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Abstract

With significant advances in wired and wireless technologies and also increased

shrinking in the size of VLSI circuits, many devices have become very large because

they need to contain several large units. This large number of gates and in turn

large number of transistors causes the devices to be more prone to faults. These

faults specially in sensitive and critical applications may cause serious failures and

hence should be avoided.

On the other hand, some critical applications such as cryptosystems may also

be prone to deliberately injected faults by malicious attackers. Some of these faults

can produce erroneous results that can reveal some important secret information of

the cryptosystems. Furthermore, yield factor improvement is always an important

issue in VLSI design and fabrication processes. Digital systems such as cryptosys-

tems and digital signal processors usually contain finite field operations. Therefore,

error detection and correction of such operations have become an important issue

recently.

In most of the work reported so far, error detection and correction are ap-

plied using redundancies in space (hardware), time, and/or information (coding

theory). In this work, schemes based on these redundancies are presented to de-

tect errors in important finite field arithmetic operations resulting from hardware

faults. Finite fields are used in a number of practical cryptosystems and channel

encoders/decoders. The schemes presented here can detect errors in arithmetic

operations of finite fields represented in different bases, including polynomial, dual

and/or normal basis, and implemented in various architectures, including bit-serial,

bit-parallel and/or systolic arrays.
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Chapter 1

Introduction

1.1 Motivation

“A fault-tolerant system is one that can continue the correct performance of its

specified tasks in the presence of hardware and/or software faults. Fault detection

is the process of recognizing that a fault has occurred. Fault detection is often

required before any recovery procedure can be implemented” [51].

Recently a number of schemes have been developed for the detection and/or

correction of errors in hardware implementation of some arithmetic operations [24,

55–57], which have applications in cryptography [9,10,14–16,20,32–36,68,69], deep

space channel coding [66], VLSI testing [52]. The main reasons for increased interest

in such schemes are as follows:

• Having correct functionality in the presence of faults: Digital systems that

require large number of circuits for their implementation can be more prone

to produce erroneous results simply because of the increase in the probability

that one of the circuits may become faulty while in use. As a result, for

1



1.1 Motivation 2

sensitive or critical applications large digital systems are generally designed

with some kind of mechanism to provide correct functionality or to detect

errors.

• Avoiding fault-based attacks [13,29,63]: Fault attacks are based on injecting

some faults into a cryptosystem and observing any leak of secret information.

Boneh et al. presented the first fault-based attack [15, 16]. Their attack has

been applied to some public key cryptosystems such as RSA and the Ra-

bin signature scheme. Since RSA is usually implemented using the Chinese

Remainder theorem (CRT), having one correct signature and one faulty sig-

nature of the same message can lead to the modulus factorization. In [11],

Biham and Shamir presented a fault-based side channel cryptanalysis of DES.

They recovered the last round key by less than 200 cipher texts and then they

found the round key of the second-last round and so on. They extended their

work to show that it could uncover the structure of an unknown cryptosystem

in a smart card. Anderson and Kuhn [3] introduced some other fault based

attacks using fault injection into instruction memory of a smart card and by

overwriting specific memory locations of a smart card.

One technique to detect errors in hardware implementation is on-line testing or

concurrent error detection (CED). CED is used to concurrently test a system while

the system is operating normally [26,53,60]. CED can test the circuit at full oper-

ating speed without stopping the system or switching it to test mode. Accordingly,

CED can detect transient faults, which may not be detected in off-line testing, since

they may not occur in test mode. Furthermore, concurrent error correction (CEC)

can offer some advantages such as higher yield factors and increased availability in

addition to the above mentioned advantages for CED.

To detect or correct errors, some kinds of redundancy are usually required: hard-

ware, time, and/or information [53]. This thesis focuses mainly on the detection
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and/or correction of random errors in extension field arithmetic operations. The

cause of such errors can be natural faults. Moreover, some faults deliberately in-

jected by attackers may cause random errors, e.g., some faults resulting from electro

magnetic interferences (EMIs). It is worth mentioning that some random errors in

a number of hardware based cryptosystems or their arithmetic accelerators can be

detected at an upper level operation, e.g., in elliptic curve cryptography (ECC),

if a point leaves the curve it can be easily detected by point verification [10, 20].

This is, however, not always possible. In the case of ECC, a fault may move a

point to another point without leaving the curve and this has been exploited in the

so-called sign change fault attack1 [14]. As a result, some kind of mechanisms for

error detection in finite field operations can be quite important in cryptography as

well as other critical applications where finite field operations of various sizes are

used.

Although the schemes proposed in this thesis does not provide a complete so-

lution to the problem of deliberately injected faults, they may reduce the success

probability of an attack. This is because the number of faults that can be injected

by an attacker is reduced to the number of faults that cannot be detected by the

scheme. Furthermore, these schemes are more suitable mainly for large finite field

arithmetic and may not be very suitable for those systems that use small finite field

operations such as GF (28) operations of AES [21].

The majority of the work of this thesis is for extended binary field multipliers

mainly because the complexity of multiplication is higher than the basic operations

such as addition and subtraction. Also, other complex finite field arithmetic op-

erations such as inversion and exponentiation over binary extension fields can be

preformed by repeated multiplications [2, 67].

1Note that a random fault may move one point on the curve to another point on the curve
with a very low probability [22].
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1.2 Scope of this Work

In order to detect and/or correct random errors in finite field operations, a number

of approaches can be considered, including:

• Using parity bits: In this approach, basically, the parity of the output is pre-

dicted and compared against its actual party. In [24], Fenn et al. presented

a concurrent error detection scheme for bit-serial multipliers, using a number

of bases for representation of fields, defined by an irreducible all-ones poly-

nomial. In [55–57], parity based error detection schemes for both bit-serial

and bit-parallel polynomial basis multipliers are presented. However, these

schemes are not generic and can detect mostly odd number of erroneous bits

and one of them can correct one bit.

• Scaling techniques: The second approach, which is also used in [27], is for

example to scale the inputs of a multiplier by a factor and at the end of the

multiplication the correctness of the result is checked by one or two divisions.

• Nonlinear techniques: One example for this approach [28] is to compute a non-

linear residue for each input of the operation and then predict the residue of

the output using these residues. To assure the correctness of the operation,

one can compare the predicted residue against the actual output residue. This

approach is expensive in terms of area and time and in turn may not be very

efficient for detecting random errors.

• Time redundancy based techniques: In this approach some methods such as

recomputing with shifted operands are used to detect errors in operations.

In [19, 41], this method is used for detecting errors in polynomial basis mul-

tipliers.
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Additionally, a number of schemes for detecting errors in arithmetic operations

of the symmetric block ciphers are presented in [17]. These schemes are mostly

based on parity and/or residue codes.

This thesis presents a number of schemes for concurrent error detection of the

arithmetic operations over binary extension fields based on some of the above-

mentioned approaches. These schemes are more generic than previous schemes in

the sense that they can be applied to different implementations, e.g., bit-serial,

bit-parallel and/or digit-serial, and also they can be applied to different bases for

the field representation such as polynomial, dual and optimal normal bases. Addi-

tionally, the schemes presented in this thesis have high error detection capability,

e.g., based on our simulations, the majority of the schemes have a percentage of

error detection higher than 99% with a moderate amount of redundancies.

1.3 Thesis Outline

The organization of the remainder of the proposal is as follows. A brief overview

of required background is presented in Chapter 2.

Chapter 3 presents a number of schemes for detecting errors concurrently in

polynomial, dual and normal bases arithmetic operations. These schemes are based

on recomputing with shifted operands technique and are efficient for pipelined ar-

chitectures such as systolic arrays. To investigate more on this scheme, one finite

field semi-systolic multiplier is presented for each of the polynomial, dual, type I

and type II optimal normal bases. Then the CED scheme is applied to them. Ad-

ditionally, the space and time complexity of these multipliers are compared against

a number of systolic and/or semi-systolic multipliers previously published in the

literature. Furthermore, the capability of error detection of each multiplier is eval-

uated by simulation-based fault injection. The results show that having better or
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similar space and time overheads compared to a number of related previous work,

the multipliers have generally a high error detection capability, e.g., the percentage

of error detection of the scheme for the single and multiple stuck-at faults in a

polynomial basis multiplier is 100%. Finally, we also comment on how RESO can

be used for concurrent error correction to deal with transient faults.

In Chapter 4, one parity based scheme to detect multiple-bit errors in polynomial

basis multipliers is presented. In this scheme one input of the multiplier is divided

into a number of parts and a parity bit is considered for each part. To obtain a

realistic area and time overheads of the scheme, it is implemented in bit-serial and

bit-parallel fashions on FPGAs. Also, the capability of the scheme is investigated

using a theoretical analysis as well as a simulation-based fault injection. Having a

high error detection capability, this scheme produces area and time overheads lower

than dual modular redundant systems.

In Chapter 5, the parity based scheme presented in the previous chapter is ex-

tended to both inputs of the polynomial basis multiplier. This is because the errors

on the second input cannot be detected, although, the error detection capability

of the scheme, presented in previous chapter, is high, e.g., the percentage of er-

ror detection is 99.61% for eight partitions on the first input. This scheme is also

implemented on FPGAs to determine the area and time overheads of the scheme.

Moreover, the error detection capability of the scheme is evaluated by simulation-

based fault injection. This scheme has slightly better percentage of error detection

and slightly more area overhead compared to the previous scheme. In the sec-

ond part of this chapter, both parity based schemes are extended to other bases,

including dual, type I and type II normal bases.

In Chapter 6, a number of schemes based on linear codes are presented to detect

errors in polynomial basis multipliers. In the first scheme one input of the multiplier

is encoded by a generator polynomial. The correctness of the result is checked by
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decoding of the final and/or intermediate results of the multiplication. To resolve

the problem of error detection on the second input of the multiplier, a second

scheme is presented. In this scheme, both inputs of the multiplier are encoded

by two different generator polynomials. Another scheme that combines the parity

based scheme for the first input and the linear code based scheme for the second

input is presented in this chapter. This scheme basically has a lower area overhead

compared to the second scheme presented in this chapter, however, their error

detection capabilities are almost the same. These scheme are also implemented on

FPGAs and their error detection capability are evaluated by simulation-based fault

injection.

Finally, summary and conclusions of the thesis as well as directions for further

research are given in Chapter 7.

1.4 Research Contributions

Achieving an acceptable security level for hardware implementations of large dig-

ital systems specially with critical applications has received significant attention

recently. Some of these digital systems use finite field arithmetic operations such

as extension field multipliers. The major contributions of this thesis are the de-

velopment of some schemes to concurrently detect and/or correct errors in such

operations. Some specific contributions of the thesis are as follows:

• Concurrent error detection in binary extension field operations suitable for

pipelined architectures and systolic arrays. These schemes use RESO (RE-

computing with Shifted Operands) method for finite fields represented in

polynomial, dual and optimal normal bases.

• Concurrent error detection in binary extension field multipliers for general

bit-serial, digit-serial and/or bit-parallel implementations.
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– Two of the schemes, SIMP and DIMP, are based on the parity codes and

are for the finite fields represented using polynomial, dual and optimal

normal bases.

– Three other schemes, SIE, DIE and hybrid, are based on the linear codes

(scaling technique) and are for the finite fields represented using poly-

nomial basis.



Chapter 2

Background

In this chapter, first finite fields are reviewed, secondly a number of arithmetic

operations particularly multiplication algorithms are explained, and finally a brief

introduction to fault tolerant systems is given.

2.1 Finite Fields

In this section, proofs of theorems and lemmas are omitted for brevity. For in-

terested readers there are many good texts on algebra and finite fields such as

[12, 30, 31, 42, 43, 46, 58].

Basic Definitions and Properties

Definition 2.1 A group is a set G with a binary operation ’*’ on G if it satisfies

the following conditions:

• The binary operation ’*’ is associative, i.e.,

∀a, b, c ∈ G a ∗ (b ∗ c) = (a ∗ b) ∗ c

9
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• There is an identity element e in G such that,

∀a ∈ G a ∗ e = e ∗ a = a

• There is an inverse element for each element such that,

∀a ∈ G, ∃a−1 ∈ G a ∗ a−1 = a−1 ∗ a = e

The identity element of a group and the inverse of each element of a group are

unique. Furthermore, a group is an Abelian or communicative group if ’∗’ also

satisfies the following condition:

∀a, b ∈ G a ∗ b = b ∗ a

Definition 2.2 A set F with two operations denoted by ’+’ and ’.’ is a field if it

satisfies the following conditions:

• (F, +) is an Abelian group and 0 is its identity element.

• (F∗, .) is an Abelian group and 1 is its identity element where F∗ is the set of

nonzero elements in F.

• ’.’ is distributive over ’+’, i.e., ∀a, b, c ∈ F

a.(b + c) = a.b + a.c

and

(b + c).a = b.a + c.a

Definition 2.3 A set R with two operations denoted by ’+’ and ’.’ is a ring if it

satisfies all conditions of a field except the condition that each element should have
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a multiplicative inverse. In other words, the elements of a ring may not have a

multiplicative inverse.

Definition 2.4 A field that contains a finite number of elements is called a finite

field (also known as Galois field).

Definition 2.5 The number of elements in a Galois field is called the order of the

field and a Galois field with the order of q is denoted by GF (q).

Definition 2.6 Let a be an element in GF (q). Then the smallest positive integer

m is called characteristic of the field such that ma = 0.

Theorem 2.1 The characteristic of any finite field is prime.

Theorem 2.2 In a Galois field, the order of the field is a prime or a power of a

prime.

Lemma 2.1 Characteristic of GF (q) =







q if q is prime;

p if q is a power of a prime p.

Definition 2.7 The order of a nonzero element a ∈ GF (q) is the smallest positive

integer n such that,

an ≡ 1

Theorem 2.3 Let a be a nonzero element of GF (q). Then aq−1 ≡ 1.

Using Theorem 2, the inverse of any nonzero element a could be computed by

a−1 ≡ aq−2.

Definition 2.8 In a finite field GF (q), a nonzero element a is primitive if its order

is q − 1.
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Definition 2.9 V is a vector space over F with multiplication operation ’.’: F ×

V → V if for all a, b ∈ F and v, w ∈ V :

1. (V, +) is a commutative group

2. a(v + w) = av + aw

3. (a + b)v = av + bv

4. (ab)v = a(bv)

5. 1v = v

Elements of F and V are called scalars and vectors, respectively. ’+’ is called vector

addition and ’.’ is called scalar multiplication.

Polynomials

A polynomial over GF (p) is an expression of the following form:

F (x) =
n∑

i=0

aix
i = a0 + a1x + . . . anxn

where ai ∈ GF (p) and n, the degree of F (x), is a nonnegative integer. Polynomial

F (x) is called monic if an = 1.

Definition 2.10 A polynomial F (x) over GF (p) is said to be irreducible if it can-

not be written as the product of some lower degree polynomials over GF (p).

Definition 2.11 Suppose a polynomial F (x) over GF (p) which F (0) 6= 0. The

order (or period) of F (x) is the least positive integer t such that F (x)|xt − 1.

Definition 2.12 Let F (x) be a polynomial of degree m over GF (p). Polynomial

F (x) is said to be a primitive polynomial if its order is pm − 1.
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Definition 2.13 A polynomial F (x) is said to be an all-ones polynomial (AOP) if

all of its coefficients are one.

Construction and Representation of GF (pm)

To construct GF (pm) the following theorem can be applied.

Theorem 2.4 Let F (x) be an irreducible polynomial of degree m over GF (p).

Then all polynomials over GF (p) of degree less than m form a finite field GF (pm)

of order pm if addition and multiplication are performed modulo F (x).

F (x) is referred to as the field defining polynomial.

Definition 2.14 Let F and G be two fields and F ⊂ G. Then F is called a subfield

of G and G is called an extension field of F .

For example, GF (pm) is an extension field of GF (p).

GF (pm) is a vector space of dimension m over GF (p). Thus, the basis of

vector space GF (pm) could be any set of m linearly independent elements, e.g.,

{x0, x1, . . . xm−1}. A linear combination of these elements is as follows:

A = a0x0 + a1x1 + . . . am−1xm−1

where ai ∈ GF (p).

There are some well-known bases for representation of extension fields such as

canonical (polynomial) basis, normal basis, dual basis and triangular basis. Below

we introduce the first three bases.

Definition 2.15 Let x be the root of an irreducible polynomial F (x) over GF (p)

of degree m, i.e., F (x) = 0. Canonical (polynomial) basis is defined as the following

set:

{1, x, x2, . . . xm−1}



2.2 Field Arithmetic Operations 14

Hereafter, this basis is called polynomial basis (PB).

Definition 2.16 Let a ∈ GF (pm). The trace of a is:

Tr(a) =
m−1∑

i=0

api

.

The dual basis (DB) of the polynomial basis {1, x, x2, . . . xm−1} is a basis

{y0, y1, · · · , ym−1}, where yi ∈ GF (2m), such that

Tr(yix
j) =







0, i 6= j;

1, otherwise.
(2.1)

Definition 2.17 A normal basis (NB) of GF (pm) has the following form:

{z, zp, zp2

, . . . zpm−1

}

where z ∈ GF (pm).

2.2 Field Arithmetic Operations

In this section, arithmetic operations except addition and subtraction which are

considered to be trivial are briefly explained. Two arithmetic operations, i.e., mul-

tiplication and inversion over extension fields are discussed in the two following

sections. It will be shown that the arithmetic operations such as inversion, divi-

sion, exponentiation can be computed using repeated multiplications. We will use

polynomial basis for representation of the elements of the binary extension field

GF (2m).
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2.2.1 Multiplication over GF (2m)

General Bit-level Multiplications

Suppose that A, B ∈ GF (2m) and F (x) is the modulus (defining polynomial of the

field). Thus, given bits ai, bi ∈ GF (2), we have:

A =
m−1∑

i=0

aix
i, B =

m−1∑

i=0

bix
i

C = AB mod F (x) = A

m−1∑

i=0

bix
i mod F (x)

=

m−1∑

i=0

Abix
i mod F (x)

= (b0A + b1xA + · · ·+ bm−1x
m−1A) mod F (x)

(2.2)

According to (2.2), bit-level algorithm of multiplication from low bit to high bit

is given in Algorithm 2.1.

Algorithm 2.1 Low-to-high bit-level multiplication in GF (2m) [31]

Input: A, B, F (x)
Output: C = AB mod F (x)

D := A
C := 0
For i = 0 to m− 1 do {

C := C + D.bi

D := xD mod F (x)
}
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Equation (2.2) can also be written as follows:

C = AB mod F (x)

= A(bm−1x
m−1 + bm−2x

m−2 + · · ·+ b0) mod F (x)

= (. . . (Abm−1x + bm−2)x + . . . )x + Ab0 mod F (x)

= (. . . (Abm−1x mod F (x) + bm−2)x mod F (x) + . . . )x mod F (x) + Ab0

(2.3)

Based on (2.3), an algorithm for bit-level multiplication from high bit to low bit

of element B is given in Algorithm 2.2.

Algorithm 2.2 High-to-low bit-level multiplication in GF (2m) [31]

Input: A, B, F (x)
Output: C = AB mod F (x)

C := A.bm−1

For i = m− 2 to 0 do {
C := xC mod F (x)
C := C + A.bi

}

An advantage of the second algorithm is that D, which is a register in hardware

implementation, is not needed.

Bit-Serial Multiplications

Let A ∈ GF (2m) and F (x) be the defining polynomial. X = xA can be computed

as:
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X = xA = x

m−1∑

i=0

aix
i mod F (x)

=

m−1∑

i=0

aix
i+1 mod F (x)

=

m−2∑

i=0

aix
i+1 + am−1x

m mod F (x)

=
m−2∑

i=0

aix
i+1 + am−1

m−1∑

i=0

fix
i

(2.4)

A X = xASR

Figure 2.1: SR module

Figure 2.1 shows a module whose input and output are A and X, respectively.

This module basically performs a shift operation and a reduction operation. Hence,

it is hereafter referred to as Shift-and-Reduce or SR module.

Multiplication of A, B ∈ GF (2m) can be written as:

C = AB = A(bm−1x
m−1 + bm−2x

m−2 + · · ·+ b0)

= (bm−1x
m−1A + bm−2x

m−2A + · · ·+ b0A)

= (bm−1A
(m−1) + bm−2A

(m−2) + · · ·+ b0A
(0))

(2.5)

where A(0) = A and A(i) = xA(i−1).

Since GF (2m) is a vector space, in (2.5), ’.’ is a scalar multiplication and ’+’ is

a vector addition [see Definition 2.9]. Additionally, bit bi is the ith coordinate of B.

Figure 2.2 shows a low-to-high bit-serial multiplier where D is initialized with A.

Scalar multiplication and vector addition of a bit-serial multiplier are bitwise-AND
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and bitwise-XOR, respectively. Modules that perform scalar multiplication and

vector addition are hereafter referred to as SM module and VA module, respectively.

These two modules and the SR module discussed earlier are the main components of

a PB multiplier. In accordance with (2.5) and using these three main components,

a bit-serial PB multiplier can be constructed as shown in Figure 2.2 (see [61] for a

similar multiplier architecture).

VA

SM

SR

m

m

C

D

bi

m

m

m

Figure 2.2: Low-to-high bit-serial multiplication

Bit-parallel Multiplications

According to (2.5), we can implement multiplication in a bit-parallel fashion. Fig-

ure 2.3 shows a bit-parallel multiplication. A bit-parallel multiplication needs

(m− 1) SR modules, m scalar multiplications and (m− 1) vector additions.

Digit-Serial Multiplications

Another method to implement a PB multiplier is to combine the above-mentioned

implementations. In other words, instead of computing the multiplication of input
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VA

VA

VA

SM

SM

SM

SM

C

m

A b0

bm−1

b2

b1

m

m

m

m

m

m

m

m

SR

SR

SR

SR

Figure 2.3: Bit-parallel multiplication

A by one bit of input B per clock cycle (like bit-serial implementations), one can

multiply A by a number of bits of B (i.e., a digit of B). This implementation is

referred to as digit-serial implementation.

2.2.2 Inversion over GF (2m)

There are several algorithms for inversion [31] which are based on one of the fol-

lowing methods.

1. Repeated squaring-and-multiplications in extension field GF (2m)

2. Use of extended Euclidean algorithm over some subfield of GF (2)

3. Solution of a system of linear equations over some subfield of GF (2)
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We consider the first two methods. The former is based on Theorem 2.3, such that

∀a ∈ GF (q = 2m) :

aq−1 = 1

a−1 = aq−2

The latter is discussed below.

Extended Euclidean Algorithm (EEA) Based Inversion

Let A(x) ∈ GF (2m) and F (x) be the defining polynomial of the field. We want to

find B(x) such that,

A(x)B(x) = 1 mod F (x).

Since gcd(F (x), A(x)) = 1, B(x) can be obtained using EEA (Algorithm 2.3):

A(x)B(x) + F (x)C(x) = 1

Algorithm 2.3 Extended Euclidean algorithm [31]

Input: F (x) and A(x) 6= 0
Output: B(x)
Step1:

R(−1)(x) = F (x), R(0)(x) = A(x)
U (−1)(x) = 0, U (0)(x) = 1
i = 0

Step2:
do{

i = i + 1
Q(i)(x) = ⌊R(i−2)(x)/R(i−1)(x)⌋
R(i)(x) = R(i−2)(x)−Q(i)(x)R(i−1)(x)
U (i)(x) = U (i−2)(x)−Q(i)(x)U (i−1)(x)

}while (R(i)(x) 6= 0)
Step3:

B(x) = U (i−1)(x)
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It is worth mentioning that in addition to inversion, two other arithmetic oper-

ations, i.e., division and exponentiation, can be performed using repeated multipli-

cations because:

A

B
= A× B−1,

An = A×A · · · × A
︸ ︷︷ ︸

n

,

where n is a non-negative integer.

2.3 Fault Tolerant Systems

2.3.1 Faults

Faults can be investigated at different levels, including gate-level and architecture-

level. Below we give brief descriptions of gate and architecture level faults.

Gate-level faults can be categorized as open faults, short (bridging) faults, and

stuck-at faults. An example for an open fault is a disconnected wire. The discon-

nected wire may keep its previous value. Figure 2.4 shows a circuit with an open

fault which the gate output is disconnected. Assuming that the value of the circuit

before disconnection was 1, the correct output (c) and the faulty output (c′) for

different values of the gate inputs are presented in Table 2.1. Clearly, the error

can be modelled by a bit-flip (ec = c ⊕ c′) in a higher level of abstraction such as

architecture-level .

Figure 2.4: Open fault example
a

b

c
c′
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Table 2.1: Open fault table
a b c c′ ec

0 0 0 1 1
0 1 0 1 1
1 0 0 1 1
1 1 1 1 0

Similarly, Figure 2.5 shows two circuits, which one of them is fault free and the

other one has two stuck-at faults. Table 2.2 presents the expected correct output

values (d and f), the faulty output values (d′ and f ′) and the multiple-bit flip errors

that model the stuck-at faults (ed and ef ).

Figure 2.5: Stuck-at fault example

d′

f ′

c

b

a

VCC

gnd

b

a
d

c

f

Table 2.2: Stuck-at fault table
a b c d f d′ f ′ ed ef

0 0 0 0 0 1 0 1 0
0 0 1 0 1 1 0 1 1
0 1 0 1 0 0 0 1 0
0 1 1 1 1 0 0 1 1
1 0 0 1 1 1 1 0 0
1 0 1 1 1 1 1 0 0
1 1 0 0 1 0 1 0 0
1 1 1 0 1 0 1 0 0



2.3 Fault Tolerant Systems 23

2.3.2 Fault Tolerant Techniques

For having fault tolerance or detection capability, one can use some forms of re-

dundancies. There are three common types of redundancies [51] used in practice:

1) Hardware redundancy, 2) Time redundancy and 3) Information redundancy.

An example for hardware redundancy is a dual modular redundant (DMR)

system. In this system, two identical modules are functioning simultaneously and

their results are compared. Any difference between the results indicates an error.

A DMR has (more than) 100% hardware redundancy. On the other hand, one

system with one module can perform the computations twice and then compare

the results. This system has 100% time redundancy and clearly some hardware

redundancies for storing the intermediate result and comparing the results. In the

following section, some forms of information redundancies are briefly explained. For

further information, references [1, 37, 42, 51] are recommended.

2.3.3 Information Redundancy

Definition 2.18 A code is a set of rules by which some information or data is

represented.

For example, a code can be 4-bit representation of each digit of a number which is

called binary coded decimal (BCD).

Definition 2.19 A collection of bits which is representing some information or

data using a code is said to be a codeword. The bits are called digits if they are

numbers. A binary code contains only 0 and 1 digits which are called bits.

Definition 2.20 A codeword is valid if it satisfies all of the rules of the code.

For example, ’1001’ is a valid BCD , but ’1100’ is invalid. In the following a number

of special codes are reviewed.
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Parity Codes

The simplest form of a code is the parity code.

Definition 2.21 Let A = (ak−1, ak−2, · · · , a1, a0) be a k-bit message. The single-

bit parity code of A is AC = (ac, ak−1, ak−2, · · · , a1, a0) where ac can be obtained

as follows: 





ac =
∑n−1

i=0 ai mod 2; even parity

ac =
(
1 +

∑n−1
i=0 ai

)
mod 2; odd parity

(2.6)

For a hardware implementation of the above even (or odd) parity generator, k

(or k + 1) XOR gates are needed1.

The single-bit parity code can detect any single-bit error but it cannot correct

it. Moreover, such codes can detect any odd number of erroneous bits, since they

change an odd parity codeword to an even parity one and vice versa. Hereafter,

parity is used instead of even parity for brevity.

Arithmetic Codes

One useful code especially for arithmetic operations are arithmetic codes [51]. The

data are encoded before the operations are performed. The result should be a valid

codeword, otherwise, an error is signalled.

Let b and c be the data and ’*’ be the operation and A() be the encoding

function. Then the arithmetic code must be invariant to the operation, i.e.,

A(b ∗ c) = A(b) ∗ A(c)

.

• The simplest arithmetic code is called AN code. It is constructed by multi-

plying a constant A by a data word N . AN codes are invariant to addition

1Precisely, for the odd parity generator, k XOR gates and one NOT gate are needed.
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and subtraction, but, they are variant to multiplication. In case of binary

codes, A should not be a power of 2. Let N = (an−1, an−2, · · · , a1, a0) be

multiplied by A = 2i. AN is:

(an−1, an−2, · · · , a1, a0, 0, · · · , 0)

where i zeroes appended to original N . Let any bit before the appended

zeroes, i.e., ai’s, be flipped. Then the code cannot detect the fault, since it is

still divisible by 2a.

One of the well-known AN codes is 3N code which can be efficiently con-

structed by addition of 2N and N . It increases the size of original message

by 2 bits.

• Residue code is another type of arithmetic codes. For constructing a residue

codeword, the original information is divided by a constant which is called

modulus. Then the remainder, which is called the residue, is appended to the

original information. This code is invariant to modular addition.

Let the size of modulus and original information be m bits and n bits, respec-

tively. The size of the residue codeword is m + n bits.

• Inverse residue code is a modification of the residue code. Inverse residue is

calculated as M − R, where M is the modulus and R is the residue of orig-

inal information. The inverse residue codeword is constructed by appending

inverse residue to the original information.

The advantage of such codes is their better tolerance in presence of repeated-

use faults. A repeated-use fault is one that is encountered multiple times

before the code is checked, since the hardware is used multiple times before

checking [51].
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Duplication Codes

In duplication codes, a codeword consists of completely duplicating of original infor-

mation. The detection capability of such codes are the best. Since the information

are assumed to be fault free if both parts are the same. The main disadvantage of

such codes is its 100% informational overhead. But in many applications such as

data transmission or memory, in addition to 100% informational overhead, there is

a 100% redundancy in hardware and/or time. A variation of a basic duplication

code is to complement the duplicated portion of the codeword. This is a major

advantage when the original information and its duplicate must pass through the

same way or must be processed by the same hardware.



Chapter 3

Concurrent Error Detection Using

RESO

This chapter presents a number of schemes for detecting errors concurrently in

polynomial, dual and normal bases arithmetic operations. The schemes presented

in this chapter are based on recomputing with shifted operands (RESO) technique

and are efficient for pipelined architectures such as systolic arrays. To investigate

more on this scheme, one finite field semi-systolic multiplier is presented for each

of the polynomial, dual, type I and type II optimal normal bases. Then the CED

scheme is applied to them. Additionally, the space and time complexities of these

multipliers are compared against a number of systolic and/or semi-systolic multi-

pliers previously published in the literature. Furthermore, the capability of error

detection of each multiplier is evaluated by simulation-based fault injection. The

results show that having better or similar space and time overheads compared to a

number of related previous work, the multipliers have generally a high error detec-

tion capability, e.g., the percentage of error detection of the scheme for the single

and multiple stuck-at faults in a polynomial basis multiplier is 100%. Finally, we

also comment on how RESO can be used for concurrent error correction to deal

27
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with transient faults.

The organization of the remainder of this chapter is as follows. In Section 3.1,

the RESO method is reviewed. The concurrent error detection strategy is pre-

sented in Section 3.2. General pipelined architectures, which are suitable for these

schemes, along with an overhead analysis are given in Section 3.3. In Section 3.4,

the CED scheme is investigated with more details for polynomial, dual and normal

bases multipliers. The error detection capability of the scheme is then evaluated

in Section 3.5. In Section 3.6, some comments on the concurrent error correction

strategy are given. Finally, Section 3.7 gives a summary of the chapter.

This work also appeared in [5].

3.1 RESO Method

REcomputing with Shifted Operands (RESO) is a technique for concurrent error

detection (CED) in arithmetic and logic units introduced by Patel and Fung in

[48, 49]. This technique is based on time redundancy. Suppose x and f(x) are the

input and output of a computation unit f , respectively. Also, suppose E and D

are two functions such that D(f(E(x))) = f(x). Now, we store the result of the

computation of f(x) (first step) in a register and compare it with the result of the

computation of D(f(E(x))) (second step). Any difference between results of these

two steps indicates an error. The functions E and D are referred to as encoding

and decoding functions, respectively, and they can be usually chosen such that

D = E−1. It is worth mentioning that for conventional binary operands, E and D

are simple shifts of operand bits and this is why it is referred to as RESO.
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3.2 Concurrent Error Detection Strategy

Errors may be caused by different types of faults such as open faults, short (bridg-

ing) faults, and/or stuck-at faults. Furthermore, the faults can be transient or

permanent. We assume that locations of these faults, occurred naturally or in-

jected by an attacker, are random.

In this section, we use RESO method to concurrently detect errors in arithmetic

operations over the field GF (2m). For the polynomial, normal and dual bases, the

encoding and decoding functions are chosen in a way that the overhead costs (in

terms of area and time) are fairly low. Additionally, in this chapter, the arithmetic

operations addition/subtraction, multiplication, inversion, division, and exponenti-

ation are considered. Figure 3.1 shows a general architecture of an operation with

concurrent error detection. In the figure, two encoding functions of the inputs are

E1 and E2 and the decoding function of the output is D. Clearly, for inversion the

second input should not be considered. Also, for exponentiation the exponent is a

non-negative integer number and is not an extension field element. Therefore, this

input of exponentiation is not considered as well.

Let us assume that the arithmetic operation performs the f function. Then we

have:

C = f(A, B).

Also, let AE1 = E1(A) and BE2 = E2(B). Considering that C ′ is the result of the

second computation after decoding, we have:

C ′ = D(f(AE1, BE2)).

As a result,

error =







0 if C = C ′,

1 if C 6= C ′.
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Arithmetic

Operation

BA

Buffer

C

select 1 0 1 0

1 0

E1 E2

D

Equality

Checker

error

Figure 3.1: General architecture for the arithmetic operations with CED

In the following, the above-mentioned concurrent error detection strategy for

each basis is investigated.

3.2.1 CED for Polynomial Basis (PB) Arithmetic Opera-

tions

Let us denote PB of GF (2m) as 1, x, · · · , xm−1. A possible candidate for encoding

and decoding functions in the PB representation of the elements of the field is

multiplication by x or x−1. Clearly, all arithmetic operations are modulo the field

defining polynomial F (x). Particularly, elements xm and x−1 modulo F (x) are as
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follows:

xm = 1 +

m−1∑

i=1

fix
i mod F (x),

x−1 = xm−1 +

m−2∑

i=0

fi+1x
i mod F (x).

(3.1)

The multiplication of x and an arbitrary element A of GF (2m) is performed as

follows:

xA =
m−1∑

i=0

aix
i+1 mod F (x) =

m−2∑

i=0

aix
i+1 + am−1x

m mod F (x)

= (0, a0, · · · , am−3, am−2) + am−1(1, f1, · · · , fm−2, fm−1).

(3.2)

Similarly the multiplication of x−1 and A is performed as follows:

x−1A =
m−1∑

i=0

aix
i−1 mod F (x) = a0x

−1 +
m−1∑

i=1

aix
i−1 mod F (x)

= (a1, a2, · · · , am−1, 0) + a0(f1, f2, · · · , fm−1, 1).

(3.3)

Hereafter, the former and the latter are referred to as (forward) scaling and inverse

scaling, respectively. Additionally, both scalings are very inexpensive in hardware

implementations. An overhead analysis will be given in Section 3.3.1.

Note that multiplication of an element with xi or x−i can be considered as i

consecutive scalings or inverse scalings, respectively. In the following, encoding and

decoding functions are determined for each operation. Also, we show the procedure

of CED in each PB arithmetic operation, assuming that A, B, C ∈ GF (2m).

1. Addition/Subtraction: E1 = x, E2 = x, D = x−1.

(a) Compute A + B = C; Store in a register;
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(b) Compute Ax + Bx = (A + B)x = Cx; Inverse scaling; Compare this

result with that of (a).

2. Multiplication: E1 = x, E2 = x, D = x−2.

(a) Compute A× B = C; Store in a register;

(b) Compute Ax×Bx = (A×B)x2 = Cx2; Two inverse scalings; Compare

this result with that of (a).

3. Inversion: E1 = x, D = x.

(a) Compute 1
A

= C; Store in a register;

(b) Compute 1
Ax

= ( 1
A
)x−1 = Cx−1; Forward scaling; Compare this result

with that of (a).

4. Division: E1 = x, E2 = x−1, D = x−2.

(a) Compute A
B

= C; Store in a register;

(b) Compute Ax
Bx−1 = A

B
x2 = Cx2; Two inverse scalings; Compare this result

with that of (a).

5. Exponentiation: E1 = x, D = x−n, where n is a non-negative integer.

(a) Compute An = C; Store in a register;

(b) Compute (Ax)n = Anxn = Cxn; n inverse scaling; Compare this result

with that of (a).

For large n, to speed up the exponentiation, one can pre-compute and store x−n

for 1 ≤ n ≤ 2m − 1 in some fault-tolerant manner.

Alternative encodings and decodings for multiplication and division are as fol-

lows:
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• Multiplication: E1 = x, E2 = x−1, No decoding.

1. Compute A× B = C; Store in a register;

2. Compute Ax× Bx−1 = (A× B) = C; Compare this result with that of

(a).

• Division: E1 = x, E2 = x, No decoding.

1. Compute A
B

= C; Store in a register;

2. Compute Ax
Bx

= A
B

= C; Compare this result with that of (a).

Although this is more efficient for implementation, it may result in a lower error

detection capability. For example, a permanent single-bit fault at the end of an

arithmetic operation cannot be detected, since such faults change the results of

both runs in a same manner and generates identical results even in the presence of

the faults.

3.2.2 CED for Dual Basis (DB) Arithmetic Operations

Similar to PB arithmetic operations, a suitable candidate for encoding and decoding

functions in DB representation of the elements of the field is multiplication of an

element by x or x−1. This multiplication is considered in Lemma 3.1.

Lemma 3.1 Let A = (a′
0, a

′
1, · · · , a

′
m−1) ∈ GF (2m) be represented in dual basis.

Let F (x) =
∑m

i=0 fix
i be the field defining polynomial. Then the (forward) scaling

and inverse scaling can be performed as follows:

xA = (a′
1, a

′
2, · · · , a

′
m−1,

m−1∑

i=0

fia
′
i)

x−1A = (

m−1∑

i=0

fi+1a
′
i, a

′
0, a

′
1, · · · , a

′
m−2)

(3.4)
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Proof The proof for forward scaling can be found in [65]. Similarly, the inverse

scaling can be proved as follows. Assume that the PB representation of A is

(a0, a1, · · · , am−1). Then according to Section 2.1, we have:

A =

m−1∑

i=0

aix
i, (PB representation)

A =

m−1∑

i=0

a′
iyi. (DB representation)

Moreover, according to [65], we have:

Tr(xjA) = a′
j .

Therefore, for 1 ≤ j ≤ m− 1, we have:

(x−1A)′j = Tr
(
x−1Axj

)
= Tr

(
Axj−1

)

= a′
j−1.

Also,

(x−1A)′0 = Tr
(
Ax−1

)
= Tr

(

A
m−1∑

i=0

fi+1x
i

)

=
m−1∑

i=0

fi+1Tr
(
Axi
)

=

m−1∑

i=0

fi+1a
′
i.

Therefore, x−1A = (
∑m−1

i=0 fi+1a
′
i, a

′
0, a

′
1, · · · , a

′
m−2).

Note that for low weight F (x), the hardware implementation of DB scalings

requires only a few gates (see Section 3.3.2). Moreover, functions E1, E2 (if ap-

plicable), and D can be chosen same as those chosen for PB representation in

Section 3.2.1 and similar CED procedure can be performed.
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3.2.3 CED for Normal Basis (NB) Arithmetic Operations

Let A =
∑m−1

i=0 aiα
2i

be the NB representation of A. Then considering that the

arithmetic is performed in characteristic 2, we have:

A2 =

m−1∑

i=0

(

âiα
2i
)2

=

m−1∑

i=0

âiα
2i+1

= (âm−1, â0, â1, · · · , âm−2).

A
1
2 =

m−1∑

i=0

(

âiα
2i
) 1

2
=

m−1∑

i=0

âiα
2i−1

= (â1, · · · , âm−2, âm−1, â0).

(3.5)

The hardware implementations of NB squaring and taking the square root

have no cost (see Section 3.3.3). Therefore, in NB arithmetic operations, proper

choices for encoding and decoding functions are squaring and taking the square

root. Moreover, the procedures of CED in NB arithmetic operations are more uni-

form since the encoding function(s) and the decoding function are always squaring

and taking the square root, respectively. The CED procedures follow, assuming

that A, B, C ∈ GF (2m) and n is a non-negative integer.

1. Addition/Subtraction:

(a) Compute A + B = C; Store in a register;

(b) Compute A2 + B2 = (A + B)2 = C2; Take square root; Compare this

result with that of (a).

2. Multiplication:

(a) Compute A× B = C; Store in a register;

(b) Compute A2 × B2 = (A × B)2 = C2; Take square root; Compare this

result with that of (a).
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3. Inversion:

(a) Compute 1
A

= C; Store in a register;

(b) Compute 1
A2 = ( 1

A
)2 = C2; Take square root; Compare this result with

that of (a).

4. Division:

(a) Compute A
B

= C; Store in a register;

(b) Compute A2

B2 =
(

A
B

)2
= C2; Take square root; Compare this result with

that of (a).

5. Exponentiation:

(a) Compute An = C; Store in a register;

(b) Compute (A2)n = (An)2 = C2; Take square root; Compare this result

with that of (a).

3.3 Pipeline Architecture and Overhead Analysis

The proposed CED scheme is based on time redundancy. A straightforward imple-

mentation causes more than 100% time redundancy which may not be desirable. An

efficient architecture that can reduce the time overhead significantly is a pipeline

architecture. Additionally, this architecture has a moderate area overhead. An

example for the pipelined architecture is the systolic array, which is used for high

performance arithmetic operations. As shown in Figure 3.2(a), one buffer is added

to the end of the pipeline architecture to store the result of the (first) computa-

tion of the arithmetic operation. Then the result of the second computation after

decoding will be compared against the content of the last buffer of the pipeline.

Another possibility is to start performing the operation with encoded inputs first
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and then perform the normal computation. In this case, a decoder should be placed

after the added buffer as shown in Figure 3.2(b).

checker

equality
stage 1 stage 2

A

BBE2

D

error

Cbuffer 1 buffer 2 buffer l − 1 buffer l

AE1

stage l

(a)

checker

equality
stage 1 stage 2

error

C

D
AE1

BE2

A

buffer lbuffer l − 1buffer 2buffer 1

B
stage l

(b)

Figure 3.2: General pipelined architecture of an arithmetic operation with the
proposed CED

Suppose that the number of pipeline stages is l. Let the propagation delays of the

encoding function, the decoding function, the ith stage of the pipeline (including

a buffer), the buffer, the equality checker, and one XOR gate be te, td, ti, tb,

tc, and tX , respectively. Let t′clk and tclk be the clock period of the pipelined

arithmetic operation with and without CED, respectively. Clearly, tclk ≥ Max{ti}

for 1 ≤ i ≤ l. Also, in practice, tclk ≥ tX . For each pipeline architecture of

Figure 3.2, t′clk, the clock period and latency overheads are given in Table 3.1. One

can choose one of the above-mentioned architectures which has a smaller latency

overhead.

It is worth mentioning that in some pipeline architectures such as systolic arrays,

the delay of the equality checker (tc) can be larger than other delays mentioned in
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Architecture t′clk Clock period
overhead (∆t)

Latency
overhead (Γt)

(a) ≥ Max {te+t1, Max{ti}, tl−tb+td+tc} t′clk − tclk l ×∆t(a)
+ t′clk

(b) ≥ Max {te + t1, Max{ti}, tl − tb + tc, td + tc} t′clk − tclk l ×∆t(b) + t′clk

Table 3.1: The time overheads for the different pipelined architectures

the second column of Table 3.1 under t′clk. In this case, one may be able to reduce

tc using a suitable method such as pipelining the checker. This will be addressed

with more details in Section 3.4.4.

3.3.1 Overheads in PB Operations

The hardware implementations of the PB scaling or inverse scaling are very inex-

pensive since they need a cyclic shift to the right or left, which is free of cost in

hardware, and ω − 2 XOR gates, where ω is the Hamming weight of F (x). Fig-

ure 3.3 shows the implementations of both scalings. As shown in the figure, the

propagation delay for one PB scaling or inverse scaling is tX , since there is one level

of XOR gates in the implementation.

fm−1

fi+1

f1

Ai+1

a0

ai

am−2

am−1

A0

A1

Am−1

(a)

fm−1

fi

f1

a0

a1

ai

am−1 Am−1

Am−2

Ai−1

A0

(b)

Figure 3.3: (a) Scaling and (b) inverse scaling in PB operations

As mentioned before, the multiplication of a finite field element with xi or x−i
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can be implemented by i scalings or inverse scalings, respectively. Therefore, the

maximum number of XOR gates required for the implementation is i(ω − 2).

To implement a PB arithmetic operation with CED, we need two encoding

functions at maximum. Each of them consists of one scaling or inverse scaling.

Additionally, we need one decoding function that consists of two scalings or inverse

scalings at maximum, except for exponentiation. Therefore, 4(ω − 2) XOR gates

are needed for encoding and decoding functions for a PB arithmetic operation other

than exponentiation. We also have:

te ≈ tX ,

td ≤ 2tX .

3.3.2 Overheads in DB Operations

The hardware implementations of the DB scalings need a cyclic shift to right or left

and ω − 2 XOR gates, where ω is the Hamming weight of F (x) (see Figure 3.4).

As shown in the figure, the propagation delay for one DB scaling or inverse scaling

is (ω− 2)tX due to the propagation delay of the least significant bit of a scaling or

the most significant bit of an inverse scaling.

Similar to PB arithmetic operations, for a DB arithmetic operation other than

exponentiation, 4(ω−2) XOR gates are needed for encoding and decoding functions

at maximum. We also have:

te ≈ (ω − 2)tX ,

td ≤ 2(ω − 2)tX .

3.3.3 Overheads in NB Operations

Squaring and taking the square root of an element represented in NB needs just a

cyclic shift to right or left (see Figure 3.5).
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Figure 3.4: (a) Scaling and (b) inverse scaling in DB operations
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Figure 3.5: (a) Squaring and (b) taking the square root in NB operations

Therefore, squaring and taking the square root have no area and time overhead

in a hardware implementation and we have:

te = td = 0.

The area overheads for pipeline implementations of PB, DB and NB GF (2m)
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arithmetic operations with the proposed CED are summarized in Table 3.2. It is

worth mentioning that the added buffer is m bits long. Also, m XOR gates and

one m-input OR gate are needed in the equality checker unit. Note that for all

practical values of m, either a trinomial (ω = 3) or a pentanomial (ω = 5) can be

found as the field defining polynomial [59].

PB1 DB1 NB
m-bit Buffer 1 1 1

Maximum area overhead 2-input XOR (m + 4ω − 8) (m + 4ω − 8) m

m-input OR 1 1 1

Table 3.2: The area overheads of PB, DB and NB arithmetic operations with the
proposed CED

1The exponentiation operation is not considered.

3.4 A Closer Look at Polynomial, Dual and Nor-

mal Bases Multipliers with CED

In this section, two semi-systolic multipliers for PB and DB bases and two such

multipliers for NB basis are presented. Then the time and area complexities of each

of them with or without CED are given.

3.4.1 A Systolic PB Multiplier with CED

Let A, B, C ∈ GF (2m). Then the result of their PB multiplication is as follows:

C = A.B mod F (x)

= b0A + b1xA + · · ·+ bm−1x
m−1A mod F (x).
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Let A(0) = A and A(i) = xA(i−1) mod F (x). Then we have:

C = b0A
(0) + b1A

(1) + · · ·+ bm−1A
(m−1) mod F (x).

Considering that C =
∑m−1

j=0 Cjx
j , we have:

Cj =

m−1∑

i=0

biA
(i)
j . (3.6)

Expression (3.6) can be written in a recursive manner as follows:

C
(i)
j = C

(i−1)
j + biA

(i)
j , (3.7)

where 0 ≤ i ≤ m− 1 and c
(−1)
j = 0. Also according to (3.2) for 1 ≤ i ≤ m− 1, we

have:

A(i) = (0, a
(i−1)
0 , a

(i−1)
1 , a

(i−1)
m−2 ) + a

(i−1)
m−1 (f0, f1, f2, · · · , fm−1)

=
m−2∑

j=0

a
(i−1)
j xj+1 + a

(i−1)
m−1

m−1∑

j=0

fjx
j .

Therefore,

A
(i)
j =







aj ; i = 0,

a
(i−1)
j−1 + a

(i−1)
m−1 fj; 1 ≤ i ≤ m− 1.

(3.8)

where a
(i)
−1 = 0. Substituting (3.8) in (3.7), we have:

C
(i)
j =







b0aj; i = 0,

C
(i−1)
j + bi

(

a
(i−1)
j−1 + a

(i−1)
m−1 fj

)

; 1 ≤ i ≤ m− 1.
(3.9)

where 0 ≤ j ≤ m− 1 and a
(i)
−1 = 0.

Figure 3.6 shows a general view of an arbitrary cell of a semi-systolic PB mul-



3.4 A Closer Look at PB, DB and NB Multipliers with CED 43

tiplier based on expression (3.9). The reason that we call it semi-systolic is that

each cell may receive a number of input signals from non-adjacent cells or output

some signals to them.

am−1

ai

bi

fi

Figure 3.6: General cell architecture for a semi-systolic PB mutliplier

It is worth mentioning that except for f0 and fm, the number of non-zero fi’s

for 1 ≤ i ≤ m − 1 is ω − 2, where ω is the Hamming weight of F (x). Therefore,

we can have two different cells, one for those that have fi = 0 (type 1) and another

for those that have fi = 1 (type 2) as shown in Figure 3.7.

bi

ai

(a)

bi

ai
am−1

(b)

Figure 3.7: (a) Type 1 cell and (b) type 2 cell of a semi-systolic PB multiplier

Let us refer to type 1 and type 2 cells as PBT1 and PBT2. Figure 3.8 shows

the semi-systolic PB multiplier.
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b1
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PBT1 PBT2 PBT2 PBT2 PBT1

PBT1

ai aj ak0 0 0 0 0am−1

c0 ci cj ck cm−1

Figure 3.8: A semi-systolic PB mutliplier

In the figure, it is assumed that fi, fj and fk are not zero. Consequently,

the cells of the columns i, j and k are type 2 (PBT2). Generally, we have (m −

w + 2) PBT1 and (ω − 2) PBT2 in each row. Furthermore, PBT1 and PBT2

contain (1 AND, 1 XOR, 2 Latches) and (1 AND, 2 XORs, 2 Latches), respectively.

Table 3.3(a) presents the total number of required gates or latches for a semi-systolic

PB multiplier. It is worth mentioning that for all practical values of m, one can

find irreducible low-weight polynomials, either a trinomial or a pentanomial, where

a trinomial does not exist [59]. Also, the computation time for each type of cells is

presented in Table 3.3(b).

(a)

AND2 m2

XOR2 m(m + ω − 2)
Latch1 2m2

(b)

cell computation time per cell
PBT1 TA + TX + TL

PBT2 TA + 2TX + TL

Table 3.3: Space and time complexities of the semi-systolic PB multiplier

For the purpose of error detection, we applied the method discussed in Sec-

tion 3.2.1. In other words, each encoding function is one forward scaling and

the decoding function is two inverse scalings. Table 3.4 shows the area and time

complexities of this work along with a number of previously published systolic or
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semi-systolic PB multipliers without CED capability and with CED capability if

applicable.

In [41] and [19], two checkers (comparators) are used. One is to detect errors at

the output of the circuit and another is to detect errors on global lines. These lines

are horizontal lines that connect a bit of one of the inputs (say input B) to all cells

in a row of the multiplier. However, in our proposed scheme since both inputs are

encoded, errors in the global lines can also be detected.

According to Table 3.4, the space complexities and latencies of the multipliers

with or without CED presented in this work seem to be better as compared to the

other multipliers mentioned in the table. Note that ω = 3 or ω = 5 and the latency

of the multiplier without CED in [41] is the same as our work but that multiplier

is not general. Apparently, the cell time complexity of our work is not among the

best. However, this may not be considered as a drawback in multipliers with CED

because the bottleneck for determining the minimum clock period is usually the

propagation delay of equality checkers, not the cell time complexity. This will be

further investigated in Section 3.4.4.

3.4.2 A Systolic DB Multiplier with CED

Suppose that A, B, C ∈ GF (2m) and C = A.B mod F (x). The formulation for

DB multiplication is similar to the PB one except for the following. Let A(0) = A.

Then according to Lemma 3.1 for 1 ≤ i ≤ m− 1, we have:

A(i) = (a
′(i−1)
1 , a

′(i−1)
2 , · · · , a

′(i−1)
m−1 ,

m−1∑

k=0

fka
′(i−1)
k )

=

m−1∑

j=1

a
′(i−1)
j yj−1 +

m−1∑

k=0

fka
′(i−1)
k ym−1.
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Table 3.4: Space and time complexities of a number of systolic or semi-systolic PB multipliers
Multipliers [41] [19] [64] [70] [39] This work

Generating
polynomial

AOP General General General Trinomial General

CED No Yes No Yes No No No No Yes
Cell no. m2 m2 + 3m m2 + m m2 + 2m m2 m2 m2 m2 m2

Space com-
plexity

((1))

XOR2 2m2 2m2 + 7m — 2m — 2m2 m2 + m m(m + ω − 2) m2 +(ω−1)m+
4(ω − 2)

XOR3 — — m2 + m m2 + 2m m2 — — — —
AND2 2m2 2m2 + 4m 2m2 + 2m 2m2 + 4m 2m2 2m2 m2 m2 m2

AND3 — m — — — — — — —
Latch1 2m2 2m2 + 6m 3.5m2 + 3.5m 3.5m2 +

7.5m + 1
7m2 7m2 3.5m2 +

m((2))
2m2 2m2 + m

ORm — 2 — 2 — — — — 1
2-1 Switch — — — — — — m — —

Min. CLK
period

2TA + 2TX +
TL

((3)) TA +T3X +
TL

((3)) TA + TX +
2TL

TA + TX +
2TL

TA + TX +
TL

TA+2TX+TL
((3))

Latency m m + 2 m + 1 m + 5 3m 3m m + k m m + 1

((1))The space complexity of this work has to be more than the complexity mentioned in the table, because the corresponding encoding
and decoding functions were not considered.
((2))Each cell needs 3 or 4 latches. Hence, we estimate that 3.5m2 latches are needed for all cells as well as m extra latches at the
end of computation.
((3))Should be similarly computed according to Table 3.1 and Max{ti} is same as that of the multiplier without CED.
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Therefore,

A
(i)
j =







a′
j; i = 0, 0 ≤ j ≤ m− 1,

a
′(i−1)
j+1 ; 1 ≤ i ≤ m− 1, 0 ≤ j ≤ m− 2,
∑m−1

k=0 fka
′(i−1)
k ; j = m− 1, 1 ≤ i ≤ m− 1.

(3.10)

Substituting (3.10) in (3.7), we have:

C
(i)
j =







b0a
′
j ; i = 0, 0 ≤ j ≤ m− 1,

C
(i−1)
j + bia

′(i−1)
j+1 ; 1 ≤ i ≤ m− 1, 0 ≤ j ≤ m− 2,

C
(i−1)
j + bi

∑m−1
k=0 fka

′(i−1)
k ; j = m− 1, 1 ≤ i ≤ m− 1.

(3.11)

Considering Expression (3.11), we can consider two types of cells for semi-

systolic DB multipliers as shown in Figure 3.9. Except for the last column of

the multiplier (j 6= m − 1), type 1 cells are used (see Figure 3.9(a)). These cells

requires one 2-input AND gate, one 2-input XOR gate and two 1-bit latches.

ai

bi

(a)

a′
is

bi

2 or 4

(b)

Figure 3.9: (a) Type 1 cell and (b) type 2 cell of a semi-systolic DB multiplier

Type 2 cells (Figure 3.9(b)) are used in the last column. In addition to the

gates and latches needed for type 1 cells, type2 cells require one extra 2-input or

4-input XOR gate depending on whether the defining polynomial of the underlying

field is a trinomial (ω = 3) or pentanomial (ω = 5), respectively. Figure 3.10 shows

a semi-systolic DB multiplier.
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b1

b0

bm−1

0

DBT1 DBT1 DBT1 DBT2

DBT1 DBT1

DBT1 DBT1DBT1 DBT1 DBT2

DBT2DBT1DBT1

DBT1

0 0 0 0a′
ka′

ja′
ia′

0 a′
m−1

c′0 c′i c′j c′k c′m−1

Figure 3.10: A semi-systolic DB multiplier

The error detection scheme presented in Section 3.2.2 is applied to this multi-

plier. Hence, the encoding and decoding functions are one forward scaling and two

inverse scalings, respectively. Table 3.5 summarizes the time and space complexi-

ties of this work and a number of previously published multipliers with and without

CED capability as appropriate.

According to Table 3.5 the multipliers (with and without CED) presented in this

work can be considered as the best ones in terms of space complexity and latency.

It is worth mentioning that latches are relatively more area consuming components

and hence the multiplier in [39] requires more space than our work. The cell time

complexity of our work is not lower than the other multipliers, however, this does

not imply that the minimum clock period (MCP) of our work with CED is larger

than another multiplier with CED. This case mostly happens when the other delay

parameters for determining MCP (according to Table 3.1), such as propagation

delay of the equality checker, is larger than the cell time complexity.

3.4.3 A Systolic NB Multiplier with CED

In this section two multipliers for the optimal normal bases of type I and type II

are presented.
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Table 3.5: Space and time complexities of a number of systolic or semi-systolic DB multipliers
Multipliers [25] [40] [39] This work

CED No No Yes No No Yes
Cell no. m2 m2 m2 + m m2 m2 m2

Space complexity ω = 3 ω = 5 ω = 3 ω = 5
XOR2 2m2 2m2 3m2 + 3m − 2 m2 + m m2 + m m2 − m m2 + 2m + 4 m2 + 12
XOR4 — — — — — m — m

AND2 2m2 2m2 3m2 − m m2 m2 m2

Latch1 7m2 5m2 10m2 − 2m − 4 3.5m2 + m 2m2 2m2 + m

ORm — — 1 — — 1
2-1 Switch — — — m — —

Min. CLK period TA + TX + TL TA + TX + TL
((1)) TA + TX + TL TA + 2TX + TL TA + TX +

T4X + TL

((2))

Latency 3m 3m 3m + 1 m + k m m + 1

((1))Should be computed according to Table 3.1, where Max{ti} = TA + 2TX + TL.
((2))Should be similarly computed according to Table 3.1 and Max{ti} is same as that of the multiplier without CED.
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Type I Optimal Normal Basis (ONB1)

Suppose that m + 1 is a prime number and 2 is primitive in GF (m + 1). Then the

field defining polynomial, can be chosen to be F (x) =
∑m

i=0 xi, which is an all-ones

irreducible polynomial over GF (2m). Let x be the root of F (x). Since F (x)|(xm+1−

1), we have xm+1 ≡ 1. Therefore, the set of normal basis presented in Section 2.1,

can be reduced accordingly. The resulting set has m linearly independent elements

[45] as follows and is referred to as type I optimal normal basis:

{
x, x2, · · · , xm−1, xm

}
.

It is worth mentioning that the order of the elements in the above set is different

from the conventional representation of a normal basis. Therefore, we define the

following permutation functions that basically change the order of the coefficients

in the normal basis representations:

Γ1 : NB =⇒ ONB1,

Γ−1
1 : ONB1 =⇒ NB.

Suppose that the NB and ONB1 representations of A ∈ GF (2m) are A = â0x +

â1x
2 + â2x

22
+ ...+ âm−1x

2m−1
and A = a1x+ a2x

2 + a3x
3 + ...+ amxm, respectively.

Also, let us assume that after permutation we have aj = âi, Then:

j = 2i mod (m + 1).

Now, suppose that A, B, C ∈ GF (2m) are represented in ONB1. Hence, A =
∑m

i=0 âix
i and B =

∑m

i=0 b̂ix
i, where â0 = b̂0 = 0. Therefore, using the previous
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notations we have:

C = A.B mod (xm+1 − 1)

= b̂0A
(0) + b̂1A

(1) + · · ·+ b̂m−1A
(m−1) + b̂mA(m) mod (xm+1 − 1).

(3.12)

Expression (3.12) is very similar to PB multiplication except that this multipli-

cation is (m + 1) bits long. Additionally, for 1 ≤ i ≤ m we have:

A(i) =
m∑

j=0

â
(i−1)
j xj+1 mod (xm+1 − 1)

= â(i−1)
m xm+1 +

m−1∑

j=0

â
(i−1)
j xj+1 mod (xm+1 − 1)

=
m∑

j=0

â
(i−1)
<j−1>xj .

(3.13)

where < j − 1 >= j − 1 mod m + 1. In fact, A(i) is one bit rotation of A(i−1) in

such a way that the MSB of A(i−1) shifts out and rotates back to the LSB position.

Clearly, A(0) = A.

Now, similar to expression (3.7) for 1 ≤ i, j ≤ m, we have:

C
(i)
j = C

(i−1)
j + b̂iA

(i)
j ,

where C
(−1)
j = 0. Therefore,

C
(i)
j =







b̂0âj; i = 0,

C
(i−1)
j + b̂iâ

(i−1)
<j−1>; 1 ≤ i ≤ m− 1.

(3.14)

where 0 ≤ j ≤ m− 1 and < j − 1 >= j − 1 mod m + 1.

Note that C(m) is not necessarily in ONB1 representation, since C
(m)
0 may not
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be zero. To resolve this issue, one can zero out C
(m)
0 as follows:

C = C(m) + C
(m)
0 .F (x).

Figure 3.11 shows a cell of a semi-systolic ONB1 multiplier.

bi

ai

Figure 3.11: The cell of a semi-systolic ONB1 multiplier

It is worth mentioning that since F (x) is an all-ones polynomial, one can simply

add the LSB of C(m) with all other bits of C(m) in the hardware implementation.

Figure 3.12 shows a semi-systolic ONB1 multiplier.

a0 = 0

bm

b1

b0 = 0

0000

c2c1 cm

a2 ama1

Figure 3.12: A semi-systolic ONB1 multiplier

Furthermore, as shown in Figure 3.12, b0 = 0 is one input of all AND gates

of the cells in the first row. Therefore, the first row can be omitted and then ai’s

should be fed into the first row after one rotation (see Figure 3.13). Clearly, in this

way the space and latency of the multiplier are slightly reduced.
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â0 = 0âm

b̂m

b̂2

b̂1

0000

ĉ2ĉ1 ĉm

â1 âm−1

Figure 3.13: A semi-systolic ONB1 multiplier with m rows

The error detection scheme presented in Section 3.2.3 is applied to this multi-

plier. The encoding and decoding functions are one or two shifts to the left or right.

Apparently, the encodings should be performed before the permutation Γ1 and the

decoding should be performed after the inverse permutation Γ−1
1 . The time and

space complexities of this work with and without CED capability are presented in

Table 3.6.

According to Table 3.6, the ONB1 multiplier presented here is better than that

in [39] in terms of space complexity and latency and they are the same in terms

of cell time complexity. Furthermore, to the best of our knowledge this is the first

work that addressed the CED in NB multipliers.

Type II Optimal Normal Basis (ONB2)

Suppose that 2m+1 is a prime number and either of the following conditions holds:

• 2 is primitive in GF (2m + 1), or

• 2m + 1 = 3 (mod 4) and the multiplicative order of 2 modulo 2m + 1 is m.

Then the field GF (2m) can be constructed using the normal element γ + γ−1 [45]

and the basis for field representation is referred to as type II optimal normal basis



3.4 A Closer Look at PB, DB and NB Multipliers with CED 54

as follows:
{

γ + γ−1, γ2 + γ−2, · · · , γ2m−1

+ γ−2m−1
}

,

where γ is a primitive (2m + 1)th root of unity. Hence, for 1 ≤ i ≤ 2m− 1, γi = 1

only when i = 2m + 1. It is worth mentioning that the above set can be rewritten

as follows [62]:

{
γ + γ−1, γ2 + γ−2, γ3 + γ−3, · · · , γm + γ−m

}
.

Similar to ONB1, a permutation function is needed to convert an NB representation

to an ONB2 representation and vise versa. Hence,

Γ2 : NB =⇒ ONB2,

Γ−1
2 : ONB2 =⇒ NB.

Suppose that the NB and ONB2 representations of A ∈ GF (2m) are A = â0x +

â1x
2 + â2x

22
+ ... + âm−1x

2m−1
and A = a1(γ + γ−1) + a2(γ

2 + γ−2) + a3(γ
3 + γ−3) +

· · · + am(γm + γ−m), respectively. Also, let us assume that after permutation we

have aj = âi. Then:

j =







k; 1 ≤ k ≤ m,

(2m + 1)− k; m + 1 ≤ k ≤ 2m.

where k = 2i mod (2m + 1).
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Now, suppose that A, B, C ∈ GF (2m) are represented in ONB2, e.g., A =
∑m

i=1 âi(γ
i + γ−i). Then following [62], we have:

C = A.B =
m∑

i=1

m∑

j=1

âib̂j(γ
i + γ−i)(γj + γ−j)

=

m∑

i=1

m∑

j=1

âib̂j

[
(γ(i−j) + γ−(i−j)) + (γ(i+j) + γ−(i+j))

]

=
m∑

i=1

m∑

j=1

âib̂j

[
γ(i−j) + γ−(i−j)

]
+

m∑

i=1

m∑

j=1

âib̂j

[
γ(i+j) + γ−(i+j)

]

= C1 + C2.

C1 =

m∑

i=1

i∑

j=1

âib̂j

[
γ(i−j) + γ−(i−j)

]
+

m∑

i=1

m∑

j=i+1

âib̂j

[
γ(i−j) + γ−(i−j)

]

= C11 + C12.

C2 =

m∑

i=1

m−i∑

j=1

âib̂j

[
γ(i+j) + γ−(i+j)

]
+

m∑

i=1

m∑

j=m−i+1

âib̂j

[
γ(i+j) + γ−(i+j)

]

= C21 + C22.

Now, we adjust the power of the basis for C11, C12, C21 and C22 by changing

the variables as follows:

1. Let j − i = −k. Then we have:

C11 =
m∑

i=1

i−1∑

k=0

âib̂i−k

(
γ−k + γk

)

=
m∑

i=1

i−1∑

k=1

âib̂i−k

(
γk + γ−k

)
.

Note that for i = 1, the upper bound of the second summation becomes

negative and the result is all zero.
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2. Let j − i = k. Then we have:

C12 =
m∑

i=1

m−i∑

k=1

âib̂i+k

(
γk + γ−k

)
.

3. Let j + i = k. Then we have:

C21 =

m∑

i=1

m∑

k=i+1

âib̂k−i

(
γk + γ−k

)
.

4. For C22, the powers of the basis are larger than m. Hence using γ2m+1 = 1,

we have:

C22 =

m∑

i=1

m∑

j=m−i+1

âib̂j

[
γ2m+1−(i+j) + γ−(2m+1)+(i+j)

]
.

Now, let 2m + 1− (j + i) = k. Then we have:

C22 =
m∑

i=1

m∑

k=m−i+1

âib̂2m+1−(i+k)

(
γk + γ−k

)
.

To derive a single closed form for the multiplication, we have:

CI = C11 + C21

=
m∑

i=1

m∑

k=1

âib̂|i−k|

(
γk + γ−k

)
,

where |i− k| is the absolute value of (i− k) and b̂0 = 0. Also, we have:

CII = C12 + C22

=
m∑

i=1

m∑

k=1

âib̂||i+k||

(
γk + γ−k

)
,
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where ||i + k|| =







i + k; i + k ≤ m,

(2m + 1)− (i + k); i + k > m.

Finally, we have:

C = CI + CII =

m∑

i=1

m∑

k=1

âi

(

b̂|i−k| + b̂||i+k||

) (
γk + γ−k

)
, (3.15)

where b̂0 = 0. Therefore, each coefficient of C can be computed as:

ĉk =

m∑

i=1

âi

(

b̂|i−k| + b̂||i+k||

)

.

To have a recursive (rolled) form which is suitable for systolic arrays, we can

write the above expression as follows:

C
(i)
k = C

(i−1)
k + âi

(

b̂|i−k| + b̂||i+k||

)

= C
(i−1)
k + âib̂|i−k| + âib̂||i+k||,

(3.16)

where 1 ≤ i, k ≤ m, C
(−1)
k = 0, ĉk = C

(m)
k and b̂0 = 0.

Figure 3.14 shows two possible implementations for a cell of the ONB2 semi-

systolic multiplier according to Expression 3.16. One can choose one of the above-

mentioned implementations based on space and/or time complexities.

ai

b|i−k| b||i+k||

(a)

b|i−k| b||i+k||

ai

(b)

Figure 3.14: Two cells of a semi-systolic ONB2 multiplier with same functionality
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In this work, we have chosen the cell shown in Figure 3.14(b). A complete

semi-systolic ONB2 multiplier is shown in Figure 3.15.

b1

bm−1

bm

cmc3c2c1

bm−1

b1

b2 b4 bm−1b3b2

a1

a2

am

b0 = 0 b1
000 0

Figure 3.15: A semi-systolic ONB2 multiplier

Similar to the ONB1 multiplier, the error detection scheme presented in Sec-

tion 3.2.3 is applied to this multiplier. The encoding and decoding functions are

one or two shifts to the left or right. It is worth mentioning that the encodings and

the decoding should be performed before the permutation function Γ2 and after the

inverse permutation function Γ−1
2 , respectively. The time and space complexities

of this work for ONB1 and ONB2 along with a number of other related previous

work with and/or without CED capability are presented in Table 3.6.

According to Table 3.6, the ONB2 multiplier presented here can be considered

among the best in terms of space complexity and is the best in terms of latency.

Additionally as mentioned earlier, to the best of our knowledge this is the first work

addressing the CED in NB multipliers.

3.4.4 Some Notes About Delays of Cells and Equality Check-

ers

The clock rate of a pipeline architecture can be determined according to a number

of parameters presented in Table 3.1 (second column). The propagation delays of

the stages of some pipeline architectures such as systolic or semi-systolic arrays are
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Table 3.6: Space and time complexities of a number of systolic or semi-systolic ONB multipliers
Multipliers [39] [38] This work
ONB Type I II II I II

CED No No No No Yes No Yes
Cell no. (m + 1)2 m2 m2 m(m + 1) m(m + 1) m2

Space complexity
XOR2 (m + 1)2 + m m2 + m m m(m + 1) m2 + 2m — m

XOR3 — — m2 — — m2 m2

AND2 (m + 1)2 m2 2m2 + m m(m + 1) m(m + 1) 2m2 2m2

Latch1 3.5(m + 1)2 3.5m2 + m 5m2 2m(m + 1) 2m2 + 3m 3m2 3m2 + m

ORm — — — — 1 — 1

Min. CLK period TA + TX + TL TA + TX + TL TA + T3X + TL TA + TX + TL
((1)) TA + T3X + TL

((1))

Latency m + 1 m + 1 m + 1 m m + 1 m m + 1

((1))Should be computed according to Table 3.1 and Max{ti} is same as that multiplier without CED.



3.4 A Closer Look at PB, DB and NB Multipliers with CED 60

small. Particularly for these architectures, one important parameter to determine

the clock rate is the delay of the equality checker. In the following this issue is

investigated.

The equality checker is basically one level of XOR gates to check the equality of

the bits of two inputs and one OR unit to determine the final error signal as shown

in Figure 3.16.

error

A B

Unit

OR

m
m

1

1

1

1

1

1

Figure 3.16: An m-bit equality checker

A straightforward method to design the OR unit is to use 2-input OR gates.

Then m such gates in ⌈log2m⌉ levels are needed. Therefore, tc = tX + ⌈log2m⌉tOR2 .

Alternatively, one can construct the m-input OR unit using ⌈lognm⌉ levels of n-

input OR gates. To determine the efficient one, we performed a number of simula-

tions in CadenceTM at switch-level (transistor-level). For m = 163, we constructed

163-input OR unit in the following ways:

• 1-level 163-input OR

• 2-level 13-input OR

• 3-level 6-input OR

• 4-level 4-input OR

• 8-level 2-input OR

For the purpose of simulation, gates were modeled using ratioed logic that uses

only one PMOS transistor in the pull-up network. We used 0.18µm technology.
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Also, we initialized all inputs of the gates with zero and after a while we changed

the value of only one of them to one. The result of the transient response simulation

is shown in Figure 3.17.

Figure 3.17: The propagation delays for different ways of implementing an m-input
OR unit

According to the figure, the best propagation delay is for 2-level 13-input OR

design. Furthermore, both 8-level 2-input OR and 1-level 163-input OR designs

are significantly slower. The reason that the 1-level 163-input OR design is slow

is that all 163 NMOS transistors of the pull-down network are connected to each

other in parallel. This produces a large parasitic capacitance at the output of the

gate, which is time-consuming to be discharged when one NMOS transistor turns

on.

It is worth mentioning that if one needs to use the standard cells of a library,

the best choice is 4-level 4-input OR design because the 13-input OR gate are often

unavailable in the standard cells and it has the smallest propagation delay after
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2-level 13-input design.

Moreover, if after designing the equality checker, tc becomes larger than the

other parameters for determining the clock rate of the pipeline, and decreasing

the clock rate is not desirable, one can implement the equality checker in a pipeline

manner. In other words, the equality checker can be divided into two or more stages

such that the propagation delays of its stages become smaller than the desired clock

period. Clearly, this approach results in a larger latency in terms of the required

clock cycles.

3.5 Error Detection Capability

In this section the capabilities of the error detection schemes discussed earlier are

evaluated. With regard to the duration of faults, we consider two categories of

faults in our simulations as follows:

• Transient faults: These faults are assumed to occur only in one of the two

runs.

• Permanent (or intermittent) faults: These faults occur in both runs.

The percentage of error detection for the transient faults is 100%, because either

these faults make the output erroneous or they are masked. In the first case, the

result of the first run and the second run are different. Hence, the fault causing

errors is detected.

For permanent (or intermittent) faults, we performed a number of simulation-

based fault injections on the PB, DB, ONB1 and ONB2 multipliers presented in

Section 3.4. Fault injections were performed in a C model of the multiplier. We

injected stuck-at faults (both stuck-at 1 and stuck-at 0) at the input and output

pins of the gates of the multiplier. In the proposed scheme, same faults are injected
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in the same locations of the circuits in both runs. Fault injection in a complete

multiplier with a field degree of approximately 163 is extremely time consuming.

Therefore, faults were injected in only one randomly chosen row of cells of the semi-

systolic multipliers. We performed the fault injections in two phases as discussed

below.

Single-Bit Stuck-at Faults

In this experiment, only one-bit stuck-at fault was injected during the multipli-

cation. As mentioned earlier, the location of a fault can be at the input and/or

output pins of gates. Hence, to perform fault injection, a multiplexer can be placed

at the fault location, where the control signal of the multiplexer selects between the

original value of that point and the fault. Moreover, the fault value can be chosen

to be 1 or 0. This is shown in Figure 3.18.

0

1

pin value

fault injection select (FIS)

original pin value (OPV)

fault value (FV)

(0 or 1)

{

faulty; if FIS=1 and FV 6= OPV,

not faulty; otherwise.

Figure 3.18: Conventional fault injection at a gate pin

The number of faults that can be injected to a multiplier for each set of inputs

depends on the number of AND gates and XOR gates of that multiplier (see Ta-

ble 3.4, Table 3.5 and Table 3.6). It is worth mentioning that the output pins of

AND gates in each cell, which are direct inputs of the XOR gates, were not injected.

In this experiment, we simulated the fault injection for PB, DB, ONB1 and ONB2

multipliers. Each multiplier was simulated for one million random input pairs and

for every pair, all the above mentioned single-bit stuck-at faults were injected. Ta-
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ble 3.7 shows the number of injected single-bit stuck-at faults for each set of inputs

as well as the percentage of error detection for each multiplier. Note that the

field GF (2163) cannot be represented using ONB1 or ONB2. Therefore, we chose

other fields of close degrees instead. The number of detected, masked and unde-

tected faults are 1074930775, 575069225 and 0 for the PB multiplier, 1078354457,

563645543 and 0 for the DB multiplier, 994414981, 634206218 and 3378801 for

the ONB1 multiplier, and 1716316667, 1053683343 and 0 for the ONB2 multiplier,

respectively.

Error detection
scheme

No. of stuck-at
faults

No. of random
inputs

Percentage of error
detection

GF (2163) PB 1650 1000000 100%
GF (2163) DB 1642 1000000 100%

GF (2162) ONB1 1632 1000000 99.66%
GF (2173) ONB2 2770 1000000 100%

Table 3.7: Percentage of error detection of the RESO based scheme for finite field
multipliers against single stuck-at faults

In the following, we give an example for a single stuck-at fault injection at a

GF (24) ONB1 multiplier. Let A = 6 and B = 3 be the inputs of the multiplier. The

fault free result of the multiplication is 2 or 01001. We inject a stuck-at one fault

at the right hand side input of the XOR gate (see Figure 3.11) in the first cell of

the second row of the multiplier. In the first computation according to Figure 3.12,

we have:

1. Converting from NB to ONB1: AONB1 = 00101 and BONB1 = 01100

2. Computation in presence of the fault:

1Binary representations in this example are least significant bit (LSB) first.
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row bi=row−1 vertical output of the cells diagonal output of the cells

1 0 00000 00101

2 1 00010 10010

3 1 01011 01001

4 0 01011 10100

5 0 01011 01010

3. Converting the result of multiplication, i.e., 01011, from ONB1 to NB: 1011

In the second computation, we have:

1. Encoding (squaring): enA = 0011 and enB = 0110

2. Converting from NB to ONB1: enAONB1 = 00011 and enBONB1 = 00101

3. Computation in presence of the fault:

row bi=row−1 vertical output of the cells diagonal output of the cells

1 0 00000 00011

2 0 10000 10001

3 1 01000 11000

4 0 01000 01100

5 1 01110 00110

4. Converting the result of multiplication, i.e., 01110, from ONB1 to NB: 1101

5. Decoding (taking the square root): 1011

The final results of the first and the second computations are same and both

are incorrect. Therefore, the fault cannot be detected. It is worth mentioning that

as presented in Table 3.7 we could not find any undetected error for the PB, DB

and ONB2 multipliers based on our simulations.
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Multiple-Bit Stuck-at Faults

To inject multiple-bit stuck-at faults, the locations for the injections were randomly

selected from the above mentioned single-bit fault locations. Then one stuck-at 0

or stuck-at 1 was randomly injected there. We injected 500 multiple-bit stuck-at

faults for each set of inputs. Furthermore, one million random sets of inputs were

simulated in each experiment. For example for a GF (2163) PB multiplier, there

are 825 single-bit stuck-at fault locations. All simulations for PB, DB, ONB1 and

ONB2 multipliers result in the detection of all errors.

For more information about our procedures of the fault injections, see Ap-

pendix A.

3.6 Concurrent Error Correction

The RESO method can also be used for correcting errors resulting from transient

faults. As stated earlier, we assume that locations of these faults, occurred naturally

or injected by an attacker, are random. This scheme, however, is not suitable to

correct errors due to permanent faults.

Figure 3.19 shows a general architecture for correcting errors confined in one of

the three runs. This architecture uses a well known majority voter and it can be

easily extended to correct M ≤ ⌊N−1
2
⌋ errors using N runs (see [37]).

Bellow we give the encoding and decoding functions for CEC corresponding to

Figure 3.19 of each basis:

• Encoding and decoding functions for PB and DB

1. Addition/Subtraction:

E1,1 = x, E1,2 = x, D1 = x−1

E2,1 = x−1, E2,2 = x−1, D2 = x
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Operation

Arithmetic

1 0

BA

2

Voter

Majority

D2 D1

E2,1E2,2

2 1 0select

E1,1E1,2

2 1 0

C

error
Buffer

Buffer

Figure 3.19: General architecture for the arithmetic operations with CEC (using a
2-of-3 system)

2. Multiplication:

E1,1 = x, E1,2 = x, D1 = x−2

E2,1 = x−1, E2,2 = x−1, D2 = x2

3. Inversion:

E1,1 = x, D1 = x

E2,1 = x−1, D1 = x−1

4. Division:

E1,1 = x, E1,2 = x−1, D1 = x−2

E2,1 = x−1, E2,2 = x, D2 = x2

5. Exponentiation:

E1,1 = x, D1 = x−n
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E2,1 = x−1, D2 = xn

• Encoding and decoding functions for NB

1. Addition/Subtraction/Multiplication/Division:

E1,1 = E1,2 = squaring, D1 = taking the square root,

E2,1 = E2,2 = taking the square root, D2 = squaring.

2. Inversion/Exponentiation:

E1,1 = squaring, D1 = taking the square root,

E2,1 = taking the square root, D2 = squaring.

3.7 Summary

This chapter has presented a number of schemes, which are efficient for pipelined

architectures and are based on recomputing with shifted operands (RESO) method.

These schemes have been developed to concurrently detect errors in polynomial,

dual, type I and type II optimal normal bases arithmetic operations. We have

also presented one semi-systolic multiplier for each of above-mentioned bases and

applied the CED scheme to them. We have compared these multipliers with a

number of previously published systolic and/or semi-systolic ones. The results

show that this scheme can be considered among the best. Also, a simulation-

based fault injection has been performed for each of the multipliers. Results of

the simulations for single stuck-at faults show 100%, 100%, 99.66% and 100% error

detection for polynomial, dual, type I and type II bases multipliers, respectively.

The simulations also show that the percentage of error detection of this scheme for

the above-mentioned multipliers against multiple stuck-at faults is 100%. Finally,

we also commented on how RESO can be used for concurrent error correction to

deal with transient faults.



Chapter 4

Single Input Multiple Parity

(SIMP) Error Detection Scheme

for Polynomial Basis Multipliers

This chapter focuses on the detection of errors in polynomial basis multipliers.

In [24], Fenn et al. presented a concurrent error detection scheme for finite field

multipliers over binary extension fields. They used a parity bit for detecting errors

in bit-serial multipliers, using a number of bases for representation of fields, defined

by an irreducible all-ones polynomial. Thus, the scheme is not generic in the sense

that it cannot be used for other field defining polynomials. In [18], Chiou presented

a concurrent error detection for two bit-parallel systolic multipliers for extension

fields in which the field defining polynomials are irreducible all-ones polynomials or

irreducible equally spaced ones. In [55,57], Reyhani-Masoleh and Hasan developed

a generic parity based error detection scheme for both bit-serial and bit-parallel

polynomial basis multipliers. The scheme can detect any odd number of erroneous

bits. In this scheme, input parity is propagated through the multiplier, and pre-

dicted output parity is compared to actual output parity. In case of inequality of

69
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the parities, an error signal is given.

This work extends the work of [55,57] by applying multiple parity bits to poly-

nomial basis multipliers. Like [57], this work can be applied to any finite field

GF(2m). However, unlike [57], our work can detect all odd parity errors as well

as most of the even parity errors. Additionally, our work can detect at least m

multiple-bit errors in the multiplier.

The main contributions of this chapter are summarized as follows:

• A multiple parity scheme that can detect multiple-bit errors in both bit-serial

and bit-parallel polynomial basis multipliers over binary extension fields are

presented. The error detection capability of the scheme in the presence of

multiple-bit random errors is also investigated. With our proposed frequency

of check points, a maximum of one multiple-bit error in each round of the

bit-serial operation (or each slice of the bit-parallel operation) can be de-

tected. This implies that in a GF (2m) polynomial basis multiplier, at least

m multiple-bit errors can be detected.

• A number of experimental analyses are presented, including the simulation-

based fault-injection evaluation of the scheme and the analyses of the area and

time overheads. Our experimental results show that the area overhead tends

to increase linearly as the number of parity bits increases but the probability

of undetected errors decreases quite quickly. Furthermore, the area overhead

for the bit-serial implementation is quite low, e.g., for 8 parity bits the area

overhead is 10.29% and the error detection probability is 0.996. The area

overhead for a bit-parallel implementation of the multiplier is greater than the

corresponding bit-serial one, but it is still lower than the conventional dual

modular redundant systems. The average time overhead due to the use of the

scheme in bit-parallel implementations is 25%. For bit-serial implementations,

time overheads have been observed to be small to negligible.
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The organization of the remainder of this chapter is as follows. A concurrent er-

ror detection strategy is presented in Section 4.1. In Section 4.2, the error detection

capability of the scheme is investigated. Our experimental results for this scheme

are reported in Section 4.3. An alternative partitioning is presented in Section 4.4.

Finally, Section 4.5 gives a summary of the chapter.

This work appeared in [4, 7].

4.1 Concurrent Error Detection Strategy

In this section, an error detection scheme for PB multipliers is presented. Errors

may be caused by different types of faults such as open faults, short (bridging)

faults, and/or stuck-at faults. Furthermore, the faults can be transient or per-

manent. The goal of this scheme is to detect as many random errors as possible

including single and multiple errors. Towards this goal, we use a parity based

method. One-bit parity is able to detect the presence of any odd number of erro-

neous bits [42]. Here, we use additional parity bits in order to increase the error

detection capability. In particular, an m-bit input is divided into k parts and for

each part one parity bit is used. Thus, the m-bit PB representation of A ∈ GF (2m)

is divided as follows:

A = (A0, A1, A2, · · · , Ak−1).

The length of Aj, 0 ≤ j ≤ k − 1, is

lj =







⌊m
k
⌋+ 1 if j < m mod k;

⌊m
k
⌋ otherwise.

For the sake of simplicity, we assume that k|m and the length of each part is
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l = m
k
, i.e.,

Aj = xjk

l−1∑

i=0

ajk+ix
i = (ajk, ajk+1, ajk+2, · · · , ajk+l−1).

The parity of Aj is denoted as P (Aj). Using parity bits of Aj’s, a k-bit parity

of A is formed as follows:

P (A) = (P (A0), P (A1), P (A2), · · · , P (Ak−1)).

Then using the parity P (A), we construct the encoded A as follows:

E(A) = (A0, A1, A2, · · · , Ak−1, P (A)).

Unlike A which is represented with m bits, the field defining irreducible poly-

nomial F (x) requires m + 1 bits. In order to have the same length for partitioning,

we exclude the leading coefficient of F (x) and divide F (x) − xm into k parts as

follows:

F (x)− xm = (F0, F1, · · · , Fk−1).

The parity bit of Fj, 0 ≤ j ≤ k − 1, is denoted as P (Fj).

One of the important issues in detecting errors in the output of a finite field

multiplier (or an arbitrary circuit, in general) is parity prediction. The latter refers

to the task of determining the parity of the expected outputs by using the corre-

sponding inputs as well as the functionality of the circuit. As mentioned in Section

2.2.1, a polynomial basis multiplier consists of three modules: 1) SR module 2) SM

module, and 3) VA module. In the following, the parity prediction method for each

of these modules will be discussed.
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4.1.1 Multiple Parity Prediction in SR Module

In the following, the output parity of an SR module is predicted.

Let A′ = xA, i.e.,

A′ =
l−1∑

i=0

aix
i+1 + xl

l−1∑

i=0

al+ix
i+1+

· · ·+ x(k−1)l
l−1∑

i=0

a(k−1)l+ix
i+1

=

(

0 +

l−1∑

i=1

ai−1x
i

)

+ xl

(

al−1 +

l−1∑

i=1

al+i−1x
i

)

+

· · ·+ x(k−1)l

(

a(k−1)l−1 +

l−1∑

i=1

a(k−1)l+i−1x
i

)

+ akl−1x
kl.

A′ must be reduced by F (x) = xm +
∑k−1

j=0 Fj(x) as follows:

A′ mod F (x) =
(

0 +

l−1∑

i=1

ai−1x
i

)

+ xl

(

al−1 +

l−1∑

i=1

al+i−1x
i

)

+ · · ·+ x(k−1)l

(

a(k−1)l−1 +

l−1∑

i=1

a(k−1)l+i−1x
i

)

+ am−1

(
k−1∑

j=0

Fj(x)

)

.
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Now, we group the expression and obtain

A′ mod F (x) =
(

0 +
l−1∑

i=1

ai−1x
i + am−1

l−1∑

i=0

fix
i

)

+ xl

(

al−1 +

l−1∑

i=1

al+i−1x
i + am−1

l−1∑

i=0

fl+ix
i

)

+ · · ·+ x(k−1)l

(

a(k−1)l−1 +

l−1∑

i=1

a(k−1)l+i−1x
i

+am−1

l−1∑

i=0

f(k−1)l+ix
i

)

.

Thus, the jth part of A′ for 0 ≤ j ≤ k − 1 can be derived as:

A′
j = xjl

(

ajl−1 +

l−1∑

i=1

ajl+i−1x
i + am−1

l−1∑

i=0

fjl+ix
i

)

(4.1)

where a−1 = 0. Figure 4.1 shows a circuit diagram implementing A′
j . In practice,

many coefficients of F (x) are zero and hence the corresponding XOR gates in

Figure 4.1 are not needed. By cascading k copies of the circuit shown in Figure 4.1,

an SR module can be constructed as illustrated in Figure 4.2.

Let ω be the Hamming weight of F (x). The total number of two-input XOR

gates required in an SR module is ω − 2, since no XOR gate is needed for the first

and the last coefficients of F (x).

For parity prediction of the jth part of the SR module, we have the following

lemma where A′ = xA and PFj
=
∑l−1

i=0 fjl+i.

Lemma 4.1 Let P (Aj) and P (A′
j) be the parities of the input and the expected
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ajl+i−1

ajl

a(j+1)l−1

a(j+1)l−2

am−1

fjl+1

fjl+i

f(j+1)l−1

fjl

ajl−1

a′
jl

a′
jl+1

a′
jl+i

a′
(j+1)l−1

Figure 4.1: The jth part of the SR module

output of the jth part of the SR module, respectively. Then,

P (A′
j) = ajl−1 + P (Aj) + a(j+1)l−1 + am−1PFj

.

Proof Using (4.1) the proof is immediate.

Figure 4.3 shows the parity prediction circuit of the jth part of the SR module,

where P (x) is predicted parity of x. The parity of the jth part of F (x) is PFj
and

is assumed to be known, since it can be pre-computed. Thus, the corresponding

AND gate is not really required. On the other hand, F (x) can be a trinomial

or a pentanomial and usually it can be chosen so that the parities of all parts

become zero, i.e., PFj
= 0 for 0 ≤ j ≤ k − 1. In this case, the value of ak−1,l−1

is not important and one XOR gate is removed. In the worst case the circuit of

Figure 4.3 can be implemented with 3 two-input XOR gates. The total number of

two-input XOR gates for the whole parity prediction circuit is 3k.
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Figure 4.2: SR module

PFj

am−1

a(j+1)l−1

ajl−1

P (Aj)
P (A′

j)

Figure 4.3: Parity prediction circuit of the jth part of the SR module

Hereafter, an SR module together with its parity prediction circuit (PPC) is

referred to as SR-P module. It should be mentioned that different partitioning of

A and F can change the parity prediction circuit of the SR module. Section 4.4

presents a partitioning of A and F that reduces the number of XOR gates of each

parity prediction circuit by two, i.e., parity prediction circuit can be constructed

by only one XOR gate.
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4.1.2 Parity Prediction in Scalar Multiplication and Vector

Addition Modules

In this work, scalar multiplication refers to multiplication of an element of GF (2)

by an element of GF (2m) and vector addition refers to addition of two elements of

GF (2m). For bi ∈ GF (2) and A ∈ GF (2m) = (a0, a1, · · · , am−1), scalar multiplica-

tion of bi and A is bi.A = (bia0, bia1, · · · , biam−1). Thus,

P (bi.A) = bia0 + bia1 + · · ·+ biam−1

= bi(a0 + a1 + · · ·+ am−1) = biP (A).
(4.2)

For A, B ∈ GF (2m), vector addition of A and B is:

A + B =

m−1∑

i=0

aix
i +

m−1∑

i=0

bix
i =

m−1∑

i=0

(ai + bi)x
i.

Thus,

P (A + B) =

m−1∑

i=0

(ai + bi) =

m−1∑

i=0

ai +

m−1∑

i=0

bi

= P (A) + P (B).

(4.3)

The circuit of the parity prediction, as defined in (4.2) and (4.3), are shown in

Figure 4.4 where they need k two-input AND gates and k two-input XOR gates,

respectively. These circuits for parity bits are now included with the SM and the

VA modules appropriately and the resulting new modules are hereafter referred to

as SM-P and VA-P.
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Figure 4.4: PPC for a) SM module and b) VA module

4.1.3 Parity Checking Circuit

In order to detect errors in the multiple parity scheme, the predicted parity bits

should be compared with the corresponding actual parity bits. Actual parity bits

are generated by parity generating circuit. Figure 4.5 shows the parity generator

and the parity checker.

error

Parity Comparator

Parity Generator

1

1

1

1

1

1

P (Z̃)

P (Z)

m

Z̃

k

k

l

l

l

Figure 4.5: Multiple-bit parity checker

In Figure 4.5, Z and Z̃ can be considered as the expected and the actual outputs

of one of the three modules discussed earlier. P (Z) and P (Z̃) are k-bit parities of
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Z and Z̃, respectively. The result of bit by bit comparison of P (Z) and P (Z̃) are

ORed to signal any difference which indicates an error. The parity generator is

constructed by XOR trees which contain l− 1 two-input XOR gates. Furthermore,

k two-input XOR gates are required for comparison. Total numbers of two-input

XOR and OR gates required for a parity checker are m (= k(l− 1) + k) and k− 1,

respectively.

4.1.4 Polynomial Basis Multiplier with CED

To construct a bit-serial and a bit-parallel multiplier with concurrent error detection

capability, we will use PPC embedded modules SR-P, SM-P, and VA-P. Figure 4.6

shows a bit-serial multiplier with PPC. A and B are the inputs of the multiplier.

Register D is initialized with A and its k-bit parity P (A). A parity checker can be

at each of the three locations: L1, L2 and L3. In the next section, the frequency of

check points will be discussed.

L3

L1

L2

SM−P

VA−P

m + k

bi

D

C

m + k

SR-P

m + k

m + k

m + k

Figure 4.6: Bit-serial polynomial basis multipliers with parity prediction circuit

Figure 4.7 shows a bit-parallel multiplier with PPC. In the bit-parallel multiplier
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a parity checker can be placed after each modules. Thus, there can be as many as

3m− 2 error checkers for a bit-parallel multiplier.

SM−P

VA−P

VA−PSM−P

VA−PSM−P

SM−P

b1

slice (m − 1)

SR-P

SR-P

SR-P

m + k

C

slice 1

slice i
b2

bm−1

A, P (A) b0

m + k

m + km + k

m + k

m + km + k

m + k

m + k

Figure 4.7: Bit-parallel polynomial basis multipliers with parity prediction circuit

4.2 Error Detection Capability

In this section, first the error model is explained. Then the probability of error de-

tection at the output of the circuit using the multiple parity method is determined.

Finally, the frequency of the check points is discussed.

4.2.1 Error Modelling

The effect of a fault, such as a transient fault, in one location of the multiplier circuit

is modelled by XORing an error vector with the expected correct ”value” of that

location. The ith bit of the error vector of a location being one implies that the ith

bit of the value of the location has changed from 0 to 1 or vice versa due to a fault.
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If the location is one of the main components (SR-P, SM-P or VA-P), without loss

of generality we can assume that the error vector should be XORed with the output

of the component. It is worth mentioning that the parity prediction circuits, parity

generators and parity checkers should be fault free or at least self-checking [53].

Since in practice the number of parity bits, k, is much less than the size of the

input operands of the multiplier, m, the self-checking technique is feasible. In this

work, these circuits are assumed to be fault free or self-checking. It will be shown

in Section 4.3 that with a moderate number of parity bits the probability of error

detection becomes quite close to unity. As an example, for m = 163, with 8 parity

bits, the error detection probability is approximately 0.996.

Let e = (e0, e1, · · · , em+k−1) be the representation of an error of a location in the

multiplier. The first m bits of e correspond to errors in an element, say A ∈ GF (2m)

that is part of the value of that location. The remaining k bits of e correspond to

errors in the k-bit parity vector P (A). Note that although we assume the parity

prediction and the parity checking circuits to be fault free or self-checking, an error

may occur in the parity bits any where in the remainder of the multiplier circuit

such as the registers in the bit-serial implementation of the multiplier or the wires

through which the parity signals propagate. If one assumes otherwise, i.e., the

parity bits/signals are error free, then all registers and wires through which these

signals travel have to be fault free, even though some of these registers and wires

are not part of the parity prediction and checking circuits.

Since e is an (m + k)-tuple vector and the all-zero e = (0, 0, · · · , 0) corresponds

to no error, the number of possible errors is 2m+k − 1. We logically divide e into k

parts each of length l + 1 = m
k

+ 1 bits where the jth part is

(ejl, ejl+1, · · · , ejl+l−1, em+j).

In the following, we investigate which kind of errors cannot be detected by the k-bit
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parity scheme.

4.2.2 Probability of Error Detection

Let eO be an odd parity error, i.e., the number of 1’s in eO is odd. Then the parity

of at least one of the k partitions is odd. Therefore, eO can be detected by the

proposed CED method and the probability of undetected error is PrU(eO) = 0.

Let eE be a nonzero even parity error. Since k < m, there is at least one

error, eE , such that all of its partitions have even parity. Then the error cannot be

detected. Accordingly, PrU(eE) ≥ 0.

Theorem 4.1 Let k be the number of parity bits of the scheme. Suppose p is the

probability that ei = 1 for 0 ≤ i ≤ m + k − 1. The probability of error detection is

given as follows:

PrD(e) = 1−

[(
(1− 2p)

m
k

+1 + 1

2

)k

− (1− p)m+k

]

. (4.4)

Proof Our proof for Theorem 4.1 follows. PrD = 1 − PrU where PrU is the

probability of undetected errors. As it is mentioned, all nonzero errors with even

parity in their partitions are undetectable. Thus, considering error vectors are

(m + k)-bit long and each of them has k partitions, first we need to compute the

probability of an (m
k

+ 1)-bit number with even parity.

Let Ei and Oi be the probabilities that an i-bit number has even parity and odd

parity, respectively. Thus, Ei = 1− Oi. Moreover, let q be the probability that a

bit of the error vector is zero, i.e., q = 1− p. We proceed in a recursive manner.

Ei+1 = qEi + pOi

= (1− p)Ei + p(1−Ei)

= (1− 2p)Ei + p.
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Let 1− 2p = A and p = B. We determine Ei for some i to find a closed formula:

E0 = 1

E1 = q

E2 = Aq + B

E3 = A2q + AB + B

E4 = A3q + A2B + AB + B

...

Ei = Ai−1q + Ai−2B + · · ·+ AB + B

= Ai−1q + B

(
Ai−1 − 1

A− 1

)

.

Now, we write the expression only in terms of p:

Ei = (1− 2p)i−1(1− p) + p

(
(1− 2p)i−1 − 1

(1− 2p)− 1

)

= (1− 2p)i−1(1− p)−
(1− 2p)i−1 − 1

2

= (1− 2p)i−1(1− p− 1/2) + 1/2

=
(1− 2p)i + 1

2
.

The probability that an
(

m
k

+ 1
)
-bit partition of the error vector has even parity

is Ei= m
k

+1. Moreover, the partitions are independent. Thus, the probability of

having a vector with even parity in each of its partitions is
(
Ei= m

k
+1

)k
or

(
(1− 2p)

m
k

+1 + 1

2

)k

.
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However, the zero vector should be excluded and hence,

PrU =

(
(1− 2p)

m
k

+1 + 1

2

)k

− (1− p)m+k.

As a result,

PrD = 1−

[(
(1− 2p)

m
k

+1 + 1

2

)k

− (1− p)m+k

]

.

As mentioned, p is the probability of an error vector bit being one. A reduction

of p increases the probability of having an all-zero error vector. This reduction

means a reduction in the probability of (nonzero) errors, which in turn means a

reduction in the probability of undetectable errors. Thus, with a reduction in p,

the probability of error detection increases.

As it can be determined from Equation (4.4), as the number of parity bits

increases, the probability of error detection quickly approaches unity so that it

reaches 0.996 for 8 parity bits.

4.2.3 Frequency of the Check Points

Suppose that there are several multiple-bit errors in a location of the circuit of a PB

multiplier. For having an error detection capability PrD as given in Theorem 4.1,

each of the above mentioned locations in Section 4.1.4 should have a parity checker.

This causes a very high area overhead especially for bit-parallel multipliers. The

following lemma helps us reduce the number of checkers considerably.

Lemma 4.2 Suppose only a maximum of one multiple-bit error occurs per round

of a bit-serial multiplier or per slice of a bit-parallel multiplier (see Figure 4.6 and

Figure 4.7). Then any such error can be detected with the probability PrD, given

in Section 4.2.2, using a parity checker at L3 of the bit-serial multiplier or a parity
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checker before the vertical input of every VA-P and one parity checker after the

final VA-P in the bit-parallel multiplier.

Proof It should be verified if a detectable error vector can be changed to an un-

detectable one after passing through a main component and before reaching one of

the check points.

If a detectable error vector passes through an SR-P module, it can be changed

to an undetectable one. However, the check points are located so that any error

vector can reach one of the check points without passing through any SR-P mod-

ule. Therefore, one of the following cases should be considered: 1) a detectable

error vector passes through an SM-P module or 2) a detectable error vector passes

through a VA-P module or 3) both.

In the first case, if bi = 0 then regardless of the other input value, the value of

the output vector and parity are zero. This is a correct result and there is no error

anymore. If bi = 1 then the input and the output of the SM-P module are equal.

Hence, the error vector passes SM-P without any change.

In the second case, if only one of the two inputs of VA-P module has erroneous

bits, the error vector can pass the VA-P module without any change. Since a

maximum of one multiple-bit error is allowed in a round of a bit-serial multiplier

or in a slice of a bit-parallel multiplier, only one of the inputs of VA-P can be

erroneous.

In the third case, the error must occur before an SM-P module but after the

SR-P module (in the corresponding slice of a bit-parallel multiplier). Therefore,

according to case 1 and case 2, it passes SM-P and VA-P modules and reaches the

parity checker.
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4.3 Results

Important performance measures for an error detection scheme include error detec-

tion capability, area and time overheads. In this section the results of our studies on

these measures are presented. The results can guide the choice of a proper number

of parity bits for design requirements.

4.3.1 Simulation-Based Fault Injection

We have injected stuck-at faults to a GF (2163) PB multiplier with k = 8 to evaluate

the error detection capability of the proposed scheme. The fault injection was

performed in a C model of the multiplier. Furthermore, the fault injection was at

the gate-level, i.e., stuck-at faults (both stuck-at 1 and stuck-at 0) were injected at

the input and output pins of the gates of the multiplier. In the proposed scheme,

a checker is placed at the end of a round of a bit-serial multiplier (or at the end

of the slice of a bit-parallel one). Moreover, the scheme can detect an error if

the error can be detected in one round of a bit-serial multiplier (or a slice of a

bit-parallel one). Fault injection in a complete multiplier of GF (2163) is extremely

time consuming. In order to reduce the time for completing experiments, faults were

injected in only one round of a bit-serial multiplier (and a slice of a bit-parallel one).

In Appendix A, more information about our procedures of the fault injections is

given. In the following, two phases of our fault injections are presented.

Single-Bit Stuck-at Faults

In this experiment, single-bit stuck-at faults were injected at the input or output

pins of gates. To inject a fault at a point, the conventional fault injection method

at a gate pin described in Section 3.5 is also used here.

In a GF (2m) PB multiplier, there are ω− 2 two-input XOR gates, m two-input
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AND gates, and m two-input XOR gates in the SR, SM and VA modules, respec-

tively, where ω is the Hamming weight of the field defining polynomial. Single-bit

stuck-at faults are injected at all input and output pins except the output pins of

AND gates of SM module because they are direct inputs of the VA module’s XOR

gates. Therefore, the number of locations for single-bit stuck-at fault injections at

a round of a bit-serial (or a slice of a bit-parallel) multiplier is 3(ω− 2) + 5m. Ad-

ditionally, for each input or output gate pin, two single-bit faults can be injected.

Hence, the number of single-bit stuck-at faults that should be injected at a round

of a bit-serial (or a slice of a bit-parallel) multiplier is 6(ω − 2) + 10m.

In this experiment, we simulated the multiplier for one million random inputs

and for every input, all the above mentioned single-bit stuck-at faults were in-

jected. The number of detected and masked faults are 656481969 and 991518031,

respectively. Results are shown in Table 4.1.

Type of stuck-at
faults

No. of stuck-at
faults1

No. of random
inputs

Percentage of
error detection

Single-bit 1648 1000000 100%
Multiple-bit 500 1000000 99.61%

1in one round of a bit-serial (or one slice of a bit-parallel) multiplier

Table 4.1: Percentage of error detection of the SIMP scheme for a GF (2163) PB
multiplier against stuck-at faults

Multiple-Bit Stuck-at Faults

For multiple-bit stuck-at fault injection, the location of the above mentioned single-

bit faults were randomly selected and a stuck-at 0 or stuck-at 1 was randomly

injected there. Furthermore, simulations were performed for one million random

inputs and for every input, 500 random multiple-bit stuck-at faults were injected.

It is worth mentioning that for a GF (2163) multiplier experiment, there are 824

single-bit stuck-at fault locations. The number of detected and undetected faults
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are 498047234 and 1952766, respectively. As shown in Table 4.1, the percentage of

error detection for multiple-bit stuck-at fault injections is 99.61%.

4.3.2 Time and Area Overheads

We have described the multiple-bit parity scheme by VHDL to obtain a realistic

approximation of area and time overheads. In order to reduce the number of XOR

gates in the multiplier, field defining polynomial F (x) can be chosen to be a trino-

mial or a pentanomial such that the parity of F (x) in each partition is zero, i.e.,

PFj
= 0. In Section 4.4.2, the complexity of the parity prediction circuit for NIST

recommended irreducible polynomials for ECDSA is discussed.

We used Modelsim(TM) to simulate the design for checking its correct functional-

ity. We implemented the multiple parity scheme on a Xilinx Spartan 3 (XC3S5000)

FPGA using Xilinx ISE 7.1i.

Bit-Serial PB Multiplication

The circuit of a complete bit-serial multiplier with CED is shown in Figure 4.8. The

circuit consists of two major blocks: 1) PB multiplier with PPC and 2) checker.

The parity generator of the checker is used at the initialization phase to generate

the parity of input A. Note that no extra clock cycle is needed for the circuit shown

in Figure 4.8 when compared to a bit-serial PB multiplier without CED.

From the first experiment, we obtained the area overhead percentage of the

scheme for multipliers of different field sizes. The number of parity bits for this

experiment was chosen to be 8 bits since the probability of error detection was

within acceptable range for our experiment (≈ 0.996). Furthermore, the defining

polynomial of the fields used in the experiment included the NIST recommended

irreducible polynomials for ECDSA. Figure 4.9 shows the result of the experiment.

As shown in the figure, the area overhead for a fixed number of parity bits tends
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Figure 4.8: A complete bit-serial multiplier with CED

to decrease as the size of the field increases. The area overhead does not decrease

in a strictly monotonic way because the FPGA compiler used in the experiment

optimizes the multiplier for different field sizes differently. The worst area overhead

percentage among the fields implemented is for GF (2201) and is still reasonably

low, i.e., < 12%.

In the second experiment, we implemented the scheme for m = 163 and m = 283

using the NIST recommended field defining polynomials for ECDSA F (x) = x163 +

x7 + x6 + x3 + 1 and F (x) = x283 + x12 + x7 + x5 + 1, respectively. Both of these

polynomials are quite suitable for implementation because the parity prediction

circuits of the scheme would be in the simplest form since, in a k-bit parity scheme,
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Figure 4.9: Area (i.e., slice) overhead for bit-serial PB multipliers for different size
of fields

we have:

{P (Fi) = 0 | 0 ≤ i ≤ k − 1 and 2 ≤ k ≤ 20} .

As shown in Figure 4.10, area overhead cost increases as the number of parity

bits increases. For all points in each graph depicted in the figure, a line is fitted as

follows:

for GF (2163) : overhead (%) = 0.50× (# of parity bits) + 5.94,

for GF (2283) : overhead (%) = 0.30× (# of parity bits) + 6.44.
(4.5)

As expected according to the first experiment, the slope of the fitted line for

GF (2163) is more than that for GF (2283), i.e., the area overhead increase rate vs.

parity-bit numbers in GF (2283) is lower. Furthermore, based on the experimental

results, area overhead tends to increase linearly except for very small numbers of

parity bits.

Note that Equation (4.5) implies that even if one parity is used for each infor-
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Figure 4.10: Area overhead vs. parity-bit number

mation bit, circuit overhead is not expected to be more than 100%, which is the

overhead for the conventional dual modular redundant (DMR) scheme.

In the second experiment, we also investigated the time overhead of the GF (2163)

and GF (2283) PB multipliers for different numbers of parity bits. Since there is no

extra clock cycle, the time overhead is equal to the clock period overhead. We

obtain the clock periods from the post place and route static timing report of

Xilinx ISE. Except for four cases, there was no clock period overhead and in turn

no time overhead for the bit-serial implementation of the multipliers. These four

cases belong to the GF (2163) PB multiplier shown in Table 4.2. According to the

table, the time overheads even for these cases are small.

No. of parity bits 1 4 11 13
Time overhead (%) 12.27 4.39 15.26 4.79

Table 4.2: Nonzero time overheads for bit-serial implementation which belong to
the GF (2163) PB multiplier
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Figure 4.11: A complete bit-parallel multiplier with CED

Bit-Parallel PB Multiplication

A circuit diagram of a complete bit-parallel polynomial basis multiplier with CED

is depicted in Figure 4.11. The parity checker is very similar to that presented

in Figure 4.8. As shown in Figure 4.11, once the inputs A and B are updated,

the results of the multiplication and error detection are ready after certain amount

of delay due to the propagation of various signals through the circuit where no

clocking is used.

For bit-parallel multiplier, the first experiment was to measure the area overhead

percentage of the eight parity-bit scheme for multipliers of different field sizes. The

results show that the area overhead decreases as the field size increases (Figure 4.12).
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Figure 4.12: Area (i.e., slice) overhead for bit-parallel PB multipliers for different
size of fields

There is a major difference between the structure of bit-serial and bit-parallel

PB multipliers and this affects the area overhead considerably. A bit-serial PB

multiplier contains simple and shift registers, but a bit-parallel multiplier does not.

Basically, registers are relatively area consuming components in FPGAs. There-

fore, assuming that one wants to implement a PB multiplier for a field of size m,

the area (in terms of slices) needed for a bit-parallel PB multiplier without CED is

significantly smaller than m times the area needed for a bit-serial multiplier. Ac-

cordingly, CED overhead on a bit-parallel PB multiplier is much higher than that

on a bit-serial one. This fact can be observed easily in the experiments reported in

this section.

The second experiment was to investigate the area and time overheads’ increase

rates vs. the number of parity bits for the field GF (2163) (see Figure 4.13). The field

defining polynomial is F (x) = x163 + x7 + x6 + x3 + 1. According to Table 4.3, the

bit-parallel implementation is very area consuming; therefore, similar experiments
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Figure 4.13: Area overhead vs. parity-bit number for the field GF (2163)

for the field GF (2283) are extremely time consuming and clearly that design does

not fit into our current FPGA. However, the area overhead results for higher values

of m are expected to be better than the result of this experiment as one can infer

from Figure 4.12, where the number of parity bits is fixed to eight.

No. of parity bits Without CED 4 8 12 16 20
Number of

required Slices
13541 19121 20049 21616 22864 24390

FPGA area
consumption (%)1

40.69 57.45 60.24 64.95 68.70 73.29

1The total number of slices in a Xilinx Spartan 3 (XC3S5000) FPGA is 33280.

Table 4.3: FPGA area consumption for a bit-parallel GF (2163) PB multiplier

Figure 4.13 illustrates that as the number of parity bits increases, the area

overhead for a bit-parallel implementation increases at a greater rate compared to

the bit-serial implementation. However, the area overhead may be still acceptable

for some applications. This is because for obtaining a sufficiently high probability
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of error detection (say ≈ 0.996), one needs only about 8 parity bits in the proposed

scheme and it results in about 50% area overhead, which is better than 100%

overhead of the DMR scheme.

In the bit-parallel implementation, the time overhead is the delay of the critical

path, i.e., the maximum propagation delay from one of the input pins to one of

the output pins. We obtain the delay of all input pins to output pins from the

post place and route static timing report of Xilinx ISE. The time overhead for the

bit-parallel implementation of a GF (2163) PB multiplier vs. number of parity bits

is given in Fig 4.14, which shows that the time overhead is generally less than 25%

when more than a couple of parity bits are used.
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Figure 4.14: Time overhead vs. parity-bit number for the field GF (2163)

4.4 Alternative Partitioning

In this section another partitioning of A and F is presented. The new partitioning

reduces the overhead of the parity prediction circuit of the SR module.
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As mentioned A =
∑m−1

i=0 aix
i is partitioned into k parts. As before, we assume

that m is divisible by k and l = m/k. The alternative (vertical) partitioning is

illustrated below:

a0 , a1 , a2 , · · · , ak−1 ,

ak , ak+1 , ak+2 , · · · , a2k−1 ,
... , ,

. . . , ,
... ,

a(l−1)k , a(l−1)k+1 , a(l−1)k+2 , · · · , alk−1

︸︷︷︸ ︸︷︷︸ ︸︷︷︸ ︸︷︷︸

A0 A1 A2 · · · Ak−1

For 0 ≤ j ≤ k − 1, the jth partition is:

Aj =
l−1∑

i=0

aik+jx
ik+j = (aj , ak+j, a2k+j, · · · , a(l−1)k+j).



4.4 Alternative Partitioning 97

4.4.1 Structure of SR Module

A′ =xA mod F (x)

=

k−1∑

j=0

l−1∑

i=0

aik+jx
ik+j+1 mod F (x)

=

k∑

j=1

l−1∑

i=0

aik+j−1x
ik+j mod F (x)

=

k−1∑

j=1

l−1∑

i=0

aik+j−1x
ik+j +

l−2∑

i=0

ak(i+1)−1x
k(i+1)

+ (am−1x
m mod F (x))

=
k−1∑

j=1

l−1∑

i=0

aik+j−1x
ik+j +

l−1∑

i=1

aki−1x
ki + am−1

m−1∑

i=0

fix
i

=
k−1∑

j=1

l−1∑

i=0

(aik+j−1 + am−1fik+j)xik+j

+
l−1∑

i=0

(aki−1 + am−1fki) xki

=
k−1∑

j=0

l−1∑

i=0

(aik+j−1 + am−1fik+j)xik+j

(4.6)

where a−1 = 0.

Figure 4.15 shows the jth part of the SR module. The complete SR module is

shown in Figure 4.16. The number of gates is exactly the same as for the previous

SR module mentioned in Section 4.1.1, as only the position of the coordinates is

changed.

The following lemma discusses parity prediction in the jth part of the SR module.

Lemma 4.3 Let P (Aj) and P (A′
j) be the input and the expected output parities of

the jth part of the SR module, respectively and PFj
=
∑l−1

i=0 fik+j. Then,
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Figure 4.15: The jth part of the SR module using the vertical partitioning

P (A′
j) =







P (Aj−1) + am−1PFj
if 1 ≤ j ≤ k − 1,

P (Ak−1) + am−1(PF0 + 1) if j = 0.

Proof According to (4.6), we have:

A′
j =

l−1∑

i=0

(aik+j−1 + am−1fik+j)xik+j .

Therefore, for 1 ≤ j ≤ k − 1, we have:

P (A′
j) = P

(
l−1∑

i=0

aik+j−1x
ik+j

)

+ P

(
l−1∑

i=0

am−1fik+jx
ik+j

)

= P (Aj−1) + am−1PFj
.
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Figure 4.16: SR module

For j = 0, we have:

P (A′
0) = P

(
l−1∑

i=0

aik−1x
ik

)

+ P

(
l−1∑

i=0

am−1fikx
ik

)

= (P (Ak−1) + am−1) + am−1PF0

= P (Ak−1) + am−1(PF0 + 1).

PFj
’s can be pre-computed. Therefore, the maximum number of gates required

for the parity prediction circuit of each part of the SR module is one XOR gate.

No XOR gate is needed for the parity prediction circuit of a part of the SR module

when PF0 = 1 or PFj
= 0 for 0 < j < k. Furthermore, the probability of error

detection can be computed by Theorem 4.1, since the conditions are the same.
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Irreducible
polynomials F (x)

No. of nonzero-parity
partitions

No. of 2-input XOR
gates for PPC of SR-P

Horizontal
partitioning

Vertical
partitioning

Horizontal
partitioning

Vertical
partitioning

x163 + x7 + x6 + x3 + 1 0 4 15 3
x233 + x74 + 1 2 2 17 1

x283 +x12 +x7 +x5 +1 0 4 15 3
x409 + x87 + 1 2 2 17 1

x571 +x10 +x5 +x2 +1 0 2 15 1

Table 4.4: XOR counts for PPC of an SR module for NIST recommended irreducible
polynomials for ECDSA application

4.4.2 Comparison of SR-P Modules

According to Section 4.3.1, the scheme with eight partitions results in a fairly high

probability of error detection for values of m that are of interest for elliptic curve

cryptosystems. Therefore, we have divided each of corresponding NIST recom-

mended irreducible polynomials into eight partitions using our horizontal and ver-

tical partitioning methods. Table 4.4 gives the number of partitions with nonzero

parity and the number of required two-input XOR gates for PPC of the SR module

along with the NIST recommended irreducible polynomials.

As it can be seen in Table 4.4, the SR-P module is relatively area efficient in the

vertical paritioning than the horizontal partitioning. However, the SR-P module is

much less resource consuming than any of the SM-P and VA-P modules. Therefore,

the overheads resulting from the vertical partitioning are expected to be very similar

to those presented in Section 4.3 for horizontal partitioning.
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4.5 Summary

In this work, a multiple parity error detection scheme is presented for concurrent

detection of errors in polynomial basis multipliers. In this scheme, the probability

of error detection for random errors is more than 75% and it quickly approaches

unity for approximately 8 parity bits. The overhead of our implementation tends to

increase linearly as the number of parity bits increases. Results show that the area

overhead cost of the bit-serial implementation is lower than that for the bit-parallel

one. Both implementations have lower area overheads than the traditional dual

modular redundant scheme for a sufficient number of parity bits. Additionally, the

average time overhead due to the use of the scheme in bit-parallel implementations

is around 25%, while for bit-serial implementations time overheads have been ob-

served to be small to negligible. It is hoped that using the results presented in this

chapter, one will be able to choose an appropriate number of parity bits for specific

applications.



Chapter 5

Extending SIMP

In the previous chapter, a parity based error detection scheme, referred to as SIMP,

for PB multipliers is presented. This chapter extends the SIMP scheme by parti-

tioning both inputs of the multiplier and considering a parity bit for each partition.

This scheme is referred to as double input multiple parity (DIMP) scheme. This

work can be applied to any finite field GF(2m). This scheme has a better error

detection capability than SIMP because the latter cannot detect errors in one of

the inputs of the multiplier. This improvement in error detection capability is

achieved with a slightly more area overhead and quite similar time overhead com-

pared to SIMP. This scheme can detect multiple-bit errors in both digit-serial and

bit-parallel polynomial basis multipliers over binary extension fields.

In this chapter, the capability of the proposed error detection schemes is eval-

uated by simulation-based fault injection. Additionally, experimental analyses of

the area and the time of the scheme are presented. Our results show that the area

overhead has a linear increasing trend as the number of parity bits increases but

the probability of undetected errors decreases very quickly. Additionally, the area

overhead for the bit-parallel implementation is considered to be in an acceptable

range, e.g., having eight and three parity bits for the first and the second inputs,

102
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respectively, the scheme obtains an area overhead of 55.59% which is lower than

the conventional dual modular redundant systems. The average time overhead due

to the use of the scheme in bit-parallel implementations is approximately 25%.

Towards the end of this chapter, both SIMP and DIMP schemes are also applied

to field arithmetic using dual, type I and type II optimal normal bases.

The organization of the remainder of this chapter is as follows. In Section 5.1,

the double input multiple parity scheme is investigated. The experimental results

are given in Section 5.2. Section 5.3 extends SIMP and and the scheme presented

in this chapter to dual and optimal normal Bases. Finally, Section 5.4 gives a

summary of the chapter.

Part of this work appeared in [6].

5.1 Double Input Multiple Parity (DIMP) Scheme

In the SIMP scheme, the parity bits are preserved for only one input of the PB

multiplier. Although this can detect errors on the first input (input A) and/or

inside of the multiplier with a certain probability, the errors on the second input

cannot be detected. One way to improve this situation is to consider other parity

bits for the second input operand as well. Therefore, the second input can be

similarly divided, say, into s partitions and for each partition one parity bit can be

considered. In general, the number of partitions of the first and the second inputs

can be different. Additionally, due to the structure of the scheme, this scheme

can be applied to digit-serial and bit-parallel implementations and is not suitable

and efficient for bit-serial implementations. In this work, we investigate the double

input multiple parity (DIMP) scheme using a bit-parallel implementation.
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5.1.1 Parity Prediction in DIMP

This section investigates how the parity bits of the second input, B ∈ GF (2m),

can propagate through SR, SM and VA modules. The first input, A ∈ GF (2m),

was already divided into k parts. We assume that k|m and the length of each part

is l = m
k

(see Section 4.1 for the case that m is not divisible by k). Also, the

parity propagation through the SR module for the SIMP scheme, which has been

investigated in Section 4.1.1, is summarized in Lemma 5.1.

Lemma 5.1 Suppose that A(n−1) and A(n) are the input and output of the nth SR

module in the multiplier for 1 ≤ n ≤ m− 1. Then we have:

A(n) =
k−1∑

j=0

xjl

(

a
(n−1)
jl−1 +

l−1∑

i=1

a
(n−1)
jl+i−1x

i + a
(n−1)
m−1

l−1∑

i=0

fjl+ix
i

)

,

P (A
(n)
j ) = a

(n−1)
jl−1 + P (A

(n−1)
j ) + a

(n−1)
(j+1)l−1 + a

(n−1)
m−1 P (Fj),

where 0 ≤ j ≤ k − 1, A
(0)
j = Aj and a

(n−1)
−1 = 0.

Now for DIMP, let us assume that m is divisible by s and the length of each

partition is t; for the case that m is not divisible by s, the lengths of the partitions

are different but a similar argument given in the following theorem holds. Theo-

rem 5.1 helps us to predict the parity of every tth slice of the multiplier using the

parities of both inputs A and B.

Theorem 5.1 Let P (C
(q)
j ) be the parity of the jth partition of the output of the VA

module in slice (q + 1)t for 0 ≤ q ≤ s− 1. Let P (B(q)) =
∑q

i=0 P (Bi), where P (Bi)

is the parity of the ith partition of B. Then we have:

P (C
(q)
j ) = P (Aj)P (B(q)) +

(q+1)t−1
∑

i=1

bih
(i)
j ,
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where 0 ≤ j ≤ k − 1, A
(0)
j = Aj and h

(i)
j =

∑i−1
k=0 a

(k)
jl−1 + a

(k)
(j+1)l−1 + a

(k)
m−1P (Fj).

Proof According to Lemma 5.1, for 1 ≤ i ≤ m− 1, we have:

P (A
(i)
j ) = a

(i−1)
jl−1 + P (A

(i−1)
j ) + a

(i−1)
(j+1)l−1 + a

(i−1)
m−1 P (Fj).

One can unroll the above recursive formula as follows given A
(0)
j = Aj :

P (A
(i)
j ) = P (Aj) +

i−1∑

k=0

a
(k)
jl−1 + a

(k)
(j+1)l−1 + a

(k)
m−1P (Fj). (5.1)

Now, we define:

h
(i)
j =







0 ; i = 0,
∑i−1

k=0 a
(k)
jl−1 + a

(k)
(j+1)l−1 + a

(k)
m−1P (Fj) ; 1 ≤ i ≤ m− 1.

Therefore, expression (5.1) can be rewritten as:

P (A
(i)
j ) = P (Aj) + h

(i)
j . (5.2)

Since parity function P () is linear and considering expression (2.5), we have:

P (C) =

m−1∑

i=0

biP (A(i)).

Therefore, the parity of the jth partition in the SIMP scheme can be computed

as:

P (Cj) =
m−1∑

i=0

biP (A
(i)
j ).

Additionally, P (Cj) is the parity of the jth partition after the VA module of the

last slice, i.e., the slice (m− 1). Accordingly, such parity of an arbitrary slice, say

r, can be computed simply by substituting m by r. In fact, we are interested in
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computing such parity for every tth slice, i.e., r = (q + 1)t where 0 ≤ q ≤ s− 1, as

follows:

P (Cj
(q)) =

(q+1)t−1
∑

i=0

biP (A
(i)
j )

= b0P (Aj) +

(q+1)t−1
∑

i=1

biP (A
(i)
j ).

(5.3)

Substituting (5.2) to (5.3), we have:

P (Cj
(q)) = b0P (Aj) +

(q+1)t−1
∑

i=1

bi ·
(
P (Aj) + h(i)

)

= b0P (Aj) +

(q+1)t−1
∑

i=1

biP (Aj) + bih
(i)

=

(q+1)t−1
∑

i=0

biP (Aj) +

(q+1)t−1
∑

i=1

bih
(i)

= P (Aj)

(q+1)t−1
∑

i=0

bi +

(q+1)t−1
∑

i=1

bih
(i)

= P (Aj)P (B(q)) +

(q+1)t−1
∑

i=1

bih
(i).

(5.4)

In the following, based on the theorem, the parity prediction circuits (PPCs)

for every module are presented. Figure 5.1 and Figure 5.2 show the PPCs of the

jth parts of the SR and SM modules, respectively. In Figure 5.1, P (Fj) is fixed.

Therefore, if P (Fj) = 0 then the circuit needs only three 2-input XOR gates.

Additionally, in Figure 5.2, the last inputs of the PPCs (i.e.,
∑i−1

k=1 bkh
(k)) for

the SM modules of the first two slices of the PB multiplier (i.e., for i = 0, 1) are

zero. As a result, the second output of the first SM module (i.e.,
∑i

k=1 bkh
(k) for

i = 0) is zero as well. For each SR and each SM modules, k copies of the PPCs are
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Figure 5.1: PPC of the jth part of an SR module

required. These modules along with their PPCs are hereafter referred to as SR-P2

and SM-P2 modules, respectively.
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1

1

1

1
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Figure 5.2: PPC of the jth part of an SM module

Unlike SR and SM modules, two types of PPCs are needed for VA modules. Fig-

ure 5.3(a) shows the circuit of the first type of PPCs for VA modules, which predicts

the parities related to both inputs A and B. This circuit should be incorporated

in the VA modules of every tth slice.

The second type of PPCs of VA modules only predicts the parity related to

the first input, A. The circuit of this type is shown in Figure 5.3(b) and should

be incorporated in all VA modules but every tth ones. The VA modules along

with these PPCs are the same as VA-P modules in the SIMP scheme. It is worth

mentioning that since the first slice of a PB multiplier does not contain VA module

(see Figure 1.b), the circuit shown in Fig 5.3(b) does not exist for the first slice,

i.e., for i = 0. Additionally, PVA(A
(0)
j ) = PSM(A

(0)
j ).
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Figure 5.3: PPC of the jth part of VA for (a) every tth slice, (b) all other slices

5.1.2 Polynomial Basis Multipliers with CED Using DIMP

To construct a PB multiplier with CED using the DIMP scheme, one should use an

SR-P2, an SM-P2 and a VA-P2 modules for every tth slice as shown in Figure 5.4
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P (A(i)) h(i)
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1
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Figure 5.4: One of every tth slices of the PB multiplier with CED

Furthermore, in any slice of the PB multiplier except every tth slice, VA-P

modules should be used instead of VA-P2 ones. For the purpose of error detection,

a number of parity equality checkers are also required to be placed at the end of

each slice of the PB multiplier before the first VA module and after other ones (see

Section 4.2.3 for more information about the frequency of the check points).
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Two types of checkers are needed in DIMP as shown in Figure 5.5. In the figure,

P (Z) is the k-bit predicted parity related to the first input and is available at the

end of every slice. However, P ′(Z) is the k-bit predicted parity related to the second

input and is available at every tth slice. Moreover, P (Z̃) is the k-bit actual parity.

As shown in the figure, an ordinary parity checker (OPC) only checks the equality

of the predicted parities related to input A against the actual ones. However, a

double parity checker (DPC) checks the equality of the predicted parities of both

inputs against the actual ones. DPCs are placed at the end of every tth slice after

the VA modules while OPCs are placed at the end of all other slices.

1
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k

P ′(Z)

P (Z̃)

k

k

k

l

k

lm

l

Figure 5.5: Double parity checker (DPC)

It is worth mentioning that one of the inputs of the second type PPC for VA

module as shown in Figure 5.3(a) is P (B(q)), where 0 ≤ q ≤ s−1. This value is the

parity of the first q + 1 parts of input B and is referred to as cumulative parity of
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the first q + 1 partitions. Figure 5.6 shows a circuit that generates the cumulative

parities.
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Figure 5.6: Cumulative parity generator

5.1.3 CED Capability of DIMP

As mentioned in Section 4.2, suppose that the expected value of one location of

the multiplier circuit is changed due to one fault or more. Then this change can

be modelled by XORing an error vector with the expected correct value of that

location; i.e. the error model of this work is bit-flip. If the location is one of the

SR, SM or VA modules, without loss of generality we can assume that the error

vector should be XORed with the output of that module. Furthermore, the parity

prediction circuits, parity generators and parity checkers should be fault free or at

least self-checking [53]. In this work, these circuits are assumed to be fault free

although the self-checking technique is feasible because the number of parity bits

is practically much less than the size of the input operands of the multiplier. Now,

considering this error model, a multiple-bit error on input B can be detected if at

least one of the s partitions of B is not zero. Furthermore, if the parities of all

partitions of input A are zero, then errors on input B cannot be detected. This can

be easily inferred from Theorem 5.1.
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Lemma 5.2 Suppose e′ is a random error of length m that occurs on input B.

Assuming that input A of the multiplier is random, the probability of detecting the

error e′ on B is:

PrD(e′) =

[

1−

(
(1− 2p)

m
k + 1

2

)k
]

·

(

1−

[(
(1− 2p)

m
s + 1

2

)s

− (1− p)m

])

,

where p is the probability that a bit of an m-bit vector, either e′ or A, becomes one.

Proof Let event1 be that the parity of all k partitions of input A are zero. Also,

let event2 be that an m-bit error with s partitions has at least one partition with

nonzero parity. According to Theorem 4.1, the probability of having an m-bit

vector with j partitions whose parities are all zero is:

(

(1− 2p)
m
j + 1

2

)j

.

Therefore,

Pr(event1) =

(
(1− 2p)

m
k + 1

2

)k

.

Furthermore, the probability of the complement of event2 is:

Pr(event2) =

(
(1− 2p)

m
s + 1

2

)s

− (1− p)m,

where (1− p)m is the probability of having a zero error vector. Hence,

Pr(event2) = 1−

[(
(1− 2p)

m
s + 1

2

)s

− (1− p)m

]

. (5.5)

On the other hand, the probability of detecting the error e′ using DIMP is:

PrD(e′) = Pr(event1) · Pr(event2|event1) + Pr(event1) · Pr(event2|event1).
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Since Pr(event2|event1) = 0 and Pr(event2|event1) = Pr(event2), we have:

PrD(e′) = Pr(event1) · Pr(event2),

where Pr(event1) = 1−
(

(1−2p)
m
k +1

2

)k

and Pr(event2) is given in (5.5).

Now, Let us similarly assume that for a PB multiplier using the DIMP scheme

only a maximum of one multiple-bit error occurs per slice of a bit-parallel imple-

mentation, then we have:

• if errors occur on input A and/or inside the PB multiplier, they can be de-

tected with a probability given in (4.4).

• if an error occurs on input B, it can be detected with the probability given

in Lemma 5.2.

Note that the number of partitions of B, i.e., s, can be preferably chosen smaller

than that of A, i.e., k; since the parity checking mechanism in the second input is

used for detecting errors in itself, i.e., input B. Furthermore, this choice slightly

decreases the area overhead of the scheme.

5.2 Experimental Results

5.2.1 Simulation-Based Fault Injection

We injected a large number of stuck-at faults into a C model of a GF (2163) bit-

parallel PB multiplier to evaluate the error detection capability of the DIMP scheme

and compare it against SIMP. Since fault injection in a complete PB multiplier

is extremely time consuming, we performed fault injection in a slice of the PB

multiplier. We injected the faults at the inputs and the outputs of the gates of a
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slice of the PB multiplier. Additionally, to show the strength of DIMP rather than

SIMP, we performed fault injection at the bi input of the SM module as well.

In a slice of a GF (2m) PB multiplier, the number of two-input gates for SR,

SM and VA modules are (ω − 2) XOR gates, m AND gates and m XOR gates,

respectively, where ω is the Hamming weight of the field defining polynomial. Ad-

ditionally, except the outputs of AND gates of the SM module, where are the direct

inputs of XOR gates of VA modules, all other inputs and outputs can be locations

for fault injection. Therefore, considering the bi input of the SM module, the num-

ber of locations for fault injection in a slice of the PB multiplier is 3(ω−2)+5m+1.

For more information about our procedures of the fault injections, see Appendix A.

Single Stuck-at Fault Injection

For single stuck-at fault injection, every pin location was injected by two fault

values zero and one. Hence, the total number of injected faults in a slice of the

GF (2m) PB multiplier was 6(ω− 2) + 10m + 2. In this experiment, we injected all

above-mentioned faults for one million random inputs. The number of detected,

masked and undetected faults are 656517171, 992482830 and 999999 for the SIMP

scheme and 657514067, 992481934 and 3999 for the DIMP scheme, respectively.

Table 5.1 shows the result of the simulation for both SIMP and DIMP.

Error detection
scheme

No. of stuck-at
faults

No. of random
inputs

Percentage of
error detection

SIMP 1650 1000000 99.8479%
DIMP 1650 1000000 99.9994%

Table 5.1: Single stuck-at fault injection in a slice of a bit-parallel GF (2163) PB
multiplier

In fact, SIMP cannot detect errors on input B; however, it can detect the errors

on bi’s inside of the SM module with the probability given in (4.4). In Figure 5.7, a
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single-bit error on the main input of the SM module denoted by cross sign cannot

be detected by SIMP but errors on other locations denoted by circle sign can be

detected with a certain probability.

1

bi

SM module

mm
1

1

Figure 5.7: Possible fault locations in bi input of the SM module

According to Table 5.1, the percentage of error detection of DIMP is higher

than SIMP, although DIMP cannot detect single-bit errors on input B when the

parities of all partitions of input A are zero (see Section 5.1.3).

Multiple Stuck-at Fault Injection

For each multiple stuck-at fault injection, we randomly chose a number of above-

mentioned locations, i.e., 3(ω−2)+5m+1 locations, in a slice of the PB multiplier

and then we randomly injected either stuck-at 0 fault or stuck-at 1 fault at each cho-

sen location. In this experiment, 500 random multiple stuck-at faults were injected

for each of 1000000 million random inputs. This experiment was very time con-

suming since for each multiple stuck-at fault injection all above-mentioned locations

should be accessed. The number of detected and undetected faults are 498046872

and 1953128 for SIMP and 498472548 and 1527452 for DIMP, respectively. Ac-

cording to the results of the experiments, which are presented in Table 5.2, DIMP

has a higher percentage of error detection compared to SIMP.
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Error detection
scheme

No. of stuck-at
faults

No. of random
inputs

Percentage of
error detection

SIMP 500 1000000 99.6094%
DIMP 500 1000000 99.6945%

Table 5.2: Multiple stuck-at fault injection in a slice of a bit-parallel GF (2163) PB
multiplier

Furthermore, we performed the multiple fault injections in an alternative method.

In this experiment, we randomly chose 2 to 5 locations from the above-mentioned

locations in a slice of the PB multiplier and then we randomly injected either stuck-

at 0 fault or stuck-at 1 fault at each chosen location, i.e., the Hamming wight of

our injected error vectors were more than 1 and less than 6. Similarly, in this

experiment, we injected 500 random multiple stuck-at faults for each of 1000000

million random input pairs. The reason for performing this experiment is that

low weight faults may be more probable in real circumstances. The number of

detected, masked and undetected faults are 382881592, 97749191 and 19369217 for

SIMP, and 383212154, 97748343 and 19039503 for DIMP, respectively. The results

of the experiment are presented in Table 5.3.

Error detection
scheme

No. of stuck-at
faults

No. of random
inputs

Percentage of
error detection

SIMP 500 1000000 95.18%
DIMP 500 1000000 95.27%

Table 5.3: Injection of low weight multiple stuck-at faults in a slice of a bit-parallel
GF (2163) PB multiplier

5.2.2 Analysis of Time and Area Overheads

A circuit diagram of a complete bit-parallel PB multiplier with CED is depicted in

Figure 5.8. The input value of the very first slice is input A along with its parity
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Figure 5.8: A complete bit-parallel multiplier with CED

P (A) generated by a parity generator. In the first SR-P2 and SM-P2 modules, the

inputs related to parity prediction of input B are initialized with zero vectors as

discussed in Section 5.1.1. The parity checkers OPC and DPC are same as those

presented in Figure 5.5. As shown in Figure 5.8, an OPC is located at the end of

every slice except every tth slice, where a DPC is located. Additionally, once the

inputs A and B are updated, the results of the multiplication and error detection

are ready after certain amount of delay due to the propagation of various signals

through the circuit.
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We have described the DIMP scheme by VHDL to obtain a realistic approx-

imation of area and time overheads. As it can be inferred from Lemma 5.1 and

Theorem 5.1, choosing the field defining polynomial F (x) in such a way that the

parity of F (x) in each partition is zero, i.e., PFj
= 0, slightly reduces the number

of XOR gates in parity prediction circuits. Additionally, choosing F (x) to be a tri-

nomial or a pentanomial reduces the number of XOR gates in the design and make

the entire design smaller. After RTL coding, to check the correct functionality of

the design, Modelsim(TM) was used. Furthermore, we implemented the scheme on

a Xilinx Spartan 3 (XC3S5000) FPGA using Xilinx ISE 7.1i.

The first experiment was to measure the area and time overheads of the DIMP

scheme for a GF (2163) multiplier for different numbers of parity bits of the first

input while the number of parity bits of the second input was fixed to three. We

implemented the scheme using one of the NIST recommended field defining poly-

nomials for ECDSA F (x) = x163 +x7 +x6 +x3 +1. This polynomial is very suitable

for implementation because the parities of all of its partitions are zero when the

number of the partitions ranges from 2 to 20.

To have a realistic impression about area consumption of the DIMP schemes,

we present Table 5.4 which investigates the number of required FPGA slices and

the area consumption percentage of the scheme.

No. of parity bits NoCED 4 8 12 16 20
Number of required Slices 13541 19679 21069 22497 24518 26018

FPGA area consumption (%)1 40.69 59.13 63.30 67.60 73.67 78.18

1The total number of slices in a Xilinx Spartan 3 (XC3S5000) FPGA is 33280.

Table 5.4: FPGA area consumption for a bit-parallel GF (2163) PB multiplier

As shown in Figure 5.9, the area overhead increases as the number of parity

bits increases. For all points in the graph depicted in the figure, a line is fitted as
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follows:

for GF (2163) : overhead (%) = 3.47× (# of parity bits) + 25.09. (5.6)
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Figure 5.9: Area overhead of DIMP vs. parity-bit number for the field GF (2163)

Based on the experimental results and as it can be inferred from (5.6), area

overhead tends to increase linearly except for very small numbers of parity bits.

Furthermore, the area overhead of the SIMP and the DIMP schemes are com-

pared in Figure 5.10. The results for SIMP are obtained from [7]. As expected, the

area overhead of DIMP is more than SIMP in similar implementations, however,

the difference is not significant. Additionally, the area overhead is in an acceptable

range because for obtaining a sufficiently high probability of error detection (say

≈ 0.997), one needs only eight parity bits for the first input and three parity bits for

the second one in the proposed scheme. This results in about 55% area overhead,

which is lower than 100% overhead of the DMR scheme.

We also investigated the time overheads of the GF (2163) PB multipliers for
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Figure 5.10: Area overhead DIMP vs. SIMP for the field GF (2163)

different numbers of parity bits as shown in Figure 5.11. The time overhead of

the bit-parallel implementation is the delay of the critical path, i.e., the maximum

propagation delay from one of the input pins to one of the output pins. We obtain

the delays of all input pins to output pins from the post place and route static

timing report of Xilinx ISE. Results show that the time overheads are generally

less than 30% when more than two parity bits are used.

In the second experiment, we fixed the number of parity bits of the first input

to eight bits and measured the area and time overheads of DIMP when the number

of parity bits for the second input ranges from 3 to 20. As shown in Figure 5.12(a),

the area overhead increases slightly in this range, i.e., less than 2%. Additionally,

as shown in Figure 5.12(b), the range of changes in the time overhead is not very

significant, i.e., less than 15%, and is in a similar range as the time overhead of the

first experiment.
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Figure 5.11: Time overhead vs. parity-bit number for the field GF (2163)

5.3 Extending SIMP and DIMP to Dual and Nor-

mal Bases

In this section, the SIMP and DIMP schemes are extended to dual and normal

bases (type I and type I optimal normal bases). In the following sections, we divide

the first input of the multiplier, i.e., input A, into k parts. The length of each part

is l = m
k

for DB and ONB2 and is l = m+1
k

for ONB1. Moreover, the second input

B is divided into s parts in DIMP. Similarly, the length of each part is t = m
s

for

DB and ONB2 and is t = m+1
s

for ONB1(see Section 4.1 for the cases that m or

m + 1 are not divisible by k or s).

5.3.1 SIMP and DIMP in Dual Basis

As mentioned in Section 2.1, suppose that the set {y0, y1, · · · , ym−1} is the dual of

the polynomial basis {x0, x1, · · · , xm−1}. Hence, A ∈ GF (2m) can be represented



5.3 Extending SIMP and DIMP to Dual and Normal Bases 121

0
 5
 10
 15
 20


50


51


52


53


54


55


56


57


 DIMP (with 8 parity bits in the first input)


A
re

a
 O

v
e
rh

e
a
d
s
 (

%
)


Number of Parity Bits in the Second Input


(a) Area overhead

0
 5
 10
 15
 20


0


20


40


60


80


100


 DIMP (with 8 parity bits in the first input)


T
im

e
 O

v
e
rh

e
a
d
 (

%
)


Number of Pairty Bits in the Second Input


(b) Time overhead

Figure 5.12: Area and time overheads of DIMP vs. parity-bit number of the second
input for the field GF (2163)

in DB as follows:

A =

m−1∑

i=0

a′
iyi.

Moreover, for A, B, C ∈ GF (2m) we have:

CDB = BPBADB

= b0ADB + b1xADB + · · ·+ bm−1x
m−1ADB.

Hence, we can implement DB multiplications using a similar architecture as PB

ones. Given that A(n−1) and A(n) are input and output of an SR module, respec-

tively, we have: A(n) = xA(n−1). Also, VA and SM modules are same as those in a

PB multiplier. As an example, Figure 5.13 shows the nth slice of a bit-parallel DB

multiplier, where 1 ≤ n ≤ m− 1 and A(0) = A and C(0) = b0A.
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Figure 5.13: A slice of a bit-parallel DB multiplier

SIMP in Dual Basis

Recall that in SIMP, we divide the input A into k parts. Considering that A
(n−1)
j

and A
(n)
j are the jth parts of A(n−1) and A(n), respectively, we have:

A(n−1) =
l−1∑

i=0

a
′(n−1)
i yi +

2l−1∑

i=l

a
′(n−1)
i yi + · · ·+

kl−1∑

i=(k−1)l

a
′(n−1)
i yi

=
k−1∑

j=0

(j+1)l−1
∑

i=jl

a
′(n−1)
i yi

=
k−1∑

j=0

A
(n−1)
j .

Also, according to Lemma 3.4 we have:

A(n) =
m−2∑

i=0

a
′(n−1)
i+1 yi +

m−1∑

i=0

fia
′(n−1)
i ym−1

=

k−2∑

j=0





(j+1)l−2
∑

i=jl

a
′(n−1)
i+1 yi + a

′(n−1)
(j+1)l y(j+1)l−1





+





m−2∑

i=(k−1)l

a
′(n−1)
i+1 yi +

(
m−1∑

i=0

fia
′(n−1)
i

)

ym−1



 .
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Therefore,

A
(n)
j =







∑(j+1)l−1
i=jl a

′(n−1)
i+1 yi, 0 ≤ j ≤ k − 2,

∑m−2
i=(k−1)l a

′(n−1)
i+1 yi +

(
∑m−1

i=0 fia
′(n−1)
i

)

ym−1, j = k − 1.

Using parity function P (.), we have:

P (A
(n)
j ) =







P
(
∑(j+1)l−1

i=jl a
′(n−1)
i+1 yi

)

, 0 ≤ j ≤ k − 2,

P
(
∑m−2

i=(k−1)l a
′(n−1)
i+1 yi

)

+ P
((
∑m−1

i=0 fia
′(n−1)
i

)

ym−1

)

, j = k − 1,

=







a
′(n−1)
jl + P (A

(n−1)
j ) + a

′(n−1)
(j+1)l , 0 ≤ j ≤ k − 2,

a
′(n−1)
(k−1)l + P (A

(n−1)
k−1 ) + P

(n−1)
FA , j = k − 1,

(5.7)

where P
(n−1)
FA = a

′(n−1)
0 +

∑ω−2
i=0 a

′(n−1)
θi

and 1 ≤ n ≤ m − 1. Moreover, ω is the

Hamming wight of the field defining polynomial F (x) and θi’s contain the indices

of the ω − 2 nonzero coefficients of F (x) other than f0 and fm.

According to Figure 5.13, we can write:

C(n) = C(n−1) + bnA(n).

Similarly for each partition, we have:

C
(n)
j = C

(n−1)
j + bnA

(n)
j . (5.8)
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Therefore,

P (C
(n)
j ) = P (C

(n−1)
j ) + bnP (A

(n)
j )

=







b0P (Aj), n = 0, 0 ≤ j ≤ k − 1,

P (C
(n−1)
j ) + bna

′(n−1)
jl + bnP (A

(n−1)
j ) + bna

′(n−1)
(j+1)l , 1 ≤ n ≤ m− 1, 0 ≤ j ≤ k − 2,

P (C
(n−1)
j ) + bna

′(n−1)
(k−1)l + bnP (A

(n−1)
k−1 ) + bnP

(n−1)
FA , 1 ≤ n ≤ m− 1, j = k − 1.

Now, the parity of each partition of the output of a VA module in each slice can

be computed using the information of the previous slice. In SIMP, this should be

compared against the actual parity of that part.

DIMP in Dual Basis

Let us write (5.7) in an iterative manner for 1 ≤ n ≤ m− 1 as follows:

P (A
(n)
j ) = P (Aj) +







∑n−1
g=0 a

′(g)
jl + a

′(g)
(j+1)l, 0 ≤ j ≤ k − 2,

∑n−1
g=0 a

′(g)
(k−1)l + P

(g)
FA, j = k − 1.

Furthermore, let us define h
′(n)
j as follows:

h
′(n)
j =







0, n = 0, 0 ≤ j ≤ k − 1,
∑n−1

g=0 a
′(g)
jl + a

′(g)
(j+1)l, 1 ≤ n ≤ m− 1, 0 ≤ j ≤ k − 2,

∑n−1
g=0 a

′(g)
(k−1)l + P

(g)
FA, 1 ≤ n ≤ m− 1, j = k − 1.

Therefore, we have:

P (A
(n)
j ) = P (Aj) + h

′(n)
j . (5.9)

Now, we consider s partitions for input B. In DIMP, we would like to compute

the predicted parity of each partition of the output of every tth VA module based

on the parities of both inputs A and B. Therefore, after unrolling (5.8) we can

have an expression similar to (5.3) as follows:
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P (Cj
(q)) =

(q+1)t−1
∑

n=0

bnP (A
(n)
j )

= b0P (Aj) +

(q+1)t−1
∑

n=1

bnP (A
(n)
j ),

(5.10)

where 0 ≤ q ≤ s− 1.

Substituting (5.9) in (5.10) and similar to (5.4), for 0 ≤ j ≤ k − 1 and 0 ≤ n ≤

m− 1 we have:

P (Cj
(q)) = P (Aj)P (B(q)) +

(q+1)t−1
∑

n=1

bnh
′(n),

where P (B(q)) =
∑q

i=0 P (Bi) and P (Bi) is the parity of the ith partition of B.

5.3.2 SIMP and DIMP in Type I Normal Basis

As mentioned in Section 3.4.3, an element A ∈ GF (2m), for certain values of m,

can be represented using type I optimal normal basis (ONB1) as A =
∑m

i=1 âix
i.

Alternatively, we can have A =
∑m

i=0 âix
i, where â0 = 0. Let B ∈ GF (2m) also be

represented in ONB1. Then multiplying A and B, we have:

C = A.B mod xm+1 + 1

=

m∑

i=0

b̂iA
(i),

(5.11)

where A(0) = A, A(i) =
∑m

j=0 â
(i−1)
<j−1>xj and < j − 1 >= j − 1 mod m + 1 (see

Section 3.4.3). Hence, an ONB1 multiplier can be constructed with an architecture

similar to that of PB. However, the SR module performs a rotation or cyclic shift

such that the MSB rotates back to the LSB position. Figure 5.14 shows a slice of
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a bit-parallel ONB1 multiplier.

SM VA

b̂n

A(n−1)

A(n)

C(n)

m + 1

C(n−1)

Rotation

m + 1

m + 1

Figure 5.14: A slice of a bit-parallel ONB1 multiplier

It is worth mentioning that the intermediate and final results of the multipli-

cation are (m + 1) bits long. Therefore, as mentioned in Section 3.4.3, we should

XOR the LSB of C with its other bits to have the final result of the multiplication

in ONB1 representation.

SIMP in ONB1

As mentioned earlier, we divide input A into k parts. The length of each part

is l = m+1
k

. Suppose that A
(n−1)
j and A

(n)
j are the jth parts of A(n−1) and A(n),

respectively. Then we have:

A(n−1) =
k−1∑

j=0

xjl

(
l−1∑

n=0

â
(n−1)
jl+n xn

)

=
k−1∑

j=0

A
(n−1)
j .

Moreover, considering (5.11), we have:

A(n) =
k−1∑

j=0

xjl

(
l−1∑

i=0

â
(n−1)
<jl+n−1>xn

)

=
k−1∑

j=0

A
(n)
j .
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where < jl + n− 1 >= jl + n− 1 mod m + 1.

Now applying parity function P (.), we have:

P (A
(n)
j ) = P

(

xjl

l−1∑

n=0

â
(n−1)
<jl+n−1>xn

)

=
l−1∑

n=0

â
(n−1)
<jl+n−1>

= â
(n−1)
<jl−1> +

(
l−1∑

i=0

â
(n−1)
jl+n

)

+ â
(n−1)
(j+1)l−1

= â
(n−1)
<jl−1> + P (A

(n−1)
j ) + â

(n−1)
(j+1)l−1,

(5.12)

where 0 ≤ j ≤ k − 1.

Using (5.8) and following a similar procedure as in Section 5.3.1, we have:

P (C
(n)
j ) = P (C

(n−1)
j ) + b̂nâ

(n−1)
<jl−1> + b̂nP (A

(n−1)
j ) + b̂nâ

(n−1)
(j+1)l−1,

where 0 ≤ j ≤ k − 1, 1 ≤ n ≤ m and C
(0)
j = 0.

In SIMP, we compare the predicted parity of the jth part with its actual parity

after every VA module and before the first one (in bit-parallel implementation).

DIMP in ONB1

In DIMP, the first input is partitioned same as SIMP and the second input is

divided into s where the length of each partition is t = m+1
s

. Now, using (5.12), for

0 ≤ j ≤ k − 1 and 1 ≤ n ≤ m we have:

P (A
(n)
j ) = P (Aj) +

n−1∑

g=0

â
(g)
<jl−1> + P (A

(g)
j ) + â

(g)
(j+1)l−1

= P (Aj) + ĥ
(n)
j ,
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where ĥ
(n)
j =

∑n−1
g=0 â

(g)
<jl−1> + P (A

(g)
j ) + â

(g)
(j+1)l−1. Following a similar procedure as

in Section 5.3.1, for 0 ≤ j ≤ k − 1 an 0 ≤ q ≤ s− 1 we have:

P (Cj
(q)) = P (Aj)P (B(q)) +

(q+1)t−1
∑

n=1

b̂nĥ
(n)
j , (5.13)

where P (B(q)) =
∑q

i=0 P (Bi) and P (Bi) is the parity of the ith partition of B.

Using (5.13), one can compare the parity of the jth part of the output of a VA

module at every tth slice of the multiplier with its actual parity.

5.3.3 SIMP and DIMP in Type II Normal Basis

As mentioned in Section 3.4.3, to represent an element A ∈ GF (2m) in type II

normal basis (ONB2), the following set can be used:

{
γ + γ−1, γ2 + γ−2, γ3 + γ−3, · · · , γm + γ−m

}
,

where γ is a normal element in the field. Suppose that A, B ∈ GF (2m). Then

according to (3.15) the result of their multiplication is as follows:

C =

m∑

n=1

m∑

i=1

b̂n

(
â|n−i| + â||n+i||

) (
γi + γ−i

)
,

where â0 = 0.

The above expression can be expressed as:

C =

m∑

n=1

b̂nA(n), (5.14)

where A(n) =
∑m

i=1

(
â|n−i| + â||n+i||

)
(γi + γ−i).

One way to implement the multiplication mentioned in expression (5.14) is in a
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bit-parallel fashion as shown in Figure 5.15.
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m

m

Figure 5.15: A bit-parallel ONB2 multiplier

In the above figure, module SRn receives input A and computes A(n) according

to (5.14). Considering that â|n−i| = 0 when n = i, the number of XOR gates in

each SRn module is m + 1. Table 5.3.3 shows the number of 2-input gates needed

for the multiplier shown in Figure 5.15.

Module Number of gates
2-input AND 2-input XOR

SRn — m(m− 1)
SM m2 —
VA — m(m− 1)

Total m2 2m(m− 1)

Table 5.5: The number of 2-input gates needed for the bit-parallel ONB2 multiplier

Note that the first input A is divided into k parts in the SIMP and DIMP

schemes and the second input B is divided into s parts in DIMP. The length of

each part is l = m
k

for the first input and t = m
s

for the second input, respectively.
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SIMP in ONB2

Dividing input A into k parts for 1 ≤ n ≤ m, we have:

A(n) =

k−1∑

j=0

(j+1)l
∑

i=jl+1

(â|n−i| + â||n+i||)(γ
i + γ−i)

=
k−1∑

j=0

A
(n)
j .

Let us compute the parity of each part of the first SR module, i.e., SR1, directly

from A for 0 ≤ j ≤ k − 1 as follows:

P
(

A
(1)
j

)

=

(j+1)l
∑

i=jl+1

(â|1−i| + â||1+i||)

= â|1−jl−1| + â|1−jl−2| +





(j+1)l
∑

i=jl+3

â|1−i|





+





(j+1)l−2
∑

i=jl+1

â||1+i||



+ â||(j+1)l|| + â||(j+1)l+1||

= âjl + â|1+jl| + â||(j+1)l|| + â||(j+1)l+1||.

Considering that â0 = 0 for j = 0 and â||m+1|| = â||m|| for j = k − 1, we have:

P
(

A
(1)
j

)

=







â1 + âl + âl+1, j = 0,

âjl + âjl+1 + â(j+1)l + â(j+1)l+1, 1 ≤ j ≤ k − 2,

â(k−1)l + â(k−1)l+1, j = k − 1.

(5.15)

Therefore, the PPC of each partition can be constructed using three 2-input

XOR gates at maximum. Now, we compute the parities of the other SR modules

as follows:
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P
(

A
(n)
j

)

− P
(

A
(n−1)
j

)

=

(j+1)l
∑

i=jl+1

(â|n−i| + â||n+i||)−

(j+1)l
∑

i=jl+1

(â|n−1−i| + â||n−1+i||)

= â|n−1−jl−1| + â|n−(j+1)l| + â||n−1+jl+1|| + â||n+(j+1)l||.

Therefore, for 2 ≤ n ≤ m, we have:

P
(

A
(n)
j

)

= P
(

A
(n−1)
j

)

+ â|n−jl−2| + â|n−(j+1)l| + â||n+jl|| + â||n+(j+1)l||. (5.16)

Similar to PB, DB and ONB1, we have:

P (C
(n)
j ) = P (C

(n−1)
j ) + b̂nP (A

(n)
j ),

where 0 ≤ j ≤ k − 1, 1 ≤ n ≤ m and C
(0)
j = 0.

Figure 5.16 shows the parity prediction strategy for SIMP in ONB2.
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Figure 5.16: Parity prediction strategy for SIMP in ONB2
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DIMP in ONB2

Let us write (5.16) in an iterative form as follows:

P
(

A
(n)
j

)

=






(5.15), n = 1,

P
(

A
(1)
j

)

+
∑n

g=2 â|g−jl−2| + â|g−(j+1)l| + â||g+jl|| + â||g+(j+1)l||, 2 ≤ n ≤ m.

Now, we define ĥ
(n)
j as follows:

ĥ
(n)
j =







0, n = 1,
∑n

g=2 â|g−jl−2| + â|g−(j+1)l| + â||g+jl|| + â||g+(j+1)l||, 2 ≤ n ≤ m.

Hence, for 1 ≤ n ≤ m, we have:

P
(

A
(n)
j

)

= P
(

A
(1)
j

)

+ ĥ
(n)
j .

Now, similar to PB, DB and NB, for 0 ≤ j ≤ k − 1 an 0 ≤ q ≤ s− 1 we have:

P (Cj
(q)) = P (A

(1)
j )P (B(q)) +

(q+1)t−1
∑

n=1

b̂nĥ
(n)
j , (5.17)

where P (B(q)) =
∑q

i=0 P (Bi) and P (Bi) is the parity of the ith partition of B.

5.4 Summary

In this chapter, a concurrent error detection scheme, referred to as DIMP, is pre-

sented for polynomial basis multipliers. In this scheme, multiple parity bits are

used for both inputs of the multiplier. The scheme can detect errors in both inputs
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and inside of the multiplier with a probability of more than 75% using two party

bits for each input. This probability approaches unity as the number of parity bits

of the inputs increases. Results of our bit-parallel implementation show that the

area overhead has an increasing trend. However, this overhead is lower than that

of the traditional dual modular redundant scheme for a sufficient number of parity

bits. Furthermore, the average time overhead due to the use of the scheme in the

bit-parallel implementations is around 25%. In this chapter, the SIMP and DIMP

schemes are also extended to finite field multipliers that use a dual or an optimal

normal basis.



Chapter 6

Linear Code Based Error

Detection Schemes

In the previous chapters, RESO based and parity based schemes are used for de-

tecting errors. This chapter presents three schemes for the detection of errors in

both bit-serial and bit-parallel polynomial basis multipliers over binary extension

fields based on the scaling technique (see Chapter 1). The proposed schemes can

be applied to any finite field GF (2m). In these schemes, we use linear codes. Such

codes have also been used in [27]. Important differences between this work and [27]

are as follows. First, the error model of this work is more generic and the error can

occur in any location of the circuit. Secondly, this work gives much more flexibil-

ity to choose the field defining and the code generator polynomials. This leads to

a reduction in the number of redundant bits and in turn a reduction in the area

overhead.

In this chapter, the error detection probability of the code presented in this work

is investigated. Also, the error detection capabilities of the schemes are evaluated

by a number of simulation-based fault injections. Among three schemes presented

in this chapter, one has a similar percentage of error detection as SIMP and the

134
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other two schemes have slightly better percentage of error detection compared to

DIMP. Furthermore, the area and time overheads of the schemes for both bit-serial

and bit-parallel implementations are presented. Results show that, in our bit-serial

implementations for eight redundant bits, the area overheads are in a reasonable

rang, i.e., lower than dual modular redundant systems, and the time overheads are

quite small, i.e., less than 15%. In bit-parallel implementations, however, the time

and area overheads of only one of the schemes are in the acceptable range.

The organization of this chapter is as follows. In Section 6.1, a class of linear

codes, denoted as L, is presented. Three concurrent error detection schemes are

presented in Section 6.2. Using one of the schemes, namely the single-input encod-

ing, we develop error detectable bit-serial and bit-parallel multiplier structures in

Section 6.3. The error detection capability of the single-input encoding scheme is

then investigated in Section 6.4. Our second scheme is explained in Section 6.5.

In Section 6.6, the third scheme is discussed. The time and area overheads of the

schemes are presented in Section 6.8. Finally, Section 6.9 gives a summary of the

chapter.

Part of this work has been presented in [8].

6.1 A Class of Linear Codes: L Code

In an (n, m) block code, the input information sequence is divided into m-bit blocks

and each block is encoded to an n-bit codeword (n > m). One important class of

block codes is linear codes. These are extensively used in communication appli-

cations for correcting/detecting errors in transmission channels. Here, the binary

linear codes are considered for detecting errors in the polynomial basis multipliers.

In the simplest form, an (n, m) block code is linear if and only if the modulo-2

addition of two codewords is also a codeword.
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Let V = (v0, v1, · · · , vn−1) be a codeword. A polynomial whose coefficients are

the components of V , is said to be a code polynomial. A code polynomial of degree

up to n− 1 is generated with a polynomial of degree n−m of the following form:

g(x) = g0 + g1x + g2x
2 + · · ·+ gn−m−1x

n−m−1 + xn−m,

where gi ∈ GF (2). Polynomial g(x) is called a generator polynomial. Every code

polynomial in the code is a multiple of g(x). In fact, our (n, m) linear code L

maps an element of a finite field GF (2m) to an element of a commutative ring

with modulus F (x) = f(x)g(x), where f(x) is the irreducible polynomial used for

representing the elements of GF (2m). Note that, in this chapter, f(x) and F (x)

are the field defining polynomial and the modulus of the ring, respectively.

It is worth mentioning that the well-known cyclic code has the corresponding

modulus as xn − 1. If one wants to use cyclic codes to encode the elements of the

field, then f(x)g(x) = xn − 1. Therefore, for a given f(x), this limits the number

of choices of g(x) and n.

6.2 Concurrent Error Detection Schemes

Errors may be caused by different types of faults such as open faults, short (bridg-

ing) faults, and/or stuck-at faults. Furthermore, the faults can be transient or

permanent. In this chapter, we investigate three schemes for detecting random

errors.

In the first scheme, which lays foundation of discussions for the other schemes,

only one of the inputs of the PB multiplier is encoded, i.e., it is multiplied by

generator g(x). The second input is not encoded. In the second scheme, both inputs

are encoded. In general, they can be encoded with two different generators, g1(x)

and g2(x). The first and the second schemes are referred to as single-input encoding
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(SIE) and double-input encoding (DIE), respectively. In the third scheme, referred

to as hybrid scheme, the SIMP scheme presented in Chapter 4 is used along with

the encoding scheme. In other words, one of the inputs is divided into a number of

partitions and a parity bit for each partition is considered and preserved throughout

the multiplication. Additionally, the second input is encoded by a generator g′(x).

As expected, DIE has better error detection capability than SIE but its area

overhead is higher. Nevertheless, the probability of error detection of SIE can be

within an acceptable range because for some applications, for example in an elliptic

curve cryptographic processor, the second input either comes from other operations

such as adders and multipliers or comes as the direct input to the multiplier. In

the first case, if the previous operation has an error detection circuitry, its output,

which is the second input of the current multiplier, is expected to be error free. In

the second case, one can use a concurrent error detection technique for the input

of the multiplier once to avoid faulty inputs. On the other hand, it turns out that

the hybrid scheme has similar error detection capability as DIE and it also has

significantly lower area overhead. Depending on the further use of the multiplier’s

output, the PB multiplier with one of these schemes can produce either an encoded

output, i.e., multiplied by only one generator, or an unencoded output.

6.3 SIE Based Error Detectable Multipliers

As mentioned in Section 6.1, a PB multiplier can be constructed with three types

of modules: 1) SR, 2) SM, and 3) VA. In the following, (n, m) L codes are applied

to the inputs of these modules to obtain error detectable multipliers. For bit-serial

implementation, clearly, the size of registers should increase from m bits to n bits.
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6.3.1 SM and VA Modules

Suppose that an (n, m) L code is used and g(x) is the generator polynomial. Let

A, B, S and P ∈ GF (2m) and b ∈ GF (2), where scalar multiplication b.A = P and

vector addition A + B = S. Suppose A′, B′, S ′ and P ′ ∈ GF (2n) are the results of

encoding A, B, S and P , respectively. Thus, for scalar multiplication we have:

b.A′ = b.Ag = Pg = P ′,

and for vector addition we have:

A′ + B′ = Ag + Bg = (A + B)g = Sg = S ′.

Accordingly, for using L codes, the sizes of SM and VA modules increase from

m bits to n bits each.

6.3.2 SR Module

As shown in Figure 6.1(a), the unencoded input and the output of the SR module

are U(x) =
∑m−1

i=0 uix
i and Us(x) =

∑m−1
i=0 usi

xi, respectively. The code generator

polynomial, g(x), over GF (2) of degree n −m is used for encoding. The encoded

input and the output of the SR module (see Figure 6.1(b)) are V (x) =
∑n−1

i=0 vix
i

and Vs(x) =
∑n−1

i=0 vsi
xi, respectively.

In an SR module with unencoded input, we have:

Us(x) = xU(x) mod f(x).
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(b)

(a)

SR

SR

n

m(f)

(F )

Vs(x)V (x)

Us(x)U(x)

n

m

Figure 6.1: SR module: (a) with unencoded input, SR depends on f(x), (b) with
encoded input, SR depends on F (x)

According to (2.4):

Us(x) =
m−2∑

i=0

uix
i+1 + um−1

m−1∑

i=0

fix
i = x

m−1∑

i=0

uix
i

+um−1

(

xm +

m−1∑

i=0

fix
i

)

= xU(x) + um−1f(x).

(6.1)

On the other hand, for encoded inputs to SR module we have:

V (x) = U(x)g(x). (6.2)

Thus, using (6.1) and (6.2), for input V (x) the output of the SR module is:

Vs(x) = Us(x)g(x) = xU(x)g(x) + um−1f(x)g(x)

= xV (x) + um−1F (x).
(6.3)

Since F (x) can be considered to be fixed, it can be pre-computed. On the other

hand, vn−1 = um−1.gn−m and gn−m = 1, thus:

vn−1 = um−1. (6.4)
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Therefore, using (6.3) and (6.4) we have:

Vs(x) = xV (x) + vn−1F (x). (6.5)

In (6.5), F (x) is a reducible polynomial but similar to the case of irreducible

polynomial the following remark holds.

Remark 6.1 Let ω(F ) be the Hamming weight of F (x). The number of XOR gates

required for constructing the SR module with encoded input, shown in Figure 6.2,

is ω(F )− 2.

f1

fn−1

fi

vsn−1
vn−1

vn−2 vsi

vi−1

vs0

vs1

v0

Figure 6.2: SR module with encoded input

6.3.3 Bit-serial and Bit-parallel Polynomial Basis Multipli-

ers

To construct a bit-serial and a bit-parallel multiplier with concurrent error detection

capability, we will use updated versions of SR, SM, and VA modules with encoded

input. Figure 6.3(a) shows a bit-serial multiplier with concurrent error detection

(CED) capability. For multiplying A and B with CED capability, register D is

initialized with encoded A, i.e., A′. An error checker can be placed at each of the
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three locations: L1, L2 and L3. In the next section, the frequency of check points

will be discussed.

Figure 6.3(b) shows a bit-parallel multiplier with CED capability. In the bit-

parallel multiplier an error checker can be placed after each modules. Thus, there

can be as many as 3m− 2 error checkers for a bit-parallel multiplier.
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(a) Bit-serial
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(b) Bit-parallel

Figure 6.3: Polynomial-basis multiplication

6.3.4 L Code Encoders and Checkers

Encoders, decoders and/or checkers of linear codes are well studied in the literature,

e.g., see [50] for shift register based architecture.

For encoding, data (i.e., an element of GF (2m)) is multiplied by generator poly-

nomial, g(x). The encoder can be implemented in serial fashion using shift registers

and combinational gates or in parallel fashion using only combinational circuits. In

this work, we only consider the parallel one, since it is much faster. For parallel

implementation of an encoder, a parallel multiplier that multiplies the data by a

generator g(x) should be used.
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To check whether an n-tuple at a certain location in the circuit is a codeword,

a checker is placed at that point. A checker, basically, divides the polynomial

corresponding to the n-tuple by the generator polynomial, g(x), of the L code and

if the division has a nonzero remainder, an error signal is given. Again, checkers can

be implemented in serial fashion using linear feedback shift registers or in parallel

fashion using only combinational logic. For parallel implementation, a parallel

divider can be used.

6.4 Error Detection Capability

In this section, our error model and the probability of an undetected error of the

SIE scheme are given. The frequency of the check points is also discussed.

6.4.1 Error Modelling

Similar to Section 4.2, the error model in this work is a bit-flip model. To illustrate

the model, suppose that the error free value of a location, say L, of a polynomial

basis multiplier is an n-tuple, say v = (v0, v1, · · · , vn−1). An error vector is also an

n-tuple, say e = (e0, e1, · · · , en−1). The number of possible errors is 2n − 1. The

erroneous value of the location L is ve = v + e, where ’+’ is bitwise XOR. In other

words, an error is a modulo-2 additive term at a certain location of a PB multiplier

and the ith bit of the error vector e being one implies that the ith bit of the value of

the location L has changed from 0 to 1 or vice versa. If the location is one of the

modules (SR, SM or VA), without loss of generality we can assume that the error

vector should be XORed with the output of the component.

Note that the encoders and checkers should be fault free or at least self checking

[53]. Since in practice the number of redundant bits, n−m, is expected to be much

less than the size of the input operands of the multiplier, m, the self checking
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technique is feasible. In this work, for simplicity we assume that these encoders

and decoders are error free. It will be shown in Section 6.8 that with a moderate

number of redundant bits the probability of error detection becomes quite close to

unity.

6.4.2 Probability of an Undetected Error

For the purpose of error detection, a received n-tuple should be checked if it is still

a codeword or not. Therefore, based on our error model, any nonzero error that is

a multiple of the generator polynomial g(x) cannot be detected. In other words,

any nonzero error vector from the set of all codewords is an undetectable error.

Let the probability of error detection and the probability of an undetected error

be referred to as PrD and PrU , respectively. Clearly, PrD = 1−PrU . Suppose Wi

is the number of codewords of weight i in an (n, m) L code, i.e., Wi is the number

of codewords that contain i ones. The probability of an undetected error can be

computed using such weight distribution of the code. As mentioned, an undetected

error occurs when the error vector is among one of the nonzero codewords. Thus,

PrU =

n∑

i=1

Wip
i(1− p)n−i,

where p is the probability of a bit of error vector being one.

The weight distribution is known for some special codes such as Hamming codes

and Reed-Solomon codes, however, the distribution is not known for the one we use

in this work. Hence, a closed form for PrU cannot be obtained and the probability of

an undetected error is investigated by simulation. In this simulation, we generated

a large number (one million) of error vectors. These vectors were generated based

on the error model discussed in Section 6.4.1. In other words, the probability of

having one bit of the vector being one is p. Then we investigated how many of these
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error vectors cannot be detected. As mentioned in the previous section, assuming

that v is an error free value of a location and e is the error vector in that location,

we have ve = v + e. Since v is a valid codeword, it is divisible by g(x). Therefore,

ve becomes a valid codeword if and only if e is a valid one, i.e., e is divisible by

g(x). As a result, to investigate the probability of an undetected error for the L

code, we need to determine the probability of having an error vector as a valid

codeword of the code. Figure 6.4 shows the result of our simulation for (167, 163),

(169, 163) and (171, 163) L codes with generator polynomials g(x) = x4 + x + 1,

g(x) = x6 + x + 1, and g(x) = x8 + x4 + x3 + x2 + 1, respectively.
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Figure 6.4: Probability of an undetected error vs. p

A well-known upper bound for the probability of an undetected error for some

(n, m) codes such as the Hamming code is 2−(n−m). Here, the numbers of redundant

bits are 4, 6 and 8, and the dashed and dotted lines in Figure 6.4 show the values

2−4, 2−6 and 2−8, respectively. As it can be seen in the figure, the values of PrU

are either smaller than or quite close to the bounds for all three cases.
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6.4.3 Frequency of Check Points

Similar to Section 4.2.3, suppose that there are several multiple-bit errors in a lo-

cation of the circuit of a PB multiplier. For having an error detection capability

PrD as discussed in previous section, each of the above mentioned locations in Sec-

tion 6.3.3 should have a checker. This requires a very high area overhead especially

for bit-parallel multipliers. The following lemma enables us reduce the number of

checkers considerably.

Lemma 6.1 Suppose only a maximum of one multiple-bit error occurs per round of

a bit-serial multiplier or per slice of a bit-parallel multiplier (see Figure 6.3). Then

any such error can be detected with probability PrD, discussed in Section 6.4.2,

using a parity checker at L3 of the bit-serial multiplier or a parity checker before

the vertical input of every VA and one parity checker after the final VA in the

bit-parallel multiplier.

The proof can be found in Section 4.2.3.

6.5 Double-Input Encoding (DIE)

Having only one input of the PB multiplier encoded can be of concern. If the

second input of the multiplier becomes erroneous, it cannot be detected. One

way to improve this situation is to encode both input operands. In general, the

generators for encoding inputs can be different. However, there are some issues

with regard to choosing the generators that need to be dealt with and they are

briefly discussed in Section 6.5.2.
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6.5.1 Polynomial Basis Multipliers with CED Capability

In the double-input encoding, input A is encoded by the generator g1(x) and B

by g2(x). Let C = A · B mod f(x), where f(x) is the field defining polynomial.

Multiplying each side by g1(x)g2(x), we obtain:

Cg1g2 = ABg1g2 mod fg1g2.

Hence,

Eg1g2(C) = Eg1(A)Eg2(B) mod F(x),

where F(x) = f(x)g1(x)g2(x) and Eg(Z) implies that Z is encoded by generator g.

Let the degrees of g1(x) and g2(x) be r1 and r2, respectively. Clearly, the degree of

F(x) is N = m + r1 + r2.

An SR module can be constructed using (6.5) and by replacements of F (x) and

n with F(x) and N , respectively. To construct a bit-serial multiplier and/or a

bit-parallel multiplier with concurrent error detection capability, we use updated

versions of SR, SM, and VA modules in a very similar manner as shown in Figure 6.3.

Here, the number of rounds of the bit-serial multiplier and the number of slices of

the bit-parallel multiplier are m+ r2 each. Figure 6.5 shows a complete bit-parallel

multiplier with CED using the DIE scheme.

6.5.2 Error Detection Using DIE

Like Section 6.4.1, here, the bit-flip error model is assumed. As shown in Figure 6.5,

for the purpose of error detection, checkers that use the generator g1 are placed in

the same locations as discussed in Section 6.3.3. If there is no error in the circuit,

then the output value of the last checker that uses the generator g1 is Cg2 = ABg2.

Therefore, one more checker that uses the generator g2 should be placed at the

output of the last checker. Then the final result of the multiplication is the output
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Figure 6.5: A complete bit-parallel multiplier with CED using the DIE scheme

of the checker that used the generator g2. Assuming that only a maximum of

one multiple-bit error occurs per round of a bit-serial multiplier or per slice of a

bit-parallel multiplier, we have:

• if an error occurs on input B and the error is a multiple of g2, it cannot be

detected.

• if errors occur on input A and/or inside the PB multiplier and they are not

multiples of g1, they are detected. If they are multiples of g1 but the output

of the last checker that used generator g1 is not a multiple of g2, the errors

are detected as well. Otherwise, they are not detected.
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Note that g2 can be preferably chosen such that its degree is smaller than that

of g1. Polynomial g2 is mainly used for detecting errors in input B although it

affects the error detection of the entire multiplier circuit. Furthermore, this choice

decreases the area overhead of the scheme.

6.6 Hybrid Scheme

As presented in Section 6.8, the parallel implementations of the SIE and the DIE

schemes have high area overheads. In this section, we present a hybrid scheme whose

error detection capability is similar to the DIE scheme but the area overhead of

the parallel implementation is much lower and the time overhead appears to be

reasonable for some practical applications.

6.6.1 Polynomial Basis Multipliers with CED Capability

This scheme combines the SIMP scheme and input encoding scheme discussed

above. In this hybrid scheme, input B is encoded by the generator g′(x), where the

degree of g′(x) is r′. Then A′ =’0 · · ·0A’ is divided into k parts and a parity bit is

assigned to each partition, where the number of appended zeros is r′. The reason of

extending A before partitioning follows. Considering C = A · B mod f(x), where

f(x) is the field defining polynomial with degree m, we multiply each side by g′(x)

as follows:

Cg′ = ABg′ mod fg′.

Let F ′ = fg′. Since the modulus (F ′) is of degree m + r′ and we use a bit-level

architecture for multiplication (see Figure 6.3), all the intermediate and the final

results are of degree m + r′ − 1. Therefore, we extend the size of input A before
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partitioning. Now, the hybrid scheme can be described by the following equation:

{Pk(Eg′(C)), Eg′(C)} =

{Pk(A
′), A′} · Eg′(B) mod {Pk(F

′),F ′} ,
(6.6)

where Eg′(Z) implies that Z is encoded by generator g′ and {Pk(Z), Z} is a vector

and implies that the SIMP scheme with k partitions is used. In this scheme the

size of SM and VA modules should be extended to m + r′ + k.

Lemma 6.2 Let Vs(x) =
∑m+r′−1

i=0 vsi
xi and V (x) =

∑m+r′−1
i=0 vix

i be the output

and input of the SR module, respectively. Additionally, suppose the SR module

depends on the polynomial F ′ = Eg′(F ) =
∑m+r′

i=0 f ′
ix

i. Then in the hybrid scheme,

the SR module is updated as follows:

Vs(x) =
k−1∑

j=0

xjl

(

vjl−1 +
l−1∑

i=1

vjl+i−1x
i + vm+r′−1

l−1∑

i=0

f ′
jl+ix

i

)

,

[Pk(Vs)]j = vjl−1 + [P (V )]j + v(j+1)l−1 + vm+r′−1[P (F ′)]j,

(6.7)

where 0 ≤ j ≤ k − 1, v−1 = 0, l = ⌈m+r′

k
⌉ 1, [Pk(Vs)]j is the jth bit of the k-bit

parity, [P (V )]j and [P (F ′)]j are the parity of the jth part of V and F ′, respectively.

The proof of the lemma can be found in Section 4.1.1.

To construct a bit-serial multiplier and/or a bit-parallel multiplier with concur-

rent error detection capability, we use updated versions of SR, SM, and VA modules

in a very similar manner as shown in Figure 6.3. Since the length of Eg′(B) is m+r′,

the number of rounds of the bit-serial multiplier and the number of slices of the

bit-parallel multiplier are m + r′ each. Assuming that N ′ = m + r′ + k, Figure 6.6

shows a bit-parallel multiplier with CED using the hybrid scheme.

1If m + r′ is not divisible by k, one can append necessary zeros as most significant bits. See
Section 4.1 for other methods of partitioning.
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Figure 6.6: A complete bit-parallel multiplier with CED using the hybrid scheme

6.6.2 Error Detection Using Hybrid Scheme

Having the same error model as the SIE and the DIE schemes, we develop the error

detection strategy as follows (see Figure 6.6). A k-bit parity equality checker is

placed after the VA module of each round of the bit-serial multiplier (or each slice

of the bit-parallel one). The k-bit parity equality checker computes the parities

of the k partitions of the actual value and compares them against the k predicted

parity bits. The checker gives an error signal for any inequality. If there is no

error in the circuit, the output after the last VA module is Cg′ = ABg′. If only

a maximum of one multiple-bit error occurs per round of a bit-serial multiplier or

per slice of a bit-parallel multiplier, we have:
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• if an error occurs on input B and the error is a multiple of g′, it cannot be

detected.

• if errors occur on input A and/or inside the PB multiplier and the parity of

each error in at least one partition is not zero, they are detected. If the parity

of the error in each partition is zero but the output of the last VA module is

not a multiple of g′, the errors are detected as well. Otherwise, they are not

detected.

Similar to the DIE scheme, here g′ can be preferably chosen such that its degree

is smaller than k, since this choice can decrease the area overhead of the scheme.

6.7 Simulation-Based Fault Injection

To evaluate the capability of error detection of the SIE, DIE and hybrid schemes,

we injected a large number of stuck-at faults into a C model of a GF (2163) bit-

parallel PB multiplier. The field defining polynomial was x163 + x7 + x6 + x3 + 1.

Also, the generators for SIE and DIE were g1(x) = x8 + x4 + x3 + x2 + 1 and

g2(x) = x3 + x + 1. For the hybrid scheme, the first input is divided into 8 parts,

i.e., an SIMP with k = 8 is used, and the second input is scaled by g′(x) = g2(x).

Since fault injection in a complete PB multiplier is extremely time consuming, we

performed fault injection in a slice of the PB multipliers. The faults were injected

at the inputs and the outputs of the gates of a slice of PB multipliers. Additionally,

a fault was injected at the bi or b′i input of each SM module as well.

As mentioned earlier, in a slice of a GF (2m) PB multiplier, the number of two-

input gates for SR, SM and VA modules are (ω−2) XOR gates, m AND gates and

m XOR gates, respectively, where ω is the Hamming weight of the field defining

polynomial. Additionally, except for the outputs of AND gates of the SM module,

where are the direct inputs of XOR gates of VA modules, all other inputs and
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outputs can be locations for fault injection. Therefore, considering the bi or b′i

input of the SM module, the number of locations for fault injection in a slice of the

PB multiplier is 3(ω − 2) + 5m + 1. Appendix A presents more information about

our procedures of the fault injections.

6.7.1 Single Stuck-at Fault Injection

For single stuck-at fault injection, we injected two faults (zero and one) at every

pin location. Hence, the total number of injected faults in a slice of the GF (2m)

PB multiplier was 6(ω−2)+10m+2. Also, we injected all above-mentioned faults

for one million and one random inputs. Table 6.1 shows the number of injected

faults for each random input along with the result of the simulation for the SIE,

DIE and hybrid schemes. The number of detected, masked and undetected faults

are 656518037, 992483822 and 999791 for SIE, 657517827, 992483823 and 0 for DIE

and 657507841, 992493809 and 0 for Hybrid, respectively.

Error detection
scheme

No. of stuck-at
faults

No. of random
inputs

Percentage of
error detection

SIE 1766 1000001 99.85%
DIE 1856 1000001 100%

Hybrid 1784 1000001 100%

Table 6.1: Single stuck-at fault injection in a slice of a bit-parallel GF (2163) PB
multiplier

The DIE and hybrid schemes can detect 100% of single stuck-at faults. However,

percentage of error detection of SIE is less than 100%. In fact, SIE cannot detect

errors on input B. This issue was addressed in Section 5.2.
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6.7.2 Multiple Stuck-at Fault Injection

To perform multiple stuck-at fault injection, we randomly chose a number of the

locations mentioned earlier, i.e., 3(ω − 2) + 5m + 1 locations, in a slice of the PB

multiplier and then we randomly injected either stuck-at 0 fault or stuck-at 1 fault

at each chosen location. In this experiment, 500 random multiple stuck-at faults

were injected for each of 1000000 million random inputs. Since the experiment is

very time consuming (see Section 5.2), we performed this simulation only for one

slice. The number of detected and undetected faults are 498046733 and 1953267

for SIE, 498474218 and 1525782 for DIE, and 498474199 and 1525801 for Hybrid,

respectively. The result of the simulations are presented in Table 6.2.

Error detection
scheme

No. of stuck-at
faults

No. of random
inputs

Percentage of
error detection

SIE 500 1000000 99.60935%
DIE 500 1000000 99.69485%

Hybrid 500 1000000 99.69484%

Table 6.2: Multiple stuck-at fault injection in a slice of a bit-parallel GF (2163) PB
multiplier

Comparing the PrU values and the percentage of error detection for the SIMP

and SIE schemes, one can conclude that these schemes have almost same error

detection capabilities. Accordingly, the DIE and hybrid schemes have almost same

capabilities.

6.8 Analysis of Time and Area Overheads

In this section, area and time overheads of the SIE, the DIE and the hybrid error

detection schemes are investigated.

We used the NIST recommended field defining polynomials for ECDSA f(x) =
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x163+x7+x6+x3+1 for our bit-serial implementations. Due to a resource limitation,

we could implement the bit-parallel schemes for m = 144 using the field defining

polynomial f(x) = x144 + x7 + x4 + x2 + 1. Furthermore, the code polynomial

for the SIE scheme was of degree 8 and two code polynomials required for the DIE

scheme were of degrees 8 and 3. For the hybrid scheme, eight parity bits and a code

polynomial of degree 3 were used. We described the scheme by VHDL to obtain

a realistic approximation of the area overhead. We used ModelsimTM to simulate

the design for checking its correct functionality and we implemented the scheme on

a Xilinx Spartan 3 (XC3S5000) FPGA using Xilinx ISE 7.1i.

The area overhead and the time overhead (clock period overhead or latency

overhead) of the bit-serial implementations of the SIE, the DIE, and the hybrid

schemes for a polynomial basis multiplier are given in Table 6.3. The DIE scheme

has the largest area overhead and very small time overhead. The hybrid scheme has

the largest time overhead, but still is in a reasonable range, and the smallest area

overhead. On the other hand, as mentioned earlier, the DIE and the hybrid schemes

have similar capabilities of error detection which are higher than the SIE scheme.

Therefore, for bit-serial implementations, one can choose any of the schemes based

on the area overhead, time overhead and/or error detection capability.

Bit-serial implementations
Overhead SIE DIE Hybrid
area (%) 39.71 52.94 24.33

clock cycle 0 r2 = 3 r2 = 3
clock period (%)1 0 0 12.60

latency (%) 0 1.84 14.67

1can be considered as throughput overhead.

Table 6.3: The time and the area overheads for the bit-serial implementations of
the SIE, the DIE and the hybrid schemes

The time and area overheads of bit-parallel implementations of the schemes are
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also investigated. As shown in Table 6.4, both the time and the area overheads

of the hybrid scheme are significantly lower than the SIE and the DIE schemes.

Therefore, the best choice in bit-parallel implementations is the hybrid scheme.

Note that one can reduce the number of intermediate checkers in bit-parallel im-

plementations in order to achieve lower area and time overheads but this causes a

reduction in the capability of error detection.

Bit-parallel implementations
Overhead SIE DIE Hybrid
area (%) 164.96 169.95 55.14

Time (%)1 165.71 191.19 69.98

1can be considered as maximum delay overhead.

Table 6.4: The time and the area overheads for the bit-parallel implementations of
the SIE, the DIE and the hybrid schemes

6.9 Summary

This chapter has investigated three schemes for detection of multiple-bit random

errors in binary polynomial basis multipliers using linear codes. Based on our simu-

lation, the probability of an undetected error for the L code is approximately 0.004

with eight redundant bits in the codewords. Also, the error detection capabili-

ties of the schemes are evaluated by a number of simulation-based fault injections.

Among three schemes presented in this chapter, one has a similar percentage of er-

ror detection as SIMP and the other two schemes have slightly better percentage of

error detection compared to DIMP. Furthermore, the overheads of the error detec-

tion schemes for bit-serial implementations are lower than the overhead of the dual

modular redundant scheme for a sufficient number of redundant bits. Additionally,

the time overheads of the schemes have been observed to be small, i.e., less than

15%. In bit-parallel implementations, among all three linear code based schemes,
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the hybrid scheme has acceptable area and time overheads.



Chapter 7

Conclusions and Future Work

7.1 Summary and Conclusions

In this thesis, a number of schemes for concurrent error detection of the binary

extension field operations have been presented. For each scheme, the error detection

capability has been evaluated by simulation-based fault injections. Moreover, the

time and space complexities of each scheme have been investigated.

A number of schemes have been presented in Chapter 3, which are efficient

for pipelined architectures and are based on recomputing with shifted operands

(RESO) method. These schemes have been developed to concurrently detect errors

in polynomial, dual, type I and type II optimal normal bases arithmetic operations.

We have also presented one semi-systolic multiplier for each of above-mentioned

bases and applied the CED scheme to them. We have compared these multipliers

with a number of previously published systolic and/or semi-systolic ones. The

results show that this scheme can be considered among the best. Also, a simulation-

based fault injection has been performed for each of the multipliers. Results of the

simulations for single stuck-at faults show 100%, 100%, 99.66% and 100% error

detection for polynomial, dual, type I and type II bases multipliers, respectively.

157
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The simulations also show that the percentage of error detection of this scheme for

the above-mentioned multipliers against multiple stuck-at faults is 100%. Finally,

we have also commented on how RESO can be used for concurrent error correction

to deal with transient faults.

The third scheme, single-input multiple-parity (SIMP) scheme, is to detect er-

rors in bit-serial and/or bit-parallel polynomial basis multipliers. In this scheme

one input of the multiplier has been divided into a number of partitions. In this

scheme, the probability of error detection for random errors is more than 75% and

it quickly approaches unity for approximately 8 parity bits. The overhead of our

implementation tends to increase linearly as the number of parity bits increases.

Results show that the area overhead cost of the bit-serial implementation is lower

than that for the bit-parallel one. Both implementations have lower area overheads

than the traditional dual modular redundant scheme for a sufficient number of

parity bits. Additionally, the average time overhead due to the use of the scheme

in bit-parallel implementations is around 25%, while for bit-serial implementations

time overheads have been observed to be small to negligible. This scheme is also

extended to dual, type I and type II normal bases multipliers.

The fourth scheme, double-input multiple-parity (DIMP) scheme, is a concur-

rent error detection scheme for polynomial basis multipliers and can be considered

as an extension to SIMP. In this scheme, multiple parity bits are used for both in-

puts of the multiplier and hence the scheme can detect errors on both inputs and/or

inside of the multiplier. This scheme can be applied to digit-serial and bit-parallel

multipliers. Based on the simulations, the percentage of error detection of DIMP

is slightly more than SIMP. Additionally, the area overhead of DIMP is slightly

higher than SIMP. This scheme is also extended to dual, type I and type II normal

bases multipliers.

This thesis has also investigated three schemes for detection of multiple-bit ran-
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dom errors in binary polynomial basis multipliers using linear codes. Based on

our simulation, the probability of an undetected error for the L Code presented

in Chapter 6 is approximately 0.004 with eight redundant bits in the codewords.

Furthermore, the overheads of the error detection schemes for bit-serial implemen-

tations are lower than the overhead of the dual modular redundant scheme for a

sufficient number of redundant bits. Additionally, the time overheads of the schemes

have been observed to be small, i.e., less than 15%. In bit-parallel implementations,

among all three linear code based schemes, the hybrid scheme has acceptable area

and time overheads.

As mentioned earlier, the RESO based schemes are efficient for pipelined ar-

chitectures such as systolic arrays. However, the last five schemes can be applied

to both bit-serial and/or bit-parallel multipliers and in this sense they are more

general. Table 7.1 compares the last five schemes in terms of their overheads and

error detection capabilities.

From the lowest to highest

Overhead SIMP DIMP Hybrid SIE DIE
From the highest to lowest

Error detection Hybrid DIMP SIMP
capability DIE SIE

Table 7.1: Comparison of the SIMP, DIMP, SIE, DIE and hybrid schemes

7.2 Future Work

In this thesis, for the RESO based scheme, the number of required gates and their

delays have been given as estimations for time and area complexities. These esti-

mations are quite realistic, however, a more accurate and actual one can be evalu-

ated by actual VLSI implementation of those operations with CED. Moreover, as
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mentioned earlier, applying RESO based scheme to polynomial and dual bases ex-

ponentiation are not inexpensive. Therefore, in addition to suggested look-up table

based method in the thesis, other methods to decrease the overheads are desirable.

The SIMP, DIMP, SIE, DIE and hybrid schemes have been implemented in

bit-serial and/or bit-parallel fashion1. It is expected to have the area overheads of

the digit-serial implementations smaller than those of bit-parallel implementations

and larger than those of bit-serial ones. An FPGA or ASIC implementation can

give the accurate results. Furthermore, these five schemes have been applied to

conventional multipliers. Although some CED schemes were already applied to

special multipliers such as Montgomery multipliers [19], the applications of the

above-mentioned schemes to such multipliers are also desirable

The SIE, DIE and hybrid schemes may be extended to the multipliers in the

bases other than the polynomial basis. Also, one can investigate finding a non-

linear technique to be applied to the multipliers or other operations with a reduced

overhead.

It is worth mentioning that although applying the proposed schemes and in turn

adding some error checking circuitry can help to detect random errors in finite field

multipliers, it may be possible that a cryptographic systems that uses such extra

circuit-equipped multipliers becomes more vulnerable to some types of side-channel

attacks, e.g., power analysis attacks [54]. Effects of such side-channel attacks on

the error-detecting finite field multipliers proposed in thesis may be investigated in

future.

1Note that DIMP cannot be implemented in bit-serial fashion.



Appendix A

Simulation-Based Fault Injection

In this appendix, the simulation-based fault injection technique is explained. For

each proposed scheme, we performed both single-bit fault and multiple-bit fault

injections. To inject single-bit faults, we chose a slice of a bit-parallel multiplier

and considered a number of locations in that slice. Usually these locations were all

the input and output pins of the gates in the slice. As mentioned earlier, if an input

of one gate was directly connected to the output of another gate, usually one of

them was injected. Furthermore, for a set of inputs A and B, both single stuck-at

0 and single stuck-at 1 were injected at all locations. The last step was performed

for one million pairs of random inputs.

To inject one multiple-bit fault, a number of above-mentioned locations, e.g., 2

to 5 locations for some experiments, in the chosen slice were randomly selected and

a random value (zero or one) was injected at each of the selected locations. We

injected 500 multiple-bit faults for each set of inputs A and B. The previous step

was also repeated for one million pairs of random inputs.

To explain the fault injection procedure with more details, a number of pseudo

codes are given. Procedure A.1 presents the main function of either a single or a

multiple stuck-at fault injection.

161
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Procedure A.1 Main procedure of a fault injection

for 1000000 times do

1. Generate random input A

2. Generate random input B

3. Perform fault injection at simulated circuits with inputs A and B

end for

In the following, step 3 of Procedure A.1 is explained for different schemes.

A.1 Fault Injection in Information Redundancy

Based Schemes

The information redundancy based schemes are SIMP, DIMP, SIE, DIE and Hybrid.

For these schemes, both transient and permanent faults can be considered and they

are treated similarly. Procedure A.2 presents the single stuck-at fault injection for

these schemes.
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Procedure A.2 Single stuck-at fault injection for information redundancy based

schemes

1. FFC ←− Fault free computation

2. Inject one single stuck-at fault at one arbitrary slice {

(a) RCF ←− Result of the computation in presence of fault

(b) PP ←− Predicted parity of the output of the VA module of the slice

(c) AP ←− Actual parity of the output of the VA module of the slice

(d) if (PP 6= AP) then

an error/fault was detected

else if (RCF = FFC) then

a fault was masked

else

an error/fault was not detected

3. }until{all locations (mentioned earlier) are injected with both stack-at 0 and

stuck-at 1 faults}

4. Percentage of error detection(PED) =
No. of detected errors/faults

No of all faults− No. of masked faults

Furthermore, Procedure A.3 presents the multiple stuck-at fault injection for

these schemes.
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Procedure A.3 Multiple stuck-at fault injection for information redundancy based

schemes

1. FFC ←− Fault free computation

2. for 500 times repeat{

(a) Randomly choose a number of locations

(b) Inject randomly either zero or one at selected locations

(c) RCF ←− Result of the computation in presence of fault

(d) PP ←− Predicted parity of the output of the VA module of the slice

(e) AP ←− Actual parity of the output of the VA module of the slice

(f) if (PP 6= AP) then

an error/fault was detected

else if (RCF = FFC) then

a fault was masked

else

an error/fault was not detected}

3. PED =
No. of detected errors/faults

No of all faults− No. of masked faults

A.2 Fault Injection in RESO Based Schemes

As mentioned in Section 3.5, this scheme can detect all transient faults. Hence, we

perform the simulations for permanent faults. Procedure A.4 presents the single

stuck-at fault injection for these schemes.
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Procedure A.4 Single stuck-at fault injection for RESO based schemes

1. FFC ←− Fault free computation

2. Compute and store the encoded inputs

3. Inject one single stuck-at fault at one arbitrary row{

(a) CUI ←− Computation with unencoded inputs

(b) CEI ←− Computation with encoded inputs

(c) if (CUI 6= CEI) then

an error/fault was detected

else if (CUI = FFC) then

a fault was masked

else

an error/fault was not detected

4. }until{all locations (mentioned earlier) are injected with both stack-at 0 and

stuck-at 1 faults}

5. PED =
No. of detected errors/faults

No of all faults− No. of masked faults

Additionally, Procedure A.5 presents the multiple stuck-at fault injection for

these schemes.
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Procedure A.5 Multiple stuck-at fault injection for RESO based schemes

1. FFC ←− Fault free computation

2. Compute and store the encoded inputs

3. for 500 times repeat{

(a) Randomly choose a number of locations;

(b) Inject randomly either zero or one at selected locations

(c) CUI ←− Computation with unencoded inputs

(d) CEI ←− Computation with encoded inputs

(e) if (CUI 6= CEI) then

an error/fault was detected

else if (CUI = FFC) then

a fault was masked

else

an error/fault was not detected}

4. PED =
No. of detected errors/faults

No of all faults− No. of masked faults

It is worth mentioning that for optimal normal bases, a permutation should be

performed on the inputs of each computation to convert them from NB to ONB.

Additionally, an inverse permutation should be performed on the output of each

computation to convert it from ONB to NB (see Section 3.4.3).
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