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Abstract

We introduce the de Broglie-Bohm causal interpreation of quantum me-

chanics and compare it to the standard interpretation of quantum mechanics,

the Copenhagen interpretation. We examine the possibility of experimen-

tally distinguishing between the two theories, as well as the potential for

the causal interpretation to more easily bridge the gap between the physics

of the quantum and classical worlds. We then use the causal interpreta-

tion to construct a deterministic model of the helium atom in which the two

electrons move along trajectories through space and time about a station-

ary nucleus. The dynamics are governed by the non-relativistic Schrödinger

equation and the spin vectors of both electrons are assumed to be constant

along their respective trajectories. We examine the Bohmian trajectories

associated with (approximations to) eigenstates of the helium Hamiltonian

as well as the trajectories associated with some non-eigenstates. We also

compute an approximation to the ground state energy of the helium atom

using a representation of the helium wavefunction in terms of hydrogenic

eigenfunctions which is motivated by a perturbation approach.
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Chapter 1

Introduction

The purpose of this thesis is to investigate a deterministic model of non-
relativistic quantum mechanics known as the de Broglie-Bohm causal inter-
pretation of quantum mechanics (commonly referred to as Bohmian mechan-
ics). We highlight the main differences between Bohmian mechanics and the
standard interpretation of quantum mechanics, known as the Copenhagen
interpretation. We also apply Bohmian mechanics to the two electrons in
the helium atom, thereby constructing a deterministic model of the atom in
which the electrons follow trajectories through space and time, something
that is impossible according to the Copenhagen interpretation.

With the advent of quantum mechanics in 1925 [41], humanity entered
a new era of science marked by paradox and uncertainty. We now had a
mathematical theory that set out to describe the dynamics of microscopic
matter, but it was formulated in terms of a quantity that was not obvious how
to interpret – the wavefunction. Clearly the wavefunction should represent
some physical property of the system under examination, but the formalism
did not say what this property was. One could use the wavefunction to
make probabilistic predictions and in this way the theory was shown to be
consistent with experiment. However, it was still unclear as to precisely
what the wavefunction was and whether it provided anything more than just
probabilities. Up until this point in time, scientists had not come across such
a situation. Never before in a physical theory had the mathematics preceded
the interpretation in such a profound way.

Not long after the inception of this new theory, Max Born noticed that
the norm of the wavefunction remained constant in time if the wavefunction
evolved in time according to the Schrödinger equation. Thus, he interpreted
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the wavefunction as giving a measure of the relative probability of finding
the system at a particular point in configuration space. The constancy of
the norm of the wavefunction then expressed the fact that there is always a
probability equal to unity of finding the system at some point in configuration
space. Although this interpretation is consistent with logic and experiment,
it makes quantum mechanics a statistical theory and does not provide a way
to predict the outcomes of individual experiments.

This inability to completely analyze a single distinct quantum event is
made even more evident in Heisenberg’s Uncertainty Principle which is a
consequence of the non-commutative mathematics behind the theory. It says
that there are certain pairs of measurable quantities associated with every
system that are termed complementary observables. For a given pair of com-
plementary observables simultaneous measurements can only be made to a
certain precision. Thus, knowing the value of one quantity to a high precision
automatically lowers the precision to which one can know its complementary
partner. According to the standard interpretation of quantum mechanics
the Uncertainty Principle does not present a restriction on what we are able
to measure, but on what we are able to know. This limit is somehow built
into the physics of the universe and its existence is only made apparent to
us when we describe things on the quantum level (i.e., on length and time
scales characteristic of quantum events). The Uncertainty Principle is seen
by some to be so fundamental that it is sometimes taken as an axiom of the
theory.

Thus, it seems that quantum mechanics not only lends itself to being a
statistical theory because of the consistency of Born’s probabilistic interpre-
tation of the wavefunction, but it contains a seemingly built-in mechanism
by which we can no longer analyze a single quantum particle or event com-
pletely. This is markedly different to classical mechanics in which one can
theoretically measure and know any number of dynamical quantities of a
system at any time. The question now arises as to what this tells us about
the quantum world. If we can only measure certain quantities of a quantum
system simultaneously, what are we to say about the quantities we cannot
measure? Does the system even simultaneously possess quantities associated
with complementary observables? It is at this point that philosophy becomes
hopelessly fused with the interpretation. One’s preconceived notions about
what the quantum world “should” look like and what the purpose of physics
is will shape one’s interpretation in profound ways. In fact, from the early
days of the theory some of the most well-recognized and influential physicists
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disagreed very strongly on certain matters of interpretation. Schrödinger,
on one hand, believed that there was an underlying reality that his the-
ory attempted to describe. For him, material particles existed and moved
throughout spacetime regardless of whether or not they were being observed.1

Werner Heisenberg and Niels Bohr argued that there is no meaning or benefit
to speaking about this underlying reality since it is not revealed to us outside
measurement. In their view, we can only gain information about our world
by interacting with it (i.e., by measuring it) so any concept that goes beyond
this is ultimately worthless since it cannot be proven or disproven through
experience.

This is a positivist viewpoint and is what is known as the Copenhagen in-
terpretation of quantum mechanics (we will commonly refer to this as SQM,
standing for standard quantum mechanics). The Copenhagen interpretation
was fathered by Heisenberg and Bohr and emerged from the tumultuous first
couple decades of quantum mechanics as essentially the only interpretation.
It is the interpretation that is commonly taught in classrooms today and the
viewpoint commonly held among experts in the field. It is the purpose of this
thesis to discuss an alternative interpretation of quantum mechanics known
as Bohmian mechanics (we will frequently refer to this as BM) and show how
it can be applied to the specific system consisting of a single helium atom.
This extends the Ph.D. thesis work of Carolyn Colijn, who used Bohmian
mechanics to provide a similar picture of the hydrogen atom [11]. In the next
section we will examine the mathematical structure of quantum mechanics
and discuss the Copenhagen interpretation in more detail. Following this,
in Chapter 2, we will introduce the mathematical and conceptual basis of
Bohmian mechanics. We will discuss how it provides a more intuitive de-
scription of the quantum world and is able to address some of the difficulties
associated with the Copenhagen interpretation.

1The term “observed” is ambiguous. Does observing a quantum system imply mere
interaction with other systems of matter and energy (i.e., the interaction between system
and measuring apparatus) or does it require a human or “intelligent” being to somehow
register the outcome of the measurement? For our purposes we will consider an observation
or measurement of a quantum system to be the former – a physical interaction with a
measuring apparatus.
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1.1 The Mathematical Structure of Quantum

Mechanics and the Copenhagen Interpre-

tation

Quantum mechanics is unlike any other physical theory in that the math-
ematics largely preceded the interpretation. When Schrödinger developed
wave mechanics in 1925 [37, 38, 39, 40], he did so by trying to associate, in
some reasonable way, concepts normally associated with waves (frequency,
wavelength, etc.) with material particles [41] (see also [32] for a discussion
on this). In doing this, he arrived at his substitution rules – that each mea-
surable quantity (which we will refer to as an observable from here onwards)
should be represented mathematically as an operator as opposed to a vari-
able. In particular, the variable representing position is replaced by itself
(i.e., the operator representing multiplication by x) and the variable rep-
resenting momentum is replaced by the operator −ih̄∇. Using these two
substitutions, any observable which can be written classically as F (x, p, t) is
replaced by the operator F̂ (x,−ih̄∇, t).2

Schrödinger’s original formulation of wave mechanics is quite lacking in
mathematical rigor. It is based on the comparison of a free particle and
a plane wave and from this comparison he derives the above substitution
rules. It is then assumed that the substitution rules are fundamental equa-
tions which will give the proper dynamics of any system of particles (i.e., by
making the substitutions x→ x and p→ −ih̄∇ in the classical equation for
any observable, we get the corresponding “quantum observable”). There is
no justification for this assumption, except that no experiment has yet re-
futed any prediction made by the Schrödinger equation. Within a few years
of Schrödinger’s original formulation the lack of mathematical rigor was ad-
dressed by von Neumann. He formulated quantum mechanics in terms of a
set of postulates from which one could derive all of the mathematical ma-
chinery needed to make predictions. We will now present these postulates
and discuss how they are interpreted in the Copenhagen interpretation.3

Postulate 1: The state of a quantum mechanical system is completely de-

2Note that F̂ is a function of the operators x and −ih̄∇ and the parameter t.
3These postulates are listed and discussed in many quantum mechanics texts. Some

well-written examples are [32] and [7].
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scribed by a single-valued, finite, continuous function that depends on the
coordinates of each particle in the system as well as on time. This function
is referred to as the wavefunction and is commonly written Ψ(x, t) where x
refers to the coordinates of all particles in the system. The wavefunction has
the property that Ψ∗(x, t)Ψ(x, t)dτ = |Ψ(x, t)|2dτ gives the probability that
the system is in the volume element (x, x+dτ) of configuration space at time
t.

This interpretation of the wavefunction in terms of probability is noth-
ing more than Born’s statistical interpretation. It is interesting to note that
the wavefunction is said to give a complete description of the system, even
though it represents statistical properties of the system. In May 1935, Ein-
stein, Podolsky and Rosen, hereafter referred to as EPR, published a paper
in which they argued that the wavefunction cannot give a complete descrip-
tion of reality [15]. Using a property of quantum theory called entanglement4

they outlined a thought experiment which presented a conundrum. We will
outline a simpler experiment proposed by Bohm [8] which highlights the same
issues as EPR.

First we define two terms – “element of physical reality” and “complete
physical theory”. EPR defined an “element of physical reality” as any physi-
cal quantity of a system, whose value can be predicted with certainty without
measuring it or disturbing it in any way.5 They defined a “complete physical
theory” as one which accounts for all elements of physical reality. Using these
two definitions, EPR endeavor to show that conventional quantum mechan-
ics is not a complete physical theory. Here is a simple thought experiment
due to Bohm which outlines the basic argument (see also [14] for a good
discussion on the EPR paradox).

4Entanglement refers to the way in which two systems become intimately connected
after interacting with each other. After interaction, the properties of each system are
related so that measurement of a property of one system dictates the value of that property
possessed by the other system.

5Some readers may find this definition troubling as it does not account for many quan-
tities one would like to associate with an “element of physical reality”. As an example,
consider the position of a car parked in a garage. One may need to measure this before
knowing its value but that does not mean the car’s position is not an element of physical
reality. EPR define “element of physical reality” as they do to produce the conclusion
they desire. They define what may more correctly be called “a subset of all elements
of physical reality” which have the special property that their values can be determined
without measurement.
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Suppose we start with a system of total spin 0 which disassociates into two
identical particles, each of spin 1

2
which travel away from each other. If the

spin of particle A is measured along some direction (call it the z-direction),
the result will either be h̄

2
or − h̄

2
. If the measurement h̄

2
is made, we know

from conservation of spin (i.e., angular momentum) that a measurement of
the spin of particle B along the same direction must yield the value − h̄

2
.

Thus, by definition, the spin of particle B along the z-direction is an element
of physical reality. However, were we to measure the spin of particle A along
some other arbitrary direction, n̂, we would come to the conclusion that the
spin of particle B along the direction −n̂ is an element of physical reality. In
this way, it is easily seen that the spin of particle B in any direction can be
made an element of physical reality by measuring the spin of particle A along
the appropriate direction. It is as if particle B “knows” in which direction
it should point its spin regardless of what direction the spin of particle 1 is
measured. According to the Copenhagen interpretation, the Uncertainty Re-
lations imply that the x-component and z-component of the spin of particle
B do no simultaneously exist because they are complementary observables.
Thus, EPR concluded that one of two possibilities had to hold. Either par-
ticle B always possessed the knowledge of how to orient its spin or it was
influenced by the measurement of particle A. If the first case holds, it is clear
that the standard interpretation of quantum mechanics is not a complete
physical theory according to the definition given by EPR. If the second case
holds some sort of effect must be propagated instantaneously from particle
A to particle B at the exact moment of measurement of particle A. Thus,
locality is violated. EPR concluded that either measurement of one of the
entangled particles had a non-local effect on the other particle, or there was
some element of physical reality that quantum mechanics could not account
for. These elements of physical reality became known as hidden variables
and various formulations of quantum mechanics have been developed which
have attempted to incorporate them. In fact, Bohmian mechanics is a hidden
variable theory as we will see in the next section.

About five months after the EPR paper was published, Bohr issued a
reply which was published in the same journal under the same title. He
defended the completeness of quantum mechanics by appealing to his concept
of complementarity. Complementarity is a term commonly used in reference
to complementary observables, but Bohr’s usage of the word implied more
than this. Bohr’s complementarity refers to the way in which matter has
to be described using two mutually exclusive, yet necessary, constructs –
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particles and waves. The ramifications of the mathematical structure of the
theory, for instance the Uncertainty Principle, stem from the fact that we
are attempting to use one theory to encompass two different descriptions of
matter. In the world of experiment, it is the particular measuring apparatus
that we use to measure a quantum system that determines which of these two
mutually exclusive forms of matter we observe. For instance, in the double
slit experiment, we observe the wave nature of matter by the interference
of the portions of the wavefunction coming through each slit. Similarly, the
particle nature of matter is made manifest when the wavefunction interacts
with a photographic plate on the other side of the system and collapses to
a point. Different measuring apparatus causes matter to manifest itself in
different ways – either particle or wave, but never both at the same time.

Essential to Bohr’s concept of complementarity is the recognition that all
information we can glean about the world in which we live ultimately comes
through our observation (or equivalently, measurement) of it. Any quantity
or property that we naturally ascribe to a particle (such as spin or position,
for instance) only reveals itself once we make a measurement specifically de-
signed to reveal it. What is more, the value that is measured cannot be
connected to some previously existing state of the particle since the mea-
surement implies an interaction between particle and measuring apparatus.
The result of a measurement, then, reveals only the final state of the system
after the measurement interaction is complete.

Bohr and Heisenberg chose to interpret this fact as a limit on what is
knowable about the quantum world and this is representative of the posi-
tivist philosophical underpinnings of the Copenhagen interpretation.6 Since
the only way of ascertaining any information about the properties of a quan-
tum system is through its interaction with some measuring apparatus it is
meaningless to think about the system possessing any of these properties out-
side of such an interaction. Thus, according to SQM it is meaningless to think
of a particle traveling along a spacetime trajectory. A particle possesses a
well-defined position or momentum (for instance) only when it interacts with
a suitable measuring apparatus and a value for that particular property is
read off or inferred from the display of the apparatus. This measured value,
and hence the existence of the property itself, is a product of the interaction
and cannot be spoken of outside it.

6This is in contrast to Schrödinger’s or Einstein’s realist philosophy that there is an
underlying quantum reality that exists independent of observation.
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Bohr thought of measurement as revealing a specific potentiality of the
object being measured. Before the measurement is made, the object exists in
a state of potentialities. The measurement consists of an interaction between
apparatus and object which ultimately changes the state of the object into
a state we associate with the value measured. It is not proper to speak of
the object as being in this state, or even any other particular state, before
the measurement. All one can say is that it existed in a mixture of potential
states and the measurement served to leave it in one of them. It is important
to understand that for Bohr, different measuring apparatus revealed different
sets of potentialities. Thus, the set of potentialities that exist for an object
depends on the particular experimental setup with which it is measured.

For instance, in the version of the EPR experiment described above one
can measure the spin of particle A in any direction. According to EPR, this
means that the spin of particle B in any (hence, every) direction is an element
of physical reality. This is not the case according to Bohr, however. In his
analysis, measuring particle A in a particular direction, say the z-direction,
causes the set of potentialities of particle B to reduce to those pertaining
to the value of its spin in the z-direction. Speaking of Bohr’s views, Bohm
[8] wrote, “... there is no legitimate way to think about the properties of
particle B apart from the experimental context in which they are measured.
The context needed to think about the z-component of the spin of atom B is
therefore not compatible with that needed to think about its x-component.
This signifies that even though we can predict the properties of atom B
from those of atom A without disturbing atom B, there is no experimental
situation with regard to atom B in which both of the above predictions
could have meaning together”. It is Bohr’s idea of complementarity and
the unanalysable connection between apparatus and object in a measuring
process that brings him to this conclusion. We will see in the next chapter
that BM provides a reasonable solution to the EPR paradox.

Postulate 2: The wavefunction evolves in time according to the time-
dependent Schrödinger equation:

ih̄
∂Ψ

∂t
= ĤΨ (1.1)

where Ĥ is the operator representing the Hamiltonian of the physical system.
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Schrödinger derived this equation in an attempt to relate quantities nor-
mally associated with a wave, i.e., frequency, wavelength, etc., with a particle
of matter. See [32] for a good discussion on how the derivation goes.

Postulate 3: To every observable in classical mechanics, there corresponds
a linear, Hermitean operator in quantum mechanics.

We have already come across two of these “quantum operators” – to the
classical position observable corresponds the operator x (multiplication by
the function x) and to the classical momentum observable corresponds the
operator −ih̄∇. The operators are required to be linear because the under-
lying structure of the theory is linear and they are required to be Hermitean
because it is necessary for them to have strictly real eigenvalues. To any
classical observable that can be written as a power series∑

n,m

cnmx
npm

corresponds the observable ∑
n,m

cnmx
n (−ih̄∇)m (1.2)

where the appropriate Hermitization procedure7 has been employed before
making the operator substitutions.

Postulate 4:

Part 1: A measurement of an observable, A, represented by the operator
Â, corresponds mathematically to the operator acting on the wavefunction
representing the system under study. The only possible outcomes of mea-
surements of the observable associated with the operator Â are the solutions,
a, to the eigenvalue equation

7The Hermitization procedure is to take the mean between the two possible ways of
writing each of the terms in the sum (1.2). To do this, write the function such that all
factors involving p are grouped together and all factors involving x are grouped together.
Then replace pnxm by 1

2 (pnxm + xmpn). This procedure ensures that the operator is
Hermitean.
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ÂΨ = aΨ.

Part 2: If an observable is measured and found to have the value a then
directly after the measurement the system is represented by the eigenfunction
corresponding to the eigenvalue a.

Since the measurement of any physical quantity should necessarily yield
a real quantity, we see the impetus for the requirement that each quantum
operator have only real eigenvalues (thus, the requirement that each quantum
operator be Hermitean). This postulate also underlies a very important
feature of quantum mechanics – that observables need not have a continuous
set of possible measurement outcomes. This is due to the fact that operators
representing observables need not have continuous sets of eigenvalues. This
is a great triumph of quantum mechanics because the observed discreteness
of certain physical quantities (for example, the energy levels of the hydrogen
atom) comes directly out of the mathematics.

It is important to note that before a measurement, a system need not
be in an eigenstate of the operator representing the observable being mea-
sured. In fact, every wavefunction is expressible as a linear combination of
any complete set of eigenfunctions. In addition, every operator represent-
ing a physical observable possesses a complete set of eigenfunctions. Thus,
when making a measurement of some observable, the wavefunction can be
represented as a linear combination of the eigenfunctions of the operator
representing that observable,

Ψ(x, t) =
∑
i

ciΦi(x)f(t),

where f(t) = exp −iEt
h̄

is determined by the Schrödinger equation. Note that
f(t) does not depend on the index i and can be separated from the sum.
If the wavefunction has been normalized the probability of measuring the
eigenvalue ai is equal to cic

∗
i = |ci|2.

From Part 2 of the postulate, immediately after this measurement has
been made the wavefunction is equal to the eigenfunction corresponding to
the eigenvalue ai. There is nothing in the theory to describe how this change
in the wavefunction takes place. According to the Copenhagen interpretation,
the change is instantaneous and is not described by the continuous time-
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evolution of the Schrödinger equation. It is commonly referred to as the
“collapse of the wavefunction” and it must be assumed as a postulate in
order to give a reasonable description of a measurement (this is Postulate
4.2). It can be proven that no such Hamiltonian exists that would give rise
under the Schrödinger equation to a discontinuous change like that required
by the collapse of the wavefunction. In fact, it is impossible to describe this
process using a linear equation such as the Schrödinger equation.8 Many
attempts have been made to modify the Schrödinger equation so that the
collapse would appear naturally, but to no avail.

To understand more clearly why the collapse of the wavefunction is nec-
essary to describe the measurement process, consider the measurement of the
spin of an electron along some arbitrary direction that we will call the z-axis.
This can be done in the laboratory via a Stern-Gerlach device. We shall de-
note the wavefunction of the measuring apparatus (which includes anything
from the microscopic system which interacts directly with the electron to the
macroscopic devices which convey the measured values to the experimenter)
before it has made a measurement by φ, after it has measured the electron
to be spin up by φup and after it has measured the electron to be spin down
by φdown. First, suppose we know the electron is in the “spin up” state with
wavefunction ψup. Then before the measurement the wavefunction of the
combined electron/apparatus system is Ψ(t = 0) = ψupφ and after measure-
ment is Ψ(t) = ψupφup. We could find a suitable Hamiltonian to bring about
this transition so there is no problem here. Similarly, if we know the electron
is in the “spin down” state with wavefunction ψdown, then before measure-
ment we have Ψ(t = 0) = ψdownφ and after measurement, Ψ(t) = ψdownφdown.
This also presents no problems, as we could find a suitable Hamiltonian to
bring about this transition. However, in general we do not know what state
the electron is in before measurement. Thus, we must represent its wave-
function as ψ = c1ψup + c2ψdown where c1 and c2 are constants. Then due to
the linearity of the Schrödinger equation, after measurement the combined
wavefunction is ψ(t) = c1ψupφup + c2ψdownφdown. This represents a state in
which the measuring apparatus (including its macroscopic parts) is in both
the “up state” and the “down state” at the same time. This is something
that is never observed in real life (how can a needle on a machine point to
two different values, for instance?) and it is the heart of the measurement
problem. To reconcile this disagreement between theory and observation we

8More on this in Section 3.2.3.
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need to enforce the instantaneous collapse of the wavefunction:

c1ψupφup + c2ψdownφdown →

{
ψupφup with probability |c1|2

ψdownφdown with probability |c2|2.

where → implies an instantaneous change upon measurement. This is easily
extended to the case where the initial wavefunction is a linear combination
of any number of terms. The result is that the wavefunction collapses to the
eigenfunction ψn with probability |cn|2.

Postulate 5: If a system is described by a normalized wavefunction, Ψ, then
the expected value of measurements of the observable A is given by

〈A〉 =

∫
all configuration space

Ψ∗
(
ÂΨ
)
dτ

where Â is the operator representation of A.

This formula is nothing more than the standard expected value used in
statistics for a continuous range of data points. It illustrates very clearly
the role of the wavefunction as a probability density. Note that if Ψ is
represented in terms of the complete set of eigenfunctions of Â, i.e., Ψ =∑

i ciφi where Âφi = aiφi then Âψ =
∑

i ciaiφi. In addition, using the fact
that the eigenfunctions are orthonormal, we see that 〈A〉 =

∑
i |ci|2ai.
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Chapter 2

Bohmian Mechanics

In 1952 David Bohm published two papers which appeared in the journal
Physical Review [5, 6]. He presented an extension of de Broglie’s pilot
wave theory which de Broglie suggested in 1927 and presented at the Solvay
Congress that same year. De Broglie proposed a deterministic interpreta-
tion of quantum mechanics in which actual particles travel through space
and time and are “guided” by their wavefunction. The pilot wave theory
was formulated only for a one-body system and during the Solvay Congress
in 1927 Pauli criticized the theory based on the argument that it could not
be applied consistently to a two-body scattering process. De Broglie could
not provide a response to this criticism and abandoned his ideas. A quarter
of a century later, Bohm in these two papers, rekindled the pilot wave pro-
gram and extended it to the many-body case. After further development his
determinisitic model of quantum mechanics came to be known as Bohmian
mechanics. Under Bohmian mechanics measurement is observer-independent
and the collapse of the wavefunction is unnecessary. In addition, Bohm’s the-
ory provides a response to the EPR paradox (see also [14] and [30], among
others). We will now examine the mathematics behind the theory.

2.1 Mathematical Formulation

Bohmian mechanics begins with the wavefunction and Schrödinger’s equation
(eqn. (1.1)). By writing the wavefunction in polar form,

Ψ(x, t) = R(x, t) exp

(
iS(x, t)

h̄

)
,
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the Schrödinger equation gives two coupled equations, one for the amplitude,
R,

∂R2

∂t
+∇ ·

(
R2∇S

m

)
= 0 (2.1)

and one for the phase, S,

−∂S
∂t

= V +Q+
1

2m
∇S (2.2)

where

Q = − h̄2

2m

∇2R

R
. (2.3)

Eqn. (2.1) describes the conservation of the probability distribution of par-
ticle positions (cf. Postulate 1 in section 1.1).1 It is common to all interpre-
tations of quantum mechanics that are based on the Schrödinger equation.
It has the form of a continuity equation

∂R2

∂t
= −∇ ·~j (2.4)

where

~j = R2∇S
m

(2.5)

is the probability distribution current. Eqn. (2.2) is the same as the classical
Hamilton-Jacobi equation,

−∂S
∂t

= V +
1

2m
∇S (2.6)

except for the inclusion of Q. Eqn. (2.6) describes classical particles that
move orthogonal to isosurfaces of S with momentum ~p = ∇S. Bohm’s great
insight was to treat Q on the same footing as the classical potential, V , i.e.,
as another potential term, which he called the quantum potential. He called
eqn. (2.2) the quantum Hamilton-Jacobi equation and gave it the same in-
terpretation as the classical Hamilton-Jacobi equation – it describes particles
which travel along trajectories through space and time with momentum

1Note that R2 = |Ψ|2.
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~pi = ∇iS. (2.7)

where ~pi is the momentum of the ith particle and ∇i refers to the gradient
with respect to the coordinates of particle i.

This is a markedly different view of the quantum world when compared
to SQM. In SQM the idea of a particle existing outside measurement is, as
we have seen, nonexistent. In BM, however, particle trajectories are a central
part of the theory, irregardless of whether or not they are being measured.
Note that these trajectories are deterministic – given the initial positions
of the particles their momenta can be calculated via eqn. (2.7) and their
trajectories determined.

At this point, one may ask where the uncertainty relations have gone
since it seems that we can predict the position and momentum of a particle
simultaneously with unlimited uncertainty. This is true, but only if we spec-
ify the inital positions of the particles exactly. In practice, the uncertainty
relations prohibit us from doing this – the initial positions must be speci-
fied by a probability distribution which does not contradict the uncertainty
relations. Thus, in BM the uncertainty relations still act but their range
of influence is diminished – they only effect the specification of the initial
conditions. It is natural to use the distribution |Ψ|2 for the initial particle
positions in BM. If this is done the guidance condition, (2.7), ensures that
the probability distribution of the particle positions is given by (2.1) for all
times. This is known as the quantum equilibrium hypothesis, (or for short the
QEH), and it ensures that BM gives the same statistical predictions as SQM
[42, 6, 8]. One note about eqn. (2.1) – recall that according to Postulate
1 the probability of measuring a particle to be within the volume element
(x, x + dτ) at time t is given by |Ψ(x, t)|2dτ . Since in BM we are dealing
with particles that exist independently of measurement, |Ψ(x, t)|2dτ is the
probability that the particle is within the volume element (x, x+dτ) at time
t, regardless of whether it is being measured or not.

To summarize, BM is an alternative to SQM. Like SQM it is based on
Schrödinger’s equation which describes a wavefunction, Ψ, but unlike SQM
it is supplemented by the concept of particle trajectories according to the
guidance condition, (2.7). The statisical predictions made by BM are the
same as those made by SQM if the initial particle positions are distributed
according to |Ψ|2 (by the QEH). In this way, BM is equivalent to SQM as far
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as predicting the outcomes of experiments,2 but it gives a radically different
picture of the quantum world. While SQM rejects all reality outside of what
can be scientifically observed, BM supposes the existence of real particles
travelling along real trajectories through space and time independently of
their being observed. SQM only gives us half the story – that the amplitude
of the wavefunction can accurately be given its statistical meaning. BM gives
us the second half – that the phase of the wavefunction can consistently be
given meaning in terms of determining particle trajectories.

So far this may look like nothing more than a classical theory with a
restriction on our ability to prepare a system with precise initial conditions.
How does one recover the “weird” quantum phenomena observed in experi-
ment? Further examination of the quantum potential reveals some interesting
properties that are seen to be responsible for these non-classical effects.

First, notice that the quantum potential (eqn. (2.3)) contains R, the
amplitude of the wavefunction, linearly in both the numerator and the de-
nominator . For this reason, the quantum potential does not depend on the
magnitude of R. Thus, the quantum potential can be very large in regions
of space which are distant from where the particles in the system are likely
to be. This is a complete departure from our normal understanding of wave
motion where classically, the size of the effect of a wave is determined by
its amplitude.3 In the case of BM it is the form of the wavefunction that
determines the strength of the quantum potential. The presence of the term
∇2R in the numerator implies that in regions where R has a large spatial
variation, the quantum potential is large. Similarly, the presence of R in the
denominator implies a large quantum potential in regions where R is small.
Overall, the quantum potential tends to “push” particles into regions of space
where Ψ is large. This is consistent with the probabilistic interpretation of
Ψ (Postulate 1).

Secondly, notice that the quantum potential is a function of the spatial
coordinates of all particles in the system. Thus, the quantum potential acting
on one particle in the system can depend, in arbitrarily complex ways, on the
coordinates of all other particles in the system. This property of the quantum
potential is responsible for non-local interactions between particles and in this
way, stumbling blocks characteristic of the Copenhagen interpretation, such

2There is debate over this statement as we will see in the next chapter.
3Consider a cork bobbing in a water wave. The farther the cork is from the peak of

the wave, the smaller the effect of the wave on its motion.
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as the measurement problem, can be explained in a very intuitive way. We
will discuss the Bohmian response to this issue, as well as the EPR paradox
in future sections. First, however, we need to incorporate the concept of
particle spin into our model in order to give a proper account of the helium
atom. This will be the subject of the next section.

2.2 The Inclusion of Spin

The quantum description of spin4 begins with the Pauli equation for a spin-1
2

single particle

ih̄
∂Ψ

∂t
= −

[(
h̄2

2m

)[
∇−

(
ie

h̄c

)
~A

]2

+ µ~B · ~σ + eA0 + V

]
Ψ (2.8)

where the wavefunction is represented by the two-component spinor,

Ψ(x, t) =

(
ψa(x, t)

ψb(x, t)

)
.

We will denote its Hermitean adjoint as Ψ†. The constants e, m and µ are
the charge, mass and magnetic moment of the particle, A0 and ~A are the
scalar and vector electromagnetic potentials, respectively, ~B = ∇× ~A is the
magnetic field, ~σ is a vector whose components are the Pauli matrices and
V is an arbitrary external potential. The Pauli matrices are given by

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
and σz =

(
1 0
0 −1

)
(2.9)

.
The generalization to multi-particle systems is straightforward and we will
not discuss it [30].

The Pauli equation describes particles having a property called “spin”.
Spin is an “internal angular momentum” possessed by the particle and is a
purely quantum effect. It is common in quantum mechanics to view spin
in terms of the particle actually spinning along an axis. This is consis-
tent with the mathematics since one can use the Pauli wavefunction,

(
ψa
ψb

)
,

4This discussion is adapted from [30].

17



to define such an axis which continuously changes in time via eqn. (2.8).5

We will make use of this picture in describing particles with spin. Writing

ψa(x, t) = Ra(x, t) exp
(
iSa(x,t)

h̄

)
and ψb(x, t) = Rb(x, t) exp

(
iSb(x,t)

h̄

)
sepa-

rates eqn. (2.8) into two equations in the same way that writing the wave-
function in polar form separates the Schrödinger equation. One of these is
the Pauli version of the quantum Hamilton-Jacobi equation (cf. eqn. (2.2)).
It is unimportant to our discussion and we will not discuss it. The other is
a continuity equation,

∂R2

∂t
+∇ ·~j = 0, (2.10)

where R2 = Ψ†Ψ = (|ψa|2 + |ψb|2)
1/2

and

~j =
h̄

2mi

[
Ψ†∇Ψ− (∇Ψ†)Ψ

]
−
( e

mc

)
~AΨ†Ψ (2.11)

is the probability density current associated with the Pauli equation. Making
the association ~j = R2~v (cf. the discussion concerning eqns. (2.4), (2.5) and
(2.6)), the momentum field is given by

~p =
h̄

2iR2

[
Ψ†∇Ψ− (∇Ψ†)Ψ

]
−
(e
c

)
~A.

Given initial particle positions, ~x(0), this allows one to determine particle
trajectories according to

d~x

dt
=

1

m
~p(~x, t)|~x(t).

However, Holland [30] points out that the probability current, (2.11) is
not the only function satisfying eqn. (2.10). Another possibility is6

~j =
h̄

2mi

[
Ψ†∇Ψ− (∇Ψ†)Ψ

]
−
( e

mc

)
~AΨ†Ψ +

1

m
εijk

∂(R2sk)

∂xj

=
h̄

2mi

[
Ψ†∇Ψ− (∇Ψ†)Ψ

]
−
( e

mc

)
~AΨ†Ψ +

1

m

(
∇(R2)× ~s

)
(2.12)

5See [30] for a discussion of how to do this.
6The first term in eqn. (2.12) is equivalent to R2∇S

m . This fact will be useful when we
analyze the hydrogen atom and helium atom in chapters 4 and 5.
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which, of course, leads to the momentum field

~p =
h̄

2iR2

[
Ψ†∇Ψ− (∇Ψ†)Ψ

]
−
(e
c

)
~A+
∇(R2)× ~s

R2
. (2.13)

In (2.12), εijk is the antisymmetric Levita-Cevi symbol and sk is the spin in
the kth direction, given by

sk =
h̄

2R2
Ψ†σkΨ.

The addition of the spin-dependent term, 1
m

(∇(R2)× ~s), to the current
(2.12) is motivated by examining the probability distribution current for
the Dirac equation.7 It contains the above term and is responsible for all
spin-dependent properties of the trajectories. Thus, it seems reasonable to
include it in the definition of the probability density current for particles with
spin. We will use (2.12) in our discussion of particles with spin.

In addition, we will only be interested in particles whose spin vectors
are constant along their trajectories. Such particles can be described by
wavefunctions in which the space and time coordinates decouple from the
spin coordinate, ξ, i.e.,

Ψ(x, ξ, t) = ψ(x, t)φ(ξ). (2.14)

For the case where the electromagnetic potentials are all zero, eqn. (2.8)
reduces to two copies of Schrödinger’s equation (one for ψa and one for ψb).
Thus, it is acceptable to describe a particle having constant spin by the
wavefunction (2.14) which obeys Schrödinger’s equation. However, when we
represent the wavefunction as a scalar function as opposed to a 2-component
spinor , the components of the spin vector are not well-defined mathemati-
cally (c.f. section 5.3). However, we will ignore this fact until we explicitly
calculate the spin vectors in appendix C. Treating the wavefunction as a
scalar function and using ~A = ~0, the momentum field (2.13) reduces to

~p =
h̄

2iR2
[Ψ∗∇Ψ− (∇Ψ∗)Ψ] +

∇(R2)× ~s
R2

. (2.15)

This is the approach we will adopt to account for electron spin in our study
of the helium atom.

7See [30] for a discussion of a Bohmian analysis of the Dirac equation.
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2.3 The EPR Paradox

As we have seen in section 1.1, according to the EPR experiment, there are
two logical possibilities – either quantum mechanics is an incomplete theory
or it must predict nonlocal interactions. If we venture outside the box of
SQM we find that BM provides a straightforward, yet unexpected solution
– quantum mechanics is both incomplete and nonlocal. The incompleteness
of SQM arises because there is an element of physical reality it does not
describe – the particle positions of BM. Similarly, BM is a nonlocal theory
as we have seen in section 2.1. This would have been an unacceptable solu-
tion to Einstein who was absolutely against any notion of nonlocality since
nonlocality was thought to automatically allow for superluminal signaling.
Such a thing is clearly prohibited by his theory of relativity. The whole point
of the EPR paper for Einstein was to show that SQM was not a complete
theory and should not be treated as such. The idea that the solution to the
EPR paradox would be an intrinsically nonlocal theory is one he clearly did
not entertain. We will now examine the Bohmian description of the EPR
experiment [8] described in section 1.1 and see whether such concerns are
founded.

As in SQM, when the molecule disassociates conservation of spin implies
that each particle has equal and opposite spin (this result can be derived
analytically, see [8] for instance). However, the difference between BM and
SQM is that in BM each particle follows a trajectory through space and
time and according to the Bohmian version of the Pauli theory each atom
has a well-defined spin vector at each point along its trajectory (see section
2.2). Thus, upon measurement of the spin of, say, particle A, the value of
the spin of particle B is determined with certainty, as in SQM. However,
the distinction, which is at the heart of the issue, is that in BM the spin
of particle B was well-defined before and independent of the measurement
of particle A. Although the spin of particle B is instantly inferred by the
outcome of the measurement of the spin of particle A, the spin of particle B is
not changed by this process – it is only the pre-existing value of its spin that
is revealed to us. Since we glean information about particle B immediately
upon measurement of particle A this is an example of a nonlocal interaction.
However, since we cannot control the measured value of the spin of particle
A, we have no way to control the inferred value of the spin of particle B.
Thus, although measurement in this context leads to a non-local interaction,
one cannot use measurement in this way to control the unmeasured particle
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[6, 8] – i.e., no superluminal signaling. Consequently, in spite of the non-local
character of the measurement process described above, the basic tenet of
special relativity – the prohibition of superluminal signaling – is maintained.
So perhaps Einstein would accept the Bohmian solution of the EPR paradox
after all.

2.4 Measurement

We have seen how in the Copenhagen interpretation measurement is treated
as a special process in which the wavefunction is required to undergo a dis-
continuous change that cannot be described by the Schrödinger equation
(the collapse of the wavefunction). It is also difficult to even define what a
measurement is. Some, for instance, require some sort of intelligent observer
(i.e., a human) to register the result of a measurement in order to induce
the collapse of the wavefunction. Thus, until this occurs, a measurement has
not been made. Von Neumann [44] , on the other hand, described a quan-
tum measurement as having a quantum part, which was described according
to quantum mechanics and a classical part which was described in terms of
classical mechanics. In between these, he introduced a “cut”, which served
to separate the quantum world from the classical one. The problem here is
that the location of the “cut” is quite arbitrary. How much of the measur-
ing apparatus should be contained within the quantum description of the
measurement? This is essentially left up to whomever is trying to describe
the process and hence, von Neumann’s version of quantum measurement is
highly subjective.

BM, on the other hand, does not suffer from any of these problems. In
fact, measurement is treated as nothing more than a regular interaction be-
tween quantum systems and as we will see, there is no need for a collapse
of the wavefunction [8] . The tendency for the measurement of some observ-
able to yield a distinct eigenstate, even though the system began as a linear
combination of eigenstates, emerges naturally in Bohm’s description. In ad-
dition, there is no need for the kind of “cut” between quantum and classical
systems introduced by von Neumann. We will now examine the Bohmian
description of a general measurement process.

Bohm’s measurement process begins in the same way as in von Neumann’s
description. We represent the initial wavefunction of the system being mea-
sured as
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ψinitial(x, 0) =
∑
n

cnψn(x)

where the ψn(x) are the eigenfunctions of the operator Ô that we wish to
measure.8 Similarly, we represent the wavefunction of the measuring appa-
ratus as φinitial(y), a wavepacket that suitably describes the classical device
from which we receive the results of the measurement (for instance, the po-
sition of a pointer or dial on our apparatus). Thus, before interaction, the
wavefunction of the combined system is

Ψinitial(x, y, 0) = φinitial(y)ψinitial(x, 0)

As von Neumann did, we use as an interaction Hamiltonian

Ĥint = ih̄LÔ
∂

∂y

where L is a suitable constant and we assume the interaction is strong enough
so that during the time it acts, the changes to the system are due solely to the
interaction (i.e., we can neglect all other terms in the Hamiltonian during the
period of interaction). Thus, Schrödinger’s equation during the interaction
is

ih̄
∂Ψinitial

∂t
= ih̄LÔ

∂Ψinitial

∂y

which after a time t has solution

Ψ(x, y, t) =
∑
n

cnψn(x)φinitial(y − LOnt) (2.16)

where {On} are the eigenvalues of Ô. If the interaction takes time ∆t then
after the interaction is over the combined wavefunction is

Ψfinal(x, y,∆t) =
∑
n

cnψn(x)φinitial(y − LOn∆t).

If the interaction is such that L∆On∆t � 1 where ∆On is the change in
On for successive values of n, then after the interaction the combined wave-

8We use x to represent the spatial coordinates of all the particles in the system repre-
sented by ψ.
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function will have split into n non-overlapping wavepackets, ψn(x)φinitial(y−
LOnt). Thus, for each distinct apparatus wavepacket, φinitial(y − LOnt),
there corresponds an eigenfunction ψn(x). In this way, a correlation is set up
between eigenfunctions of the operator being measured and different states
of the measuring apparatus. If the combined system is now observed with
another apparatus (which could be another machine, or even the human
eye), the appropriate value of y will be measured on the first apparatus and
the corresponding eigenfunction can now be associated with the state of the
measured system. Naturally, the probability of obtaining the nth value of y
is |cn|2. In this way, von Neumann explains the collapse of the wavefunction.

According to BM, however, particles exist independently of measurement
and follow trajectories through space and time. Thus, after the interaction
is over, the apparatus particles, y, have definitely entered one of the non-
overlapping wavepackets and from this moment on, are confined to remain
there because it is impossible for the particles to be in a region of space where
the wavefunction is zero (hence, no probability of a particle moving from one
packet to another). In this way, the apparatus makes a distinct measurement
in each run of the experiment, and due to the correlation between eigenfunc-
tions and apparatus wavepackets, a particular state can be ascribed to the
measured system in each case as well.

Notice that the entire measurement process has been described in a com-
pletely continuous fashion with the wavefunction evolving in time according
to the Schrödinger equation throughout. The collapse of the wavefunction
is then seen to arise from the separating of each component wavepacket and
the fact that the apparatus particles and measured particles necessarily must
enter only one of them. The wavefunction does not “collapse” in the sense
that it “jumps” from being a linear combination of eigenfunctions at one mo-
ment to a particular eigenfunction the next. Instead, the interaction causes
all wavepackets not entered by the particles to become essentially inactive
after the interaction is complete. Since these parts of the total wavefunction
no longer have any effect on the measured system or apparatus, it is com-
pletely reasonable to drop them and treat the wavefunction as though it is
only made up of the packet in which the particles have entered – hence the
collapse of the wavefunction.

From eqn. (2.16) it is apparent that during the interaction, the compo-
nent wavefunctions will overlap and interface with each other. Because of
this the amplitude of the total wavefunction can be a rapidly-varying func-
tion of x, y and t and the quantum potential can be responsible for very
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complex and chaotic motions of all the particles involved in the interaction.
For this reason, the results of the measurement depend very strongly on the
initial conditions. Minute changes in initial conditions can produce changes
in the resulting trajectories so that the system may end up in a completely
different packet after the interaction is complete. This extreme dependence
on initial conditions leads to the existence of bifurcation points associated
with each measurement. A particle with initial conditions on one side of
a bifurcation point will end up in one final wavepacket and a particle with
initial conditions on the other side will end up in another.

Thus, BM is able to explain quantum measurement without invoking the
collapse of the wavefunction. What one would refer to as this collapse in
SQM, is seen to arise from the separation of the wavepackets representing
individual measurement outcomes. It is not that the wavefunction has “col-
lapsed”, but that those packets into which the system particles do not enter
become ineffective, and hence, can be dropped from the total wavefunction.
Thus, under BM the Schrödinger equation is sufficient to give an accurate
and reasonable description of the measurement process. It does not need to
be modified to solve the measurement problem as some have sought to do.
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Chapter 3

A Discussion of Some Relevant
Literature

It is important to realize that BM is not the only alternative to SQM. In
fact, many formulations of quantum mechanics have been developed over the
past eighty years. Many of these, like BM, are attempts to provide a better
explanation for troublesome quantum phenomena such as the measurement
problem or the existence of quantum interference. Carolyn Colijn outlines
many of these interpretations in her Ph.D. thesis [11] so in the interest of
avoiding unnecessary repetition we direct the reader there for a description
of alternate formulations of quantum mechanics.

We will instead investigate two questions particular to BM itself. One ob-
vious question is whether it is possible to experimentally distinguish between
SQM and BM. As we have seen in the previous chapter, the QEH ensures
that the statistical predictions of BM and SQM are always equivalent but
this does not necessarily eliminate the existence of such an experiment. In
fact, certain experiments have been proposed in the literature which claim to
differentiate between the two theories and we will examine these arguments
in detail.

Another question one could ask is whether BM provides an explanation
for the classical world. It is clear that the classical world to which we are
accustomed operates very differently from the world of the quantum (at least
as far as we can tell from our limited “classical” perspective). In fact, it
has been a long-standing problem in physics to derive classical mechanics
from quantum mechanics. We will investigate some attempts made in the
literature to predict classical behaviour using BM. Before continuing, we wish
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to point out to the reader that this chapter contains no results pertaining to
the author’s research. One may skip this chapter without loss of coherence.

3.1 Can An Experiment Differentiate Between

BM and SQM

As was shown in the previous chapter the statistical predictions of SQM and
BM are equivalent due to eqn. (2.1) and the QEH. Thus, it would seem that
BM cannot differentiate itself from SQM at the experimental level. In fact,
when Bohm originally presented his interpretation of quantum mechanics he
himself made remarks to the same effect [5].

However, within the past twenty years a number of experiments have been
proposed which claim to predict different results for BM and SQM. Some of
these are purely thought experiments while others could be performed in the
laboratory. To date, no experiment has been performed which has refuted
the predictions of one or both of BM or SQM. We will now examine some of
these proposals.

3.1.1 The Experiments Proposed By Golshani and Akha-
van

Golshani and Akhavan, hereafter referred to as GA, have proposed three
related experiments for which they claim BM gives different predictions than
SQM [24, 25, 26, 27]. One of these experiments predicts differences only at
the level of individual trials of the experiment but gives the same statistical
results. Thus, it cannot be used in practice to differentiate between the
two theories. However, the other two predict different results both at the
individual and statistical levels. GA conclude that these last two experiments
provide a feasible way to test between SQM and BM in the laboratory. All
three experiments are variations of the standard double-slit experiment. We
will review the experimental setups and discuss the results.
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First Experiment – A Single Double Slit System With Unentangled
Particles

The first proposal [25] involves a single source which emits pairs of identical
non-relativistic particles (bosons or fermions) at a double slit apparatus.
It is assumed that the particles are emitted one pair at a time so that at
most one pair traverses through the slit system at a given instant. It is also
assumed that the detecting screen will only detect simultaneous impacts of
two particles so that single particle interference is avoided. The incident
wavefunction is assumed to be a plane wave in the x-direction given by

Ψin(x1, y1;x2, y2; t) = C exp [kx(x1 + x2) + ky(y1 + y2)] exp

(
−iEt
h̄

)
where C is a constant and E = E1 +E2 =

h̄2(k2
x+k2

y)

m
is the total energy of the

system (Ei refers to the energy of particle i). The source is assumed to be far
enough from the slit apparatus along the x-axis that ky ≈ 0. As in normal
treatments of double slit experiments, the slits are assumed to have soft edges
to avoid the mathematical complexities of Fresnel diffraction. Consequently,
the waves emerging from the slits can be represented by Gaussian waves in
the y-direction and plane waves in the x-direction. Taking time t = 0 to be
the time at which the waves emerge from the slits the initial wavepackets
have the form

ΨA(x, y, 0) = C(2πσ2
0)−

1
4 exp

(
−(y − Y )2

4σ2
0

)
exp (i [kxx+ ky(y − Y )])

ΨB(x, y, 0) = C(2πσ2
0)−

1
4 exp

(
−(y + Y )2

4σ2
0

)
exp (i [kxx− ky(y + Y )])

where σ0 is the half-width of each slit and the subscripts A and B refer to
the top and bottom slits, respectively.

Each of these wavepackets evolves in time according to
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Figure 3.1: A two-slit experiment in which two identical entangled particles
are emitted from the source S1. They pass through the slits A and B and
are detected on the screen S2, simultaneously. The dashed lines are not real
trajectories (taken from [25]).

ΨA(x, y, t) = C(2πσ2
t )
− 1

4 exp

(
−(y − Y − uyt)2

4σ0σt

)
× exp (i [kxx+ ky(y − Y − uyt/2)− Ext/h̄])

(3.2a)

ΨB(x, y, t) = C(2πσ2
t )
− 1

4 exp

(
−(y + Y + uyt)

2

4σ0σt

)
× exp (i [kxx− ky(y + Y + uyt/2)− Ext/h̄]),

(3.2b)

where σt = σ0

(
1 + ih̄t

2mσ2
0

)
is the half-width of each wavepacket at time t, uy =

h̄ky/m is the group velocity of each packet in the y-direction, Ex = mu2
x/2 is

the energy of each particle associated with its motion in the x-direction and
ux is the group velocity of each packet in the x-direction.

Thus, taking into account the required symmetry of the wavefunction (an-
tisymmetric for fermions and symmetric for bosons), the total wavefunction
of the two-particle system at time t is
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Ψ(x1, y1;x2, y2; t) = N [ΨA(x1, y1, t)ΨB(x2, y2, t)±ΨA(x2, y2, t)ΨB(x1, y1, t)]

× [ΨA(x1, y1, t)ΨA(x2, y2, t) + ΨB(x2, y2, t)ΨB(x1, y1, t)],

(3.3)

where N =
[
2
(

1 + exp
(
−Y 2

2σ2
0

))]−1

is a normalization constant, the ”+” is

for bosons and the ”−” is for fermions.
According to SQM the probability of simultaneously detecting one par-

ticle at (x1, y1) = (D,Q1) and the other particle at (x2, y2) = (D,Q2) (two
different points on the detecting screen) at time t is

P12(Q1, Q2, t) =

∫ Q1+∆

Q1

dy1

∫ Q2+∆

Q2

dy2|Ψ(x1, y1;x2, y2; t)|2, (3.4)

where D is the distance from the slits to the screen along the x-direction and
∆ is a measure of the size of the detectors and is assumed to be small.

According to BM each particle follows a path according to the guidance
condition

dxi
dt

=
h̄

mi

Im

(
∇iΨ(

→
x t)

Ψ(
→
x t)

)
.

GA examine the y-coordinate of the center of mass of the two particles, given
by y = (y1 + y2)/2, and conclude that under certain circumstances BM will
give measurably different results than SQM. Using eqn. (3.3),

dy1

dt
= N

h̄

m
Im

{
1

Ψ

[(
−2(y1 − Y − uyt)

4σ0σt
+ iky

)
ΨA1ΨB2

+

(
−2(y1 + Y + uyt)

4σ0σt
− iky

)
ΨA2ΨB1

+

(
−2(y1 − Y − uyt)

4σ0σt
+ iky

)
ΨA1ΨA2

+

(
−2(y1 + Y + uyt)

4σ0σt
− iky

)
ΨB1ΨB2

]}
(3.5a)
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and

dy2

dt
= N

h̄

m
Im

{
1

Ψ

[(
−2(y2 + Y + uyt)

4σ0σt
− iky

)
ΨA1ΨB2

+

(
−2(y2 − Y − uyt)

4σ0σt
+ iky

)
ΨA2ΨB1

+

(
−2(y2 − Y − uyt)

4σ0σt
+ iky

)
ΨA1ΨA2

+

(
−2(y2 + Y + uyt)

4σ0σt
− iky

)
ΨB1ΨB2

]}
(3.5b)

and according to eqns. (3.2a) and (3.2b),

ΨA(xi, yi, t) = ΨB(xi,−yi, t) for i = 1, 2. (3.6)

Eqn. (3.6) represents the symmetry of Ψ(x1, y1;x2, y2; t) with respect to re-
flection in the x-axis. Using this symmetry along with eqns. (3.5a) and (3.5b)
GA arrive at the following expression for the motion of the y-coordinate of
the center of mass of the two-particle system:

dy

dt
=

1

2

(
dy1

dt
+
dy2

dt

)
=

(h̄/2mσ2
0)2ty

[1 + (h̄/2mσ2
0)2t2]

+N
h̄

2m
Im

[
1

Ψ

(
Y + uyt

σ0σt
+ 2iky

)
(ΨA1ΨA2 −ΨB1ΨB2)

]
. (3.7)

This is an ODE for the center of mass coordinate, y. In order to solve
it, GA make the approximations ky ≈ 0 and Y � σ0. Under these approxi-
mations ΨA1ΨA2 − ΨB1ΨB2 ≈ 0 and the second term of eqn. (3.7) becomes
negligible. The equation for dy

dt
becomes1

1Note that had we omitted the last term in square brackets on the right-hand side
of eqn. (3.3) the second term in eqn. (3.7) would be identically zero. Then we could
replace the “≈” in eqn. (3.8) with an “=”. This corresponds to the case of an entangled
wavefunction as we will see in the next section.
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dy

dt
≈ (h̄/2mσ2

0)2

1 + (h̄/2mσ2
0)2t2

yt. (3.8)

Solving eqn. (3.8) gives the equation for the y-coordinate of the center of
mass:

y(t) ≈ y0

√
1 + (h̄/2mσ2

0)2t2, (3.9)

where y0 = y(0). Thus, if the center of mass is on the x-axis at t = 0,
i.e. y0 = 0, then y(t) = 0 for all t and the simultaneous detection of each
particle pair will occur symmetrically with respect to the x-axis. However,
it is not necessary that y0 = 0. In fact, according to the QEH y0 should
be distributed according to |Ψ|2t=0. Since the distance between neighboring
maxima on the detection screen is given by δy ≈ λD/2Y , where λ is the
deBroglie wavelength, GA argue that symmetrical detection will be obtained
to good approximation if the deviation of the y-coordinate of the center of
mass of a particle-pair system is small compared to δy, i.e.,

∆y � δy ≈ λD

2Y
≈ πh̄t

Y m
. (3.10)

Under the conditions h̄t/2mσ2
0 ∼ 1 and ∆y0 ∼ σ0, (∆y0 is the initial deviation

of the y-coordinate of the center of mass of the system), GA obtain the
requirement to ensure symmetrical detection:

Y � 2πσ0.

This is consistent with the approximations ky ≈ 0 and Y � σ0 used in
deriving eqn. (3.9).

Thus, under the conditions described above and using the appropriate
approximations it is seen that BM predicts symmetrical detection of each
particle pair while according to eqn. (3.4), SQM allows for unsymmetrical
detection. However, since eqn. (3.3) can be written in the factored form:

Ψ(x1, y1;x2, y2; t) = N [ΨA(x1, y1, t)ΨB(x1, y1, t)]

× [ΨA(x2, y2, t)ΨB(x2, y2, t)],

the two particles behave independently at the ensemble level. As a result,
both SQM and BM predict the same interference pattern for an ensemble of
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particle pairs.
Next, GA investigate the conditions 〈y0〉 6= 0 and h̄t/2mσ0 � 1. They

begin with eqn. (3.9) for the motion of the y-coordinate of the center of
mass (thus, maintaining the approximations ky ≈ 0 and Y � σ0) except
now they enforce a selective detection process in which only pairs of particles
that reach the detection screen simultaneously and on opposite sides of the
x-axis are counted. According to BM there will be a region on the detection
screen of length

L ≈ 2 〈y〉 ≈ h̄t〈y0〉
mσ2

0

(3.11)

where almost no particles will be recorded if ∆y � L and h̄t/2mσ2
0 � 1

are satisfied. If the constraint due to the QEH, ∆y0 ∼ σ0, is satisfied the
condition ∆y � L can be written

σ0 � 〈y0〉. (3.12)

Thus, if eqn. (3.12) is satisfied and the given selective detection procedure
is employed then BM predicts a region on the screen of length L, given by
eqn. (3.11), in which almost no particle detections will be made.

However, according to SQM, there are two possibilities. In one case the
probability relation, eqn. (3.4) remains valid except for a drop in inten-
sity due to the rejection of single-particle detections. Thus, SQM would
not predict the nearly empty region on the screen given by eqn. (3.11). In
the other case SQM is unable to make a prediction concerning selective de-
tection. GA then conclude that if the experiment were performed under the
given conditions, ensuring that all approximations used above are valid in the
experimental setup, BM would either predict a different interference pattern
than SQM or would offer a prediction where SQM was silent, thus providing
an observable way to test between the two theories, even at the ensemble
level.

Second Experiment – A Single Double-Slit System With Entangled
Particles

The second experiment of GA [25] has exactly the same setup as the first
except that the source is now assumed to emit entangled particle pairs. In
this case eqns. (3.2a) and (3.2b) remain the same and eqn. (3.3) becomes
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Ψ(x1, y1;x2, y2, t) = N [ΨA(x1, y1, t)ΨB(x2, y2, t)±ΨA(x2, y2, t)ΨB(x1, y1, t)]
(3.13)

where the “+” refers to bosons and the “−” refers to fermions. Clearly
eqn. (3.4) still represents the probability according to SQM of simultaneous
detection of a particle pair at positions (x1, y1) = (D,Q1) and (x2, y2) =
(D,Q2). As for the previous experiment, GA establish a discrepancy between
BM and SQM by considering the y-coordinate of the center of mass, y(t).
For the present case of entangled particles, eqn. (3.7) becomes

dy

dt
=

h̄/2mσ2
0)2

1 + (h̄/2mσ2
0)2t2

yt

and eqn. (3.9) becomes the identity

y(t) = y0

√
1 + (h̄/2mσ2

0)2t2. (3.14)

Thus, BM predicts that if the center of mass of the particle pair is initially
on the x-axis, i.e., y0 = 0, then y(t) = 0 for all t and each particle pair
will be detected symmetrically. This is in contrast to eqn. (3.4) which
allows for unsymmetric detection. In addition, eqn. (3.4) permits a non-zero
probability of detecting both particles in a pair on the same side of the x-axis
while BM forbids this as long as y0 = 0.

GA also consider the case where 〈y0〉 = 0 and ∆y0 6= 0. As for the
unentangled wavefunction, they consider approximate symmetrical detection
to occur when eqn. (3.10) is satisfied. Under the conditions

h̄t

2mσ2
0

∼ 1 and Y ∼ σ0 (3.15)

and using eqn. (3.14) GA conclude that eqn. (3.10) is satisfied when

∆y0 � σ0. (3.16)

Thus, under the conditions given by eqn. (3.15) approximate symmetrical
detection occurs when a source is used for which y0 � σ0 for each particle
pair.
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Third Experiment – A Two Double Slit System With Entangled
Wavefunction

GA’s third proposal [26] involves a source which emits pairs of identical en-
tangled particles. Each particle in a given pair then goes through its own
double-slit apparatus and is registered on a detecting screen. To eliminate
the cases where only one particle in a pair goes through a slit system, only
simultaneous impacts of particle pairs, one on each screen, are registered.
Thus, the final interference patterns on each screen are due entirely to en-
tangled particle pairs. The wavefunction of the pair of particles after coming
through the slits is given by

Ψ(x1, y1;x2, y2, t) = N̄ [ΨA(x1, y1, t)ΨB′ (x2, y2, t)±ΨA(x2, y2, t)ΨB′ (x1, y1, t)

+ ΨB(x1, y1, t)ΨA′ (x2, y2, t)±ΨB(x2, y2, t)ΨA′ (x1, y1, t)]
(3.17)

where N̄ is a constant whose value is unimportant here. ΨA(xi, yi, t) and
ΨB(xi, yi, t) are the waves coming out of the double slit apparatus on the right
and are given by eqns. (3.2a) and (3.2b) while ΨA′ (xi, yi, t) and ΨB′ (xi, yi, t)
represent the waves coming out of the apparatus on the left. They have
the same form as eqns. (3.2a) and (3.2b) except the x-coordinates in the
exponentials must undergo the transformation x → (x − 2d) where d is the
distance from the source to the planes containing of the slits.

The analysis of the Bohmian trajectories proceeds in the same way as for
GA’s second experiment. Making use of the following symmetries;

ΨA(xi, yi, t) = ΨB(xi,−yi, t) and ΨA′ (xi, yi, t) = ΨB′ (xi,−yi, t),

they arrive at eqn. (3.14) for the motion of the y-coordinate of the center
of mass of the two-particle system. Thus, as in the second experiment GA
obtain the result that BM predicts symmetrical detection for each particle
pair while SQM allows for unsymmetrical detection if the condition y0 = 0 is
met2. In the case that y0 6= 0, GA maintain that approximate symmetrical

2Once again, the probability of joint detection of particle 1 at position (x1, y1) =
(D,Q1) and particle 2 at position (x2, y2) = (D,Q2) is given by eqn. (3.4) according to
SQM.
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Figure 3.2: The two double-slit experiment setup. Two identical particles
with zero initial momentum are emitted from the source S and pass through
slits A and B

′
or B and A

′
. They are detected simultaneously on the screens

S1 and S2. The dotted lines do not correspond to real trajectories (taken
from [26]).

detection of each particle pair can be achieved if conditions (3.15) are met and
a source is used for which y0 � σ0 holds for each detected pair of particles.
This is the same conclusion as was drawn for the second experiment.

GA also consider a variation of the experiment which they say predicts
observably different results even at the ensemble level. They use a further
form of “selective detection” which is motivated by the following. In the
case where y0 6= 0 for each detected particle pair, BM predicts completely
symmetrical detection of each particle pair. In addition, according to eqn.
(3.14),

ẏi(x1, y1;x2, y2; t) = −ẏi(x1,−y1;x2, y2; t). (3.18)

Evaluating (3.18) for y1 = 0 and y2 = 0 we see that ẏi = 0 for each
particle along the x-axis and this is valid at all times, t, for both bosons
and fermions. Thus, if both particles are simultaneously on the x-axis they
cannot cross it or be tangent to it. The importance of this is that if y0 = 0
then any particle traveling through a top slit will be detected on the top
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half of the screen while any particle traveling through a bottom slit will be
detected on the bottom half of the screen. It is important to see that this
symmetry of motion is due to the assumed entanglement of each particle
pair which in turn is due to the restriction that each pair is emitted from a
common source with total momentum zero.

Using this symmetry GA conclude that according to BM if the particle
going through the slit system on the right goes through the top slit then it
must be registered on the top half of the screen. Also, the particle going
through the slit system on the left must go through the bottom slit and be
registered on the bottom half of the screen. GA then propose a “selective
detection” in which only those particle pairs for which the particle going
through the right slit system is detected on the top half of the screen are
registered. Then BM predicts that all particles going through the left slit
system must be detected on the bottom half of the screen. However, accord-
ing to eqn. (3.4) SQM allows for detection on the top half of the screen.
Thus, BM predicts observably different results than SQM.

To summarize, GA have proposed three related experiments based on the
standard double-slit set-up. They claim that different results are predicted
depending on whether one analyzes the experiments using BM or SQM. BM
predicts symmetrical detection of each particle pair about the x-axis for
each individual run of the experiments whereas SQM does not. This is of
no help since both theories still predict the same interference patterns, but
by employing certian ”selective detection“ techniques, GA propose that a
differentiation can be made so that BM predicts different results than SQM
even at the statistical level.

3.1.2 The Experiments Proposed By Ghose

In the same vein as GA, Partha Ghose, hereafter referred to as PG, has
proposed two experiments [19, 20] which he maintains should serve to differ-
entiate between BM and SQM. The first is quite similar to the proposals of
GA and involves a pair of identical particles emitted at a double-slit system.
The second is an appeal to the concept of ergodicity which is well-defined
in classical mechanics but not so in quantum mechanics. PG attempts to
provide a definition of an ergodic quantum system and describes a system
for which SQM and BM predict different ergodic behaviour. We will examine
each of these proposals in turn.
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First Experiment – A Single Double-Slit System With Entangled
Photons

The first experiment proposed by PG [19] is quite similar to those of GA. It
involves a double-slit system which is traversed by identical non-relativistic
bosons. Each particle is simultaneously diffracted by one of the slits in the
apparatus and the slits are assumed to have a width d which is much larger
than the de Broglie wavelength of the packets representing the particles.
There is a region, R, in front of the slits in which the two diffracted packets
will overlap and interfere with each other (see figure 3.3). R is assumed
to be far enough from the slits that each packet can be well approximated
by a plane wave (this corresponds to the case of Fraunhoffer diffraction).
Taking the origin of the 2-dimensional plane in which the particles move as
the center-point of the line joining the two slits, PG writes the wavefunction
of the two-particle system as

Ψ(
→
r1,
→
r2, t) =

√
Ng

[
ei(
→
kA·
→
r1+

→
kB ·
→
r2) + ei(

→
kA·
→
r2+

→
kB ·
→
r1)

]
e−iEt

where N and g are constants whose values are unimportant for this discus-
sion. The wavefunction has bosonic symmetry and due to this, is symmetric
with respect to reflection in the y-axis.3

According to BM, the velocities of each particle are given by

→
vi =

1

m
∇iS(

→
x, t)

=
h̄

2m
(
→
kA +

→
kB) where i = 1, 2 refers to particle 1 and 2.

Due to the symmetry of the setup, kAx + kBx = 0 and consequently,

v1x(0) = v2x(0) = 0

and

v1x(t) + v2x(t) = 0 for all t.

Thus,

3Keep in mind that in figure 3.3 the vertical axis is the x-axis and the horizontal axis
is the y-axis.
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Figure 3.3: The double-slit experiment of PG. Two identical bosons each
travel through one of the slits A and B. The wavepackets interfere in the
region R (taken from [19]).

x1(t) + x2(t) = x1(0) + x2(0)

which is the same result as that obtained in the GA experiments – that if
the initial positions of the particles are symmetric with respect to the y-axis
(if x1(0) + x2(0) = 0) then they will remain that way for all time. Boson
trajectories are therefore symmetric with respect to the y-axis and can never
cross this axis.

Using this result, PG propose a way of differentiating between BM and
SQM. According to SQM the probability of simultaneous detection of particle
1 at position (x1, y1) on the screen and particle 2 at position (x2, y2) on the
screen is given by eqn. (3.4).
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P12(x(Q1), x(Q2)) =

∫ x(Q1)+∆x(Q1)

x(Q1)

dr1

∫ x(Q2)+∆x(Q2)

x(Q2)

dr2|Ψ|2,

where ∆x(Q1) and ∆x(Q2) refer to the size of the detectors at x(Q1) and
x(Q2) respectively (cf. eqn. (3.4)). If detectors are placed at positions sym-
metric with respect to the y-axis, then both BM and SQM predict complete
joint detection of each particle pair but if they are placed asymmetrically
then BM predicts no joint detections while SQM predicts a non-zero result.
In this way an observable difference between the two theories is predicted.

Second Experiment – An Argument Based On Ergodicity

Ergodicity is a well-defined concept in classical mechanics. If the orbits of a
dynamical system cover the entire phase space over an infinite time period,
the system is said to be ergodic. If they do not, the system is said to be non-
ergodic4. According to fundamental theorems in ergodic theory, the space
averages and time averages of a system’s dynamical variables exist and if the
system is ergodic they will be equal. Similarly, if the system is non-ergodic
they cannot be equal. The space average of a complex-valued function, F ,
defined on the phase-space manifold of the system, M , is defined as

F̄ ≡
∫
M

F (q, p)ρ(q, p) dq dp, where

∫
ρ(q, p) dq dp = 1

and the time average of F over M is defined as

F ∗ ≡ lim
N→∞

1

N

N−1∑
n=0

F (φnt q),

where q and p represent the set of spatial coordinates and momenta coor-
dinates, respectively, ρ(q, p) dq dp is the invariant measure in phase space
and φt : M → M is a group of measure-preserving diffeomorphisms which
depends on time.

The situation is a little different in SQM where particle trajectories, and
consequently a phase space, do not exist. In this case the time average of

4In simpler terms, if a system’s dynamics are periodic, it is non-ergodic.
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a Hermitean operator, F̂ , for a system described by the state Ψ(x1, x2, t) is
defined as

F ∗ ≡ lim
T→∞

1

T

∫ T

0

dt

∫
dx1 dx2Ψ∗(x1, x2, t)F̂Ψ(x1, x2, t). (3.19)

Similarly, the space average of F̂ for a system in the state Ψ(x1, x2, t) is
defined as

F̄ ≡ Tr(ρ̂F̂ ) (3.20)

where ρ̂ is the reduced density matrix corresponding to Ψ(x1, x2, t). Using
these definitions, the above theorems of classical ergodic theory also hold for
quantum systems.

PG then appeals to a proof that all quantum systems according to SQM
must be ergodic.5 The details of the proof6 are inconsequential for this
discussion but using the result PG establishes a discrepancy between SQM
and BM by providing two physical systems for which BM predicts non-ergodic
behaviour.

The first is the quantum version of the classical system consisting of two
identical simple pendulums each of length L = 1 and mass m = 1 connected
by an unstretched weightless spring. Its wavefunction is described by the
Schrödinger equation

ih̄
∂Ψ(Q1, Q2, t)

∂t
=

[
h̄2

2

∂2

∂Q2
2

− h̄2

2

∂2

∂Q2
2

+
1

2
ω2

1Q
2
1 +

1

2
ω2

2Q
2
2

]
Ψ(Q1, Q2, t).

(3.21)
Here we are using normal coordinates:

Q1 =
q1 + q2√

2
and Q2 =

q1 − q2√
2

,

where q1 and q2 are the spatial coordinates of particle 1 and 2, respectively.
Eqn. (3.21) has the solution

5See references 9 and 10 in [20].
6See [20] for a proof for special cases. PG refers the reader to [17], [34] ,[16] and [43]

for details of the proof for the general case.
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Ψ(Q1, Q2, t) = ψA(Q1, t)ψB(Q2, t)

where

ψA(Q1, t) =
(ω1

πh̄

) 1
4

exp

{
−
(ω1

2h̄

)
(Q1 − a1 cos (ω1t))

2

− i

2

[
ω1t+

(ω1

h̄

)(
2Q1a1 sin (ω1t)−

1

2
a2

1 sin (2ω1t)

)]}
is a wavepacket initially centered at Q1 = a1 which oscillates around Q1 and

ψB(Q2, t) =
(ω2

πh̄

) 1
4

exp

{
−
(ω2

2h̄

)
(Q2 − a2 cos (ω2t))

2

− i

2

[
ω2t+

(ω2

h̄

)(
2Q2a2 sin (ω2t)−

1

2
a2

2 sin (2ω2t)

)]}
is a wavepacket initially centered at Q2 = a2 which oscillates around Q2.

Calculating the momenta of each particle via the guidance conditions
gives

p1 =
dQ1

dt
=
∂S(Q1, Q2, t)

∂Q1

= −ω1a1 sin (ω1t)

p2 =
dQ2

dt
=
∂S(Q1, Q2, t)

∂Q2

= −ω2a2 sin (ω2t)

which leads to the trajectories

Q1(t) = Q1(0) + a1(cos (ω1t)− 1)

Q2(t) = Q2(0)− a2(cos (ω2t)− 1) (3.23)

where Q1(0) and Q2(0) are the initial normal coordinates. There are two
possible motions resulting from (3.23):

1. Q1(t) = 0 ⇒ q1(t) = q2(t), i.e., the particles oscillate in phase both
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with frequency ω1,

or

2. Q2(t) = 0 ⇒ q1(t) = −q2(t), i.e., the particles oscillate out of phase
with frequency ω2.

In both cases the motion of the system is periodic and hence, BM predicts
non-ergodic behaviour.

As a second example consider a source which emits two identical parti-
cles whose momenta are correlated (as in the original EPR paper). Each
particle is described by a wavepacket and they are made to simultaneously
pass through the slits of a double-slit apparatus, each through a different slit
(as in the experiments of GA). The analysis of this experiment proceeds in
exactly the same way as in the papers of GA except that PG uses spher-
ical waves to describe the wavepackets emerging from the slits as opposed
to the plane/Gaussian waves used in GA. Using the same coordinate system
as GA, the wavefunction of the system in the region where the individual
wavepackets do not overlap is given by

Ψ(r1A, r2B, t) =
1

2π

eik(r1A+r2B)

r1Ar2B

eiEt/h̄,

where r1A =
√
x2

1 + (y1 − a)2 and r2B =
√
x2

2 + (y2 + a)2 are the respective
distances of each particle from the slit from which it originated. Note that
Ψ(r1A, r2B, t) is symmetric with respect to reflection in the x-axis as well as
with respect to interchange of particle labels 1↔ 2.

Solving the Bohmian equations of motion yields

v1x =
1

m

∂S

∂r1A

∂r1A

∂x1

=
h̄kx1

mr1A

v2x =
1

m

∂S

∂r2B

∂r2B

∂x2

=
h̄kx2

mr2B

v1y =
1

m

∂S

∂r1A

∂r1A

∂y1

=
h̄k(y1 − a)

mr1A

v2y =
1

m

∂S

∂r2B

∂r2B

∂y2

= − h̄k(y2 + a)

mr2B

.

The spherical waves have the same speed of propagation. Therefore r1A =
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r2B = vt and we have

v1x − v2x =
d(x1 − x2)

dt
=

1

t
(x1 − x2) (3.24)

and

v1y + v2y =
d(y1 + y2)

dt
=

1

t
(y1 + y2). (3.25)

Using the initial conditions x1(t0)−x2(t0) = δ(0) and y1(t0) +y2(t0) = σ0

eqns. (3.24) and (3.25) have the solutions

x1(t)− x2(t) = δ(0)
t

t0
and y1(t) + y2(t) = σ(0)

t

t0
.

In the limits δ(0)→ 0 and σ(0)→ 0,

x1(t) = x2(t) and y1(t) = −y2(t) (3.26)

for all times t, i.e., the trajectories of the two particles approach complete
symmetry about the x-axis.

Now let us consider the region where the two individual wavepackets
overlap. Assuming the particles are bosons, the wavefunction in this region
is given by

Ψ(r1, r2, t) =
1

N

[
eik(r1A+r2B)

r1Ar2B

+
eik(r1B+r2A)

r1Br2A

]
eiEt/h̄

where N is a normalization factor whose value is unimportant here, r1B =√
x2

1 + (y1 + a)2 and r2A =
√
x2

2 + (y2 − a)2. This wavefunction is symmetric
with respect to reflection in the x-axis and with respect to interchange of
particle labels. Since r1B = r2A = vt, conditions (3.26) still hold and the
Bohmian trajectories are symmetric about the x-axis for all time. Thus, in
all regions beyond the slits the trajectories form two disjoint subsets (one
subset for particles coming through the top slit and one for particles coming
through the bottom slit) and thus the trajectories cannot fill the entire phase
space and consequently, the system is non-ergodic.

In order to test this PG proposes doing this experiment using photons and
setting up the detectors asymmetrically on the screen. If this is done, BM
predicts no simultaneous joint detections of particles in the limits δ(0) → 0
and σ(0)→ 0 while SQM predicts non-zero probability of detection according
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to eqn. (3.4).

3.1.3 The Response of Struyve and De Baere

After the publication of the papers by GA and PG, Struyve and De Baere
(hereafter referred to as SD) published a response in which they contest the
conclusions of both sets of authors [42]. We will examine their arguments as
well as the responses of GA and PG to these arguments. We begin with SD’s
criticism of GA.

The Criticism of the Experiments of GA

All of the experiments of GA make use of one or more double-slit systems
and their results are based on probabilities of joint detection of pairs of
identical particles. The basic result is that under certain conditions, BM
predicts symmetric trajectories of every particle pair while SQM does not.
This provides an observable way to test between the two theories according
to GA since coincidence counts of particle detectors placed asymmetrically
on the screen are predicted to be different by each theory. SD disagree with
this result. They argue that the conditions under which the conclusion holds
are based on assumptions which contradict BM and thus, are nonsensical.
Their appeal is based on the QEH which when applied to the experiments
of GA require that the initial positions of each particle pair are distributed
according to |Ψ|2. In particular, the y-coordinates must be distributed as
such and consequently, eqn. (3.16) is not consistent with the wavefunction,
(3.13). According to SD, “. . . |Ψ|2 does not contain the constraint y(0) = 0,
or put another way |Ψ|2 does not restrict y(0) from being different from zero.”
Since the initial particle coordinates are distributed in such a way, the center
of mass coordinates must also be distributed in such a fashion. In particular,
SD state that if the overlap of the individual wavepackets is negligible at
time t = 0 (if σ0 is small compared to Y ), then ∆y0 = σ0√

2
.

In addition, SD note that in order to ensure the particles depart the slits
symmetrically, the slits need to be small which corresponds to taking a small
σ0. However, according to eqns. (3.9) and (3.14) the smaller σ0, the larger
y(t) becomes for all t, thus, the larger the probability of asymmetric detection
according to BM.
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The Response of GA

While GA accept the fact that according to the QEH, the initial positions
of each particle must be distributed according to |Ψ|2, they disagree that
the center of mass coordinates must obey the same distribution [28]. To
illuminate their point, they provide an in-depth analysis of their third exper-
iment in which identical entangled particles are each sent through a different
double-slit apparatus. First they examine the assumption that ∆y0 � σ0.
Before the particles reach the slits, the wavefunction of the system has the
form

Ψ0(x1, x2; y1, y2) = ξ(x1, x2)h̄

∫ ∞
−∞

exp [iky(y1 − y2)] dky

= 2πh̄ξ(x1, x2)δ(y1 − y2), (3.27)

where ξ(x1, x2) depends only on the x-components of the particles and whose
form is unimportant to this discussion. The wavefunction (3.27) describes
two particles whose total momentum in the y-direction is zero and whose cen-
ter of mass has a y-component equal to zero. This entanglement is permitted
by Heisenberg’s Uncertainty Principle because

[(p̂y1 + p̂y2), (ŷ1 − ŷ2)] = 0

Thus, the Hermitean operators p̂y1 + p̂y2 and ŷ1− ŷ2 commute and the system
can exist in a state in which the corresponding dynamical quantities are both
exactly specified.

Next, GA examine how the entanglement properties of the particle pair
change when the particles go through the slits. According to GA’s original
paper [26] the individual wavepackets emerging from the slits maintain their
plane wave form in the x-direction and obtain a Gaussian profile in the y-
direction and the total wavefunction, Ψ(x1, x2; y1, y2; t), is given by (3.17),
(3.2a) and (3.2b). Note that

(p̂1y + p̂2y)Ψ(x1, x2; y1, y2; t) = −ih̄
(
∂

∂y1

+
∂

∂y2

)
Ψ(x1, x2; y1, y2; t)

= ih̄

(
y1(t) + y2(t)

2σ0σt

)
Ψ(x1, x2; y1, y2; t) (3.28)
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which says that the system is in an eigenstate of the total momentum in

the y-direction with eigenvalue ih̄
(
y1(t)+y2(t)

2σ0σt

)
. It is seen from (3.28) that

momentum entanglement, in the form p1y + p2y = 0, leads to the position
entanglement, y1 + y2 = 0. GA assume that the momentum entanglement
is maintained in the Bohmian picture, an assumption which is supported
by the symmetry of the setup. Since each double-slit apparatus is assumed
to be identical, GA assume that the passage of each wavepacket through
its respective slit is identical and hence, the momentum correlation is not
changed. Thus, the y-component of the center of mass remains on the x-axis
after passage through the slits, i.e., neither of the entanglement properties of
the system are lost.

According to SQM asymmetrical joint detection is possible because the
probability distribution at time t is P (x1, y1, x2, y2, t) = |Ψ(x1, y1, x2, y2, t)|2
(cf. Postulate 1 in chapter 1). Therefore, the position entanglement does not
exist for the particles at the screen in SQM, and consequently, neither does
the momentum entanglement. GA concludes that in SQM the momentum
entanglement is erased when the particles pass through the slits and the
center of mass coordinates must then be distributed according to |Ψ|2.

GA also point out that since the initial position of each particle is dis-
tributed according to the QEH, the final interference pattern on the screen
will be consistent with the predictions of SQM. Thus, in spite of the fact
that according to BM P = |Ψ|2 is only true for particle pairs before they
pass through the slits, we still obtain the same interference pattern after a
large number of particles have been registered on the screen.

In summary, the rebuttal of GA is that SD have used the QEH incor-
rectly by insisting that P = |Ψ|2 must be true for all times. They have
shown that this assumption boils down to the statement that the momen-
tum entanglement between the particles in a given pair (and consequently the
position entanglement) is erased from the wavefunction when the particles
pass through the slits. By arguing that this is not the case in BM – that the
momentum entanglement of the system is not changed after passage through
the slits – GA conclude that the y-component of the center of mass does, in
fact, remain on the x-axis, and from this conclusion their entire argument
follows.
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The Criticism to the Ergodicity Argument of PG

SD refutes the ergodicity argument made by PG by rejecting the definition
of the space average, eqn. (3.20). Instead, SD appeals to the definition of
the “local expectation value” of the observable F̂ given by Holland [30]:

F (x1, x2, t) = Re

[
Ψ∗(x1, x2, t)F̂Ψ(x1, x2, t)

Ψ∗(x1, x2, t)Ψ(x1, x2, t)

]
.

According to Holland, F (x1, x2, t) can be interpreted as an actual property
of the particle in the Bohmian picture. Using the local expectation value,
the space average of F̂ can naturally be defined by

F̄ ≡
∫

dx1 dx2 P (x1, x2, t)F (x1, x2, t)

=

∫
dx1 dx2 Ψ∗(x1, x2, t)F̂Ψ(x1, x2, t)

where the fact that F̂ is Hermitean has been used.
PG made the conclusion that the double-slit system is non-ergodic accord-

ing to BM because the space average of the probability of joint detection,
P̄12, is not equal to the time average of the probability of joint detection, P ∗12.
Specifically, PG showed that

P ∗12 = 0 and P̄12 6= 0 (3.29)

where P ∗12 is defined by eqn. (3.19) and P̄12 by eqn. (3.20).
Intrinsic to PG’s conclusion that P ∗12 = 0 is the assumption of symmetric

trajectories. SD levy the same argument as they did against GA – that the
conditions necessary to ensure symmetric trajectories are not consistent with
the QEH. Thus, they argue that the conclusion P ∗12 = 0 is unfounded, as is
the entire argument that the system is non-ergodic under BM.

The Response of PG

PG responds to the above criticisms [21] in a similar fashion as GA. He
considers an example using his proposed double-slit experiment (recall that
the double-slit experiment proposed by PG is almost identical to one of the
experiments proposed by GA) in which particle 1 is at a definite position
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X1(t) and particle 2 is at the definite position X2(t) at time t. According
to BM, all portions of the wavefunction where no particle actually is are
considered to be empty and do not cause particle detectors to fire. Thus,
only two trajectories out of the set of all possible trajectories will cause the
detectors to fire in any run of the experiment. If the experiment is repeated
N times at times (t1, t2, . . . , ti, . . . , tN) then for each run the particles will
be in positions X1(ti) and X2(ti) which are distributed according to |Ψ|2. In
the limit that N → ∞, the collection of runs of the experiment approaches
a Gibbs ensemble and the time average of the joint detection probability for
detectors D1 and D2 is

P ∗12 = lim
N→∞

1

N

tN∑
t1

1

δ0

∫
D1,D2,ti

ρ
(
x1(ti), x2(ti)

)
δ
(
x1(ti)−X1(ti)

)
× δ
(
x2(ti)−X2(ti)

)
dy1(ti) dy2(ti)

= lim
N→∞

1

N

tN∑
t1

ρ
(
X1(ti), X2(ti)

)
6= P̄12

where P̄12 is the space average of the joint detection probability. PG then
points out that the above formula is true only if the guidance condition
places no further restriction on the motion of the particles. This is not the
case for the double slit experiment for which both GA and PG have shown
that under certain conditions the guidance condition of BM predicts sym-
metric particle trajectories. In this case, each particle pair has the additional
constraint Y1(ti) + Y2(ti) = 0 on the particle trajectories for each ti. It is
precisely this restriction on the motion that makes the system non-ergodic.
Mathematically, the time average is now written

P ∗12 = lim
N→∞

1

N

tN∑
t1

1

δ0

∫
D1,D2,ti

ρ
(
x1(ti), x2(ti)

)
δ
(
x1(ti)−X1(ti)

)
× δ
(
x2(ti)−X2(ti)

)
δ
(
Y1(ti) + Y2(ti)

)
dy1(ti) dy2(ti)

6= P̄12.

Thus, we see that the time average is not equal to the space average
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when the constraint of symmetric trajectories is taken into account and the
system is non-ergodic. In the words of PG [21], “All this shows that QEH
is applicable to the full ensemble but not to individual processes that make
up this ensemble. There could be information regarding individual processes
determined by Bohmian dynamics (through the guidance condition) that
are hidden in the full ensemble. The symmetric trajectories in a double-slit
experiment with single particles is a clear example of how the information
that the trajectories are symmetrical about the line of symmetry and do not
cross, is masked in the distribution function,7 ρ(x(t)).”

3.1.4 The Experiment Proposed By Gondran and Gondran

Recently Michel Gondran and Alexandre Gondran, hereafter referred to as
GG, have proposed an experiment which relies on a completely different
idea than the experiments of GA and PG [29]. In the wake of advances
in nanotechnology, GG suggest using the non-zero size of material particles
to differentiate between BM and SQM. Their experiment involves sending a
beam of C60 molecules through a slit system consisting of two sets of slits,
set A and set B. Set A is a single slit of width 50 nm and set B is a grating
of 100 slits equidistantly spaced, each of width 0.5 nm with 0.5 nm between
each of them. A detection screen is placed behind the slit system on which
particle impacts are registered. The experimental set-up is given in figure
3.4. A 50 nm slit is realizable using modern technology but the grating of
set B is not. As such, the following experiment is relegated to the mind for
the time being, but it is expected that technology will eventually allow for
such an experiment to be performed in the laboratory.

Since the size of the C60 molecule is larger that the size of each of the
slits in grating B it is obvious that none of the particles should pass through
it and be registered on the detection screen. However, under the influence of
the Schrödinger equation the wavefunction of each molecule will be diffracted
by the grating and will be non-zero on the detection screen after a certain
amount of time, t, has passed. GG compare the interference patterns pre-
dicted by SQM to the trajectories predicted by BM and show that they are
different, giving an observable way to test between the two theories. The
patterns produced by SQM are given in figure 3.5.

7ρ(x(t)) = |Ψ|2.
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Figure 3.4: The experimental set-up (taken from [29]).

Figure 3.5: |Ψ|2 on the detection screen respectively: (a) diffraction (slit A),
(b) interference with asymmetrical slits (slit A and grating B), (c) magnifi-
cation of the central peak of figure (b) (taken from [29]).

50



When the grating is closed and only slit A is open the interference pat-
tern has one central peak whereas it has a smaller central peak and nearly-
symmetric secondary peaks surrounding it when both sets of slits are open.8

Figure 3.6: 100 Bohmian trajectories with randomly drawn initial positions:
(a) global view, (b) central trajectories, (c) magnification of the first millime-
ters after the slits, (d) magnification of the first hundred micrometers after
the slits (taken from [29]).

If the experiment is run with both A and B open figures 3.5(b) and 3.5(c)
are predicted when the wavefunction is assumed to propagate through the
grating. Figure 3.5(a) is predicted if it is assumed that the wavefunction
does not propagate through the grating.9

8It appears from the figure that the interference patterns are symmetric which may be
troubling to some readers since the slit system is asymmetric and is expected to produce
an asymmetric total wavefunction. The wavefunction is in fact asymmetric after emerging
from the slit system but slowly acquires a symmetric form as it propagates through space.
By the time it reaches the detection screen it is nearly symmetric.

9It is unclear whether the wavefunction should be allowed to pass through grating B.
On one hand, we know that the particle it represents (the C60 molecule) does not pass
through due to its size. However, SQM treats every quantum particle as a mathematical
point with no underlying size or structure. Thus, there is nothing in the mathematics of
SQM to prevent the wavefunction from being diffracted by the grating. Because of this,
we propose that according to SQM the wavefunction does, indeed, pass through grating B
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Similarly, GG provide numerical simulations of the Bohmian trajectories
for 100 C60 molecules (see figure 3.6). The particles went through either slit
A or grating B (the particles were allowed to pass through grating B in spite
of their size) and their initial positions were chosen randomly.1011 GG also
ran the same simulations but did not allow the molecules to travel through
the grating. The results are given in figure 3.7.

Figure 3.7: Bohmian trajectories through slit A only: (a) global view of
trajectories, (b) magnification of the first millimeters, (c) magnification of
the first hundred micrometers (taken from [29]).

It is seen that BM predicts an interference pattern with two peaks which
is different from the predictions of SQM regardless of whether or not the
wavefunction is allows to pass through the grating. In this way, GG have
established an observable difference between the two theories. What is more,
their experiment becomes increasingly realizable as our ability to manipulate
the nanoworld improves.

in spite of the size of the particle. Consequently, SQM predicts the interference patterns
of figures 3.5(b) and 3.5(c).

10It is not specified in what way the initial positions were chosen to be random. To be
consistent with the QEH they should be distributed according to |Ψ|2t=0.

11Note the similarity between figure 3.5(c) and figure 3.6(b). This is expected on the
grounds of the QEH – that BM and SQM predict the same statistical results for the same
physical system. This is evidence that the simulations of GG are accurate.
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3.2 Deriving the Classical World From BM

One of the first things an astute person will realize when learning quantum
mechanics is that the quantum world looks nothing like the world in which
we live. The waves which, according to the Copenhagen interpretation, rep-
resent every quantum system are, indeed, something we never notice in our
everyday life. This is a big problem for quantum theory. If every object
in the universe is ultimately made up of what we call “particles” and these
“particles” are necessarily quantum systems which must be analyzed accord-
ingly, then why do classical objects never exhibit any of the “waviness” of
the particles of which they are made? Attempts have been made to bridge
the gap between quantum and classical mechanics but this is somewhat of a
malformed exercise to begin with because classical mechanics is a determinis-
tic theory in which particles move along deterministic trajectories regardless
of whether or not they are being measured12. On the other hand, according
to SQM, particles do not follow trajectories through space and time and are
not described by deterministic laws. They are described by probabilistic laws
and the whole concept of a particle is not well-defined. Thus, it is difficult to
see how one would even attempt to derive the deterministic world of classical
mechanics from the probabilistic laws of SQM.

Problems such as these are nonexistent in BM. As we well know, the
concept of the particle is central to BM. A Bohmian system is made up
of particles which move through space and time along trajectories deter-
mined by the guidance condition,

→
pi= ∇iΨ(

→
x1, . . . ,

→
xi, . . . ,

→
xN , t), where

→
pi

(
→
x1, . . . ,

→
xi, . . . ,

→
xN , t) is the momentum field of the ith particle in the system

described by the wavefunction, Ψ(
→
x1, . . . ,

→
xi, . . . ,

→
xN , t). Given a wavefunc-

tion, Ψ(
→
x1, . . . ,

→
xi, . . . ,

→
xN , t), the individual trajectory of particle i is com-

pletely determined by its initial position,
→
xi |t=0 for 1 ≤ i ≤ N . Thus,

the question of the classical limit becomes very straightforward to formulate
in BM – when do the Bohmian trajectories of a classical object resemble
those given by Newton’s Laws? We will examine three papers in which this
question is investigated. The first two give conditions which ensure that the

12Recall from Chapter 1 that the concept of measurement in quantum theory itself
carries with it its own difficulties. We use the term here in a mainly Copenhagen sense,
i.e. a particle is measured when it interacts with another system and from this interaction
we are able to infer one or more of the dynamical properties of the particle. Questions
such as whether the measurement reveals the pre-existing value of the property or not are
unimportant for the present discussion so we will leave them unanswered.
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center of mass of a macroscopic object obeys classical dynamics while the
third is an attempt to join classical and quantum mechanics together into
one overarching theory.

3.2.1 The COM Motion of Certain Macroscopic Quan-
tum Systems

In a paper by Geiger, Obermair and Helm [18], hereafter referred to as GOH,
the authors derive the conditions under which classical objects have the same
trajectories under both Newtonian mechanics and BM. They characterize a
classical object as being a collection of a large number (N ∼ 1023) of identical
subsystems (i.e. atoms) each having center of mass coordinates xi(t) for
i ∈ {1, . . . , N}. The wavefunction is completely (anti)symmetric depending
on whether the atoms are (fermionic) or bosonic and is given by

Ψtotal(x1, . . . , xN , t) =
N !∑
ν=1

cνΨ(xπν(1), . . . , xπν(N), t)

≡
N !∑
ν=1

cνΨν(x1, . . . , xN , t)

where {πν |ν ∈ {1, . . . , N !}} represents the set of all permutations of particle
coordinates and {cν} is the set of corresponding coefficients which are chosen
so as to preserve the appropriate symmetry of Ψtotal.

GOH then make two assumptions about the total system. They first
assume that the motion of each subsystem is restricted to its own region of
configuration space and that none of these regions overlap. This assumption
is reasonable if the uncertainty in the center of mass position of each atom
is much smaller than the distance between the center of mass coordinates
of neighboring atoms. Mathematically, this means that every term in Ψtotal,
each of which represents a particular permutation, is orthogonal to every
other term, i.e. {Ψν} is an orthogonal set and

∫
dx1 . . . dxN Ψ∗ν(x1, . . . , xN , t)Ψν̄(x1, . . . , xN , t) = δνν̄ (3.30)
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if each Ψν is properly normalized. As a consequence, if the system particle13

is represented by the term Ψµ at time t then it cannot be represented by
a different term, Ψλ , λ 6= µ, at a later time. Thus, all other terms in the
wavefunction can be neglected when performing calculations (expectation
values, etc.).

The second assumption GOH makes is that each term in Ψtotal is factor-
izable as follows:

Ψµ(x1, . . . , xN , t) = Rµ1(x1, t) · · ·RµN (xN , t) exp

[
i

h̄
Sµ(x1, . . . , xN , t)

]
.

(3.31)
This condition is responsible for decoupling the trajectory of each subsystem
from the quantum contribution of all of its partners. Indeed, from eqn.
(3.31),

|Ψ(x1, . . . , xN , t)| = |Ψ1(x1, t)| · · · |Ψi(xi, t)| · · · |ΨN(xN , t)| (3.32)

and

Q(x1, . . . , xN , t) = Q1(x1, t) + · · ·+QN(xN , t). (3.33)

Then from eqn. (3.33), the Bohmian trajectory of the center of mass of
subsystem i is given by

miẍi = − ∂

∂xi
V (x1, . . . , xN , t)

∣∣∣∣
x(t)

− ∂

∂xi
Qi(xi, t)

∣∣∣∣
xi(t)

and it is clearly seen that the center of mass motion of atom i is correlated to
the other atoms only through the classical potential, V (x1, . . . , xN , t). Thus,
the physical content of eqn. (3.31) is apparent – the quantum mechanical
processes within each subsystem can only effect its own center of mass motion
and not that of the others. In addition, if the system is composed of n
different types of subsystem (i.e., different kinds of atoms) then eqn. (3.32)
can be written

13By system particle we mean the point in configuration space which represents the
collective positions of all particles in the system. For example, the system particle at time
t is written (x1, . . . , xN )(t) and means that subsystem 1 is at position x1 at time t, particle
2 is at position x2 at time t and so on.
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|Ψ(x1, . . . , xN , t)| =
N∏
i=1

∣∣Ψa(i)(xi − x̄i(t), t)
∣∣ (3.34)

where each a(i) ∈ {1, . . . , n} refers to the set of subsystems of a certain type.
Eqn. (3.34) is a consequence of the fact that the probability distributions,
|Ψa(i)(x, t)|2 of the Bohmian particles, xi, around their mean values x̄i are
the same for identical subsystems (for each distinct value of a(i)).

GOH now consider the center of mass motion of the entire object. The
center of mass is given by

xCM(t) ≡ 1

M

N∑
i=1

xi(t)mi (3.35)

where M is the total mass of the object. Eqn. (3.35) is the average of the
center of mass coordinates of the subsystems comprising the whole object.
The Bohmian equation of motion for the COM coordinate given by eqn.
(3.35) is

MẍCM(t) = −
N∑
i=1

∂

∂xi
V (x1, . . . , xN , t)|x(t) −

N∑
i=1

∂

∂xi
Q(x1, . . . , xN , t)|x(t).

(3.36)
The classical contribution is a sum of external and internal forces:

−
N∑
i=1

∂

∂xi
V (x1, . . . , xN , t)|x(t) =

N∑
i,j,i6=j

Fij +
N∑
i=1

F ext
i ≡ F ext

where the sum of the internal forces,
N∑

i,j,i6=j
Fij, cancels due to Newton’s second

law, Fij = −Fji.
Using eqn. (3.34) the quantum contribution becomes

−
N∑
i=1

∂

∂xi
Q(x1, . . . , xN , t)|x(t) = −

N∑
i=1

∂

∂xi
Q(xi − x̄i(t), t)|xi(t)

where
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Q(xi − x̄i(t), t) ≡ −
h̄2

2m

∂2

∂x2
i
|Ψ(xi − x̄i(t), t)|
|Ψ(xi − x̄i(t), t)|

.

If N is large (as is the case for a classical object) and n = 1 (identical subsys-
tems), the total quantum force on a single subsystem can be approximated
by an integral. Using the QEH this integral is given by

FCM
Q ≡ − 1

N

N∑
i=1

∂

∂xi
Q(xi − x̄i(t), t)|xi(t)

≈ −
∫ ∞
−∞

du |Ψ(u− x̄i(t), t)|2
∂

∂u
Q(u− x̄i(t), t).

This integral is shown to vanish [18] and the authors conclude that the effect
of the quantum force on the center of mass of the classical object is smaller

than
|FQmax |

N
where FQmax is the largest of the single-subsystem quantum

forces in the object. Thus, the total quantum force on the object is bounded
above as follows:∣∣∣∣∣

N∑
i=1

∂

∂xi
Q(x1, . . . , xN , t)

∣∣∣∣∣
x1(t),...,xN (t)

≤ |FQmax| .

Since |FQmax | is the largest force on a single subsystem, it is clearly not large
enough to accelerate the classical object noticeably and the total force on
the center of mass of the object is accurately approximated by

MẍCM(t) = F ext

which is Newton’s second law. The results also holds when n 6= 1 since the
above argument remains true for each type of subsystem.

To summarize, GOH have shown that under the assumptions of locality,
eqn. (3.30), and factorizability of the wavefunction, eqn. (3.31), the Bohmian
motion of the center of mass of a classical object is essentially equal to its
motion under Newton’s second law. Note, however, that GOH examine only
the motion of the center of mass of the object. The stability of matter is not
explained by their analysis and is the subject of another discussion.
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3.2.2 Another Derivation of the Classical World Using
BM

In a paper by Allori, Dürr, Goldstein and Zanghi, hereafter referred to as
ADGZ, the authors approach the problem of the classical limit in a different
way [1]. They consider a classical object as being composed of N particles
where N � 1 and examine the motion of the center of mass of the object
(see eqns. (3.35) and (3.36)) as was done in GOH. Under the coordinate
transformation, (x1, . . . , xN) → (x, y1, . . . , yN−1) where x is the center of
mass of the object, given by eqn. (3.35) and {yi}, i ∈ {1, . . . , (N − 1)} are a
set of coordinates relative to x, the Schrödinger equation is

ih̄
∂Ψ

∂t
=
(
H(x) +H(y) +H(x,y)

)
Ψ

where H(x) is the free Hamiltonian for the center of mass coordinate, x,
H(y) is the free Hamiltonian for the coordinates {yi} and H(x,y) describes the
interaction between x and {yi}. Thus,

H(x) =
h̄2

2m
∇2
x + V (x), where V (x) ≡

N∑
i=1

Vi(x)

and H(y) has a similar form. If each Vi varies slowly in relation to the size
of the object, H(x,y) is small and can be neglected to first approximation.
Then if Ψ = ψ(x)φ(y) at any time, t, the evolution of x decouples from
the evolution of the {yi} and ψ(x) evolves according to the single-particle
Schrödinger equation

ih̄
∂ψ

∂t
=

h̄2

2m
∇2
xψ + V (x)ψ.

The center of mass follows the Bohmian trajectory given by

dx

dt
=

h̄

m
Im

(
∇xψ(x)

ψ(x)

)
.

As in GOH, the classical limit is embodied in the condition that quantum
effects play a negligible role in the dynamics of the center of mass of the
object. When this is the case, eqn. (3.36) becomes

MẍCM ' Fclassical.
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ADGZ attack this problem in a very different manner than GOH. Instead
of looking at the quantum contributions to the center of mass motion, they
begin with the condition

λ� L (3.37)

where λ is the de Broglie wavelength of the system and L is the scale of vari-
ation of the potential, V . ADGZ argue that this condition is both necessary
and sufficient to ensure that the system behaves classically. Condition (3.37)
is motivated by its similarity to how geometrical optics is obtained from wave
optics. Also, (3.37) is regarded as equivalent to the condition

h̄� A0 (3.38)

where A0 is some characteristic action of the corresponding classical mo-
tion. (3.38) is commonly used as the condition to ensure classical behaviour.
Hence, (3.37) seems reasonable and the goal is to find an expression for the
scale of variation of the potential, L, in terms of known physical quantities.

The authors first examine the case where the wavefunction has a well-
defined de Broglie wavelength. They consider a wavepacket of width σ and
mean wave vector k. Such a wavepacket has a de Broglie wavelength of
λ = 2π

|k| . The mean particle position at time t is

〈X〉 =

∫
x|Ψt(x)|2 dx

and

m
d2

dt2
〈X〉 = −

∫
∇xV (x)|Ψt(x)|2 dx.

Expanding the function F (x) = −∇xV (x) in a Taylor series around 〈X〉
gives

m
d2

dt2
〈X〉 = F (〈X〉) +

1

2

∑
j,k

∆j,k
∂2F

∂xj∂xk
(〈X〉) + . . . (3.39)

where

∆j,k = 〈XjXk〉 − 〈Xj〉 〈Xk〉
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is of order σ2. Thus, neglecting terms of order higher than σ2, in (3.39) the
mean particle position will satisfy

m
d2

dt2
〈X〉 ≈ F (〈X〉)

when

σ2

∣∣∣∣ ∂3V

∂xi∂xj∂xk

∣∣∣∣� ∣∣∣∣∂V∂xi
∣∣∣∣ ,

i.e.,

σ �

√∣∣∣∣ V ′V ′′′

∣∣∣∣, (3.40)

where V
′

and V
′′′

are suitable estimates on the first and third derivatives of
V (for example, taking the supremums).

Since the minimum value of σ is of order λ, (3.40) can be written

λ�

√∣∣∣∣ V ′V ′′′

∣∣∣∣. (3.41)

This is a necessary condition to ensure classical behaviour of the system. In
addition, eqn. (3.41) provides an expression for the scale of variation of the
potential,

L = L(V ) =

√∣∣∣∣ V ′V ′′′

∣∣∣∣. (3.42)

Now ADGZ proceed to argue that (3.37) with L defined by (3.42) is also a
sufficient condition for classicality. For wavepackets such as the one examined
above this is true because over a time period for which the spreading of
the wavepacket can be neglected the large majority of the trajectories will
remain close to their mean value. This is a consequence of the QEH. Thus,
the majority of particle trajectories will be classical.

Next, ADGZ examine “local plane waves”. Local plane waves have the
property that their amplitude, R(x), and local wave vector, k(x) ≡ ∇xS(x)/h̄,
vary slowly over distances of the order of the local de Broglie wavelength,
λ(x) ≡ h/|∇xS(x)|. Locally, they look like wavepackets and they can be
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thought of as being composed of a sum of wavepackets.
Suppose we partition physical space into a union of disjoint sets, ∆i in

such a way that the value of the local wave vector, k(x) is almost constant
within each set. If we call these almost constant values ki, then we have
k(x) ≈ ki for x ∈ ∆i. Let χ∆i

be the characteristic function on the set ∆i

(i.e., χ∆i
(x) = 1 if x ∈ ∆i and χ∆i

(x) = 0 otherwise). Then we can expand
the wavefunction as follows:

ψ(x) =
∑
i

χ∆i
(x)ψ(x) =

∑
i

ψi(x). (3.43)

At any particular time, t, the system particle is in the support of one of the
packets forming the sum in (3.43), say ψi. The minimum size of the packet
depends on the size of the set ∆i. Since k(x) is almost constant in each ∆i,
∆i can be the size of many wavelengths down to a size of the order of λi.

14

Thus, the same argument used for wavepackets can be used here: the size of
the packet, ψi, is taken to be of order λ(x) and if eqn. (3.40) holds then we
arrive at condition (3.41) for classical behaviour.

Now ADGZ investigate a general wavefunction. In this case the de Broglie
wavelength may not be well-defined so an alternative is needed. Using the
mean kinetic energy associated with a wavefunction, ψ,

Ekin(ψ) =

〈
ψ,− h̄2

2m
∇2
xψ

〉
, (3.44)

an estimate of the wavelength is given by

λ = λ(x) =
h√

2mEkin(ψ)
. (3.45)

Now suppose that (3.41) is satisfied with λ as in (3.45). ADGZ show
that under the evolution of the Schrödinger equation, ψ quickly becomes a
local plane wave, and hence, evolves classically according to the previous
discussion. They argue that if λ � L(V ), the kinetic energy dominates the
potential energy so that the system approximately follows free Schrödinger
evolution up until the time the potential significantly affects the motion.
During this time the different wave vectors in ψ become spatially separated
and a local plane wave is formed. Indeed, the free Schrödinger evolution is

14Here λi represents the almost-constant value of λ(x) inside ∆i.
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given by

ψt(x) =
1

(2π)3/2

∫
exp

[
it

(
kx

t
− h̄k2

2m

)]
ψ̂(k) dk

where ψ̂(k) is the Fourier transform of the initial wavefunction, ψt(x). Using
the stationary phase method, the long-time asymptotics of ψt(x) is

ψt(x) ∼
(
im

h̄t

) 3
2

exp

(
i
mx2

2h̄t

)
ψ̂(k)

where k = mx
h̄t

. This is a local plane wave with local wave vector k(x) = mx
h̄t

.
The question now arises as to how quickly this local plane wave is pro-

duced. Consider a wavefunction composed of two overlapping wavepackets
with the width, ∆x, and with opposite momenta, p and −p. The time it
takes for the packets to separate, τ , (i.e., the time for the formation of a
local plane wave) is the time it takes for the packets to travel a distance of
∆x. Using ∆x∆p ∼ h̄ and ∆p ∼ p,

τ ∼ ∆x

p/m
∼ h̄

p2/m
∼ h̄

〈E〉
(3.46)

where 〈E〉 is the mean energy of the particle. ADGZ then propose that (3.46)
with 〈E〉 given by (3.44) could give a rough estimate of the time required
for formation of a local plane wave for a general wavefunction. They point
out that the time needed for the potential to produce significant effects is of
order

T =
L

v
where v =

h

mλ
.

Thus, if λ � L then τ � T and the local plane wave is formed on a time
scale smaller than that required for the potential to have a significant effect
on the dynamics. The time estimate, (3.46), although not necessarily very
accurate, is at least consistent. In this way, ADGZ establish a condition, eqn.
(3.41), to ensure the classical dynamics of the center of mass of a macroscopic
object.

62



3.2.3 A Continuous Transition Between Quantum and
Classical Mechanics

In a series of two papers, one by Partha Ghose [22] and the other by Ghose
and Manoj Samal [23], hereafter referred to as GS, the authors attempt to
join classical and quantum mechanics in one overarching theory. The usual
approach is to try to derive classical mechanics as some sort of “classical
limit” of the Schrödinger (or Pauli, etc.) equation. Many times this involves
examining the condition h̄ → 0, or in the case of BM one usually tries to
find conditions which ensure quantum effects are negligible to the dynamics
of a macroscopic object, (for instance, the two papers discussed above). In
both cases, one starts with quantum mechanics and tries to turn it into
classical mechanics. GS take a different approach and begin with the classical
Hamilton-Jacobi equation

∂Scl(x, t)

∂t
+

1

2m
(∇Scl(x, t))2 + V (x) = 0 (3.47)

and the equation of continuity

∂R2
cl(x, t)

∂t
+∇ ·

(
R2
cl(x, t)

p

m

)
= 0 (3.48)

where Scl(x, t) is the action function for a classical particle in a potential,
V (x), and R2

cl(x, t) is a position distribution function for the trajectories
determined by Scl(x, t). The momentum of the particle is given by

p = m
dx

dt
≡ ∇Scl(x, t). (3.49)

GS then introduce the complex-valued wavefunction

ψcl(x, t) = Rcl(x, t) exp

(
i

h̄
Scl(x, t)

)
. (3.50)

In order that eqns.(3.47) and (3.48) remain valid with p defined by (3.49),
ψcl(x, t) must satisfy the equation

ih̄
∂ψcl
∂t

=

(
h̄2

2m
∇2 + V (x)

)
ψcl −Qclψcl (3.51)

where
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Qcl = − h̄2

2m

∇2Rcl

Rcl

. (3.52)

Eqn. (3.51) is the Schrödinger equation with the additional term, (3.52), on
the right-hand side. It is very interesting that a particle can behave classically
while being described by the wavefunction (3.50) and eqn. (3.51) since (3.51)
contains the parameter h̄. The last term in (3.51) is nonlinear in |ψcl| and
cancels all quantum effects exactly to produce classical particle trajectories.

Note the similarities between the above classical equations and the cor-
responding equations in BM. Specifically, one gets BM if the quantum po-
tential term, Q = h̄2

2m
∇2R
R2 is added to eqn. (3.47) and all classical quantities

(Rcl, Scl, etc.) are replaced by their quantum counterparts, (R, S, etc.). Simi-
larly, the classical wave equation, eqn. (3.51), is Schrödinger’s equation with
the additional term, −Qclψcl, on the right-hand side. Making use of this
observation, GS propose the following equation:

ih̄
∂ψ

∂t
=

(
h̄2

2m
∇2 + V (x)− λ(t)Qcl

)
ψ (3.53)

with Qcl defined by (3.52). λ(t) = 1 corresponds to classical mechanics and
λ(t) = 0 corresponds to BM while 0 < λ < 1 represents some sort of mixture
of the two. GS refer to this mixture as a mesoscopic system. A prudent choice
of the function λ(t) then provides a model in which the system begins as a
completely quantum system (λ(0) = 0) and can be continuously transformed
into a completely classical system over a time period of ∆t (λ(∆t) = 1).

To find a reasonable form for λ(t) it is instructive to look at the con-
ventional view on decoherence, environmental-induced decoherence, (EID).
According to EID, a quantum system interacting with its environment is
described by the Schrödinger equation

ih̄
∂ψ

∂t
=

(
− h̄2

2m
∇2 + V (x) +W

)
ψ

where W is the operator representing the effects of the environment. If the
environment interactions are complex, such as for a heat bath, the density
matrix quickly becomes diagonal in the position representation. Specifically,
for a heat bath of temperature T , the density matrix is governed by the
equation
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dρ

dt
= − i

h̄
[H, ρ]− γ(x− x′)(∂x − ∂x′ )ρ−

ρ

τD

where γ is the relaxation time and

τD = h2/2mγkBT (x− x′) (3.54)

is the decoherence time scale. Although the system decoheres in the posi-
tion representation, it does not in other representations (for instance, in the
momentum representation). Thus, the above theory of decoherence does not
produce true decoherence and true classical behaviour. The reason for this is
the linearity of the Schrödinger equation. A linear equation cannot describe
the process of decoherence and it is precisely the non-linear term, (3.52), that
is responsible for the decoherence of the system in eqn. (3.51).

Making use of eqn. (3.54) GS propose λ(t) = 1− e−bt with b = 1/τD and
τD given by eqn. (3.54) as a possible form for the function λ(t).15 Using
this form of λ(t), a macroscopic system in an high-temperature environment
would very quickly decohere and behave classically. However, certain systems
could exist in a mesoscopic state for long times under appropriate tempera-
tures.

In this way, GS provide a model which describes both classical and quan-
tum mechanics in a single wave equation. It also provides a straightforward
way of looking at quantum decoherence and contains the tools for examining
a new state of matter, the mesoscopic state, which is described by a mixture
of classical and quantum dynamics. However, their theory only works within
the context of BM where the concept of a particle trajectory is well-defined.
In addition, the entire mathematical framework is based on the Hamilton-
Jacobi equation which has a quantum counterpart only in BM.

To close this section, we provide trajectories for a quantum harmonic
oscillator as predicted by eqn. (3.53). These are taken from [23] in which
trajectories are provided for three systems – stationary states of the classical
harmonic oscillator, a one-dimensional free wavepacket and the wavepacket
solution of the quantum harmonic oscillator. The trajectories for the quan-
tum oscillator are given in figure 3.8. They are seen to continuously change

15The authors point out that there are many continuous functions that satisfy λ(0) = 1
and λ(t0) = 0 for some t0. This is indicative of the fact that there are many ways a system
can decohere. For instance, a different environment would likely cause a given system to
decohere in a different way.
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Figure 3.8: x vs. t for the quantum oscillator for (i) b = 0, (ii) b = 0.0001,
(iii) b = 0.01 and (iv) b = 0.7 (taken from [23]).

from completely quantum mechanical to completely classical as λ is increased
from 0 to 1. This gives a picture of a mesoscopic system in action – the tra-
jectories are “between” classical and quantum while 0 < λ < 1. The above
plots are for four different values of the parameter b where λ(t) = 1− e−bt.
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Chapter 4

A Warm-up – The Hydrogen
Atom

The hydrogen atom is one of the standard examples of a system for which
the wavefunction is easily solved and well-known. As such, it is a natural
candidate to which to apply Bohmian mechanics and to determine particle
trajectories. In recent years Colijn has done an in-depth Bohmian analysis
of the hydrogen atom [11]. We will outline her procedure for examining the
hydrogen atom evolving in time under the non-relativistic Schrödinger equa-
tion.1 This will provide a good warm-up for the remaining chapters in which
we investigate some Bohmian trajectories associated with the helium atom.
We will see that Colijn’s representation of the wavefunction of the hydrogen
atom leads very naturally to a similar representation of the wavefunction of
the helium atom.

4.1 The Model

This model is that used in [11]. As in standard treatments of the hydrogen
atom, we take the nucleus to be infinitely heavy and stationary in space.2

Thus, the model consists of a lone electron which is electrically attracted

1Colijn also analyzed the hydrogen atom using the Pauli equation and Dirac equation,
but we will not be concerned with these procedures or results (see [13] for these results).

2This is a reasonable approximation since the mass of the nucleus is nearly 2000 times
the mass of the electron. Thus, during the time in which the electron moves a reasonable
distance the nucleus is nearly stationary due to conservation of linear momentum.

67



to a stationary proton. When this approximation is made, one neglects the
parts of the wavefunction corresponding to the nucleus and approximates the
wavefunction of the atom as the wavefunction of the electron. We situate the
nucleus at the origin of our coordinate system and the general wavefunction
of the electron is a linear combination of energy eigenstates:

Ψhyd(~r, t) =
∞∑
n=1

l<n∑
l=0

m=l∑
m=−l

cn,l,m(t)Φn,l,m(~r), (4.1)

where Φn,l,m(~r) is an energy eigenfunction with quantum numbers n (princi-
ple quantum number), l (orbital angular momentum quantum number) and
m (spin angular momentum quantum number) and the cn,l,m(t) are constants
that depend only on time. Φn,l,m(~r) is a simultaneous eigenfunction of the

Hamiltonian, Ĥhyd with eigenvalue E
(0)
n , the total angular momentum oper-

ator, L̂2 with eigenvalue l(l + 1)h̄2 and the orbital angular momentum (or
spin) operator in the z-direction, L̂z with eigenvalue mh̄. The Hamiltonian,
Ĥhyd is given by

Ĥhyd = − h̄2

2me

∇2 − Ze2

r
,

where me is the mass of the electron, Z is the nuclear charge (Z = 1 for
hydrogen), e is the electronic charge and r is the distance from the electron
to the nucleus. The form of the operators L̂2 and L̂z is unimportant. The
eigenfunctions are most easily given in spherical coordinates as

Φn,l,m(r, θ, φ) = Rn,l(r)Y
m
l (θ, φ), (4.2)

where the {Rn,l} are radial eigenfunctions and the {Y m
l } are angular eigen-

functions. We use θ to specify the polar angle and φ to specify the azimuthal
angle (cf. figure 4.1). The radial eigenfunctions are given by

Rn,l(r) = −

{(
2Z

na0

)3
(n− l − 1)!

2n[(n+ l)!]3

} 1
2

e−
ρ
2ρlL2l+1

n+l (ρ), (4.3)

where Z is the nuclear charge, a0 = 4πε0h̄
2

mee2
is the Bohr radius, ρ = 2Zr

na0
and

Lba is the associated Laguerre polynomial of degree a and order 0 ≤ b ≤ a.
The angular eigenfunctions are given by
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Y m
l (θ, φ) = (−1)m

[
(2l + 1)(l −m)!

4π(l +m)!

] 1
2

Pml (cosθ)eimφ, (4.4)

where Pba is the associated Legendre polynomial of degree a and order |b| ≤ a.

Figure 4.1: Our convention for spherical coordinates, (r, θ, φ).

Substituting the wavefunction, (4.1), into the Schrödinger equation yields

ih̄
∂Ψhyd(~r, t)

∂t
= ĤhydΨhyd(~r, t),

where Ĥhyd is the Hamiltonian for the hydrogen atom. Evaluating the right-
hand-side we see that

ĤhydΨhyd = Ĥhyd

∞∑
n=1

l<n∑
l=0

m=l∑
m=−l

cn,l,m(t)Φn,l,m(~r)

=
∞∑
n=1

l<n∑
l=0

m=l∑
m=−l

E(0)
n cn,l,m(t)Φn,l,m(~r)

because each Φn,l,m(~r) is an eigenfunction of Ĥhyd with eigenvalue E
(0)
n .

Evaluating the left-hand-side we see that

∂Ψhyd

∂t
=
∞∑
n=1

l<n∑
l=0

m=l∑
m=−l

Φn,l,m(~r)
∂cn,l,m(t)

∂t
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because the time-dependence of the wavefunction is contained entirely in the
coefficients, cn,l,m(t). Thus, the Schrödinger equation can be simplified to

ih̄
∞∑
n=1

l<n∑
l=0

m=l∑
m=−l

Φn,l,m(~r)
∂cn,l,m(t)

∂t
=
∞∑
n=1

l<n∑
l=0

m=l∑
m=−l

E(0)
n cn,l,m(t)Φn,l,m(~r).

(4.5)
To solve for the {cn,l,m(t)} we make use of the orthonormality of the

hydrogenic eigenfunctions, given by

∫ ∞
0

∫ 2π

0

∫ π

0

Φ∗
n′ ,l′ ,m′

(r, θ, φ)Φn,l,m(r, θ, φ) dr dθ dφ = δn,n′δl,l′δm,m′ , (4.6)

where δa,b is the Kronecker delta. Multiplying (4.5) by Φ∗
n′ ,l′ ,m′

, integrating

over all space and using (4.6) gives

ih̄
∂cn′ ,l′ ,m′ (t)

∂t
= E

(0)

n′
cn′ ,l′ ,m′ (t) (4.7)

and this is true for each n
′
, l
′

and m
′
. Eqn. (4.7) has solution

cn′ ,l′ ,m′ (t) = exp

(
−iE(0)

n′
t

h̄

)
and using this the wavefunction becomes

Ψhyd(~r, t) =
∞∑
n=1

l<n∑
l=0

m=l∑
m=−l

Φn,l,m(~r) exp

(
−iE(0)

n t

h̄

)
. (4.8)

where Φn,l,m(~r) is given by (4.2). (4.3) and (4.4). Thus, each cn,l,m(t) is
independent of each of the others under the evolution of the Schrödinger
equation. We will see in the next section that is not true for the wavefunction
of the helium atom.

4.2 Results

Colijn first examines the Bohmian trajectories associated with eigenstates of
Ĥhyd. For all eigenstates with m = 0 the wavefunction is real because the
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associated Laguerre polynomials and associated Legendre polynomials of all
degrees and orders are real. Thus, the phase, S, is zero and consequently
the first term in the guidance condition, eqn. (2.15), is zero (cf. footnote 6
in Chapter 2). This is a very interesting result for it says that by neglecting
the effects of spin, the ground state electron in the hydrogen atom is sta-
tionary. Bohm knew of this when he first published his theory3 and used the
result as evidence that his theory was correct [5, 6]. According to him, it
gave an explanation for why the electron in the hydrogen atom did not fall
into the nucleus – the quantum potential acting on the electron is such as
to completely balance the electrical attraction exerted by the nucleus, thus
canceling the motion of the electron exactly.

Since ∇S = ~0 (and ~A, the electromagnetic vector potential, is zero be-
cause we are dealing with a free hydrogen atom) any motion of the electron
is due solely to the spin-dependent part of eqn. (2.15). Colijn analyzed hy-
drogen atoms for which the electron has a constant spin vector which points
in the z-direction, ~s = h̄

2
k̂. For the real eigenstates considered by Colijn, it is

easy to show that the spin-dependent term of (2.15), ∇ρ×~s, produces motion
only in the φ-direction, i.e., circular orbits around the z-axis [11]. From the
definition of the cross product the momentum associated with this term is
orthogonal to both ∇ρ and ~s. Since ~s points in the z-direction, the momen-
tum lies in planes of constant z. This is true for all wavefunctions. Note that
the directions orthogonal to ∇ρ are along level sets of ρ. For the 1s and 2s
states (respective quantum numbers (1, 0, 0) and (2, 0, 0),) the wavefunction
depends only on r and therefore the level sets of ρ are spheres centered at
the origin. Thus, the trajectories are constrained to lie on the intersection of
these spheres with planes of constant z, which, of course, are circles around
the z-axis. For the 2p0 state (quantum numbers (2, 1, 0)), ρ is given by

ρ2,1,0 = |Ψ2,1,0|2 =
1

32πa5
e−r/a(r cos θ)2, (4.9)

where a = h̄2/(mee
2) is the Bohr radius. Setting z = r cos θ = C where C is

a constant and ρ = constant and using (4.9) leads to the condition

3Actually when Bohm published his two seminal papers in 1952 the spin-dependent
term of the guidance condition had not yet been derived. The guidance condition was
originally given as ~p = ∇S and so according to Bohm the ground state electron was
permanently stationary until an external force caused it to move (see [5]).
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C

32πa5
e−r/a = constant. (4.10)

Eqn. (4.10) has solution r = constant, which when coupled with the condi-
tion z = constant yields circular trajectories around the z-axis.

Colijn also examines the eigenstates with quantum numbers (2, 1,−1)
and (2, 1, 1). In these cases the phases of the wavefunction are non-zero and
are given by S = ±h̄φ where the “+” corresponds to the quantum number
m = 1 and the “−” corresponds to the quantum number m = −1. Thus,
the first term of eqn. (2.15) has a non-zero component in the φ-direction
equal to ±φ. Since φ is the polar angle this corresponds to circular motion
around the z-axis. As for the m = 0 case, the spin-dependent term of (2.15)
again yields circular motion about the z-axis.4 Thus, the total motion for
the (2, 1, 1) and (2, 1,−1) eigenstates are circles around the z-axis.

It is natural to assume that the trajectories for the m = 1 and m = −1
states are the same except that the direction of motion changes. Indeed,
the spin-independent term, ∇S = ±φêφ changes sign when the sign of m is
changed but the spin-dependent term, ∇ρ×~s

ρ
, does not. This is because ρ is

independent of m and this is true for any values of the quantum numbers
n and l. In order to obtain the result that the trajectories reverse direction
when the sign of m is changed one must also change the sign of ~s (which
amounts to changing the direction of ~s by π radians). This is a reasonable
result since one normally associates a state with a positive value of m with
a spin “up” state and a state with a negative value of m with a spin “down”
state.

The last states we wish to discuss are the real-valued 2px and 2py states,
given by

Ψ2px =
1√

32πa5
re−r/2a sin θ cosφ

Ψ2py =
1√

32πa5
re−r/2a sin θ sinφ

of which each is formed from appropriate linear combinations of the wavefunc-
tions associated with the (2, 1, 1) and (2, 1,−1) states. These are eigenstates

4We refer the reader to [11] for proof of this. The calculations are not difficult and are
similar to those used to analyze the (2, 1, 0) state.
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of the Hamiltonian, Ĥhyd, and L̂2 but not of L̂z. Since the wavefunctions
are real, S = 0 and there is no motion associated with the spin-independent
term, ∇S. The spin-dependent term has components in all three directions
and the motion is given by the set of three coupled DEs,

dr

dt
= − h̄

mr
tanφ

dθ

dt
= − h̄

mr2
cot θ tanφ

dφ

dt
= − h̄

mr2

(
1− r

2a
+ cot2 θ

)
. (4.11)

Colijn solves the system (4.11) numerically and obtains the trajectories shown
in figure 4.2. Notice the similarity between these trajectories and the plots
of |Ψ|2 for the 2px wavefunction in figures 4.2 and 4.3.5 The first figure in
4.3 shows the shape of the orbital and the second shows slices through some
contour curves of |Ψ|2. Recall that the motion of the electron in the 2px
state is due entirely to the spin-dependent term. Thus, the trajectories lie
along the level sets of |Ψ|2 which is precisely what we see in figure 4.2. The
similarity of the Bohmian trajectories with the orbitals is evidence in favor
of the consistency of BM with SQM.

It is easy to show that the Bohmian trajectories of any hydrogenic eigen-
state have non-zero components only in the φ-direction and thus, are circular
orbits around the z-axis. This is due to the fact that the eigenfunctions have
the form

Φn,l,m(r, θ, φ) = F (r, θ)e−imφ

where F (r, θ) is a real function. Thus, the∇S term has a non-zero component
only in the φ-direction. Similarly, the spin-dependent term produces motion
only in the φ-direction for all eigenstates. This is because ρn,l,m = |Φn,l,m|2
has no φ-dependence. Thus, ∇ρn,l,m has a φ-component equal to zero. Since
the φ-component of ~s is also equal to zero, ∇ρ×~s has a non-zero component
only in the φ-direction. Thus, the total momentum is non-zero only in the
φ-direction and consequently all trajectories are circular orbits around the
z-axis.

5The diagrams in figure 4.3 were taken from the website http://csi.chemie.tu-
darmstadt.de/ak/immel.
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Figure 4.2: The Bohmian trajectories of a hydrogenic electron in the 2px
state for a number of initial particle positions (taken from [11]).

Figure 4.3: 3-D Plots of the 2px orbital. The first figure shows the shape of
the orbitals while the second shows slices of constant probability.
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Chapter 5

The Helium Atom

5.1 The Model

The helium atom is the simplest many-body quantum system.1 It consists of
two electrons which orbit a nucleus containing two protons and two neutrons.
The neutrons are electrically neutral and for our purposes can be considered
to contribute nothing to the overall dynamics of the atom. As was done for
the hydrogen atom, we will approximate the nucleus to be infinitely heavy.
Due to conservation of linear momentum the nucleus can then be approxi-
mated as being stationary over the course of any simulation we wish to run.
Using these approximations, the Hamiltonian of the helium atom is

Ĥhel = − h̄2

2me

∇2
1 −

h̄2

2me

∇2
2 −

Ze2

r1

− Ze2

r2

+
e2

r12

(5.1)

where r1 is the distance from electron 1 to the nucleus, r2 is the distance from
electron 2 to the nucleus and r12 is the distance between the two electrons.
The Schrödinger equation for this Hamiltonian is not exactly solvable so
approximations must be made. We will use a perturbation approach in which
the 1

r12
term is assumed to be small enough to be treated as a perturbation.

In effect, we write

Ĥhel = Ĥ0 + Ĥ1 (5.2)

1For our purposes, we are considering an atom to be described by the motion of its
electrons around a stationary, infinitely heavy nucleus. Thus, we consider the hydrogen
atom to be a single-body system.

75



where

Ĥ0 = − h̄2

2me

∇2
1 −

h̄2

2me

∇2
2 −

Ze2

r1

− Ze2

r2

(5.3)

is the Hamiltonian for two independent (i.e. non-interacting) hydrogenic
electrons and

Ĥ1 =
e2

r12

(5.4)

represents the interaction between the electrons and is the perturbation.
Thus, the Schrödinger equation for helium is

ih̄
∂Ψhel

∂t
= ĤhelΨhel = (Ĥ0 + Ĥ1)Ψhel. (5.5)

As we saw in the previous chapter, the Schrödinger equation for the free
hydrogen atom admits a spectrum of eigenfunctions according to the eigen-
value equation

ĤhydΦn,l,m = E(0)
n Φn,l,m for n ∈ N (5.6)

where Φn,l,m = Rn,lY
m
l and E

(0)
n are the energy eigenvalues. The solution to

the free hydrogenic Schrödinger equation can be written as (cf. eqn. (4.8))

Ψhyd =
∞∑
n=1

Φn,l,m exp

(
−iE(0)

n t

h̄

)
. (5.7)

The Schrödinger equation for Ĥ0,

ih̄
∂Ψ0

∂t
= Ĥ0Ψ0 (5.8)

has an exact solution which is nothing more than the tensor product of two
hydrogenic eigenfunctions according to the eigenvalue equation

Ĥ0Φni,li,mi(r1, θ1, φ1)Φnj ,lj ,mj(r2, θ2, φ2) =(
E(0)
ni

+ E(0)
nj

)
Φni,li,mi(r1, θ1, φ1)Φnj ,lj ,mj(r2, θ2, φ2) (5.9)
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where (r1, θ1, φ1) are the spherical coordinates of electron 1 and (r2, θ2, φ2)
are the spherical coordinates of electron 2. The time-dependent solution of
(5.8) is then

Ψ0 =
∞∑
i=1

∞∑
j=1

exp

−i
(
E

(0)
ni + E

(0)
nj

)
t

h̄

Φi(~r1)Φj(~r2) (5.10)

where the subscripts i and j refer respectively to the quantum number triplets
(ni, li,mi) and (nj, lj,mj).

In order to take account of the perturbation term in the Hamiltonian,
we write Ψhel in the same form as Ψ0 except that we allow arbitrary time-
dependence. In effect, we write the solution of (5.5) as

Ψhel(r1, θ1, φ1, r2, θ2, φ2, t) =
∞∑
i=1

∞∑
j=1

cij(t)Φi(r1, θ1, φ1)Φj(r2, θ2, φ2) (5.11)

where each cij is an arbitrary function of the time, t.
Thus, the Schrödinger equation becomes

ih̄

∞∑
i=1

∞∑
j=1

dcij(t)

dt
Φi(~r1)Φj(~r2) =

∞∑
i=1

∞∑
j=1

cij(t)
(
E

(0)
i + E

(0)
j

)
Φi(~r1)Φj(~r2)

+ e2

∞∑
i=1

∞∑
j=1

cij(t)
1

r12

Φi(~r1)Φj(~r2). (5.12)

To find the {cij(t)} we use the same technique as was used for the hydro-
gen atom in the previous chapter. Multiplying both sides of this equation by
Φg(~r1)Φh(~r2), integrating over all space2 and using the orthonormality of the
hydrogenic eigenfunctions (cf. eqn. (4.6)) eqn. (5.12) becomes

2Note that “all space” refers to the coordinate space of both electrons, i.e., we integrate
over <3 twice.
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ih̄
dcgh(t)

dt
= cgh(t)

(
E(0)
g + E

(0)
h

)
+
∞∑
i=1

∞∑
j=1

e2cij(t)

∫
<3

∫
<3

Φg(~r1)Φh(~r2)
1

r12

Φi(~r1)Φj(~r2) d3τ1 d
3τ2 (5.13)

where d3τ1 is an element of volume in the coordinate space of electron 1 and
d3τ2 is an element of volume in the coordinate space of electron 2.

This can be written as the matrix equation

ih̄
dC(t)

dt
= EC(t) +RC(t)

where C(t) is the infinite-dimensional column vector

C(t) =



c11(t)
...

c1n(t)
...

c21(t)
...

cnn(t)
...


,

E is the infinite-dimensional square matrix
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E =



E
(0)
11 0 0 . . . 0 . . .

0 E
(0)
12 0

. . . 0 0 0

0 0
. . . 0 0 0

. . . 0 E
(0)
1n 0

. . .

0
. . . 0

... 0 E
(0)
21 0

. . .

0 0 0
. . . 0

0 0 0
. . . 0 E

(0)
nn

. . .
... 0

. . . . . . . . .



,

and

R =



R11,11 . . . R11,1n . . . R11,21 . . . R11,nn . . .
...

. . .

R1n,11 R1n,1n
. . . . . .

...
. . . . . . . . . . . .

R12,11
. . . . . . . . .

...
. . . . . . . . .

Rnn,11
. . . Rnn,nn

...
. . . . . .


.

where E
(0)
ij = E

(0)
i + E

(0)
j and

Rgh,ij =

∫
<3

∫
<3

ΦgΦh
e2

r12

ΦiΦj d
3~r1 d

3~r2

=

〈
Φg(

→
r1)Φh(

→
r2)

∣∣∣∣ e2

r12

∣∣∣∣Φi(
→
r1)Φj(

→
r2)

〉
(5.14)
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The vector C contains all the time-dependent coefficients, cij(t) for i, j ∈
N , the matrix E represents the contribution of Ĥ0 and the matrix R repre-
sents the contribution of the perturbation,3 Ĥ1. Note that the matrix E is
diagonal and maintains the independence of each cij(t) while the matrix R is
non-diagonal and is responsible for breaking this independence and coupling
each cij(t) to the others.

In order that we only have to deal with real-valued functions, we will
separate the coefficients into real and imaginary parts, i.e., cij(t) = aij(t) +
ibij(t). Eqn. (5.13) then becomes the two equations

dagh(t)

dt
=
E

(0)
gh

h̄
bgh(t) +

1

h̄

∞∑
i=1

∞∑
j=1

bij(t)Rgh,ij, for 1 ≤ i, j, <∞, (5.15)

dbgh(t)

dt
= −

E
(0)
gh

h̄
agh(t)−

1

h̄

∞∑
i=1

∞∑
j=1

aij(t)Rgh,ij, for 1 ≤ i, j, <∞.

(5.16)

For simplicity we will work in atomic units. The atomic unit of length is
defined by

1 a.u. =
h̄2

mee2
= 0.52917 · 10−10m

and the atomic unit of energy is defined by

1 a.u. =
mee

4

h̄2 = 27.21 eV.

These definitions imply that me = e = h̄ = 1. We will use “a.u.” to denote
both the unit of length and energy. It will always be clear from the context
which quantity we are referring to.

Using atomic units, eqns. (5.15) and (5.16) become

3See appendix A for the explicit calculation of each of the components of R.
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dagh(t)

dt
=
Z

2

(
1

n2
g

+
1

n2
h

)
bgh(t) + Z

∞∑
i=1

∞∑
j=1

bij(t)Rgh,ij, for 1 ≤ i, j <∞,

dbgh(t)

dt
= −Z

2

(
1

n2
g

+
1

n2
h

)
agh(t)− Z

∞∑
i=1

∞∑
j=1

aij(t)Rgh,ij, for 1 ≤ i, j <∞.

We now have a model of the helium atom in which the wavefunction is rep-
resented as a time-dependent linear combination of the vectors Φi(~r1)Φj(~r2),

each of which are eigenfunctions4 of the Hamiltonian, Ĥ0. The Hamiltonian
term, Ĥ1 which represents the electrical interaction between the two elec-
trons is treated as a perturbation which influences the time-dependence of
the wavefunction. Thus, our job is to determine the evolution of the coef-
ficients, cij(t), via the solution of the Schrödinger equation for some set of
initial conditions, cij(0).

As it stands, we need to solve for the infinite number of coefficients,
cij(t). To make the problem tractable, we will truncate each infinite series at
three terms. This restricts each term in the wavefuction to being a product
of hydrogenic eigenstates corresponding to the hydrogenic orbitals 1s, 2s
and 2p0. These eigenstates have corresponding quantum numbers (1, 0, 0),
(2, 0, 0) and (2, 1, 0). This approximation reduces the column vector C to
nine components and the matrices E and R to a size of 9× 9, i.e.,

C(t) =



c11(t)
c12(t)
c13(t)
c21(t)
c22(t)
c23(t)
c31(t)
c32(t)
c33(t)


,

4These vectors are not basis vectors of the general helium wavefunction since the helium
wavefunction is an element of the Hilbert space L2(<6). The set of vectors {Φi(~r1)Φj(~r2)}
form a basis for the Hilbert space L2(<3) ⊗ L2(<3) since {Φi} is a basis of L2(<3) but
not of L2(<6). However, we will refer to the set {Φi(~r1)Φj(~r2)} as basis vectors (or basis
functions), for lack of a better term.
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E =



E
(0)
11 0 0 . . . 0 0

0 E
(0)
12 0

. . . 0

0 0 E
(0)
13 0 0

. . . 0 E
(0)
21 0

...

0 E
(0)
22 0

... 0 E
(0)
23 0

. . .

0 0 E
(0)
31 0 0

0
. . . 0 E

(0)
32 0

0 0 . . . 0 0 E
(0)
33


, (5.17)

and

R =



R11,11 R11,12 R11,13 . . . R11,32 R11,33

R12,11 R12,12 R12,13 R12,33

R13,11 R13,12 R13,13
. . . . . .

R21,13
. . . . . .

...
. . . . . . . . . . . . . . .

...
. . . . . . R23,31

. . . R31,31 R31,32 R31,33

R32,11
. . . R32,31 R32,32 R32,33

R33,11 R33,12 . . . R33,31 R33,32 R33,33


.

(5.18)

Finally, we arrive at the two sets of ordinary differential equations (each
set containing nine ODEs)
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dagh(t)

dt
=
Z

2

(
1

n2
g

+
1

n2
h

)
bgh + Z

3∑
i=1

3∑
j=1

bij(t)Rgh,ij (5.19)

dbgh(t)

dt
= −Z

2

(
1

n2
g

+
1

n2
h

)
agh − Z

3∑
i=1

3∑
j=1

aij(t)Rgh,ij (5.20)

These can be solved numerically to yield the time-evolution of the wavefunc-
tion which is now given by

Ψhel(r1, θ1, φ1, r2, θ2, φ2, t) =
3∑
i=1

3∑
j=1

cij(t)Φi(r1, θ1, φ1)Φj(r2, θ2, φ2) (5.21)

5.2 Energy Expectation

The energy expectation of our model is given by the standard formula5

〈E〉 =
〈

Ψ∗hel

∣∣∣Ĥhel

∣∣∣Ψhel

〉
=

3∑
i=1

3∑
j=1

|cij|2 (Eni + Enj) +
3∑
g=1

3∑
h=1

3∑
i=1

3∑
j=1

(aghaij + bghbij)Rgh,ij

(5.22)

where the Rgh,ij are given by eqn. (5.14). The first term represents the

energy associated with the first term in the Hamiltonian, Ĥ0. Recall that
this represents the energy of two independent hydrogenic electrons. The
second term is the energy associated with the perturbation term, Ĥ1. This
represents the effect of the interaction between the electrons. Since this
interaction arises from a potential energy between the electrons, it has the
net result of increasing the total energy of the system, thus increasing the
energy expectation. In section 5.4 we will approximate the ground state of
the helium atom by the wavefunction

5See Appendix B for this calculation.
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Ψ(~r1, ~r2)
∣∣
t=0

= Φ1(~r1)Φ1(~r2)

which represents each electron being in the hydrogenic ground state. Since
this is an eigenstate of Ĥ0, it must have an energy expectation which is lower
than the energy of the true helium ground state. Thus, we can establish a
lower bound for the ground state energy expectation based purely on the fact
that Ĥ1 represents a source of positive energy in the atom.

5.3 Inclusion of Spin in the Wavefunction –

Symmetry Properties

5.3.1 Discussion of Spin

Thus far we have not made any mention of spin with respect to the wave-
function. However, as discussed in the introduction, the guidance condition
for a system in which there is a non-zero spin vector is quite different from
that in which the spin is zero. As we saw for the case of hydrogen, the ad-
dition of the spin-dependent term, ∇ (log ρ) × ~s where ~s is the spin vector
of the electron, to the guidance condition has the effect of introducing an
additional circulating motion to the electron. In the case of real eigenstates,
the spin-dependent term is responsible for the entire motion of the electron
and provides a model of the atom in which the electron is not stationary.
This is a much more intuitive picture of the atom since a motionless elec-
tron, while not forbidden by quantum mechanics, is nonetheless a strange
and potentially troublesome result. Thus, it is clear that spin must also be
taken into account in the case of the helium atom, lest we forfeit a major
source of the underlying dynamics.

To represent spin in our model, we will make the assumption that the
spin vector of each electron does not change in time. This assumption is
reasonable since the spin part of the wavefunction couples only to a magnetic
field and we are dealing with a free atom. Thus, it is acceptable to write the
total, spin-dependent wavefunction as the tensor product of a term which
depends only on space and time and a term which depends only on the
spin coordinates of each electron. For this spin-dependent term we will use
eigenfunctions of the spin operator in the z-direction where the spin operators
are given by
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ŝij =

(
h̄

2ρ

)
σij (5.23)

where i = 1, 2 represents electron number and j = 1, 2, 3 refers respectively
to the x-direction, y-direction and z-direction and σij is the jth Pauli spin
matrix for electron i (cf. (2.9)). Following the discussion in section 2.2, we
will represent these spin eigenfunctions as scalar functions of a suitable set
of spin coordinates. This may be troublesome to the reader as Ψhel and
Ψ†hel must be 2-component objects for eqn. (5.23) to make sense. We will
address this issue in appendix C where we explicitly compute the spin vectors.
However, for the time being it is beneficial to treat Ψhel like a scalar function
(cf. section 2.2). We will represent the spin functions as

Ωspin(s1, s2)

where s1 represents the spin coordinates of electron 1 and s2 represents the
spin coordinates of electron 2. The form of s1, s2 are unimportant both to the
evolution of the wavefunction and to the trajectories of the electrons since
the spin vector of each electron is constant in time. Denoting the spin “up“
state by α and the spin “down” state as β the general spin eigenfunction can
be represented by the linear combination6

Ωspin(s1, s2) = d11α(s1)α(s2) + d12α(s1)β(s2) + d21β(s1)α(s2) + d22β(s1)β(s2)
(5.24)

where d11, d12, d21 and d21 are arbitrary constants. Putting this all together
the total wavefunction for the helium atom is

Ψtotal(~r1, ~r2, s1, s2, t) = Ψhel(~r1, ~r2, t)Ωspin(s1, s2), (5.25)

where Ψhel is given by eqn. (5.11) and Ωspin is given by eqn. (5.24).7 The only

6By spin “up” we mean that the spin function obeys the eigenvalue equation σi3α =
α for i = 1, 2 and by spin “down” we mean that the spin function obeys the eigenvalue
equation σi3β = −β for i = 1, 2.

7The expectation value of any spin-independent operator is not affected by the inclu-
sion of the spin-dependent term in the total wavefunction [36]. In particular, the energy
expectation is not changed by the inclusion of spin because Ĥhel is spin-independent.
However, in a more complete treatment of the helium atom the spin of the electron would
interact with the magnetic properties of the nucleus and Ĥhel would depend on spin.
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ambiguity in our wavefunction arises from our choice of the time-dependent
constants, {cij(t)}, which determine the spatial dependence of the wavefunc-
tion and the time-independent constants, {dkl}, which determine the spin-
dependence of the wavefunction. By examining the symmetry of the system
one can remove the majority of this ambiguity. It is to this topic that we
now turn.

5.3.2 Symmetry Considerations

The basic symmetry principle in quantum mechanics is embodied in the
Symmetrization Postulate [33] which states:

In a system containing indistinguishable particles, the only possible states
of the system are the ones described by wavefunctions that are, with respect
to permutations of the labels of those particles, either completely symmetrical
– in which case the particles are called bosons, or completely antisymmetrical
– in which case the particles are called fermions.

For a two-particle system, a symmetric wavefunction (which we label Ψs) has
the property that

Ψs(~r1, ~r2, s1, s2, t) = Ψs(~r2, ~r1, s2, s1, t)

and an antisymmetric wavefunction (which we label Ψa) has the property
that

Ψa(~r1, ~r2, s1, s2, t) = −Ψa(~r2, ~r1, s2, s1, t).

Since our system consists of two (indistinguishable) electrons, which are
fermions,8 the total wavefunction must be completely antisymmetric with

8There is a strong, yet not well-understood, connection between the spin of a particle
and its classification as fermion or boson. This connection is embodied in the Spin-
Statistics Theorem (see [33] for a statement and discussion of the Spin-Statistics Theorem
and [35] for a general discussion of quantum statistics and spin) which states that particles
with integer spin are bosons while particles with half-integer spin are fermions. There have
been various attempts at a proof of this theorem, but none are free of controversy. To
date there is no experimental evidence to contradict the Spin-Statistics Theorem. We
also wish to point out that, in general, the particles that make up the material world
(electrons, protons, etc.) are fermions while the force-mediating particles (photons, W+

bosons, gluons, etc.) are bosons.
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respect to interchange of all particle coordinates. Since the helium wave-
function is (cf. eqn. (5.25))

Ψtotal(~r1, ~r2, s1, s2, t) = Ψhel(~r1, ~r2, t)Ωspin(s1, s2),

Ψtotal will be antisymmetric only if Ψhel is symmetric and Ωspin is antisym-
metric or vice versa.

Consider first the case where Ψhel is symmetric. There are many different
forms Ψhel can take and be symmetric. Two of these forms which will be
important in our analysis are9

Ψ
(symgr)
hel (~r1, ~r2) = φj(~r1)φj(~r2) for j = 1, 2, 3 (5.26a)

and

Ψ
(symex)
hel (~r1, ~r2) =

1√
2

(φ1(~r1)φj(~r2) + φj(~r1)φ1(~r2)) for j = 2, 3.

(5.26b)
The possible normalized forms of Ωspin are

1√
2

(α(s1)β(s2) + β(s1)α(s2)), (5.27a)

α(s1)α(s2), (5.27b)

β(s1)β(s2), (5.27c)

and
1√
2

(α(s1)β(s2)− β(s1)α(s2)). (5.27d)

The first three are symmetric with respect to interchange of the spin coor-
dinates while the last is antisymmetric.10 In the language of quantum me-
chanics, one says that (5.27a), (5.27b) and (5.27c) form a spin triplet while

9We use the labels Ψ(symgr)
hel and Ψ(symex)

hel because one of the ways we will represent
the ground state of the helium atom is using a wavefunction of the form Ψ(symgr)

hel and we
will represent an excited state using a wavefunction of the form Ψ(symex)

hel .
10Using eqn. (5.23) it is easy to show that the spin functions (5.27a) and (5.27d) have

associated spin vectors ~s1 = ~s2 = ~0 while (5.27b) and (5.27c) have associated spin vectors
~s1 = ~s2 = (0, 0, h̄2 ) and ~s1 = ~s2 = (0, 0,− h̄2 ), respectively. See appendix C for these
calculations.
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(5.27d) forms a spin singlet. Thus, for any spatial wavefunction having ei-

ther of the two symmetric forms, Ψ
(symgr)
hel or Ψ

(symex)
hel , the only possible total

spin-dependent wavefunctions are

Ψtotal =
1√
2

(α(s1)β(s2)− β(s1)α(s2))Ψ
(symgr)
hel (5.28)

and

Ψtotal =
1√
2

(α(s1)β(s2)− β(s1)α(s2))Ψ
(symex)
hel . (5.28)

Now consider the case where Ψhel is antisymmetric with respect to inter-
change of coordinates. As with the symmetric case there are many antisym-
metric forms of Ψhel. We highlight one of these which will prove useful in
our analysis and label it Ψ

(antiex)
hel . It is given by

Ψ
(antiex)
hel =

1√
2

(φ1(~r1)φj(~r2)− φj(~r1)φ1(~r2)) for j = 2, 3. (5.29)

Thus, there are three different forms of an antisymmetric total spin-
dependent wavefunction which contain Ψ

(antiex)
hel , given by

Ψtotal =
1√
2

(α(s1)β(s2) + β(1)α(2))Ψ
(antiex)
hel

Ψtotal = α(s1)α(s2)Ψ
(antiex)
hel

and
Ψtotal = β(s1)β(s2)Ψ

(antiex)
hel . (5.30)

The first represents the spin vectors ~s1 = ~s2 = ~0, the second represents the
spin vectors ~s1 = ~s2 = (0, 0, h̄

2
) and the third, the spin vectors ~s1 = ~s2 =

(0, 0,− h̄
2
).

To summarize, the Symmetrization Postulate requires the helium atom
to have an antisymmetric wavefunction. We have assumed a constant spin
vector for each electron and our wavefunction is correspondingly the product
of a term which depends only of the spatial coordinates and the time and
a term which depends only on the spin coordinates. As a result, the total
helium wavefunction must be composed of either a symmetric spatial part
and an antisymmetric spin part or vice versa.
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5.4 The Ritz Variational Method

At this point one may ask how we are to represent a specific state of the
helium atom, for instance, the ground state, using our model. The obvious

thought is to set c11(0) = 1 and all other cij(0) = 0, i.e., use Ψ
(symgr)
hel with

j = 1 (cf. eqn. (5.26a)). Since this is a symmetric function we must multiply
it by an antisymmetric spin function in accordance with the Symmetrization
Postulate. Thus, the total wavefunction is

Ψtotal(~r1, ~r2, s1, s2, 0) =
1√
2
φ1(~r1)φ1(~r2)

(
α(s1)β(s2)− β(s1)α(s2)

)
=

1√
2

[
4

(
Z

aµ

)3
]
e
−Zr1
aµ e

−Zr2
aµ
(
α(s1)β(s2)− β(s1)α(s2)

)
.

(5.31)

This amounts to representing each electron as a hydrogenic ground state
electron. Using (5.22), the energy expectation of this state is -2.75 a.u..
Compare this to the best theoretical value of -2.9034 a.u. [45] and the best
experimental value of -2.905 a.u. [36]. The differential equations given by
(5.19), (5.20) and (2.15) have been implemented in Matlab using the differen-
tial equations solver, ode45. This implementation has been used to generate
the following plots for a helium atom with initial wavefunction (5.31) and
initial electron positions (1

2
, 4π

11
, 6π

5
) for electron 1 and (1

2
, 7π

11
, π

5
) for electron

2 (the positions are given in spherical coordinates).11

It is not obvious from the trajectories that the motion of both electrons
is almost entirely in the radial direction. Electron 1 moves from its initial
position away from the nucleus and back while electron 2 moves from its
initial position towards the nucleus and back. From the left side of figure 5.2
we see that each electron oscillates in the radial direction with an amplitude
of approximately 0.08 a.u.. This purely radial motion is expected once one
considers the guidance condition. Since the spatial wavefunction is symmet-
ric, the spin is represented by the antisymmetric spin function and the spin
vectors are ~s1 = ~s2 = ~0. Consequently, the motion is due entirely to the

11These initial electron positions were specifically chosen since they are representative of
positions where the electrons are most likely to be found according to |Ψ|2. We will discuss
this in more detail in section 5.6.1. For now, the important result is the trajectories.
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Figure 5.1: The trajectories for the initial state (5.31). The initial particle
positions are marked with an asterisk.

spin-independent term, ~pi = ∇iS, where i = 1 refers to electron 1 and i = 2
refers to electron 2. Since the wavefunction is almost entirely composed of
terms involving only the hydrogenic eigenfunctions Φ1 and Φ2 for all time, S
is only a function of the radial coordinates, r1 and r2 and ∇iS has a non-zero
component only in the r-direction.12

We can see from figure 5.2 that some of the coefficients which were initially
set equal to zero immediately become non-zero under the action of eqns.
(5.19) and (5.20). This is an indication that the initial state (5.31) is not

12This is not entirely true. According to figure 5.2 the coefficient c33 becomes non-zero
after t = 0 and this introduces θi-dependence into the wavefunction. Consequently, ∂S

∂θi
6= 0

and there is motion in the θ-direction for each electron. However, since |c33(t)| remains
small for all t this motion is negligible when compared to the radial motion. To be specific,
the amplitude of the motion in the θ-direction is approximately 5×10−4 rad for electron 1
and 6× 10−4 rad for electron 2. Since each electron is a distance of approximately 0.5 a.u.
from the nucleus, this corresponds to an amplitude of approximately (0.5)(6 × 10−4) =
3× 10−4 a.u. which is clearly negligible compared to the amplitude of the radial motion.
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Figure 5.2: Left: The radial coordinate of each electron in time for the initial
state (5.31) Right: The coefficients {cij(t)}.

an eigenstate and does not correspond to the ground state as we might have
hoped. The question then arises as to whether we can find values of the
{cij} for which (5.21) would represent the ground state or at least represent
a better approximation to the ground state. Luckily for us, the response to
this question is a resounding yes and the method we use to find the {cij} is
called the Ritz Variational Method.13

The Ritz Variational Method is a procedure commonly used in quantum
mechanics to estimate the lowest eigenvalue of the eigenvalue equation

Ĥfi = Eifi (5.32)

when the eigenfunctions, {fi}, are not known. It is based on Schrödinger’s
variational principle and only applies when the Hamiltonian, Ĥ, has a dis-
crete set of eigenvalues, Ei. The procedure goes as follows. Let g be an
arbitrary function having the same number of dimensions as fi. If g is an
exact eigenfunction of Ĥ, (if g = fj where fj ∈ {fi}), then the functional

E[g] =

∫
g∗Ĥg dτ∫
g∗g dτ

, (5.33)

where the integration is taken over the configuration space of the system, is
equal to the energy eigenvalue, Ej, corresponding to g = fj. Schrödinger’s
variational principle states that any function g for which the expression (5.33)

13The following discussion is adapted from [4].
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is stationary is a solution of (5.32).
Now suppose g is close to the eigenfunction f1 which belongs to the lowest

eigenvalue, E1, of Ĥ. Since we know that every Hamiltonian possesses a
complete set of eigenfunctions, we can write g as a linear combination of the
eigenfunctions of Ĥ, i.e.,

g = N1f1 +
∑
n6=1

εnfn (5.34)

where N1 is a constant and {εn} is a set of small expansion coefficients (they
are small because we assumed g was close to f1). Substituting (5.34) into
(5.33) gives

E[g] = E1 +

∑
n6=1

|εn|2(En − E1)

|N1|2 +
∑
n6=1

|εn|2
. (5.35)

Since E1 is the smallest of the eigenvalues, En − E1 ≥ 0 for all n and the
numerator is clearly non-negative. Similarly, the denominator is non-negative
and can only equal zero if g = 0. Since g = 0 leads to the eigenvalue equation
Ĥ0 = 0, which gives us no information, we require that g 6= 0. Thus, the
denominator is positive and we arrive at the result

E[g] ≥ E1. (5.36)

Thus, if g is not equal to f1 then E[g] will be larger than E1. Similarly,
the closer g is to f1, the closer E[g] will be to E1. This is due to the fact that
the closer g is to f1, the smaller are the coefficients {εn}. Since g is assumed
to be close to f1 N1 � εn for each n, hence the denominator is dominated by
the |N1|2 term. Thus, the numerator will shrink faster than the denominator
as the size of the {εn} decrease and E1 will be closer to E[g].

The Ritz variational method is then to choose a trial form of the function
g which involves a set of undetermined coefficients, {Cm}. The functional
E[g] then depends on the {Cm}. Minimizing E[g] with respect to the Cm
gives an upper bound for E1. Note that this method only works for the lowest
eigenvalue: if E1 is not the lowest eigenvalue, then there will exist at least
one value of n 6= 1 for which the numerator, |εn|2(En −E1), will be negative
so that the result (5.36) does not necessarily follow.

As an example of using the method to find the ground state energy of the
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helium atom, consider the trial function

g(~r1, ~r2) = 4

(
Z

aµ

)3

e
− (Z−σ)r1

aµ e
− (Z−σ)r2

aµ (5.37)

where Z is the nuclear charge and σ is the minimizing parameter. Note the
resemblance between this wavefunction and (5.31). Recall that (5.31) is the
product of two hydrogenic ground state wavefunctions. The only difference
between the two is that (5.37) contains the factor (Z −σ) in the exponential
while (5.31) contains the factor Z. Thus, one could look at (5.37) as rep-
resenting two hydrogenic electrons that are attracted to a nucleus of charge
Z−σ. This is the common way of interpreting the wavefunction (5.37) and σ
is usually referred to as a “screening factor”. The screening factor represents
in a very approximate way the effect of each electron’s repulsion on the other.
This repulsion is thought of, according to this model, as screening the effect
of the nucleus on the electrons, thus reducing the effective charge from Z to
Z − σ.

The details of the calculation are unimportant (see [4, 31]) , but mini-
mizing the functional (5.33) with respect to σ leads to the value σ = 5

16
and

the ground state energy is given by14

Eg = −(Z − σ)2 ≈ −2.848

upon substitution of the nuclear charge of the helium atom, Z = 2. This
result is an improvement over our previous result of -2.75 which we obtained
using the trial function (5.31).15

Now we are ready to analyze our wavefunction, (5.25), using the Ritz
variational method. Since the Hamiltonian does not act on the spin coordi-
nates the spin function Ωspin will drop out of the functional (5.33) and we can
use (5.21) instead of (5.25). Notice that (5.21) is already written in the form
of a trial function where there are 9 complex parameters, {cij}, or equiva-
lently, 18 real parameters, {aij} and {bij}. So, in summary, the problem is
to minimize the functional

14We use the notation Eg to denote the energy given by the Ritz variational method
with respect to the trial function g.

15Recall that the best experimental result for the ground state energy of the helium
atom is -2.905 a.u..
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E[Ψhel] =

∫
Ψ∗helĤhelΨhel d~r1 d~r2∫

Ψ∗helΨhel d~r1 d~r2

(5.38)

with respect to the {aij} and {bij}, where

Ψhel(r1, θ1, φ1, r2, θ2, φ2, t) =
3∑
i=1

3∑
j=1

cij(t)Φi(r1, θ1, φ1)Φj(r2, θ2, φ2)

(cf. eqn. (5.21)) and Ĥhel is given by eqn. (5.1).
To minimize (5.38) we must solve

∂E[Ψhel]

∂c∗ij
= 0 for 1 ≤ i, j ≤ 3. (5.39)

Eqns. (5.39) are equivalent to the nine coupled equations16

3∑
i,j=1

cij [(Ei + Ej)Ighij +Rghij]
3∑

k,l,m,n=1

c∗klcmnIklmn

=
3∑

i,j=1

cijIghij

3∑
k,l,m,n=1

c∗klcmn [(Em + En)Iklmn +Rklmn] for 1 ≤ g, h ≤ 3,

(5.40)

where

Ighij ≡
∫

d~r1 d~r2 Φg(~r1)Φh(~r2)Φi(~r1)Φj(~r2)

and Rghij is defined in eqn. (5.14).
Once we have the solutions of eqns. (5.40) we can normalize them to yield

the best approximation to the ground state of the helium atom available to
us using our model. To normalize the coefficients really means to normalize
the initial wavefunction, Ψ, which is determined by the coefficients but due to
the orthogonality of the hydrogenic eigenfunctions this amounts to nothing
more than the condition

16See Appendix D for the derivation of these equations.
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3∑
i,j=1

|cij(0)|2 = 1.

Alternatively, recall that if the function Ψhel used in the variational in-
tegral, (5.38), is an exact eigenfunction of Ĥhel then E[Ψhel] will be an ex-
act eigenvalue of Ĥhel. Thus, solving eqns. (5.40) is equivalent to finding
the lowest eigenfunction of Ĥhel. The nine eigenfunctions and corresponding
eigenvalues of Ĥhel have been found using Maple. The lowest energy obtained
was

E
(0)
hel = −2.8318

for the coefficients

c
(0)
11 = 0.9526, c

(0)
12 = −0.2143, c

(0)
21 = −0.2143, c

(0)
22 = −0.0156, c

(0)
33 = −0.0192

and all other c
(0)
ij = 0.

The wavefunction formed by the above coefficients corresponds to the
“ground state” of the helium atom. We use quotes because it is important
to realize that the wavefunction formed by the {cij} above is nothing more

than the eigenfunction of Ĥhel with the lowest eigenvalue for wavefunctions
of the form (5.21). And of course we know that (5.21) is an approximation
to the real helium wavefunction.

The “ground state” solution along with the other eight sets of solutions
are given in Table 5.4. Denoting Ψ

(α)
hel as the wavefunction formed by the set

of coefficients corresponding to E
(α)
hel , Ψ

(α)
hel can be thought of as an “excited

state” of the helium atom with the same caveat given above for the “ground
state”. It is very interesting to note that the Ritz variational principle has
yielded spatial wavefunctions which have the proper symmetry. Ψ

(0)
hel, Ψ

(3)
hel,

Ψ
(4)
hel, Ψ

(6)
hel, Ψ

(7)
hel and Ψ

(8)
hel are symmetric while Ψ

(1)
hel, Ψ

(2)
hel and Ψ

(5)
hel are anti-

symmetric. Thus, we can make antisymmetric total wavefunctions for each
of the nine spatial wavefunctions given above by multiplying them by spin
functions of the appropriate symmetry.

To summarize, the following nine eigenvalue equations hold:

ĤhelΨ
(α)
hel = E

(α)
helΨ

(α)
hel

where α ∈ {0, . . . , 8}. We approximate the ground state of the helium atom
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by Ψ
(0)
hel and the first eight excited states by Ψ

(α)
hel for α ∈ {1, . . . , 8}. Recall

that according to the Ritz Variational Method only the “ground state” en-
ergy, E

(0)
hel, is guaranteed to be an upper bound for the actual ground state

energy of the helium atom. We cannot make analogous conclusions for the
“excited state” energies, E

(α)
hel , α ∈ {1, . . . , 8} since for E

(α)
hel , α terms in the

numerator of the sum in eqn. (5.35) will be negative and the desired conclu-
sion does not hold. However, note that the lower the value of α, the closer
E

(α)
hel will be to an upper bound for the corresponding exact energy level in

the helium atom.
When the initial wavefunction is one of {Ψ(α)

hel} the real and imaginary
parts of the coefficients are periodic in time and the magnitudes of the coef-
ficients are constant in time as well, i.e.,

aij(t) = Cij cos (ω(α)t) (5.41a)

and
bij(t) = −Cij sin (ω(α)t), (5.41b)

where Cij = |cij(0)| for 1 ≤ i, j ≤ 3.17 We prove eqns. (5.41a) and (5.41b)
in Appendix E as well as show that each Cij = aij(0). Eqns. (5.41a) and
(5.41b) will have a very particular effect on the trajectories associated with

the initial wavefunctions {Ψ(α)
hel} as we will see in the next section.

17Naturally, as a consequence, |cij(t)| =
√
aij(t)2 + bij(t)2 = |Cij | = |cij(0)| so the

{|cij(t)|} are constant in time.
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α Energy (E(α)
hel ) c11 c12 c13 c21 c22 c23 c31 c32 c33 Symmetry

0 -2.83181 0.95265 -0.21431 0 -0.21431 -0.01563 0 0 0 -0.01918 symmetric

1 -2.12414 0 -0.70711 0 0.70711 0 0 0 0 0 antisymmetric

2 -2.04994 0 0 0.70673 0 0 -0.02305 -0.70673 0.02305 0 antisymmetric

3 -1.98031 0 0 0.70709 0 0 0.00445 0.70709 0.00445 0 symmetric

4 -1.95747 -0.30289 -0.67342 0 -0.67342 0.02984 0 0 0 -0.01934 symmetric

5 -0.73297 0 0 0.02305 0 0 0.70673 -0.02305 -0.70673 0 antisymmetric

6 -0.72637 0.01601 0.02260 0 0.02260 0.89684 0 0 0 -0.44091 symmetric

7 -0.61713 0 0 0.00445 0 0 -0.70709 0.00445 -0.70709 0 symmetric

8 -0.57850 0.02171 -0.00799 0 -0.00799 0.44107 0 0 0 0.89714 symmetric

Table 5.1: The coefficients and energy expectations of the “eigenstates”.
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5.5 Analysis of the Trajectories

Before presenting plots of the trajectories and coefficients we will analyze the
motion of the electrons algebraically. Recall that according to the guidance
condition, each electron has a momentum given by

~pi =
h̄

2iR2
[Ψ∗∇iΨ− (∇iΨ

∗)Ψ] +
∇i(R

2)× ~si
R2

(5.42)

where i = 1 refers to electron 1 and i = 2 refers to electron 2 (cf. eqn. (2.15)).
We will examine each of the two terms on the right-hand side separately.

The first term is

h̄

2iR2
[Ψ∗∇iΨ− (∇iΨ

∗)Ψ] ,

which, using our helium wavefunction, (5.21), is easily shown to be equal to18

h̄

R2

3∑
g,h,j,k=1

(
aghbjk − ajkbgh

)
φg(~r1)φh(~r2)

×
{
Aijk(~r1, ~r2)êr +Bi

jk(~r1, ~r2)êφ + Ci
jk(~r1, ~r2)êθ

}
,

where

Aijk(~r1, ~r2) =

{
∂Rnj,lj (r1)

∂r1
Ylj(θ1, φ1)Rnk,lk(r2)Ylk(θ2, φ2) if i = 1;

Rnj ,lj(r1)Ylj(θ1, φ1)
∂Rnk,lk (r2)

∂r2
Ylk(θ2, φ2) if i = 2,

Bi
jk(~r1, ~r2) = 0 for i = 1, 2

because each Φi has no φ-dependence and

Ci
jk(~r1, ~r2) =

{
Rnj ,lj(r1)

∂Ylj (θ1,φ1)

∂θ1
Rnk,lk(r2)Ylk(θ2, φ2) if i = 1;

Rnj ,lj(r1)Ylj(θ1, φ1)Rnk,lk(r2)
∂Ylk (θ2,φ2)

∂θ2
if i = 2.

18See Appendix F for these calculations.
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Here nα =


1, if α = 1

2, if α = 2

2, if α = 3

and lα =


0, if α = 1

0, if α = 2.

1, if α = 3

For the nine eigenstates given in the previous section ∇S = 0 and the
first term in (5.42) vanishes. This is a consequence of eqns. (5.41a) and
(5.41b) and a proof is given in Appendix G. Thus, all of the motion for
eigenstates comes from the spin-dependent momentum (the second term in
(5.42)). Recall that of our nine eigenstates, six are symmetric and three
are antisymmetric. The six symmetric states must be multiplied by the
antisymmetric spin function, eqn. (5.27d), which represents the spin vectors
~s1 = ~s2 = ~0. Thus, the term ∇i(R

2)×~si is identically zero for i = 1, 2 and the
spin-dependent momentum vanishes. Therefore, we arrive at the somewhat
strange conclusion that both electrons are stationary when the helium atom
is in one of the symmetric eigenstates given in section 5.4.

When the system is in one of the antisymmetric eigenstates it must be
multiplied by one of the symmetric spin functions (eqns. (5.27a), (5.27b)
and (5.27c)). The function (5.27a) represents the spin vectors ~s1 = ~s2 = ~0,
(5.27b) represents the spin vectors ~s1 = ~s2 = (0, 0, h̄

2
) and (5.27c) represents

the spin vectors ~s1 = ~s2 = (0, 0,− h̄
2
).19 Clearly, (5.27a) leads to the same

conclusion as for the symmetric eigenstates – no spin-dependent momen-
tum and consequently, stationary electrons. (5.27b) and (5.27c) will lead to
different dynamics as we will now see.

Consider the total wavefunction formed by multiplying one of the anti-
symmetric eigenstates by the spin function (5.27b). Since our basis functions
are products of the three hydrogenic eigenfunctions corresponding to the 1s,
2s and 2p0 hydrogenic eigenstates, Ψtotal does not depend on the azimuthal
angles, φ1 and φ2. As such, the term ∇iρ has non-zero components only in
the r- and θ-directions for both i = 1, 2, i.e.,

∇iρ = Piêr +Qiêθ,

where Pi = Pi(r1, θ1, r2, θ2) and Qi = Qi(r1, θ1, r2, θ2) are functions whose
form is unimportant to our desired result. Taking the cross product of ∇iρ
and ~si gives

19These vectors are given in Cartesian coordinates. In spherical coordinates (i.e. ~A =
(Ar, Aθ, Aφ)) (5.27b) represents the spin vectors ~si =

(
h̄
2 cos (θ),− h̄2 sin (θ), 0

)
and (5.27c)

represents the spin vectors ~si =
(
h̄
2 cos (θ), h̄2

(
π − sin (θ)

)
, 0
)
.
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∇iρ× ~si =

∣∣∣∣∣∣
êr êθ êφ
Pi Qi 0

cos (θ) − sin (θ) 0

∣∣∣∣∣∣
= −

[
Pi sin (θ) +Qi cos (θ)

]
êφ.

Thus, we see that the spin-dependent term gives motion only in the φ-
direction and consequently the total motion of each electron is given by the
momentum field

~pi = − [Pi sin (θ)−Qi cos (θ)]

R2
êφ. (5.43)

Now let us examine this motion more carefully. Since the total momentum
comes entirely from the term∇iρ×~si, it lies in a plane orthogonal to ~si. Thus,
z = r cos (θ) is constant. Since the motion is only in the φ-direction, r and
θ are constant as well. Consequently, the trajectories are circles in planes of
constant z, i.e., circles around the spin axis. This is the same result as that
obtained by Colijn [11] for the hydrogen atom – when the wavefunction is
an eigenstate of Ĥhyd and the spin vector is non-zero, the electron follows a
circular orbit around the spin axis (cf. chapter 4).

The velocity of each electron is given by

dφi
dt

=
pφi

mri sin (θi)
.

where m is the electron mass, (ri, θi, φi) are the spherical coordinates of
electron i and pφi is the φ-component of the momentum of electron i given
by eqn. (5.43). Since ri and θi are constant over all eigenstate trajectories
for both electrons, the functions Pi, Qi and R2 = ρ in (5.43) are constant
and consequently, we arrive at the result

dφi
dt

= Ci for i = 1, 2,

where C1 and C2 are constants. Since the other two antisymmetric eigen-
states, Φ

(2)
hel and Ψ

(6)
hel, do not depend on the azimuthal angles, φ1 and φ2, the

cross product ∇iρ×~si has a non-zero component only in the φ-direction and
the same conclusions hold as for Ψ

(3)
hel. Similarly, if we put the electrons in

the “spin down” state (if we use the symmetric spin function (5.27c) instead
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of (5.27b)), the spin vector changes direction and the motion is the same
except the direction is reversed.20

We have analyzed the Bohmian trajectories associated with eigenstates
of Ĥhel and found they fall into two classes:

1. stationary electrons for symmetric eigenstates or states with a zero spin
vector

2. circular orbits around the spin axis for antisymmetric eigenstates with
a non-zero spin vector.

In the second case we have shown that both electrons move with constant
velocity. We have also shown that the coefficients of the wavefunction oscil-
late sinusoidally in time for all eigenstates. To gain a better perspective on
these results, we will now analyze the motion of some non-eigenstate wave-
functions.

5.6 A More Detailed Look At the Trajecto-

ries

5.6.1 A Comparison of Eigenstate Trajectories With
Non-Eigenstate Trajectories

In section 5.3.2 we gave some particular forms of Ψhel which are either sym-
metric or antisymmetric. We will now examine the Bohmian trajectories
and time-evolution of the wavefunction for certain initial states having these
forms. We present these results only as a comparison to the eigenstates and
as such, we will not be concerned with analysing them. Before proceeding,
we wish to remark on the choice of initial electron positions.

Recall that the wavefunction has the property that |Ψ(~r, t)|2d~r gives a
measure of the relative probability of finding the system within the volume
element ~r + d~r if a corresponding measurement is made at time t. Thus,
it makes the most physical sense to start each electron where the initial

20Note that this only holds for states where ∇iS = 0. Changing the direction of the
spin vector has no bearing on the term ∇iS and consequently only the motion due to the
spin-dependent term is effected. Thus, if ∇iS 6= 0, we cannot say that reversing the spin
vector reverses the direction of motion.
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wavefunction is the largest. In practice it is difficult to determine where these
points are since the wavefunction is a function of the six spatial coordinates,
(r1, θ1, φ1, r2, θ2, φ2). Thus, for simplicity we will start each electron at a
radial distance from the nucleus dictated by the hydrogenic eigenstates of
which the wavefunction is composed.

Consider the basis functions Φj(~r1)Φk(~r2) where 1 ≤ j ≤ 3 and 1 ≤ k ≤ 3.
Here, electron 1 is in the hydrogenic eigenstate Φj and electron 2 is in the
hydrogenic eigenstate Φk. Both Φ1 (the 1s-state) and Φ2 (the 2s-state) are
functions only of the radial coordinate while Φ3 (the 2p0-state) is a function
of r and θ. Using the fact that d~r = r2drsin(θ)dθdφ, the most likely radial
distances that the electron in the hydrogenic eigenstate, Φj, will be found is
given by the maxima of the radial distribution function

Dnj ,Lj(r) = r2Rnj ,lj(r),

where Rnj ,lj(r) is the radial part of Φnj ,lj (cf. eqns. (4.2) and (4.3)). For
j = 1 (i.e., quantum numbers (n, l) = (1, 0)),

D1,0(r) = r2R1,0(r)

= r

(
Z

a0

)3

r2 exp

(
−2Zr

a0

)
and has one maximum at

r1,0 =
a0

Z
= 0.5 a.u.,

since Z = 2 for helium. Consequently, we will give a ground state electron the
initial radial coordinate r(0) = 0.5 a.u.. Similarly, for j = 2 (i.e., quantum
numbers (n, l) = (2, 0)),

D2,0(r) = r2R2,0(r)

= 4

(
Z

2a0

)3(
1− Zr

2a0

)2

r2 exp

(
−Zr
a0

)
and has two maxima at
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r2,0 = 3±
√

5 a.u..

We will use the smaller of these two values, 3−
√

5 ≈ 0.764 a.u. for the initial
radial position of an electron in the (2, 0)-eigenstate (this corresponds to the
global maximum of D2,0(r)). For j = 3 (i.e., quantum numbers (n, l) =
(2, 1)),

D2,1(r) = r2R2,1(r)

=
4

3

(
Z

2a0

)5

r4 exp

(
−Zr
a0

)
and has a maximum at

r2,1 =
4a0

Z
= 2 a.u..

Thus, we will give an electron in the (2, 1)-eigenstate the initial radial coor-
dinate r(0) = 2 a.u..

Although the 2p0 hydrogenic eigenfunction Φ3 is a function of θ we will
not situate an electron in this state at a particular value of θ. The reason for
this is that the θ-dependence of Φ3 is due to the cos (θ) term. Thus, |Ψ|2 is
maximized when θ = 0, π which are points on the z-axis. However, starting
the electrons on the z-axis would lead to no spin-dependent motion because
the electronic motion for eigenstates with non-zero spin consists of circles
around the z-axis, as we have previously shown. Thus, for each simulation
we run we choose to assign electron 1 the initial angular coordinates (θ, φ) =
(4π

11
, 6π

5
) and electron 2 the angular coordinates (7π

11
, π

5
). This keeps the initial

positions of the electrons on a line which goes through the origin, and thus,
preserves a sense of symmetry over the angular directions. Let us now turn
to an examination of some non-eigenstate trajectories.

Without a knowledge of the eigenstates of Ĥhel one may be tempted to
represent an excited state of the helium atom by keeping one electron in
the hydrogenic ground state and raising the other to a hydrogenic excited
state. There are two ways to do this – using the symmetric spatial function,
(5.26b), or the antisymmetric spatial function, (5.29). We will examine the
symmetric case first. Since the total wavefunction must be antisymmetric we
must represent spin using the antisymmetric spin function, (5.27d). Recall
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that this has no effect on the motion since the spin vectors associated with
(5.27d) are ~s1 = ~s2 = ~0. The total wavefunction is

Ψ
(symex)
hel (~r1, ~r2) =

1

2
[φ1(~r1)φj(~r2) + φj(~r1)φ1(~r2)] [α(s1)β(s2)− β(s1)α(s2)] ,

for j = 2, 3. (5.44)

Figure 5.3: The trajectories for the initial state Ψ
(symex)
hel with j = 2.

Simulations were run for j = 2 with initial electron positions ~r1 =
(1

2
, 4π

11
, 6π

5
) and ~r2 = (0.764, 7π

11
, π

5
) and for j = 3 with initial electron posi-

tions ~r1 = (1
2
, 4π

11
, 6π

5
) and ~r2 = (2, 7π

11
, π

5
). The trajectories for the j = 2

state are very similar to those for Ψ
(symgr)
hel – motion almost exclusively along

the radial direction. For the j = 3 state, the motion is similar except that
the amplitude of the radial motion is very small – on the order of 10−2 a.u..
Also, the angular motion of the electrons is more pronounced in the j = 3
state because the wavefunction has more θ-dependence. The amplitude of
the θ-motion is approximately 4 · 10−3 rad for electron 1 and 10−3 rad for
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Figure 5.4: Left: The radial coordinate of each electron in a.u. for the initial
state Ψ

(symex)
hel with j = 2. Right: The time-dependence of the coefficients.

electron 2. This corresponds to an amplitude of approximately 2 · 10−3 a.u.
for each electron. We show the trajectories and coefficients for the j = 2
state in figures 5.3 and 5.4.

Figure 5.5: Results for the initial state Ψ
(antiex)
hel with j = 3 and no spin. Left:

The radial coordinate of each electron in time in a.u.. Right: The azimuthal
coordinate of each electron in time in radians.

Similarly, one may also attempt to construct an excited state using a
wavefunction of the form Ψ

(antiex)
hel which has the form (cf. eqn. (5.29)),
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Figure 5.6: Left: The trajectories for initial state Ψ
(antiex)
hel with j = 3 and spin

“up”. Right: The coefficients of the wavefunction for initial state Ψ
(antiex)
hel

with j = 3.

Ψ
(antiex)
hel =

1√
2

(φ1(~r1)φj(~r2)− φj(~r1)φ1(~r2)) for j = 2, 3.

In this case, we see that the j = 2 state is actually (the negative of) the

eigenstate Ψ
(2)
hel (cf. section 5.4). Therefore, we will only analyze the j = 3

state. However, the j = 3 state is also very close to the eigenstate Ψ
(3)
hel. Thus,

we expect the trajectories and coefficients to be somewhat close to those of
Ψ

(3)
hel. Since we are dealing with an antisymmetric spatial function, we must

represent spin using a symmetric spin function. Thus, we can put the system
in the “spin up” state, the “spin down” state, or the spinless state. We will
look at both the “spin up” state and the spinless state and in this way we
will see the effect of the spin-dependent term of the guidance condition on
the trajectories. For the spinless state we give the time-dependence of the
radial and azimuthal coordinates for each electron in figure 5.5. Since the
amplitude of the motion in each component direction is very small for both
electrons, the trajectories are virtually undetectable to the human eye unless
we magnify them and consequently, we refrain from displaying them. In the
“spin up” state each electron experiences the expected circular motion around
the spin axis. The trajectories and the time-dependence of the coefficients in
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figure 5.6. Naturally, since the coefficients do not depend on spin, they are
the same for the spinless state and the “spin up” state.

Notice how similar the trajectories of figure 5.6 are to those of the eigen-
state Ψ

(3)
hel. This is a very reasonable result since the initial wavefunctions

are so close to each other. However, it begs the question as to whether there
is a “continuity of trajectories”, i.e., do the trajectories continuously morph
as the initial wavefunction is continuously changed? It is to this question we
now turn.

5.6.2 Continuity of the Trajectories

We will close our discussion of the helium atom by showing how the tra-
jectories of the electrons depend continuously on the initial wavefunction.
To do this we will construct a wavefunction which depends on a parameter,
γ, where 0 ≤ γ ≤ 1. We will denote this wavefunction Ψγ. When γ = 0 Ψγ

will represent a state for which the trajectories are well known and the same
goes for the wavefunction obtained from setting γ = 1. When 0 < γ < 1 the
wavefunction will be a linear combination of Ψ0 and Ψ1. Our aim will be to
show that as γ is continuously changed from 0 to 1, the trajectories of the
associated state will continuously change from those of Ψ0 to those of Ψ1.

Since Ψ0 and Ψ1 should be states with well-known trajectories, it is nat-
ural to choose them to be eigenstates. We will set Ψ0 = Ψ

(3)
hel and Ψ1 = Ψ

(6)
hel

because both Ψ
(3)
hel and Ψ

(6)
hel have symmetric spin functions and therefore,

have circular trajectories when multiplied by the appropriate spin function.
This will make the trajectories easy to compare with others.

To construct Ψγ we will use a convex combination of Ψ0 and Ψ1. First
we define the non-normalized coefficients,

gij(γ) = γc
(3)
ij + (1− γ)c

(6)
ij , 0 ≤ γ ≤ 1,

where {c(3)
ij } are the initial coefficients of Ψ

(3)
hel and {c(6)

ij } are the initial coef-

ficients of Ψ
(6)
hel (cf. section 5.4). Normalization yields

hij(γ) =
gij(γ)√

3∑
p,q=1

[
gpq(γ)

]2 (5.45)

and Ψγ is given by
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Ψγ(~r1, ~r2, s1, s2, t) =
3∑

i,j=1

hij(γ; t)Φi(~r1)Φj(~r2)

[
α(s1)α(s2)

]
where hij(γ; 0) = hij(γ) as given in eqn. (5.45).

Before giving the trajectories for various values of γ, consider the initial
energy expectation for Ψα. When γ = 0 the initial energy expectation is
E

(6)
hel and when γ = 1 the initial energy expectation is E

(3)
hel. Since the energy

expectation is a continuous function which depends on the coefficients of
the wavefunction, continuously varying γ from 0 to 1 should continuously
vary the initial energy expectation from E

(6)
hel to E

(3)
hel. In addition, since the

coefficients of Ψγ are formed from a nonlinear combination of the {c(3)
ij } and

{c(6)
ij }, the variation of initial energy expectation with respect to γ should

also be nonlinear. This is what we see in figure 5.7.

Figure 5.7: Left: The dependence of the initial coefficients on γ. Right: The
dependence of the initial energy expectation on γ.

Now let us examine the trajectories of Ψγ for different values of γ. Since
we are investigating how the trajectories change with respect to changing
the initial wavefunction we will always give the electrons the same initial
positions; ~r1 = (1.1, 4π

11
, 5π

6
) and ~r2 = (1.1, 7π

11
, π

6
) irregardless of the value

of γ. The initial radial distances were chosen out of convenience – they
produced simulations in which the electrons move at a reasonable speed.

Some trajectories for various values of γ are given in figure 5.8. Each
simulation covers 2.28 · 10−14 seconds in real time. Clearly, the trajectories
continuously (and very quickly) deviate from the circular orbits of Ψ

(6)
hel to

108



trajectories which appear to have no connection at all to those of Ψ
(6)
hel as γ is

slowly increased from 0. Similarly, as γ is increased towards 1 the trajectories
appear to continuously morph to the circular trajectories of Ψ

(3)
hel. Note that

although the paths the electrons follow are the same for both eigenstates,
their speed is different. For Ψ0 = Ψ

(6)
hel the period is 3.24 · 10−16 s while the

period of Ψ1 = Ψ
(3)
hel is 7.98 · 10−17 s. This corresponds to approximately 6

revolutions for Ψ0 and 1.5 revolutions for Ψ1 over the course of the simulation.
This behaviour is seen in the plots.

Figure 5.8: The trajectories for the following values of γ: 0 , 0.001 , 0.002 ,
0.003 , 0.004 , 0.005 , 0.006 , 0.7 , 0.8 , 0.9 , 0.95 , 0.97 , 0.99 , 1.

We wish to point out some technical difficulties encountered with the
Matlab implementation. First of all, it was found that the ODE solver ode45
is somewhat fickle in that it can not compute the solutions to the differential
equations (5.42), (5.19) and (5.20) for long periods of time for a wide variety
of initial wavefunctions. Changing the error tolerances had no observable
effect on the performance. Matlab has other built-in ODE solvers; these
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were tried, but similar problems were encountered.
Secondly, for many values of γ the trajectories are jagged with sharp

points where the particles appear to instantaneously change direction. This
is due to the size of the timestep used in the simulations. The trajectories are
determined by the positions of the particles at a finite number of times. The
trajectories are interpolated between these times by connecting the positions
of successive times by straight lines. Thus, if a particle undergoes a strong
acceleration during any particular timestep and travels a large distance the
trajectory can acquire a “corner” which appears in the corresponding plot as
a discontinuous change in velocity. These corners are not representative of
the true, continuously differentiable paths generated from the continuously
differentiable Hamiltonian, Ĥhel.

21

Due to these two difficulties, trajectories for values of γ above 0.006 and
below 0.7 are unobtainable. If ode45 is able to find a solution, the trajec-
tories are so jagged so as to be virtually useless. However, the trajectories
given above, at the very least, provide evidence that the Bohmian trajecto-
ries associated with Ψγ change continuously with γ. We wish to point out
that this is not intended to be a general proof that Bohmian trajectories
depend continuously on the initial wavefunction. Although “continuity of
trajectories” is a physically intuitive idea and seemingly “should” be correct,
our purpose is not to prove it to be so. Our intention is merely to show that
for one particular pair of states we can establish “continuity of trajectories”
and show the consistency of BM in this way.

21Actually, Ĥhel is not continuously differentiable everywhere because there are sin-
gularities at ~r1 = ~0, ~r2 = ~0 and ~r1 = ~r2. However, Ĥhel is continuously differentiable
everywhere else. Since the above three conditions correspond either to one of the electrons
occupying the same position as the nucleus or both electrons occupying the same posi-
tion, we can ignore them on physical grounds. Thus, when we say “Ĥhel is continuously
differentiable everywhere” we mean that it is continuously differentiable in our restricted
domain, {<3 ×<3 |~r1 6= ~0, ~r2 6= ~0, ~r1 6= ~r2}.
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Chapter 6

Summary and Conclusions

6.1 Results on the Helium Atom

In this thesis we have attempted to find certain Bohmian trajectories of
the electrons in the helium atom. Since there is no closed-form solution to
the Schrödinger equation for Ĥhel, we had to make use of an approximation
method. Recall that we represented the wavefunction as a linear combina-
tion of the basis functions, {Φi(~r1)Φj(~r2)} which are themselves products of
hydrogenic eigenfunctions. This choice of basis functions was motivated by
breaking Ĥhel into two pieces, Ĥhel = Ĥ0 +Ĥ1 and treating Ĥ1 as a perturba-
tion (cf. eqns. (5.2)-(5.11)). An arbitrarily good approximation to the true
helium wavefunction can be represented by such a linear combination, but it
would necessarily be composed of an arbitrarily large number of terms. In
order to make the problem tractable we truncated the linear combination at
nine terms, involving three different hydrogenic eigenfunctions – the 1s-state,
the 2s-state and the 2p0-state. Solving for the eigenfunctions of Ĥhel in this
finite basis led to nine “eigenstates” of the helium atom. It is very important
to keep in mind that these are not true eigenstates because we truncated
our basis to nine terms. However, our representation of the ground state,
while not exact in any respect, is still a fairly good approximation. This is
because the majority of the ground state wavefunction is composed of the
basis functions representing the lowest hydrogenic eigenstates. Since we kept
nine of the least energetic basis functions, we are able to represent the he-
lium ground state wavefunction fairly accurately. We can also see this by
the energy expectation of our ground state which is -2.8318 a.u.. This has a
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relative error of 2.52% compared to the experimental value of -2.905 a.u..
We have also analyzed the trajectories of the “eigenstates” and found that

the spin-independent motion disappears for each of them. Thus, all motion
is due to the spin-dependent term of the guidance condition. As such, the
eigenstates fall into two categories. The first consists of eigenstates with zero
spin vectors (note that all eigenstates with a symmetric spatial function fall
into this group). Eigenstates in this category have no spin-dependent motion
and consequently, the Bohmian trajectories are stationary electrons. The
second category consists of eigenstates which have an antisymmetric spatial
function and non-zero spin vectors. For eigenstates in this category, the
electrons follow circular orbits around the spin axis, which for our purposes
was assumed to be constant and in the z-direction.

Lastly, we constructed a wavefunction, Ψγ, which depends on a param-
eter, γ, 0 ≤ γ ≤ 1 that produces an initial wavefunction that continuously
changes from the eigenstate Ψ

(6)
hel to the eigenstate Ψ

(3)
hel as γ is continually

increased from 0 to 1. We saw that the initial energy expectation increases
from E

(6)
hel to E

(3)
hel in a continuous, nonlinear fashion, and more importantly,

that the trajectories appear to continuously morph from those of Ψ0 = Ψ
(6)
hel

to those of Ψ1 = Ψ
(3)
hel. The point of this exercise was to show that BM

provides a consistent model of the helium atom, and in general, we hope to
leave the impression that BM is, at the very least, a consistent interpretation
of non-relativistic quantum mechanics.

6.2 Additional Discussion of Bohmian Me-

chanics

We have also examined BM in light of some pressing issues in quantum
mechanics. In chapter 2 we looked at the Bohmian descriptions of the EPR
paradox and the measurement problem and found that BM is able to provide
a consistent and reasonable resolution to both of these difficulties. According
to the EPR experiment the measurement of the spin along any direction of
one particle in a correlated pair, call it particle A, reveals the value of the
spin of the other particle (particle B) in that direction with certainty. Since
the direction along which the spin is measured is arbitrary, it seems that
measurement of particle A immediately forces particle B into a particular
spin state. However, according to the Bohmian description, particles travel
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along trajectories through space and time and have well-defined spin vectors
along these trajectories. Thus, measurement of the spin of particle A does
not force particle B to take on the corresponding value, but merely reveals
the pre-existing value of particle B. In this way, the EPR paradox is explained
in a reasonable fashion.

Similarly, the continuous trajectories of BM provide a completely continu-
ous description of a quantum measurement. According to Von Neumann, the
wavefunction of the relevant apparatus particles splits into non-overlapping
packets after a finite time, δt, each packet corresponding to a different eigen-
state of the measured system. Thus, measurement is described through the
one-to-one correspondence of the apparatus packets and the eigenstates of
the measured system – if the apparatus packet A triggers the apparatus to
“fire”, then the eigenstate corresponding to the packet A is ascribed to the
measured system. According to SQM, the wavefunction “collapses” to the
state corresponding to the eigenvalue A and this “collapse” is discontinuous.
Hence, it cannot be described by the Schrödinger equation. BM addresses
this problem very easily. Since the apparatus particles follow trajectories
through space and time, they will inevitably enter one and only one packet,
thus producing a distinct measurement according to Von Neumann, but in
a completely continuous way. The “collapse” of the wavefunction is conse-
quently explained because the packets into which the apparatus particles do
not enter become ineffective to the dynamics of the overall system and can
be dropped from the wavefunction.

In addition to this, we have discussed some other benefits that BM has
over SQM. First of all, there is potential for BM to be experimentally tested.
In chapter 3 we outlined a number of experiments from multiple sources that
propose to be able to differentiate between BM and SQM. Many of these
experiments are based on variations of the classic double-slit experiment,
one is based on the concept of ergodicity and one is based on BM’s ability
to distinguish between a “large” particle and a “small” one. Thus, there are
multiple methods and as such, it seems promising that experiment will one
day tell us whether BM is a true candidate for an accurate picture of matter
on the quantum level. To our best knowledge, no experiment has yet made
this determination.

Secondly, we examined three different attempts to connect the ”wavy“
quantum world with the classical world of experience. Each of these attempts
relies specifically on the concept of particle trajectories and consequently,
cannot be made in the context of SQM. The first paper derives the conditions
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necessary under which the motion of the center of mass of a macroscopic
object obeys the classical equation of motion, MẍCM = F ext, where M is
the mass of the object, xCM is the position of the center of mass of the
object and F ext is the external force on the object. In order to arrive at their
conclusion, the authors show that under the proper conditions the quantum
forces become negligible and the object is guided purely by the classical forces
acting on it.

The second paper is similar to the first, in that it endeavors to show
that under certain conditions the quantum forces on a macroscopic object
are negligible and the center of mass of the object moves classically. They
approach this problem in a different way and start with the condition

λ� L (3.37)

where λ is the deBroglie wavelength of the object and L is the scale of
variation of the potential. Eqn. (3.37) is analogous to the condition

h̄� A0 (3.38)

where A0 is a characteristic action of the corresponding classical motion. This
is commonly used as the condition to ensure classical behaviour. The authors
find appropriate conditions on the potential so that eqn. (3.37) holds.

The third paper is an attempt to construct a single theory that describes
both the classical and quantum domains. This theory is formulated in terms
of a wave equation, similar in form to the Schrödinger equation, and particles
are supposed to move along trajectories given by the Bohmian guidance
condition, eqn. (2.7). It describes a continuous transition from classical
mechanics to quantum mechanics using a continuous parameter λ. For λ = 0
the theory is equivalent to quantum mechanics and the system moves along
its Bohmian trajectories. For λ = 1 the theory is equivalent to classical
mechanics and the system moves along its classical trajectories. For 0 < λ <
1 the system is in a “mixture” of classical and quantum mechanics which
the authors call a “mesoscopic system”. By making λ a time-dependent
parameter, λ = λ(t), and giving it appropriate time-dependence the theory
describes a system which begins as completely quantum and continuously
morphs into a completely classical system. In this way, the authors propose
a model of decoherence in which the particles of the system move along
continuous trajectories, thus giving a very intuitive picture of the process of
decoherence.
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6.3 Recommendations For Future Research

We were careful in Chapter 5 to point out all of the approximations used
in constructing our model and in computing the trajectories. Recall that
we truncated the infinite sum, eqn. (5.11), at nine terms. As mentioned
in the previous section, this had little effect on our ability to accurately
represent the ground state wavefunction. This is due to the fact that the
nine terms we kept dominate the composition of the true ground state. This
provides a method to represent an arbitrary helium eigenstate using a small
number of terms in eqn. (5.11) – all one has to do is choose the terms of
which the desired eigenstate is mostly composed. It is not obvious how to do
this, but in general, eigenstates of higher energy will be composed of terms
which represent hydrogenic eigenstates of higher energy. Table 5.4 provides
examples of this principle. Similarly, the number of terms used increases
the accuracy of the wavefunction. However, the tradeoff is that the matrices
(5.17) and (5.18) are of size n × n where n is the number of terms retained
in the sum (5.11). Thus, the computation requirements grow very fast with
the number of terms in the wavefunction.

In addition, recall that our treatment of spin is somewhat artificial. Since
we used the Schrödinger equation we had to assume that each electron had
a constant spin vector. Since the spin-dependent motion of the eigenstates
is either no motion, or circular orbits around the spin axis, the trajectories
for the eigenstates are somewhat “unexciting”. However, in the presence of
magnetic field, (i.e., changing spin vectors), this term can be responsible for
some interesting dynamics. As such, a natural extension of this work is to
compute the Bohmian trajectories of the electrons in the helium atom under
the Pauli equation and in the presence of a magnetic field. Although giving
a full relativistic treatment would certainly give even more accurate results,
we anticipate that the relativistic corrections supplied by the Dirac equation
would be outweighed by the intrinsic error in the model due to the truncation
of the sum (5.11). Although our model can be made increasingly accurate by
using an appropriate number of terms in the wavefunction, we anticipate that
in order to achieve the accuracy necessary so that relativistic corrections are
at least of the order of the error in the overall wavefunction a large number
of terms must be used. This fact, coupled with the complexity of the Dirac
equation would amount to a problem that is computationally massive. As
such, it is not recommended that one compute Bohmian trajectories under
the Dirac equation unless a different model is used – one that is simpler
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computationally.1 However, we feel that our model should be satisfactory to
compute trajectories under the Pauli equation.

Lastly, we propose that BM be used to analyze other systems. Although
our study of the helium atom gave some fairly idealized results that most
likely do not represent a true helium atom very accurately, BM can be used to
give useable results about certain systems of interest. For example, Bohmian
trajectories are currently being calculated for electrons traveling through a
carbon nanotube. This allows one to analyze the conductance of a carbon
nanotube quantum mechanically, something that would be much more diffi-
cult to do without the concept of particle trajectories.2 Since technology is
becoming increasingly smaller, quantum effects will become more and more
prominent in various devices and we will need tools to analyze these effects.
We propose that BM be added to the toolbox as the concept of particle
trajectories may be very instructive to our understanding of our future hard-
ware.

6.4 Concluding Remarks

We have attempted to show in this thesis that BM gives a consistent and
reasonable description of quantum systems. It is our hope that anyone who
reads this will walk away with not only an understanding of the Bohmian in-
terpretation of non-relativistic quantum mechanics, but with an appreciation
for the simple and intuitive picture of the quantum world that BM provides.

1Quantum Mechanics of One- and Two-Electron Atoms by Bethe and Selpeter is an
excellent reference for different models of the helium wavefunction and may be a good
starting point for this endeavour.

2The work of the author with D. Borka et. al. on this topic is not reported in this
thesis. We expect our results to be published within a year.
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Appendix A

Calculation of Rgh,ij

Recall from section 5.1 that

Rgh,ij =

∫
<3

∫
<3

ΦgΦh
1

r12

ΦiΦj d
3τ1 d

3τ2

where 1 ≤ g, h, i, j ≤ 3 (we have set e = 1 because we are using atomic
units). To calculate these terms, we expand 1

r12
in terms of the spherical

harmonics, i.e.,

1

r12

=
∞∑
l=0

l∑
m=−l

4π

2l + 1

rl<
rl+1
>

Y m
l

(
θ1, φ1

)∗
Y m
l

(
θ2, φ2

)
, (A.1)

where r< is the smaller of r1 and r2, r> is the larger of r1 and r2 and Y m
l is

defined in eqn. (4.4). Using (A.1)

Rgh,ij =
∞∑
l=0

l∑
m=−l

4π

2l + 1

[
RAD

][
ANG 1

][
ANG 2

]
where

RAD =

∫ ∞
0

∫ ∞
0

Rng ,lg(r1)Rnh,lh(r2)
rl<
rl+1
>

Rni,li(r1)Rnj ,lj(r2)r2
1r

2
2 dr1 dr2,
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ANG 1 =

∫ 2π

0

∫ π

0

Y
mg
lg

(θ1, φ1)∗Y m
l (θ1, φ1)∗Y mh

lh
(θ1, φ1) sin (θ1) dθ1 dφ1

and

ANG 2 =

∫ 2π

0

∫ π

0

Y mi
li

(θ2, φ2)∗Y m
l (θ2, φ2)Y

mj
lj

(θ2, φ2) sin (θ2) dθ2 dφ2.

We will examine each of these three terms in turn. First of all,

RAD =

∫ ∞
0

Rnh,lh(r1)Rnj ,lj(r2)

[ ∫ r2

0

Rng ,lg(r1)Rni,li(r2)
rl1

r
(l+1)
2

r2
1 dr1

+

∫ ∞
r2

Rng ,lg(r1)Rni,li(r1)
rl2

r
(l+1)
1

r2
1 dr1

]
dr2

=

∫ ∞
0

Rnh,lh(r2)Rnj ,lj(r2)r
(−l+1)
2

[∫ r2

0

Rng .lg(r1)Rni,li(r1)r
(l+2)
1 dr1

]
dr2

+

∫ ∞
0

Rnh,lh(r2)Rnj ,lj(r2)r
(l+2)
2

[∫ ∞
r2

Rng ,lg(r1)Rni,li(r1)r
(−l+1)
1 dr1

]
dr2.

Secondly,

ANG 1 =

∫ 2π

0

exp

(
i(−mg −m+mi)φ1

h̄

)
dφ1

×
∫ π

0

CPmglg
(cosθ1)Pml (cosθ1)Pmili

(cosθ1) dθ1.

The φ1-integral is zero unless m = mi − mg. When m = mi − mg the
φ1-integral is equal to 2π and

ANG 1 = 2πC

∫ π

0

Pmglg
(cosθ1)Pml (cosθ1)Pmili

(cosθ1) dθ1.

Here, C is a constant that depends on lg, mg, l, m, li and mi.

Similarly,
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ANG 2 =

∫ 2π

0

exp

(
i(−mh +m+mj)φ2

h̄

)
dφ2

×
∫ π

0

DPmhlh
(cosθ2)Pml (cosθ2)Pmjlj

(cosθ2) dθ2

and the φ2-integral is zero unless m = mh −mj. When m = mh −mj

ANG 2 = 2πD

∫ π

0

Pmhlh
(cosθ2)Pml (cosθ2)Pmjlj

(cosθ2) dθ2,

where D is a constant that depends on lh, mh, l, m. lj and mj.

Thus, Rgh,ij = 0 unless m = mi−mg = mh−mj. In addition, integrals of the
form ANG 1 vanish unless |lg−li| ≤ l ≤ lg+li andmg+m+mi+Lg+L+Li =
0 (and similarly, for ANG 2) [2].

Rgh,ij has been evaluated for 1 ≤ g, h, i, j ≤ 3 using Maple. The results are
displayed in the following table.
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(g,h)\(i,j) (1,1) (1,2) (1,3) (2,1) (2,2) (2,3) (3,1) (3,2) (3,3)

(1,1) 5
8

4096
√

2
64827

0 4096
√

2
64827

16
729

0 0 0 112
6561

(1,2) 4096
√

2
64827

17
81

0 16
729

512
√

2
84375

0 0 0 −256
√

2
28125

(1,3) 0 0 59
243

0 0 512
√

2
84375

112
6561

−256
√

2
28125

0

(2,1) 4096
√

2
64827

16
729

0 17
81

512
√

2
84375

0 0 0 −256
√

2
28125

(2,2) 16
729

512
√

2
84375

0 512
√

2
84375

77
512

0 0 0 15
512

(2,3) 0 0 512
√

2
84375

0 0 83
512

−256
√

2
28125

15
512

0

(3,1) 0 0 112
6561

0 0 −256
√

2
28125

59
243

512
√

2
84375

0

(3,2) 0 0 −256
√

2
28125

0 0 15
512

512
√

2
84375

83
512

0

(3,3) 112
6561

−256
√

2
28125

0 −256
√

2
28125

15
512

0 0 0 501
2560

Table A.1: The Rgh,ij.
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Appendix B

Energy Expectation

The energy expectation is given by the standard formula

〈E〉 =
〈

Ψ∗hel

∣∣∣Ĥhel

∣∣∣Ψhel

〉
, (B.1)

where

Ĥhel = − h̄2

2m
∇2

1 −
h̄2

2m
∇2

2 −
Ze2

r1

− Ze2

r2

+
e2

r12

and

Ψhel(r1, θ1, φ1, r2, θ2, φ2, t) =
3∑
i=1

3∑
j=1

cij(t)Φi(r1, θ1, φ1)Φj(r2, θ2, φ2).

Recall that the Hamiltonian is the sum of two terms. The first, Ĥ0, represents
two independent hydrogenic electrons and the second, Ĥ1, represents the
interaction between them (cf. eqns. (5.2), (5.3) and (5.4)). Thus, we can
expand (B.1) as〈

Ψ∗hel

∣∣∣Ĥhel

∣∣∣Ψhel

〉
=
〈

Ψ∗hel

∣∣∣Ĥ0

∣∣∣Ψhel

〉
+
〈

Ψ∗hel

∣∣∣Ĥ1

∣∣∣Ψhel

〉
.

The first term is
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〈
Ψ∗hel

∣∣∣Ĥ0

∣∣∣Ψhel

〉
=

3∑
g,h=1

3∑
i,j=1

c∗ghcij

×
〈

Φng ,lg(~r1)Φnh,lh(~r2)
∣∣∣Ĥ(1)

0 + Ĥ
(2)
0

∣∣∣Φni,li(~r1)Φnj ,lj(~r2)
〉

(B.2)

where Ĥ
(1)
0 is a hydrogenic Hamiltonian acting on electron 1 and Ĥ

(2)
0 is a

hydrogenic Hamiltonian acting on electron 2.
Using the hydrogenic eigenvalue equation

Ĥ
(i)
0 Φnα,lα(~ri) = E(0)

nα Φnα,lα(~ri),

(B.2) becomes

〈
Ψ∗hel

∣∣∣Ĥ0

∣∣∣Ψhel

〉
=

3∑
g,h=1

3∑
i,j=1

c∗ghcij
(
E(0)
ni

+ E(0)
nj

)
×
〈
Φng ,lg(~r1)Φnh,lh(~r2)|Φni,li(~r1)Φnj ,lj(~r2)

〉
=

3∑
g,h=1

3∑
i,j=1

c∗ghcij
(
E(0)
ni

+ E(0)
nj

)
δg,iδh,j

=
3∑

i,j=1

|cij|2
(
E(0)
ni

+ E(0)
nj

)
where δα,β is the Kronecker delta and the orthogonality of the hydrogenic
eigenfunctions was used in the above calculations (cf. eqn. (4.6)).

The second term is

〈
Ψ∗hel

∣∣∣Ĥ1

∣∣∣Ψhel

〉
=

3∑
g,h=1

3∑
i,j=1

c∗ghcij

〈
Φg(

→
r1)Φh(

→
r2)

∣∣∣∣ e2

r12

∣∣∣∣Φi(
→
r1)Φj(

→
r2)

〉

=
3∑

g,h=1

3∑
i,j=1

c∗ghcijRgh,ij
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Putting this together, the energy expectation is given by

〈E〉 =
3∑

i,j=1

|cij|2
(
E(0)
ni

+ E(0)
nj

)
+

3∑
g,h=1

3∑
i,j=1

c∗ghcijRgh,ij

=
3∑

i,j=1

|cij|2
(
E(0)
ni

+ E(0)
nj

)
+

3∑
g,h=1

3∑
i,j=1

(
aghaij + bghbij

)
Rgh,ij.
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Appendix C

Calculation of Spin Vectors

The components of the spin vectors are given by the Pauli spin operators:

ŝij =

(
h̄

2ρ
Ψ†helσijΨhel

)
(C.1)

where i = 1, 2 represents electron number and j = 1, 2, 3 refers respectively
to the x-direction, y-direction and z-direction and σij is the jth Pauli spin
matrix for electron i. Recall that the Pauli spin matrices are given by

σix =

(
0 1
1 0

)
i

, σiy =

(
0 −i
i 0

)
i

and σiz =

(
1 0
0 −1

)
i

(2.9)

.
where i = 1 refers to electron 1 and i = 2 refers to electron 2. Pauli matrices
with subscript i act only on the parts of the wavefunction that refer to
electron i. Since the wavefunction factors into a spatial part multiplied by a
spin part, eqn. (C.1) becomes
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ŝij =

(
h̄

2ρ
Ψ†helσijΨhel

)
=

h̄

2ρ

(
Ψ∗helΩ

†
spinσijΨhelΩspin

)
=

(
h̄

2ρ

)(
Ψ∗helΨhel

)(
Ω†spinσijΩspin

)
=
h̄

2

(
Ω†spinσijΩspin

)
. (C.2)

It is clear from (C.2) that Ωspin and Ω†spin must be 2-component entities.
Recall from section 5.3 that Ωspin has the general form

Ωspin = d11α(s1)α(s2)+d12α(s1)β(s2)+d21β(s1)α(s2)+d22β(s1)β(s2), (5.24)

where d11, d12, d21 and d22 are constants. Thus, we need to represent α(si)
and β(si) as 2-component spinors. To do this we make use of the eigenvalue
equations

ŝi3α(si) = α(si) (C.3)

and

ŝi3β(si) = −β(si). (C.4)

Solving (C.3) and (C.4) gives

α(si) =

(
1

0

)
i

and β(si) =

(
0

1

)
i

.

Since Ωspin is composed of real 2-component spinors, Ω†spin becomes ΩT
spin and

(C.2) becomes

ŝij =
h̄

2

(
ΩT
spinσijΩspin

)
.

Now let us calculate the spin vectors for each electron. We will examine each
of the four spin states separately. First consider the antisymmetric spin state
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given by

Ωanti =
1√
2

(
α(s1)β(s2)− α(s2)β(s1)

)
=

1√
2

[(
1

0

)
1

(
0

1

)
2

−
(

0

1

)
1

(
1

0

)
2

]
.

The spin vector for electron 1 is ~s1 = (s11 , s12 , s13) where

s11 =

(
h̄

2

)
ΩT
antiσ11Ωanti

=
h̄

4

[
(1 0)1 (0 1)2 − (0 1)1 (1 0)2

] [
0 1
1 0

]
1

[(
1

0

)
1

(
0

1

)
2

−
(

0

1

)
1

(
1

0

)
2

]
=
h̄

4

[
(1 0)1 (0 1)2 − (0 1)1 (1 0)2

] [(
0

1

)
1

(
0

1

)
2

−
(

1

0

)
1

(
1

0

)
2

]
=
h̄

4

[
(0)(1)− (1)(0)− (1)(0) + (0)(1)

]
= 0,

s12 =

(
h̄

2

)
ΩT
antiσ12Ωanti

=
h̄

4

[
(1 0)1 (0 1)2 − (0 1)1 (1 0)2

] [
0 −i
i 0

]
1

[(
1

0

)
1

(
0

1

)
2

−
(

0

1

)
1

(
1

0

)
2

]
=
h̄

4

[
(1 0)1 (0 1)2 − (0 1)1 (1 0)2

] [(
0

i

)
1

(
0

1

)
2

−
(
−i
0

)
1

(
1

0

)
2

]
=
h̄

4

[
(0)(1)− (−i)(0)− (i)(0) + (0)(1)

]
= 0

and
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s13 =

(
h̄

2

)
ΩT
antiσ13Ωanti

=
h̄

4

[
(1 0)1 (0 1)2 − (0 1)1 (1 0)2

] [
1 0
0 −1

]
1

[(
1

0

)
1

(
0

1

)
2

−
(

0

1

)
1

(
1

0

)
2

]
=
h̄

4

[
(1 0)1 (0 1)2 − (0 1)1 (1 0)2

] [(
1

0

)
1

(
0

1

)
2

−
(

0

−1

)
1

(
1

0

)
2

]
=
h̄

4

[
(1)(1)− (0)(0)− (0)(0) + (−1)(1)

]
= 0.

Thus, the spin vector of electron 1 is ~s1 = (0, 0, 0). Similarly, the spin vector
for electron 2 is ~s2 = (s21 , s22 , s23) where

s21 =

(
h̄

2

)
ΩT
antiσ21Ωanti

=
h̄

4

[
(1 0)1 (0 1)2 − (0 1)1 (1 0)2

] [
0 1
1 0

]
2

[(
1

0

)
1

(
0

1

)
2

−
(

0

1

)
1

(
1

0

)
2

]
=
h̄

4

[
(1 0)1 (0 1)2 − (0 1)1 (1 0)2

] [(
1

0

)
1

(
1

0

)
2

−
(

0

1

)
1

(
0

1

)
2

]
=
h̄

4

[
(1)(0)− (0)(1)− (0)(1) + (1)(0)

]
= 0,

s22 =

(
h̄

2

)
ΩT
antiσ22Ωanti

=
h̄

4

[
(1 0)1 (0 1)2 − (0 1)1 (1 0)2

] [
0 −i
i 0

]
2

[(
1

0

)
1

(
0

1

)
2

−
(

0

1

)
1

(
1

0

)
2

]
=
h̄

4

[
(1 0)1 (0 1)2 − (0 1)1 (1 0)2

] [(
1

0

)
1

(
i

0

)
2

−
(

0

1

)
1

(
0

−i

)
2

]
=
h̄

4

[
(1)(0)− (0)(i)− (0)(−i) + (1)(0)

]
= 0
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and

s23 =

(
h̄

2

)
ΩT
antiσ23Ωanti

=
h̄

4

[
(1 0)1 (0 1)2 − (0 1)1 (1 0)2

] [
1 0
0 −1

]
2

[(
1

0

)
1

(
0

1

)
2

−
(

0

1

)
1

(
1

0

)
2

]
=
h̄

4

[
(1 0)1 (0 1)2 − (0 1)1 (1 0)2

] [(
1

0

)
1

(
0

−1

)
2

−
(

0

1

)
1

(
1

0

)
2

]
=
h̄

4

[
(1)(−1)− (0)(0)− (0)(0) + (1)(1)

]
= 0.

Thus, the spin vector of electron 2 is ~s2 = (0, 0, 0). The calculations are very
similar for the symmetric spin function

Ωsym =
1√
2

(
α(s1)β(s2) + α(s2)β(s1)

)
=

1√
2

[(
1

0

)
1

(
0

1

)
2

+

(
0

1

)
1

(
1

0

)
2

]
and the result is ~s1 = ~s2 = (0, 0, 0).

Now consider the symmetric “spin up” function

Ωup = α(s1)α(s2)

=

(
1

0

)
1

(
1

0

)
2

.

The spin vector for electron 1 is ~s1 = (s11 , s12 , s13) where
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s11 =

(
h̄

2

)
ΩT
upσ11Ωup

=
h̄

2

[
(1 0)1 (1 0)2

] [
0 1
1 0

]
1

[(
1

0

)
1

(
1

0

)
2

]
=
h̄

2

[
(1 0)1 (1 0)2

] [(
0

1

)
1

(
1

0

)
2

]
=
h̄

2

[
(0)(1)

]
= 0,

s12 =

(
h̄

2

)
ΩT
upσ12Ωup

=
h̄

2

[
(1 0)1 (1 0)2

] [
0 −i
i 0

]
1

[(
1

0

)
1

(
1

0

)
2

]
=
h̄

2

[
(1 0)1 (1 0)2

] [(
0

i

)
1

(
1

0

)
2

]
=
h̄

2

[
(0)(1)

]
= 0

and

s13 =

(
h̄

2

)
ΩT
upσ11Ωup

=
h̄

2

[
(1 0)1 (1 0)2

] [
1 0
0 −1

]
1

[(
1

0

)
1

(
1

0

)
2

]
=
h̄

2

[
(1 0)1 (1 0)2

] [(
1

0

)
1

(
1

0

)
2

]
=
h̄

2

[
(1)(1)

]
=
h̄

2
.
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Thus, the spin vector for electron 1 is ~s1 = (0, 0, h̄
2
). Similarly, the spin vector

for electron 2 is ~s2 = (s21 , s22 , s23) where

s21 =

(
h̄

2

)
ΩT
upσ21Ωup

=
h̄

2

[
(1 0)1 (1 0)2

] [
0 1
1 0

]
2

[(
1

0

)
1

(
1

0

)
2

]
=
h̄

2

[
(1 0)1 (1 0)2

] [(
1

0

)
1

(
0

1

)
2

]
=
h̄

2

[
(1)(0)

]
= 0,

s22 =

(
h̄

2

)
ΩT
upσ22Ωup

=
h̄

2

[
(1 0)1 (1 0)2

] [
0 −i
i 0

]
2

[(
1

0

)
1

(
1

0

)
2

]
=
h̄

2

[
(1 0)1 (1 0)2

] [(
1

0

)
1

(
0

i

)
2

]
=
h̄

2

[
(1)(0)

]
= 0

and
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s23 =

(
h̄

2

)
ΩT
upσ23Ωup

=
h̄

2

[
(1 0)1 (1 0)2

] [
1 0
0 −1

]
2

[(
1

0

)
1

(
1

0

)
2

]
=
h̄

2

[
(1 0)1 (1 0)2

] [(
1

0

)
1

(
1

0

)
2

]
=
h̄

2

[
(1)(1)

]
=
h̄

2
.

Thus, the spin vector of electron 2 is ~s2 = (0, 0, h̄
2
). The calculations are

similar for the “spin down” function

Ωdown = β(s1)β(s2)

=

[(
0

1

)
1

(
0

1

)
2

]
and the result is ~s1 = ~s2 = (0, 0,− h̄

2
).
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Appendix D

The Ritz Variational Method
For Helium

Substituting Ψhel into (5.33) yields

E[Ψhel] =

∫
Ψ∗helĤhelΨhel d~r1 d~r2

Ψ∗helΨhel d~r1 d~r2

.

The numerator is∫
Ψ∗helĤ0Ψhel d~r1 d~r2 +

∫
Ψ∗helĤ1Ψhel d~r1 d~r2 (D.1)

which is the sum of two terms. We will examine each term in turn. Using
the fact that Ĥ0 is the Hamiltonian for two independent hydrogenic electrons
and substituting for Ψhel the first term becomes

∫
d~r1 d~r2

(
3∑

g,h=1

c∗ghΦg(~r1)Φh(~r2)

)(
3∑

i,j=1

(Ei + Ej)cijΦi(~r1)Φj(~r2)

)
.

Similarly, the second term is

∫
d~r1 d~r2

(
3∑

g,h=1

c∗ghΦg(~r1)Φh(~r2)

)(
e2

3∑
i,j=1

cijΦi(~r1)Φj(~r2)

r12

)
.
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Let Ighij be defined by

Ighij ≡
∫

d~r1 d~r2 Φg(~r1)Φh(~r2)Φi(~r1)Φj(~r2)

and let Rghij be defined by

Rghij ≡ e2

∫
d~r1 d~r2 Φg(~r1)Φh(~r2)Φi(~r1)Φj(~r2)

r12

.

Then (D.1) can be written as

3∑
g,h,i,j=1

c∗ghcij [(Ei + Ej)Ighij +Rghij]. (D.2)

Now we will examine the denominator. The denominator is

3∑
g,h,i,j=1

c∗ghcij

∫
d~r1 d~r2 Φg(~r1)Φh(~r2)Φi(~r1)Φj(~r2)

=
3∑

g,h,i,j=1

c∗ghcijIghij. (D.3)

Putting (D.2) and (D.3) together gives

E[Ψhel] =

3∑
g,h,i,j=1

c∗ghcij [(Ei + Ej)Ighij +Rghij]

3∑
g,h,i,j=1

c∗ghcijIghij

. (D.4)

The variational method is to minimize (D.4) with respect to each of the cij.
To do this we set

∂E[ψhel]

∂c∗ij
= 0 for 1 ≤ i, j ≤ 3.

This yields 9 coupled equations which can be solved simultaneously to give
the {cij}. Taking the derivative of E[Ψhel] with respect to c∗ij gives
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∂E[ψhel]

∂c∗gh
=

3∑
i,j=1

cij [(Ei + Ej)Ighij +Rghij]

3∑
k,l,m,n=1

c∗klcmnIklmn

−

3∑
i,j=1

cijIghij
3∑

k,l,m,n=1

c∗klcmn [(Em + En)Iklmn +Rklmn][
3∑

k,l,m,n=1

c∗klcmnIklmn

]2 . (D.5)

and setting the right-hand side of (D.5) equal to zero gives the nine equations
we desire. These equations are

3∑
i,j=1

cij [(Ei + Ej)Ighij +Rghij]
3∑

k,l,m,n=1

c∗klcmnIklmn

=
3∑

i,j=1

cijIghij

3∑
k,l,m,n=1

c∗klcmn [(Em + En)Iklmn +Rklmn] for 1 ≤ g, h ≤ 3.

(D.6)

These equations can be solved simultaneously for the nine complex coeffi-
cients, {cij}. Alternatively, we can break (D.6) into real and imaginary parts
which leads to the following 18 coupled equations for the {aij} and {bij}:

3∑
i,j=1

aij [(Ei + Ej)Ighij +Rghij]
3∑

k,l,m,n=1

(
aklamn + bklbmn

)
Iklmn

=
3∑

i,j=1

aijIghij

3∑
k,l,m,n=1

(
aklamn + bklbmn

)
[(Em + En)Iklmn +Rklmn] (D.7)

and
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3∑
i,j=1

bij [(Ei + Ej)Ighij +Rghij]
3∑

k,l,m,n=1

(
aklamn + bklbmn

)
Iklmn

=
3∑

i,j=1

bijIghij

3∑
k,l,m,n=1

(
aklamn + bklbmn

)
[(Em + En)Iklmn +Rklmn]. (D.8)

Eqn. (D.7) gives nine equations and eqn. (D.8) gives nine equations (one for
each 1 ≤ g, h ≤ 3). These can be simultaneously solved to yield the {aij}
and {bij}.
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Appendix E

Coefficients For Eigenstates of
Ĥhel

For each of the eigenstates of Ĥhel the following eigenvalue equation holds:

ĤhelΨ
(α)
hel = E

(α)
helΨ

(α)
hel . (E.1)

Substituting (E.1) into the Schrödinger equation gives

ih̄
∂Ψ

(α)
hel

∂t
= E

(α)
helΨ

(α)
hel .

Expanding Ψ
(α)
hel using eqn. (5.21) and separating Ψ

(α)
hel into real and imaginary

parts, i.e., writing cij(t) = aij(t) + ibij(t), leads to the 18 coupled ODEs

daij
dt

=
E

(α)
hel

h̄
bij (E.2a)

and
dbij
dt

= −E
(α)
hel

h̄
aij (E.2b)

where 1 ≤ i, j ≤ 3. Taking the derivative of eqn. (E.2a) with respect to t
and using eqn. (E.2b) we get

d2aij
∂t2

= −

(
E

(α)
hel

h̄

)2

aij

which has the two solutions
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aij(t) =


aij(0) cos

(
E

(α)
hel

h̄
t

)
C sin

(
E

(α)
hel

h̄
t

) (E.3)

where C is a constant to be determined.

We will examine the first solution in (E.3) first. Using (E.2a) we get

bij(t) =
h̄

E
(α)
hel

∂aij(t)

∂t

= −aij(0) sin

(
E

(α)
hel

h̄
t

)
.

Since this is consistent with eqn. (E.2b) one solution for the coefficients is

aij(t) = aij(0) cos

(
E

(α)
hel

h̄
t

)
(E.4a)

and

bij(t) = −aij(0) sin

(
E

(α)
hel

h̄
t

)
. (E.4b)

Now consider the second solution in (E.3). Once again, using (E.2a) we get

bij(t) =
h̄

E
(α)
hel

∂aij(t)

∂t

= C cos

(
E

(α)
hel

h̄
t

)
.

Evaluating bij(t) at t = 0 implies that C = bij(0) and the solution for bij(t)
is

bij(t) = bij(0) cos

(
E

(α)
hel

h̄
t

)
.
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Since this is consistent with eqn. (E.2b) the other solution for the coefficients
is

aij(t) = bij(0) sin

(
E

(α)
hel

h̄
t

)
(E.5)

and

bij(t) = bij(0) cos

(
E

(α)
hel

h̄
t

)
. (E.5)

Since all of the bij(0) are zero for each of the eigenstates of Ĥhel, we see that

the eigenstates of Ĥhel fall under the category of eqns. (E.4a) and (E.4b).
Thus, for each of the eigenstates the coefficients are given by

aij(t) = aij(0) cos (ω(α)t) (E.4a)

and
bij(t) = −aij(0) sin (ω(α)t), (E.4b)

where ω(α) =
E

(α)
hel

h̄
.
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Appendix F

Calculation of ∇S For Helium
Trajectories

We want to calculate the spin-independent term of the guidance condition.
This term is given by

∇iS =
h̄

2iR2
[Ψ∗∇iΨ− (∇iΨ

∗)Ψ] (F.1)

which can equivalently be written as

∇iS =
h̄

R2
Im(Ψ∗∇iΨ). (F.2)

We will use (F.2) as it is easier in practice to evaluate than (F.1).

First, the ∇iΨ term is given by

∇iΨ =


3∑

j,k=1

cjk [∇φj(~r1)]φk(~r2) if i = 1;

3∑
j,k=1

cjkφj(~r1) [∇φk(~r2)] if i = 2.
(F.3)

Substituting this into (F.2), writing

Ψ(~r1, ~r2) =
3∑

i,j=1

cijφi(~r1)φj(~r2), (F.4)

and expanding each hydrogenic eigenfunction as
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φα(~ri) = Rnα,lα(ri)Ylα(θi, φi),

where nα =


1, if α = 1

2, if α = 2

2, if α = 3

and lα =


0, if α = 1

0, if α = 2

1, if α = 3

,

yields

∇1S =
3∑

g,h=1

3∑
i,j=1

(
aghbij − aijbgh

)
Rng ,lg(r1)Ylg(θ1, φ1)Rnh,lh(r2)Ylh(θ2, φ2)

×
(
∂Rni,li(r1)

∂r1

Yli(θ1, φ1) , 0 , Rni,li

∂Yli(θ1, φ1)

∂θ1

)
Rnj ,lj(r2)Ylj(θ2, φ2) (F.5)

and

∇2S =
3∑

g,h=1

3∑
i,j=1

(
aghbij − aijbgh

)
Rng ,lg(r1)Ylg(θ1, φ1)Rnh,lh(r2)Ylh(θ2, φ2)

×Rni,li(r1)Yli(θ1, φ1)

(
∂Rnj ,lj(r2)

∂r2

Ylj(θ2, φ2) , 0 , Rnj ,lj

∂Ylj(θ2, φ2)

∂θ2

)
.

(F.6)

Note that the third component of ∇iS = 0 for i = 1, 2 because the wavefunc-
tion does not depend on the polar angle, φ. Eqns. (F.5) and (F.6) can be
written more succinctly as

∇iS =
h̄

R2

3∑
g,h,j,k=1

(
aghbjk − ajkbgh

)
φg(~r1)φh(~r2)

×
{
Aijk(~r1, ~r2)êr +Bi

jk(~r1, ~r2)êφ + Ci
jk(~r1, ~r2)êθ

}
,

where
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Aijk(~r1, ~r2) =

{
∂Rnj,lj (r1)

∂r1
Ylj(θ1, φ1)Rnk,lk(r2)Ylk(θ2, φ2) if i = 1;

Rnj ,lj(r1)Ylj(θ1, φ1)
∂Rnk,lk (r2)

∂r2
Ylk(θ2, φ2) if i = 2,

Bi
jk(~r1, ~r2) = 0 for i = 1, 2

because each Φi has no φ-dependence and

Ci
jk(~r1, ~r2) =

{
Rnj ,lj(r1)

∂Ylj (θ1,φ1)

∂θ1
Rnk,lk(r2)Ylk(θ2, φ2) if i = 1;

Rnj ,lj(r1)Ylj(θ1, φ1)Rnk,lk(r2)
∂Ylk (θ2,φ2)

∂θ2
if i = 2.
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Appendix G

Proof That ∇S = 0 For Helium
Eigenstates

Beginning with eqn. (F.2), expanding ∇iΨ using eqn. (F.3) and expanding
Ψ using eqn. (F.4) we get the equations

∇1S =
h̄

R2

3∑
g,h=1

3∑
i,j=1

(
agh(t)bij(t)− aij(t)bgh(t)

)
φg(~r1)φh(~r2) [∇φi(~r1)]φj(~r2)

and

∇2S =
h̄

R2

3∑
g,h=1

3∑
i,j=1

(
agh(t)bij(t)− aij(t)bgh(t)

)
φg(~r1)φh(~r2)φi(~r1) [∇φj(~r2)].

We will set i = 1 and examine the r-component on its own. This term is
given by

h̄

R2

3∑
g,h=1

3∑
i,j=1

(
agh(t)bij(t)− aij(t)bgh(t)

)
φg(~r1)φh(~r2)

[
∂φi(~r1)

∂r1

]
φj(~r2).

Thus, if we can show that the sum
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3∑
g,h=1

3∑
i,j=1

(
agh(t)bij(t)− aij(t)bgh(t)

)
φg(~r1)φh(~r2)

[
∂φi(~r1)

∂r1

]
φj(~r2) (G.1)

is identically zero, then the r-component of ∇S1 is equal to zero and electron
1 has no spin-independent motion in the r-direction.

Recall from Appendix E that when the spatial part of the initial wavefunc-
tion is in an eigenstate of Ĥhel (i.e. one of {Ψ(α)

hel}for α ∈ {0, . . . , 8}) the
coefficients are given by

aij(t) = Cij cos (ω(α)t) (5.41a)

and
bij(t) = Cij sin (ω(α)t) (5.41b)

where Cij = |cij(0)| are constants and

ω(α) =
E

(α)
hel

h̄

is the frequency associated with the wavefunction Ψ
(α)
hel .

1

Now consider a general term in the sum (G.1), which we will call (g, h, i, j).
This term is given by

(g, h, i, j) =
(
agh(t)bij(t)− aij(t)bgh(t)

)
φg(~r1)φh(~r2)

[
∂φi(~r1)

∂r1

]
φj(~r2) (G.3)

Substituting (5.41a) and (5.41b) into (G.3) yields

1Recall that the coefficients of the wavefunction are given by cij(t) = aij(t) +
ibij(t) for 1 ≤ i, j ≤ 3.
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(g, h, i, j) =
[
Cgh cos (ω(α)t)Cij sin (ω(α)t)− Cij cos (ω(α)t)Cgh sin (ω(α)t)

]
× φg(~r1)φh(~r2)

[
∂φi(~r1)

∂r1

]
φj(~r2)

= CghCij
[
cos (ω(α)t) sin (ω(α)t)− cos (ω(α)t) sin (ω(α)t)

]
× φg(~r1)φh(~r2)

[
∂φi(~r1)

∂r1

]
φj(~r2)

= 0. (G.4)

Thus, the (g, h, i, j) term equals zero. Since the calculations used in (G.4) do
not depend on the indices g, h, i, or j, each term in (G.1) is identically zero.
Therefore, the sum (G.1) is equal to zero and the corresponding component
of ∇1S is zero. The above argument holds for each of the components of
∇1S and similarly for each component ∇2S. Thus, ∇iS = 0 for i = 1, 2 and
there is no spin-independent contribution to the trajectory of either electron
when the initial wavefunction is an eigenstate of Ĥhel.

144



Bibliography

[1] V. Allori, D. Dürr, S. Goldstein and N. Zanghi, Seven Steps Towards
the Classical World, Found on the website arXiv.org, Ref. arXiv:quant-
ph/0112005v1. Submitted (2001).

[2] G. Arfken, Mathematical Methods For Physicists 2nd Ed., Academic
Press Inc., New York, 1971.

[3] V. I. Arnold and A. Avez, Ergodic Problems of Classical Mechanics, W.
A. Benjamin, Inc., Menlo Park, CA., 1968.

[4] H. Bethe and E. Selpeter, Quantum Mechanics of One- and Two-
Electrons Atoms, Plenum Publishing, New York, 1977 (reprinted from
1957 version).

[5] D. Bohm, A Suggested Interpretation of the Quantum Theory in Terms
of “Hidden” Variables. I, Physical Review 85 (1952), 166–179.

[6] D. Bohm, A Suggested Interpretation of the Quantum Theory in Terms
of “Hidden” Variables. II, Physical Review 85 (1952), 180–193.

[7] D. Bohm, Quantum Theory, Dover Publications , Mineola, N.Y., 1989
(reprint).

[8] D. Bohm, The Undivided Universe, Routledge, New York, 1993.

[9] N. Bohr, Can Quantum-Mechanical Description of Physical Reality Be
Considered Complete?, Physical Review 48 (1935), 696–702.

[10] B. H. Bransden and C. J. Joachain, Quantum Mechanics Second Edition,
Prentice Hall, Essex, U.K., 2000.

145



[11] C. Colijn, The De Broglie-Bohm Causal Interpretation of Quantum Me-
chanics and its Application to Some Simple Systems, Ph. D. thesis, Uni-
versity of Waterloo, 2003.

[12] C. Colijn and E. R. Vrscay, Spin-dependent Bohm trajectories for hy-
drogen eigenstates, Physical Letters A, 300 (2002), 334–340.

[13] C. Colijn and E. R. Vrscay, Spin-dependent Bohm trajectories for Pauli
and Dirac eigenstates of hydrogen, Found. Phys. Lett., 300(4) (2003),
303–323.

[14] J. Cushing, Quantum Mechanics Historical Contingency and the Copen-
hagen Interpretation, University of Chicago Press, Chicago, 1994.

[15] A. Einstein, B. Podolsky and N. Rosen, Can Quantum-Mechanical De-
scription of Physical Reality Be Considered Complete?, Physical Review
47 (1935), 777–780.

[16] D. E. Evans, Comm. Math. Phys. 54 (1976), 293.

[17] A. Frigerio, Comm. Math. Phys. 63 (1978), 269.

[18] H. Geiger, G. Obermair and C. Helm, Classical behaviour of many-
body systems in Bohmian Quantum Mechanics, Found on the website
arXiv.org, Ref. arXiv:quant-ph/9906082. Submitted to Phys. Letters A
in (1999).

[19] P. Ghose, An Experiment to Distinguish Between de Broglie-Bohm and
Standard Quantum Mechanics, Found on the website arXiv.org, Ref.
arXiv:quant-ph/0003037v3. Submitted (2000).

[20] P. Ghose, On the Incompatibility of Standard Quantum Mechanics and
the de Broglie-Bohm Theory, Found on the website arXiv.org, Ref.
arXiv:quant-ph/0103126v8. Submitted (2001).

[21] P. Ghose, Comments on Struyve and Baere’s paper on experiments to
distinguish Bohmian mechanics from quantum mechanics, Found on the
website arXiv.org, Ref. arXiv:quant-ph/0208192v1. Submitted (2002).

[22] P. Ghose, A Continuous Transition Between Quantum and Classi-
cal Mechanics (I), Found on the website arXiv.org, Ref. arXiv:quant-
ph/0104104. Submitted (2002). To appear in Found. of Physics.

146



[23] P. Ghose and M. Samal, A Continuous Transition Between Quantum
and Classical Mechanics (II), Found on the website arXiv.org, Ref.
arXiv:quant-ph/0104105. Submitted (2002). To appear in Found. of
Physics.

[24] M. Golshani and O. Akhavan, A two-slit experiment which distinguishes
between standard and Bohmian quantum mechanics, Found on the web-
site arXiv.org, Ref. arXiv:quant-ph/0009040v4. Submitted (2000).

[25] M. Golshani and O. Akhavan, Experiment can decide between standard
and Bohmian quantum mechanics, Found on the website arXiv.org, Ref.
arXiv:quant-ph/0103100v2. Submitted (2001).

[26] M. Golshani and O. Akhavan, Bohmian prediction about a two double-
slit experiment and its disagreement with standard quantum mechanics,
J. Phys. A 34 (2001) 5259–5268.

[27] M. Golshani and O. Akhavan, On the Experimental Incompatibility Be-
tween Standard and Bohmian Quantum Mechanics, Found on the web-
site arXiv.org, Ref. arXiv:quant-ph/0110123v1. Submitted (2001).

[28] M. Golshani and O. Akhavan, Reply to : Comment on “Bohmian predic-
tion about a two double-slit experiment and its disagreement with SQM”,
Found on the website arXiv.org, Ref. arXiv:quant-ph/0305020v1. Sub-
mitted (2003).

[29] M. Gondran and A. Gondran, A Crucial Experiment to Test The Broglie-
Bohm Trajectories For Indistinguishable Particles, Found on the website
arXiv.org, Ref. arXiv:quant-ph/0603200v2. Submitted (2006).

[30] P. Holland, The Quantum Theory of Motion, Cambridge University
Press, Cambridge, 1993.

[31] I. Levine, Quantum Chemistry Volume 1: Quantum Mechanics and
Molecular Electronic Structure, Allyn and Bacon Inc., Boston, MA,
1970.

[32] A. Messiah, Quantum Mechanics, Dover Publications, Mineola, N.Y.,
1999 (reprint).

147



[33] Y. Omar, Indistinguishable Particles in Quantum Mechanics: An Intro-
duction, Contemporary Physics 46 (2005), 437–448.

[34] W. Parry, Topics in Ergodic Theory, Cambridge University Press, Cam-
bridge, 1981.
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