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Abstract

In order to understand how does the intense laser interact with matter we first of all
study the ionization process. In this highly nonlinear region the conventional perturba-
tion theory will fail to predict the experimental results. Alternative theories have been
proposed in the past few decades. The fundamental difficulty in these new approaches
is when laser field becomes so intense such that it is comparable to the Coulomb field
at where the ground state electron mainly concentrate, we have to treat the laser field
and the Coulomb field on an equal footing. The analytical solution that can describe the
propagation of electron in both the laser field and the Coulomb field has not been found;
therefore, in these new theories the ionization process is either divided temporarily into
laser period and Coulomb period or spatially into laser field domain and Coulomb field
domain. The propagation of electron in the full Hamiltonian is avoided.

In this thesis we study the intense field ionization process through both the analytical
and numerical methods. For the analytical study we start with the intense field many-
body S-matrix theory (IMST) [5] and integrate the direct electron term (it is the first term
of the expansion in IMST) using saddle point method in the asymptotic region where
the Keldysh parameter γ � 1. In addition, The tunneling ionization and multi-photon
ionization as two different ionization regions are discussed.

We also study the ionization of one dimensional hydrogen atom and H+2 ion. Through
numerically solving the time dependent Schrödinger equation (TDSE), we investigate
the effects of laser pulse length, intensity and carrier envelope phase (CEP) on the photo-
electron spectra. This study will help us understanding the dynamics of electron during
ionization process. Moreover, the spectra calculation through numerical integration of
direct electron term is carried out. Comparing the spectra with TDSE spectra allow us
to test the validity of strong field approximation (SFA). In the case of H+2 ion we focus
on the internuclear separation dependency of the photoelectron spectra. The polarization
effect is discussed and some comparisons with H atom are carried out.
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Chapter 1

Introduction

1.1 Light-Matter interaction

The development of physics sometimes can be summarized according to the attainability
of one particular physical parameter. The intensity of light is one such example. Be-
fore the invention of laser, the intensity is low so that perturbation theory is sufficient
to describe its interaction with matter. Based on this theory, conventional spectroscopy
has long been used to study the material structure because weak field will drive tran-
sitions between atomic/molecular states without much distortion of the material itself.
The well-known photo-electric effect is observed only if photon energy is above the
ionization threshold, and the effect is independent of light intensity. However after the
laser is invented it is possible to achieve higher intensities. Nonlinear optical effects
were discovered so that electrons can absorb more than one photon during the transition.
New phenomena such as second harmonic generation and Raman scattering emerged and
found very important applications. Recently scientists have endeavored to compress the
laser pulse length to the order of femtoseconds thus generating light with unprecedented
high intensity. When these pulses interact with atoms or molecules many new phenom-
ena will appear. Even with photon energy much smaller than the ionization threshold it
is possible to ionize the atom/molecule by absorption of a large number of photons, mak-
ing a direct transition from a bounded state to the continuum. Above threshold ionization
(ATI) discovered in 1979 by Agostini [29], demonstrated that it is possible for the atom
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to absorb more photons than the minimum required for ionization. The photo-electron
spectra show distinct peaks separated by exactly one photon energy. Another example
is the high harmonic generation (HHG), the emission of photon observed at frequencies
that are high multiples of the laser frequency. The spectrum can even reach the extreme
ultra-violate (XUV) region. Most importantly, as the pulse length gets shorter, the mo-
tion of the electron is not due to the accumulation of many cycles of the electric field
but is controlled by a few cycle of oscillations. Consequently the dynamics is sensitive
to the carrier-envelope phase (CEP) [36]. This implies that for ultra-short and intense
laser pulses, it is possible to control the electron dynamics by shaping the pulse, and use
this well-controlled electron to image the atom and molecule or to probe the parent ion
dynamics [16, 26].

The size of atom is on the order of the Bohr radius a0 and the classical orbiting
period of the valence electron can be defined as ωatom =

Ip

~
. The atomic electric field

Eatom =
e

4πε0

1
a2

0
, with the corresponding field intensity Iatom =

1
2cε0E2

atom. For a hydrogen

atom the electron will go around the core 3 × 1015 times in one second. Eatom is equal to
5.4×1011V/m or one atomic unit (a.u. see Appendix A). Iatom is equal to 3.5×1016W/cm2

or 5.45 a.u. For a laser pulse in the infrared region the wave length is about 900 nm.
The pulse length can be so short that it only contains a few cycles of the electric field
oscillation. The intensity of the laser pulse will be so high such that at the peak of the
laser pulse, the electric field strength is comparable to the atomic electric field strength.
At this intensity, the electron will be easily set free and then driven by the external electric
filed oscillating in the vicinity of the parent ion (usually smaller than laser wave length).
Inelastic collision with the ion may occur and the electron will either recombine with
the core generating high harmonic radiation, or it will knock out another electron. The
subsequent dynamics could be very complicated and it is important to understand how
the electron become ionized at the first place.

1.2 Classification of ionization

Ionization from the conventional point of view is divided into two regimes: tunneling ion-
ization and multiphoton ionization. If the photon energy is much smaller than the ioniza-
tion potential and the peak electric field strength of laser approaching the atomic electric
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field strength then the electron will have significant probability of tunneling through the
potential barrier. Keldysh [20] defined a parameter to characterize this region as the ratio
of the laser frequency ωL to the tunneling frequency ωt:

γ =
ωL

ωt
=
ωL

√
2Ip

E0
(1.1)

where theωt =
E0√
2Ip

[17]. HereωL is the laser frequency, Ip is the ionization potential and

E0 is the maximum electric field of the laser. The atomic units are used (see Appendix
A). γ can also be expressed as:

γ =

√
Ip

2Up

where Up =
E2

0
4ω2

L
is the pondermotive potential or the time-averaged quiver energy of a

free-electron in the laser field [8]. When γ is much less than unity then the ionization
will be mainly due to tunneling. This tunneling ionization is based on a static point of
view of the system. In this case the energy of electron does not change significantly
from the ground state energy but the energy level is broadened (i.e. it becomes a quasi-
static state), so that the electron has finite probability to tunnel through the potential
barrier set up by the Coulomb potential and the electric field of laser. After tunneling
the electron will appear in the continuum with zero kinetic energy and thereafter will be
accelerated by the external electric field of the laser. When Keldysh parameter is greater
than one, the laser frequency is comparable to the electron orbiting frequency and the
electron couples to the continuum through multi-photon absorption. ATI spectrum can
be viewed as a signature of this process. The oscillating electric field drives the bounded
electron and creates a train of outgoing electron pulses; these pulses will interfere with
each other and form the ATI spectrum. Attempts have been made to find a more precise
definition of these two ionization channels [15, 17, 37]. In the transition region where
the Keldysh parameter is close to one, the tunneling and multi-photon ionization both
have contributions.
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Figure 1.1: The applying electric field is so strong such that the Coulomb potential is
greatly distorted. The resultant potential forms a barrier with finite width for the ground
state electron to tunnel through. Note the energy level of electron is assumed to be
unchanged after the external field is applied.

Figure 1.2: The electron will be kicked into continuum by the laser field. Once it appears
in the continuum its propagation will be dominated by the laser field because the free
electron wave function extends to a larger area in space where the Coulomb field is
negligible compare with the intense laser field.

4



1.3 Theoretical approaches to the intense field ioniza-
tion.

As the laser intensity increases, conventional perturbation theory becomes inappropri-
ate to address the ionization problem because there are large numbers of atomic states
coupled in the process. One commonly-used formula to calculate ionization probabil-
ity is derived by Ammosov, Delone, and Krainov (ADK) [1], based on the tunneling
theory of Landau and Lifshitz, Smirnov, and Chibisov, Perelomov, Popov, and Terentev
[30, 33, 25]. The idea is to view the external field as a static electric field, so that the
bounded electron sees a potential barrier with finite width. Thus the electron will have
some probability to tunneling through that potential barrier (Figure 1.1). The calculation
starts from the time independent Schrödinger equation for a hydrogen atom in a static
electric field, and the exponential decay factor inside the barrier is found by the WKB
approximation (see Appendix B). To account for the time variation of the laser field, the
ionization rate is averaged over time without considering the interference of the transi-
tion amplitude [30]. For a complex atom the many-electron effect is taken into account
by introducing an effective quantum number [1]; a more pedagogical derivation is given
in recent paper [6]. This formula is proven to be useful to interpret experimental results
[2, 37]. Note that in the region close to the atomic core the wave function is assumed
to be the atomic wave function, and within the barrier the Coulomb potential is treated
as small quantity in order to evaluate the WKB integral. The leading term will give rise
to the tunneling exponential factor while the first order term will give rise to the pre-
exponential coefficient. Thus space is actually divided into a region dominated by the
Coulomb field and a region dominated by the laser field.

A more general approach was given in 1964 by Keldysh [20]. He proposed the strong
field approximation (SFA) which assumes that initially the electron is in the ground state
of the atomic field; at later times the laser field will pump the electron into the continuum
and then drives this electron oscillating in space with the atomic field neglected (Figure
1.2). The ATI spectrum can be explained very well by this theory in the case of short-
range potential. But as we will see in Chapter 3 for a long-range potential, The SFA
does not work very well. However, the strong field approximation is the only practical
approach besides exact numerical integration of the Schrödinger equation. One of our
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goals in this thesis is to examine this approximation by comparing it with exact numerical
calculations for a one-dimensional model with long range potential.

Under high laser intensity, a semi-classical three step model has been used to describe
the electron dynamics and was extensively verified [10, 27]. The model assumes that
initially the electron appears in the continuum at time ti with negligible kinetic energy
and subsequentlly be driven away by the electric field. When the electric field changes
direction the electron will then be pulled back and recollide with the parent ion. The
recollision process will give rise to high harmonic generation and double ionization [32].
We have not considered these problems in this thesis. The importance of the first two
steps is obvious. The ADK ionization rate has been used to weigh the interaction time
and propagates the classical electron in time results a photoelectron spectrum [9].

The ADK formula has been generalized to diatomic molecules [38]. This general-
ization includes expanding the initial molecular wave function in a linear combination
of one-center spherical harmonics and summing the ADK ionization rate for each har-
monics to give the total ionization rate. This method takes into account the symmetry of
molecular orbital and explains some espect of the ionization suppression.

Becker and Faisal introduced the intense field many-body S-matrix theory [12]. They
used the language of scattering matrix to incorporate Keldysh’s original postulate into a
modified expansion of the transition matrix. In this theory the SFA corresponds to a
truncation of the infinite series. A more detailed discussion of this general formalism is
discussed in the next chapter.

1.4 Our purpose and questions remaining

Since a complete analytical solution of the Schrödinger equation with the presence of
both atomic potential and laser field has not been found, we have to either work with the
atomic wave functions or Volkov wave function as basis (see Chapter 2 and Appendix C).
Conventional perturbation theory takes the atomic basis as reference states because the
laser interaction is assumed to be weak compared to the Coulomb field. However when
the laser field is strong, the number of atomic states involved in the the ionization process
becomes very large, and perturbation theory fails to explain the experimental results. Our
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purpose is to study the non-perturbative theories proposed in the past few decades. We
will especially focus on the intense field many-body scattering matrix theory [5], and
derive an ADK-type formula using the SFA. Through a simple one-dimensional model
we study various phenomena in the intense field ionization process. Also the validity of
the strong field approximation will be tested.

1.5 Organization of the thesis

In Chapter 2 we will first introduce the intense field many-body scattering matrix theory
and describe the direct electron term. We then use the saddle point method to integrate
this term. In the tunneling region we obtain a compact formula for total ionization rate.
In Chapter 3, one-dimensional models for the H atom and the H+2 ion are introduced and
both numerical solution of the time-dependent Schrödinger (TDSE) and SFA calculations
are carried out. In Chapter 4, we present the conclusion of this thesis.
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Chapter 2

Theory

A widely used theoretical approach to calculate intense field ionization rate is the scatter-
ing matrix formalism. This intense field many body S-matrix theory (IMST) was intro-
duced by Becker and Faisal [5] which provides a systematic expansion of the transition
amplitude in a series involving various interactions of the system. We will concentrate
on the first term of this series, the direct electron term, to show that it is possible to de-
rive an ADK-type tunneling ionization rate formula. When the pondermotive potential
Up is very large compare to the photoelectron energy, the saddle point approximation
can be applied in the asymptotic region. We will see that the Keldysh parameter appears
naturelly when we carry out the integration analytically. We show that the saddle point
approximation has a close connection to the adiabatic approximation.

2.1 Single active electron in laser field (SAE)

The strong field ionization process for an atom or molecule can be well described by
assuming one active electron experiencing an effective potential V̂a formed by the nucleus
and other electrons [24, 5]. In the presence of EM fields, the Schrödinger equation can
be written as

i~
∂

∂t
Ψ =

1
2me

[
P̂ + e~A(~r, t)

]2
Ψ + V̂a(~r)Ψ − eΦL(~r, t)Ψ, (2.1)
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where the charge of the electron is −e (e > 0), and P̂ = −i~∇ is the linear momentum
operator for the electron. ~A(~r, t), ΦL(~r, t) are the vector and scalar potentials from which
the electric and magnetic field can be obtained as [18]:

~E = −∇ΦL −
∂

∂t
~A (2.2)

~B = ∇ × ~A. (2.3)

As is well known, these potentials are not unique. Any gauge transformation with the
following form will not affect the physical observables ~E and ~B:

Φ′L(~r, t) = ΦL(~r, t) −
∂

∂t
χ(~r, t) (2.4)

~A′(~r, t) = ~A(~r, t) + ∇χ(~r, t) (2.5)

where χ(~r, t) is an arbitrary differentiable real function. The corresponding wave func-
tions are related by a phase factor [7]:

Ψ′ = Ψ exp[−ie
χ

~
]. (2.6)

Therefore it is possible to choose a specific gauge such that ∇ · ~A = 0. This is defined
as the Coulomb gauge. In free space where no sources are present, the scalar potential
ΦL = 0 and the vector potential satisfies the wave equation [18]:

∇2 ~A −
∂2

∂t2
~A = 0.

Hence equation (2.1) can be rewritten as:

i~
∂

∂t
Ψ =

[
1

2me
P̂2 +

e
me

~A(~r, t) · P̂ +
e2

2me
A2(~r, t)

]
Ψ + Va(~r)Ψ. (2.7)

When the laser wave length is much larger than the size of the system and the intensity
of laser is not so strong such that the photo-electron speed is much less than the speed of
light, we can introduce the dipole approximation and assume the field is uniform across
the spatial extent of interest:

~A(~r, t) ≈ ~A(t). (2.8)
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The A2 term inside the square bracket of eq.(2.7) then becomes a function of time only.
It can be eliminated through the transformation:

Ψv = Ψ exp
(

ie2

2m2
e

∫ t

A2dt
)

(2.9)

After the transformation, equation (2.7) becomes:

i~
∂

∂t
Ψv =

[
1

2me
P̂2 +

e
me

~A(t) · P̂
]
Ψv + V̂a(~r)Ψv (2.10)

This is referred as the velocity gauge (VG). The laser field is described by vector potential
and couples to the wave function through the momentum operator. Another commonly-
used gauge is called the length gauge (LG). It can be achieved through the gauge trans-
formation (2.4). by choosing χ(~r, t) = −~r · ~A(t) and define

Ψ` = exp(
ie
~
~r · ~A)Ψ. (2.11)

We then obtain

i~
∂

∂t
Ψ` =

[
1

2me
P̂2 + e~r · ~E(t)

]
Ψ` + Va(~r)Ψ` (2.12)

In the length gauge, the laser field couples to the wave function through the position
operator.

For a free electron with momentum ~p = ~~k in an EM field, the Schrödinger equation
is given by eq.(2.10) in the velocity gauge or eq.(2.12) in the length gauge with V̂a = 0.
The corresponding solutions are [7] called the Volkov solutions. The solution to eq.(2.10)
is [7]

Ψv
~k
= exp

(
i~k · ~r − i~

k2

2
t
)

exp
(
−i~k ·

∫ t

dt′ ~A(t′)
)
, (2.13)

yielding the solution in Coulomb gauge

Ψ~k = exp
(
i~k · ~r

)
exp

(
−

i
2me~

∫ t

dt′[~p + e~A(t′)]2
)
, (2.14)

from which the solution in the length gauge is obtained from (2.11)

Ψ`~k
= exp

[
i(~k · ~r +

e
~
~A(t))

]
exp

(
−

i
2me~

∫ t

dt′[~p + e~A(t′)]2
)
. (2.15)

Derivation of these solutions using Kramers-Henneberger transformation is given in Ap-
pendix C.
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2.2 S-matrix expansion

In this section we follow Becker and Faisal [5] to derive an expansion of the transition
amplitude for ionization. From now on we shall use atomic units in which e = 1, me = 1,
~ = 1 and the Bohr radius a0 = 1 (see Appendix A). The Hamiltonian for the single
active electron can be written as

Ĥ = T̂ + V̂a + V̂L. (2.16)

Where T̂ = − 1
2∇

2 is the kinetic energy operator and V̂L is the electron-laser interaction
given by

V̂L = ~A · P̂

in the velocity gauge of eq. (2.10) or

V̂L = ~r · ~E

in the length gauge of eq. (2.12). Therefore the Hamiltonian can be partitioned in two
different ways. In one way we have

Ĥ = Ĥa + V̂L (2.17)

where Ĥa = T̂ + V̂a is the Hamiltonian of the atom or molecule in the absence of the
laser. Another way is to write

Ĥ = ĤL + V̂a (2.18)

where ĤL = T̂ + V̂L is the Hamiltonian of a free electron in the presence of the laser.
Initially the system is in the bound state φi(t) governed by Ĥa:

i
∂

∂t
φi(t) = Ĥaφi(t). (2.19)

After ionization the system will be described by the state ψ f (t) of ĤL:

i
∂

∂t
ψ f (t) = ĤLψ f (t). (2.20)

In the presence of the laser, the wave function can be split into two parts

Ψ(t) = φi + Ψ
′(t). (2.21)
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Using the partition equation (2.17) and substituting equations (2.19) and (2.21) into the
time dependent Schrödinger equation

i
∂

∂t
Ψ = ĤΨ,

we obtain:

(i
∂

∂t
− Ĥ)Ψ′(t) = V̂Lφi(t). (2.22)

The above differential equation can be transformed into an integral equation by introduc-
ing the Green’s function

(i
∂

∂t
− Ĥ)G(t, t′) = δ(t − t′) (2.23)

and considering the right hand side as a source term, yielding

Ψ′(t) =

t f∫
ti

dt′G(t, t′)V̂L(t′)φi(t′) (2.24)

where the laser is turned on between ti and t f . The Green’s function can be expanded
using the partition of Hamiltonian in equation (2.18).

G(t, t′) = GL(t, t′) +

t f∫
ti

dt′′GL(t, t′′)V̂aG(t′′, t′) (2.25)

where

(i
∂

∂t
− ĤL)GL(t, t′) = δ(t − t′). (2.26)

We can substitute equation (2.25) into equation (2.24) and obtain

Ψ′(t) =

t f∫
ti

dt′GL(t, t′)V̂L(t′)φi(t′)

+

t f∫
ti

dt′′
t f∫

ti

dt′GL(t, t′′)V̂aG(t′′, t′)V̂L(t′)φi(t′). (2.27)
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The Green’s function GL(t′, t) can be written in the proper state of representation:

GL(t, t′) = −iΘ(t − t′)
∑

k

|ψv
k(t)〉〈ψ

v
k(t
′)| (2.28)

where ψv
k(t) is the Volkov solution for ĤL:

i
∂

∂t
ψv

k(t) = ĤLψ
v
k(t).

Here the Heaviside function Θ(t − t′) appears because of causality. It can be verified
directly that equation (2.28) satisfies equation (2.26). We define the transition amplitude
as:

(S − 1) f i = 〈ψ f (t f )|Ψ(t f ) − φi(t f )〉

= 〈ψ f (t f )|Ψ′(t f )〉 (2.29)

where ψ f (t f ) is one of the Volkov states in the expansion (2.28). We can combine equa-
tions (2.27)-(2.29) to obtain:

(S − 1) f i = −i

t f∫
ti

dt′〈ψ f (t′)|V̂L(t′)|φi(t′)〉 (2.30)

+

t f∫
ti

dt′′
t f∫

ti

dt′〈ψ f (t′′)|V̂aG(t′′, t′)V̂L(t′)|φi(t′)〉.

The first term on right hand side is exactly the SFA matrix term proposed by Keldysh
[20]. It is recognized as the direct electron term. Figure 2.1 illustrates the physical
meaning of this term. The difference between the SFA and conventional perturbation
theory, is that in conventional perturbation theory we constantly take the atomic states
as reference states but in SFA we switch the reference states, to the Volkov states after
ionization. This approximation is good for short range potentials [3, 14]. However in
the case of long range potential such as the Coulomb potential the approximation can
become inadequate when most of the time the electron will be confined in the region
where the Coulomb field is still not negligible and it is necessary to take the second
term of equation (2.30) into account. Further expansion of this term can be obtained
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Figure 2.1: Initially the electron is in the atomic ground state. At some later time the
laser field pumps the electron to an unbound state and then drives the electron oscillating
back and forth. After the electron becomes free, it is assumed that the electron will not
interact with the core again and the Coulomb potential is neglected. The population in
the atomic excited states is neglected.

if we employ equation (2.27) again. Alternatively we can expand the Green’s function
according to the partition of the Hamiltonian in equation (2.17).

G(t, t′) = Ga(t, t′) +

t f∫
ti

dt′′Ga(t, t′′)V̂L(t′′)G(t′′, t′)

This time the Green’s function Ga(t, t′) is given by(
i
∂

∂t
− Ĥa

)
Ga(t, t′) = δ(t − t′).

The second term in equation (2.30) can be interpreted in terms of the re-scattering effects
[5] but we do not study them in this thesis.

2.3 Analytical integration of the direct electron term

In the SFA, the transition amplitude (S − 1) f i is approximated by the first term of eq.
(2.30). We shall use the length gauge and identify ψ f (t) with the Volkov state eq. (2.17),
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which in atomic unit is given by

ψ f (~r, t) = ei[~k+~A(t)]·~re−
i
2

t∫
[~k+~A(t′)]2dt′ (2.31)

The interaction Hamiltonian is:

V̂L(t) = ~r · ~E(t) = −~r ·
∂~A(t)
∂t

(2.32)

The initial wave function is assumed to be the atomic or molecular ground state φg:

φi(t) = φg(~r)eiIpt (2.33)

where Ip is the ionization potential of the system. The transition amplitude becomes:

(S − 1)S FA
f i = −i

t f∫
ti

dt
∫

d3~r exp
[
−i(~k + ~A(t)) · ~r

]
~r · ~E(t)eiS (t)φg(~r)

where

S (t) =
1
2

t∫
[~k + ~A(t′)]2dt′ + Ipt. (2.34)

Recognizing

∂

∂t
e−i[~k+~A(t′)]·~r = −i

∂~A
∂t′
· ~re−i[~k+~A(t′)]·~r = i~E(t′) · ~re−i[~k+~A(t′)]·~r

and integrating by parts, we obtain [28]

(S − 1)S FA
f i =

[
−φ̃g(~k + ~A(t))eiS (t)

]t f

ti
+ i

t f∫
ti

dt φ̃g(~k + ~A(t))S ′(t)eiS (t) (2.35)

where

S ′(t) =
1
2

(~k + ~A(t))2 + Ip, (2.36)

and

φ̃g(~k) =
∫

d3~re−i~k·~rφg(~r) (2.37)
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is the Fourier transform of the ground state wave function. For a ground state hydrogen
atom [28]

φ̃g(~k + ~A(t)) =
(2Ip)

5
4

√
2π

1
S ′2

(2.38)

and the integral can be written as:

(2Ip)
5
4

√
2π


[
−

1
S ′2

eiS (t)
]t f

ti

+ i

t f∫
ti

dt
eiS (t)

S ′(t)

 (2.39)

In order to integrate the above formula we extend the time variable to the complex plane.
At high laser intensity the exponent is a rapidly varying function of t and the major
contributions to eq.(2.39) comes from the vicinity of the saddle points located at S ′(ts) =
0. In the case of the Coulomb potential the integrand is not analytic at the saddle points;
however by deviating the contour slightly from the saddle points we can still integrate
using the saddle point method [28]. First of all let us take a look at the global topological
structure of the integrand of (2.39) for the hydrogen atom in the complex time plane (see
Figure 2.2). Along the real time axis, the integrand is a rapid oscillating function (see
Figure 2.3). However after we deform the integration path to the upper complex plane the
integrand only peaks at the saddle points, so that the integral in (2.39) can be expresses
as.

i

t f∫
ti

dt
eiS (t)

S ′(t)
= i

∫
a→b

dt
eiS (t)

S ′(t)
+ i

∫
b→c

dt
eiS (t)

S ′(t)
+ i

∫
c→d

dt
eiS (t)

S ′(t)
(2.40)

where a, b, c, d are the points in the complex time plane shown in Figure 2.5. The
contributions to the integral are mostly concentrated at the saddle points for the new
integration path b → c. Note the laser period is 126 a.u. (labeled by a in Figure 2.3 and
Figure 2.4). We can see from the Figure 2.4 that major contributions are located around
the peaks of the electric field. The integrals a→ b and c→ d will cancel the the surface
term in the eq. (2.39) [28]. The new integration path is deviated slightly from the original
path because at the saddle points the integrand is not analytic and we should leave the
singularities outside the contour (Figure 2.5). Following [28] we obtain the following
formula:

(S − 1)S FA
f i (t f , ti) = (2Ip)

5
4

∑
s

eiS (ts)

S ′′(ts)
(2.41)
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The saddle points in eq. (2.41) can be found by solving:

1
2

(~k + ~A(t))2 + Ip = 0, (2.42)

~A(t) = ~Ao sin(ωLts) (2.43)

so that the electric field of the laser is given by ~E(t) = − ∂
∂t
~A(t) = ~E0 cosωLt where

~A0 = −
~E0
ωL

. Denote the components of the momentum ~k of the photoelectron parallel and
perpendicular to the laser polarization by k‖ and k⊥, respectively. Recall that the Keldysh

parameter is given by γ =
√

Ip

2Up
and define another parameter by β = k‖√

2Up
. In the case

of tunneling ionization, three conditions should be satisfied [20]:

γ � 1 (2.44)

β � 1 (2.45)
k2
⊥

2Ip
� 1 (2.46)

corresponding to the physical situation of low frequency excitation and slow photoelec-
trons. We then obtain approximate solution of equation (2.43) :

sin(ωLts) = −β ± i
√

2γ (2.47)

cos(ωLts) = 1 + γ2 −
β2

2
± i
√

2βγ (2.48)

ts = (−
β

ωL
± i
√

2
γ

ωL
) +

1
6

(−
β

ωL
± i
√

2
γ

ωL
)3 (2.49)

Substituting the above results into S (ts) and S ′(ts) and keeping the leading order, we
obtain

S ′′(ts) = ±

√
Ipk‖
β

(2.50)

S (ts) =
Up

ωL

−1
3
β3 − 2βγ2 ± i(

15
√

2
4

β2γ +
4
√

2
3

γ3)
 (2.51)

The ionization probability density is given by:

|(S − 1)S FA
f i (t f , ti)|2. (2.52)
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Figure 2.2: The global structure of the real (upper diagram) and imaginary parts (lower
diagram) of the integrand in complex time plane. The E0 = 0.073, ωL = 0.05 and k = 0,
Ip = 0.5
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Figure 2.3: The real (upper diagram) and imaginary parts (lower diagram) of the inte-
grand along the real time axis. The E0 = 0.073, ωL = 0.05 and k = 0, Ip = 0.5

19



Figure 2.4: The real (upper diagram) and imaginary parts (lower diagram) of the inte-
grand on deformed contour. The deformed contour is shown in Figure 2.5. The above
graph corresponds to the path of b → c which gives the main contribution of transition
amplitude.
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Figure 2.5: In the complex time plane the original integration path is deformed so that
the new contour passes through the vicinities of the saddle points. Cauchy’s integral
theorem implies that the integral will have the same value for the path ti → t f and the
path ti → b→ c→ t f .

Neglecting the interference between saddle points, the total ionization rate is given by

Γ =
∑

s

∞∫
0

(2Ip)
5
2 |

eiS (ts)

S ′′(ts)
|2dk‖ (2.53)

After some algebra we obtain an ADK-type tunneling ionization formula:

Γ = C0
ωL

(Ip)
7
2

 (2Ip)
3
2

E0


3
2

e−
2
3

(2Ip)
3
2

E0 (2.54)

where C0 is a constant related to the laser pulse length. The exponential factor is common
to the tunneling of both long range and short range potentials. This factor can be consid-
ered as a character of tunneling ionization (see Appendix B). The pre-factor depends on
some inverse power of the electric field strength. The power for short range potential is
different from the power for long range potential. Here we only give the formula for the
Coulomb potential.
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2.4 The origin of the tunneling ionization

The direct electron term does not contain information of the potential barrier shape ex-
plicitly. However as we can see from last section, integrating the direct electron term in
the asymptotic region will lead to a tunneling ionization formula. This is because the
initial state ψi contains information of V̂a implicitly. The Volkov state and the interaction
Hamiltonian depend on the external electric field. When the inner product of eq. (2.29)
is formed, the information of the potential barrier will be recovered; hence an ionization
rate with the correct exponential factor is obtained. In SFA the ionization process is di-
vided into two stages. In the first stage, the Coulomb field is dominant so that we can
neglect the laser field. In the second stage the Coulomb field is neglected as the laser
field dominates the ionized state. In ADK theory the space is divided into three regions.
In the close core region, the laser field is neglected. In the far core region, the Coulomb
field is negligible [17]. It is interesting to notice that both theories have to make this
artificial division, but one in time and the other in space. The reason for this is because
SFA is intrinsically a time-dependent theory so the ionization process is followed in time,
while the ADK theory is a time-independent theory so the ionization process is described
in space. When the electron tunnels through the potential barrier, its probability current
flows from the close core region to the far core region, which corresponds to a transition
from initial state φi to the continuous spectrum. In addition, tunneling ionization requires
the Keldysh parameter γ � 1. This is actually the same criterion for the adiabatic ap-
proximation in ADK theory, 〈Ψm |

∂
∂t Ĥ|Ψn〉

εm−εn
� 1 [See Appendix D]. When the laser frequency

is much smaller than the characteristic frequency of electron, the electron will have suf-
ficient time to follow the change of the laser field. Eq. (2.48) shows that at the saddle
point ts, cos(ωts) is approximately equals to one. This correspond to the electric field
maximum, which implies the tunneling ionization will mostly happened near the peak of
the electric field.
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2.5 The origin of the ATI peaks

Assume the laser pulse is infinitely long and given by

~E(t) = ~E0 cosωLt and ~A(t) = −
~E0

ωL
sinωLt. (2.55)

The classical action given by eq. (2.34) can be integrated exactly:

S (t) = −
(
k2

2
+ Ip + Up

)
t +

~k · ~E(t)
ω2

L

−
Up

ωL
sin 2ωLt (2.56)

Substituting this equation into eq. (2.35), we obtain

(S − 1)S FA
f i =

[
−φ̃g(~k + ~A)eiS (t)

]+∞
−∞
+

+∞∫
−∞

dt Ω(t)ei
(

k2
2 +Ip+Up

)
t (2.57)

where
Ω(t) = S ′(t)φ̃geiS (t)−i

(
k2
2 +Ip+Up

)
t

has a period of T = 2π
ωL

. Hence we can expand Ω(t) in a Fourier series expansion

Ω(t) =
∑

n

Ln(~k)e−inωLt (2.58)

Using the above relation and evaluating the time integral in eq. (2.57), we obtain [39]

(S − 1)S FA
f i = 2πi

∑
n

δ

(
k2

2
+ Ip + Up − nωL

)
Ln(~k) (2.59)

The delta function enforces the conservation of energy, and the photoelectron spectrum
will show a series of peaks. All the peaks are separated by exactly one photon energy.
We can interpret these peaks as arising from the electron absorbing more photons than
necessary to conquer the potential barrier and then entering the continuum with excess
energy. This is a generalization of Einstein’s photon electron energy formula for the
photoelectric effect.

23



Chapter 3

The 1-D model

In numerical simulation of intense field ionization, the amount of space-time grids in-
volved in the ionization process is huge. The number of atomic or molecular states in-
volved in the ionization process is also huge. As a result, ab initio simulation is extremely
computational intensive. So we simplify the calculation by reducing the dimensionality
of the system [19, 35, 13]. In the case of linearly polarized laser focusing on a hydrogen
atom, excitation is most effective along the direction of the laser polarization, and the
one dimensional model should describe the physics reasonably well. Most importantly,
using this simple model we will be able to test some of the fundamental assumptions
employed in theories proposed in the past few decades.

In this Chapter we will consider a one-dimensional model atom and a molecular ion
with the nuclei being clamped. This is the first step towards understanding the intense
laser pulse interaction with matter. Before we give a mathematical form of the model we
should first of all have some ideas about the range of physical parameters that will be of
interest in the calculation. The laser intensity will be around 1014 W/cm2, the wavelength
is about 900 nm and the pulse length is around 20 fs. The ionization potential for our
one-dimensional ground state atom is 18 eV (about 0.7 atomic unit). The wave length is
about 900 times larger than the size of the model atom. The kinetic energy of the electron
after laser pulse interaction can reach 80 eV so that the electron wave function span will
be approximately within 100 nm. The root mean square deviation of the wave function
will be approximately 10 nm; thus most of the electron probability is concentrated within
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Figure 3.1: Electron wave function after 4-cycle laser interaction. The horizontal axis is
is the space coordinate in atomic unit.

a narrow region close to the core (See Figure 3.1).

3.1 Time-dependent Schrödinger equation

The time evolution of the electron in one-dimension is described by the time-dependent
Schrödinger equation

i
∂

∂t
Ψ(x, t) = Ĥ(x, t)Ψ(x, t) (3.1)

where the total Hamiltonian is

Ĥ(x, t) = T̂ + V̂a(x) + V̂L(x, t), (3.2)

and the kinetic energy operator is

T̂ = −
1
2
∂2

∂x2 . (3.3)

The binding potential V̂a(x) is a function of coordinate only. We can study several dif-
ferent forms of the binding potential so that the correlations with the photo-electron
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Figure 3.2: Laser pulses with the square envelope. E0 = 0.075 and ϕ = π
2 (left panel)

ϕ = 0 (right panel).

Figure 3.3: Laser pulses with the sine-square envelope. E0 = 0.075 and ϕ = π
2 (left

panel) ϕ = 0 (right panel).
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spectrum may be revealed. We will specifically work in the length gauge so that the
interaction Hamiltonian takes the form

V̂L(x, t) = xE(t). (3.4)

where E(t) is the electric field of the laser pulse represented by

E(t) = E0 f (t) sin(ωLt + ϕ). (3.5)

f (t) is the envelope function. We use two different envelope functions in our study. The
first one is a square pulse envelope (see Figure 3.2):

f (t) =

 1, if 0 ≤ t ≤ Tp

0, otherwise

and the second one is a sine-square pulse envelope (see Figure 3.3):

f (t) =

 sin2(ωp

2 t), if 0 ≤ t ≤ Tp

0, otherwise.

ϕ in eq. (3.5) is known as the carrier envelope phase (CEP). This CEP is an important
parameter for the dynamics of ultrashort laser pulse ionization of atom. We study the time
evolution of the wave packets by the split operator method using fast Fourier transform
where we express the wave function in terms of the evolution operator as

Ψ(x, t) = Û(0, t)Ψ(x, 0). (3.6)

We discretize the time variable and propagate the wave function according to

Ψ(x, t + ∆t) ≈ exp
[
−iT̂∆t

]
exp

[
−i

(
V̂a(x) + V̂L(x, t)

)
∆t

]
Ψ(x, t) (3.7)

The time evolution becomes computable after the splitting of the non-commuting po-
tential and kinetic energy operators. We can perform the potential propagation in coor-
dinate representation and the kinetic energy propagation in momentum representation,
the conversion between these two representations being carried out by the fast Fourier
transform. After the end of the wave function propagation, we project it onto a positive
energy continuum state of the atom or molecule:[

T̂ + V̂a(x)
]
φε(x) = εφε(x), ε > 0 (3.8)

and the photoelectron spectrum is obtained from

P(ε) = |〈φε(x)|Ψ(x, t f )〉|2 (3.9)
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Figure 3.4: A schematic diagram for the one dimensional atom. The nucleus is clamped
at the origin; therefore, we only have one degree of freedom.

3.2 One-Dimension model atom and photoelectron spec-
trum

The intense laser pulse ionization of an one-dimensional model atom is first studied by
Eberly and Javanainen [11]. A schematic diagram of the model is shown in Figure 3.4.
The model atom has a potential given by:

V̂a(x) = −
1√

(1 + x2)
. (3.10)

This soft-core potential has a Coulomb tail and it is analytic at the origin. According
to [19] it is realistic in the sense that it has a Rydberg series structure and it preserves
parity. By using standard finite difference method [34] we solve the eigenvalue problem
of eq. (3.8). The first 8192 states of the atomic system are obtained. They are non-
degenerate and almost complete in the sense that the probability for the photoelectron to
obtain energy greater than 9 a.u. is negligible. We plot the energy of the first 150 states
in Figure 3.5. The ground state energy is −0.67 a.u. The first 57 states are bounded states
and the rest are positive energy scattering states which we used in eq.(3.9) to obtain the
photoelectron spectrum.

Before going to detailed analysis, let us take a look at the general features of the
photo-electron spectrum (PES). A typical ATI spectrum is shown in Figure 3.7. The
horizontal axis labels the atomic scattering states by their energy eigenvalues. When
an electron is kicked into the continuum it will have some probability to occupy one of
these scattering states. In Figure 3.7 the spectrum is cut off at the photoelectron energy
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Figure 3.5: We plot the first 150 eigenstates of the atomic potential (3.10). The bound
states have discrete energy levels. The continuous states have positive energy levels and
are sufficiently close to each other so that they can be used as bases for photoelectron
spectra.

Figure 3.6: Eigenfunctions for the three lowest bound states and a typical continuum
state (n=300). As we can see the parity alternates as n increases.
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Figure 3.7: A 4-cycle laser with square pulse envelope interact with 1-D atom. The
frequency is 0.05 a.u. and the laser intensity is 0.073 a.u. ε is the eigenvalue for the
continuous states i.e. the energy.

of 1.7 a.u. which can be understood as the maximum energy an electron can acquire
from this strong field ionization. Intuitively, this cutoff will depend on field intensity,
laser frequency and the ionization potential of the atom. There is a semi-classical model
which provides an explanation to this spectrum [31]. The idea is that at some time after
the laser is turned on, the electron tunnels out the potential barrier and appears in the
continuum with approximately zero kinetic energy. The freed electron then is driven by
the intense laser field. Depends on the moment when electron appears in the continuum
we may see some electrons be driven away from the nuclear core and never come back.
These electrons are called direct electrons which give rise to the direct electron term of
the transition amplitude. Calculation shows that they will have maximum kinetic energy
2Up where Up is the pondermotive energy Up =

E2
0

4ω2 . Another significant feature of the
electron spectrum is its comb-like structure. The peaks are separated by exactly one
photon energy. This indicates that the electron can absorb more photons than the mini-
mum required to conquer the potential barrier. Actually this comb structure is due to an
interference of the transition amplitudes at different moment of release of photoelectron.
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3.3 Dependence of ionization on physical parameters

The problems we are interested in strong field physics can be briefly categorized as three
types. The first type is to have a well known and controllable laser pulse focus on an
atomic or molecular system so that through detecting the light emission or the kinetic
energies of the photoelectron and/or residue ions, we can obtain information of the sys-
tem itself. The other type of question is to use atoms whose properties are known as
probes of the laser pulses so that we can obtain information of the pulse characteristics
including pulse shape, intensity, frequency and carrier-envelope phase. The last type of
question is to use a well controlled laser pulse to induce electron dynamics of a sys-
tem so as to control the molecular dynamics of the parent ions. In order to realize the
above goals we should understand how the physical parameters affect the photoelectron
spectrum.

3.3.1 Dependence on pulse length and pulse shape

From the Fourier transform relations, the shorter the pulse length the broader the laser
spectrum will be. As we can see from Figure 3.8 and Figure 3.9, the peaks of a four
cycle laser ionization spectrum are broader than those of eight cycle laser ionization
spectrum for the same laser intensity. The outline of the spectrum changes very little but
its magnitude increases for the longer pulse as expected. It is a result of accumulation of
transition amplitude from different cycles.

The photoelectron spectra for the square envelope pulses have sharper lines compared
with those of sine-square envelope pulses. We also observe that as we increase pulse
length, the higher energy region of photoelectron spectrum is suppressed relative to the
lower energy region as shown in Figure 3.10 with a comparison of Figure 3.11. This is
due to the fact that as we increase the pulse length, the electron wave function will be
spread out more instead of mostly concentrated in the core region (Figure 3.1), reducing
the probability of electron re-scattering with the core. Thus the spectrum in the high
energy region is suppressed.
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Figure 3.8: Spectrum for a 4 cycle sine-square envelope laser pulse interacting with a
1-D atom. E0 = 0.073 a.u, ωL = 0.05 a.u. and ϕ = π

2 .

Figure 3.9: Spectrum for an 8 cycle sine-square envelope laser pulse interacting with a
1-D atom. E0 = 0.073 a.u, ωL = 0.05 a.u. and ϕ = π

2 .
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Figure 3.10: Spectrum for a 4 cycle square envelope laser pulse interacting with a 1-D
atom. E0 = 0.073 a.u, ωL = 0.05 a.u. and ϕ = π

2 .

Figure 3.11: Spectrum for an 8 cycle square envelope laser pulse interacting with a 1-D
atom. E0 = 0.073 a.u, ωL = 0.05 a.u. and ϕ = π

2 .
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Figure 3.12: The total ionization probability versus field strength E0 plotted in semi-log
scale (vertical axis is in log scale). The blue dots are from numerical calculation for a
sine-square envelope laser pulse. The red line is calculated by an ADK-type formula.
We choose the pre-exponential factor to be E−7/2

0 .

3.3.2 Dependence on intensity

As we increase the laser intensity the total ionization rate will also increase. In the
tunneling region the ionization rate is given by eq.(2.54). However for the 1-D model
atom the pre-exponential factor may be different from the 3-D hydrogen atom. We plot
the total ionization rate from TDSE calculation and fit the data to obtain a pre-exponential
factor (see Figure 3.12). The matching between TDSE and ADK-type calculation implies
the tunneling behavior of the system. As we further decrease the laser intensity, the
Keldysh parameter becomes greater than one so that multiphoton ionization dominates,
and the ADK formula will not be applicable.

The semi-log plot of the photoelectron spectrum will show a clear cutoff at 2Up [40].
This cutoff is well explained by a semi-classical model, which assumes that the electron
tunnels out at the maximum of electric field with zero kinetic energy. Subsequently it
is driven by the laser field as a free electron [9]. Since Up is proportional to the laser
intensity we observe that the cutoff shifts to the higher energy region as we increase E0

(see Figure 3.13 - Figure 3.15).
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Figure 3.13: A semi-log plot of PES of a 4-cycle sine-square envelope laser pulse ion-
ization of the atom. E0 = 0.068 a.u. ϕ = π

2 and ωL = 0.05 a.u.

Figure 3.14: A semi-log plot of PES of a 4-cycle sine-square envelope laser pulse ion-
ization of the atom. E0 = 0.08 a.u. ϕ = π

2 and ωL = 0.05 a.u.
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Figure 3.15: A semi-log plot of PES of a 4-cycle sine-square envelope laser pulse ion-
ization of the atom. E0 = 0.1 a.u. ϕ = π

2 and ωL = 0.05 a.u.

3.3.3 Dependence on CEP

We compared the spectra for different CEPs in Figure 3.16-3.19. We can see that from
Figure 3.16-3.17 for a sine-square envelope pulse, the high energy part of the spectrum
for the ϕ = π

2 case is enhanced compare to the ϕ = 0 case. This enhancement is stronger
at the higher intensity, which means that at high intensity the spectrum becomes more
sensitive to CEP.

In the case of square-envelope pulse we find that the spectrum is extremely sensitive

Figure 3.16: The PES for a 4-cycle sine-square envelope laser pulse ionization of the
atom. E0 = 0.06 a.u. ϕ = π

2 (left panel) and ϕ = 0 (right panel).
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Figure 3.17: The PES for a 4-cycle sine-square envelope laser pulse ionization of the
atom. E0 = 0.08 a.u. ϕ = π

2 (left panel) and ϕ = 0 (right panel).

Figure 3.18: The PES for a 4-cycle square envelope laser pulse ionization of the atom.
E0 = 0.07 a.u. and ϕ = π

2 .
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Figure 3.19: The PES for a 4-cycle square envelope laser pulse ionization of the atom.
E0 = 0.07 a.u. and ϕ = 0.

to CEP. As we can see in Figure 3.18, for ϕ = π
2 , the photoelectrons mostly appear in

the low energy region with regular ATI structure. When we switch to ϕ = 0 as shown
in Figure 3.19, the photoelectron spectrum becomes irregular and extends to the high
energy region. The higher energy peaks are not separated by a single photon energy.

From the above observation we conclude that in order to make the spectrum sensitive
to the CEP, two conditions should be met. First of all the laser intensity must be high so
that ionization is in the tunneling region. Secondly the pulse should be very short so that
the spectrum is an accumulation of photoelectrons for only a few cycles. It also appears
that the square envelope is more effective than a sine-square envelope pulse.
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3.4 Comparison between SFA and TDSE Calculation

The transition amplitude introduced by Keldysh in 1965 [20] corresponds to the direct
electron term in the intense field many-body S-matrix theory [5]. It is possible to give a
physical interpretation to this term. Initially the electron is at its ground state. At some
time t′ it is kicked into continuum by the laser field, and from then on, it is driven only
by the laser field and assumed not to feel the core potential again (see Figure 1.2). This
is an approximation called the strong field approximation (SFA). The gauge invariance
is destroyed under the SFA. Even though several papers [21, 22, 4] have been done to
resolve the gauge dependence problem, there is still no rule to tell us what gauge we
should choose. The length gauge is generally used in the case of atoms and diatomic
molecules; however, there is still no satisfactory explanation why the length gauge works
better [4].

To test the validity of SFA, we will make a comparison of SFA calculations in the
length gauge with TDSE calculations of the one dimensional model. We calculate the
direct electron term of eq. (2.30)

(S − 1) f i = −i

t f∫
ti

dt′〈ψ f (t′)|V̂L(t′)|φi(t′)〉

by evaluating the integral numerically. The hope is to find out what are the conditions
for SFA to be valid. First of all we will study the case of half cycle laser pulse.

3.4.1 Half cycle laser pulse

Electron dynamics in a half cycle laser pulse is much simpler than many cycle pulses
because there is no accumulation of transition amplitude from different cycles. The pho-
toelectron spectra for the CEP ϕ = 0 and ϕ = π

2 obtained from TDSE calculation are
plotted in Figure 3.21 and Figure 3.24 while those obtained from SFA are given in Fig-
ures 3.22, 3.23 and Figure 3.24. In the case of ϕ = 0, the SFA calculation tends to
underestimate the photo-electron energies. As we can see in Figures 3.21 and 3.22 the
TDSE calculation predicts a spectrum extending to about 6 a.u, but SFA spectrum only
extends to 3.5 a.u. However, the SFA calculation is gauge dependent; we add a constant
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Figure 3.20: Half cycle laser pulses with E0 = 0.073 a.u. The CEPs are ϕ = 0 and ϕ = π
2

respectively.

Figure 3.21: The photo-electron spectrum for half cycle laser pulse ionization of atom.
The CEP is ϕ = 0 and E0 = 0.073 a.u. The frequency is ωL = 0.05 a.u.
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Figure 3.22: SFA calculation of PES of the atom ionized by a half cycle laser pulse with
E0 = 0.073 a.u. and ϕ = 0.

Figure 3.23: SFA calculation of PES of the atom ionized by a half cycle laser pulse with
E0 = 0.073 a.u. ϕ = 0. We add a constant vector in the vector potential through the gauge
transformation eq. 2.4. This new spectrum is the spectrum 3.22 shifted to the positive
direction.
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Figure 3.24: The comparison between PES from SFA calculation and TDSE calculation.
It is a half cycle laser pulse with E0 = 0.073 a.u. ϕ = π

2 .

vector to the vector potential in Volkov state of eq. (C.5). This constant vector potential
will not change the electric field but it will shift the photoelectron spectrum to higher
energies. As shown in Figure 3.23 we can choose this constant vector potential properly
to match the SFA and TDSE calculations. In general we found the condition A(0) = 0
should be used.

When the laser CEP ϕ = π
2 , the SFA and TDSE spectra will roughly match as shown

in Figure 3.24. Since the model potential is a long range potential, and within the half
cycle duration the electron density is still concentrated in the region close to core, we
do not expect SFA to be a very good approximation. The high energy portion of the
the numerical spectrum has been greatly suppressed in the case of ϕ = π

2 . Because most
photoelectrons will be ionized at the peak of the electric pulse with certain kinetic energy
Ek and after ionization the propagation is due to the vector potential A. The electric field
ends at maximum meaning the vector potential ends at zero. Therefore, the mechanical
momentum of electrons reach minimum at the end of the pulse. Hence high energy
photoelectrons are not generated.
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3.4.2 A four-cycle laser pulse

For a square-envelope four cycle laser pulse the situation is very similar to the half cycle
pulse case. The spectrum is very sensitive to the carrier envelope phase. Here we will
only compare the SFA calculation with TDSE calculation for the pulse that has CEP
ϕ = π

2 . As we can see in Figure 3.25 the SFA calculation underestimates the high energy
region of the photo-electron spectrum. When we increase the laser intensity, the spectrum
extends to higher energy region; however, the SFA still underestimates the high energy
region of the spectrum. This is because the high energy region of the spectrum is due
to the Coulomb effects during ionization. SFA calculations neglect the Coulomb effects.
More explicitly, the SFA calculation does not include the polarization and re-scattering
effects.

In the case of sine-square envelope pulse the SFA calculation has two major devia-
tions from the TDSE calculation. First of all, the SFA calculation underestimates the high
energy region of the spectra. Secondly, the low energy regions of the spectra do not show
regular structures (see Figure 3.26 and Figure 3.27). As in the case of the square-envelope
pulse, we only include the direct electron term in the SFA calculation; however, TDSE
calculation includes both direct and re-scattering electrons. The re-scattering electrons
mainly contribute to the high energy region in the spectra so that SFA tends to underes-
timate the high energy region. In addition, the core potential is a long range potential
so the strong field approximation is not expected to be good even in the tunneling re-
gion for such a short pulse. When the laser pulse is very short, the electron density is
mostly concentrated at the region close to core during the interaction period, especially
for the low energy electrons. If we further increase the laser intensity, better agreement is
found in the intermediate energy region. (See Figure 3.28 and Figure 3.29). For a short
range potential we can get very good agreement in both the low and intermediate energy
regions [3].

3.4.3 Short range potential

The tail of long range atomic potential is the main reason for the failure of SFA spec-
trum in the high energy region. In order to demonstrate this idea we modify the atomic
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Figure 3.25: The comparisons between SFA and TDSE calculation of PES for a 4-cycle
square envelope laser pulse with E0 = 0.073 a.u. (above diagram) and E0 = 0.1 a.u.
(below diagram). ϕ = π

2 .
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Figure 3.26: The comparison between SFA and TDSE calculation of PES for a 4-cycle
sine-square envelope laser pulse with E0 = 0.073 a.u. ϕ = 0.

Figure 3.27: The comparison between SFA and TDSE calculation of PES for a 4-cycle
sine-square envelope laser pulse with E0 = 0.073 a.u. ϕ = π

2 .
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Figure 3.28: The comparison between SFA and TDSE calculation of PES for a 4-cycle
sine-square envelope laser pulse with E0 = 0.08 a.u. ϕ = π

2 .

Figure 3.29: The comparison between SFA and TDSE calculation of PES for a 4-cycle
sine-square envelope laser pulse with E0 = 0.1 a.u. ϕ = π

2 .
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Figure 3.30: The comparison between SFA and TDSE calculation of PES for a 4-cycle
sine-square envelope laser pulse with E0 = 0.073 a.u. ϕ = π

2 . The Coulomb tail of the
atomic potential is screened by an exponential factor as described in the text.
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potential as following:
1

√
1 + x2

−→
exp(−αx2)
√

1 + x2

The constant α can be chosen as 0 or 1, corresponding to a long range or short range po-
tential, respectively. The comparison between the TDSE and the SFA spectra is shown
in Figure 3.30. As we switch from a long range potential to a short range potential, the
high energy region of photo-electron spectrum obtained from the TDSE is significantly
suppressed. This implies that the electron bounded by a short range potential has less
capability of gaining energy than the electron bounded by long range potential. It hap-
pens because the polarizability of the two systems are different. The atom with a long
range potential will have a larger polarizability. Thus electron will be pulled away from
the core before being ionized, and it will gain large amount of energy. However, for the
electron bounded by a short range potential, the polarizability is small. Thus the electron
cloud will be distorted only a little before ionization, and only small amount of energy is
gained, giving rise to the supression of the high energy region of the spectrum. Later, we
will see that the same reason applies to the molecular ion case.

3.5 The probability current

We also look at the electron probability current during the interaction with the laser
field. Within four cycles the electron will not have time to escape from the region of
calculation. Therefore the total probability in the region should be conserved. We divided
the region into three parts as shown in Figure 3.31. Initially the electron is in the ground
state so that most population is in the core region. After the laser field is turned on,
the population in all three regions will change in time. Because of the conservation of
probability, we have

−
∂

∂t
ρ1 = j12 (3.11)

where ρ1 is the population in region 1 and j12 is the probability current flow through the
boundary 12. Similarly, the rate of change of population in core region is given by

−
∂

∂t
ρcore = j23 − j12 (3.12)
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Figure 3.31: The space spans from -1024 a.u. to 1024 a.u. We divided the space into
three regions from the left region 1, core region (also region2), region 3. The core region
is 25 a.u. wide.

Figure 3.32: The x-axis is time in atomic unit. The vertical axis represents population.
We plot the pulse (dark line) in order to take it as reference.

49



Figure 3.33: The x-axis is time in atomic unit. The vertical axis is relative current inten-
sity.

We plot the population change as a function of time in Figure 3.32. It is clear that most
ionization occurs at the central peak of the laser pulse. Re-scattering will occur at the
subsequent valley of the pulse. We plot the probability current flow through boundary 12
as a function of time in Figure 3.33. In the region 230 < t < 300, the negative probability
current is an evidence of the re-scattering process. This process is particularly important
for the understanding of high harmonic generation process. We will study this process in
the future.

3.6 Model H+2 ion

In this section we will study a two-center binding potential given by

V̂a(x; R) = −
q√

1 + (x + R
2 )2
−

q√
1 + (x − R

2 )2
. (3.13)

This potential can be viewed as a 1-D H+2 ion with two nuclei being clamped. The model
is shown schematically in Figure 3.34. The parameter q is added because we want to have
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Figure 3.34: A schematic diagram for the H+2 ion. The nucleus is clamped at ±R
2 ; there-

fore, we only have one degree of freedom.

Figure 3.35: We plot the first 150 eigenstates of the potential (3.13). Similar to the atomic
case, the bound states have discrete energy levels. The continuous states have positive
energy levels and are sufficiently close to each other so that they can be used as bases for
photoelectron spectra.
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Figure 3.36: Above diagram shows the variation of ground state energy as a function of
internuclear separation. We do not include the nuclear repulsion term in the Hamiltonian.
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Figure 3.37: PES of 4 cycle sine-square envelope pulse ionization of molecular ion.
E0 = 0.073, ωL = 0.05, φ = 0, R = 2 and q = 0.7.

the flexibility to adjust the ionization potential such that the system becomes comparable
to the atomic case. In this thesis q is set equal to one unless stated otherwise. The
eigenstates of the electron can be found by using the same method as in the atomic case
(see Section 3.2). The energies of the first 150 states are plotted in Figure 3.35. They
are non-degenerate and clearly possess the Rydberg series structure. Compared to the
atomic case, we have one more physical parameter to vary – the internuclear separation
R. The ground state energy as a function of R is plotted in Figure 3.36. Note that we
have not included the nuclear repulsion term in the Hamiltonian which would produce a
minimum potential energy at the equilibrium separation R0 ≈ 2 a.u.

3.6.1 Comparison between H atom and H+2 ion

The photoelectron spectra for the hydrogen molecular ion obtained from TDSE calcu-
lation are shown in Figures 3.37, 3.38 and 3.39. All of the trends we observed in the
atomic ionization process are also observed in molecular ionization. For instance, as the
pulse length increase the ATI peaks become sharper (compare Figure 3.37 with Figure
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Figure 3.38: PES of 8 cycle sine-square envelope pulse ionization of molecular ion.
E0 = 0.073, ωL = 0.05, φ = 0, R = 2 and q = 0.7.

Figure 3.39: In semi-log scale, PES of 4 cycle sine-square envelope pulse ionization of
molecular ion. E0 = 0.073, ωL = 0.05, φ = 0, R = 4.
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Figure 3.40: Logarithm of total ionization probability versus electric field strength E0.
ωL = 0.05, φ = 0 and R = 4. We take the pre-exponential factor to be E−9/2

0 in the ADK
formula.

3.38. Here q = 0.7 is used because at small internuclear separation we want to have
a molecular system that has approximately the same ionization potential as the atomic
system.) There is also a direct-electron cutoff located at 2Up (see Figure 3.39, and for
the atomic case see Figures 3.13- 3.15). In general, the PES for the molecular ion and for
the atom have very similar features. In fact it is difficult to distinguish them by observing
the spectra alone.

We plot the total ionization rate as a function of the laser field strength and then fit the
TDSE data with ADK formula in Figure 3.40. Since the ADK formula (2.54) (see also
eq. B.15) is derived in three dimensions and our model is one-dimensional with a soft-
core potential, the pre-factor in ADK formula is unknown. We fit the TDSE calculation
by adjusting the exponent of the pre-factor of ADK formula and find E−9/2

0 gives the best
fit. It is clear the ADK formula describes the trend well.
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Figure 3.41: PES of 4 cycle sine-square envelope pulse ionization of molecular ion.
E0 = 0.073, ωL = 0.05, φ = 0 and R = 6

3.6.2 Dependence on internuclear separation

The PES at R = 6 a.u. is plotted in Figure 3.41 and the total ionization rate as a function
of internuclear separation is plotted in Figure 3.42. Comparing Figure 3.41 with Figure
3.37, we find that the high energy region of the photo-electron spectrum is greatly en-
hanced at the moderate internuclear separation of R = 6 a.u. From Figure 3.42 where we
plot the total ionization rate as a function of separation, we find a maximum also at R = 6
a.u. This does not happen by accident. Similar maximum have been observed by Zuo
and Bandrauk who explained the phenomena in terms of charge-resonance states [41].

Next we will consider the half-cycle laser ionization spectra shown in Figure 3.43
and 3.44. At small internuclear separation, the spectrum has a single broad peak. As we
increase the internuclear separation an interference pattern emerges (See Figure 3.43).
In the extreme case when the internuclear separation is 20 a.u, the ion is acting like two
hydrogen atoms except the outgoing electron flux will interfere in the way similar to a
double slits experiment (See Figure 3.44).
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Figure 3.42: Total ionization rate versus internuclear separation. ωL = 0.05, φ = 0,
E0 = 0.08.

Figure 3.43: PES of a half cycle laser ionization. ωL = 0.05, φ = 0, E0 = 0.073. The
inter-nuclear separation is labeled by color.
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Figure 3.44: PES of a half cycle laser pulse ionization. The R = 20 for molecular ion.
ωL = 0.05 φ = 0 E0 = 0.073. The PES of atom is multiplied by a factor of 2.

In addition, we notice even in the half cycle pulse case, ionization is maximum at
the moderate internuclear separation (near R = 6 a.u.). There are mainly two factors
competing each other and one tends to increase the ionization probability and the other
tends to decrease the ionization probability. In our case we found as we increase the
internuclear separation the ionization potential decreases (see Figure 3.36). This implies
the electron becomes more and more loosely bound. The decreasing of ionization po-
tential is one factor that tends to increase the ionization probability. On the other hand,
as we increase the internuclear separation the central barrier gets taller and wider so that
it impedes the electron tunneling from one core to another (see Figure 3.45). In another
words, the electron will have much less mobility at large internuclear separation. It will
be trapped within one core. As a result, the bounded electron energy is lowered and the
ionization is suppressed. Both factors will contribute to the ionization rate. Only at the
optimal internuclear separation the ionization rate will reach maximum.
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Figure 3.45: The above diagram shows the change of binding potential as internuclear
separation changes. The horizontal lines are the corresponding ground state energy lev-
els.
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Chapter 4

Conclusion

In this thesis, we have studied the ionization processes of the model H atom and molec-
ular H+2 ion. By using these models, we demonstrate the dependence of ionization on
various laser parameters. The laser band width will directly affect the width of the ATI
peaks in the photoelectron spectra (PES), and the laser intensity is shown to be related
to the cutoff of the PES. It is also shown that the CEP becomes significant for ionization
by ultrashort laser pulse of only a few cycles. The high energy regions of the PES are
sensitive to the CEP, especially for the laser pulse with a square envelope.

Secondly, we have compared SFA calculations with TDSE calculations by varying
the physical parameters. The long range nature of the Coulomb field is the main reason
for SFA becoming inappropriate. In general, the SFA tends to underestimate the high
energy region of the spectra. We believe there are two effects that mainly contribute
to this deviation. One is the polarization effect and the other is the re-scattering effect.
These two effects are both neglected in the SFA calculation and indeed, are important for
the ionization from a Coulomb potential. We show that if the Coulomb tail is screened
then the spectra from SFA and TDSE calculations will match very well.

The study of the probability current and population variation indicates that most of
the electrons are ionized near the central peak of the short laser pulse and re-scattering
will occur subsequently. This shows that the electron dynamics can be controlled by an
intense short laser pulse.

In the case of H+2 ion, we show that the total ionization probability reaches maximum
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at internuclear separation R ≈ 6 a.u. At this internuclear separation, the high energy
region of PES is also greatly enhanced. One reason for this is that as the internuclear
separation increases, the central barrier will become taller and wider. At this critical
internuclear distance, the central barrier is still low such that electron can tunnel through
from one core to the other. At the same time, the ionization potential has been lowered
so that the ionization probability is enhanced.

We have also studied atomic and molecular ionization by a half cycle laser pulse. For
H+2 , we find that at large internuclear separation, a half cycle laser pulse will generate
electron waves which interfere in a way similar to a double-slit experiment.

In the future, we will study the ionization of H+2 ion more in detail. We expect to find
a rigorous explanation of the ionization enhancement. The SFA calculation of H+2 ion
will also be carried out and compared with the TDSE calculation. The problem of gauge
dependency in SFA calculation particularly interests me because through the study we
gain deep insight of quantum mechanics.
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Appendix A

Atomic units

In order to change SI units to atomic units we should see how much degree of freedom the
system has. This can be achieved by looking at the dimensionless fine structure constant,

α =
e2

4πε0

1
~c
.

Since fine structure constant is not equal to one, we can only set any three constants out
of four equal to one. Conventionally, we set the numerical values of e = 1, 4πε0 = 1 and
~ = 1. The mass of electron me is a fundamental constant so we can also set me equal to
one. Thus the speed of light is equal to the inverse of fine structure constant:

c =
1
α
.

Consequently, we can obtain the electric permittivity of free space and magnetic perme-
ability of free space.

ε0 =
1

4π
µ0 = 4πα2.

Now we have enough information to rewrite the Maxwell’s equations and Schrödinger
equation in atomic units. Simply replace all the constants appear in the equations, we

62



obtain the Maxwell’s equations in atomic units:

∇ · ~E = 4πρ (A.1)

∇ · ~B = 0 (A.2)

∇ × ~E = −
∂

∂t
~B (A.3)

∇ × ~B = 4πα2~j + α2 ∂

∂t
~E. (A.4)

The Schrödinger equations (2.10) and (2.12) become, respectively,

i
∂

∂t
Ψv =

[
1
2

P̂2 + ~A(t) · P̂
]
Ψv + Va(~r)Ψv, (A.5)

i
∂

∂t
Ψ` =

[
1
2

P̂2 + ~r · ~E(t)
]
Ψ` + Va(~r)Ψ`. (A.6)

In the following table we list some fundamental atomic units.

Atomic unit for mass me me 9.109×10−31kg
Atomic unit for angular momentum ~ ~ 1.054×10−34kg · m2/s

Atomic unit for charge e e 1.602×10−19C
Atomic unit for length a0

[
~2e2

]
[4πε0me]−1 0.592×10−10m

Atomic unit for time τ0 [4πε0~a0]
[
e2

]−1
2.419×10−17s

Atomic unit for energy ℘0

[
e2

]
[4πε0a0]−1 4.360×10−18J
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Appendix B

Tunneling ionization of hydrogen atom

Consider a hydrogen atom present in a spatial homogeneous static electric field. The
electric field is along positive z direction. We can write the Schrödinger equation for this
system: [

−
1
2
∇2 −

1
r
+ zE(t)

]
Ψ = εΨ (B.1)

This above equation is separable in parabolic coordinate system:

x =
√
ξη cos φ

y =
√
ξη sin φ

z =
1
2

(ξ − η) (B.2)

r =
1
2

(ξ + η)

The equation B.1 in parabolic coordinates takes the following form:

εΨ =

{
2

ξ + η

[
∂

∂ξ
(ξ
∂

∂ξ
) +

∂

∂η
(η
∂

∂η
)
]

−
1

2ξη
∂2

∂φ2 −
2

ξ + η
+
ξ − η

2
E
}
Ψ (B.3)

The wave function can be written as:

Ψ(ξ, η, φ) = f1(ξ) f2(η) exp(imφ) =
ϕ(ξ)χ(η)
√
ξη

exp(imφ) (B.4)
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Substitute the above wave function into equation B.3 we obtained the following equa-
tions:

∂2

∂ξ2ϕ(ξ) +
[
1 − m2

4ξ2 +
1 + ζ
ξ
−

Eξ
4
+
ε

2

]
ϕ(ξ) = 0

∂2

∂η2χ(η) +
[
1 − m2

4η2 −
ζ

η
+

Eη
4
+
ε

2

]
χ(η) = 0 (B.5)

If we assume initially the hydrogen atom is at ground state and after applying the electric
field the atom is still in ground state with energy unchanged then we could obtain the
separation constant ζ = − 1

2 . The magnetic quantum number m = 0. Hence the following
equations are obtained:

∂2

∂ξ2ϕ(ξ) +
[

1
4ξ2 +

1
2ξ
−

Eξ
4
−

1
4

]
ϕ(ξ) = 0

∂2

∂η2χ(η) +
[

1
4η2 +

1
2η
+

Eη
4
−

1
4

]
χ(η) = 0 (B.6)

The ground state wave function of hydrogen takes the following form:

Ψ(ξ, η, φ) =
1
√
π

e−
1
2 (ξ+η) (B.7)

Note that in order to go from equation B.5 to equation B.6 we should assume the Coulomb
field is very strong in the region close to atomic nucleus so that external electric field can
be neglected. Hence we substitute the ground state wave function of hydrogen atom into
B.5 to obtain the constants ζ and m. The next step will be using WKB approximation
to find the exponential decay factor inside the potential barrier. Here ϕ(ξ) is bounded
in all space (see Figure B.1), so it can be approximated by hydrogen ground state wave
function. Hence we only need to worry about the wave function χ(η).

Within the potential barrier the wave function has the following form:

χ(η) =
C√
|p|

exp
[
−

∫ η

η0

|p|dη
]

(B.8)

Where p is defined as:

p =

√
1

4η2 +
1
2η
+

Eη
4
−

1
4

(B.9)
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The point η0 is so chosen such that Coulomb field is very strong and external electric
field can be neglected. Hence by matching the boundary condition at this point we can
obtain the pre-factor:

C =
√
η0

√
|p(η0)|e−

1
2 η0 (B.10)

. The wave function outside the barrier after tunneling will become:

χ(η) =

−√η0

√
|p(η0)|e−

1
2 η0 exp

−∫ 1
E

η0

|p|dη




1
√

p
exp

i ∫ η

1
E

pdη +
i
4
π

 (B.11)

The exponential factor inside curly bracket contains an integration over the potential
barrier which is approximately from η0 to the right classical turning point η = 1

E . This
factor will responsible for the tunneling ionization rate. In order to evaluate this integral
the following approximation is used:

|p| ≈
1
2

√
1 −

2
η
− Eη ≈

1
2

√
1 − Eη −

1
2η

(1 − Eη)−
1
2 (B.12)

Because the electric field is alone positive z direction, we expect the ionized electron
current will flow in the negative z direction and mostly concentrated near the z axis. In
another words, the velocity of the electron in z direction will be much larger than the
velocity perpendicular to z direction. Hence we calculate the total ionization rate by
summing up the probability flux through an imaginary circular plane that perpendicular
to z axis at infinitely far:

Wion =

∫ 2π

0
dφ

∫ ∞

0
dρρ~jz (B.13)

Where the probability current is given by:

~jz =
i
π

ϕ2(ξ)
ηξ

[
χ(η)

dχ∗(η)
dη

− χ∗(η)
dχ(η)

dη

]
(B.14)

Substitute B.11 and use hygrogen wave function for ϕ(ξ) we obtain the tunneling ioniza-
tion rate for ground state hydrogen atom:

Wion =
4
E

exp
(
−

2
3E

)
(B.15)
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Figure B.1: Effective potentials for equation B.6. The wave function ϕ(ξ) is bounded
so it can be approximated by hydrogen ground state (right). The wave function χ(η) is
quasi-static. The probability of tunneling through the potential barrier can be calculated
by WKB approximation.(left)

For an arbitrary atom instead of using ground state wave function, we can use the asymp-
totic form of the general hydrogen wave function to match the boundary condition at
point η0. Single active electron approximation is always assumed in this case and the
many electron effect is taken into account by effective quantum number[1].
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Appendix C

The Volkov state of electron

We start from the Schrödinger equation of a free electron in a spatially homogeneous
electric field in the Coulomb gauge, (eq. (2.1) in a.u. with V̂a = 0)

i
∂

∂t
Ψ =

1
2

[−i∇ + ~A(t)]2Ψ (C.1)

Introduce the Kramers-Henneberger transformation[23]

Ψ = exp

− i
2

t∫
A(τ)2dτ

 exp[−∇ ·

t∫
~A(τ)dτ] ψ. (C.2)

The new equation becomes the free wave equation

i
∂

∂t
ψ = −

1
2
∇2ψ (C.3)

with a plane wave solution. Hence the Volkov solution in the Coulomb gauge is

Ψ = exp

i~k · ~r − i
k2

2
t − i

t∫ (
~A(τ) · ~k +

1
2

A2(τ)
)

dτ

 , (C.4)

which is the same as eq.(2.14). The Volkov solution in length gauge is given by the gauge
transformation (2.6) with χ(~r, t) = −~r · ~A(t):

Ψ` = exp

i (~k + ~A(t)
)
· ~r − i

k2

2
t − i

t∫ (
~A(τ) · ~k +

1
2

A2(τ)
)

dτ

 (C.5)
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Notice the time dependent phase factor exp[−i
t∫

1
2 A2(τ)dτ] give rise to a shift in the total

energy. The time average of the energy shift is called the pondermotive potential. This
potential corresponds to a quivering energy of the electron which will be returned to the
radiation field after the interaction is over.

The canonical momentum of the electron is ~k. It is invariant during the interaction.
The mechanical momentum is ~k+ ~A(t). It is the actual momentum that we measure in the
experiment. As we can see the motion of electron in the continuum follows Newton’s
equation of motion.
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Appendix D

Adiabatic approximation

The following equation describes a charged particle in the presence of both atomic po-
tential and electromagnetic radiation

i
∂

∂t
Ψ = −

1
2
∇2Ψ + V̂aΨ + ~r · ~E(t)Ψ. (D.1)

We want to reduce the equation to the following form:

ε(t)Ψ′ = −
1
2
∇2Ψ′ + V̂aΨ

′ + ~r · ~E(t)Ψ′ (D.2)

Now assume at any instant of time we can find eigenfunctions Ψ′n so that they form a
complete and orthogonal basis. Then we can expand the true wave function in terms of
these time-varying basis functions.

Ψ =
∑

n

cn(t)Ψ′n exp
(
−i

∫
εn(t′)dt′

)
. (D.3)

If we substitute the expansion into the original equation, the following system of differ-
ential equations can be obtained

ċm = −
∑

n

cn(t) exp
[
i
∫

dt′(εm(t′) − εn(t′))
]
〈Ψ′m|

∂

∂t
|Ψ′n〉 (D.4)

Applying the transformation:

cn = c′n exp
[∫

dt′〈Ψ′n|
∂

∂t
|Ψ′n(t′)〉

]
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ε′n(t) = εn − i〈Ψ′n|
∂

∂t
|Ψ′n(t′)〉

Ψ′′n = Ψ
′
n exp

[
−

∫
dt′〈Ψ′n|

∂

∂t
|Ψ′n(t′)〉

]
,

the system of differential equations become:

ċ′m = −
∑
n,m

c′n(t) exp
[
i
∫

dt′(ε′m(t′) − ε′n(t′))
]
〈Ψ′′m|

∂

∂t
|Ψ′′n 〉. (D.5)

The matrix element ∣∣∣∣∣〈Ψ′′m| ∂∂t
|Ψ′′n 〉

∣∣∣∣∣ =
∣∣∣∣∣∣−〈Ψ′′m|∂t′Ĥ|Ψ′′n 〉

ε′m − ε
′
n

∣∣∣∣∣∣ � 1. (D.6)

It is very small because the change of Hamiltonian in time is slow compare with the
characteristic frequency of the electron oscillation. The first order approximation is ob-
tained by setting c′n(t) equal to δns, where the subscript s labels the initial state of the
wave function and the following solution is obtained.

c′m(t) =
∫

dt′
〈Ψ′′m|∂t′Ĥ|Ψ′′s 〉

ε′m − ε
′
s

exp
(
i
∫

dt′′(ε′m − ε
′
s)
)

c′s = constant.

This solution suggests that if initially the electron is in state s to first order approximation
the system will remain in state s as the Hamiltonian changing in time.

Recall in the SFA approach we have the tunneling condition ωL
E0

√
2Ip � 1. This can

be rewritten as

ωL

2Ip

Eatom

E0
� 1, (D.7)

where the quantity Eatom = (2Ip)3/2 is defined to be the characteristic electric field
strength for a bounded electron. We can see from eq. (D.7) that the tunneling con-
dition is actually a simultaneous fulfillment of two conditions. The first condition is
ωL
2Ip
� 1, which implies that the adiabatic approximation eq. (D.6). The second condi-

tion is Eatom
E0
≈ 1, which implies the external electric field strength is comparable to the

characteristic atomic binding field strength.

71



Bibliography

[1] V. Ammosov, N. B. Delone, and V. P. Krainov. Sov. Phys. JETP, 64:1191, 1986.

[2] S. Augst, D. Strickland, D. D. Meyerhofer, S. L. Chin, and J. H. Eberly. Phys. Rev.
Lett., 63:2212, 1989.

[3] D. Bauer, D. B. Milosevic, and W. Becker. Phys. Rev. A, 72:023415, 2005.

[4] D. Bauer, D. B. Milosevic, and W. Becker. Phys. Rev. A, 72:023415, 2005.

[5] A. Becker and F. H. M. Faisal. J. Phys. B: At. Mol. Opt. Phys., 38:R1, 2005.

[6] Christer Z. Bisgaaed and Lars Bojer Madsen. Am. J. Phys., 72:249, 2003.

[7] B. H. Bransden and C. J. Joachain. Physics of atoms and molecules. Prentice Hall,
England, 2003.

[8] P. H. Bucksbaum, R. R. Freeman, M. Bashkansky, and T. J. McIlrach. J. Opt. Soc.
Am. B, 4:760, 1988.

[9] P. B. Corkum. Phys. Rev. Lett., 62:1259, 1989.

[10] D.Bauer, D.B. Milosevic, and W. Becker. J. Mod. Opt., 53:135, 2005.

[11] J. H. Eberly and J. Javanainen. Phys. Rev. Lett., 60:1346, 1988.

[12] F. H. M. Faisal, A. Becker, and J. Muth-Bohm. Laser Phys., 9:115, 1999.

[13] W. G. Greenwood and J. H. Eberly. Phys. Rev. A, 43:525, 1991.

[14] G. F. Gribakin and M. Yu. Kuchiev. Phys. Rev. A, 55:3760, 1997.

72



[15] F. A. Ilkov, J. E. Decker, and S. L. Chin. J. Phys. B: At. Mol. Opt. Phys., 25, 1992.

[16] Jiro Itatani, Hiromichi Niikura, and Paul B. Corkum. Physica Scripta., T110:112,
2004.

[17] Misha Yu Ivanov, Michael Spanner, and Olga Smirnova. J. Mod.Opt., 52:165, 2005.

[18] J. D. Jackson. Classical electrodynamics. Hamilton Printing company, USA, 1998.

[19] J. Javanainen, J. H. Eberly, and Qi Chang Su. Phys. Rev. A, 38:3430, 1988.

[20] L. V. Keldysh. Sov. Phys. JETP, 20:1307, 1965.

[21] Thomas Kim Kjeldsen and Lars Bojer Madsen. J. Phys. B: At. Mol. Opt. Phys.,
37:2033, 2004.

[22] Thomas Kim Kjeldsen and Lars Bojer Madsen. Phys. Rev. A, 71:023411, 2005.

[23] V. P. Krainov, H. R. Reiss, and B. M. Smirnov. Radiative Processes in Atomic
Physics. John Wiley Publication, New York, New York, 1997.

[24] K. C. Kulander. Phys. Rev. A, 38:778, 1988.

[25] L. D. Landau and E. M. Lifshitz. Quantum mechanics. Pergamon press, London,
1958.

[26] Jerome Levesque, Jiro Itatani, Dirk Zeidler, Henri Pepin, Jean-Claude Kieffer, P. B.
Corkum, and D. M. Villeneuve. J. Mod. Opt., 53:193, 2005.

[27] M. Lewenstein, Ph. Balcou, M. Yu. Ivanov, Anne LHuillier, and P. B. Corkum.
Phys. Rev. A, 49:2117, 1994.

[28] D. B. Milosevic, G. G. Paulus, D. Bauer, and W. Becker. J. Phys. B: At. Mol. Opt.
Phys., 39:R203, 2006.

[29] Agostini P, Fabre F, Mainfray G, Petite G, and Rahman N. Phys. Rev. Lett., 42:1127,
1979.

[30] A. M. Perelomov, V. S. Popov, and M. V. Terentev. Sov. Phys. JETP, 23:924, 1965.

73



[31] B. Piraux, A. L’Huillier, and K. Rzcazewski. Super- Intense Laser-Atom Physics.
Kluwer Academic, Nethelands, 1993.

[32] A. Scrinzi, M. Yu. Ivanov, R. Kienberger, and D. M. Villeneuve. J. Phys. B: At.
Mol. Opt. Phys., 39:R1, 2006.

[33] B. M. Smirnov and M. I. Chibisov. Sov. Phys. JETP, 22:585, 1966.

[34] Michael Spanner. private communication notes, 2005.

[35] Q. Su and J. H. Eberly. Phys. Rev. A, 44:5997, 1991.

[36] Brabec T and Krausz F. Rev. Mod. Phys., 72:545, 2000.

[37] J. E. Decker T.D.G. Walsh F. A. Ilkov and S. L. Chin. J. Phys. B: At. Mol. Opt.
Phys., 27:3767, 1994.

[38] X. M. Tong, Z. X. Zhao, and C. D. Lin. Phys. Rev. Lett., 66:033402, 2002.

[39] Liu W-K. private communication notes, 2007.

[40] B. Walker, B. Sheehy, K. C. Kulander, and L. F. DiMauro. Phys. Rev. Lett., 77:5031,
1996.

[41] T. Zuo and A. D. Bandrauk. Phys. Rev. A, 52:R2511, 1995.

74


