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 Abstract 

This thesis reported synthesis of TiO2 nanostructures and Fe2O3 nanostructures and studied on 

self-assembling process. The morphologies, compositions, and physicochemical properties of 

the prepared samples were characterized by TEM, FESEM, XRD, FTIR, UV, and SQUID etc. 

Nanoparticles of transition metal oxides own their special function to become an interesting hot 

research topic in the recent decades. In particular, superparamagnetic iron oxide nanoparticles 

can be used as drug delivery agent and new hard disc drive materials. They have wide 

application in environment industry as well. Titanium dioxide nanoparticles can be applied in 

photocatalysts, UV protectors and dye sensitive solar cell etc. Their wide industrial 

applications for advanced technology development motivate scientists to develop simple, 

economical and novel synthetic methods, and explore their applications, so that the 

commercialization of the production of the nanomaterials becomes feasible.  

The objective of this project is to develop an effective, simple and economical technical route 

for synthesis of nanosized iron oxide and titanium oxide particles/rods/films. The approach and 

the progress are outlined as follows. 

Based on extensive literature reading on the project related area, a novel self-assembling 

technical route for iron oxide nanostructure and architecture was proposed which has been 

confirmed to be effective. Detailed experimental investigation on the synthesis of 

nanoparticles/rods, and instrumental characterization of the particle size, structure, and 

crystallites, etc. via TEM, FESEM, XRD, FTIR, UV, SQUID are conducted. Uniform nanorods 

of hematite iron oxide and titanium oxide nanospheres, and anatase TiO2 thin film with 

micropores have been successfully achieved. Some preliminary exploration for applications of 

the synthesized nanomaterials has also been carried out.  

Firstly, a novel assembled scheme of iron oxide nanostructure and architecture by self-

assembling process was investigated. The sol-gel technical route was employed to synthesize 

nearly uniform nanorods of hematite particles. Morphologies and physicochemical properties 

of iron oxide nanostructure were characterized by analytical instrument. 

Secondly, titanium oxide nanospheres were synthesized via a hydrothermal process using 

titanium isopropoxide as the precursor. Titanium oxide nanospheres with inner nanospace and 
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highly organized crystallites in the shell structure and surface regions were synthesized. It 

demonstrated that the technical route developed in this work has a high versatility for structural 

engineering of various targeted morphological products. 

Thirdly, a simple process of preparing anatase TiO2 thin film with micropores was pursued. 

The synthesized nano thin film with micropores was used for the material of dye-sensitive solar 

cell; and effective electron transfer of titanium oxide electrode was confirmed by 

electrochemical voltammetry.  Preparation of the titanium oxide electrode and its 

electrochemical analysis was studied. The application of the titanium oxide of microporous 

thin film material as a promoter for electrochemistry voltammetry measuring system was 

explored in this thesis. 

In conclusion, the iron oxide nanorods with superparamagnetic property were successfully 

synthesized by a simple method with low cost materials. Titanium oxide hollow nanospheres   

were achieved by the assistance of copolymer template. Titanium oxide thin film with 

microporous structure with significantly high efficiency in electron transfer was realized. 

Further researches on the synthesis of hybrid iron oxide and titanium oxide nanoparticles, their 

crystal growth architecture and mechanism, as well as exploration of their applications are 

recommended.         
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Chapter 1 
Introduction 

In recent years, nanocrystalline materials have attracted great attention from chemists, physicists and 

material scientists due to their unique and special chemical, physical and mechanical properties. The 

most remarkable feature of nanoparticles in that they display distinct differences from their 

microcrystalline counterparts. For example, Reddy and his group (Reddy et al., 2001) have shown that 

nanoparticles of anatase TiO2, synthesized by a precipitation technique, display direct bandgap 

semiconductor behavior, whereas microcrystalline TiO2 is an indirect bandgap material. 

Synthesis approach in this field has developed so rapidly that nano-crystalline materials with new 

functionalities show great promise for use in industry. For instance, semiconducting nanomaterials 

(Fe2O3, ZnO, Co3O4, CuO and TiO2 etc) represent an interesting and important class of materials with 

potential applications in electronic, optoelectronic, electrochemical, electromechanical and other fields. 

(Murray et al., 2000)  

Prospects on nanomaterials mainly depend on the success in fabrication processes. Various strategies 

have been employed to synthesize semiconducting nanomaterials such as vapor-phase evaporation and 

/or vapor-liquid-solid growth mechanism, and controllable solution growth at elevated temperatures. 

Among these, development of novel methods for mass production in low cost self-assembled 

nanostructures is a challenging topic. Accordingly, there has emerged a demand to study their 

synthesis-structure-property relationships in order to understand the fundamental concepts underlying 

the observed physical and mechanical properties (Morales et al., 1998; Gate et al., 2000). 

Semiconductor metal oxide nanoparticles inclusive of iron oxide and titanium dioxide both have 

special functions to become an interesting hot research topic. In particular, superparamagnetic iron 

oxide nanoparticles can be used for drug delivery of biomedical, new hard disc drive materials, and 

environmental application etc. Titanium dioxide nanoparticles are used for photocatalysts, UV 

protectors and dry sensitive solar cells, etc. 

The synthesis of uniform magnetic nanoparticles of iron oxide has been intensively pursued (Kong et 

al., 2004) because of their broad applications in magnetic storage media, ferrofluids, magnetic 
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resonance imaging (MRI), magnetically guided drug delivery and catalysts for the growth of carbon 

nanotubes.  Many metallic magnetic ferrite nanocrystals have been synthesized (Park et al., 2000) via 

thermal decomposition of organometallic precursors or reduction of metal salts and ferrite 

nanoparticles have been synthesized using reverse micelles as nanoreactors (Guo et al., 2003). 

However a proper size selection process was usually required to obtain magnetic nanocrystals with a 

narrow particle size distribution. Recently, several groups (Sun et al., 2002) reported the direct 

synthesis of monodisperse ferrite nanocrystals via a thermal decomposition of metal-surfactant 

complexes followed by mild chemical oxidation without a size-selection process.  Although several 

groups have reported the direct synthesis of uniform iron oxide nanoparticles, most of them selected to 

use relatively expensive organic-metallic materials as the starting materials. Development of a simple 

and low cost synthetic method for uniform iron oxide nanoparticles receives intensive attention. 

TiO2 nanoparticles are of particular interest as they have been widely used in various important areas, 

such as pigments, photocatalysts, catalyst supports, ceramics, energy storage, magnetic data storage, 

sensors, dye-sensitized solar cell and environment applications (Rao et al., 2002).  TiO2 nanoparticles 

have been fabricated by various methods including sol-gel, hydrothermal and coprecipitation methods 

(Zhong et al., 2000). Most methods mentioned above require multiple steps to obtain monodispersed 

particles. (Cheng et al., 1995)  So far, three challenges still remain in preparing nanoparticles of 

titanium oxide for solar cell application: (i) to obtain a simple synthetic route so that it is easy to 

transfer to industrial production; (ii) to use low cost and nonhazardous raw materials to make 

nanomaterials (iii) to increase the quantum yields, which is defined as the number of reaction events 

occurring per proton absorbed.  In face of those challenges, lately considerable attention has been 

focused on fabricating different TiO2 nanostructures (nanospheres, nanowires, and nanoparticles, etc.) 

(Edisson et al., 2007) .  As all synthetic procedures have their limitations, it is still difficult, however 

desired, to in produce nanocrystalline TiO2 particles by a simple route.  

1.1 Objective 

Magnetic iron oxide nanoparticles and titanium oxide nanoparticles have been extensively studied 

because of their various applications. However, there is still a shortage of simple and economical 

synthetic methods, particularly for a synthesis technology that can be transferred to industrial 

production. This objective of this thesis associated research is to develop a novel synthetic method and 
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to investigate architecture nanostructures of two series semiconductor metal oxides, iron oxide and 

titanium oxide.  

This research includes two relelated sub-projects. The first one is to synthesize iron oxide nanorods and 

their characteristic analysis. Herein, a simple and low cost synthetic method for iron oxide nanorods 

and nanodots was pursued and considerable characterization was conducted. A simple and common 

raw inorganic material of diluted iron (III) chloride solution and diluted sodium hydroxide solution via 

sol-gel method with surfactant was used to synthesize nanorods and nanodots. Carbon nanotubes were 

applied as an additive for this synthesis under designed conditions. The uniform nanorods of iron oxide 

with 5 nm width and 30 nm-50 nm length were obtained and characterization analysis was pursued. 

The second series of studies was to synthesize titanium oxide hollow nanospheres and   titanium oxide 

microporous thin film via a novel synthetic route. Anhydrous titanium (IV) isopropoxide and 

anhydrous isopropanol reacted in a reactor for this synthesis. Surfactant of Tween 85 and 1-

hexadecylamine were applied to fulfill titanium dioxide hollow nanospheres and titanium dioxide 

microporous thin film under different reaction time and reaction temperature. Electrochemical 

voltammetry with titanium oxide thin film electrode was investigated and characteristic analysis for 

TiO2 nanospheres and TiO2 thin films were carried out in this project. Hollow nanospheres of titanium 

oxide with diameters ranging from 100-200nm, and titanium dioxide microporous thin filmswith about 

100nm in width and 200nm in length were achieved.  

Work electrodes of titanium oxide thin films with/without pores were prepared and a linear sweep 

method was used for the potential testing. It demonstrated that the TiO2 nano thin film with pores will 

affect the electron transfer in electrochemistry cells, and it enhances the efficiency of dye-sensitivity of 

solar cells with TiO2 compared to TiO2 particles without pores. Further research about dye-sensitive 

solar cell of TiO2 electrode and electron transfer analysis is suggested.  

 

1.2  Outline of the thesis 

Chapter 1 is a simple introduction of the objective and achievement outlines of the content. 
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Chapter 2 is a detailed but critical literature review on some basic knowledge of nanomaterials, self-

assembling processes, synthesis methods and crystallographic structure of TiO2 and Fe2O3. The modern 

application of various TiO2 and Fe2O3 nanostructures are introduced in this chapter. The detailed 

research progress in each field of Fe2O3 and TiO2 nanostructures are reviewed in Chapter 4 -6 

respectively. 

Chapter 3 outlines the general experimental procedures and design for preparing TiO2 based 

nanostructures with a self-assembling process. The research approaches of synthesis iron oxide 

nanorods and titanium oxide nanospheres are proposed and discussed in this chapter. The principles of 

the instrumental characterization methods by TEM, FESEM, XRD, BET, FTIR, and NACO are briefly 

discussed and the default experimental conditions are also indicated in this chapter. 

In Chapter 4, the synthesis of hematite iron oxide nanostructure and morphology by self-assembling 

growth process are reported. Characterization analysis of the nanorods synthesized is also described in 

detail. 

In Chapter 5, the synthesis of hollow anatase TiO2 nanospheres and their intestines under hydrothermal 

conditions were investigated and reporte.  

In Chapter 6, the synthesis of microporous TiO2 thin film using a copolymer as the template via a 

hydrothermal route was studied and reported. Electrochemical voltammetry comparison analyses of 

TiO2 thin films with pores and without pores were described. 

In Chapter 7, brief conclusion of the thesis and recommendations for future research were provided.  
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Chapter 2 
Literature Reviews 

 

2.1 Brief background   

Nanostructures have been defined as having at least one dimension less than 100 nm. They have 

received steadily growing interest because of their unusual properties and promising applications, 

which are superior to their bulk counterparts (Wang et al., 2003a; Xia et al., 2003a; Yin et al., 2001). 

The ability to fabricate such nanostructures is essential to modern science and technology. Despite 

recent advance in the preparation and characterization of various nanostructures, there are numerous 

challenges in this field, such as preparing uniform nanoparticles, design of simple synthetic route and 

reducing the cost of materials.  It has been known that the physical and chemical properties of 

substances can be considerably changed when they are in nanoscopic scale (Patzke et al. 2002). 

Nanostructure semiconductor materials such as TiO2 Fe2O3, CoO, Co3O4, ZnO, MoO3, SnO2, and CuO 

etc. have been extensively studied due to their unusual catalytic and photoelectronic properties. 

(Cozzoli et al., 2003; Alivisator, 1996a) 

2.2 Self-assembly mechanism 

Self-assembly (SA), in the classic sense, can be defined as the spontaneous and reversible organization 

of molecular units into ordered structures by non-covalent interactions. The first property of a self-

assembled system that this definition suggests is the spontaneity of the self-assembly process. The 

interactions responsible for the formation of the self-assembled system act on a strictly local level, in 

other words, the nanostructure builds itself. At this point, one may argue that any chemical reaction 

driving atoms and molecules to assemble into larger structures, such as precipitation, could fall into the 

category of SA. However, there are at least three distinctive features that make SA a distinct concept. 

First, the self-assembled structure must have a higher order than the isolated components, be a shape or 

a particular task that the self-assembled entity may perform. This is generally not true in chemical 

reactions, where an ordered state may proceed towards a disordered state depending on thermodynamic 

parameters. 
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The second important aspect of SA is the key role of weak interactions (e.g. Van der Waals, capillary, 

π – π, hydrogen bonds) with respect to more “traditional” covalent, ionic or metallic bonds. These weak 

interactions play an important role in material synthesis. It can be instructive to note how weak 

interactions hold a prominent place in materials, but especially in biological systems, although they are 

often considered marginally with respect to “strong” (i.e. covalent, etc.) interactions. For instance, they 

determine the physical properties of liquids, the solubility of solids, and the organization of molecules 

in biological membranes. 

The third distinctive feature of SA is that the building blocks are not only atoms and molecules, but 

span a wide range of nano- and mesoscopic structures, with different chemical compositions, shapes 

and functionalities. These nanoscale building blocks can in turn be synthesized through conventional 

chemical routes or by other SA strategies (Korgel, 2004). 

Important examples of SA in materials science include the formation of molecular crystals, colloids, 

lipid bilayers, phase-separated polymers, and self-assembled monolayers (Whitesides et al., 2002). The 

folding of polypeptide chains into proteins and the folding of nucleic acids into their functional forms 

are examples of self-assembled biological structures. Figure 2.1 exemplifies the SA building block by 

hydrogen bonding. (Beijer et al., 1998) 

 

Figure 2.1: Self-assembly diagram of adenosine via hydrogen bonds (Beijer et al., 1998) 

Another character that is common to nearly all self-assembled systems is their thermodynamic stability. 

In order for SA to take place without the intervention of external forces, the process must lead to a 
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lower Gibbs free energy, thus self-assembled structures are thermodynamically more stable than the 

single, unassembled components.    

SA is a process which is easily influenced by external parameters: This can make synthesis more 

problematic due to the many free parameters that should be controllable; on the other hand, it has the 

exciting advantage that a large variety of shapes and functions on many length scales can be obtained 

(Lehn et al., 2002).  By choosing precursors with suitable physicochemical properties, it is possible to 

exert a fine control on the formation processes in order to obtain complex architectures. Clearly, the 

most important tool when it comes to designing a synthesis strategy for a material, is the knowledge of 

the chemistry of the building units (Forster et al., 2002) 

Most self-assembling mechanisms for inorganic nanostructures occur with the assistance of ligands 

(Polleux et al., 2004), surfactants (Larsen et al., 2003; Motte et al., 1996; Lisiechi et al., 2003; Messer 

et al., 2000; Li et al., 2005; Puntes et al., 2002), virus (Lee et al., 2003), fluidic channel structures 

(Huanget al., 2001), Langmuir-Blodgett technique (Yang , 2003; Whang et al., 2003), drying-mediated 

process (Zeng et al., 2002; Rabani et al., 2003), belong to the ”growth-then-assembly” process where 

the two discrete steps, growth and assembly, can be clearly divided. Recently, the shape effect in 

nanoparticle self-assembly was also investigated efficiently by Jana (Jana et al., 2004). 

The “growth-cum-assembly” integrated process which is usually also called the self-organized growth 

process has also attracted great interest due to its simplicity and good results. External assistance such 

as magnetic field (Niu et al., 2004) and templates of microbial polysaccharides (Chan et al., 2004), self-

assembled monolayer  (Lee et al., 2002) and micro-patterned surfaces (Tian et al 2003a) have been 

explored to grow various crystals with in-situ self-assembling process(Imai et al., 2003; Tian et al., 

2003b; Liu and Yu et  al., 2004).  Moreover, some bio-inspired approaches have also been used to 

fabricate micropatterned calcite single crystals with complex structure. (Aizenberg et al., 2003)  

2.3  Crystal Structures and surface properties of TiO2 & Fe2O3 

2.3.1 Nanostructure and surface properties of TiO2 

As one of the most useful metal oxide, titanium dioxide has three major different crystal structures, 

rutile (tetragonal, D4h 14 space group: P42 /mnm, a=b=4.584Å, c=2.953Å), anatine (tetragonal, D4h
19 –I 

spacegroup:I41 /amd, a=b= 3.782Å, c=9.502Å) and brookite (rhombohedra D2h 15 Space group: Pbca, a 
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= 5.436 Å , b=9.166Å, c=5.135Å ) ( Samsonov et al., 1982). Table 2.1 shows the parameters of 

brookite, anatase and rutile structure. In general, rutile and anatase is an important role in the 

application of TiO2. The unit cells of rutile, anatase and brookite are illustrated in Figure 2.2 and Figure. 

2.3. In both structures, each titanium ion is coordinated with six oxygen ions and each oxygen ion with 

three titanium ions. For anatase, the TiO2 octahedra shares edges with four adjacent octahedral; while 

the corner-sharing octahedral forms (001) planes. (Diebold et al., 2003) 

 
Figure 2.2: Rutile & anatase TiO2 crystalline unit cell (Smyth et al., 1988) 

 

 

Figure 2.3: TiO2 orthorhombic brookite unit cell (Smyth et al., 1988) 
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Table 2-1: Parameters of Rutile, Anatase and Brookite TiO2 Crystals (Smyth, et al., 

1998) 

TiO2 Crystal Type Rutile Anatase Brookite 

a(Å) 4.5845 3.7842 9.184 

b (Å)   5.447 

c(Å) 2.9533 9.5146 5.145 

Crystal System tetragonal tetragonal orthorhombic 

Density g/cm3 4.27 3.895 4.123 

Mole Mass (g/mol) 79.89 79.89 79.89 

Space Group D4h
19-P42/mnm D4h

19-I41/amd D2h
15-Pbca 

Vol: a2c and abc 

nm3 

62.07 136.25 257.38 

Anatase is one of the most investigated polymorphs of TiO2. The stability of the different low-index 

anatase surface has been predicted theoretically (Vittadini et al., 1998; Fahmia and Minot, 1994; Bullen 

et al, 2002). By using a periodic Hartree-Fock method, water adsorption on various crystallographic 

surfaces, (101) and (001), could be calculated. It is well known that the (101) face is the most 

thermodynamically stable surface for anatase TiO2 nanocrystal (Lazzeri et al., 2001; Lazzeri et al., 

2002). It might explain the fact that TiO2 nanostructure in anatase phase is more stable than in rutile 

phase. Because anatase is a metastable phase, it transforms into rutile at relatively low temperature 

(Amores et al., 1995), and the transition temperature is dependent on impurities, crystal size, sample 

history etc.   

Various TiO2 nanostructures have been synthesized during the recent decade, including nanorods (Kim 

et al., 2003), nanofibers (Jung et al., 2002), nanotubes (Niederberge et al., 2002), nanowhiskers (Zhu 

and Ding, 1999), nanospheres (Iida et al., 1998), ordered holes (Yin et al., 2001) and other 

morphologies. Among which the contribution of Chemseddine et al. (1999) has given researchers in 

this field a deep impression because he very clearly indicated the TiO2 nanocrystals exhibit different 
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sizes, shapes, and facets, depending on the pH value and the type of organic additives in the colloidal 

solutions. Typically, high pH value results in small cubic-like nanocrystals with {112} and {103} faces, 

while low pH value leads to truncated tetragonal nanocrystals with {101}, {001} and {010} faces. 

Excess dilution of the particle density appears to cause partial dissolution of the cubic-like TiO2 

nanocrystals to form spherical nanocrystals (Chemseddine et al., 1999).  

Due to its wide applications, mesoporous TiO2 has also attracted great interest and various porous 

nanostructures have been prepared successfully (Schűth et al., 2001, Yang et al., 1998; Moritz et al., 

1997, Burnside et al., 1998).  

2.3.2  Nanostructures and properties of Fe2O3   

2.3.2.1 Structure of α-Fe2O3  

Hematite (α-Fe2O3) is the mineral form of Iron (III) oxide (Fe2O3). Hematite crystallizes in the 

rhombohedral system and has hexagonal structure.  Figure 2.4 shows the standard hexagon structure 

diagram of regular hexagon crystal and Figure 2.5 shows the natural hematite materials diagraph of 

kidney ore from Michigan. (Dang et al., 1998)  

 

Figure 2.4: Structure scheme of regular hexagon (Dang et al., 1998) 
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Figure2.5: Nature hematite (kidney ore) mine picture (Dang et al., 1998) 

 

The unit cell of hematite is hexagonal with a = 0.5034 nm and c = 1.375 nm (Bragg & Bragg, 1918).  It 

consists of hexagonal close packing, where the sheets stack in ABAB [001]. Space group R3c arrays of 

oxygen ions stacks along the [001]. (Cornell, 2002) The arrangement of cations produces pairs of 

Fe(O)6 octahedra, and each octahedron shares edges with three neighboring octahedras in the same 

plane and one face with an octahedron in an adjacent plane. Table 2-2 is the structural orientation of 

crystal plane and crystal direction of iron oxides. 

 

 Table 2-2:  Structural orientation of iron oxides (Dang et al., 1998) 

  Crystal status             Crystal plane   Crystal direction 

 Goethite   (100)(004)(200)    [100] 

 Hematite   (001)(003)(110) (100)   [100] 

 Magnetite   (111)     [110] 

Lepidocrocite      (100)     [110] 

Maghemite   (001)     [110][111] 
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The crystal structure of hematite has a less directional effect on crystal habit than that of goethite. The 

principal habits of hematite are hexagonal plates and rhombohedra.  Morphologies of synthetic 

hematite include plates and discs, rods, spindles, spheres, ellipsoids, double ellipsoids, rhombohedra, 

stars, cubes and peanuts.  

 

2.3.2.2   Magnetic property of hematite nanoparticles 

Hematite is an antiferromagnetic material below the Morin transition at 260K. It is also a weakly 

ferromagnetic with an extremely tiny moment (0.002mB) between the Morin transition (260K) and 

below its Néel temperature at 948K, where it is paramagnetic. Hematite particles when smaller than 

about 8 nm display superparamagnetic relaxation at room temperature. The magnetic behavior of 

hematite depends on its crystallinity particle size and the extent of cation substitution. (Cornell, 2002) 

Figure 2.6 is a simplified illustration of a paramagnetic probe made up from miniature magnets. Figure 

2.7A is a simplified illustration of antiferromagnetic ordering and Figure 2.7B is an illustration of 

ferromagnetic ordering.   

 

 

 

Figure 2.6: Simple illustration of a paramagnetic probe made from miniature magnets 
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Figure 2.7A: Antiferromagnetic ordering                       Figure 2.7B:  Ferromagnetic ordering          

 

The constituent atoms or molecules of paramagnetic materials have permanent magnetic moments 

dipoles, even in the absence of an external magnetic field. This generally occurs due to the presence of 

unpaired electrons in the atomic/molecular electron orbits. In pure paramagnetism, the dipoles do not 

interact with one another and are randomly oriented in the absence of an external field due to thermal 

agitation, resulting in a zero net magnetic moment as illustrated in Figure 2.6. When a magnetic field is 

applied, the dipoles will tend to align along with the applied field, resaulting in a net magnetic moment 

in the same direction as the applied field as shown in Figure 2.7B.   

Superparamagnetism is such a phenomenon by which magnetic materials may exhibit a behavior 

similar to paramagnetism even at a temperature below the Curie or the Néel temperature. This 

phenomenon could occurr when the materials were composed of very small nanocrystallites (1-10 nm) 

and where the thermal energy was not sufficient to overcome the coupling forces between neighboring 

atoms (Cornell, 2002). However, the thermal energy was just sufficient to change the direction of 

magnetization of the entire nanocrystallite. Thus, the materials behaved in a manner similar to 

paramagnetism (Blake et al., 1966).  

2.4 Synthetic methods for TiO2 and Fe2O3 based nanostructures 

2.4.1 Sol-Gel method 

The sol-gel method is one of the common approaches to prepare well-dispersed nanoparticles and 

homogenous thin films by fabricating the structure of a primary precursor in which metal atoms 

distribute uniformly. The normal procedure of this method consists of mainly two steps, the hydrolysis 
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and polycondensation of a metal alkoxide. It ultimately yields a hydroxide or oxide of the metal under 

certain conditions. To obtain nanomaterials in sol-gel process, properly controlling experimental 

conditions such as pH, solution concentration, and temperature, etc. are especially important (Wang et 

al., 2003a). The resultant precipitate of metal oxide nanoparticles is subsequently washed and dried, 

which is then calcined at an elevated temperature to form crystalline metal oxide nanoparticles. 

The hydrolysis of metal alkoxides involves nucelophilic reaction with water as follows: 

M(OR)y + xH2O            M(OR)y-x (OH)x + x ROH 

Condensation occurs when either hydrolyzed species react with each other and release water molecules, 

or hydrolyzed species react with unhydrolyzed species and release an alcohol molecule. The rates at 

which hydrolysis and condensation reactions take place are important parameters that affect the 

properties of the final product. 

The technical route using sol-gel method to prepare metal oxide nanoparticles has been well developed 

in the recent twenty years, which has been used for synthesizing nanoparticles and alloy nanomaterials 

of metal oxides of Ti, Zn, Co, Al, and Fe, etc.  The sol-gel method is also used for preparing magnetic 

nanoparticles, such as barium ferrite particles (Zhong et al., 1997), iron oxide/silica nanocomposite 

(Ohko et al., 2003), M-type barium hexaferrites (Dong et al., 2006), CoFe2O4-SiO2 nanocomposites 

(Dasilva et al., 2006), Al-doped nickel ferrite nanocrystalline (Raghavender et al., 2007), and 

maghemite-silica nanocomposites consisting of 5 nm magnetic nanoparticles dispersed in silica xerogel 

(Sartoratto et al., 2007). 

2.4.2 Solvothermal method 

The solvothermal method (mainly hydrothermal) can be defined as a method of synthesis of single 

crystals which depends on the solubility of minerals in hot water under a high pressure. The crystal 

growth is performed in an apparatus consisting of a steel pressure vessel called autoclave, in which a 

nutrient is supplied along with water or solvent. A gradient of temperature is maintained at the opposite 

ends of the growth chamber so that the hotter end dissolves the nutrient and the cooler end causes seeds 

to take additional growth. 
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Possible advantages of the hydrothermal method over other types of crystal growth include the ability 

to create crystalline phases which are not stable at the melting point. Also, materials which have a high 

vapor pressure near their melting points can also be grown by the hydrothermal method. The method is 

also particularly suitable for the growth of large good-quality crystals while maintaining good control 

over their composition. Disadvantages of the method include the need of expensive autoclaves, good 

quality seeds of a fair size and the impossibility of observing the crystal as it grows (Laudise et al., 

1987). 

It has many advantages compared to other synthesis methods, for example it produces a highly 

homogenous crystalline product at a low reaction temperature. Its most important feature is that it 

favors a decrease in agglomeration between particles, narrow particle size distributions, phase 

homogeneity, and controlled particle morphology. It also facilitates to produce relatively uniform 

composition and pure product. The hydrothermal technique has been considered one of the best ways to 

prepare TiO2 particles of desired size and shape with homogeneity in the composition and a high 

degree of crystalline (Byrappa and Yoshimura, 2001). 

Qian et al. (1993) have reported the preparation of TiO2 nanocrystals by hydrothermal H2O2 oxidation 

starting from metallic Ti. This can be done in two steps: i) oxidation of TiO2 with an aqueous solution 

of H2O2 and ammonia to form a gel, and ii) hydrothermal treatment of the reactant system under 

various conditions. Chen et al. (1995) have also prepared TiO2 nanocyrstals with different 

morphologies by oxidation hydrothermal combination method. The effects of carboxymethyl cellulose 

sodium (CMC), HNO3, Al3+, K+, and other additives on the particle morphologies and crystalline 

structures were also discussed. The reaction time, temperature, solvent and minerals are also studied 

systematically. 

Cheng et al. (1995) have studied the process to prepare uniform nanosize rutile and anatase particles 

under various hydrothermal conditions. The effects of temperature, acidity, minerals, and the 

concentration of the starting material on the formation, phase, morphology, and grain size of products 

were investigated and discussed based on the understand on coordination chemistry. 

It is also possible to combine the hydrothermal process and sol-gel method (usually named sol-

hydrothermal) to prepare TiO2 nanocrystals, (Wang, et al, 1999; Wu et al., 2002; Sugimoto, et al., 2003) 

because the titanium alkoxides hydrolyze easily with water while the raw materials have been used in 
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the synthetic process. It is inevitablly to form the sol before the hydrothermal processing. With the 

chelating agent of triethanolamine (TEOA), ethylenediamine (EN), or trimethylenediamine (TMD), the 

uniform TiO2 nanocrystals with different morphologies such as nanocubes, nanoellipsoidal, and 

nanorods have been prepared by Sugimoto et al. (2003). 

Interestingly, Kim (2003) reported that narrowly dispersed nanorods and nanoparticles of TiO2 could 

be prepared by a surfactant-aided synthetic method in toluene solution. With this novel method, the 

average size of the products is less than 6 nm. In organic media such as ethylene glycol (EG), uniform 

brookite-type TiO2 has also been synthesized successfully by Kominami et al. (2000). 

More importantly, under hydrothermal conditions, layered titanates such as NaxH2-x Ti3O7, H2Ti3O7, 

H2Ti4O9.1.2H2O, and H2Ti5O11.3H2O have been synthesized in protonic forms and their ion-exchange 

and intercalation properties have been studied extensively (Sun et al., 2003; Sasaki, et al., 1996; Sasaki 

et al., 1997; Sasaki et al., 1998). Through the swelling/exfoliation process, these layered titanates could 

produce single nanosheets and then reassemble into porous aggregates. On the other hand, single 

crystal nanotubes and nanowires of the layered titanates can be easily obtained. 

In summary, solvothermal method is widely used to synthesize TiO2 based nanostructured materials 

though the morphologies of the products are still limited to nanoparticles or nanorods with different 

aspect ratio. However, more elegant superstructures could be expected with this novel synthesis 

method. Recently, Guo et al. (2003) have fabricated mesoporous core-shell structured titania 

microspheres with 0.5μm diameter of well-defined hollow interiors which were directly prepared by a 

novel hydrothermal precipitation of TiCl4 in the presence of urea and ammonium sulfate. 

2.4.3 Liquid phase deposition (LPD) method 

Liquid-phase deposition (LPD) is an aqueous technique for deposition of metal oxide films.  LPD 

method is based on the processes of which at least two raw materials from at least two supply devices 

undergoing reaction of a saturation reaction system into a mixture trough. The processes involve 

stirring the mixture until saturation occurs and filtering out unnecessary solid-state particles. The next 

step is to provide saturated and filtered liquid into an over-saturated reaction trough of a steady flow 

over the saturation loop reaction system, then depositing a thin film onto the substrate when the 

saturated liquid becomes over-saturated. 
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The distinguishing characteristic of LPD is the use of a solution of titanium-fluoride complexes such as 

(NH4)2TiF6 whose hydrolysis in water is modulated by adding boric acid (H3BO3) or aluminum metal. 

The fluoride ligand provides a slower and more controllable hydrolysis compared to the boric acid or 

aluminum functions as F- scavenger (Deki et al., 1996; Masude et al., 2002a; Wang et al., 1998; 

Masuda et al., 2002b). Using chemical equilibrium reactions between the titanium fluoro complex ion 

and titanium dioxide in the aqueous solution, titanium dioxide thin film could be deposited on the 

immersed substrates. This process is easy to apply to various kinds of substrates with large surface 

areas and/or complex morphologies without special equipment. However, other Ti sources such as TiF4, 

TiOSO4 and H2TiO3 have also been used in LPD process to fabricate rutile or anatase thin films (Imai 

et al., 2000; Imai et al., 1999; Imai et al., 2003; Shimizu et al., 1999; Yamabi and Imai, 2002a; Yamabi 

and Imai, 2002b). 

2.4.4 Other synthetic methods 

A micelle is an aggregate of surfactant molecules dispersed in a liquid colloid. A typical micelle in 

aqueous solution forms an aggregate with the hydrophilic head regions in contact with surrounding 

water, squestering the hydrophobic tail regions in the micelle centre. This type of micelle is known as a 

normal phase micelle (oil-in-water micelle). Inverse micelles have the hydrophilic headgroups at the 

micelle core and hydrophobic groups with the tails extending away from centre. These inverse micelles 

are approximately spherical in shape. Other phases, including shapes such as ellipsoids, cylinders, and 

bilayers are also possible. The shape and size of a micelle is a function of the molecular geometry of its 

surfactant molecules and solution conditions such as surfactant concentration, temperature, pH, and 

ionic strength.  

At inverse micelle is a water-in-oil droplets stabilized by a surfactant, and the most often used 

surfactant is sodium 1,4-bis[2-ethylhexyl]sulfosuccinate. These droplets are displaced randomly and 

subjected to Brownian motion. They exchange their water content and re-form two distinct micelles 

and the size of the water-in-oil droplets increases linearly.  It offers an excellent method for preparing 

nanoparticles with a very narrow size distribution and highly uniform morphology. For example, by 

coating a thin layer of gold, the nano-iron particles were protected from oxidation, the resulting 

nanoparticles were 7 nm in diameter coated with a 1 nm gold shell (Carpenter et al., 2001), further 

research was reported to prepare α-Fe2O3 nanoparticle with uniform size about 10nm by inverse micelle 
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method (Song et al., 2004).  Kim et al. reported successful preparation of nanoionic surfactant coated 

nanoscale Fe3O4 particles with an average size of 2-6nm. (Kim et al., 2001) 

Chemical vapor condensation (CVC) process was developed for preparing a variety of materials 

because a wide range of precursors for this method is commercially available. Choi et al. reported that 

magnetic nanoparticles of Fe were synthesized by CVC using iron carbonyl as the precursor under a 

flowing helium atmosphere. They realized the spherical nanoparticles with an average size of 5-13 nm 

distribution.Choi et al. (2001) 

  

2.5 Applications of TiO2 and Fe2O3 nanomaterials 

2.5.1 Applications of TiO2 nanocrystals 

Titanium dioxide has wide applications in the fields of catalysis, solar cell gas sensors, white 

pigments and corrosion-protective coatings, etc. It also possibly finds applications as a gate insulator 

for a new generation of metal–oxide–semiconductor field-effect transistors (MOSFETS) and as a 

spacer material in magnetic spin-valve systems. It is also possibly useful being made into 

nanostructured foams for Li-based batteries and electrochromic devices. Nanocrystalline TiO2 has 

become one of the mostly studied oxides. The technological potential of titania is expected to be 

remarkably extended if the particle morphology and surface property are completely controllable. 

  2.5.1.1 Photocatalytic properties 

Degradation of volatile organic compounds (VOC) with photochemical processes has become a major 

area of investigation in environmental protection during the last decade (Legrini et al., 1993). The 

advanced oxidation process (AOP) is mainly related to heterogeneous photocatalysis using TiO2. 

Starting with the photocatalytic splitting of water into hydrogen and oxygen in a photoelectrochemical 

cell (Fujishima and Honda, 1972), TiO2, particularly in anatase form, has been very extensively 

employed in such photo degradations because of its high activity and chemical stability. The 

mechanism of the process is believed to involve absorption of a UV photon by TiO2 to produce an 

electron (e-) – hole (h+) pair. The photogenereated electrons and holes migrate to the nanocrystal 

surface, where they act as redox sources and react with water to yield hydroxyl and superoxide radicals 

which oxidize the organic molecules (Linsebigler et al., 1995). 
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A large variety of organic compounds may be oxidized by TiO2 photocatalysis in the presence of 

molecular oxygen. For instance, Kim and Anderson (Kim et al., 1994) used a porous TiO2 thin-film 

electrode to degrade formic acid. Al-Ekabi and Serpone (Ai-ekabi et al., 1988) investigated the kinetic 

properties of heterogeneous photocatalysis degradation of chlorinated phenols in aqueous solutions 

over TiO2 supported on a glass matrix. Photocatalytic oxidation has already been used to achieve 

elimination of odors and to study, in particular, the degradation of organic compounds such as ethanol, 

butanoic acid, toluene, methylmercaptan, triethylamine (Ai-ekabi et al., 1988). Blake and Griffin 

(Black et al., 1988) proposed the parallel formation of butane although this hypothesis was invalidated 

by the work of Pėral and Ollis (1992) who could not detect this compound. The mechanism for the 

oxidative degradation of 1-butanol (BU) by photocatalysis has not been established so far. Up to now, 

very few studies have been carried out on amines and none of them suggest a degradation mechanism 

(Benoit-Marquie, 2000). Generally, a photocatalytic reaction is governed by relative rates of various 

processes such as oxidation reactions by photogenerated holes at the TiO2 surface, reducing reactions 

by photogenerated electrons at the TiO2 surface, diffusion of the electrons and holes in the TiO2 

catalysts, and various electron-hole recombination processes at the surface or in the bulk of TiO2 

(Linsebigler et al., 1995). 

2.5.1.2 Cheaper and highly efficiency solar cells 

The large-scale use of photovoltaic devices for electricity generation is prohibitively expensive at 

present.  Photovoltaic cell, created from low to medium-purity materials through low-cost processes, 

exhibits commercially realistic energy-converging efficiency (O’Regan and Grätzel, 1991; Grätzel 

2001: Nazeeruddin et al., 1993). The devices, TiO2 –based dye-sensitized solar cells (DSCs) or Grätzel 

cells are usually based on a 10µm-thick, optically transparent film of TiO2 particles with a diameter of 

a range nanometers, coated with a monolayer of a charge-transfer dye to sensitize the film for light 

harvesting. Because of the high surface area of the semiconductor film and the ideal spectral 

characteristics of the dye, the device harvests a high proportion of the incident solar energy flux and 

shows exceptionally high efficiencies for the conversion of incident photons to electrical current. The 

large current densities and exceptional stability, as well as low costs, make practical application 

feasible. Dye-sensitized cells differ from the conventional semiconductor devices in such a way that 

they separate the function of light absorption from charge carrier transport. In the n-type materials, 

such as TiO2, current is generated when a photon is absorbed by a dye molecule and gives rise to 

electron injection into the conduction bands of the semiconductor. Light harvesting or efficiency of the 
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devices is greatly determined by the surface area or roughness of the films and novel charge-transfer 

dye (O’Regan and Grätzel, 1991). 

High-surface-area TiO2 films are the base of solar cells because they offer highly efficient light 

harvesting while maintaining a pore size large enough to allow the redox electrolyte to diffuse easily 

(O’Regan and Gratzel, 1991). The intrinsic properties of thin-film nanocrystalline TiO2 electrodes can 

be summarized as follows:  (1) visible light transparency, (2) charge separation properties (3) electronic 

conductivity, (4) high surface affinity towards certain organic groups, and (5) large surface area. 

(Tachibana et al., 2002) The common “principle of efficiency” in these devices relies on fast electron 

transfer between the modified of the nanoparticles, and on the large surface area that amplifies optical 

and interfacial phenomena correspondingly (Campus et al., 1999). Recently, researchers found that the 

light-harvesting efficiency increases with the addition of relatively large particles to a transparent film, 

especially for near-infrared wavelengths (O’Regan et al., 1991). However, this lowers the light-

harvesting efficiency over the whole visible wavelengths owing to enhanced light reflection at the 

conducting glass/ TiO2 interface. Following a rigorous calculation using the results obtained from the 

light-harvesting efficiency and the short-circuit photocurrent measurements, it is demonstrated that the 

electron-transfer yield remarkably decrease with increasing optical thickness, that is, film light-

scattering magnitude, by a maximum of about 60%. The origins of the change in the electron-transfer 

yield can be complex, involving multiple excitation or many electron-transfer processes. The analytical 

results obtained in this study suggest that an appropriate light-scattering magnitude in the TiO2 film 

originating from particle size, their distribution, and the film thickness is a key parameter in controlling 

the electron-transfer yield as well as the light-harvesting efficiency and thus the short-circuit 

photocurrent (Tachibana et al., 2002). 

Another key step for fabricating solar cells is sensitizing TiO2 films with sensitizers such as cis-X2 bis 

(2,2’-bipyridyl-4,4’-dicarboxylate) ruthenium (II) (where X=Cl-, Br-, I-, Cn- and SCN-) (Nazeeruddin 

et al., 1993), cis-(2,2’-bipyridyl-4-COOH, 4’-COO-)2 (SCN)2 ruthenium (II) (Tachibana et al., 2002), 

etc. Recently, fluorescent quenching studies have been carried out to elucidate the processes of electron 

injection from the excited anhydro-1,1’-diethyl-3,3’-disulfobutyl-5,5’-dicyanimidazolo carbocyanine 

hydroxide (dye) into the conduction band of TiO2 semiconductor colloid. The dye absorbed strongly on 

colloidal TiO2 with an apparent association constant of 3478M-1, and its fluorescent emission was 

quenched by TiO2 colloid with an efficiency of 92%. Fluorescent lifetime measurements gave the rate 
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constant for the electron injection process from the excited singlet state for the dye into the conduction 

band of the semiconductor as 4 x 109 S-1 (Chen et al., 1997) 

2.5.1.3 Multicolor photochromism 

Recently, multicolor photochromism of a TiO2 film has been reported by Naoi et al. (2004) and Ohko 

et al. (2003). The TiO2 film showing multicolor photochromism is loaded with Ag nanoparticles by 

photocatalytic reaction of Ag+ under UV light. More importantly, the Ag-TiO2 films prepared by Naoi 

et al. are the first multicolor photochromic materials with apparently uniform structure. This kind of 

TiO2 films has wide potential applications including a rewritable color copy paper, a multicolor smart 

glass, and a high-density multiwavelength optical memory. A color-changeable paint is an additional 

application, since the film is easy to prepare, low cost, and applicable to a large area. On the other hand, 

it is of great scientific interest that such simple materials exhibit the multicolor photochromism. 

 

2.5.2 Application of Fe2O3 nanocrystals 

For thousands of years, iron oxides have been used as coloring agents, as human progressed and 

technology developed the application of iron oxides as colorants were extended. Hematite can be used 

as pigment for paints and the construction industry, as catalysts for industrial syntheses, as materials for 

steel industrial, as magnetic materials for drug delivery research and it can also be used in the 

environmental area. Nanoparticles of iron oxide have higher rates of reactivity due to their high specific 

surface area and more reactive surface sites compared to bulk iron oxide materials, therefore, they can 

be used in: biotechnology research, for catalytic reaction, for environment application and high 

performance liquid pigment.  

 

 2.5.2.1 Application in biotechnology 

Hematite nanoparticles seem to display different properties when composed of nano-ultrafine particles 

rather than larger particles in bio-pharmaceutics.  Nanomaterials of hematite have an increased relative 

surface area compare with the same mass of materials in larger form; it increases materials chemical 

reactivity for chemical reaction in biotechnology (Georgakilas et al., 2005). Due to the fact that it is a 

semiconductor material, if a particle is in nano scale, quantum effects dominate the behavior of matter; 
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it will change its strength and electrical properties, even optical, magnetic properties at designated 

structure.  The superparamagnetic properties of hematite nanoparticles have been of great interest for 

biomedical application in recent years such as therapeutic agents in cancer treatment e.g. hyperthermia, 

drug delivery (quantum dots), cell separation and protein immobilization. (Gupta et al., 2005) For 

example, reverse microemulsion techniques combined with templating strategies have led to the 

synthesis of homogeneous SiO2 –coated Fe2O3 nanoparticles with controlled SiO2 shell was reported by 

Yi et al. (2006). The magnetic nanotubes were assembled on sheep red blood cells in a phosphate 

buffer solution, forming magnetic cells, the blood cells attached with or without magnetic nanotubes 

can be selectively manipulated in a magnetic field (Gao et al., 2006). Hollow silica microspheres 

encapsulating ferromagnetic iron oxide nanoparticles were fabricated by a surfactant-aided aerosol 

process and subsequent treatment; it can serve as functional sites to graft biomolecules, such as protein 

and drugs on magnetic particles; it makes such silica coated nanoparticles a promising candidate for 

applications in bioseparations and targeted drug delivery under magnetic gradients.( Zheng et al., 2007)  

2.5.2.2 Catalytic Reactions 

The principal iron oxide nanoparticles used in catalysis of industrial reactions are magnetite and 

hematite. Both are semiconductors and can catalyze oxidation/reduction reactions. Owing to their 

amphoteric properties, they can also be used as acid/base catalysts.  

The most intensively studied syntheses involving iron oxides as catalyst are the Haber process for the 

production of NH3 from hydrogen and nitrogen and the Fischer-Tropsch synthesis of hydrocarbons 

(Campbell et al., 1970).  Nanocrystals have a high ratio of surface area to volume; it can be used in coal 

liquidification (Huffman et al., 1993) and as an ultraviolet energy absorber. Ferrihydrite which is 

precipitated from aqueous FeIII salt solutions has also been investigated for its suitability as a catalyst, 

and it has an average particle size of 3 nm and a surface area of around 200 m2/g (Zhao et al.,1993). 

However, the nanosized catalyst powder quickly agglomerates, losing most of its active surface. In 

order to avoid this problem, crystallization inhibitors such as Si, Al (Zhao et al., 1994a) and Mo (Zhao 

et al., 1994b) and citric acid (Zhao et al., 1994d) can be added. Al2O3 as a structural promoter is 

distributed over the surface of the Fe nanoparticles can stabilize them against sintering and  thus a 

reduction  of  the surface area during the operation of the catalyst can be minimized.(Kowsowski et al., 

1993) K2O acts as an electronic promoter and facilitates the chemisorptions of N2 for NH2 process 

(Topham, 1985). 
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2.5.2.3 Environmental Significance 

Iron oxides have been recognized as being solid phase which has a significant effect on the behavior of 

a large range of environmentally relevant substances particularly heavy metals and other toxic elements 

and organic xenobiotics. Iron oxide can deactivate pollutants by surface absorption or by incorporation. 

These deactivation processes in the ecosystem are also used extensively in environmental technologies 

such as water purification and remediation of contaminated environment. For example, nanoscale iron 

oxide particles can be applied to reduce polyhalogenated methane and carbon tetrachloride (CT) with 

high efficiency (Li et al., 2006). McCormick et al. investigated carbon tetrachloride transformation on 

the surface of nanoscale biogenic magnetite particles. They indicated that within 120 h, over 93% of 

CT was reduced, with a significant fraction (-38%) reduced fully to carbon monoxide. Furthermore, an 

additional 9% of the CT was dechlorinated to CH4 (McCormick et al., 2004). Another report indicated 

a similar result: at pH 7, about 20% of total CT was reduced to –C=O, and 40% to HCOO- (Elsner et 

al., 2004).Therefore, the large fraction of relatively benign products of carbon tetrachloride suggested 

that nanoscale iron oxide particle may have beneficial applications in the remediation of CT-

contaminated groundwater or soil. 

2.5.2.4 Liquid pigments 

As pigments, iron oxides have a number of desirable attributes. They display a range of colors with 

pure hues and high tinting strength, and they are extremely stable, i.e. non-bleeding, non-fading and 

highly resistant to acids and alkalis, and can be exposed to outdoor conditions (Schnaitmann et al., 

1998). Nanoscale iron oxide crystals are produced in a variety of shapes, such as spherical acicular, 

rhombohedra and cubic ones. By modifying the shapes and size of the particles, a variety of shades 

may be produced. Liquid pigments of nanoparticles are transparent, which has special characteristics 

such as being transparent reds and yellows. Transparent yellows consist of acicular nanocrystals of 

goethite; they can be transformed into the transparent reds of the same size and shape (50-100 nm) by 

calcinations at 400-500 °C. Blending of the reds and yellows gives a variety of transparent shades with 

different of refractive index and low binder. These liquid pigments with nanosized particles have more 

surface area and higher colorful optical effect compare with current commercial pigment;  Nanosized 

liquid pigment can make a half tone tint which are widely used for valuemark documents for which 

microsized pigment cannot fulfill the special effect. It can provide a protection against detrimental 
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effects of exposure to sunlight or even fluorescent light. Owing to their high UV absorption, 

transparent iron oxides are also used to color plastic films and UV sensitive product (Cornell, 2002) 

 

2.6  Summary 

As a summary for this chapter, the progress in the nanotechnology associated with the iron oxides and 

titanium oxide were reviewed; the technique of self-assembling was described; crystal structure and 

surface properties of titanium oxide and iron oxide were described; The popular synthetic routes of 

nanoparticles such as sol-gel and hydrothermal were critically reviewd; The major applications of 

titanium dioxide and iron oxide nanocrystals were briefly highlighte. Both of them are fascinating 

materials for potential applications as semiconductors from an academic point of view. So much is 

known now about its structures, preparation, and properties; yet, so much is still to be learned. There 

are still many new synthetic approaches for example: physical synthesis, high temperature, new 

precursors, additives, surfactants and various growth media to surprise us with unexpected results. How 

to reduce the cost of raw materials to get the uniform particles is still interested to many researchers. 
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Chapter 3 
Research Approaches and Experimental Methods 

3.1 Research Approaches of Anatase and hematite nanoparticles 

3.1.1 Research approach of Anatase TiO2 nanoparticles 

The principle of the chosen self-assembling reaction is based on the hydrolyzation of titanium 

isopropoxide to make TiO2 and isopropanol; Hexadecylamine is used to maintain the pH of solution 

within 8-9 in order to speed up the hydrolyzation. The surfactant is polyoxyethylene sorbitan trioleate 

(Tween 85). It has a formula shown in Figure 3.1. (Acros Organics, 2006)  

 

Figure 3.1:  Molecular formula of Tween 85 (Acros Organics, 2006) 

In this basic solution, anionic form of an alkylated oleic acid can be generated from Tween 85 while 

the Tween 85 serves as a micelle formation agent for controlling the size of nanocrystal titanium oxide. 

It was also discovered that the TiO2 was formed from related layered hydroxide precursors, [Tix
IV TiI-x

V 

(OH)2 (A) x nH2O], where A was the anionic form of alkylated oleic acid.  Tix
IV TiI-x

V (OH)2 inside the 

micelle nanoreactors at 130 -140°C  due to the surface capping formed on the TiO2. (Yang et al., 2003)  

3.1.2 Research approach of α-Fe2O3 nanocrystal 

To achieve synthetic control, the nanostructures would be expected to show certain aesthetic expression 

apart from their basic functionality by controlling crystal growth directions, for instance, a resultant 

nanocrystalite may display crystal isotropy or anisotropy based on its underlying structural properties. 
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Figure 3.2: Hematite crystal 3D structure unit cell diagram (Cornell, 2002) 

As shown in Figure 3.2, Fe2O3 nanoparticles are monodispersed with high crystalline, and the fast 

growing crystal ends are bounded with crystallographic facets (1011), (0111), (-1011), (-0111), (1101), 

(-1101) and (0001). (Zhao, et al., 2007) The array’s habit of self-assembling depended on coupling 

forces in materials which was caused by the magnetic moments of neighboring atoms aligned. If the 

thermal energy of an individual atom is sufficient to overcome the coupling forces, the atomic moments 

would fluctuate in the one direction.  

In our study, the raw materials, iron chloride and sodium hydroxide, a certain amount of the carbon 

nanotubes and excess surfactant of Tween 85 were added to make Fe2O3 nanorods. The sodium 

hydroxide concentration and the reaction temperature were important to make the Tween 85 micelles.   

A micelle looks like a “nanoreactor”. Iron oxide molecules were connected in certain directions to form 

2D nanorods within the “nanoreactor”.The reaction time is also very important in controlling the 

particle size.  
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3.2 Materials characterization analysis 

3.2.1 Powder X-ray diffraction (XRD) 

The crystallographic information of all samples was investigated by powder X-ray diffraction (XRD, 

Brock D8 Advance, Cu, Kα radiation, λ =1.5406 Ǻ, 40 kV, 40 mA). The samples were prepared in the 

form of fine homogeneous powder. A thin smooth layer of the samples mounted on a non-crystalline 

substrate such as fused silica was held in the path of X-rays. Calibration was carried out before each 

measurement. The diffracted X-rays correspond to all sets of planes in the crystal powder which could 

be orientated in every possible direction relative to the X-ray beam. The XRD patterns with diffraction 

intensity versus 2θ were recorded, usually from 10° to 80° at a scanning speed of 2° per min. The well–

known Bragg’s equation can be used to determine the interlayer space of the crystals d= λ/ (2sin θ), 

where θ is the diffraction angle. The average crystallite sizes, Dhkl, can be calculated by the Debye-

Scherrer formula with the full width at half maximum (FWHM) of the peaks Dhkl=0.9 λ/ (FWHM x cos 

θ). 

 

3.2.2 Transmission electron microscopy (TEM) 

In TEM analysis, a highly focused and monoenergetic electron beam is used to bombard the sample 

specimen. The transmitted electrons form images on a fluorescent screen which provide morphological 

features and atomic arrangements of the samples. For high resolution transmission electron microscopy 

(HRTEM), interferences among beams scattered by the crystal in different directions form a “lattice 

image”. Picometer-scale image provided by HRTEM is essential for nanomaterials science (Wang, et 

al., 2003b; Bulle-Lieuwma, et al., 1991; Wang, et al., 2000). During the specimen preparation, usually 

TiO2 and Fe2O3 nanostructure materials were dispersed into deionized water or other solvent and a few 

drops of such solution mixture were spread on a cooper grid coated with carbon films for analysis in a 

Philips CM10 FEG electron microscope (80kV) , JEOL 3010 (300kV)  and LEO 912AB (120kV) 

respectively. 
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3.2.3 Scanning electron microscopy (SEM) 

Scanning electron microscopy (SEM) was also widely used in our work. As the electron beam hits each 

spot on the sample, secondary electrons are knocked loose from its surface. A detector counts these 

electrons and sends the signal to an amplifier. The final image is built up from the number of electrons 

emitted from each spot on the sample. In order to improve the conductivity of the samples, all our SEM 

samples were coated with a very thin layer of platinum by a sputter coater. Besides giving the images 

of the samples, SEM equipment can conduct Energy Dispersive X-Ray Spectroscopy (EDX) analysis 

which can also provide the information of the elemental composition of materials imaged by SEM. As 

the electron beam of the SEM is scanned across the sample surface, it generates X-ray fluorescence 

from the atoms in its path. The energy of each X-ray photon is the characteristic of the element which 

produced it. The EDX microanalysis system collects the X-rays, sorts and plots them by energy, and 

automatically identifies and labels the elements responsible for the peaks in this energy distribution. In 

order to produce clearer, less electro-statically distorted images, Field Emission Scanning Electron 

Microscopy (FESEM) was used in this work as well. For FESEM, a field-emission cathode in the 

electron gun of a scanning electron microscope provides narrower probing beams at low as well as high 

electron energy resulting in both improved spatial resolution and minimized sample charging and 

damage. FESEM and EDX of the samples were taken on a LEO 1530 Scanning electron microscopy 

operated at 5kV-15kV for this thesis. 

3.2.4 Nanoparticle size analysis (NANOTRAC 150) 

For this research work we used the Nanotrac 150 instrument to analyze nanoparticle size. The nanotrac 

150 features an internal probe embedded in a stainless steel sample cuvette. The standard cuvette has a 

sample volume of 3 ml but is also available in a 0.2 ml version, and the measurement range is 0.8-6500 

nanometer and the scan angle is 180°.  The laser source is Laser Diode with 780 nm wavelength, 3 mW 

nominal, Class IIIB.  The laser generator and detector were fixed in place and no alignments were 

required. The concentration limit range can be high up to 40% by solids in some cases and low down to 

0.1 ppm for 200 nm polystyrene. Repeatability is 0.1% of 100nm polystyrene. The Microtrac FLEX 

operating software package is used for data analysis. (Microtrac Inc, 2007) 
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3.2.5 Fourier Transform Infrared spectroscopy (FTIR) 

FTIR is a powerful tool for identifying types of chemical bonds in a molecule by producing an infrared 

absorption spectrum that is like a molecular “fingerprint”. It can be applied to the analysis of solids, 

liquids and gases.  The wavelength of light absorbed is a characteristic of the chemical bond as can be 

seen in the annotated spectrum which can be identified by comparison to a library of known 

compounds.  FTIR can be used for some quantitative analyses. Solid samples for FTIR in our research 

were milled with potassium bromide (KBr) to form a very fine powder. This powder was then 

compressed into a thin pellet for analysis. In this thesis, all samples were recorded on Fourier transform 

infrared spectroscopy LEO 410 Bio-FT-IR instrument and handled at room temperature in air. 

 

3.2.6 UV Spectrophotometer 

UV/Vis spectrophotometer is ultraviolet-visible spectroscopy instrument. It is routinely used in the 

quantitative determination of solutions of transition metal ions and highly conjugated organic 

compounds. It measures the intensity of light passing through a sample (I), and compares it to the 

intensity of light before it passes through the sample (I0). The ratio I /I0 is called the transmittance, and 

is usually expressed as a percentage (%T). The absorbance A, is based on the transmittance:  

A = - log (%T) 

The basic parts of a spectrophotometer are a light source where an incandescent bulb for visible 

wavelengths and a deuterium arc lamp in the ultraviolet. The spectrometer includes a holder for the 

sample, a monochromator to separate the different wavelengths of light and a detector. The detector is 

typically a photodiode used with monochromators, which filter the visible light so that only light of a 

single wavelength reaches the detector. In this thesis, a UV-visible Spectrophotometer Cary 300 

instrument was used, and the scanning rate was 600 nm /min with a wavelength reange of 200 -900 nm. 

Spectra were acquired in transmission mode through the quartz tube at a 300kV accelerating voltage. 

3.2.7 Magnetic property analysis (SQUID) 

Superconducting Quantum Interference Device (SQUID) is very sensitive magnetometers. It is used to 

measure extremely small magnetic fields, based on superconducting loops containing Josephson 
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junctions. They have noise levels as low as 3 fT·Hz−½. Model 5000 DC SQUID controller made by 

Quantum Design was used for this research. SP5000 - High performance DC SQUID controller for up 

to eight channels, remote computer and GPIB port, simultaneous overall display of one to eight 

channels on the front panel LCD show that independent values for range, gain, bandwidth, status, and 

filter states and16-bit A/D converter is capable of multiplexing all eight channels of SQUID output. 

Magnetic hysteresis measurement at different temperature 300K was performed. 

3.2.8 Surface area analysis (BET) 

In this work, the Brunauer-Emmett-Teller (BET) method was used to measure the total surface area of 

the Fe2O3 based nanostructures and TiO2-based nanostructures (Brunauer, et al., 1938; Brunauer, et al., 

1940). The adsorption data were obtained from this testing. Full adsorption and desorption isotherm of 

nitrogen on our samples were determined at various pressures and the pore volume and pore-size 

distribution were calculated with the Barret-Joyner-Halenda (BJH) method (1951). In this thesis, the 

surface area was measured by Quantachrome NOVA-3000 and all smaples were degassed at 110°C for 

3hrs by nitrogen at the atmosphere. 

3.2.9 Electrochemical Voltammetry  

The PGSTAT 30 is a high current potentiostate/galvanostat, with a compliance voltage of 30V and a 

bandwidth of over 1MHz. It is specially designed for electrochemical impedance spectroscopy. The 

maximum current is 2A; the current range can be extended to 20A.  AutoLab PGSTAT30, the 

Potentiostat Galvanostat /voltammetric analysis instrument include Agilent 54624A Oscilloscope meter, 

a dummy cell and a differential electrometer amplifier from Eco chemie B.V.  AutoLab PGSTAT 30 is 

used for analysis potential /current, for the performance of electron transfer, and for simulation of 

electrochemistry reaction etc. AutoLab and software provide a lot of methods and modulars, and 

include a staircase method, which is able to record these fast phenomena. In this method the analog 

current integrator is used. The integrator is reset at the beginning of each step. Subsequently, the 

integrated current or charge is sampled at the end of each step. In this thesis, PGSTA 30 instrument 

with linear sweep voltammetry was used for measuring electron transfer of titanium oxide working 

electrode. 
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Chapter 4 
Self-assembly of iron oxide nanorods: experimental synthesis and 

instrumental characterization  

4.1 Introduction 

Iron oxide nanoparticles have been of great interest, not only because of their special fundamental 

properties, but also due to their multivalent oxidation states, abundant polymorphism and mutual 

polymorphous changes in crystal phase such as hematite (α-Fe2O3) and maghemite (γ-Fe2O3). 

Hematite (α-Fe2O3), the thermodynamically stable crystallographic phase of iron oxide with a band gap 

of 2.2ev, is a very attractive material because of its wide applications in various fields, for instance, 

high density magnetic recording media, gas sensors, catalysts, pigment and clinical uses. Its   

nontoxicity, low cost, and relatively good stability are definitely very attractive features for these 

applications. (Willis et al., 2005; Li et al., 2007; Li and Zeng et al., 2005; Chang et al., 2005) There has 

been much interest in the development of novel synthetic methods to produce one-dimensional α-Fe2O3 

nanostructures, such as vapor-solid growth techniques, (Yi et al., 2006; Fu et al., 2003; Chen et al., 

2005) templated synthesis method, hydrothermal process and sol-gel process. (Wang et al., 2004; 

Mazeina et al., 2007)  Among these processes, the sol-gel process can offer an advantage fabricating 

metal oxide nanoparticle with a wide range of compositions in improved homogeneity and high purity 

at relatively low temperature over the other fabrication techniques. (Sun et al., 2002)  

In the recent few years, many studies on synthesis of iron oxide nanoparticles have focused on 

controlling the shape and size of nanoparticle via various synthesis methods. In particular, synthetic 

hematite iron oxide nanoparticles are expected to exhibit interesting magnetic properties because of 

shape anisotropy, for example, rodlike morphology hematite iron oxide exhibited variable magnetic 

properties at different temperatures. (Fu et al., 2002) 

Some studies on synthesis of magnetic Fe2O3  nanoparticles have been reported in recent decade, and 

most of them focused on the synthesis of γ- Fe2O3,  Fe3O4 nanoparticles and α- Fe2O3 nanospheres (Park 

et al., 2000; Gao et al., 2006; Tang, et al., 2006; Zhong et al., 2006). Only a few anisotropic magnetic 

nanorods have been investigated. Park et al. (2000) reported that they synthesized iron oxide 

nanospheres via thermal decomposition of organometallic precursor Fe (CO)5 in the presence of 
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trioctylphosphine oxide (TOPO) surfactant at 340 °C under argon atmosphere and then the resulting 

solution was aged for 30 min at 320 °C. After the spherical nanoparticles of 2 nm were prepared, the 

produced nanospheres dissolved in 19 ml of pyridine containing 0.5g of didodecyldimethylammonium 

bromide for 12 h to make 2 nm (width) x 11 nm (length) nanorods. The magnetic properties of 

nanorods would be very interesting because they would demonstrate the effect of shape anisotropy 

(Park et al., 2000, Liu and Wang et al., 2004). Burleson et al. (2006) has addressed goethite growth by 

the phase transformation of six-line ferrihydrite nanoparticles to goethite nanoparticles followed by 

oriented aggregation to produce goethite nanorods. Data tracking goethite nanorods growth as a 

function of pH, temperature and time have been presented in his report. The final results showed that 

growth is faster at higher pH and higher temperature. Tang et al. (2006) synthesized α- FeOOH 

nanorods with diameters of 15-25nm and lengths up to 170-300nm in high yield via a facile and 

template-free hydrothermal method at low temperature. After calcining the as-synthesized α- FeOOH at 

250°C for 2h, the α-Fe2O3 nanorods were obtained. It exhibited weakly ferromagnetic characteristics at 

low temperature and superparamagnetic property at room temperature. Zhong et al. (2006) developed a 

versatile method using alkylamines (octylamine and isobutylamine) as structure-directing agents for 

synthesis of various 1D transition metal oxides in aqueous solution. They prepared 1D pre-Fe2O3 

powder by a hydrothermal processing, after calcinations at 300°C, the 1D pre- Fe2O3 was converted to 

single-crystalline α-Fe2O3 nanorods. If further reduction is applied, the nanorods can be converted to 

1D Fe3O4. Two months ago, Zhong et al. (2007) just reported synthesis of porous α-Fe2O3 nanorods by 

a mild hydrothermal processing using tetraethylammonium hydroxide (TEAOH) as the structure 

director. The porous α-Fe2O3 nanorods have a pore size distribution in the range of 1-5nm, which is 

ideal to house very small gold particles. Final Au/ α-Fe2O3-nanorod catalyst exhibited higher catalytic 

activity than the normal Au/hematite catalyst for CO oxidation. However, so far there has not yet been 

a report on synthesizing uniform α-Fe2O3-nanorods using low cost materials via a sol-gel process with 

carbon nanotubes as the structure director.    

In this chapter, a novel self-assembling method for synthesizing iron-oxide nanorods and nanodots has 

been investigated via the sol-gel technique with carbon nanotubes as the structure director and Tween 

85 as the surfactant. Fe2O3 nanorods have been achieved using some low cost materials as the starting 

materials via an one-step process. The characteristic results showed that uniform nanorods were 

obtained.  The mechanism of the self-assembling along a certain direction when carbon nanotubes were 
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used as the structure director in the growth of the hematite iron oxide nanorods from nanodots was 

discussed. Furthermore, some of future directions in nanomagnetism are also described.   

4.2 Experiment Details 

4.2.1 Materials 

Tween 85 (C100H188 O28, polyoxyethylene (20) sorbitan trioleate; Polysorbate 85) and iron chloride 

(III), reagent grade 97% were purchased from Sigma-Aldrich (Oakville, Ontario, Canada). Sodium 

hydroxide (99%) powder was purchased from Fischer Chemical (Ottawa, Ontario, Canada). 

Multiwall carbon nanotubes-1030 (L-MWNT-1030, about 30nm width, long tube) powder was 

purchased from Shenzhen Nanotechnology Co. Ltd. (Shenzhen, Guangdong, China). 

4.2.2 Apparatus:  

A 250 ml three-neck-flask with a round bottom was used as the reactor, equipped with a condenser. 

An IEC CL 31 Multispeed centrifuge of Thermoelectron Corporation (Toronto, Ontario, Canada) 

was used for separating product of hematite iron oxide precipitation. A VWR Model 50HT 

Ultrasound Cleaner (Toronto, Ontario, Canada) was used for dissolution and precipitation operation 

during sample washing stage. 

4.2.3 Preparation of reagents 

10 g of sodium hydroxide was dissolved in deionized water to make 250 ml of 1 M sodium 

hydroxide solution, which was later diluted to 0.1 - 0.5 M, depending on the individual experimental 

requirements. 20.276g of FeCl3 powder was dissolved in deionized water to prepare 250 ml of 0.5 M 

iron chloride solution, which was later diluted into 0.1-0.5 M, depending on individual experimental 

requirements. For each experiment, 30-50 ml of 0.1 - 0.5 M iron chloride solution, 12 ml of Tween 

85, and 0-10 mg of carbon nanotubes (LMWNT-1030) were used.  

4.2.4 Synthesis of nanoparticles of iron oxide 

A sol-gel method was used to synthesize α-type iron oxide materials. The reaction time was controlled 

between 70 hrs -100 hrs and the reaction temperature was 90-100°C.The procedure for synthesizing 

paramagnetic iron oxide are as follows. 
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First, 10 mg of carbon nanotube powder was added into the 250ml of three-neck flask and then 30 ml 

of 0.5 M sodium hydroxide solution was added. Afterwards, the three-neck flask was placed in a 

silicon oil bath. When the temperature of the content in the flask reached 60 °C, 12 ml of Tween 85 

was then added into the flask drop by drop with stirring of 500rpm for 15 min. Because the viscosity of 

the solution was high and the stirrer bar almost could not move when the temperature was below 60 °C, 

the operation temperature was set above 60 °C. After another 15 minutes of stirring, 30 ml of 0.5 M 

FeCl3 solution was added into the flask drop by drop with continuous stirring at 60 °C. The viscosity of 

the solution decreased gradually as iron chloride solution was added, and the color changed from light 

yellow to deep yellow, and finally it became a turbid yellow solution; in the mean time, the system was 

heated for about 25 min so that the temperature of the system increased from 60°C to 100 °C.  The 

stirring speed was maintained between 500 -600 rpm for the whole process. After the temperature of 

the solution reached 90°C-100°C, the reaction conditions were maintained for 70 - 100 hours. The 

heating was stopped but the stirring was still maintained at 500 rpm for another 12 hours to allow the 

temperature of the oil bath to cool down to the room temperature. For this series research, 30 individual 

experiments were conducted in the range of temperature and reaction time to find the suitable 

conditions to make hematite nanorods. 

4.2.5 Separation of the products 

250 ml of ethanol was used to wash the above synthesized products and a centrifuge operated at 6000 

rpm was employed for 8-10 min to separate precipitation (yellowish black) from the solution. The 

resultant mixture had three layers. The top layer (denoted as L1) was an oily liquid with brown color, 

which was homogenous iron oxide with light oily liquid and Tween 85. The middle layer (denoted as 

L2) was a mixture of ethanol, water and Tween 85, and the bottom layer (denoted as L3) was a black 

precipitation, which was iron oxide nanoparticle sediment. These three layers were separated by 

centrifugation for further purification. 

The sediment (L3) was washed at least 3 - 4 times using 99% ethanol and an ultrasound cleaner was 

applied for 15 min each time before it was put into the centrifuge so that the extra surfactant could be 

removed; the precipitate of iron oxide nanoparticles was then dried in a steam oven for at least 24 hours 

at 50 °C. Finally the sediment product was ground by a quartz grinder manually to powder for further 

characterization. 
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Using ethanol to dilute the L1 solution, a solution with a clear brown color was obtained. This so-called 

“Upsoln”, a liquid mixture consisted of ethanol, iron oxide nanoparticles of about 1 nm, oily liquid and 

Tween 85, is very difficult to be further separated for characterization. To realize the separation, 20 ml 

of water was added into 50 ml of the “Upsoln” in a conical flask. The “Upsoln” then became a two-

layer system, and the upper layer (denoted as L11) solution was about 4-5 ml with a deep yellow color, 

which was believed to be an iron oxide with oily liquid and the down layer (denoted as L12) was an 

emulsion of water and Tween 85 whose appearance was similar to yellowish milk. Most of iron oxide 

particles were capped by hydrophobic organic material and preferred to stay in the ethanol layer rather 

than water layer.  

4.3 Characterization 

Characterization of the synthesized iron oxide nanoparticles was conducted by a series of instrument to 

verify the nanorods. The crystal structure of hematite was analysed by XRD.  The morphology of 

nanoparticles was investigated by HRTEM and TEM. The morphology on the surface of the 

nanoparticls was determined by FESEM. The chemical compositions of nanoparticles were analyzed 

by FTIR and EDX. 

The nanoparticles size was measured by NanoTrac 150. The process of nanoparticles testing is as 

below. Using ethanol to wash products 2 times to get the brownish solutions L11 and L3, ultrasonic 

stirring solutions for 3 mins, then using dropper to collect 5 drops to 3 ml of ethanol solution for 

nanoparticle size testing.  Characterization of the flurensence properties was carried on the UV-Visible 

Spectrophotometer Cary 300.  Analysis of the magnetical properties was conducted by SQUID.   

Absorption properties were measured by BET.   

4.4  Results and discussion 

Iron oxide nanorods in our study were obtained. The results about the strucutures, morphology and the 

compositions of the nanoparticles were discussed in the section 4.4.1 through section 4.4.7. 

4.4.1 Crystal hematite nanostructures 

As shown in Figure 4.1, the Fe2O3 nanorods synthesized in our study are monodispersed and have high 

crystallinity with the diameter of 50 nm. In particular, the fast growing crystal ends were bounded with 

crystallographic facets (1011), (0111), (-1011), (-0111), (1101), (-1101) and (0001). (Zhao et al. 2007; 



 

36 

Cornell, 2002) It was found that individual one-dimensional Fe2O3 nanorods could also attach to one 

another to form a two dimensional array of nanorods, as shown in Figure 4.2 via their smoother 

prismatic side planes (10-10), (01-10), (-1010), (0-111), (1-100), and (-1100). Potentially the oriented 

attaching phenomenon observed here may offer new means for general freestanding single crystal 

sheets of inorganic materials. 

 
Figure 4.1: TEM images of Fe2O3 nanorods synthesized at 90ºC 

25 ml of 0.5M FeCl3, 40 ml of 0.3M NaOH, 12 ml of Tween 85, 10 mg of carbon nanotube, reaction 

temperature : 90°C, reaction time: 72.5 hrs , scale shown on the image :50 nm.     
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Figure 4.2: Symmetric unit cell to one dimension nanorod of α-Fe2O3  

 
Figure 4.3: XRD spectrum of hematite iron oxide nanorods 

XRD image of the powder of L3; reaction conditions: 5 ml of 0.5M FeCl3, 40 ml of 0.3M NaOH, 12 ml 

of Tween 85 , reaction temperature :90º C, reaction time: 71.5 hrs. 

The hematite nanocrystal structure verification was conducted by XRD. Figure 4.3 shows the XRD 

patterns of iron oxide nanorods from L3 layer. Obviously, this XRD pattern confirmed that the crystal 

structure of the product is the hematite α-Fe2O3 because the same pattern as the standard hematite XRD 

is obtained; especially the characteristic sharp peaks of hematite structure at 104, 110 and 116. 

4.4.2 Crystal nanorods growth and morphology   

The mechanism of the crystal growth and the morphology of the crystals depend on the solution 

conditions, particularly referring to the supersaturation on the crystal growing surface. Many functional 

inorganic materials are prepared according to their intrinsic structural anisotropies. The controlling of 

the structure, shape, and chirality of individual inorganic nanostructures is prevailingly achieved via 

organic capping assisted methods, which use various organic surfactants (Kwon et al., 2006), liquid 
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crystals, ligands, and chiral supramolecular assemblies (Choi et al., 2006) to guide the growth 

directions.    

Reactions 1 and 2 below are the main chemical reactions involved in the formation of hematite:  

FeCl3 + 3NaOH  =  Fe(OH)3  + 3Na+ +3Cl+        (1) 

2Fe (OH) 3 = Fe2O3 + 3H2O           (2)    

  

The compounds of the Tween 85 belong to nonionic type surfactants and they are commonly used as an 

emulsifier to stabilize both water-in-oil and oil-in-water emulsion. The concentration of Tween-85 in our 

starting reaction mixture is much higher than its critical micelle concentration.  During the synthesis, 

therefore, various types of micelles are expected to form. Our synthesized products indeed show that these 

micellar “nanoreactors” are working in controlling the particle size of Fe2O3.  In all the cases, the resultant 

Fe2O3 nanorods were stably dispersed,  and no precipitates were observed in the resultant emulsions, 

which can be ascribed to a tiered surfactant structure formed  (i.e., a bilayer shell), where the hydrophilic 

headgroups of Tween-85 are pointing toward the aqueous phase. 

 
Figure 4.4: TEM image 1 of iron oxide nanoparticles   
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25 ml of 0.5M FeCl3, 40 ml of 0.3M NaOH, 12 ml of Tween 85, 10 mg of carbon nanotube, reactant 

solution temperature : 90°C ;  reaction time: 20 hrs ;  scale shown on the image : 50 nm. (Original 

sample without washing and directly diluted by ethanol, sample from mixture of L1, L2 and L3). 

Figures 4.4 - 4.9 are the TEM imagesof the Fe2O3 generated when the reaction time was 20 hrs, 40 hrs, 

50 hrs, 60 hrs , 71.5 hrs and 72.5 hrs respectively. In Figure 4.4 carbon nano tube can be observed   

clearly in the mixture and iron oxide nanodots were formed close to the carbon tubes. No nanorod of 

iron oxide was observed in this stage. From Figure 4.5 we can see small crystal nanodots arrayed to 

lines along the walls of carbon nanotubes which acted as a structure director.   

 
Figure 4.5: TEM image 2 of iron oxide nanoparticles   

25 ml of 0.5M FeCl3, 40 ml of 0.3M NaOH, 12 ml of Tween 85, 10 mg of carbon nanotube,  reaction 

temperature: 90 °C;  reaction time: 40 hrs;  scale shown on the image :50 nm. (Original sample without 

washing and directly diluted by ethanol, sample from mixture of L1, L2 and L3) 
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Figure 4.6: TEM image 3 of iron oxide nanodots and nanorods   

25 ml of 0.5M FeCl3, 40 ml of 0.3M NaOH, 12 ml of Tween 85, 10 mg of carbon nanotube, reaction 

temperature:  90 °C; reaction time: 50hrs; scale shown on the image: 50 nm. (Original sample without 

washing and directly diluted by ethanol, sample from mixture of L1, L2 and L3, scale bar in this Figure 

is 50nm)  

 

Figure 4.7: TEM image 4 of iron oxide nanorods   
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25 ml of 0.5 M FeCl3, 40 ml of 0.3M NaOH, 12 ml of Tween 85, 10 mg of carbon nanotube, reaction 

temperature: 90°C; reaction time: 60hrs; scale shown on the image: 50 nm. (Original sample without 

washing and directly diluted by ethanol, sample from mixture of L1, L2 and L3) 

The TEM image of Figure 4.5 showed that at 40 hrs, the extemal surface of the carbon tubes was 

attached with iron oxide dots; the channel of carbon tubes was filled by iron oxide particles although 

the long shape of carbon tube could still be observed. The carbon tubes changed into carbon dots. The 

iron oxide nano particles were generated after about 50 hours at 90 °C. Figure 4.6 shows that carbon 

nanotubes in the reaction system were broken, and then disappeared. A small amount of nanodots and 

some nanorods were formed. Carbon nanotubes in the initial stage could produce a traction force that 

induced the iron oxide molecules to be arranged in one sequence. After nanoparticles were formed, the 

carbon nanotubes would join the reaction as a reducer, and finally, the carbon nanotubes disappeared as 

shown in Figure 4.6 after 50hrs. In Figure 4.7 nanodots were observed less than that showed in Figure 

4.6, and nanorods were formed more and more with the reaction time.  

 

 

Figure 4.8: TEM image 5 of iron oxide nanorods 

25 ml of 0.5M FeCl3, 40 ml of 0.3M NaOH, 12 ml of Tween 85,  10 mg of carbon nanotube,  reaction 

temperature:  90°C; reaction time: 71.5 hrs, shown on the image: 50 nm. (Original sample without 

washing and directly diluted by ethanol, sample from mixture of L1, L2 and L3) 
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Figure 4.8 showed the iron oxide nanorods self-assembled at 71.5 hrs. It can be observed that nanorods 

of iron oxide were successfully formed and carbon nanotubes disappeared completely. 

 

 
Figure 4.9: TEM image 6 of iron oxide nanorods at 72.5hrs 

25ml of 0.5M FeCl3, 40 ml of 0.3M NaOH, 12 ml of Tween 85,  10 mg of carbon nanotube, reaction 

temperature : 90 °C; reaction time: 72.5  hrs; L3 nanorods, shown on the image: 50 nm.  

 

Figure 4.10: TEM Diffraction result of iron oxide nanorods of Figure 4.9 
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Figure 4.11: HRTEM image 1 of iron oxide nanorods at 72.5 hrs at 20 nm scale 

25ml of 0.5M FeCl3, 40 ml of 0.3M NaOH, 12 ml of Tween 85,  10 mg of carbon nanotube, 

reactiontemperature :90°C;  reaction time: 72.5 hrs;  shown on the image:  20 nm, sample is from L3. 

TEM image shown in Figure 4.9 confirmed that the resultant iron oxide particles were nanorods and the 

size was 5 nm in width and 30-50 nm in length. From Figure 4.4 to Figure 4.9, the whole process of 

formation of iron oxide nanorods according to time variation has been observed. 

Figure 4.10 showed the transmission electron diffraction (TED) image. It very clearly indicated that this 

particle was nanocrystaline as the diffraction crystalline rings were observed.  

The nanorods were observed by HRTEM image (Figure 4.11) as well. It showed that the nanorods are 

uniform in size and in parallel arrangement within their groups.  
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Figure 4.12: HRTEM image 2 of iron oxide nanorods at 72.5 hrs at 10 nm scale 

25 ml of 0.5M FeCl3, 40 ml of 0.3M NaOH, 12 ml of Tween 85,  10 mg of carbon nanotube,  reaction 

temperature: 90°C; reaction time: 72.5  hrs, shown on the image: 10nm, sample from L3. 

The HRTEM at 10 nm scale, Figure 4.12, showed that there were many pores in the nanorods. The 

nanorods consisted of self-assembled nanodots. These linear arrays will provide large surface area 

which is prefered when they are used as catalyst.  

Field Emission Scanning Electron Microscopy (FESEM) is a high resolution imaging technique 

providing topographical and structural information in plan view or in cross-section. Figure 4.13 and 

Figure 4.14 showed the surface morphologies of iron oxide nanoparticles powders. Nanorods can be 

easily observed in the images. It means that the nanorod product still remained after the product was 

taken out from the solution. 
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Figure 4.13: FESEM image 1 of iron oxide at 100nm scale 

 

Figure 4.14: FESEM image 2 of iron oxide at 20nm scale. 

Figure 4.13 and Figure 4.14:  25 ml of 0.5M FeCl3, 40 ml of 0.3M NaOH, 12 ml of Tween 85, 10 mg 

of carbon nanotube, reaction temperature:  90°C; reaction time: 72.5 hrs;  powder sample of iron 

oxide from L3; Scale image on Figure 4.13 and Figure 4.14 are 200 nm and 20 nm respectively.  



 

46 

4.4.3 Nanoparticle Size 

Particle size distribution was measured for the L11 solution. The results shown in Figure 4.15 

indicate that nanodots of iron oxide with a diameter of 1 nm were formed and the particle size 

distribution was very narrow. 

 

Figure 4.15: Iron oxide particles size distribution of L11 solution 

30 ml of 0.5M FeCl3, 30 ml of 0.5M NaOH, 12ml of Tween 85, 10 mg of carbon nanotube, reaction 

temperature: 100°C; reaction time: 72.5 hrs, Upper layer solution L11 
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Figure 4.16: Iron oxide particles size distribution of L3 solution 

30 ml of 0.5M FeCl3, 30 ml of 0.5M NaOH,  12 ml of Tween 85, 10 mg of carbon nanotube, reaction 

temperature : 100°C, reaction time: 72.5 hrs, bottom particle, nanoparticles of L3.  

Comparing Figures 4.15 and 4.16, the different results were obtained from the different layers of the 

same batch product. The result of nano-particle size analysis exhibited the existence of nanodots in the 

oily liquid of L11 layer, and their size is about 1 nm as shown in Figure 4.15; while the particle size in 

L3 is much large. The precipitate of L3 was washed and re-dispersed into ethanol solution before it can 

be done on particle size measurement.  
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4.4.4    Nanoparticle composition 
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Figure 4.17: FTIR spectrum for iron oxide nanorod powder 

25 ml of 0.5M FeCl3, 40 ml of 0.3M NaOH,  12 ml of Tween 85, 10 mg of carbon nanotube, reaction 

temperature : 100°C; reaction time:72.5 hrs,  powder sample of nanorods from L3.  

The composition of the resultant iron oxide nanorod powder was analyzed by FTIR. The spectrum 

shown in Figure 4.17 clearly indicated the stretching vibration of Fe-O-Fe at 620 cm-1.  

Energy Dispersive X-Ray Spectroscopy (EDX) is used to qualitatively and quantitatively analyze the 

elements present in a selected area of the SEM image. Typical SEM applications include surface view 

and cross-sectional imaging for crystal surface structure analysis. EDX applications include specific 

elements analysis or compositional analysis. EDX result for our study was recorded and shown in 

Figure 4.18. Its component was tabulated in Table 4-1.   

 620 

Fe-O 
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Figure 4.18: EDX diagram of hematite iron oxide powder 

25 ml of 0.5M FeCl3, 40 ml of 0.3M NaOH, 12 ml of Tween 85, 10 mg of carbon nanotube , reaction 

temperature: 90°C; reaction time: 72.5 hrs;  powder sample of iron oxide nanorod from L3. 

Table 4-1: The composition analysis of iron oxide nanorod by EDX report 

Element Fe O C Pt Total 

Mass% 66.88 20.70 4.92 7.50 100% 

Relative 

Atom 

Number

2 3 0 0  

  

EDX result corresponding to the materials on Figure 4.14 showed that the chemical component of the 

nanorods was iron oxide as the main composition is iron and oxygen. Contaminants of C, and Pt were 

introduced by platinum coating and double layer stick glue which have to be used during the sample 

preparation.  
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4.4.5 Magnetic properties 

Bulk hematite, besides the Néel temperature (TN= 948K), has a first-order magnetic transition at 

TM=260K, which is called the Morin transition. Below TM the crystal shows very weak ferromagnetic 

properties (Park et al, 2007; Georgakilas et al., 2005). Because of nanoscale confinement, 

nanomaterials can exhibit unusual magnetic behaviors that are quite different from those of 

conventional bulk materials. For example, α-Fe2O3 particles with diameter smaller than 20nm have 

shown a suppression of the Morin transition and stay in the weakly ferromagnetic state at least down to 

5K. (Shull et al., 1951)  Herein, we investigated the magnetic property of synthesized α-Fe2O3 nanorods 

by a superconducting quantum interference device (SQUID. The M-H curve (Figure 4.20) showed a 

very small hysteresis loop with coercive force of 187Oe and remnant magnetization of 0.0014 emu/g. 

This indicated paramagnetic property of the sample which is due to the small size of the nanorods and 

the nanodots. The nanoparticles change from multi domains to single domain when the size of the 

magnetic particles decreases. If the single-domain particles become small enough, the magnetic 

moment in the domain fluctuates in direction because of thermal agitation, which leads to 

paramagnetism. 
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Figure 4.19: SQUID (M-H) scheme of iron oxide nanoparticles 

25 ml of 0.5M FeCl3, 40 ml of 0.3M NaOH, 12 ml of Tween 85, 10 mg of carbon nanotube, reaction 

temperature : 90°C, reaction time: 72.5 hrs, powder sample of iron oxide nanorod from L3. 
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4.4.6 UV-Vis diffuse reflectance spectroscopy 

UV-visible spectra were also used for sample analysis. The results were illustrated in Figure 4.20.  
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Figure 4.20: UV-Vis spectrum of iron oxide nanorods 

25 ml of 0.5M FeCl3, 40 ml of 0.3M NaOH, 24 ml of Tween 85,  10 mg of carbon nanotubes,  reaction 

temperature : 90°C, reaction time: 72.5 hrs, sample from L3. 

UV-Vis spectrum showed that the sample is α- Fe2O3 as the absorbent peak is at 280nm as shown in 

Figure 4.20. Generally, the UV absorption intensity of Fe2O3 nanocrystals was greater than that in the 

visible region, because the former one is allowed transition while the d-d transition was forbidde as in 

Figure 4.20. As well known, light scattering for visible light takes effect in the absorption spectra if the 

particle size becomes greater than 20 nm (Cheng et al., 2006). It means that the larger particles should 

show stronger reflectivity and the reflectivity of particles should shift to longer wavelength for larger 

particles (Cheng et al., 2006).  In Figure 4.20, the absortance intensity was increased start from 600nm, 

but it was increased slowly during 500-600 nm; in the wavelength region 280-400 nm, the intensity 

increased fast; in the wavelength region 260-300 nm, the intensity increased sharply. This indicates that 
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the absorption intensity of the composite in the region 250-300 nm was much larger than that in the 

region 400-600 nm. 

 

4.4.7 Surface area adsorption analysis (BET)    .    

Nanoparticles have a high specific surface area. The surface area of the iron oxide nanorods 

synthesized in the present work and analyzed by BET is compared with the surface area of activated 

carbon and the results are shown in Table 4-2. 

Table 4-2: Nanorods of iron oxide BET analysis result 

EXP Number Activated 

Carbon 

Iron oxide (1) Iron oxide (2) Iron oxide (3) 

Degas Condition 300 °C, 1hr 80 °C, 12hr 110 °C, 3hr 110 °C, 2.5hr 

BET Surface Area 

Sq.m/g 

31.4279 95.6575 76.0389 60.9000 

Langmuir Surface 

Area sq. m/g 

49.4203 159.0984 127.7353 101.8017 

 

BET testing results show that iron oxide nanoparticles have 2-3 times surface area higher than the 

activated carbon. This could mean that the iron oxide nanoparticles will be good for nanocatalyst 

materials because high surface area can increase the efficiency of catalytic reactions.  

 

4.5 Summary 

Uniform α-Fe2O3 nanorods with 5-10 nm in width and 30-50 nm in length were successfully prepared 

by a one-step sol-gel method with low cost raw materials, iron chloride, sodium hydroxide and Tween 

85. The new synthetic method has of a potential commercial value due to the characteristics of the 

simplicity in the process and the low cost in the starting materials. The crystal nanostructure and 
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morphology were characterized by XRD, TEM, and SEM. The SQUID study confirmed that the 

nanorods have a paramagnetic character. The particles size of nanodots and nanorods was analyzed by 

a NanoTAC 150. The composition of iron oxide nanorods was confirmed by FTIR and EDX. The BET 

analysis showed the nanoparticles have 2 - 3 times surface area higher than the normal activated carbon. 
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Chapter 5 
One step synthesis of TiO2 hollow nanospheres via copolymer 

template 

5.1  Introduction 

Unique properties of titanium dioxide have received extensive attention in diverse areas such as 

catalysis, sensing, electronics, optics and separation science. In recent years, the large-scale 

commercialization of self-cleaning glazing products which include titania nanocrystals has received 

increasing attention due to their extreme physical properties. Potential applications include self-

cleaning surfaces for use in architecture, construction, optical equipment and antimicrobial coating 

(Wei, et al, 2006; Kim et al., 2002; Salafsky et al., 2001).  

A number of publications aimed at studying synthesis of titanium dioxide nanospheres by several 

different methods. For example, Colvin and co-workers reported the first solution-based nonhydrolytic 

synthesis of transition metal oxide nanocrystals. Those researchers exploited “nonhydrolytic sol-gel” 

chemistry that had been developed previously for the manufacture of bulk titanium (Trentler et al., 

1999).    Tang’s group have reported a new synthesis of TiO2 nanospheres that is based on the gentle 

oxidation of a very reactive organometallic complex of reduced titanium.( Tang et al., 2005)   Philip 

Evans et al. had studied nanocrystals grown using titanium isopropoxide (TTIP) and demonstrated the 

differences in the resulting nanoparticles arising from a structure-directing role played by the 

precursors. A nitrogen carrier gas over the temperature range 450-650°C via chemical vapor deposit 

(CVD) at atmospheric pressure to growth of TiO2 on stainless steel was reported by them.(Philip et al., 

2006)   

Macro-mesoporous structures of organic-inorganic hybrid of TiO2 nanospheres have received a lot of 

attention in recent years because they offer multiple benefits arising form each pore size regime. For 

instance, dual templating techniques using surfactants and latex spheres can produce TiO2 powder with 

bimodal pore size distributions (Coakley et al., 2005; Holland et al., 1998). Collins et al. had 

demonstrated that macro-mesoporous structures can be prepared in the presence of a single surfactant 

and even under a template free condition. (Collins et al., 2004) Konishi et al. reported the fabrication of 

TiO2 monoliths with multiscale porous structure from titanium “alkoxy-derived” sol-gel system under 
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template free conditions. (Konishi et al., 2006)  Weng and Wei have reported an approach of 

synthesizing nanoparticles with modified surfactants. They reported on dispersing surfactant-modified 

TiO2 nanoparticles into either block of a PS-b-PMMA diblock copolymer with an ordered lamellar 

phase. TiO2 was first synthesized in tetrahydrofuran (THF) instead of in a water or alcool pase. Cetyl 

trimethylamimonium chloride (TMAC) amphiphilics or 3-(methacryloyloxypropyl)-trimethoxy silane 

(TMS) surfactant was used to modify the TiO2 nanoparticles. (Weng et al., 2003)   

There are many reports on synthesis of TiO2 nanocrystals via single surfactant with template free or 

“nonhydrolytic sol-gel” method which belong to the “growth-then-assembly” process, where the two 

discrete steps, growth and assembly, can be clearly divided. To meet the future challenges imposed by 

rapid development of nanoscience and nanotechnology, it would also be desirable to develop “growth-

cum-assembly” processes, in which the growth and assembly take place at the same time, preferably 

under “one-pot” or continuous synthetic conditions. (Yang and Zeng, 2003; Seo et al., 2001) However, 

without the substrate prefabrication, arrays of nanostructured materials with distinct geometrical 

arrangement, structural repetition (superlattices), “one-pot” industrial reaction control and structural 

repetition have not been achieved directly on simple pristine TiO2 nanospheres so far. 

Our new approach, in which a novel type of TiO2 nanoparticle consisting of crystalline nanospheres 

with hollow polymer rings are synthesized. The micro-mesoporous titania nanospheres with 

hydrophobic character and excellent UV absorption ability are achieved via one step self-assembling 

method, by hydrothermal processing. The significance is that the method developed in this work is very 

simple and can be easily developed into an industrial process of producing TiO2 nanoparticles 

encapsulated by hollow spheres of the polymer, which implies that this has a great potentiality to be 

used widely in industrial applications, such as sunscreen coating materials and cosmetic materials.  

 

5.2 Experimental Details 

5.2.1 Materials     

The polyoxyethylene sorbitan trioleate (Tween 85), titanium (IV) isopropoxide (99.999%) and 

hexadecylamine (99.5%) were purchased from Sigma-Aldrich (Oakvile, Canada). Isopropanol (99.9%), 

HPLC grade and Ethanol (99.5%) were purchased from Merck (Quebec, Canada).  
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5.2.2 Reaction apparatus 

The reactor used for the reaction operations was a Parr reactor of 200ml (PARR 4843 Controller 

system of Parr instrument Inc.).  

5.2.3 Synthesis of TiO2 nanospheres 

Mixing 40 -70 ml of isopropanol and 3 - 6 ml of Tween 85 into a glass container with stirring for 3 min 

at room temperature untill the solution became a clear with slight yellow color. 0.5 -1 g of 

hexadecylamine (white powder) was added into the solution with continuing stirring for about 20 min 

so that the powder hexadecylamine was dissolved in the solution. 1 ml of titanium isopropoxide 

solution was fetched and quickly injected into the glass container by using a pipette. The glass 

container was put into an autoclave equipped with atemperature sensor. The autoclave was sealed 

tightly. The temperature was set to 110 -150 °C at atmospheric pressure and the reaction time was set 

up at the range of  3 – 11 hrs. We have conducted 30 experiments in the range of temperature and 

reaction time in order to find the suitable condition to obtain the nanospheres. 

5.2.4 Separation of products 

After the reaction, the reactor was cooled down by setting control temperature to 25 °C. After 2-3 hrs, 

the reactor was opened a white precipitate and yellow solution were observed in the glass container. 

Ethanol was used to wash the white precipitate; then a centrifuge at 6800 rpm was applied for 10 min 

to separate the white precipitation. Before starting centrifugation, the products were put in an ultrasonic 

cleaner for 5 minutes. The above washing operation was repeated for at least 3 times. The obtained 

white precipitate was put into a steam oven, which was set at 40 °C to dry, for about 10-12 hrs. Finally, 

the product was grinded into a white powder.  

5.3 Characterization 

The crystal structure was verified by XRD diffraction, and the crystal morphology was observed by 

TEM. The nanoparticles size was acquired on NanoTrac 150. The surface structure was measured by 

FESEM; the composition of materials was analyzed by FTIR and EDX.  UV visible spectra were 

acquired on UV-visible Spectrophotometer Cary 300 instrument, for which the scanning rate was 

600nm/min and the wavelength range was 200-900nm through the quartz tube at a 300 kV accelerating 
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voltage.  The surface area was measured by BET (Quantachrome NOVA-3000) and all samples were 

degassed at 110°C for 3 hrs by nitrogen at atmospheric pressure. 

 

5.4 Results and discussion 

5.4.1 Surfactant-Assisted Synthesis of TiO2 Nanoparticles 

The principle of the synthesis is based on hydrolysis of titanium isopropoxide.  

Ti{OCH(CH3)2}4 → TiO2 +  2(CH3)2CHOH + 2CH3CHCH2 

Polyoxyethylene sorbitan trioleate (Tween 85) was employed as surfactant to template the formation of 

nanoparticles. The structural image of Tween 85 is shown in Figure 5.1. One important structural 

feature of Tween 85 is its dissociable ester segment (dashed line). By controlling reaction conditions 

(e.g., pH), in principle, ester hydrolysis may further occur, giving a newsurfactant product (i.e., 

alkylated oleic acid, whose anionic form is indicated as “A” in Figure 5.1). Hence, without 

preintroduction of complex surfactants, tiered surfactant combinations can be selfgenerated from a 

single-source surfactant Tween-85 during the synthesis of nanoparticles. (Xu, et al., 2004) In order to 

speed up the hydrolysis, hexadecylamine was used to maintain the pH of the solution at 8.  

 
Figure 5.1: Structure of Tween 85 
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5.4.2 Crystal structure and size of TiO2 hollow nanospheres   

The crystal structure of anatase titanium dioxide is tetragonal, D4h
19-I41/amd, a=b=3.782Ǻ, c=9.502 Ǻ, 

a: c=1:2.54. Each titanium ion is coordinated by six oxygens, and each oxygen ion is linked by three 

titaniums to form an octahedral TiO6 crystal unit as shown in Figure 5.2.  

 

 

Figure 5.2 : Anatase crystal 3D structure unit cell (Smyth et al., 1988) 

 

Crystals are typically acute dipyramidal [101], often highly modified; obtuse pyramidal or tabular on 

[001]; less commonly prismatic on [001], with [110], [010].  

 



 

59 

XRD-TiO2

0

200

400

600

800

1000

1200

10 20 30 40 50 60 70

2 Theta (Deg)

In
te

ns
ity

/a
.u

.

101

200
112

211

 
Figure 5.3: XRD scheme of Titanium oxide 

40 ml of isopropanol, 3 ml of Tween 85, 1ml of titanium (IV) isopropoxide, 1g of 1-hexadecylamine, 

reaction temperature: 140°C, reaction time :6 hrs.  

Displayed in Figure5.3 is the XRD spectrum of synthesized titanium oxide nanoparticles. The 

characteristic peaks of anatase titanium oxide crystallites at [101], [200] and [211] are obviously 

observed with the strongest peak at [101].  
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Figure 5.4: Nanotrac scheme of TiO2 nanospheres 

50 ml of isopropanol, 6 ml of Tween 85, 1ml of titanium (IV) isopropoxide, 1g of 1-hexadecylamine, 

reaction temperature: 130°C, reaction time : 6 hrs.  

The particle size was measured by sampling 0.01mg of TiO2 white powder which was redissolved in 

ethanol with ultrasonic agitation. The result shows that the TiO2 nanospheres particle size is about 100 

nm- 500 nm, the size of most particles is located in the range of 200 -300 nm. This result will be further 

verified below by TEM images. 

 

5.4.3  Crystal morphology 

Transmission electron microscope analysis is one of the best analysis methods to show the crystal 

morphology by direct and simple images. 0.01 mg of titanium oxide was dispersed by 10 ml of ethanol 

for the TEM analysis. 
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Figure 5.5: TEM image 1 of TiO2 nanospheres at 1μm scale. 

40 ml of isopropanol, 3ml of Tween 85, 1ml of titanium (IV) isopropoxide, 1g of 1-Hexadecylamine, 

reaction temperature:140 °C, reaction time: 6 hrs, scale shown on the image : 1μm.    

 

 
Figure 5.6: TEM image 2 of TiO2 nanospheres   

40 ml of isopropanol, 3ml of Tween 85, 1ml of titanium (IV) isopropoxide, 1g of 1-hexadecylamine, 

reaction temperature: 140 °C, reaction time : 6 hrs, scale shown on the image : 100 nm.    
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Figure 5.7: TEM image 3 of TiO2 nanospheres 100 nm scales 

40 ml of isopropanol, 3 ml of Tween 85, 1ml of titanium (IV) isopropoxide 99.999% solution, 1g of 1-

hexadecylamine, reaction temperature:140 °C, reaction time : 6 hrs, scale shown on the image :100 nm. 

 
Figure 5.8: TEM image 4 of TiO2 hollow nanospheres at 200 nm scale 

40 ml of isopropanol, 3 ml of Tween 85, 1ml of titanium (IV) isopropoxide 99.999% solution, 1g of 

1-hexadecylamine, reaction temperature: 135 °C; reaction time: 5 hrs, scale shown on the image : 200 

nm.   
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Figure 5.9: HRTEM image 5 of TiO2 hollow nanospheres at 100 nm scale 

40 ml of isopropanol, 3 ml of Tween 85, 1ml of titanium (IV) isopropoxide 99.999% solution, 1g of 1-

hexadecylamine, reaction temperature:135 °C, reaction time: 5 hrs, scale shown on the image:100 nm.   

  

 

Figure 5.10:  TEM image 6 of TiO2 hollow nanospheres at 200 nm scale 

40 ml of isopropanol, 3 ml of Tween 85, 1ml of titanium (IV) isopropoxide 99.999% solution, 1g of 1-

hexadecylamine, reaction temperature:150 °C; reaction time:6 hrs, scale shown on the image: 200 nm.     
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We obtained titanium oxide nanospheres and shown in Figure 5.5 is the overall distribution image. The 

size of nanospheres is about 10-30 nm in diameter as shown in Figure 5.6. Some nanospheres were 

capped by porous copolymer ring as shown in Figure 5.7.   

The hollow nanospheres were obtained as shown in Figures 5.8 - 5.9 when reaction temperature was 

135°C. The diameter of the hollow spheres was about 200 nm in both figures. There were some 

titanium oxide particles in the center of spheres, and the transparent parts of spheres were recognized as 

hollow parts.  

The reaction temperature and reaction time affect the particles size. Figure 5.10 indicated that when the 

temperature was 150°C, the size of the nanospheres increased to 300-350 nm.  

Observations of the morphorlogies of the nanosized TiO2 synthesized at diffent reaction temperature 

and time were made and the morphorlogies are listed in Table 5-1, in which other conditions such as 

material formula, pH etc.were kept unchanged. 

Table 5-1: Titanium oxide morphologies observed at various reaction conditions (pH = 8-9)  

 Reaction Temp (°C) 130 135 140 150 

Reaction time (4hrs) Amorphous Amorphous Amorphous Nanoparticles 

Reaction time ( 5hrs) Amorphous Nanosphere Nanosphere Nanoparticles 

Reaction time (6hrs) Amorphous Nanospheres Nanospheres Microspheres 

Reaction time (7hrs) Amorphous Microspheres Microspheres Microspheres 

It was noted that if the reaction temperature is lower than 135°C, it was difficult to make nanocrystal, 

and the titanium oxide powder was almost amorphous. At 135°C- 140°C, if reaction time was less than 

4 hrs, most of the particles still had not been changed to crystal status. When the reaction time was 

about 5- 6 hrs, the nanospheres of titanium oxide were formed. However, at a longer reaction time 

(more than 6 hrs) the nanosphere became large or even became a microsphere. Controlling reaction 

time and reaction temperature is very important to obtain spherical nanoparticles. The optimal reaction 

temperature and reaction time are of 135-150°C and 4-6 hrs respectively. 
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The conditions to obtain hollow nanosphere titanium oxide are very interesting. We tried a lot of 

experiments and found that the favorite condition is at temperature of about 135°C and reaction time of 

about 6 hrs.  

 

 
Figure 5.11: FESEM image 1 of TiO2 nanospheres at 1μm scale 

40 ml of isopropanol, 3 ml of Tween 85, 1 ml of titanium (IV) isopropoxide 99.999% solution, 1g of 

1-hexadecylamine, reaction temperature:140°C, reaction time: 6 hrs, scale shown on the image :1μm;  

EHT:15kV.  

 
Figure 5.12: FESEM image 2 of TiO2 nanospheres at 15kV EHT 
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40 ml of isopropanol, 3 ml of Tween 85, 1 ml of titanium (IV) isopropoxide 99.999% solution, 1g of 

1-hexadecylamine, reaction temperature:140°C, reaction time : 6 hrs, scale shown on the 

image :200nm; EHT:15kV.  

  

Figure 5.13: FESEM image 3 of titanium oxide nanoshperes at 5kV EHT 

Figure 5.13: 40 ml of isopropanol, 3 ml of Tween 85, 1 ml of titanium (IV) isopropoxide 99.999% 

solution, 1g of 1- hexadecylamine, reaction temperature:135 °C, reaction time:5 hrs,  scale shown on 

the image :200nm ; EHT:5kV.  

FESEM images of Figures 5.11 to 5.13 showed that the nanospheres of TiO2 were capped by 

copolymer to form hollow spheres. The size of the polymer nanospheres, as shown in Figure 5.11, is 

about 100 – 300 nm. It is similar to the results as shown in Figure 5.9 by the TEM technique. 

5.4.4 Nanosphere compositions    

Powder FESEM patterns, shown in Figure 5.14, indicates that our synthesized nanosphere is pure TiO2. 
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Figure 5.14: EDX scheme of titanium oxide powder 

40 ml of isopropanol, 3 ml of Tween 85, 1 ml of titanium (IV) isopropoxide 99.999% solution, 1g of 

1- hexadecylamine, reaction temperature: 135°C, reaction time:5 hrs, scale shown on the image:  

0.5µm;  EHT:15kV.  

 

 

 

 

 

 

 

 

 

 

 

Figure 5.15: FTIR spectrum of Tween 85   
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Figure 5.15 is the FTIR spectrum of standard Tween 85 (Acros Organics, 2006). The characteristic 

peaks are 2927 and 2850.  

FTIR spectrum in Figure 5.16 shows that Tween-85 remains largely intact in the bulk mixture, as all its 

fingerprint absorptions can be clearly observed in the spectrum. For instance, the broad bands at 3435- 

3452 cm-1 and the peaks at 1639-1644 cm-1 attribute to the O-H stretching and bending modes of 

Tween-85, respectively. The peaks at 2927 and 2850 cm-1 are due to asymmetric and symmetric C-H 

stretches of the hydrophobic chains. The sharp and symmetric peaks at 1736 - 1737 cm-1 are attributed 

to stretching mode of the ester carbonyl in the molecule. The broad peaks at 1103- 1111cm-1 can be 

assigned to C-O-C stretching mode. The IR spectrum of the capped nanocrystals is dominated by the 

antisymmetric and symmetric stretching vibrations of carboxylate anions by two characteristic bands 

centered at 1527 and 1467cm-1 respectively. Finally, the characteristic peak for TiO2 phase is indicated 

by a vibration band of Ti-O-Ti groups at 900-400 cm-1. 
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Figure 5.16: FTIR scheme of titanium oxide 

50 ml of isopropanol, 6 ml of Tween 85, 1 ml of titanium (IV) isopropoxide 99.999% solution, 1g of 1- 

hexadecylamine, reaction temperature:130°C, reaction time: 6 hrs.  
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5.4.5  UV-vis Spectra   

Figure 5.17 shows diffuse reflectance UV –Visible spectrum of TiO2-polymer sample. An absorption 

band is centered at 230 nm which is attributed to the charge –transfer transition associated with isolated 

Ti4+ framework sites in tetrahedral coordination. The other peak around 320 – 350 nm indicates the 

presence of polytitanium (Ti-O-Ti)n clusters (Serpone et al., 1995; Mohamed et al., 2006). The small 

peak at 365 nm indicates that it is a typical anatase TiO2 crystal. The intensity of this peak increases 

with Ti loading and the concentration. Figure 5.17 showed UVA and UVB absorption peak while UVB 

absorption range runs from the range of 280-320 nm, UVA range runs during 320 – 400 nm. For this 

sample the peak of UVB absorption is more intense than that of UVA adsorption. 
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Figure 5.17: UV-vis. Spectrum of TiO2/copolymer in ethanol 

40 ml of isopropanol, 3ml of Tween 85, 1ml of titanium (IV) isopropoxide 99.999% solution, 1g of 1-

hexadecylamine, reaction temperature: 135°C, reaction time:5 hrs.  
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5.4.6  Physical phenomena  

The apparent density of the modified TiO2 is less than the density of deionized water. This was found 

by adding 0.1 mg titanium oxide into 3 ml deionized water in a bottle. After stirring for 2 minutes and 

then leaving at room temperature and atmospheric pressure for 10 - 30 days, it was found that the 

sample of titanium oxide still floated on the water, and no precipitation was observed. It implied that 

the titanium oxide synthesized was completely hydrophobic. This hydrophobic property of titanium 

oxide can be applied to make anti-fogging coating varnish and auto-cleaning glass, especially for 

optical sunscreen glass that has a large potential market around the world.      

5.5   Summary 

The synthesis of TiO2 microporous/ mesoporous materials by one step reaction via self-assembling 

mechanism was reported in this chapter. The effect of temperature on the systhsis was studied for 

making self-assembling nanocrystallites. The results confirmed that the method described by using 

cheap raw materials to make titanium dioxide nanocrystallites particles was achieved. Characteristic 

analyzes were conducted by TEM, XRD, FESEM, and FTIR. The synthesized hydrophobic titanium 

oxide nanoparticles may be potential of use in anti-fogging coating materials.   
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Chapter 6 
Performance of Highly Porous TiO2 Nanoparticles in Electron 

Transport 

6.1 Introduction 

Titanium dioxide thin films are chemically stable, possess a high refractive index, which is 2.55 for 

anatase thin film (Ottermann et al., 1996), and have excellent transmittance in the visible and near- IR 

spectral regions (Hagfeltd et al., 2000). This has therefore led to extensive applications of titanium 

oxide in antireflective coating, photo induced water splitting, organic compound degradation, dye-

sensitized solar cell and self-cleaning properties (Philip et al., 2006; Tian et al., 2003c). 

In particular, dye-sensitized nanocrystalline TiO2 solar cell is a promising class of molecular 

photovoltaics because of their potential low cost and relatively high power conversion efficiency. The 

dye sensitization is initiated by the excitation of a sensitizer adsorbed onto a surface of a semiconductor 

electrode followed by electron injection into a conduction band of the electrode. Specifically, in 1991 

Grätzel and others developed solar cells based on the sensitization of highly porous TiO2 by ruthenium 

dyes with the highest power conversion efficiency which maks practical applications feasible (Hou et 

al., 2005; Grätzel et al., 2001; Kavan et al., 2001; Piotrowiak et al., 2003; Beltran et al., 2006). 

Pioneered by Stucky et al (Gerfin et al., 1997), some synthetic routes using block copolymers-base 

surfactants were proposed to prepare mesoporous TiO2 layers. Yang reported syntheses of organized 

TiO2 that were based on solvolysis of TiCl4 in ethanol containing amphiphilic triblock copolymer of 

ethylene oxide and propylene oxide as the structure directing agent. They synthesized mesoporous TiO2 

in the form of powders or xerogels (Yang et al., 1999). Later, Domaradzki (Domaradzki et al., 2001) 

obtained thin films on glass or silicon by dip or spin coating. This simple technique involves a complex 

mechanism, called evaporation-induced self-assembly. Marketa Zukalova and his group have achieved 

high efficiency on electron transportation from the organized mesoporous TiO2 film (Marketa et al., 

2005). They made pluronic templated mesoporous TiO2 film via layer-by-layer deposition and 

characterized this mesoporous TiO2 film by a novel methodology based on the absorption of n-pentane. 

Motonari (2004) and his group presented the preparation of a TiO2 network structure of single-crystal-

like nanowires by an “oriented attachment” mechanism. They concluded that high efficiency dye-

sensitized solar cells with a titania thin film electrode composed of a network structure of single-
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crystal-like TiO2 nanowires (Adachi et al., 2004). Recently, Zhu et al (2006) reported the influence of 

surface area on charge transportation and recombination in dye-sensitized TiO2 solar cells. The 

nanotube arrays were prepared from electrochemically anodized Ti foils, and were characterized by 

scanning and transmission of electron microscopies. They reported that the oriented TiO2 nanotube 

arrays could enhance charge-collection efficiency and light scattering.  Although much work has been 

done on dry-sensitized solar cells, some of the work has been done about the effect of electrode 

porosity on electronic transportation. But the systematic comparison of the electron properties of 

various TiO2 electrodes by Potentiostat Galvanostat instrument and the usage of low cost and simple 

synthesis method to fabricate the oriented TiO2 thin film have not been carried out. 

In this chapter, the synthesis of TiO2/copolymer (Tween 85) thin film by a hydrothermal processing 

and self-assembling mechanism is investigated. Detailed information on the preparative method, 

crystallographic and surface structure is described. Comparison of electronic transfer properties of the 

TiO2 nanoparticles and oriented TiO2 thin film with micropores is studied. We find that the difference 

of surface structure affects the performance of potentiostat Galvanostat on dummy cells that consist of 

electrodes made from these nanocrystal materials. Better performance can be achieved using oriented 

thin film. 

6.2 Experimental section 

6.2.1 Fabrication of TiO2 thin film  

6.2.1.1 Synthesis of TiO2 thin film  

After 40-50 ml of IPA and 3-4 ml of Tween 85 in a glass container were mixed with stirring for 3 min 

at room temperature, the solution turned out clear and light yellow. 0.8-1.2 g of hexadecylamine white 

powder was added into the solution, and the mixture was stirred for 20 minutes more so that the 

powder dissolved into the solution. A pipette was used to fetch 1 ml of titanium isopropoxide, followed 

by transferring it quickly into the above prepared solution in order to avoid oxidation in air. The glass 

container was put into the stainless steel reactor. After closing the reactor and connecting it with 

control system, the temperature was set to 135°C-150°C and reaction time of 3-5 hrs. For this research, 

20 experiments within the temperature and reaction time range were conducted in order to find a 

suitable condition to make the porous thin film.  



 

73 

6.2.1.2 Separation of products 

After the reaction period, the temperature of control system was reset at 25°C. After the reactor was 

cooled to 25°C, it was opened and white precipitate and yellow solution was obtained. 

The white precipitate was washed using anhydrous ethanol, and the wet precipitate was separated from 

ethanol using a centrifuge at 6500 rpm for 8 minutes. Before starting centrifugation, the products were 

put in ultrasonic cleaner to be agitated for 5 minutes. After repeating the washing process at least 3 

times, a white precipitate was obtained. After putting in a vacuum oven at 30°C to dry for about 24 hrs, 

the sample was grinded in a mortar, and the white powder product was obtained.  

6.2.2  Electrochemical impedance voltammetry 

6.2.2.1. Measurement method and instrument  

AutoLab PGSTAT30, the Potentiostat Galvanostat /voltammetric analysis instrument inclusive of 

Agilent 54624A Oscilloscope meter, a dummy cell and a differential electrometer amplifier from Eco 

Chemie B.V. was used for analyzing potential /current scan of solar cells. The software of general 

purpose electrochemical system (GPES) with cyclic and linear sweep voltammetry (stair case) 

electrochemical technique for solid electrodes was applied for this experiment.  The Autolab dummy 

cell box was connected to the cell cable via the plug connector. There were three connectors on the 

front panel of PGSTA T30, and the cell cables were connected to the working electrode, reference 

electrode and counter electrode. For this experiment, the counter electrode was the platinum electrode 

supplied by Eco Chemie B.V, the working electrode was a TiO2 electrode, and the reference electrode 

was a Ag/AgCl electrode. For all experiments, the parameters were set up in a way that the potential 

was 10 V in the beginning and -2V at the end, the step potential was 0.00244v/m, the scanning rate was 

0.05 V/s, and the interval time was 50 sec. The linear sweep method can define start- and end- potential, 

whereas for 2 vertex potentials, the potential increasing was applied as steps at the end of each interval 

time. After this time for each step expired, the potential was increased with the step potential. The 

current was measured at the end of the each time interval. An option was available to change the 

sampling time interval by adjusting the α value. The background was also changed accordingly. In the 

experiments, the current was sampled at the end of each interval time:  α = 1. Usually, the staircase 

mode (Eco Chemie B V, 2001) is advantageous since it diminishes the current in the same manner as 

pulse voltammetry.    
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6.2.2.2 TiO2 electrode preparation  

A TiO2 electrode was prepared by coating TiO2 thin film on a small round shape copper master plate. 

The surface of the copper plate was polished using sand paper, and this plate was dipped into 

TiO2/ethanol concentrated solution with ultrasonic agitation for 5 minutes. This polish step was 

repeated 4 times. The attached TiO2 copper plate was sintered at 300° C in an oven for 30 min, then it 

was dipped into TiO2/ethanol concentrated solution again for 10 hrs, and finally dried at room 

temperature. If the plate is not 100% coated by TiO2, the preparation experiment needs to be conducted 

again. Only a completed coated plate could be used for working electrode. This process was repeated to 

prepare two kinds of electrodes using TiO2 thin film and TiO2 particles.  The prepared electrodes were 

installed into silicon tip holder as a TiO2 working electrode for the electrochemistry voltammetry 

measuring. 

 

6.3 Results and discussion 

6.3.1 The critical condition to make TiO2 thin film 

We used the same raw materials as those of Chapter 5 to prepare nano thin film composed of 

nanoparticles, but the critical condition such as chemical formula, reaction temperature and time had to 

be changed. The pH value was controlled to 9 by adding 10% more n-hexadecylamine, and the reaction 

temperature was 150°C. After 3 hrs of the reaction time TiO2 nanoparticle thin film was obtained.  

6.3.2 Crystal Structure of the TiO2 nanoparticles in the thin film 

The crystal structure of the TiO2 in the thin film was verified by Powder X-ray diffraction.  
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Figure 6.1: XRD scheme of TiO2/copolymer film 

40 ml of isopropanol, 3ml of Tween 85, 1 ml of titanium (IV) isopropoxide 99.999% solution, 1.1g of 

1-hexadecylamine, reaction temperature:150 °C, reaction time: 4hrs.  

Wide-angle X-ray diffraction was used to determine the crystal phase structure of the synthesized 

titania based materials. Results shown in Figure 6.1 indicated that the peak positions and diffraction 

intensities matched with the database spectra [101] of anatase titanium oxide crystal very well.  
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Figure 6.2: Nanoparticle size scheme of TiO2 thin film 

40 ml of isopropanol, 3 ml of Tween 85, 1ml of titanium (IV) isopropoxide 99.999% solution, 1.1g of 

1-hxadecylamine, reaction temperature :150 °C, reaction time: 4 hrs. 

The particle size was measured and the result is shown in Figure 6.2. The size of titanium oxide thin 

film is about 200 nm. The result will be verified by transmission electron microscope image. 

 

6.3.3 Morphology of TiO2 thin film 

Titanium dioxide thin film was observed via TEM images. 0.01 mg of wet white precipitate titanium 

oxide was dissolved in 3 ml of anhydrous ethanol to make a sample solution for TEM testing.  



 

77 

 
Figure 6.3: TEM image1 of TiO2 nanoparticles at 6 hrs. 

 

40 ml of isopropanol, 3 ml of  Tween 85, 1ml of titanium (IV) isopropoxide 99.999% solution, 1.1g of 

1-hexadecylamine, reaction temperature: 150 °C, reaction time: 6 hrs, scale shown on the image : 

200nm.    
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Figure 6.4: TEM image 2 of TiO2 nano thin film at 5 hrs. 

 40 ml of isopropanol, 3 ml of Tween 85, 1 ml of titanium (IV) isopropoxide 99.999% solution, 1.1g of 
1-hexadecylamine, reaction temperature : 150 °C, reaction time:5 hrs, scale shown on the image : 
200nm. 

 
Figure 6.5: TEM image 3 of TiO2 thin film at 4 hrs. 

40ml of isopropanol, 4 ml of Tween 85, 1 ml of titanium (IV) isopropoxide 99.999% solution, 1.1g of 

1-hexadecylamine, reaction temperature : 150 °C, reaction time:4 hrs,  scale shown on the image : 

200nm.   
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Figure 6.6: TEM image 4 of TiO2 nano thin film at 3 hrs. 

40 ml of isopropanol, 3 ml of Tween 85, 1 ml of titanium (IV) isopropoxide 99.999% solution, 1.1g 

of 1-hxadecylamine, reaction temperature: 150 °C, reaction time: 3 hrs, scale shown on the image : 

200 nm.   

Figure 6.3 shows the triangle titanium dioxide thin film sheet with few pores, the triangle sheet size 

was about 300nm in length and 200 nm in top width. Figure 6.4 shows that the sheets of titanium 

dioxide/copolymer were overlaid. Titanium dioxide nanoparticles formed thin film at the same 

temperature as Figure 6.3 except that the reaction time was changed to 5 hrs. The thin film sheet is very 

thin and it is easy to find two overlaid thin films in Figure 6.4. Some signs of porosity can be observed 

in the sheet. The sheet size is about 100-200 nm in width and 300 – 400 nm in length. In figures 6.5-6.6, 

thin films of titanium dioxide with a lot of micropores were observed. The pore sizes were 10-30 nm in 

average. The reaction time was about 4 hr and 3 hrs respectively. The formation of microporous 

micelles and the pore size depended on reaction time. It is noted that at long reaction time, the 

nanoparticles of TiO2 tend to aggregation and less pores in the thin film was observed. Crystal 

nanoparticles of TiO2 initially formed about 1nm nanodots. They gathered as striated dots array, and 

then formed solid sheet. Titanium oxide film was the electronic acceptor and absorption takes place in 

solar cell materials. Therefore, high porous film will improve the effectiveness of electron transfer.      
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Figure 6.7: FESEM image of TiO2 thin film at 100 nm scale 

40 ml of isopropanol, 3 ml of  Tween 85, 1 ml of titanium (IV) isopropoxide 99.999% solution, 1.1g of 

1-hexadecylamine, reaction temperature:150 °C, reaction time :4 hrs, scale shown on the image: 100 

nm, EHT = 5kV 

The thin film structure is supported by FESEM analysis as well. The FESEM image of the TiO2 

powder shown in Figure 6.7 presents that the powder has a thin sheet like shape although the sheet size 

and shape are not even. The nanosheets in dry sample are overlaid each other into multiple layers.    

6.3.4  Composition of the Thin Film 

EDX analysis shown in Figure 6.9 indicates that the sample had a purity of 100% TiO2 crystal 

nanospheres. 
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Figure 6.8: EDX scheme of TiO2 thin film 

40 ml of isopropanol, 3 ml of Tween 85, 1 ml of titanium (IV) isopropoxide 99.999% solution, 1.1g of 

1-hexadecylamine, reaction temperature:150 °C, reaction time : 4 hrs. EHV =15kV 
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Figure 6.9: FTIR scheme of TiO2 thin film 

40 ml of isopropanol, 3 ml of Tween 85, 1 ml of titanium (IV) isopropoxide 99.999% solution, 1.1g of 

1-hexadecylamine, reaction temperature : 150 °C, reaction time:4 hrs.   

FTIR spectrum is shown in Figure 6.9. Same as in chapter 5, Tween 85 was confirmed to exist in the 

bulk solid sample as all its fingerprint absorptions can be clearly observed in the spectrum. The 

characteristic peak for TiO2 phase was indicated by a vibration band of Ti-O-Ti groups at 900-400    

cm-1.  

6.3.5  UV-visiable Spectra 

To prepare samples for UV-vis. analysis, 0.001 mg of wet sample of TiO2 was added into 3 ml of 

anhydrate ethanol, and then the mixture was mixed by Ultrasonic cleaner for 2 min stirring for UV-vis. 

analysis.  
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 Figure 6.10: UV-vis. scheme of TiO2 thin film   

40 ml of isopropanol, 3 ml of Tween 85, 1ml of titanium (IV) isopropoxide 99.999% solution, 1.1g of 

1-hexadecylamine, reaction temperature: 150 ° C, reaction time : 4 hrs. 

Figure 6.10 shows the UV-vis. absorption spectrum of TiO2 microporous nanoparticles, in which two 

bands are observed at 350 nm and 265 nm respectively.  The spectrum has been normalized at sort 

band of the absorbance edge at about 380 nm in wave length for TiO2 film and excitation peak at 350-

360 nm. 

6.3.6  Electrochemical Potentiosant Voltammetry analysis   

To approach whether the synthesized TiO2 nanomaterials are suitable for dye-sensitive solar cell 

materials, or for TiO2 working electrodes, experiments of electrochemical potentiosant voltammetry are 

conducted. A typical plot of the potential (E/V) vs. the current (i/A) for TiO2 film working electrode 

and TiO2 nanoparticles working electrode, under Galvanostate Potentiosant Electrochemical System 

program is demonstrated in Figure 6.11.  



 

84 

 

  

Figure 6.11:  Potential vs. current of TiO2 nanoparticle with/without micropores    

Compare scheme of potential vs. current of TiO2 nano thin film with micropores which was made from 

40ml of isopropanol, 4 ml of Tween 85, 1 ml of titanium (IV) isopropoxide 99.999% solution, 1.1g of 

1-hexadecylamine  at reaction temperature: 150 °C, reaction time: 3 hrs  (sample is the same as Figure 

6.6), and TiO2 nanoparticles without porosity which was made by  the same formula of TiO2 nano thin 

film but reaction time is changed to 6 hrs (sample is the same as Figure 6.3). The dashed line is the 

potential resultant from the TiO2 thin film with micropores; while the solid line represents the result of 

the TiO2 nanoparticles without micropores.  Diluted (0.01M) hydrochloride solution was used for 

electrolyte solution.  

In Figure 6.11, the solid line and dashed red line show the response of the potential to the electric 

current with TiO2 electrodes.  It measured the variation of the current with potential vs. current curves. 

Some quantitative analyses (Lagemaat et al., 2000;  Mahori et al., 2006) indicated that the electron 

transfer yield in nanocrystalline TiO2 solar cell dependents on the electron diffusion coefficient (D). 

The diffusion coefficient was affected by particle size and density.  It was proposed   D ∝n-α 

(Legematt et al., 2000; Mahori et al., 2006; Hou et al., 2005), where α is a parameter of time interval 
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from 0 to 1, D is electron diffusion coefficient, n is particle density. If the particle density decreases, 

the electron diffusion coefficient will increase and the electron transportation speed will be enhanced.   

Comparing with the dashed line, the current on the electrode make from by the TiO2 nanoparticles 

without micropores, the solid line has a smaller increment with the same increase in potential. The 

microporous structure inTiO2 nanoparticles apparently help enhance the electron transportation, which 

is desired for application of TiO2 materials in making dye-sensitive solar cells.     

 

 

 
 Figure 6.12: Comparison plot of TiO2 nanoparticle electrode (without pores, sample is same as Figure 

6.3) with standard glassy carbon electrode (provide by origin supplier, eco chemie B V) 

A comparison measurement was conducted between standard glassy carbon electrode (provided by 

supplier, Eco Chemie B V) and TiO2 electrode which is made of the materials without pores 

synthesized in this work. The other conditions remain the same as when platinum counter electrode was 

used, Ag/AgCl was used as reference electrode and 0.01M HCl was used as electrolyte. The results are 
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shown in Figure 6.12. The linear sweep voltammetry model on dummy cell was used for these 

experiments.  

The conductivity of glassy carbon was shown by dashed line and the curve is obviously abruptly up at 

1.75v where the TiO2 curve changes it original manner. This is because the conductivity of glassy 

carbon is higher than TiO2 nanoparticle.       

Electrochemical voltammetrical analysis for TiO2working electrode at dummy cell: To achieve high 

quantum yields in an electron transfer process when the electron is in its excited state, the electrolyte 

needs to be in ideally intimate contact with the surface of semiconductor. The porous TiO2 layer in the 

TiO2 electrode must exhibit efficient connectivity between nanocrystals to ensure the electron transfer 

to the collector electrode. Extremely high surface area is required to increase the electron-hole pair 

density generated at the hybrid interface, and large open pores can promote hole-transporting electron.   

We verified the microporous nanoparticles of TiO2 will increase electron transfer by electrochemical 

voltammetry measurement.  

 

6.4  Summary 

Synthesis of titanium oxide/copolymer films with and without micropores was studied in this chapter. 

These titania microporous thin films have been characterized through the use of complementary 

techniques such as XRD, UV-vis., TEM, FESEM, Nanoparticle size analyzer, FTIR, and EDX. Their 

electrochemical potentiosant voltammetry were analyzed by Current-Voltage testing. Our results 

indicated that these highly crystallized microporous TiO2 thin films, compared to the nanoparticle TiO2 

without pores, can enhance the electron transport in electrochemistry voltammtery testing.  Due to its 

favorite electron transportation property, the microporous TiO2 film is potentially an attractive material 

for the solid-state dye-sensitized solar cells.   
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Chapter 7 
Conclusions and Recommendations  

7.1 Conclusions   

Syntheses of the nanostructured Fe2O3 and TiO2 by wet chemistry methods and a self-organized growth 

mechanism have been studied in this research and reported in this thesis. Organic titanium (TTIP) was 

used as the precursor for the synthesis of TiO2 nanomaterials, and FeCl3 was used as the precursor for 

the synthesis of hematite nanoparticles. Some new discoveries and significant achievements have been 

made, which are outlined as follows.  

1. Uniform  hematite nanorods with superparamagentic properties achieved  

The controllable of nucleation mechanism in the growth of hematite Fe2O3 under a narrow temperature 

range from 90 to 110 °C has been examined (Chapter 4). Simple starting materials were used. Carbon 

nanotubes functioned as an inducer which helped with controlling the transformation from Fe2O3 

nanodots to Fe2O3 nanorods. It is revealed that Fe2O3 first formed in 1 nm nanodots which were 

dispersed into the inside and outside of carbon tubes during the initial heterogeneous nucleation. Then 

the elongated nuclei grew into the rod shape morphology owing to a significant increase in 

homogeneous nucleation rate. Both temperature and reaction time affect the crystal morphologies and 

the self-assembling behaviors. The 0.3M concentration and the surfactant percentage also affect the 

nucleation growth, such that high temperature and high concentration will speed up the nucleation 

growth to get large crystal morphologies.  In particular, using cheap raw materials to make uniform (5 

nm in width and 30 nm -50 nm in length) rod shape with super paramagnetic hematite nanomaterial 

was achieved in this thesis. The nanorods exhibit weakly ferromagnetic and superparamagnetic 

behavior at room temperature for the powder of Fe2O3 nanorods bottom layer (L3). Such synthesized 

Fe2O3 nanorods could potentially find applications in hard disc drives and drug delivery methods of 

biomedical systems. 
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2.    Anatase TiO2 hollow nanospheres achieved 

Simple “one pot” approach to prepare hollow anatase TiO2 nanospheres under hydrothermal (or 

solvothermal as well) conditions was studied (Chapter 5).  TTIP was hydrolysized at a temperature 

range over 130 °C to form small TiO2 dots, which later moved into a round hollow ring template of 

oligomers. Internal nanopores and highly organized crystallites in the shell structure and surface 

regions can be created with a wide range of controlling parameters. The formation of hollow structures 

in TiO2 nanospheres could be attributed to the existence of the oligomers. Eventually, a novel method 

of simple and one step to synthesize TiO2 hollow nanospheres (100 nm diameter) was reported. 

3.  TiO2 microporous thin film achieved 

A novel one step self-assembling of titanium oxide/copolymer monolayers nano thin film with 

micropores has been achieved (Chapter 6). Simple synthesis materials were used to make anatase TiO2 

thin film with micropores (thin film sheet is about 100 - 200 nm width and 200-300 nm length). Two 

types of TiO2 electrodes were prepared using TiO2 thin film with and without nanopores, respectively. 

The performance of TiO2 electrodes made by porous TiO2 thin film on electron transport was examined 

by electrochemical potential/voltammetry analysis technique. Better performance using anatase TiO2 

microporous thin film has been observed.  

Through the thesis, it could be noted that the basic analytical techniques, such as XRD, TEM, HETEM, 

SEM, FESEM, NanoTRAC, SQUID, FTIR, EDX, BET and electrochemistry voltammeter, etc. are 

essential and important in the characterization and determination of materials structures and properties. 

 

7.2  Recommendations for future research 

7.2.1 Iron oxide nanomaterials 

Iron oxide has broad applications which have attracted significant attention of many scientists. Based 

on our research progress made in this work, the future research is recommended as follows. 
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7.2.1.1 Synthesis of architected iron oxide nanoparticles 

1. Further study on synthesis of iron oxide nanoparticles that are flower shaped and cubic shaped is 

recommended. Their special characteristics with regards to magnetic properties are to be investigated. 

Development of new experimental methods / techniques by which only cheap materials are required 

needs to be investigated so that the economical commercialization could be feasible.  

2. Synthesis of core-shell structured iron oxide based nanosized polymer materials is suggested which 

will have wide application in biomedical and cosmetic areas.   

 

7.2.1.2 Synthesis of iron oxide nanocatalyst 

Synthesis of efficient nanocatalysts is a very interesting research topic, and development of novel 

synthetic routes, advanced characteristic analysis techniques and applications of nanocatalysts calls for 

more investigation and studies. 

1. Investigation on the synthesis of the hybrid metal oxide is desired such like iron oxide and cobalt 

oxide.  The new high efficient catalyst can be used as Fischer-Tropsch catalyst for the petroleum 

industry. 

2. Iron oxide is a photo-catalyst within the visible light wave range. Iron oxide photocatalysts can be 

used for decomposition of contaminants in the environment; it also can be used for a photocatalyst 

for many reaction/separation processes in the chemical industry. However, there is insufficient 

research in this area; therefore, the research on synthesis of iron oxide based photocatalysts and 

their applications are desired.  

3. Further investigation on crystallization of the top layer of nanodots (L11 in chapter 4) via 

different conditions, such as supercritical fluid condition under recommended.  

7.2.2  Titanium oxide based nanoparticles 

TiO2 has unique physicochemical properties, and thus it has a wide range of applications. Based on our 

research, future work is suggested in these following areas. 
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1. Further synthesis of   TiO2   nanoparticles with different shapes that possess super photo-catalytic 

activities for efficient self-cleaning and high UV adsorption ability by wet-chemistry and 

crystallization is suggested.  

2. Synthesis of   TiO2 nanocomposites with copolymers that possess super hydrophilicity for anti-

fogging application is recommended. The improved performance of coating with these properties 

would be very useful for developing new-generation of optical lenses and general glass coating. 

3. More electrochemical experiments on TiO2work electrode aspects need to be carried out based on 

our current results of TiO2 microporous thin film in Chapter 6 for electron transfer.  Usage of TiO2 

in the dye-sensitive solar cell is a very interesting research topic.  

4. TiO2 is an excellent promoter for a lot of metal catalysts such as iron, cobalt and nickel, etc. Hybrid 

semiconductor metal oxides are expected to be more efficient catalysts for applications in chemical 

and biomedical areas. Therefore, synthesis of highly efficient hybrids is another interesting topic 

for future research.  

5. Based on the results of Chapter 5 further studies are desired on the synthesis of hollow nanospheres 

of TiO2 aiming at applications for data storage and gas storage.   
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Nomenclature 

α                    parameter of time interval     

σs  saturation magnetization (m2 kg -1 /K) 

AC  adventitious carbon 

AFM  atomic force microscope 

AOP  advanced oxidation process 

APCVD atmospheric pressure chemical vapor deposition 

Bhf  magnetic hyperfine field (tesla, wb/m2) 

BE  binding energy (eV) 

BEs  binding energies (eV) 

BET  Brunauer-Emmett-teller method 

BJH  Barret-Joyner-Halenda method 

BU  1-butanol 

CMC  carboxymethyl cellulose sodium 

CTAC cetyltrimethylammonium chloride 

CVD  chemical vapor deposition 

d  distance between two planes 

dhkl  distance between reflection planes (hkl) 

Dp  average crystallite size (nm) 

DSCs dye-sensitized solar cells 
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ED      electron diffraction 

EDX     energy dispersive X-ray 

EG     ethylene glycol 

ESSD    electrostatic sol-spray deposition 

FESEM    field emission scanning electron microscopy 

FWHM full width at half maximum 

FTIR fourier transform infrared spectroscopy   

HRTEM high resolution transmission electron microscope 

Keff
 anisotropy constant (J m-3) 

LPD liquid phase deposition 

MBE molecular beam epitaxy 

MOCVD metal-organic chemical vapor deposition 

λ wavelength of X-ray diffraction measurements (nm) 

λe wavelength of electron beam (nm) 

θ diffraction angle in the X-ray diffraction measurements (°) 

OTE optical transparent electrode 

RMS root mean square 

ROS reactive oxygen species 

SA Self-assembly 

SAED selected area electron diffraction 
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SAMs self-assembling monolayers 

SANS small-angle neutron scattering 

SAXS small-angle X-ray scattering 

SPC superparamagnetic Clustering 

SQUID superconducting quantum interference devices 

T temperature (°C) 

Tc, Curie temperature 

TM Morin temperature, 

TEM         transmission electron microscope 

TEOA     triethanolamine 

TGA          thermogravimetry analysis 

THF      tetrahydrofuran 

TMD          trimethylenediamine 

TTIP      titanium (IV) isopropoxide 99.999% solution  

UV      ultraviolet 

VOC      volatile organic compound 

XRD      X-ray diffraction 
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