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Abstract 

A novel approach for the production of soy protein isolates was investigated 

integrating electroacidification and membrane ultrafiltration. The effect of 

electroacidification on the ultrafiltration performance and physicochemical properties of 

the soy protein extracts was obtained by comparing an electroacidified (pH 6) and a non-

electroacidified (pH 9) soy protein extract. 

The effect of membrane fouling on the permeate flux decline was studied in a 

hollow fiber and a dead end ultrafiltration system. Due to more significant membrane 

fouling, the permeate flux was always lower for the electroacidified extract, resulting in 

at least 1.5-fold increase in the total fouling resistance compared to the non-

electroacidified extract. The total amount of protein deposited on the membrane surface 

during unstirred dead-end ultrafiltration was comparable (about 7 mg/cm2) for both soy 

protein extracts. The discrepancy between the total fouling resistance and the protein 

deposition estimates was attributed to the formation of denser (less permeable) fouling 

deposit for the electroacidified extract, which was supported by scanning electron 

microscopy studies of fouled membranes. 

The removal of carbohydrates and minerals was evaluated for direct ultrafiltration 

and two-stage discontinuous diafiltration using a hollow fiber system. The carbohydrate 

removal results were always consistent with the theoretical predictions, indicating that the 

carbohydrates were freely permeable across the membrane. In contrast, the minerals were 

partially retained by the membrane, but to a higher extent for the non-electroacidified 

extract, which demonstrated that the electroacidification pretreatment enhanced the 

mineral removal during the ultrafiltration. Incorporation of the diafiltration step improved 

the ash (mineral) and carbohydrate removal. Stronger electrostatic interactions between 

soy proteins, calcium/magnesium, and phytic acid (antinutrient) at alkaline pH resulted in 

less efficient removal of calcium, magnesium, and phytic acid during the ultrafiltration of 

the non-electroacidified extract compared to the electroacidified extract. Consequently, 

the soy protein isolates produced by electroacidification and the hollow fiber 
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ultrafiltration had a lower mineral and phytic acid content. The protein content was at 

least 88 % (dry basis), with or without the electroacidification pretreatment. 

The study of the viscosity revealed that the electroacidification pretreatment 

reduced the viscosity of the soy protein extract, which resulted in a lower axial pressure 

drop increase during the ultrafiltration of the electroacidified extract compared to the 

non-electroacidified extract. Adjusting the pH of the electroacidified extract to 9 and the 

pH of the non-electroacidified extract to 6 had a great impact on the particle size 

distribution but only a marginal effect on the viscosity of the pH adjusted extracts. This 

indicated that the pH and the particle size distribution were not responsible for the 

viscosity difference between the electroacidified and the non-electroacidified soy protein 

extracts. It was proposed that the electroacidification pretreatment had some impact on 

the water hydration capacity of the soy proteins, which consequently affected the 

viscosity. 
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Research Aim and Outline 

 



RESEARCH AIM AND OUTLINE 
 

 2

Soybeans contain about 40 % of protein (dry basis), the highest protein content 

among legumes and cereals, thus representing a great source of non-animal protein. Soy 

proteins are highly digestible and their amino acid profile is well-balanced to meet the 

requirements for human nutrition. Consumption of soy proteins has been associated with 

health benefits such as lower risk of coronary heart disease, which was recognized by the 

U.S. Food and Drug Association in 1999 through the authorization of a health claim for 

food products containing soy proteins. In addition to the nutritional benefits, soy proteins 

have good functional properties, including water and fat binding, thickening, gelling, 

emulsification, and foam formation, which impart the texture and mouth-feel properties 

of the finished foods. Soy protein ingredients are used in a variety of food applications 

including meat and dairy products, bakery, breakfast cereals, infant formulas, and 

beverage powders. 

According to the protein content, soy protein ingredients are divided into grits and 

flours (about 60 % protein, dry basis), soy protein concentrates (70 % protein minimum, 

dry basis), and soy protein isolates (90 % protein minimum, dry basis). The conventional 

methods for the production of the soy protein concentrates and isolates involve the use of 

solvents, concentrated acids and alkali, or heat treatment. Such processing conditions can 

result in protein denaturation and loss of solubility, reducing the quality of the soy protein 

ingredients. In the production of soy protein isolates, large volumes of acid whey-like 

effluents are generated (containing relatively high quantities of proteineous material), 

which may impose a water pollution risk. Therefore, alternative methods that will 

preserve the protein functionality and at the same time, will be environmentally cleaner 

are sought after. 

Membrane ultrafiltration presents an attractive and technologically viable solution. 

The advantages of membrane ultrafiltration for the production of soy protein concentrates 

or isolates include mild processing conditions (no use of concentrated acids or alkali and 

moderate temperatures). Research indicates that the concentration of soy proteins by 

membrane ultrafiltration results in products with improved solubility, superior functional 

properties, and lower phytic acid (antinutrient) content. The disadvantages of membrane 

processing include permeate flux decline due to membrane fouling, which requires 

cleaning or replacing the membrane. Yet, membrane ultrafiltration has commercial 
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application in the dairy industry for the fractionation of cheese whey and the 

concentration of milk for cheese production. The feasibility of membrane ultrafiltration 

for milk and whey processing, considering their complex composition (proteins, fat, 

carbohydrates, minerals), suggests that industrial application of membrane ultrafiltration 

for the production of soy protein concentrates and isolates is a realistic consideration. 

This thesis investigates a novel approach for the production of soy protein isolates 

by a combination of electroacidification and membrane ultrafiltration. As illustrated in 

Figure 1.1, the process involves alkaline extraction of defatted soy flakes to obtain a soy 

protein extract at pH 9 (SPE 9). The pH of the soy protein extract is gradually adjusted to 

6 during electroacidification, which is based on the use of bipolar membranes to split 

water into hydroxyl and hydrogen ions. In the electrical field, the hydrogen ions migrate 

towards the cathode, while acidifying the soy protein extract solution. The 

electroacidified soy protein extract (SPE 6) is subjected to membrane ultrafiltration for 

purification and concentration of soy proteins. Gradual acidification of the soy protein 

extract without the use of concentrated acids should minimize the loss of protein 

solubility due to protein denaturation, while membrane ultrafiltration should allow for the 

removal of undesirable low molecular weight components and yield a highly purified soy 

protein isolate. 

Figure 1.1 Production of soy protein isolates by electroacidification and ultrafiltration. 
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It should be noted that the alkaline extraction and electroacidification were not part 

of this study. The electroacidified and the non-electroacidified soy protein extracts were 

kindly provided by Agriculture and Agri-Food Canada. The objective of this work was to 

investigate the effect of electroacidification on the ultrafiltration performance by 

comparing the behavior of the electroacidified and non-electroacidified soy protein 

extract. The ultrafiltration performance was compared in terms of the efficiency of the 

carbohydrate, mineral, and phytic acid removal, the permeate flux decline and membrane 

fouling, and the axial pressure drop profile. The physicochemical properties (particle size 

distribution, zeta potential, viscosity) of the soy protein extracts were investigated. 

Chapter 2 provides a theoretical background on the membrane ultrafiltration, the 

consideration of the electrostatic effects and their influence on the solute-solute and 

solute-membrane interactions, and characteristics of the soy proteins. The removal of 

carbohydrates, minerals, and phytic acid during the ultrafiltration of the soy protein 

extracts in a cross-flow (hollow fiber) system is discussed in Chapter 3. The permeate 

flux decline and the axial pressure drop increase observed during the hollow fiber 

ultrafiltration are further investigated in Chapters 4 and 5, respectively. Chapter 4 

provides a detailed analysis of the membrane fouling in a dead-end ultrafiltration system, 

including the estimation of the fouling resistance, the morphology of the fouling deposits, 

and the quantification of protein and mineral deposition. Chapter 5 investigates the axial 

pressure drop increase during the hollow fiber ultrafiltration and considers the effect of 

electroacidification on the flow and physicochemical properties of the soy protein 

extracts. Chapters 3, 4, and 5 are organized in a publication format, having their own 

abstract, introduction, materials and methods, results and discussion, and conclusion. The 

most significant findings of this work are emphasized in Chapter 6, along with the 

recommendations for the future research. 
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2.1 Ultrafiltration 

Ultrafiltration is a pressure-driven membrane separation process that is used for 

concentration and purification of macromolecular solutions. The pore size of 

ultrafiltration membranes is typically characterized by molecular weight cut-off 

(MWCO), which indicates the molecular weight of a component with 90 % membrane 

retention. The MWCO of ultrafiltration membranes ranges between 1–1000 kDa. The 

components are mainly separated based on their molecular weight, but in some cases, the 

separation may be also governed by other factors (e.g., charge). Ultrafiltration can be 

operated in a dead-end or a cross-flow configuration, as illustrated in Figure 2.1. 

 (b)(a) 

Figure 2.1 Dead-end (a) and cross-flow (b) configuration. 

Convective forces induced by the pressure gradient across the membrane (transmembrane 

pressure) and the permeate flow bring the solutes towards the membrane surface. 

Components with a lower molecular weight than the membrane MWCO are transported 

across the membrane along with the solvent, whereas the larger components are retained 

by the membrane and may accumulate on the top. Membrane fouling is usually more 

pronounced in the dead-end configuration, where the flow is perpendicular to the 

membrane surface (Figure 2.1 (a)). In contrast, membrane fouling is usually reduced in 

the cross-flow configuration, because the tangential flow removes some of the 

accumulated solutes from the membrane surface (Figure 2.1 (b)). The feed refers to the 

stream, which enters the filtration process. The concentrated solution of the retained 

components collected on the upstream side of the membrane is called the retentate. The 
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stream, containing the low molecular weight components that passed through the 

membrane pores, is the permeate. 

Dead-end ultrafiltration is usually performed in a cylindrical cell with a flat sheet 

membrane resting on a support grid or corrugated plate (Figure 2.2). The cell can be 

pressurized by compressed nitrogen or air. A magnetic stirring bar can be used to 

minimize membrane fouling and enhance the permeate flux. The device can be easily 

disassembled for cleaning and/or membrane replacement before the next operation. 

Ultrafiltration cells are especially suitable for laboratory scale applications such as 

research or process development. 

Figure 2.2 Dead-end ultrafiltration cell. 

The most common examples of cross-flow systems include hollow fiber, flat sheet, 

and spiral wound membrane modules, which are mainly used for larger-scale industrial 

processing, including food and biotechnological applications. In this work, hollow fiber 

ultrafiltration will be considered. The membrane modules consist of a bundle of hollow 

fibers with a diameter ranging between 0.25 and 2.5 mm. The fibers are housed in a 

cartridge shell and fixed at both ends by an epoxy resin. The feed flows through the 

lumen of the fibers and the permeate passes through the fiber walls to the shell side. The 

small diameter of the hollow fibers provides high shear rates (4000–14000 s-1) and low 

Reynolds numbers, typically between 500 and 3000, corresponding to laminar to 

turbulent flow regime. Advantages of hollow fiber membranes include high membrane 

packing density and low pumping costs when compared with other ultrafiltration modules 

[1,2]. 
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2.1.1 Permeate flux 

According to Darcy’s law (2-1), the permeate flux (JP) is a linear function of the 

transmembrane pressure (TMP): 

TP
P

Rη
TMPJ =  (2-1)

where ηP is the viscosity of the permeate and RT is the total hydraulic resistance to flow. 

The resistance of the clean membrane is dependent on the porosity and thickness of the 

membrane and the morphology of the porous structure (pore tortuosity) [3]. The clean 

membrane resistance can be estimated by measuring the pure water flux as a function of 

transmembrane pressure and applying Eq. (2-1). During the filtration, retained 

components will accumulate on the top of the membrane or within the membrane pores, 

resulting in membrane fouling and increase in the hydraulic resistance. The total 

hydraulic resistance (RT) then consists of the clean membrane resistance (RM) and the 

resistance exerted by the fouling layer (RF), which can be determined from the resistance-

in-series model (2-2). The fouling resistance (RF) can be further divided into two fouling 

components, the reversible (RR) and irreversible (RI) fouling resistance. The former takes 

into account the solutes, which are loosely deposited on the membrane surface and can be 

removed by rinsing the membrane with water. The latter involves strongly bound solutes, 

which can not be removed from the membrane without chemical cleaning. 

IRMFMT RRRRRR ++=+=  (2-2)

The transmembrane pressure (TMP) in cross-flow ultrafiltration can be calculated, 

according to Eq. (2-3): 

( )
p

outin P
2

PPTMP −
+

=  (2-3)

where Pin, Pout, and Pp represent the pressure measured at the inlet and outlet of the 

membrane module and on the permeate side, respectively. As illustrated in Figure 2.3, the 

pressure difference between the module inlet and outlet is referred to as the axial pressure 

drop, i.e.: 
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outin PPΔP −=  (2-4)

The axial pressure drop is expected to increase during the filtration, as the concentration 

of the retained components and thereby, the viscosity of the retentate increases. Note that 

the permeate flux (through the pores of the membrane) is governed by the viscosity of the 

permeate (ηP), while the axial pressure drop (ΔP) will be a function of the retentate 

viscosity (η), i.e., the viscosity of the fluid flowing inside the fibers. 

 

Figure 2.3 Transmembrane pressure and axial pressure drop in cross-flow ultrafiltration. 

The permeate flux in ultrafiltration is often presented as a function of time or 

volume concentration ratio (VCR), defined as the initial feed volume to the retentate 

volume. 

2.1.2 Membrane fouling 

Ultrafiltration processes are usually operated at constant transmembrane pressure. 

The increase in the hydraulic resistance due to membrane fouling is associated with a 

permeate flux decline. A typical profile of the permeate flux is illustrated in Figure 2.4 as 

a function of time. 
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Figure 2.4 Permeate flux decline in ultrafiltration. 

The permeate flux decline can be described in three stages. In the first stage of the 

operation, the permeate flux declines very rapidly due to concentration polarization, 

which refers to the concentration gradient that develops between the membrane surface 

and the bulk solution. The effect of concentration polarization can be obtained from the 

comparison of the pure water flux (JW) and the initial permeate flux (JP) at the same 

transmembrane pressure. In the second stage, the permeate flux declines mostly due to 

solute adsorption and deposition within the porous structure or the external surface of the 

membrane. The rate of the flux decline in this stage depends on the character of the 

solute-membrane and the solute-solute interactions. In the final stage, the flux may reach 

a steady state or may decrease slowly due to additional solute deposition or fouling layer 

consolidation [4]. 

Concentration polarization 

Concentration polarization is the concentration gradient that develops between the 

membrane surface and the bulk solution. The solutes are constantly driven to the 

membrane surface by the permeate flow, and therefore the concentration of the retained 

components is higher at the membrane wall. The concentration gradient is a driving force 

for solute back diffusion to the bulk. At high permeate fluxes (e.g., initial stage of 

filtration), the rate of the convective flow is higher compared to the back diffusion, and 

the solutes readily accumulate on the membrane surface. The rate of the back diffusion is 

dependent on the solute properties (size, shape) and the viscosity of the aqueous phase 

[3]. Concentration polarization does not influence the sieving properties of the membrane 

but increases the resistance to the permeate flow. The effect of concentration polarization 
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is usually minimized in cross-flow systems due to the sweeping action of the tangential 

flow. 

Protein adsorption and deposition 

In ultrafiltration of protein-containing solutions, proteins tend to be the major 

foulants. Membrane fouling can be characterized by protein adsorption and deposition on 

the membrane surface. Proteins can adsorb or deposit on the external surface of the 

membrane (external fouling) or within the membrane pores (internal fouling). In 

ultrafiltration, external fouling is usually the predominant fouling mechanism. Pore 

plugging may occur, when the proteins are comparable in size to the dimensions of the 

membrane pores due to the protein entrapment at pore constrictions [2]. The presence of 

polar and non-polar functional groups within the protein amino acid sequence implies 

that proteins are capable of adsorbing to both hydrophobic and hydrophilic surfaces. In 

membrane ultrafiltration, it has been observed that proteins tend to adsorb and deposit 

more on hydrophobic than hydrophilic membranes [5,6]. Protein adsorption occurs as 

soon as the membrane surface and the protein solution come in contact, as a result of 

protein partitioning between the solid and the liquid phase. The amount of protein 

adsorption depends on the membrane material, protein properties (charge, 

hydrophobicity), and solution properties (pH, ionic strength) and can be estimated by 

exposing the membrane to the protein solution in static conditions (i.e., without permeate 

flow). Protein adsorption is considered irreversible, which may be explained by the size 

of the protein molecules. Proteins can interact with surfaces through electrostatic 

(coulombic) forces, polar and hydrophobic interactions, hydrogen bonding, and van der 

Waals forces, which can take place at multiple locations within the protein polypeptide 

chain. Although, formation and disruption of individual bonds may be a dynamic process, 

to break all connections at once is very unlikely [7]. 

Protein deposition involves additional protein that becomes associated with the 

membrane surface due to the convective flow. Multiple layers of protein may form on the 

membrane surface, depending on the strength of intermolecular interactions. It is likely 

that the porosity (void space) of the fouling deposit decreases closer to the membrane 

surface due to cake consolidation. Therefore, the upper part of the deposit (close to the 

bulk) may be less strongly bound and easier to remove during cleaning than the protein 
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layers in the proximity of the membrane surface. Protein deposition will be mostly 

controlled by the protein-protein interactions, which depend on the solution pH and ionic 

strength [4]. One can expect that the amount of protein deposition will be also governed 

by the protein concentration in the concentration polarization layer. The morphology of 

the fouling deposits will be likely affected by the strength and reversibility of the protein-

protein interactions, given by the physicochemical characteristics of the protein. 

Depending on the size of the pores within the fouling deposit, protein adsorption 

and deposition may increase the retention of the smaller solutes, thus reducing the 

efficiency of solute separation. Both permeate flux decline and lower selectivity have a 

negative effect on the overall performance of the filtration process. Careful selection of 

operating parameters (TMP, shear rate, concentration, pH, ionic strength) is necessary to 

minimize the effect of membrane fouling. 

2.1.3 Diafiltration 

Diafiltration is an ultrafiltration process, which involves pure solvent (water/buffer) 

addition to the retentate to replace the solvent which permeated through the membrane. In 

protein purification, diafiltration can be used as an effective method for removing low 

molecular weight impurities. The solvent addition may also reduce the amount of 

membrane fouling and improve the solute separation by reducing the solute-solute 

interactions in the retentate [8]. Diafiltration can be operated in a discontinuous or 

continuous mode. In discontinuous operation, the feed solution is first concentrated by 

conventional ultrafiltration, diluted back to the initial feed volume, and re-ultrafiltered. 

Several concentration/dilution cycles can be performed until the concentration of 

impurities drops to an acceptable level. In continuous operation, the solvent is added to 

the retentate at the same rate as the permeate flow, thus keeping the retentate volume and 

the concentration of the retained components constant. The concentration of impurities 

decreases in proportion to the amount of solvent added. The solvent consumption to reach 

the same level of purification is higher for the continuous operation, but this may be 

compensated by the higher permeate flux compared to the discontinuous operation [1]. 
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2.2 Electrostatic effects 

2.2.1 Electrical double layer and zeta potential 

Protein molecules are complex biopolymers composed of 20 different amino acids 

linked by peptide bonds in a sequence, which is unique for each protein. In an aqueous 

solution, the proteins fold into a three-dimensional structure stabilized by covalent 

(disulfide bridges) and/or non-covalent bonding (hydrophobic and electrostatic 

interactions, hydrogen bonding, van der Waals forces). The polar and charged 

(hydrophilic) amino acids tend to be exposed on the protein surface, where they can 

interact with the surrounding molecules of water, while the non-polar (hydrophobic) 

amino acids are hidden in the protein core. The protein net charge is determined by the 

protonation of acidic and basic amino acid residues, which is dependent of the pH of the 

solution. The isoelectric point of a protein is the pH, at which the protein carries a zero 

net charge [9]. 

Protein molecules are typically several nanometers in size, which categorizes them 

as colloids (i.e., particles between 1–1000 nm). Due to high surface to volume ratio, the 

surface properties of colloidal particles or macromolecules, such as the surface charge, 

play an important role in overall characteristics of colloidal dispersions (e.g., stability, 

rheology). The surface charge influences the distribution of ions in solution around the 

particles. If the particles are negatively charged, positively charged ions (counter-ions) 

will be attracted to their proximity, resulting in the formation of an electrical double layer 

(Figure 2.5). 
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Figure 2.5 Electrical double layer (EDL) and electrical potential in the vicinity of negatively 
charged colloid. 

The inner Stern layer is formed by the counter-ions in immediate contact with the 

charged surface. The counter-ions in this region are strongly bound to the surface and 

partially neutralize the negative charge. Outside the Stern layer, electrostatic forces are 

thus reduced and the counter-ions can move more freely around the particle. The surface 

charge gives rise to an electrical potential between the surface and the bulk solution. The 

potential difference is the highest at the particle surface and gradually decreases with 

increasing distance from the surface (Figure 2.5). When a charged particle moves in 

solution (e.g., sedimentation, electrophoresis), the Stern layer and the inner part of the 

diffuse layer remain associated with the surface during the particle movement. The 

boundary defining ions that move with the particle as a single entity is called the shear 

plane (or the slipping plane). The electrical potential at the shear plane is known as the 

zeta potential. It should be noted that the situation illustrated in Figure 2.5 is 

oversimplified for proteins, which can not be described as rigid spheres with evenly 

distributed surface charge, and is only used to explain the concept of the double layer 

formation. 

The thickness of the double layer depends on the type and concentration of 

electrolytes in solution and decreases with increasing ionic strength according to Eq. 

(2-5): 
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2IF
RTεκ

2

m1 =−  (2-5)

where κ-1 is the thickness of the double layer, εm is the medium permittivity, R is the gas 

constant, T is the temperature, F is the Faraday constant, and I is the ionic strength [10]. 

2.2.2 DLVO theory 

Colloidal particles in dispersion constantly move by a random Brownian motion, 

resulting from collisions with molecules of the surrounding medium. The stability of 

colloidal dispersions can be predicted from the Derjaguin-Landau-Verwey-Overbeek 

(DLVO) theory, which determines the total interaction energy of two approaching 

particles as a function of their separation distance. The total interaction energy is 

evaluated from the contributions of electrostatic repulsion and van der Waals attraction. 

The former arises from the double layer overlap between two approaching particles and 

acts as an energy barrier, preventing the particles from agglomeration or flocculation. If 

the electrostatic repulsive forces are weak (e.g., due to low surface charge) and the kinetic 

energy of the colliding particles is high enough to overcome the energy barrier, the 

particles will agglomerate due to van der Waals attractive forces (Figure 2.6). This type of 

agglomeration is considered irreversible, because the particles do not have sufficient 

energy to escape from the primary energy minimum (min 1). 

 (a) (b)

min 1

ΔE

0
Separationmin 2 

ΔE 
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Energy barrier
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Electrostatic repulsion
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Figure 2.6 Total interaction energy calculated from the contributions of repulsive and attractive 
forces (a), with illustration of the secondary minimum (b). 
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The stability of colloidal dispersions is affected by physicochemical parameters 

such as pH or ionic strength. Increasing electrolyte concentration reduces the surface 

charge (due to double layer compression) and electrostatic repulsive forces, thus favoring 

agglomeration of the particles. At intermediate ionic strength, the total interaction energy 

may display a secondary energy minimum (min 2), as illustrated in Figure 2.6 (b). This 

occurs when the double layer is partially reduced but still effective at short particle 

separation. The secondary minimum is much shallower than the primary minimum and as 

a result, particle agglomeration may be reversed (e.g., by stirring) [10]. 

The concept of the total interaction energy is often used to explain phenomena 

where interparticle interactions play an important role. Although the DLVO theory 

considers only the contributions of electrostatic repulsion and van der Waals attraction, 

the total interaction energy related to proteins may involve other forces, e.g., hydrophobic 

interactions, hydration forces. The strength of interparticle forces will be considered in 

the following sections to explain some characteristics of the soy protein dispersions used 

in this work. 

2.2.3 Determination of zeta potential 

The determination of the zeta potential (at the shear plane) can be used to describe 

the stability of a colloidal dispersion. For a protein solution, zeta potential is positive at 

low pH and negative at high pH, passing through zero at the protein isoelectric point. The 

electrostatic repulsion between the protein molecules is minimal at the isoelectric point, 

resulting in protein aggregation and eventually, precipitation. The zeta potential (ζ) is 

usually determined by measuring the electrophoretic mobility (u) of charged 

particles/proteins in an applied electric field and evaluated from Eq. (2-6): 

( )κafζ
3η
2εu m ⋅=  (2-6)

where εm and η are the permittivity and the dynamic viscosity of the medium, 

respectively. The correction factor f(κa) depends on the ratio of the particle radius (a) to 

the thickness of the double layer (κ-1) [11]. 

The electrophoretic mobility can be estimated by laser Doppler velocimetry. Light 

from a laser source is split into an incident beam and a reference beam. The incident 
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beam passes through the sample to illuminate the dispersed particles, whereas the 

reference beam is directed around the sample. The particle movement due to the applied 

electric field causes a frequency shift in the light that is scattered by the particles. The 

frequency shift, obtained by comparing the frequency of the reference beam with that of 

the scattered light, is proportional to the velocity at which the particles migrate. 

2.3 Soy proteins 

2.3.1 Soybean composition 

The soybean is native to China, where it has been cultivated as a source of dietary 

protein and oil for thousands of years. The plant was introduced to North America in the 

mid-18th century and since then the cultivation of soybeans has grown enormously. 

Today, the U.S. is the top soybean producer, accounting for at least 40 % of the total 

world production. Other leading soybean producers include Brazil, Argentina, and China. 

According to the American Soybean Association, Canada was the world’s sixth largest 

soybean producer in 2006 [12]. The protein content of dry soybeans is about 40 %, which 

is the highest compared to other legumes (20–30 %) and cereal crops (8–15 %). For this 

reason, soybeans can produce more protein per unit land area than any other agricultural 

crop. Despite the high protein content, the soybean is mainly cultivated for oil, which 

accounts for about 20 % of its dry weight. The remaining soybean constituents include 

carbohydrates and minerals (or ash), accounting for about 35 and 5 % (on dry basis), 

respectively. Soybean carbohydrates contain soluble mono-, di-, and oligosaccharides 

(e.g., glucose, sucrose, raffinose and stachyose) and insoluble polysaccharides (cellulose, 

hemicellulose, pectin). The minerals are mainly composed of sulfates, phosphates, and 

carbonates, which implies that oxygen is a major component of ash. Other major minerals 

include potassium, phosphorus, magnesium, sulfur, calcium, chlorine, and sodium. 

Soybeans also contain small amounts of vitamins and phenolic compounds (e.g., 

isoflavones). 

The defatted soybean meal, a by-product of oil production, contains at least 50 % of 

protein and is mainly used as animal feed. Only a small part of the protein-rich meal is 

used for human consumption, which relies primarily on animal protein foods. However, 

from the development of the first soy protein products (flours, concentrates, and isolates) 
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in the 1960s, their production for human consumption has been steadily increasing and 

with the ever-growing world population, the trend is expected to continue [13]. 

2.3.2 Soy proteins as food ingredients 

Soy protein products are used as food ingredients due to their nutritional and 

functional properties. Soy proteins are highly digestible and contain all essential amino 

acids in sufficient quantities to meet human nutritional requirements, although the 

amount of sulfur-containing (methionine and cysteine) amino acids is lower than in 

animal protein sources [14]. Soy protein ingredients not only improve the nutritional 

quality of food products, but also modify their physical and sensory characteristics (e.g., 

texture, firmness, mouth-feel), which in turn affect customer satisfaction with the food 

products. The functional properties of soy proteins include water absorption and binding, 

viscosity (or thickening), gelation, elasticity, emulsification, fat absorption, and foaming. 

Most of these functional applications require highly soluble soy protein ingredients, 

which at the same time facilitates their incorporation into moist food products. Soy 

protein ingredients are used for the production of infant formulas, beverages, soups and 

gravies, meat extenders, dairy analogs, whipped toppings, and bakery items. 

2.3.3 Characterization of soy proteins 

Soy proteins can be classified as metabolic and storage proteins. The former 

include structural proteins and metabolic enzymes involved in cellular functioning. The 

latter represent about 85 % of the total protein content and act as a source of nitrogen 

during seed germination [15]. Storage proteins are globulins with an average isoelectric 

point at pH 4.5–4.8. The major constituents include β-conglycinin and glycinin, 

accounting for about 28 and 40 % of all storage globulins. Soy proteins can be also 

categorized according to sedimentation coefficients determined by ultracentrifugation. 

Four to five fractions are often identified in the sedimentation profile of soy proteins, 

depending on the ionic strength. These fractions are designated as 2, 7, 9, 11 and 15S (in 

Svedberg units). The 2S fraction contains small proteins such as α-conglycinin and 

trypsin inhibitors, representing about 20 % of total extractable protein. The 7S fraction 

contains β- and γ-conglycinin, lipoxygenase, and lectins. At low ionic strength (I < 0.2) 
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β-conglycinin forms a dimer with a sedimentation coefficient of 9–10S [16]. The 11S and 

15S fractions correspond to pure protein, the former consisting of glycinin and the latter 

representing its polymerized form. The 15S fraction accounts for about 10 % of total 

extractable protein [13]. The isoelectric point (pI) and amino acid composition for the 

two major soy proteins, β- conglycinin and glycinin, is shown in Table 2.1. Both proteins 

have relatively similar amino acid composition, with the highest content of glutamic acid, 

followed by aspartic acid, leucine, and arginine. 

β-conglycinin is a trimeric glycoprotein with a molecular mass around 180–210 

kDa, and a carbohydrate content between 4 and 5 %. The molecule of β-conglycinin 

contains three protein subunits, α (57–76 kDa), α’ (57–83 kDa), and β (42–53 kDa), 

assembled in random combinations. The molecular structure of β-conglycinin contains no 

disulfide bonds. Glycinin is a dodecamer composed of two identical hexamers, consisting 

of three basic (~20 kDa) and three acidic (~40 kDa) subunits. The acidic (A) and basic 

(B) subunits are connected by a single disulfide bond, resulting in a general structure A-

S-S-B [13]. The molecular mass of glycinin is 300–350 kDa. In contrast to β-conglycinin, 

glycinin contains only a small amount of sugar and about 4–6 times more methionine and 

cysteine (Table 2.1). From the nutritional perspective, glycinin may be more valuable than 

β-conglycinin [15]. 

In addition to nutritional differences, β-conglycinin and glycinin have slightly 

distinct functional properties. Glycinin is more heat stable but less soluble in salt 

solutions than β-conglycinin. Gels prepared from glycinin tend to be firmer and more 

stable than those of β-conglycinin. On the other hand, β-conglycinin offers better 

emulsifying capacity and emulsion stability than glycinin. The differences in functional 

properties of the two proteins are likely caused by the differences in the heat stability, 

conformational stability, surface hydrophobicity, and the extent of disulfide bond 

formation [13,15]. 
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Table 2.1 Isoelectric points (pI) and amino acid composition of β-conglycinin and glycinin in amino acid % per 100 g protein. 

Protein pI Trp Lys His Arg Asp Thr Ser Glu Pro Gly Ala Cys Val Met Ile Leu Tyr Phe

β-conglycinin 4.8 0.3 7.0 1.7 8.8 14. 2.8 6.8 20. 4.3 2.9 3.7 0.3 5.1 0.3 6.4 10. 3.6 7.4

Glycinin 6.4 1.5 5.7 2.6 8.9 13. 4.1 6.5 25. 6.9 5.0 4.0 1.7 4.9 1.3 4.9 8.1 4.5 5.5 

From Garcίa et al. [15]. 
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2.3.4 Antinutritional factors in soy 

The presence of antinutritional factors in the soy protein products diminishes their 

nutritional quality and their use as food ingredients. Antinutritional factors include 

substances that interfere with digestion or reduce the bioavailability of nutrients. The most 

important antinutritional components in soybeans are trypsin inhibitors, lectins, 

lipoxygenase, oligosaccharides, and phytic acid. These components are not only specific to 

soybeans but are commonly found in other legumes and plant sources. Soybeans contain two 

types of trypsin inhibitors, Bowman-Birk (8 kDa) and Kunitz inhibitor (21 kDa), which 

belong to the 2S fraction. As their name suggests, trypsin inhibitors inhibit trypsin (protease) 

activity, thus reducing protein digestibility and amino acid bioavailability. Lectins (or 

hemagglutinins) are proteins which can bind to carbohydrate-containing receptors on cell 

membranes and thus, interfere with the metabolic processes. Lipoxygenase is an enzyme that 

has the ability to catalyze hydroperoxidation of polyunsaturated fatty acids, resulting in the 

formation of fatty-acid hydroperoxides. These products can be further degraded into various 

volatile compounds, including ketones, aldehydes, alcohols, and acids, which may cause 

undesirable flavors of the soy-based foods. Trypsin inhibitors, lectins and lipoxygenase are 

usually inactivated by heat treatment during soybean processing [13,15]. 

Oligosaccharides, raffinose and stachyose, are associated with flatulence and 

abdominal discomfort after consumption of soybeans or soy-based foods. Raffinose 

(trisaccharide) and stachyose (tetrasaccharide) consist of sucrose linked with one and two 

galactose units, respectively, through α-galactosidic linkage. These oligosaccharides can not 

be metabolized in humans due to the absence of α-galactosidase, an enzyme that can 

hydrolyze α-galactosidic linkages. Anaerobic fermentation of these oligosaccharides by 

microflora in the small intestine results in gas production [13,15]. 

Phytic acid (myo-inositol hexakis phosphate) is a natural component of plant seeds, 

mostly occurring in the form of calcium-magnesium-potassium salt. The chemical structure 

of phytic acid is shown in the Appendix (Chapter 8). In legumes and cereals, phytic acid 

accounts for about 85 % of total phosphorus [17]. In general, phytic acid is considered an 

antinutrient, because it may limit the bioavailability of minerals and proteins. Phytic acid is a 

strong chelating agent for a variety of metal ions (e.g., Ca2+, Mg2+, Zn2+, Fe2+), forming 
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insoluble and indigestible mineral complexes. The molecule of phytic acid can also associate 

with proteins and carbohydrates through electrostatic interactions or hydrogen bonding, 

which may have a detrimental effect on the solubility and bioavailability of these nutrients 

[17,18]. 

2.3.5 Soy protein products 

Soy protein products can be divided into flours and grits, concentrates and isolates 

based on their protein content (Table 2.2). In conventional processing, soybeans are first 

cleaned, dried, cracked, and dehulled. Before flaking, dehulled soybeans have to be 

conditioned to a moisture content of 10–11 % at 65–70 °C. Soy flakes are defatted by hexane 

extraction. The residual solvent is removed by exposing the soy flakes to steam, which is 

followed by a toasting process at 100–105 °C to inactivate enzymes associated with 

antinutritional effects [13]. The soy flours, concentrates, isolates are prepared from the 

defatted soy flakes. 

Table 2.2 Composition of soy protein products (in % on dry basis)* 

Constituent Defatted flours 

and grits 
Concentrates Isolates 

Protein 56–59 65–72 90–92 

Fat 0.5–1.1 0.5–1.0 0.5–1.0 

Crude fiber 2.7–3.8 3.5–5.0 0.1–0.2 

Ash 5.4–6.5 4.0–6.5 4.0–5.0 

Carbohydrates** 32–34 20–22 3–4 

* Adopted from Liu, K. [13]. ** By difference. 

Soy flours and grits are prepared by grinding the defatted flakes. Soy protein 

concentrates are produced by three basic methods: (1) acid leaching which involves washing 

the defatted soy flake with dilute acid at pH 4.5; (2) aqueous ethanol extraction; and (3) 

protein denaturation by moist heat followed by water extraction [14]. The purpose of all three 

methods is to make the protein insoluble and then remove the water-soluble carbohydrates 

[19]. Soy protein isolates are conventionally produced by alkaline extraction (pH 7–10) of 

the defatted flakes at mild temperatures (30–65 °C). The insoluble material, containing 

mostly polysaccharides (fiber), is removed by centrifugation. The protein solution is acidified 
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to pH 4.5–4.8 to precipitate the protein. The precipitate is separated by centrifugation, 

washed, neutralized (pH 6.5–7.0), and spray-dried. The neutralization step is sometimes 

excluded to produce soy protein isolates in their isoelectric form [13,19]. 

2.4 Membrane processing 

2.4.1 Ultrafiltration 

Membrane separation processes offer an alternative to the conventional production of 

soy protein concentrates and isolates. Using an ultrafiltration membrane with appropriate 

pore size, soy proteins can be separated from the low molecular weight components such as 

carbohydrates (including mono-, di-, and oligosaccharides) and minerals. The production of 

soy protein isolates by isoelectric precipitation requires the use of concentrated acids and 

alkali (for neutralization), which often causes irreversible protein denaturation due to local 

pH extremes [20]. Acid-precipitated soy protein isolates have relatively high mineral and 

phytic acid contents. Large volume of acid waste is generated during the multiple washings 

of the precipitated protein, resulting in higher capital costs for the waste treatment. In 

contrast, ultrafiltration has been shown to produce soy protein concentrates and isolates with 

higher solubility and improved functional properties [21,22]. Depending on the membrane 

pore size, ultrafiltration can also preserve proteins that normally do not precipitate at pH 4.5 

(whey proteins), resulting in potentially higher protein yields than those achieved during the 

conventional isoelectric precipitation [23,24]. The removal of minerals and phytic acid 

during ultrafiltration is dependent on the pH of the soy protein extracts [24,25]. Stronger 

electrostatic interactions between soy proteins, minerals, and phytic acid or reduced solubility 

of minerals and phytic acid at alkaline pH can cause higher retention of these components by 

the membrane [24,25]. Omosaiye et al. [25] showed that the removal of phytic acid during 

ultrafiltration of soybean water extracts increased from 27 to 65 %, when the pH was lowered 

from 10 to 6.7. The solubility characteristics of calcium and magnesium phytates depend on 

the pH and the molar ratio of calcium/magnesium to phytic acid [26,27]. The solubility of 

calcium and magnesium phytates typically decreases above pH 5, with the maximum 

precipitation obtained at the molar ratio of calcium/magnesium to phytic acid between 4 and 

6. The solubility of calcium, magnesium, and phytic acid in complex food systems will also 

depend on the type and concentration of other minerals, polyionic compounds (protein and 
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fiber), and the processing history of the product [26]. The 11S (glycinin) fraction of the soy 

proteins is known to associate with calcium and magnesium ions, which may be important 

for maintaining the protein structure [28,29]. Wallace et al. [30] reported that the amount of 

calcium bound to soy proteins increased with increasing pH between 7 and 11. Grynspan et 

al. [31] investigated the interactions between soy proteins, calcium, and phytic acid. At low 

pH (below pI of soy proteins), strong electrostatic interactions occur between the positively 

charged soy proteins and the negatively charged phytic acid. At pH above 6.5 (above pI of 

soy proteins), calcium ions mediate interactions between the negatively charged soy proteins 

and phytic acid, resulting in a ternary complex formation without protein precipitation. At 

higher pH values, the solubility of soy proteins remains high, but the solubility of phytate and 

calcium decreases due to calcium phytate precipitation. The ternary complex formation and 

the solubility profiles of soy proteins, calcium, and phytic acid are again dependent on the 

relative concentrations of individual components. The study of Omosaiye et al. [25] indicates 

that for optimal separation of the soy proteins from the phytic acid, ultrafiltration should be 

performed at a neutral pH, when the conditions for the ternary complex formation or the 

precipitation of mineral phytate are limited. 

Ultrafiltration performance is usually affected by membrane fouling, which results in a 

permeate flux decline, longer filtration times, and more frequent membrane cleaning to 

maintain a stable operation [1,2]. 

2.4.2 Electroacidification 

Electroacidification or bipolar-membrane electrodialysis is a novel technique that has 

been recently proposed for production of soy protein isolates [32,33]. Bipolar membrane 

consists of three components, a cation-exchange membrane, an anion-exchange membrane, 

and a hydrophilic interface separating the two membranes. In an electrical field, water 

dissociates at the hydrophilic interface, resulting in H+ and OH- migration in the direction of 

oppositely charged electrodes. Figure 2.7 shows a schematic of an electroacidification cell, 

which can be composed of several compartments separated by cation-exchange membranes 

(CEM) and bipolar membranes (BPM). Thus, the soy protein extract (SPE) circulated in the 

compartment on the cationic side of the bipolar membrane becomes slowly acidified. 

Simultaneously, the ash content of the soy protein extract is reduced, as the positively 
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charged minerals migrate through the cation-exchange membrane towards the cathode. For 

the production of soy protein isolates, the soy protein extract is circulated in the cell until the 

pH reaches the isoelectric point (pH 4.5–4.8) and protein precipitation occurs. 

+ ++-
BPM CEMCEM

OH- H+

+
Anode

-
Cathode

SPEKClNa2SO4 Na2SO4

M+

Figure 2.7 Electroacidification of soy protein extracts (SPE), adopted from [32]. CEM and BPM 
represent a cationic exchange membrane and a bipolar membrane, respectively. 

In electroacidification, the pH is lowered gradually without the use of concentrated 

acids, resulting in soy protein isolates with higher solubility and lower ash content. 

Compared to the conventional isoelectric precipitation, electroacidification is more time-

consuming but the water consumption is reduced by reusing the effluents generated during 

the process. However, gradual precipitation of proteins results in severe fouling of the bipolar 

membranes, increasing the cell resistance and thus, decreasing the process efficiency [33]. 

2.5 Electroacidification and ultrafiltration 

A novel approach, integrating electroacidification and membrane ultrafiltration, for the 

production of soy protein isolates has been recently proposed [34,35]. The first step involves 

alkaline extraction of soy proteins from defatted soy flake. The pH of the alkaline soy protein 

extract (SPE 9) is adjusted to 6 by electroacidification (resulting in SPE 6), followed by 

membrane ultrafiltration for purification and concentration of soy proteins (Figure 2.8). 
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Figure 2.8 Production of soy protein isolates by electroacidification and ultrafiltration. 

Preliminary work considered ultrafiltration of the soy protein extract in a dead-end 

system using a 100 kDa regenerated cellulose membrane, stirred conditions and constant 

transmembrane pressure of 30 psi [34]. The soy protein extract obtained by alkaline 

extraction was subjected to electroacidification to pH 7 and 6. The effect of 

electroacidification on the ultrafiltration performance was compared for the electroacidified 

soy protein extracts at pH 7 and 6 and the non-electroacidified soy protein extract at pH 9. 

Electroacidification of the soy protein extracts resulted in more significant membrane fouling 

(maximum at pH 7, intermediate at pH 6, and minimum at pH 9). Analysis of the hydraulic 

resistance showed that most of the fouling was due to cake layer formation. The ash removal 

was 72.9, 64.5, and 55.1 % at pH 6, 7, and 9 respectively, indicating that electroacidification 

enhanced the removal of minerals during ultrafiltration. Mineral analysis showed that the 

concentration of calcium and phosphorus (phytic acid) increased during the ultrafiltration at 

pH 7 and 9, which was attributed to the ternary complex formation between soy proteins, 

calcium, and phytic acid at pH above 6.5. In contrast, the removal of calcium and phosphorus 

was considerably improved during the ultrafiltration of the soy protein extract at pH 6, 

yielding a soy protein concentrate with superior composition and improved solubility. The 

comparison with a soy protein concentrate produced by the conventional acid precipitation at 

pH 4.5 showed that the two products had a similar ash content and solubility profile but the 

water consumption was twice as much during the conventional process. 



CHAPTER 2 
 

 27

Subsequent work investigated the membrane fouling of the electroacidified soy protein 

extract at pH 6 (SPE 6) and the non-electroacidified soy protein extract at pH 9 (SPE 9) in 

low shear (flat sheet) and high shear (hollow fiber) tangential flow ultrafiltration [36,37]. The 

analysis of the hydraulic resistance by the resistance-in-series model and the comparison of 

the fouling components (reversible and irreversible fouling) revealed that there was at least a 

20-fold decrease in the reversible fouling for the low shear tangential flow system compared 

to the dead-end system. Additional improvement was obtained in the hollow fiber system, 

where the reversible fouling decreased about 100-fold compared to the dead-end system [37]. 

Comparison of the ultrafiltration performance for SPE 6 and SPE 9 during the hollow 

fiber ultrafiltration also indicated a more significant permeate flux decline for SPE 6 

compared to SPE 9, which was attributed to more significant irreversible fouling [37]. The 

soy protein isolates obtained by ultrafiltration of SPE 6 and SPE 9 to VCR 6.5 contained 

about 87 % protein (dry basis) which was about 4 % less than predicted, assuming that 

protein is fully retained by the membrane and other components are freely permeable. The 

lower protein content was explained by insufficient removal of carbohydrates and minerals 

and protein loss due to adsorption and deposition on the membrane surface. 

2.6 Project objectives 

The overall objective of this work is to investigate the effect of electroacidification on 

the ultrafiltration of soy protein extracts. Two types of soy protein extracts will be used, an 

electroacidified soy protein extract at pH 6 (SPE 6) and a non-electroacidified soy protein 

extract at pH 9 (SPE 9). The specific objectives are: 

 

1. To evaluate the efficiency of the carbohydrate and mineral removal in a hollow fiber 

ultrafiltration system, with the focus on the removal of calcium, magnesium, and 

phytic acid. 

 

2. To assess the potential of a discontinuous diafiltration in the hollow fiber 

ultrafiltration system to enhance the removal of carbohydrates and minerals and 

reduce membrane fouling. 
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3. To investigate membrane fouling in a dead-end ultrafiltration system in order to 

identify the factors responsible for the permeate flux decline during ultrafiltration of 

the electroacidified and the non-electroacidified soy protein extract. 

 
4. To determine the effect of electroacidification on the axial pressure drop profile 

during the hollow fiber ultrafiltration. 

 
5. To examine the effect of electroacidification on the physicochemical properties of the 

soy protein extracts. 

2.7 Selection of operating parameters 

During the operation in a total recycle mode, i.e., when both the retentate and the 

permeate are recycled to the feed tank (Figure 2.9), it is often observed that the permeate flux 

increases linearly with increasing transmembrane pressure (TMP) up to a certain point, 

beyond which the flux becomes pressure-independent. This is due to the accumulation of the 

retained solutes near the membrane surface and possible consolidation of the fouling deposit 

at higher pressures. The pressure, at which the permeate flux starts leveling off, depends on 

the operating parameters (feed composition, concentration, shear rate), the properties of the 

retained solutes (diffusivity), and the hydrodynamic conditions within the membrane module 

[2]. The permeate flux-TMP profile is often used to determine appropriate conditions 

(transmembrane pressure, shear rate, feed concentration) for operation in the concentration 

mode, i.e., when the permeate is withdrawn. 
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Figure 2.9 Operation in the total recycle mode. 

The operating parameters for the ultrafiltration of soy protein extracts in the hollow 

fiber system were selected in a previous study by Vaughan [37]. The permeate flux-TMP 

profile obtained at various feed concentrations during the operation in the total recycle mode 

is shown in Figure 2.10. As expected, the permeate flux for pure water increased linearly with 

the transmembrane pressure. The permeate flux during the ultrafiltration of the soy protein 

extracts was linear at lower pressures but became pressure-independent at higher pressures. 

The magnitude of the steady state flux in the pressure-independent region was dependent on 

the type of feed, electroacidified or non-electroacidified, and the feed concentration. From 

the lower steady state flux, it was concluded that SPE 6 had a higher fouling tendency than 

SPE 9. The pressure, at which the flux started leveling off, was approximately 6 psi for SPE 

6 and 10 psi for SPE 9. The steady state flux generally decreased with increasing feed 

concentration, as a result of more significant membrane fouling. The shape of the permeate 

flux-TMP profile was similar for all feed concentrations except for the 2 % w/w SPE 6 

solution, for which the flux increased linearly up to 6 psi, followed by a sudden decrease, 

resulting in a steady state flux, which was lower than that obtained for the more concentrated 

SPE 6 solutions. It was proposed that around the transmembrane pressure of 6 psi, the fouling 

deposit underwent a structural rearrangement, resulting in a lower porosity and permeate 

flux. However, it was not clear why this behavior only occurred at the 2 % w/w concentration 

and not at the higher concentrations for SPE 6. 
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Figure 2.10 Permeate flux-TMP profile obtained at various feed concentrations during ultrafiltration of 
soy protein extracts in the total recycle: ( ) pure water; ( ) SPE 6, 2 % w/w; ( ) SPE 6, 4 % w/w; 
( ) SPE 6, 6 % w/w; ( ) SPE 6, 8 % w/w; ( ) SPE 9, 2 % w/w; ( ) SPE 9, 4 % w/w; ( ) SPE 9, 6 
% w/w. MWCO = 100 kDa, shear rate = 8000 s-1, T = 25 °C. Adopted from [37]. 

Ultrafiltration in the concentration mode should be operated at the knee of the permeate 

flux-TMP curve for an efficient process. This corresponds to a transmembrane pressure 

around 4-6 psi for SPE 6 and 6–10 psi for SPE 9, depending on the feed concentration 

(Figure 2.10). To compare the filtration behavior of both soy protein extracts at the same 

operating conditions, the transmembrane pressure was selected at 6 psi. To minimize the 

effect of membrane fouling and the increase in retentate viscosity at higher concentrations, it 

was decided to perform the concentration filtration experiments at 2 % w/w total solids for 

the feed. 

For the selection of the shear rate, the recommendation of the supplier of the hollow 

fiber membrane module (GE Healthcare) was to operate at a minimum shear rate of 8000 s-1 

for minimization of membrane fouling. To determine whether the permeate flux may be 

improved at higher shear rate, the permeate flux-TMP profile was obtained for ultrafiltration 

of 2 % w/w soy protein extract solution in the total recycle at 8000 and 10000 s-1. The results 

in Figure 2.11 show that no flux improvement was achieved during the operation at 10000 s-1 

and therefore, the lower shear rate was selected for further experiments. 
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Figure 2.11 Permeate flux-TMP profile obtained at various shear rates during ultrafiltration of soy 
protein extract in the total recycle: ( ) SPE 6, 8000 s-1; ( ) SPE 6, 10000 s-1; ( ) SPE 9, 8000 s-1; 
( ) SPE 9, 10000 s-1. MWCO = 100 kDa, feed concentration = 2 % w/w, T = 25 °C. Adopted from 
[37]. 

Consequently, ultrafiltration of the soy protein extracts in the concentration mode was 

investigated with a feed concentration of 2 % w/w (total solids), a transmembrane pressure of 

6 psi, and a shear rate of 8000 s-1. 
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3  

Carbohydrate and Mineral Removal during the 
Production of Low-Phytate Soy Protein Isolate by 

Combined Electroacidification and High Shear 
Tangential Flow Ultrafiltration∗ 

In this work, soy protein isolates were produced by a combination of 

electroacidification and high shear tangential flow hollow fiber ultrafiltration with a 100 kDa 

membrane under constant pressure. The filtration performance was evaluated by comparing 

the filtration time and the final product composition for an electroacidified (pH 6) and a non-

electroacidified (pH 9) soy protein extract. The removal of carbohydrates during the filtration 

was always consistent with the theoretical predictions (based on free permeability 

assumption) for both the electroacidified and the non-electroacidified feeds. A higher 

removal of calcium, magnesium, and phytic acid was achieved during the filtration of the 

electroacidified feed compared to the non-electroacidified feed. However, the 

electroacidification pretreatment had a negative impact on the permeate flux and resulted in 

more significant membrane fouling with correspondingly longer filtration times. A 

discontinuous diafiltration enhanced the removal of carbohydrates and minerals, thus 

yielding a product with higher protein content but did not result in the improvement of the 

permeate flux for the electroacidified feed. 

 

                                                   
 
∗Adapted from J. Skorepova, C. Moresoli. J. Agric. Food Chem., 55 (2007) 5645. 
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3.1 Introduction 

Plant materials, such as soy, represent an attractive source of dietary protein that is 

abundant and available at relatively low cost. In terms of nutritional quality, purified soy 

proteins can be considered equivalent to animal proteins [14,38]. Additional benefits 

associated with the consumption of soy proteins in sufficient quantities include a lower risk 

of coronary heart disease, which was recognized by the U.S. FDA in 1999 through the 

approval of a health claim for soy proteins. This recognition has resulted in an increased 

demand for soy protein containing products [39]. Besides the nutritional benefits, soy 

proteins also provide excellent functional properties, which stabilize and improve the texture 

of food products. Functional properties are affected by the composition of soy proteins, the 

presence of antinutritional factors, and processing conditions [40,41]. Soy proteins are 

mainly composed of storage proteins (~ 85 %) and tend to precipitate at pH 4.5–4.8 

(isoelectric point, pI). Their major components are β-conglycinin and glycinin with molecular 

masses of 180–210 and 300–350 kDa, respectively [15]. 

Soy protein concentrates (70 % protein minimum, dry basis) and isolates (90 % protein 

minimum, dry basis) are generally obtained by the removal of oligosaccharides and minerals 

from defatted soy flour. Since the 1970s, membrane ultrafiltration has been investigated for 

the production of soy protein ingredients with superior properties and low antinutrient 

content [8,42]. The soy protein extract comes into contact with a membrane that separates the 

protein from other components based on the differences in molecular size. In comparison to 

isoelectric precipitation, membrane ultrafiltration is considered to be gentler to the proteins 

and tends to preserve their native structure [22]. In addition, ultrafiltration may recover 

proteins that do not precipitate at pH 4.5 (whey proteins), which could also improve the 

functional properties [23,24]. Rao et al. [22] reported improved solubility for soy protein 

concentrate produced by ultrafiltration when compared to acid-precipitated soy protein 

isolate. The ultrafiltered soy protein concentrate produced more stable emulsions, although 

the ability to form emulsions was less effective. 

Membrane filtration systems have also contributed to the understanding of the 

interactions between phytic acid, calcium, magnesium, and proteins and to the development 

of low phytic acid soy protein products. Phytic acid is generally considered an important 
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antinutritional factor in soy products as it may limit the bioavailability of minerals and 

proteins [17,43]. However, recent work attributed also positive effects to phytic acid through 

anticarcinogenic and antioxidant effects [44]. Phytic acid contains six phosphate groups that 

are negatively charged over a wide range of pH and can interact with other electrostatically 

charged species such as multivalent cations, proteins, and starch [18]. In the context of 

protein-phytic acid interactions, it appears that pH and the content of calcium and magnesium 

play an important role in modulating these interactions. A ternary complex between 

negatively charged protein and phytic acid is facilitated by multivalent cations at pH above 

6.5, whereas at lower pH the formation of this complex is limited [31,45]. Also at pH above 

5, phytic acid is known to form insoluble salts with calcium or magnesium, depending on 

their concentration, which may compete with the formation of the ternary complex. The 

effect of pH on phytate solubility was exploited in the production of soy protein concentrates 

with enhanced mineral removal and improved solubility profiles [25,34]. Omosaiye et al. 

[25] reported a 65 % phytic acid removal at pH 6.7 compared to 43 and 27 % at pH 8 and 10, 

respectively, during direct ultrafiltration to VCR 5. Improved phytic acid removal (92 % at 

pH 6.7 and above 80 % at pH 8 and 10) was achieved at all three pH values by two-stage 

discontinuous diafiltration. What differentiates calcium and magnesium interactions with soy 

proteins is still unknown as limited information on magnesium was found. A study 

comparing the aggregation-dissociation process of soy protein isolate induced by calcium 

and/or magnesium chlorides reported a higher turbidity when calcium was used, suggesting 

different aggregation mechanisms for each cation [46]. 

A novel approach, integrating electroacidification and membrane ultrafiltration, for the 

production of soy protein concentrates/isolates has been recently developed [34-36]. In 

electroacidification, hydrogen ions generated by electrodissociation of water can be used to 

acidify the soy protein extract solution. The pH can be lowered at a controlled rate without 

the use of concentrated acids, which was shown as a more protein friendly approach [33]. In 

the work of Mondor et al. [34,35], the proteins, initially extracted from defatted soy flake at 

pH 9, were subjected to electroacidification and the pH was adjusted from 9 to 7 or 6. 

Subsequent ultrafiltration of the soy protein extracts in a dead-end system with a 100 kDa 

membrane was associated with membrane fouling, being maximum at pH 7, intermediate at 

pH 6, and minimum at pH 9. Analysis of the hydraulic resistance revealed that most of the 
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fouling (92–98 %) was due to the cake layer formation, suggesting that operation in a 

tangential flow ultrafiltration system, where the cake buildup is minimal, would be more 

suitable. Despite the higher membrane fouling, electroacidification to pH 6 enhanced the 

mineral and phytic acid removal, thus producing a soy protein concentrate with superior 

composition and improved solubility [34]. The mineral removal was 72.9 % at pH 6 

compared to 55.1 % at pH 9. The phytic acid content decreased at pH 6, whereas it increased 

for both pH 7 and 9 final products. 

In this study, the potential of a high shear tangential flow hollow fiber system operated 

in a concentration or a discontinuous diafiltration mode was investigated for the production 

of soy protein isolates (90 % protein minimum, dry basis). The effect of electroacidification 

on the filtration performance was assessed by comparing the most promising electroacidified 

soy protein extract at pH 6 (SPE 6) to the non-electroacidified soy protein extract at pH 9 

(SPE 9). The efficiency of carbohydrate removal, mineral removal, and protein retention is 

presented. Particular emphasis is given to the phytic acid, calcium, and magnesium content of 

the final product. The permeate flux profile, as the filtration proceeded, is also reported and 

discussed in the context of the fouling behavior, feed pretreatment, and protein retention. 

3.2 Materials and methods 

3.2.1 Feed preparation 

Lyophilized soy protein extracts containing approximately 60 % protein, 30 % 

carbohydrates, and 10 % ash were provided by Agriculture and Agri-Food Canada (Saint-

Hyacinthe, QC, Canada). Details on the preparation of the soy protein extracts and the 

electroacidification process can be found in Mondor et al. [34]. The filtration feed consisting 

of SPE 6 or SPE 9 was obtained as follows: 2 % w/w SPE solution was prepared by mixing a 

preweighed amount of SPE powder with Nanopure water (resistivity > 17.5 MΩ-cm) from a 

Barnstead water purification system (Dubuque, IA). The suspended SPE was stirred at room 

temperature for 1–2 h to allow rehydration. The suspension was then centrifuged at 15300 g 

for 15 min using a Beckman Coulter L7-35 ultracentrifuge (Mississauga, ON, Canada) to 

remove any insoluble solids, and the supernatant was used as the feed solution for subsequent 

filtration. All experiments were performed with a feed volume of approximately 1.5 L. 
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3.2.2 Experimental setup 

Ultrafiltration experiments were performed with a hollow fiber membrane unit 

purchased from GE Healthcare (Baie d’Urfe, QC, Canada). The membrane was made of 

polysulfone with a nominal molecular weight cutoff (MWCO) of 100 kDa. The chemical 

structure of polysulfone is shown in the Appendix (Chapter 8). The module was 30 cm long 

and consisted of 50 fibers, each having an inner diameter of 1 mm. The membrane area was 

420 cm2. The feed was pumped into the system (Figure 3.1) by a progressing cavity pump 

(Moyno Inc., Springfield, OH), and the flow rate was measured by a flowmeter. The pressure 

was monitored at the feed and the retentate side with two pressure transducers. The 

transmembrane pressure (TMP) was controlled on the retentate side by a manual pinch valve. 

The flowmeter, pressure transducers, and manual pinch valve were purchased from Cole 

Parmer Canada Inc. (Anjou, QC, Canada). A sampling valve was installed on the retentate 

side to allow for sample collection during the filtration experiments. The permeate was 

collected in a reservoir, and the flux was measured by weighing the permeate at specified 

time intervals. The balance (Ohaus Corp., Pine Brooks, NJ) and the pressure transducers 

were connected to a PC running Labview 7.1. To compensate for the temperature increase 

due to pumping, the feed tank was placed in an ice bath and the temperature of the feed was 

maintained constant (25 ± 1 °C). 
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Figure 3.1 Schematic diagram of the filtration unit: 1-feed tank, 2-pump, 3-flowmeter, 4-membrane, 5-
pressure transducers, 6-pinch valve, 7-sampling valve, 8-permeate container, 9-balance, and 10-
PC/software. 

3.2.3 Ultrafiltration experiments 

Both SPE 6 and SPE 9 were subjected to two types of experiments, direct ultrafiltration 

(UF) and two-stage discontinuous diafiltration (DDF). The volume concentration ratio (VCR) 

given by Eq. (3-1) was used as a governing parameter to control the concentration extent 

during the filtration: 
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−
==  (3-1)

VF, VR, and VP are the feed, the retentate, and the permeate volume, respectively. VCR was 

determined by weighing the feed and the permeate and using the density of water to convert 

to volume. 

In direct UF, the feed (~1.5 L) was concentrated in one step to VCR 4.5. In DDF, the 

feed (~1.5 L) was concentrated to VCR 2 (stage 1), then diluted to the original volume with 

Nanopure water, and re-concentrated to VCR 4 (stage 2). The filtrations were performed 

under identical operating conditions: temperature, 25 °C; TMP, 6 psi (41.4 kPa); flow rate, 

2.4 L/min, corresponding to the shear rate of 8000 s-1. Therefore, stage 1 of DDF provided 
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practically a replicate of direct UF up to VCR 2. The permeate flux profile and the 

composition of the retentate samples collected up to VCR 2 should be the same for both 

filtrations. Assuming all non-protein solutes were freely permeable, direct UF (VCR 4.5) and 

DDF (VCR 2, dilution, VCR 4) should result in a removal of 78 and 88 % of these solutes, 

respectively. During the filtration, samples of the retentate were taken at specific time points 

to investigate the changes in the composition. At the end of the filtration, samples of the final 

retentate and permeate were collected, lyophilized (SuperModulyo, Thermo Electron Corp., 

Waltham, MA), and kept for further analysis. 

3.2.4 Analytical methods 

Total solids and carbohydrates 
The concentration of total solids (TS) was determined gravimetrically by drying the 

samples (1 mL) at 100 °C overnight. The carbohydrate concentration was determined by 

phenol-sulfuric acid assay modified from Fox et al. [47] using glucose standards (20–160 

μg/mL). The procedure consisted of adding 25 μL of standard and sample into separate 

microtiter plate wells and then adding 25 μL of 5 % w/w phenol solution and 125 μL of 

concentrated sulfuric acid to each well. The microtiter plate was wrapped in DuraSeal 

(Diversified Biotech, Boston, MA) and placed in an 80 °C oven for 30 min. The absorbance 

was read on Multiskan Ascent microtiter plate reader (Labsystems, Helsinki, Finland) at 492 

nm. The carbohydrate content on dry basis was determined as a ratio of the carbohydrate 

concentration to the TS concentration (  100). 

Protein 
The protein concentration in the retentate samples (collected during the filtration) and 

the final permeate was determined according to the Bradford protein assay (Standard 

Procedure for Microtiter Plates, Bio-Rad Laboratories, Mississauga, ON, Canada) using 

purified β-conglycinin and glycinin as protein standards (provided by M. Corredig, 

University of Guelph, ON, Canada). The standard solutions were prepared by combining β-

conglycinin and glycinin in a ratio of 1:1.4, which corresponds with the actual distribution of 

these two protein fractions in the soy proteins [15]. The Bradford assay enabled a fast 

analysis of the retentate samples (liquid) collected during the filtration (> 10). It was also 

used to analyze the permeate samples, which contained only small amounts of protein. The 
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protein content (dry basis) was determined as a ratio of the protein concentration to the TS 

concentration (  100). The results obtained from the Bradford assay were verified for 

freeze-dried feed and final retentate samples with a LECO FP-428 nitrogen analyzer (LECO 

Corp., St. Joseph, MI). The combustion unit was calibrated with EDTA as nitrogen standard. 

The nitrogen content was determined using a sample size of 50–125 mg and the protein 

content was expressed as total nitrogen (N) x 6.25 [34]. 

Moisture, ash, and mineral content 
Freeze-dried samples of the feed (samples collected before filtration) and the final 

retentate and permeate were analyzed for moisture and ash contents. The moisture and ash 

contents were determined according to the methods derived from AOAC [48]. The ash 

residues were dissolved in 2 M HCl solution, and portions were used for mineral content 

analysis. Phosphorus was determined using the phospho-vanado-molybdate 

spectrophotometric method described in Analytical Methods Manual [49] with monobasic 

potassium phosphate standard. Magnesium and calcium contents were determined by 

inductively coupled plasma-optical emission spectrometry using Spectroflame Modula 

(FSM-08, Spectro Analytical Instruments, Kleve, Germany). 

Unless stated otherwise, all analytical assays were performed in at least triplicates for 

each sample. 

3.2.5 Numerical analysis 

The increase of the protein concentration in the retentate during the filtration was 

quantified by fitting a first order kinetics equation to the experimental data: 

( ) ( )ktexpctc FR =  (3-2)

where cR (t) is the protein concentration in the retentate at time t, cF is the feed concentration 

(at time 0), and k is the rate constant, representing the increase in protein concentration per 

unit time. Model fitting was performed with Microsoft Excel Solver function by minimizing 

the residual sum of squares. 
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3.2.6 Statistical analysis 

The removal of total minerals (ash), calcium, phosphorus, and magnesium was 

compared for direct UF and DDF using a two-sample t-test (two tailed) as described by 

Montgomery [50] to determine whether there were any significant differences between the 

SPE 6 and SPE 9 feed. The removal of the components during direct UF and DDF was 

estimated from both the retentate and the permeate samples (each analyzed in triplicates). 

3.3 Results and discussion 

For this study, the operating TMP was selected from the permeate flux-TMP profile for 

a total recycle mode (both retentate and permeate recycled to the feed tank). During this 

operation, a typical concentration polarization effect was observed with an initial linear 

increase of the flux with TMP followed by a leveling off of the flux at TMP above 6 psi (41.4 

kPa, Figure 2.10). On the basis of this analysis, the operating TMP of 6 psi was selected. 

3.3.1 Composition profile during filtration 

The concentration of TS, protein, and carbohydrates during stages 1 and 2 (DDF) for 

SPE 6 and SPE 9 is illustrated in Figure 3.2 as a function of VCR. For clarity, the results of 

the direct UF of SPE 6 and SPE 9 are not shown as the composition profiles were similar to 

those observed in stage 1 of DDF (up to VCR 2). 
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Figure 3.2 Effect of VCR on the retentate concentration of total solids ( , ), protein ( , ), and 
carbohydrates ( , ) in DDF during stage 1 (open symbols) and stage 2 (closed symbols): (a) SPE 6 
and (b) SPE 9. Protein determined by Bradford. MWCO = 100 kDa, TMP = 6 psi, shear rate = 8000 s-

1, T = 25 °C. 

A 100 kDa membrane was used so that all proteins would be retained, whereas carbohydrates 

and minerals, the remaining components of the feed mixture, should be free to permeate 

through the membrane. A linear increase of the TS concentration in the retentate was 

observed for both the electroacidified and the non-electroacidified feeds. This increase was 

expected, because most of the TS were proteins (60 % initially in the feed). The TS 

concentration was lower for stage 2 of the DDF operation because about half of the 
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carbohydrates was removed in the permeate during stage 1. The concentration of the 

carbohydrates (smaller than the membrane MWCO) remained constant through the course of 

the filtration, indicating that the permeation of the carbohydrates across the membrane was 

not affected by the retention of the proteins. In contrast, the protein concentration increased 

with increasing VCR. The protein concentration profile was similar for both stages of DDF 

because the proteins were fully rejected by the membrane. The total rejection of the proteins 

by the membrane was confirmed by the analysis of the permeate, in which the protein 

concentration ranged between 0.049 and 0.155 mg/mL, accounting for about 0.7–3.1 % of TS 

in the permeate (Table 3.1). 
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Table 3.1 Composition of the feed, the final retentate, and the final permeate for direct UF and DDF of SPE 6 and SPE 9 a 

Experiment Sample 
Volume 

(L)b 

TS concentration 

(g/L) 

% dry basis Average 

total (%) Proteinc,d Carbohydratesc Ashc 

SPE 6 Direct UF 

Feed 1.421 18.0 55.2 33.3 ± 2.4 7.9 ± 0.1 96.4

Retentate 0.315 52.0 91.6 ± 3.9 12.0 ± 2.3  4.2 ± 0.3 107.8 

Permeate 1.106  7.9  2.0 ± 3.0 73.8 ± 5.2 14.9 ± 5.0  90.7 

SPE 6 DDF 

Feed 1.406 18.0 55.2 32.4 ± 3.9 7.9 ± 0.1 95.5

Retentate 0.336 42.0 94.6 ± 3.8  5.8 ± 3.3  3.5 ± 1.5 103.9 

Permeate 1 0.703  7.3  1.5 ± 2.9 55.5 ± 2.8 14.4 ± 0.9   71.4e 

Permeate 2 1.070  4.0  3.1 ± 5.6 51.1 ± 0.4 14.2 ± 3.7   68.4e 

SPE 9 Direct UF 

Feed 1.400 17.0 59.9 31.0 ± 1.7 9.4 ± 0.8 100.3

Retentate 0.309 50.0 90.7 ± 3.1 10.4 ± 3.5  6.2 ± 4.9 107.3 

Permeate 1.091  6.7  0.7 ± 5.0 81.2 ± 4.1 18.5 ± 2.1 100.4 

SPE 9 DDF 

Feed 1.467 17.0 59.9 35.2 ± 4.8 9.4 ± 0.8 104.5

Retentate 0.361 46.0 91.5 ± 1.7  5.3 ± 7.3  5.1 ± 0.1 101.9 

Permeate 1 0.738  6.7  1.1 ± 3.5 80.8 ± 2.3 16.6 ± 1.2   98.5 

Permeate 2 1.106  3.7  1.3 ± 6.2 55.9 ± 7.5 16.0 ± 1.5   73.2e 
a Permeate 1 and 2 collected in DDF during stage 1 and 2, respectively. b Determined from mass using the density of water. c Mean ± relative standard error 

(n=3). d Feed and retentate determined by LECO (n=2); permeate determined by Bradford assay (n=3). e Indicates samples where the total composition differs 
from 100 % by more than 10 %. 

 



CHAPTER 3 
 

 45

The retention of proteins and the removal of carbohydrates during the filtration 

were also assessed through their respective mass fraction of the total solids. As expected, 

the protein content increased while the carbohydrate content decreased in direct UF and 

stage 1 of DDF (Figure 3.3). 
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Figure 3.3 Protein (triangles) and carbohydrate (squares) content in retentate during direct UF 
( , ), stage 1 of DDF ( , ), and stage 2 of DDF ( , ): (a) SPE 6 and (b) SPE 9. Protein 
determined by Bradford. MWCO = 100 kDa, TMP = 6 psi, shear rate = 8000 s-1, T = 25 °C. 

For both SPE 6 and SPE 9, the protein content appeared to level off above VCR 2.5 

(direct UF). Such an observation agrees with previous results [24], when the amount of 

the permeable components remaining in the retentate decreases with the filtration 
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progress, resulting in a smaller change in the protein content. An additional removal of 

the non-protein solutes was achieved by DDF (stage 2) and resulted in a higher final 

protein content and a lower final carbohydrate content when compared to direct UF. 

When considering the evolution with time of the protein concentration in the 

retentate for the direct UF operation, an exponential relationship was observed for both 

SPE 6 and SPE 9 (Figure 3.4). Similar behavior was also observed during the DDF 

operation (data not shown). 
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Figure 3.4 Protein concentration in retentate during direct UF and DDF as a function of time for 
SPE 6 ( ) and SPE 9 ( ). Solid line shows the fit based on the first order kinetics. Protein 
determined by Bradford. MWCO = 100 kDa, TMP = 6 psi, shear rate = 8000 s-1, T = 25 °C. 

The rate of the protein concentration increase was modeled using the first order kinetics 

(Eq. (3-2)), and the estimated rate constants (k) are presented in Table 3.2. A good fit was 

found between the model and the experimental data (R2 values being in the range of 

0.95–0.99). The rate constant, k, provides an estimate of how quickly the protein 

concentration increased during the filtration of SPE 6 and SPE 9 in direct UF or DDF 

modes. The values of the rate constant (k) for the electroacidified feed were always 

approximately half of those obtained for the non-electroacidified feed for both direct UF 

and DDF. In other words, the filtration time to reach the same final protein concentration 

(~40 g/L) was twice as long for the electroacidified feed compared to the non-
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electroacidified feed, suggesting significant interactions between the proteins and the 

membrane at lower pH of the feed as will be discussed in subsequent sections. 

Table 3.2 Rate constant (k) describing increase in protein concentration during direct UF and 
DDF of SPE 6 and SPE 9 

Experiment 
Rate constant, k (10-3 min-1)

SPE 6 SPE 9

Direct UF 9.2 17.6

DDF stage 1 7.8 13.7 

DDF stage 2 7.8 15.0 
 

3.3.2 Composition analysis of electroacidified and non-electroacidified soy 
protein isolates 

In this study, proteins, carbohydrates, and ash were estimated by independent 

analytical techniques. The accuracy of the respective analytical techniques was assessed 

by computing the total mass balance for the feed, the retentate, and the permeate streams. 

As seen in Table 3.1 (last column), the total mass balance accounted for 100 ± 10 % of the 

composition for most operations. Significant discrepancies for the permeate streams of 

the DDF operation are associated with the determination of the carbohydrate content. 

Assuming that the carbohydrates are freely permeable, an assumption supported by the 

concentration profile of the carbohydrates presented in Figure 3.2, the theoretical content 

of carbohydrates in the permeate should be at least 75 %. The carbohydrate content was 

calculated as the ratio of the carbohydrate concentration to the TS concentration. 

However, the TS concentrations in the feed or the retentate were much higher compared 

to the permeate samples (Table 3.1). For this reason, the carbohydrate content is 

associated with a higher experimental error compared to the feed or the retentate data. 

The removal of carbohydrates based on the retentate composition, indicates ~78 % for 

direct UF and ~89 % for DDF of both SPE 6 and SPE 9, which agrees with the theoretical 

expectations and results previously observed [24,42]. The effect of the feed 

electroacidification pretreatment and the mode of operation can be compared on the basis 

of the carbohydrate analysis for the retentate stream. The electroacidification 

pretreatment had a negligible effect on the carbohydrate content of the retentate for both 
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direct UF and DDF. For both feeds, the carbohydrate content of the retentate was reduced 

by 50 % for the DDF operation when compared to the direct UF operation. 

Of utmost importance in this study is that a soy protein isolate (90 % protein, dry 

basis) was obtained for both operations, direct UF and DDF, and for both the 

electroacidified and the non-electroacidified feeds. Previous work with a dead-end system 

did not produce soy protein isolates after electroacidification pretreatment to pH 6 or 7 

[34]. The protein content in the retentate determined by LECO analysis was on average 

above 90 % but the experimental error was significant (Table 3.1). Such estimates are 

higher than the theoretical predictions (~86 % for direct UF and ~92 % for DDF on dry 

basis) calculated using the protein content of the feed and assuming that all non-protein 

solutes are freely permeable. Although the protein content should be improved by ~7 % 

in DDF due to additional removal of carbohydrates and minerals, the analysis was unable 

to detect such differences in the two modes of operation. 

The ash content (minerals intrinsically present in the SPE composition) was 

analyzed only at the end of the filtration when sufficient material was collected for the 

analysis. For both SPE 6 and SPE 9, the ash content in the retentate produced by direct 

UF decreased (Table 3.1), corresponding to a mineral removal of 64.1 % for SPE 6 and 

59.0 % for SPE 9. By conducting two-stage DDF, the ash removal was enhanced to 71.8 

% for SPE 6 and 63.8 % for SPE 9. For both direct UF and DDF, the mineral removal 

was lower than theoretical (based on free permeability assumption), indicating that the 

minerals were partially retained by the membrane. Although the mineral removal was 

similar for SPE 6 and SPE 9 during direct UF, a significantly higher mineral removal was 

achieved for SPE 6 compared to SPE 9 during DDF (p < 0.1). This could be attributed to 

the differences in the surface charge on the proteins at pH 6 and 9. Proteins at pH 9 

possess a higher negative net charge, being further away from their isoelectric point, 

which could lead to a higher degree of electrostatic attraction to positively charged ions 

(minerals), compared to conditions at pH 6. A similar mineral removal effect was 

observed by Mondor et al. [34] during the dead-end ultrafiltration of the soy protein 

extracts with different pH values (6, 7, and 9). Kumar et al. [24] also indicated that during 

the ultrafiltration of soy flour suspension at pH 8, the minerals were partially retained, 

suggesting that they were either bound to the protein or in an insoluble form. In their 
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approach, a continuous diafiltration with 5 diavolumes (corresponding to > 99 % removal 

of all permeable components) was unable to achieve a complete removal of minerals, 

suggesting there could be a limit to mineral removal if the minerals were firmly bound to 

the protein or insoluble. 

3.3.3 Phytic acid, magnesium, and calcium removal 

The antinutritional nature of phytic acid and its known interactions with protein and 

divalent cations led us to investigate the removal of these components from SPE 6 and 

SPE 9 during direct UF and DDF. We decided to focus on magnesium (Mg) and calcium 

(Ca), because both are among the most abundant divalent minerals in soy products [14] 

and are known to form salts with phytic acid (phosphorus, P) [26,27,31]. Direct UF of the 

electroacidified feed (SPE 6) reduced magnesium, calcium, and phosphorus contents in 

the retentate when compared to the feed by a factor of 2.0, 1.5, and 1.4, corresponding to 

removals of 63, 55, and 50 %, respectively (Table 3.3). The two-stage diafiltration further 

improved the removal of all three components by 8, 11, and 7 % (for magnesium, 

calcium, and phosphorus, respectively) when compared to direct UF. 

Table 3.3 Magnesium, calcium, and phosphorus (phytic acid) contents in feed and final retentate 
samples produced by direct UF and DDF 

Extract Sample VCR 

Content 

(mg/g dry powder) 
Removal (%)a 

Mg Ca P Mg Ca P 

SPE 6 

Feed 1.0 4.40 5.98 7.54 - - -

Retentate (UF) 4.5 2.26 3.99 5.53 63.1 ± 5.2 54.9 ± 4.0 50.3 ± 4.5 

Retentate 4.0 2.06 3.65 5.38 71.6 ± 1.8 65.9 ± 0.6 57.2 ± 2.2 

SPE 9 

Feed 1.0 2.80 3.34 4.91 - - -

Retentate (UF) 4.5 2.54 4.20 6.85 40.9 ± 0.3 21.0 ± 3.2 11.0 ± 2.5 

Retentate 4.0 2.57 4.67 6.51 41.3 ± 1.5 14.4 ± 2.0 13.7 ± 2.3 
a Expressed as mean ± range based on the mass balance calculations. 

In contrast, both direct UF and DDF of the non-electroacidified feed (SPE 9) resulted in 

an increase of calcium and phosphorus contents in the retentate when compared to the 

feed. The overall removal of both components was marginal (11–21 %), indicating either 
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that the components are insoluble at pH 9 or that the degree of interactions between 

proteins, calcium, and phytic acid is higher at this pH. The difference in calcium and 

phosphorus removal between SPE 6 and SPE 9 was significant for both direct UF and 

DDF at p < 0.05. 

Higher removal of calcium and phosphorus when the feed was electroacidified to 

pH 6 was previously observed by Mondor et al. [34] for the dead-end ultrafiltration 

system. The effects of phytate-calcium-soy protein interactions on the pH-solubility 

profiles of soy protein isolates were reported by Grynspan et al. [31], who noted an 

increased solubility of calcium, phytic acid, and protein just above pH 6.5. This solubility 

increase was attributed to the formation of a ternary complex. With increasing pH the 

solubility of protein kept on increasing while the solubility of calcium and phytic acid 

decreased, depending on their molar ratio. This observation suggests that for SPE 9, 

calcium and phytic acid are either associated with the protein via electrostatic forces or 

form an insoluble salt, both cases leading to the incapability of permeating through the 

membrane. In contrast, for the electroacidified feed at pH 6, the conditions for the 

formation of the ternary complex are limited (the proteins are negatively charged but less 

than at pH 9) and both calcium and phytic acid should be relatively soluble. The removal 

of calcium and phosphorus at pH 6 was still lower than the theoretical expectations based 

on free permeability (78 and 88 % for direct UF and DDF, respectively), indicating that 

both components are somewhat retained by the membrane but to a much lower extent 

than at pH 9. 

In the context of the magnesium content, a higher reduction of magnesium was 

achieved in the final retentate for SPE 6 produced by direct UF and DDF when compared 

to SPE 9. The removal of magnesium was by 22 (direct UF) and 31 % (DDF) higher for 

SPE 6 than for SPE 9. The difference in magnesium removal between SPE 6 and SPE 9 

was not as pronounced compared to the removals of calcium and phosphorus, which were 

closely correlated. Although both magnesium and calcium have been implicated in the 

context of protein-phytic acid interactions, our observations suggest that magnesium and 

calcium behave differently when contained in a soy protein mixture. This is especially 

obvious for the filtrations at pH 9, where the difference in the removal of magnesium 

compared to calcium and phosphorus becomes significant (p < 0.05). This could imply 
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that calcium has a higher affinity toward protein and/or phytic acid, which leads to more 

magnesium ions in a free form, able to permeate through the membrane. 

3.3.4 The permeate flux characteristics of the electroacidified soy protein 
extract 

The permeate flux profile and the filtration time to reach a desired VCR was used 

to investigate the process performance of the soy protein concentration. In direct UF, 

significant permeate flux decline was observed up to VCR 1.5 for both SPE 6 and SPE 9, 

indicating that most of the membrane fouling took place in the initial part of the filtration. 

After reaching VCR 1.5, the flux continued declining but at a lower rate. The permeate 

flux declined more seriously for SPE 6, with the final flux of ~6 L/m2.h (Figure 3.5 (a)), 

which was half of the flux for SPE 9 reached at VCR 4.5 (Figure 3.5 (b)). A more 

pronounced permeate flux decline for SPE 6 was also observed when using a dead-end 

and a low shear ultrafiltration system [34,36] and was attributed to the lower net charge 

of the proteins at pH 6 (closer to pI) compared to pH 9. As a result, the electrostatic 

repulsion forces become weaker, which would promote the formation of protein 

aggregates. Further analysis using a force balance on a given particle concluded that 

larger particles are more likely to deposit on the membrane surface and contribute to the 

cake layer formation [35]. Thus, the use of a high shear tangential flow hollow fiber 

system was unable to eliminate the higher fouling observed when the feed was 

electroacidified. The potential to improve the flux performance by a two-stage DDF was 

explored. It was hoped that a dilution step would reduce interactions between the proteins 

and other feed components involved in the membrane fouling [8]. Also, it was expected 

that lowering the concentration in the bulk solution could lead to solute desorption from 

the membrane surface, which would improve the permeate flux. However, the permeate 

flux did not increase after the water addition (stage 2 in DDF) regardless of whether the 

feed had been subjected to electroacidification or not. Due to more serious membrane 

fouling, both direct UF and DDF filtrations of SPE 6 required significantly more time 

compared to SPE 9 to achieve the same VCR (Figure 3.5, lower part). The total filtration 

time of the DDF operation was 264 min for SPE 6 compared to 147 min for SPE 9. These 

times were 1.6 and 1.7 times longer compared to direct UF of SPE 6 and SPE 9, 

respectively. Thus, the DDF operation with the dilution of the retentate at VCR 2 could 
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not disrupt the cake deposit on the membrane surface irrespective of the feed investigated 

in this study. 
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Figure 3.5 Permeate flux decline in direct UF and DDF as a function of VCR, with the filtration 
time indicated below: (a) SPE 6 and (b) SPE 9. MWCO = 100 kDa, TMP = 6 psi, shear rate = 
8000 s-1, T = 25 °C. 
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3.4 Conclusion 

In this study, the suitability of using electroacidification for the production of soy 

protein isolates was investigated. We have demonstrated that soy protein isolates were 

obtained using a high shear tangential flow ultrafiltration system for a feed with or 

without electroacidification pretreatment and whether direct UF or discontinuous 

diafiltration was used. Carbohydrate analysis during the course of the filtration confirmed 

that carbohydrates behaved as freely permeable solutes. In contrast, magnesium, calcium, 

and phytic acid (antinutrient) were partially retained by the membrane. 

Electroacidification to pH 6 was beneficial in providing a higher removal of magnesium, 

calcium, and phytic acid when compared to the non-electroacidified feed at pH 9. A two-

stage discontinuous diafiltration improved the carbohydrate removal (and thus increased 

the protein content) and the ash removal (including magnesium, calcium, and 

phosphorus) for the electroacidified feed. Despite the use of a high shear ultrafiltration 

configuration, the electroacidified feed at pH 6 was still characterized by higher fouling 

when compared to the non-electroacidified feed at pH 9. Future work will investigate the 

mechanisms responsible for the higher fouling observed for the electroacidified feed at 

pH 6. 
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4  

Investigation of Membrane Fouling during Dead-
End Ultrafiltration of Soy Protein Extracts∗ 

Dead-end ultrafiltration experiments were carried out under unstirred conditions to 

investigate membrane fouling of an electroacidified (pH 6) and a non-electroacidified 

(pH 9) soy protein extract using 100 and 200 kDa polyethersulfone membranes. Due to 

more significant membrane fouling, the permeate flux was always lower for the 

electroacidified feed, resulting in longer filtration times. Evaluation of the fouling 

resistance components (by resistance-in-series model) showed that the magnitude of the 

reversible fouling was similar for both feeds but the irreversible fouling was more than 20 

times higher for the electroacidified feed. The total amount of protein accumulated on the 

membrane (including reversible and irreversible fouling) was comparable for both feeds 

but protein deposition associated with the irreversible fouling was higher for the 

electroacidified feed. Examination of the fouled membranes by scanning electron 

microscopy showed that the electroacidified feed formed a denser and less permeable 

fouling deposit than the non-electroacidified feed. Adjusting the pH of the 

electroacidified feed to pH 9 decreased the membrane fouling significantly. A similar but 

opposite effect was observed with the non-electroacidified feed adjusted to pH 6, 

indicating that the pH of the feed was the most significant factor in the membrane 

fouling. Mineral deposition was correlated with protein deposition and did not appear to 

have a significant effect on the membrane fouling. 

                                                   
 
∗ Adapted from Skorepova, J., Moresoli C., submitted. 
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4.1 Introduction 

In a previous study [51], the production of soy protein isolates was investigated by 

hollow fiber tangential flow ultrafiltration using an electroacidified soy protein extract at 

pH 6 (SPE 6) and a non-electroacidified soy protein extract at pH 9 (SPE 9). Comparing 

the filtration performance for the two soy protein extracts showed that electroacidification 

enhanced the removal of minerals (calcium, magnesium) and phytic acid but had a 

negative impact on the permeate flux, resulting in higher membrane fouling. This 

indicated that ultrafiltration at pH 6 reduces the protein-mineral-phytic acid interactions 

or the precipitation of calcium/magnesium phytate, both leading to improved separation 

of the minerals and the phytic acid from the soy proteins. Therefore, the objective of the 

current study was to characterize the higher membrane fouling observed for the 

electroacidified SPE 6 and to identify the components associated with fouling. 

Due to their amphiphilic nature and large size, proteins are highly adhesive to solid 

surfaces and tend to be the major foulants in protein ultrafiltration [7,52]. Protein 

adsorption and deposition on the membrane surface increases the membrane resistance 

and results in the decline of the permeate flux. Protein adsorption is generally considered 

a thermodynamically driven process, which normally takes place under static conditions, 

and refers only to the protein that is directly bound to the membrane surface [53]. During 

ultrafiltration, where dynamic conditions exist, protein adsorption can still occur. In 

addition, the proteins are convectively carried to the membrane by the permeate flow and 

their accumulation near the membrane surface gives rise to concentration polarization. 

Higher concentration of proteins at the membrane surface may induce the formation of 

protein aggregates and their deposition/adsorption on the membrane. The degree of 

protein adsorption and deposition is mainly governed by protein-membrane and protein-

protein interactions, respectively, which are driven by electrostatic, hydrophobic, and 

weak van der Waals forces. The predominant interactions will depend on the membrane 

material, the nature of the proteins, and the physicochemical conditions [4]. 

The strength and the nature of the electrostatic protein-membrane and protein-

protein interactions are controlled by the solution pH and ionic strength. Many studies 

have shown that the permeate flux is minimal at the protein isoelectric point (pI) and 
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tends to increase either below or above the isoelectric point [4-6,54]. Palecek et al. [55] 

showed that the quasi-steady (long-term) flux during the filtration of five different 

proteins was directly proportional to the square of the protein charge density and 

independent of the protein molecular weight. Although the quasi-steady flux was quite 

similar for all five proteins at their pI (indicating similar resistance to flow), significant 

differences were observed in the sieving coefficients, suggesting a different structure and 

intermolecular spacing in the fouling deposit depending on the type of protein. In a 

subsequent study, Palecek and Zydney [56] showed that the permeability of the protein 

deposits decreased with increasing ionic strength (i.e., salt concentration). This was 

attributed to electrostatic shielding of the protein charge at higher ionic strength which 

would allow for protein re-structuring and tighter packing within the deposit. The 

correlation between a higher long-term flux and an increasing protein charge was also 

demonstrated by Huisman et al. [57] for filtration of bovine serum albumin (BSA) at 

various pH values. Mukai et al. [58] showed that the cake porosity during ultrafiltration 

of BSA at various pH values was minimal at the protein pI and increased with increasing 

zeta potential (i.e., protein charge) measured by electrophoretic light scattering. Menon et 

al. [59] pointed out the importance of electrolyte composition in protein (BSA) 

transmission through semipermeable ultrafiltration membranes due to changes in protein 

characteristics upon ion binding. At constant ionic strength but using different 

electrolytes (NaClO4, NaCl, Na2SO4, CaCl2, and CH3COONa), protein transmission 

increased with increasing ion binding affinity and ion valence due to higher reduction of 

the protein charge and thus, the effective size (via compression of the electrical double 

layer). Marshall et al. [60] have shown that addition of only 8 mM ionic calcium caused a 

dramatic increase in the fouling resistance during ultrafiltration of β-lactoglobulin (milk 

whey protein) at neutral pH. This was attributed to calcium binding to carboxylic or other 

negatively charged groups, resulting in protein complex formation within the fouling 

deposit. Vetier et al. [61] found that calcium and phosphate salts contributed to the 

membrane fouling during microfiltration of milk. The amount of fouling increased after 

addition of calcium chloride which was believed to involve intermolecular links between 

calcium and proteins. Indeed, soy proteins (11S fraction in particular) in solution have the 

capability of binding calcium and magnesium ions. At low concentration, these minerals 
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might have a stabilizing effect on the structure of the 11S fraction [29]. Wallace et al. 

[30] have shown that the amount of calcium bound to the soy proteins increased with 

increasing pH between 7 and 11. As previously observed [51], direct tangential flow 

ultrafiltration of an electroacidified soy protein extract (SPE 6) to a volume concentration 

ratio of 4.5 with a 100 kDa membrane resulted in a 63, 55, and 50 % removal of 

magnesium, calcium, and phosphorus (phytic acid), respectively, compared to only 41, 

21, and 11 % removal for ultrafiltration of the non-electroacidified soy protein extract 

(SPE 9) under the same operating conditions. This difference was explained by the 

formation of a ternary complex between soy proteins, magnesium/calcium, and phytic 

acid or by the precipitation of magnesium/calcium phytate which may occur at pH > 6.5. 

However, it is not clear whether magnesium, calcium and phosphorus also contribute to 

the membrane fouling during ultrafiltration of SPE 6 and SPE 9. The permeate flux is 

dictated by the thickness and the porosity of the fouling deposit. Chan et al. [62] provided 

a comprehensive review of microscopy and surface analysis techniques that can be used 

for characterization of protein fouled membranes. Scanning electron microscopy was 

used previously for characterization of the membrane fouling and/or elucidation of the 

fouling mechanisms [63-67]. 

In this work, ultrafiltration of soy protein extracts (SPE 6 and SPE 9) was 

performed in a dead-end system (without stirring) to permit a comprehensive examination 

of the membrane fouling. The reversible and irreversible membrane fouling components 

were evaluated by the resistance-in-series model. The reversible fouling, including the 

concentration polarization and part of the loosely attached deposit, was removed by 

rinsing the membrane with water. The remaining part of the deposit was considered as the 

irreversible fouling (due to adsorption and strongly attached foulants). The fouled 

membranes were examined by high-resolution field emission scanning electron 

microscopy (FESEM) which is suitable for examination of ultrafiltration membranes 

[66]. The amounts of protein (which was expected to be the major foulant), magnesium, 

calcium, and phosphorus deposited on the membrane were also determined. Phosphorus 

represents the content of phytic acid [18]. 
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4.2 Materials and methods 

4.2.1 Dead-end ultrafiltration 

Unstirred dead-end ultrafiltration was performed in an Amicon filtration cell 

(model 8200, Amicon Inc., Beverly, MA, USA) with a volume capacity of 200 mL and a 

28.7 cm2 membrane surface area. The cell was pressurized with compressed nitrogen. 

Omega polyethersulfone (PES) membranes (Pall Corporation, Mississauga, ON, Canada) 

with a 100 and 200 kDa molecular weight cutoff (MWCO) supplied as flat sheets were 

used. The chemical structure of polyethersulfone is shown in the Appendix (Chapter 8). 

For each experiment, a new membrane piece was cut, placed in the cell, and pre-

conditioned by rinsing it with 180 mL of Nanopure water (resistivity ~17.5 MΩ-cm, 

Barnstead water purification system, Dubuque, IA, USA). Lyophilized soy protein 

extracts (electroacidified SPE 6 and non-electroacidified SPE 9) containing 

approximately 60 % protein, 30 % carbohydrates, and 10 % ash (minerals) were obtained 

from Agriculture and Agri-Food Canada (Saint-Hyacinthe, PQ, Canada). The 

electroacidified SPE 6 and the non-electroacidified SPE 9 contained 0.44 % and 0.25 % 

magnesium (Mg), 0.60 % and 0.33 % calcium (Ca), and 0.75 % and 0.49 % phosphorus 

(P), respectively [51]. The major components of soy proteins are β-conglycinin (7S) and 

glycinin (11S) with molecular masses of 180–210 kDa and 300–350 kDa, respectively. 

Their average isoelectric point is at pH 4.5–4.8 [15]. The filtrations were performed with 

50 mL of a ~2 % w/w SPE 6 or SPE 9 solution (prepared according to [51]) at room 

temperature (RT) and at constant transmembrane pressure of 30 psi (i.e., 206.8 kPa). The 

permeate flux was measured gravimetrically using an electronic balance (Adam 

Equipment Inc., Danbury, CT, USA) which was connected to a PC running Labview 7.1. 

Unless stated otherwise, the feed solution was concentrated to a volume concentration 

ratio (VCR) of 2.5 which was calculated as the initial feed volume to the retentate volume 

ratio. 

4.2.2 Fouling layer resistance 

According to Darcy’s law, the permeate flux (JP), expressed as the permeate 

volume (VP) collected per unit time (t) per unit membrane area (AM), is proportional to 

the transmembrane pressure (TMP) and inversely proportional to the permeate viscosity 
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(ηP) and to the total resistance (RT). The total resistance can be divided into the clean 

membrane resistance (RM) and the fouling layer resistance (RF) according to Eq. (4-1). 

The clean membrane resistance is obtained from the pure water flux data collected as a 

function of transmembrane pressure before the filtration while the fouling resistance is 

determined at the end of the filtration as the difference between the total and the clean 

membrane resistance: 

( )FMPTP

P
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P

RRη
TMP
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dt
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1J
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===  (4-1)

Assuming the filtration proceeds in accordance with the conventional cake filtration 

theory, the fouling layer resistance (RF) is proportional to the cake mass per unit 

membrane area (Eq. (4-2)): 
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where α is the specific cake resistance and cB is the solute concentration in the bulk. 

Substituting Eq. (4-2) into (4-1) and integrating provides: 
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Plotting t/VP versus VP should yield a straight line and the slope is used to estimate the 

specific cake resistance (α). 

The fouling layer resistance can be further partitioned into reversible (RR) and 

irreversible (RI) fouling: 

IRMFMT RRRRRR ++=+=  (4-4)

To determine the fouling components, the membrane was rinsed at the end of the 

filtration with 25 mL of Nanopure water using a magnetic stirrer (supplied with the 

Amicon filtration cell) at 200 rpm for 3 min. After rinsing, the cell was emptied and the 

rinsing water was kept for further analysis. The cell was then filled with clean water and 

the water flux across the membrane was re-evaluated. This provided the sum of the clean 

membrane resistance and the resistance due to irreversible fouling. The resistance due to 
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reversible fouling was obtained from the difference between the total resistance and the 

resistances of the clean membrane and irreversible fouling. 

The feed solution (i.e., before filtration) and the rinsing water, containing the 

solutes which were part of the reversible fouling, were analyzed for total solids and 

protein content. The total solids were determined gravimetrically by drying the samples 

(1 mL) at 100 °C overnight and the protein colorimetrically using Bradford Protein Assay 

(Standard Procedure for Microtiter Plates, Bio-Rad Laboratories, Mississauga, ON, 

Canada). Purified β-conglycinin (7S) and glycinin (11S) were used as protein standards 

(provided by M. Corredig, University of Guelph, ON, Canada). Standard solutions were 

prepared by combining the two proteins in a ratio of 1:1.4 which corresponds to their 

actual distribution in the soy proteins [15]. The total solids and protein recovered by 

rinsing the membrane with water represent the fraction of total solids and protein 

involved in the reversible fouling. 

4.2.3 Mineral deposition 

Samples (~7 cm2) from the fouled membranes (after rinsing) were air-dried and 

ashed at 550 °C for 16 h in a muffle furnace. The ash residues were dissolved in 10 mL of 

2 M HCl and analyzed for magnesium and calcium contents by inductively coupled 

plasma-optical emission spectrometry using Spectroflame Modula (FSM-08, Spectro 

Analytical Instruments, Kleve, Germany). Phosphorus was determined colorimetrically 

by phospho-vanado-molybdate method using monobasic potassium phosphate standard 

[49]. Since the mineral deposition was estimated using the fouled membranes after 

rinsing, the results represented the mineral content of the irreversible fouling layer. 

4.2.4 Fouling layer morphology and protein deposition 

The morphology of the fouling layer was studied by FESEM. For this purpose, 

filtrations were performed under identical operating conditions as described in Section 

4.2.1 but only for 20 min duration. After each run, the membrane was removed from the 

system and two pieces (0.5 x 0.5 cm) were cut from the central membrane area. One of 

the pieces was rinsed with Nanopure water to remove labile solutes and then both pieces 

were fixed by soaking them for 3 h in 2.5 % glutaraldehyde prepared in 0.2 M phosphate 
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buffer (pH 7.2). The fixed membranes were serially dehydrated with 20–100 % v/v 

acetone solution, critical point dried, sputter-coated with 10–15 nm of gold (DESKII, 

Denton Vacuum Inc., Moorestown, NJ, USA), and observed by FESEM using LEO 1530 

microscope (Carl Zeiss AG, Germany) at 5 kV of accelerating voltage. 

The amount of protein deposited on the membranes after 20 min ultrafiltration was 

measured by a method derived from [66]. After the filtration, the membrane was gently 

rinsed with water, transferred to 10 mL of 5 % sodium dodecyl sulfate (SDS) solution, 

and incubated on a shaker for 5 h at RT. After the SDS incubation, the membranes looked 

clean, indicating protein desorption from the membrane. The solution was then analyzed 

for protein by BCATM protein assay (RT protocol, Pierce, Rockford, IL, USA) which is 

compatible with the 5 % SDS concentration. The protein standard was the mixed solution 

of purified β-conglycinin and glycinin in 1:1.4 ratio. 

Statistical analysis was carried out according to Montgomery [50] using a two-

sample t-test (two tailed) assuming an unequal variance to determine any significant 

differences in the results obtained for the different feeds (SPE 6 and SPE 9). Results are 

reported as mean ± standard error (SE) and the number of independent experiments (n) is 

indicated. 

4.3 Results and discussion 

4.3.1 Characteristics of the clean PES membranes 

The resistance of the clean PES membranes was determined from the water flux 

measurements. The 100 kDa membrane had surprisingly a lower resistance (3.5×1011 m-1, 

n = 19) than the 200 kDa membrane (4.5×1011 m-1, n = 8). Although the difference was 

statistically significant (p < 0.016) due to the large n (number of tests), the variability 

between membranes cut from the same flat sheet was quite high, with the relative 

standard deviation up to 43 and 11 % for the 100 and the 200 kDa membrane, 

respectively. A similar membrane-to-membrane variability for the Omega PES 

membranes was also reported by Palecek et al. [55,56]. The FESEM micrographs of the 

clean membranes revealed morphological distinctions between the membranes (Figure 

4.1). The 100 kDa membrane seemed rougher with pores forming within a network of 
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interlocking nodular structures. The pores of the 200 kDa membrane had various sizes 

with small to very large holes and the surface between them was very smooth. 

 

Figure 4.1 FESEM micrographs of the clean PES membranes (magnification 50,000 ): (a) 100 
kDa and (b) 200 kDa. 

To quantify the number of pores per area and the mean pore size, images of the clean 

membranes were thresholded (using the same threshold range) and analyzed by ImageJ 

1.37 software package (analyzing tool). This analysis showed that the pore density of the 

100 kDa membrane was approximately 16 times higher compared to the 200 kDa 

200 nm 

(b) 

200 nm 

(a) 
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membrane. The mean pore size was 21 and 70 nm for the 100 and the 200 kDa 

membrane, respectively. The estimated porosity (pore area fraction) was, however, quite 

similar for both of the membranes, with the 100 kDa membrane having a somewhat 

higher porosity (9.7 %) than the 200 kDa membrane (8.6 %), which could explain the 

slightly higher permeability for the 100 kDa MWCO membrane. 

4.3.2 Permeate flux profile 

The permeate flux as a function of time for ultrafiltration of SPE 6 and SPE 9 to 

VCR 2.5 using the 100 kDa membrane is shown in Figure 4.2. The permeate flux profile 

for the 200 kDa membrane (data not shown) was indistinguishable from the one obtained 

for the 100 kDa membrane, which is likely attributable to the similar membrane 

porosities. As previously observed for the filtration of several different proteins (albumin, 

lysozyme, ribonuclease A, hemoglobin, and immunoglobulins) through the Omega PES 

membranes [55,56], the membrane-to-membrane variability of the clean membrane 

resistance, observed also in this work, had no effect on the subsequent permeate flux 

decline during filtration of the soy protein extracts. 
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Figure 4.2 Permeate flux decline in ultrafiltration of SPE 6 ( ) and SPE 9 ( ) to VCR 2.5 using 
the 100 kDa membrane (n = 4), conditions: 30 psi and RT. Inset shows the first five minutes of 
the ultrafiltration runs. 
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The initial flux increase (to 40–60 L/m2.h) due to pressurization of the cell to 30 psi was 

followed by a rapid flux decline (to ~20 L/m2.h) in the first minute of the filtration 

(Figure 4.2, inset). The flux continued decreasing very rapidly in the first hour of the 

filtration and then relatively slowly in the following hours. As previously reported 

[34,51], the flux for the electroacidified feed (SPE 6) was always lower compared to the 

flux for the non-electroacidified feed (SPE 9), indicating more significant membrane 

fouling. The final flux was approximately 0.64 and 0.94 L/m2.h for SPE 6 and SPE 9, 

respectively. As a result, ultrafiltration to VCR 2.5 was ~2.5 h longer for SPE 6 compared 

to SPE 9 (Figure 4.3). 
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Figure 4.3 VCR as a function of time for ultrafiltration of SPE 6 (squares) and SPE 9 (diamonds) 
using the 100 kDa (closed symbols, n = 4) and the 200 kDa membranes (open symbols, n = 2), 
conditions: 30 psi and RT. Error bars (SE) along the time axis represent the variation in the 
filtration time to reach VCR 2.5. 

The error bars along the time axis for the last data point in Figure 4.3 represent the 

standard error in the filtration up to VCR 2.5. The difference between SPE 6 and SPE 9 

for the 100 kDa membrane was significant (p < 0.0003, n = 4). However, there was no 

significant difference between the different MWCO membranes for a given feed. 

4.3.3 Hydraulic resistance analysis 

The relationship between t/VP and VP illustrated in Figure 4.4 was approximately 

linear in agreement with the conventional cake filtration theory. 
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Figure 4.4 Plot of t/VP versus VP for ultrafiltration of SPE 6 (squares) and SPE 9 (diamonds) to 
VCR 2.5 using the 100 kDa (closed symbols, n = 4) and the 200 kDa membranes (open symbols, 
n = 2), conditions: 30 psi and RT. Error bars (SE) are shown at VP = 30 mL. Data from 
ultrafiltrations of SPE 6 adjusted to pH 9 ( ) and SPE 9 adjusted to pH 6 ( ) using the 100 kDa 
membrane (same operating conditions). 

The specific cake resistance (α) was estimated from the slope of the t/VP versus VP plot 

and Eq. (4-3). The slope was estimated by linear regression using all data points with R2 

values ranging between 0.989 and 0.999 for all curves in Figure 4.4. The specific cake 

resistances (α) obtained for SPE 6 were approximately 1.5 times higher than for SPE 9 

and were independent of the membrane MWCO (Table 4.1). To investigate whether the 

membrane fouling was caused by the different pH of the feed, SPE 6 was adjusted to pH 

9 (with 1 M NaOH) and SPE 9 to pH 6 (with 1 M HCl). The filtration was performed 

with the 100 kDa membrane under identical conditions as used for the pH unadjusted 

feeds. The specific cake resistance significantly increased for SPE 9 adjusted to pH 6 and 

inversely, it decreased for SPE 6 adjusted to pH 9. The curvature in t/VP versus VP profile 

for SPE 9 adjusted to pH 6 indicates that the specific cake resistance increases with time, 

which could be due to the consolidation of the cake layer. Although the t/VP versus VP 

profiles for the pH adjusted feeds were not exactly the same as the ones for the pH 

unadjusted feeds, it proved that the lower pH of SPE 6 was responsible for the observed 

higher membrane fouling. 
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Table 4.1 Specific cake resistance (α) evaluated from Eq. (4-3) and the fouling resistance (RF) 
with the contribution of the reversible (RR) and the irreversible (RI) fouling for dead-end 
ultrafiltration to VCR 2.5 

Feed 
MWCO 

(kDa) 

α x 10-15 

(m/kg) a 

RF x 10-15 

(m-1) a 

RI x 10-15 

(m-1) 

RR x 10-15 

(m-1) 

SPE 6 100 7.3 ± 0.1 1.32 ± 0.01 0.29 1.03

SPE 6 200 7.0 ± 0.3 1.26 ± 0.06 0.27 0.98 

SPE 9 100 4.4 ± 0.2 0.92 ± 0.01 0.01 0.91 

SPE 9 200 4.5 ± 0.1 0.89 ± 0.05 0.01 0.88 

SPE 9 adjusted to pH 6 100 8.6 1.77 0.24 1.53 

SPE 6 adjusted to pH 9 100 3.6 0.64 0.01 0.63 
a n = 3 and n = 2 for 100 and 200 kDa, respectively. 

Since no information could be found in the literature regarding the specific cake 

resistance for ultrafiltration of soy proteins, the estimates obtained for the specific cake 

resistance in this study were compared with literature values reported for ultrafiltration of 

solutions containing different protein types. The specific cake resistances for soy proteins 

(Table 4.1) are in good agreement with the reported estimates for BSA, in the range of 

2×1015–7×1015 m/kg [54], and for hemoglobin, BSA and gelatin, in the range of 7×1015–

8×1016 m/kg [68]. According to the Carman-Kozeny equation [69], developed for a 

packed bed of rigid spherical particles, the specific cake resistance (α) is a function of bed 

porosity (ε), particle diameter (d) and particle density (ρ) (Eq. (4-5)): 

( )
32ερd
ε1180α −

=  (4-5)

Assuming an average porosity of 0.4 (typical value for randomly packed spherical 

particles of uniform size [69]), a particle density of 1000 kg/m3 and using the estimates 

for α listed in Table 4.1, the particle diameter was estimated to be between 14–22 nm, 

which is a reasonable estimate of protein size. The use of Carman-Kozeny equation to 

estimate the porosity of the protein deposits is limited due to the assumption of rigid, 

non-interacting particles. Nevertheless, Carman-Kozeny equation shows that the 

magnitude of the specific cake resistance for soy proteins are what one would expect for 

particles in a protein size range. 
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After the filtration, the membranes were rinsed with water to remove loosely 

attached foulants (reversible fouling). The resistance of the rinsed membranes was 

evaluated from the water flux measured at 30 psi corresponding to the pressure at which 

the filtrations were performed. As shown in Figure 4.5, the water flux across the SPE 6 

fouled membranes was always around 2–4 L/m2.h and remained constant over the 10 min 

period. In contrast, the water flux through the membranes fouled by SPE 9 was much 

higher but decreased continuously from 200 to 60 L/m2.h during the 10 min period (and 

kept on decreasing for longer time periods). 
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Figure 4.5 Water flux as a function of time across rinsed membranes after ultrafiltration of SPE 6 
(squares) and SPE 9 (diamonds) to VCR 2.5 using the 100 kDa (closed symbols, n = 3) and the 
200 kDa membranes (open symbols, n = 2), conditions: 30 psi and RT. Error bars (SE) are shown 
at t = 8 min. Data from ultrafiltrations of SPE 6 adjusted to pH 9 ( ) and SPE 9 adjusted to pH 6 
( ) using the 100 kDa membrane (same operating conditions). 

The time-variable permeability for SPE 9 suggests that the fouling layer remaining on the 

membrane is less stable compared to that of SPE 6 and the exposure to the pressure and 

to the permeation flow causes its consolidation. It is also possible that exposing the 

fouled membrane to Nanopure water during the water flux measurements results in the 

consolidation of the fouling deposit due to the decrease in ionic strength. In contrast, the 

fouling layer of SPE 6 was likely more rigid and/or the drag force exerted by the low 

permeation flow was too low to induce any structural changes. The water flux of the 
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membrane fouled with SPE 9 adjusted to pH 6 was similar to the magnitude of the flux 

observed for the SPE 6 fouled membranes and remained constant over time (Figure 4.5). 

Similarly, the water flux for the membrane fouled with SPE 6 adjusted to pH 9 was 

consistent with the flux profile obtained for the SPE 9 fouled membranes. 

These experiments show that the pH of the feed affects the permeability of the 

fouling layer. The water flux was averaged for the last 1.5 min (for each series) to 

determine the resistance due to irreversible fouling. Note that the fouling layer resistance 

(RF) in Table 4.1 was by four orders of magnitude higher than the clean membrane 

resistance for all filtrations. Regardless of the membrane MWCO, the irreversible fouling 

resistance (RI) constituted about 22 % of the fouling layer resistance (RF) for SPE 6 and 

was negligible (1 %) during ultrafiltration of SPE 9, indicating that the fouling was 

mostly reversible for SPE 9. As expected, the irreversible fouling increased when SPE 9 

was adjusted to pH 6 and similarly, decreased when SPE 6 was adjusted to pH 9. These 

observations are in disagreement with a previous study by Mondor et al. [35] who 

estimated the irreversible fouling between 1 and 2 % for both SPE 6 and SPE 9. 

However, Mondor et al. [35] used agitation and regenerated cellulose hydrophilic 

membranes which could have minimized protein adsorption. 

4.3.4 Morphology of the fouled membranes 

The lower permeate flux observed during the filtration of SPE 6 resulted in a lower 

volume of the permeate collected over time when compared to SPE 9 even at early stages 

of the filtration (Figure 4.6). 
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Figure 4.6 Permeate volume collected during ultrafiltration of SPE 6 (squares) and SPE 9 
(diamonds) for 20 min using the 100 kDa (closed symbols) and the 200 kDa (open symbols) 
membranes (n = 7), conditions: 30 psi and RT. Error bars (SE) are shown at t = 18 min. 

The fouling layer morphology was evaluated using FESEM to clarify the 

differences in the flux behavior. Samples of the fouled membranes after 20 min 

ultrafiltration analyzed by FESEM revealed some differences in the fouling layer 

structure. SPE 6 on the 100 kDa membrane had a dense but fine structure with a few 

filamentous strands and some large aggregates (~700 nm) on the top of the surface 

(Figure 4.7 (a)). The fouling layer of SPE 9 (Figure 4.7 (b)) had a light, more open 

structure with many filamentous strands covering the surface. Similar differences 

according to the feed type were also observed for the 200 kDa membrane (Figure 4.8). 

The fouling layer of SPE 6 (Figure 4.8 (a)) consisted of aggregated fibers which appeared 

much thicker when compared to those of SPE 9 (Figure 4.8 (b)). The deposits formed by 

SPE 9 looked alike on both MWCO membranes but some morphological differences 

became apparent for SPE 6 with respect to the membrane MWCO (Figure 4.7 (a) and 

Figure 4.8 (a)). It could be that the clean membrane acts as a template providing support 

for the formation of the initial fouling layers. The 100 kDa membrane with smaller and 

more uniformly distributed pores could give rise to a finer deposit than the 200 kDa 

membrane with large pores (Figure 4.1). However considering only the differences 
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between SPE 6 and SPE 9, it seems that soy proteins tend to form denser and more 

compact deposits with lower permeability at pH 6 than at pH 9, as also supported by the 

higher fouling resistance for solutions at pH 6 (Table 4.1). This can be attributed to the 

higher negative charge of the soy proteins at pH 9 compared to pH 6 where the proteins 

are closer to their pI (4.5–4.8) and the electrostatic repulsion forces are weaker, which 

permits denser protein packing on the membrane surface. This is consistent with the work 

of Mukai et al. [58] who showed for dead-end ultrafiltration of BSA that the cake 

porosity was minimal at the protein isoelectric point and increased with increasing 

protein charge. 

Rinsing the membranes with water removed most of the fibrous material (Figure 4.7 

(c), (d) and Figure 4.8 (c), (d)). Although the pores of the 100 kDa membranes were still 

mostly covered, a few openings became visible through the SPE 9 deposit (Figure 4.7 

(d)). More apparent differences were seen between the fouling deposits on the 200 kDa 

membranes according to the feed pH (Figure 4.8 (c) and (d)). A considerable amount of 

material still covered the membrane used for the SPE 6 filtration, although in comparison 

to the non-rinsed membrane (Figure 4.8 (a)), the network seemed less dense. The 200 kDa 

membrane with the SPE 9 deposit looked much cleaner after rinsing and many pores 

became uncovered (Figure 4.8 (d)). Supporting the more significant irreversible fouling 

resistance obtained from the water flux for SPE 6 (Table 4.1), the fouling deposit 

observations with FESEM show that soy proteins may bind to the membrane surface 

more strongly at pH 6 than at pH 9. The reduction of the protein net charge as the pH 

approaches the pI is likely coupled with an increase in protein hydrophobicity, leading to 

higher protein-protein interactions and aggregation. This was confirmed by Mondor et al. 

[35] who found (using a light scattering technique) that SPE 6 reconstituted in double 

distilled water contained larger particles than SPE 9. 
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Figure 4.7 FESEM micrographs of the fouled and rinsed 100 kDa membranes after 20 min 
ultrafiltration (magnification 50,000 ): (a) fouled, SPE 6; (b) fouled, SPE 9; (c) rinsed, SPE 6; (d) 
rinsed, SPE 9. 
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Figure 4.8 FESEM micrographs of the fouled and rinsed 200 kDa membranes after 20 min 
ultrafiltration (magnification 50,000 ): (a) fouled, SPE 6; (b) fouled, SPE 9; (c) rinsed, SPE 6; (d) 
rinsed, SPE 9. 
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4.3.5 Estimation of protein content in irreversible/reversible fouling 

Protein deposition on the membranes after 20 min ultrafiltration was estimated by 

soaking the membranes in 5 % SDS solution for 5 h and then measuring the protein 

concentration. It should be noted that the membranes were briefly rinsed with water 

before soaking them in the SDS solution and this was assumed to be sufficient to remove 

the reversible fouling. The protein deposits are, therefore, considered estimates of the 

proteins participating in the irreversible fouling layer. The amount of protein deposited on 

the 100 and the 200 kDa membrane was 290 ± 88 μg/cm2 (n = 3) and 504 ± 164 μg/cm2 

(n = 2), respectively, for SPE 6. This was higher compared to the protein deposition for 

SPE 9, 82 ± 3 μg/cm2 and 118 ± 10 μg/cm2 using the 100 and the 200 kDa membrane (n 

= 2), respectively. Due to the high variation in the protein deposition estimates for the 20 

min filtration (especially for SPE 6), we decided to perform ultrafiltration of SPE 6 and 

SPE 9 to VCR 2.5 (i.e., for several hours, see Figure 4.3) using the 100 kDa membrane to 

obtain a more pronounced difference between the two feeds. A visual inspection of the 

fouled membranes at the end of the filtration revealed that the deposit of SPE 6 was 

clearly thicker compared to that of SPE 9. The results of protein analysis showed that 

there was a 21-fold increase in protein deposition after ultrafiltration of SPE 6 (2700 

μg/cm2) compared to SPE 9 (130 μg/cm2), which correlates with the difference seen in 

the irreversible fouling resistance observed for the two feeds (Table 4.1). Considering the 

membrane area (28.7 cm2), the amount of protein involved in the irreversible fouling was 

77.5 mg for SPE 6 and 3.7 mg for SPE 9. Although the feed solution was prepared in the 

same way for both extracts, the protein mass of the feed was 0.46 and 0.60 g for SPE 6 

and SPE 9 (SE = 0.01 g, n = 6) respectively, due to the lower solubility and protein 

content of the SPE 6 extract. This indicates that 16.8 % (SPE 6) and 0.6 % (SPE 9) of the 

protein present initially in the feed became part of the irreversible fouling. Protein 

deposition estimated by Kim et al. [66] during one hour ultrafiltration of 0.1 % w/w BSA 

using various types of membranes were in the range of 34 to 133 μg/cm2, which is 

comparable with the protein deposition obtained for SPE 9. The amount of protein 

deposited observed in this study during ultrafiltration of SPE 6 to VCR 2.5 was by an 

order of magnitude higher compared with the BSA study of Kim et al. [66]. 
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The water used for rinsing the membranes after the filtration to VCR 2.5 was 

analyzed for the total solids (TS) and protein content (Table 4.2) to quantify the 

components contributing to the reversible fouling. 

Table 4.2 Amount of total solids (TS) and protein in rinsing water and deposition of magnesium, 
calcium, and phosphorus (phytic acid) on membrane during ultrafiltration 

Feed 
MWCO 

(kDa) 

TS mass a 

(mg/cm2) 

Protein 

(% of TS) 

Mg b 

(μg/cm2) 

Ca b 

(μg/cm2) 

P b 

(μg/cm2) 

SPE 6 100 4.3 ± 0.1 93 2.75 ± 0.42 4.80 ± 1.25 5.36 ± 0.73

SPE 6 200 4.4 ± 0.1  93 2.45 ± 0.20 4.01 ± 0.05 4.88 ± 0.19 

SPE 9 100 6.8 ± 0.4 100 0.24 ± 0.06 1.01 ± 0.18 0.80 ± 0.18 

SPE 9 200 7.0 ± 0.2 102 0.15 0.77 0.76 ± 0.20 

- c 100 - - 0.04 1.04 0.23 

- c 200 - - 0.06 0.78 0.18 
a Mass of total solids (TS) per membrane area (28.7 cm2), n = 4. b n = 2. c Clean membrane (control). 

The proteins accounted for most of the total solids (above 90 %) in the rinsing water for 

both SPE 6 and SPE 9. The total solids content and the corresponding protein estimates in 

Table 4.2 were used to calculate the protein surface coverage (calculated per membrane 

area) for the 100 kDa membrane, 4.0 mg/cm2 for SPE 6 which is significantly lower (p < 

0.005, n = 4) when compared to SPE 9, 6.8 mg/cm2. The estimated protein content in the 

rinsing water, associated with reversible fouling, is in agreement with the resistance-in-

series estimates presented in Table 4.1. The relative contribution of the reversible fouling 

for SPE 6 was lower when compared to SPE 9. By looking at the analysis of the protein 

desorbed from the membrane and the analysis of the protein in the rinsing water, one can 

get an estimate of the contribution of the proteins to the overall fouling. The quantity of 

protein involved is similar for both SPE 6 (6.70 mg/cm2) and SPE 9 (6.93 mg/cm2) but 

nearly all of the protein coverage for SPE 9 was detected in the rinsing water 

corresponding to the reversible fouling while for SPE 6, the protein coverage was 

distributed between the rinsing water (reversible fouling) and the desorption analysis 

(irreversible fouling). However, with respect to the protein content of the feed solutions 

(i.e., 0.46 and 0.60 g for SPE 6 and SPE 9, respectively), the relative amount of protein 

accumulated on the membrane turns out to be higher for SPE 6 (42 %) than for SPE 9 (33 
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%). Since the quantity of protein (in mg/cm2) involved in the overall membrane fouling is 

comparable for both SPE 6 and SPE 9, the higher permeate flux decline observed for the 

electroacidified feed (SPE 6) may be related to its more compact fouling structure as 

revealed by the FESEM micrographs (Figure 4.7 and Figure 4.8). The role of the cake 

structure was also reported by Mourouzidis-Mourouzis et al. [70] for the microfiltration 

of whey proteins using ceramic membranes at pressures ranging from 2.5 to 10 psi. 

During the microfiltration of whey, the amount of protein deposited at the end of the 

filtration was higher at the lower pressure but a lower flux decline was observed, 

suggesting a more porous deposit at the lower pressure than at the higher pressure. The 

amount of whey protein deposited at the end of the filtration for the various pressures (15 

to 30 mg) and the active membrane surface area (12.5 cm2) indicate that the protein 

surface deposition, 1.2–2.4 mg/cm2 [70], was of the same magnitude as the observations 

in this study for soy proteins (Table 4.2). 

4.3.6 Mineral content of the fouled membranes 

It was observed previously [34,51] that ultrafiltration of SPE 9 was associated with 

a high rejection of minerals (i.e., low removal) when compared to ultrafiltration of SPE 6 

during the production of soy protein isolates. This was attributed to attractive electrostatic 

forces between cations (minerals) and negatively charged proteins, interactions which 

would be likely enhanced at pH 9 compared to pH 6. Therefore, the focus here was to 

evaluate whether or not minerals also contributed to the membrane fouling. The samples 

of the fouled membranes were obtained from the ultrafiltration of SPE 6 and SPE 9 to 

VCR 2.5 using the 100 and the 200 kDa membranes. It was decided to focus mainly on 

magnesium, calcium, and phosphorus (phytic acid) due to their known interactions with 

the soy proteins. After the filtration of SPE 9, only a minor increase in magnesium and 

phosphorus content and an insignificant difference in calcium were detected in the 

membrane with respect to the control membranes (Table 4.2). However, there was a 

significant increase in all three minerals after the filtration of SPE 6 for both MWCO 

membranes. No obvious differences were observed with respect to the membrane 

MWCO for any of the three minerals. The amount of minerals introduced onto the 

membrane by ultrafiltration of SPE 6 was 2.55 μg/cm2 (Mg), 3.49 μg/cm2 (Ca), and 4.92 
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μg/cm2 (P) (control membranes subtracted). Higher amount of minerals within the 

fouling layer of SPE 6 most likely correlates with the higher amount of protein involved 

in the irreversible fouling. Although ultrafiltration of SPE 6 is characterized by relatively 

good mineral removal in comparison to SPE 9 [34,51], the minerals including phytic acid 

are (to some extent) bound to the protein and deposit with it on the membrane. This also 

suggests that the low removal of magnesium, calcium, and phytic acid observed in our 

previous study for the ultrafiltration of SPE 9 [51] is caused by the formation of the 

ternary complex (protein-mineral-phytic acid) rather than the precipitation of Mg/Ca 

phytate, because none of the selected minerals was detected in the fouled membranes of 

SPE 9. Since the amount of mineral deposition was quite low in comparison to the 

protein deposition (2700 μg/cm2 estimated by SDS desorption for SPE 6 at VCR 2.5), it 

is likely that magnesium, calcium, and phytic acid do not significantly contribute to the 

membrane fouling for SPE 6 and the fouling is mostly due to the protein accumulation on 

the membrane surface. 

4.4 Conclusion 

This study investigated the formation of membrane fouling during the ultrafiltration 

of an electroacidified (SPE 6) and a non-electroacidified (SPE 9) feed in a dead-end 

system (without stirring) using 100 and 200 kDa polyethersulfone membranes. The 

membrane fouling was more significant for SPE 6, resulting in a lower permeate flux and 

considerably longer filtration times, when compared with SPE 9. Evaluation of the 

resistance components revealed that the irreversible fouling was higher for SPE 6 and 

accounted for 22 % of the total fouling resistance, compared to only 1 % for SPE 9. 

Experiments with SPE 9 adjusted to pH 6 and SPE 6 adjusted to pH 9 showed that the 

severity of the membrane fouling and the reversible/irreversible fouling distribution was 

mainly governed by the pH of the solution. The total amount of protein accumulated on 

the membrane surface at the end of the filtration, including the analysis of the rinsing 

water (for reversible fouling) and the protein desorption by SDS (for irreversible fouling), 

was similar for both feeds (6.70 and 6.93 mg/cm2 for SPE 6 and SPE 9, respectively) but 

more protein participated in the irreversible fouling for SPE 6 (2.70 mg/cm2), when 

compared with SPE 9 (0.13 mg/cm2). Similar overall protein deposition for both feeds 
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indicated that the permeate flux is mainly controlled by the structure of the fouling layer. 

Indeed, FESEM examination of the fouled membranes revealed that SPE 6 forms rather 

denser and presumably less porous fouling layer than SPE 9, which can be attributed to 

lower electrostatic repulsion forces between the protein molecules at pH 6 (closer to pI), 

allowing for tighter packing on the membrane surface. Magnesium, calcium, and 

phosphorus (phytic acid) were detected in the fouled membranes for SPE 6 and only 

marginally in the fouled membranes for SPE 9. Higher mineral and protein deposition 

observed for SPE 6 suggests that calcium, magnesium, and phytic acid are (to some 

extent) associated with the protein and deposit with it on the membrane. Although 

association of magnesium, calcium, phosphorus, and the soy proteins is likely to be 

expected also at pH 9, the protein deposition for SPE 9 was low and the minerals in the 

fouling layer could not be detected. This study indicates that the major factor influencing 

the membrane fouling in ultrafiltration of the soy protein extracts is the pH of the feed. 

The effect of minerals on the membrane fouling did not seem to be important. 

4.5 Appendix: Membrane fouling models 

This section provides a description of the most common fouling models that can be 

used to identify the predominant fouling mechanism during a filtration process. 

Depending on the solute to pore size ratio, fouling can occur within the membrane pores 

or on the external surface of the membrane. The fouling models used to describe the 

fouling phenomena include standard blocking, complete blocking, intermediate blocking, 

and cake filtration (Figure 4.9). 

 

Figure 4.9 Illustration of membrane fouling mechanisms: (a) standard blocking, (b) complete 
blocking, (c) intermediate blocking, and (d) cake filtration. Adopted from Bowen et al. [71]. 

The standard blocking model (or pore constriction) occurs when the solutes are able to 

enter the membrane pores and adsorb on the pore walls, thus reducing the effective pore 
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diameter. In the complete blocking, some pores may become completely blocked by the 

depositing solutes, resulting in a reduced number of pores per area. Intermediate blocking 

is characterized by pore blockage but also deposition of the solutes on the external 

surface of the membrane. In the cake filtration, solutes deposit in multiple layers on the 

external surface, resulting in a cake build-up and increase in the effective membrane 

thickness. Understanding the fouling mechanisms can clarify the kinetics of the permeate 

flux decline and help in the selection of a suitable strategy for fouling minimization 

(increase in shear rate, backflushing). 

Fouling models or blocking laws describing the four fouling mechanisms are 

summarized in Table 4.3, where JP (m/s) is the time-variable permeate flux, J0 (m/s) is the 

initial permeate flux (at time = 0), and k1 to k4 are constants. 

Table 4.3 Fouling models and their linearized forms for the different fouling mechanisms 

Mechanism Model* Linearized form Plot 

Standard blocking ( )2
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* Model equations were obtained from Bowen et al. [71]. 

The linearized forms derived from the model equations can be used to quickly analyze 

the filtration data and determine the type of the fouling mechanism. For the unstirred 

dead-end ultrafiltration of the soy protein extracts, it is expected that the membrane 

fouling occurs primarily due to the cake build-up on the external surface of the 

membrane. However, at the beginning of the filtration, when the membrane area is 

uncovered, pore constriction or pore blocking may also occur. Figure 4.10 shows the 

comparison of the various fouling models for the dead-end ultrafiltration of SPE 6 and 

SPE 9 to VCR 2.5 using the 100 kDa membrane. The relationship between 1/JP
-0.5 and 
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ln(1/JP) and time (t) is not linear (Figure 4.10 (a) and (b)), which indicates that standard 

and complete blocking models are not responsible for the permeate flux decline during 

ultrafiltration of both SPE 6 and SPE 9. This is expected, because proteins are the major 

foulants (Section 4.3.5) and the size of individual protein molecules and their aggregates 

is likely much larger compared to the size of the membrane pores. The intermediate 

blocking model (Figure 4.10 (c)), which involves both pore blocking and solute 

deposition on the external surface of the membrane, provides a better overall fit to the 

filtration data than the previous two models, but does not describe the data well in the 

initial stages of the filtration (in the first 30 min). Despite the significant noise in the 

permeate flux, the cake filtration model (Figure 4.10 (d)) provides the best fit to the 

filtration data over the entire experiment. This indicates that, for both SPE 6 and SPE 9, 

the cake layer starts forming on the external surface of the membrane from the beginning 

of the filtration and the permeate flux declines in proportion to the cake mass. These 

results support the selection of the cake filtration model (or theory) in Section 4.3.3 to 

estimate the specific cake resistance (α) when comparing the severity of membrane 

fouling for the electroacidified (SPE 6) and the non-electroacidified (SPE 9) feed. 
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Figure 4.10 Comparison of fouling models for dead-end ultrafiltration of SPE 6 ( ) and SPE 9 
( ) to VCR 2.5 using 100 kDa (PES) membrane: (a) standard blocking, (b) complete blocking, (c) 
intermediate blocking, and (d) cake filtration. Conditions: 30 psi and RT. 
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5  

Effect of Electroacidification on Viscosity of Soy 
Protein Extracts and Concentrates Produced by 

Ultrafiltration 

An axial pressure drop increase was observed during a hollow fiber ultrafiltration of 

an electroacidified (pH 6) and a non-electroacidified (pH 9) soy protein extract. Despite 

the similar composition of the concentrates, the viscosity of the non-electroacidified 

product was about twice as high compared to the electroacidified product, thus explaining 

a higher axial pressure drop observed during the ultrafiltration of the non-electroacidified 

extract. The zeta potential of the electroacidified extract was about 7 mV less negative 

than that of the non-electroacidified extract (-24 mV). The particle size distribution, 

determined by the dynamic light scattering, showed that most of particles (> 80 %) were 

found between 30 and 400 nm for the electroacidified extract and between 10 and 30 nm 

for the non-electroacidified extract. However, the differences in the zeta potential and the 

particle size distribution were unable to explain the different viscosity of the two extracts. 

The viscosity increased with higher protein content, i.e., lower mineral content, for the 

non-electroacidified concentrate, while no correlation between the viscosity and the 

composition was observed for the electroacidified concentrate. This was attributed to the 

higher negative zeta potential for the non-electroacidified extract and hence, stronger 

electrostatic interactions between the protein molecules at low mineral content. Using 

Einstein’s equation and a shape factor derived from the molecular dimensions of glycinin 

reported in the literature, it was proposed that the higher viscosity of the non-

electroacidified extract may be caused by higher degree of protein hydration compared to 

the electroacidified extract. 
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5.1 Introduction 

Membrane ultrafiltration is increasingly used for the production of non-animal 

protein ingredients such as soy protein concentrates and isolates. Alkaline extraction of 

defatted soy flakes yields a soy protein extract, containing about 60 % protein, 30 % 

carbohydrates, and 10 % ash (minerals). The objective of ultrafiltration is to concentrate 

the protein and remove the carbohydrates and minerals. As the protein concentration in 

the retentate becomes higher, the viscosity will likely increase. To minimize the costs due 

to pumping or mixing, it is important to understand the relationship between the 

concentration and the viscosity and identify the factors that might influence the viscosity 

behavior. 

The flow properties of food dispersions are strongly influenced by the nature of 

their components (proteins, carbohydrates, lipids, minerals) and their mutual interactions. 

In food applications, soy proteins are often used as functional ingredients to modify the 

texture and the consistency of the food products. The functional properties, including 

viscosity, are mostly affected by the properties of the soy proteins [15]. Based on the size 

of the protein molecules (in the low nanometer range), soy protein dispersions can be 

classified as colloidal systems, where the viscosity is controlled by a combination of 

hydrodynamic, colloidal, and Brownian forces [72]. The hydrodynamic forces are caused 

by the distortion of the flow field around the particles (particle-dispersant interactions) 

and interparticle interactions. At very low concentrations, where interparticle interactions 

are limited, the dynamic viscosity of the dispersion (η) increases linearly with the particle 

volume fraction (φ) according to Einstein’s equation (5-1): 

( )ϕs1ηη 0 +=  (5-1)

where η0 is the dynamic viscosity of the pure dispersant and s is a factor, which is 

dependent on the particle shape. For spherical particles, s has a value of 2.5 and higher 

than 2.5 for particles of other shapes [10]. At higher concentrations, interactions between 

the particles become more important and the viscosity increases more rapidly with the 

volume fraction than predicted by Einstein’s equation. The relations, describing the 

viscosity behavior at higher volume fractions, have been reviewed by Rutgers [73]. The 
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colloidal and Brownian forces are characteristic for submicron particles. The former are 

related to the surface properties of the particles and determine the character of the 

interparticle interactions, and the latter result from the random movement of the particles 

due to collisions with the molecules of the dispersant [10]. 

Colloidal dispersions of rigid, spherical particles (e.g., silica, polymer) have been 

frequently used as model systems to study the flow behavior as a function of particle size, 

particle size distribution, and electrolyte concentration. At constant volume fraction, the 

viscosity of monodisperse systems increases with smaller particle size (as the number of 

particles in the system increases and the interparticle distance decreases). Mixtures 

containing particles of two different sizes exhibit lower viscosity than dispersions of 

monosized particles prepared at the same total volume fraction [74,75]. This effect, 

explained by a more efficient packing (smaller particles filling the interstices between the 

larger ones), may be dependent on the size ratio of the mixed particles [76]. In a polar 

medium, colloidal particles acquire a surface charge that is counterbalanced by the 

formation of an electrical double layer, resulting in a viscosity increase due to 

electroviscous effects. The primary effect is associated with the shear-induced 

deformation of the electrical double layer, the secondary effect results from the 

electrostatic repulsions between the charged particles (double layer overlap), and the 

tertiary effect describes the effect of pH and ionic strength on the conformation of 

charged polyelectrolytes [10]. Electrostatic interactions between the charged particles 

typically decrease with higher electrolyte concentration, because the surface charge (and 

the thickness of the double layer) is reduced, resulting in a viscosity decrease [77-79]. 

To study the effects of individual parameters (size, shape, charge, polydispersity) 

on the viscosity of protein dispersions is more difficult, because the parameters can not be 

controlled independently. Factors such as pH, ionic strength, electrolyte composition, and 

processing history have a strong influence on the protein properties, the type of 

intermolecular interactions, and the flow behavior [80,81]. The hydrodynamic volume 

and the conformation of the protein molecules in solution are dependent on the degree of 

hydration (water-binding capacity). Increased swelling and protein solubility (e.g., by 

increasing the pH above the isoelectric point) lead to larger hydrodynamic volume and 

therefore, higher viscosity [80-82]. Paulson et al. [83] correlated increasing apparent 
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viscosity of canola protein dispersions with increasing solubility and decreasing 

hydrophobicity. Incorporation of the repulsive hydration forces in the DLVO theory 

(balance between van der Waals attraction and electrostatic repulsion) improved the 

correlation between the interparticle interaction energy and the viscosity for a soy protein 

suspension [84] and cloudy apple juice [85], which indicated that the hydration forces can 

significantly contribute to the viscosity of colloidal dispersions. The effect of ionic 

strength on the viscosity of protein dispersions reported in the literature differs according 

to the concentration and type of added salt and the type of protein [80,86-88]. For soy 

protein dispersions, the viscosity decreased with increasing NaCl concentration, followed 

by a reversal at concentrations higher than 0.5 M [80]. On the other hand, the viscosity of 

1–7 % soy protein suspensions was significantly enhanced after addition of 10–12.5 mM 

calcium, as a result of complex formation mediated by protein-calcium cross-links, and 

decreased at higher calcium concentrations [86]. The hydrodynamic volume, estimated 

for soy protein dispersions from the viscosity data as a function of ionic strength 

(adjusted by NaCl) and pH, was indirectly proportional to the ionic strength at 0–0.07 M 

and increased with pH between 6 and 8, followed by a decrease at higher pH values [89]. 

Increase of the hydrodynamic volume with higher pH and lower ionic strength was 

explained by changes in the thickness of the electrical double layer and electroviscous 

effects. Increasing particle size (in the micrometer range) was shown to decrease the 

viscosity of tomato purees [90] and whey protein dispersions [91], but was reported to 

increase the viscosity of soy protein dispersions [81]. The discrepancy in these findings 

indicates that the relationships between the viscosity and other dispersion characteristics 

are likely not valid for all protein or food dispersions, but depend on the specific 

properties of the dispersed phase. 

In the present work, ultrafiltration of an electroacidified soy protein extract at pH 6 

(SPE 6) and a non-electroacidified soy protein extract at pH 9 (SPE 9) was performed in 

a hollow fiber system. The axial pressure drop (between the inlet and the outlet pressures 

of the membrane cartridge) and the composition of the retentate were monitored during 

the filtration. An attempt was made to explain the viscosity behavior of the 

electroacidified and the non-electroacidified soy protein extracts and concentrates 

produced by ultrafiltration. The viscosity, measured by a Cannon-Fenske capillary 
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viscometer, was studied as a function of protein concentration, protein content, and pH. 

To characterize the properties of the soy protein extracts, particles size distribution and 

zeta potential were also determined. 

5.2 Materials and methods 

5.2.1 Preparation of soy protein extract dispersions 

Soy proteins are mainly composed of storage globulins with an isoelectric point at 

pH 4.5–4.8 [15]. The main constituents of the storage globulins are β-conglycinin (180–

210 kDa) and glycinin (300–350 kDa). Lyophilized soy protein extracts, SPE 6 

(electroacidified) and SPE 9 (non-electroacidified), were provided by Agriculture and 

Agri-Food Canada (Saint-Hyacinthe, PQ, Canada). The soy protein extracts contained (on 

dry basis): SPE 6: 55.2 % protein, 36.8 % carbohydrates, and 8.0 % ash (minerals); SPE 

9: 59.9 % protein, 29.7 % carbohydrates, 10.4 % ash. Details on the production of the soy 

protein extracts were provided by Mondor et al. [34]. Preweighed amounts of each soy 

protein extract were dissolved in Nanopure water (resistivity ~17.5 MΩ-cm, Barnstead 

water purification system, Dubuque, IA, USA) and mixed with a magnetic stirrer for 1–2 

h to ensure complete rehydration. The samples were centrifuged at 15300 g for 20 min 

(Sorvall RC 5B Plus, Dupont, Mississauga, ON, Canada) to remove insoluble solids. The 

concentration of the total solids (TS) in the supernatant (measured gravimetrically) 

accounted for 85–90 % of the initial sample weight. The supernatant was used in the 

subsequent experiments. 

5.2.2 Tangential flow ultrafiltration 

Tangential flow ultrafiltration of the soy protein extracts was performed with a 

filtration system illustrated in Figure 5.1. A hollow fiber cartridge with a polysulfone 

membrane (GE Healthcare, Baie d’Urfe, QC, Canada) contained 50 fibers, 30 cm long 

and 1 mm in inner diameter (effective area 420 cm2). The membrane had a nominal 

molecular weight cutoff (MWCO) of 100 kDa and therefore, should be fully retentive to 

soy proteins while permeable for carbohydrates and minerals. The axial pressure drop, 

defined as ΔP = Pin – Pout, was monitored with two pressure transducers (Cole Parmer 

Canada Inc., Anjou, QC, Canada). Transmembrane pressure (TMP), defined as TMP = 
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(Pin + Pout)/2 (permeate side opened to the atmosphere), was maintained constant at 6 psi 

(41.4 kPa) using a manual pinch valve. Samples of the retentate (2.5 mL) were collected 

at various times using a sampling valve. The flow rate was kept at 2.4 L/min, 

corresponding to a shear rate of 8000 s-1. Reynolds number calculated using the fiber 

dimensions and viscosity of water was 1140, indicating a laminar flow regime. The feed 

was prepared as described in Section 5.2.1 by mixing 34 g of lyophilized SPE 6 or SPE 9 

in 1700 g of Nanopure water, resulting in 1.7 % w/w total solids after centrifugation. The 

filtrations were carried out with a feed volume of 1.5 L in a concentration mode (retentate 

recycled and permeate withdrawn) until ~ 78 % of the initial water content was removed, 

corresponding to a volume concentration ratio (VCR) of 4.5. The temperature was 

maintained at 25 ± 1 °C. 
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Figure 5.1 Schematic diagram of the filtration unit: 1-feed tank, 2-pump, 3-flowmeter, 4-
membrane, 5-pressure transducers, 6-pinch valve, 7-sampling valve, 8-permeate container, 9-
balance, and 10-PC/software. 

5.2.3 Total solids and protein analyses 

Total solids were determined gravimetrically by drying the samples (1 mL) at 100 

°C overnight. Protein concentration was measured by Bradford protein assay (Standard 

Procedure for Microtiter Plates, Bio-Rad Laboratories, Mississauga, ON, Canada) against 

bovine serum albumin (BSA) as a protein standard and the protein content was expressed 

as protein to TS concentration ratio  100. The concentration of soy proteins was, 
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however, always about 20–25 % lower than expected from the known protein content in 

the soy protein extracts, between 55 and 60 % for both SPE 6 and SPE 9 [34]. This was 

attributed to variable protein to dye binding efficiency for different proteins and 

confirmed by constructing a calibration curve for BSA and purified β-conglycinin and 

glycinin (provided by M. Corredig, University of Guelph, ON, Canada), combined in a 

1:1.4 ratio based on their distribution in the soy proteins [15]. As shown in Figure 5.2, the 

slope for the soy proteins was about 77 % of the slope obtained with BSA, consistent 

with the difference between expected and actual protein concentrations determined using 

the BSA standard. Therefore, the protein content in the retentate and permeate samples 

was scaled with respect to the initial protein content in the feed, which was assumed 60 % 

for both SPE 6 and SPE 9. 
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Figure 5.2 Typical calibration curves for BSA ( ) and purified soy proteins ( ). 

5.2.4 Viscosity measurements 

The viscosity was studied with the dispersions prepared from the lyophilized soy 

protein extracts at TS concentrations ranging from 0.9 to 7.0 % w/w (after 

centrifugation). The effect of pH on the viscosity of soy protein dispersions was 

determined by adjusting the pH of SPE 6 to 9 and SPE 9 to 6. In these experiments, 7 % 

w/w soy protein dispersion was adjusted to the desired pH with 2 M NaOH or 2 M HCl 

and diluted with Nanopure water to a final concentration of 6 % w/w (verified by TS 

analysis). The viscosity of the pH adjusted and non-adjusted soy protein extracts was 
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compared at the same TS concentration. To find out whether the removal of 

carbohydrates and minerals during the ultrafiltration of the soy protein extracts had any 

influence on the viscosity behavior, the final retentate at VCR 4.5 was back diluted with 

Nanopure water or with the permeate. The viscosity was measured with a capillary 

Cannon-Fenske routine viscometer (size 50), mounted in a water bath at 25 °C. Each 

sample was allowed at least 10 min in a water bath for the temperature equilibration and 

passed once through the capillary without taking a measurement. The flow time was then 

measured at least four times for each sample. The viscometer was cleaned with 2 M HCl, 

thoroughly rinsed with deionized water and acetone, and blow dried with clean air. 

The kinematic viscosity (µ) can be converted into the dynamic viscosity (η) using 

the density of the fluid (ρ), according to Eq. (5-2). Since the density of the soy protein 

dispersions was very close to the density of water, the dynamic viscosity was calculated 

using the measured kinematic viscosity and the density of water at 25 °C (997 kg/m3). 

μρη =  (5-2)

According to Hermansson [80], the soy protein dispersions prepared from a soy 

protein isolate displayed a Newtonian behavior up to a concentration of 6 % (% based dry 

weight). Since in this work, the viscosity of the soy protein dispersions was studied in a 

similar concentration range (7 % w/w maximum), a Newtonian behavior was assumed for 

all samples. 

5.2.5 Zeta potential and particle size distribution 

The zeta potential and the particle size distribution of the soy protein extracts were 

determined by light scattering techniques in a Zetasizer Nano ZS (Malvern Instruments, 

Worcestershire, UK). Evaluation of the zeta potential is based on measuring the mobility 

of the dispersed particles in an applied electric field by laser Doppler velocimetry. The 

particle size distribution is obtained from the rate of the scattered light intensity 

fluctuations, which is related to the Brownian motion of the dispersed particles and their 

size. To avoid multiple scattering effects, the measurements were performed with dilute 

solutions of the soy protein extracts. A stock solution of SPE 6/SPE 9 was prepared at a 

concentration of 1 % w/w and centrifuged at 15300g for 20 min. The supernatant with a 
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final TS concentration of approximately 0.9 % w/w was diluted to 0.045 % w/w with a 

0.01 M phosphate buffer (mono- and dibasic sodium phosphate) at the respective pH of 

the soy protein extracts (i.e., pH 6 for SPE 6 and pH 9 for SPE 9). The phosphate buffer 

(pH 6 and pH 9) is used to keep the pH of the diluted soy protein solutions at 6 and 9 for 

SPE 6 and SPE 9, respectively. The measurements were performed at 25 °C. Each sample 

was measured at least four times and two independent experiments were performed for 

each extract. 

Statistical analysis was carried out according to Montgomery [50] using a two-

sample t-test (two tailed) assuming an unequal variance to determine significant 

differences between the results obtained for SPE 6 and SPE 9. The results are reported as 

mean ± standard error (SE) and the number of independent experiments (n) is indicated. 

5.3 Results and discussion 

5.3.1 Pressure drop profile in tangential flow ultrafiltration 

Ultrafiltration of the soy protein extracts to VCR 4.5 was associated with a gradual 

increase in the axial pressure drop (ΔP). For better comparison between the experiments, 

the pressure drop was normalized with respect to its initial value (ΔP0). A linear 

relationship between the pressure drop and VCR was observed for both soy protein 

extracts (Figure 5.3). However, the pressure drop increase was about 2.5 times higher for 

the non-electroacidified feed (SPE 9) compared to the electroacidified feed (SPE 6). Such 

an observation was unexpected because the ultrafiltration of SPE 6 was always 

characterized by higher membrane fouling and a faster permeate flux decline than the 

ultrafiltration of SPE 9 [51]. 
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Figure 5.3 Axial pressure drop (ΔP) normalized to its initial value (ΔP0) as a function of VCR 
during ultrafiltration of SPE 6 ( ) and SPE 9 ( ) to VCR 4.5. Standard error is shown at VCR 4.5 
(n = 2). MWCO = 100 kDa, shear rate = 8000 s-1, TMP = 6 psi, T = 25 °C. 

In a hollow fiber configuration, the flow conditions can be described as those of a 

nonporous circular pipe, when the permeate flow rate is much smaller compared to the 

retentate flow rate. The flow of a fluid along the fiber length will induce an axial pressure 

drop characterized by the Hagen-Poiseuille equation (for laminar flow regime), which is a 

function of the flow velocity (v), the fiber length (l) and diameter (d), and the dynamic 

viscosity (η) of the fluid: 

2d
32vlηΔP =  (5-3)

The increased deposition of protein along the membrane walls would reduce the fiber 

diameter, resulting in a higher axial pressure drop. However, the pressure drop was 

always higher for the less fouling feed (SPE 9), suggesting that the viscosity might 

increase faster during the ultrafiltration of SPE 9 compared to SPE 6. As the 

concentration of protein and total solids (TS) in the retentate increased linearly with 

increasing VCR during ultrafiltration of both soy protein extracts [51], it was decided to 

compare the axial pressure drop profile with the protein and the TS concentrations. As 

expected, a linear relationship between the axial pressure drop and the respective 

concentrations was observed. The pressure drop increased more rapidly for SPE 9 
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compared to SPE 6 (Figure 5.4). Since the protein accounts for a major part of the total 

solids, the slope of the pressure drop increase was similar with respect to the protein or 

the TS concentration for a given feed. 
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Figure 5.4 Normalized pressure drop (ΔP/ΔP0) as a function of TS (diamonds, left axis) and 
protein concentration (triangles, right axis) during ultrafiltration of SPE 6 (closed symbols) and 
SPE 9 (open symbols) to VCR 4.5. Standard errors are shown for the final concentration (n = 2). 
MWCO = 100 kDa, shear rate = 8000 s-1, TMP = 6 psi, T = 25 °C. 

During the ultrafiltration, the protein and the TS concentration increased from 

approximately 1.0 to 4.0 % w/w and 1.7 to 5.0 % w/w, respectively. Such an increase 

corresponds to a protein content (protein to TS ratio  100) increase from 60 % in the 

feed to at least 80 % in the final retentate for both soy protein extracts (Figure 5.4 and 

Table 5.1). The dynamic viscosity for the feed showed only a small but significant 

difference (p < 0.006, n = 2) between SPE 6 (1.03 mPa·s) and SPE 9 (1.23 mPa·s). The 

viscosity of the final retentate was 1.81 mPa·s for SPE 6, which was about half of the 

viscosity for SPE 9 (3.69 mPa·s), thus explaining the higher axial pressure drop observed 

during the ultrafiltration of SPE 9. The difference between the viscosity of the SPE 6 and 

SPE 9 retentate was significant at p < 0.12 (n = 2), which is satisfactory, considering the 

retentate samples were produced by two independent ultrafiltration experiments. Since 

the final retentate samples had a similar composition, the higher viscosity observed for 

the non-electroacidified extract was unclear. The correlation between the pressure drop 

and the protein concentration suggests that proteins and their properties play a significant 
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role. The most evident difference between the two soy protein extracts is their pH, which 

likely affects the protein surface charge, the particle size distribution, and the 

intermolecular interactions between the proteins and the other components in the mixture 

(minerals, carbohydrates, and water as a dispersant). The objective of the subsequent 

work was to characterize the physicochemical properties of the soy protein extracts and 

clarify the difference in their viscosity. 

5.3.2 Zeta potential and particle size distribution 

To evaluate the effect of the protein net charge on the viscosity, the zeta potential of 

the soy protein extracts was determined. From the isoelectric point of the soy proteins 

(pH 4.5–4.8), one would expect the proteins to have a negative net charge in both the 

electroacidified (pH 6) and the non-electroacidified (pH 9) soy protein extracts. However, 

the proteins will likely carry a more negative charge at pH 9, being further away from the 

isoelectric point. This was confirmed by measuring the zeta potential, which was -16.6 

and -24.0 mV for SPE 6 and SPE 9, respectively (p < 0.017, n = 2). These values are 

about 50 % lower than those reported by Malhotra et al. [92] for a soy protein isolate 

(approximately -30 mV at pH 6 and -50 mV at pH > 7), which could be due to the 

difference in the production and composition of the soy protein isolate and the soy 

protein extracts used in this work and the method of pH adjustment for the zeta potential 

measurements (acid, base, or buffer). 

The analysis of the particle size distribution revealed that both soy protein extracts 

contained two classes of particles with sizes ranging between 10–30 and 30–400 nm 

(Figure 5.5 (a)). The maximum molecular dimension of soy glycinin reported in the 

literature, around 11–18 nm [93-95], suggests that the first peak corresponds to individual 

proteins, while the second peak may represent protein aggregates. The size distribution 

by intensity was similar for both extracts, although it could be seen that SPE 9 contained 

a larger fraction of smaller particles than SPE 6. Since the intensity of the scattered light 

increases rapidly with the particle size, the intensity distribution is weighted in favor of 

larger particles. Transformation to a volume distribution (Figure 5.5 (b)) provides a better 

estimate about the quantity of the large and the small particles in the sample. The volume 

distribution of SPE 6 remained bimodal with the first peak (10–30 nm) accounting for 
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about 20 % of the total particle volume and the second peak (30–400 nm) accounting for 

the remaining 80 %. On the other hand, the volume distribution of SPE 9 contained a 

single peak at 10–30 nm, representing about 88 % of the total particle volume and the 

peak tail in the range of 30 to 400 nm particles accounted for the remaining 12 %. The 

higher proportion of the larger particles in SPE 6 is in agreement with the less negative 

surface charge of the soy proteins at pH 6, reducing the repulsive electrostatic forces 

between the protein molecules and resulting in a higher degree of protein aggregation. 

The observed viscosity differences of the soy protein extracts can be explained by 

both the zeta potential and the particle size distribution characteristics. The higher 

negative charge of the protein for SPE 9 will cause stronger electrostatic repulsion 

between the protein molecules as well as higher degree of protein hydration, both leading 

to enhanced viscosity. In addition, the higher proportion of the smaller particles in SPE 9 

indicates that at the same mass concentration, the number of particles in the system will 

be higher for SPE 9 than for SPE 6, resulting in shorter interparticle distances, more 

frequent particle collisions, and therefore a viscosity increase. 
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Figure 5.5 Particle size distribution according to intensity and volume for pH non-adjusted, (a) and (b), and pH adjusted, (c) and (d), soy protein 
extracts: SPE 6 ( ), SPE 9 ( ), SPE 6 adjusted to pH 9 ( ), and SPE 9 adjusted to pH 6 ( ). The data were averaged from at least two 
independent experiments for both extracts. 
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5.3.3 The effect of pH on viscosity and particle size distribution 

To further investigate whether the protein net charge is responsible for the different 

viscosity behavior, the pH of the soy protein extracts was adjusted from 6 to 9 for SPE 6 

and vice versa for SPE 9 using concentrated NaOH or HCl. The viscosity increased from 

1.55 to 1.69 mPa·s (SE = 0.02 mPa·s, n = 2) for SPE 6 adjusted to pH 9 and decreased 

from 2.28 to 2.07 mPa·s (SE = 0.01 mPa·s, n = 2) for SPE 9 adjusted to pH 6, which is 

expected, considering the electrostatic repulsion forces are likely enhanced in the former 

while reduced in the latter. However, in both cases, the change in viscosity was only 9 % 

with respect to the pH non-adjusted extracts, and SPE 9 at pH 6 still had a higher 

viscosity than SPE 6 at pH 9, suggesting that the protein net charge may not be a 

governing factor for the viscosity of the soy protein extracts. From the similar viscosity 

for the pH adjusted and non-adjusted soy protein extracts, one was expecting also a 

similar particle size distribution, if a correlation existed between the viscosity properties 

and the particle size. To determine the particle size distribution, the samples of the pH 

adjusted soy protein extracts were diluted 100-fold with 0.01 M phosphate buffer at their 

respective pH values. Figure 5.5 (c) and (d) shows that in contrast to the viscosity, the 

particle size distribution was greatly influenced by the pH adjustment. The intensity 

distribution for SPE 6 adjusted to pH 9 displayed two distinct peaks (10–40 nm and 40–

500 nm) while only one peak (30–500 nm) appeared for SPE 9 adjusted to pH 6. 

Although the proportion of small to large particles and the position of the peaks were 

slightly different, qualitatively, the size distributions according to pH compared quite 

well with the distributions obtained for the pH non-adjusted soy protein extracts (Figure 

5.5 (a)). A very good agreement was found between the volume distributions for SPE 9 

and SPE 6 adjusted to pH 9 (Figure 5.5 (b) and (d)). The volume distribution obtained for 

SPE 9 adjusted to pH 6 displayed one peak, which position was between the two peaks 

observed in the volume distribution for SPE 6. Since the viscosity of the soy protein 

extracts was not significantly affected by the pH adjustment or related to differences in 

the particle size distribution, one can suggest that the electroacidification pretreatment 

has an impact on some other properties of the soy protein extracts that affect the 

viscosity. 
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5.3.4 The effect of composition on viscosity characteristics 

The viscosity behavior was also studied as a function of TS concentration with 

dispersions of the lyophilized soy protein extracts prepared at a concentration ranging 

between 0.3 and 7.0 % w/w. Figure 5.6 shows that the viscosity increased linearly with 

the TS concentration and the rate of viscosity increase was higher for SPE 9 than for SPE 

6, which correlates with the axial pressure drop profile observed during the ultrafiltration 

of the soy protein extracts. Note that for the non-filtered soy protein extracts, the protein 

content (protein to TS ratio  100) does not change and the protein concentrations are 

always about 60 % of the TS concentrations (upper axis in Figure 5.6), unlike for the 

concentrates (after ultrafiltration), where the protein content was at least 80 %. 
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Figure 5.6 Dynamic viscosity as a function of TS and protein concentration (calculated as 60 % 
of TS concentration): SPE 6 ( ) and SPE 9 ( ). Standard error is shown at 7 % w/w for SPE 9 (n 
= 2). 

The viscosity obtained for the concentrate (final retentate) can be compared with 

the non-filtered soy protein extracts either according to the total solids or the protein 

concentration. A comparison at the same TS concentration (i.e., 5 % w/w) shows that the 

viscosity of the non-filtered soy protein extracts was 1.43 and 2.01 mPa·s for SPE 6 and 

SPE 9, respectively, which was 1.3 and 2.0 times lower than the viscosities obtained for 

the final retentate samples. Better agreement was obtained when the viscosity of the 
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filtered and the non-filtered samples was compared at the same protein concentration 

(i.e., ~ 4 % w/w), indicating that the flow properties of the soy protein extracts are 

affected primarily by the protein concentration in contrast to the TS concentration. In 

fact, the viscosity of the non-filtered SPE 6 extract (1.67 mPa·s) was very similar to the 

viscosity of the SPE 6 final retentate (1.81 mPa·s), but the viscosity of the non-filtered 

SPE 9 extract was still about 1.4 times lower than that of the SPE 9 final retentate (3.69 

mPa·s). The discrepancy between the viscosity of the filtered and non-filtered SPE 9 

samples suggests that the protein content (or the removal of carbohydrates and minerals 

during the ultrafiltration) has some impact on the viscosity of the non-electroacidified 

extract (SPE 9). 

To further investigate the effect of the composition, the final retentate samples for 

both SPE 6 and SPE 9 were diluted to various protein concentrations with water or with 

their respective permeates, containing carbohydrates and minerals separated from the soy 

proteins during the ultrafiltration. The resulting protein and TS concentrations for the 

feed, final retentate, and the diluted retentate samples are reported in Table 5.1. Note that 

the protein content does not change if the diluent is water but varies for the permeate 

diluted samples, because the permeate contains minerals and carbohydrates. Due to the 

very low protein of the permeate samples, the protein concentrations for a given dilution 

remain constant regardless of the diluent. 
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Table 5.1 Concentration of protein and total solids (TS) in final retentate, diluted retentate with 
water and permeate, and feed for SPE 6 and SPE 9. 

Extract Stream Diluent Dilution Protein 

concn (g/L) 

TS concn 

(g/L) 

Protein 

content (%) 

SPE 6 Feed - 1.0 10.6 17.6 60.0 

Retentate - 1.0 39.1 47.3 82.6 

Retentate H2O 1.2 32.5 39.4 82.6 

H2O 1.6 24.4 29.6 82.6 

H2O 2.3 17.0 20.6 82.6 

H2O 4.0  9.8 11.8 82.6 

Permeate* 1.2 32.6 40.8 79.9 

Permeate 1.6 24.5 32.6 75.2 

Permeate 2.3 17.1 25.1 68.1 

Permeate 4.0  9.9 17.9 55.6 

       

SPE 9 Feed - 1.0 10.2 17.0 60.0 

Retentate - 1.0 41.1 50.6 81.2 

Retentate H2O 1.2 34.3 42.2 81.2 

H2O 1.6 25.7 31.6 81.2 

H2O 2.3 17.9 22.0 81.2 

H2O 4.0 10.3 12.7 81.2 

Permeate** 1.2 34.3 43.3 79.1 

Permeate 1.6 25.8 34.2 75.3 

Permeate 2.3 18.0 25.9 69.3 

Permeate 4.0 10.4 17.8 58.2 

* TS and protein concentrations were 8.0 and 0.22 g/L respectively. ** TS and protein concentrations were 
6.9 and 0.13 g/L respectively. 

The viscosity obtained for the samples listed in Table 5.1 is presented as a function 

of the protein concentration in Figure 5.7 (a) and (b). The electroacidified extract (SPE 6) 

showed no difference in the viscosity for the retentate samples diluted with water or the 

permeate, which means that the viscosity of SPE 6 is only affected by the protein 

concentration and not by the protein content or the removal of carbohydrates and 

minerals that occurs during the ultrafiltration. This conclusion is further supported by 
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comparing the viscosity of the diluted retentate and the non-filtered SPE 6 samples at 

various protein concentrations (replotted from Figure 5.6), which fall approximately on 

the same line. The non-electroacidified extract (SPE 9) displayed a higher viscosity for 

the retentate diluted with water compared to the permeate diluted samples Figure 5.7 (b). 

The ratio between the viscosities for the two types of diluents decreased with increasing 

dilution (from 0.95 to 0.87 for a dilution factor of 1.2 and 4.0, respectively). Diluting the 

retentate four times yielded a similar protein concentration as for the feed, but only the 

sample diluted four times with the permeate displayed a comparable protein content and 

viscosity as the feed. From the comparison between the retentate (diluted with water or 

the permeate) and the non-filtered SPE 9 samples with a protein content of ~60 % 

(replotted from Figure 5.6), it becomes apparent that the protein content has a greater 

effect on the viscosity at higher protein concentrations. 
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Figure 5.7 Viscosity of feed ( ), final retentate ( ), diluted retentate with water ( ) and the 
permeate ( ) plotted as a function of protein concentration for SPE 6 (a) and SPE 9 (b). The 
results are compared with the dynamic viscosities of non-filtered soy protein extracts ( ), 
replotted from Figure 5.6. 

Diluting the retentate with the permeate results in the addition of carbohydrates and 

minerals back to the soy proteins. It is assumed that carbohydrates do not interact with 

the soy proteins to reduce the viscosity but the addition of minerals increases the ionic 

strength, thus neutralizing the protein net charge and reducing the electrostatic repulsion 

between the protein molecules. This effect would be likely more pronounced for SPE 9 
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because of its higher negative zeta potential than for SPE 6, clarifying the distinct 

viscosity behavior with respect to the protein content for the electroacidified (SPE 6) and 

the non-electroacidified (SPE 9) soy protein extracts. 

5.3.5 The effect of volume fraction on viscosity 

The viscosity of colloidal dispersions is controlled by the effective volume fraction 

rather than the mass concentration of the dispersed particles. The hydrodynamic volume 

of a protein molecule depends on its geometrical shape and the degree of hydration, 

which are difficult to determine experimentally [81,82,89]. The relationship between the 

viscosity and the concentration in Figure 5.6 can be described by a linear function (Eq. 

(5-4)): 

( ) ( )Bh0B0 csυ1ηAc1ηη +=+=  (5-4)

where η and η0 have the same meaning as in Eq. (5-1) and cB is the concentration of the 

dispersed phase. The proportionality constant (A) is a product of the particle shape, 

characterized by the shape factor (s), and the specific hydrodynamic volume (υh). The 

volume fraction (φ) is obtained from the product of the mass concentration and the 

specific hydrodynamic volume (yielding Eq. (5-1)). The constant A was obtained by 

plotting the relative dynamic viscosity (η/η0) minus unity against the protein 

concentration (Figure 5.8) using the data in Figure 5.6 for the non-filtered soy protein 

extracts. It is assumed that only proteins account for the volume fraction and the 

contribution of other components (carbohydrates and minerals) is negligible. Under this 

assumption, constant A is given by the slope of the curves in Figure 5.8 and has a value of 

19.6 and 43.2 mL/g for SPE 6 and SPE 9, respectively. 
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Figure 5.8 Relative dynamic viscosity (η/η0) minus unity plotted against protein concentration for 
SPE 6 ( ) and SPE 9 ( ).Standard error is shown at 0.043 g/mL for SPE 9 (n = 2). 

The specific hydrodynamic volume can be determined when the geometrical shape of the 

dispersed particles is known. Molecular and shape characteristics were obtained from the 

literature for glycinin [93-95], which is the most abundant soy protein constituent. The 

shape for the molecule of glycinin is an oblate ellipsoid with a wide range of reported 

molecular dimensions. The axial ratio (AR), defined as the ratio of major and minor axes, 

thus ranges between 1.25 and 8. The shape factor (s) is given as 2.5 for spherical particles 

(AR = 1) and increases with increasing axial ratio [10]. Simha [96] provided a relation, 

which allows the shape factor to be calculated as a function of AR for oblate and prolate 

ellipsoids of revolution. Based on this relation, the reported axial ratios of 1.25–8 for the 

glycinin molecule correspond to a shape factor of 2.57–6.70 (for oblate), respectively 

[97]. Using the shape factor (s) and constant A, one can calculate the specific 

hydrodynamic volume (υh = A/s) per gram of dry protein (Table 5.2). Specific 

hydrodynamic volume multiplied by the mass concentration provides an estimate of the 

effective volume fraction of the soy proteins in the dispersions. The volume fractions (φ) 

calculated from the range of the protein concentrations in Figure 5.8 and the specific 

hydrodynamic volume are listed in Table 5.2. Since the viscosity increased with the 

protein concentration about two times faster for SPE 9 than for SPE 6, the same ratio is 

also found between their specific hydrodynamic volumes and volume fractions. It can be 
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seen from Table 5.2 that the volume fractions corresponding to the shape factor of 2.57 

(nearly spherical molecules) are too high for the relatively low viscosity of the 

dispersions. The maximum volume fraction for SPE 9 (0.709) exceeds the maximum 

volume fraction for randomly packed rigid, spherical particles (0.64). For this reason, the 

volume fractions estimated from the shape factor of 6.70 seem more reasonable for both 

SPE 6 and SPE 9. In addition, the estimated specific hydrodynamic volume (2.9 and 6.4 

mL/g for SPE 6 and SPE 9, respectively) are in a good agreement with the estimates 

reported by Boulet et al. [89] for a dispersion of soy protein isolate at pH 6 (4–5 mL/g) 

and pH 9 (9–10 mL/g) and ionic strength of 0.05 M. 

Table 5.2 Specific hydrodynamic volume and volume fractions for SPE 6 and SPE 9 derived from 
the viscosity data obtained for the non-filtered soy protein dispersions and molecular parameters 
for glycinin from the literature. 

Extract A (mL/g) AR s υh 

(mL/g) 

φ** 

SPE 6 19.6 1.25 2.57  7.6 0.038–0.319 

8 6.70  2.9 0.015–0.122 

SPE 9 43.2 1.25 2.57 16.8 0.084–0.706 

8 6.70  6.4 0.032–0.269 

* AR = axial ratio. ** For protein concentrations of 0.005–0.042 g/mL. 

This suggests that the proteins are less hydrated in the electroacidified extract (SPE 

6) than in the non-electroacidified extract (SPE 9), and that the degree of hydration does 

not change significantly upon pH adjustment (SPE 6 to pH 9 and SPE 9 to pH 6) as 

indicated by the small difference in the viscosity for the pH adjusted and non-adjusted 

soy protein extracts. Although the pH adjustment was associated with changes in the 

particle size distribution (Figure 5.5), it is proposed that the protein aggregates in the non-

electroacidified extract have a more open structure, that may be permeable to the solvent, 

while the protein aggregates in the electroacidified extract have a closed and rigid 

structure that reduces the hydration. However, the difference in the protein hydration for 

the soy protein extracts needs to be yet clarified. It is possible that electroacidification has 

some impact on the surface hydrophilicity/hydrophobicity of the soy proteins. 
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5.4 Conclusion 

The tangential flow ultrafiltration (to VCR 4.5), when used for the concentration of 

the soy protein extracts with an electroacidification pretreatment (SPE 6) and no 

electroacidification pretreatment (SPE 9), revealed different axial pressure drop profiles. 

The axial pressure drop increased linearly with increasing total solids and protein 

concentration for both SPE 6 and SPE 9, but the rate of increase was 2.5 times higher for 

SPE 9. The viscosity measurements for the feed and the concentrate (final retentate) 

revealed that the viscosity increased 1.8- and 3.0-fold for SPE 6 and SPE 9, respectively, 

thus clarifying the axial pressure drop profile. As the composition of the soy protein 

extracts was similar and the concentration of the protein and the total solids increased at 

the same rate during the ultrafiltration of both soy protein extracts, the cause for the 

higher viscosity of the non-electroacidified extract remained unclear. The zeta potential 

was -16.6 and -24.0 mV for SPE 6 and SPE 9, respectively. Analysis of the particle size 

distribution according to volume revealed that at least 80 % of particles were in the size 

range of 10–30 nm for SPE 9 and 30–400 nm for SPE 6. To verify whether the higher 

viscosity for SPE 9 was caused by its higher pH or the smaller particle size, the pH of the 

soy protein extracts was adjusted from 9 to 6 for SPE 9 and from 6 to 9 for SPE 6. 

Although, the particle size distribution was greatly influenced by the pH adjustment, the 

viscosity of the soy protein extracts changed only marginally, indicating that the particle 

size distribution and the pH were not responsible for the higher viscosity of SPE 9. The 

viscosity increased linearly with the protein concentration for both soy protein extracts, 

with a more rapid increase for SPE 9 than for SPE 6. Measurements of the viscosity for 

the final retentate diluted with water or the permeate revealed that the viscosity of SPE 9 

was dependent on the composition and decreased with higher mineral content (lower 

protein content), whereas the composition had no influence on the viscosity of SPE 6. It 

was assumed that the minerals reduced the viscosity of SPE 9 through neutralization of 

the protein surface charge and the reduction in electrostatic repulsive forces. It is 

proposed that higher degree of protein hydration (water-binding capacity) may be 

responsible for the higher viscosity of SPE 9 compared to SPE 6, however, a further 

verification of this assumption is needed. 
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A combined process of electroacidification and membrane ultrafiltration was 

investigated as an alternative to the conventional production of soy protein isolates for 

food applications. Ultrafiltration performance was compared for the electroacidified (SPE 

6) and the non-electroacidified (SPE 9) soy protein extract. 

 

Ultrafiltration of the soy protein extracts in the hollow fiber and the dead-end 

system was accompanied by membrane fouling and a permeate flux decline. The 

membrane fouling was always more significant for SPE 6, resulting in at least a 1.5-fold 

increase in the total fouling resistance (decrease in the permeate flux) compared to SPE 9. 

The analysis of the membrane fouling in the dead-end system showed that the irreversible 

fouling was higher for SPE 6 and accounted for 22 % of the total fouling resistance, 

compared to only 1 % for SPE 9. The amount of protein desorbed from the membrane 

surface (irreversible fouling) was 2.70 mg/cm2 for SPE 6 and 0.13 mg/cm2 for SPE 9, 

which correlated well with the estimates of the irreversible fouling resistance. The overall 

protein deposition, consisting of the protein collected in the rinsing water (reversible 

fouling) and the protein desorbed from the membrane surface, was 6.70 and 6.93 mg/cm2 

for SPE 6 and SPE 9, respectively. The higher observed total fouling resistance but the 

similar overall protein deposition for the two extracts was explained by a lower porosity 

of the fouling deposit for SPE 6. This was confirmed by the scanning electron 

micrographs of the fouled membranes, which showed that the fouling deposits appeared 

denser and more compact for SPE 6 than those for SPE 9. The formation of denser 

fouling deposits for SPE 6 was attributed to weaker electrostatic repulsion between the 

protein molecules due to the lower protein net charge at pH 6 (closer to pI) than at pH 9. 

Experiments with SPE 9 adjusted to pH 6 and SPE 6 adjusted to pH 9 revealed that the 

pH of the soy protein extract had a strong impact on the extent of membrane fouling and 

the proportions of reversible and irreversible fouling. The zeta potential (electrical 

potential in the vicinity of a charged surface) was -17 and -24 mV for SPE 6 and SPE 9, 

respectively, which confirmed that the soy proteins were less negatively charged at pH 6 

than at pH 9. The lower protein net charge at pH 6 also resulted in a higher degree of 

protein aggregation for SPE 6, as indicated by the higher proportion of larger particles 

(30–400 nm) in the particle size distribution, estimated by the dynamic light scattering. 
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The protein aggregates may be strongly bound to the membrane surface due to multiple 

attachments and thus contribute to the higher irreversible fouling for SPE 6. 

 

The composition of the soy protein isolates produced by the direct ultrafiltration to 

VCR 4.5 and the two-stage discontinuous diafiltration (VCR 2, dilution, and VCR 4) in 

the hollow fiber system was determined by independent analytical methods for total 

solids, proteins, carbohydrates, and minerals. The composition was always determined 

for the feed, the retentate, and the permeate streams in order to calculate the mass 

balance. A three-way sample valve installed on the retentate line allowed for sample 

collections throughout the course of ultrafiltration. Concentration profiles as a function of 

the volume concentration ratio provided an insight into the retention characteristics of the 

soy protein extract components. From the constant carbohydrate concentration in the 

retentate, it was concluded that the carbohydrates were able to freely permeate through 

the membrane despite the membrane fouling. The removal of carbohydrates was 78 and 

89 % for the direct ultrafiltration to VCR 4.5 and the two-stage discontinuous 

diafiltration, respectively, which is consistent with the theoretical predictions for freely 

permeable solutes. In contrast, the minerals were partially retained by the membrane, 

especially for the electroacidified extract. The mineral removal during the direct 

ultrafiltration to VCR 4.5 was 64 and 58 % for SPE 6 and SPE 9, respectively, which was 

enhanced to 72 and 64 % during the discontinuous diafiltration. Mineral analysis revealed 

that the removal of magnesium, calcium, and phosphorus (phytic acid) was 63, 55, and 50 

% for SPE 6, compared to only 41, 21, and 11 % for SPE 9 during the direct 

ultrafiltration to VCR 4.5. The discontinuous diafiltration enhanced the removal of all 

three minerals by at least 7 % for SPE 6 but no improvement was obtained for SPE 9. The 

lower removal of these selected minerals at alkaline pH was attributed to the ternary 

complex formation between the soy proteins, the divalent minerals, and the phytic acid 

and/or the precipitation of mineral-phytates. The protein content of the soy protein 

isolates produced by the hollow fiber ultrafiltration was at least 88 % (dry basis), 

regardless of whether the soy protein extract was electroacidified or non-electroacidified. 
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The observed retention of minerals by the membrane, despite their much lower size 

than the membrane pores, led to the investigation of the role of minerals in the formation 

of membrane fouling. The fouled membranes recovered after ultrafiltration of the soy 

protein extracts in the dead-end system were analyzed for magnesium, calcium, and 

phosphorus. Despite the higher membrane retention of all three minerals for SPE 9, none 

of these minerals could be detected in significant amounts in the fouled membranes for 

this type of extract. This suggests that the minerals were retained by the membrane due to 

the ternary complex formation rather than the precipitation of mineral-phytates. The 

removal of magnesium, calcium, and phosphorus during the hollow fiber ultrafiltration 

was higher for SPE 6 than for SPE 9, but still lower than predicted for freely permeable 

solutes. This indicates that the protein-mineral-phytic acid interactions also occur in SPE 

6 but to a lower extent than in SPE 9. Higher protein deposition associated with the 

irreversible fouling and the protein-mineral-phytic acid interactions were likely 

responsible for the higher levels for all three minerals in the fouled membranes for SPE 6. 

Since the mineral deposition was insignificant compared to the protein deposition, it was 

concluded that the minerals had a minor contribution to the membrane fouling. 

 

The concentration of the soy protein extracts in the hollow fiber ultrafiltration 

system was also associated with an axial pressure drop increase, which was more 

significant for SPE 9 compared to SPE 6. Despite the similar composition of the final 

retentate samples for both extracts, the viscosity was about two times higher at pH 9 

compared to pH 6, which explained the higher axial pressure drop observed during the 

ultrafiltration of SPE 9. It was initially believed that the higher viscosity for SPE 9 could 

be related to its higher zeta potential, which would enhance the viscosity due to stronger 

electrostatic interactions between the protein molecules (electroviscous effects). Also, the 

dynamic light scattering analysis revealed a higher proportion of smaller particles (10–30 

nm) for SPE 9, which could also contribute to the higher observed viscosity, because at 

the same mass concentration, the number of particles in the system would be higher for 

SPE 9 compared to SPE 6. However, the contributions of the pH and the particle size 

distribution were excluded, because adjusting the pH of SPE 6 to 9 and the pH of SPE 9 

to 6 significantly affected the particle size distribution but had no effect on the viscosity 
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of the pH adjusted extracts. The use of Einstein’s equation with the molecular dimensions 

for glycinin, the most abundant of the soy proteins, suggests that the differences in 

viscosity between SPE 6 and SPE 9 could be caused by a difference in the protein 

hydration and the compactness (permeability) of the protein aggregate. It is possible that 

the electroacidification treatment affects the hydration characteristics of the soy proteins. 

The viscosity of the electroacidified soy protein concentrates was not affected by both the 

protein and the mineral content, while the viscosity of the non-electroacidified soy 

protein concentrates increased with decreasing mineral content (or increasing protein 

content). The effect of minerals on the viscosity of the soy protein dispersions at pH 9 

was attributed to the higher zeta potential (i.e., protein net charge). With increasing 

mineral content, the protein net charge is reduced, resulting in the compression of the 

electrical double layer and reduction of the electroviscous effects. 

 

The presented study demonstrated the feasibility of combining electroacidification 

and membrane ultrafiltration for the production of soy protein isolates. The understanding 

of the effect of electroacidification on the formation of membrane fouling and the 

physicochemical properties of the soy protein extracts has been improved. The superior 

composition of the final soy protein isolate (lower ash and phytic acid content) and its 

lower viscosity, which reduces the axial pressure drop in the hollow fiber ultrafiltration 

system (and consequently the pumping costs) could compensate for the lower permeate 

flux obtained during the ultrafiltration of the electroacidified extract. The efficiency of 

the mineral and phytic acid removal could be enhanced by operating first in a continuous 

diafiltration mode, followed by ultrafiltration of soy proteins in a concentration mode. 

The potential of this novel processing technology should be investigated further. 

 

Based on the presented findings, the future work should include: 

 

1. Investigation of a continuous diafiltration to enhance the mineral and phytic acid 

removal. 
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2. Identification of the membrane fouling mechanisms in the hollow fiber 

ultrafiltration to determine effective methods for membrane fouling minimization 

(e.g., backflushing, creating a pulsatile feed flow). 

 
3. Examination of different membrane materials that would be less prone to protein 

fouling. 

 

4. Investigation of the interactions (e.g., hydrophobic, disulfide bonding) between 

the protein subunits of β-conglycinin and glycinin to find out about the role of 

these interactions in membrane fouling. 

 

5. Study of the temperature effect on the ultrafiltration performance during the 

ultrafiltration of the soy protein extracts. 

 
6. Evaluation of the surface hydrophobicity and the hydration properties of the soy 

proteins and their relation to the viscosity of the electroacidified and the non-

electroacidified soy protein extract. 

 
7. Characterization of the functional properties for the soy protein isolates produced 

by electroacidification and membrane ultrafiltration. 

 
8. Detailed cost analysis taking into account operating, maintenance, and membrane 

cleaning costs and also the quality of the soy protein isolates (protein purity, 

functionality, and yield). 
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8.1 Chemical structures of membrane materials 

8.1.1 Polysulfone 

 

 
 

8.1.2 Polyethersulfone 

 

 
 

8.2 Chemical structure of phytic acid 
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8.3 Mass balance for dead-end ultrafiltration 

Samples from each filtration stream (feed, F; retentate, R; permeate, P) and the 

rinsing water (RW) were analyzed for TS and protein concentration. Knowing the volume 

(V) and the solute concentration (ci) for each stream, one can calculate the mass balance 

according to Eq. (8-1): 

( )RWRWPPRRFF VcVcVcVcΔ ++−=  (8-1)

i.e. accumulation (Δ) = mass in – mass out. Ideally, there is no accumulation in the 

system (Δ = 0) which means total mass recovery. Accumulation in the system (Δ > 0) 

may occur due to adsorption and deposition of the solutes on the membrane surface. 

Therefore, the mass balance calculations can provide a quantitative estimate of protein 

deposition in the irreversible membrane fouling and can verify the results obtained from 

the protein desorption by soaking the membrane in SDS solution (see Section 4.2.4). The 

mass balance for the total solids calculated according to Eq. (8-1) is presented in Table 

8.1 (column d). For SPE 6, the mass accumulated in the system was around 1–2 % of the 

total TS mass in the feed. However, there is a discrepancy for SPE 9, because negative Δ 

values were obtained. This means there would have to be generation of mass in the 

system, corresponding to approximately 7.5 % of the initial TS mass, which is 

impossible. 
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Table 8.1 Mass balance calculations for ultrafiltration of SPE 6 and SPE 9 to VCR 2.5 using the 100 and the 200 kDa membrane. 

Feed; MWCO Stream TS mass (g) a 
Δ TS mass 

(g) b 
TS mass (g) c 

Δ TS mass 

(g) b.c 

Protein mass 

(g) 

SPE 6; 100 kDa Feed 0.854 ± 0.009 0.009  0.081 0.454 ± 0.010 

Retentate 0.438 ± 0.004 0.366 0.242 ± 0.005 c 

Permeate 0.283 ± 0.006  0.008 ± 0.001 

Rinsing water 0.124 ± 0.003  0.115 ± 0.001 

SPE 6; 200 kDa Feed 0.850 ± 0.007 0.018  0.089 0.469 ± 0.012 

Retentate 0.428 ± 0.012 0.357 0.242 ± 0.012 c 

Permeate 0.279 ± 0.015  0.007 ± 0.003 

Rinsing water 0.125 ± 0.004  0.117 ± 0.000 

SPE 9; 100 kDa Feed 0.935 ± 0.011 -0.070  -0.008 0.613 ± 0.002 

Retentate 0.549 ± 0.013 0.487 0.399 ± 0.010 c 

Permeate 0.251 ± 0.002  0.014 ± 0.001 

Rinsing water 0.205 ± 0.010  0.206 ± 0.014 

SPE 9; 200 kDa Feed 0.926 ± 0.014 -0.071  -0.009 0.588 ± 0.009 

Retentate 0.543 ± 0.007 0.481 0.385 ± 0.015 c 

Permeate 0.252 ± 0.003  0.014 ± 0.001 

Rinsing water 0.202 ± 0.006  0.203 ± 0.009 
a Mean ± standard error, at least to independent experiments. b Δ TS calculated according to Eq. (8-1). c Considering water evaporation rate at 0.41 mL/h. 
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As shown in Figure 8.1 (a) for individual experiments, the Δ values are always 

negative for filtrations at pH 9 (SPE 9 and SPE 6 adjusted to pH 9) and tend to be 

positive for pH 6 filtrations (SPE 6 and SPE 9 adjusted to pH 6). There is no correlation 

with respect to the membrane MWCO. 

-0.14

0.00

0.14

-0.14 0.00 0.14
Δ Protein (g)

Δ
 T

S 
(g

)

(a)

-0.14

0.00

0.14

-0.14 0.00 0.14
Δ Protein (g)

Δ
 T

S 
(g

)

(b)

Figure 8.1 Mass balance calculations using the original data (A) and taking into account the 
evaporation rate of 0.41 mL/h (B) for ultrafiltration of SPE 9 to VCR 2.5 using the 100 kDa ( ) 
and the 200 kDa ( ) membrane, SPE 6 adjusted to pH 9 ( ), SPE 6 using the 100 kDa ( ) and 
the 200 kDa ( ), and SPE 9 adjusted to pH 6 ( ). 

A possible explanation for this discrepancy could be water evaporation from the 

permeate during the experiments. The filtration is performed with a known volume of the 

feed solution. During the filtration, the permeate is collected in an open beaker, standing 

on a scale, its mass recorded, and converted to volume using the density of water. The 

retentate volume is determined by the difference between the feed and the permeate 

volume. The filtration is stopped when a given volume of permeate is collected (i.e., at a 

given VCR). Water evaporation over the course of the experiment would lead to over-

collection of the permeate and underestimation of the retentate volume. Performing the 

filtrations up to VCR 2.5 took approximately 4.0, 5.5, 8.0, and 10.0 hours for SPE 6 

adjusted to pH 9, SPE 9, SPE 6, and SPE 9 adjusted to pH 6, respectively. With such long 

filtration times, water evaporation seems likely to occur. To estimate the evaporation rate, 

a beaker was filled with water and the mass of water was recorded over a 10-hour period. 

The evaporation rate was estimated at 0.14 mL/h. Considering this evaporation rate and 

re-calculating the mass balance, the Δ values for the pH 9 filtrations in Figure 8.1 (a) 

shifted closer to the origin of the coordinates but remained still negative. It is difficult to 
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determine the evaporation rate retrospectively, because it is a function of the temperature, 

the relative humidity, and the air-water interface area. The evaporation rate could have 

been higher during the filtrations, because the permeate drips slowly from a narrow 

tubing. Assuming, there is no mass accumulation in the system for SPE 9 filtrations, we 

can estimate that the evaporation rate would have to be as high as 0.41 mL/h. This would 

reduce the TS mass in the retentate by 16 and 11 % for the SPE 6 and SPE 9 filtrations, 

respectively (Table 8.1, column e). Re-calculating the mass balance according to Eq. (8-1) 

yields Δ values close to zero for SPE 9 filtrations and positive Δ values for SPE 6 

filtrations Table 8.1 (column f), indicating TS accumulation in the system for SPE 6. The 

results are also illustrated in Figure 8.1 (b). The Δ values for protein calculated from the 

protein mass in column g, Table 8.1 and Eq. (8-1) are 0.089, 0.103, -0.006, and -0.014 g 

for SPE 6 (100 kDa), SPE 6 (200 kDa), SPE 9 (100 kDa) and SPE 9 (200 kDa), 

respectively. 

Protein deposition estimated by soaking the fouled membrane in SDS solution was 

2.7 and 0.13 mg/cm2 for SPE 6 and SPE 9, respectively (see Section 4.3.5), which 

corresponds to 77.5 and 3.7 mg (considering the membrane area of 28.7 cm2). The 

protein deposition for SPE 9 is quite low and probably quite difficult to detect with the 

mass balance, considering the experimental error associated with the determination of TS 

and protein concentrations. On the other hand, the protein deposition for SPE 6 seems to 

be in a good agreement with the value obtained by the mass balance (i.e. 89 mg). 

8.4 Bradford assay with purified soy proteins as standards 

The calibration curves obtained by Bradford protein assay (Standard Procedure for 

Microtiter Plates, Bio-Rad Laboratories, Mississauga, ON, Canada) for BSA and purified 

soy proteins are compared in Figure 8.2. A mixture of β-conglycinin and glycinin was 

prepared by mixing the purified proteins in a 1:1.4 ratio, respectively. The slope of the 

calibration curves obtained for β-conglycinin, glycinin, and the mixture of the two 

proteins was 18, 27, and 23 %, respectively, lower than the slope obtained for BSA. 
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Figure 8.2 Calibration curves for BSA ( ), β-conglycinin ( ), glycinin ( ), and a mixture of β-
conglycinin and glycinin ( ) combined in a 1:1.4 ratio. 

8.5 Conductivity of soy protein extract solutions 

The conductivity of the soy protein dispersions prepared at a TS concentration 

between 0.3 and 7 % w/w is shown in Figure 8.3. The conductivity of SPE 9 was always 

lower than that of SPE 6, which can be explained by the higher ash content for SPE 9 

(10.4 %) compared to SPE 6 (8.0 %). 
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Figure 8.3 Conductivity of soy protein extract dispersions (25 ± 1 °C): SPE 6 ( ) and SPE 9 ( ). 



APPENDIX 
 

 130

The conductivity measured for KCl solutions prepared at various molar 

concentrations is shown in Figure 8.4. 
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Figure 8.4 Conductivity of KCL solutions (25 ± 1 °C). 

The conductivity of the feed, retentate and permeate samples obtained during direct 

UF to VCR 4.5 and two-stage discontinuous diafiltration in the hollow fiber system is 

shown in Table 8.2. 

Table 8.2 Conductivity of feed, retentate and permeate samples collected during ultrafiltration 
experiments in the hollow fiber system. 

Experiment Conductivity (mS)

Feed Retentate Permeate  

SPE 6 Direct UF 1a 1.403 1.510 1.331  
SPE 6 Direct UF 2a 1.433 1.575 1.427  

SPE 9 Direct UF 1.990 2.280 1.830  

   

 Feed Retentate Permeate 1b Permeate 2b

SPE 6 DDF 1.393 1.006 1.273 0.759

SPE 9 DDF 1.912 1.576 1.648 1.003
a Two replicate experiments. b Permeate 1 and 2 collected in DDF during stage 1 and 2, respectively. 

Conductivity measured at 25 ± 1 °C. 


