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Abstract 

For j = 1,. . . , k let Cj be a Cantor set constructed from the interval I j ,  and let 

cj  = f 1. We derive conditions under which 

When these conditions do not hold, we derive a lower bound for the Hansdorff di- 

mension of the above sum and product. We use these results to make corresponding 

statements about the sum and product of sets F(Bj) ,  where Bj is a set of positive 

integers and F(Bj)  is the set of real numbers z such that all partial quotients of 

x, except possibly the first, are members of Bj. We also examine cases where our 

conditions do not hold, but in which it is still the case that Cl + 4 contains an 

interval. 
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Chapter 1 

Introduction 

Let z be a real number. We say that z is k d l y  approzimable if there exists a 

positive integer n such that for every rational number plq, 

It can be shown that this set is of Lebesgue measure zero; however, it is still quite 

large. In 1947 Marshall Hall [8] showed that every real number can be expressed as 

the sum of two badly approxixnable nnmbers. In particular, for a positive integer 

rn let F(m) denote the set of numbers 

where by [ao, al, az, . . . ] we denote the infinite continued bct ion 
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with partial quotients ao, a*, a2 and so on. It can be shown that for every x E F ( 4 )  

so that F(4) is a set of badly approxknable numbers. Hall proved that 

where we define the s u m  of two sets of real numbers A and B by 

In 1973 Bohuslav D i d  (61 and Tom Cusick [3] showed independantly that one could 

not do much better than Hall's result, namely that 

In 1975 James Hlavka [lo] generalized H d ' s  results to the case of diffkrent sets 

F(m) and F(n) . He proved that 

holds for (m, n) equal to (2,7) or (3,4), but does not hold for (m, n) equal to (2,4). 

Now, if (1.1) holds, then the same equation holds with rn and n replaced by m' 

and n' respectively, where m' 2 rn and n' 2 n. Further, if either m or n is 

equal to one then trivially (1.1) does not hold, since F(l) consists of the points 

{ [ t ,  1,1,1.. . I  ; t  E Z). Hence the only cases of interest left are (m, n) = (2,5) and 

(m,n) = (2,6). Hlavka conjectured that in these two cases (1.1) would not hold. 

W e  will show that in both cases Hlavka'lr conjecture is falae. 

We can also examine the difference of two sets F(m) and F(n). If A is a set of 

real numbers we define -A by 
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and denote A + (-B) by A - B. We have the following result. 

Theorem 1.0.1 Let m and n be integers. The equations 

F ( m ) +  F ( n ) = R  and F ( m ) -  F ( n ) =  W 

hold if (m, n)  equals (2,5) OT (3,4). Neither of the aboue equations hold zf (m, n)  

equals (2,4). Additionally, 

F(3) + F ( 3 )  # R and F(3)  - F ( 3 )  = W. 

In 1971 Thomas Cusick [2] examined the complementary case of s u m s  of red 

numbers whose continued fraction ur, msion cont aim only large partial quotients. 

For each positive integer 1 we define the set G(1) b y  

G(1) ={[t,al,a2, . . . I ;  t E Z and q 2 Ifor i 2 1) 

U{[t,al,az ,..., a k ] ; t , k ~ Z , k 2 0 a n d ~ 2 1 f o r 1 < i ~ k ) .  

Cusick proved that 

G(2) + G(2) = B. 

The above results are special cases of the following general problem. Let B 

be a set of positive integers. If B is a finite set, we let F(B) denote the set of 

real numbers which have an infinite continued fraction expansion with all partial 

quotients, except possibly the first, members of B. For B infinite, we define F(B) 

similarly, but also allow numbers with finite continned fraction expansions. Thus 

if we define 

L = { l , 2 , . ,  m} and & = { l , l + ~  ,... } 

for positive integers m and I, then F(m) = F(L,,,) and G(1) = F(U'). For sets of 

positive integers Bl and Ba, we wish to know when 
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and when 

We shall derive conditions on the sets Bl and B2 such that (1.2) and (1.3) follow. 

Let B = { b l ,  b 2 , .  . .) be a non-empty set of positive integers with bl < b2 < . . . . If 

lBl = 1 then we put r ( B )  = 0. Otherwise, we set 

I = I(B) = min B and Ai = 

for 1 i < IBI. If B is a fmite set with IBI > 1 

m = m(B) = max B, 6 = 6(B) = 

then we put 

and 

( m -  bi+i+l)lm+J(m- 1 )  bJ +S -1. 
Ailm - J(m - 1 )  Im+S 

If B is an infinite set then we put 

If we let A = m q  Ai then if 1 < IBI < oo we have 

and if B is infinite then 
1 

It is a simple mattez to calculate r (8 )  for various sets B (see Table 1.1). 

We denote the HaasdorfF dimension of a set S by 'dim&. To help determine 

whether (1.2) and (1.3) hold we will prove the following theorem. 
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Table 1.1: Values of r( B )  for certain B 

Theorem 1.0.2 Let 

{I1 -1)- 

B1 and B2 be sets of positiue integers, and take € 1 ,  €2 E 

1.  If r (Bl)r(Ba) 2 1 then c F ( B l )  + s2F(B2) = R. 

2. If r (Bl)r(BZ)  < 1 then 

d ima(dyB1)  + a2F(&)) 2 
log 2 

For example, we have 

The positive resalts in Theorem 1.0.1 follow in part from Theorem 1.0.2. In addition 

we mention the following corollaries. 

Corollary 1.0.3 If I and m are positiue integers with m 2 21, then 
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Corollary 1.0.4 Let Bo denote the set of positive odd integers. Then 

Furthermore, if B is any finite set of odd positive integers then we have 

Note that if B(m) is the set of positive odd integers less than m, then r (B(m))  

approaches one as m tends to iafinity. Thus part 1 of Theorem 1.0.2 is tight in the 

sense that we cannot replace 1 by any a m a h  number. 

D i d  [6], Cusick [3], and Hlavka [lo] also developed techniques that allowed 

them to examine the sum of more than two F(n)'s. DivG and Cusick showed 

independantly that 

F(3)  + F(3) + F(3)  = R and F(2)  + F ( 2 )  + F(2)  + F ( 2 )  = 

while 

Hlavka proved that 

holds if (I, rn, n) equals (2,2,4) or (2,3,3) but does not hold for ( I ,  m, n) equal to 

(2,2,3). Together with the work on sums of two F(m)'s, these results allow us to 

determine those finite sets of positive integers {ml, .  . . , mk) for which 

In the case of sums of integers with large partial quotients, Thomas Cusick and 

Robert Lee [5] showed in 1971 that 
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for every positive integer I, where lG(2) denotes the s u m  of I copies of G(1). We 

shall extend this to the case where the summands are unequal. 

Theorem 1.0.5 If k and Z1, 1 2 , .  . . ,4 are positiue integers with 

then 

Note that if 1 is a positive integer and we set 6 = I and it = l2 = = lk = I 

then we recover (1.5). 

For a non-empty set of positive integers B we define 7 ( B )  by 

Theorem 1.0.5 is a consequence of the following general theorem. 

Theorem 1.0.6 Let k be a positive integer and &, B2,. . . , Bk be non-empty sets 

of positive integers. Let E j  E {I, -1) for j = 1,. . . , k. If . 

k 

then 

Otherwise 
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Hall and Cusidr also examined products of numbers with bounded partial quo- 

tients. For sets A and B of real numbers, we define the product of A and B by 

and A-' by 

A-' = { l / a ;  e E A and a # 0). 

We also denote by A / B  the set A (B-I). Hall [8] proved that 

while Cusick [Z] established that 

We shall derive the following multiplicative analogue of Theorem 1.0.6. 

Theorem 1.0.7 Let k be o positive integer. For j = 1,. . . , k let Bj be a set of 

positive integers and let Ej E (1, -1). Set 

and 

F = F (&)" F (B2)* F (&)" . 

1. If ST > 1 and Se = k then there exists a positive real number cl such that 

F 2 (-m, -a] U [el, a)* 
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2. If S, > 1 and 1S.I < k then 

9. If ST > 1 and there exists T such that IB. I = 00 and 6 = 1 then 

F = W. 

4. If S, = 1 and S. = k then there ezists a positive real number C* such that 

8' 2 [s, -)* 

5. If S, = 1 and ISJ < k then (0,ao) F. 

6. If ST = 1 and there ezists r svch that 1B.I = 00, 4 = 1 and Ai(&) is con- 

stant, then F = W. 

7. If S, < 1 then 
log 2 

dimHF log (1 + &) 
For particular choices of Bj we can calculate cl and c2 m the above theorem 

ewplicitly. If we denote by ( a l ,  a2, . . .) the continued fraction [0,01, a*, . . .] and 

let [a0, . . . , a&, 'm] = [ao, . . . , a&, bl, 4, bl, b, . . . 1, then we have the following im- 

provements to (1.8). 

Theorem 1.0.8 Let m and n be integers with n 2 m, rn 2 3 and n 2 4, or 

(m,n) = (2,7). Then 
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Theorem 1.0.9 Let k 2 3 and for 1 < t 5 k let  % E Z with mt 2 2. Assume 

Put 
k - - 

a = ( I ,  1) ( 1  - ( 1 ) )  and ,8 = n(l - (fi)). 
Then 

k 
(-00, -a] u [P, OD), if k is even; 

t=1 (-0% -PI U [at 4, i f k  is odd 

We may also strengthen and generalize (1.9). 

Theorem 1.0.10 If k and 11, 12, . . . , Ik aTe positive integers with 

then 

G(h)  G(4) = R. 

If s(L, )r (L, )  < l1 then it stin might be the case that F(m) + F(n) and 

F(m)F(n)  contain intervals; in fact in 1977 Hanno Schecker (141 proved that F(3) + 
F(3) contains an interval. Inspired by his approach we wil l  show that 

F(5)f  F(2)  = R and F ( 3 ) -  F(3)  = B  

which will partially prove Theorem 1.0.1. Additionally, we shall provide the follow- 

ing characterization of F (3) + F (3). If w = dldz - * * 4 is a finite word with 4 E Zf 

for 1 5 i t then we wil l  abuse notation by patting 
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and 

Theorem 1.0.11 Put 

and 

S = {2(d1, d2 , .  . .) ; 4 E {1,3) and if 4 = 1 then 4+1 = 3,  for i > 1 )  

where M is the set of finite words v = d l - * &  such that t 2 0,  4 E {1,3) for 

1 5 i t ,  and if dk  = 1 for some k then t 2 k + 1 and dk+l = 3. Then 

F ( 3 )  + F ( 3 )  = (Z + R) u (Z + S) .  

Furthenno~e, Z + S contains an uncountable set of points not contazned in Z + R. 

It should be noted that Theorem 1.0.11 contradicts work of Gregori Freiman. 

In [7] Fkeiman claims to have proven that C(Ls) + C(L3) = R where R is defined 

as in Theorem 1.0.11. However, in his proof that z + y E R for every z, y E C(L3)  

he assumes that z # y and hence misses the set S described in Theorem 1.0.11. 

Finally, we shall examine the products F(5)  F(2) and F(3) F(3) ,  achieving 

the following result. 

Theorem 1.0.12 There ezists a nai number cl such that 

(-ao, ct] U [el, oo) F(5)  F(2)  and (om, cl] U [cI, m) F ( 3 )  F(3) .  
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As in the works of HalI, Cusick and Lee, Divii and Hlavka, our results hinge on 

the study of certain Cantor sets. For any set of positive integers B we define the 

set C ( B )  by 

C(B) = {(al, a*, . . .) ; % E B for every i) 

where numbers with a finite continued fraction expansion are induded in C(B) if 

and only if B is an infinite set. We shall show that the sets C(B) may be viewed as 

Cantor sets. We then derive results on sums and products of Cantor sets to prove 

our results. 

The majority of the results contained in Chapters 3 through 5 and Sections 

6.1 and 6.2 will appear shortly [I]. For a good general survey of work related to 

numbers with bounded partial quotients, see (151. 



Chapter 2 

Background Informat ion 

2.1 Continued Fractions 

Let all . . . , u,, be a finite sequence of positive integers, and let uo be an integer. We 

denote by [ao, al, . . . the number 

By an abuse of notation we also call [ao, al, . . . , an] a continued ficrction npnsen- 

tation of a. The ictegers ao, . . . , s, are called partial quotients of a. If cao E Z and 

the limit 

provided the limit &ts. The following lemma guarantees that it does. 
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Lemma 2.1.1 Let a* E Z and let al, a2, . . . be an infinite sequence of positive 

dnt egers. Then 

lim [ao,a1,. ,an] 
n+oc 

ez is ts .  Fthhemore, i f  a is a positive real number then there ezists a sequence 

ao ,a l , .  . . such that 

a = [ao,al , .  . . I .  

Proof. See [9, Theorems 162, 165 and 1701 . 

Let a0 E Z and ol, a2,. . . be a sequence of positive integers, and put a = 

[ao, al ,  . . .]. For n E Z such that u,, exists we define pn and qn to be the coprime 

integers with q, > 0 and 

We call pJqn then nL conue~gent to a. 

We also define p, and qn for n = -2 or n = -1 by 

By elementary properties of continued fractions we have the following lemma. 

Lemma 2.1.2 Let pm/q, be the n* convergent to [ao, al, . . .I .  Then 

for n 2 0. 
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Proof. See [9], Theorem 149. 

We can extend the definition of [ao, al,. . .] to allow any real numbers not less 

than one to be partial quotients. huther, we can take a0 to be any real number. 

The previous lemmas hold with this extended definition, and additionally we have 

the following result. 

Lemma 2.1.3 For a fized T 2 0 and 1 5 i 5 4 assume that Gi = [aO, al,  . . . , G, gi] 

for some red gi > 0. For 0 n 5 T let p,,/q, be the nth convergent to (00,. . . ,%I ,  
and put Q = q,-l/q,. Then 

and 

Proof. See [lo], Lemmas 4 and 5. 
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2.2 Hausdorff Dimension 

For any subset U of R we define the diameter of U, denoted d ( U ) ,  to be 

Let E W and take r to be any positive real number. We define a countable c-cover 

of E to be any countable collection {Ui)  of subsets of B such that 

for i 2 1. We also define, for positive real numbers s ,  

where the infimum is taken over all countable rcovers {Ui) of E. For s > 0 we 

define the H a w d o ~ f f  s-dimensional outer measufe of E,  denoted X'(E),  to be 

W ( E )  = lim 7.1:(E) = sup 'H:(E). 
#-+a e>O 

The Hausdorff dimension of E, denoted by dimH(E), is defined to be the unique 

number s such that 
I 

If E R and f : E + R is a function then we define the image of f to be 

We have the following results. 
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Lemma 2.2.1 Let E be a set of real numbers with f : E + HP such that for some 

positive constant c, 

If(4 - f ( y ) I  I clz - YI 

Proof. See [ll, p. 441 . 

Lemma 2.2.2 Let S [a, b] be a set of na l  numbe~s with a > 0. Then 

dimH(S) = dimw (log S). 

Proof. For every z ,y  E S, 

and the lenuna follows &om Lemma 2.2.1. 

2.3 Cantor Sets 

Let T be a connected directed graph. We say that T is a tree if every vertex V of T 

has at most one edge terminating at V, and one vertex VR has no edges terminating 

at VR. We call VR the root of T. If there is an edge connecting Vl to V2, then we 
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say that is a subvertex of Vl. A vertex with no subvertices is called a leaf. A tree 

where each vertex has at most t subvertices is called a tree of valence t. A tree of 

valence 2 is also called a binary tree. 

We define a generaked Cantor set (henceforth hown as a Cantor set) to be 

any set C of real numbers of the form 

where I is a finite dosed interval and {Oi ; i 2 1) is a countable (finite or infinite) 

collection of disjoint open intervals contained in I. We may inductively define a 

binary tree 2) that will represent C. Let the root of the tree be the interval I .  We 

say that { I )  is the zeroth level of the tree. Now say that we have defmed our tree 

up to the n* level. We define the (n + l)th level of the tree as follows. Let Iw be 

an nth level vertex of our tree. Assume first that 

Let Op be the interval in the set {Oi ; i 2 1) of least index which is contained in 

I", and let Iwa and Iwl be dosed intervals with 

where the d o n  is disjoint. We let Im and P1 be subvertices of IW in 2). If 

then we set IM = Iw and let Id be a subverter of Iw in D. We repeat this process 

for every vertex I"' in the nth level of 2). The (n + 1)" level of the tree is the set of 

vertices P in D with ivl = R + 1, where lvl denotes the length of the word v .  We 

continue this process inductively, creating the infinite tree D. Note that 

{Or- ; I'" is a bridge of 2)) = {Oi ; i 2 1) 
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hence 

Any tree with this property is said to be a derivation of the Cantor set C from I .  

The intervals I ,  1°, . . . are called bridges of the derivation, while the open intervals 

Or) Op). . . are called gaps of C. If r" is a bridge of D then we say that I" splits 

For example, if C is the usual middle-third Cantor set we may take a derivation of 

C to be the tree Z> with root I = [O, 11 and bridges 

for all finite binary words dl 4 . . .A. 

Note that the derivation D of a Cantor set C is not uniquely determined by C; 

for exampie, if we change the order in which the open intervals are removed then 

we get a different derivation but the same Cantor set. 

We denote the length of an interval I by 111. We say that a derivation D is 

ordered if for any bridges A and B of 2) with A = Ao u OA u A', B = Ba U OB U B1 

and B A we have 10Al 2 10B1. 

Cantot sets arise in the study of real numbers whose partial quotients are mem- 

bers of a given set. Let B = {b l ,  b, . . . , bt) be a G t e  set of positive integers with 

t 1 2 a n d b 1 < - - < & .  W e s e t I = l ( B ) = m i n B = ~ , m = r n ( B ) = m a x B = ~ ,  

and let I ( B )  be the dosed intenral 
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We have C ( B )  C_ I (B ) .  We now inductively construct a derivation D ( B )  of C(B) 

from I (B) .  For any red a and b, we denote by [[a,  b]]  and ((a. b)  ) the intervals 

[[a, bl1 = [min{a, b ) ,  =={a, &)I 

and 

If, for i < t ,  

- - 
A = [[(oh * , a+, bi, m, l ) ,  (GI, , %, m, 1,m)lI (2.2) 

is a bridge of V(B) of level n, then we form the subvertices of A by setting 

and 

In this manner we construct the (n + l)h level of the derivation from the nth level. 

Note that Ao is of the form (2.2) with 4 + 1  = bi and bi replaced by 1. Similarly A' 

is $SO of the form (2.2). Since I(B) is of the form (2.2) with r = 0 and i = 1, by 

induction we obtain the canonicd derivation D(B) of C(B) from I(B).  

If B is an infinite set then we may construct a similar derivation. Assume that 

B = { b l ,  ...) w i t h & < k l f o r i z l .  Ifweset l = I ( B )  =minB=bl  thenwe 

have C(B) I (B)  where I (B)  = [O, 1/lj and 
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is a bridge, then we split A by setting 

and 

where by convention we set ( a l , .  . . , q) = 0 if r = 0. As above, we construct the 

canonical derivation V(B) of C(B) from I (B)  using this process. 

For given sets of integers Bj, j = 1,. . . , k, we would like to be able to determine 

To do this we shall dexive criteria on general Cantor sets that guarantee (2.4) 

holds. Our conditions will be less stringent than those derived previously. Let C be 

a Cantor set with derivation D, and let A be a bridge of D. We define the thickness 

of A with respect to D, denoted by TD(A), to be positive infinity if A does not split. 

Otherwise we set 

where throughout this paper we adopt the convention that z/0 = oo for any x > 0. 

We define the thickness r(0) of the derivation 2) by 
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where the infimum is taken over all bridges A of 2). We also define r ( C ) ,  the 

thickness of the Cantor set C, by 

T(C)  = sup r (V)  
'L, 

where the supremum is taken over all derivations Z) of C. For example, if C is the 

middle-third Cantor set then 7(C) = 1. An equivalent dehition of r (C )  may be 

found in [13, p. 611 . It follows Born Lemma 3.2.1 that r ( C )  = r(Do), where Do is 

any ordered derivation of C. The following observation is trivial yet crucial in our 

use of thickness. 

Lemma 2.3.1 Let C  be a Cantor set. Then C is an internal if and only if r ( C )  

equals iinfiity. 

Proof. Let C be derived fiom I and take Z) to be any ordered derivation of C 

fiom I. By Lemma 3.2.1 we have r ( C )  = r(?)). If C # I then I, the root of D, 

must split in V with a nontrivial gap, so 

If, on the other hand, C = I ,  then no gaps are removed fkom C in the derivation, 

so T ( D )  = 00 as required. 

To relate thickness to HausdorfF dimension we use the following result. 

Lemma 2.3.2 If C is a Cantor set then 

~ H ( C )  L 
log 2 

log (2 + A) ' 
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Proof. See [13, p. 771. 

Thus, for example, if C is the middlethird Cantor set then by Lemma 2.3.2 we 

have 

log 2 
dimHC 2 - 

log 3 ' 

In fact, it can be shown that in this case equality holds in (2.5), hence Lemma 2.3.2 

is best possible. 

As in [8] and [2] we employ the logarithm fnnction to treat products and quo- 

tients of Cantor sets. Given a set S of positive numbers, we form the set S' by 

putting 

S* = {logz; 2 E S). 

If C is Cantor set of positive numbers, then C' will also be a Cantor set. We can 

construct a derivation of C' by taking our bridges to be of the form [log a, log b],  

where [a, b] is s bridge of our derivation D of C. By Lemma 2.2.2 we have 
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Sums of Cantor Sets 

3.1 Main Results 

Let C be the middle-third Cantor set. Hugo Steinhaus proved in 1917 [16] that 

C + C = [O, 21. Here we shall consider the more general problem of determining the 

sum of a finite number of arbitrary Cantor sets. For sums of two Cantor sets we 

shall prove the following result. 

Theorem 3.1.1 For j = 1,2 let Cj be a Cantor set derived from ij, with Oj a gap 

of rnazimal size in Cj. Assume that 

1. If T ( C ~ ) T ( C ~ )  2 1 then Cl + Cz = & + 12. 
2. If r(Cl)r(C2) < 1 then 
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Part 1 of Theorem 3.1.1 may be derived from work of Sheldon Newhouse: our 

approach shall give an alternative proof. Newhouse (121 established the following 

result. 

Theorem 3.1.2 Let Kl and K2 be Cantor sets derived from Il and I2 ~espectively, 

with r(K1)7(K2) > 1 .  Then either It n I2 = 0, Kl is contained in a gap of K2, K2 

is contained in a gap of Kl or Kl n K2 # 8. 

In fact, if Newhouse's proof is slightly altered then we may replace the condition 

"r(&).r(K2) > In in Theorem 3.1.2 with the weaker condition "r(K1).r(K2) 2 1". 

To see that Part 1 of Theorem 3.1.1 follow horn this modified version of Theorem 

3.1.2, we assume that r(C1)r(CZ) 2 1 and let k be any number in Il + 1,. Upon 

applying Theorem 3.1.2 (modified) with Kt = k - Cl and K2 = C2 we find that 

(k - Ct)  n C2 # 0 and hence k E Cl + Ca. 

If C is a Cantor set then we define the normalized thickness of C ,  denoted by 

Theorem 3.1.1 is a special case of the following theorem. 

Theorem 3.1.3 Let k be a positive integer and for j = 1,2,. . . , k let Cj be a 

Cantor set derived from ij, 2~s*th 0 u gap of maximal sire in Cj. Let ST = 7(4) + 
.- + r(Ck). 
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2. If ST 2 1 then Cl + + Ck contains an interval. Othenuise Ct + + Ck 
conta2ns a Cantor set of thickness at least 

and ST 2 1 then 

C ~ + - . . + C , = ~ ~ + ~ - +  I ~ .  

4. If (3.1) and (3.2) hold and ST < 1 then 

Theorem 3.1.3 is best possible in the sense that the condition S, 2 1 in part 

2 or part 3 cannot be replaced by S, 2 q for any 7 < 1. Similarly if we multiply 

the bound for the thickness or the HatudorfF dimension of the sum by 1 + 6 for any 

6 > 0 then the results do not hold in general. 

3.2 A Few Preliminary Lemmas 

To prove Theorem 3.1.3 we require several lemmas. 

Lemma 3.2.1 Let 2) be any derivation of C from I .  Then there exists an ordered 

derivation of C fnnn I with 
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Furthermore, I '  Dl and D2 a n  two ordeted derivations of C from I then 

Proof. Let 2) be a derivation of C from I, and assume that D is not ordered. 

Then there exists a bridge A of Z) which splits as A = Ao U OA U A', with Ao and 

A' splitting as Ao = Aoo U OAo A'' and A' = A" U OAa u A" respectively, such 

that either 1 0 A o  1 > 10A 1 or loA' I > Assume without loss of generality that 

lOA0 1 > Consider the derivation D, which is identical to 2) except that the 

positions of OAo and OA in the tree have been switched, that is, OAo is removed 

before OA. If we set A, = A, 

then in V,, A = A. splits as A. = A:uOA,uAf and A! splits as A! = A!OUO~~UA!'. 

We claim that 

To prove (3.3) it suffices to show that 

Now, 

since ~ O A  1 < 1 and 80 (3.4) holds. 
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We construct our ordered derivation 'D, as follows. First we m o w  V to form 

a new tree D1 with the property that the first open interval removed is of maximal 

size. We form this tree by switching (a finite number of times) the order in which 

open intervals are removed in ID, as outlined above. Next we perform the same 

process on the bridges of level 1 in V', forming a new derivation V2 which has its 

fmt two levels ordered. We continue this procedure inductively, forming V+' fiom 

2)" by switching the order open intervals are removed until for every bridge A of 

level n in P+', the next open interval removed horn A is of maximal size. Our 

ordered derivation is the derivation with the same root as V and for which the 

nth level of Do consists of the same bridges as the na level of P. 

We will use (3.3) to prove the first part of our lemma. For k E Z+ let 0: be 

the set of all gaps between intends in the ka level of the derivation Do. Let n k  be 

the minimal number of levels of Z) we must descend before all intervals in 0: have 

been removed. Fhrther, let Di consist of all bridges occurring in the f is t  k levels 

of 9, and let Dnk denote the set of all bridges occurring in the &st nk levels of 

the derivation D. Then for every k E Z+ we have 

r (D)  5 min rg(A) 5 min T - ,  (A)  . 
AED"h AED! 

by a finite number of applications of (3.3). Thus 

r ( 9 )  = inf min TD, (A) 2 ~ ( v )  
k A E D ~  

as required. 

Now assume that 4 and D2 are two ordered derivations of C from I. Let ( t j ) j  

be the sequence of different lengths of open intends removed in the derivations, in 

decreasing order (note that both derivations remove the same set of intervals). If 

no intervals are removed then C = I and 
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Otherwise for every j let Bj be a bridge of minimal width in Dl such that, in the 

notation of section 2.3, Bj = AWd for some binary word w and d E {0,1), with 

)Owl = t i .  Then 

However, Bj satisfies the same condition with 4 replaced by D2, whence 

and the lemma follows. 

Lemma 3.2.2 Let Cl and C2 be Cantor sets derived by derivations Dl and V2 

respectively. Put 

TI = r(Dl) and r z  =r (V2) .  

If both 71 and 7 2  a n  greater than zero and neither Cl nor C2 containa an interval, 

then t h e n  exist bridges A and B of 4 and V2 respectively which split as 

A = A ~ U O ~ U A ~  and B = B 0 u O g u B '  

such that 

Proof. Let S = (A& be a sequence of bridges of 4, where if Dl contains a 

bridge of width t then = t for some i ,  and l&l > (&+ll for i 2 1. Since Cl 

does not contain an interval, all 4 split, and I&-[ tends to zero as i increases. W e  
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define the sequence (Bj)gt from V2 in a similar manner. If OAi and OB, are the 

open intervals removed when Ai and Bj split, then 

for i, j 2 1. Therefore to prove the lemma it suffices to exhibit A, and B. with 

or equivalently 

By (3.5), for j 2 1 we have 

max(lB;l, IBj' 

hence 

Therefore 

so to establish (3.6) it is enough to find r and s such that 

Since {IAl)i and {I Billj are both sequences which are monotonically decreasing 

to zero and 71 # 0, (3.7) must have a solution (r, 8 )  and the lemma follows. 
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3.3 The Crucial Proposition 

The next proposition is the key result in this thesis. In its proof we shall make use 

of the concept of compatibility of bridges, which is similar to an approach used by 

Hlavka ([lo, Theorem 31). 

Proposition 3.3.1 For j = 1 , 2  let Cj be a Cantor s e t  derived born I j  with Oj the 

largest gap in Cj. Let S, = 7(C1) + 7(C2). 

1. Let a' and /3' be any positive real numbers for which at@' = r(C1)r(C2), and 

put a = &{I, a') and /3 = min{l,Pr). If 

then 

4. If S, 2 1 then 4 + 4 contains an interval. Otherwise Cr + C2 contains a 

Cantor set of thickness at  least 
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Proof. We first prove part 1. Assume that (3.8) holds and set 

r=IILin 
' 1 - a  

We will show that r(Cl + C2) 2 r .  To do so we will construct a tree of valence 2 

to represent Cl + C2. This tree might not be a derivation, since bridges of the tree 

may overlap. However, we will use this tree to construct a derivation of Cl + C2 
with the required thickness. 

We will construct our first tree inductively, by setting the root to be Il + I2 and 
showing how each bridge in the tree splits. Let Dl and be ordered derivations 

of CI and C2 respectively. If A and B are bridges of 'Dl and D2 respectively, we 

say that A and B are compatible, denoted A - B, if 

where A and B split as 

and 

If A does not split bat B does, then we ray A - B if IA[ 2 alOBI, and simihiy if 

A splits but B does not, then A - B if 1 B 1 2 On 1. Finally, for all bridges A and 

B, neither of which split, we put A - B. 

We shall construct a derivation for 4 + 4 using the derivations of Cl and CZ. 

Let A and B be bridges of Dl and D2 respectively with A - B, and set D = A + B. 

Assume first that both A and B split. Then 
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thus either 

Assume that (3.9) holds, and let OAo and OA' be the open intervals removed in the 

splitting of Ao and A' respectively. Since the derivations are ordered, 

as A - B. By (3.9) we have 

whence 

A'- B and A'- B. 

We pat 

D O = A O + B ,  D L A ' + B  and OD=D\(DOUD') .  (3.11) 

We have 

loO1 = lAOl + 
and if OD is non-empty* 

IOD 
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Note that if p = 1 then OD is necessarily empty. Thus either there is no gap 

between Do and Dl or 

For d = 0 or d = 1, to determine the splitting of Dd we repeat the above process 

with A replaced with Ad. 

If we find that (3.10) holds instead of (3.9), we perform the same process, except 

we split B instead of A. Again we may bound min{l DO1, I D1l)/lOo 1 by r .  

If A splits but B does not then we define Do, Dl and OD as in (3.11) , and find 

that either OD is empty or (3.12) holds. If B splits but A does not then we proceed 

in an analogous manner. Finally, if neither A nor B split then we let D be the 

vertex A + B, and place under D an infinite stalk composed of vertices Dw where 

w is a binary word composed of zeros, and Dw = D as intervals. 

Since Il .- 4 we find by induction that we may constract a tree Ts of dosed 

intervals {Dw) such that 

c1+c2= n UD* 
mzO w 

where the union is taken over d binary words w of length rn such that Dw is a 

vertex of Ts. We M h e r  have that if V is a vertex of Ts then either V does not 

split or 

Now Ts might not be a derivation of 4 + C2 since we may have some overlap of 

intervala associated with vertices. We wil l  however use Ts to construct a derivation 

for Ct + C2 with the required thickness. Let Ho = 4 + 12, H1 = Do u Dl and in 

general 
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where the union is over all binary words w of length m with DW in Ts. For each 

m, H" wiIl be the anion of a finite number of disjoint closed intervals {Hr)'. We 

next defme a tree TH by taking as vertices all intervals {HF) and as edges all lines 

joining vertices HF to Hy+', where y+' Hr as sets. We wil l  convert TH into a 

tree where every vertex has at most two subvertices. Let N be a vertex of TH. We 

will construct a finite tree TN with root N and having as leaves the subvertices of 

N in TH, such that TN is of valence 2 and TN satisfies a condition similar to (3.13). 

Let N have subvertices Nl, ATa, . . . , Nt in Tw. If t 5 2 then we let TN be the 

tree with root N and leaves N1,. . . , Nt. Otherwise, we have that as intervals, 

where GI,. . . , Ge-I are open intervals. For intervals Jl and J2 we write J1 + J2 if 

lJlj 2 r1J21. We start by making the following claim. 

Claim 1 Let Gv and G, be two open intervals in (3.14) &th T < a. Let J denote 

the entire closed interval between G, and G,. Then J + Gt or J + G,. Further, 

if G, is any open interual in (3.14) then 

(N. u (J (N. u en,) -t Gr 
l ln<r 

and 

Proof of CIoim 1. Since J contains points of 4 + 4 and (Ct + C2) n (G, u G.) = 0, 

there exists a vertex V = l@ u Ov U V1 of Ts with V n J # 0 aad either G, C Ov 

or G. 2 Ov. A s m e  without loss of generality that G, E Ov. If V' E J then 



CHAPTER 3. SUMS OF CANTOR SETS 36 

so J + G,. Otherwise G, V1, and since (Cl + C2) n G8 = fl there exists a vertex 

W = W o u O w u  W1 in Ts with W V1 and G, Ow. In this case W O  2 J so 

so J -t G, and the first part of the daim follows. 

To prove the second part of the claim we denote by J,O and J: the left sides of 

(3.15) and (3.16) respectively. As above, we have a vertex V of Ts with Vo E J:, 

V 1  C_ Jf and G, Ov, and the daim follows. 

By the daim we have 

and 

for j = 2,. . . , t - 1. For example, 

Thus there must be some G,, with 
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and 

By the claim, N:, + G:,-, or N:, -t Gt,, i.e. 

We continue this process until we have only two closed intervals left. In our example, 

the next step results in 

while the last step yields 

We are now ready to construct our finite tree TN. Let G,, be the open interval 

satiefying (3.17) at the ith step, for i = 1,. . . , t  - 2. Further, let G,,-, be the open 

interval remaining when our process terminates. We form TN by removing, in order, 

the open intervals G,,-, , G,,, , . . . , G,, . 

By our construction, if Nw is a vertex in TN which splits as 
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To construct our derivation D of Cl + C2, we take as vertices and edges of D 

the sets 

respectively, where for a tree T we denote the set of vertices of T by V(T) and the 

set of edges by E(T). We have ~(2)) 2 r and the first part of the lemma follows. 

We will use part 1 of the lemma to prove parts 2 and 3. Let 

and define a and p by 

a = min{l, a') and p = min{l, P'}. (3.19) 

Assume that 1011 5 Ihl, 1021 5 1111 and S, 2 1. Then r(C1)r(C2) 1 1, which 

implies that a = f l =  1. Therefore, by part 1, r(Cl + C2) = m and part 2 follows. 

To prove part 3 we first define a', P', a and /3 by (3.18) and (3.19). Note that 

if ST < 1 then a = a' and p = p', hence 

and 

so by part 1 of the lemma 
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and part 3 follows. 

To prove part 4 we first note that if 7(C1) = 0 or r ( C Z )  = 0 then the result 

follows trivially, whence we may assume r ( C 1 )  and T(C*) are both greater than 

zero. If either C1 or C2 contains a bridge that does not split then Cl + Ca will 

contain an interval, hence a set of infirrite thickness. Otherwise, by Lemma 3.2.2 

there exist bridges A and B of 'Dl and D2 respectively, with 

A = A o ~ O A U A 1  and B =  B0uOBuB1 

such that 

IAl1 a l O ~ l  and IBI 2 PIOAI 

where a and p are as defined in (3.19). By parts 2 and 3 of Proposition 3.3.1 

applied to the Cantor sets 

we have 

C A + C B = A + B  

otherwise, and part 4 of the lemma folows. 
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3.4 Proofs of our Main Results 

Proof of Theorem 3.1.3. 

we put 

For real numbers 7l,72 and 73  in [O, 11 with 71 +72 < 1 

Note that 

We first prove part 2. Assume S, 2 1 and let t be the smallest integer with 

7 ( c l )  + + 'y(Ct) 2 1. Using Proposition 3.3.1 part 4 and (3.20) we find by 

induction that 4 + + Ct contains an interval, whence 4 + + Ck contains an 

interval. 

If ST < 1 then we find by Proposition 3.3.1 part 4, (3.20) and induction that 

Cl + + Ck contains a Cantor set of thickness at least S,/(l- S,), so by Lemma 

~ s ( C 1  +**-+fi) 2 
log 2 

lod l  + a, 
and part 1 of the theorem follows. 

To prove parts 3 and 4 we first note that by (3.1) and (3.2) the sets 4 + + I. 
and 1,+1 s a t e  (3.8) with a = f l  = 1, for r = 1, . . . , k - 1. We find by induction, 

Proposition 3.3.1 part 2 and (3.20) that if ST 2 1 then 
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and part 3 of the theorem follows. Similarly if S, < 1 then by induction, Proposition 

3.3.1 part 3 and (3.20) we have 

and the theorem follows. 

Proof of Theorem 3.1.1. Theorem 3.1.1 follows from Theorem 3.1.3 with k = 2, 

since in that case 

r(C1)r(C2)11 ifandonlyif S,z1 

and 
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Numbers with Restricted Partial 

Quotients 

4.1 Bounds on the Thickness of C(B)  

To apply Theorems 3.1.1 and 3.1.3 to the cases where the Cantor sets are of the 

form C ( B j )  for some Bj Z+, we need only calculate the thicknesses of the Cantor 

sets in question. 

Lemma 4.1.1 Let t 2 2 be an integer and B = {bl, b, . . . , 4 )  a finite set of 

positive integers with bi < bi+1 for i = 1,2,. . . , t - 1. Let I = bl and m = bt, and 

se tAg=bccl-bi  f o r i =  1,2 ,..., t-1. Put 
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Then 

Proof. Assume that our bridge is of the form (2.2). To compute a lower bounc 

for IAO1/ 1 we use part 2 of Lemma 2.1.3 with 

to find that 

Similarly we use part 2 of Lemma 2.1.3 with 

and find that 
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Thus 

RESTRICTED 

6(m - I )  

PARTIAL QUOTIENTS 44 

( m -  b i + l ) l m + b ( m - l )  b i l + 6  
&.In - J(rn - 1)  

since 0 5 Q 5 112, and 

A similar but simpler result holds in the infinite case. 

Lemma 4.1.2 Let B = { b l ,  4 ,  . . . ) be an infinite set of integers with bi < bi+l for 

i ~ l . L e t l = b l a n d s e t A i = b i + l - b i f o r i ~ l .  Then . 

Proof. We use the same strategy as in the proof of Lemma 4.1.1. If A is a bridge 

of the form (2.3) then by part 2 of Lemma 2.1.3 with 
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while if T > 0 we apply part 2 of Lemma 2.1.3 with 

and condude that 

by (2.1) and since Q 2 0. Therefore 

and the lemma follows upon minimi.r.ing (4.3), since as in the proof of Lemma 4.1.1 

wehaveO<Q< l / l a i t h Q = O i f r = O a n d Q = l / l i f t = l a n d a l  = l .  

Note that r ( D ( B ) )  equals r ( B )  (as defined in the first chapter). 

Lemma 4.1.3 Let B be a set of positive integers widn ]BI > 1. If Ai(B) = A is 

constunt then D(B) is ordered and so 
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Proof. Assume first that B is finite. In the notation of Lemma 4.1.1 put 

for bi < m. Then by part 1 of Lemma 2.1.3 with 

we have 

Thus 

for j > i, and 

for bj € E,  so D(B)  is an ordered derivation. By Lemma 3.2.1 we have r ( C ( B ) )  = 

r (V(B)) and Lemma 4.1.3 follows for B finite. 

If B is infinite then we use an analogous approach, where in this case we define 

4.2 Sums of Continued Fractions 

For n an integer and B a set of positive integers with lfS 1 > 1 we define C(n; B) by 

C(n; B)  = n + C(B) .  
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Using the derivation D(B) of C(B) we may construct the canonical derivation 

n + D( B) of C (n; B )  &om n + I ( B) by translating every interval in D by n. Similarly 

we may construct the canonical derivation n - V(B) of n - C( B) from n - I (B) .  

Proof of Theorem 1.0.6. Put 

Assume first that S, 2 1, and for N 2 1 and j = 1,. . . , k set 

and 

For j = 1,. . . , k we constract a derivation of Cy from 1 '  as follows. Assume 

that I I (  B j )  ( < 1. Remove from I: the interval (R + max C(Bj), n + 1 + min C (Bj ) )  

for n =  -N,...,N -1, so that if Aj = I ' t h e n  

A; = -N + I(Bj) ,  A,! 5 [-N + 1 + minC(Bj), N + m u C ( B j ) ] ,  

A:' = -N + 1 + I (Bj ) ,  A,!' = [-N + 2 + minC(Bj), N + m a ~ C ( B j ) ]  

and ultimately, 

We complete by h g  the derivations n + V(Bj ) ,  n = - N, . . . , N, to split A!, 

A?, . . . , A;""' and A:"*". Note that if Bj is finite then 
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and that if Bj is infinite then 

so in either case ~ ( q )  1 7 ( B j ) .  

If 1 Ijl = 1 then we form by removing the gaps in Cy in order of descending 

width, so that again we have r(V) 2 r (Bi ) .  

For j = 1,. . . , k, I? has width greater than 2, m d  all gaps in CY are of width 

less than 1, whence (3 .1)  and (3.2) hold. Since S, 1 1 and for a Cantor set C, 

r ( -C)  = T(C) ,  by part 3 of Theorem 3.1.3 we have 

and (1.6) follows upon letting N tend to infinity. 

IfS, < 1 then (1.7) follows from patt 1 of Theorem 3.1.3 with Cj = C(Bj )  for 

Proof of Theorem 1.0.2. Theorem 1.0.2 is a special case 0: 

since 

O 

f Theorem 1.0.1 

and fnrther, 
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Proof of Corollary 1.0.3. Note that &(L,) > m / ( m  + l), whence 

Since 

we have 

and the result follows from part 1 of Theorem 1.0.2. 

Before proving Corollary 1.0.4 we need a preliminary lemma. 

Lemma 4.2.1 if B is a finite set of odd positive integers then 1 4 2C(B). 

Proof. Let m = maxB and assume that 1 E 2C(B).  Then 1 E S, where 

for some odd al, 4, 4 and 4 between 1 and m inclusive. Now if both a, and bl 

are greater than 1 then 1 S, so we may assume without loss of generality that 

a1 = 1. Thus 

where 9 = (s) and p = (G). Therefore we have 
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and 

It can be shown that (4.5) and (4.6) are equivalent to 

and 

respectively. Bat for any integer n 2 1 and real x E (0 , l )  we have 

and so by (4.7) and (4.8) we must have at + 1 - bl = 0. But this is not possible, 

aince both a2 and bl are odd, and the lemma follows. 

Proof of Corollary 1.0.4. We find that ~(8.) = 1, and so by part 1 of Theorem 

1.0.2, 

F(&) + F(8) = It. 

Now if B is a finite set of positive odd integers then 0 2C(B) and 2 4 2C(B). 
By Lemma 4.2.1 we have 1 2C(B), whence 

and the result follows. 
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Products of Cantor Sets 

5.1 General Result 

Recall from Section 2.3 that for E W+ we define ED by 

E' = {log z; z E E ) .  

We have the foJlowing rudtiplicative analogue of Theorem 3.1.3. 

Theorem 5.1.1 Let  k be a positive integer and for j = 1,2, . . . , k let Cj be a 

Cantor se t  derived from Zj (0, OO), vith Oj a gap in Cj chosen that IOil is 

mozimal. Put S, = 7(C;) + + $;). 

1. If S, 2 1 then Cl Cc contains an i n t e n d .  

2. If ST < 1 then 
log 2 

dimH(Cl - Ck) 2 
log(l+k)' 
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K+lI 2 lay f o r ~ = l ,  ..., k - 1  ~ n d j = l ~ . . . ~ r ,  

11;) +*-*+JI:I 2 10:+,) forr = 1 7 . . . 7 k - l  

and S, 2 1 then 

c,*-c, = r , -**&. 

Proof. Note that by Lemma 2.2.2, 

dime(9 Ck) = dimH(C; + + Ci) .  

We apply Theorem 3.1.3 to the Cantor sets C;, . . . , Ci and the theorem follows. 

0 

5.2 Bounding T(C*) 

Before we c m  use Theorem 5.1.1 we must find a bound for s(Cm). We start by 

generalizing a lemma of Cusidt ([2, Lemma 21). For real z and positive integers n 

we put 

Lemma 5.2.1 Let E = [a, b] (0, oo) be an intend of nu2 numbets. Suppose 

that E = El u 0 U 4 where 
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If s < a + r and T > 0 is a real number such that 

then 

Proof. We have IE; I 2 T 10'1 if and only if 

which is equivalent to 

or alternatively, 

Using the power series expansion for (1 + x)u for real y and 1x1 < 1 we find that 

(5.1) is equivalent to 

Let R be the unique positive integer such that R T + 1 < R + 1, and for n 1 2 
let C,, denote the binomial coefficient in (5.2). If n > r + 1 then 

Observe that (I is a non-increasing sequence. Further, CnCn+I 5 0 for 

n 2 T + 1. Therefore 
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The lemma follows from (5.2) and (5.3). 

As a corollary we may find a bound for r (Cm) .  

Corollary 5.2.2 Let C R+ be a Cantor set derived by D and let T be a real 

number which i s  at most r (C) .  Assume that for all bridges A = [a, b] of V with Ae 

to the fight of Ad (d ,  e E (0 , l ) )  for which 

we have 

Then 

Proof. Let A = Ao u OA LJ A1 be a bridge of 2) with Ad to the left of A', for 

(d ,  e) = (1 ,O)  or ( d ,  e) = (0 , l ) .  Since the logarithm fimctioa has decreasing slope 

it follows that 

If (5.4) does not hold then (5.5) holds by Lemma 5.2.1, so in any case 
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Products of Continued Fractions 

6.1 Bounding the Thickness of (n f C(B))* 

We may use Corollary 5.2.2 to find a bound for s ( (n  f C(B))') for n sdciently 

large. 

Lemma 6.1.1 Let B be u s e t  of positive integers with (BI > 1. 

for dl n  2 MI. 

2. If 7 i s  a ma1 number with T c T ( B )  then then ez i s t s  M2 E Z+ such that 

~ ( ( n  - WW*) 2 

for all n 2 M2. 
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9. If I BI = oo and Ai (B)  = A is constant then there exists M3 E ZC such that 

for all n 2 M3. 

Proof. For positive real numbers z we defme 

Since the lemma holds trivially if s ( B )  = 0 or r ( B )  = oc we may assume that 

0 < r ( B )  < oo. W e  first prove part 2. Assume that r < r ( B ) ,  say T = ~ ( 8 )  - 9 

where 7 > 0. Choose an integer M2 such that 

Let n 2 M2 be an integer and let 

is any bridge of D 

for e = 0,1. Thus 

then A [n - 
D be the canonical derivation of n - C(B). If A 

1,oo) and 

and so (5.4) never holds. Therefore, by Corollary 5.2.2 

and part 2 of the lemma follows. 

We next prove part 3. Let M3 and n be integers with M3 dJ Ah(r(B)) + 1 and 
n 2 Ms. Let Z) be the canonical dedration of n - C(B). To bound the quantity 
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for all bridges A of 2) we need only compute the bound for all bridges of V ( B ) .  Let 

A be a bridge of type (2.3). Fkom (4.2) we have , 

By Lemma 2.1.3 part 1 with gl = [bi+l] and g2 = [bi, I ]  we have 

Therefore 

Similarly we find that 

and part 3 of the lemma follows from Corollary 5.2.2. 

We now prove part 1. Assume fist that B is finite and put 

Let MI and n be integers with MI 2 (m + 2)2h(r(B))/T and n 2 MI. If A is a 

bridge of D(B)  of the form (2.2) then from (4.1) we have 
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- 
since q, 2 Iq,-, + q,-2. Rom Lemma 2.1.3 part 1 with gl = [bi+l, m, I ]  and 92 = 

[bi, I,] we have 

whence if r # 1 then 

Similarly we have 

Now if r = 1 then in C(n; B) we have A' on the right side of Ao, and if T = 0 

then Ao is to the right of A1. Thus by Corollary 5.2.2, part 1 of the lemma follows 

for B finite. 

If B is infinite then we take MI greater than (ma*Ai)12b(~(B)) and use an 

analogous argument to the above to establish our result. 

6.2 Improving Cusick9s Product Result 

Proof of Theorem 1.0.10. Let ST denote the number 
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If ij = 1 for any j then the theorem follows trivially, so we may assume that l j  > 2 

for j = 1 , .  . . , k. 

First assume that k = 2, then ZI = l2 = 2. For M 2 2 sufficiently large we have 

by Lemma 6.1.1 part 1 that 

for R 2 M. For positive integers N > M we define CN and lN by 

and 

We may construct a derivation fl of CN iiom IN in a similar manner to that used 

in the proof of Theorem 1.0.6, the only difference being that the rightmost i n t d  

in every level of the tree contains the dosed interval [N + 112, N + 11, so that 

Thus (CN)-' and C(M; U2) satisfy the requirements of Theorem 5.1.1 part 3, so 

But 

whence 
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This holds for every N > M, thus 

C ( M ;  U2) C(0; U2) 2 (0,Il. 

By taking reciprocals we have 

However 

C ( M ;  U$' C C(0; U2) and C(0; UJ1 E G(2) 

By (6.4) and (6.5) we have 

By part 3 of Lemma 6.1.1 we may extend our results to the negative real ads by 

replacing the set C ( M ;  U2) by C(-M; Us), so that 

since 0 E G(2), we have by (6.6) and (6.7) that 

as required. 

Now assume that k > 2. To prove the theorem we wil l  use an approach similar 

to that used to establish (6.8). Without loss of generality we may assume that 
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Now, for M sufficiently large, for all n 2. M and all j = 1,. . . , k the largest gap in 

C(n;  ?Jlj)' is (O?)', where 07 is the largest gap in C(n;  Ur, ), namely 

By Lemma 6.1.1 part 1 there exists a positive integer Ml > M such that 

and 

for all R 2 MI and all j = 1,. . . , k. For j = 2,. . . , k we set 

By our choice of MI,. . . , Mk we have, by calculation, 

for j = 1,. . . , k - 1. For integers N > 2Mk we define C! and I t  by 

NOW the largest gap in (C,N)* is either (o?)' or 

1, 5 Lk-l and k 2 2 we have 

Also, by (6.10) it follows that 

11. (6.12) 

+ I)'. Since 
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for j = 1,. . . , k, whence with (6.13) we find 

thus 

Equivalently, 

As in the proof of the k = 2 case we have 

By (6.9), (6.11), (6.15), (6.16) and Theorem 5.1.1 part 3, 

Thus 

Since MI > l ~ - , / l ~  and k > 2 we have by (6.14) that 
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so by (6.17), (6.18) and (6.19), upon taking the limit as N approaches infinity we 

have 

(&I] s G ( h )  * * G(lk). (6.20) 

Since Mj 2 lj for j = 1,.  . . , k - 1 we may take reciprocals in (6.17) and let N tend 

to infinity, so that 

With (6.20) we have 

(0, m) G G(4) W k )  

As before we may extend our results to the negative reds, finding 

(-m,O) E G(h)  G(lk). 

Since 0 E G(ll) our result follows. 

6.3 Products of Continued Fractions 

Proof of Theorem 1.0.7. We may assume without loss of generality that 

0 < r(&) < w for 1 5 j 5 k. Assume first that S, > 1. Let q be the positive real 

number 

We will follow a similar approach to that used in the proof of Theorem 1.0.6. For 

j = 1,. . . , k, by Lemma 6.1.1 part 1 there exists a positive intega Mj such that for 



CHAPTER 6. PRODUCTS OF CONTINUED FRACTIONS 

Let M = max Mj. We define 6; and fy for N 2 M by 

and 

Our definition of is analogous to that for in the proof of Theorem 1.0.6. 

Note that since the logarithm function is not linear, in the notation of (4.4) we may 

have 

However, if we set 

and take N sufficiently large, then 

whence it follows that 

r((Cy)*) + + 7((@)') > S7 - kq = 1- 
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so if N > M + 1 then all the conditions of Theorem 5.1.1 part 3 are satisfied and 

we find that 

where S: = I { j ;  € j  = 111 and SF = k - S:. We let N tend to infinity in (6.22) and 

find that if S, = k then 

and if 1S.I c k then 

To extend these results to the negative axis we consider the set 

for N > M + 1. By Lemma 6.1.1 part 2 we find that for M and N safficiently large, 

As before we have by part 3 of Theorem 5.1.1 that 

However, 

n - C(&) = -(on + C(&)) C -F(Bl)  
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for every n, whence 

Taking the limit as N approaches infinity we find that 

if S, = k, and 

if iS,l < k. Part 1 of the theorem follows from (6.23) and (6.25), while part 2 is a 

consequence of (6.24) and (6.26). 

We now assume that S, > 1 and IS,( = oo for some r with 4 = 1. Now, 

This is similar to the case S7 > 1 and lScl < k, where instead of dividing by the set 

we are dividing by 

Notice that 

I [bi+l, bi+l+ l / k ]  1 - - 1 (6.27) 
l ( h + l / L b i + l ) l  &&I* 

Choose M snfficiently Large so that A(M) = mari>, - A j(Bv) occurs infinitely often 

in the sequence (A1 (Bv), A2(Bp), . . . ), where s = s ( M )  is the unique positive integer 

with 94 < M < b,. Then by (1.4), 
t 
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so b y  (6.27) r ( (Ct) ' )  2 r(B,) - I]' for N sufficiently large. We proceed in a similar 

manner as in the proof of part 2 of the theorem and fmd that 

However, 0 E F(&) and part 3 of the theorem follows. 

Now assume that S, = 1. We will first examine the sets 6y in more detail. 

Assume that for some j ,  L$ is not equal to U, for any 1 1 1. We claim that for M 

and N sufficiently large, 

T ( ( C ~ ) ~ )  2 r ( B j ) .  

To see this we first take M so that by Lemma 6.1.1 part 1, 

for n 2 M. Assume that lBjl < 00, say Bj = ( 6 1 , .  . . , bt )  with 2 = b1 < b1 < < 

b, = m. Then, in the notation of (6.21), 

by Lemma 4.1.1. Hence for N dc ient ly  large 

Now assume that lBjl = a) but & > 0 for some i. Then by Lemma 4.1.2 
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since ( 1  --  1) (1+ 2) < 421 - 1) for I 2 1, and our claim follows. 

If Bl # Ul for all I 2 1 and 1 5 J' 5 k then by part 3 of Lemma 5.1.1, if S. = k 

then 

[ M ~ ,  N'] cr.. . 
while if 13.1 < k then 

and so letting N approach infinity we find that 

as required. 

If for all j we have Bj = Ulj for some Zj then, since 

for N 2 I we may assume that S, = k, and our results follow from Theorem 1.0.10. 

We now assume that for some t in the range 1 5 t < k we have Bj = Ulj for 

j = I, ..., t ,  21 2 --• 2 it and Bj # 6 for any j > t and1 2 1. As in the proof 

of Theorem 1.0.10 we may choose Mj, j = I,. . . , t  such that, in the notation of 

Theorem 1.0.10, 

For N large define C: and I! by (6.12), substituting t for k. Without loss of 

generality we may assume that = 1 (if not, consider the set Fol) .  If we choose 

M d u e n t l y  large SO that II(Mj; vl,)'l > I[M, M + 11'1 for j = 1,. . . ,t then by 

Lemma 5.1.1 we have 
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since M > Mj for j = I, ..., t .  Thus 

( M  u ) . . . ( M ;  ) ( )  . . . ( )  
N L' 

Un=&fk C(n; uh) 

and parts 4 and 5 of the theorem follow upon letting N tend to infinity, since 

To prove part 6 of the theorem we extend our results to the negative re& by 

using part 3 of Lemma 6.1.1, ap was done in the proof of Theorem 1.0.10. 

Finally, if S, < 1 then by Lemma 6.1.1 part 1 we have 

for j = 1, . . . , k and M saffidently large, whence by Theorem 5.1.1 part 2, 

and the theorem follows. 

Our methods of proving Theorems 1.0.10, 1.0.7, 1.0.8 and 1.0.9 differ from that 

employed by Hall in [8]. He covers part of the real line by intervals of the form 

and then shows that 
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and 

6.4 Products of Sets of the Form F(m)  

Before we prove Theorems 1.0.8 and 1.0.9 we wil l  prove several preliminary lemmas. 

Proof. For positive real z put 

then, horn Maple we have 

for x > 0. Therefore 
w - iz)) 
(1,) 

for m 5 n, and the lemma follows, since 

- - 
Lemma 6.4.2 If m > 0 then 1 - (I, m) < (m, 1). 
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Proof. We have 

hence 

as required. 

For positive integers m and N we put 

Lemma 6.4.3 If N is suflciently large then 

r(CS(9)') > 3.7690 and r(CG(9)') > 3.7452. 



CHAPTER 6. PRODUCTS OF CONTINUED FRACTIONS 

Proof. We first note that since the second derivative of the logarithm function is 

decreasing, if N is large enough then (as in the proof of Theorem 1.0.7) 

and 

log(N - (q)) - 10g(N - (1,)) - - 
log(N - (1, m)) - log(N - 1- (m, 1)) 

> ~ ( L r n )  

Thus it suffices to determine r(C(L,)*) and ~ ( ( 1  - C(L,,J)') for 2 m 5 9. 

Choose m in the range 2 5 m 5 9 and assume that T > 1, d E {0,1) and A is a 

bridge of C(L,) of the form (2.2). Then by (6.2) and (6.3) we have 

where 

We use a Maple program to determine 

minr(Am) and minr((1-A)') 
A A 

where the minima are taken over dl bridges A of C(Lm) with 

- - 
where h(x) is dehed as in (6.1) (note that 1 - (1, m) < (m, 1) by Lemma 6.4.2). 

Our results follow from Corollary 5.2.2. 

Lemma 6.4.4 For rn 2 9 and N su&iently large, 

r(C$(m).) > 3.4 and z(Ci(rn)') > 3.4. 
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Proof. We will use induction on m. For rn = 9, (6.28) follows from Lemma 6.4.3. 

Assume that (6.28) holds for m < t ,  for some integer t 2 10. We must bound 

~ (C-g ( t ) ' )  and r(CG(t)'). As in the proof of Lemma 6.4.3 it suffices to bound 

r ( C ( L J )  and r((1 - C(Lt) ) . ) .  Let 

A = [[(% . ,a,, k ,  t,, (ah , %, t,TTt)]] 

be a bridge of D(Lt) .  If all ai7s are less than t and k < t - 1 then A contains 

some bridge B of D(Lt-1) with Ao > Bo and A' > B1, so (6.28) follows from 

the induction hypothesis. Therefore we may assume that either some ai = t or 

k = t - 1 .  

Now let D be either A or 1 - A. Assume that Do c D1 and put 

D = [a? d) OD = (b ,  c) 

~ O = [ a , b ]  D1=[c,d] 

for some a, b, c and d with a < b < c c d. We claim that 

To see this assume fist  that k = t - 1. Then the largest possible intervals for D 

are 11, 12, 1 - 11 and 1 - I2 where 

1 = [ ( ) ( - ) I  and I2 = [(l,t-l?m,(l,ZJ)]. 

Now 

1 1 t t + 1 -<(u)<- and -<(-)<- t + l  t t + l  t + 2  

hence 
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and 

Therefore if k = t - 1 then (6.29) holds. Otherwise = t and so D is contained in 

a bridge which has k = t - 1, and so again (6.29) holds. 

Now we know that 

the decreasing slope of the logarithm function and since r ( L t )  2 ~ ( L I O )  = 

4.266.. . . Also 

1 Io'l 
D m  logd-logc -- - - - log(l+?) > i(,.)* 
l"bl logc-l0gb log(1+?) lobl b 

by the power series expansion of the logarithm fanction, as c > a > IDII and 

b > a > 10Dl. Therefore 

since 
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as r ( L 1 )  2 4.266. . . . Therefore 

r (C$(Lt ) ' )  > 3.4 and r ( C J L t ) ' )  > 3.4 

for N sufficiently large, and the lemma follows by induction. 

Lemma 6.4.5 

F ( 3 ) F ( 4 )  = ( -00, ( 1  - (-))(-)I U [(u)(q), oo) (6.30) 

and 

F ( 2 ) F m  = (-ah ( 1  - (1,))(7,)] U [(2,(1), oo). (6.31) 

Proof. By Lemma 6.4.3 we have 

7 ( ~ $ ( 3 ) ~ )  1 0.8220 , r (C$(4 )* )  2 1.3009 

and 

r(CS(4)') 2 1.2557. 

Since 0.822 x 1.255 > 1 we find by an approach d o g o u s  to that used in the proof 

of part 1 of Theorem 1.0.7 that 

and 
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Now put 

C,- = C ( L , ) n I ; ,  C,+ = C ( L , ) n x :  and C; = ( 1  -C(L4))nI;. 

Since 1 - 1; is a bridge of D(L3),  we may use D(L3) to construct a derivation of CG 

from I;. To bound s((C;)*) we use the same process that was used to establish 

the results contained in Lemma 6.4.3. Specifically we fmd 

Similarly we have 

The largest gap in (Cc)', (Cz)' and (CJ' has width 0.1563.. . , 0.0943.. . and 
0.1256 . . . respectively. Further, 

and 

C = I = ( 1  - ( ( 1  - ( )  (1 - ( , ) ) ( l  - ( 1 , ) ) ]  (6.37) 

Since 
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by Lemma 6.4.1 and Lemma 6.4.2, (6.30) follows from (6.32), (6.33), (6.36) and 

(6.37). 

We now prove (6.31). By Lemma 6.4.3 we have 

and 

for N sufficiently large. Therefore by Theorem 5.1.1 
' 

Let 

I = ( ) ( ) ]  a d  C1 = C(L2)  n 11, 

then using Maple and Corollary 5.2.2 (as in the proof of Lemma 6.4.3) we find that 

Let 0- and 0+ denote the largest gap in ( 1  - C(L7))'  and C(L7)' respectively. 

Then 

( 1 - ( ) , - ( 2 , )  and 0 + = ( ( 2 , ~ ) , ( 1 , ~ ) ) ' .  
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and 

1(1 - I (L7) ) -  1 = 2.04. . . . 

Therefore by Theorem 5.1.1 we have 

(1 - C1)(1 - W 7 ) )  = [(I - (rn))(l - (P)), (1 - (l,V))(l - (V))] 
(6.39) 

= [0.0301. . . ,0.369 . . . ] 

and 

-0 - C 1 ) W 7 )  = [-(I - ( l ,rn))(KT), -(1 - (V))(7J)] 

= [-0.375 . . . , -0.0339 . . .I. 
Since 

F(2) F(7)  c (-=, (-1 + (1,))(5;I)] U [(-I + (V) )(-I + (m? 00) 

by Lemma 6.4.1 and Lemma 6.4.2, (6.31) follows fiom (6.38), (6.39) and (6.40). 

0 

Lemma 6.4.6 

F(2)F(2)F(2)F(2) = (-m, -(I - (v))3(m)] u [(I - (1,))', m). 

Proof. By Lemma 6.4.3 we have, for N sufEciently large, 

y(C;(L$) > 0.2307 and 7(C$(L2)') > 0.2679. 

Therefore by Theorem 5.1.1 and letting N tend to infinity we have 

~ ( 2 ) ~  2 (--, - ( m 3 ( 1  - (mi u m4, -1 
= (-00, -0.0131.. .] U [0.0179.. . ,=). 
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Similar to the approach used in the proof on Lemma 6.4.5 we put 

I+ = [(z;I), (2, V)] , I -  = [1 - ( l , T 3 ) , 1  - (U)], 
C+ = C ( L ~ )  n I+ and C- = (1 - C ( L 2 ) )  n I- .  

Using Maple and Corollary 5.2.2 we find that 

therefore 

NOW I- splits as I -  = I; U 0 u I; where 

1; = [I - (m), 1 - (192, (Ti))], 

0 = (1 - ( l ,2 ,  (V)), 1 - (1,2, m)) 
and I; = [1 - (1,2,-),1 -(I,-)]. 

3(1cm U I;') = [-3.95.. . , -3.641.. . ] U [-3.638.. . , -3.288.. . ] 

U (-3.327, -2.9361 U [-3.015, -2.5831 

and 

hence II+'I is greater than the size of the largest gap in 3C-', so by (6.42) and 

Theorem 5.1.1 
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Also we have, by (6.42) and Theorem 5.1.1, 

The lemma follows from (6.41), (6.43), (6.44), Lemma 6.4.1 and Le m m a  6.4.2. 

Proof of Theorem 1.0.8. If (m, n) = (3,4) or (m, n) = (2,7) then the theorem 

follows fiom Lemma 6.4.5. Otherwise by Lemmas 6.4.1 and 6.4.2 we have 

By Lemmas 6.4.3 and 6.4.4 

r(C&n)')r(C$(n)*) > 1 and r(CJrn)')~(c&)') > 1 

so by Theorem 5.1.1 

and 

[(I - (G) )U  - (G)), (N - ('mT))(N - (-1) G F(m) F(n) 

and the theorem follows upon letting N tend to infinity. 
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Proof of Theorem 1.0.9. Using an approach similar to that used to prove 

Theorem 1.0.8, Theorem 1.0.9 follows from Lemmas 6.4.1, 6.4.2, 6.4.3, 6.4.4 and 

6.4.6, and Theorem 5.1.1. 



Chapter 7 

Cantor Sets with Small Thickness 

7.1 Asymptotic and Maximal Thicknesses 

Let C be a Cantor set with ordered dkrivation D. We define the asymptotic thickness 

where the supremum is taken over all bridges A of 2). W e  also define the normalized 

asymptotic thickness of C by 

Using the results of Chapter 3 we may obtain the following theorem. 

Theorem 7.1.1 Let k be a positive integer with Cl, . . . , Ck Cantor sets. If rA(Cl)+ 

+ ?;L(&) > 1 then Cl + + Ck contains an intend. Otherwise 
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Then for j = 1,. . . , k there exists a Cantor set Ci contained in Cj with 

Note that 

r(C;) + . + 7(CL) 2 S - = 1 

hence by Theorem 3.1.3 Ci + + C; contains an interval and the first part of 

Theorem 7.1.1 follows. 

Assume next that S $ 1 .  For any e > 0 put 

Notice that 

log 2 - 
log (1 + +) 

log 2 - 1% 2 (log (1 + &) - 1% (1 + j)) 
1% (1 + A) - log (1 + i) 1% (1 + A) 

. - 
log 2 

< log (a&) = e 
log 2 

since S - kg > O and 

For j = 1,. . . , k there exists a Cantor set Ci with 
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Thus by Theorem 3.1.3 

log 2 
d i m ~ ( c i  + , * *  + c;) 2 

Using (7.1) and the fact that Cj 2 Cj for 1 5 j 5 k we have 

dim~(Cl + * + Ck) > log 2 
log (1 + 4) - € 7  

and upon letting c tend to zero we establish the required result. 

While use of the asympotic thickness will often give a better result, there are 

many cases where there will not be much improvement over use of ordinary thick- 

ness. Consider the Cantor set C = C({1,2,3,4,10)). We have 

r ( C )  = 0.0717 and rA(C) = 0.07247 

However C(L4) = C({1,2,3,4)) C C and r(C(L4)) = 1.300.. . , so C contains a 

set of large thickness. We define the maximal thickness and. nownalited mazimal 

thickness of a Cantor set C to be 

respectively, where the supremum is taken over all Cantor sets C 

Note that for any Cantor set C we have 

contained in C. 

We have the following resalts. 
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Lemma 7.1.2 If C is a Cantor set then 

log 2 
d i m ~ ( c )  2 

log (2 + *) ' 

Proof. For any a in the range 0 < c < rM(C) there exists a Cantor set C' C 

such that r(C')  2 mM(C) - a. By Lemma 2.3.2 we have 

~ H ( C )  1 dimH(C') > log 2 

log (2 + &) 
and the lemma follows upon letting r tend to infinity. 

Theonm 7.1.3 Let 4,. . . ,a be Cantor sets. If 

then C1 + + Ck contains an interval. Otherwise 

Proof. The proof of Theorem 7.1.3 is similar to that of Theorem 7.1.1, with max- 

imal thickness and normalized m&al thickness replacing asymptotic thickness 

and normalized asymptotic thickness respectively. 
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7.2 Another Technique 

If C1 and C2 have s m d  maximal thicknesses (i.e., rM(C1)rM(C2) < 1) then it 

may stiU be possible to prove that Cl + C2 contains an interval. We will examine 

three such cases, motivated by the examples of C(Ls)  + C( L 4 ,  C( Ls) + C ( L 2 )  and 

C(L3)  + C(L3) respectively. The techniques used were inspired in part by work 

of Hanno Schecker [14] who first proved that C(L3)  + C(L3)  contains an interval. 

Schecker made the following definitions. Put 

and for any positive integer n define 

012 if R is even, 713 if n is even, 
and q,, = 

9 otherwise, I )  otherwise. 

Note that 8/2 = (q) and q / 3  = (n). We also define B by 

For any tuple A = (a-h,.. . , a*) E B we define the T-internal I(A) to be the dosed 

interval with lower endpoint 

min{(a-1,. . . , a-h + qh)  + (01,. . , a k  + h), (0-1,. . . , a-h + &) + (all . + , a k  + qk)) 

and upper endpoint 

mm{(a-1,- , a-h+qh+l)+(al, , ak+Ok+1), (0-1, t a--h+h+l)+(al, 3 ak+~k+l))- 

We also define the 2'-ratio of A, v(A) ,  to be 
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We say that the T-interval I ( A )  is valid if 

and 

Let B = (6-w,. . . , b k ~ )  E B. Then we say that I ( B )  is a successor of I ( A )  if 

kt 2 k, h t 2 h ,  h ' + k t > h + k  

and 

bi = i~ for i = o h , .  . . , k. 

Schecker established the following result. 

Theorem 7.2.1 Every valid T-internal is covered by its valid succwsors. 

Proof. See [14, Lemma 11. 

By induction we have the following corollary. 

Theorem 7.2.2 Every valid T-interval &I contained in C(3) + C(3). 

Proof. See [14, Theorem 11. 
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Before we proceed to our results we must introduce additional notation. Let 

C be a Cantor set derived from I and let n be an integer greater than one. We 

may define an n-ary tree V" as follows. Let the root of 2)" be the dosed intend 

I. Suppose that A is a vertex of ZT already defined but without sub-vertices. Let 

Of,, . . . ,OI- '  be n - 1 gaps occurring in C f~ A and write 

where A', . . . , An are dosed intervals. We let the sub-vertices of A be the intervals 

A', . . . ,An and contime defining P recursively. Let the length of a word w be 

denoted by iwl. If 

C = lim U P 
t400 

Iwl=t 

then we say that P is an n-ory derivation of C from I ,  and that C is derived from 

I  by 2)". The vertices of Zr are also called bridges of the derivation. We say that 

Z)" is ordered if for any bridge A of P and any j with 1 5 j 5 n, is a gap of 

maximal size in (Aj U O; U - U An) n C. 

For example, if C = C(L,) then one ordered n-ary derivation of C is the n-ary 

tree Z)"(L,) defined by setting 

for any positive integer t and integers d l , .  . . , 4  between 1 and n. Note that the 

gaps in the derivation are of the form 
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For sets of real numbers X and Y we write X < Y (X > Y) if' for every x E X 

and y E Y, x c y (x > y). Assume henceforth that in the derivation 'D" we have, 

for all bridges A of Z)", 

Then we may construct a normal binary derivation Vn' of C by using 2)" . Let 

the root of D'" be B = I, where I is the root of Zr. W e  define Zr' recursively as 

follows. If, for a binary word v we have that the interval Bv is a bridge of P, say 

BV = Awl then we put 

It is easy to see that the tree Zr" so constructed will be a derivation for C in the 

traditional sense. For example, if ZT(L,,) is as defined above then P ( L J  will be 

the derivation V(L,) defined in (2.2). 

Note that if n = 2 then the trees IF and P' will be identical. If n = 2 and A 

is a bridge of 2)" then we often denote 0: simply by OA. 

It may be the case that in the derivation 27" all local thicknesses are large 

except for those where the ratio is of the form 

In such a situation we would hope that if we could in some senae ''ignoren the bridges 

of the form Bv""'" then we could use the f s d  that the other local thicknesses are 

large to show that C + C contains an interval. This concept was used by Schedrer 
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[14] and motivates our next definition. If A is a bridge of 2)" then we define to 

be 
- 
A =  0 D 

DEM 

where M is the set of closed intervals D such that 

for some kl, k2 E Z+ and words wi and uj with Awin < D < Aujn for 1 5 i k1 

and 1 5 j 5 k2. Equivalently, we form from A by stripping off from both sides of 

A as many intervals of the form OZIAU" as possible. For example, if A is a bridge 

of P ( L n ) ,  say 

then 

We define AL and to be the two half-open intervals with 

A = A ~ V Z U A ~  ~ l l d  A ~ E A ~  

and f o r t =  1, ..., n - l p u t  

where 

P otherwise. 
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and 

( ~ ( t + l ) L  otherwise. 

Additionally, for 1 5 s , t  5 n with s # t we put 

Hence, for example, 

If Ofi is a gap in C(Ln), say 

then 

Let GI and 4 be Cantor sets derived by and from h and I2 respectively. 

Assume that for every interval J 11, if 01 is the largest gap in Cl n J then 

1G1 = sup 1Dl, where the supremum is taken over all gaps 0 contained in 4 n J. 
If a; is ordered and has this property then we say that 'D; is Bordered.  Let J1 

and J2 be dosed intervals of the form AaAt contained in 4 and I2 respectively. We 

say that and J2 are B-compatible, denoted 5; a J2, if 

where Or and O2 are the largest gaps in Cl n Jl and 4 n J2 respectively. 
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Although it follows from Theorem 7.4.3 that F ( 6 )  f F(2) = W, it is instructive 

to examine an independent proof that F(6) f F ( 2 )  contains an interval, since the 

proof is much simpler than the proof of Theorem 7.4.3. Thus the main ideas behind 

the proof will be more obvious. We have the following general theorem. 

Theorem 7.3.1 Let Cr and C2 be Cantor sets with derivations 'D; and respec- 

tively. Assume Mat 'D; is B-ordered and @ is ordered. Let Il and b be the roots 

of and respectively, and assume that f;  = I2 and for every bridge A of 'D; 

and B of 

Assume further that 

f o r k =  1, ..., n-2 and 

f o r k =  1, ..., n - 3 .  Then 

- 
4 + I2 G (4 n Cl) + (I, n C2). 



CHAPTER 7. CANTOR SETS WITH SMALL THICKNESS 93 

Proof. Let A and B be bridges of 'D; and 27: respectively. Let k be an integer 

in the range 1 5 k 5 n - 2, and assume that AkAn-I sz B. We will show that 

AkAn-1 + B can be covered by a union of intervals of the form 

where either t > k or w # 0 or v # 0, and Aw'Aw(~-~)  = Bu. By repeating this 

process we can cover AkAn-I + B by intervals of the form (7.9) where either v # 0 
- 

or 10:. 1 < 1 B2 1 < 1 B1 i . In this case if v = 0 then it follows that 

and 

Hence it is possible to cover AkAn-I + B by intervals of the form (7.9) where v # 0. 

Similar to the above argument we may repeat this process and cover AkAn-l+B by a 
- 

union of intervals of the form (7.9) where v # 0 and either w # 0 or IOp( < IAn-'1. 

E w = 0  then 
- 
A' R BV 

for t 5 T 5 n - 1, and 

Therefore it is possible to cover AkAn-1 + B by a union of intervals of the form (7.9) 

where w # 0 and v # 0. Therefore by induction on min(lw1, lvl) we may cover 

ACAn-I + B by intervals of the form (7.9) where w and v are as long as desired. 

By letting min{lw 1, IV 1) tend to infinity we have 



CHAPTER 7. CANTOR SETS WITH SMALL THICKNESS 

Since = I: I;-' and = I2 it wiU then follow that 

Let A and B be bridges of 'D; and and assume that k is an integer with 

1 5 k 5 n - 2 and AkAn-I = B. We must cover AkAn-1 + B by a union of 

intervals of the form (7.9), as described above. Assume without loss of generality 

that A' < A*. We identify two different situations. 

Situation 1: 1 < k 5 R - 3 

Case 1: lB21 2 

Since IBII 2 IB2 I we have 

and since AkA*-I = B we know that AkAn-I + B1 overlaps AkAnol + B2. Therefore 

Case 2: (B2( < 1z1 
By (7.7) and (7.8) we have 

hence 

with 

AkAn-I + B = (p + B) U (Ak+lAn-I + B )  

- 
A k  k: B and Ak+lAn0l = B. 
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Situation 2: k = n - 2 - 
Case 1: IB21 2 10;-'1 

As before we find that 

- - 
where An-% B and An-I B. 

- - 
Case 3: lB21 < 10;-'1 and IAn-ll < 10sl 

By ( 7 4 ,  (7.7) and (7.5) we have 

By (7.6) and (7.7) we find that 

Therefore with (7.10) 

- 
An-2 e B, 

Now if B2 < B1 then 

we have 

- 
An-2An-l+ B = (An-2 + B) U (An-a&-1 + B1) 

while if B1 < B2 then 

- 
An-2An-1 + B C - (An-' + B)  u (An-2An-1 + B1) U (F + B') u (A"-'+ B2). 
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Notice that if B1 < B2 then An-*An-I + B1 intersects F+ B', since 1 B1 1 > lo;-' I ?  
- 

while + B1 intersects An-' + B2, since 

Theorem 7.3.1 follows by induction, as described at the beginning of the proof. 

0 

Corollary 7.3.2 Let Il and 12 be bfidges of p ( L s )  and Z)a(L2) respectively, with 

Proof. Let A = I(L6)" be a bridge of a ( L r )  and let B =. f I(L2)v  be a bridge 

of either p(L2) or -p(L2). Assume that 

Let w = a l * - 4  and v = b l - 4 . .  Then 

Note that by Lemma 2.1.3 we have 
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f o r l s k s n - 1 .  Also 

for 1 5 k 5 n - 2, and (7.2) follows. Also 

and 

so (7.3) holds. 

By an approach similar to that used in Section 4.1 we must determine quantities 

of the form 

where 

and x ,  y, gl, ga, ga and gd are certain positive real numbers. Now if g3/gl and g4/g2 

are both greater than one or both less than one then the infimum in (7.15) dearly 

occurs at either z or y. Otherwise, from calculus we see that fr(gl, gar g3, g4, Q ) , 
considered as a fimction of Q, wil l  have a critical point at Q if 
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Thus if a = 0 the critical point is Q = -c /b ,  while if a # 0 then the critical points 

are 
-b + ,/=~ 

and 
-a - ,/- 

2a 2a 

if b2 - 4ac > 0. Therefore to determine (7.15) we calculate fr(gl, 92, 93, gd, Q) at the 

above critical points and at x and y. 

W e  have 

for k = 1,2,3, and 

and 

Therefore 
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Further 

r ( B  n C(L3))  = fr([2,1,1], [ 2 , 2 , ,  [2,2,1], [1,m, 1/31 > 0.3890 

so that 

Corollary 7.3.2 follows horn (7.11), (7.12), (7.13), (7.14), (7.16), (7.20), (7.21), 

(7.17), (7.18), (7.19) and Theorem 7.3.1. 

There wil l  be three main differences between the proof we will use to establish that 

F(5) k F (2) = R and the proof of Theorem 7.3.1. Let A and B be bridges of V(L5) 

and V(L2) respectively, with = B. In our proof we wil l  differentiate between 

the case where A' < A2 and B1 < B2 (or A1 > AZ and B1 > B2) and that where 

A' < A' and B' > B2 (or A' > A2 and B1 < B2). We will also have to occasionally 

descend more than one level at a time in our derivations, using sums of the form 
- 
AW + BU where either [wl > 1 or lul > 1. Finally, we wiU occasionally "backtrack", 

as in (7.24). 

Let J1 = [zl, yl] and J2 = [zl, y2] be intervals. We say that J1 is almost linked 

to Jz if 2, 5 yl. Notice that if J1 and J2 overlap then Jx is almost linked to J2. 



CHAPTER 7. CANTOR SETS WITH SMALL THICKNESS 100 

Lemma 7.4.1 Let n E Z+, and for 1 5 t 5 n let Jt = [z,, yt] be a non-trivial 

interval. Assume that 21 < y, and that Jt is almost linked to Jt+l for 1 5 t 5 n - 1. 

then 

Proof. See [14, Hilfssatz 11. 

Lemma 7.4.2 Let Il and 4 be two bridges of p ( L 5 )  and D2(L2) respectively, with 

- 
I1 +I2 G (11 n F ( 5 ) )  + ( I2  n F ( 2 ) )  and z- I2 C ( 4 n  F ( 5 ) )  - ( 1 2  n F ( 2 ) ) .  

Proof. Let A and B be bridges of Z)(L5)' and f D(L# respectively, with 

As in the proof of Theorem 7.3.1 we will use induction over min{lwl, lv 1) to prove - - 
that for 1 5 k 5 3, if AkA4 sz B then for any n 2 0, AkA4 + B can be covered by 

a finite union of intervals of the form 

where min{lw 1, lv 1 )  > n. Thus by letting n tend to infinity we have 

AkA4 + B c (m n F (5)) + ( B  n F ( 2 ) )  
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or 

as required. 

Let A and B be bridges of V5 (L5) and f D2( La) respectively with 

A e 5 5 B e {f W 2 ) ,  f I(L2)').  

and let k be an integer with 1 5 k 5 3 and AkA4 z B. Note first that 

and 

IB1l > p21* 
- 

We must show that AkA4 + B can be covered by a union of intervals of the form 

AwtAV' + Bv, where either t > k or w # 0 or v # 0, and AhAd = Bv. 

The rationale followed when determining the covering intervals is simple. In 
- 

many cases it was found that one could cover AkA4 + B if intervals of the form 

A" + Bv were used, but not if they were replaced with those of the form + Bv. 
- 

To make up the difference we add to the union intervals of 'the form AwS + BW. 
To maintain Bcompatibility it is usually necessary to have u # 0. This of course 

makes it ditficalt to aumre that + B" is almost linked to A'Og + BVU. 

We may assume without loss of generality that A' < A2. We first examine the 

case when B1 < B2. W e  identify two thations. 

Situation 1: k = 1 or k = 2 

Case 1: IB21 2 - - 
Then AkA4 E B2 and AkA4 a B' since IBII > [Bat. Also, 
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Case 2: 1 B21 < I ~ I  
If k = 1 then IAk+W( > 

SETS WITH SMALL THICKNESS 

lOel by (A.6) so Ak+lA4 B. If k = 2 then define w 

and v by letting A = I(L5)" and B = f l (L2)" .  If v # (1 2) then by (A.7) we have 

IAk+'A41 > IOB 1 .  Otherwise v = (1 2). We fmd by calculation that if w # (2) and 

w # (1 1) then 1q1 < 1B21, a contradiction, whence either w = (2) or w = (1 1). 

In both of these cases we have 

and thus if k = 2 we have (Ak+'A41 > loB 1, and so Ak+'A4 = B. 

Case 2(b): 1zl < 10Bl - 
We have that iB1l > 1E1 by (A.5), thus AkA4 n B1 and 

- 
AkA4 + B = ( E F  + B') U (Ak+lA4 + B). 

Situation 2: k = 3 

Case I: lB21 2 l q l  
- 

In this case A3A4 2: B', A3A4 B2 and 

 hen p a  B, B and 
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Case 3: (B21 < (El and lpl < loB( 
We have 

by (A.8), (A.12) and (A.11). Also, 

B 1  > 1 1  and 1B21 > I=/ 

by (A.16) and ( A N )  respectively. By (7.22) and (7.23) it follows that 

- 
A3A4a B1 and P = B 2 .  

Case 3(a): 121 2 1 0 B 1 l  - 
Then since IBII > > we have E B'. Since IBII > )El > IZ) we' 

know that + B1 is almost linked to + B1. Also + B1 ie almost linked 

t o p +  B2, as IA'A61 >/OBI. Thus 

by Lemma 7.4.1. 

Case 3(b): lpl < 10Bl 1 
- 

In this case IBuI > 1q1 > )Ois I by (A.18). With (7.22) we have 

- 
Also, since I BnI > lql we know that A3A4 + B1 is almost linked to + +I1. 
Similar to the above we find that B + B" is almost M e d  to + B2, since - 
I A4 AS I > 1 OB 1. Therefo~e 

by Lemma 7.4.1. 
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We now assume that B1 > B2. Cases 1 and 2(a) of Situation 1 may be handled 

in the same way as for B' < B2. Also, the proofs for Case 1 and Case 2 of Situation 

2 are the same as in the case where B1 < B2. Thus it suffices to examine Situation 

1, Case 2(b) and Situation 2, Case 3. 

Situation 1: k = 1 or k = 2 

Case 2(b): 1 B21 < 1E1 and (31 < (OBI 

As in the case where B1 < B2 we have 

Ak+lA4 k: B and AkA4 a B1. 

- 
Also 1B21 > lo:, 1 and (0p 1 < IB2( < (@I < (PI by ( A S )  and (A.4), whence 
- - - 
Ak E B2. Further, IAk51 > 10B~~ll and IB1121 > 10lhl by (A.20) a ~ d  (A.21), so - 
Aks sz B112, and AL6+ B112 i, almost linked to X V +  B1. 

Assume that k = 1. Then IA'I - I A ' ~ I  - I A ~ ~ ~ I  > 10~1 by (A.22), so p+ B2 
- 

is almost linked to A15 + B112. Therefore by Lemma 7.4.1 

- 
AlA4 + B C (R + B2) u (A'" + B112) u (A'A' + B1). 

Assume next that k = 2. By (A.24) we have 

If lA21 - lAILl - IA25LI > IOBl then R + B2 is almost linked to A'S + B112, so 

by Lemma 7.4.1. Otherwise I B'I > 10:1 + I A ~ I  + I A ~ ~ ~ ~  so p+ B is almost linked 
- 

to A16+ B112. NOW 1x1 > 10Bl and IBI > 1 by (A.27), hence n B and 



CHAPTER 7. CANTOR SETS WITH SMALL THICKNESS 

by Lemma 7.4.1. 

Situation 2: k = 3 

Case 3: 1 B21 < I ~ I  and 1p1 < (OBI 
- 

Then jF1 > 10811 and lB21 > 1 by (A.19) and (A.31), whence = B2. Also, 
1 B'1 > 1z1 by (A.16), so A3A4 = B1. 

Case 3(a): I ~ I  2 10Bl 

In this case 
- 
A3A4 + B E (p+ B) u (m+ B') 
- 

where R m B and A3A4 = B1. 

The lemma follows by induction on the level of the bridges used in the sums, as 

described at the beginning of the proof. 

Theorem 7.4.3 

F(5)  + F ( 2 )  = R and F(5)  - F(2)  = R. 
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Proof. Let II 

[Fl = 0.099. 
- 
lo::, 1 = 0.015. 

= 0.099. 

lq~ = 0.015. 

Afso 

I I : ~  = 0.056.. 

lOqI = 0.024.. 

Therefore 
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and h be the roots of V5(L5) and D2(L2)  respectively. Note that 

and 
- 
I: E I;? 
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Now 

and 
- 
It4 + Ii2 = (1.510. . . ,1.560.. . 1. 

hence by Lemma 7.4.2 we have 

so F(5)  + F(2)  = R. Further, 

and 
- 
If4 - I' = [0.419 . . . ,0.462 . . . I .  

Therefore by Lemma 7.4.2 we have 
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and the theorem follows. 

The proof that F ( 3 )  + F(3)  contains an interval wil l  be more complicated than 

the proofs in the previous two sections. Heuristically this is to be expected, since 

r(L3)r(L3)  < r ( L S ) r ( L 2 ) .  However, we will have an advantage we did not have 

before, that since we will be adding together two copies of the same Cantor set we 

can use sums of the form + A" as well as those of the form + Bw . 

When comparing an interval of the form =+ Aw with one of the form z+ Bt 

the following notation will be USA. If m and n are integers with 1 5 m,n  5 3 

and A is a bridge of P9(L3) we put 

We also dehe  
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and x I*. Then 

Proof. Our proof will be similar to those of Theorem 7.3.1 and Lemma 7.4.2. 

Let A be a bridge of P ( L 3 )  and B be bridges of f P ( L 4  with A, B # f l ( L 3 )  

and A, B # f I (La)', and let k = 1 or k = 2. We will show that if X sz Bk B3 then 
- 
A + BkB3 may be covered by a union of intervals, where each interval is either of 

the form 

where 3 m P B V s  and either t > k or w # 0 or v f 0, or of the form 

w h e r e F =  AWAW3 and r = 1 or r = 2, and either w # 0 or v # 0. As in the 

proofs of Theorem 7.3.1 and Lemma 7.4.2 it follows that we can cover x+ BkB3 by 

interYals of the form (7.25) or (7.26) where min{lwl, lvl) is arbitrarily large. Thus 

- 
A + B'B' ( A n  F ( 3 ) )  + (B~B' n F(3))  

if B W+, while 

if B R-, and the lemma follows. 

Let A and B be bridges of f D S ( L S )  with A, B # &I(&) and A, B # 1(L& 

and assume that k = 1 or k = 2, and that ;a = Bk B3. W e  must cover + Bk B3 

by a union of intervals of the form (7.25) or (7.26) where t > k or w # 0 or 

v # 0. Without loss of generality we may assume that A1 < A? Assume first that 

B1 c B2. 



CHAPTER 7. CANTOR SETS WITH SMALL THICKNESS 

and 
- 
A + B  c (p+ B ) U ( B + A ' ) U ( B + A ~ A ~ ) U ( ~ +  ~ ~ 8 ~ ) .  

Note that B + A' is almost W e d  to + A2AS since lzl > 10: 1. 

Situation 2: k = 2 

Case I: lB21 2 1q1 
Then 
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and 

by (B. la), (B.33), (B.31) and (B.32). 

Case l(a): IB31 > 
Then e B2, = B3 and 

by (B.18), and 

by (B.33). Thus 

- - 
A =  B ~ ,  B2 =s A ~ A ~  and ZFL* B~ 

by (7.27), (7.28), (7.30) and (7.31). Also F + A2A3 is almost linked to R + B~ 
1 

since I A2A3 '1 2 10i 1. Thus 
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by (B.17). Also 

by (B.33), (B.31) and (B.32). Thus 

by (7.27), (7.32), (7.29), (7.33) and (7.28). 

Case l(c)(i): IA2A3'1 2 10i1 + IB213LI 

Then 81'3 + A312A313 t almost linked to + B3, so 

Case l(c) (ii): 1 ~ 2 ~ ~ ~ 1  < (Oil  + lB2lSLl 

Say A = ztI(Ls)w and f B = I (LS)V.  Assume f irst that w = (1 3). I f u  # (1 1) and 

v # (2) then by calculation we have 

F'urther, if v = (1 1) or v = (2) then 

However we know that 

- - 
hence we must have w # (1 3). Therefore IB-I > 1 > lois 1 by (B.16), - - 
IAUI > lOh,l by (B.42), 1Fl > 10:J by (B.43) and lA1l > 10;,1 by (B.43). 

Therefore 
- - 
B3 %A1 and Am =z B? 
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Now P+A is almost linked to F+A', since (A1 > (GI. Also 18311 > 10!,,l+ I A ~ ~ ~ I  
by (B.44), so + A' is almost linked to AU + B3? Finally, A13 + B33 is almost 

- 
linked to + B3, as I BS1 > (Oil 1. Therefore 

X +  B ~ B ~ =  (Z+B~)U(F+A)U(F+A~)U(F+ B ~ ~ ) u ( R +  B~). 

Case 2: lB21 < 1c1 
W e  have IFI > 10; 1 by (B.48), hence 

- 
A1 c B'B~. 

Case 2(a): IRI 2 1Ok1 

Then = B2 B3 and 

- 
A+B2B3 = ( P + B ~ B ~ ) U ( R + B ~ B ~ ) .  

by (B.62) and (7.34), since [B21 > IB91, and 

- 
I A ~ ( > ~ O L , ~  and ~ F ~ ~ ~ O ~ ~ ~  

by (B.48) and (B.64). Therefore 

- - - 
A2 n B', A2 B B' and AS a B2. 
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1 1 Also, 10: I < 1p1 by (B.65), so p+ B2 intersects F +  A3. Similarly 10; 1 < 

I A2A3 '1 so + A3 intersects + B3. Hence we have 

We now assume that B1 > B2. Cases 1 and 2 of Situation 1 may be dealt with 

in the same rnan.neT as those where B1 < B2, so it saffices to examine Situation 1, 

Case 3 and Situation 2. 

Situation 1: k = l 

Case 3: min{lBII, IB2B31) < I ~ I  and I ~ I  < lObl 

As in Situation 1 we have 

by (B.81) and (B.2), so 

As before, B + A' is almost linked to B + A2A3 since > [Oil .  

Situation 2: k = 2 

Case 1: lB31 2 1c1 
~ h e n h  B ~ ,  &z B3 and 
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Case 2:  IF^ 2 

In this case sz B3B2. Also we have 

by (B.77), (B.78). (B.89) and (B.62). 

Case Z(a): IPl 2 10; 1 
Then E B3B2 and 

Note that B3B2 = B2B3 hence B + BSB2 and R + B3B2 are both of the form 

(7.25). We have used the notation B3B2 rather than B2B3 to remind the reader 

that B3 < B2. 

Case 2(b): (B21 2 I ~ I  
We have Z B2 and 

- - 
Then 1B3] > 10:,1, 1pl > and lB21 > by (B.77), (B.78) and (B.62), so 

with (7.35) we have 

- - 
A2 n B3, B2 = A2 and R n  B2. 
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by (B.90) and (B.89). Therefore 

213 L 
case 2(c)(i): 1'1 1 10:1+ I(B ) I - - 
Then + B3 is h o s t  linked to B213 + A2? Also I AZ31 > 10& 1 > 1 O;,,, 1 by - 
(B.67) so B213 + A23 is almost linked to + A? Thus 

Case 2(c)(ii): 1'1 < 10i1 + I(B*'~)~I. 
- 

Then 1BW1 > 1s1 > IOiaIs I by (B.69), so p+ B3 is almost linked to A213 + B ~ ~ ,  
- 

and with (7.36) we have A213 BSS. 

Case 2(c)(ii) (A): 2 + I(A213)LI 
- 1 In this case A213 + B33 is almost linked to E+ A3. Also I AzA3 '1 > 10; 1 by (B.gO), 

so + A3 is almost linked to + B2. We have 

313 L Case 2(c)(ii) (B): < 10:I+ I(A ) I 
313 L Then lA2 1 - I (A ) I > 10: ( + 1(B2'3)L( by (B.70) hence A1'J+ B~~ is almost linked - 

to B213 + Aa3. Additionally lAUl > 10;,, 1 by (B.71), so as in Case 2(c)(i) we have 
- 
B213 a At? Hence 

Case 3: ~'jlrl < 141 and lB31 < ~ql 
- 

Then lB21 > 1q1 by (B.12), s o x =  B2. A180 IAl > 10kal, > >loll, IBI > - - - 
IOirlt lS3l > 10~11, IAf31 > 14.11 > 10~tlsl IBalsl > 10:lsl by (Bolo?), 

(B. 1O4), (B .lO6) and (B . lO5), hence 
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Finally 

Case 3(a): I'A'I 1 lOi l+ l(B213)LI 

Then 'jiT+ B3 is almost linked to B"3 + A13, and 80 

Case 3(b): I'A'I < 10; 1 + ((B213)LI - - 
We have 1 BS1 > 1 Oi l ,  1 > loills I by (B.95), so A ~ + B =  is almost linked to A"S+ B? - 
Also, with (7.37) we have All3 a B8. FinaIly ISJ'I > lOfil + I(A113)RI by (B.96), 

so A"9 + BJ5 is almost linked to F + A2. Thus 

The lemma followa by induction as described at the beginning of the proof. 

Theorem 7.5.2 
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Proof. Let I = [(n) , (m)]. Then 

1 131 = 0.042. . . and (0; I = 0.009.. . . 

Thus 

- - 
I" - Ill = [-0.075.. . ,0.064.. .] 1'' - Ill = [0.059 ; . . ,0.158 . . . ] (7.47) 

- - 
I" - P = [0.135.. . ,0.275.. .] P2 - r = [0.270 . . . ,0.370 . . . ] (7.48) 
- - 

Ii3 - IZ2 = [0.342 . . . ,0.378. . . ] I ' ~ - -  P I  = [ o m  ..., 0.42 5 . . . ]  (7.49) 
- 
112-13=[0.396 ..., 0.468...] and F - 1 ~ = [ 0 . 4 6 4  ..., 0.524 . . . I  (7.50) 

Since F(3)  - F(3)  is symmetric about zero, the theorem follows from (7.45), (7.46), 

(7.47), (TAB), (7.49), (7.50) and Lemma 7.5.1. 
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Proof of Theorem 1.0.1. As shown by DivG [6] and Cusick [3] we have 

Also, Hlavka [lo] established that 

F ( 2 )  +F(4) # R and F ( 3 )  + F ( 4 )  = R. 

Using Theorem 1.0.2 we find 

and fkom Theorems 7.4.3 and 7.5.2 we have that 

Since 

and the theorem follows. 

With slightly more work we can improve Lemma 7.5.1, describing F ( 3 )  + F ( 3 )  

completely. W e  have the following three lemmas. 

Lemma 7.5.3 Let A be a bridge of p ( C ( L s ) )  and let n 2 0 be an integer. Put 

w = ( 1  3)" 1. Then 
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Proof. By Lemma 2.1.3 there exists Q in the range 0 5 Q 1 such that 

Now 

Further 

Therefore 
2tu3 'A' > 1.02 

I 
by (7.53), (7.54) and (7.5 

Note that 

5), and (7.51) follows. 

so to establish (7.52) it s d c e s  to prove that 
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Now 

However 

Also 

Thus by (7.57), (7.58) and (7.59) we have 

By (7.56) and (7.60) we have (7.52), and the lemma follows. 

Lemma 7.5.4 Let I = [(m, (m)] and a m m e  that A = I" is a bridge of 9(L3) 

for some w o ~ d  v .  Put 

c = ~n ~ ( 3 1 ,  C' = n F(3) and CIS = A" n F(3) .  
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Then 

where the union is disjoint. 

Proof. We claim that 

If A # I1 and A # I then (7.61) follows immediately from Lemma 7.5.1. Otherwise 

assame first that A = I 1 .  By  (7.38), (7.39), (7.42) and (7.43) we have 

- - 
Ill + I" = [1.135,1.275], P2 + I" = [1.261,1.373], 
- - 
I" + 113 = [1.342,1.425], 1l2 + 112 = [1.396,1.468], 
- 
113 + 112 = [1.464,1.524] and ?iT + 1'' = [1.468,1.523]. 

Therefore 

and so oar daim follows for A = I1. If A = I then by (7.38), (7.39), (7.40), (7.41), 

(7.42), (7.43) and (7.44) we have 

- - - 
P k: I=,  par2, r1st1=, (7.63) 

- 
la =s I" and F-i XI". (7.64) 
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Note that 12 follows trivially. Further, 

- - 
I' + r3 = [0.629 . . . ,0.728 . . . I ,  12+1 '=[0 .724  ..., 0.86 4 . . . ] ,  (7.65) 
- - 
Ill + 13 = [0.841. . . ,0.940 . . . 1, P + I" = [0.924 ..., 1.064 . . . I ,  (7 .66)  
- 
I2 + 1" = (1.059 . . . ,1.158 . . . ] and + I' = [1.135 . . . ,1.523. . . I .  (7.67) 

Therefore (7.61) holds for A = I ,  by (7.63),  (7.64), (7.65),  (7.66),  (7 .67) ,  (7.62) and 

Lemma (7.5.1), and our claim follows. 

For n 2 0 put w, = ( 1  3)" 1. Then by Lemma 7.5.3 we have 

and 

Also 
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hence IA313A31* I > lo$, I and so 

A313A312 + A213 and + A overlap. 

By (7.61),  (7.70), (7.71) and (7.72) we have 

[ [ ( v ,  3 ,  ( l , 3 ) " ,  1,3,  T;Z) + ( v ,  2, V), (v, m) + ( v ,  D)]] E C + C .  (7.73) 

Since ( v ,  w) + ( v ,  2 ,  E C + C ,  upon letting n tend to infinity in (7.73) we find 

that 

W e  may perform the same process using A' instead of A, finding that 

[ [ (v,S;Z) + (v12,i;3),  ( v , r n )  + ( v ,  1 , 2 , i 3 ) ] ]  c + c. 

Since 

A'A' + A3A2, and A"A'~ + A' 

are both contained in 

we know that 

The above naion is disjoint since for any bridge B of P(C(L3) )  we have 
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Corollary 7.5.5 Let Iu be a bridge of V ( C ( L 3 ) )  and put CU = Xu n F ( 3 ) .  Then 

C u + C u = { 2 ( ~ 7 d ~ , d ~ , . . . ) ; d i ~ { 1 , 3 )  and i f4=1 thend+l = 3 ,  f o r i 2 1 )  

where hf is the set of finite words v = d l o  4 such that t 2 0, 4 E {1,3) for 

1 5 i 5 t and if dk = 1 for some k then t 2 k + 1 and dc+l = 3. The union is 

disjoint. 

Proof. Put 

s =  {2(u,d1,d2, . . . )  ;dj E {lJ) andif 4 = 1 then = 3, for i 2 1). 

Then by repeated application of Lemma 7.5.4 we have 

Also we have 

by the definition of Cu. Let z E Cu + CU and suppose that x 4 R. Then by Lemma 

7.5.4 we have 

r € P + p  or z € ~ " + f " ' ?  
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Thus by induction we find that z E S. By the disjointness of the union in Lemma 

7.5.4 we have R n S = 0, and the corollary follows. 

Proof of Theorem 1.0.11. By Corollary 7.5.5 we have 

Now, 

[(q) + (2, m), (m) + (1,2,u)] = [0.622. . . ,1.527.. . 1. 

Further, if I = [(Q, (m)] then we have 

and 

Thedore if x E (1 + Is + Is) n ( F ( 3 )  + F ( 3 ) )  and 

where E Z and &, bi E {1,2,3) for i 2 1 then we mast have 

Put CSJ = Is n F(3) .  Then by Corollary 7.5.5 there are an uncountable number 

of points in CSJ + CS9 that are not in any interval contained in CJS + CJS, and the 

theorem follows. 
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7.6 F(5)  F (2) and F(3)  - F (3) 

Given Lemmas 7.4.2 and 7.5.1 one would not be surprised to learn that F(5) F (2) 

and F (3) F (3) contain intervals; however it is possible to prove even more, namely 

that each contains two infinite rays. 

To prove our result we will use the following two lemmas. 

Lemma 7.6.1 Let and I2 be bridges of 'D" (Ll, ) and 'D" (L la )  respectively. As- 

sume that f;  = & and I 121 > 210:,(. Then for n suficiently large and n 5 rn < 2n, 

Proof. Choose N such that for n 2 N, 

Then if n 2 N and n < m 5 2n we have 

Assume that I2 = [a, PI. Theh 
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Therefore, since m 5 2n, 

by (7.75). The lemma follows &om (7.76) and (7.77). 

Lemma 7.6.2 Let al, (11, P1, be real numbers with 0 5 a1 < PI 5 1 and 

0 2 a2 < a 5 1. Let 6 be any number in the range 

Then for n sufiiently large, 

for k in the Tange 

f ir themon,  for n suficiently large 

Proof. To prove the first part of the theorem we note that (7.79) is equivalent to 
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for some constant cl. However 

for some constant cl ,  whence there exists c3 such that (7.81) holds if 

However by (7.78) we know that (7.82) holds for n sufficiently large and our result 

follow. 

To prove the second part of the lemma we note that 

n n and [ - i j=F+ca  

for some constants Q and 5 .  Hence (7.80) is equivalent to 

for some constants cer C?? c~ and Q, or alternatively 

for some constants clo and ell. But 

since 6 < 1, and so (7.83) holds for n sufficiently large, and the lemma follows. 
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Then by Lemma 7.6.1 there exists No such that 

for n 2 No and n 5 m 5 2n. Let c > 0 be given. Then for n sufficiently large, the 

d u e s  of the ratios in Appendix A corresponding to bridges from (n + D5 ( L5))' 
and (n + 'Da(L2))' will be within c of the values given in Appendix A for bridges of 

(L5) and Va(L2). Since the products in Appendix A are all strictly greater than 

one, we find by an approach analogous to the proof of Lemma 7.4.2 that 

for n snfficiently large and n 5 rn 5 2n, where 

is an interval. Therefore by (7.84) and (7.85) there exists a constant ca such that 



CHAPTER 7. CANTOR SETS WlTH SMALL THICKNESS 

and 

and the theorem follows. 

7.7 Final Remarks 

There are many related questions not answered in this thesis. For example, it is 

unknown whether F(4) f F ( 2 )  or F ( 2 )  f F(2) f F(3) contains an interval. Also, 

it should be possible to use the work of Section 7.5 to obtain an alternate proof of 

the lower bound for Hall's ray. Further, we have not examined the sets F ( 5 ) / F ( 2 )  

and F ( 3 ) / F ( 3 ) .  Finally, the general work on sums of Cantor sets should have many 

applications beyond the field of number theory. 
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Calculations for F ( 5 )  + F (2) 

Let A = I(L5)W and B = H ( L 2 ) V  be bridges of 'D6(L5) and f P ( L 1 )  with w 

(0 , l )  and v $ {0,1). Say 

and pat 

QA = ( ~ r , - - - , a l )  and Q B =  (b8, . . . ,h ) .  

Then 

1 6 1 3 - = (5, l)  5 QA < (1,5,1) = - 
6 7 3 4-  and - = (2 , l )  5 QB 5 (1,2,1) = - 

We have 
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and for k = 1,2 we have 

Thus 

IRI. IB'l - > 1.73 and = I ~ I  , - Is21 ,2.56 
1 1  10~1 0 10~1 

for k = 1 or k = 2, and 

Now if v # (1 2) then 

In this case we have 

and so if v # (1 2) then 

More generally we have 

hence 
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Now 

and 

Therefore 

and 

and 

Also 

1F1 - I Bl1 I - 2 6.599 and - 2 0.8502 
I 0;4 I I 
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by (A.3) and (A.l).  Therefore 

and 

by (A.13), (A.l) ,  (A.15), (A.2), (A.14), (A.4) and (A.10). Also 

and 

thus 

and 
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for k = 1 or k = 2. Further 

and so with (A.2) we have 

Additionally, 

(A.23) 

hence 

by (A.23) and (AS).  Further 

and 

lffl lB21 -- 1m PI > 5.84 > 1.73 and =- 
~ e l  141 loit 1 l w  
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by (A.25), (A.2), (A.26) and (A.9). W e  also have 

Finally, 

and 

by (A.29) and (A.2), while 

(A. 32) 

by (A.30) and (A.1). 
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Calculations for F(3) + F (3) 

Let A = f and B = f I(L3)" be bridges of f P 9 ( L 3 )  with w , v  6 {0,1). 
Assume that 

w = a 1 a ~ = - - ~  and v = b l b 2 - b ,  

We have 

B3 I B  2fi([3,1;51,[2,~,[2,~,[1,~,1/4)=1.633 ... , lob l 
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by (B.9) and (B.10). Further, i f w  # ( 1  3 )  then 

5 
QA L (3,1,3,1) = yg- 

We have 

and 

Thus if w # (1 3) then 

Now 

and 

As well, 

(B. 16) 

(B. 17) 
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and 

1 ~ ~ ~ ~ 1 ,  1 ~ ~ 1  -- I ~ I  . I B 1  > 1.66 a - > 2.22 and - IEI lq,ll 10:1 IB21 
Now, 

(B. 18) 
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and 

therefore 

by (B.19), (B.20), (B.21) and (B.22), 

by (B.23), (B.24), (B.25) and (B.26), and 

by (B.27), (B.28), (B.29) and (B.30). w h e r ,  
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and 

thus we have 

by (B.34), (B.35), (B.36) and (B.37), 

by (B.4), (B.28), (B.38) and (33.39) and 

by (B.40) and (B.41). 

and 

hence 

lm P2I -- w31 P*I > 1.24 and = = > 1.02 
1 1  toil 141 1oLa1 
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by @.I), (B.45), (B.46) and (B.47). Further, 

and 

Thus 
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by (B.49), (B.50), (B.51) and (B.52), 

by (B.49), (B.53), (B.51) and (B.54), 

by (B.55) and (B.56), 

by (B.57) and (B.58), and 

by (B.59) and (B.60). Also 

and 

therefore 
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and 

thus 

Now, 

and 

hence 

and 
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Ako 

by (B.49), (B.72), (B.51) and (B.54), 

IA21e 141 -- - > 1.30 and 
IBI Ioka I 

by (B .73), (B .6l), (B 34)  and (B .56), and 

by (B.75) and (B.76). hrther, we have 
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by (B.6), (B.28) 

CALCULATIONS FOR F(3) + F(3)  

and (B.80). Now 

and 

thus 

14 . le21 -- IRI IFI ,2*98 - > 1.74 and - * -  

I IO;~I I IGI 
by (B.46), (B.82), (B.83) and (B.84), 

by (B.85) and (B.86) and 

by (B.87) and (B.88). Fbther, 
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and 

whence 

by (B.92) and (B.68), 

by (B.93) and (B.94). 

and 

and 

therefore 

(B.97) 

(B .98) 

(B .99) 

(B. 100) 

(B. 101) 

(B. 102) 

(B. 103) 

(B. 104) 
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by (B. l), (B.28), (B.54) and (BAl) ,  

by (B.97) and (B.98), 

by (B.99) and (B.100), and 

IAI . 1 ~ ~ 1  -- IZI IB'I > 1-13 - > 6.11 and - - 
I lOh4 102 l o 2  

by (B.101), (B.102), (B.11) and (B.103). Finally, 

hence 

by (B .lO8), (B.lOg), and 

IA'I IW -- I m  PI > 3.58 - > 1.90 and - - 
lR1 Iqp I  I l%l 

by (B.110), (B.111), (B.112) and (B.84). 
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