
− (k+ − 1)√
k+ − 1

. (3.38)

By substituting Δ = log n− log logn − logα and the value of x− from (3.25) into

(3.38), we obtain

y = 2
√

log logn(1 + o(1)). (3.39)

Since Yj is a shifted exponential random variable, its moment-generating func-

tion exists around zero and the Cramér’s condition is satisfied. Also, by choosing

37



m = k+ − 1 we have y = O(m1/6). Hence, the result of Theorem 13 can be applied

to calculate the ccdf of Z. Consequently, by using (3.20) with θ3 = E(Y 3
j ) = 2,

(3.37) can be rewritten as

Fγ(x−, k+) < [1 − Φ(y)] exp

(
y3

3
√
k+ − 1

)
+O

(
e−y2/2√
k+ − 1

)
. (3.40)

Noting that y3 = o(
√
k+) and using the inequality 1 − Φ(y) < e−y2/2

y
, from (3.40)

and (3.39), we conclude that

k+Fγ(x−, k+) < k+
e−y2/2

y
(3.41)

= exp (− log log n(1 + o(1))) . (3.42)

It is clear that the above upper bound approaches zero as n→ ∞. Hence, P(L3) →
1 and the proof is complete.

Lemma 12 shows that with the specified threshold for TBLAS, all active links

can transmit with rate λ = log(1 + 1
α
). Hence, TBLAS provides a solution, albeit

suboptimum, for the problem (3.1). Lemmas 11 and 12 reveal the following relation

between the demanded rate λ and κ
TBLAS

as well as τ
TBLAS

κ
TBLAS

=
1

eλ − 1
, (3.43)

τ
TBLAS

=
λ

eλ − 1
. (3.44)

Noting that for small values of λ, the RHS of (3.43) can be approximated as 1
λ

and

using the upper bound in Theorem 10, it turns out that TBLAS is close to the

optimum for small values of λ.
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3.5 Lower Bound: A Centralized Approach

Although TBLAS enjoys the simplicity of decentralized implementation, its perfor-

mance is far from the optimum. This can be seen by comparing the upper bound

in Theorem 10 and the achievability result in (3.43). A reason for this suboptimal-

ity is that the mutual interference of the active links is not considered in choosing

A. In this section, we provide an LAS that performs close to the upper bound in

Theorem 10 and turns out to be asymptotically optimum when λ is very large or

very small. We name this method double-threshold-based LAS (DTBLAS).

DTBLAS: For the thresholds Δ and δ

1. Choose the largest set A1 ⊆ Nn such that gii > Δ for all i ∈ A1.

2. Choose the largest set A2 ⊆ A1 such that gij ≤ δ and gji ≤ δ for all i, j ∈ A2.

The set of active links is A = A2.

This strategy chooses the links to be active in a two-phase selection process; in

the first phase, which is basically similar to TBLAS, a subset A1 of the links with

good enough direct channel coefficients is chosen. In the second phase, which is the

interference management phase, a subset of links in A1 is chosen such that their

mutual interferences are small enough. Note that the second phase of the strategy

requires full knowledge of the channel coefficients. Hence, this scheme should be

implemented in a centralized fashion.

We aim to find Δ and δ such that the throughput is maximized subject to the

rate constraints of the active links.
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For simplicity, we use the notation ki = |Ai| for i = 1, 2. Without loss of

generality, assume Ai = {1, · · · , ki}. By using (2.3), (2.4), and (2.5), and applying

the Jensen’s inequality, the throughput is lower bounded as

T ≥ k2 log

(
1 +

Δ

1/ρ+ 1
k2

∑k2

i=1 Ii

)
, (3.45)

where Ii =
∑k2

j=1
j �=i

gji. Since gji ≤ δ, the mean and variance of Ii depend on δ. More

precisely, we have

E(Ii) = (k2 − 1)μ̂, (3.46)

Var(Ii) = (k2 − 1)σ̂2, (3.47)

where

μ̂ = E {gji|gji ≤ δ} = 1 − δe−δ

1 − e−δ
, (3.48)

σ̂2 = Var {gji|gji ≤ δ} = 1 − δ2e−δ

(1 − e−δ)2
. (3.49)

Assume δ is a constant and k2 → ∞ as n→ ∞. To simplify the RHS of (3.45),

we apply the Chebyshev inequality to obtain the upper bound

1

k2

k2∑
i=1

Ii < (k2 − 1)μ̂+ ψ, (3.50)

which holds a.a.s. for any ψ = ω(1). Consequently, the lower bound (3.45) becomes

T ≥ k2 log

(
1 +

Δ

μ̂k2 + ψ

)
a.a.s. (3.51)

Note that the constant 1/ρ−μ̂ is absorbed in the function ψ. Since ψ can be chosen

arbitrarily small, say with an order smaller than μ̂k2, we can rewrite (3.51) as

T ≥ T
DTBLAS

, (3.52)
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where

T
DTBLAS

= k2

(
log

(
1 +

Δ

μ̂k2

)
+ o(1)

)
a.a.s. (3.53)

denotes the throughput achievable by DTBLAS.

Since k2 is a random variable, the right hand side of (3.53) is a random variable

as well. However, the following discussion shows that k2 is highly concentrated

around a certain value. Hence, it can be treated as a deterministic value.

Construct an undirected graph G(A1, E) with vertex set A1 and the adjacency

matrix E = [eij ] defined as

eij =

⎧⎪⎨
⎪⎩

1 ; gij ≤ δ and gji ≤ δ

0 ; otherwise
.

The probability of having an edge between vertices i and j, when gji and gij have

exponential distribution, equals

p =
(
1 − e−δ

)2
. (3.54)

The definition of G implies that G ∈ G(k1, p), where G(k1, p), which is a well-

studied object in the literature [26], is the family of k1-vertex random graphs with

edge probability p.

In the second phase of DTBLAS, we are interested to choose the maximum

number of links whose cross channel coefficients are smaller than δ. This is equiv-

alent to choosing the largest complete subgraph2 of G. The size of the largest

complete subgraph of G is called its clique number and is denoted by cl(G). The

2A complete graph is a graph in which every pair of vertices are connected by an edge.
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above discussion yields

k2 = cl(G), for some G ∈ G(k1, p). (3.55)

Although the clique number of a random graphG is a random variable, the following

result from random graph theory states that it is concentrated in a certain interval.

Theorem 14. Let 0 < p < 1 and ε > 0 be fixed. The clique number cl(G) of

G ∈ G(m, p), for large values of m, a.a.s. satisfies s1 ≤ cl(G) ≤ s2 where

si = �2 logbm−2 logb logbm(1−p)+2 logb(e/2)+1+(−1)iε/p�, i = 1, 2, (3.56)

b = 1/p.

Proof. The theorem is a direct result of Theorem 7.1 in [27], which states a similar

result for the stability number of random graphs. Using the fact that the stability

number of a random graph G(m, p) is the same as the clique number of a random

graph G(m, 1 − p), the theorem is proved.

Corollary 15. Consider DTBLAS with parameters Δ and δ. The number of active

links, k
DTBLAS

= k2, a.a.s. satisfies k′− ≤ k
DTBLAS

≤ k′+, where

k′± = 2 logb ne
−Δ − 2 logb logb ne

−Δ(1 − 1

b
) + 2 logb(e/2) + 1 ± ε/p+ o(1) (3.57)

and b = (1 − e−δ)−2.

Proof. According to (3.15), a.a.s. we have k1 = ne−Δ +O(ξ
√
ne−Δ). Assuming ξ =

o(
√
ne−Δ), and by substituting this value of k1 into (3.55) and using Theorem 14,

the corollary is proved.
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The next lemma indicates how to choose the thresholds Δ and δ such that the

throughput and the number of active links both become proportional to logn. As

a result, a constant average rate-per-link is achieved.

Lemma 16. Assume the threshold Δ for DTBLAS is chosen to be

Δ = (1 − α′) logn(1 + o(1)), (3.58)

for some α′ > 0 and δ is a constant. Then, a.a.s. we have

κ
DTBLAS

=
−α′

log (1 − e−δ)
, (3.59)

τ
DTBLAS

=
−α′

log (1 − e−δ)
log

⎛
⎜⎜⎝1 − (1 − α′) log

(
1 − e−δ

)
α′
(

1 − δe−δ

1 − e−δ

)
⎞
⎟⎟⎠ , (3.60)

r̄
DTBLAS

= log

(
1 − (1 − α′) log(1 − e−δ)

α′μ̂

)
+ o(1). (3.61)

Proof. For the number of active links, we have

k
DTBLAS

(a)∼ 2 logb ne
−Δ (3.62)

(b)
=

−α′(1 + o(1))

log (1 − e−δ)
log n, (3.63)

where (a) is based on Corollary 15 and (b) is obtained by using (3.58). From (3.63),

and by using the definition (3.3), κ
DTBLAS

is obtained as given in (3.59).

The number of active links in (3.63) can be used along with the value of Δ in

(3.58) to rewrite (3.53) as

T
DTBLAS

=

[
−α′

log (1 − e−δ)
log

(
1 − (1 − α′) log

(
1 − e−δ

)
α′μ̂

)
+ o(1)

]
log n. (3.64)
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The scaling factor τ
DTBLAS

, as given in the Lemma, is obtained by using the value

of μ̂ from (3.48) and applying the definition (3.2). The value of r̄
DTBLAS

is obtained

by using the definition (2.6). This completes the proof.

According to this lemma, by proper choose of the constants α′ and δ, the average

rate-per-link r̄
DTBLAS

can be adjusted to be equal to the required rate λ. A natural

question is whether, under the specified conditions in DTBLAS, all active links can

support the rate λ. The following lemma addresses this issue and shows that a.a.s.

the rate of all active links are highly concentrated around the average value r̄
DTBLAS

.

Lemma 17. Consider DTBLAS with thresholds δ and Δ = (1−α′) logn for some

α′ > 0. Then, a.a.s. we have

|ri − r̄| < c

√
log log n

logn
(1 + o(1)), ∀i ∈ A, (3.65)

for some constant c > 0, where

r̄ = log

(
1 − (1 − α′) log(1 − e−δ)

α′μ̂

)
.

Proof. The proof is based on the same arguments as in the proof of Lemma 12.

Thus, here we just highlight the differences.

Let us define γ̄ as

γ̄ = −(1 − α′) log(1 − e−δ)

α′μ̂
. (3.66)

Similar to the proof of Lemma 12, it is enough to show that a.a.s.

x′− < γi < x′+, (3.67)
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where

x′± = γ̄

(
1 ± c′

√
log logn

log n
(1 + o(1))

)
, (3.68)

with c′ = c/γ̄. We only prove the left side inequality in (3.67); the other inequality

can be proved in a similar manner.

Let L4 denote the event that

γi > x′−, ∀i ∈ A, (3.69)

In the following, we show that P(L4) → 1 for some c′ > 0.

Note that with Δ = (1−α′) logn, the parameter k′+ in Corollary 15 is obtained

as

k′+ = κ
DTBLAS

log n− a log log n (3.70)

< κ
DTBLAS

log n, (3.71)

where κ
DTBLAS

is given in (3.59) and a > 0 is a constant. Denoting the cdf of γi

conditioned on |A| = k by Fγ(x, k), we have

P(L4)
(a)
>

(
1 − Fγ(x

′
−, k

′
+)
)k′

+ P
(
k′− ≤ |A| ≤ k′+

)
(3.72)

(b)≈ (
1 − Fγ(x

′
−, k

′
+)
)k′

+ (3.73)

(c)
>

(
1 − Fγ(x

′
−, κDTBLAS

logn)
)κ

DTBLAS
log n

, (3.74)

where (a) is obtained in the same manner as (3.31), (b) results from Corollary

15, and (c) is due to (3.71) and the fact that (1 − Fγ(x, k))
k is a decreasing

function of k. To show that the RHS of (3.74) tends to one, we upper bound

κ
DTBLAS

log nFγ(x
′
−, κDTBLAS

logn) and show that it approaches zero.
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Similar to the derivation of (3.36), it can be shown that

Fγ(x
′
−, κDTBLAS

log n) < P

⎛
⎜⎜⎝

κ
DTBLAS

log n∑
j=1
j �=i

gji ≥ Δ

x′−
− 1

ρ

⎞
⎟⎟⎠ . (3.75)

Let us define Yj = gji − μ̂, where μ̂ is obtained from (3.48). Random vari-

able Yj has the variance ν = σ̂2, where σ̂2 is given in (3.49). By defining

Z =
1√

ν(κ
DTBLAS

log n− 1)

∑κ
DTBLAS

log n

j=1
j �=i

Yj, (3.75) can be reformulated as

Fγ(x
′
−, κDTBLAS

log n) < 1 − P(Z ≤ y), (3.76)

where

y =

Δ
x′
−
− 1

ρ
− (κ

DTBLAS
log n− 1)μ̂√

(κ
DTBLAS

logn− 1)σ̂2
. (3.77)

By substituting Δ = (1 − α′) logn and the value of x′− from (3.68) into (3.77), we

obtain

y = c′
√
κ

DTBLAS
μ̂2

σ̂2

√
log log n

(
1 +O

(
1√

log n log log n

))
. (3.78)

It is straightforward to show that the moment-generating function of Yj exists

around zero. Hence, the Cramér’s condition is satisfied. Also, by choosing m =

κ
DTBLAS

log n − 1, the condition y = O(m1/6) is satisfied, as well. As a result,

Theorem 13 can be utilized to calculate the RHS(3.76) as

1 − P(Z ≤ y) = [1 − Φ(y)] exp

(
θ3y

3

6
√
ν3κ

DTBLAS
logn

)
+O

(
e−

y2

2√
κ

DTBLAS
log n

)
(3.79)

By combining (3.76), (3.79), and (3.78), and noting that θ3 is a constant, y3 =

o(
√
κ

DTBLAS
logn), and 1 − Φ(y) < e−y2/2

y
, we conclude that

κ
DTBLAS

lognFγ(x, κDTBLAS
log n) < κ

DTBLAS
log n

e−
y2

2

y
(3.80)
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= exp

(
(1 − c′2κ

DTBLAS
μ̂2

2σ̂2
) log log n+O(log log logn)

)

It is clear that if c′ is chosen large enough, the above upper bound approaches zero

as n→ ∞. This completes the proof.

According to Lemmas 16 and 17, when maximizing the throughput of DTBLAS,

δ should be a constant and Δ is obtained from another constant α′. Hence, the

constrained throughput maximization for DTBLAS simplifies to an optimization

problem with constant parameters α′ and δ. Assume γ0 is a quantity that satisfies

λ = log(1 + γ0), i.e., γ0 is the required SINR by the active links. Instead of the

number of active links, we can maximize the scaling factor of the number of active

links given in Lemma 16. Hence, the constrained throughput maximization problem

(3.1) is converted for DTBLAS to the following optimization problem

max
α′, δ

−α′

log (1 − e−δ)
(3.81)

s.t. −(1 − α′) log
(
1 − e−δ

)
α′
(

1 − δe−δ

1 − e−δ

) = γ0. (3.82)

Note that in contrast to problem (3.1), there is only one constraint in this problem.

However, according to Lemma 17, this single constraint guarantees the required

rate for all active links. From the equality constraint (3.82), parameter α′ can be

found in terms of δ as

α′ =
− log

(
1 − e−δ

)
γ0

(
1 − δe−δ

1 − e−δ

)
− log (1 − e−δ)

. (3.83)

By substituting this value in the objective function (3.81), we obtain the following
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equivalent unconstrained optimization problem

min
δ
γ0

(
1 − δe−δ

1 − e−δ

)
− log

(
1 − e−δ

)
. (3.84)

Consequently, (α′∗, δ∗), the solution of (3.81), can be obtained by first finding δ∗

from (3.84) and then substituting it into (3.83) to obtain α′∗. Due to the compli-

cated form of (3.84), it is not possible to find δ∗ analytically and it should be found

numerically.

Fig. 3.1 shows δ∗ and α′∗ versus λ. The values of δ∗ and α′∗ can be replaced

in (3.60) and (3.59) to obtain the maximum throughput scaling factor (τ ∗
DTBLAS

) as

well as the maximum scaling factor for the number of active links (κ∗
DTBLAS

). The

value τ ∗
DTBLAS

is shown in Fig. 3.2. Depicted in the figure is also the throughput

scaling factor of TBLAS obtained from (3.44). As it is observed, for small values

of λ, the performance of TBLAS and DTBLAS are almost the same. However,

as λ grows larger, the scaling factor of TBLAS approaches zero, but the scaling

factor of DTBLAS approaches 1. This shows some kind of optimality for DTBLAS

which will be later proven formally. Figure 3.3 demonstrates the tradeoff between

the number of supported links and the demanded rate-per-link for TBLAS and

DTBLAS. The tradeoff curve for TBLAS is obtained from (3.43). The upper bound

from Theorem 10 is also plotted for comparison. As observed, for a ceratin value of

λ, DTBLAS can support larger number of users, especially for larger values of λ.

Indeed, the tradeoff curve of DTBLAS is very close to the upper bound. Specifically,

for large values of λ, these two curves coincide. This will be later proven formally.
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Figure 3.1: Optimum of the threshold δ and the parameter α′ vs. the demanded

rate λ.
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Figure 3.3: Tradeoff between rate-per-link and the number of active links.
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3.6 Optimality Results

Although the behaviour of DTBLAS is numerically described in Figs. 3.1, 3.2, and

3.3, it is possible and also insightful to obtain closed form expressions for δ∗ and α′∗

as well as κ∗
DTBLAS

and τ ∗
DTBLAS

when λ is very small or very large. An important

result of these extreme-case analyses is the asymptotic optimality of DTBLAS.

Setting the derivative of the objective function (3.84) equal to zero reveals that,

at the optimum point, δ, satisfies

eλ(1 − e−δ − δ) + δ = 0. (3.85)

Two extreme cases of large λ and small λ are discussed separately in the following.

Large λ: In this case, solving (3.85) yields

δ∗ = 2e−λ +O
(
e−2λ

)
. (3.86)

Consequently, α′∗, τ ∗
DTBLAS

, and κ∗
DTBLAS

are obtained as

α′∗ = 1 − 1

λ
+O

(
1

λ2

)
(3.87)

τ ∗
DTBLAS

= 1 − log(e/2)

λ
+O

(
1

λ2

)
(3.88)

κ∗
DTBLAS

=
1

λ
+O

(
1

λ2

)
. (3.89)

As it is seen from the above equations, for large values of λ, δ∗ becomes very small

and α′∗ approaches one. This means, when large rate-per-links are demanded, it is

more crucial to manage the interference than to choose links with high direct gain.
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Small λ: In this case, solving (3.85) yields

δ∗ =
1

λ
+

1

2
+O(λ). (3.90)

Consequently, α′∗, τ ∗
DTBLAS

, and κ∗
DTBLAS

are obtained as

α′∗ = e−
1
λ
− 1

2

(
1

λ
+

1

2
+O(λ)

)
(3.91)

τ ∗
DTBLAS

= 1 − λ

2
+O

(
λ2
)

(3.92)

κ∗
DTBLAS

=
1

λ
− 1

2
+O (λ) . (3.93)

The above equations show that for small values of λ, δ∗ is very large and α′∗ is very

small. In other words, DTBLAS is converted to its special case, TBLAS.

The above discussion yields the following optimality result on DTBLAS.

Theorem 18. Consider the constrained throughput maximization problem (3.1).

Assume T ∗
c and κ∗c are the maximum achievable throughput and the maximum scal-

ing factor of the number of supported links, respectively. Also, assume T ∗
DTBLAS

and κ∗
DTBLAS

are the maximum throughput and the maximum scaling factor of the

number of active links when DTBLAS is deployed. Then, a.a.s. we have

lim
λ→∞

T ∗
DTBLAS

T ∗
c

= 1, (3.94)

lim
λ→∞

(κ∗
DTBLAS

− κ∗c) = 0, (3.95)

lim
λ→0

T ∗
DTBLAS

T ∗
c

= 1, (3.96)

lim
λ→0

κ∗
DTBLAS

κ∗c
= 1. (3.97)

Proof. The proof of the theorem is straightforward by using the upper bounds
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provided in Theorem 10 and the asymptotic achievability results provided in this

section.

3.7 Noise-Limited Regime

In the previous sections, we considered an interference-limited regime in which

the noise power is negligible in comparison with the interference power. In this

case, the achievable throughput is not a function of the network SNR. In other

words, changing the transmission powers does not affect the supportable rate of

each link. However, in a practical scenario, it is appealing to have rates which

scale by increasing ρ. This way, the transmission rates can be easily adjusted by

changing the transmission powers. Specifically, it is desirable that the rate of active

links a.a.s. scale as

ri = log

(
1 +

gii

1/ρ+ βi

)
, ∀i ∈ A, (3.98)

for some βi = O(1), which are the design parameters. At the same time, we require

the conditions of problem (3.1), i.e. ri ≥ λ, be satisfied. In this section, we show

how to realize such a situation by using DTBLAS.

According to (3.98), we should a.a.s. have Ii = βi, where Ii is the interference

observed by active link i and is defined in (3.45). However, this requires that

E(Ii) = βi. Noting that E(Ii) = (k2 − 1)μ̂ (see (3.46)), we conclude that all βis

should take a same value, say β. Hence, a necessary condition for being in the

noise-limited regime is

(k2 − 1)μ̂ = β, (3.99)
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where β = O(1) is a design parameters. Later, we show that (3.99) is also a

sufficient condition for operating in a noise-limited regime.

Based on the above discussion, we propose the following scheme for choosing

the parameters of DTBLAS for a noise-limited regime: For a given required rate

λ = log(1 + γ0) and the interference β,

1. choose Δ as

Δ = Δ0 = γ0(1/ρ+ β). (3.100)

2. choose δ such that (3.99) is satisfied.

Note that the selection of Δ is such that the rate constraints ri ≥ λ are satisfied.

Also, as will be shown later, the selection of δ is such that operation in the noise-

limited regime is guaranteed.

The next step is to solve (3.99) to obtain the value of δ and the corresponding

number of active links k2. By using (3.48), which gives the value of μ̂ in terms of δ,

it is clear that (3.99) holds only if δ → 0 as k2 → ∞. In this case, (3.48) converts

to μ̂ =
δ

2
+O(δ2) and (3.99) simplifies to

k2δ = 2β a.a.s (3.101)

To solve (3.101) and obtain δ, we should first obtain the value of k2 in terms of

n and δ. From (3.15) and condition (3.100), the number of links chosen by phase

(i) of DTBLAS is obtained as

k1 = ne−Δ0 +O
(
ξ
√
ne−Δ0

)
. (3.102)
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Also, recall from (3.55) that k2 is the clique number of a random graph G(k1, p),

where p is obtained from (3.54). Since δ → 0, (3.54) can be rewritten as

p = δ2 +O(δ3), (3.103)

which approaches zero as well. Note that Theorem 14, which was adopted from

[27], and a similar result that appears in [28], are valid only for a fixed value

of p. A natural question is whether a similar concentration result on the clique

number of random graphs holds when p approaches zero. In the following lemma,

we address this issue and obtain a concentration result on the clique number for

zero-approaching values of p.

Lemma 19. Let p = p(m) be such that p = o(1) and p = ω(m−a) for all a > 0. For

fixed ε > 0, the clique number cl(G) of G ∈ G(m, p) a.a.s. satisfies �s� ≤ cl(G) ≤
�s� + 1, where

s = 2 logbm− 2 logb logbm+ 1 − 4 logb 2 − ε

log b
,

b = 1/p.

Proof. See the Appendix.

By using this lemma, (3.102), (3.103), and assuming ξ = o(
√
n), the number of

active links a.a.s. becomes

k2 =

⌊
logn− log log n

− log δ

⌋
. (3.104)
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Thus, (3.101) can be rewritten as

logn− log log n

− log δ
· δ = 2β. (3.105)

Assuming | logβ| = o(log log n), it can be verified that the solution of (3.105) is

δ =
2β log log n

log n
(1 + o(1)). (3.106)

With this value of δ, the number of active links is obtained from (3.104) as

k2 =

⌊
log n

log logn
(1 + o(1))

⌋
. (3.107)

As mentioned before, we should show that the selected values of δ and Δ for

DTBLAS, yields the network to operate in the noise-limited regime. The following

theorem addresses this issue.

Theorem 20. For the values of Δ and δ given in (3.100) and (3.106), respectively,

the interference of active links a.a.s. satisfy

|Ii − β| → 0, ∀i ∈ A. (3.108)

Proof. By using the central limit theorem it can be shown that

|Ii − β| < β log logn√
log n

, ∀i ∈ A, (3.109)

which readily yields the desired result. Since the calculations are similar to those

in the proof of Lemmas 12 and 17, we omit them for brevity.

Lemma 21. Let T
NL

denote the throughput achieved by DTBLAS in the noise-

limited regime described above. Then, almost surely we have

log

(
1 +

Δ0

1/ρ+ β

)
≤ lim

n→∞
log log n

logn
T

NL
≤ log

(
1 +

Δ0 + 1

1/ρ+ β

)
. (3.110)
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Proof. According to Theorem 20, the throughput is obtained as

T
NL

=

k2∑
i=1

log

(
1 +

gii

1/ρ+ β

)
. (3.111)

Due to the fact that gii > Δ0, we have

T
NL

≥ k2 log

(
1 +

Δ0

1/ρ+ β

)
. (3.112)

The left-hand-side inequality in the lemma is readily obtained by using this in-

equality and the value of k2 from (3.107). For the right-hand-side inequality, by

utilizing the Jensen’s inequality in (3.111), we obtain

T
NL

≤ k2 log

(
1 +

1
k2

∑k2

i=1 gii

1/ρ+ β

)
. (3.113)

According to the law of large numbers and due to the fact that gii > Δ0, we have

1

k2

k2∑
i=1

gii → E(gii) = 1 + Δ0. (3.114)

The result is obtained by using (3.113), (3.114), and the value of k2 from (3.107).

It is observed that the price for operating in the noise-limited regime is a decrease

in the throughput by a factor of log logn.

3.8 Conclusion

In this chapter, wireless networks in Rayleigh fading environments are studied in

terms of their achievable throughput. It is assumed that each link is either active

and transmits with power P and rate λ, or remains silent. The objective is to
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maximize the network throughput or equivalently the number of active links. First,

an upper bound is derived that shows the throughput and the number of active

links scale at most like logn and 1
λ

log n, respectively. To obtain lower bounds, we

propose two LASs (TBLAS and DTBLAS) and prove that both of them a.a.s. yield

feasible solutions for the throughput maximization problem. In TBLAS, which is

adopted from a previous work, the activeness of each link is solely determined by the

quality of its direct channel. TBLAS, which can be implemented in a decentralized

fashion, performs very close to the upper bound for small values of λ. However,

its performance falls below the upper bound when λ grows large. In DTBLAS, the

mutual interference of the links are also taken into account when choosing the active

links. It is demonstrated that DTBLAS not only performs close to the upper bound

for λ → 0, but its performance meets the upper bound when λ → ∞. The above

discussions take place in an interference-limited regime in which the transmission

power P does not affect the transmission rate λ. However, we show that by a

proper choose of the DTBLAS parameters, the rate-constrained network can also

operate in a noise-limited regime; this feature of the DTBLAS comes at the price

of decreasing the network throughput by a factor of log log n.
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Chapter 4

Power Allocation

4.1 Introduction

The focus of the previous chapters is on the large wireless networks. However, it is

useful and interesting to investigate the throughput optimization in networks with

arbitrarily small sizes. In the previous chapters, we assume that the links follow

an on-off paradigm. In this chapter, we consider power allocation for throughput

maximization.

In the context of power allocation, there are roughly two groups of works study-

ing the capacity of wireless networks. In one group, the objective is to minimize the

transmit power while satisfying some quality of service (QoS) requirements of the

users [29]. Such problems can be usually formulated as linear programs [21] and can

be even solved in a decentralized fashion deterministically [18, 30], or stochastically

[31]. In the other group of power allocation problems, which is of interest to us in
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this work, the objective is to use the limited power resources efficiently in order to

improve some measures of QoS like throughput or minimum rate. Unfortunately,

these problems usually entail some nonlinear optimization problems for which a

systematic solution method may not exist.

An important measure of the network performance is the throughput. The

problem of throughput maximization has been frequently appeared in the litera-

ture [29, 32, 33, 34, 35]. This problem translates to the problem of maximizing a

product of linear fractional functions, which is a non-convex problem. Although

there are algorithms to find the global optimum of such problems [36], their com-

plexity precludes them from being implemented practically. Thus, one should think

of finding suboptimum methods which are simple and yet their performance is not

far from the optimum. One approach is to utilize numerical optimization methods

[37] to solve the problem (see e.g. [34]). Since the problem is non-convex, these

methods may converge to local optimum solutions. Another approach is to adopt

an approximation of the objective function such that the problem can be converted

to a convex program. Specifically, one common technique that has been utilized in

[32, 33, 34] is the assumption of large SINR; with this assumption, the 1 in the Shan-

non capacity formula is neglected and the rate of each link becomes proportional

to the logarithm of the corresponding SINR (i.e. log(1 + SINR) ≈ log(SINR)). As

a result, the problem is easily converted to a convex program [38]. Unfortunately,

in the interference channel, the assumption of large SINR is not valid. The reason

is that due to the presence of interference the solution of the optimization problem

is not guaranteed to satisfy this condition even when the noise power is quite low.

61



In this chapter, we consider the special case of n = 2 interfering links with

arbitrary channel coefficients. It is shown that in this case, when the transmit

power of the links are individually constrained, the optimum power allocation is

such that either both transmitters transmit with maximum power or one of them

remains off and the other transmits with maximum power.

Our discussions in this chapter and the references mentioned above are based on

the assumption that a central unit, which is aware of all links resource limitations,

QoS requirements, noise levels, and channels coefficients, performs the optimization

procedure and assigns a transmit power to each link. In an effort to make the power

allocation procedure decentralized, some authors have invoked game theoretic con-

cepts [39] for power allocation [20, 40]. Although such techniques provide simplicity,

their performance is usually far from the optimum. Another class of works include

characterization of the the feasible rates region, when power allocation is allowed

[33, 41, 42, 43]. None of these issues is of interest to us in this thesis.

The rest of the chapter is organized as follows. In Section 4.2, the system

description is presented . We investigate the problem of throughput maximization

via power allocation in Section 4.3. Finally, the chapter is concluded in Section 4.4.

4.2 System Description

The network structure we consider in this chapter is different from the previous

chapters in the following matters.

• Instead of following an on-off scheme, the transmit powers are subject to
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individual power constraints. In other words, the vector of transmit powers

p = (p1, · · · , pn) satisfies

0n ≤ p ≤ a, (4.1)

where a = (a1, · · · , an) represents the vector of maximum allowed transmit

powers.

• The channel coefficients gji are known (not random) parameters. The chan-

nel gains, in general, depend on small scale and large scale fadings, path

attenuation, processing gain of the CDMA system, etc.

• We consider an additive white Gaussian noise (AWGN) with variance ηi at

the receiver i.

In all other matters, the model is the same as in the previous chapters. The SINR

of the receiver i is defined as

γi(p) =
giipi

ηi +
∑n

j=1
j �=i

gjipj
. (4.2)

Throughout the chapter, we occasionally use γi instead of γi(p). According to the

Shannon capacity formula [13], the rate of link i is equal to

ri(p) = log (1 + γi(p)) nats/channel use. (4.3)

The network rate vector is defined as r = (r1, · · · , rn). In a network, we desire

to have all rates as large as possible. However, due to the interplay between the

rates of different links (see (4.2) and (4.3)), it is not possible to maximize all the

rates simultaneously. Instead, one may consider maximizing a utility function of
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the network which is increasing in all rates. A common utility function is the

throughput of the network.

4.3 Throughput Maximization

The problem of throughput maximization is formulated as follows:

max
p

n∑
i=1

ri(p),

s.t. 0n ≤ p ≤ a, (4.4)

which is a non-convex optimization problem. Thus, the algorithms developed for

convex problems may converge to local optimum points for this problem. The main

result of this chapter is a statement about the above problem for n = 2. However,

the discussions prior to the proof of the main result are applicable for any values

of n.

Lemma 22. For any a < 1 and any power vector p, we have r(ap) ≤ r(p) with

equality only for the indices i ∈ Nn for which pi = 0.

Proof. If the power of some of the links is zero, scaling the power vector keeps the

power and consequently the rate of such links unchanged and equal to zero. Thus,

we can consider only the case when all powers are nonzero. First, note that the

functions

γi(ap) =
agiipi

ηi + a
∑n

j=1
j �=i

gjipj
, ∀i ∈ Nn, (4.5)
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are all increasing in a. Using this property and the fact that a < 1, we have

ri(ap) = log (1 + γi(ap))

< log (1 + γi(p))

= ri(p). (4.6)

This completes the proof.

The following lemma identifies one of the characteristics of problem (4.4).

Lemma 23. In the optimum solution p∗ of (4.4), the power of at least one link

takes its maximum allowed value.

Proof. Consider the index set I = {i ∈ Nn : p∗i > 0} and define

a∗ = min
i∈I

{
ai

p∗i

}
. (4.7)

For the sake of contradiction, assume p∗ < a. Hence, we have a∗ > 1. Choose a

new power vector p̂ = a∗p∗, which obviously satisfies the constraints 0n ≤ p̂ ≤ a.

According to Lemma 22, we have

ri(p̂) = ri(a
∗p∗) > ri(p

∗), ∀i ∈ I, (4.8)

which implies
n∑

i=1

ri(p̂) >
n∑

i=1

ri(p
∗). (4.9)

This is in contradiction to the optimality of p∗. Thus, we should have p∗i = ai for

at least one i ∈ I.
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There are some special cases, where even stronger statements can be expressed

about the solution of (4.4). One of them, which is the main result of this chapter,

is about the case of n = 2.

Theorem 24. The optimum solution of (4.4) for n = 2 is obtained when one of

the transmitters transmits with maximum power and the other one is silent, or both

transmitters transmit with maximum power1.

Proof. Assume for simplicity that channel coefficients and noise powers are scaled

such that the maximum allowed power of both links and also the direct channel

coefficients gii are equal to one. According to Lemma 23, in the optimum solution of

(4.4) the power of at least one link should be equal to one; without loss of generality

assume p2 = 1. It suffices to show that the maximum of the function

f(p1) = log

(
1 +

p1

η1 + g21

)
+ log

(
1 +

1

η2 + g12p1

)
(4.10)

is obtained either at p1 = 0 or p1 = 1. By computing the derivative of f(p1) and

simplifying it we obtain

f ′(p1) =
Ap2

1 +Bp1 + C

d(p1)
, (4.11)

where A = g2
12, B = 2η2g12, C = η2(η2 +1)−g12(η1 +g21), and d(p1) is a polynomial

in p1 with all coefficients non-negative. Thus, the sign of f ′(p1) is determined by

the sign of its numerator. Note that A, B ≥ 0. If C ≥ 0, the numerator (and

thus f ′(p1)) is always non-negative for p1 ≥ 0. Thus, f(p1) is increasing in p1 and

achieves its maximum at p1 = 1. If C < 0, the numerator has exactly one positive

1After publishing this result in [44], it was independently reported in [45].
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root (p′1) and one negative root (p′′1). Thus, f(p1) has a minimum at p′1 and attains

its maximum at 0 or 1.

Another noteworthy special case is the low SINR regime; if we know that the

SINR of all links are small, we can use the approximation log(1 + x) ≈ x to write

(4.4) as

max
p

n∑
i=1

γi(p),

s.t. 0n ≤ p ≤ a. (4.12)

This problem is still non-convex; however, the following result can be concluded

that allows for obtaining the optimum solution only by examining the vertices of

the hypercube 0n ≤ p ≤ a. This result has been already touched on in [46] in the

context of uplink CDMA.

Theorem 25. In the optimum solution p∗ of (4.12), all transmit powers are either

zero or the maximum allowed value, i.e., p∗i ∈ {0, ai} for all i ∈ Nn.

Proof. Define the objective function

B(p) =

n∑
i=1

γi(p). (4.13)

Obviously, for some i ∈ Nn, we have p∗i �= 0. If p∗
−i = 0n−1, clearly p∗i = ai

maximizes the throughput and the proof is complete. If p∗
−i �= 0n−1, by substituting

the values of γi(p) from (4.2) in the objective function (4.13) and computing the

second order partial derivative with respect to pi we obtain

∂2B(p)

∂p2
i

= 2
∑
j �=i

G2
ij

γj(p)

d2
j (p)

, (4.14)
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which is positive for all p−i �= 0n−1. Thus, B(p) is convex with respect to pi. As a

result, the maximizing value of pi lies on one end of the interval [0, ai].

Another special case pertains to uplink CDMA, where gji = gj for all j ∈ Nn.

This scenarion has been investigated in [35] and it is proved that the power of all

links take the value of zero or the maximum allowed value except for at most one

link.

4.4 Conclusion

In this chapter, some properties of the throughput maximization problem via power

allocation, which is a nonconvex optimization problem, is investigated. It is demon-

strated that under individual power constraints, in the optimum solution, the power

of at least one link should take its maximum value. Then, for the special case of

n = 2 links, it is shown that the optimum power allocation strategy for throughput

maximization is such that either both links use their maximum power or one of

them uses its maximum power and the other keeps silent. Also, in the low SINR

regime, in which the throughput maximization problem converts to maximizing the

sum-SINR, the power of all links should take either the value of 0 or the maximum

allowed value.
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Chapter 5

Concluding Remarks

5.1 Summary of Contributions

The dissertation focuses on throughput maximization for wireless networks. This

is done by active link selection for large wireless networks and power allocation for

small wireless networks.

In Chapter 2, the throughput of single-hop wireless networks with on-off strat-

egy is investigated in a fading environment and without any constraints on the

transmission rates. Despite the random behaviour of the channel, we present our

results as the events that happen asymptotically almost surely. To obtain a lower

bound on the throughput, a decentralized link activation strategy is proposed and

analyzed for a general fading model. It is shown that in the popular model of

Rayleigh fading a throughput of order logn is achievable a.a.s., which is by a factor

of four larger than what was obtained in previous works with centralized methods
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and with multihop communications [10]. Moreover, for the Rayleigh fading model,

an upper bound of order log n is obtained by using probabilistic methods. This

shows the optimality of the proposed link activation strategy. The throughput

maximization leads to rate-per-links that approach zero as n→ ∞.

In Chapter 3, throughput maximization via active link selection is investigated

for wireless networks with fading channels, when the active links are restricted to

transmit with a rate λ. First, we prove that the proposed distributed method in

Chapter 2 is a solution, though suboptimum. We modify this method by adding

an interference management phase to it. This modified LAS not only improves the

performance of the network, but achieves the optimum solution of the constrained

throughput maximization for large and small values of λ. We also demonstrate that

by utilizing this latter strategy, the network can operate in a noise-limited regime

at the price of a decrease in its throughput by a factor of log log n.

In Chapter 4, we address the problem of throughput maximization via power

allocation. It is mentioned that this problem is a nonconvex optimization problem

that cannot be solved in a systematic manner. However, as a preliminary result,

we show that in the solution of this problem, at least one link should utilize its

maximum allowed power. More importantly, for the special case of n = 2 links, we

prove that the optimum solution is such that each link is active and transmits with

full power or remains silent.
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5.2 Future Research Directions

The dissertation can be extended in several directions. In the following, we briefly

explain some of these possible directions.

Our results in Chapters 2 and 3 are restricted to single-antenna transmitters

and receivers. A promising work is to investigate the throughput scaling law when

using multiple-antennas. The study of the scaling law of MIMO broadcast systems

has been already appeared in the literature [47, 48]. However, to the author’s

best knowledge, there is no work on the scaling laws of MIMO interfering links.

Since there are several dimensions and parameters involved in the design of MIMO

wireless systems, obtaining optimality results for such systems is a challenging

problem.

We have considered linear receivers. Recently, interference cancelation for ad

hoc networks has been considered in [49]. It would be interesting to incorporate

interference-cancelation in investigating the throughput of the network in the fading

environment. It is also possible to consider joint coding/decoding schemes like

multiple-access and broadcast channels in our analysis.

In this dissertation, we considered a single-hop wireless network. In a more

general scenario, nodes may cooperate to route each others data to the final desti-

nations. A preamble to study the effect of multihop on the scaling law, is to inves-

tigate the matching of transmitter-receiver pairs; in each hop, there is a flexibility

of choosing a proper receiver for each transmitting node. Finding the optimum

matching can help design efficient multihop schemes.
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In the context of power allocation (Chapter 4), it is appealing to characterize

the feasible rates region of the network. For the special case of n = 2 links, it

is possible to obtain closed form expressions describing the feasible rates region

[50]. Also, for other values of of n, the feasible rates region has been characterized

parametrically [51]. A possible extension is to study the feasible rates region when

multiple antennas are deployed at the terminals.
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Appendix A

Proof of Lemma 1

Define

g(k) = k log

(
1 +

Δ

kμ+ ψk

)
. (A.1)

It is enough to show that g′(k) > 0. We have

g′(k) = log

(
1 +

Δ

kμ+ ψk

)
− k

1 +
Δ

kμ+ ψk

· Δ(μ + ψ′
k)

(kμ+ ψk)2
(A.2)

≥ log

(
1 +

Δ

kμ+ ψk

)
− k

1 +
Δ

kμ+ ψk

· Δ(μ+ ψk/k)

(kμ+ ψk)2
(A.3)

= log

(
1 +

Δ

kμ+ ψk

)
− 1

1 +
kμ+ ψk

Δ

(A.4)

> 0. (A.5)

The first inequality is due the assumption that h(k) =
ψk

k
is nonincreasing in k,

which yields h′(k) ≥ 0 or equivalently ψ′
k ≤ ψk

k
. The last inequality is based on the

inequality log
(
1 + 1

x

)− 1
1+x

> 0 for x > 0.
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Appendix B

Optimum Parameters for TBLAS

B.1 Optimum Threshold for Rayleigh Fading

Model

The optimum value of the threshold, Δ∗, is the value that maximizes the achievable

throughput in (2.22). As it is seen, T
TBLAS

(Δ) is a complicated function of Δ.

However, since ξ can grow as slow as desired, we can set ξ = 0 to obtain a more

tractable form for T
TBLAS

(Δ) from which a zero order approximation of the solution

is obtained. In the next stage, we will improve the solution using this zero order

approximation.

Zero order approximation By setting ξ = 0, the objective function in (2.22)

is transformed to

T̂
TBLAS

(Δ) = ne−Δ log

(
1 +

Δ

ne−Δ

)
. (B.1.1)
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Using the approximation log(1 + x) ≈ x − x2

2
, the above function can be approxi-

mated as

T̂
TBLAS

(Δ) ≈ Δ − Δ2

2ne−Δ
. (B.1.2)

The maximum of this function can be found using the first derivative test as follows.

By taking derivative of both sides of (B.1.2), we obtain

T̂ ′
TBLAS

(Δ) ≈ 1 − t

ne−Δ
− Δ2

2ne−Δ
, (B.1.3)

which is an increasing function in Δ. Consequently, the root of the equation

T̂ ′
TBLAS

(Δ) = 0 gives the value Δ∗
(0). This equation is equivalent to

2ne−Δ = 2Δ + Δ2. (B.1.4)

Noting that the solution to this equation is increasing with n (i.e. Δ∗
(0) is large),

by taking logarithm of both sides of (B.1.4), we arrive at the following equation

Δ = logn− 2 log t+ log 2 − 2

Δ
, (B.1.5)

whose solution can be verified to be

Δ∗
(0) = log n− 2 log logn + log 2 +O

(
log log n

logn

)
. (B.1.6)

First order approximation Using Δ∗
(0) in (B.1.6), the term containing ξ in

(2.22) is approximated as1

ξ
√
ne−t = ξ logn. (B.1.7)

1With a little abuse of notation we have replaced
ξ√
2

by ξ. This is acceptable, because we are

only interested in the order of the term that ξ introduces to the solution.
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Since ϕn can be chosen of order o(logn), it is negligible in comparison with ξ logn.

Thus, the function to be maximized takes the form

T
TBLAS

(Δ) =
(
ne−Δ − ξ log n

)
log

(
1 +

Δ

ne−Δ − ξ log n

)
. (B.1.8)

Assuming ξ = o(log log n), and taking the same approach as for obtaining Δ∗
(0) in

the zero order approximation, we can obtain

Δ∗
(1) = logn− 2 log log n+ log 2 +

4 log logn

logn
+O

(
ξ

logn

)
. (B.1.9)

As it is observed, as long as ξ = o(log log n), the parameter ξ does not contribute

in the dominant terms of Δ∗. Thus, we have

Δ∗ = logn− 2 log log n+ log 2 +O

(
log log n

log n

)
. (B.1.10)

By substituting the value of Δ∗ in (2.22), the achievable throughput is obtained

as mentioned in the lemma. The number of active links and the rate-per-link are

obtained by using (2.16) and (2.17).

B.2 Optimum Threshold for Log-Normal Fading

Model

The function to be maximized is given in (2.33). We first consider it as a function

of u. Once we have obtained u∗, the value that maximizes this function, we will be

able to find Δ∗ from

Δ∗ = eu∗+M . (B.2.11)
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Using the approximation log(1 + x) ≈ x− 1
2
x2, the objective function is written as

g(u) =
SB√
2π

⎛
⎝eu − Bue2ue

u2

2S2

n

⎞
⎠ . (B.2.12)

Setting the derivative of g(u) equal to zero, we obtain

Beue
u2

2S2

(
1 + 2u+

u2

S2

)
= n. (B.2.13)

Since the right hand side of this equatin is n, which is assumed to be large, the

solution u∗ should be large as well. Thus, we can simplify the equation as

Bu2eue
u2

2S2

S2
= n. (B.2.14)

By taking the logarithm of both sides of this equation and rearranging the terms,

we obtain

u2

2S2
= logn− u− 2 log u− log

B

S2
. (B.2.15)

The solution of this equation can be verified to be

u∗ =
√

2S
√

log n− S2 +O

(
log logn√

logn

)
. (B.2.16)

Then, from (B.2.11), Δ∗ is obtained as given in (2.34). By substituting the value

of Δ∗ in (2.33) the maximum throughput is obtained. The number of active links

and the rate-per-link are obtained by using (2.16) and (2.17).

B.3 Optimum � for Shadow Fading Model

By defining x = n�, the function to be maximized is

g(x) = x log
(
1 +

n

x2

)
. (B.3.17)
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Setting the derivative of g(x) equal to zero, we obtain
x2

n
= c2 or equivalently

� =
c√
n
, (B.3.18)

where c ≈ 0.5050 is a constant. It is easy to verify that for the aforementioned

value of x, g′′(x) > 0. Thus, � given in (B.3.18) is the maximizing argument of

the function under consideration. The maximum value is obtained by substituting

� from (B.3.18) into (2.40). The number of active links and the rate-per-link are

obtained by using (2.16) and (2.17).

78



Appendix C

Proof of Lemma 19

The proof is based on the standard second moment method.

Suppose that V is the vertex set of G. For S ⊆ V , assume CS is the event

that the induced subgraph of G on S is a clique. Also, assume XS is the indicator

random variable of CS. If |S| = s, we have

E(XS) = P{CS} = p(
s
2). (C.0.1)

Denote by Ys the number of cliques of size s in G. In mathematical notation,

we can write

Ys =
∑

S: S⊆V
|S|=s

XS. (C.0.2)

In the sequel, we first provide some calculations which are required for the proof of

the lemma. The main body of the proof is presented in subsection C.
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C.0.1 Mean and Variance of Ys

For brevity, hereafter, we will omit the description S ⊆ V . From (C.0.1), (C.0.2),

and the linearity of expectation, we can calculate μs, the mean of Ys, as

μs = E(Ys) =
∑

S: |S|=s

E(XS) =

(
m

s

)
p(

s
2). (C.0.3)

Also, the second moment of Ys can be calculated as

E(Y 2
s ) = E

⎛
⎝
⎛
⎝ ∑

S: |S|=s

XS

⎞
⎠

2⎞
⎠

=
∑

S: |S|=s

∑
S′: |S′|=s

E(XSXS′)

=
∑

S: |S|=s

∑
S′: |S′|=s

P(CS ∩ CS′). (C.0.4)

By defining � = |S ∩ S ′|, the double summation in (C.0.4) can be simplified as

E(Y 2
s ) =

s∑

=0

(
m

s

)(
s

�

)(
m− s

s− �

)
p2(s

2)−(�
2). (C.0.5)

By using (C.0.3) and (C.0.5), σ2
s , the variance of Ys, is obtained as

σ2
s =

s∑

=2

(
m

s

)(
s

�

)(
m− s

s− �

)
p2(s

2)(b(
�
2) − 1), (C.0.6)

where b = 1/p. For a later reference, we also need to calculate σ2
s/μ

2
s; from (C.0.3)

and (C.0.6), we have

σ2
s

μ2
s

=

s∑

=2

(
s



)(
m−s
s−


)
(

m
s

) (b(
�
2) − 1), (C.0.7)
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C.0.2 Upper bounds on μs and σ2
s/μ

2
s

By applying the Stirling’s approximation to (C.0.3), we obtain

μs =
mm+ 1

2√
2πss+ 1

2 (m− s)m−s+ 1
2

p
s(s−1)

2 (C.0.8)

≤ 1(
s
m

)s (
1 − s

m

)mp s(s−1)
2 (C.0.9)

For any ε > 0, the inequality 1 − x ≥ e−(1+ε)x holds for sufficiently small values of

x. Since we are interested in small values of s/m, from this inequality and (C.0.8),

we obtain

μs ≤ es(log m−log s+(1+ε)− s−1
2

log b) (C.0.10)

Equation (C.0.7) is readily converted to the following inequality

σ2
s

μ2
s

≤
s∑


=2

F
, (C.0.11)

where

F
 =

(
s



)(
m−s
s−


)
(

m
s

) b(
�
2). (C.0.12)

By using the definition of the binomial coefficients, we obtain

F
 ≤ 2s · (m− s)!

m!
· (m− s)!

(m− 2s+ �)!
· s!

(s− �)!
· b �(�−1)

2 (C.0.13)

≤ 2s · (m− s)s−
 · s


(m− s)s
· b �(�−1)

2 (C.0.14)

= 2s ·
(m
s
− 1
)−


· b �(�−1)
2 (C.0.15)

Noting that m
s
� 1, the above inequality can be approximately written as

F
 ≤ 2s ·
( s
m

)


· b �(�−1)
2 . (C.0.16)
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Using (C.0.11) and (C.0.16), we obtain

σ2
s

μ2
s

≤
s∑


=2

eg(
), (C.0.17)

where

g(�) = s log 2 + �(log s− logm+
�

2
log b− 1

2
log b) (C.0.18)

is a quadratic convex function with a minimum at �0 = log m
log b

− log s
log b

+ 1
2
. Define

s0 = 2 logbm− 2 logb logbm− 2 logb 2. (C.0.19)

It is easy to show that if s > s0, then g(s) > g(2). Hence, (C.0.17) can be simplified

as

σ2
s

μ2
s

≤ elog s+g(s). (C.0.20)

C.0.3 Proof

According to the Markov’s inequality, we have

P {Ys ≥ 1} ≤ μs. (C.0.21)

For a fixed ε > 0, define

s1 = 2 logbm− 2 logb logbm+ 1 + 2 logb(e/2) +
ε

log b
. (C.0.22)

Using (C.0.10), it is easy to verify that for s ≥ s1, we have μs → 0 as m → ∞.

Hence, from (C.0.21), we conclude that

P {Ys ≥ 1} → 0, for s ≥ s1 (C.0.23)
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as m → ∞. This means a.a.s. the clique number of G is less than s1, i.e., we have

the following upper bound on cl(G)

cl(G) < s1 a.a.s. (C.0.24)

According to the Chebyshev’s inequality, we have

P {Ys = 0} ≤ σ2
s

μ2
s

. (C.0.25)

For a fixed ε > 0, define

s2 = 2 logbm− 2 logb logbm+ 1 − 4 logb 2 − ε

log b
. (C.0.26)

Using (C.0.20), it is easy to verify that for s ≤ s2, we have σ2
s/μ

2
s → 0 as m→ ∞.

Hence, from (C.0.25), we conclude that

P {Ys = 0} → 0, for s ≤ s2 (C.0.27)

as m→ ∞. This means a.a.s. the clique number of G is not less than �s2�, i.e., we

have the following lower bound on cl(G)

cl(G) ≥ �s2� a.a.s. (C.0.28)

For sufficiently small ε, the difference between the upper bound s1 and the lower

bound s2 is less than one. Hence, from (C.0.24) and (C.0.28) we can conclude that

�s2� ≤ cl(G) ≤ �s2� + 1 a.a.s. (C.0.29)
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