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Abstract

This thesis investigates robust techniques for mean-variance (MV) portfolio optimization

problems under the estimation risk in mean return. We evaluate the performance of the op-

timal portfolios generated by the min-max robust MV portfolio optimization model. With

an ellipsoidal uncertainty set based on the statistics of sample mean estimates, min-max

robust portfolios equal to the ones from the standard MV model based on the nominal

mean estimates but with larger risk aversion parameters. With an interval uncertainty set

for mean return, min-max robust portfolios can vary significantly with the initial data used

to generate the uncertainty set. In addition, by focusing on the worst-case scenario in the

mean return uncertainty set, min-max robust portfolios can be too conservative and unable

to achieve a high return. Adjusting the conservatism level of min-max robust portfolios

can only be achieved by excluding poor mean return scenarios from the uncertainty set,

which runs counter to the principle of min-max robustness. We propose a CVaR robust

MV portfolio optimization model in which the estimation risk is measured by the Condi-

tional Value-at-Risk (CVaR). We show that, using CVaR to quantify the estimation risk

in mean return, the conservatism level of CVaR robust portfolios can be more naturally

adjusted by gradually including better mean return scenarios. Moreover, we compare min-

max robust portfolios (with an interval uncertainty set for mean return) and CVaR robust

portfolios in terms of actual frontier variation, portfolio efficiency, and portfolio diversifi-

cation. Finally, a computational method based on a smoothing technique is implemented

to solve the optimization problem in the CVaR robust MV model. We numerically show

that, compared with the quadratic programming (QP) approach, the smoothing approach

is more computationally efficient for computing CVaR robust portfolios.
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Chapter 1

Introduction

The Markowitz mean-variance (MV) model has been used as the standard framework for

optimal portfolio selection problems. However, due to the estimation risk in the MV model

parameters (including the mean return and the covariance matrix of returns), the appli-

cability of the MV model is limited. In particular, small differences in the estimates of

mean return can result in large variations in the portfolio compositions; thus, the input

parameters must be estimated very accurately. However, in reality accurate estimation of

the mean return is notoriously difficult; estimation of the covariance matrix is relatively

easier. For this reason we focus on, in this thesis, the estimation risk in mean return only,

and investigate appropriate ways to take this estimation risk into account when using the

MV model.

1.1 Problem Definition

In the min-max robust MV portfolio optimization model, MV model parameters are modeled

as unknown, but belong to bounded uncertainty sets that contain all, or most, possible

realizations of the uncertain parameters. To alleviate the sensitivity of the MV model to
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uncertain parameter estimates, min-max robust optimization yields the min-max robust

portfolio that is optimal (MV efficient) with respect to the worst-case scenarios of the

parameters in their uncertainty sets. Since an unknown parameter may have infinite number

of possible scenarios, its uncertainty set typically corresponds to some confidence level p ∈

[0, 1] with respect to an assumed distribution. In this regard, min-max robust optimization

is a quantile-based approach, with the boundaries of an uncertainty set equal to certain

quantile values for p.

One drawback with the min-max robust MV model is that, it entirely ignores the severity

of the tail scenarios which occur with a probability of 1− p. Instead, it determines a min-

max robust portfolio solely based on the single quantile value which corresponds to the

worst sample scenario of a MV model parameter. Thus, the dependence on a single worst

sample scenario makes a min-max robust portfolio quite sensitive to the initial data used

to generate uncertainty sets. In particular, inappropriate boundaries of uncertainty sets

can cause min-max robust optimization to be either too conservative or not conservative

enough. In practice, it can be difficult to choose appropriate uncertainty sets.

Zhu et al. [33] have shown that, with an ellipsoidal uncertainty set based on the statistics

of sample mean estimates, the robust portfolio from the min-max robust MV model equals to

the optimal portfolio from the standard MV model based on the nominal mean estimate but

with a larger risk aversion parameter. Therefore, we focus on illustrating the characteristics

of min-max robust portfolios with an interval uncertainty set. If the uncertainty interval

for mean return contains the worst sample scenario, the min-max robust MV model often

produces portfolios with very low returns. Portfolios with higher returns can be generated

in the model by choosing the uncertainty interval to correspond to a smaller confidence

interval. Unfortunately, this is at the expense of ignoring worse sample scenarios and runs

counter to the principle of min-max robustness.
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1.2 Thesis Contributions

In this thesis, we focus on the uncertainty of mean return, and propose a CVaR robust MV

portfolio optimization model which determines a CVaR robust portfolio that is optimal (MV

efficient) under the estimation risk in mean return. The CVaR robust MV model uses the

Conditional Value-at-Risk (CVaR) to measure the estimation risk in mean return, and

control the conservatism level of a CVaR robust portfolio with respect to estimation risk

by adjusting the confidence level of CVaR, β ∈ [0, 1). As a risk measure, CVaR is coherent,

see Artzner et al. [2], and can be used to quantify the risk of a portfolio under a given

distribution assumption. In the traditional return-risk analysis, CVaR is used to quantify

the portfolio loss due to the volatility of asset returns. In the estimation risk analysis

addressed in this thesis, CVaR is used to quantify the portfolio mean loss (which is a

function of portfolio expected return) due to mean return uncertainty. In this regard, the

CVaR of a portfolio’s mean loss is used as a performance measure of this portfolio under

the estimation risk in mean return.

Instead of focusing on the worst sample scenario in the uncertainty set of mean re-

turn, the CVaR robust MV model determines an optimal portfolio based on the tail of the

portfolio’s mean loss scenarios (with respect to an assumed distribution) specified by the

confidence level β. In addition, the conservatism level of the portfolio with respect to the

estimation risk in mean return can be adjusted by changing the value of β. As β approaches

1, the CVaR robust MV model considers the worst mean loss scenario and the resulting

portfolio is the most conservative. As the value of β decreases, better mean loss scenarios

are included for consideration and the dependency on the worst case is decreased. Thus

the resulting portfolio is less conservative. When β = 0, all sample mean loss scenarios are

considered in the model; this may be appropriate when an investor has complete tolerance

to estimation risk. Thus the confidence level β can be interpreted as an estimation risk

3



aversion parameter.

Diversification reduces the overall portfolio return risk by spreading the total invest-

ment across a wide variety of asset classes. We illustrate that, no matter how an interval

uncertainty set is selected to achieve the desired level of conservatism, the maximum worst-

case expected return portfolio from the min-max robust MV model (i.e., the risk aversion

parameter λ = 0) typically consists of a single asset. In contrast, the maximum CVaR ex-

pected return portfolio can consist of multiple assets. In addition, we computationally show

that the diversification level of CVaR robust portfolios decreases as the value of β (which

is interpreted as an estimation risk aversion parameter) decreases. We also consider two

different distributions to characterize the uncertainty in mean return, and compare the

diversification level of CVaR robust portfolios between two different sampling techniques.

One way of computing CVaR robust portfolios is to discretize, via simulation, the CVaR

robust optimization problem. This can be formulated as a quadratic programming (QP)

problem, where the CVaR function is approximated by a piecewise linear function. However,

the QP approach becomes inefficient when the scale of the optimization problem becomes

large. As an alternative of the QP approach, a computational method based on a smooth-

ing technique is implemented to compute CVaR robust portfolios. Differently from the QP

approach, the smoothing approach uses a continuously differentiable piecewise quadratic

function to approximate the CVaR function. Comparisons on computational efficiency and

approximation accuracy are made between the two approaches when they are applied in

the CVaR robust MV model. We show that the smoothing approach is more computation-

ally efficient, and can provide sufficiently accurate solutions when the number of scenarios

becomes large.
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1.3 Thesis Organization

This thesis is organized as follows: Chapter 2 introduces the standard MV model and

demonstrates the estimation risk in mean return for the model. This chapter also discusses

the various techniques proposed in current literatures to combat the impact of estimation

error.

Chapter 3 reviews the min-max robust MV portfolio optimization model and highlights

its potential problems. We discuss the sensitivity of min-max robust portfolios to the

initial return samples which generate the uncertain intervals. In addition, we consider a

variance-based technique to produce portfolios which are less sensitive to the initial data,

and emphasize the importance of being able to achieve a high expected return in a robust

approach.

Chapter 4 presents the CVaR robust MV portfolio optimization model. We show how

this model adjusts a portfolio’s conservatism level with respect to the estimation risk in

mean return.

Chapter 5 computationally compares the characteristics of the actual frontiers generated

by the min-max robust (for an interval uncertainty set of mean return) and the CVaR

robust MV models in terms of actual frontier variation, portfolio efficiency, and portfolio

diversification.

Chapter 6 addresses the computational efficiency issue for computing CVaR robust

portfolios. We show that a smoothing approach proposed in [1] is significantly more efficient

than the QP approach for computing CVaR robust portfolios. In addition, the solution

obtained by the smoothing approach can be very close to that obtained by the QP approach

when the number of scenarios becomes large.

Chapter 7 concludes the thesis by presenting the research achievements and indicating

the areas that could benefit from further study.
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Chapter 2

Mean-Variance Portfolio

Optimization and Estimation Risk

This chapter provides the background knowledge for this thesis. It starts with the formal

definition of the Markowitz mean-variance (MV) model. Then it illustrates the estimation

risk of the MV model. Finally, it discusses the various techniques proposed in recent research

to combat the impact of estimation error.

2.1 Markowitz Mean-Variance Model

Portfolio optimization is used in financial portfolio selection to maximize return and mini-

mize risk. In the mean-variance (MV) portfolio optimization model introduced by Markowitz

[21], the portfolio return is measured by the expected rate of the random portfolio return,

and the associated risk is measured by the variance of the return.
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2.1.1 Mathematical Notations

Assume that a rational investor makes investment decisions for a portfolio that contains n

assets. Let µ ∈ Rn be the mean vector with µi as the mean return of asset i, 1 ≤ i ≤ n,

and x ∈ Rn be the decision vector with xi as the proportion of holding in the ith asset .

The portfolio expected return µp is the weighted average of individual asset return and can

be defined as:

µp =
n∑

i=1

xiµi . (2.1)

The variance and covariance of individual assets are characterized by a n-by-n positive

semi-definite matrix Q, such that:

Q =


σ11 . . . σ1n

...
. . .

...

σn1 . . . σnn

 , (2.2)

where σii is the variance of asset i, and σij is the covariance between asset i and asset j.

Therefore, the variance of portfolio return, σ2
p, can be calculated by:

σ2
p = xT Qx =

n∑
i=1

n∑
j=1

xixjσij . (2.3)

2.1.2 Model Definition

The MV model assumes that, for a given level of risk (measured by variance), a rational

investor would choose the portfolio with the highest expected return; similarly, for a given

level of expected return, a rational investor would choose the portfolio with the lowest

risk. In other words, a portfolio is said to be optimal (MV efficient) if there is no portfolio

having the same risk with a greater expected return, and there is no portfolio having the

same expected return with a lower risk. Therefore, the MV model can be formulated

7



mathematically as three equivalent optimization problems:

(1) Maximizing the expected return for a upper limit on variance:

max
x

µT x

s.t. xT Qx ≤ V

x ∈ Ω

(2.4)

(2) Minimizing the variance for a lower limit on expected return:

min
x

xT Qx

s.t. µT x ≥ R

x ∈ Ω

(2.5)

(3) Maximizing the risk-adjusted expected return:

min
x

− µT x + λxT Qx

s.t. x ∈ Ω,

(2.6)

where λ ≥ 0 is the risk-aversion parameter which measures how the investor views the

trade-off between risk (which is measured variance) and expected return. The symbol Ω

used in the above three problems denotes the additional linear constraints for the feasible

portfolio sets, e.g.,

Ω = {x ∈ Rn |
n∑

i=1

xi = 1, x ≥ 0}, (2.7)

which corresponds to the case where no short-sales are allowed, and all available money for

investment is allocated to the n assets. Note that here xi denotes the proportion of holding

of the ith asset.

8



Formulation Equivalence

Problem (2.4) maximizes a (concave) linear function subject to quadratic and linear con-

straints; while problem (2.5) and (2.6) minimize convex quadratic functions subject to linear

constraints. When µ is not a multiple of a vector that contains n ones, the three problems

can be mathematically equivalent, i.e., an optimal solution x∗(λ) of problem (2.6) is also

an optimal solution of problem (2.5) such that µT x∗(λ) = R for some R, and similarly,

is an optimal solution of problem (2.4) such that x∗(λ)T Qx∗(λ) = V for some V . Prob-

lem (2.5) and (2.6) are commonly used in practice as they are both formulated as convex

quadratic programming (QP) problems and can be efficiently solved using readily available

optimization software.

Risk-Aversion Parameter

The risk-aversion parameter λ used in problem (2.6) represents the degree with which

investors want to maximize return at the expense of assuming more risk. Each investor

is willing to take a certain amount of risk to get a level of expected return. Since return

is compensated by risk, investors have to balance the trade-off between return and risk by

using appropriate λ values. As the value of λ decreases, investors focus more on maximizing

expected return than minimizing risk. In this case, both the expected return and the

associated risk will increase. There are also two extreme situations where investors only

care about maximizing return and minimizing risk: when λ = 0, problem (2.6) gives us

the maximum-return portfolio without considering the associated risk. On the other hand,

when λ = ∞, problem (2.6) gives us the minimum-variance portfolio without considering

the expected return.
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Linear Constraints

In the MV model (2.6), only the budget constraint and the no-shortselling constraint are

specified in Ω. However, in real investment practice, there may be other linear constraints

that need to be considered such as transaction costs and trading size limits on certain assets.

Therefore, we can extend the MV model (2.6) to the following generalization:

min
x

− µT x + λxT Qx

s.t. Cx ≤ d,

Ex = v,

x ≥ 0,

(2.8)

where C ∈ Rm×n, E ∈ Rm×n, d ∈ Rm and v ∈ Rm. The inequality Cx ≤ d and the equality

Ex = v can be used to express the linear constraints mentioned above.

2.1.3 Efficient Frontier

By solving problem (2.6) for all possible values of λ from 0 to ∞, we can obtain the efficient

frontier: it contains the entire set of MV efficient portfolios ranging from the maximum

expected return to the minimum variance. The same efficient frontier can also be generated

by solving problem (2.4) for all possible values of V , or by solving problem (2.5) for all

possible values of R. Any point in the region below the efficient frontier is not MV efficient,

since there is another portfolio with the same risk and a higher expected return, or with

the same expected return and a lower risk.

Since it is impossible to generate infinite number of portfolios, we must approximate

the exact efficient frontier with a finite algorithm. Here we consider an algorithm which

generates the efficient frontier by first computing the portfolios with the maximum and the

minimum expected returns, and then solving problem (2.5) subject to a finite number of
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expected returns that lie between the two extreme points. Let xmin and xmax denote the

portfolios that achieve the minimum expected return, Rmin, and the maximum expected

return, Rmax, respectively. This algorithm can be described as the following:

Algorithm 1 Generating Efficient Frontier
1. Compute xmax by solving problem (2.6) with λ = 0. Then set Rmax = µT xmax.

2. Compute xmin by solving problem (2.5) without the expected return constraint. Then
set Rmin = µT xmin.

3. Generate m equally spaced values between Rmin and Rmax such that: Rmin ≤ R1 ≤
R2 . . . ≤ Rm ≤ Rmax. For each i ∈ m, compute xi by solving problem (2.5) with Ri

as the expected return constraint.

Step 1 generates the optimal portfolio that has the maximum expected return without

considering the associated risk; while Step 2 generates the optimal portfolio that has the

minimum risk without considering the expected return; this resulting portfolio also has the

minimum expected return otherwise it would not be MV efficient. Having determined the

maximum and the minimum expected returns in the previous two steps, Step 3 generates

m optimal portfolios whose expected returns equally lie in between the two extreme values.

The larger the value of m, the better approximation obtained for the efficient frontier. Once

obtain the portfolio weights xmin, x1, x2, . . ., xm, xmax from Algorithm 1, we can approxi-

mate the exact efficient frontier by plotting these points in a two-dimensional space with the

standard deviation (horizontal axis) and the expected return (vertical axis). Figure 2.1(a)

and Figure 2.1(b) depict the approximated efficient frontier generated by using Algorithm 1

with m = 16 and m = 100 respectively. As we can expect, when m → ∞, the resulting

efficient frontier will approximate the exact one.

We just illustrate in Algorithm 1 a simple algorithm to approximate the exact efficient

frontier. Using equally spaced points for approximation may possibly miss some important

“intervals” on the efficient frontier, and solving an individual QP problem for each of the
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point can be computationally expensive when the number of points becomes large. Al-

ternative algorithms can be applied to generate the efficient frontier more accurately and

efficiently. For example, Markowitz [22] introduces a ‘critical line’ algorithm in a form of

parametric quadratic programing (QP). This algorithm iteratively traces out the efficient

frontier by identifying the ‘corner’ portfolios, which are the points where a stock either en-

ters or leaves the current portfolios. Therefore, by only determining the ‘corner’ portfolios,

the computational cost for generating the efficient frontier can be dramatically decreased.

Note that the ‘critical line’ algorithm requires the covariance matrix Q to be positive defi-

nite. However, Best [4] proposes an algorithm for solving the parametric QP problem such

that Q is required to be positive semi-definite only.
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Figure 2.1: Approximated efficient frontiers generated using Algorithm 1 for the 8-asset
example in Table 2.1.
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2.2 Estimation Risk in MV Model Parameters

Despite its theoretical importance in modern finance, the MV model is known to have severe

performance limitations in practice. One of the basic problems that limits the applicability

of the MV model is the estimation error of the input parameters, i.e., asset mean returns

and the covariance matrix of returns. Michaud [25] discusses the implications of estimation

error for portfolio managers. Best and Grauer [5] analyze the effect of changes in the mean

return of assets on the MV efficient frontier and the composition of optimal portfolios.

Chopra and Ziemba [9] analyze the impact of errors in means, variances and covariances

on investor’s utility function, and study the relative importance of these errors. Broadie

[7] investigates the effect of errors in parameter estimates on the results of actual frontiers,

which are obtained by applying the true parameters on the portfolio weights derived from

their estimated values. All of these studies show that different input estimates to the MV

model result in large variations in the composition of MV efficient portfolios. Since, in

reality, accurate estimation of input parameters is a very difficult task, the estimation risk

introduced by estimation error must be taken into account when using the MV model.

2.2.1 MV Model Under Estimation Risk

The parameters of the MV model are the asset mean returns and the covariance matrix

of returns, which are denoted as µ and Q respectively. To implement the MV model in

practice, one may estimate these parameters based on empirical return samples. Let the

estimated mean returns and covariance matrix be µ̄ and Q̄ respectively. Using the estimated

parameters, the actual portfolio optimization problem becomes

min
x

− µ̄T x + λxT Q̄x

s.t. x ∈ Ω.

(2.9)
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The solution of problem (2.9) coincides with the one of problem (2.6) only if µ = µ̄ and

Q = Q̄. However, due to the estimation error introduced in the estimation process, the

estimated parameters (especially µ̄) can have large errors. Therefore, the resulting portfolio

weights computed from problem (2.9) fluctuate substantially for different µ estimates, and

the out-of-sample performance of these portfolios can be quite poor.

2.2.2 An Example of Estimation Risk

To demonstrate the effect of the estimation error on the computation of MV efficient fron-

tiers, we conduct the following experiment. Suppose there are eight risky assets and their

true parameters, the means µ and the covariance matrix Q, are given in Table 2.1. As-

sume that the asset returns constitute a joint normal distribution, we generate, from µ, 48

return samples using Monte Carlo simulation (we can consider the samples as 48 monthly

returns of the eight assets). From these samples, we calculate the sample means µ̄ and the

covariance matrix Q̄. These two estimated parameters are given in Table 2.2.

Comparing the values between Table 2.1 and Table 2.2, we find that the estimation

error of Q̄ is relatively small. The entry with the largest absolute estimation error in Q̄ is

Q̄66, for which the value is 0.0931 × 10−2. With Q66 equals to 0.2691 × 10−2, the relative

estimation error, which is the ratio (absolute value) between the absolute error and the true

value, is 0.34. On the other hand, the estimated mean returns in µ̄ have much larger errors.

The assets with the highest and the lowest mean return values in µ are Asset1 and Asset7

respectively, for which µ1=1.016 × 10−2 and µ7=−0.112 × 10−2; while the corresponding

assets in µ̄ are Asset3 and Asset6, for which µ̄3=1.8032 × 10−2 and µ̄6=−0.4775 × 10−2.

The entry with the largest absolute estimation error in µ̄ is µ̄3, for which the value is

1.3472 × 10−2. In addition, the relative absolute estimation error of µ̄3 is 2.79, which is

about three times of the true value µ3.
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Table 2.1 True mean vector and covariance matrix
Mean Return Vector µ

10−2× Asset1 Asset2 Asset3 Asset4 Asset5 Asset6 Asset7 Asset8

1.0160 0.47460 0.47560 0.47340 0.47420 -0.0500 -0.1120 0.0360

Covariance Matrix Q

10−2× Asset1 Asset2 Asset3 Asset4 Asset5 Asset6 Asset7 Asset8

Asset1 0.0980
Asset2 0.0659 0.1549
Asset3 0.0714 0.0911 0.2738
Asset4 0.0105 0.0058 -0.0062 0.0097
Asset5 0.0058 0.0379 -0.0116 0.0082 0.0461
Asset6 -0.0236 -0.0260 0.0083 -0.0215 -0.0315 0.2691
Asset7 -0.0164 0.0079 0.0059 -0.0003 0.0076 -0.0080 0.0925
Asset8 0.0004 -0.0248 0.0077 -0.0026 -0.0304 0.0159 -0.0095 0.0245

Table 2.2 Estimated mean vector and covariance matrix for the data in Table 2.1
Estimated Mean Return Vector µ̄

10−2× Asset1 Asset2 Asset3 Asset4 Asset5 Asset6 Asset7 Asset8

1.6517 1.5015 1.8032 0.5551 0.8783 -0.4775 0.1350 -0.1492

Estimated Covariance Matrix Q̄

10−2× Asset1 Asset2 Asset3 Asset4 Asset5 Asset6 Asset7 Asset8

Asset1 0.0707
Asset2 0.0394 0.1185
Asset3 0.0312 0.0467 0.2432
Asset4 0.0064 0.0049 -0.0196 0.0097
Asset5 -0.0023 0.0256 -0.0141 0.0038 0.0319
Asset6 -0.0130 -0.0095 0.0121 -0.0089 -0.0158 0.1760
Asset7 -0.0093 0.0147 0.0245 -0.0062 0.0115 -0.0500 0.1015
Asset8 0.0089 -0.0144 0.0095 0.0008 -0.0231 0.0150 -0.0158 0.0215
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2.2.3 Visualizing Estimation Risk

The effect of the estimation error on the computation of efficient frontier can be observed

from Figure 2.2. With the estimated parameters µ̄ and Q̄ from Table 2.2, we can compute

a sequence of optimal portfolio weights using Algorithm 1; by plotting these weights with

the true parameters µ and Q, we obtain a frontier. This frontier reflects how the portfolios

obtained from the estimated parameters really behave based on the true parameters, and

is defined by Broadie [7] as the actual frontier.

Observed from Figure 2.2, the actual frontier is clearly below the true efficient frontier.

As the risk-aversion parameter λ decreases, the investment is focused more on maximizing

expected return than minimizing risk. This leads to less diversified portfolios for which the

estimation error can be more significant, especially when the estimated highest-return asset

is different from the true one. For example, prior to and include point A, all portfolios on the

actual frontier consist of at least three different assets; this diversification reduces the impact

of estimation error on µ. However, the portfolios between point A and point B consist of only

Asset1 and Asset3, and since Asset3 has the highest return in µ̄, its proportion of holding

is gradually increased from A to B. In particular, when setting λ = 0 in problem (2.9), all

investment is allocated to Asset3 for achieving the maximum portfolio return. However, the

asset with the true highest return in µ is Asset1 and µ1 is much higher than µ3, reducing the

proportion of holding of Asset1 but increasing the one for Asset3 causes the actual frontier

from point A to point B appear downward. We also observe that the distance between the

actual frontier and the true efficient frontier decreases as the portfolio risk decreases. i.e.,

the maximum expected return portfolios are relatively far away from each other while the

minimum risk portfolios are quite close. This coincides with the experimental results in

Broadie [7]: covariance matrix is much easier to estimate than mean returns.
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Figure 2.2: True efficient frontier and actual frontier using 48 simulated monthly returns.

2.2.4 Estimation Risk vs. Stationarity

The values in Table 2.2 are estimated based on 48 simulated monthly returns. The follow-

ing example shows that estimation error can decrease as the number of simulated returns

increases. We repeat the above estimation process 100 times using 48 months of simulated

data, and plot the actual frontiers obtained during each process in Figure 2.3(a). Next,

we re-produce the actual frontiers using 96 months of simulated data and plot them in

Figure 2.3(b). The difference between the two plots depicts that the performance of actual

frontiers are improved with more data, i.e., comparing to Figure 2.3(a), the actual frontiers

in Figure 2.3(b) become closer to the true efficient frontier, and their variation is much

smaller. One may suggest increasing the accuracy of estimated parameters by using more

data. However, this is difficult to be achieved in practice. First, large amount of historical

data might not be available to be used for estimation. Second, using very old historical

data makes it difficult to assume stationarity on the estimated parameters; see Broadie [7].

Therefore, there is a trade-off between maintaining stationarity and reducing estimation
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error when deciding the amount of data used for estimation.
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Figure 2.3: True efficient frontier and actual frontiers for the 8-asset example in Table 2.1.

2.3 Related Work

2.3.1 Robust Optimization

Various techniques have been proposed to reduce the impact of estimation error, and robust

portfolio optimization is an active research area; see e.g., Goldfarb and Iyengar [14], Tütüncü

and Koenig [30], and Garlappi et al. [12]. In the robust optimization framework introduced

by these papers, input parameters are modeled as unknown, but belong to bounded un-

certainty sets that contain all, or most, values of the uncertain inputs. Therefore, robust

optimization determines the optimal portfolio under the worst-case scenario of the inputs in

their uncertainty sets. Robust optimization provides a conservative framework to determine

an optimal portfolio under model parameter uncertainty. However, such a framework tends

to be too pessimistic and unable to achieve high portfolio returns, especially for less risk-
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averse investors. In addition, the solution provided by this framework can be very sensitive

to the choice of uncertainty sets. Chapter 3 addresses these issues, and presents more detail

discussion on the robust optimization approach.

2.3.2 Robust Estimation

Another related approach is robust portfolio estimation. Unlike robust optimization, which

defines the unknown parameters as uncertainty sets and determines optimal portfolios under

the worst-case performance, robust estimation is based on a single point estimate which is

generated by a robust estimator. A standard framework adopted in this approach is the

Bayesian estimation. In the Bayesian framework, an investor is assumed to have a pre-

specified prior, which is the subjective view on the distribution of returns. The predictive

distribution of returns is therefore calculated based on the prior and the confidence that

the investor has on this prior. The more confidence on the prior, the more subjective the

predictive distribution is. Many applications of the Bayesian method have been used for

robust portfolio selection problems. Jorion [18] uses a empirical Bayesian framework to

develop a shrinkage estimator of the mean returns under estimation and model risk. Black

and Litterman [6] propose a Bayesian approach that combines the investor’s subjective

views and the implied returns which are determined based on market equilibrium. Ľ.

Pástor and Stambaugh [32] form the prior by incorporating investors’ degree of belief in the

Capital Asset Pricing Model (CAPM). In the above Bayesian models, the optimal portfolio

is determined by maximizing the expected utility of an investor, where the expectation is

taken with respect to the predictive distribution.

2.3.3 Robust Statistics

Another important technique to generate a robust estimator is robust statistics. In classical

statistics, estimation methods rely heavily on the assumptions that may not be met in
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practice. As a result, when data outliers exist or data distribution assumptions are violated,

the performance of these methods is often quite poor. On the other hand, as an extension

of the classical statistics, robust statistics take into account the possibility of outliers or

deviation from distribution assumptions. In particular, robust statistics can be used to

generate the robust estimators that provide meaningful information even when empirical

statistical assumptions are different from the assumed ones. Many applications which are

based on robust statistics have been proposed for robust portfolio selection. However, the

robust estimators used by these applications are quite different. For examples, Cavadini

et al. [8] use the minimum covariance determinant (MCD) estimator, Vaz-de Melo and

Camara [31] use M-estimators, and Perret-Gentil and Victoria-Feser [28] use S-estimators.

The determination of a robust portfolio based on robust statistics usually takes two steps.

First, estimates of the unknown parameters are determined by robust estimators. Second,

robust portfolios are computed by solving the MV optimization problem which takes the

robust estimates as inputs. However, DeMiguel and Nogales [11] propose an approach where

both data estimation and portfolio optimization are preformed in one step. In that paper,

a robust portfolio is determined by minimizing the risk estimated by M-estimators, and the

risk minimization problem is solved via a single nonlinear problem.

2.3.4 Other Approaches

Besides robust optimization and robust estimation, a number of other approaches have been

proposed to address the sensitivity of MV portfolios to model parameter uncertainty. One

popular approach to increase the stability of a portfolio is to place constraints on the amount

of an asset can have in the portfolio. Chopra and Ziemba [9] suggest that the solution of the

portfolio optimization, which is subject to portfolio weight constraints, has better perfor-

mance than the one without the constraints. Jagannathan and Ma [16] propose imposing

short-selling constraints, and show that this can reduce the impact of estimation error on
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the stability and the performance of the minimum-variance portfolios. Instead of running a

single robust portfolio optimization, Michaud [26] proposes the Resampled Efficiency (RE)

optimization technique, which finds an optimal portfolio by averaging the portfolio weights

obtained from different simulations. By conducting simulation performance test, they show

that the RE optimized portfolios not only outperform the classical MV optimized portfolio

but also give a smoother transition as portfolio return requirements change. Garlappi et al.

[12] extend the MV model to a multi-prior model where mean returns are obtained by using

maximum likelihood estimation. Unlike the Bayesian approaches which use a single prior

and assume the investor is neutral to uncertainty, the multi-prior model allows for multiple

priors and aversion to uncertainty. Their analysis suggests that, for both the international

and the domestic data considered, the portfolios generated by the multi-prior model have

better out-of-sample performance (such as in Sharpe ratio and portfolio mean-standard de-

viation ratio) than that generated by the Bayesian approaches. In addition, compared with

the MV model which does not take parameter uncertainty into account, the multi-prior

model reduces the fluctuation of portfolio weights over time.

All the approaches mentioned above compute robust portfolios under the estimation risk

of the MV model parameters; however they preserve robustness from different perspectives.

For example, robust estimation focuses on improving the estimation of optimization inputs;

while the RE technique focuses on enhancing the optimizer. Note that these approaches are

not mutually exclusive from each other, but could be used in conjunctions. For examples,

one could use a robust estimator generated using robust statistics to determine uncertainty

sets, from which the worst-case parameters are chosen for robust optimization; Michaud

[26] suggests using Bayesian approach to improve the estimation of the inputs used by the

RE optimizer.
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2.4 Conclusion and Remarks

This chapter gives the background knowledge that are relevant to the ideas discussed in the

remaining parts of the thesis. In Section 2.3, we briefly review the approaches proposed to

deal with the estimation risk of the MV model. In next chapter, we focus on the robust

optimization approach, which is one of the most important approaches in this research

area.
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Chapter 3

Min-max Robust Mean-Variance

Portfolio Optimization

This chapter reviews the min-max robust portfolio optimization framework and highlights

its potential weakness. We focus on the min-max robust MV model with interval uncertainty

sets and analyze the performance of the resulting min-max robust portfolios. We also

discuss some general criterion that should be used for evaluating the performance of robust

portfolios.

3.1 Robust Portfolio Optimization

Robust optimization is an approach for solving optimization problems in which the data

is uncertain and is only known to belong to some bounded uncertainty set. Consider the

general optimization problem:
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min
x

f(x, ξ)

s.t. F (x, ξ) ≤ 0,

(3.1)

where ξ is the data element of the problem, x ∈ Rn is the decision vector, and F (x, ξ) ∈ Rm

are m constraint functions. For deterministic optimization problems, ξ is assumed to be

known and fixed. However, in reality ξ may be uncertain but belong to a given uncertain set

U . In this case, the optimal solution x must both satisfy the constraints for every possible

realization of ξ in U , and give the best possible guaranteed value of the objective under the

worst-case of ξ. Therefore, the robust counterpart of the optimization problem (3.1) can be

formulated as:

min
x

supξ∈Uf(x, ξ)

s.t. F (x, ξ) ≤ 0, ∀ξ ∈ U .

(3.2)

The uncertainty set U contains all, or most, possible scenarios of ξ, and can be repre-

sented by various structures such as intervals (box) or ellipsoids. Depending on the struc-

tures of the uncertainty set being used, we can obtain different robust counterparts for the

same optimization problem. For example, Ben-Tal and Nemirovski [3] show that when U is

an ellipsoid uncertainty set, the robust counterpart for a LP problem is a conic quadratic

problem, and the one for a QP problem is a semi-definite program. Both of these robust

counterparts are tractable problems that can be solved using efficient algorithms such as

interior-point methods.
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3.1.1 Min-max Robust MV Model

An important application of robust optimization is to compute optimal (MV efficient) port-

folios under the uncertainty of MV model parameters. As mentioned in Section 2.2, the

parameters (including the means µ and the covariance matrix Q) for the MV model (2.6)

are unknown, and using the estimates of these parameters leads to an estimation risk in

portfolio selection. In particular, small differences in the estimate of µ can result in large

variations in the composition of an optimal portfolio. To alleviate the sensitivity of the

MV model to the parameter estimates, robust optimization is applied to determine optimal

portfolios under the worst-case scenario of the parameters in their uncertainty sets. These

uncertainty sets often correspond to certain confidence levels under an assumed distribu-

tion. Mathematically, the corresponding robust formulation for the MV model (2.6) can be

expressed as the following problem:

min
x

max
µ∈Sµ,Q∈SQ

−µT x + λxT Qx

s.t. x ∈ Ω,

(3.3)

where Sµ and SQ are the uncertainty sets for µ and Q, respectively. Problem (3.3) is often

referred as the min-max robust MV portfolio optimization model, as the optimal solution

x minimizes the maximum case (given by the selected µ and Q) of the objective function.

A closely related robust version of the MV model is proposed by Goldfarb and Iyengar

[14]. Unlike the problem (3.3), which minimizes the worse-case risk-adjusted expected re-

turn, it minimizes the worst-case variance of the portfolio subject to the worst-case expected
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return constraint. i.e., to solve the following problem:

min
x

max
Q∈SQ

xT Qx

s.t. min
µ∈Sµ

µT x ≥ R,

x ∈ Ω,

(3.4)

where R is the pre-specified lower bound of the worst-case expected return. Tütüncü and

Koenig [30] show that an optimal solution x∗(λ) of the problem (3.3) is also an optimal

solution of problem (3.4) when R = minµ∈Sµ µT x∗(λ) for some λ and R.

The uncertainty sets Sµ and SQ in the above robust portfolio optimization problems can

be represented in different ways. Goldfarb and Iyengar [14] use ellipsoidal constraints to

describe uncertainty sets, and formulate problem (3.3) as a second-order cone programming

(SOCP) problem. Tütüncü and Koenig [30] consider uncertainty sets as intervals, and

solve problem (3.3) using a saddle-point method. In addition, Lobo and Boyd [20] show

that an optimal portfolio that minimizes the worst-case risk under each or a combination of

the above uncertainty structures can be computed efficiently using analytic center cutting

plane methods.

3.1.2 Other Robust Models

In addition to problem (3.3) and problem (3.4), various other robust portfolio optimization

problems have been proposed by recent research. For examples, the dual of (3.4) is the

robust maximum return problem, which maximizes the worst-case expected return subject

to a constraint on the worst-case variance; as an alternative to minimizing the worst-case

variance as in problem (3.4), one can choose a portfolio that maximizes the worst-case ratio

of the expected excess return on the portfolio, i.e. the ratio of the return in excess of the risk-

free rate to the standard deviation of the return; see Goldfarb and Iyengar [14]. Recently,
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VaR and CVaR risk measures have often been used to replace variance in robust portfolio

optimization applications. Ghaoui et al. [13] propose a robust approach that minimizes the

worst-case VaR when the return distribution is partially unknown, and cast the optimization

problems as semi-definite programs. Zhu and Fukushima [34] consider the minimization of

the worst-case CVaR under both box uncertainty and ellipsoidal uncertainty, and cast the

corresponding problems as LP programs and SOCP programs, respectively.

3.2 Min-max Robust MV Portfolio Optimization

In this section, we analyze the characteristics of the min-max robust actual frontier, which

is formed by the robust portfolios computed using the min-max robust MV model (3.3).

Similar to [7], we consider the min-max robust actual frontier in the space of mean and

variance: the portfolio expected return and variance are computed by applying the true

parameter values µ and Q on the min-max robust portfolios obtained from solving prob-

lem (3.3) for different values of λ ≥ 0. It represents how the min-max robust portfolios,

which are determined under the worst sample scenarios of MV model parameters, actually

behave when applied with the true parameter values.

We begin our discussion of min-max robust optimization using an ellipsoidal structure

for the uncertainty set of mean return. We show that the resulting min-max robust portfolios

actually equal to those computed from the standard MV model based on the nominal mean

estimates but with a larger risk aversion parameter. Subsequently, we focus on the min-max

robust optimization which uses an interval structure for the uncertainty set of mean return.

3.2.1 Ellipsoidal Uncertainty Set

We consider the ellipsoidal uncertainty set that is based on the following statistical prop-

erties of mean estimates. Assume that asset returns have a joint normal distribution, and
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mean estimate µ̄, which is estimated jointly for all assets, is computed from T samples of n

assets. If the covariance matrix Q is known, then the quantity

T (T − n)
(T − 1)n

(µ̄− µ)T Q−1(µ̄− µ) (3.5)

has a χ2
n distribution with n degrees of freedom. If we replace Q with a positive definite

estimate Q̄, then the quantity in (3.5) has an F distribution with n and T − n degrees of

freedom; see Garlappi et al. [12] and Johnson and Wichern [17].

Garlappi et al. [12] consider the ellipsoidal uncertainty set

(µ̄− µ)T Q̄−1(µ̄− µ) ≤ χ , (3.6)

where χ = (T−1)n
T (T−n)q ≥ 0 and q ≥ 0 is a chosen quantile for the distribution of (3.5), and

simplify the min-max problem (3.3) subject to (3.6) and eT x = 1 into the minimization

problem

min
x

− µ̄T x + λxT Q̄x +
√

χ

√
xT Q̄x

s.t. (µ̄− µ)T Q̄−1(µ̄− µ) ≤ χ

eT x = 1 .

(3.7)

Moreover, the optimal solution of (3.7) can be written as

x∗ =
1
2λ

Q̄−1

(
1

1 +
√

χ
2λσ∗p

)[
µ̄−

B − 2λ(1 +
√

χ
2λσ∗p

)

A
e

]
, (3.8)
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where A = eT Q̄−1e, B = µ̄T Q̄−1e, and σ∗p are the variances of the optimal portfolio which

can be obtained from solving the polynomial equation

4Aλ2σ4
p + 4Aλ

√
χσ3

p + (Aχ−AC + B2 − 4λ2)σ2
p − 4λ

√
χσp − χ = 0 . (3.9)

Given Q̄ is positive definite, σ∗p is the unique positive real root of (3.8). Note that since

q corresponds to a confidence level with respect to the distribution of (3.5), χ can be

interpreted as an estimation risk aversion parameter for the min-max robust optimization;

the larger the value of χ, the more (estimation) risk aversion of the resulting min-max

robust portfolios. As shown in Garlappi et al. [12], when χ = 0 (either T → ∞ or q → 0),

the estimation risk is ignored and the optimal portfolio (3.8) converges to the MV portfolio

based on nominal estimates µ̄ and Q̄. When χ →∞, the optimal portfolio (3.8) converges

to the minimum-variance portfolio which is generated without consideration of the portfolio

expected return, i.e., the information of µ is not used for portfolio optimization.

To better understand the properties of the min-max robust portfolios computed from

problem (3.7), we transform the objective function of (3.7) into

min
x
−µ̄T x + λ(1 +

√
χ

λ
√

xT Q̄x
)xT Q̄x . (3.10)

The formulation in (3.10) shows that, without the no-shortselling constraint x ≥ 0, the min-

max robust portfolio for the ellipsoidal uncertainty set (3.6) can be computed by solving

the standard MV portfolio optimization problem (based on nominal estimates µ̄ and Q̄)

with a larger risk aversion parameter λ̃ = λ(1 +
√

χ

λ
√

xT Q̄x
). In fact, the following theorem
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from Zhu et al. [33] shows that the solution of the problem

min
x

max
µ
−µT x + λxT Q̄x

s.t. (µ̄− µ)T Q̄−1(µ̄− µ) ≤ χ

eT x = 1, x ≥ 0

(3.11)

is also a solution of the problem

min
x

− µ̄T x + λ̃xT Q̄x

eT x = 1, x ≥ 0
(3.12)

for some λ̃ ≥ λ, and the theorem holds regardless of whether the no-shortselling constraint

x ≥ 0 or additional linear constraints are imposed.

Theorem 3.1 (Zhu et al. [33, Theorem 2.2]). Assume that Q̄ is symmetric positive definite

and χ ≥ 0. Any robust portfolio for the min-max robust mean-variance model (3.11) is an

optimal portfolio for the standard mean-variance model based on nominal estimates µ̄ and

Q̄ with a risk aversion parameter λ̃ ≥ λ.

Proof. Based on Theorem A.1 in Appendix A, the min-max robust MV problem

min
x

max
µ
−µT x + λxT Q̄x

s.t. (µ̄− µ)T Q̄−1(µ̄− µ) ≤ χ

eT x = 1, x ≥ 0

is equivalent to

min
x
−µ̄T x + λxT Q̄x +

√
χ

√
xT Q̄x

s.t. eT x = 1, x ≥ 0 .
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Since this is a convex programming problem, it is easy to show that there exists χ̃ ≥ 0

such that the above problem is equivalent to

min
x
−µ̄T x + λxT Q̄x

s.t.
√

xT Q̄x ≤ χ̃

eT x = 1, x ≥ 0 .

The above problem is equivalent to

min
x
−µ̄T x + λxT Q̄x

s.t. xT Q̄x ≤ χ̃2

eT x = 1, x ≥ 0 .

From the convexity of the problem and the Kuhn-Tucker conditions, there exists λ̂ ≥ 0

such that the above problem is equivalent to

min
x
−µ̄T x + λxT Q̄x + λ̂xT Q̄x

s.t. eT x = 1, x ≥ 0 .

This completes the proof.

Theorem 3.1 implies that the min-max robust MV model (3.11), which uses the el-

lipsoidal uncertainty set (3.6), adds robustness for estimation risk by increasing the risk

aversion parameter λ. Thus the min-max robust actual frontiers from problem (3.11) are

squeezed segments of the nominal actual frontiers from problem (2.9). Indeed, this can

be illustrated by Figure 3.1(a)-(c) which compare the actual frontier segments of the two

problems for different χ values used in (3.6). Each segment corresponds to the optimal
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portfolios for a sequence of λ values: λ = [100, 200, 300, 400, 500, 600, 700, 800, 900,

1000]. To differentiate the two actual frontier segments, we present the min-max one using

a sequence of ‘•’ symbols, with each ‘•’ corresponds to the min-max robust portfolio for a

particular λ value.

As we can see, regardless of the value of χ (which is interpreted as an estimation risk

aversion parameter), all the min-max robust portfolios lie exactly on the actual frontier

segment for the MV portfolio optimization problem (2.9). When χ = 0, the actual fron-

tier segments (as well as the resulting optimal portfolios correspond to the same λ) from

problem (3.11) and problem (2.9) are identical. As the value of χ increases, the min-max

actual frontier segment for problem (3.11) becomes shorter; this indicates the increase in

estimation risk aversion.
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(b) χ = 5
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(c) χ = 50

Figure 3.1: Min-max robust portfolios (for the ellipsoidal uncertainty set (3.6)) and nominal
actual frontier segment. Nominal actual frontiers are calculated from (2.9), which is the
standard MV model that takes nominal estimates µ̄ and Q̄ as input parameters. Min-max
robust portfolios (with short-selling allowed) are computed from (3.8).

One potential problem of the min-max robust formulation (3.11) is that, based on The-

orem 3.1, the performance of the resulting min-max robust portfolios depend on the ac-

curacy of the point estimate µ̄. This means that a disastrous nominal actual frontier for

problem (2.9) also leads to a disastrous min-max robust actual frontier for problem (3.11),
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as the later is a segment of the former. In the remaining parts of the thesis, instead of using

an ellipsoidal structure for uncertainty sets, we focus on the min-max robust MV model

that uses an interval structure for uncertainty sets.

3.2.2 Interval Uncertainty Set

Next, we illustrate characteristics of the min-max robust actual frontier for the min-max

robust MV model (3.3) based on interval uncertainty sets. We consider using the interval

structure presented in Tütüncü and Koenig [30] to represent uncertainty sets Sµ and SQ,

which are defined as:

Sµ = {µ : µL ≤ µ ≤ µU},

SQ = {Q : QL ≤ Q ≤ QU , Q � 0},
(3.13)

where µL, µU , QL and QU are the boundary values of these intervals. Q � 0 indicates

that Q is symmetric positive semi-definite, which is a necessary property for the unknown

Q to be a covariance matrix of the returns. This property is a requirement for using the

simple-case algorithm to compute min-max robust portfolios. As pointed by Tütüncü and

Koenig [30], an interval structure can be flexible for defining the boundary values of the

uncertainty sets. For example, the uncertainty set of µ, Sµ, can be obtained in the form

of intervals by sampling µ from historical returns. Then the boundary values µL and µU

can be defined as quantile values with respect to the generated µ sample distribution. By

changing the quantile values for µL and µU , we can adjust the size and the bounds of Sµ.

As a result, the performance of the resulting min-max robust portfolios may be changed.

In this case, min-max robustness can be regarded as a quantile-based robustness approach.
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Computing Min-max Robust Portfolios

To generate a min-max robust actual frontier, we must first discuss how the min-max

robust portfolios on the frontier are computed. The min-max robust model (3.3) with

interval uncertainty sets (3.13) was first introduced by Halldórsson and Tütüncü [15] as

an application of using an interior-point method for solving saddle-point problems. Two

algorithms for solving problem (3.3) are further discussed in Tütüncü and Koenig [30]: one

is for the general case and the other is for the simple case. Here we discuss the algorithms

for both cases.

The General Case

In general, problem (3.3) with the interval uncertainty sets defined in (3.13) are formulated

by Halldórsson and Tütüncü [15] as the following saddle-point problem. Let φ(x, µ,Q)

denote the objective function in problem (3.3), i.e.,

φ(x, µ,Q) = −µT x + λxT Qx, (3.14)

where µ ∈ Sµ, Q ∈ SQ, x ∈ Ω and λ ≥ 0. When µ and Q are fixed, φ(x, µ,Q) is a convex

quadratic function of x; when x is fixed, φ(x, µ,Q) is a linear function of µ and Q. Assuming

that the feasible set Ω and the uncertainty sets Sµ and SQ are all nonempty and bounded,

Halldórsson and Tütüncü [15] show that the optimal value of the problem

min
x∈Ω

max
(µ∈Sµ,Q∈SQ)

φ(x, µ,Q) (3.15)

is equal to that of the problem

max
(µ∈Sµ,Q∈SQ)

min
x∈Ω

φ(x, µ,Q). (3.16)
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This indicates that the function φ(x, µ, Q) has a saddle-point, i.e, there exists a decision

vector x̄ ∈ Ω, and parameters µ̄ ∈ Sµ and Q̄ ∈ SQ such that

φ(x, µ̄, Q̄) ≤ φ(x̄, µ̄, Q̄) ≤ φ(x̄, µ,Q) (3.17)

Therefore, solving the min-max problem (3.3) is equivalent to finding a saddle-point of the

function φ(x, µ,Q), and an interior-point method is developed by Halldórsson and Tütüncü

[15] for solving this saddle-point problem.

The Simple Case

In a special case , problem (3.3) can be solved as a standard QP problem. Tütüncü and

Koenig [30] shows that, when QU � 0, µL and QU are the optimal solutions for the problem:

max
(µ∈Sµ,Q∈SQ)

−µT x + λxT Qx , λ ≥ 0,

regardless of the values of (nonnegative) λ and vector x. In this case, the min-max prob-

lem (3.3) can be reduced to the following MV optimization problem:

min
x

− (µL)T x + λxT (QU )x

s.t. x ∈ Ω .

(3.18)

Therefore, we can determine a min-max robust portfolio by first finding µL and QU from

their uncertainty intervals, and then solving problem (3.18) which takes µL and QU as the

input parameters. Similarly, under the same assumptions, Tütüncü and Koenig [30] show

that the problem (3.4), which is equivalent to the problem (3.3), can be reduced to the
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following MV optimization problem:

min
x

xT (QU )x

s.t. (µL)T x ≥ R ,

x ∈ Ω .

(3.19)

Generating Min-max Robust Actual Frontiers

To approximate the exact min-max robust actual frontier that contains infinite number of

portfolio points, we can use the finite algorithm, as in Tütüncü and Koenig [30]. Let xmin

and xmax denote the portfolios that achieve the minimum worst-case expected return, Rw
min,

and the maximum worst-case expected return, Rw
max, respectively. This finite algorithm is

presented as follows:

Algorithm 2 Generating Min-max Robust Actual Frontier
1. Compute xmax by solving problem (3.3) with λ = 0. Then set Rw

max = (µL)T xmax.

2. Compute xmin by solving problem (3.4) without the expected return constraint. Then
set Rw

min = (µL)T xmin.

3. Generate m equally spaced values between Rw
min and Rw

max such that: Rw
min ≤ Rw

1 ≤
Rw

2 . . . ≤ Rw
m ≤ Rw

max. For each i ∈ m, compute xi by solving problem (3.4) with Rw
i

as the worst-case expected return constraint.

Algorithm 2 is similar to Algorithm 1 (presented in Section 2.1.3) in the following sense:

both algorithms generate the frontier by first determining the two extreme portfolios which

have the maximum and the minimum expected returns, and then discretizing the range

between these two extreme points with a finite number expected returns. As the number of

discretization points becomes ∞, the approximated frontier approaches the exact frontier.

However, unlike Algorithm 1 which is applied with the true expected return values and

computes MV efficient portfolios by solving parametric QP problems, Algorithm 2 considers
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the expected returns in the worst-case scenario and computes min-max robust portfolios

by solving parametric saddle-point problems. In addition, the min-max robust portfolios

generated from Algorithm 2 may not be equally incremented when they are plotted with

the true µ and Q. Note that for the simple case of the min-max robust MV model, the

min-max robust portfolio in Step 1 can be computed by solving problem (3.18) instead of

problem (3.3), and the ones in Step 2 and Step 3 can be computed by solving problem (3.19)

instead of problem (3.4). In this case, Algorithm 1 and Algorithm 2 are conceptually

identical.

3.3 Potential Problems of Min-max Robust MV Model

The min-max robust portfolio optimization model (3.3) provides a conservative framework

to determine an optimal portfolio under the estimation risk of MV model parameters. It

guarantees the portfolio performance under the worst sample scenarios of the uncertain

parameters in their uncertainty sets. However, we will illustrate by the following example

that this framework can be too sensitive to the initial data used to generate the uncertainty

sets. In particular, inappropriate boundaries of interval uncertainty sets can cause min-max

robust portfolios to be either too conservative or not conservative enough.

3.3.1 An Example

We illustrate these issues of min-max robust actual frontiers with a computational example.

Comparisons are made with the true MV efficient frontier. We consider a universe of eight

risky assets, and assume that their monthly mean vector µ and return covariance Q are

given in Table 2.1. The true MV efficient frontier is generated by using the true µ and Q in

Algorithm 1 (which is presented in Section 2.1.3). To compute the min-max robust actual

frontier formed by min-max robust portfolios, we must first construct the uncertainty sets
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Sµ and SQ for µ and Q, respectively. Here we consider the situation where Sµ and SQ are

generated from the collections of discrete µ and Q samples.

Different sampling techniques can be used to generate µ and Q samples. For example,

Tütüncü and Koenig [30] describe two methods with which the samples are generated based

on historical data. The first one is based on bootstrapping, which repeatedly samples with

replacement many series of k returns from the available observations. Then the µ and Q

samples are computed from these series. The second one is based on moving averages,

which considers moving windows of historical data, and computes the µ and Q samples in

each window. Since both approaches are based on historical data, Tütüncü and Koenig

[30] eliminate some of the lowest and highest quantiles of the resulting samples to minimize

outlier effect.

RS Sampling Technique

For our computational example here, we construct the uncertainty sets by using the Monte

Carlo re-sampling (RS) method introduced in Michaud [26]. RS is a statistical technique

which constructs a distribution of the unknown data by sampling via Monte Carlo simulation

from the original sample; a different sampling method based on the statistics (3.5) of sample

mean estimates will be presented in Chapter 5.

The process of sampling the mean with the RS technique is described as follows. Let’s

assume that 100 return samples are drawn from a multivariate normal distribution with

mean µ and covariance matrix Q. We calculate the means and covariance from these

100 samples and denote them as µ̄ and Q̄ respectively. Assume that µ̄ and Q̄ are the

representatives of µ and Q, we simultaneously generate 10,000 sets of independent return

samples, each set consisting of 100 return samples. Regarding each set of 100 samples are

equally likely to be observed, we compute the mean of each sample set and obtain these

10,000 estimates of mean returns as equally likely. These 10,000 estimates now form the
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uncertain universe for µ. One way of defining the boundary vectors µL and µU is to set them

as the lowest and highest values respectively from these estimates. Tütüncü and Koenig

[30] show that QL and QU can be determined by selecting the lowest and highest values

of the covariance between each pair of assets (and the variance of each asset ) respectively.

However, as demonstrated by Broadie [7], the impact of the estimation error on µ is much

larger, and the estimation for Q is much more accurate. So here we ignore the estimation

error on Q, and set both QL and QU equal to Q̄. Since Q̄ obtained for this example is

positive semi-definite, we can compute min-max robust portfolios by solving the simple

case problem (3.18).

Sensitivity to Initial Return Samples

To illustrate the sensitivity of min-max robust portfolios to the choice of initial return

samples used to generate Sµ, the above µ sampling process is repeated 100 times, with

different set of 100 return samples at each time. All the min-max robust actual frontiers

are graphed, together with the true efficient frontier, in Figure 3.2(a). For this example,

min-max robust actual frontiers have relatively small variation near their minimum-variance

portfolios, and as the expected return increases, the variation becomes larger. A few of the

actual frontiers are very close to the true efficient frontier and achieve the same maximum

expected return. To further assess the frontiers, we depict the average performance: for the

portfolios on the min-max robust actual frontiers in Figure 3.2(a) corresponding to the same

λ value, we calculate their average returns and variances. Doing this calculation for all λ

values, we obtain the “average” min-max robust actual frontier presented in Figure 3.2(b).

Over-Conservative Problem

Figure 3.2(b) illustrates that min-max robust portfolios can be too conservative; the maxi-

mum expected returns of min-max robust actual frontiers can be significantly lower. Indeed,
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the maximum expected return of the true efficient frontier is 1.02 × 10−2, while the corre-

sponding value of the “average” min-max robust actual frontier is only 0.56×10−2. Min-max

robust optimization provides an effective approach for conservative investors to prevent un-

desirable losses due to the estimation risk in MV model parameters. But it may not be

an appropriate choice for the investors who are more tolerant to estimation risk and wish

to seek higher returns: their expected returns may not be achievable by min-max robust

portfolios.
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Figure 3.2: Min-max actual frontiers for the 8-asset example in Table 2.1.

It is true that the conservatism of the min-max robust portfolios generated from the

above example can be adjusted by changing the uncertainty interval. For example, Fig-

ure 3.3(a) and 3.3(b) illustrate the min-max robust actual frontiers and their “average”

actual frontier obtained based on using 2.5 and 97.5 percentiles of Sµ as the values for µL

and µU . However, it is important to note that the worst sample scenario is eliminated in

the new uncertainty set and no longer plays any role in the resulting robust portfolio. Thus

in the min-max robust MV model, the conservatism is adjusted by excluding bad scenarios,

40



which may run counter to the principal of min-max robustness.
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(a) 100 min-max robust actual frontiers
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Figure 3.3: Min-max robust actual frontiers (with improved µL) for the 8-asset example in
Table 2.1.

Compared with the min-max robust actual frontiers in Figure 3.2, the frontiers in Fig-

ure 3.3 become longer, and achieve a higher maximum expected return in the “average”

case. This is due to the fact that the worst 2.5% µ-samples are excluded (and the length of

the uncertainty interval Sµ becomes shorter). It also shows that the min-max robust MV

model is very sensitive to the choice of the boundary µL. Therefore, the uncertainty set

must be carefully chosen. In particular, inappropriate µL can make the resulting min-max

robust portfolios either too conservative or not conservative enough.

3.4 Robustness of Actual Frontiers

One way of assessing the robustness of a portfolio optimization technique is to measure

the variation of its actual frontiers calculated from different estimated parameters. Less

variation in the actual frontiers may be considered more robust. Comparing with the min-
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max robust actual frontiers in Figure 3.2(a), the frontiers in Figure 3.3(a) exhibit more

variation. Indeed, min-max robust portfolios can be quite sensitive to the initial return

samples used to generate the uncertainty set. For additional illustration, we use the example

in Best and Grauer [5], where the portfolio is constructed using ten assets. The true mean

vector and covariances of returns are given in Table 3.1. We conduct the same computation

as in Figure 3.2, and plot the results in Figure 3.4. As can be observed, the min-max robust

actual frontiers have large variations not only near the maximum-return portfolios but also

near the minimum-variance portfolios.

Table 3.1 Mean vector and covariance matrix for a 10-asset portfolio problem

Mean Return Vector µ

10−2× Asset1 Asset2 Asset3 Asset4 Asset5 Asset6 Asset7 Asset8 Asset9 Asset10

1.0720 1.7618 1.8270 1.0761 1.9845 1.4452 0.9910 1.6353 1.3755 1.8315

Covariance Matrix Q

10−2× Asset1 Asset2 Asset3 Asset4 Asset5 Asset6 Asset7 Asset8 Asset9 Asset10

Asset1 0.2516
Asset2 0.0766 1.3743
Asset3 0.1104 0.2847 1.3996
Asset4 0.1314 0.0930 0.1027 0.1928
Asset5 0.0157 0.5610 0.4725 0.0451 1.5981
Asset6 0.0554 0.3457 0.2769 0.0898 0.3490 0.4787
Asset7 0.0937 0.0253 0.0759 0.1010 0.0714 0.0643 0.1664
Asset8 0.1646 0.1757 0.3200 0.1641 0.4721 0.2669 0.1020 0.9013
Asset9 0.0509 0.1810 0.3275 0.0993 0.2978 0.1783 0.0635 0.1534 0.5731
Asset10 0.1515 0.3445 0.3627 0.0966 0.4740 0.2651 0.0611 0.3596 0.2154 1.4041

3.4.1 Variance-based Actual Frontiers

If the sole criterion for a robust approach is the least variation of actual frontiers with

respect to the initial data, we may consider an alternative approach. Relative to the mean

return µ, the covariance matrix Q can be estimated more accurately. Thus we can generate

an actual frontier based only on the estimation of Q as follows.
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Figure 3.4: Min-max robust actual frontiers for the 10-asset example in Table 3.1 .

Assume that Q̄ is the estimated covariance matrix of the normally distributed asset

returns, and let xmin and xmax denote the portfolios that have the minimum and maximum

variance, respectively, i.e., xmin and xmax are the respective optimal solutions for the two

QP problems:

min
x

xT Q̄x

s.t. x ∈ Ω (3.20)

max
x

xT Q̄x

s.t. x ∈ Ω .

(3.21)
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For any parameter η ∈ [0, 1], we can compute a portfolio x(η) ∈ Rn as below:

x(η) = (1− η)xmin + ηxmax. (3.22)

Given that both xmin and xmax are in the feasible set Ω, it is easy to show that all x(η), 0 ≤

η ≤ 1, belong to Ω.

Proposition 1. All portfolios x ∈ Rn computed from (3.22) belong to the convex feasible

set Ω = {x ∈ Rn |
∑n

i=1 xi = 1, x ≥ 0}.

Proof. First, note that since both xmin and xmax are non-negative and η ∈ [0, 1], any x

computed from equation (3.22) will be non-negative. Also, since
∑n

i=1(xmin)i = 1 and∑n
i=1(xmax)i = 1, we have:

n∑
i=1

xi =
n∑

i=1

(1− η)(xmin)i +
n∑

i=1

η(xmax)i

= (1− η)
n∑

i=1

(xmin)i + η

n∑
i=1

(xmax)i

= (1− η) + η

= 1.

Therefore, x ∈ Ω.

We compute 100 such actual frontiers based on 100 estimates of the true covariance

matrix Q in Table 3.1, and plot them in Figure 3.5(a). Each covariance matrix estimate

is based on 100 return samples. Compared with the min-max robust actual frontiers in

Figure 3.4(a), the variance-based actual frontiers in Figure 3.5(a) have some attractive

properties as far as robustness is concerned. Firstly, the variance-based actual frontiers have

much smaller variations. Secondly, min-max robust portfolios achieving higher expected
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returns tend to have larger fluctuations. On the other hand, actual frontiers of the variance-

based portfolios maintain similar variations for different risks. Thirdly, for this example,

the variation of variance-based actual frontiers decreases as the risk increases. If a resulting

actual frontier has a sufficiently large and positive slope as in Figure 3.5(a), then this

variance-based approach could be effective for obtaining a portfolio which not only achieves

a high expected return but also is relatively robust in the sense that its composition based on

different estimations of Q have small variations. The following theorem provides a condition

which guarantees monotonicity of the actual frontier from the variance-based approach.

Theorem 3.2. Suppose Q is symmetric positive semi-definite and η is a real number such

that 0 ≤ η ≤ 1. Let xmin, xmax and x(η) be the values computed from problem (3.20),

(3.21) and equation (3.22), respectively. (a) If µT xmax ≥ µT xmin, then µT x(η1) ≤ µT x(η2)

for any 0 ≤ η1 ≤ η2 ≤ 1. (b) If xT
minQxmax ≥ xT

minQxmin, then f(η) = x(η)T Qx(η) is a

non-decreasing function of η, i.e., f(η1) ≤ f(η2) for any 0 ≤ η1 ≤ η2 ≤ 1.

Proof. From µT x(η) = (1− η)µT xmin + ηµT xmax, it immediately follows that

µT x(η2)− µT x(η1) = (η2 − η1)(µT xmax − µT xmin) ≥ 0, for any 0 ≤ η1 ≤ η2 ≤ 1. (3.23)

To prove f(η) = x(η)T Qx(η) is a non-decreasing function of η when xT
minQxmax ≥ xT

minQxmin,

it is sufficient to prove that f ′(η) ≥ 0 under the same condition.
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Given x(η) = (1− η)xmin + ηxmax, we have:

f(η) = x(η)T Qx(η)

= ((1− η)xmin + ηxmax)T Q((1− η)xmin + ηxmax)

= (1− η)2xT
minQxmin + 2η(1− η)xT

minQxmax + η2xT
maxQxmax

f ′(η) = 2(η − 1)xT
minQxmin + (2− 4η)xT

minQxmax + 2ηxT
maxQxmax

= 2ηxT
minQxmin − 4ηxT

minQxmax + 2ηxT
maxQxmax + 2xT

minQxmax − 2xT
minQxmin

= 2η(xmin − xmax)T Q(xmin − xmax) + 2xT
minQ(xmax − xmin)

Since xT
minQxmax ≥ xT

minQxmin, xT
minQ(xmax − xmin) ≥ 0. Therefore, f ′(η) ≥ 0 for any

0 ≤ η ≤ 1. Thus f(η) is a non-decreasing function of η.

This completes the proof.
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Figure 3.5: Variance-based actual frontiers for the 10-asset example in Table 3.1 .
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3.4.2 Beyond Variation

It is interesting to investigate how the variance-based approach (3.22) compares with the

min-max robust approach (3.3) in terms of portfolio efficiency. One approach is more

efficient than another if its resulting portfolio achieves a higher expected return for the same

level of risk, or achieves a lower risk for the same level of expected return. We compute

the “average” variance-based actual frontiers in Figure 3.5(a) and plot it in Figure 3.5(b).

The “average” min-max robust actual frontier from Figure 3.4(b) is also plotted in the

same graph. By comparing the two “average” actual frontiers in Figure 3.5(b), we observe

that the variance-based portfolios are more efficient for this 10-asset example. However, we

demonstrate through another example that sometimes min-max robust portfolios achieve

better performance.
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Figure 3.6: Variance-based actual frontiers for the 8-asset sample in Table 2.1 .

Following the same procedure, we compute the variance-based actual frontiers for the

8-asset example in Table 2.1. The actual frontiers and their “average” are plotted in Fig-

ure 3.6(a) and (b), respectively. Similar to the 10-asset example, the variance-based port-
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folios in Figure 3.6(a) are more stable than the min-max robust portfolios in Figure 3.2(a).

However, the min-max robust portfolios are more efficient in the “average” case. As shown

in Figure 3.6(b), the “average” min-max robust actual frontier lies above the variance-based

one. In Figure 3.6(b), the maximum expected return of the “average” min-max robust ac-

tual frontier is 0.56× 10−2, while the corresponding value of the variance-based one is only

0.45 × 10−2. Thus the performance of the portfolios generated from the variance-based

model can be very poor. This indicates that it may not be appropriate to evaluate the

effectiveness of a robust model for MV portfolio optimization solely based on the varia-

tions of the resulting actual frontiers; the efficiency of the resulting actual frontiers is also

important.

3.5 Conclusion and Remarks

In this chapter, we focus on the min-max robust MV model (with interval uncertainty sets)

and show how to compute min-max robust portfolios and actual frontiers using this model.

Through computational examples, we illustrate that the solution to the min-max robust

MV model can be very sensitive to the initial data which is used to construct uncertainty

sets. In addition, min-max robust portfolios can be too conservative to achieve sufficiently

high expected return. We also demonstrate through examples that variation in the ac-

tual frontiers should not be the only criterion for evaluating the performance of a robust

portfolio optimization model, otherwise the presented variance-based model can be much

more effective. Eliminating poor mean samples adjusts the performance of min-max robust

portfolios. However, doing this may face the risk of loosing the protection against the worst

sample scenario, and is against the objective of robust optimization. In next chapter, we

present a CVaR robust MV portfolio optimization model which adjusts the conservatism of

robust portfolios without eliminating the worst mean samples.

48



Chapter 4

CVaR Robust Mean-Variance

Portfolio Optimization

In Chapter 3, we have illustrated that the min-max robust mean-variance portfolio opti-

mization model (3.3) can be very sensitive to the initial data from which the uncertainty

set is specified. In addition, the robust portfolios produced by the min-max model can be

too conservative for an investor who wants to obtain a higher portfolio return by taking

more estimation risk in model parameters. For the min-max robust MV model, adjusting

the uncertainty set to generate a less conservative portfolio is achieved by eliminating the

worst sample scenarios, which runs counter to the robust objective. Moreover, the min-max

robust optimization, by definition, neglects any probability information on the mean return

distribution once the uncertainty set is specified.

In this chapter, we focus on the uncertainty of mean return, and propose a CVaR robust

MV portfolio optimization model in which the estimation risk in mean return is measured by

the Conditional Value-at-Risk (CVaR). In contrast to the min-max robust MV model, which

takes the worst sample scenario in the uncertainty set of mean return, the CVaR robust

MV model determines an optimal portfolio based on a tail of the mean loss distribution due
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to mean return uncertainty. The adjustment of the CVaR’s confidence level according to

investors’ preferences corresponds to the adjustment of the conservatism level with respect

to mean return uncertainty.

This chapter is divided into four sections. In Section 4.1, we summarize the definition

of CVaR for a general loss distribution. In Section 4.2, we describe how CVaR is used to

measure portfolio return risk in the traditional return-risk analysis. In Section 4.3, we use

CVaR to measure the estimation risk in mean return. In Section 4.4, we present our CVaR

robust MV portfolio optimization model and discuss its attractive properties as compared

with min-max robust MV model.

4.1 CVaR for a General Loss Distribution

This section introduces the general definition of the Conditional Value-at-Risk (CVaR),

which is based on another popular risk measure, the Value-at-Risk (VaR). VaR is widely

used by financial institutions to quantify the market risk of portfolios. As defined in Rock-

afellar and Uryasev [29], the VaR of a portfolio is the lowest amount α such that, with a

given probability β over a certain time period T , the portfolio loss will not exceed α. In

other words, VaR is simply a number that indicates the worst-case loss of a portfolio with

provability β over a certain time period T . CVaR, which is also known as Mean Shortfall

or Mean Excess Loss, is defined as the conditional expectation of the losses exceeding VaR.

Compared with VaR, CVaR is a coherent risk measure and has more attractive properties

such as sub-additivity and convexity; see e.g., Artzner et al. [2], Rockafellar and Uryasev

[29].

Consider a specific risk denoted by a random variable L (which typically corresponds

to loss). Assume that L has a density function p(l). The probability of L not exceeding a
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threshold α is represented as:

Ψ(α) =
∫

l≤α
p(l) dl. (4.1)

Under the assumption that the probability distribution of L has no jumps, Ψ(α) is every-

where continuous with respect to α.

Given a confidence level β ∈ (0, 1), e.g., β = 95%, the associated Value-at-Risk, VaRβ,

is defined as:

VaRβ = min {α ∈ R : Ψ(α) ≥ β} . (4.2)

The corresponding CVaR, denoted by CVaRβ , is given by

CVaRβ = E(L | L ≥ VaRβ) =
1

1− β

∫
l≥VaRβ

lp(l)dl (4.3)

when the loss distribution has no jumps. Thus, CVaRβ is the expected loss conditional on

the loss being greater than or equal to VaRβ with probability (1− β).

In addition, CVaR has the following equivalent expression,

CVaRβ = min
α

(α + (1− β)−1E([L− α]+)) , (4.4)

where [z]+ = max (z, 0), see Rockafellar and Uryasev [29]. Note that, while VaR is a

quantile, CVaR depends on the entire tail of the worst scenarios corresponding to a given

confidence level.

4.2 A Traditional Measure for the Portfolio Return Risk

In the traditional return-risk analysis, the portfolio’s expected return is the weighted com-

bination of the assets’ mean returns, and the associated risk is the volatility of portfolio

return. Assuming that an investor is risk-averse, there exists a trade-off between portfolio
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expected return and risk, i.e., an investor will not get a higher expected return without

taking a higher risk. Therefore, a portfolio is considered to be optimal (MV efficient) if it

has the lowest risk for a given level of expected return, or conversely, has the maximum

expected return for a given level of risk. When portfolio return is not normally distributed,

CVaR can be used as an alternative to variance to measure the risk due to return volatility.

To emphasize, this CVaR risk measure is denoted as CVaRr, and its associated VaR risk

measure is denoted as VaRr.

Let r ∈ Rn be the vector of the asset returns of n risky assets. We assume that the

returns r constitute a joint normal distribution with the density p(r). Let the decision

vector x ∈ Ω be the portfolio weights, and denote f(x, r) as the portfolio loss function

associated with a fixed x. The portfolio return loss f(x, r) is the negative of the portfolio

return:

f(x, r) = −rT x = −[r1x1 + r2x2 + . . . + rnxn]. (4.5)

Therefore, the CVaRβ of the return loss f(x, r), CVaRr
β(x), can be defined by replacing the

general loss L with f(x, r) in formula (4.4):

CVaRr
β(x) = min

α
(α + (1− β)−1E([f(x, r)− α]+)). (4.6)

Typically, one can consider portfolio optimization using CVaR risk measure rather than

variance risk measure. Rockafellar and Uryasev [29] introduce a linear programming (LP)

approach to solve the CVaR minimization problem, and apply this approach to portfolio op-

timization where optimal portfolios are computed by minimizing CVaRr under a constraint

on the expected return. By specifying different levels of expected returns, a sequence of

optimal portfolios can be generated ranging from the minimum return risk (measured by

CVaRr) to the maximum expected return. Krokhmal et al. [19] extend this CVaR opti-

mization technique, and show that an equivalent efficient frontier can be generated by max-
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imizing the expected return under CVaRr constraints. Imposing various CVaRr constraints

with different confidence levels, the portfolio loss distribution can be shaped according to

different preferences of decision makers.

VaRr and CVaRr have also been used in robust portfolio optimization, and many effi-

cient techniques have been developed to solve the associated robust optimization problems.

Goldfarb and Iyengar [14] study robust VaRr portfolio selection problem, where the ob-

jective is to maximize the worst-case expected return subject to the constraint that the

shortfall probability is less than a prescribed limit. They show that under the normality

assumption of asset return distribution, the robust optimization problem can be cast as a

second-order cone programming (SOCP) problem. Zhu and Fukushima [34] optimize port-

folios under the worst-case CVaRr constraint in the situation where the information on the

underlying return distribution is not exactly known but belongs to a certain set of distri-

butions. Then the worst-case CVaRr is the CVaRr with respect to the worst-case scenario

from the distribution set. They show that when the asset returns have a discrete distribu-

tion, using box uncertainty and ellipsoidal uncertainty structures, the robust optimization

problem can be solved efficiently as LP problems and SOCP problems, respectively.

4.3 CVaR for the Estimation Risk in Mean Return

The CVaR risk measure discussed in Section 4.2, CVaRr, is used to measure the portfolio

return risk in the context of return-risk analysis. However, here our concern is the uncer-

tainty of mean return when using the MV portfolio optimization model. In this section, we

choose CVaR to be the measure of the estimation risk in mean return in the MV portfo-

lio optimization. Applying CVaR with this perspective, we introduce a CVaR robust MV

portfolio optimization model in Section 4.4 which computes optimal portfolios under mean

return uncertainty. We use CVaRµ to denote the CVaR with respect to mean return in
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order to differentiate it from CVaRr with respect to return, and consider the portfolio loss

quantified by CVaRµ as the mean loss. Similarly, we denote VaRµ as the VaR of mean loss.

Different from CVaRr, which quantifies the portfolio loss due to return volatility, CVaRµ

quantifies the portfolio mean loss due to mean return uncertainty.

For a portfolio of n risky assets, we let the decision vector x ∈ Ω be the portfolio

weights, and µ ∈ Rn be the random vector of the asset mean returns. We assume that µ

has a probability density function p(µ), and is independent of x. To determine the portfolio

mean loss, we define f(x, µ), which is the mean loss function associated with µ, to be the

negative of the portfolio expected return function:

f(x, µ) = −µT x = −[µ1x1 + . . . + µnxn]. (4.7)

Assume that µ is unknown but has a certain distribution, the mean loss f(x, µ) associ-

ated with all possible µ will also form a distribution. Therefore, as depicted in Figure 4.1,

CVaRµ
β corresponds to the mean of the (1− β)-tail, which contains the (1− β) worst-case

mean losses due to µ uncertainty. The definition of CVaRµ
β can be derived from its general

form in (4.4) by replacing the general loss L with the mean loss f(x, µ):

CVaRµ
β(x) = min

α
(α + (1− β)−1E([f(x, µ)− α]+)). (4.8)

4.4 CVaR Robust MV Portfolio Optimization Model

4.4.1 Model Definition

The traditional MV portfolio optimization model (2.6) computes an optimal portfolio by

minimizing the portfolio mean loss −µT x (or maximizing the portfolio expected return µT x)

under the assumption that µ is the true value. Given that µ is unknown in practice, we
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Figure 4.1: CVaRµ for a portfolio mean loss distribution

consider the average of a tail of mean loss scenarios instead of a single mean loss. This

takes the estimation error in µ into account and is achieved by replacing the mean loss

−µT x by CVaRµ
β(−µT x) in the MV model. Therefore, an optimal CVaR robust portfolio

is determined as the solution of the following optimization problem:

min
x

CVaRµ
β(−µT x) + λxT Q̄x

s.t. x ∈ Ω,

(4.9)

where Q̄ is an estimate of the covariance matrix Q. Recall that we ignore in this thesis

the estimation risk in Q as it is much smaller than that in µ. Problem (4.9) is the general

formulation of our CVaR robust mean-variance (MV) portfolio optimization model. It

determines the optimal portfolio by minimizing the risk-adjusted CVaRµ
β, which is the sum

of CVaRµ
β(−µT x) (the CVaR of mean loss for a confidence level β) and λxT Q̄x (the portfolio

variance for a specific risk-aversion parameter λ). Note that we consider minimizing the

CVaRµ with respect to an assumed distribution of µ. When the distribution only contains

the true µ, i.e., no deviation in µ, the CVaR robust MV model is equivalent to the traditional

MV model.

As discussed in Chapter 3, the min-max robust MV model computes robust portfolios
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based on the worst-case scenario µL when the uncertainty set of µ is the interval [µL, µU ]. To

determine a robust portfolio, the task is then switched to determine µL. Thus the resulting

min-max robust portfolio can become sensitive to the initial data used to construct the

uncertainty interval. In addition, the min-max approach is sometimes over conservative for

an investor who wants to get a higher portfolio return by taking more estimation risk.

In contrast to the min-max robust MV model (3.3), the CVaR robust MV model (4.9)

depends on the entire (1−β)-tail of the mean loss distribution. Using the CVaR robust MV

model, adjusting the confidence level β of CVaRµ naturally corresponds to adjusting an

investor’s tolerance to estimation risk. In general, when the β value increases, the CVaRµ
β

of the mean loss distribution will increase. This corresponds to the situation where the

model takes more pessimistic view on the estimation risk in µ, and optimizes a portfolio

under worse cases of the mean loss. Therefore, the resulting CVaR robust portfolio is

forced to be more conservative. As β → 1, the worst mean return sample is considered,

and thus the model provides the most conservative portfolio. Following the same reason,

when the β value decreases, less emphasis is placed on worse mean loss scenarios, and the

resulting CVaR robust portfolio becomes less conservative. As β → 0, all cases of the mean

loss (ranging from its best case to its worst case) are considered; this leads to the least

robustness in the sense of protection against the worst case. Note that the choice of β

(or portfolio’s robustness) implicitly affects the portfolio’s expected return: the maximum

expected return achievable for a higher β is generally less than that for a lower β. The choice

of β depends on an individual investor’s risk-averse preference with respect to the estimation

risk in µ. We will demonstrate the impact of the β value on a portfolio’s conservatism level

through computational examples in Chapter 5.
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4.4.2 Computing CVaR Robust Portfolios

Problem (4.9) can be solved by utilizing the CVaR optimization approach introduced by

Rockafellar and Uryasev [29]. Define the following auxiliary function

Fµ
β (x, α) = α +

1
1− β

∫
µ∈Rn

[f(x, µ)− α]+p(µ) dµ . (4.10)

Assume that the distribution for µ is continuous, CVaRµ
β is convex with respect to x, and

Fµ
β (x, α) is both convex and continuously differentiable. Therefore, Rockafellar and Uryasev

[29] show that, for any fixed x ∈ Ω, CVaRµ
β can be determined by

CVaRµ
β(x) = min

α
Fµ

β (x, α) . (4.11)

In addition, minimizing CVaRµ
β(x) over x is equivalent to minimizing Fµ

β (x, α) over (x, α),

i.e.,

min
x

CVaRβ(x) ≡ min
x,α

Fµ
β (x, α) . (4.12)

Similarly, it can be shown that minimizing CVaRµ
β(−µT x) + λxT Q̄x over x is equivalent to

minimizing Fµ
β (x, α) + λxT Q̄x over (x, α).

Theorem 4.1. Given that CVaRµ
β(−µT x) is convex with respect to x, and Fµ

β (x, α) is

convex with respect to (x, α), the two minimization problems below

min
x

CVaRµ
β(−µT x) + λxT Q̄x

x ∈ Ω
(4.13)

min
x,α

Fµ
β (x, α) + λxT Q̄x

x ∈ Ω
(4.14)

are equivalent for λ ≥ 0.
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Proof. Since the term λxT Q̄x is convex with respect to x, CVaRµ
β(x) + λxT Q̄x is convex

with respect to x and Fµ
β (x, α) + λxT Q̄x is convex with respect to (x, α). Therefore, we

can minimize Fµ
β (x, α) + λxT Q̄x over (x, α) ∈ Ω × R by first minimizing it over α ∈ R for

a fixed x and then minimizing the result over x ∈ Ω. Moreover, as a consequence of (4.11),

we have :

CVaRµ
β(x) + λxT Q̄x = min

α
Fµ

β (x, α) + λxT Q̄x . (4.15)

Thus, the equivalence between problem (4.13) and (4.14) is established by minimizing both

sides of (4.15) over x ∈ Ω.

We can approximate the integral in (4.10) by sampling µ based on its density func-

tion p(µ). For a collection of m independent samples µ1, µ2, . . . , µm, the corresponding

approximation to function Fµ
β (x, α) is:

F̄µ
β (x, α) = α +

1
m(1− β)

m∑
i=1

[−µT
i x− α]+ . (4.16)

Clearly, function F̄µ
β (x, α) is convex and piecewise linear. The problem min(x,α)F

µ
β (x, α) in

(4.12) can be approximated by the following:

min
x,α

α +
1

m(1− β)

m∑
i=1

[−µT
i x− α]+

s.t. x ∈ Ω .

(4.17)

By introducing auxiliary real variables zi for i = 1, . . . ,m, the problem (4.17) can be
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transformed into the following LP problem (Rockafellar and Uryasev [29]):

min
x,z,α

α +
1

m(1− β)

m∑
i=1

zi

s.t. x ∈ Ω ,

zi ≥ 0 ,

zi + µT
i x + α ≥ 0, i = 1, . . . ,m .

(4.18)

Applying the approximation technique (4.18) for problem (4.14), our CVaR robust mean-

variance portfolio optimization model (4.9) can be approximated by the following QP prob-

lem:

min
x,z,α

α +
1

m(1− β)

m∑
i=1

zi + λxT Q̄x

s.t. x ∈ Ω ,

zi ≥ 0 ,

zi + µT
i x + α ≥ 0, i = 1, . . . ,m ,

(4.19)

where each µi is an independent sample of µ generated from an assumed distribution. This

QP problem has O(m + n) variables and O(m + n) constraints, where m is the number of

µ-samples and n is the number of assets.

Since the min-max robust MV model considers the worst sample scenario of µ in its

uncertainty set Sµ, the choice of Sµ has significant impact on the optimal portfolio decision.

This impact can be observed by comparing the performance of the min-max robust actual

frontiers between Figure 3.2(a) and Figure 3.4(a). Unlike the min-max robust MV model,

the CVaR robust MV model does not need any bounded uncertainty set for µ. Instead, it

uses the probability bound β and optimizes a portfolio under the (1 − β) worst mean loss

scenarios, which are obtained by generating a finite number of µ-samples from an assumed

59



distribution. Therefore, the optimal portfolio generated by the CVaR robust MV model

tends to be less sensitive to the possible outliers in the generated µ-samples. Note that, in

spite of the common behaviors as compared to min-max robust portfolios, the CVaR robust

portfolios generated under different µ distribution assumptions may perform differently.

In Chapter 5, we will illustrate the performance differences when µ-samples are generated

using two sampling techniques that are based on different µ distribution assumptions.

4.4.3 CVaR Robust MV Actual Frontiers

The CVaR robust MV model (4.9) presented in Section 4.4.1 considers minimizing the risk-

adjusted CVaRµ
β . In this formulation, both the CVaRµ of mean loss and the return variance

are included in the objective function, and λ is used as a risk-aversion parameter to adjust

the trade-off between return risk (which is measured by variance) and CVaRµ
β . When λ

= 0, the resulting portfolio achieves the minimum CVaRµ
β; when λ = ∞, the resulting

portfolio achieves the minimum return risk. Note that, since the mean loss quantified by

CVaRµ
β is defined as the negative of the expected return, for all the CVaR robust portfolios

generated under a particular confidence level β, the one with the minimum CVaRµ
β tends to

achieve the maximum (actual) expected return; following the same reason, the one with the

minimum return risk tends to achieve the minimum (actual) expected return. Therefore, by

specifying a confidence level β and solving problem (4.9) for all possible values of λ ranging

from 0 to ∞, we obtain a CVaR robust MV actual frontier: it contains the entire set of

CVaR robust portfolios under the confidence level β ranging from the maximum (actual)

expected return to the minimum (actual) expected return.

4.4.4 Generating Mean Scenarios

With the CVaR minimization approach presented in Section 4.4.2, function Fµ
β (x, α) is

approximated by function F̄µ
β (x, α), which considers the average of the (1 − β)-tail of the
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mean loss distribution. Generating mean loss scenarios depends on the specification of the

µ distribution. However, this distribution is usually not known. In practice, one can use

bootstrapping or resampling technique to generate some possible/reasonable realizations;

the example in Section 3.3.1 utilizes the resampling technique. Here we consider another

possible way to generate the µ distribution.

CHI Sampling Technique

Alternatively, we can generate samples that based on the statistics as described in (3.5),

i.e., the quantity
T (T − n)
(T − 1)n

(µ̄− µ)T Q−1(µ̄− µ)

has a χ2
n distribution with n degrees of freedom. see e.g., Garlappi et al. [12]. This sampling

technique is subsequently referred to the CHI technique.

Given a random number c ∼ χ2
n associated with the quantity (3.5). The equation

T (T − n)
(T − 1)n

(µ̄− µ)T Q−1(µ̄− µ) = c (4.20)

holds and can be transformed to

(µ̄− µ)T Q−1(µ̄− µ) = φ , (4.21)

where φ = (T−1)n
T (T−n)c. Since Q is a symmetric positive definite matrix, using Cholesky factor-

ization, it can be decomposed as

Q = GGT , (4.22)

where G is a lower triangular matrix with strictly positive diagonal entries, and GT denotes
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the transpose of G. Substituting (4.22) into (4.21), we have:

(µ̄− µ)T (GGT )−1(µ̄− µ) = φ. (4.23)

Applying matrix inversion and transformation properties on the left hand side, the equation

in (4.23) can be re-arranged to:

(G−1(µ̄− µ))T (G−1(µ̄− µ)) = φ. (4.24)

The left hand side of (4.24) specifies the square of the 2-norm of (G−1(µ̄− µ)). If we set

(G−1(µ̄− µ)) = y, (4.25)

where y is a n× 1 column vector, then (4.24) is equivalent to

‖ y ‖22 = φ. (4.26)

The variable y in (4.26) can be considered as a point on the surface of a n-dimensional

sphere whose radius equals to
√

φ. Assuming that each y is uniformly distributed on the

sphere surface, we can randomly choose a y using the normal-deviate method introduced

in Muller [27] and Marsaglia [23]: Let x = [x1, x2, . . . , xn]T be the n × 1 column vector,

which contains n independent random numbers. Each random number is generated from

the standard normal distribution. If ‖ x ‖22 = s, i.e.,

√
x2

1 + x2
2 + . . . , +x2

n =
√

s, (4.27)

then y can be obtained by:

y =

√
φ

s
x. (4.28)
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After getting y, we can compute the µ-sample by transforming the equation (4.25) to the

form:

µ = µ̄ + Gy (4.29)

If we generate m independent samples of c from the χ2
n distribution, then we obtain m

independent samples of y. This gives m independent samples of µ. In Chapter 5, we

investigate the characteristics of the CVaR robust actual frontier based on the CHI sampling

technique, and demonstrate the statistical difference between the CHI and RS techniques.

4.5 Conclusion and Remarks

This chapter presents the CVaR robust MV portfolio optimization model. We show how this

model adjusts the portfolio’s conservatism level with respect to the estimation risk in mean

return. In the following chapter, we conduct computational studies on the performance of

CVaR robust portfolios. Comparisons are made with min-max robust portfolios in terms of

actual frontier variation, portfolio efficiency, and portfolio diversification.
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Chapter 5

Performance of CVaR Robust

Portfolios

While the min-max robust MV model (3.3) is essentially quantile-based and focuses on

the worst case scenario in an uncertainty set, the CVaR robust MV model (4.9) takes a

distribution into consideration and ensures the best performance with respect to the average

of the tail. We now compare min-max robust portfolios with CVaR robust portfolios in terms

of actual frontier variation, portfolio efficiency, and portfolio diversification.

We first consider the 10-asset example used in Chapter 3. We generate 10,000 µ-samples

using the RS (presented in Section 3.3.1) and CHI (presented in Section 4.4.4) technique

as previously described. For each 10,000 sample set (which depends on the initial 100

return samples) of µ, we obtain a CVaR robust actual frontier by solving the CVaR robust

MV model (4.19) for different values of λ ≥ 0. For the 10-asset example using CHI-

sampling, Figure 5.1(a)-(c) compares the CVaR robust actual frontiers (from the CVaR

robust MV model) with the nominal actual frontiers (from the standard MV model based

on the nominal estimates) for different confidence level β. We note that, unlike the min-max

robust MV model (3.11) which uses the ellipsoidal uncertainty set (3.6), the CVaR robust
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actual frontiers mostly lie above the nominal actual frontiers.
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(a) CHI: 90% confidence level
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(b) CHI: 60% confidence level
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(c) CHI: 30% confidence level

Figure 5.1: CVaR robust actual frontiers and nominal actual frontiers for the 10-asset
example (in Table 3.1). CVaR robust actual frontiers are calculated based on 10,000 µ-
samples generated via the CHI-sampling technique. Nominal actual frontiers are calculated
by using the standard MV model with parameter µ̄ estimated based on 100 return samples.

To illustrate the characteristics of the CVaR robust actual frontier, we repeat the sam-

pling procedure 100 times. For each set of 10,000 µ-samples, we compute three separate

actual frontiers using β = 90%, 60% and 30%. The top plots (a)–(c) in Figure 5.2 are for the

RS technique, and the bottom plots (d)–(f) are for the CHI sampling technique. Note that

the right-most point on a CVaR robust actual frontier corresponds to the maximum-return

portfolio (with λ = 0). We describe the main observations in the following sections.

5.1 Sensitivity to Initial Data

Similar to the min-max robust actual frontiers (with an interval uncertainty set) in Figure

3.4, the CVaR robust actual frontiers in Figure 5.2 also vary with the initial data used to

generate each set of µ-samples. The variation of actual frontiers mainly comes from the

variation in the estimate µ̄, which is computed based on 100 initial return samples. Since

only a limited number of return samples are available in practice, variations inevitably exist
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in robust MV models, whether min-max robust or CVaR robust is considered.

The level of variation can be considered as an indicator of the level of estimation risk

exposed by the portfolios from a robust model. It can be observed in Figure 5.2 that the

variation seems to increase as the confidence level β decreases. This suggests that it may

be reasonable to interpret β as an estimation risk aversion parameter: An investor who is

more risk averse to estimation risk may choose a larger β. On the other hand, an investor

who is more tolerant to estimation risk may choose a smaller β. The plots in Figure 5.2

depict the positive association between β and a portfolio’s conservatism level.

In addition, we note that the variations of the actual frontiers in Figure 5.2(a)-(c)

are larger than the ones in Figure 5.2(d)-(f). Figure B.1(a)-(h) in Appendix B compares

the (marginal) distribution (10,000 mean return samples) for each of the 8 assets (from

Table 2.1) generated using the RS and CHI sampling techniques. As can be seen, the

samples obtained from the CHI technique have larger variances.

5.2 Adjustment of Portfolio’s Conservative Level

In addition to variation in actual frontiers, we also evaluate the “average” performance

of these CVaR robust actual frontiers. For Figure 5.2, we compute the “average” actual

frontiers and plot them against the true efficient frontier in Figure 5.3. The true efficient

frontier is used as a benchmark to assess the portfolio efficiency. The plots for the RS

technique are on the top panel, while the ones for the CHI technique are on the bottom

panel. As we can see, when β approaches 1, CVaR robust actual frontiers become shorter on

“average” (i.e., the path length becomes smaller); the maximum expected return achievable

becomes lower. As it is expected that an investor who is more averse to estimation risk

obtains a smaller return, this confirms that it is reasonable to regard β as an indicator for the

level of tolerance for estimation risk. On the other hand, an investor who is tolerant towards
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(a) RS: 90% confidence level
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(b) RS: 60% confidence level
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(c) RS: 30% confidence level

Standard deviation

E
xp

ec
te

d
re

tu
rn

0.02 0.04 0.06 0.08 0.1 0.12 0.14
0.008

0.01

0.012

0.014

0.016

0.018

0.02

0.022

(d) CHI: 90% confidence level
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(e) CHI: 60% confidence level
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(f) CHI: 30% confidence level

Figure 5.2: 100 CVaR robust actual frontiers calculated based on 10,000 µ-samples. The
true data is from Table 3.1.

estimation risk chooses a smaller β, the maximum expected return achievable becomes

higher.

CVaR robust actual frontiers generated using the RS and the CHI sampling techniques

seem to be different. For the same β value, the variations of the CVaR robust actual fron-

tiers in Figure 5.2(d)–(f), corresponding to CHI, are dominated by the corresponding ones

in Figure 5.2(a)–(c), corresponding to RS. This is likely due to different distributions gen-

erated by the two sampling techniques, see Appendix B. The CVaR robust actual frontiers

for the two sampling techniques also have different performance in their “average” case.

The “average” CVaR robust actual frontiers in Figure 5.3(d)–(f) achieve lower maximum
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expected returns than the corresponding ones in Figure 5.3(a)–(c). This happens because

the µ-samples generated using the CHI technique have larger deviations, which leads to

worse mean loss scenarios.
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(a) RS: 90% confidence level
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(b) RS: 60% confidence level
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(c) RS: 30% confidence level

Standard deviation

E
xp

ec
te

d
re

tu
rn

0.02 0.04 0.06 0.08 0.1 0.12 0.14
0.008

0.01

0.012

0.014

0.016

0.018

0.02

0.022

True efficient frontier
CVaR robust actual frontier

(d) CHI: 90% confidence level

Standard deviation

E
xp

ec
te

d
re

tu
rn

0.02 0.04 0.06 0.08 0.1 0.12 0.14
0.008

0.01

0.012

0.014

0.016

0.018

0.02

0.022

True efficient frontier
CVaR robust actual frontier

(e) CHI: 60% confidence level
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(f) CHI: 30% confidence level

Figure 5.3: “Average” CVaR robust actual frontiers calculated based on 10,000 µ-samples
for the 10-asset example in Table 3.1.

It is also important to note that, although changing the confidence level β affects the

maximum expected return achievable, the deviation of the CVaR robust actual frontiers

from the true efficient frontier does not seem to be significantly affected. In addition, on

“average”, the deviation seems to be relatively insensitive for different sampling methods.

On the other hand, the deviation (from the true efficient frontier) of the min-max robust

actual frontiers varies significantly with the percentile value specifying µL. This can be
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observed from Figure 5.4(a)-(c) where the 100 min-max robust actual frontiers in each plot

are computed based on different percentiles corresponding to µL. The µ-samples, based on

which the percentiles are calculated, are generated using the CHI sampling technique. Note

that here we use the same µ-samples as the ones used for generating the CVaR robust actual

frontiers in Figure 5.2(d)-(f). As can be seen clearly, as the percentile value changes from 0

to 50, not only the variation but also the overall appearance of the min-max robust actual

frontiers change significantly. This causes their “average” actual frontiers, which are plotted

in Figure 5.4(d)-(f), have different deviations from the true efficient frontier. In addition,

for this 10-asset example, the min-max robust actual frontiers in Figure 5.4(a)-(c) exhibit

more variations in comparison with the CVaR robust actual frontiers in Figure 5.2(d)-(f).
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(b) µL = 25 percentile
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(c) µL = 50 percentile
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(e) Average: 25 percentile
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(f) Average: 50 percentile

Figure 5.4: 100 min-max robust actual frontiers based on different percentiles for the 10-
asset example in Table 3.1. µ-samples are generated using the CHI technique.
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5.3 Portfolio Diversification

In this section, we demonstrate that under the estimation risk in µ, compared with the min-

max robust portfolios, the CVaR robust portfolios are more diversified. We also numerically

show that the diversification level of CVaR robust portfolios decreases as the confidence level

β decreases.

5.3.1 Diversification Under Estimation Risk

An important way of minimizing the volatility in a portfolio is to diversify the portfolio.

Portfolio diversification means spreading the total investment across a wide variety of asset

classes, so the exposure to individual asset risk will be reduced. In statistical terms, while

achieving the same expected return, one should diversify the portfolio so that a combined

standard deviation of several assets is lower than the standard deviation of the individual

asset.

Traditional MV Model

The traditional MV model (2.6) suggests how rational investors will use diversification to

optimize their portfolios. As the risk-aversion parameter λ decreases, the level of diversi-

fication decreases. This will increase both the portfolio expected return and its associated

return risk. When λ = 0, the portfolio typically achieves the maximum expected return

by allocating all investment in the highest-return asset without considering the associated

return risk. This portfolio (with λ = 0) is referred to as the maximum-return portfolio. In

fact, even for λ 6= 0 but sufficiently small, the optimal MV portfolio tends to concentrate

on a single asset. Given that the exact mean return is unknown, it means that the optimal

MV portfolios can concentrate on a wrong asset due to estimation error. This can result in

potentially disastrous performance in practice.
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Min-max Robust MV Model

For the min-max robust MV model (3.3) with an interval uncertainty set for µ, the min-

max robust portfolio is determined by the lower bound of the interval, µL, which is typically

determined based on a confidence level. Thus, for the maximum-return portfolio computed

from the min-max robust MV model, the allocation is still typically concentrated in a single

asset. Note that this is independent of the values of µL. Moreover, due to estimation

error, this allocation concentration may not necessarily result in a higher actual portfolio

expected return. This is because that the asset which has the highest worst-case mean

return in µL may not have the highest true mean return in µ. As an example, Figure 5.3

depicts that, on “average”, the maximum expected return of the min-max robust actual

frontier is significantly lower than that of the true efficient frontier.

CVaR Robust MV Model

The CVaR robust MV model determines the optimal portfolio in a way that contrasts to

the min-max robust MV model. Instead of focusing on the single worst case scenario µL of

µ, the CVaR robust MV model optimizes a portfolio by considering the (1− β)-tail of the

mean loss distribution. This forces the resulting portfolio to be more diversified. Therefore,

even when ignoring return risk (i.e., λ = 0), the allocation of the CVaR robust portfolio

(which typically achieves the maximum-return for the given β) is usually distributed among

more than one asset, if β is not too small.

5.3.2 Computational Examples

Next we demonstrate that CVaR robust portfolios are more diversified, when compared with

min-max robust portfolios. In addition, the diversification level decreases as the confidence

level β decreases.
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Composition of CVaR Robust Portfolios

Our first example illustrates the diversification property of the maximum-return portfo-

lio (with λ = 0) computed from the CVaR robust MV model. We compute both the

min-max robust and CVaR (β = 90%) robust actual frontiers for the 8-asset example in Ta-

ble 2.1. The computations are based on 10,000 µ-samples generated from the CHI sampling

technique described in Section 4.4.4. Each frontier is formed by the portfolios computed us-

ing a sequence of λ ranging from 0 to 1000. Table 5.1(a) and 5.1(b) list the portfolio weights

of the two actual frontiers for each λ value. When λ = 0, the maximum-return portfolio

computed by the min-max robust MV model in Table 5.1(a) focuses all holdings in Asset4,

whereas the one computed by the CVaR robust MV model in Table 5.1(b) are diversified

into five different assets. We can also compare the composition graphs of the portfolios

on the two actual frontiers. They are presented in Figure 5.5(a) and 5.5(b), respectively.

For the minimum-return portfolio at the left-most end of each composition graph, most of

the investment is allocated in Asset5 and Asset8. As the expected return value increases

from left to right, both assets are gradually replaced by a mixture of other assets. However,

close to the maximum-return end of the graphs, the compositions in Figure 5.5(b) are more

diversified than that in Figure 5.5(a).
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Figure 5.5: Compositions of min-max robust and CVaR robust (β = 90%) portfolio weights
for the 8-asset example in Table 2.1.
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Table 5.1 Portfolio weights of min-max robust and CVaR robust (β = 90%) actual frontiers
for the 8-asset example in Table 2.1

(a) Min-max Robust Portfolios Weights

λ Asset1 Asset2 Asset3 Asset4 Asset5 Asset6 Asset7 Asset8

0 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00
100 0.00 0.00 0.00 0.73 0.07 0.00 0.00 0.20
200 0.00 0.00 0.00 0.35 0.30 0.01 0.04 0.43
300 0.00 0.00 0.00 0.23 0.30 0.01 0.04 0.43
400 0.00 0.00 0.00 0.17 0.32 0.02 0.04 0.46
500 0.01 0.00 0.00 0.13 0.34 0.02 0.04 0.47
600 0.01 0.00 0.00 0.10 0.35 0.02 0.04 0.48
700 0.01 0.00 0.00 0.09 0.35 0.02 0.04 0.49
800 0.01 0.00 0.00 0.07 0.36 0.02 0.05 0.49
900 0.01 0.00 0.00 0.06 0.36 0.02 0.05 0.50
1000 0.01 0.00 0.00 0.05 0.37 0.02 0.05 0.50

(b) CVaR Robust (β = 90%) Portfolios Weights

λ Asset1 Asset2 Asset3 Asset4 Asset5 Asset6 Asset7 Asset8

0 0.18 0.00 0.00 0.63 0.05 0.08 0.06 0.00
100 0.05 0.00 0.00 0.16 0.30 0.04 0.06 0.39
200 0.04 0.00 0.00 0.09 0.34 0.04 0.06 0.44
300 0.04 0.00 0.00 0.06 0.36 0.03 0.05 0.47
400 0.03 0.00 0.00 0.04 0.37 0.03 0.05 0.48
500 0.03 0.00 0.00 0.03 0.37 0.03 0.05 0.49
600 0.03 0.00 0.00 0.02 0.37 0.03 0.05 0.49
700 0.03 0.00 0.00 0.02 0.38 0.03 0.05 0.50
800 0.03 0.00 0.00 0.01 0.38 0.03 0.05 0.50
900 0.03 0.00 0.00 0.01 0.38 0.03 0.05 0.50
1000 0.02 0.00 0.00 0.01 0.38 0.03 0.05 0.51
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In Figure 5.7(a), the two actual frontiers corresponding to the composition graphs in

Figure 5.5(a) and Figure 5.5(b) are plotted. The portfolios on the min-max robust actual

frontier are less diversified and suffer larger return risk than that on the CVaR robust actual

frontier for the same level of expected returns. Meanwhile, the maximum expected return

of the min-max robust actual frontier is also lower. The min-max portfolio in this case

allocates all investment in Asset4, whose true mean return is only 0.4734 ×10−2. On the

other hand, the CVaR robust actual frontier being higher and more to the left indicates the

benefits of diversifying a portfolio under estimation risk.

Diversification

Next, we illustrate the impact of β on the level of diversification. As discussed in Chapter 4,

in the CVaR robust MV model, β can represent an investor’s estimation risk aversion level.

The larger the β value, the more conservative the investor is with respect to estimation

risk in µ. The CVaR robust actual frontier in Figure 5.7(a) is computed for β = 90%.

Now using the same dataset as in the first example, we compute the CVaR robust actual

frontiers for β = 60% and β = 30%, and list their portfolio weights in Table 5.2(a) and

5.2(b), respectively. The corresponding portfolios’ composition graphs are also presented

in Figure 5.6(a) and 5.6(b). By comparing the maximum-return portfolios (λ = 0) among

Table 5.1(b), 5.2(a) and 5.2(b), the weights are less diversified as the value of β decreases.

This effect can also be observed by comparing the compositions in Figure 5.5(b), 5.6(a) and

5.6(b). In particular, when λ = 0, the portfolio for β = 30% in Table 5.2(b) allocate all

investment in a single asset. However, unlike the min-max robust portfolio in Table 5.1(a),

which is concentrated on Asset4, this portfolio is concentrated in Asset1.

For the CVaR robust MV model, the relationship between the decrease in diversification

and the decrease in β confirms that it is reasonable to regard β as a risk aversion parameter

for estimation risk. An investor who is more risk averse to the estimation risk choose a
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Table 5.2 Portfolio weights of CVaR robust (β =60%) and (β =30%) actual frontiers for
the 8-asset example in Table 2.1

(a) CVaR robust (β =60%) Portfolios Weights

λ Asset1 Asset2 Asset3 Asset4 Asset5 Asset6 Asset7 Asset8

0 0.39 0.00 0.00 0.42 0.13 0.06 0.00 0.00
100 0.06 0.00 0.00 0.21 0.28 0.05 0.06 0.35
200 0.04 0.00 0.00 0.11 0.33 0.04 0.06 0.43
300 0.04 0.00 0.00 0.07 0.35 0.03 0.05 0.46
400 0.03 0.00 0.00 0.05 0.36 0.03 0.05 0.47
500 0.03 0.00 0.00 0.04 0.37 0.03 0.05 0.48
600 0.03 0.00 0.00 0.03 0.37 0.03 0.05 0.49
700 0.03 0.00 0.00 0.02 0.38 0.03 0.05 0.49
800 0.03 0.00 0.00 0.02 0.38 0.03 0.05 0.50
900 0.03 0.00 0.00 0.01 0.38 0.03 0.05 0.50
1000 0.02 0.00 0.00 0.01 0.38 0.03 0.05 0.51

(b) CVaR robust (β =30%) Portfolios Weights

λ Asset1 Asset2 Asset3 Asset4 Asset5 Asset6 Asset7 Asset8

0 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
100 0.07 0.00 0.00 0.25 0.26 0.05 0.06 0.31
200 0.05 0.00 0.00 0.12 0.32 0.04 0.05 0.41
300 0.04 0.00 0.00 0.08 0.35 0.03 0.05 0.45
400 0.03 0.00 0.00 0.05 0.36 0.03 0.05 0.47
500 0.03 0.00 0.00 0.04 0.37 0.03 0.05 0.48
600 0.03 0.00 0.00 0.03 0.37 0.03 0.05 0.49
700 0.03 0.00 0.00 0.02 0.38 0.03 0.05 0.49
800 0.03 0.00 0.00 0.02 0.38 0.03 0.05 0.50
900 0.03 0.00 0.00 0.01 0.38 0.03 0.05 0.50
1000 0.02 0.00 0.00 0.01 0.38 0.03 0.05 0.51
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(b) CVaR robust (β =30%) portfolios

Figure 5.6: Compositions of CVaR robust (β =60%) and (β =30%) portfolio weights for
the 8-asset example in Table 2.1.

larger β value and expect a more diversified portfolio. As discussed before, this portfolio

may achieve a lower expected return. However, it also has less variations with respect to

the initial data used to generate µ-samples. This reduces the possibility of the portfolio

having disastrous performance when there exists a potentially large estimation risk of µ.

Standard deviation

E
xp

ec
te

d
re

tu
rn

0 0.01 0.02 0.03 0.04 0.05 0.06
0

0.002

0.004

0.006

0.008

0.01

0.012

True efficient frontier
CVaR robust actual frontier
Min-max robust actual frontier

(a) 90% confidence level

Standard deviation

E
xp

ec
te

d
re

tu
rn

0 0.01 0.02 0.03 0.04 0.05 0.06
0

0.002

0.004

0.006

0.008

0.01

0.012

True efficient frontier
CVaR robust actual frontier
Min-max robust actual frontier

(b) 60% confidence level

Standard deviation

E
xp

ec
te

d
re

tu
rn

0 0.01 0.02 0.03 0.04 0.05 0.06
0

0.002

0.004

0.006

0.008

0.01

0.012

True efficient frontier
CVaR robust actual frontier
Min-max robust actual frontier
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Figure 5.7: Min-max robust and CVaR robust (β =90%, 60% and 30%) actual frontiers for
the 8-asset example in Table 2.1

We can illustrate how the diversification level of a portfolio is affected by the tolerance

level for estimation risk in µ in our CVaR robust MV model. We plot the actual frontiers

for Table 5.2(a) and Table 5.2(b) in Figure 5.7(b) and 5.7(c), respectively. Compared with

Figure 5.7(a) for β = 90%, both the maximum expected return and the associated return
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risk increase as the β value decreases. Coincidentally, in this case, the maximum expected

return in Figure 5.7(c) matches the exact solution obtained by using true parameter values

on the traditional MV model (2.6). As demonstrated in Figure 5.2(f), there can be large

variations on the compositions of the maximum-return portfolios for different runs, and

hence obtaining the exact solution for λ = 0 would not happen for every case.

Table 5.3 Percentages of diversified maximum-return (λ = 0) portfolios
Confidence level β 0% 30% 60% 90%

Diversification Percentage (CHI) 0% 53% 85% 100%
Diversification Percentage (RS) 0% 18% 37% 64%

For the 100 CVaR robust actual frontiers in each of the six graphs in Figure 5.2, we

compute the percentage of diversified maximum-return portfolios, and list them in Table 5.3.

Here a portfolio is considered to be invested in an asset if its allocation percentage is greater

than 1% and a portfolio is classified here as diversified if it consists of at least two assets.

Comparing the percentages for different β values at each row, we conclude that the non-

decreasing relationship between diversification level and β value generally holds regardless

of the µ sampling techniques.

For the same β values, the diversification percentage of the RS technique is much smaller

than that of the CHI technique. This may be due to the different distribution properties,

as indicated in Figure B.1(a)-(h) in Appendix B.

5.4 Conclusion and Remarks

In this chapter, we analyze the performance characteristics of CVaR robust portfolios in

terms of robustness, efficiency, and diversification. In the CVaR robust MV model, the

confidence level β can be interpreted as an estimation risk aversion parameter. By changing

the value of β, the conservatism of CVaR robust portfolios with respect to the estimation

risk in mean return is adjusted. We also demonstrate through examples that the maximum-
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return portfolio (with λ = 0) from the CVaR robust MV model can be more diversified than

the one from the min-max robust MV model, and the level of diversification decreases as

the value of β decreases. Of course, simply allocating the investment into a large number

of assets does not automatically make the portfolio diversified. The key is to ensure the

assets have large varieties in their risk and return characteristics. Therefore, in practice,

more detailed analysis on the nature of assets is needed for evaluating the diversification

level of a portfolio.

Although the CVaR robust MV model is theoretically effective for alleviating portfolio

estimation risk, the expensive computation may limit its applicability in practice. In next

chapter, we introduce a more efficient method for computing CVaR robust portfolios.
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Chapter 6

Efficient Technique for Computing

CVaR Robust Portfolios

One potential disadvantage of the CVaR robust MV model (4.19) (which is a QP approach),

in comparison to the min-max robust MV model (3.3), is that it may require more time to

compute a CVaR robust portfolio than a min-max robust portfolio. This chapter addresses

the computational issues for computing CVaR robust portfolios, and introduces a smoothing

approach which is more efficient than the QP approach.

6.1 Quadratic Programming Approach

This chapter begins with a computational analysis for computing CVaR robust portfolios.

In Chapter 4, we have shown that the CVaR robust MV model can be approximated by
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the QP problem (4.19):

min
x,z,α

α +
1

m(1− β)

m∑
i=1

zi + λxT Q̄x

s.t. x ∈ Ω ,

z ≥ 0 ,

zi + µT
i x + α ≥ 0, i = 1, . . . ,m ,

where each µi is an independent mean sample and m is the number of mean samples.

Given a finite number of mean samples, this QP approach uses a piecewise linear function

to approximate the continuous differentiable CVaR function. The more samples are used,

the better approximation is achieved.

A convex QP is one of the simplest constrained optimization problem, and can be solved

quickly using software such as MOSEK. However, the QP approach (4.19), similar to the

LP approach (4.18) introduced by Rockafellar and Uryasev [29] for minimizing CVaR, can

become very inefficient for large scale CVaR optimization problem. In this QP problem,

generating a new sample adds an additional variable (and constraint). Therefore, for n

risky assets and m samples, the problem has a total of O(n + m) variables and O(n + m)

constraints. Alexander et al. [1] show that when the simplex method and the interior-point

method are used in the LP approach, the computational cost can quickly become prohibitive

as the number of samples and/or assets become large. In addition, the efficiency of MOSEK

depends heavily on the sparsity structures of the QP problem. The QP problem in (4.19)

has a large dense block whose size is determined by the number of samples and the number

of assets; see Alexander et al. [1].
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6.1.1 Computational Efficiency

We illustrate below the extent of the increase in computational cost when the scale of the QP

problem becomes larger. These computational efficiency issues of the LP approach (4.18)

for minimizing CVaR have been investigated in Alexander et al. [1]. However, the main

difference is that the CVaR robust MV model (4.9) has an additional quadratic term xT Qx

because variance is used as the return risk measure. In addition, the machine used in this

study is different from the one used in Alexander et al. [1] and the computing platform and

softwares are also different versions. The computation in this thesis is done in MATLAB

version 7.3 for Windows XP, and run on a Pentium 4 CPU 3.00GHz machine with 1 GB

RAM. QP problems are solved using the MOSEK Optimization Toolbox for MATLAB

version 7.

An Example

We first consider computing the maximum-return portfolio, i.e., λ = 0; in this case the

QP (4.19) becomes the LP (4.18). We compare the CPU time used by MOSEK to solve the

LP for different asset examples with different sample sizes. The mean µ and the covariance

matrix Q for the 8-asset example are taken from Table 2.1. The µ for the 50/148-asset ex-

ample is obtained by generating 50/148 independent normally distributed random numbers

and scaling the numbers into appropriate range. The Q for the 50/148-asset is obtained by

constructing a random positive semi-definite matrix. We generate the µ-samples using both

the RS technique and the CHI technique, and report the CPU time for both techniques.

Table 6.1 illustrates the CPU time required for each combination of asset examples and

sample sizes.

It can be clearly observed from Table 6.1 that, when using MOSEK, the computational

cost increases quickly as the sample size and the number of assets increase. For examples,

for each size of the RS samples, the CPU time required by the 50-asset example is at least
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Table 6.1 CPU time for the QP approach when λ = 0: β = 0.90

RS Tech (CPU sec) CHI Tech (CPU sec)
# samples 8 assets 50 assets 148 assets 8 assets 50 assets 148 assets

5000 0.41 1.84 9.77 0.39 1.75 7.06
10000 0.88 3.56 20.41 0.77 4.25 10.38
25000 2.78 9.17 32.69 2.56 10.83 34.97
50000 4.14 17.75 61.13 5.36 19.55 123.45

twice as the one required by the 8-asset example. When the size of the CHI samples is

increased from 10,000 to 25,000, the CPU time is increased by at least 150% for each asset

example.

6.1.2 Approximation Accuracy

The QP approach (4.19) uses a piecewise linear function to approximate the continuously

differentiable CVaR function. When the number of µ-samples approaches infinity, the ap-

proximation approaches the exact value. However, as shown in Table 6.1, the associated

computational cost increases significantly as the sample size increases. Therefore, given the

trade-off between efficiency and accuracy, one has to decide the sample size using which the

computation satisfies the requirement for speed and is within the tolerance for computa-

tional error.

Recall that when λ = 0, the QP approach (4.19) is reduced to the LP approach (4.18)

which is used for solving the CVaR minimization problem. In the following experiment,

we compare the computational error of the LP approach as the sample size is increased

from 5000 to 25,000. The computational error is measured by the deviation of the CVaR

values computed at different runs from their average value. Using each of the two sampling

techniques, we generate the same number of µ-samples 100 times, and for each time, we

calculate the minimum CVaR value based on the solution obtained from the LP approach.

Let CVaRavg be the average of these CVaR values, and CVaRstd be the standard deviation
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of these values from CVaRavg. The computational error, CVaRerr, is given by

CVaRerr =
CVaRstd

CVaRavg
. (6.1)

Table 6.2 shows the CVaRerr values for different asset examples. Comparing the values

among different sample sizes, we observe that CVaRerr decreases as the sample size increases.

This means increasing the sample size improves the approximation accuracy. When the

sample size is increased from 5000 to 10,000, there is a significant improvement on accuracy

for most asset samples. For our examples, the CVaRerr (RS technique) of the 148-asset

example is decreased by 92% (from 0.13% to 0.01%), and the CVaRerr (CHI technique) of

the 8-asset example is decreased by 96% (from 13.04% to 0.52%). However, when the sample

size becomes larger (≥ 10, 000), the improvement on accuracy is much smaller. We can make

comparisons with the increases in CPU time illustrated in Table 6.1. When the sample size

is increased from 10,000 to 25,000, the largest improvement on accuracy is happened on

the 50-asset example (RS technique), whose CVaRerr is decreased by 54% (from 0.44% to

0.20%); while the corresponding increase on the CPU time is 93.57% (from 9.17 sec to

17.75 sec). In fact we compare the CVaRerr change and the CPU time change for every

asset example when the sample size is increased from 10,000 to 25,000, and observe that the

improvement in accuracy is always smaller than the increase in CPU time. These examples

indicate that one has to make a large sacrifice on efficiency for a small improvement on

accuracy when calculating the CVaR using this QP approach.

Table 6.2 CVaRerr for the QP approach when λ = 0: β = 0.90

RS Tech (%) CHI Tech (%)
# samples 8 assets 50 assets 148 assets 8 assets 50 assets 148 assets

5000 0.90 0.52 0.13 13.04 7.68 0.08
10000 0.47 0.44 0.01 0.52 1.94 0.01
25000 0.32 0.20 0.01 0.41 1.70 0.01
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The above experimental results demonstrate how the computational cost for solving the

QP problem (4.19) increases as the sample size and the number of assets are increased.

Compared to accuracy, computational cost increases much faster when the sample size

becomes larger. This indicates that using the QP approach to compute CVaR robust

portfolios can be very inefficient in practice.

6.2 Smoothing Approach

As an alternative to the QP approach (4.19) discussed in Section 6.1, we can compute CVaR

robust portfolios more efficiently via the smoothing technique proposed by Alexander et al.

[1]. It has been shown in Alexander et al. [1] that the smoothing technique directly exploits

the structure of the CVaR minimization problem, and is computationally more efficient than

the LP method. Next we investigate the computational performance comparison between

the QP approach and the smoothing approach for computing CVaR robust portfolios.

As mentioned in Section 4.4.2,

min
x

CVaRµ
β(x) + λxT Qx ≡ min

x,α
Fµ

β (x, α) + λxT Qx ,

where the function Fµ
β (x, α), which is defined as

Fµ
β (x, α) = α +

1
1− β

∫
µ∈Rn

[f(x, µ)− α]+p(µ) dµ , (6.2)

is both convex and continuously differentiable.

The QP approach (4.19) approximates the function Fµ
β (x, α) by the following piecewise

linear objective function:

F̄µ
β (x, α) = α +

1
m(1− β)

m∑
i=1

[−µT
i x− α]+ , (6.3)
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where each µi is a mean vector sample. When the number of µ-samples increases to infinity,

the approximation approaches to the exact function.

Instead of using F̄µ
β (x, α), Alexander et al. [1] suggest a piecewise quadratic function

F̃µ
β (x, α) to approximate Fµ

β (x, α). Let

F̃µ
β (x, α) = α +

1
m(1− β)

m∑
i=1

ρε(−µT
i x− α), (6.4)

where ρε(z) is defined as: 
z if z ≥ ε

z2

4ε + 1
2z + 1

4ε if− ε ≤ z ≤ ε

0 otherwise.

(6.5)

For a given resolution parameter ε > 0, ρε(z) is continuous differentiable, and approximates

the piecewise linear function max(z, 0).

Figure 6.1 graphically compares the integral approximation achieved by functions 1
m

∑m
i=1[Si−

α]+ and 1
m

∑m
i=1 ρε(Si−α), where α and Si are chosen from the range [−3, 3] and [−1.2, 1.05]

respectively; Figure 6.1(a) is for m = 3 and Figure 6.1(b) is for m = 10, 000. As can be

observed, as the number of independent samples m increases, the difference between the

two functions becomes smaller.

Applying the smoothing formulation (6.4), the CVaR robust MV model (4.9) can be

formulated as the following problem:

min
x,α

α +
1

m(1− β)

m∑
i=1

ρε(−µT
i x− α) + λxT Q̄x

s.t. x ∈ Ω ,

(6.6)

where λ ≥ 0 is a risk-aversion parameter. Note that when λ = 0, investors want to minimize

the (1 − β)-tail of the portfolio mean loss distribution without considering the associated
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Figure 6.1: Approximation comparison between piecewise linear function 1
m

∑m
i=1[Si − α]+

and smooth function 1
m

∑m
i=1 ρε(Si − α) with ε = 1.
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risk. In this case, the term λxT Q̄x is eliminated, and the problem (6.6) is reduced to the

CVaR minimization problem via the smoothing technique.

While QP formulation (4.19) has a total of O(n + m) variables and O(n + m) con-

straints, the smoothing formulation (6.6) only has O(n) variables and O(n) constraints.

Therefore, increasing the sample size m does not change the number of variables (and con-

straints). We illustrate in the following that the smoothing approach significantly reduces

the computational cost required for computing CVaR robust portfolios.

6.3 Comparisons Between the QP and Smoothing Approaches

6.3.1 Computational Efficiency

In Table 6.3, we report the CPU time required by the smoothing approach (6.6) for the same

example in Table 6.1, which is included again for the ease of comparison. The smoothing

approach is implemented based on the interior-point method introduced by Coleman and Li

[10] for nonlinear minimization with bound constraints. The computation is done for both

the RS and CHI sampling techniques, for which the CPU time is illustrated in Table 6.3(a)

and 6.3(b), respectively.

The Case λ = 0

Comparing the CPU time between the two approaches, we observe that the smoothing

approach is much more efficient than the QP approach for both sampling techniques. The

problem of 148 assets and 25,000 samples can now be solved in less than 11 CPU seconds

via the smoothing approach; while the same problem is solved in more than 30 CPU seconds

via the QP approach. The CPU efficiency gap increases as the scale of the optimization

problem (including the sample size and the number of assets) becomes larger. For 8 assets

and 5000 samples, there is a small difference between the CPU time used by the two
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approaches. However, when the number of assets exceeds 50 and the sample size exceeds

5000, the difference becomes significant. All of these comparisons show that the smoothing

approach achieves better computational efficiency.

Table 6.3 CPU time for computing maximum-return portfolios (λ = 0) MOSEK vs.
Smoothing (ε = 0.005): β = 0.90

(a) RS Technique

MOSEK (CPU sec) Smoothing (CPU sec)
# samples 8 assets 50 assets 148 assets 8 assets 50 assets 148 assets

5000 0.41 1.84 9.77 0.34 0.50 2.55
10000 0.88 3.56 20.41 0.56 1.34 4.08
25000 2.78 9.17 32.69 1.22 3.28 8.11
50000 4.14 17.75 61.13 2.34 6.77 20.05

(b) CHI Technique

MOSEK (CPU sec) Smoothing (CPU sec)
# samples 8 assets 50 assets 148 assets 8 assets 50 assets 148 assets

5000 0.39 1.75 7.06 0.42 0.34 1.98
10000 0.77 4.25 10.38 0.75 0.50 4.13
25000 2.56 10.83 34.97 1.77 1.36 10.25
50000 5.36 19.55 123.45 1.81 3.61 18.52

The Case λ ≥ 0

Next we compare the CPU time between the QP approach and the smoothing approach for

different λ values used in the CVaR robust MV model. Here we are interested in the CPU

time difference not only between the two approaches, but also among different λ values of

the same approach. Using four different λ values, Table 6.4 illustrate the CPU time required

by both approaches. The 148-asset example is used for this experiment and µ-samples are

generated using the RS technique. It can be observed that, with the same sample size, the

smoothing approach is more efficient for each λ value. In addition, the CPU time required

by the QP approach varies significantly with different λ values; while the one required by

the smoothing approach is relatively insensitive to the value of λ. The best CPU efficiency

of the QP approach is obtained for λ = 0 (when the covariance matrix Q is not used for

optimization). However, when λ values are positive, the CPU time is significantly increased.
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For example, the CPU time required by the QP approach for λ = 0.1 is about twice as much

as the one for λ = 0 when 10,000 samples are used, and is about three times when 25,000

samples are used. This clearly indicates the increase in computational cost when Q is

involved in the computation. On the other hand, this impact is minor for the smoothing

approach, and sometimes the CPU time for positive λ values is even less than the one for

λ = 0. Note that the increase in positive λ values does not necessary result an increase

in CPU time. As an example, when 10,000 samples are used, both approaches require less

CPU time for λ = 1000 than that for λ = 0.1.

Table 6.4 CPU time for different λ values (ε = 0.005) for the 148-asset example: β = 0.90

MOSEK (CPU sec) Smoothing (CPU sec)
# samples 0 0.1 10 1000 0 0.1 10 1000

5000 10.42 11.13 14.75 15.19 2.31 2.16 2.14 2.58
10000 18.33 42.77 29.41 36.66 3.70 3.55 4.00 3.36
25000 29.59 89.06 95.31 122.72 7.66 7.95 7.16 7.58
50000 56.36 163.17 202.17 210.78 21.28 21.55 19.27 17.41

6.3.2 Approximation Accuracy

In addition to computational efficiency, Alexander et al. [1] analyze the accuracy of the

smoothing technique when it is applied for minimizing the CVaR for a portfolio of deriva-

tives. They compare the difference between the CVaR values computed based on the LP

approach implemented with MOSEK and the smoothing approach, and examine the impact

on this difference when the value of the resolution parameter ε in (6.6) is changed. Here we

conduct the same analysis for our CVaR robust MV model (6.6) that applies the smoothing

technique. We determine the following relative difference in the CVaRµ value computed via

the smoothing approach:

QCVaRµ =
CVaRµ

s − CVaRµ
m

| CVaRµ
m |

, (6.7)
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where CVaRµ
s and CVaRµ

m are the CVaRµ values obtained by using the QP approach and

the smoothing approach, respectively. For comparison purpose, each pair of CVaRµ
s and

CVaRµ
m are computed based on the same set of µ-samples generated from the RS technique.

In addition, the confidence level for CVaRµ, β, remains fixed and is set to 0.90.

For our analysis, we compare the QCVaRµ for different sample sizes (including 10,000,

25,000 and 50,000), and determine the change on its value when sample size is increased.

The effect of using the smoothing approach for approximation depends on the resolution

parameter ε. Alexander et al. [1] suggest that the value of ε should be chosen between

0.05 to 0.005, and ε should be smaller for a larger sample size since this leads to a better

approximation. The ε parameters used in our analysis are 0.005, 0.001 and 0.0005, and the

CPU efficiency for each ε is evaluated.

Table 6.5 compares both QCVaRµ and CPU time for different sample sizes and ε values.

As expected, given the same ε, the absolute value of QCVaRµ decreases when the sample size

increases. This indicates that the difference between the CVaRµ values approximated by

the two approaches become smaller. The difference for the same sample size also becomes

smaller when ε is decreased from 0.005 to 0.001, however, tends to be unchanged when ε is

decreased from 0.001 to 0.0005. This shows that when the value of ε is small, the sample size

has to increase much faster to make a noticeable decrease in the approximation difference.

Note that when ε = 0, the problem (6.6) with a finite number of samples is no longer smooth,

i.e., the objective function F̃µ
β (x, α) is no longer continuously differentiable. Therefore, in

the smoothing approach, ε can never be set to 0 and demonstrating the convergence on

QCVaRµ for ε approaches 0 will be computationally difficult.

It is expected that increasing the sample size causes the increase in CPU time. This is

the expense for obtaining a better approximation. However, according to the comparisons

made on CPU time in Table 6.3, this computational cost has been significantly decreased

by the smoothing approach.
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Table 6.5 Comparison of the CVaRµ values computed by MOSEK and the proposed
smoothing technique for different resolution parameter ε, β = 95% and λ = 0

(a) ε = 0.005

50 assets 148 assets 200 assets
# samples QCVaR(%) CPU sec QCVaR(%) CPU sec QCVaR(%) CPU sec

10000 -1.1225 2.61 -0.2253 3.83 -0.2260 8.81
25000 -0.0939 5.09 -0.0889 10.58 -0.0883 23.41
50000 -0.0513 5.11 -0.0459 19.39 -0.0472 44.86

(b) ε = 0.001

50 assets 148 assets 200 assets
# samples QCVaR(%) CPU sec QCVaR(%) CPU sec QCVaR(%) CPU sec

10000 -0.2974 1.86 -0.2236 2.44 -0.2234 4.28
25000 -0.0934 3.00 -0.0882 5.59 -0.0880 10.44
50000 -0.0504 4.14 -0.0454 12.52 -0.0466 29.20

(c) ε = 0.0005

50 assets 148 assets 200 assets
# samples QCVaR(%) CPU sec QCVaR(%) CPU sec QCVaR(%) CPU sec

10000 -0.2784 3.50 -0.2236 2.91 -0.2231 3.58
25000 -0.0934 3.80 -0.0882 5.19 -0.0879 8.16
50000 -0.0504 4.67 -0.0454 13.22 -0.0466 16.88
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6.4 Conclusion and Remarks

In this chapter, a smoothing technique is implemented for computing CVaR robust port-

folios. Unlike the QP approach, which uses a piecewise linear function to approximate the

CVaR function, the smoothing technique uses a piecewise quadratic function which is con-

tinuous differentiable. As the number of µ-samples increases, the smoothing approximation

approaches the CVaR function. Comparisons on computational efficiency and approxima-

tion accuracy are made between the two approaches. We show that, the smoothing approach

is more computationally efficient in terms of CPU time for computing CVaR robust port-

folios. In addition, when choosing appropriate resolution parameters and sample sizes, the

CVaRµ values obtained by the smoothing approach can be very close to the one obtained

by the QP approach.
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

The classical mean-variance (MV) portfolio optimization model is typically based on the

nominal estimates of mean returns and a covariance matrix from a set of return samples.

Given that the number of return samples is limited in practice, the resulting optimal port-

folios can vary significantly with the set of initial return samples; the actual performance

of the MV efficient frontier can be potentially very poor. In this thesis, we investigate

the estimation risk in the MV model and how it is addressed in a robust MV model. We

consider estimation risk only in the mean returns and ignore that in the covariance matrix.

Recently, min-max robust mean-variance portfolio optimization has been proposed to

address the estimation risk. With an ellipsoidal uncertainty set based on the statistics of the

sample mean estimates, the resulting portfolio from the min-max robust MV model equals

to the one from the standard MV model based on the nominal mean estimate but with a

larger risk aversion parameter. We show that, with an interval uncertainty set [µL, µU ], the

resulting min-max robust portfolio is essentially the MV optimal portfolio generated based

on the lower bound µL. Of course, the min-max robust optimization problem becomes more
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complex when other types of uncertainty sets are used. But the min-max robust MV model,

by nature, emphasizes the best performance under the worst-case scenario. In addition, it is

difficult to select the appropriate uncertainty set in general. The min-max robust portfolio

also ignores any probability information in the uncertain data.

We show that the min-max robust portfolio can also be very sensitive to the initial

data used to generate an uncertainty set. In addition, if µL corresponds to the worst

possible scenario, the min-max robust portfolio can be conservative and unable to achieve

a sufficiently high expected return. Adjustment of the level of conservatism in the min-max

robust MV model can be achieved by excluding bad scenarios from the uncertainty sets;

but this is philosophically unappealing.

Given the existence of estimation risk, certain level of variation in actual frontiers (even

from robust methods) are inevitable. However, due to smaller estimation error in the co-

variance matrix, variance-based actual frontiers tend to have small variations over the entire

frontiers. Furthermore, we show, via examples, that the variance-based actual frontiers can

sometimes be more efficient than the min-max robust actual frontiers. Thus the deviation

of actual frontiers from the true (unknown in practice) efficient frontier is also important.

In addition, proper mechanism in adjusting the level of conservatism is crucial in practice.

We propose a CVaR robust MV portfolio optimization model to address the estimation

risk in mean return. In this model, a robust portfolio is determined based on a tail of worse

portfolio mean loss scenarios, rather than nominal estimates (as in classical MV) or a single

worst-case scenario (as in min-max robust). When the confidence level β is high, CVaR

robust optimization focuses on a small set of extreme mean loss scenarios. The resulting

portfolios are optimal against the average of these extreme mean loss scenarios and tend to

be more conservative with respect to estimation risk.

More aggressive robust portfolios can be generated with a smaller confidence level β in

the CVaR robust MV model. In contrast to the min-max robust MV model, the decrease in
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the level of conservatism is achieved by including a larger set of better mean loss scenarios;

this results in less focus on the extreme poor scenarios. Decreasing the confidence level β

corresponds to more acceptance of estimation risk, and our computational results suggest

that there is little variation in the efficiency of the CVaR robust actual frontiers. Indeed, it

seems reasonable to regard β as a risk aversion parameter for estimation risk.

When the uncertainty set is determined based on a quantile of the uncertain parame-

ters with respect to an assumed distribution, the min-max robust MV model is essentially

quantile-based. The CVaR robust MV model, on the other hand, is tail-based. Because of

this, there are some crucial differences in the diversification of the robust portfolios gener-

ated from the two models. For example, in spite of the robust objective, the investment

allocation for the min-max robust portfolio with λ = 0 (which achieves the maximum ex-

pected return) typically concentrates on a single asset, no matter what quantile value is

chosen to be µL. The corresponding CVaR robust portfolio, on the other hand, typically

consists of multiple assets for a high confidence level, e.g., β = 90%. The level of diversifi-

cation decreases as the value of β decreases. When β = 0, the CVaR robust portfolio with

λ = 0 typically consists of a single asset as well.

Both the min-max robust and CVaR robust MV models are based on the distribution

information of mean returns. However, this information may not be known precisely in

practice. There are however statistical results and heuristic sampling techniques to generate

some distributions for the uncertain parameters. In this thesis, we consider a RS-sampling

technique and a CHI-sampling technique based on statistics of the parameter estimates.

We demonstrate through computational examples that, using the two different sampling

techniques, the characteristics of the CVaR robust actual frontiers obtained are similar.

Finally, we investigate the computational issue of the CVaR robust MV model, and

implement a smoothing technique for computing CVaR robust portfolios. Unlike the QP

approach, which uses a piecewise linear function to approximate the CVaR function, the
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smoothing approach uses a piecewise quadratic function that is continuously differential.

We show that the smoothing approach is computationally more efficient for computing

CVaR robust portfolios. In addition, as the number of mean return samples increases, the

difference between the CVaR values approximated by the two approaches become smaller.

7.2 Possible Future Work

There are several potential extensions to our work. First, compared with the covariance

matrix Q, the estimation error in the mean return µ is typically much larger, and the impact

on the optimal portfolio selection is more severe; see Broadie [7] and Merton [24]. For this

reason, we address the estimation risk in µ only and ignore that in Q. One possible future

work is to extend the CVaR robust MV model to address the estimation risk in Q as well,

and investigate possible techniques to compute the resulting CVaR robust portfolios.

Second, computing CVaR robust portfolio requires the distribution information of µ.

We generate the distribution of µ by utilizing two sampling techniques that are based on

different µ distribution assumptions: one is the RS technique and the other is the CHI

technique. It would also be interesting to investigate the characteristics of CVaR robust

portfolios that are based on other sampling techniques (such as bootstrapping and moving

average). In particular, it is necessary to verify the performance of CVaR robust actual

frontiers (such as: robustness, portfolio efficiency and portfolio diversification) are consistent

for different µ sampling techniques.

Finally, we have shown in Chapter 6 that the smoothing approach is more efficient than

the QP approach for computing CVaR robust portfolios. However, due to the scenario-based

nature, the smoothing approach can still be time-consuming, especially when compared

with the min-max robust MV model. Therefore, there is still room for enhancing the

computational performance of the smoothing approach. For example, the current starting
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point of the interior-point method implemented by the smoothing technique is the middle

of the convex feasible region. Since the choice of the starting point can have significant

impact on the speed of convergence, effective algorithms can be explored to determine the

best starting point so that the computation efficiency of the smoothing approach can be

improved.
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Appendix A

Theorems and Proofs

This section provides Theorem A.1 (and its proof) in Zhu et al. [33] that is used for

proving Theorem 3.1.

Theorem A.1. Assume that Q̄ is symmetric positive definite and χ ≥ 0. The min-max

robust portfolio for problem

min
x

max
µ
−µT x + λ

√
xT Q̄x

s.t. (µ̄− µ)T Q̄−1(µ̄− µ) ≤ χ

eT x = 1, x ≥ 0

(A.1)

is an optimal portfolio of the mean-standard deviation problem

min
x

−µT x + λ
√

xT Qx (A.2)

s.t. eT x = 1, x ≥ 0

with nominal estimates µ̄ and Q̄ for a larger risk aversion parameter λ +
√

χ.
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Proof. Firstly we note that x = 0 is not a feasible point for (3.11).

For any x 6= 0, let µ∗ be the minimizer of the inner optimization problem in (3.11) with

respect to µ, i.e., µ∗ solves

min
µ

µT x

s.t. (µ̄− µ)T Q̄−1(µ̄− µ) ≤ χ .

Then there exists some ρ < 0 such that

x− ρQ̄−1(µ∗ − µ̄) = 0 .

Thus

µ∗ = ρ̄Q̄x + µ̄, where ρ̄ =
1
ρ

< 0.

From

Q̄− 1
2 (µ∗ − µ̄) = ρ̄Q̄

1
2 x

and

(µ̄− µ∗)T Q̄−1(µ̄− µ∗) = χ ,

we have

ρ̄2 =
χ

xT Q̄x
and ρ̄ = −

√
χ√

xT Q̄x
.

Thus the min-max robust mean-standard deviation portfolio can be obtained from

min
x
−µ̄T x + (λ +

√
χ)

√
xT Q̄x

s.t. eT x = 1, x ≥ 0 .

This completes the proof.

99



Appendix B

Distributions from RS and CHI

Sampling Technique

(a) Asset 1 (b) Asset 2 (c) Asset 3 (d) Asset 4

(e) Asset 5 (f) Asset 6 (g) Asset 7 (h) Asset 8

Figure B.1: Distribution of mean return samples generated by sampling techniques RS(top)
and CHI(bottom) for each asset in Table 2.1.
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