Approximation

of some

Al Problems

Karsten A. Verbeurgt

A thesis
presented to the University of Waterloo
in fulfilment of che
thesis requirement for the degree of
Doctor of Philosophy
in

Computer Science

Waterloo. Ontario. Canada. 1998

©Karsten A. Verbeurgt 1998

il

Nationa! Library

of Canada du Canada

Acquisitions and Acquisitions et

Bibliographic Services
395 Wellington Street

Ottawa ON K1A ON4

Canada Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

Bibliothéque nationale

services bibliographiques

385, rue Wetlington
Ottawa ON K1A ON4

Your file Votre reference

Our fie Notre relerence

L’auteur a accordé une licence non
exclusive permettant a la
Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L’ auteur conserve la propriét¢ du
droit d’auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimes
ou autrement reproduits sans son
autorisation.

0-612-32866-X

Canada

The University of Waterloo requires the signatures of all persons using or pho-

tocopying this thesis. Please sign below. and give address and date.

Abstract

The work of this thesis is motivated by the apparent computational difficulty of
practical problems from artificial intelligence. Herein. we study two particular
Al problems: the constraint satisfaction problem of coherence. and the machine
learning problem of learning a sub-class of monotone DNF formulas from examples.
For both of these problems. we apply approximation techniques to obtain near-
optimal solutions in polynomial time: thus trading off quality of the solution for
computational tractability.

The constraint satisfaction problem we study is the coherence problem. which
is a restricted version of binary constraint satisfaction. For this problem. we apply
semidefinite programming techniques to derive a 0.878-approximation algorithm.
We also show extensions of this result to the problem of settling a neural network

to a stable state.

The approximation model we use for the machine learning problem is the Prob-
ably Approximately Correct (PAC) model. due to Valiant [Val 84]. This is a the-
oretical model for concept learning from examples. where the examples are drawn
at random from a fixed probability distribution. Within this model. we consider
the learnability of sub-classes of monotone DNF formulas on the uniform distri-
bution. We introduce the classes of one-read-once monotone DNF formulas. and
factorable read-once monotone DNF formulas, both of which are generalizations
of the well-studied read-once DNF formulas. and give learnability results for these

classes.

v

Acknowledgements

I would like to thank Ming Li for his support and encouragement of this work
and Paul Thagard for his guidance and introducing me to the coherence problem.
Most of all. I would like to thank my family for their love and support during this

endeavour.

Contents

1 Part I - Approximating Binary CSPs

1.1 Introduction and Motivation
1.2 A Brief Overview of CSP Research
1.3 Approximation i e e e e
1.4 The Coherence Problem
1.5 Applications of Coherence
1.6 The Constraint Satisfaction Problem

1.6.1 Exact Instances of Coherence as Constraint Satisfaction . . .
1.7 The Partial Constraint Satisfaction Problem

1.7.1 Coherence as Partial Constraint Satisfaction

2 The Complexity of Coherence
2.1 A Proof of NP-completeness for Coherence

2.2 Solving Exact Instances of Coherence Efficiently

vi

on

(1]

3 On-line and Connectionist 0.5-Approximations

3.1 An On-line 0.5-Approximation Algorithm
3.2 Optimality of the On-line 0.5-approximation
3.3 A Connectionist Algorithm for Coherence
3.3.1 A Neural Network for Coherence
3.3.2 Harmony and Stable States

3.3.3 Variations on the Update Rule with Provable Approximation

Bounds e e e e e e e

A 0.878-Approximation Algorithm

4.1 An Objective Function for Coherence

1.2 Positive Semidefinite Matrices oL

1.3 Semidefinite Programmingo

1.4 Semidefinite Relaxationso
44.1 Randomized Partitioning

4.4.2 Expected Performance

An Approximation Algorithm for Neural Nets
5.1 A 0.878-Approximation Algorithm
5.1.1 Encoding Neural Networks as Coherence Problems

5.1.2 Harmony and Scaled Harmony

6 Future Work on Constraint Satisfaction

vil

18

18

21

22

23

24

28

33

34

35

35

35

37

37

41

41

42

42

45

7 Part II - Learning Monotone DNF 48

7.1 Imtroduction 48
7.2 Previous Work L Lo 19
7.3 Definitions and Terminology 53
7.3.1 Functions and Classes 33

7.3.2 Learnability 35

7.3.3 Fourier Transform 56

7.4 Motivation for Spectral Analysis of MDNF 57

8 Approximation Results for Monotone DNF 59
9 Learning Sub-Classes of MDNF Formulas 69
9.1 Learning Read-Once MDNF 69
9.2 Learning Poly-disjoint One-read-once MDNF 76
9.3 Learning Read-once Factorable MDNF 80

10 Towards Learnability of Monotone DNF 82
10.1 Second order coefficients of MDNF 83
10.2 Third order coefficients of MDNF 84
10.3 Degenerate coefficients on Dense Terms 85
10.4 An Heuristic for Monotone Terms 86
10.5 Filtering Distributionso 88
10.6 Adaptation of Freund's Boosting Algorithm 91

viil

11 Empirical Results
11.1 Overviewof Results,
11.1.1 Demse Formulas
11.1.2 Sparse Formulas
11.1.3 Sparse and Dense Formulas
11.1.4 Majority Functions
11.2 Empirical Results on Real-World Databases
11.2.1 Tic-Tac-Toe Database
11.2.2 Mushroom Database

11.3 Summary of Empirical Results

12 Conclusions and Open Problems

Bibliography

A

96

96

97

101

103

105

107

107

108

111

113

115

125

List of Tables

11.1 Output Hypothesis Size and Accuracy on 50% of Data 109
11.2 Output Hypothesis Size and Accuracy on 20% of Data 110
11.3 Output Hypothesis Size and Accuracy on 10% of Data 110
11.4 Output Hypothesis Size and Accuracy on 1% of Data 111
A.1 Attributes for the Mushroom Database 133

List of Figures

1.1 Example of a Coherence Problem
1.2 Example of a Constraint Satisfaction Problem

1.3 Relationship between Coherence and Constraint Satisfaction Prob-

JEIMS . . . o e

3.1 An Approximation Algorithm for the Coherence Problem
3.2 Input with performanceratioof 3

3.3 A Connectionist Algorithm for the Coherence Problem with Provable

Approximation Bounds

9.1 Algorithm for Learning a Read-once MDNF Formula

9.2 Algorithm for Learning a Poly-disjoint One-read-once MDNF For-

10.1 Heuristic Algorithm for Learning MDNF
10.2 Algorithm for Learning a Sparse Term

10.3 Algorithm for Learning a Dense Term

19

22

29

11.1

11.2

11.3

11.4

11.5

11.6

11.7

Running Time of Algorithm MDNF for a Dense Formula 98
Hypothesis Size for a Dense Formula 98

Running Time of Algorithm MDNF for a Random Dense Formula . 100

Hypothesis Size for a Random Dense Formula 100
Running Time of Algorithm MDNF for a Sparse Formula 102
Hypothesis Size for a Sparse Formula 102
Running Time of Algorithm MDNF for Majority 106

Chapter 1

Part I - Approximating Binary
CSPs

1.1 Introduction and Motivation

Many important problems related to Artificial Intelligence have been shown to be
NP-hard. The constraint satisfaction problem (CSP) is such a problem [Ku 92].
Tasks in areas such as cognitive science. computer vision. scheduling. and planning
can be encoded as instances of the CSP. The pervasiveness of the CSP in the Al
literature is testimony to its importance to the field. As such. much research has
been devoted to determining sub-problems of the CSP that are tractable. Rather
than asking for which instances exact solutions of the CSP can be computed effi-
ciently. an alternate approach is to ask if there are good approximation algorithms
that produce high quality solutions for all instances of the problem. The problem
of approximation algorithms for variants of the CSP is the main focus of the first

part of this thesis.

[\

CHAPTER 1. PART I - APPROXIMATING BINARY CSPS

Several versions of the CSP have been studied. In the most general version.
constraints may be multi-ary relations between variables. which have multi-valued
domains. In the most basic version. the constraints are binary (i.e.. constraints
between two variables) and the domains of the variables are also binary. The
coherence problem that we study in this thesis is a restricted version of the binary
constraint satisfaction problem. with binary constraints and binary variables. We
show in Chapter 2 that the coherence problem is NP-hard. and that its associated
decision problem is NP-complete. Further. we show that this problem is complete
for the class MAX SNP. which implies that there is some constant factor within
which no approximation algorithm can guarantee a solution. We give two different
approximation algorithms for maximizing the number of accepted constraints - an
on-line algorithm that achieves a performance ratio of 0.5. and an algorithm that

uses semidefinite programming techniques to achieve a performance ratio of 0.878.

Another problem in Al that is known to be NP-hard is to settle an arbitrary neu-
ral network to its state of optimal harmony (or energy). We show that this problem
is related to the coherence problem discussed above. and give a 0.878-approximation
algorithm for settling a neural network to a stable state. The solution produced
by the algorithm comes within a factor of 0.878 of a ~scaled” measure of the har-
mony of the network. This is the first result that gives a non-trivial performance

guarantee on the quality of the stable state achieved in settling a neural network.

In this chapter. we introduce and define the constraint satisfaction problems
(CSPs) studied in this thesis. In particular. we formulate the coherence problem

as a special case of the CSP.

CHAPTER 1. PART I - APPROXIMATING BINARY CSPS 3

1.2 A Brief Overview of CSP Research

Algorithms for solving the CSP have been an important area of research for decades.
Most CSP algorithms in the literature use some form of backtracking algorithm.
which in the worst case takes exponential time. For an excellent survey of CSP
algorithms. see [Ku 92]. To cull the search space of the backtracking algorithm.
several authors have proposed techniques based on constraint propagation [Mac 77.
DP 88. D 90]. which eliminate impossible combinations of values from the search
space. Other researchers have considered the variable ordering for value instan-
tiation. and show that for almost all types of CSPs. the order in which variables
are instantiated can greatly improve the efficiency of the backtracking algorithm.
For tree-structured CSP’s. the need for backtracking can be completely eliminated.
For all but the tree-structured CSP’s. backtracking is still used. resulting in an

exponential time algorithm.

The CSP is defined such that solutions to the problem must satisfy all of the
constraints. To address problems that are over-constrained. and there is no satisfy-
ing solution. or problems where it is difficult to entirely solve the CSP. Freuder and
Wallace [FW 92| generalized the CSP to the partial constraint satisfaction problem
(PCSP). The partial constraint satisfaction problem is to find an assignment to the
variables of the CSP that maximize the number of constraints satisfied. Instead
of using the classical backtracking algorithms for CSPs. Freuder and Wallace use
branch-and-bound techniques to guide the search for a solution. As for the back-

tracking algorithms for CSPs. these algorithms are inherently exponential time.

The PCSP problem opens the door for the use of approximation in the search
for a solution. since the solution is not required to satisfy all of the constraints. but

rather to maximize the number of satisfied constraints. The maximization problem

CHAPTER 1. PART I - APPROXIMATING BINARY CSPS 4

is known to be NP-hard [FW 92]: however. an approximately maximal solution may
be obtainable in polynomial time. It is this problem that we study in this thesis.
and propose an algorithm that is guaranteed to find a solation that is within 87%

of the weight of the optimal solution for the coherence problem.

The PCSP has been of interest in recent years in the theoretical computer sci-
ence community in relation to approximation research. With the motivation of
introducing a class of problems related by approximation-preserving reductions.
Papadimitriou and Yannakakis [PY 91| defined the class MAX SNP. The results of
Arora et. al. [ALMS 92] showed that for any problem that is MAX SNP-complete.
there exists some constant factor ¢ such that if any approximation algorithm exists
that is guaranteed to produce a solution within a factor c of the optimal solution.
then P = NP. Thus. for MAX SNP-hard problems. we assume that no approxima-
tion algorithm can guarantee a solution arbitrarily close (closer than some constant

factor) to the optimal solution.

In a follow-up paper. Khanna. Motwani. Sudan and Vazirani [KMSV 94] show
that the k-CSP problem (CSP with k-ary predicates) is in MAX SNP. Moreover.
they show that k-CSP is a universal problem for MAX SNP: that is. any problem
in MAX SNP can be encoded as an instance of the k-CSP. Assuming P # NP. this
immediately implies there is some constant ¢ such that no PCSP algorithm exists
that guarantees to find a solution better that a factor ¢ of optimal. In addition. they
give an approximation algorithm for the k-CSP that guarantees a solution within *
of the optimal. For k& = 2 (the binary CSP). this gives a ;-approximation algorithm.
In this thesis. we first give a %-approximation algorithm for coherence. and then
give a 0.878-approximation algorithm. The 0.878-approximation algorithm is based
on the approximation algorithm of Goemans and Williamson [GW 94] for the max

cut problem. with the same performance guarantee.

CHAPTER 1. PART I - APPROXIMATING BINARY CSPS 5

1.3 Approximation

Given an instance I of a maximization problem'. let V(Z.S) be the value of a
solution S and let OPT(Z) denote the value of the optimal solution. An algorithm
A is said to have performance ratio R(n) with respect to instance Z. where n = |Z]
is the size of the problem description. if

V(Z. A(T)) >

OPT () > R(n) (1.1)

If R(n) is bounded by a constant c for all instances T. A is said to be a constant
factor approximation algorithm. We also refer to Aas a c-approximation algorithm.
If R(n) = 1—¢ for arbitrarily small e. A is called an approximation scheme ®. If the
approximation scheme runs in time polynomial in n. we refer to it as a polynomial-

time approximation scheme (PTAS).

1.4 The Coherence Problem

Given a set of constraints that establish coherence relations between pairs of ele-
ments. the coherence problem is to partition the elements into two sets such that
the overall coherence is maximized. We state the coherence problem as a graph

problem. in which the elements are represented as vertices. and the constraints are

1In recent works on approximation algorithms. the notion of performance ratio has been some-
what standardized so that max‘mization problems and minimization problems both have ratios
normalized to be greater than one. Thus. in some works. the performance ratio is defined as the re-
ciprocal of our definition. For example. see Khanna. Motwani. Sudan and Vazirani in [KMSV 94].

Here. we use the more traditional notation. since we consider only maximization problems.
2We refer to an approximation scheme rather than an approximation algorithm in this case.

because an approximation algorithm is defined for each e.

CHAPTER 1. PART I - APPROXIMATING BINARY CSPS 6

represented as edges. There are two edge sets for the graph. corresponding to the

positive and negative constraints. respectively.

Coherence

Instance: Graph G = (V. E). with vertex set V. a set E of weighted edges. and
disjoint edge sets C* of positive constraints and C~ of negative constraints

such that CtUC~ = E.

We denote a partition of the vertices V' into two sets A (accepted) and R (re-
jected) as the ordered pair (A. R). The weight of a partition. denoted w(A. R). 1s
the sum of the weights of the constraints that are satisfied. where a constraint is

satisfied if either of the following holds:

1. if (es.ej) is in C*. then e; is in A iff e; is in A.

2. if (e;.e;) is in C~. then e; is in Aiff ejis in R.

Problem: Partition V into sets (A. R) with maximum weight w(A. R).

For example. consider the graph in Figure 1.1. in which negative constraints are
indicated by bold lines. and positive constraints by thin lines. For this instance
C- = {(1.2)}. and C* = {(1.3).(2.3)}. Thus. there is one negative constraint
with weight 1 between vertices 1 and 2. and two positive constraints with weight 1
between vertices 1 and 3. and between vertices 2 and 3. Putting vertex 1 in set A.
and vertices 2 and 3 into set R. we get w(A. R) = 2. since the constraint between

vertices 1 and 2 is satisfied. and the constraint between vertices 2 and 3 is satisfied.

CHAPTER 1. PART I - APPROXIMATING BINARY CSPS 7

Figure 1.1: Example of a Coherence Problem

1.5 Applications of Coherence

Many problems in philosophy and cognitive science are naturally understood in
terms of coherence. Philosophers have proposed coherence theories of truth. knowl-
edge. and ethical justification. Thagard [Th 89. Th 92] showed how explanatory
coherence could be computed using connectionist algorithms implemented in a pro-
gram called ECHO that models choice between competing scientific theories. Tha-
gard and Millgram {Th 94] showed how decision making can likewise be modeled
using a program called DECO that computes deliberative coherence. Similar tech-
niques have been used to model analogical mapping and retrieval: we can think
of the problem of analogical mapping as involving finding a coherent correspon-
dence between two analogs. and the more general problem of analog retrieval as
finding which analog stored in memory is most coherent with a target analog (see
Holyoak and Thagard. [HT 89, HT 95]; Thagard. Holyoak. Nelson. and Gochfeld.
[THNG 90]). In previous work. however, the notion of coherence has remained
rather vague. In Section 1.4 we provided a precise definition of a coherence prob-

lem. In Chapter 2. we prove results concerning its computational complexity and

CHAPTER 1. PART I - APPROXIMATING BINARY CSPS 8

its relation to constraint satisfaction problems important in other areas of Al

The definition of coherence is sufficiently general to cover many kinds of co-
herence that have been studied computationally. Thagard's theory of explanatory
coherence proposes various constraints that impose coherence relations on hypothe-
ses and evidence (see [Th 89. Th 92]). For example. if a hypothesis explains a piece
of evidence or another hypothesis. then the two propositions cohere with each other:
this is a positive constraint. On the other hand. if two hypotheses are inconsistent
with each other of if they compete to explain the same evidence. then they are
incoherent with each other: this is a negative constraint. Theory choice is a matter
of accepting some hypotheses and rejecting others in a way that maximizes over-
all coherence. Maximizing explanatory coherence, which is efficiently computed
using a connectionist algorithm. provides a flexible and powerful way of perform-
ing abductive inference (for other ways. see Josephson and Josephson. [JJ 94]. and
O'Rorke and Josephson. [OJ 94]). Decision making construed in terms of delibera-
tive coherence is also a coherence problem as characterized above. with facilitation
relations between actions and goals providing positive constraints. and incompati-
bility relations between pairs of actions or goals providing negative constraints (see
Thagard and Millgram. [TM 95]). Analogical thinking is also characterizable in
terms of constraint satisfaction (see Holyoak and Thagard. [HT 95]).

1.6 The Constraint Satisfaction Problem

Given a set of variables. and a set of constraints on the values these variables may
take on. the constraint satisfaction problem (CSP) is to determine a set of values
that satisfy all the constraints simultaneously. We use the formulation given by

Dechter [D 90], and restate it in terms of graph theory (here. we will be concerned

CHAPTER 1. PART I - APPROXIMATING BINARY CSPS 9

only with binary constraints (i.e.. constraints between two variables.))

[D 90] Constraint Satisfaction

Instance: Given a graph G = (V. E). where the n nodes of G correspond to a
set {Xi..... X,} of variables with respective value domains {R,..... R.}.
where each R, is a finite subset of integers. Each edge represents a constraint
Ci(X;. Xi). which corresponds to the subset of the Cartesian product R; x R

that are compatible values for variables X; and Xj.

Problem: Find an assignment of values to variables that satisfy all of the con-

straints.

Instances of the constraint satisfaction problem can also be represented as con-
straint graphs. with nodes representing the variables X;. and edges between nodes
X; and X representing the set of allowable values for variables X; and Xj. As
an example of a constraint satisfaction problem. consider the constraint graph in

Figure 1.2. Let the domain R; of each variable X; in the examples of Figure 1.2

Figure 1.2: Example of a Constraint Satisfaction Problem

be defined as: Ry = R, = Rz = {1.2.3}. and let the constraints C; be defined as:

CHAPTER 1. PART I - APPROXIMATING BINARY CSPS 10

Ci(X1. X2) = Ca(X1. Xs) = Ca(Xa. X3) = {(1.2).(1.3)-(2.1).(2.3). (3. 1) (3.2)}-
In this example. the constraints are defined so that no two variables can take on

the same value.

The constraint satisfaction problem is known to be NP-hard [MF 93]. This is
easy to see. since the graph k-coloring problem can be encoded as an instance of
the constraint satisfaction problem [Ku 92]. For example. in Figure 1.2. we gave

an encoding of the graph 3-coloring problem for a simple 3-node graph.

We explore the relationship between the constraint satisfaction problem and the

coherence problem further in the following sections.

1.6.1 Exact Instances of Coherence as Constraint Satisfac-

tion

We say that an instance of the coherence problem is exact if there is a solution that
complies with all of the constraints in C* and C~. It is then easy to see that exact
instances of the coherence problem can be formulated as CSPs. If there is no exact
solution to the coherence problem. then we require the notion of partial constraint

satisfaction.

1.7 The Partial Constraint Satisfaction Problem

The first difference to note between the coherence problem and the constraint satis-
faction problem is that the constraint satisfaction problem requires that a solution

be consistent with all of the constraints, whereas the coherence problem maximizes

CHAPTER 1. PART I - APPROXIMATING BINARY CSPS 11

consistency with the constraints. Otherwise stated. the constraint satisfaction prob-
lem has hard constraints. whereas the coherence problem deals with soft constraints.
which may be violated by the solution. Recent work by Freuder et. al. [FW 92]
generalizes the constraint satisfaction problem to the partial constraint satisfaction
problem (PCSP). Their formulation allows us to state the coherence problem as a

partial constraint satisfaction problem.

[FW 92] Partial Constraint Satisfaction
Instance: As for the constraint satisfaction problem of Section 1.6.

Problem: Find an assignment of values to variables that maximizes the weight of

satisfied constraints.

The partial constraint satisfaction problem is NP-hard. since the constraint

satisfaction problem is a special case.

1.7.1 Coherence as Partial Constraint Satisfaction

The coherence problem can be encoded as an instance of the partial constraint
satisfaction problem in which the value domain R; of each variable X; is the set
{0.1}. For each constraint e = (v;.v;) € C* of the coherence problem. we have the
constraint C(X;. X;) = {(0.0).(1,1)} in the partial constraint satisfaction problem.
and for each constraint e = (v;.v;) € C~. we have the constraint C(X:.X;) =
{(0.1).(1.0)}. Let A be the set of vertices that are assigned the value 1 in the
solution of the PCSP. and let R be the set of vertices that are assigned the value
0. The resulting partition then maximizes compliance with the constraints of the

coherence problem.

CHAPTER 1. PART I - APPROXIMATING BINARY CSPS 12

Partial Constrasnt
Sansfactuon

Figure 1.3: Relationship between Coherence and Constraint Satisfaction Problems

In Figure 1.3. we show graphically the relationship between coherence. exact co-
herence. constraint satisfaction. and partial constraint satisfaction. In this section.
we showed that coherence problems can be encoded as partial constraint satisfac-
tion problems. In Section 1.6.1. we showed that exact instances of the coherence
problem can be encoded as instances of the constraint satisfaction problem. In
the next chapter. we will show that exact instances of coherence can be solved

efficiently.

In Chapter 3. we give an on-line 0.5-approximation algorithm for the coherence
problem (an on-line algorithm is one in which the vertices of the constraint graph
are presented one at a time to the algorithm.) We show that 0.5 is the optimal ap-
proximation ratio for an on-line approximation algorithm for coherence. In Chapter
4. we give a 0.878-approximation algorithm. based on the 0.878-approximation al-
gorithm of Goemans and Williamson for MAX CUT. In Chapter 5. we apply the

coherence approximation algorithm to the problem of settling a neural network to

CHAPTER 1. PART I - APPROXIMATING BINARY CSPS

a stable state.

13

Chapter 2

The Complexity of Coherence

2.1 A Proof of NP-completeness for Coherence

In Section 1.4. we stated the coherence problem as an optimization problem. In the
following proof. we show that the coherence problem is NP-hard. It remains NP-
hard even when there are only negative constraints. and no positive constraints at
all. The associated decision problem to the coherence problem is clearly in the class
NP. since a partition (A. R) is a certificate that is verifiable in polynomial time.
hence the following theorem implies that the decision problem is NP-complete. We

will show subsequently that the coherence problem is also MAX SNP-complete.
Theorem 2.1 The coherence problem is NP-hard.

Proof: The proof is a transformation of the max cut problem to the coherence
problem. For completeness. we state the max cut problem [Ka 75. GJ 79]
(denoted MAX CUT) here: given a graph G = (V. E). weight w(e) € Z* for

each e € E. and positive integer K. is there a partition of V' into disjoint sets

14

CHAPTER 2. THE COMPLEXITY OF COHERENCE 15

V; and V5 such that the sum of the weights of the edges from E that have one
endpoint in V; and one endpoint in V; is at least K? The max cut problem
remains NP-hard even if all weights w(e) are constrained to be 1 [GJ 79].

Here we show that the same holds for coherence.

For a graph G where all edges have weight 1. as an instance of the max cut
problem. construct an instance of the coherence problem by putting all of the
edges of G in C~. We show that any solution to the coherence problem is

then a solution to the max cut problem.

The solution to the coherence problem will partition the vertices of G into
two subsets A and R such that compliance with the constraints is maximized
(i.e.. if (e;.e;) is in C*. then e; is in A iff ¢; is in A. and if (e:. ¢;) isin C~.
then e; is in A iff e; is in R.) Since the only constraints are negative ones.
C+ = 0. and C~ = E. the edge set of G. The partition of vertices into sets A
and R must be such that compliance with the constraints of C~ (i.e.. if (ei. ;)
is in C~. then ¢; is in A iff e; is in R) is maximized. This partition therefore
maximizes the number of edges with one endpoint in A and one endpoint in
R. Let V; = A and Va2 = R. Since C~ contains all edges of G. and since each
edge weight is 1. the partition into sets V; and V; must maximize the sum of
the weights of edges such that one endpoint is in V; and one endpoint is in

Va. Hence. we have a solution to the max cut problem. []
Theorem 2.2 The coherence problem is complete for MAX SNP.

Proof: The max cut problem was shown to be MAX SNP-complete by Papadim-
itrion and Yannakakis. in [PY 91]. Thus. by the same reduction as in the
proof of the previous theorem. the coherence problem is MAX SNP-hard. To

complete the proof. we just need to show that the coherence problem is in

CHAPTER 2. THE COMPLEXITY OF COHERENCE 16

the class MAX SNP. and to show this. we just need to show that a constant
factor approximation algorithm exists for coherence. We give such algorithms

in Chapters 3 and 4.]

In this section we have shown that instances of the coherence problem where
there are negative constraints and no positive constraints are as hard as solving the
max cut problem. which is both NP-hard and MAX SNP-hard. We note here that
if there are only positive constraints. and no negative constraints at all. then the

problem is trivially solvable by placing all vertices in the accepted set A.

2.2 Solving Exact Instances of Coherence Effi-

ciently

Theorem 2.3 Ezact instances of the coherence problem are solvable in polynomial

time.

Proof: Construct a graph G” = (V". E") with vertex set V"' = V. and edge set
E" = C+. Find each connected component of G”. and let m be the number
of connected components in G”. Construct a graph G’ = (V'. E’). where
|V'| = m. and each vertex of G’ corresponds to a connected component of G".
Now. we 2-color G”. which can be done in polynomial time [GJ 79]. Color G"
by assigning the color of the corresponding vertex in G’ to each vertex of the
connected component in G”. Now. assign all of the vertices of one color to A.
and all of the vertices with the other color to R to obtain a solution to the

coherence problem. []

CHAPTER 2. THE COMPLEXITY OF COHERENCE 17

The above proof shows that the instances of the coherence problem that are
also instances of the constraint satisfaction problem can be solved in polynomial
time. This is interesting. in that the constraint satisfaction problem is NP-hard.
yet exact instances of the coherence problem. which are a subset of the CSP. are

efficiently solvable.

We have shown in Section 2.1 that the coherence problem is NP-hard as well
as MAX SNP-hard. even when there are only negative constraints. In contrast.
we also note in Section 2.2 that the problem is trivially solvable if there are only
positive constraints. Thus. it would seem that it is the negative constraints that
make the problem hard when both types of constraints are allowed. In Section 1.6.
we showed the relationship between constraint satisfaction and coherence: namely.
that exact instances of coherence can be encoded as instances of the constraint
satisfaction problem. In Section 2.2. we showed that these instances are solvable
in polynomial time. In Section 1.7. we showed that the coherence problem can be

encoded as an instance of the partial constraint satisfaction problem.

Chapter 3

On-line and Connectionist

0.5-Approximations

3.1 An On-line 0.5-Approximation Algorithm

In this section. we give an on-line approximation algorithm for the coherence prob-
lem that produces a solution within a factor } of the weight of the optimal solu-
tion. For an on-line algorithm, the vertices of the graph are presented one at a
time. along with the edges joining the vertex presented to all the previous vertices
[LST 89]. The reason that we distinguish on-line algorithms from algorithms where
all vertices may be considered in parallel is that on-line algorithms often have per-
formance bounds worse than their unrestricted counterparts. For example. Lovasz.
Saks. and Trotter give an algorithm for the graph coloring problem that has an
O(:=2-) performance ratio, whereas the algorithm of Blum [B 89] achieves a bound

logn
of O(nt~Yk=4/3)10g%% 1) (i.e.. O(n®*) for 3-colorable graphs).

We show in Section 3.2 that 3 is the best approximation ratio achievable by

18

CHAPTER 3. ON-LINE AND CONNECTIONIST 0.5-APPROXIMATIONS 19

an on-line algorithm for coherence. This implies that the approximation algorithm
that we give here is optimal. Algorithms that are not restricted to being on-line can
achieve better bounds. In Chapter 4. we give an algorithm that achieves a 0.878
performance ratio. In Section 3.3. we will consider a connectionist algorithm used

by Thagard [Th 89. THNG 90. Th 94] that performs well in practice. although we

are unable to prove performance guarantees.

Algorithm Approx-Coherence(G)
1. Let v1.v2..... v, be an arbitrary ordering of the vertices of G.
2. Let A=R =0

J.fori=1ton

4. f w(AUv;. R) > w(A. RUv;)
5. A=AUwv;

6. else

7. R=RUv;

8. end if

9. end for

10. output (A.R)

Figure 3.1: An Approximation Algorithm for the Coherence Problem

The analysis of the algorithm of Figure 3.1 follows the technique of Sahni and
Gonzalez for their approximation algorithm to the max cut problem [SG 76]. and
an approximation algorithm given by Kececioglu and Myers for DNA sequence

assembly [KM 92].

CHAPTER 3. ON-LINE AND CONNECTIONIST 0.5-APPROXIMATIONS 20

Theorem 3.1 Algorithm Approz-Coherence() is an approzimation algorithm for
the coherence problem that produces a solution with weight within a factor % of the

weight of the optimal solution.

Proof: Let w(v;.v;) denote the weight of edge (v:.v;). and let w(A. R) denote
the weight of the partition (A. R). For each vertex v;. step 4 of the algorithm
tests the increase in the weight of the partial solution depending on whether
v; is added to set A or R. Let Aw;(A) denote the change in weight by adding
v; to A. and Aw;(R) denote the change in weight by adding v; to R. Now.

Aw;(A) = E w(vi.vj) + Z w(vi. v;)
{o;j€Ali<i} {o;€RU<i}
(viw;)ECH (viv;)EC—
and
Aw,(R) = Z w(v,—.vj) + Z w(v,-.vj)
{e; €RI<I} {rj€Al<i}

(vivj)eC* (vi.v;)EC™

Hence. Aw;(A) + Aw;(R) = L;<; w(vi.vj). Let
Aw; = max{Aw;(A). Aw;(R)}

It follows that Aw; > 13 ; w(vi.v;).

Let (A=. R") be the partition with optimal weight. Since the weight of the
optimal solution must be bounded above by the weight of the entire graph.

we have that w(A™. R™) < ¥; ¥, w(vi vj5)-

Hence.

w(A.R) = ZAwi > ;];-ZZw(v,-.vj) > %w(A'. R™)

< g<i

CHAPTER 3. ON-LINE AND CONNECTIONIST 0.5-APPROXIMATIONS 21

3.2 Optimality of the On-line 0.5-approximation

In the previous section we have given an on-line 0.5-approximation algorithm for
coherence. We now show that this ratio is optimal for any on-line approximation

algorithm for this problem.

Theorem 3.2 No on-line approzimation algomithm for coherence can achieve a

1

performance ratio better than 3.

Proof: Consider the graph given of Figure 3.2. The nodes are labelled 1. 2 and 3.
with weights denoted by x and y. where x and y are integers to be specified.
Suppose without loss of generality that the on-line algorithm recelives vertex 1
first. then 2. and finally three. Assume also that the algorithm places vertex 1
in the accepted set. and vertex 2 in the rejected set. Now. an adversary could
set z to be 1. and y to be an arbitrarily large integer. Vertex 3 can now be
placed in either the accepted or rejected set. In either case. the value of the
solution will be z + y. whereas the value of the optimal solution is 2y. giving
an approximation ratio arbitrarily close to % If the algorithm chooses to place
the first two vertices differently (both in A or both in R) an adversary could
similarly set the weights of the unseen edges so that the ratio is arbitrarly

close to

I

CHAPTER 3. ON-LINE AND CONNECTIONIST 0.5-APPROXIMATIONS 22

Figure 3.2: Input with performance ratio of 3

3.3 A Connectionist Algorithm for Coherence

The formulation of the coherence problem. as stated in Section 1.4. emerged as an
abstraction of the cognitive models: ACME. ARCS. DECO and ECHO. ARCSis a
program for Analog Retrieval by Constraint Satisfaction that is designed to retrieve
analogs from long term memory for analogical reasoning systems. and ECHO (Ex-
planatory Coherence by Harmany Optimization) is designed to model theory choice
(in particular. how conceptual revolutions take place in the scientific community.)
All of these systems are based upon constraint networks with positive (excitatory)
and negative (inhibitory) links between the elements of the network. These type
of networks bear some similarity to neural networks. with neurons representing el-
ements of the constraint network. and excitatory and inhibitory links between the
neurons representing the positive and negative constraints in the network. Thus.
neural networks are a natural choice for solving coherence problems. Thagard's
empirical results [Th 89, THNG 90. Th 94| show that connectionist networks do

indeed produce good solutions to a variety of coherence problems.

In this section. we analyze some properties of these networks. In particular.

CHAPTER 3. ON-LINE AND CONNECTIONIST 0.5-APPROXIMATIONS 23

we show the relationship between the energy states of the neural network and the
quality of the solution to the coherence problem. Secondly. we show some relation-
ships between the neural network algorithm and the approximation algorithm we

give in Section 3.1.

3.3.1 A Neural Network for Coherence

We represent a neural network as a graph. where the vertices represent nodes of
the neural network. and weighted edges represent links (excitatory or inhibitory)
between nodes of the network. Given an instance G of a coherence problem. we
construct an n-node neural network N = (A.W). with nodes A = {ai..... a,}. and
weight set
wij = w(vi.v;) if (vi.v;) € CTL
W =1 wy = —wvi.v;) if (vi.v;) €C~
w;; =0 otherwise
Associated with each node a; is an activation value. which for these networks
will be constrained to the range [min.maz]. where min = —1 and maz = 1. We
denote the activation value of node a; at time ¢ as a;(t). We will use a;(o0) to
denote the state of the neural network after it has settled to a stable state. The
activation value at time ¢ + 1 is a function of the activation value at time ¢. and
the activation values of neighboring nodes at time t. The activation function used

here is:

net;(t)(maz — a;(¢ if net;(¢) >0
alt+1) = as(t) + (&)((t))

net;(t)(a:(t) — min) otherwise
where net;(t) = ¥; wijaj(t). This activation function is similar to that of Hopfield
networks [H 82. RM 86], except that Hopfield networks use a threshold activation

function rather than a continuous function.

CHAPTER 3. ON-LINE AND CONNECTIONIST 0.5-APPROXIMATIONS 24

3.3.2 Harmony and Stable States
The harmony of network N at time ¢ is defined as:

H(N.t) = Z Z w;jai(t)a;(t)

Note that the harmony as defined above “double-counts™ in that the weight
contribution of each pair of vertices is counted twice in H(N.¢t). For our purposes.
we will use the following definition of harmony:

Hy(N.t) = Zwijai(t)aj(t) (3.1)
i<j
It can be easily verified that Ha(N.t) = %H(N.t). hence optimizing H,(N.t) also
optimizes H(N.t).

We show two properties of these neural networks here: first. that the points of
maximal harmony occur when all of the vertices are in state —1 or 1. or the net
input of the node is zero: and secondly. that when the network is in a stable state.
the harmony of the network corresponds to the quality of the solution represented

by that state: in other words. maximizing harmony maximizes coherence.

Theorem 3.3 The states of mazimal harmony occur when for all ¢. either a;(co0) =

1. ai(oo) = —1. or net;(c0) = 0.

Proof: Suppose that some state is a point of maximal harmony. such that for
some node a;. net;(co) # 0. a;(c0) # 1. and a;(o0) # —1. The contribution
of unit ¢ to the harmony of the network is:

H;(N.) = Zw,-ja,-(oo)aj(oo) = net;(00)a;(o0)

2

CHAPTER 3. ON-LINE AND CONNECTIONIST 0.5-APPROXIMATIONS 25

Now. suppose that net;(co) is negative. Then by reducing the value of a;{c0).
the harmony would be increased. Conversely. if net;(oo) is positive. then
increasing the value of a;(co) would increase the harmony. Hence. the network
cannot be in a state of maximal harmony if net;(co) is non-zero for any a..

and the activation values are not at their extremes.]

This theorem shows that the stable states (states of maximal harmony) all have
activation values of 1 or —1 for every unit. unless the net input is zero. We associate
the nodes with the activation value 1 to the accepted set A of the coherence problem.
and the nodes with the activation value —1 to the rejected set R. The nodes with
net input zero. which may not settle into either state 1 or —1. can be placed in
either set without affecting the harmony of the network. It turns out that the
vertices corresponding to these nodes can be placed in either set without effecting
the quality of the solution to the coherence problem. In the next theorem. we show
the correspondence between the harmony of the stable states of the neural network

and the quality of the associated solution to the coherence problem.

Theorem 3.4 Let N be the neural network after having settled into a stable state.
and let (A. R) be the associated solution to the coherence problem. Let w(A.R) be
the weight of the solution. and let w(G) be the weight of the entire graph. Then
H.(N.) =2 xw(A. R) — w(G).

Proof: Suppose that the network reaches a stable state with harmony H(N.cc).
By the previous theorem. if a state is stable. then all nodes must have an
activation value of 1 or —1. unless the net input to the node is zero. We map
the state of the network onto a solution (A. R) of the coherence problem as

follows: nodes with an activation values of 1 are mapped to the accepted set

CHAPTER 3. ON-LINE AND CONNECTIONIST 0.5-APPROXIMATIONS 26

A. and nodes with an activation value of —1 are mapped to the rejected set

R.

First. we show that for all nodes with net input zero. the value of the
harmony is not affected by the activation value. Suppose for unit a; that
net;(co) = 0. The contribution of unit a; to H(N.oo) 1s 3_; w;;ai(oo)aj(0) =
ai(00)(X;wijaj(00)) = ai(oo) * neti(oo) = 0. since neti(co) = 0. Thus. we
can consider all of the nodes with net;(~0) = 0 to be in A (i.e.. to have value

1). since the activation value does not effect the harmony.

First. we compute w(A. R). the weight of the solution to the coherence prob-
lem. Consider a node v; € A. The contribution of v; to the weight of the
solution is

Z w(v;. vj) + Z w(vi. v;)

vJEA vleR
(viw;)eCT (viv;)EC—

Similarly. for a node v; € R. the contribution of v; ot the weight of the solution
1s

Z w(v;. vj) + Z w(vi.vj)

"JGR r.-l-e.-l
(viv;)eCT (viww;)EC—

Summing over all vertices in A and R. we get the weight of the solution

(A. R).

)
w(A.R) = Z E w(v;. v;) + Z w(vi.vj) | +

v,EA ejEA c;€ER
(vivj)eC+ (vivj)eC—)

Z Z w(vi.v;) + Z w(vi, vj)

v;ER v;ER
(viv;)ECT (viv;)EC— /

CHAPTER 3. ON-LINE AND CONNECTIONIST 0.5-APPROXIMATIONS 27

Now. we compute the harmony of the state of the neural network that pro-
duced the solution (A. R). Assume for node a; that v; £ A. We will compute
the contribution of node a; to the harmony. Since v; € A. a;(o0) = 1. For all
edges in (v;.v;) € C*. we have w;; = w(vi.v;) In N. Now. since all v; = A
also have aj(oc) = 1. we have a harmony contribution of

Z aj(oco)wi; = Z (L)(w(vi.vj)) = Z w(v;. v;)

vJG.—\ ")‘E-“ l‘je:‘
(vi,v;)ECH (v;.v;)ECH {(vi.v;)€CH

Similarly. for all edges (vi.v;) € C~. we have w;; = —w(v;. v;). and for all
v; € R. a;(c0) = —1. Thus. the harmony contribution is

Z aj{oo)w;; = Z (=1)(—w(v;.v;)) = Z w(v;. vj)

vl'GR erR v,‘GR
(viv;1€C™ {v;.v;)EC~ (vi.v;JEC—

Thus. the contribution to harmony of all satisfied constraints containing node
a; 18

Z w(v;. vj) + Z w(v;. vj)

vjEA c;ER
(viwj)eCT (viv;)€EC—

A similar analysis holds if v; € R. Summing over all vertices v; for1<i<n.
we get w(A. R). Thus. the contribution to the harmony of all vertices that
satisfy constraints is just w(A. R).

There is also a contribution to harmony from the constraints that are violated.
Assume again that v; € A. The harmony contribution of violated constraints
1s

Z —tu(v,-,vj) + Z —w(v;, vj)

vjE.-\ v.'J'ER
(vivj)EC™ (v.',v,')EC"‘

CHAPTER 3. ON-LINE AND CONNECTIONIST 0.5-APPROXIMATIONS 28

Summing over all nodes gives

()
S| X —wlew)+ X —wlwewy) |+

v,€EA e €
(u..v,)EC‘ ("i-v;)ec+

Z Z —w(v;.v;) + Z —w(vi.vj)

v,€ER r.'JER r.vje-l
\(u,uu,)GC- (vi.vj)eCt

Which is just —(w(G) — w(A. R)). Hence. the harmony is
w(A.R) — (w(G) — w(A.R)) = 2*w(A.R) — w(G)

It follows from this theorem that the higher the harmony achieved in the neural

network N. the better the solution to the coherence problem.

3.3.3 Variations on the Update Rule with Provable Ap-

proximation Bounds

We have seen in the previous section that by using a Hopfield-type update rule.
the network must settle into a state of maximal harmony. This does not. however.
guarantee that it will settle into a state of maximum harmony. Indeed. achieving
the state of maximum harmony is NP-hard. since it would amount to finding the
optimal solution to the coherence problem. It would be nice to know how good
the solution produced by the neural network is. While we have no general answer
to this question for the update rule discussed above. in this section we show that
by restricting the update order of the nodes, the network will produce the same

solution as the approximation algorithm given in Section 3.1.

CHAPTER 3. ON-LINE AND CONNECTIONIST 0.5-APPROXIMATIONS 29

Instead of updating the activation values of the nodes asynchronously. as is done
for the activation function given above. or synchronously as is done in Thagard’s
networks [Th 89]. suppose that we update the nodes in order. That is to say. for
each node i. where 1 < i < n. we update node ¢ until it reaches a stable state
before updating node i + 1 (see Figure 3.3). We claim that the solution obtained
will correspond exactly to the solution produced by the approximation algorithm

of Section 3.1.

Algorithm Ordered-Connect-Coherence(N)

1. Let a,.as..... a, be an arbitrary ordering of the nodes of N.

[SV]
c
(¢}
o
o~
I

3. Let a;(t) = 1. and a;(¢) =0forall j #1
4. fori=2ton

while a;(t) # 1 and a;(t) # —1 and neti(t) # 0

wn

net;(t)(maz — ai(t)) if neti(t) >0
6. set a;(t + 1) = a;(t) +
net;(t)(a:(t) — min) otherwise
7. for all 7 # ¢. aj(t + 1) = a;(f)
8. t=t+1
9. end while
10. end for

11. output N

Figure 3.3: A Connectionist Algorithm for the Coherence Problem with Provable

Approximation Bounds

CHAPTER 3. ON-LINE AND CONNECTIONIST 0.5-APPROXIMATIONS 30

Theorem 3.5 Algorithm Ordered-Connect-Coherence() is equivalent to Algorithm

Approz-Coherence/().

Proof: To show that these algorithms are equivalent. we show that for all inputs.
and for each vertex v;. they make the same choice as to which set. A or R. v;

is placed in. The proof is by induction on :.

Let A4; denote the set A for each i at step 3 of algorithm Approx-Coherence().
and similarly for R..

For Algorithm Ordered-Connect-Coherence(). we will consider all updates of
the activation value of unit a; to occur at time i. This makes sense because
net; remains constant for all updates of node a;. hence all updates will be in

the direction of the sign of net;.

Inductive Hypothesis: For 1 < i < k. v; € A; iff a;({) = L. and v; = R iff
ai(i) = —1.

Basis: i = 1 - For algorithm Approx-Coherence(). A =R = Q.50 w(AUv;) =
w(R U v;) = 0. and v, is placed in A at step 4. For algorithm Ordered-
Connect-Coherence(). by definition. the activation value of the first node

considered is set to 1 at step 3. Thus. the claim holds for the base case.

Induction Step: Consider any fixed value of ¢ at step 3 of algorithm Approx-
Coherence(). Suppose that w(A U v;) > w(R U v;) at step +. Then at
step 5. v; will be added to A.

By the inductive hypothesis. we can conclude that for all vertices v; €
Ai_y. a;(t — 1) = 1. and for all vertices v; € R;_;. a;(t — 1) = —1. Now.
we show that a;(i) must tend to 1. To show this. it is sufficient to show

that net;(¢) is positive.

CHAPTER 3. ON-LINE AND CONNECTIONIST 0.5-APPROXIMATIONS 31

Let

$1

Z w(v,-.v,-)

vje.-i
(v;.v;)eCt

82 = Z w(v;. vj)
vler‘
(viwv;)EC—

83 = Z w(v;.v;) and

vjeﬂ
(vi.v;)ECT

84 = Z w(v;. v;).
quR
(viv;)€C—
Since w(A U v;) > w(RUv;). 81 + 84 > 32 + $3. 50 81 + 84 — (82 + 83) 18

positive.

Now.

net;(¢) = Z w,-,-a,-(i)+ Z w,-,-aj(i)

(j[")eA} {j|vJ€R}
= Z w,-jaj('i) + Z w;jaj(i) +
{jley€A} {jlc; €4}
(U.‘.Uj)ec+ (viwwj)EC
Yo wihei(i)+ Y wiaili)
(e €R) Ule; €RY
(vi.vj)eCt (viwv;)EC™
= 3w+ DY —wlwey)(l)+
{jlo €4} {jlej€4}
(vi.w;)€CH (vi.v;)EC—
S wwey) (1) + Y —w(viyi)(-1)
{slejER} {ilej ER}
(vi,vj)ECT {viv;)€C-

= 31—32—83+34

= 81 + 84 — (82 + 83)

CHAPTER 3. ON-LINE AND CONNECTIONIST 0.5-APPROXIMATIONS 32

Thus. net;(i) must be positive. and it follows that a;(z) — L. The proof
is similar for the case when w(A U v;) < w(R U v;) at step 4. [

Thus. we have shown that by restricting the update order of the nodes. the
network produces a solution within a factor one-half of the weight of the optimal
solution. Intuitively. by removing the restriction on the update order. we should
get a strictly better approximation. This does not follow immediately. however.
since it may be the case that by removing the restriction on the update order. the

network can settle into a state that is worse than a factor one-half of optimal.

In Section 3.3. we discussed connectionist algorithms for the coherence problem.
For a variation on the update rule. we showed that the connectionist algorithm given
is equivalent to the approximation algorithm of Section 3.1. Without restricting the
update rule. we are currently unable to show that the connectionist algorithm pro-
duces approximations with guaranteed performance bounds: the derivation of such
bounds remains an important open question. We conjecture that the fully parallel
connectionist algorithm will perform strictly better than the on-line approximation

algorithm given in this chapter.

Chapter 4

A 0.878-Approximation Algorithm

For twenty years. the best approximation algorithm known for the max cut problem
was the 0.5-approximation algorithm of Sahni and Gonzalez [SG 76]. In a recent
breakthrough in approximation theory. Goemans and Williamson (GW 94| gave a
0.878-approximation algorithm using semidefinite programming. In this chapter.
we apply their results to obtain a 0.878-approximation algorithm for the coherence
problem. The techniques we use here are essentially the same as those [GW 94] for
MAX CUT. except that the objective function for the coherence problem is more
general than the objective function for MAX CUT. The objective function for the
coherence problem draws on both the objective functions for MAX CUT and MAX
2SAT.

33

CHAPTER 4. A 0.878-APPROXIMATION ALGORITHM 34

4.1 An Objective Function for Coherence

We define a variable y; corresponding to each vertex v;. For a partition (A. R). let
yi =1ifv; € A.and y; = —1 if v; € R. Let w;; = w(v;.v;). The weight of the
partition (A. R) can be expressed as an integer quadratic program. as follows:
Maximize: 3 (Z < wii(l+yays) + 2 < wi(l - !li'.'/j)) (4.1)
(vi.vj)eC* (vi.v,}EC~

subject to: y; € {-1. 1} ¥i such that v; = V

That the above equation encodes the weight of the partition (A.R) can be seen
as follows. Suppose that (v;.v;) € C*. and v; and v; are both placed in A (the
constraint is satisfied). Then y; = 1 and y; = L. so w;;(1 + yiy;) = 2wi;. which
when multiplied by } gives w;;. Similarly. if both v; and v; are placed in R. we get
w;j. Now. if v; is placed in A and v; is placed in R (the constraint is not satisfied).
we get y; = 1 and y; = —1. so w;;(1 + yiy;) = 0. Similarly. if y; = -1 and y; = L.
wi;(1 + yiy;) = 0. A similar analysis for the second term of (4.1) shows that if the
negative constraint is satisfied. the net contribution to the weight of the partition

is w;;. or 0 if it is not satisfied.

Thus. the objective function of (4.1) encodes the coherence problem. and an
optimal solution to this integer programming problem would give an optimal so-
lution to the coherence problem. As would be expected. solving this problem is
NP-hard. In the following, we show how to relax the optimization problem to
obtain a semidefinite program. which can be solved efficiently. The vectors ob-
tained by solving the semidefinite program will then be randomly partitioned to
obtain an approximate solution to the coherence problem. First. we discuss briefly

semidefinite programming.

CHAPTER 4. A 0.878-APPROXIMATION ALGORITHM 35

4.2 Positive Semidefinite Matrices

An n x n matrix A is said to be positive semidefinite if for every vector z € R".
zT Az > 0. For a symmetric matrix A the following are equivalent: (i) A is positive

semidefinite: (ii) all eigenvalues of A are nonnegative: and (iii) there exists a matrix

B such that A = BTB.

4.3 Semidefinite Programming

In [Ali 92]. an efficient algorithm is given for solving semidefinite programming

problems. The standard semidefinite programming problem is defined as follows:
m%'n{C e X :A;0X =b;fori=1....m and X is positive semidefinite} (4.2)

where C. A; and X are n x n matrices. the b;s are integers. and X is symmetric
and positive semidefinite. For matrices A and B. the operation A e B is the inner

product. defined as Ae B =3, ; Ai; Bi;.

The algorithm of Alizadeh [Ali 92] solves any semidefinite program. as defined
n (4.2). for variable X to within an additive error € of optimality in O(+/n|log ﬂ)
iterations. where each iteration requires time polynomial in n. Note that while the
solution produced is a symmetric positive semidefinite matrix X. the coefficient

matrices C and A; are not required to be either symmetric or positive semidefinite.

4.4 Semidefinite Relaxations

In this section. we show how to relax the objective function for the coherence

problem to a semidefinite programming problem. Consider the y; variables of (4.1)

CHAPTER 4. A 0.878-APPROXIMATION ALGORITHM 36

to be unit norm vectors in one dimension. Now. suppose that we allow y; to be an
n-dimensional vector z; of unit norm. Let S, denote the n-dimensional unit sphere

in R,. Then z; € S,. The program of (4.1) then becomes:

.. 1
Maximize: 5 Z wii(l + z; - z5) + Z wi;(1 — zi - z5) (4.3)
= 1<y <y
(v.-.vJ)GC"’ (v.'.UJ’)EC'
subject to: z; € S Y: such that v; € V

To see that the program of (4.3) is a relaxation of (4.1). note that when the z;'s

are one-dimensional unit vectors. (1 — z; - z;) reduces to (1 — yiy;)-

The objective in (4.3) is not yet in the form of a semidefinite program. since the
z;’s are unit vectors. However. the dot product of z; and z; is a scalar value in the

range [—1.1]. which we denote by z;;. Hence. we can rewrite (4.3} as:

.. 1
Maximize: Y Z w,-,-(l + Z,'_.,') + Z U),'J'(]. - Zij) (4+.4)
- 1< 1<y
{vi.v;)eCt {vivy)1€CT
subject to: zi =1 ¢ such that v; € V

Restricting z; to 1 forces the z;'s to be unit vectors. since z; = z; - z; = L if and

only if the norm of z; is 1.

The program of (4.4) is now in the form of a semidefinite program. In order
to transform the solution of this program back to the form of (4.3). we use the
following property of symmetric positive semidefinite matrices (property (iii) of
Section 4.2): if A is a symmetric positive semidefinite matrix. then there exists a
matrix B such that A = BT B. and the matrix B can be computed in polynomial

time using incomplete Cholesky decomposition. Now. let Z = (z;)- Using Cholesky

CHAPTER 4. A 0.878-APPROXIMATION ALGORITHM 37

decomposition. a matrix Z’ can be computed such that Z = Z TZ'. Let the columns

of Z' be denoted z;..... z,. As noted above. the z;’s are vectors on the unit sphere.

4.4.1 Randomized Partitioning

In the above section. we have shown how to solve the relaxation of the coherence
problem given in (4.3): namely to solve the semidefinite program of (4.4) for the
matrix Z. and then to compute a matrix Z’ whose columns comprise a set of unit
vectors zj..... z, on the n-dimensional sphere via incomplete Cholesky factoriza-
tion. Now. we show how to compute an approximate solution to the coherence
problem using vectors z;..... z,.. The technique is to draw a vector 7 uniformly at
random from the unit sphere S,. and to assign vertices to the accepted set A or

rejected set R as follows:
A= {vijz;-r 20}
R = {vi|z-r <0}

Taking the dot product of each vector z; with the random vector r partitions
the vectors with a random hyperplane through the origin with normal r into the

set A of vectors that lie above the hyperplane. and the set R that lie below it.

We show in the following section that the solution to the coherence problem
produced by this randomized partitioning technique has expected weight within
0.878 of optimal.

4.4.2 Expected Performance

Let E[w(A. R)] be the expected value of the weight of partition (A. R) produced by

the randomized algorithm (where the weight of a partition is as defined in Section

CHAPTER 4. A 0.878-APPROXIMATION ALGORITHM 38

1.4). The following theorem gives a performance ratio for £ [w(A. R)].

Theorem 4.1

Elw(A.R)] > a3 > wi(l 4z z5)+ (4.5)
(v.‘.v.f)lec*

z w;;(1 — zi - z5) (4.6)
(v,'.vlf)lec—

where a = mingcs<n 2oy > 0.87856.

The approximation algorithm for coherence draws a random vector . and par-
titions the vectors z;..... z,, obtained from the solution of the semidefinite program
into those above the hyperplane whose normal is 7. and those below it. Thus. the

expected weight of the partition (A. R) is given by the following lemma:

Lemma 4.2

Elw(A.R)] = > wij-Prlsgn(z -7) = sgn(z; - r)] + (4.7)
(v.'.u‘f)JeC"’

> wiy - Prlsgn(zi -v) # sgn(z; - 7] (4.8)
(v.'.v.j<))€C‘

where sgn(z) =1 if £ > 0. and —1 otherwsse.

Proof: Recall that a positive constraint is satisfied if both vertices are placed in
A. or both in R. Recall also that vertex v; is placed in A if z; -7 > 0. Hence.
the summation of (4.7) is the expected weight of positive constraints that are
satisfied by the solution. Similarly. the summation of (4.8) is the expected

weight of negative constraints that are satisfied by the solution. |

CHAPTER 4. A 0.878-APPROXIMATION ALGORITHM 39

The following two lemmas are proven in [GW 94]. We include the proofs here

for completeness.

Lemma 4.3 ([GW 94])
1

Prisgn(z; -) # sgn(z; - r)] = - arccos(z; + zj) and (4.9)

Pr[sgn(z; -) = sgn(z; -7)] = 1— la.rccos(z,- - z5) (4.10)
T

Proof: We first show that Pr{sgn(z;-7) # sgn(z;-r)] = %MCCOS(Z-{'ZJ'). Since r is a
vector drawn uniformly at random from the unit sphere. the probability that
sgn(z; - 7) # sgn(z; - v) is simply the probability that the hyperplane whose
normal is 7 separates vectors z; and zj: thus. it is proportional to the angle
8 between z; and z; (given by arccos(z; - z;)). By symmetry. Pr(sgn(z; - r) #
sgn(z; -r)] = 2Pr(z;-r > 0.z; -7 <0]. Theset {r:z-r2>0.2;-7< 0} is the
intersection of two half-spaces whose angle is §. and the intersection of this
set with the unit sphere is a spherical digon of angle §. Thus. the measure of

9

Pr{z-r >0.z;-r < 0] is Z. and Pr(sgn(z; - r) # sgn(z; - r)] = .

Now. Pr(sgn(z; -) # sgn(z; -7)] + Prsgn(z;-) = sgn(z; -7)] = 1. so it follows
that Pr[sgn(z; -1r) = sgn(z; - 1‘)] =1- 1% m

Lemma 4.4 ([GW 94]) For —1 < y < 1. rarccos(y) > ai(l —y). and 1 -

% arccos(y) > a%(l + y). where @ = minp<g<n %1—_30? > (0.87856.

Proof: We first show that 1 arccos(y) > az(l —y). Let y = cos #. Substituting

gives % > a%(l — cos §). Using calculus, we get %9 > .87856(1 — cos).

That 1 — Larccos(y) > ai(l +y) follows from the above. by substituting —y

for y. and by the fact that @ — arccos(y) = arccos(—y). []

CHAPTER 4. A 0.878-APPROXIMATION ALGORITHM 40

The proof of Theorem 4.1 follows from Lemmas 4.2, 4.3 and 4.4.

In this chapter. we have applied the semidefinite programming approximation
technique of [GW 94] to the coherence problem. to obtain a 0.878-approximation
algorithm. The best performance guarantee previously known for this problem was

the 0.5-approximation algorithm of the previous chapter.

It would be interesting to explore the application of semidefinite programming
to certain minimization problems. For example. rather that approximating the
maximum weight of satisfied constraints in the coherence problem. it would be in-
teresting to approximate the minimum weight of rejected constraints. These are
dual problems when referring to exact solutions. but it may be possible to get
better approximations in certain cases by using an approximation to the dual. In
practice. the optimal coherence will generally satisfy a large fraction of the con-
straints. perhaps in the order of 70%: thus an algorithm that approximates the
rejected constraints (30% of the constraints) may perform better. We have not
been successful at applying the semidefinite programming technique to this dual
formulation. The best algorithm known for minimizing the number of rejected
constraints is an O(log k)-approximation algorithm. where k is the number of con-

straints. which follows from the work of Klein et. al. [KARR 90].

Chapter 5

An Approximation Algorithm for
Neural Nets

5.1 A 0.878-Approximation Algorithm

In [Th 89]. Thagard showed how to implement coherence problems using neural
networks. In Chapter 4. we showed the relationship between the weight of the
solution to the coherence problem and the harmony of the neural network used to
encode the problem. In this section. the theorem of Chapter 3 is restated and gen-
eralized to show the relationship between arbitrary neural networks and coherence
problems. We use this relationship to get an approximation algorithm for settling
neural networks. We use the terminology introduced in Section 3.3.1 for describing

the neural networks.

41

CHAPTER 5. AN APPROXIMATION ALGORITHM FOR NEURAL NETS 42

5.1.1 Encoding Neural Networks as Coherence Problems

In the Chapter 3. we showed how. given an arbitrary instance of the coherence
problem. to construct a neural network that encodes the problem instance. It
should be evident that the converse holds as well: an arbitrary neural network.
with bounded maximum and minimum activation values. can be encoded as an
instance of the coherence problem. We assume here that the neural network has
maximum and minimum activation values bounded by 1 and —1 respectively: then
the neural network can be encoded as an instance of coherence simply by placing
all links with positive weight in the set C* of positive constraints. and all links
with negative weight in the set C~ of negative constraints. The vertices that are
placed in the accepted set A correspond to nodes of the neural network that settle
into the 1 state. and those that are placed in R correspond to nodes that settle into

the —1 state.

5.1.2 Harmony and Scaled Harmony

Recall from Section 3.3.2 that the Harmony is defined as:

Ha(N.t) = 3 wijai(t)a;(t) (5.1)
i<j

The value of Ho(N.t) will be in the range [—w(G).w(G)]. where w(G) =
Yicjlwijl. The possibility of a negative or near-zero value for the optimal har-
mony leads to problems of unbounded performance ratios. since the denominator
in the approximation ratio (see equation 1.1) will be negative or near zero. Thus.
in order to talk about approximating harmony. we introduce the notion of scaled

harmony. which we define as:

SHy(N,t) = Ha(N.t) + w(G)

CHAPTER 5. AN APPROXIMATION ALGORITHM FOR NEURAL NETS 43

The following corollary to Theorem 3.4 shows the correspondence between the
scaled harmony of the stable states of the neural network and the quality of the

associated solution to the coherence problem.

Corollary 5.1 Let N be the neural network after having settled into a stable state.
and let (A. R) be the associated solution to the coherence problem. Let w(A.R) be
the weight of the solution. and let w(G) = Yi; |w;;| be the weight of the entire
graph. Then SHy(N.oo) =2+ w(A.R).

It follows from Corollary 5.1 that the higher the harmony achieved in the neu-
ral network N. the better the solution to the coherence problem. and vice-versa.
We will use this corollary to show that by encoding a neural network as a coher-
ence problem. the solution obtained using the 0.878-approximation algorithm for

coherence gives an approximation algorithm for settling neural networks.

Theorem 5.2 Let N be a neural network with activation values bounded by maz =
1 and min = —1. and G be the associated graph for the coherence problem. Then
the solution obtained by running the 0.878-approrimation algorithm for coherence

on G gives a state for N for which SHa(N. o) is within a factor 0.878 of optimal.

Proof: Let w(A".R") be the weight of the optimal solution for an instance
of the coherence problem. and let N~ denote the neural network N after
having settled into the state with the optimal harmony. By Corollary 5.1.
SHy(N*.) = 2 * w(A". R"). Running the 0.878-approximation algorithm
for coherence on G will give a solution (A. R) with w(A. R) > 0.878w(A". R).
and by Corollary 5.1, SHa(N.oo) > 2 * (0.878w(A". R*)). Thus. the perfor-

mance ratio in approximating SH,(N~.co) is bounded by:

2 % (0.878w(A~. R))

2+ wld- T 0.878

CHAPTER 5. AN APPROXIMATION ALGORITHM FOR NEURAL NETS 44

Hence. the value of SH,(N.oo) produced by the approximation algorithm is
within 0.878 of optimal. .

We make one final note on Theorem 5.2: the solution produced by applying the
approximation algorithm for coherence to a neural network will produce a state
that is within 0.878 of the scaled harmony of the optimal stable state. The state
produced. however. is not necessarily stable itself. A stable state is easily obtained
using this state as the start state. though. by applying a standard Hopfield-type
algorithm to settle the network into a stable state with scaled harmony at least as

good as that of the start state.

In this chapter. we showed the correspondence between the weight of a solution
to the coherence problem and the harmony of the neural network encoding of the
problem. and used this correspondence to obtain a 0.878-approximation algorithm
for settling neural networks with bounded activation values. The 0.878 performance
guarantee applies to a scaled version of harmony: namely the harmony plus the sum
of the absolute values of the weights in the network. We argue in Section 3.3 that
this is a reasonable quantity to approximate. due to the technical difficulty of ap-
proximating the harmony itself. Nevertheless. it would be interesting to investigate

different notions of approximating optimal harmony.

Chapter 6

Future Work on Constraint

Satisfaction

In [GW 94]. Goemans and Williamson gave 0.878-approximation algorithms for
both MAX CUT and MAX 2SAT. No significant improvements have been made
since then for the MAX CUT problem. but for MAX 2SAT. Feige and Goemans
[FG 95] improve the 0.878-approximation result to 0.931. While the formulation
of the coherence Problem is not equivalent to MAX 2SAT. the objective function
that we use for coherence does bear some resemblance to that used in {GW 94] for
MAX 2-SAT. Thus. it would be interesting to see if these results can be applied to

obtain an improved approximation algorithm for coherence.

Since we have shown that the coherence problem is MAX SNP complete. there
exists some constant upper bound on the approximation ratio achievable. For MAX
CUT. the best upper bound currently known is 0.9813. due to Trevisan. Sorkin.
Sudan and Williamson [TSSW 96]. which is a slight improvement to the 0.983 result

of [BGS 95] (we refer the reader to [CK 95] for an excellent survey of the current

45

CHAPTER 6. FUTURE WORK ON CONSTRAINT SATISFACTION 16

state of the art in approximation ratios.) The best upper bound known for MAX
2SAT is 0.9872 [BGS 95]. Since coherence solves MAX CUT as a special case. the
upper bound for MAX CUT applies also to coherence. It may well be the case.
however. that tighter upper bounds can be shown for coherence than for MAX

CUT. Obtaining tighter bounds for coherence is an interesting open problem.

Klein. Agrawal. Ravi and Rao [KARR 90| have studied a problem they call 2-
CNF=. which is to determine the minimum number of clauses that can be deleted
from a 2-CNF formula to make it satisfiable. The coherence problem can be encoded
as a 2-CNF formula in an approximation-preserving reduction. In this transforma-
tion. minimizing the number of clauses to be deleted to produce a satisfying for-
mula is equivalent to minimizing the number rejected constraints in the coherence
problem. The algorithm given in [KARR 90] yields an O(log® n)-approximation
algorithm. This has been improved to O(logn) in [GVY 93]. It remains an open

question whether a constant-factor approximation algorithm exists for this problem.

The version of the CSP that we have considered has binary constraints. and the
only cases we have given approximation algorithms for also have binary domains.
There are two directions in which many open problems lie: the generalization from
binary to k-ary comstraints: and the generalization from binary to multi-valued
domains. The case of k-ary constraints has been studied by [KMSV 94]. and they
give an approximation algorithm with performance ratio ._,L,, The algorithm they
give uses non-oblivious local search. The semidefinite approximation technique we
use to approximate the binary case uses a global search technique. It would be
interesting to study whether the global search techniques can be extended to the
k-ary CSP. or whether local search algorithms can achieve better approximation

ratlos.

The second direction in which there are many interesting open problems is the

CHAPTER 6. FUTURE WORK ON CONSTRAINT SATISFACTION 47

generalization of the binary CSP to multi-valued domains. Note that this problem
contains as a special case the graph-coloring problem. which has been well-studied
for decades. The results of Karger. Motwanti and Sudan [KMS 94] give an algorithm
with approximation ratio n- 57 log n. for instances of the CSP with unweighted
constraints. where all constraints are “NOT-EQUAL"™ (i.e.. constraints specify that
two variables cannot have the same value.) Their algorithm is to date the strongest

result on graph coloring.

In this thesis. we have given an approximation algorithm for the coherence prob-
lem. a restricted version of the binary-valued binary CSP. Due to its generality. the
multi-valued multi-ary CSP contains as special cases many NP-hard optimization
problems. hence generalizing the binary problem to multi-ary constraints and multi-

valued variables will contain many important but challenging problems.

Chapter 7

Part II - Learning Monotone DNF

7.1 Introduction

In this thesis. we give positive learnability results for sub-classes of monotone DNF
formulas on the uniform distribution. We define the classes of one-read-once mono-
tone DNF. for which each term of the formula has at least one attribute that 1s
read-once and read-once factorable monotone DNF. Both classes are generalizations
of read-once monotone DNF formulas. where every attribute in the formula must
be read-once. In Chapter 9. we give the main learnability results of this part of the
thesis: we show that poly-disjoint one-read-once monotone DNF formulas. where
for each term of the formula. the set of examples that satisfy only that term has
polynomial probability weight. are learnable on the uniform distribution: and we
show that read-once factorable monotone DNF formulas are learnable on the uni-
form distribution. We use spectral analysis to show the correspondence between
the Fourier coefficients of terms of a one-read-once formula and the probability

weight of the set of vectors that satisfy exactly one term of the one-read-once for-

48

CHAPTER 7. PART II - LEARNING MONOTONE DNF 19

mula. More precisely. we show that if the positive Fourier coefficients of a term of
a one-read-once formulas is large then the term can be constructed in polynomial
time. and if it is small. then the term is insignificant in the approximation of the

formula.

Our learnability result for read-once factorable monotone DNF formulas is based
on a lemma that we prove in Chapter 8. which we dub the Diffraction Lemma. In
this lemma. we show that if a set of terms all have the property that the probability
weight of the set of vectors that satisfy exactly one term is small. then the entire
set of terms can be approximated by their greatest common factor. This. together
with the relationship between the weight of the disjoint vectors and the Fourier
coefficients of terms of a one-read-once monotone DNF formula gives the learnability

result. We now consider briefly previous work on learnability relevant to our results.

7.2 Previous Work

Since the inception of computational learning theory in the PAC (Probably Ap-
proximately Correct) learning model due to Valiant [Val 84]. the problem of the
learnability of DNF has received much attention. The primary reason for this is
the potential of DNF as a form of knowledge representation. with applications in
expert systems and. more recently. data mining. DNF is also interesting in that it
appears to be near the boundary of learnability. Learning general Boolean formu-
las and log-depth circuits is known to be as hard as factoring [KV 88]. The results
of Lund and Yannakakis [LY 93] on the hardness of approximating the k-coloring
problem and the results of Pitt and Valiant [PV 86] reducing the coloring problem
to the DNF learning problem show that s-term DNF formulas are not learnable by

n¢s-term DNF hypotheses for some €. unless NP = RP. In contrast. several sub-

CHAPTER 7. PART II - LEARNING MONOTONE DNF 50

classes of DNF formulas are known to be learnable. For an excellent survey of the

DNF learning problem. we refer the reader to [AP 95].

The difficulty of learning DNF in the distribution-independent PAC model
seems to be due to the robustness of the model. Under distribution-independence.
many variants of the PAC model turn out to be equivalent. Kearns. Li. Pitt and
Valiant [KLPV 87. KLV 94| showed that if a monotone class of Boolean formulas
is learnable in the distribution-independent model. then so is the non-monotone
class formed by allowing negated variables in the original class. The same authors
introduced the notions of weak learning and group learning. In the weak-learning

PAC model. the accuracy of the hypothesis is only required to be a polynomial

fraction better than random guessing (i.e.. the error of the hypothesis is bounded

1
p(s.n)

by % — . where s and n are size parameters of the target function). In the
group learning model. the learner receives a set of examples. either all positive ex-
amples or all negative examples. and has to determine whether the examples are
positive or negative. Kearns. Li. Pitt and Valiant showed the equivalence of the
weak-learning model and the group learning model. In a surprising result. Schapire
S 90} showed that weak learning is as hard as PAC learning in the distribution-

independent model. Thus. PAC learning. weak learning. and group learning are all

equivalent.

Due to the apparent difficulty of learning DNF for arbitrary distributions. re-
search efforts have focussed on learning this class for particular distributions. in
particular for the uniform distribution. Kearns. Li. Pitt and Valiant (KLPV 87.
KLV 94] gave the first such distribution-specific algorithm for learning u-DNF for-
mulas. in which every attribute occurs at most once in the formula. These authors
also gave a weak-learning algorithm for the entire class of Boolean formulas. again

for the uniform distribution. Note that Schapire’s results. discussed above. on the

CHAPTER 7. PART II - LEARNING MONOTONE DNF 51

equivalence of weak learning to PAC learning cannot be applied to the distribution-
specific case. so the weak-learning algorithm for DNF on the uniform distribution

does not imply a DNF learning algorithm for the uniform distribution.

Hancock [H 92] further studied restricted-read DNF. which are sub-classes of
DNF in which the number of occurrences of each attribute in the formula is bounded
by a constant. The most general class of formulas for which he gives polynomial
time algorithms is the ku-DNF formulas (or equivalently. the read-k DNF formulas)
where each attribute occurs at most k times in the formula. Hancock's results apply

also to the uniform distribution.

There have been several positive partial results for the learnability of DNF
on the uniform distribution. although no polynomial time algorithms are known.
Linial. Mansour and Nisan [LMN 89] showed how to learn AC? circuits on the
uniform distribution by learning the Fourier coefficients in O(n'°s™) time. The
hypothesis output by this algorithm is an approximation to the Fourier transform
of the target function. In [Ver 90]. we showed that DNF is learnable under the
uniform distribution with a similar time bound. but for which the output hypothesis
is a DNF formula.

The learnability of read-once Boolean formulas has been studied by several au-
thors in the membership query and equivalence query models. Angluin. Hellerstein
and Karpinski [AHK 93] show that monotone read-once formulas can be learned
from membership queries alone. and that read-once formulas can be learned us-
ing membership and equivalence queries. In the PAC-learning model, Goldman.
Kearns and Schapire show in [GKS 90] that read-once formulas can be learned on
the uniform distribution in time O(:‘—:) using 0(':—:) examples. This result is gener-
alized to product distributions in [S 92]. giving an algorithm with time complexity

'

O(2:) and sample complexity 0(56;)

€

CHAPTER 7. PART II - LEARNING MONOTONE DNF 52

Kushilevitz and Mansour (KM 93] gave an algorithm for learning decision trees
on the uniform distribution via Fourier coefficients. Mansour {Man 92| used this
result to show that when membership queries are allowed. DNF can be learned on
the uniform distribution in O(n'°%'°8") time. A polynomial time algorithm is given
by Khardon [Khar 94] for learning Disjoint-DNF. where every example satisfies at
most one term. This result uses Fourier analysis of the DNF formula to construct
terms of the target formula. and in that respect is in a similar vein to the results

of this thesis.

In a break-through result. Jackson [J 94] showed that DNF can be learned in
polynomial time on the uniform distribution when membership queries are allowed.
The results of [BFJK 94] give a lower bound of Q(n'°s™) for learning DNF on
any distribution. including uniform. in the statistical query model due to Kearns
[Ke 93]. where the learner is allowed only to make queries about the statistics of an
arbitrary Boolean function on the input distribution. [t remains an open question
whether monotone DNF is learnable on the uniform distribution in polynomial time

using only examples and no membership queries.

In this thesis. we introduce the classes of one-read-once monotone DNF formulas.
and read-once factorable monotone DNF formulas. We give positive learnabaility
results for poly-disjoint one-read-once monotone DNF and read-once factorable
monotone DNF. on the uniform distribution. The class of read-once factorable
monotone DNF is a superclass of read-once monotone DNF. but a sub-class of read-
once monotone Boolean formulas. Thus. the learnability of this class is implied by
[GKS 90] and [S 92]: however. the complexity of our algorithm is of a lower order:
time and sample complexity O(n:—f). where n is the number of attributes in the
learning domain. and s is the number of terms in the formula. This complexity is

not directly comparable to the algorithms of [GKS 90]. since the complexity of their

CHAPTER 7. PART II - LEARNING MONOTONE DNF 53

algorithm is in terms of n. and ours is in terms of s. However. our results give a
lower complexity for small formulas. The class of one-read-once monotone DNF is
also a generalization of read-once monotone DNF. but since the algorithms we give
here work only for poly-disjoint formulas from this class. this result is incomparable

to the results for read-once formulas discussed above.

7.3 Definitions and Terminology

7.3.1 Functions and Classes

Let X = {z1.Z2....2Z,} be the set of Boolean attributes in the learning domain. A
Boolean function is a function f : {0.1}* — {—1.1}. where —1 represents “false”.
and +1 represents “true”. A (monotone) term ¢; is a conjunction of attributes in
X. none of which appear negated. Let m; denote the set of indices of attributes
in ;. and let function ¢ map the sets of indices onto terms: thus ¢; = t(m;). Let
function m be the inverse of {. mapping a term onto the set of indices of attributes
in the term. Thus m(¢;) = m;. We will sometimes use set notation for terms where
the context is clear. for example. z; € ¢; to imply that : € m;. For z € {0.1}". and
a term t;, we use £ => t; to indicate that vector z satisfies ;. A cross-term of a

formula f is a term that contains attributes from more than one term of f.

We consider Boolean functions that can be represented as sub-classes of mono-
tone DNF formulas. and use f as well to denote the representation of the Boolean
function by a formula. A Boolean formula f is a monotone DNF (hereafter MDNF)
formula if f is of the form f =&, +f+ ...+, where each {; is a monotone term.
The size of the formula is s, the number of terms in the formula. A concept is the

set of examples satisfying a target formula f. We will sometimes refer to this set of

CHAPTER 7. PART II - LEARNING MONOTONE DNF 54

examples as the satisfying set of f. A concept class is the set of concepts defined by
a class of formulas. For example. the set of all Boolean formulas defines all possible

concepts in the Boolean space.

A formula f is read-once if no variable appears more than once in f. We define
generalizations of the well-studied read-once formulas. An attribute z; i1s read-once
if it occurs exactly once in f. A formula f is one-read-once if for every term of f.

at least one attribute is read-once.

Let S(t;) = {zlz = t;} be the set of vectors that satisfy term ¢;. Let DS(t;)
denote the set of vectors that satisfy term t;. but do not satisfy any other term ¢;.

i # j. We will refer to the set DS(t;) as the disjoint satisfying set of term t;.

For a term ¢ and a formula f = t; + ... + t,. we define the restriction of f to ¢.
ft~ by ft:'t‘tlﬁl'...-‘:‘t't,.

For a set of terms T we define the greatest common factor of T to be the largest

term ¢t that is contained in every term in T.

We define the factorization of an MDNF formula recursively. As the base case.
a read-once formula is a factorization (with the trivial factor of the empty set of
attributes). Any formula that is formed as the sum of products of terms (factors)
and a factorization of an MDNTF formula is also a factorization. That is. if f; and f
are factorizations of an MDNF formula then ¢, - fi +t2- f2. where ¢; and ¢, are terms
whose attributes do not already occur in f; or fa, is a factorization. A monotone
DNF formula is said to be read-once factorable if there exists a factorization of f
such that no attribute occurs more than once in the factorization. For example.
for the formula f = z,£2 + T1Z3 + £az3, a factorization of f is f = zi(z2 + I3) +
z2(z1 + T3) + za(z1 + £2). Such a representation is called a factored form of f. This

formula is not. however. a read-once factorization of f. and indeed. no read-once

CHAPTER 7. PART II - LEARNING MONOTONE DNF 55

factorization exists for f. However. the formula ¢ = z,Z2T3 + L1Z2&4 + L1556 IS

read-once factorable. and g = z,(z2(z3 + £4) + £sz6) is a factorization.

We refer to the set F containing the factors of a read-once factorization of a
formula f as the set of mazimal factors of f. Thus. if f = t,(t2(t3+t4) +ts). where
the ;s are read-once terms. the maximal factor set consists of {¢,.£,¢2}. since t; s
a factor of ta(ts + t4) + ts. and t ¢, is a factor of (£3 + £4). Formula g above has

maximal factor set {z;.Lz2}.

Each of monotone DNF. read-once MDNF. one-read-once MDNF and read-
once factorable MDNTF is referred to as a class of formulas. For each of the classes

discussed above. we may use the qualifier “poly-disjoint™ to refer to the set of all

1
pts.})”

formulas in the class for which every term ¢; in the formula has Prp[DS(t:)] >
where p is a polynomial. s is the size of the formula. 0 < e < L. and D is a probability

distribution.

7.3.2 Learnability

We use the standard definitions for PAC-learnability in this paper. We assume
that the reader is familiar with these (see [HKLW 88| for an excellent description).

Here. we give only the following definitions.

Let D+ denote the uniform distribution over the positive examples of the target
formula f. and D~ be the uniform distribution over the negative examples. Let
D denote the uniform distribution over the entire example space. {0.1}". We will
require error functions for both positive and negative examples. Let the positive
error. et(h) of hypothesis h with respect to the target formula f be the proba-
bility that k miss-classifies a positive example drawn according to distribution D.
Similarly. let the negative error. e”(h). be the probability that the hypothesis h

CHAPTER 7. PART II - LEARNING MONOTONE DNF 56

miss-classifies a negative examples drawn according to distribution D. We use e(h)
without the superscripts “+" or =~ to denote the total error on both the positive
and negative examples. We also use Pr[fAg] to denote probability that f # g over
distribution D.

For a hypothesis h. and for 0 < a < % we say that h is an a-good hypothesis.

or a-approzrimate hypothesis. if e(h) < a.

Let C and H be concept classes. For concept class C. let C, be the set of
concepts in C with domain size n. and let C,, be the set of concepts in C, of size
at most s. C is polynomially learnable by H on the uniform distribution iff there
exists an algorithm A with inputs €. 4. s. and n. which Ve. § <1.¥s.n>1. and all
target functions f € Cn,. outputs a representation of a hypothesis h € H, which
with probability > 1 — ¢ has e*(h) < e and e7(h) < e and the run-time of A is
11

bounded by a polynomial in 1. ;. s. and n.

3.
If the hypothesis output by algorithm A has e(h) < %—5(_41-—'1) for some polynomial

p. then we say that A is a weak polynomial learning algorithm.

In [Ke 93]. Kearns introduced the statistical query model. where the learner
makes queries about the statistics of an arbitrary Boolean function over the proba-
bility distribution on the examples. rather than drawing individual examples. The
algorithms we develop in this work use only statistical queries. hence the results

apply to the Statistical Query Model as well as to the traditional PAC model.

7.3.3 Fourier Transform

We use the definitions of the Fourier transform given in [LMN 89] and [J 94]. For
every subset A C {1..... n} and for z € {0.1}". we define the parity function.

CHAPTER 7. PART II - LEARNING MONOTONE DNF 37

xa: {0.1}* - {-1.+1}. by:
xalz) = (=1)Zees™.

The function xa(z) is 1 if the parity of the bits in z indexed by A is even. and —1
if the parity is odd. For Boolean functions f and g. (f.g:{0.1}" — {—1.+1}). we
define the inner product of f and g by (f.g) = E[fg]. where the expectation is over
all vectors {0.1}". The norm of a function f is defined by ||f]| = \/E[f_'-’] With
the inner product and norm so defined. the set of functions {x4|A € {1..... n}t}is
an orthonormal basis for the vector space of real-valued functions on the Boolean
cube Z. Thus. every function f : {0.1}" — R can be uniquely expressed as a
linear combination of parity functions. by f =34 f(A)xa. where f(A) = Elfxal-
The vector of coefficients f is called the Fourier transform of f. For Boolean f. f

represents the correlation of f and x4 with respect to the uniform distribution.

For the purpose of this thesis. we also define the positive Fourier coefficient
(PFC). which we denote by fP(A). as fP(A) = (—1)*!Ep+[xaf]. Note that since
f = 1 on all positive examples. this reduces to fP(A) = (=1)!4Ep+xaj. We use
(—1)4 Ep+ [xa] to denote the estimate of fP(A).

7.4 Motivation for Spectral Analysis of MDNF

The results of this thesis are based on the properties of Fourier coefficients of sub-
classes of monotone DNF formulas. For all of the sub-classes we consider. we show
how to construct terms of the target formula using spectral analysis. In particular.
in Chapter 9. we show that all terms of a read-once factorable MDNF formula
that are significant in the approximation of the target formula have large positive

Fourier coefficients. In contrast. all cross-term coefficients are negative. Using these

CHAPTER 7. PART II - LEARNING MONOTONE DNF 58

properties. we show how to construct the terms of a sparse formula by recursively

constructing sub-terms with the same properties.

Chapter 8

Approximation Results for

Monotone DNF

Before giving results for restricted classes of MDNTF formulas. we need some prelim-

inary results on the approximation of formulas. The first fact we give states that

every MDNF formula can be approximated with error bounded by % by an MDNF

formula with terms of size log 2. In the statement of the results of this chapter.

£

we will use superscript f to denote a term from formula f. and similarly for g.

Fact 8.1 Let f = t{ + ... + t{ be an MDNF formula. There ezists an MDNF
formula g =t§ + ...+ t9 for which |t{| <lg 24 C t{.and e~ (t7) < £.

The proof of this fact is given in [Ver 90]. By Fact 8.1. for every MDNF formula
f. there exists a formula g with log-sized terms that approximates f well. In the
results of this thesis. we show how to find an approximation to the formula g.
which by Fact 8.1 is an approximation to f. We give two results in this chapter

on approximation of the formula g. one version specifically for read-once MDNF

59

CHAPTER 8. APPROXIMATION RESULTS FOR MONOTONE DNF 60

formulas. and a more general version with weaker bounds for the class of read-once

factorable MDNF'.

Lemma 8.2 For a read-once MDNF formula g = t{ + ... +tJ with terms of size at

most lg 22 and for the uniform distribution D on ezamples of g. if Prp[DS(t])] < 5

[

for any term t7. then Prp[gAl] <

[RYEY
.

Proof: We show that the size of the set DS(t{) of vectors that satisfy term t?
but no other term is proportional to the size of the set of negative examples.
Take any vector z in DS(t!). This vector satisfies t? but no other term.
Now. changing any attribute in ¢/ from 1 to 0 gives a negative example.
due to monotonicity. There are 2! vectors in {0.1}*"'. so at most olt!]
negative examples can be generated in this way for each vector £ € DS (£7).
Since every term of g has at most lg ":—" attributes. the number of negative
examples is at most 28 2 times the number of examples in DS(t?). Since
Pr[(DS(t])] < ;—i the probability weight of the negative examples is at most
2ls . Pr[DS(t7)] < 3}% = £. Thus. the probability of error in approximating

formula g by the constant function A = 1 is at most 5. and it follows that

Pr(gAl} < [

XI5
"

By Fact 8.1 and Lemma 8.2. we have that for any read-once MDNF formula. if
for any term in the formula the probability weight of the set of vectors that satisfy
exactly one term is smaller than % then the formula can be approximated by the
constant function h = 1.

Hancock gives a result for learning k-u MDNF formulas (also known as read-k

MDNPF formulas. where each attribute occurs in at most & terms) on the uniform

distribution [H 92]. His results are based on the following lemma:

CHAPTER 8. APPROXIMATION RESULTS FOR MONOTONE DNF 61

Lemma 8.3 (Hancock [H 92]) Let f be a ku MDNF formula. and let p be the
probability that f(z) = 0. where z is drawn uniformly at random. For any term T
of f with { variables. the probability on the uniform distribution that T is true and

all other terms are false is at least p27*¢.

This lemma can be used to prove our Lemma 8.2. with k& = 1. Hancock uses
Lemma 8.3 to bound the influence of variables in read-k MDNF formulas. and uses
this influence measure in a polynomial time algorithm for read-k MDNF on the
uniform distribution. Since read-s MDNF. where s is the size of the formula. is
equivalent to MDNF (each attribute can occur at most once in each term). we can
derive from Lemma 8.3 that for any term T'. the probability weight of the examples
that satisfy only T is at least 2** times the probability weight of the negative
examples. This does not give a polynomial time learning algorithm for MDNF.

however. because of the exponential dependence on s.

In the following. we give a lemma of a similar flavour to that of Lemma 8.3. in
that we bound the size of the negative example space in terms of the probability
weight of the examples that satisfy exactly one term. There are. however. several
essential differences in our lemma. First. we give a lemma that applies to the class
of read-once factorable MDNF. Secondly. the lemma we give provides bounds on
the probability weight of negative examples in a particular subspace of the exam-
ple space. In order to describe this subspace further. we introduce the following

terminology.

Recall that for an MDNF formula g = ¢ + ... + t4. we define the greatest
common factor of g (denoted GCF(g)) to be the largest term ¢ that is contained
in every term t{ for 1 < ¢ < s. We refer to the set of examples satisfying ¢ as

the subspace defined by ¢. Note that the subspace defined by ¢ may contain both

CHAPTER 8. APPROXIMATION RESULTS FOR MONOTONE DNF 62

positive and negative examples. In particular. it contains all examples satisfying

g:. the restriction of g to t. and may contain negative examples as well.

The technique we will develop in the proofs of the following lemmas is to project
a set of positive examples. or a formula. onto a larger subspace. For a term v. let
PS(v) be the set of vectors that are zero on all z; € v. and that range over all
possible combinations of assignments to the attributes in v. We call the set PS(v)
the projection set for v. We can then define the projection of a set of examples. For
a set X of examples and a term v. let the projection function P, : 2l01}" _, ofoa}”
be defined as: P,(X) = {z ®y|z € X.y € PS(v)}. where @ denotes bitwise
exclusive or. Thus. the projection function P,(X) takes each example in X and
maps it onto each of the 2i*l possible combinations of assignments to the attributes
in v. and leaves all other attributes unchanged. We will refer to such a projection

of examples as the projection of X over v.

We will also use the projection function P,(g) with a formula g as an argument
to mean the projection of the satisfying set of g onto all possible combinations
of assignments to the attributes of v. Note that this is equivalent to deleting all

attributes from g that occur in v. For example. Py (2122 + £1L3) = £2 + 3.
Let g; be the Boolean function consisting of all terms of g except t?. Thus.
gi=t8+ .+t +td +...+t. Asanexample. consider the formula

g = T1Ia2Z3+ L1L2l4 + L1L5ZL6 (8.1)

We then have g, = £ Z2Z4+ L1T5T6. g2 = L1L2L3+L1T5L6. and gz = £1L2L3+ L2y,

In the following proofs. we will consider various properties of the product

MMicics 9:- First. note that by the above definition.

Mo = [Xd=E+85+...+8) -t +t+...+t) (8.2)

1<i<s 1<i<s j#i

CHAPTER 8. APPROXIMATION RESULTS FOR MONOTONE DNF 63

We prove the following properties showing the relationship between the functions

g; and projections over factors of g.

Claim 8.4 For an MDNF formula g = t + ... + 9. let g = T4 t]. Then

L g .49
Hngiga g = ngiq‘ga t; - t5.

Proof: First. we show that each term in ¥, <;c;j<, t! -t} is generated by IMi<i<s 9-
Suppose that term #{ is satisfied. All formulas g;. j # ¢ contain t?: hence
[Tici<a gi 18 satisfied if g; is. Arguing in this manner for each :. we get the
formula t2-g, +t3-g2+...+t9-g,. Expanding each g; gives t9-(t5+t5+...t9)+
(88 +td 4.t .+t (] H 5+ .. t]_). whichis Ticicjcs ti - t]. We
have thus shown that every term in ¥ ,<icj<, tf - t] is generated by [T, <i<s g:-
and it follows that

Mo = t§-a+thg+...+ti-g= > t-t5. (83)
1<i<s 1<i<j<s

As an illustration of Claim 8.4. we continue with the example from (8.1). We

then get

H g = g1°92-°39s3
1<i<s

= (Z1T2T4+ T125%6) - (T122Z3 + T1T5T¢) - (T1Z2Z3 + T1T2Z4)

= I|TyT4-ZT1T2T3+ T1T5Z6 T1Z2L3 + L1T5T6 - T1L2T4 - (8.4)

Claim 8.5 For an MDNF formula g =3+ ... +1t9 let g = ¥ ;i t]. Then for any

j.
term t. Hlsisa Pt(gi) = Pt(nlgiga gi)-

CHAPTER 8. APPROXIMATION RESULTS FOR MONOTONE DNF 64

The proof of Claim 8.5 follows from Claim 8.4 and the definition of the projection

function.

We continue our example above to illustrate Claim 8.5. Consider the example
from (8.1). and let ¢ = z;. In (8.4). we have [l1<ic, 9i = L1224 - T1T2T3 + L1856
TLaL3 + L1E5L6 - L1T2L4 = T1T2T3L4 + L1L2L3L5T6 + L1L2T4L5T6- Now. taking the
projection over t. we get P, ([[19-5, g,-) = [+L3L4 + LaL3L5Te + LaT4L5L6. Taking
the projection over each g; before taking their product. we get P.(g1) = Z2L4+LsTs.
P.(g2) = Zaz3 + Tsre. and Pi(gs) = L2Z3 + Lal4, and taking their product gives
Micico Pelgi) = (2224 + LsZg) - (LaL3 + LsTs) - (L2Z3 + L2&s) = Lal3ls + L2L3L5L6 +
T2r4rsZs. Thus. we have [1;<i<, Pi(g:) = P:(TT1<i<s 9:) for our example. as in Claim

8.5.

Lemma 8.6 (Projection Lemma) For a read-once factorable MDNF formula

g =t8+ ... +t9 with mazimal factor set F. let g; = Y ;zit7. Then for any mazimal

factor t € F. H{tfltgt?} Ptg(gi) = H{t?]tng} Pr(gi)-

For the proof of this lemma. we require the following additional terminology.
Let R; = {jll < j<sandj # i} denote the set of all integers from 1 to s
except i. We can then denote (8.2) by

II1a = > IT ¢ - (8.5)

1<i<s (J1 -Jare-ds)ERV X Ra X ...x Ry 1S3

Proof: [of Lemma 8.6] We will first show that every term in [Tesecesy Pelgi) is
also contained in [[{#jecesy P.s(g:). Taking the projection of (8.3) over £. and
applying Claim 8.5. [I(91eces) P.(g;) can be expressed as:

[Plg) = D Plt])-Pla) -

{e21eCe?) {ef1eCe?)

CHAPTER 8. APPROXIMATION RESULTS FOR MONOTONE DNF 65

We will show that each P.(t?) - Pi(g:) is generated by [Iteeecesy Per(g:)-

Applying (8.5) to the terms containing ¢. and projecting over t?. we get

I Pslg) =)3 [[Ps(tZ). (36

{t1eCe?} (j1.da.-js)ERy xRy x...x Ry {¢1tCt7}

For any k such that factor ¢ C t]. consider Pulge) - H{j[:g:;’.j;ek} Pc::(t‘,i.). This

is the term of (8.6) in which ji varies over Ri. and all other j; are equal.

We claim that [Tgjices jzi Pt;:(t‘,i) = P,(t{). This follows from the maximality
of t. since t is a factor of t. and for every attribute x in t?—t. there exists some
term not containing z. Thus. if £ € ¢. x does not occur in H{_ﬂtgej.#k} Pc:):(t{.).
but if z occurs in t but not in ¢/ for some j # k. then r will occur in
[Tisteces jery Per(tf). Thus. T1jices. jmny P (8) = Pelt)-

Now. we have Py (gi)-IT(eseces) Ptf(t‘,f_) = Pu(gr)-Pe(t]). But thisis equivalent
to P.(gk)- P:(t]). and we have completed the proof that every term of P,(t{) -
P.(g;) is generated by I'I(,_gltg?} Ptlg(g,-).

We now show that [T(.sj.cesy Pev(g:) does not generate any term not in Pi(t{) -
P.(g:). In the above. we considered only the terms generated by Pa(gk) -
[jieges et Ptf(ti). which are terms in (8.6) where j; varies over Ry. and all
other j; are equal: but [[{.o1.ce9) Pt'y(g,-) also contains terms for which the j; are
not all equal. Consider Mjieces 2xy Ptf(tgl). where the £; may be any index.
We claim that this product must contain Pt(tgptgq) for some indices £, and
£,. (i.e.. the projection over ¢ of the product of two terms). Take the two
terms with the smallest factors. One of these must have factor ¢. and no larger
factor. Call this ;. and the other ¢,. Now. Py, (t‘l’p)Ptz(t‘Zq) = P,(tg t7,). for any
¢, and £,. But this term is redundant in [geseceny P (gi)- hence there are no

terms generated that are not contained in [Jsjecesy Pes(9i)- This completes

CHAPTER 8. APPROXIMATION RESULTS FOR MONOTONE DNF 66

the proof that the terms of Pi(t7) - P.(g:) are the only terms generated by
[{esreceey Pas(g3)- |

We finish with our example from (8.1) by demonstrating Lemma 8.6. Note
that the formula of (8.1) is a read-once factorable MDNF. with factorization g =
z1(z2(z3 + T4) + z52¢). Thus. z; 15 a factor of g. Taking the projection of each g;
over t¢. we get Pye(g1) = z4 + TsZe. Pig(g2) = 23 + 25%6 and Pis(gs) = Z2Z3 + T2
Now. taking the product of these projections cver all © gives us [Ti<ics Pesl(q:) =
(z4 + T526) - (T3 + T5Zs) - (T2Z3 + T2Z4) = T2T3Tg + T2T3ZT5T6 + T2T4L5T6- We thus

ha.ve that HIS"S' Pt.q(g,') = HISI'S-' Pc(gi)-

We now state the main result of this section. which will be instrumental in

proving the learnability of read-once factorable MDNF.

Lemma 8.7 (Diffraction Lemma) For a read-once factorable MDNF formula
g = t& + ...+ t9 with terms of size at most Ig 2 and with mazimal factor set F.
and for the uniform distribution D on ezamples of g. let F' = {t € F| everyt C
t? has Prp[DS(tY)] < <. and Prp[DS(t)] > £} be the set of mazimal factors

4s° 4s

~
P

such than every term t{ containing a factor in F' has Prp(DS(t!)] < ==. Then
Prp((Teer) A(SCeer (Tespecery)] < 5-

Lemma 8.7 states that the terms in formula g that all have small disjoint proba-
bility weight can be approximated by a factor from the maximal factor set F'. with
error bounded by . We call this lemma the diffraction lemma because it shows
that if the "power” of the formula is concentrated in the subspaces of the common
factors, and then it “diffracts™ over orthogonal sub-spaces. then these subspaces

cannot capture much of the negative example space.

CHAPTER 8. APPROXIMATION RESULTS FOR MONOTONE DNF 67

Proof: Recall that DS(#?) is the set of vectors that satisfy term ¢{ but no other
term. The idea of the proof is to take each vector that satisfies exactly
one term (i.e.. is in DS(t?)) and to project it onto a polynomial number of
negative examples. We show that if we restrict the space to vectors satisfying
one or more of the common factors of formula g. then the projection covers
all negative examples in the restricted space. More specifically. we show that
all negative examples in the subspace restricted to satisfying one of more of

the common factors of g are in Uy<i<, Pr(DS(t7)).

The set of vectors DS(t¢) (i.e.. the set satisfying t. but not satisfying any
other term) is the satisfying set of the formula t/-g;. The projection Ps(DS(t?))
is the mapping of vectors in DS(t{) onto all possible combinations of values
over the attributes in 7. Let g/ be the formula obtained from g; by deleting all
attributes that occur in t7. It is easy to verify that the projection P,s(DS (t7))
is the set of examples satisfying formula g.. Thus. Urcics Pes (DS(t?)) is the set
of examples satisfying formula g, + g5+ ...+ g, Now. any negative example
of g does not satisfy g. by definition. We can thus construct a formula that
is satisfied by the set of negative examples not in the set Ui<ics Pos(DS (t7))

as follows:

Gttt rg=GiGh G G=giGs g8 (8T)

Since g; = Pus(g:). by Lemma 8.6. we have [[cics 9i = [licico Peo(gi) =
Meer Mieogecesy Pt.g(gi) = [Meer Meopecey P.(g:). Restricting this product to
the space Y,ert. we get (Teert) - [leer [lierpecesy Pe(g:)- But then Pi(g:)
is restricted to t. giving [[(esecesy i- From (8.7). this would require that
Tesjecery 9: - [Tici<s E be satisfiable. which is not possible. Since this formula

represents all negative examples in the subspace defined by ¥ .cr t that are not

CHAPTER 8. APPROXIMATION RESULTS FOR MONOTONE DNF 68

in the set Uyci<s P (DS(t?)). this implies that there is no negative example

on this subspace that is not covered by the set UlS;S,Pt.q(’DS(t?)).

We have now established that every negative example that satisfies > ,cpt
must belong to the set UlS;S,Pt_q('DS(tf-’)). Now. we take the subset F’ of
F such that F' = {t € F|Prp[DS(t?)] < & for all t C t/}. The probabil-
ity weight of each set P(DS(t{)) is bounded by 5: . oles 3t — % since by

assumption Prp[DS(tf)] < '—;; and the size of the projection set PS(#Y) is

3
at most 21°6%*. Thus. the probability weight of the set Ur<i<s P (DS(t7)) is
at most £. Since all negative examples satisfying 3 ,cp t are contained in

Ur<ics P (DS (t)). we have that Prp[(Eeer 8)A(Xeer (X qertecety tfHi < 3. |

[R5

The bounds derived in Lemma 8.7 are weaker by a factor of : than for the
specialized case of read-once MDNF given in Lemma 8.2. Lemma 8.7 i1s stronger

than Lemma 8.3 in that it applies to the larger class of read-once factorable MDNF.

In the following chapter. we give an algorithm for learning poly-disjoint one-
read-once MDNF. We will apply Lemma 8.7 in the analysis of read-once factorable
MDNTF to obtain a learning algorithm for that class. We also apply Lemma 8.2 to
obtain a tighter analysis for the special case of read-once MDNF. For this result. we
show that for one-read-once MDNF. the positive Fourier coefficient. f" (t) (defined
in Section 7.3.3). of a term ¢ is related to the probability of the disjoint set of
examples. DS(t): thus by finding all terms with fr(t) > f:; we find the terms with
DS(t) > &

4s°

Chapter 9

Learning Sub-Classes of MDNF

Formulas

In this chapter we use the lemmas proven in Chapter 8 to develop an algorithm for
learning read-once factorable MDNF formulas on the uniform distribution. We will
begin. however. by proving the result for read-once MDNF formulas using Lemma
8.2. for which tighter bounds on sample complexity can be shown than for the
more general class of read-once factorable MDNF. We then give an algorithm for
learning the class of poly-disjoint one-read-once MDNF formulas. and then show
that this algorithm is also a learning algorithm for read-once factorable MDNF.
These results appear in [Ver 98].

9.1 Learning Read-Once MDNF

There are several algorithms in the literature for learning read-once MDNF formulas

on the uniform distribution. The first such result was due to Kearns. Li. Pitt and

69

CHAPTER 9. LEARNING SUB-CLASSES OF MDNF FORMULAS 70

Valiant [KLPV 87. KLV 94. Ke 93]. They showed that the terms of a read-once
formula can be constructed by drawing a polynomial sized set of negative examples.
and estimating the pairwise correlation of 0's between every pair of attributes z;
and z;. The complexity of their algorithm is O((2)%r?). where r is the number of

“significant” attributes in the formula.

In a more recent work. Hancock [H 92] gave a result for learning read-k MDNF
(also known as ku-DNF) by constructing a set of ~blocking sets”. and using these
to predict the value of the formula. The worst case running time of Hancock's
algorithm is O ((2ﬂ)k+l E% (’%")Zk log f) . Applying this algorithm for the case where

k = 1. we get a time complexity of O((2)%log).

The algorithms we give in this chapter for read-once MDNF. poly-disjoint one-
read-once MDNF. and read-once factorable MDNF will begin by drawing examples
of the formula from the uniform distribution. which we will refer to as Dqo. After
having learned a term of the target formula on Dp. the algorithm will then filter
examples on distribution Dy to produce a new distribution. D;. In general. the

algorithm will learn the ¢th term of the target formula on distribution D;_;.

Let D, be the initial (uniform) distribution on the examples. After each term of
the formula is found. it is added to the hypothesis h. Let h; denote the hypothesis h
after the itB term has been added. Let D; be the uniform distribution on examples

not satisfying any term of h;.

In this section. we give an algorithm for learning read-once MDNF using Lemma
8.2 of the previous chapter. We include this result here. because the complexity
of our algorithm is a lower order polynomial than for the algorithm of [KLV 94].
and is of a similar order to that of [H 92]. The complexity of our algorithm is in

a sense incomparable to these, however, because our bound is polynomial in the

CHAPTER 9. LEARNING SUB-CLASSES OF MDNF FORMULAS 71

size s of the formula (where s is the number of terms) rather than the domain
size n. Our second motivation for presenting the special case of read-once MDNF
first is that the results for learning poly-disjoint one-read-once MDNF and read-
once factorable MDNF are generalizations of this result (but the complexity will
be slightly greater). Thus. we can achieve a more efficient algorithm for the class

of read-once MDNF than for the more general classes.

Algorithm Read-once. for learning a term of a read-once MDNTF formula on
distribution D;. is given in Figure 9.1. The idea of the algorithm is as follows.
We begin with an empty set m. For each attribute z; such that index ¢ is not
already in m. we estimate the positive Fourier coefficient on {i} Um (see the proof
of correctness for the sample size required to estimate the PFC statistic). We add
the attribute with the minimal positive Fourier coefficient that is of magnitude
at least g%. We continue choosing attributes according to the minimal positive
Fourier coefficient statistic until either the error of the term is small enough. or
no attribute z; has a positive Fourier coefficient statistic larger than ;—; We use

Algorithm Read-Once(D;_;.¢€.d.s) as a subroutine to find each term of the target

formula in Algorithm Learn-Read-Once(e.d. s). given in figure 9.1.

Assume without loss of generality that Algorithm Learn-Read-Once(e. d. s) learns
term ¢t; on the ith jteration. If this is not the case. we can simply re-number the

terms so that it holds: thus this assumption is just for notational convenience.

Lemma 9.1 [fg = t, + ... + t, is a read-once MDNF formula. then for every
1 <:¢ < s and every m C m(t;). Ego[(—l)l"‘lxm] = PrD;['DS(t,-)].

Proof: Note that ED:[(—I)“"'xm] = Yomg(—D)™xm(2)Dg (z). where D7 (z) is
the probability that distribution D assigns to z. Let g; be the formula

CHAPTER 9. LEARNING SUB-CLASSES OF MDNF FORMULAS

Algorithm Read-Once(D;_,.¢.9d.5)

1. Set m =0

2. While e~ (m) > 3

3. Choose the { € m with the minimal
Eps [(—1)mHxmua] 2

4. Set m = {{}Uum

3. return t(m)

Algorithm Learn-Read-Once(e.J.s)

1. If e7(1) < § then

2. Set h=1

3. Else

4. Set h =10

5. While et (h) > 3

6. h = h + Read-Once(D;_;.€.9. 3)
T. return h

Figure 9.1: Algorithm for Learning a Read-once MDNF Formula

72

CHAPTER 9. LEARNING SUB-CLASSES OF MDNF FORMULAS 73

consisting of all terms in g except t;. We show that for any :. and for any
set m containing ji. Y.z Xm(z) = 0. This holds since attribute =rj does
not occur in g;. hence any vector satisfying g; with £j, = 0 also satisfies g; if
£, = L. Thus. ¥ 0, (—1)™xm(2) D5 (z) = 0. Note that DS(t;) is the set of
positive examples r such that z # g;. Since by definition. E'D;‘ (=1)™xm] =
Z,z,g(——l)l’"'xm(z)Da" (z). the Positive Fourier Coefficient of m is given by
Eps (=)™ xmg] = Taepste(~1)™xm(2)Df (2). Now. (=1)™xm(z) = 1
for every vector in DS(¢;). and it follows that ED;.[(—l)'"“Xmg]. the Positive
Fourier Coefficient of m. is equal to Prp+[DS(t:)]. |

By the above lemma. we have shown that for all subterms of a term of the target
formula. the positive Fourier coefficient statistic is equal to the size of the disjoint
satisfying set of the term. We now show that for all cross-terms. the positive Fourier

coefficient is negative.

Lemma 9.2 [fg = ¢, + ... + t, is a read-once MDNF formula. then for every
1 <i<s. everym C m(t;). and any £ € m(t;). ED;.[(—I)""U"me(] <0.

Proof: Let Dps(.) be the uniform distribution on the set of vectors in DS (t:).

Since the vectors in DS(¢;) do not satisfy any term ¢; for j # ¢. Prpyg, ,(Te =

0] > 3. It follows that Y eensien(— D™D o en(z) Do) < 0. u

We have proved Lemmas 9.1 and 9.2 above for the uniform distribution. In our
algorithm for learning read-once MDNF. we will learn only the first term on the
uniform distribution. and then skew the distribution by filtering in order to find
subsequent terms. Recall that distribution D; is formed by filtering examples out

that satisfy the hypothesis h;_,.

CHAPTER 9. LEARNING SUB-CLASSES OF MDNF FORMULAS 74

In the following lemma. we show that the bounds shown in the above lemmas
apply to all distributions D;. In fact. they improve on each D; by magnifying the
positive Fourier coefficient statistic. We will prove this lemma for one-read-once
MDNF formulas. so that it can be used later to show learnability of poly-disjoint
one-read-once MDNF.

Lemma 9.3 Let {z;, ...z} be the read-once attributes in terms t, respec-
tively. For j > i. and any m containing some atiribute in {zi,..... z;,}. we have

ED.*_I[(—I)IMXm] 2 cEpy [(=1)™xm] for some c > 1.

Proof: Distribution D; is formed by filtering out all examples that satisfy the hy-
pothesis h;_;. Since no term in h;_, contains any attribute in {z;,..... i, }-
Seohi_, Xm{z) = 0 for any m containing an attribute in {z;,..... r;,}. and
it follows that Zx:,h.,_l(—l)l""xm(z) = 0. Thus. 2299‘,*,,._[(—1)["")(,,,(:) =
Zx:)g(_l)l"ﬂXm(x) Now. ED: [(_1)Im‘Xm] = mz:zg(—l)lm‘Xm(x) where
1S(g)| is the number of examples satisfying g. The expectation on distribu-
tion D; is then ED?_I[(—I)I'MX,,,] = mz,:g(—l)lmlxm(z). where
S(hi_1) is the set of examples satisfying h;_,. We then have Ep,_ [(-1)™xm]

= CEDO[(—I)I le] for ¢ = |$(g)|—|(.g(h.~_l)l'

We can now state the following theorem.

Theorem 9.4 Algorithm Learn-Read-Once is a learning algorithm for the class of

read-once MDNF formulas. with time complezity O(n:—: log 2(log §* + loglog %)).

Proof: By Fact 8.1. any MDNF formula f can be approximated by a formula

g with terms of size at most lg 2t with error bounded by 3. By Lemma

CHAPTER 9. LEARNING SUB-CLASSES OF MDNF FORMULAS 75

8.2. if any term ¢; of g has Pr[DS(t;)] < ;'—2;. then g can be approximated by
the constant function h = 1. with error bounded by 5. and thus e7(1) < e.
If this is the case. Algorithm Learn-Read-Once will with high probability
terminate and return the hypothesis h = 1. Otherwise. every term t; must

have Pr[DS(t:)] > % which implies that Prp+[DS(t:)] > 2_2;.

By Lemmas 9.1 and 9.3. it follows that the positive Fourier coefficient. defined
as ED?_l[(—l)[mU(l}lxmu{l}] will have a value of at least ;—2_' for all subterms of
the target formula. and by Lemma 9.2. a value less than zero for all cross-
terms. We estimate the value of the coefficient for each attribute. and choose
the attribute whose positive Fourier coefficient is estimated to be at least g.
Using a standard Chernoff bound argument [C 52. AV 79]. by drawing a sam-
ple of size O(:—i(log = + loglog 2)) the probability that any attribute z, with

ED.*'_I[(—]-)ImU{lHXmU{l}] 2 :_2. has ED"_l[(—l)lmU{t}lxrnu{l}] < g. or that any

2

attribute with Eps [(—1)™xnig] < 0has Epy (1) Hymun] > &
is bounded by O(——).

snlog 2

Thus. each execution of step 3 in Algorithm Read-once of Figure 9.1 will with
high probability select an attribute z, in the same term as m. The :t* call to
Algorithm Read-Once(D;. €. d.s) will therefore output term ¢; of g. which by

Fact 8.1 is a subterm of f with e™(¢;) < &.

Each time we choose an attribute to add to the hypothesis. we need to test the

positive Fourier coefficient statistic on each of the n attributes of the learning

2s

domain. Since each term has at most log 2 attributes. we draw slog such

samples. giving a total complexity of O(n:—: log £(log % + log log ¢)).

CHAPTER 9. LEARNING SUB-CLASSES OF MDNF FORMULAS 76

9.2 Learning Poly-disjoint One-read-once MDNF

In the previous section. we showed that read-once MDNTF is learnable on the uniform
distribution. In this section. we will adapt the algorithm for read-once MDNF
slightly. and prove that it is a learning algorithm for poly-disjoint one-read-once

MDNF. where only one attribute in each term is required to be read-once.

The primary difference in Algorithm One-Read-Once is that the threshold on the
positive Fourier coefficient is 8‘—3_— compared to ;‘—i in Algorithm Read-Once. Also.
here the minimality of choice in step three (see Figure 9.2) is essential. because
it ensures that the read-once attribute in each term is the first one found. In
Algorithm Read-Once of Figure 9.1. minimality was not essential: we could as
well have chosen any index for which the positive Fourier coefficient exceeded the

threshold.

For this result. we show that for one-read-once MDNF formulas. the positive
Fourier coefficient. fp(t) (defined in Section 7.3.3). of a term ¢ is related to the
probability of the disjoint set of examples. DS(¢): thus by finding all terms with

fr(t) > < we find the terms with Prp[DS(t)] > < By doing so. we obtain a
43 is

.
e

learning algorithm for poly-disjoint one-read-once MDNF. for polynomial p = 5.

The algorithm we give in this section for learning poly-disjoint one-read-once
MDNF begins by drawing examples of the formula from the uniform distribution.
which we will refer to as Dg. After having learned a term of the target formula on
D,. the algorithm will then filter examples on distribution Dp to produce a new
distribution. D,. In general. the algorithm will learn the ith term of the target

formula on distribution D;_;.

CHAPTER 9. LEARNING SUB-CLASSES OF MDNF FORMULAS 77

Let Do be the initial (uniform) distribution on the examples. After each term of
the formula is found. it is added to the hypothesis h. Let h; denote the hypothesis h
after the ith term has been added. Let D; be the uniform distribution on examples

not satisfying any term of h;.

The algorithm for learning a term of a poly-disjoint one-read-once MDNF for-
mula on distribution D;_, is given in Figure 9.2. The idea of the algorithm is as
follows. We begin with an empty set m. For each attribute z; such that index ¢ is
not already in m. we estimate the Positive Fourier Coefficient on {i}Um ' We add

the attribute with the minimal Positive Fourier Coefficient that is of magnitude at

= . We continue choosing attributes according to this statistic until either the

least "

error of the term is small enough. or no attribute z; has a Positive Fourier Coefficient
statistic larger than 's% We use Algorithm 1-Read-1(D;_;.€.4.3) as a subroutine
to find each term of the target formula in Algorithm Learn-1-Read-1(e.d. s). given

in Figure 9.2.

In the following lemma. we show that every term of a one-read-once MDNF
formula has a positive PFC statistic. Let {zj, ...z;,} be the read-once attributes

in terms £y..... t, respectively.

Lemma 9.5 Ifg=t +...+t,i5a one-read-once MDNF formula with read-once
attributes {zj, ...z ,} in terms ty.... . L, respectively. then for every 1 <i < s and

every m C m(t;) such that j; € m. E'D:[(—l)l""xm] = Prp+[DS(t:)].

Proof: Note that in the proof Lemma 9.1. we let j be the index of any attribute
in term t; of a read-once MDNF formula. and used the fact that z; occurs in
no other term to obtain the resulting lemma. Now, let j be the index. j;. of

the read-once attribute in term ¢;, and the proof follows as for Lemma 9.1. B

1Gee the proof of Theorem 9.7 for the sample complexity required to estimate this statistic.

CHAPTER 9. LEARNING SUB-CLASSES OF MDNF FORMULAS 78

Algorithm 1-Read-1(D;_;.¢€.9. s)

1. Setm=20

2. While e”(m) > 5

3. Choose the £ € m with the minimal
Eps (-1 i) > 52

4. Set m={{}um

5. return t(m)

Algorithm Learn-1-Read-1(e. d. s)
If e=(1) < 5 then
Set h=1
Else
Set h =0
While e*(h) > 3
h = h + 1-Read-1(D;_,.€.4.3)

—t

o

N kR

return h

Figure 9.2: Algorithm for Learning a Poly-disjoint One-read-once MDNF Formula

CHAPTER 9. LEARNING SUB-CLASSES OF MDNF FORMULAS 79

We can also generalize the proof of Lemma 9.2 in a similar manner. to obtain

the following lemma for one-read-once MDNF.

Lemma 9.6 [fg =t + ...+, is a one-read-once MDNF formula with read-once
attributes {z; ...z;,} in terms t1..... t, respectively. then for every 1 < 1 < s.

every m C m(t;) such that j; € m. and any £ & m(t;). Eps [(=1)m By g] < 0.
We can now state the following theorem.

Theorem 9.7 The class of poly-disjoint one-read-once MDNF' formulas is learn-
able on the uniform distribution. Algorithm Learn-1-Read-1is a learning algorithm

for this class. with time complezity O(n':;- log 2(log 5 + loglog %)).

Proof: By Fact 8.1. any MDNF formula f can be approximated by a formula g
with terms of size at most lg 2,—" with error bounded by ;. Thus. we assume
hereafter without loss of generality that the target formula is such a g. and

show in the remainder of the proof that g can be approximated with error

[X1EY
.

p—

Consider the index ¢ chosen at the first execution of step 3 of Algorithm
Read-1 (see Figure 9.2). £ is chosen to be the index of the attribute with

the minimal estimated PFC. E’D?_l[(—-1)‘"‘U{t}lxmu{¢}]. that is at least ;22 in

magnitude.

We first argue that the first attribute chosen will. with high probability. be a
read-once attribute. By definition of poly-disjoint. each term t7 in the formula
g has Pr[DS(t)] > 4‘-:—2. In particular, the read-once attribute zj, must have
Eps (-1t 6] > 4‘—;-. Any attribute z, that is not a read-once attribute
must either occur in no term of the formula. or else occur in two or more

terms. If z, is not in any term of the formula, then ED-}_I[(—‘].)I{[}'X{[}] = 0.

CHAPTER 9. LEARNING SUB-CLASSES OF MDNF FORMULAS 80

Furthermore. if £ occurs in two or more terms. then since all terms are poly
disjoint. its probability must be at least 41:3 greater than that of the read-once
attributes of those terms. Using Chernoff bounds [C 52. AV 79]. a sample of

size O(:—:—(log = + loglog 2)) is sufficient to ensure with probability at least

1 — —2— that z, occurs in exactly one term.
anlog %

By Lemma 9.5. once we have a read-once attribute from term t?. on each

2

subsequent execution of step 3. EDT_l[(—l)lmU{lHXmu{t}] > Z if attribute £
is in the same term as m. If £is not in the same term as m. by Lemma
9.6. E'Df_l[(-l)l"‘“{‘”xmum] < 0. By the Chernoff bound argument above. a
sample of size O(:—:(log 2 +loglog 2)) is sufficient to ensure with probability

at least 1 — mlf)gi' that £ is in the same term as m.

€

Estimating the PFC requires O(‘f_:—(log 2 4 loglog ?)) examples for each at-
tribute z,. Since there are s terms in the target formula each with log ¢ at-
tributes. and we measure this statistic on all attributes each time we choose
an attribute. the overall time and sample complexities are O(n‘g— log %(log 5+
loglog 2)). The probability that any attribute is chosen incorrectly is bounded
by 4. |

9.3 Learning Read-once Factorable MDNF

We now apply the Diffraction Lemma of Chapter 8 to show that the learning
algorithm of the previous section (see Fig. 9.2) is also a learning algorithm for

the class of read-once factorable MDNF.

Theorem 9.8 The class of read-once factorable MDNF formulas is learnable on

the uniform distribution. Algorithm Learn-1-Read-1is a learning algorithm for this

CHAPTER 9. LEARNING SUB-CLASSES OF MDNF FORMULAS 81

class. with time complezity O(n‘:;— log £(log % + log log 2)).

Proof: As in the proof of the previous section. by Fact 8.1. the MDNF formula
f can be approximated by a formula g with terms of size at most Ig 2 with
error bounded by %. so we assume hereafter without loss of generality that
the target formula is such a g. and show in the remainder of the proof that g

P

can be approximated with error .

We use Algorithm 1-Read-1 of Figure 9.2 to learn a term of the read-once
factorable MDNF formula g. Consider the index ¢ chosen at step 3 of the
algorithm. Either z,1s a read-once attribute. or else it is an attribute from

the factor of two or more terms that all have Prp+[DS(¢:)] < 4%

If z, is a read-once attribute. then by the same argument as in the proof of
the previous theorem. Algorithm 1-Read-1 will return term ¢;. If z, is not
a read-once attribute in term #;. then it is an attribute from the factor of
two or more terms that all have Prp«[DS(t:)] < f:g By Lemma 8.7. all
terms ¢; with factor ¢ can be approximated by t. Since the factored form is
read-once. attribute z, does not occur in any other term: thus. r,is a read-
once attribute in term ¢. Applying Lemmas 9.5 and 9.6 as in the proof of the
previous theorem. Algorithm 1-Read-1 will return the greatest common factor
¢. The total error incurred by all such approximations by common factors is

bounded by £. by Lemma 8.7.

The time and sample complexities are as shown in the proof of Theorem 9.7

O(n:—ilog 2(log Z* + log log 2)). a

Chapter 10

Towards Learnability of Monotone

DNF

In the previous chapter. we have shown that the class of one-read-once MDNF is
learnable under the uniform distribution using only an example oracle. We showed
that for this class of formulas. the positive Fourier coefficient statistic is positive
for all subterms containing the one-read-once attribute. whereas this statistic 1$
negative for all such cross-terms. This property does not extend to the larger class
of MDNF. In Section 10.2. we will show an example of cross-term coefficients of
order three that are positive. We can show some partial results. however: we show
in Section 10.1 that if a second order coefficient is positive. then the attributes
indexed by that coefficient occur in the same term. Furthermore. if a second order
coefficient is negative. then the two attributes indexed by that coefficient must

occur in different terms (although. they may occur in the same term as well.)

82

CHAPTER 10. TOWARDS LEARNABILITY OF MONOTONE DNF 83

10.1 Second order coefficients of MDNF

We begin by showing that if a second order coefficient of an MDNF formula is

positive. the attributes indexed by that coefficient must occur in the same term.

Lemma 10.1 If Ep+[x(ij;] > 0. then there ezists some term m of f such that z;

and T; occur n m.

Proof: Suppose that Ep+(x(:.j;] > 0. but that z; and z; are not in the same term
for any term. Let f' be the formula consisting of all terms of f that contain
z;. By assumption. no term in f’ contains z;. Thus. ¥ ¢ X{z:z,) = 0- Now.
we claim that 3,44 X{z:.z;,;} < 0. Thus. we have that 3 c(0.1}n X{ziz,} < 0-

hence Ep+[x(i.j;] < 0. leading to a contradiction.

Lemma 10.2 If Ep+[x(ijj] < 0. then there ezist terms my and my of f such that

z; is in my. and T; s 1N my.

Proof: Suppose that Ep+(x(ijj] < 0. but that z; and z; do not occur in different
terms: then either they occur only in the same term. or else at least one of z;
and z; does not occur in any term. If the latter is the case. Ep+ Xy =0. In
the former case. we show that Ep+[x (i ;] > 0. Let f’ be the formula consisting
of terms of f that do not contain both z; and z;. Since by assumption z; and
z; do not occur in different terms. neither z; nor z; occurs in any term of f'.
thus .o 4 X{z:.z;3 = 0- Now. all examples r that satisfy f but not f’ have
z; = z; = 1. s0 Z,;}, X{z:z;} > 0. and it follows that Ep+[xq.j] > 0. All

cases lead to a contradiction. completing the proof.

CHAPTER 10. TOWARDS LEARNABILITY OF MONOTONE DNF 84

Note that Lemma 10.2 does not imply that attributes z; and z; cannot be in
the same term in f. it just implies that there exist two terms of f for which z; 1s

in one term. and ; is in the other.

While Lemma 10.1 shows that for second order coefficients. a positive value
indicates that the attributes indexed by the coefficient are in the same term. we
show in the following that this is not the case for third order coefficients. We give
an example of a third order coefficient that is not a subset of a term. and show that

it has a positive value.

10.2 Third order coefficients of MDNF

In the previous section we showed that if the second order coefficients of an MDNF
formula are positive. then those attributes must occur in the same term. We show

here that this property does not necessarily extend to third order coefficients.

Lemma 10.3 There ezist MDNF formulas. and indices i. j. k. such that the ezpec-
tation E'D+[(—l)l{i‘j'k}lx{,-_j.k}] is positive. but z;. z; and ri do not all occur in any

term.

Proof: Consider the formula f(z,..... £7) = T1Ta2 + T3T4 + TsTe. It is easily

verified that Ep+[(—1)3x(1.35)] = 1. but z1z3z5 is not a term of f. |
{1.3.5}

By Lemma 10.3. it may be the case that terms of size three or greater may have
PFC (positive Fourier coefficient) statistics greater than zero. Thus. cross-terms
may have positive PFC statistics. so we cannot apply the algorithm for one-read-
once terms to such formulas. In the following section. we show that the converse
may hold as well. that is. that terms of an MDNF target formula may have negative
PFCs.

CHAPTER 10. TOWARDS LEARNABILITY OF MONOTONE DNF 85

10.3 Degenerate coefficients on Dense Terms

In this and later sections. we will distinguish terms of a monotone DNF formula
for which our one-read-once MDNF algorithm works from those for which it does
not work. Without defining these notions rigorously. we will use the term sparse
to refer to terms with positive PFC’s. and dense to refer to terms with negative
PFCs. The reason for this choice of terminology will be apparent from the following
example. which shows that when many termms of the target formula contain the same

attributes (hence the name dense). the PFC may be negative.

For one-read-once MDNF. we showed that the positive Fourier coefficients of all
subterms of the target formula containing the read-once attribute are positive. In
the following. we give an example of an MDNF formula for which subterms have
negative PFCs. Thus. Algorithm One-read-once of Figure 9.2 will not find such

terms.

flzy..... L7) = I|L2T3L4Ls5Lg +
£1g3z415$7'+
I1ZaL3LyLel7 +
£1$2£3£5£GI7‘+
213334I51627'+
L1 I3L4L5LeL7 +

LaZ3zLylLslel7

The satisfying set for the above formula is:

CHAPTER 10. TOWARDS LEARNABILITY OF MONOTONE DNF 86

1111110
1111101
1111011
1110111
1101111
1011111
0111111
1111111
Note that the positive Fourier coefficient has value 2 over r;r»z3. and value 0

over £;Z2r3Ts. so the coefficient is positive for the sub-term of length three. but is

zero for the term of length four.

10.4 An Heuristic for Monotone Terms

We have shown in Lemma 10.1 that if a second order coefficient is positive. then
the attributes indexed by that coefficient must be in the same term. The positive
Fourier coefficient defined in Section 7.3.3 was designed with this property in mind:
that it have a positive value for subterms of the target formula. We have seen an
example in Section 10.3. however. where this does not hold. and the positive Fourier
coefficient takes on a negative value for subterms of the target formula. Indeed.

Lemma 10.2 above does not preclude this even for second order coefficients. since

CHAPTER 10. TOWARDS LEARNABILITY OF MONOTONE DNF 87

two attributes may occur in the same term. and yet also be in different terms.
resulting in a negative value of the positive Fourier coefficient. Thus. constructing

the positive Fourier coefficient of a term will fail in these cases.

To address this issue. we consider another statistic. based on the positive Fourier

coefficient. which we call the Ezpected Positive Fourier Coefficient. defined as:

EPFC(S) = Eacs{Ep+[(—1)"xa]] (10.1)

While the positive Fourier coefficient may degenerate to take on a negative value
for subterms of the target formula. we can show that the expected positive Fourier
coefficient will always be positive for all subterms. The proof is a modification
of a proof by Bshouty. given in {J 94]. We give the proof in the following for

completeness.

Fact 10.4 For every DNF f with s terms and for every distribution D on the
instance space of f. for every term t of f such that Pr{t = 1] > %. and for every

subset S C m(t). Eacs[Ep+ [(—=1)4lxa]] > <.

Proof: Consider term ¢ as a Boolean function. such that t(z) = 1 if £ satisfies £.
and t(z) = —1 if z does not satisfy t. For all «.

t(c) +1 1 — X{(zi} ()
__2__ = H —

-

= Eacs((—1)*xa(z)]

£, €EM(t)
The expectation here is uniform over all subsets A C S. Let t'(z) = (tz) +
1)/2. Then Ep+[ft'] = Eacs{(-1)"'Ep+[fxa]]. Sincetis a term of f. for any
£ such that f(z) = —1. #(z) = 0. Thus. Ep+[ft'| = Ep+[t'| =Pr[t = 1] > 5.

CHAPTER 10. TOWARDS LEARNABILITY OF MONOTONE DNF 88

While the EPFC is guaranteed to be positive for all subterms of the target
formula. it may also be positive for cross-terms. We have not yet been able to
characterize exactly when the EPFC is more positive for subterms of the formula
than for cross-terms. but this appears to be the case for dense formulas. On the
other hand. the PFC seems to work well on the sparse formulas. Thus. we propose
a heuristic based on using the PFC for dense parts of the formula. and the EPFC
for sparse parts of the target formula. In the following. we describe the heuristic

algorithm based on the coefficient statistics discussed above.

As discussed above. the PFC works well in finding sparse terms of the target
formula. and the EPFC works well in finding the dense terms. Since a target formula
may contain both sparse and dense terms. we interleave calls to subroutines that
search for terms of the target formula using the PFC and the EPFC statistic.
respectively. The subroutines are given in Figures 10.2 and 10.3. Note that the
algorithms take distribution D;_, as a parameter. Distribution D;_; is formed by
filtering distribution D;_, to damp the influence of terms that have already been
discovered. The distributional filter used is an adaptation the algorithm proposed
by Freund in [Fre 90]. A similar filter was used by Jackson [J 94] to learn DNF
using membership queries. We discuss this filtering technique further in the next

section.

10.5 Filtering Distributions

The filtering technique we use to create distributions Dg. D,.... is based on hy-
pothesis boosting algorithms introduced by Schapire [S 90]. and further studied by
Freund [Fre 90]. The idea behind the technique is to run a (weak) learning algo-
rithm on distribution D;_;, and then use the hypothesis produced to damp. or filter

CHAPTER 10. TOWARDS LEARNABILITY OF MONOTONE DNF 89

out. examples already learned in producing distribution D;. Distribution D; will

thus focus on an area of the probability space that has not yet been learned.

Schapire's algorithms have slightly better asymptotic performance than Fre-
und’s. but the technique developed by Freund has the advantage of simplicity. and
it is this technique we employ in our algorithm. The main idea of Freund's algo-
rithm is to run a weak learning algorithm on distribution D;_; to produce a weak
hypothesis h;_; during stage z — 1. Distribution D; is constructed so that the ex-
amples are expected to satisfy roughly half of the hypotheses found in stages 0 to
1 — 1.

To illustrate Freund's algorithm in more detail. we require the following defini-
tions. Suppose that WL is a weak learning algorithm. that when run on distribution
D; produces a (% — ~v)-approximate hypothesis h;. Let ri(z) = {0 < j < ilhj(z) =
f(z)}| be the number of hypotheses from stages 0 through ¢ — 1 that agree with f on
example z. Distribution D; is produced by drawing an example z from the initial
(uniform) distribution Do. and ~accepting™ r with probability af,,,/ max,{a .}
where
- 1 ifr=|%]

0 otherwise
and
ai= (L —q)aitt + (3 +)t} for0<i<k-2

Solving this recursion gives

at_{qgixé+w%f%§—ﬂ%F“”fﬁi—@13rsta

™

0 otherwise

Examples are repeatedly drawn in this fashion until one 1s accepted. Freund's

algorithm consists of running the weak learning algorithm WL on each distribution

CHAPTER 10. TOWARDS LEARNABILITY OF MONOTONE DNF 90

D; to produce a hypothesis h;. The hypothesis of the boosting algorithm at stage ¢
is then the majority vote over the hypotheses h; from previous stages. for0 <y <u.

Freund proves the following lemma in {Fre 90].

Lemma 10.5 Freund's boosting algorithm. when gwen a (%—ﬂ-appmzimate learn-
ing algorithm. for concept class C. constants €. > 0. and any mitial distribution
Dy. will produce an e-approzimation of f with respect to Do for any f € C. with
probability at least 1 — 4.

The proof of Freund's lemma uses the quantity 3:. where

1 ifrﬁf%_’]

i

0 otherwise
and
Br= (3 -mBF+ G+ for0<i<k-2

Solving this recursion gives the tail of the binomial distribution

0 if r> (%]
; 3 e—t . e —f—1 . . I VA
g = T () E G — T i[5 < <G
1 if r<i—"%]

The quantity (! is essentially the expectation at stage + on the measure of
examples that satisfy less than r of the hypotheses. The essential relationship

between the weight function a! and the expected loss 3t is the following:

i _ i+l i+1
a, = ldr — Fr+l

The weight function used in Freund's boosting algorithm sets the weights so that

the probability of examples that satisfy half of the previously learned hypotheses

CHAPTER 10. TOWARDS LEARNABILITY OF MONOTONE DNF 91

is boosted. thus giving preference to such examples. This weighting scheme has
the undesirable property of re-discovering previous hypotheses frequently. In the
following. we give an alternative weight function a' that has the same essential
properties as Freund's weight function. but that gives higher preference to examples

that satisfy fewer hypotheses. thus preventing re-discovery of hypotheses.

10.6 Adaptation of Freund’s Boosting Algorithm

We use Freund's method of distributional filtering using a majority vote over weak
hypotheses in order to shift the distribution D; towards examples that are not yet
covered by the hypotheses ;. Freund shows that the probability weighting strat-
egy he proposes (described in Section 10.5) is the optimal weighting strategy if the
example space is Euclidean. and no point in the domain has non-zero probability.
This is not the case for Boolean domains. In our implementation of Freund's algo-
rithm. we found that for a Boolean domain. the algorithm in general will oscillate
by repeatedly re-discovering the same two weak hypotheses. The explanation for
this is that Freund’s algorithm gives an advantage to examples that satisfy half of
the previous hypotheses. Thus. after finding two weak hypotheses. the probability
of examples that satisfy one hypothesis but not both is magnified. and this results
in re-discovering the same two hypotheses. To get around this. we have skewed the
probabilities further than is done in Freund's algorithm to give more of an advan-
tage to examples that are not yet covered by the current hypothesis. Instead of the
probability weighting function defined by Freund (equation 10.5 above). we use the

following;:

1 fr=0

0 otherwise

CHAPTER 10. TOWARDS LEARNABILITY OF MONOTONE DNF 92

and
ai = (-t + 3+t for0<i<hk-2

Solving this recursion gives

c—1— ks o k=11 i 14r :f rh-1 c—1
(S8) G+ U -l i i - T < r < ()

-

0 otherwise

Note that at stage k — 1. the above weight function assign weight 1 to examples
that satisfy none of the previous hypotheses. and weight 0 to all others. We then

define the quantity 3:.

0 if r > |52
gi=1{ SIS ()G P — e i [< < R
1 'LfT<l.—i——.__;—i‘1

These definitions of a and 3 satisfy the same recurrences as for Freund's weight-
ing function. but with different initial conditions. In particular. we have the prop-
erty:

(1:. — [3:-{-—1 . [31+l

Mr+l

The proof of Freund's lemma depends on the above relations between a and
3. Since our weighting function satisfies the same formulas. Freund’s proofs of
correctness hold. We refer the reader interested in further detail to Freund's work
[Fre 90] on filtering distributions for the proofs of the correctness of the filtering

technique.
We are now ready to give algorithm MDNF. as shown in Figure 10.1.

The algorithm first tests whether the target function can be e-approximated by
the constant function f = 1. If so the algorithm sets the hypothesis to the constant

CHAPTER 10. TOWARDS LEARNABILITY OF MONOTONE DNF 93

Algorithm Learn-MDNF(¢. 9. s)

1. If e(1) < § then

2. Set h =1

3. Else

4. Set h=0.and : =0

5. While e*(h) > 3

6. 1=1+1

7. if (1 is even)

8. h = h + Max-PFC(D;_,.€.4.3)
9. else

10. h = h + Max-EPFC(D;_,.€.9. 5)
11. return h

Figure 10.1: Heuristic Algorithm for Learning MDNF

function and terminates. Otherwise. it initializes the hypothesis to the constant
function 0. which is satisfied by no example. and proceeds to learn terms of the
target formula by interleaving subroutine Max-PFC (for sparse terms) or Max-
EPFC (for dense terms). The algorithm terminates when h is an e-approximation

to the target formula.

If subroutines MaxPFC and MaxEPFC of Figures 10.2 and 10.3 were weak
learning algorithms for monotone DNF. then the filtering algorithm we give in
Section 10.6 would give a learning algorithm for monotone DNF. Note that we
have only proven that MaxPFC is a (weak) learning algorithm for the class of one-

read-once MDNF formulas. We have not proven that EPFC works in learning the

CHAPTER 10. TOWARDS LEARNABILITY OF MONOTONE DNF

o

o

Algorithm Max-PFC(D;_,.¢€.9.3)
Set m =0
While e™(m) >
Choose the £ € m with the maximal
Eoy_l{(—l)'muquut] >z
Set m =£fUm

return t(m)

Figure 10.2: Algorithm for Learning a Sparse Term

Algorithm Max-EPFC(D;_,.e. 0.3)
Set m =0
While e~(m) > £
Choose the £ € m with the maximal
Eacs(Eps (=)™ xmud] 2 £

Set m=£€¢Um

return t(m)

Figure 10.3: Algorithm for Learning a Dense Term

94

CHAPTER 10. TOWARDS LEARNABILITY OF MONOTONE DNF 95

dense terms. but our empirical studies show that it works well in practice. Thus.
if we consider MaxPFC to be a weak learning algorithm for sparse formulas and
MaxEPFC to be a weak learning algorithm for dense terms. Freund's lemma shows
that the distributional filter will shift the distribution so that “unlearned” examples
are more frequent. We can thus focus the search for terms on the unlearned part

of the probability space until a sufficiently accurate hypothesis is learned.

Chapter 11

Empirical Results

In the previous chapter. we presented an heuristic algorithm for learning MDNF
formulas on the uniform distribution. In this chapter. we give some empirical results

to support the use of this algorithm for learning MNDF formulas.

11.1 Overview of Results

We have run the MDNF learning algorithm on about one hundred different test
cases. and in all cases tested the algorithm produces an e-approximation to the
target formula f. Many of these cases have been designed to contain both sparse
and dense terms in the same formula. In many cases. the hypothesis also contains
non-terms (cross-terms) that result from the EPFC statistic being applied to learn a
sparse term. Terms of the minimal formula may also be discovered multiple times
if the error parameter is very low. because the boosting algorithm will continue
finding terms (perhaps the same terms) of higher probability weight until it focuses

in on the area of the probability space where the smaller weight terms lie.

96

CHAPTER 11. EMPIRICAL RESULTS 97

In this chapter. we discuss only a few of the empirical results obtained. to
illustrate that the algorithms perform well at the two extremes. for formulas that

are highly dense. and as well for formulas that are highly sparse.

11.1.1 Dense Formulas

The first example we consider is the maximally dense hypothesis. where the Ham-
ming distance between any two terms is two (1.e.. every term differs in two attributes
from every other term.) Note that this example is highly densc. in that every at-
tribute occurs in s — 1 terms. where s is the total number of terms. An example of

this formula on a domain of size 7 is given below:

d(z,..... L7) = EI|LsL3L4LsTe +
L|L2L3L4L5L7 +
Ly{LaL3L4Lel7 +
L1 T2L3Ls5LeL7 +
L{LaLyLsLeLl7
T|T3Z4Ls5LeL7 1
IaL3TsLsLel7

Let d, denote the formula consisting of the conjunction of all possible terms on

n — 1 variables. The above example is then d7.

CHAPTER 11.

Time (hours)
IS
T

EMPIRICAL RESULTS

Time to Learn a Dense Function

98

W
T

L T T T T

I

[V WS WS NN I

50 100 150 200 250 300
Target Function Size (# of attributes)

Figure 11.1: Running Time of Algorithm MDNF for a Dense Formula

Size of Hypothesis (# of terms)

Hypothesis Size vs. Target Function Size

350

18

16

14r-

12F

T T T T T

n s L L

2 4 6 8 10 12 14
Size of Target Function (# of terms)

Figure 11.2: Hypothesis Size for a Dense Formula

16

18

CHAPTER 11. EMPIRICAL RESULTS 99

In the graph of Figure 11.1. we show the running time of Algorithm MDNF
as a function of the size of the formula (where the size here is measured by the
total number of attributes occurring in the formula.) For this example. we have

ruan Algorlthm MDNF on d4. de. ds. d]_(). dlg. d14. d]_s and dlg. and with error and

confidence parameters set at € = 0.15. and ¢ = 0.1.

Iu Figure 11.2. we show the size of the hypothesis output by the algorithm. where
the solid line indicates the size of the hypothesis. and the dashed line indicates the
size of the target formula. In this example. the size of the hypothesis is actually
less than the size of the target formula: this is because the error rate of ¢ = 0.15

does not require the algorithm to learn all terms of the target formula.

The next example we consider is on a domain of 15 attributes. We randomly
generate terms containing five attributes from the set {zi.z2..... z10}. There are
(150) = 252 such terms possible. In Figure 11.3. we show the running time of

Algorithm MDNF against the number of attributes in the target formula for this

example. For this example. we ran Algorithm MDNF with ¢ = 0.15. and d=0.1

In Figure 11.4. we show the size of the hypothesis output by Algorithm MDNF
for the example of Figure 11.3. The thin solid line represents the size of the hy-
pothesis output by Algorithm MDNF. and the dashed line indicates the size of the

target function. (i.e. the size of the minimal hypothesis.)

CHAPTER 11. EMPIRICAL RESULTS 100

Time to Leam a Dense Function
30 T T T T T T T

25+

20~

Time (hours)
o

10

3]
T

.

o] 100 200 300 400 500 600 700 800 900
Target Function Size (# of attributes)

Figure 11.3: Running Time of Algorithm MDNTF for a Random Dense Formula

Hypothesis Size vs Target Function Size
350 — T T - — v T Y

300

N

)

[}
T

200K

Hypothesis Size (# of terms)
m
(o]
T

(o]
o
1

o] 20 40 60 80 160 120 140 160 180
Target Function Size (# of terms)

Figure 11.4: Hypothesis Size for a Random Dense Formula

CHAPTER 11. EMPIRICAL RESULTS 101
11.1.2 Sparse Formulas

We now show similar empirical results for a class of formulas at the other extreme.
where each attribute occurs only once in the formula. This is the well-known class
of read-once MDNF. The graph of Figure 11.5 is for read-once MDNF formulas
with terms of length five. We ran Algorithm MDNF with ¢ = 0.15. and 4 =0.1.

Note that in the graph of Figure 11.5. the running time increases faster as a
function of the number of attributes in the target formula than was the case for the
dense formulas in the previous section. The reason for this is that for read-once
MDNT formulas. the weight of the set of vectors satisfying exactly one term. hence
the coefficient of that term. decrease exponentially in the number of terms in the
formula. The corresponding exponential increase in running time is reflected in
Figure 11.5. As we showed in Section 9.2. however. we only need to consider terms

with coefficients of magnitude at least £. so this rate of growth would be bounded

4%
by a polynomial in € and s.
In Figure 11.6. we show the size of the hypothesis as a function of the size of
the target function. As in Figures 11.2 and 11.4. the thin solid line represents the
size of the hypothesis output by Algorithm MDNF. and the dashed line indicates

the size of the target function.

CHAPTER 11.

EMPIRICAL RESULTS

Time to Leam a Sparse Function

10

Time (hours)
3]
T

i T T T v

Figure 11

20 40 60 80 100 120 140 160 180

Target Function Size (# of attributes)

5: Running Time of Algorithm MDNF for a Sparse Formula

Hypothesis Size vs Target Function Size

200

Hypothesis Size (# of terms)

- [N N [A] [~ H H 4]
(4] (e} [&)] (o] 3] [=] n (o]
T T T T T T T

-
o]
T

4]
T

-

T T T T Y

L L i :

Figure 11.6:

10 15 20 25 30 35
Target Function Size (# of terms)

Hypothesis Size for a Sparse Formula

40

CHAPTER 11. EMPIRICAL RESULTS 103

11.1.3 Sparse and Dense Formulas

The examples we have considered in the previous two sections contained only dense
terms. or only sparse terms. As we have discussed previously. the PFC statistic
works well empirically on the sparse formulas. and the EPFC statistic works well
on dense formulas. In this section. we give empirical results for formulas containing

both sparse and dense terms. Consider the formula

f = ziz2z3z4 + (11.1)
T1T2T5T¢ +
T7T8T9T10 +
Z7ZgT11L12 +
Z1Z2Z7 +
T1Z2Ts +
Tir7r8 +
Z2L7T8

The first four terms of this formula form a one-read-once formula. which we showed
in Chapter 9 are learnable in polynomial time using the PFC statistic. We add
to that formula four terms that are dense on attributes {r;.zs.z7.x3}. We have
shown in Section 10.3 that terms of this form are not learnable by the PFC statistic.
since the PFC coefficient degenerates by becoming negative. making terms indis-
tinguishable from cross-terms. We show in Section 11.1.1 of this chapter. however.
that such dense terms can be learned using the EPFC heuristic. When Algorithm

MDNF is run on the formula in (11.1) above. the size of the hypothesis produced

CHAPTER 11. EMPIRICAL RESULTS 104

is roughly twice the size of the target formula.

The following is another example of a formula containing both sparse and dense
terms. for which the algorithm also produces a hypothesis within twice the size of

the minimal hypothesis.

f = ziZazaze + (11.2)
I1Z2T5L¢ +
T1I2Z7Zg +
T1Z2Z9T10 t+
T11Z12T13T14 T
Z11Z12815L16 T
T11F12Z17Z718 T+
I11Z12T19T20 T
T11Z12T01ZT22 T
Ty +
Ti1Z)2 +

T4z, +

CHAPTER 11. EMPIRICAL RESULTS 105

11.1.4 Majority Functions
The last set of empirical results we discuss in this section is for the class of majority

functions. The majority function on n attributes is defined as:

1 z; = 1 for at least half of the r;’s

0 otherwise

Thus. for example.

f = ziz2 +
T,T3 +
T4 +

Loz +

L34

is the majority function on four attributes. Let fmaj. denote the majority function
on i attributes. Note that the size of fmajﬁ in terms of the number of attributes
occurring in the formula. is 3 * (z) . In the graph of Figure 11.7. we show the time

to learn majority functions - . fraa; - and . as a function of the size of the
maj, " Jmaj, maj,

target formula.

CHAPTER 11.

EMPIRICAL RESULTS

Time to Learn Majority Functions

106

250

2001

TIME (minutes)
@
(o]

-
[o]
(o]

50

50

100

150
SIZE (# of attributes)

200

250

Figure 11.7: Running Time of Algorithm MDNF for Majority

300

CHAPTER 11. EMPIRICAL RESULTS 107

11.2 Empirical Results on Real-World Databases

For the empirical results discussed in the above sections. we generated examples
of target formulas uniformly at random. in order to test empirically the running
time and hypothesis accuracy of the heuristic algorithms presented in Chapter 10
for learning monotone DNF formulas. In this section. we apply these algorithms
to real-world databases from the UCI repository of machine learning databases
[MM 98]. We tested the algorithms on two data sets from this site: the tic-tac-toe

database. and the mushroom database.

11.2.1 Tic-Tac-Toe Database

The tic-tac-toe database contains all possible tic-tac-toe endgames in which X had
the first move. A board configuration is represented by nine variables. one for
each square on the board. Each variable can take on the value "X, “O". or "7
corresponding to the square containing an X. an O. or being empty. Since our
algorithms use binary valued variables. we replaced each variable by three binary
variables. one for each possible value of the original variable. For example. the
variable for square one is replaced by the binary variables: square one has X.
square one has O. square one is empty. Thus. the resulting representation consists

of 27 binary variables.

The database classifies game boards in which X wins. Thus. a positive ex-
ample is one where X wins the game. and a negative example is either a board
configuration where O wins. or where there is a draw. This database contains 625
positive examples. and 333 negative examples. We ran our algorithms on this data
set. drawing both positive and negative examples uniformly at random from the

database. Since the example space is not uniform over all possible assignments to

CHAPTER 11. EMPIRICAL RESULTS 108

the variables. it was not clear a priori that our Fourier analysis algorithms would

perform well on this data set.

The hypothesis obtained by the algorithm characterized exactly the concept of
~Win for X~. In addition. the hypothesis obtained was minimal. The resulting
hypothesis was of the form: (X on square 1 and X on Square 2 and X on Square 3)
or (X on square 1 and X on Square 5 and X on Square 9) or That is. it contained
eight conjuncts. three corresponding to X's on horizontal rows. three corresponding

to X's on vertical rows. and two corresponding to X's on the diagonals.

11.2.2 Mushroom Database

The other database we used to test our algorithms is the mushroom database of
Schlimmer [Sch 87. MM 98]. This database classifies mushrooms as poisonous or
edible based on 22 physical attributes. each of which has between two and twelve
possible values. We mapped each value of each variable onto a Boolean attribute.
such that if that attribute has value 1. then the original variable takes on the
corresponding nominal value. Applying this mapping to all variables produced a
domain of 126 Boolean variables. See Appendix A for a list of the attributes and

the mapping onto Boolean variables.

The database contains approximately 8000 examples of mushrooms. In our first
set of experiments. we chose 4000 examples at random for the training set. and used
the remaining 4000 as the test set. We ran the algorithm for several configurations
of the accuracy and confidence parameters. The results of these experiments are

presented in Table 11.1.

On this data set. the algorithm constructed a set of 14 conjunctive terms. each

with an average of ten attributes. The actual hypothesis output can be found

CHAPTER 11. EMPIRICAL RESULTS 109

Accuracy | Hypothesis Size | Error of Hypothesis
Pos Neg
0.3 2 0.0546 | 0.0179
0.25 5 0.0730 | 0.0083
0.2 6 0.0281 | 0.0189
0.15 7 0.0304 { 0.0095
0.1 9 0.0145 | 0.0027
0.05 11 0.0049 | 0.0015
0.01 14 0.0000 | 0.0000

Table 11.1: Output Hypothesis Size and Accuracy on 50% of Data

in Appendix A. The classification accuracy of this set of rules was 100% for both
edible and poisonous mushrooms. on both the training data and the test data. Thus.
the set of rules formed describe the data completely. To the author’s knowledge.
these are the first results that obtain 100% accuracy on both positive and negative
examples for this data set. In addition. the hypothesis obtained is a monotone

formula.

The fraction of the data partitioned into the data set and test set for our first
example was somewhat arbitrarily set to 50%. We also tested the algorithm with
smaller training sets. comprising 20%. 10% and 1% of the data. drawn at random.
in order to determine how well the hypothesis generalizes with small training sets.

Tables 11.2. 11.3 and 11.4 present these results. respectively.

As expected. the error on the test data is slightly higher when the training set is
smaller. When trained on 20% of the data. the testing errors were not significantly

different from training on 50% of the data. When trained on 10% of the data.

CHAPTER 11. EMPIRICAL RESULTS

Accuracy | Hypothesis Size | Error of Hypothesis
Pos Neg
0.3 1 0.0551 | 0.0189
0.25 6 0.0225 | 0.0154
0.2 6 0.0240 | 0.0161
0.15 8 0.0133 | 0.0011
0.1 7 0.0145 | 0.0026
0.05 12 0.0059 | 0.0000
0.01 15 0.0000 | 0.0000

Table 11.2: Output Hypothesis Size and Accuracy on 20% of Data

Accuracy | Hypothesis Size | Error of Hypothesis
Pos Neg
0.3 2 0.0620 | 0.0163
0.25 2 0.0609 | 0.0163
0.2 7 0.0256 | 0.0167
0.15 6 0.0251 | 0.0195
0.1 10 0.0058 | 0.0156
0.05 10 0.0058 | 0.0048
0.01 15 0.0010 | 0.0011

Table 11.3: Output Hypothesis Size and Accuracy on 10% of Data

110

CHAPTER 11. EMPIRICAL RESULTS 111

Accuracy | Hypothesis Size | Error of Hypothesis
Pos Neg
0.3 2 0.0599 | 0.0158
0.25 2 0.0626 | 0.0209
0.2 3 0.0588 | 0.0231
0.15 2 0.0635 | 0.0193
0.1 4 0.0465 | 0.0178
0.05 5 0.0145 | 0.0177
0.01) 0.0148 | 0.0178

Table 11.4: Output Hypothesis Size and Accuracy on 1% of Data

the error rates were slightly higher. We also ran the algorithm with a test set
comprising only 1% of the data. While the errors on this set of tests were still quite
small. the measured error was no longer within the bounds of the error parameter €.
The error rate seemed to asymptote at around 1.45% on the positive examples and

1.78% on the negative examples. regardless of the value of the accuracy parameter.

11.3 Summary of Empirical Results

In this chapter. we have presented empirical results for Algorithm MDNF on several
types of formulas. ranging from highly dense formulas to highly sparse formulas.
In all cases tested. the algorithm outputs a nearly minimal hypothesis. Due to the
interleaving of the PFC and EPFC statistics in the main loop of the algorithm.
the “wrong” statistic may be used half the time. thus resulting in the discovery of

terms that are not terms of the minimal hypothesis. Since this does not occur more

CHAPTER 11. EMPIRICAL RESULTS 112

than half the time. the size of the output hypothesis is in practice within twice the

size of the minimal hypothesis.

As discussed in Chapter 8. we only need to consider terms for which the prob-
ability weight of the vectors that satisfy only that term is at least {,i_ Using this
fact. in the proof of Theorem 9.7. we show that the worst case running time of our
algorithm to learn each attribute of a poly-disjoint one-read-once MDNF formula 1s
O(:—:). Note that the graphs of the running times for some of the examples appear
to be a low order polynomial. and others appear to have a higher rate of growth.
For example. the graphs of Figures 11.3 and 11.7 appear to be quadratic. yet the
graphs of Figures 11.1 and 11.5 appear to be exponential. As noted previously. the
graph of the running time in Figure 11.5. for a highly sparse formula. comes much
closer to the worst case than for the other examples. The examples with lower order
running times are in turn much better than the theoretical worst-case possibility.
From our computational experience. quadratic running time is more often the case.
An explanation of why this may be the case 1s due to the fact that the worst-case
scenario is overly pessimistic: it assumes that for each term. the probability weight
of the vectors that satisfy only that term can be % In general. this will not be
the case for all terms simultaneously. Since there are s terms in the target formula.
a more typical case would be when each term has probability weight of 1 on the
examples that satisfy only that term. and this would lead to complexity quadratic
in 5. This bound appears to be closer to what 1s seen empirically for most ex-
amples we have studied. An average case analysis of the algorithm we present for

one-read-once MDNT is an interesting avenue of future research.

Chapter 12

Conclusions and Open Problems

In the latter part of this thesis. we have given an algorithm for learning poly-
disjoint one-read-once MDNF formulas and read-once factorable MDNF formulas
on the uniform distribution. In Chapter 10. we gave an heuristic for extending this
result to the larger class of MDNF formulas. In Chapter 11. we demonstrate that
the algorithm is efficient in practice. While we have not been able to prove that
the algorithm works for all of monotone DNF. we have not found any formulas for
which it does not work. Thus. the algorithm warrants further study and analysis.
It would also be interesting to conduct an average-case analysis of the algorithm
we give in Chapter 9 for read-once factorable MDNF. The worst-case complexity
bound is a fifth order polynomial in the size of the target formula. In the average
case. the complexity seems to be cubic: this intuition is supported by the empirical

results given in Chapter 11.

In the heuristic we give in Chapter 10 for learning monotone DNF formulas.
we adapted Freund's filtering algorithm [Fre 90], which was developed for boost-

ing weak learning algorithms to strong learning algorithms. The reason for the

113

CHAPTER 12. CONCLUSIONS AND OPEN PROBLEMS 114

adaptation was that Freund's weighting scheme is designed so that the examples
drawn on the filtered distribution satisfy approximately half of the weak hypotheses
constructed in previous stages of the algorithm. This weighting scheme gives an
advantage to previously discovered hypotheses. resulting in frequent re-discovery
and a larger final hypothesis. With the modified weighting scheme we develop.
all of Freund's proofs still apply. so that we still have a valid hypothesis boosting
algorithm. Our weighting scheme gives an advantage to un-discovered hypotheses.
though. resulting in less re-discovery. and generally simpler hypotheses. The worst-
case bounds on the number of boosting stages required. hence also the complexity
of the resulting hypothesis. is the same as for Freund's weighting scheme. For for-
mulas on discrete domains. and for MDNF formulas in particular. better bounds

may be attainable for our weighting scheme.

Finally. the EPFC statistic on which we base our heuristic for constructing
terms of an MDNF formula is the expectation on the Fourier coefficient over all
subsets of some sub-space. Each Fourier coefficient is in a way a measure of the
non-randomness of the target formula over that sub-space. Thus. the expectation
over all sub-spaces of the coefficient gives some measure of the non-randomness of
the formula over the entire space. It would be interesting to consider this measure

of randomness further.

Bibliography

[Ali 92]

[AHK 93]

[AP 95]

[AV 79

[ALMS 92]

F. Alizadeh. "Combinatorial Optimization with Semi-Definite Matri-
ces”. In Proceedings of the 2™ Conference on Integer Programming

and Combinatorial Optimization. Carnegie Mellon University. pp. 385-

405. 1992.

D. Angluin. L. Hellerstein. M. Karpinski. “Learning Read-Once For-
mulas with Queries”. Journal of the ACM Vol. 40. pp. 185-210. 1993.

H. Aizenstein and L. Pitt. “On the Learnability of Disjunctive Normal
Form Formulas™. Machine Learning, Vol. 19. pp. 183-208. 1995.

D. Angluin. L. Valiant. “Fast Probabilistic Algorithms for Hamilto-
nian Circuits and Matchings™. Journal of Computer and Systems Sci-

ences. Vol. 18. pp. 155-193. 1979.

S. Arora. C. Lund. R. Motwani. M. Sudan and M. Szegedy. ~Proof
Verification and Hardness of Approximation Problems”. In Proceed-
ings of the 337 Annual [EEE Symposium on Foundations of Computer
Science. pp. 14-23. 1992.

115

BIBLIOGRAPHY 116

[BFLS 91]

B 86]

(BGS 95|

[B 89]

'BFJK 94]

[C 52]

[CK 95]

(D 90]

L. Babai. L. Fortnow. L.A. Levin. M. Szegedy. “Checking Compu-
tations in Polylogarithmic Time”. In Proceedings of the 23" Annual

ACM Symposium on the Theory of Computing. pp. 21-31. 1991.

E.B. Banm. -Intractable Computations without Local Minima™.

Physical Review Letters. Vol. 57. No. 21. pp. 2764-2767. 1986.

M. Bellare. O. Goldreich and M. Sudan. ~Free Bits. PCPs and Non-
Approximability - Towards Tight Results™. In Proceedings of the 36

Annual Symposium on Foundations of Computer Science. 1995.

A. Blum. “An O(n°*)-Approximation Algorithm for 3-Coloring™. In
Proceedings of the 21* Annual ACM Symposium on the Theory of
Computing. pp. 535-542. 1989.

A Blum. M. Furst. J. Jackson. M. Kearns. Y. Mansour and S. Rudich.
~Weakly Learning DNF and Characterizing Statistical Query Learing
Using Fourier Analysis™. In Proceedings of the 26** Annual ACM Sym-

posium on the Theory of Computing. pp. 253-262. 1994.

H. Chernoff. “A measure of Asymptotic Efficiency for Tests of a Hy-
pothesis Based on the Sum of Observations™. Annals of Mathematical
Statistics. Vol. 23. pp. 493-509. 1952.

P. Crescenzi and V. Kann. “A Compendium of NP Optimization Prob-
lems”. unpulished manuscript. available on the world-wide-web at

http://vwww.nada.kth.se/ viggo/problemli st/compendium.html.

R. Dechter. “Enhancement Schemes for Constraint Processing: Back-
jumping. Learning. and Cutset Decomposition™. Artificial Intelli-
gence. Vol. 41. pp. 273-312. 1990.

BIBLIOGRAPHY 117

[DP 88]

[FG 95]

[FW 92]

[Fre 90]

(GJ 79]

[GVY 93]

(G 89]

[GW 94]

R. Dechter and J. Pearl. “Network-Based Heuristics for Constraint-
Satisfaction Problems”. Artificial Intelligence. Vol. 34. pp. 1-38. 1988.

U. Feige and M. Goemans. “Approximating the Value of Two Prover
Proof Systems. With Applications to MAX 2-SAT and MAX DICUT".
preprint. 1995.

E.C. Freuder and R.J. Wallace. ~Partial Constraint Satisfaction™. Ar-
tificial Intelligence. Vol. 58. pp. 21-70. 1992.

Y. Freund. “Boosting a Weak Learning Algorithm by Majority™. In
Proceedings of the 1990 Workshop on Computational Learning Theoty.
pp. 202-216. 1990.

M.R. Garey and D.S. Johnson. Computers and Intractability. W.H.
Freeman & Co.. New York. 1979.

N. Garag. V. Vazirani and M. Yannakakis. “Approximate max-flow
min-(multi)cut theorems and their applications”™. In Proceedings of
the 25t* Annual ACM Symposium on the Theory of Computing. pp.
693-707. 1993.

D. Gentner. “The Mechanisms of Analogical Learning”. In Simularity
and Analogical Learning, Cambridge University Press. Cambridge. pp.

199-241. 1989.

M.X. Goemans and D.P. Williamson. ~.878-Approximation Algo-
rithms for MAX CUT and MAX 2SAT". In Proceedings of the 26tk
Annual ACM Symposium on the Theory of Computing. pp. 422-431.
1994.

BIBLIOGRAPHY 118

[GKS 90]

[H 92]

[HKLW 88|

[HT 89

[HT 95]

H 82]

[HMM 85

[J 94]

S. Goldman. M. Kearns and R. Schapire. “Exact Identification of Cir-
cuits Using Fixed Points of Amplification Functions™. In Proceedings
of the 31*t Annual Symposium on Foundations of Computer Science.

pp. 193-202. 1990.

T.R. Hancock. “The Complexity of Learning Formulas and Decision
Trees that have Restricted Reads™. PhD Thesis. Department of Com-
puter Science. Harvard University. Technical Report TR-15-92. 1992.

D. Haussler. M. Kearns. N. Littlestone. M.K. Warmuth. “Equivalence
of Models for Polynomial Learnability”™. In Proceedings of the 1988
Workshop on Computational Learning Theory. 1988.

K.J. Holyoak and P. Thagard. "Analogical mapping by constraint
satisfaction™. Cognitive Science. Vol. 13. pp. 295-355. 1989.

K.J. Holyoak and P. Thagard. Mental leaps: Analogy in creative
thought. MIT Press/Bradford Books. Cambridge. MA. 1995.

J.J. Hopfield. “Neural Networks and Physical Systems with Emergent
Collective Computational Properties”™. Proceedings of the National
Academy of Sciences of the United States of America. Vol. 79. pp.
2554-58. 1982.

S.L. Hurst. D.M. Miller. J.C. Muzio. Spectral Techniques in Digital
Logic. Academic Press. London. 1985.

J. Jackson. ~An Efficient Membership-Query Algorithm for Learning
DNF with Respect to the Uniform Distribution™. In Proceedings of the
35th Annual Symposium on Foundations of Computer Science. pp. 42-

53. 1994.

BIBLIOGRAPHY 119

3] 94]

[KMS 94]

[Ka 75]

[Ke 89}

Ke 93]

[KLPV 87]

KLV 94]

KV 88

J.R. Josephson and S.G. Josephson. (Eds.). Abductive inference:
Computation. philosophy. technology. Cambridge University Press.
Cambridge. 1994.

D. Karger. R. Motwani. M. Sudan. ~Approximate Graph Coloring by
Semidefinite Programming™. In Proceedings of the 35" Annual Sym-

posium on Foundations of Computer Science. pp. 2-13. 1994.

R.M. Karp. “On the Computational Complexity of Combinatorial
Problems™. Networks. Vol. 5. pp. 45-68. 1975.

M. Kearns. “The Computational Complexity of Machine Learning’.
PhD Thesis. Department of Computer Science. Harvard University.

1989.

M. Kearns. -Efficient Noise-Tolerant Learning from Statistical
Queries™. In Proceedings of the 25th Annual ACM Symposium on The-
ory of Computing. pp. 285-295. 1993.

M. Kearns. M. Li. L. Pitt. L. Valiant. “On the Learnability of Boolean
Formulae™ . In Proceedings of the 19** Annual ACM Symposium on the
Theory of Computing. pp. 285-295. 1987.

M. Kearns. M. Li and L. Valiant. “Learning Boolean Formulas™. Jour-
nal of the ACM. Vol. 41. No. 6. pp. 1298-1328. 1994.

M. Kearns. L.G. Valiant. ~Learning Boolean Formulae or Finite Au-
tomata is As Hard as Factoring™. Tech Report TR- 14-88. Aiken Com-

puter Laboratory. Harvard University. 1988.

BIBLIOGRAPHY 120

(KM 92]

[KMSV 94]

[Khar 94]

[Kh 92]

[KARR 90]

Ku 92

(KM 93]

[LMN 89]

1.D. Kececioglu and E.W. Meyers. ~Combinatorial Algorithms for
DNA Sequence Assembly”. Technical Report TR 92-37. The Univer-

sity of Arizona. Tucson. Arizona. 1992.

S. Khanna. R. Motwani. M. Sudan and U. Vazirani. “On Syntactic
versus Computational Views of Approximability . In Proceedings of
the 26" Annual ACM Symposium on the Theory of Computing. pp.
819-830. 1994.

R. Khardon. “On using the Fourier transform to learn Disjoint DNF™.

Information Processing Letters. Vol. 49. pp. 219-222. 1994.

M. Kharitonov. “Cryptographic Lower Bounds for Learnability of
Boolean Functions on the Uniform Distribution™. In Proceedings of

the 1992 Workshop on Computational Learning Theory. 1992.

P. Klein. A. Agrawal. R. Ravi and S. Rao. ~Approximation Through
Multicommodity Flow™. In Proceedings of the 31°* Annual Symposium
on Foundations of Computer Science. pp. 726-737. 1990.

V. Kumar. ~Algorithms for Constraint-Satisfaction Problems - A Sur-
vey~. Al Magazine. Vol. 13. No. 1. pp. 32-44. 1992.

E. Kushilevitz and Y. Mansour. ~Learning Decision Trees Using The
Fourier Spectrum”. SIAM J. Comput.. Vol. 22. No. 6. pp. 1331-1348.
1993.

N. Linial. Y. Mansour. N. Nisan. “Constant Depth Circuits. Fourier
Transform. and Learnability”. In Proceedings of the 30th Annual IEEE
Symposium on Foundations of Computer Science. pp. 574-579. 1989.

BIBLIOGRAPHY 121

[LST 89]

[LY 93]

[Mac 77]

[MF 93]

(Man 92]

(MM 98]

[MJIPL 92

(0J 94]

L. Lovasz. M. Saks and W.T. Trotter. “An On-line Graph Coloring Al-
gorithm with Sub-linear Performance Ratio™. Discrete Mathematics.

Vol. 75. pp. 319-325. 1989.

C. Lund and Y. Yannakakis. “On the Hardness of Approximating Min-
imization Problems™. In Proceedings of the 25 Annual ACM Sympo-
sium on the Theory of Computing. pp. 286-293. 1993.

A K. Mackworth. ~Consistency in Networks of Relations™ Artificial
Intelligence. Vol. 8. pp. 99-118. 1977.

A.K. Mackworth and E.C. Freuder. “The Complexity of Constraint
Satisfaction Revisited™. Artificial Intelligence. Vol. 59. pp. 57-62. 1993.

Y. Mansour. “An O(n'°8'°%") Learning Algorithm for DNF under the
Uniform Distribution™. In Proceedings of the 1992 Workshop on Com-
putational Learning Theory. pp. 53-61. 1992.

Merz. C.J. and Murphy. P.M.. UCI Repository of machine learning
databases

[http://www.ics.uci.edu/ "mlearn/MLRepository. html]. Univer-
sity of California Irvine. Department of Information and Computer

Science. 1998.

S. Minton. M.D. Johnston. A.B. Philips and P. Laird. “Minimizing
Conflicts: A Heuristic Repair Method for Constraint Satisfaction and
Scheduling Problems™. Artificial Intelligence. Vol. 58. No. 1-3. pp.
161-205. 1992.

P. O'Rorke and J.R. Josephson. (Eds.). Automated abduction: Infer-
ence to the best ezplanation. AAAI Press. Menlo Park. CA. 1994.

BIBLIOGRAPHY 122

[PY 91]

[PV 86]

[RM 86]

[SG 76]

S 90]

S 92]

[Sch 87]

[Th 89]

[Th 92|

C.H. Papadimitriou and M. Yannakakis. -~ Optimization. Approxi-
mation. and Complexity Classes”. Journal of Computer and System

Sciences. Vol. 43. pp. 425-440. 1991.

L. Pitt. L. Valiant. “Computational Limits on Learning from Exam-
ples”. Tech. Rep. TR-05-86. Aiken Computer Laboratory. Harvard
University. 1986.

D.E. Rumelhart and J.L. McClelland. (Eds.). Parallel distributed
processing: Ezplorations in the microstructure of cognition. MIT

Press/Bradford Books. Cambridge MA. 1986.

S. Sahni and T. Gonzalez. “P-Complete Approximation Problems”.
Journal of the Association for Computing Machinery. Vol. 23. No. 3.
pp. 355-565. July 1976.

R.S. Schapire. “The Strength of Weak Learnability”. Machine Learn-
ing. Vol. 5. pp. 197-227. 1990.

R. Schapire. The Design and Analysis of Efficient Learning Algo-
rithms. Doctoral Dissertation. MIT. The MIT Press. 1992.

J. C. Schlimmer. “Concept Acquisition Through Representational Ad-
justment”. PhD Thesis. Department of Information and Computer

Science. University of California. Irvine. 1987.

P. Thagard. ~Explanatory Coherence”. Behavioral and Brain Sciences.

Vol. 12. No. 3. pp. 435-467. 1989.

P. Thagard. Conceptual Revolutions. Princeton University Press.

Princeton. 1992.

BIBLIOGRAPHY 123

[Th 94]

[THNG 90]

[TM 95]

(TV 98]

[TSSW 96]

[Val 84]

[Ver 90]

[Ver 90a]

P. Thagard. “Probabilistic Networks and Explanatory Coherence™. In
Automated Abduction: Inference to the Best Ezplanation. unpublished

manuscript. 1994.

P. Thagard. K.J. Holyoak. G. Nelson and D. Gochfeld. ~Analog Re-
trieval by Constraint Satisfaction™. Artificial Intelligence. Vol. 46. pp.
259-310. 1990.

P. Thagard and E. Millgram. ~Inference to the best plan: A coherence
theory of decision”. In A. Ram and D.B. Leake (Eds.). Goal-directed
learning Cambridge. pp. 439-454. MIT Press. Cambridge. MA. 1995.

P. Thagard and K. Verbeurgt. “Coherence as Constraint Satisfaction .

Cognitive Science. Vol. 22. No. 1. pp. 1-24. 1998.

L. Trevisan. G. Sorkin. M. Sudan and D. Williamson. ~Gadgets. Ap-
proximation. and Linear Programming™. In Proceedings of the 37t
Annual Symposium on Foundations of Computer Science. pp. 617-

626. 1996.

L. Valiant. “A Theory of the Learnable”. Communications of the
ACM. Vol. 27. no. 11. pp. 1134-1142. 1984.

K. Verbeurgt. ~“On the Learnability of DNF Formulae™. Master’s The-

sis. University of Toronto. Toronto. Ontario. 1990.

K. Verbeurgt. ~Learning DNF Under the Uniform Distribution in
Quasi-polynomial Time™. In Proceedings of 1990 Workshop on Com-
putational Learning Theory. pp. 314-326. 1990.

BIBLIOGRAPHY 124

[Ver 98] K. Verbeurgt. “Learning Sub-Classes of Monotone DNF on the Uni-
form Distribution™. In Proceedings of the 1998 Conference on Algo-

rithmic Learning Theory. 1998.

Appendix A

In this appendix. we give the hypotheses output in the empirical tests on the mush-
room database (see Chapter 11). Table A.1. given at the end of this appendix. shows
the attributes used to characterize examples of mushrooms as positive examples.
corresponding to poisonous mushrooms. or negative examples. corresponding to

edible mushrooms.

In the following. we give the hypothesis output for select runs of our learning
algorithm on the mushroom database. The set of hypotheses we show here are
based on a training set containing 30% of the data. and a test set containing
50% of the data. We give here the most accurate hypothesis obtained. which
classifies both the training set and the test set with 100% accuracy. and also the
smallest hypothesis obtained. The most accurate hypothesis was obtained with
input parameters € = .01 and 4 = .01. and the smallest hypothesis with parameters

€ =.3and 0 = 3.

In the following. conjunctive terms are indicated by lists of pairs of attributes.

Conjunctive terms in the same hypothesis are separated by a blank line.

Example 1: ¢ = .01, § = .01 The classification accuracy of this hypothesis is

100% on both the training set and the test set.

125

APPENDIX A.

bruises=no
gill-attachment=descending
gill-spacing=close
stalk-surface-below-ring=silky
veil-type=partial
veil-color=white

ring-number=one

bruises=no
gill-attachment=descending
gill-spacing=close
stalk-surface-above-ring=silky
veil-type=partial
veil-color=white

ring-number=one

gill-attachment=descending
gill-spacing=close
veil-type=partial
veil-color=white
ring-number=one
spore-print-color=vhite

population=several

odor=foul

gill-attachment=descending

126

APPENDIX A.

gill-spacing=close
veil-type=partial
veil-color=vhite

ring~number=one

cap-surface=smooth
bruises=yes
gill-attachment=descending
gill-spacing=close
stalk-shape=enlarging
stalk-root=bulbous
stalk-surface-below-ring=smooth
stalk-color-above-ring=vhite
stalk-color-below-ring=vhite
veil-type=partial
veil-color=vhite
ring-number=one

ring-type=pendant

cap-surface=smooth
bruises=yes
gill-attachment=descending
gill-spacing=close
stalk-shape=tapering
stalk-color-above-ring=white

stalk-color-below-ring=white

APPENDIX A.

veil-type=partial
veil-color=vwhite
ring-number=one

ring-type=pendant

bruises=yes
gill-attachment=descending
gill-spacing=close
gill-size=narrow
stalk-shape=enlarging
stalk-surface-above-ring=smooth
stalk-surface-below-ring=smooth
stalk-color-above-ring=vhite
veil-type=partial
veil-color=white

ring-number=one

gill-attachment=descending
gill-size=narrow
stalk-shape=enlarging
stalk-root=bulbous
stalk-surface-above-ring=smooth
stalk-surface-below-ring=smooth
stalk-color-above-ring=white
stalk-color-below-ring=white

veil-type=partial

APPENDIX A.

veil-color=white
ring-number=one

ring-type=pendant

gill-attachment=descending
gill-spacing=close
stalk-shape=enlarging
stalk-shape=tapering
stalk-surface-above-ring=smooth
stalk-surface-below-ring=smooth
stalk-color-above-ring=vhite
stalk-color-below-ring=white
veil-type=partial
veil-color=vhite
ring-number=one

population=several

gill-attachment=descending
stalk-shape=enlarging
stalk-root=bulbous
stalk-surface-above-ring=smooth
stalk-surface-below-ring=smooth
stalk-color-above-ring=white
stalk-color-below-ring=vhite
veil-type=partial

veil-color=vwhite

129

APPENDIX A. 130

ring-type=pendant

habitat=woods

bruises=yes

odor=none
gill-attachment=descending
gill-spacing=close
gill-size=broad
stalk-shape=enlarging
stalk-root=bulbous
stalk-surface-above-ring=smooth
stalk-surface-below-ring=smooth
stalk-color-above-ring=white
stalk-color-below-ring=vhite
veil-type=partial
veil-color=white
ring-number=two
ring-type=pendant
spore-print-color=green

population=several

bruises=yes
gill-attachment=descending
gill-spacing=close
gill-size=narrow

stalk-shape=enlarging

APPENDIX A. 131

stalk-color-above-ring=vhite
veil-type=partial
veil-color=white
ring-number=one

ring-type=pendant

gill-attachment=descending
gill-spacing=close
stalk-shape=tapering
stalk-surface-above-ring=smooth
stalk-surface-below-ring=smooth
veil-type=partial
veil-color=vhite
ring-number=one
ring~type=evanescent

population=several

cap-surface=scaly
bruises=no
stalk-shape=enlarging
stalk-root=club

veil-type=partial

Example 2 ¢ = .3, 6 = .3 The accuracy of this hypothesis on the test set is
94.54% on positive examples (poisonous mushrooms) and 98.21% on negative

examples (edible mushrooms).

APPENDIX A.

bruises=no
gill-attachment=descending
gill-spacing=close
veil-type=partial
veil-color=vwhite

ring-number=one

odor=foul
gill-attachment=descending
gill-spacing=close
veil-type=partial
veil-color=white

ring-number=one

APPENDIX A. 133

Attribute | Attribute Attribute

Number | Name Values

1-6 cap-shape bell. conical. convex. flat. knobbed. sunken

7-11 cap-surface fibrous. grooves. scaly. smooth. brown

12-20 cap-color buff. cinnamon. gray. green. pink. purple. red. white.
yellow

21-22 bruises yes. no

23-31 odor almond. anise. creosote. fishy. foul. musty. none. |
pungent. spicy i

32-35 gill-attachment attached. descending. free. notched

36-38 gill-spacing close. crowded. distant

39-40 gill-size broad. narrow

41-52 gill-color black. brown. buff. chocolate. gray. green. orange.
pink. purple. red. white. yellow

53-54 stalk-shape enlarging. tapering

55-61 stalk-root bulbous. club. cup. equal. rhizomorphs. rooted.
missing-value

62-65 stalk-surface-above-ring | fibrous. scaly. silky. smooth

66-69 stalk-surface-below-ring | fibrous. scaly. silky. smooth

70-78 stalk-color-above-ring brown. buff. cinnamon. gray. orange. pink. red. white.
yellow

79-87 stalk-color-below-ring brown. buff. cinnamon. gray. orange. pink. red. white.
yellow

88-89 veil-type partial. universal

90-93 veil-color brown. orange. white. yellow

94-96 ring-number pone. one. two

97-104 ring-type cobwebby. evanescent. flaring. large. none. pendant.
sheathing, zone

105-113 spore-print-color black. brown. buff. chocolate. green. orange. purple.
white. yellow

114-119 population abundant. clustered. numerous. scattered. several.
solitary

120-126 habitat grasses. leaves. meadows. paths. urban. waste. woods

Table A.1: Attributes for the Mushroom Database

IMAGE EVALUATION
TEST TARGET (QA-3)

s,V. g ..%vnw 6////
,,.VWVVV \\/// ny\\\
N, &

25

20

16

m 2.2
=
Il
li

.4
653 East Main Street
2 or. NY 14609 USA

—
—_—

ki B E PRIy

150mm

ammte—me.
——
—_—
—
——

1.25
© - 993. Applied Image. Inc.. All Rights Reserved

I

