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ABSTRACT

Rayleigh matroids are a class of matroids with sets of bases that satisfy
a strong negative correlation property. Interesting characteristics include
the existence of an efficient algorithm for sampling the bases of a Rayleigh
matroid [7]. It has been conjectured that the class of Rayleigh matroids
satisfies Mason’s conjecture [14]. Though many elementary properties of
Rayleigh matroids have been established, it is not known if this class has a
finite set of minimal excluded minors. At this time, it seems unlikely that this
is the case. It has been shown that there is a single minimal excluded minor
for the smaller class of binary Rayleigh matroids [5]. The aim of this thesis
is to detail our search for the set of minimal excluded minors for ternary
Rayleigh matroids. We have found several minimal excluded minors for the
above class of matroids. However, our search is incomplete. It is unclear
whether the set of excluded minors for this set of matroids is finite or not,
and, if finite, what the complete set of minimal excluded minors is. For
our method to answer this question definitively will require a new computer
program. This program would automate a step in our process that we have
done by hand: writing polynomials in at least ten indeterminates as a sum
with many terms, squared.
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Chapter 1

Introduction

Rayleigh matroids are a class of matroids with sets of bases that satisfy a
strong weighted negative correlation property. Rayleigh matroids are a sub-
set of the larger class of balanced matroids. It has been shown that if a
matroid M is balanced, then the set of bases of M can be sampled efficiently
[7]. It has been conjectured that the class of Rayleigh matroids satisfies
Mason’s conjecture [14]. A characterization of binary Rayleigh matroids by
means of excluded minors was presented in 1999 [12] and the proof refined
and corrected in 2006 [5]. The aim of this thesis is to extend this technique
to the class of ternary Rayleigh matroids in an attempt to characterize them
in terms of excluded minors. The outline of the thesis is as follows.

Section 2 contains the basic concepts of matroid theory that are needed
for the thesis. The source is Oxley [13]. Topics covered are excluded minor
characterizations of binary, ternary and quaternary matroids; definitions of
the classes of regular, half-plane property and sixth root of unity matroids;
connectivity; unique representability of certain classes of matroids; and Sey-
mour’s Splitter Theorem.

In Section 3, Rayleigh matroids and the more general class of balanced ma-
troids are defined and their properties discussed. Most material in this sec-
tion has been published in [5] and [7]. In addition to providing background
material, the results in this section are used to pare down the set of ternary
matroids we must consider in our search for minimal non-Rayleigh matroids.
We review established properties for both classes of matroids: closure under
duals, minors and direct sums. Rayleigh matroids (but not balanced ma-

1



troids) are also closed under 2-sums. These properties are important for our
purposes, as they imply a minimal excluded minor for the class of ternary,
Rayleigh matroids must be 3-connected. Similarly, the fact that matroids
of rank three or less are Rayleigh [19] is used to show that a minimal ex-
cluded minor for the class of ternary, Rayleigh matroids must have at least
8 elements. The Rayleigh property is also proven for regular matroids, half-
plane property matroids, and sixth-root of unity matroids. Special emphasis
is placed on the proof of the excluded minor characterization of binary ma-
troids [5] and the use of Seymour’s Splitter Theorem to obtain the result.

Section 4 describes and justifies our search technique. In Section 4.1, the
search technique is explained in detail, here we review it briefly. In Section
3, we established a number of properties which a minimal excluded minor for
the class of ternary, Rayleigh matroids must possess. In particular, such ma-
troids must have at least 8 elements. Thus our first step is to use Oid (a com-
puter program) to generate our set of 8-element “candidates”: all ternary,
non-isomorphic matroids on 8 elements that have the required properties.
Each matroid of this set is tested for the Rayleigh property using Maple, and
the set is divided into two classes: Rayleigh matroids and non-Rayleigh ma-
troids. All non-Rayleigh matroids are added to our set of minimal excluded
minors for ternary, Rayleigh matroids. Next, all non-isomorphic, one-element
extensions and coextensions of the Rayleigh matroids are generated. Of this
new set of matroids, all those having a non-Rayleigh minor are eliminated.
The resulting set of matroids are all our 9-element “candidates”, which are
now tested for the Rayleigh property using Maple. Our method is a reit-
eration of the above steps for matroids of increasing ground set size. In
Section 4.2, we prove the validity of our method, using a corollary of the
Splitter Theorem. The last two sections explain algorithms used for check-
ing for isomorphisms between matroids [10], testing a matroid for orbits of
its automorphism group acting on 2-element subsets of E(M), and generat-
ing extensions and coextensions of matroids [10]. The code for some of these
procedures can be found in Appendix A.

In Section 5, we present our “candidates”- sets of ternary, non-isomorphic
and potentially non-Rayleigh matroids on 8, 9 and 10 elements. We identify
the minimal ternary, non-Rayleigh matroids that our search has yielded thus
far. Proof of our claims can be found in Appendix B (8-element matroids)
and Appendix C (9-element matroids). Our 10-element candidates have been
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tested for balance, but not for the stronger Rayleigh condition. Proof of our
claims of balance for 10-element candidates is given in Appendix D.

In Section 6, we discuss some related open problems.
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Chapter 2

Matroids

In this section we review key concepts of matroid theory that will be used to
demonstrate later results. For the basic concepts of matroid theory we refer
the reader to Oxley’s book [13]. We discuss the structure of matroids we
will be working with, fields where unique representation holds, connectivity,
and Seymour’s Splitter Theorem. Proofs are omitted- we refer the interested
reader to [13].

2.1 Structural results

We review some structural results: excluded minor characterizations of bi-
nary, ternary and quaternary matroids. We define three other classes of
matroids: regular matroids, half-plane property matroids, and sixth-root of
unity matroids.

We now review excluded minor characterizations for three classes of ma-
troids: binary, ternary and quaternary. The set of excluded minors for a
class of matroids may be viewed as the “seeds” from which all matroids not
of that class can be “grown”. Let F be a field and M a matroid. Then M is
said to be F-representable if M is isomorphic to the vector matroid of a ma-
trix D over F . A matroid is binary if and only if it is GF (2)-representable.
Similarly, ternary and quaternary matroids are exactly those matroids which
are GF (3)- and GF (4)-representable, respectively. Our first result was es-
tablished by Tutte in 1958 [18].
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Theorem 2.1 A matroid is binary if and only if it has no U2,4-minor.

The excluded minor characterization of ternary matroids was announced
by Ralph Reid in 1971, but his proof was never published. The first published
proofs were given independently by Bixby [1] and Seymour [16] in 1979.

Theorem 2.2 A matroid is ternary if and only if it has no minor iso-
morphic to any of the matroids U2,5, U3,5, F7, or F7

∗.
The excluded minor characterization of GF (4)-representable matroids

was published by Geelen, Gerards and Kapoor in 1992 [8].

Theorem 2.3 A matroid is quaternary if and only if it has no minor
isomorphic to any of the matroids U2,6, U4,6, F7−, (F7−)∗, P6 and P8.

We now introduce three more classes of matroids: regular, half-plane
property (HPP for short), and sixth-root of unity matroids.

A matroid is said to be regular if it can be represented over R by a to-
tally unimodular matrix - a matrix over R for which every square submatrix
has a determinant in 1,0,-1. The following theorem offers another character-
ization of regular matroids.

Theorem 2.4 The following statements are equivalent for a matroid M:

(i) M is regular.
(ii) M is representable over every field.
(iii) M is binary and, for some field F of characteristic other than two, M is
F -representable.

That (i) implies (ii) follows after a few simple steps by considering a totally
unimodular matrix representation of M; that (ii) implies (iii) is clear. Bry-
lawski established that (iii) implies (i) in 1975 [2].
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By Theorem 2.4 above, it follows that M is regular if and only if it is both bi-
nary and ternary. Thus,a regular matroid must contain none of the excluded
minors of GF (2)- or GF (3)-representable matroids. Observe that both U2,5

and U3,5 contain U2,4 as a minor. From this, Theorem 2.1 and Theorem 2.2,
it follows that the complete set of excluded minors for the class of regular
matroids is U2,4, F7, and F7

∗.

We now define a term that will be used in our definition of half-plane prop-
erty matroids: the basis generating polynomial of a matroid, denoted M(y).
Let E(M) denote the ground set of a matroid M. Fix indeterminates y =
{ye|e ∈ E} indexed by E(M). For a subset X of E(M), let

yX =
∏

e∈X ye,

where yX = 1 if X is the empty set. Let B(M) denote the set of bases of M.
We define the basis-generating polynomial of M as follows:

M(y) =
∑

B∈B(M) yB.

We now define the class of half-plane property matroids. A polynomial
P (y) =

∑
a cay

a in complex variables y = {ye|e ∈ E} has the half-plane
property if when Re(ye) > 0 for all e ∈ E, then P (y) 6= 0. A matroid M is
a half-plane property matroid or HPP matroid if its basis-generating polyno-
mial M(y) has the half-plane property.

A third class of matroids that is important for our purposes is sixth-root
of unity matroids.A matrix A is a sixth-root of unity matrix if every nonzero
entry of A is a sixth-root of unity. A matroid M is a sixth-root of unity
matroid if it can be represented over the complex numbers by a sixth-root of
unity matrix. The following characterization of sixth-root of unity matroids
is due to Whittle [20].

Theorem 2.5 A matroid is a sixth-root of unity matroid if and only if
it is both GF (3)− and GF (4)− representable.
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Choe, Oxley, Sokal and Wagner [4] demonstrated that all sixth-root of unity
matroids have the HPP.

Corollary 2.6 A matroid is a sixth-root of unity matroid if and only if it
has no minor isomorphic to any of the matroids {U2,5, U3,5, F7, F7

∗, F7−, F7−∗, P6, P8}.

2.2 Connected and 3-connected Matroids

Let M and N be matroids with respective ground sets E(M) and E(N),
where E(M)∩E(N) is empty. Then their direct sum, M⊕N, is the matroid
with ground set E(M) ∪ E(N) and basis set

B(M ⊕N) = {B1 ∪B2|B1 is a basis of M, B2 is a basis of N}.

A matroid M is connected if it cannot be written as the direct sum of two
non-empty matroids. A matroid is said to be 1-separable if there exists a
partition {X,Y } of E(M) satisfying

min{|X| , |Y |} ≥ 1

and

r(X) + r(Y) -r(M) ≤ 0.

Observe that this implies M is 1-separable if and only if it is not connected.
Since the second inequality above can only hold with equality, we have
r(X) + r(Y )− r(M) = 0 for some partition {X, Y } of E(M), where both X
and Y are non-empty. But then M may be written as X⊕ Y, where X is the
matroid with ground set X and basis set B(X) = {B ⊆ X|r(B) = r(X)},
and Y is defined similarly.
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Now let M and N be matroids such that E(M) ∩ E(N) = {p}, where p
is neither a loop nor a coloop of M or N. Then the 2-sum of M and N,
M⊕2 N, is the matroid with ground set E(M) ∪ E(N)\{p} and basis set

B(M⊕2 N) = {D ∪ C|D is a basis of M\p, C is a basis of N/p}
∪ {C ∪D|C is a basis of M/p, D is a basis of N\p}.

The above matroid is also called the 2-sum of M and N along p.

A matroid M is 3-connected if it is connected and cannot be written as a
2-sum of two non-empty matroids, both of which are proper minors of M.
Let M be a matroid. Then M is said to be 2-separable if there exists a
partition {X, Y } of E(M) satisfying

min{|X| , |Y |} ≥ 2

and

r(X) + r(Y) - r(M) ≤ 1.

2.3 Unique representability

As we will see later, some of our search methods are valid only if the class
of matroids we are considering is uniquely representable over a given field.
Here we review the results we will need to justify our technique.

The next two results follow from a theorem by Brylawski and Lucas, pub-
lished in 1976 [3].

Theorem 2.7 Binary matroids are uniquely representable over GF (2).

Theorem 2.8 Ternary matroids are uniquely representable over GF (3).

8



Our final result was proven by Kahn in 1988 [9].

Theorem 2.9 Let M be a GF (4)-representable matroid. Then M is
uniquely GF (4)-representable if and only if M cannot be written as a direct
sum or 2-sum of two non-binary matroids. In particular, if M is 3-connected,
then it is uniquely GF (4)-represenatble

2.4 Seymour’s Splitter Theorem

The following result plays an important role both in the excluded minor char-
acterization of binary Rayleigh matroids and in our search technique.

Let M be a class of matroids which is closed under minors and isomor-
phism. A 3-connected member N of M is called a splitter for M if, whenever
M is a member of M having a proper N-minor, either M is isomorphic to N,
or M is 1- or 2- separable. Thus N is a splitter for M if and only if M has
no 3-connected member with a proper N-minor. Intuitively, N is a splitter
for M if N is a maximal 3-connected “building block” from which members
of M may be constructed.

We now define two classes of matroids that are used in Theorem 2.10:
wheels and whirls.

The r-spoked wheel graph (for r ≥ 2), denoted Wr, is the graph with vertex
set {v0, v1, . . . , vr} and edge set {v0v1, v0v2, . . . , v0vr}∪{v1v2, v2, v3, . . . , vrv1}.
The r-spoked wheel matroid (for r ≥ 2), denoted M(Wr), is the cycle matroid
of the r-spoked wheel graph. We note that while M(Wr) exists for r ≥ 2, it
is 3-connected if and only if r ≥ 3 [13].

The rank r whirl (for r ≥ 2), denoted Wr, is the matroid obtained from
M(Wr) by relaxing the unique circuit-hyperplane {v1v2, v2v3, . . . , vrv1}. By
relaxing, we mean that this circuit in M(Wr) becomes a basis of Wr. The
rank r whirl is 3-connected for all r ≥ 2 [13].
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We now state the version of the Splitter Theorem given in [13]:

Theorem 2.10 Let N be a connected, simple, cosimple minor of a 3-connected
matroid M. Suppose that if N is a wheel, then M has no larger wheel as a
minor, while if N is a whirl, then M has no larger whirl as a minor. Then
either M = N, or M has a connected, simple, cosimple minor M1 such that
some single-element deletion or some single-element contraction of M1 is iso-
morphic to N. Moreover, if N is 3-connected, so too is M1.
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Chapter 3

Rayleigh Matroids

The notation used throughout this section is taken from Choe and Wagner
[5].

In this section we introduce Rayleigh matroids and the more general class
of balanced matroids. Proofs of some elementary properties of both classes
are given. Most complex results are stated without proof. Our focus is on
how these facts may be applied to facilitate our search for minor-minimal
ternary, non-Rayleigh matroids. However, the characterization of binary
Rayleigh matroids is of particular interest to us. The proof relies on Theorem
2.10; we will adapt the technique to the class of ternary matroids. Thus, we
review the main points of this proof in detail.

3.1 Balanced Matroids

The concept of a balanced matroid was first introduced by Feder and Mihail
in 1992 [7]. We begin by defining a related notion: negative correlation. Let
M be a matroid with ground set E, and let M denote the number of bases
of M. For disjoint subsets I, J ⊂ E, let MJ

I denote the minor of M obtained
by deleting J and contracting I. M is said to be negatively correlated if the
following holds for all pairs of distinct e, f ∈ E

M e
fM f

e −M efMef ≥ 0.
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The number on the left is abbreviated as ∆M{e, f}. Observe that MJ
I equals

the number of bases of M that contain I but no element of J . So Me =
M f

e + Mef , Mf = M e
f + Mef , and M = Mef + M f

e + M e
f + M ef . Using these

relations, it can be shown that the above inequality is equivalent to

Mf

M
≥ Mef

Me

whenever e is not a loop. This equation helps illustrate an intuitive defi-
nition of negative correlation: a matroid M is negatively correlated if the
presence of any fixed element in a basis of M chosen uniformly at random
can only make the presence of any other element in that basis less likely. In
the above inequality, the left side is the probability that a random basis of M

contains f , and the right side is the probability that a basis contains f given
that it contains e. M is balanced if M and all its minors are negatively corre-
lated. So by definition, the class of balanced matroids is closed under minors.

Feder and Mihail prove two main results about balanced matroids: all regular
matroids are balanced, and the basis exchange graph of a balanced matroid
has cutset expansion at least one. Proofs will not be provided here. Both
results are of interest to us because they motivate some of the work which
follows. A stronger version of the first result was proven in 2004 [5]. The
second result demonstrates some “practical” applications for balanced ma-
troids. We now explain this finding in more detail.

The basis-exchange graph of a matroid M, denoted G(M), was introduced by
Edmonds in 1969 [6]. The vertex set of G(M) is the set of bases of M, while
the edge set connects all pairs of bases B1, B2 such that B2 = B1 ∪ {e}\{f}
for some {e, f} ⊆ E(M). For a balanced matroid M, that G(M) has cutset
expansion at least one means that for every bipartition of the vertices of
G(M), the number of edges adjacent to both classes is at least the size of
the smaller class. One result of this expansion of G(M) is that there is an
efficient randomized algorithm which can be used to approximate the num-
ber of bases of M. For proof and details of this method, refer to Feder and
Mihail [7].
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3.2 Rayleigh Matroids

We now introduce the similar concept of a Rayleigh matroid. Let M be
a matroid with ground set E(M) and let y = {yc|c ∈ E(M)} be a set of
indeterminates indexed by the elements of E(M). Recall from Section 2.2
that M(y) represents the basis-generating polynomial of a matroid M. We
say that M is Rayleigh if whenever yc > 0 for all c ∈ E, the following holds
for all pairs of distinct e, f ∈ E:

∆M{e, f}(y) = M e
f (y)M f

e (y)−M ef (y)Mef (y) ≥ 0.

The polynomial on the left is called the Rayleigh difference of {e,f} in M.

This terminology is motivated by the Rayleigh monotonicity property of
linear resistive electrical networks. An electrical network can be viewed as a
multigraph G = (V, E) with a set of positive weights y = {ye|e ∈ E} assigned
to its edges. Here ye, the weight of an edge e, corresponds to the electrical
conductance of e in the network. Now we choose any two vertices a, b ∈ V
and consider Yab, the conductance of the network between these two poles.
Kirchoff proved that

Yab(G; y) = T (G;y)
T (G/ab;y)

in which T (G; y) :=
∑

T yT over all spanning trees of T . G/ab denotes the
graph in which a and b are merged into a single vertex and T (G/ab; y) is
defined similarly. The Rayleigh monotonicity property is as follows: if yc > 0
for all c ∈ E and ye is increased, then the conductance of the network between
a and b cannot decrease. Now let H be the multigraph derived from G by
adding an edge f joining a and b. Since ∂Yab(G; y)/∂ye is nonnegative, we
can rewrite the above equation in terms of H and f as

∂
∂ye

T (Hf )
T (Hf )

≥ 0.

By the quotient rule and some simple expansion and cancellation, we find
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T f
e (H; y)T e

f (H; y)− T ef (H; y)Tef (H; y) ≥ 0,

where T (H, y) is the sum of yT over all spanning trees T of H. Replacing
T (H; y) with the basis generating polynomial for a matroid M yields he
defining property of Rayleigh matroids.

3.3 Basic Properties of Balanced and Rayleigh

Matroids

We now prove some basic facts about both classes of matroids.

Proposition 3.1 If M is Rayleigh, then M is negatively correlated.

Proof: Let M be a Rayleigh matroid, and let y = {yc|yc = 1 for all c ∈ E}.
Then

∆M{e, f} = ∆M{e, f}(y) > 0

for all e, f ∈ E. Hence M is negatively correlated. �

Proposition 3.2 If M is a Rayleigh matroid, then so is M∗.

Proof: Let M be a Rayleigh matroid. Let e, f be any pair of distinct
elements of E(M∗) and let y = {yc|c ∈ E(M∗){e, f}} be a fixed set of
positive real numbers. (Since ∆M{e, f}(y) is independent of ye and yf ,
for simplicity we may disregard them). Define a second set of positive reals
1/y = {1/yc for all c ∈ E(M)e, f}}. Observe that if B∗ is a basis of M∗e

f , then

B = E(M)− (B∗ ∪ {e, f}) is a basis of M f
e . Thus yB∗

= yE(M)−{e,f}(1/y)B,
so M∗e

f (y) = yE(M)−{e,f}M f
e (1/y). The analogous result holds for M∗ef and
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M∗
ef , etcetera. From this, the result follows:

∆M∗{e, f}(y) = M∗e
f (y)M∗f

e (y)−M∗e,f (y)M∗
e,f (y)

= yE(M)−{e,f}yE(M)−{e,f}{M f
e (1/y)M e

f (1/y)−Me,f (1/y)M e,f (1/y)}
= yE(M)−{e,f}yE(M)−{e,f}{∆M{e, f}(1/y)}
≥ 0

�

Proposition 3.3 If M is a Rayleigh matroid and N is a minor of M, then

N is Rayleigh.

Proof: First assume that M is Rayleigh and that N is derived from M by
the deletion or contraction of a single element g. Take y to be any set of
positive reals indexed by the elements of E(M). Let I and J be any pair of
disjoint subsets of E(M). Then

MJ
I (y) = ygM

J
Ig(y) + MJg

I (y).

Now, applying the above equality to the expansion of the Rayleigh difference
of {e, f} in M yields

∆M{e, f}(y) = M e
f (y)M f

e (y)−M ef (y)Mef (y)

= (ygM
e
fg + M eg

f )(ygM
f
eg + M fg

e )− (ygM
ef
g + M efg)(ygMefg + M g

ef )

= yg
2∆Mg{e, f}(y) + ygΘM{e, f |g}(y) + ∆M g{e, f}(y)

where

ΘM{e, f |g}(y) =
(M e

fg(y)M fg
e (y) + M eg

f (y)M f
eg(y))− (M ef

g (y)M g
ef (y) + M efg(y)Mefg(y)).

We now examine the above result, which will be used again in Theorem 3.6.

∆M{e, f}(y) = yg
2∆Mg{e, f}(y) + ygΘM{e, f |g}(y) + ∆M g{e, f}(y) (3.1)
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Since M is Rayleigh, the above equation is nonnegative for all e, f, g ∈ E(M).
Taking the limit of yg

−2∆M{e, f}(y) as yg →∞, we see that ∆Mg{e, f}(y)
is nonnegative. Since e, f, g ∈ E(M) and y = {yc|c ∈ E(M)} were chosen
arbitrarily, Mg is Rayleigh. Similarly, taking limyg→0 ∆M{e, f} shows that
Mg is Rayleigh. Finally, closure under minors follows from repeated applica-
tion of the above two steps. �

Proposition 3.4 If M is Rayleigh, then M is balanced.

Proof: By Proposition 3.3, all minors of M are Rayleigh. By Proposition
3.1, all Rayleigh matroids are negatively correlated. Therefore M is balanced.
�

It is worthwhile to note that while all Rayleigh matroids are balanced,
the converse does not hold. The following example is taken from Choe and
Wagner [5]. Below is a matroid J′ which is balanced but not Rayleigh. J′ is
represented over R by the matrix

1 1 1 1 1 1 1 3
0 1 0 0 2 0 0 1
0 0 1 0 0 2 0 1
0 0 0 1 0 0 2 3


In Corollary 3.9 we will show that all matroids with at most seven ground
set elements are Rayleigh. For the above example, we will assume this re-
sult. Therefore it is enough to show that J′ is negatively correlated but
not Rayleigh. Let E(J′) = {1, 2, . . . 8} label the columns of the above ma-
trix. Using Maple, it is easy to show that J

′{e,f}≥0 for all distinct pairs
e, f ∈ E(J′). However, if the elements are given weights y2 = y3 = y4 = t
and y5 = y6 = y7 = 1, we have

∆J′{1, 8}(y) = (t + 1)3(t− 1)(t2 + t− 1).

Thus ∆J′{1, 8} < 0 if (
√

5 − 1)/2 < t < 1. Hence, J′ is balanced but not
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Rayleigh.

Proposition 3.5 If N and P are Rayleigh matroids and M = N ⊕ P, then
M is Rayleigh.

Proof: Suppose M = N ⊕ P and both factors of M are Rayleigh. Let y =
{yc|c ∈ E(M)} be a fixed set of positive reals. Define yn to be the subset of
y containing all elements indexed by E(N), and define yp similarly. We have
two possibilities for the pair of ground set elements e, f ∈ E(M). Either e and
f belong to the same factor of M, or not. In the first case, say e, f ∈ E(N),
a simple calculation shows ∆M{e, f}(y) = ∆N{e, f}(yn)P (yp) > 0. On the
other hand, if e and f belong to different factors of M (say e ∈ E(N), f ∈
E(P), then since M f

e = NeP
f , etc, we have

∆M{e, f}(y) = M e
f (y)M f

e (y)−Mef (y)M ef (y)

= N e(yn)Pf (yp)Ne(yn)P f (yp)−Ne(yn)Pf (yp)N
e(yn)P f (yp)

= 0

Therefore ∆M{e, f}(y) = 0. �

Proposition 3.6 If N and P are Rayleigh and M = N ⊕2 P, then M is
Rayleigh.

Proof: Let E(N)∩E(P) = g, and suppose M is the 2-sum of N and P along
g. Let y = {yc|c ∈ E(M)} be any set of positive reals. We have the following
relation among the sets of bases of M, N and P:

B(M) = B(Ng)×B(Pg) ∪B(Ng)×B(Pg).

As in Proposition 3.5, there are two cases to consider. Either e ∈ N and
f ∈ P, or {e, f} ⊆ N. In the first case, expanding ∆M{e, f}(y) using the
above fact yields the equality

∆M{e, f}(y) = ∆N{e, g}(yn)∆P{f, g}(yp).
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The sets yn and yp are defined as in the proof of Proposition 3.5. Since both
N and P are Rayleigh and the sets yn and yp consist of positive reals, each
term on the right is nonnegative. Hence ∆M{e, f}(y) is nonnegative.

In the second case, we use Equation 3.1 below:

∆M{e, f}(y) = yg
2∆Mg{e, f}(y) + ygΘM{e, f |g}(y) + ∆M g{e, f}(y).

We define a set of positive reals w = {wc|c ∈ E(M)} as follows. Let wc = yc

for all c ∈ E(M) and let wg =
P g(y)

Pg(y)
. A short calculation shows that

∆M{e, f}(y) = M e
f (y)M f

e (y)−Mef (y)M ef (y)

= (N eg
f (w)Pg(w) + N e

fg(w)P g(w))(N fg
e (w)Pg(w) + N f

eg(w)P g(w))

− (Nefg(w)P g(w) + N g
ef (w)Pg(w))(N efg(w)Pg(w) + N ef

g (w)P g(w))

= P g(w)2∆Ng{e, f}(w) + P g(w)Pg(w)ΘN{e, f |g}(w) + Pg(w)2∆N g{e, f}(w)

= Pg(w)2(w2
g∆Ng{e, f}(w) + wgΘN{e, f |g}(w) + ∆N g{e, f}(w))

= Pg(w)2∆N{e, f}(w)

≥ 0,

since w > 0 and N is Rayleigh. Therefore M = N ⊕2 P is Rayleigh. �

It is worthwhile to note that balanced matroids, like Rayleigh matroids,
are closed under minors, duals, and direct sums. However, closure under
2-sums fails. Closure under minors is immediate from the definition of bal-
ance. To see that the the class of balanced matroids is closed under duals,
note that M e

f = M∗f
e and Mef = M∗ef . Hence ∆M{e, f} = ∆M∗{e, f}. If

M = M1 ⊕M2, we have two possibilities for our pair e and f . Either they
belong to a common factor of M, or not. In the first case, say e and f are in
E(M1), an easy calculation shows that ∆M{e, f} = ∆M1{e, f}M2. So both
factors must be balanced for their direct sum to be balanced. This condition
is both necessary and sufficient for M to be balanced, as the second case
illustrates. If e and f are in different factors of M, then the deletion (or
contraction) of e is independent of the deletion (or contraction) of f . In this
case ∆M{e, f} = 0, as a simple calculation will show. Thus if all factors of
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M are balanced, then so is M.

A counterexample to the closure of balanced matroids under 2-sums is
constructed in [5]; we now review the technique. It has been shown that there
exist balanced matroids that are not Rayleigh; choose such a matroid M as
a starting point. Next, fix elements e and f of E(M) and a set of positive
real numbers y = {yc| c ∈ E(M)} that satisfy ∆M{e, f}(y) < 0. Since
the rationals are dense in the reals, there exist positive rationals fulfilling
the same inequality, thus we may assume without loss of generality that
{yc|c ∈ E(M)} ⊂ Q. Let D be the least positive common denominator of
{yc|c ∈ E(M) − {e, f}} and m = {mc|mc = Dyc}. Now let M[m] be the
matroid obtained from M by replacing each c ∈ E(M)− {e, f} with a set of
mc parallel elements. Note that this is equivalent to adjoining U1,1+mc as a
2-sum along c. Now suppose r is the rank of M and B is any basis of Me

f ,
say B = {c1, c2, . . . , cr−1}. For each such basis B, consider the following set
of bases of M[m]ef : {B̄ = {c̄1, c̄2, . . . , ¯cr−1}|c̄i is one of the parallel elements
replacing ci ∈ M}. From the construction of M[m] from M, it is clear for
each basis B of M, there are exactly mc1mc2 · · ·mcr−1 bases B̄ of M[m]ef .
Using this relation, we have

M e
f (y) =

∑
B∈B(Me

f )

yB

=
∑

B∈B(Me
f )

yc1yc2 · · · ycr−1

=
1

Dr−1

∑
B∈B(Me

f )

mc1mc−2 · · ·mcr−1

=
1

Dr−1

∑
B̄∈B(M[m]ef )

1

=
1

Dr−1
M [m]ef .

Multiplying both sides of the equation by Dr−1, we have M [m]ef = Dr−1M e
f (y).
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Similarly, M [m]ef = DrM ef (y) and M [m]ef = Dr−2Mef (y). Hence

∆M [m]{e, f} = M [m]efM [m]fe −M [m]efM [m]ef

= Dr−1M e
f (y)Dr−1M f

e (y)−Dr−2Me,f (y)DrM ef (y)

= D2r−2∆M{e, f}(y)

< 0

establishing the contradiction.

3.4 Consequences of Basic Properties

We now explore how the results of the previous section may be used to
simplify our search for minimal ternary, non-Rayleigh matroids. Many of
these properties enable us to eliminate groups of matroids from the set of
matroids we must consider.

By Proposition 3.4, the class of Rayleigh matroids is contained in the class
of balanced matroids. Clearly, it is easier to check if a matroid is balanced
than if a matroid is Rayleigh. In the first case we need only check whether
∆M{e, f} is positive for y = {yc|yc = 1 for all c ∈ E}, in the second case we
must see if the inequality holds for all sets of positive reals y. So checking if
a matroid is not balanced is a quick way to identify a non-Rayleigh matroid.

Since Rayleigh matroids are closed under direct sums (Proposition 3.5)
and 2-sums (Proposition 3.6), a matroid which is not 3-connected is Rayleigh
if and only if all of its factors are Rayleigh. So we can limit our search for
minimal ternary, non-Rayleigh matroids to 3-connected matroids.

An important observation is that in studying the Rayleigh property, we
may choose to restrict our attention to the class of simple, cosimple matroids.

Proposition 3.7 A matroid is Rayleigh if and only if its underlying
simple matroid is Rayleigh.

Proof: Clearly we may assume that M is loopless; since no basis of M con-
tains a loop, their presence has no impact on M(y). We may also assume
that M contains no parallel elements. If a, a1, . . . ak are parallel in M, let
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N be the matroid obtained from M by deleting a1, . . . ak. Since Rayleigh
matroids are closed under minors by Theorem 2.3, if M is Rayleigh then so
is N. For the converse, we consider two cases: either both e, f ∈ E(M) are
in {a1, . . . ak}, or not. In the first case, note that no basis of M contains
two distinct elements of {a1, . . . , ak}. Thus ∆M{ai, aj} = Mai

aj
M

aj
ai ≥ 0 for

all pairs of distinct ai, aj. In the second case we fix a set of indeterminates
y = {yc|c ∈ E(M)}. From y, construct w = {wc|c ∈ E(N)} as follows. For
c ∈ E(N) − {a} let wc = yc, and let wa = ya + ya1 + . . . + yak

. Clearly
M(y) = N(w). Hence if N is Rayleigh so is M. Therefore a matroid is
Rayleigh if and only if its underlying simple matroid is Rayleigh. �

By this fact and the closure of the class of Rayleigh matroids under duals,
we may limit our attention to the set of simple, cosimple matroids.

3.5 Matroids of rank at most three are Rayleigh

In this section we review key points in the proof that matroids of rank at
most three are Rayleigh. The complete proof is not presented. Our focus
is on how these findings can be applied in our search for minimal ternary,
non-Rayleigh matroids. For details, refer to Wagner [19].

Theorem 3.8 Matroids of rank at most three are Rayleigh.

Proof: By Proposition 3.7, when considering the Rayleigh property we may
restrict our attention to the class of simple matroids. It is easy to see that
matroids of rank one or two are Rayleigh. A simple, rank one matroid has
ground set E(M) = {1, 2, . . . ,m} and basis-generating polynomial M(y) =
y1 + y2 + . . . + ym. Since the sum over all bases of Mef is empty, Mef (y) = 0
for all distinct e, f ∈ E(M). So ∆M{e, f}(y) = ∆M f

e (y)∆M e
f (y) > 0. If M

is a simple rank two matroid, then {e, f} is independent for all distinct pairs
of ground set elements e and f . Thus by symmetry, it suffices to prove that
∆M{e, f}(y) > 0 holds for a single pair {e, f} ⊆ E(M). A short calculation
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shows that

∆M{1, 2}(y) = M1
2 (y)M2

1 (y)−M12(y)M12(y)

= (
m∑

i=3

yi)(
m∑

i=3

yi)− (1)(
m−1∑
i=3

m∑
j>i

yiyj)

=
∑

3≤j≤i≤m

yiyj

> 0

Therefore M is Rayleigh.
The case for rank three matroids is more complicated. We will not prove

that rank three matroids are Rayleigh, but review the construction used
in the proof in [19]. Let M be a simple matroid of rank three. For a set
X ∈ E(M), let cl(X) denote the closure of X in E(M). For a ∈ E(M)−{e, f}
let L(a, e) = cl{a, e} − {a, e}, L(a, f) = cl{a, f} − {a, f}, and let

U(a) = E(M)− (cl{a, e} ∪ cl{a, f} ∪ cl{e, f}).

Define linear polynomials B(a) =
∑

b∈U(a) yb, C(a) =
∑

c∈L(a,e) yc, and D(a) =∑
d∈L(a,f) yd, and the quartic polynomials

T (M; e, f, a; y) = (yaB(a)− C(a)D(a))2

for each a ∈ E(M)− {e, f} and

P (M; e, f ; y) =
1

4

∑
a∈E(M)−cl{e,f}

T (M; e, f, a; y).

Notice that both T (M; e, f, a; y) and P (M; e, f ; y) are always nonnegative,
as the former is the square of a polynomial and the latter is a sum of
squares. It is shown that for all distinct pairs e, f ∈ E(M), every coeffi-
cient of ∆M{e, f}(y)− P (M; e, f ; y) is nonnegative. Hence ∆M{e, f}(y) is
nonnegative for all y ∈ RE−{e,f}, for all distinct pairs of e, f ∈ E(M).�
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We now make a few observations about the above proof. First, note that
M is shown to be Rayleigh by exhibiting a lower bound for ∆M{e, f}(y)
that is a sum of squared polynomials. We will continue to prove that ma-
troids are Rayleigh in this manner (by bounding ∆M{e, f}(y) below by a
positive sum of squares) for matroids of rank four and greater. However,
since not all matroids of rank at least four are Rayleigh, our calculations will
be done on a case by case basis. More details follow in Section 4. Secondly,
by Theorem 3.8 and closure of the class of Rayleigh matroids under duals,
we have the following corollary:

Corollary 3.9 All matroids M with |E(M)| ≤ 7 are Rayleigh.

Thus, we may begin searching for minor-minimal, non-Rayleigh matroids
among 8-element, rank 4 matroids.

3.6 Half-Plane property matroids are Rayleigh

The following three results are presented without proof. We explain how
they yield the result that half-plane property matroids (HPP matroids for
short) are Rayleigh.

1. The class of HPP matroids is closed under duals, minors, direct sums
and 2-sums [4].

2. All HPP matroids are Rayleigh [5].

3. All sixth-root of unity matroids have the HPP [4].

The impact of the above results on our search is as follows. Since all
GF(4)-representable, ternary matroids are Rayleigh by Theorem 2.5, 2 and
3, we may limit our search for ternary non-Rayleigh matroids to matroids
that are not representable over GF(4). Corollary 2.6 is then the strong point
of a structural characterization of this class of matroids.
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3.7 Excluded Minor Characterzation of Bi-

nary Rayleigh Matroids

In this section, we present an excluded minor characterization of binary ma-
troids and review key points of the proof. We are interested in the details of
this result because of the crucial role Theorem 2.10 plays in the proof. We
will apply the theorem in a similar manner to achieve our result.

The problem of characterizing binary Rayleigh matroids by means of ex-
cluded minors was opened by Seymour, Feder and Mihail. The first published
proof of our result appeared in Merino’s thesis [12], however his argument
contained an error. Specifically, it relied on the closure of the set of balanced
matroids under 2-sums, which has since been shown to be false. Choe and
Wagner [5] refined the proof- we summarize this result below.

Theorem 3.10 A binary matroid is Rayleigh if and only if it does not
contain S8 as a minor.

Proof: The matroid S8 is represented over GF (2) by the matrix
1 1 1 1 1 1 1 b
0 1 0 0 0 1 1 1
0 0 1 0 1 0 1 1
0 0 0 1 1 1 0 1


when b = 0. When b = 1 the above matrix represents A8 = AG(3, 2) over
GF (2). We now outline the key points in the proof.

1. The matroid S8 is not negatively correlated. This was observed by
Seymour and Welsh and is easily verified. Recall from Section 3.1 that a
matroid M is negatively correlated if and only if it satisfies

Mf

M
≥ Mef

Me

for all distinct pairs e, f ∈ E(M) where e is not a loop. Labelling the columns
of the above matrix as {1, . . . , 8}, we have (S8)1=28, (S8)8=20, (S8)1,8=12,
and S8=48. Thus

(S8)8

S8

=
20

48
<

12

28
=

(S8)1,8

(S8)1

.
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2. The matroid A8 is a splitter for the class of binary matroids that do

not contain an S8 minor. This is an unpublished result of Seymour’s and is
proven by Merino [12].

3. Every binary matroid that does not contain S8 or A8 as a minor can
be constructed from regular matroids, the Fano matroid F7 and its dual F7

∗

by taking direct sums and 2-sums. This is due to Seymour [17].

4. The matroids A8, F7 and F7
∗ are Rayleigh. That A8 is Rayleigh can

be verified using Maple. We will explore how this is done in detail in the
upcoming chapter. The latter two statements follow from Corollary 3.9.

We now explain briefly how these four points yield the result. Since S8 is
not negatively correlated, it is not Rayleigh. As Rayleigh matroids are closed
under minors, no matroid having an S8 minor is Rayleigh. For the converse,
let M be a matroid with no S8 minor. Recall from Section 3.2 that Rayleigh
matroids are closed under direct sums and 2-sums. So as explained in Sec-
tion 3.3, we may assume without loss of generality that M is 3-connected.
Now if M has an A8 minor, it follows from the definition of a splitter that
M = A8. It follows that M is Rayleigh. Now suppose M has no A8 minor.
Then by our third fact and our assumption that M is 3-connected, either
M = F7, M = F7

∗, or M is regular. In the first two cases, the fact that M is
Rayleigh is immediate from our fourth fact. In the latter case, if M is regular
then clearly M is both GF (3)− and GF (4)− representable. So as stated in
the last section, M is an HPP matroid and is therefore Rayleigh. �
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Chapter 4

Searching for Minimal Ternary
non-Rayleigh Matroids

As in the excluded minor characterization of binary Rayleigh matroids, Sey-
mour’s Splitter Theorem plays a vital role in our search. In the binary case,
all matroids with an S8 minor are non-Rayleigh. The ‘splitter’ A8 neatly di-
vides the remaining matroids of GF(2) into two classes. For those matroids
with an A8 minor, the Rayleigh property followed easily. A nice result of Sey-
mour’s gives us a way of constructing all remaining binary matroids by taking
direct sums and 2-sums of “building blocks” known to be Rayleigh. However,
in the case of ternary matroids, our work is not as straightforward. There
is no similar choice of splitter which divides the class of ternary matroids
as conveniently for our purposes. Nor is there a theorem for constructing a
large subset of ternary matroids from a set of 3-connected, Rayleigh building
blocks. Thus, we require a different version of Seymour’s Splitter Theorem
to obtain our result. The structure of this section is as follows. First we
describe our search technique. We then explain why our technique is valid.
The Splitter Theorem plays an important role in justifying our methods. Fi-
nally, we present detailed explanations of the computer programs used in our
search and how they work.

4.1 Search Technique

We now describe our method for identifying minor-minimal, non-Rayleigh
ternary matroids. As shown previously, we know that the following matroids
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are Rayleigh: matroids of rank or corank at most three, matroids with a
ground set of at most seven elements, and matroids which are ternary and
GF (4)-representable. For our purposes we may choose to consider only sim-
ple, cosimple and 3-connected matroids. Therefore the first set of“candidate”
matroids we examine is precisely the set of 8-element, rank 4, 3-connected,
simple and cosimple, ternary but not GF (4)− representable matroids. For
the sake of simplicity we refer to matroids having the above properties as
“candidates”. The list of 8-element candidates was generated using software
developed by Sandra Kingan. Details of her program will be discussed in
Section 4.3. Next the basis-generating polynomial of each candidate is de-
termined using Maple. For each matroid N an 8× 8 matrix M(N) is defined
as follows. The rows and columns of M(N) are indexed by the elements of
the ground set E(N) and if e 6= f then

M(N)(e, f) = N e
fN f

e −N efNef .

where M(N)(e, f) is an integer- specifically, the polynomial ∆N{e, f}(y)
evaluated for yc = 1 for all c ∈ E(N) − {e, f}. The above computations
are done using Maple. If M(N)(e, f) < 0 for some e 6= f ∈ E(N), then
N is not balanced. This matrix helps us quickly identify candidates which
are not negatively correlated: any N such that M(N) has a negative entry.
These matroids are therefore non-Rayleigh. The rest of our candidates are
negatively correlated, but not necessarily Rayleigh. For each of these ma-
troids, the set of orbits of the automorphism group of M acting on 2-element
subsets of E(M) is determined. Details on the program and how it works
follow in Section 4.3. Since the class of Rayleigh matroids is closed under
isomorphism, we need only show that ∆N{e, f}(y) > 0 (for all y > 0) for
one pair of elements e, f in each equivalence class to prove that N is Rayleigh.

Our final step is as follows. For each candidate N, we generate ∆N{e, f}(y)
for a general set of indeterminates y. We do this for each non-equivalent
pair e, f ∈ E(N). Now given ∆N{e, f}(y) for a fixed matroid N and pair
e, f ∈ E(N), we identify all negative terms in the sum. If all terms are pos-
itive, clearly ∆N{e, f}(y) > 0 for all sets of positive reals y = {ye|e ∈ E}.
Now recall Equation 3.1:
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∆M{e, f}(y) = yg
2∆Mg{e, f}(y) + ygΘM{e, f |g}(y) + ∆M g{e, f}(y).

Equation 3.1 gives us a quick way to check for the Rayleigh property. If,
in the polynomial ∆M{e, f}(y), there is an indeterminate yg which never
appears to the first power in a term with a negative coefficient, then we have

∆M{e, f}(y) ≥ yg
2∆Mg{e, f}(y) + ∆M g{e, f}(y).

Since both Mg and Mg are Rayleigh, both ∆Mg{e, f}(y) and ∆M g{e, f}(y)
are nonnegative for all sets of reals y = {ye|e ∈ E(M)}. Hence the left side
is nonnegative, and M is Rayleigh.

If the above method fails, we seek to minimize ∆M{e, f}(y) and, if possible,
exhibit a set of positive reals {ye|e ∈ E(M)} satisfying ∆M{e, f}(y) < 0 for
some pair {e, f} ∈ E(M). Clearly this is sufficient to show that M is not
Rayleigh.

If there are negative terms and the above methods do not work, M still might
be Rayleigh. In order to prove this, we seek to “cover” all negative terms
by writing them as a polynomial with many terms squared. For instance,
if our polynomial contains the terms +y1

2y2
2y3

2,−y1y2y3y4y5y6, +y4
2y5

2y6
2,

we may replace these three terms with 0.5(y1y2y3− y4y5y6)
2 + 0.5y1

2y2
2y3

2 +
0.5y4

2y5
2y6

2. Repeating this process to cover all negative terms yields a sum
of positive terms and squares. Certainly this equivalent expression is non-
negative if y > 0. If we complete this process for all non-isomorphic pairs
e, f ∈ E(N), then it follows that N is Rayleigh. Note that while this method
is clearly sufficient to show that a matroid M is Rayleigh, it is not necessary.
However, it has worked thus far for our purposes.

Once we have established which of our 8-element condidates are Rayleigh
and which are non-Rayleigh, we use a computer program, Oid, to generate
the set of 9-element candidates we must test. Details on Oid follow in Sec-
tions 4.3 and 4.4. We now repeat the process used to test our 8-element
candidates for negative correlation and the Rayleigh property. Having now
found all non-Rayleigh matroids in our 9-element list, we repeat the whole
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procedure to generate the set of 10-element candidates and determine which
are non-Rayleigh. Our method is a reiteration of the above step for matroids
of increasing ground-set size. The hope is that after a certain number of iter-
ations, our new set of candidates will be the empty set. At this point, we will
have determined an excluded minor characterization of ternary, non-Rayleigh
matroids.

4.2 Seymour’s Splitter Theorem and Validity

of Search Technique

In this section we present results which will be used to demonstrate that our
method is valid. The following corollary of Theorem 2.10 is taken from [13].

Theorem 4.1 Let M and N be 3-connected matroids such that N is a
minor of M, |E(N)| ≥ 4, and if N is a wheel, then M has no larger wheel
as a minor, while if N is a whirl, then M has no larger whirl as a minor.
Then there is a sequence M0, M1, . . . ,Mn of 3-connected matroids such that
M0 is isomorphic to N, Mn = M, and, for all i in {0, 1, . . . , n − 1}, Mi is a
single-element deletion or a single-element contraction of Mi+1.

This theorem shows that there exist a sequence of 3-connected matroids
which transform N to M. In our proof we will choose M to be a minor-
minimal, non-Rayleigh ternary matroid. Next we exhibit a 3-connected mi-
nor of M which appears on our initial list of candidates. We show that
the series of matroids which convert N to M in the theorem correspond to
a series of candidates generated by our method. It was shown earlier that
our process correctly identifies both Rayleigh and non-Rayleigh matroids.
Note that though our method is sufficient, it is not known if it is necessary.
Demonstrating that the method generates all minor-minimal, non-Rayleigh
matroids M for our consideration completes our proof. We now explain why
our method is valid in detail.

Let M be any minor-minimal, ternary, non-Rayleigh matroid. Then M is
simple, cosimple and 3-connected, and all proper minors of M are Rayleigh.
Since M is ternary but not GF (4)-representable, it must contain an excluded
minor for GF (4)-representability which is also ternary. Thus M must contain
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F7
−, F7

−∗ or P8 as a minor. All of these matroids are Rayleigh. We now
apply the Splitter theorem, taking N to be one of the above minors of M.
Clearly all the necessary conditions for the theorem apply. Since M is not
Rayleigh, it must contain a 3-connected, one-point extension or coextension
M1 of N by the theorem. All such extensions and coextensions of F7

− and
F7

−∗, together with P8, form our list of 8-element candidates. Some of these
are Rayleigh, some are not. If M contains a non-Rayleigh candidate P on
the list, then M=P and the process terminates. If M does not contain any of
the non-Rayleigh ones, then another application of the Theorem 2.10 shows
that M must contain a one-point extension or coextension of an 8-element
candidate. This brings us to our list of 9-element candidates. Again either
M or a proper Rayleigh minor of M appears on our list. In the first case
the process terminates, in the second case we apply Theorem 2.10 again in
a similar manner. We continue in this way until M is eventually generated.
As our list of non-Rayleigh matroids grows longer, the hope is that we will
reach a stage where all viable candidates of a fixed ground set size have a
non-Rayleigh minor.

4.3 Algorithms for identifying redundant Rayleigh

differences and isomorphic matroids

Since much of our search depends on software, in the next two sections we
review the programs we use and how they work. In this section, we discuss a
program for testing a matroid for orbits of the automorphism group acting on
2-element subsets of E(M) and Sandra Kingan’s program, Oid, which checks
matroids for isomorphisms. The first algorithm enables us to take a matroid
M and identify a minimal set of pairs {e, f} ∈ E(M) that must be tested
to verify that M is Rayleigh. The second algorithm identifies isomorphic
matroids, so we need only consider one matroid from each equivalence class
when checking for the Rayleigh property. These two algorithms are simi-
lar, so we consider both in this section. Oid’s isomorphism checker works
together with an extension/coextension generator to find all non-isomorphic
extensions and coextensions of a matroid. We will discuss the generator in
detail in the next section.

First we consider the program for testing a matroid for orbits of its au-
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tomorphism group acting on 2-element subsets. Input for this program is a
matroid M as its set of bases. There are four major steps in the algorithm.
The program generates the set of circuits of M, C(M); uses C(M) to find
the set of all automorphisms on M which preserve its circuit structure; tests
each of these functions to determine the set of all automorphisms of M; and
finally outputs a set of representatives of the orbits of Aut(M) acting on the
2-element subsets of E(M). Note that this final output is the set of all pairs
we must test in order to determine if M is Rayleigh. We now review the
program in more detail.

The program generates the circuit set of M, C(M), as follows. First, all
subsets of {1, 2, . . . , n} are generated, where n = |E(M)| and the columns
of the matrix representation of M over GF (3) are indexed by {1, 2, . . . , n}.
Next, all circuits of M are generated in the following manner. Initialize the
set of circuits of M as the empty set. Input consists of the basis-generating
polynomial and rank r of M. For s such that 1 ≤ s ≤ r, we consider each
subset X of {1, 2, . . . , r} of size s. If any circuit on our list thus far is con-
tained in X, then X is dependent, our circuit set remains unchanged, and
we move on to the next subset. Otherwise, we check to see if X is contained
in any basis of M. If so, then X is independent and we move on leaving our
circuit set unchanged. If not, then X is a circuit and we add it to our set.
In this way, the set of all circuits of M, C(M), is generated.

Next, the program generates a list, L, which records the point-circuit in-
cidence structure of M. The entries of L are indexed by the elements of
E(M). Each entry of L records, for the corresponding e ∈ E(M), the num-
ber of circuits of each size e is in. This information is recorded as a monomial
in indeterminates X1, X2, ....Xk. For each entry of L, the lower subscript of
each Xj term represents circuits of size j, while the power of Xj records
the number of circuits of size j a given element is in. For example, if the
third entry of the list is X4

6X3
2, then the third element of E(M) is in six

circuits of size four and two circuits of size three. Clearly, any automorphism
of M must preserve this circuit structure. Thus, all automorphisms of M

are contained in a Young subgroup of L: the set of all permutations on L
which permute like elements amongst themselves. The program generates
the Young subgroup of L and then tests each permutation to see if it is in
fact an automorphism of M. (Note that this algorithm is not best possible
in terms of efficiency, however it works for our purposes when dealing with
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small matroids.) Permutations are tested by simply applying a permutation
σ to C(M) and checking if C(σ ◦ (M)) = C(M). Clearly, this is the case
if and only if σ is an automorphism of M. In this manner the set of all
automorphisms of M, Aut(M), is found. Finally, the program determines all
distinct pairs of elements of E(M) which are equivalent under automorphism
as follows. A list of all two-element subsets of E(M), TS, is generated. While
TS is nonempty, an element {i, j} of TS is chosen and its orbit determined
by applying each permutation σ ∈ A(M to {i, j}. The set of all pairs equiva-
lent to {i, j} under automorphism is [i, j]={{k, l}|{k, l} = σ ◦ (i, j)} for some
σ ∈ Aut(M)}. We add {i, j} to the set of pairs we need check to verify the
Rayleigh condition, and TS is updated by setting TS = TS − [i, j]. The
process is repeated until TS is empty. The final output of the program is a
set of pairs of elements {i, j} ∈ E(M), one representing each orbit of Aut(M)
acting on 2-sets of E(M). We need only check that the Rayleigh condition
holds for each of these pairs to verify that M is Rayleigh.

Next we consider Oid. We begin with a general description of the program,
then focus our attention on its isomorphism checker and how it works.

Oid is an interactive program used for matroid generation. Matroids can
be input as matrices over a field, sets of bases, or for graphic matroids, the
cycle matroid of the corresponding graph. Given a matroid, Oid can de-
termine its circuit set, bases, hyperplanes, independent sets, spanning sets,
etc. Furthermore, Oid has a number of different routines for computing the
above sets. For a given matroid, Oid selects the most efficient method for
determining a desired property, or the user may specify an algorithm from a
list. Oid’s choice of method may depend on the form in which a matroid is
input, or properties of the matroid such as size.

Oid’s isomorphism checker works in a manner similar to our first algorithm.
In comparing two matroids, the checker computes for each classes of elements
based on membership in circuits, independent sets and spanning sets. If the
matroids are a match with respect to these classes as well as the numbers of
circuits, independent sets and spanning sets of diferent sizes, then there may
exist an isomorphism between the two matroids. The checker now generates
all bijections from one matroid onto the other which preserve these classes.
Each map is checked for isomorhpism by applying it and testing to see if it
preserves all bases.
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4.4 Algorithms for Generating Extensions and

Coextensions of a Matroid

In order to generate all single element extensions of a simple matroid over
GF(q), Oid works as follows. A rank r, n-element simple matroid is entered
in standard form, as a matrix [Ir|D] with entries from GF (q), where D has
(n − r) columns. Note that all simple matroids of this form can be viewed
as minors of PG(r − 1, q). To see this, observe that PG(r − 1, q) may be
represented in matrix form by an r by (qr − 1)/(q − 1) matrix over GF (q),
with columns consisting of all nonzero vectors from V (r, q), excepting scalar
multiples. To find all single-element extensions of M over GF (q), simply
generate all matrices of the form [Ir|D|v], where v is a column of the matrix
representative of PG(r − 1, q) such that v (and no scalar multiples of v) is
not a column of [Ir|D].

Now we explain how Oid combines single-element extensions and the iso-
morphism checker to generate all isomorph-free, GF(q)-representable ma-
troids. The input consists of the size of the field and the set of all simple
rank r, n-element GF (q)-representable matroids in standard form. These
matrices are referred to as seed matrices. The set of seed matrices is enu-
merated as {M1, M2, . . . ,Mk}. For i from 1 to k, the program generates all
single-element extensions of Mi over GF (q) as described above. Next, for
each single-element extension M of Mi, all single-element deletions of M are
computed. For each one-column deletion N of M , the isomorphism checker
compares N to the set of previous seed matrices {M1, M2, . . . ,Mi−1}. If an
isomorphism is found between any one-element deletion of M and a previous
seed matrix Mj, then M will have already been generated as an extension
of Mj, and is discarded. Otherwise, M is not isomorphic to any extensions
found thus far, and is added to the list. This algorithm is exhaustive and
irredundant, provided that GF (q) is a field where unique representability
holds [10]. In this manner, the program enables us to generate an isomorph-
free list of ternary matroids of a given size.
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Recall that for our purposes we are interested in matroids which are GF (3)−
but not GF (4)− representable. The set of minimal excluded minors for
GF (4)-representability are {U2,6, U4,6, F7−, F7−∗, P6, P8}. Thus each of our
candidate matroids must contain one of the above minors that is also repre-
sentable over GF (3)- namely one of {F7−, F7−∗, P8}. As all matroids with
rank or corank three, or fewer than 7 elements, are Rayleigh, our initial list
of candidates for testing consists of P8 and all rank four, 8-element, single
element extensions and coextensions of F7− and F7−∗. The latter matroids
are generated by Oid using the technique described above. Once our set of
8-element candidates has been divided into two sets, Rayleigh versus non-
Rayleigh matroids, we generate our next set of candidates as follows. Us-
ing all the matroids found to be Rayleigh as our set of seed matrices, Oid
computes S1, the set of all non-isomorphic, single-element extensions of the
Rayleigh matroids. Similarily, Oid computes S2 from the set of non-Rayleigh
matroids. Now, for each element M of S1 , M is compared to elements of
S2 by Oid’s isomorphism checker. If an isomorphism is found between an
element s of S1 and any element of t of S2, s is eliminated from S1, and the
next element of S1 is tested. Otherwise, S1 and S2 remain unchanged. Once
this process is complete, our next set of candidates consists of all matroids
remaining in S1.
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Chapter 5

Minimal Ternary non-Rayleigh
matroids found thus far

Our search has yielded three minimal excluded minors so far for the class of
ternary Rayleigh matroids: F8, H8 and J8. Matrix representations of these
three matroids, along with the rest of our 8-element candidates, are found
in Section 5.1. All candidates on 9 elements are Rayleigh, see Section 5.2.
Our ten element candidates, given in Section 5.3, have all been shown to be
balanced. Which are Rayleigh has yet to be determined. Calculations for
8-, 9- and 10-element candidates can be found in Appendices B, C, and D,
respectively.

5.1 Candidates with 8 elements

Our set of 8-elements candidate consists of P8 along with all non-isomorphic
extensions and coextensions of F7− and F7−∗. We list these matroids below,
represented as matrices over GF (3), and identify each as not balanced, bal-
anced but not Rayleigh, or Rayleigh. Our calculations are found in Appendix
B. The matroids below are assigned naes randomly, with the exception of P8,
which is the P8 in the set of excluded minors of quaternary matroids.
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D8=


1 0 0 0 0 2 2 0
0 1 0 0 0 2 1 1
0 0 1 0 2 0 2 1
0 0 0 1 2 2 0 1


D8 is Rayleigh

F8=


1 0 0 0 0 2 2 0
0 1 0 0 0 2 1 1
0 0 1 0 2 0 2 2
0 0 0 1 2 2 0 1


F8 is balanced, but not Rayleigh.

H8=


1 0 0 0 0 2 2 1
0 1 0 0 0 2 1 0
0 0 1 0 2 0 2 0
0 0 0 1 2 2 0 2


H8 is not balanced.

J8=


1 0 0 0 0 2 2 0
0 1 0 0 2 0 2 0
0 0 1 0 2 2 0 1
0 0 0 1 2 2 2 1


J8 is not balanced.

K8=


1 0 0 0 0 2 2 0
0 1 0 0 2 0 2 0
0 0 1 0 2 2 0 1
0 0 0 1 2 2 2 2


K8 is Rayleigh.
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L8=


1 0 0 0 0 2 2 1
0 1 0 0 2 0 2 1
0 0 1 0 2 2 0 1
0 0 0 1 2 2 2 0


L8 is Rayleigh.

M8=


1 0 0 0 0 2 2 1
0 1 0 0 2 0 2 1
0 0 1 0 2 2 0 1
0 0 0 1 2 2 2 2


M8 is Rayleigh.

P8=


1 0 0 0 0 1 1 2
0 1 0 0 1 0 1 1
0 0 1 0 1 1 0 1
0 0 0 1 2 1 1 1


P8 is Rayleigh.

Q8=


1 0 0 0 0 2 2 1
0 1 0 0 2 0 2 1
0 0 1 0 2 2 0 1
0 0 0 1 2 2 1 0


Q8 is Rayleigh.
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5.2 Candidates with 9 elements

All of our 9-element candidates are Rayleigh. As in the previous section,
matroids are represented as matrices over GF (3). The names assigned to all
9-element candidates are random. For calculations, refer to Appendix C.

A9=


1 0 0 0 0 2 2 0 0
0 1 0 0 2 0 2 0 1
0 0 1 0 2 2 0 1 0
0 0 0 1 2 2 2 2 2



B9=


1 0 0 0 0 2 2 0 0
0 1 0 0 2 0 2 0 1
0 0 1 0 2 2 0 1 2
0 0 0 1 2 2 2 2 2



C9=


1 0 0 0 0 2 2 0 1
0 1 0 0 2 0 2 0 1
0 0 1 0 2 2 0 1 1
0 0 0 1 2 2 2 2 2



D9=


1 0 0 0 0 2 2 0 1
0 1 0 0 2 0 2 0 1
0 0 1 0 2 2 0 1 2
0 0 0 1 2 2 2 2 1


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E9=


1 0 0 0 0 2 2 1 0
0 1 0 0 2 0 2 1 0
0 0 1 0 2 2 0 2 1
0 0 0 1 2 2 1 0 1



F9=


1 0 0 0 0 2 2 1 1
0 1 0 0 2 0 2 1 2
0 0 1 0 2 2 0 2 1
0 0 0 1 2 2 1 0 2



G9=


1 0 0 0 0 2 2 0 0
0 1 0 0 0 2 1 1 0
0 0 1 0 2 0 2 1 1
0 0 0 1 2 2 0 1 2



H9=


1 0 0 0 0 2 2 0 0
0 1 0 0 0 2 1 1 1
0 0 1 0 2 0 2 1 1
0 0 0 1 2 2 0 1 0



I9=


1 0 0 0 0 2 2 0 0
0 1 0 0 0 2 1 1 1
0 0 1 0 2 0 2 1 1
0 0 0 1 2 2 0 1 2



J9=


1 0 0 0 0 2 2 0 1
0 1 0 0 0 2 1 1 0
0 0 1 0 2 0 2 1 0
0 0 0 1 2 2 0 1 1


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5.3 Candidates with 10 elements

All the matroids below have been found to be balanced. Refer to Appendix
D for calculations. However, it has yet to be determined which are Rayleigh.
The 10-element candidates have been named reandomly.

A10=


1 0 0 0 0 1 1 0 0 0
0 1 0 0 0 1 2 2 0 1
0 0 1 0 1 0 1 2 1 0
0 0 0 1 1 1 0 2 2 1



C10=


1 0 0 0 0 1 1 0 0 0
0 1 0 0 0 1 2 2 0 1
0 0 1 0 1 0 1 2 1 2
0 0 0 1 1 1 0 2 2 2



E10=


1 0 0 0 0 1 1 0 0 0
0 1 0 0 0 1 2 2 1 1
0 0 1 0 1 0 1 2 0 1
0 0 0 1 1 1 0 2 2 0



F10=


1 0 0 0 0 1 1 0 0 0
0 1 0 0 0 1 2 2 1 1
0 0 1 0 1 0 1 2 0 1
0 0 0 1 1 1 0 2 1 2


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G10=


1 0 0 0 0 1 1 0 0 1
0 1 0 0 0 1 2 2 1 2
0 0 1 0 1 0 1 2 0 2
0 0 0 1 1 1 0 2 1 1



I10=


1 0 0 0 0 1 1 0 0 0
0 1 0 0 0 1 2 2 1 1
0 0 1 0 1 0 1 2 1 1
0 0 0 1 1 1 0 2 0 2



K10=


1 0 0 0 0 1 1 0 0 1
0 1 0 0 0 1 2 2 1 2
0 0 1 0 1 0 1 2 1 2
0 0 0 1 1 1 0 2 0 1



M10=


1 0 0 0 0 1 1 0 0 0
0 1 0 0 0 1 2 2 1 1
0 0 1 0 1 0 1 2 1 2
0 0 0 1 1 1 0 2 2 0



N10=


1 0 0 0 0 1 1 0 0 1
0 1 0 0 0 1 2 2 1 0
0 0 1 0 1 0 1 2 1 1
0 0 0 1 1 1 0 2 2 0



P10=


1 0 0 0 0 1 1 0 0 1
0 1 0 0 0 1 2 2 1 2
0 0 1 0 1 0 1 2 1 2
0 0 0 1 1 1 0 2 2 1


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R10=


1 0 0 0 0 1 1 0 1 1
0 1 0 0 0 1 2 2 0 1
0 0 1 0 1 0 1 2 0 1
0 0 0 1 1 1 0 2 0 1



T10=


1 0 0 0 0 1 1 0 1 1
0 1 0 0 0 1 2 2 0 2
0 0 1 0 1 0 1 2 1 1
0 0 0 1 1 1 0 2 0 2



X10=


1 0 0 0 0 2 2 1 1 1
0 1 0 0 2 0 2 1 2 2
0 0 1 0 2 2 0 2 1 2
0 0 0 1 2 2 1 0 2 1



42



Chapter 6

Outstanding Questions

In this section we highlight some outstanding questions.

Our first question is whether the set of minimal excluded minors for ternary
Rayleigh matroids is finite or not. Informal calculations suggest that there
are 2 non-Rayleigh, ternary matroids on ten elements, and none on eleven
or twelve. However, proof that the remaining candidates of these sizes are
Rayleigh has not been found, so there may be matroids among the remaining
10-, 11- and 12-element candidates that are balanced, but not Rayleigh.

Second, if the set of all excluded minors for this class is finite, what are
the matroids?

In this thesis, one of our methods for proving that a balanced matroid is
Rayleigh is to write ∆M{e, f}(y) as a positive sum of monomials and squares
of polynomials. However, might there exist matroids for which this method
fails, but are nonetheless Rayleigh?

Our final question is if a computer program may be written which can au-
tomate the process of writing Rayleigh differences as sums with many terms
squared. The reformulations of the Rayleigh differences in this thesis were
done by hand, which became increasingly difficult as the size of the matroids
grew. Clearly, a program which automates this process would greatly re-
duce the time required to verify if a matroid is Rayleigh. Such a program
would be useful not only in the case of ternary matroids, but for verifying
if any matroid exhibits the Rayleigh property. There is a program for writ-
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ing polynomials in many terms as sums of squares: SOSTOOLS, developed
by Parrilo [15]. However, this program has not been sufficient for our pur-
poses. It is able to identify matroids which are not Rayleigh, but is often
unable to produce a useful reformulation of ∆M{e, f}(y) for Rayleigh ma-
troids. We note that this program was designed for general polynomials and
does not take advantage of the special form of a matroid’s basis-generating
polynomial. An effective program for our purposes may use the fact that
∆M{e, f}(y) is quadratic in each yg. Furthermore, a program for identifying
minimal non-Rayleigh matroids can capitalise on the following fact. Recall
that

∆M{e, f}(y) = yg
2∆Mg{e, f}(y) + ygΘM{e, f |g}(y) + ∆M g{e, f}(y).

If Mg and Mg have been found to be Rayleigh and the algorithm has produced
a sum-of-squares reformulation of both ∆Mg{e, f}(y) and ∆M g{e, f}(y),
then perhaps these two polynomials may be used as a starting point from
which a cover of ∆M{e, f}(y) can be constructed.
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Appendix A

Code

A.1 Calculating the set of orbits of Aut(M)

acting on 2-element subsets of E(M)

In this section we present the code used to generate a complete set of 2-
element subsets of E(M) which we must test to check if M is Rayleigh.

nextSet:= proc(S,m) local k,T:
k:=nops(S):
if k=0 then T:=[1]: else
if k=m then T:=[]: else
if S[1]+k-1=m then T:=[1..(k+1)]: else
if S[k] < m then T:=[op(1..(k-1),S),S[k]+1]: else
T:=nextSet([op(1..(k-1),S)],m-1):
T:=[op(T),1+T[nops(T)]]:
fi:
fi:
fi:
fi:
RETURN(T): end:

Circuits:=proc(B,m,r) local Cs,S,implied,K,Q;
Cs:=[];
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S:=[1]; while (nops(S) <=r) do;
implied := false; for K in Cs do;
if (nops(op(S) minus K) = nops(S) - nops(K)) then
implied := true; break; fi; od;
if (not implied) then
Q:=map(j → y[j],S);
if (diff(B,op(Q)) = 0) then
Cs := [op(Cs),op(S)]; fi; fi;
S:=nextSet(S,m); od;
RETURN(Cs); end:

aux:=proc(S,i) local A;
A:=1;
if (member(i,S)) then A:=X[nops(S)]: fi:
RETURN(A); end:

# Sigs(A circ,m) records the circuit structure of A
# as a list of monomials in X[j], j=2,...m
# L[i] corresponds to the entry of M[A] represented by
# the ith column of A. The power of X[j] for
# each i records the number of circuits of size j
# the ith element of M[A] is in
Sigs:=proc(Circs,m);
map(v → convert(map(aux,[op(Circs)],v),’*’),[1..m]);
RETURN(%): end:

# Young computes the Young subgroup of M[A]
Young:=proc(L) local m,G,i,j:
m:=nops(L); G:={}:
for i from 1 to m-1 do:
for j from i+1 to m do:
if (L[i]=L[j]) then G:= G union {[i,j]}: fi:
od: od:
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RETURN(permgroup(m,G)): end:

ApplyPerm2Set:=proc(S,P) RETURN(map(v → P[v],S)): end:
ApplyPerm2SetSet:=proc(Cs,P)
RETURN(map(S → ApplyPerm2Set(S,P),Cs)): end:

# Aut computes all automorphisms of E(A)
Aut:=proc(Cs,m) local G,Y,p,q:
G:=[]: Y:=elements(Young(Sigs(Cs,m))):
for p in Y do:
q:=convert(p,permlist,m):
if evalb(Cs = ApplyPerm2SetSet(Cs,q)) then
G:=[op(G),q]: fi: od: RETURN(G): end:

TwoSets:=proc(m) local TS,S:
TS:={}: S:=[1,2]: while nops <3 do:
TS:= TS union op(S):
S:=nextSet(S,m): od:
RETURN(TS): end:

# PairOrbitReps computes a minimal complete set
# of pairs of ground set elements that must be checked
# to prove that M[A] is Rayleigh
PairOrbitReps:=proc(G) local m,TS,Reps,P,Orbit,perm:
m:=nops(G[1]): TS:=TwoSets(m): Reps:={}:
while (nops(TS) >0) do:
P:=op(1,TS): Orbit:=P:
for perm in G do:
Orbit:= Orbit union ApplyPerm2Set(P,perm): od:
Reps:= Reps union P:
TS:= TS minus Orbit: od:
RETURN(Reps): end:
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A.2 Calculating the basis-generating polyno-

mial of a matroid, testing for balance,

verifying the Rayleigh condition

In this section we present the code used to test matroids for balance and
verify that a matroid is Rayleigh.

Ymatrix is the diagonal matrix of indeterminates.
Ymatrx:=proc(m) local Y, i:
Y:=matrix(m,m,0):
for i from 1 to m do Y[i,i]:=y[i] od:
RETURN(Y): end:

# Bases produces the bases generating polynomial of the
# GF(3) matroid represented by A.
Bases:=proc(A) local r, m, Y:
r:=nops(A): m:=nops(A[1]):
Y:=Ymatrix(m):
det(evalm(% * Y * transpose(%))) mod 3:
RETURN(%): end:

# Rayleigh computes all the Rayleigh differences M[e]M[f] - M[ef] M.
Rayleigh:=proc(M) local i,j,Delta,Mi,Mj,Mij:
for i from 1 to m-1 do:
for j from i+1 to m do:
Mi:=coeff(M,y[i]): Mij:=coeff(Mi,y[j]): Mj:=coeff(M,y[j]):
Delta[i,j]:=simplify(Mi*Mj-Mij*M): od: od:
RETURN(Delta): end:

# AtOne evaluates an expression substituting the value 1 for each
# variable.
AtOne:=proc(P) local Q,L,v:
L:=indets(P): Q:=P:
for v in L do: Q:=subs(v=1,Q): od:
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RETURN(Q): end:

# Balance computes the matrix of Rayleigh differences
# all evaluated at y:=1.
Balance:=proc(Delta) local i,j,Del1:
Del1:=matrix(m,m,0):
for i from 1 to m-1 do: for j from i+1 to m do:
Del1[i,j]:=AtOne(Delta[i,j]):
Del1[j,i]:=Del1[i,j]: od: od:
RETURN(op(Del1)): end:

# NegTerms lists the monmials with negative coefficients.
NegTerms:=proc(P) local L,N,W,i:
W:=[]: L:=convert(P,list): N:=map(AtOne,L):
for i from 1 to nops(L) do:
if N[i]¡0 then W:=[op(W),L[i]]: fi: od:
RETURN(W): end:

# SqTerms lists the monomials that have exactly k variables
# occuring to the second power.
# sq is an auxiliary subroutine.
sq:=proc(m) local v,b:
B:=0: for v in indets(m) do:
if degree(m,v)=2 then b:=b+1: fi: od:
RETURN(b): end:

SqTerms:=proc(P,k) local L, W, m:
L:=convert(P, list): W:=[]: for m in L do: if sq(m)=k then W:=[op(W),m]:

fi: od: RETURN(W): end:

# Minor Check is to see if the negative terms are covered by
# deletionof another element.
MinorCheck:=proc(Delta,e,f,m local P,g,N1:
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P:=expand(Delta[e,f]):
for g from 1 to m do:
if ((g¡¿e) and (g¡¿f)) then:
N1:=nops(NegTerms(coeff(P,y[g],1))):
if (N1=0) then print(”Negative Terms covered by deletion/contraction

of”,g):
fi:
f: od: end:

# FirstTest does the easy checking– we need only find patches for
# the other ”bad” cases.
FirstTest:=proc(Delta, Pairs,r,m) local S,i,j:
for S in Pairs do: i:=min(op(S)): j:=max(op(S)):
print([i,j],nops(NegTerms(Delta[i,j])),
nops(SqTerms(Delta[i,j]r-1)),nops(Delta[i,j])):
MinorCheck(Delta,i,j,m): od: end:

# SecondTest checks the patches for the ”bad” cases.
SecondTest :=proc(Delta,BadPairs) local S,i,j:
for S in BadPairs do: i:=min(op(S)): j:-max(op(S)):
print([i,j], NegTerms(expand(Delta[i,j]-Patch[i,j]))): od: end:

# SquaresData is a utility to help find patches.
# P is a Rayleigh difference (maybe minus a partial patch)
# look for terms with os coeff and exactly k squared variables
SquaresData:=proc(P,k) local S,T,v:
S:=indets(P):
for v in S do: T:=SqTerms(coeff(P,v2), k) :
T:=map(w-¿map(op,indets(w)),T):
lprint(WITH,op(v),”:”,op(T)); od:
end:

# Check is a utility that helps find patches.
Check :=proc(P,k) local N:
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N:=NegTerms(P);
print(N); print(AtOne(N)); print(nops(N));
N:=SqTerms(P,k);
print(N); print(AtOne(N)); print(nops(N));
SquaresData(P,k-1): end:
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Appendix B

Calculatons for 8-element
candidates

> D8=


1 0 0 0 0 2 2 0

0 1 0 0 0 2 1 1

0 0 1 0 2 0 2 1

0 0 0 1 2 2 0 1


> Delta := Rayleigh(Bases(D8, Y), AllPairs)

> Balance(Delta)=



0 106 106 52 48 193 168 52

106 0 82 82 138 52 78 190

106 82 0 190 138 52 78 82

52 82 190 0 138 106 78 82

48 138 138 138 0 48 72 138

193 52 52 106 48 0 168 106

168 78 78 78 72 168 0 78

52 190 82 82 138 106 78 0


> D8pairs := {{6, 7}, {3, 7}, {3, 6}, {2, 3}, {1, 6}, {1, 5}, {6, 8}, {3, 5}, {3, 4}, {2, 4}, {5, 7}}
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> FirstTest(Delta, D8pairs, 4, 8);

{6, 7}, 1, 0, 93
”Negative Terms covered by deletion/contraction of”, 1
”Negative Terms covered by deletion/contraction of”, 5

{3, 7}, 4, 0, 57
{3, 6}, 6, 0, 49
{2, 3}, 2, 0, 57

”Negative Terms covered by deletion/contraction of”, 7
{1, 6}, 0, 0, 101

”Negative Terms covered by deletion/contraction of”, 2
”Negative Terms covered by deletion/contraction of”, 3
”Negative Terms covered by deletion/contraction of”, 4
”Negative Terms covered by deletion/contraction of”, 5
”Negative Terms covered by deletion/contraction of”, 7
”Negative Terms covered by deletion/contraction of”, 8

{1, 5}, 5, 0, 43
{6, 8}, 1, 0, 65

”Negative Terms covered by deletion/contraction of”, 1
”Negative Terms covered by deletion/contraction of”, 3

{3, 5}, 3, 0, 75
”Negative Terms covered by deletion/contraction of”, 4

{3, 4}, 2, 0, 94
”Negative Terms covered by deletion/contraction of”, 5

{2, 4}, 4, 0, 56
{5, 7}, 2, 0, 48

”Negative Terms covered by deletion/contraction of”, 1
”Negative Terms covered by deletion/contraction of”, 6

> D8badpairs := {{3, 7}, {3, 6}, {2, 4}};

> Patch[3, 7] := (y[1] ∗ y[4] ∗ (y[6] + .5 ∗ y[8])− (y[2] + y[5]) ∗ (y[6] + .5 ∗
y[1]) ∗ y[8])2;
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> Patch[3, 6] := ((y[1] + .5 ∗ y[7]) ∗ (y[2] + y[8]) ∗ y[5]− (y[1] + .5 ∗ y[2]) ∗
y[4] ∗ y[7])2 + (y[1] ∗ (y[2] + y[4]) ∗ y[8]− .5 ∗ y[2] ∗ y[4] ∗ y[7])2;

> Patch[2, 4] := 0.5 ∗ (y[3] ∗ y[6] ∗ y[8] + y[3] ∗ y[7] ∗ y[8] − y[5] ∗ y[6] ∗
y[7])2 + .5 ∗ (y[1] ∗ y[3] ∗ y[8] + y[3] ∗ y[7] ∗ y[8]− y[1] ∗ y[5] ∗ y[7])2;

> SecondTest(Delta, D8badpairs);

{3, 7}, []
{3, 6}, []
{2, 4}, []

THEREFORE, D8 IS RAYLEIGH

> F8=


1 0 0 0 0 2 2 0

0 1 0 0 0 2 1 1

0 0 1 0 2 0 2 2

0 0 0 1 2 2 0 1


> Delta := Rayleigh(Bases(F8, Y), AllPairs)

> Balance(Delta);



0 84 82 82 55 198 198 84

84 0 112 112 84 112 112 168

82 112 0 172 198 52 52 112

82 112 172 0 198 52 52 112

55 84 198 198 0 82 82 84

198 112 52 52 82 0 172 112

198 112 52 52 82 172 0 112

84 168 112 112 84 112 112 0


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However, F8 is not Rayleigh as there exist positive reals {y1, y2, ..., y8}
satisfying ∆F8{1, 5} < 0.

> expr := subs(y[1] = 1, y[2] = t, y[3] = 1, y[4] = 1, y[5] = 1, y[6] = t*t,
y[7] = t*t, y[8] = t, Delta[1, 5]);

expr := 4 ∗ t10 + 24 ∗ t8 − 5 ∗ t6 + 16 ∗ t7 + 16 ∗ t9

>subs(t = .2, expr);

-0.0000451584

THEREFORE, F8 IS BALANCED BUT NOT RAYLEIGH

> J8=


1 0 0 0 0 2 2 0

0 1 0 0 2 0 2 0

0 0 1 0 2 2 0 1

0 0 0 1 2 2 2 1


> Delta := Rayleigh(Bases(J8, Y), AllPairs):
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> Balance(Delta):=



0 37 37 61 61 208 108 88

37 0 37 61 208 61 108 88

37 37 0 208 61 61 108 88

61 61 208 0 37 37 88 108

61 208 61 37 0 37 88 108

208 61 61 37 37 0 88 108

108 108 108 88 88 88 0 −8

88 88 88 108 108 108 −8 0


Since DeltaJ{7, 8} < 0 for y = {1, 1, 1, 1, 1, 1, 1, 1}, J8 is not balanced.

THEREFORE J8 IS NOT RAYLEIGH

> H8=


1 0 0 0 0 2 2 1

0 1 0 0 0 2 1 0

0 0 1 0 2 0 2 0

0 0 0 1 2 2 0 2


> Delta := Rayleigh(Bases(H8, Y), AllPairs);
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> Balance(Delta)=



0 100 52 136 52 100 72 160

100 0 52 72 52 160 136 100

52 52 0 130 208 52 130 52

136 72 130 0 130 72 −9 136

52 52 208 130 0 52 130 52

100 160 52 72 52 0 136 100

72 136 130 −9 130 136 0 72

160 100 52 136 52 100 72 0


Since ∆H8{4, 7} < 0 for y = {1, 1, 1, 1, 1, 1, 1, 1}, H8 is not balanced.

THEREFORE H8 IS NOT RAYLEIGH

> L8=


1 0 0 0 0 2 2 1

0 1 0 0 2 0 2 1

0 0 1 0 2 2 0 1

0 0 0 1 2 2 2 0


> Delta := Rayleigh(Bases(L8, Y), AllPairs);
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> Balance(Delta):=



0 133 133 133 162 103 103 103

133 0 133 133 103 162 103 103

133 133 0 133 103 103 162 103

133 133 133 0 103 103 103 162

162 103 103 103 0 133 133 133

103 162 103 103 133 0 133 133

103 103 162 103 133 133 0 133

103 103 103 162 133 133 133 0


> L8pairs := {{5, 8}, {1, 4}, {1, 8}, {2, 6}};

> FirstTest(Delta, L8pairs, 4, 8);

{5, 8}, 4, 0, 88
{1, 4}, 4, 0, 88
{1, 8}, 8, 0, 79
{2, 6}, 3, 0, 94

> L8Badpairs := {{5, 8}, {1, 4}, {1, 8}, {2, 6}};

> Patch[5, 8] := .5*((y[1]*y[3]*y[6]-y[1]*y[2]*y[7])2 + (y[6] ∗ y[3] ∗ y[4] −
y[2] ∗ y[7] ∗ y[4])2) + (y[1] ∗ y[2] ∗ y[4]− y[2] ∗ y[3] ∗ y[6])2 + (y[1] ∗ y[3] ∗ y[4]−
y[2] ∗ y[7] ∗ y[3])2

> Patch[1, 4] := .5*((y[2]*y[5]*y[7]-y[5]*y[3]*y[6])2 + (y[2] ∗ y[8] ∗ y[7] −
y[8] ∗ y[3] ∗ y[6])2) + (y[2] ∗ y[7] ∗ y[3]− y[5] ∗ y[3] ∗ y[8])2 + (y[2] ∗ y[3] ∗ y[6]−
y[2] ∗ y[5] ∗ y[8])2

> Patch[1, 4] := .5*((y[2]*y[5]*y[7]-y[5]*y[3]*y[6])2 + (y[2] ∗ y[8] ∗ y[7] −
y[8] ∗ y[3] ∗ y[6])2) + (y[2] ∗ y[7] ∗ y[3]− y[5] ∗ y[3] ∗ y[8])2 + (y[2] ∗ y[3] ∗ y[6]−
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y[2] ∗ y[5] ∗ y[8])2

> Patch[2, 6] := .5*((y[1]*y[8]*y[4]-y[1]*y[3]*y[7])2 + (y[7] ∗ y[3] ∗ y[4] −
y[1] ∗ y[5] ∗ y[4])2 + (y[1] ∗ y[3] ∗ y[5]− y[8] ∗ y[3] ∗ y[4])2)

> SecondTest(Delta, L8Badpairs);

{5, 8}, []
{1, 4}, []
{1, 8}, []
{2, 6}, []

THEREFORE L8 IS RAYLEIGH

> M8=


1 0 0 0 0 2 2 1

0 1 0 0 2 0 2 1

0 0 1 0 2 2 0 1

0 0 0 1 2 2 2 2


> Delta := Rayleigh(Bases(M8, Y), AllPairs);
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> Balance(Delta);



0 87 87 145 145 145 145 87

87 0 87 145 145 145 145 87

87 87 0 145 145 145 145 87

145 145 145 0 87 87 87 145

145 145 145 87 0 87 87 145

145 145 145 87 87 0 87 145

145 145 145 87 87 87 0 145

87 87 87 145 145 145 145 0


> M8pairs := {{5, 8}, {1, 3}}

> FirstTest(Delta, M8pairs, 4, 8);

{5, 8}, 6, 0, 87
{1, 3}, 6, 0, 73

> M8badpairs := {{5, 8}, {1, 3}}

> Patch[5, 8] := .5*((y[6]*y[3]*y[4]-y[2]*y[7]*y[4])2 + (y[2] ∗ y[3] ∗ y[7] −
y[1]∗y[3]∗y[4])2+(y[1]∗y[7]∗y[4]−y[7]∗y[3]∗y[6])2+(y[2]∗y[3]∗y[6]−y[1]∗y[2]∗
y[4])2+(y[1]∗y[6]∗y[4]−y[2]∗y[6]∗y[7])2+(y[1]∗y[3]∗y[6]−y[1]∗y[2]∗y[7])2)

> Patch[1, 3] := (y[8]*y[6]*y[4]-y[5]*y[8]*y[7])2 +(y[2] ∗ y[5] ∗ y[8]− y[5] ∗
y[6]∗y[4])2 +(y[2]∗y[6]∗y[4]−y[2]∗y[5]∗y[7])2 +(y[5]∗y[6]∗y[7]−y[2]∗y[6]∗
y[8])2+(y[7]∗y[5]∗y[4]−y[2]∗y[8]∗y[4])2+(y[2]∗y[8]∗y[7]−y[7]∗y[6]∗y[4])2

> SecondTest(Delta, M8badpairs);
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{5, 8}, []
{1, 3}, []

THEREFORE M8 IS RAYLEIGH

> P8=


1 0 0 0 0 1 1 2

0 1 0 0 1 0 1 1

0 0 1 0 1 1 0 1

0 0 0 1 2 1 1 1


> Delta := Rayleigh(Bases(P8, Y), AllPairs);

> Balance(Delta):=



0 103 103 162 103 133 133 133

103 0 133 133 133 103 162 103

103 133 0 133 133 162 103 103

162 133 133 0 133 103 103 103

103 133 133 133 0 103 103 162

133 103 162 103 103 0 133 133

133 162 103 103 103 133 0 133

133 103 103 103 162 133 133 0


> P8pairs := {{1, 2}, {5, 8}, {2, 6}}

> FirstTest(Delta, P8pairs, 4, 8);

{1, 2}, 8, 0, 79
{5, 8}, 3, 0, 94
{2, 6}, 8, 0, 79
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> P8badpairs := {{1, 2}, {5, 8}, {2, 6}}

> Patch[1, 2] := .5*(y[5]*y[6]*y[4]-y[8]*y[3]*y[4])2 + .5∗ (y[7]∗y[3]∗y[4]−
y[5] ∗ y[3] ∗ y[6])2 + .5 ∗ (y[7] ∗ y[6] ∗ y[4] − y[5] ∗ y[3] ∗ y[6])2 + (y[5] ∗ y[3] ∗
y[7]− y[8] ∗ y[6] ∗ y[7])2 + .5 ∗ (y[5] ∗ y[3] ∗ y[8]− y[7] ∗ y[4] ∗ y[5])2 + .5 ∗ (y[5] ∗
y[3] ∗ y[8]− y[7] ∗ y[8] ∗ y[4])2 + .5 ∗ (y[7] ∗ y[3] ∗ y[4]− y[8] ∗ y[3] ∗ y[6])2 + .5 ∗
(y[8] ∗ y[5] ∗ y[6]− y[7] ∗ y[4] ∗ y[5])2

> Patch[5, 8] := .5*((y[1]*y[7]*y[4]-y[7]*y[3]*y[6])2 + (y[1] ∗ y[6] ∗ y[4] −
y[2] ∗ y[6] ∗ y[7])2 + (y[1] ∗ y[3] ∗ y[6]− y[1] ∗ y[2] ∗ y[7])2)

> Patch[2, 6] := .5*((y[7]*y[3]*y[4]-y[1]*y[8]*y[4])2 + (y[7] ∗ y[3] ∗ y[4] −
y[1]∗y[5]∗y[4])2 +(y[1]∗y[3]∗y[7]−y[1]∗y[5]∗y[4])2 +(y[8]∗y[3]∗y[4]−y[1]∗
y[3]∗y[5])2 +(y[5]∗y[3]∗y[7]−y[5]∗y[8]∗y[4])2 +(y[5]∗y[8]∗y[4]−y[7]∗y[3]∗
y[8])2+2∗(y[1]∗y[8]∗y[7]−y[7]∗y[5]∗y[4])2+(y[5]∗y[3]∗y[7]−y[1]∗y[5]∗y[8])2)

> SecondTest(Delta, P8badpairs);

{1, 2}, []
{5, 8}, []
{2, 6}, []

THEREFORE P8 IS RAYLEIGH

> Q8=


1 0 0 0 0 2 2 1

0 1 0 0 2 0 2 1

0 0 1 0 2 2 0 1

0 0 0 1 2 2 1 0


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> Delta := Rayleigh(Bases(Q8, Y), AllPairs);

> Balance(Delta):=



0 133 103 133 103 162 103 133

133 0 103 133 162 103 103 133

103 103 0 162 133 133 133 103

133 133 162 0 103 103 103 133

103 162 133 103 0 133 133 103

162 103 133 103 133 0 133 103

103 103 133 103 133 133 0 162

133 133 103 133 103 103 162 0


> Q8pairs := {{6, 7}, {5, 8}, {1, 4}, {2, 5}}

> FirstTest(Delta, Q8pairs, 4, 8);

{5, 8}, 8, 0, 79
{1, 4}, 4, 0, 88
{2, 5}, 3, 0, 94
{6, 7}, 4, 0, 88

> Q8badpairs := {{6, 7}, {5, 8}, {1, 4}, {2, 5}}

> Patch[5, 8] := (y[2]*y[3]*y[6]-y[1]*y[2]*y[4])2 + .5 ∗ ((y[6] ∗ y[3] ∗ y[4]−
y[2]∗y[7]∗y[4])2 +(y[1]∗y[3]∗y[7]−y[7]∗y[6]∗y[4])2 +(y[2]∗y[3]∗y[7]−y[1]∗
y[3]∗y[4])2 +(y[1]∗y[3]∗y[6]−y[2]∗y[6]∗y[7])2 +(y[1]∗y[6]∗y[4]−y[2]∗y[6]∗
y[7])2+(y[1]∗y[3]∗y[6]−y[1]∗y[2]∗y[7])2+(y[6]∗y[3]∗y[4]−y[2]∗y[3]∗y[7])2)

> Patch[1, 4] := .5*((y[8]*y[5]*y[6]-y[2]*y[6]*y[7])2 + (y[2] ∗ y[3] ∗ y[7] −
y[5] ∗ y[3] ∗ y[8])2) + (y[2] ∗ y[3] ∗ y[6]− y[2] ∗ y[5] ∗ y[8])2 + (y[2] ∗ y[8] ∗ y[7]−
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y[8] ∗ y[3] ∗ y[6])2

> Patch[2, 5] := .5*((y[8]*y[3]*y[4]-y[1]*y[8]*y[6])2 + (y[1] ∗ y[8] ∗ y[7] −
y[1] ∗ y[3] ∗ y[4])2 + (y[1] ∗ y[6] ∗ y[4]− y[7] ∗ y[8] ∗ y[4])2)

> Patch[6, 7] := (y[1]*y[2]*y[8]-y[2]*y[5]*y[4])2 +(y[1] ∗ y[8] ∗ y[4]− y[2] ∗
y[3] ∗ y[4])2 + .5 ∗ ((y[5] ∗ y[8] ∗ y[4]− y[2] ∗ y[3] ∗ y[8])2 + (y[1] ∗ y[2] ∗ y[3]−
y[1] ∗ y[5] ∗ y[4])2)

> SecondTest(Delta, Q8badpairs);

{5, 8}, []
{1, 4}, []
{2, 5}, []
{6, 7}, []

THEREFORE Q8 IS RAYLEIGH
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Appendix C

Calculations for 9-element
candidates

> A9:=


1 0 0 0 0 2 2 0 0

0 1 0 0 2 0 2 0 1

0 0 1 0 2 2 0 1 0

0 0 0 1 2 2 2 2 2


> Delta := Rayleigh(Bases(A9, Y), AllPairs);

> Balance(Delta):=



0 225 225 270 135 495 495 90 90

225 0 261 414 261 135 225 54 414

225 261 0 414 261 225 135 414 54

270 414 414 0 54 90 90 306 306

135 261 261 54 0 225 225 414 414

495 135 225 90 225 0 495 270 90

495 225 135 90 225 495 0 90 270

90 54 414 306 414 270 90 0 306

90 414 54 306 414 90 270 306 0


> A9pairs := {{3, 5}, {2, 4}, {5, 6}, {1, 5}, {1, 6}, {7, 8}, {3, 9}, {4,
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9}, {1, 4} }

> FirstTest(Delta, A9pairs, 4, 9);

{3, 5}, 7, 0, 147
{2, 4}, 1, 0, 194

”Negative Terms covered by deletion/contraction of”, 6
”Negative Terms covered by deletion/contraction of”, 8
”Negative Terms covered by deletion/contraction of”, 9

{5, 6}, 6, 0, 132
{1, 5}, 8, 0, 95
{1, 6}, 5, 0, 211

”Negative Terms covered by deletion/contraction of”, 7
{7, 8}, 14, 0, 88
{3, 9}, 24, 0, 90
{4, 9}, 0, 0, 155

”Negative Terms covered by deletion/contraction of”, 1
”Negative Terms covered by deletion/contraction of”, 2
”Negative Terms covered by deletion/contraction of”, 3
”Negative Terms covered by deletion/contraction of”, 5
”Negative Terms covered by deletion/contraction of”, 6
”Negative Terms covered by deletion/contraction of”, 7
”Negative Terms covered by deletion/contraction of”, 8

{1, 4}, 1, 0, 142
”Negative Terms covered by deletion/contraction of”, 5
”Negative Terms covered by deletion/contraction of”, 8
”Negative Terms covered by deletion/contraction of”, 9

> A9badpairs := {{3, 5}, {5, 6}, {1, 5}, {7, 8}, {3, 9}}

> Patch[3, 5] := y[6]2 ∗ (y[1] ∗ y[7] + .5 ∗ y[4] ∗ y[7] + .5 ∗ y[1] ∗ y[9]− y[2] ∗
y[8]− .5 ∗ y[2] ∗ y[9]− .5 ∗ y[2] ∗ y[4])2 + .5 ∗ y[1]2 ∗ (y[2] ∗ y[8]− y[6] ∗ y[9])2 +
.5 ∗ y[7]2 ∗ (y[2] ∗ y[8]− y[4] ∗ y[6])2
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> Patch[5, 6] := y[3]2 ∗ (y[1] ∗ y[2] + .5 ∗ y[1] ∗ y[9] − y[7] ∗ y[8] − y[4] ∗
y[7]− .5 ∗ y[7] ∗ y[9])2 + .5 ∗ y[1]2 ∗ (y[3] ∗ y[9]− y[7] ∗ y[8])2

> Patch[1, 5] := .5*y[4]2 ∗ (y[2] ∗ y[6] + y[6] ∗ y[9] − y[7] ∗ y[8] − y[3] ∗
y[7])2 + y[8]2 ∗ (y[2] ∗ y[6]− y[3] ∗ y[7]− .5 ∗ y[4] ∗ y[7])2 + y[9]2 ∗ (y[3] ∗ y[7]−
y[2] ∗ y[6]− .5 ∗ y[4] ∗ y[6])2

> Patch[7, 8] := .5*((y[1]*y[2]*y[3]+y[1]*y[3]*y[9]+y[1]*y[6]*y[9]-y[5]*y[3]*y[6]-
y[5]*y[6]*y[4]-y[1]*y[5]*y[4]-y[2]*y[6]*y[9]-y[1]*y[2]*y[5])2+(y[1]∗y[2]∗y[3]+
y[1] ∗ y[2] ∗ y[5]− y[5] ∗ y[3] ∗ y[6]− y[5] ∗ y[6] ∗ y[4]− y[2] ∗ y[6] ∗ y[4]− y[9] ∗
y[3] ∗ y[6] − y[9] ∗ y[6] ∗ y[4])2 + (y[1] ∗ y[5] ∗ y[4] + y[1] ∗ y[5] ∗ y[6] − y[9] ∗
y[3] ∗ y[6]− y[2] ∗ y[6] ∗ y[4]− y[1] ∗ y[3] ∗ y[9]− y[9] ∗ y[6] ∗ y[4])2)

> Patch[3, 9] := .5*((y[7]*y[6]*y[4]+y[1]*y[6]*y[7]-y[2]*y[5]*y[6]-y[2]*y[8]*y[7]-
y[2]*y[5]*y[7]-y[2]*y[6]*y[8]-y[1]*y[2]*y[8]-y[1]*y[2]*y[6])2+(y[7]∗y[6]∗y[4]+
y[1] ∗ y[5] ∗ y[4] + y[7] ∗ y[5] ∗ y[4] + y[5] ∗ y[6] ∗ y[4] + y[1] ∗ y[5] ∗ y[6]− y[1] ∗
y[8] ∗ y[7] − y[2] ∗ y[8] ∗ y[7] − y[2] ∗ y[6] ∗ y[8] − y[1] ∗ y[2] ∗ y[8])2 + (y[5] ∗
y[6] ∗ y[4] + y[2] ∗ y[5] ∗ y[7] + y[1] ∗ y[2] ∗ y[5] + y[1] ∗ y[5] ∗ y[4] + y[7] ∗ y[5] ∗
y[4]− y[1] ∗ y[8] ∗ y[7]− y[1] ∗ y[6] ∗ y[7])2)

> SecondTest(Delta, A9badpairs);

{3, 5}, []
{5, 6}, []
{1, 5}, []
{7, 8}, []
{3, 9}, []

THEREFORE A9 IS RAYLEIGH
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> B9:=


1 0 0 0 0 2 2 0 0

0 1 0 0 2 0 2 0 1

0 0 1 0 2 2 0 1 2

0 0 0 1 2 2 2 2 2


> Delta := Rayleigh(Bases(B9, Y), AllPairs);

> Balance(Delta):=



0 174 174 174 174 630 486 174 174

174 0 219 219 498 174 198 126 498

174 219 0 498 219 174 198 498 126

174 219 498 0 126 174 198 498 219

174 498 219 126 0 174 198 219 498

630 174 174 174 174 0 486 174 174

486 198 198 198 198 486 0 198 198

174 126 498 498 219 174 198 0 219

174 498 126 219 498 174 198 219 0


> B9pairs := {{3, 5}, {5, 6}, {7, 8}, {3, 9}, {6, 7}, {2, 5}, {1, 6}}

> ¿ FirstTest(Delta, B9pairs, 4, 9);

{6, 7}, 9, 0, 214
”Negative Terms covered by deletion/contraction of”, 1

{2, 5}, 2, 0, 237
”Negative Terms covered by deletion/contraction of”, 7
”Negative Terms covered by deletion/contraction of”, 9

{3, 5}, 7, 0, 142
{5, 6}, 9, 0, 121
{1, 6}, 6, 0, 259

”Negative Terms covered by deletion/contraction of”, 7
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{7, 8}, 11, 0, 125
{3, 9]} 16, 0, 119

> B9badpairs := {{3, 5}, {5, 6 {7, 8}, {3, 9}}

> Patch[3, 5] := .5*((y[1]*y[6]*y[7]+y[7]*y[6]*y[4]-y[2]*y[6]*y[8]-y[9]*y[6]*y[8])2+
(y[1] ∗ y[6] ∗ y[7] + y[7] ∗ y[6] ∗ y[9] − y[2] ∗ y[6] ∗ y[8] − y[2] ∗ y[6] ∗ y[4])2 +
(y[2] ∗ y[8] ∗ y[7]− y[7] ∗ y[6] ∗ y[9]− y[7] ∗ y[6] ∗ y[4])2)

> Patch[5, 6] := .5*(y[2]*y[7]*y[4]+y[1]*y[2]*y[7]-y[7]*y[3]*y[9])2 +(y[1]∗
y[2] ∗ y[3] + .5 ∗ y[1] ∗ y[9] ∗ y[3] + .5 ∗ y[1] ∗ y[9] ∗ y[4]− .5 ∗ y[7] ∗ y[3] ∗ y[9]−
y[7] ∗ y[3] ∗ y[8]− y[7] ∗ y[3] ∗ y[4]− y[7] ∗ y[8] ∗ y[4])2

> Patch[7, 8] := .5*((y[2]*y[6]*y[4]+y[5]*y[6]*y[4]+y[5]*y[3]*y[6]-y[1]*y[9]*y[4]-
y[1]*y[9]*y[3]-y[1]*y[2]*y[3])2 +(y[2]∗y[6]∗y[4]−y[1]∗y[9]∗y[3]−y[1]∗y[9]∗
y[4] − y[9] ∗ y[3] ∗ y[6] − y[1] ∗ y[5] ∗ y[4])2 + (y[1] ∗ y[2] ∗ y[3] − y[5] ∗ y[6] ∗
y[4]− y[5] ∗ y[3] ∗ y[6]− y[9] ∗ y[3] ∗ y[6]− y[1] ∗ y[5] ∗ y[4])2)

> Patch[3, 9] := .5*((y[1]*y[6]*y[7]+y[1]*y[7]*y[4]+y[1]*y[2]*y[7]-y[1]*y[5]*y[8]-
y[2]*y[6]*y[4]-y[5]*y[6]*y[4]-y[1]*y[5]*y[4])2 + (y[1] ∗ y[6] ∗ y[7] + y[7] ∗ y[6] ∗
y[8] + y[5] ∗ y[6] ∗ y[7]− y[1] ∗ y[5] ∗ y[8]− y[2] ∗ y[6] ∗ y[4]− y[2] ∗ y[6] ∗ y[8]−
y[1] ∗ y[2] ∗ y[8])2 + (y[2] ∗ y[7] ∗ y[4] + y[1] ∗ y[7] ∗ y[4] + y[1] ∗ y[2] ∗ y[7] −
y[7] ∗ y[6] ∗ y[8]− y[5] ∗ y[6] ∗ y[7]− y[5] ∗ y[8] ∗ y[7])2)

> SecondTest(Delta, B9badpairs);

{3, 5}, []
{5, 6}, []
{7, 8}, []
{3, 9}, []

THEREFORE B9 IS RAYLEIGH
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> C9:=


1 0 0 0 0 2 2 0 1

0 1 0 0 2 0 2 0 1

0 0 1 0 2 2 0 1 1

0 0 0 1 2 2 2 2 2


> Delta := Rayleigh(Bases(C9, Y), AllPairs);

> Balance(Delta):=



0 316 186 286 316 516 316 232 316

316 0 186 286 516 316 316 232 316

186 186 0 481 286 286 286 522 186

286 286 481 0 186 186 186 522 286

316 516 286 186 0 316 316 232 316

516 316 286 186 316 0 316 232 316

316 316 286 186 316 316 0 232 516

232 232 522 522 232 232 232 0 232

316 316 186 286 316 316 516 232 0


> C9pairs := {{3, 5}, {5, 6}, {1, 5}, {7, 8}, {3, 9}, {3, 4}, {1, 6}, {4,

8}}

> FirstTest(Delta, C9pairs, 4, 9);

{3, 4}, 6, 0, 246
”Negative Terms covered by deletion/contraction of”, 8

{4, 8}, 3, 0, 256
”Negative Terms covered by deletion/contraction of”, 3

{3, 5}, 11, 0, 177
{5, 6}, 12, 0, 195
{1, 5}, 18, 0, 193
{1, 6}, 10, 0, 248
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{7, 8}, 16, 0, 167
{3, 9}, 20, 0, 157

> C9badpairs := {{3, 5}, {5, 6}, {1, 5}, {7, 8}, {3, 9}, {1, 6}}

> Patch[3, 5] := (y[7]*y[6]*y[9]+.5*y[7]*y[6]*y[4]-y[2]*y[8]*y[7]-.5*y[2]*y[7]*y[4])2+
(y[2]∗y[8]∗y[6]+ .5∗y[2]∗y[6]∗y[4]−y[1]∗y[6]∗y[7]− .5∗y[7]∗y[6]∗y[4])2 +
.5∗(y[9]∗y[6]∗y[8]−y[1]∗y[8]∗y[7])2+.5∗(y[7]∗y[6]∗y[4]−y[9]∗y[6]∗y[4])2+
.5∗(y[1]∗y[2]∗y[7]−y[2]∗y[6]∗y[9])2+.5∗(y[1]∗y[7]∗y[9]−y[2]∗y[9]∗y[4])2+
.5∗(y[9]∗y[6]∗y[4]−y[1]∗y[7]∗y[4])2 + .5∗(y[1]∗y[6]∗y[9]−y[1]∗y[2]∗y[4])2

> Patch[5, 6] := (y[1]*y[2]*y[9]-y[7]*y[9]*y[4])2 +(y[7] ∗ y[3] ∗ y[9]− y[1] ∗
y[2] ∗ y[7])2 + (y[1] ∗ y[2] ∗ y[4]− y[9] ∗ y[3] ∗ y[4]− y[9] ∗ y[8] ∗ y[4])2 + (y[1] ∗
y[2] ∗ y[3]− y[7] ∗ y[3] ∗ y[4]− y[7] ∗ y[3] ∗ y[8])2 + (y[1] ∗ y[3] ∗ y[9] + .5 ∗ y[1] ∗
y[8] ∗ y[9]− y[1] ∗ y[7] ∗ y[4]− .5 ∗ y[1] ∗ y[8] ∗ y[7])2 + (y[2] ∗ y[3] ∗ y[9] + .5 ∗
y[2] ∗ y[8] ∗ y[9]− .5 ∗ y[2] ∗ y[8] ∗ y[7]− y[2] ∗ y[7] ∗ y[4])2

> Patch[1, 5] := .5*((y[2]*y[6]*y[9]-y[7]*y[3]*y[9])2 + (y[2] ∗ y[6] ∗ y[9] −
y[7]∗y[8]∗y[9])2+(y[2]∗y[6]∗y[7]−y[7]∗y[8]∗y[9])2+(y[2]∗y[6]∗y[7]−y[7]∗y[9]∗
y[4])2+(y[7]∗y[3]∗y[4]−y[2]∗y[6]∗y[4])2+(y[2]∗y[6]∗y[4]−y[7]∗y[8]∗y[4])2+
(y[2]∗y[6]∗y[8]−y[7]∗y[8]∗y[4]−y[7]∗y[3]∗y[8])2+(y[2]∗y[6]∗y[8]−y[9]∗y[8]∗
y[4]−y[9]∗y[3]∗y[8])2+(y[2]∗y[3]∗y[6]−y[9]∗y[3]∗y[8])2+(y[9]∗y[3]∗y[4]−y[2]∗
y[3]∗y[6])2)+(y[2]∗y[9]∗y[4]+.5∗y[2]∗y[3]∗y[9]−y[2]∗y[8]∗y[7]−.5∗y[2]∗y[3]∗
y[7])2+(y[7]∗y[3]∗y[6]+.5∗y[7]∗y[6]∗y[4]−y[9]∗y[6]∗y[8]−.5∗y[9]∗y[6]∗y[4])2

> Patch[1, 6] := .5*((y[2]*y[3]*y[5]-y[7]*y[3]*y[9])2 + (y[2] ∗ y[5] ∗ y[4] −
y[7] ∗ y[9] ∗ y[4])2 + (y[2] ∗ y[3] ∗ y[4]− y[2] ∗ y[9] ∗ y[7])2 + (y[7] ∗ y[3] ∗ y[4]−
y[2]∗y[5]∗y[7])2 +(y[2]∗y[8]∗y[4]−y[2]∗y[9]∗y[7])2 +(y[5]∗y[3]∗y[4]−y[7]∗
y[5]∗y[9])2 +(y[9]∗y[3]∗y[4]−y[2]∗y[5]∗y[9])2 +(y[5]∗y[3]∗y[8]−y[7]∗y[5]∗
y[9])2+(y[9]∗y[8]∗y[4]−y[2]∗y[5]∗y[9])2+(y[2]∗y[5]∗y[7]−y[7]∗y[3]∗y[8])2)

> Patch[7, 8] := (y[1]*y[2]*y[3]+.5*y[1]*y[2]*y[5]+.5*y[1]*y[2]*y[6]-.5*y[2]*y[9]*y[4]-
.5*y[2]*y[6]*y[4]-y[5]*y[6]*y[4]-y[5]*y[3]*y[6]-.5*y[1]*y[5]*y[4]-.5*y[1]*y[9]*y[4])2+
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.25 ∗ (y[1] ∗ y[2] ∗ y[5]− y[2] ∗ y[9] ∗ y[4])2 + .75 ∗ (y[2] ∗ y[6] ∗ y[4]− y[1] ∗ y[5] ∗
y[4])2 + .5 ∗ (y[1] ∗ y[2] ∗ y[5]− y[2] ∗ y[9] ∗ y[4]− y[2] ∗ y[3] ∗ y[9]− y[5] ∗ y[3] ∗
y[9])2+.5∗(y[2]∗y[3]∗y[9]−y[2]∗y[5]∗y[6])2+.5∗(y[1]∗y[5]∗y[9]−y[2]∗y[6]∗
y[9])2+.5∗(y[1]∗y[5]∗y[6]−y[1]∗y[3]∗y[9])2+.5∗(y[1]∗y[2]∗y[6]−y[9]∗y[3]∗
y[6]−y[1]∗y[3]∗y[9]−y[1]∗y[9]∗y[4])2+.25∗(y[1]∗y[2]∗y[6]−y[1]∗y[9]∗y[4])2

> Patch[3, 9] := (y[1]*y[2]*y[7]-y[5]*y[6]*y[7])2 + .5 ∗ (y[1] ∗ y[5] ∗ y[6] +
y[1]∗y[2]∗y[6]−y[1]∗y[7]∗y[4]−y[1]∗y[8]∗y[7]−y[7]∗y[6]∗y[4]−y[7]∗y[6]∗
y[8])2 + .5 ∗ (y[7] ∗ y[6] ∗ y[4] + y[1] ∗ y[2] ∗ y[4]− y[2] ∗ y[6] ∗ y[8]− y[1] ∗ y[2] ∗
y[6]− y[5] ∗ y[6] ∗ y[8]− y[5] ∗ y[6] ∗ y[4])2 + .5 ∗ (y[1] ∗ y[2] ∗ y[4] + y[1] ∗ y[7] ∗
y[4]−y[1]∗y[5]∗y[8]−y[5]∗y[6]∗y[8]−y[5]∗y[6]∗y[4]−y[1]∗y[5]∗y[6]−y[5]∗
y[8] ∗ y[7])2 + .5 ∗ (y[2] ∗ y[7] ∗ y[4] + y[1] ∗ y[5] ∗ y[8] + y[1] ∗ y[2] ∗ y[5]− y[2] ∗
y[5] ∗ y[6]− y[2] ∗ y[6] ∗ y[8]− y[7] ∗ y[5] ∗ y[4])2 + .5 ∗ (y[2] ∗ y[5] ∗ y[6] + y[1] ∗
y[2]∗y[5]−y[7]∗y[5]∗y[4]−y[5]∗y[8]∗y[7]−y[2]∗y[8]∗y[7]−y[2]∗y[7]∗y[4])2

> SecondTest(Delta, C9badpairs);

{3, 5}, []
{5, 6}, []
{1, 5}, []
{1, 6}, []
{7, 8}, []
{3, 9}, []

THEREFORE C9 IS RAYLEIGH

> D9:=


1 0 0 0 0 2 2 0 1

0 1 0 0 2 0 2 0 1

0 0 1 0 2 2 0 1 2

0 0 0 1 2 2 2 2 1


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> Delta := Rayleigh(Bases(D9, Y), AllPairs);

> Balance(Delta):=



0 297 180 258 393 393 258 258 258

297 0 180 258 393 393 258 258 258

180 180 0 360 180 180 360 360 360

258 258 360 0 258 258 132 612 132

393 393 180 258 0 297 258 258 258

393 393 180 258 297 0 258 258 258

258 258 360 132 258 258 0 132 612

258 258 360 612 258 258 132 0 132

258 258 360 132 258 258 612 132 0


> D9pairs := {{3, 5}, {2, 4}, {5, 6}, {1, 5}, {7, 8}, {3, 9}, {7, 9}}

> FirstTest(Delta, D9pairs, 4, 9);

{7, 9}, 0, 0, 268
”Negative Terms covered by deletion/contraction of”, 1
”Negative Terms covered by deletion/contraction of”, 2
”Negative Terms covered by deletion/contraction of”, 3
”Negative Terms covered by deletion/contraction of”, 4
”Negative Terms covered by deletion/contraction of”, 5
”Negative Terms covered by deletion/contraction of”, 6
”Negative Terms covered by deletion/contraction of”, 8

{3, 5}, 15, 0, 134
{2, 4}, 11, 0, 160
{5, 6}, 4, 0, 167

”Negative Terms covered by deletion/contraction of”, 3
1, 5}, 10, 0, 201
{7, 8}, 17, 0, 117
{3, 9}, 2, 0, 183

”Negative Terms covered by deletion/contraction of”, 4
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”Negative Terms covered by deletion/contraction of”, 7
”Negative Terms covered by deletion/contraction of”, 8

> D9badpairs := {{2, 4}, {1, 5}, {3, 5}, {7, 8}}

> Patch[2, 4] := .5*(y[9]*y[6]*y[8]-y[1]*y[7]*y[9]-y[1]*y[8]*y[7]-y[1]*y[3]*y[9]-
y[7]*y[5]*y[9])2 + .5 ∗ (y[1] ∗ y[6] ∗ y[9] + y[9] ∗ y[6] ∗ y[8]− y[5] ∗ y[3] ∗ y[6]−
y[5] ∗ y[6] ∗ y[8]− y[5] ∗ y[6] ∗ y[7]− y[5] ∗ y[3] ∗ y[9])2 + .5 ∗ (y[1] ∗ y[6] ∗ y[7] +
y[1] ∗ y[6] ∗ y[9]− y[5] ∗ y[3] ∗ y[6]− y[1] ∗ y[5] ∗ y[8])2

> Patch[1, 5] := .5*((y[2]*y[9]*y[4]-y[2]*y[8]*y[7])2 + (y[7] ∗ y[6] ∗ y[4] −
y[9] ∗ y[6] ∗ y[8])2 + (y[2] ∗ y[6] ∗ y[4] + y[2] ∗ y[6] ∗ y[8] − y[9] ∗ y[8] ∗ y[4] −
y[9] ∗ y[3] ∗ y[8])2 + (y[2] ∗ y[6] ∗ y[4] − y[7] ∗ y[3] ∗ y[4] − y[9] ∗ y[3] ∗ y[4] −
y[7] ∗ y[8] ∗ y[4])2 + (y[2] ∗ y[6] ∗ y[8]− y[7] ∗ y[3] ∗ y[8]− y[7] ∗ y[8] ∗ y[4])2)

> Patch[3, 5] := .5*(y[1]*y[6]*y[9]+y[1]*y[6]*y[7]-y[2]*y[6]*y[4]-y[2]*y[6]*y[8])2+
.5 ∗ (y[9] ∗ y[6] ∗ y[8] + y[1] ∗ y[9] ∗ y[4] + y[2] ∗ y[6] ∗ y[8] + y[1] ∗ y[8] ∗ y[9]−
y[2] ∗ y[7] ∗ y[4]− y[1] ∗ y[7] ∗ y[4]− y[7] ∗ y[6] ∗ y[4]− y[1] ∗ y[6] ∗ y[7]− y[1] ∗
y[8] ∗ y[7])2 + .5 ∗ (y[9] ∗ y[6] ∗ y[8] + y[1] ∗ y[6] ∗ y[9] + y[2] ∗ y[8] ∗ y[7] + y[2] ∗
y[8] ∗ y[9]− y[7] ∗ y[6] ∗ y[4]− y[2] ∗ y[9] ∗ y[4]− y[2] ∗ y[6] ∗ y[4])2

> Patch[7, 8] := .5*(y[1]*y[2]*y[3]-y[2]*y[9]*y[4]-y[9]*y[6]*y[4]-y[5]*y[6]*y[4]-
y[5]*y[6]*y[9]-y[5]*y[3]*y[6]-y[1]*y[9]*y[4]-y[5]*y[9]*y[4]-y[2]*y[6]*y[4]-y[1]*y[6]*y[9])2+
.5 ∗ (y[1] ∗ y[2] ∗ y[3] + y[1] ∗ y[2] ∗ y[5] + y[1] ∗ y[2] ∗ y[6]− y[2] ∗ y[9] ∗ y[4]−
y[9] ∗ y[6] ∗ y[4]− y[5] ∗ y[6] ∗ y[4]− y[5] ∗ y[6] ∗ y[9]− y[5] ∗ y[3] ∗ y[6]− y[1] ∗
y[9] ∗ y[4]− y[5] ∗ y[9] ∗ y[4]− y[2] ∗ y[5] ∗ y[9]− y[1] ∗ y[5] ∗ y[4])2 + .5 ∗ (y[1] ∗
y[6] ∗ y[9]− y[2] ∗ y[5] ∗ y[9])2 + .5 ∗ (y[2] ∗ y[6] ∗ y[4]− y[1] ∗ y[5] ∗ y[4])2

> SecondTest(Delta, D9badpairs);

{3, 5}, []
{2, 4}, []
{1, 5}, []
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{7, 8}, []
THEREFORE D9 IS RAYLEIGH

> E9:=


1 0 0 0 0 2 2 1 0

0 1 0 0 2 0 2 1 0

0 0 1 0 2 2 0 2 1

0 0 0 1 2 2 1 0 1


> Delta := Rayleigh(Bases(E9, Y), AllPairs);

> Balance(Delta) :=



0 313 174 174 217 601 250 250 300

313 0 174 174 601 217 250 250 300

174 174 0 612 174 174 300 300 360

174 174 612 0 174 174 300 300 360

217 601 174 174 0 313 250 250 300

601 217 174 174 313 0 250 250 300

250 250 300 300 250 250 0 580 120

250 250 300 300 250 250 580 0 120

300 300 360 360 300 300 120 120 0


> E9pairs := {{3, 5}, {5, 6}, {1, 5}, {1, 6}, {7, 8}, {3, 9}, {6, 7}, {3,

8}, {7, 9}, {3, 4}, {2, 9}}

> FirstTest(Delta, E9pairs, 4, 9);

{3, 4}, 0, 0, 268
”Negative Terms covered by deletion/contraction of”, 1
”Negative Terms covered by deletion/contraction of”, 2
”Negative Terms covered by deletion/contraction of”, 5
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”Negative Terms covered by deletion/contraction of”, 6
”Negative Terms covered by deletion/contraction of”, 7
”Negative Terms covered by deletion/contraction of”, 8
”Negative Terms covered by deletion/contraction of”, 9

{6, 7}, 11, 0, 159
{7, 9}, 14, 0, 112
{2, 9}, 10, 0, 159

”Negative Terms covered by deletion/contraction of”, 5
{3, 8}, 8, 0, 181
{3, 5}, 14, 0, 136
{5, 6}, 2, 0, 169

”Negative Terms covered by deletion/contraction of”, 3
”Negative Terms covered by deletion/contraction of”, 4 {1, 5}, 16, 0, 150

{1, 6}, 6, 0, 258
”Negative Terms covered by deletion/contraction of”, 9

{7, 8}, 0, 0, 268
”Negative Terms covered by deletion/contraction of”, 1
”Negative Terms covered by deletion/contraction of”, 2
”Negative Terms covered by deletion/contraction of”, 3
”Negative Terms covered by deletion/contraction of”, 4
”Negative Terms covered by deletion/contraction of”, 5
”Negative Terms covered by deletion/contraction of”, 6
”Negative Terms covered by deletion/contraction of”, 9

{3, 9}, 2, 0, 179
”Negative Terms covered by deletion/contraction of”, 4
”Negative Terms covered by deletion/contraction of”, 7
”Negative Terms covered by deletion/contraction of”, 8

> E9badpairs := {{3, 5}, {1, 5}, {6, 7}, {3, 8}, {7, 9}}

> Patch[3, 5] := .5*(y[1]*y[8]*y[9]+y[9]*y[6]*y[8]-y[2]*y[8]*y[4]-y[2]*y[6]*y[4]-
y[2]*y[8]*y[7]-y[1]*y[2]*y[4])2+.5∗(y[1]∗y[8]∗y[4]+y[1]∗y[7]∗y[9]+y[1]∗y[8]∗
y[9]+y[1]∗y[6]∗y[8]−y[2]∗y[8]∗y[7]−y[7]∗y[6]∗y[8]−y[7]∗y[6]∗y[4]−y[1]∗y[2]∗
y[7]−y[1]∗y[2]∗y[4])2+.5∗(y[1]∗y[6]∗y[8]−y[2]∗y[6]∗y[4]−y[1]∗y[2]∗y[7])2

> Patch[1, 5] := (y[7]*y[6]*y[4]-y[8]*y[3]*y[6])2 + .5 ∗ (y[2] ∗ y[3] ∗ y[7]−
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y[2] ∗ y[8] ∗ y[4])2 + .5 ∗ (y[7] ∗ y[9] ∗ y[4] + y[7] ∗ y[3] ∗ y[9] + y[9] ∗ y[8] ∗
y[4] − y[2] ∗ y[6] ∗ y[7] − y[2] ∗ y[6] ∗ y[4] − y[2] ∗ y[6] ∗ y[8])2 + .5 ∗ (y[2] ∗
y[3] ∗ y[6]− y[9] ∗ y[3] ∗ y[8]− y[7] ∗ y[3] ∗ y[9]− y[9] ∗ y[8] ∗ y[4]− y[7] ∗ y[9] ∗
y[4])2 + .5 ∗ (y[2] ∗ y[3] ∗ y[6]− y[7] ∗ y[3] ∗ y[4]− y[8] ∗ y[3] ∗ y[4])2 + .5 ∗ (y[2] ∗
y[6]∗y[8]+y[2]∗y[6]∗y[4]−y[9]∗y[3]∗y[8]−y[8]∗y[3]∗y[4]−y[7]∗y[3]∗y[4])2

> Patch[6, 7] := .5*(y[1]*y[5]*y[4]-y[1]*y[2]*y[3]-y[2]*y[5]*y[8])2 + .5 ∗
(y[1] ∗ y[5] ∗ y[4] + y[1] ∗ y[3] ∗ y[8] + y[1] ∗ y[8] ∗ y[4] − y[5] ∗ y[8] ∗ y[9] −
y[1] ∗ y[2] ∗ y[8]− y[2] ∗ y[9] ∗ y[4]− y[2] ∗ y[3] ∗ y[4])2 + .5 ∗ (y[1] ∗ y[8] ∗ y[4]−
y[5] ∗ y[8] ∗ y[9]− y[5] ∗ y[3] ∗ y[8]− y[5] ∗ y[3] ∗ y[4]− y[5] ∗ y[9] ∗ y[4])2

> Patch[3, 8] := .5*(y[2]*y[5]*y[7]-y[1]*y[6]*y[7])2 + .5∗ (y[1]∗y[5]∗y[6]−
y[7]∗ y[6]∗ y[4])2 + .5∗ (y[1]∗ y[5]∗ y[6]+ y[5]∗ y[6]∗ y[9]− y[7]∗ y[5]∗ y[4])2 +
.5 ∗ (y[7] ∗ y[6] ∗ y[4]− y[5] ∗ y[6] ∗ y[9]− y[2] ∗ y[5] ∗ y[6])2 + .5 ∗ (y[7] ∗ y[5] ∗
y[4]− y[2] ∗ y[5] ∗ y[6])2 + .5 ∗ (y[2] ∗ y[6] ∗ y[4]− y[1] ∗ y[5] ∗ y[4])2

> Patch[7, 9] := y[3]*y[4]*(y[2]*y[6]-y[1]*y[5])2 + .5 ∗ (y[5] ∗ y[6] ∗ y[8] +
y[5] ∗ y[6] ∗ y[4] + y[2] ∗ y[6] ∗ y[4]− y[1] ∗ y[2] ∗ y[8]− y[1] ∗ y[2] ∗ y[3]− y[1] ∗
y[3] ∗ y[5])2 + .5 ∗ (y[5] ∗ y[6] ∗ y[8] + y[5] ∗ y[6] ∗ y[4] + y[1] ∗ y[5] ∗ y[4]− y[1] ∗
y[2] ∗ y[8]− y[1] ∗ y[2] ∗ y[3]− y[2] ∗ y[3] ∗ y[6])2 + .5 ∗ (y[1] ∗ y[3] ∗ y[5]− y[2] ∗
y[3] ∗ y[6])2 + .5 ∗ (y[1] ∗ y[5] ∗ y[4]− y[2] ∗ y[6] ∗ y[4])2

> SecondTest(Delta, E9badpairs);

{6, 7}, []
{7, 9}, []
{3, 8]} []
{3, 5}, []
{1, 5}, []

THEREFORE E9 IS RAYLEIGH
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> F8


1 0 0 0 0 2 2 1 1

0 1 0 0 2 0 2 1 2

0 0 1 0 2 2 0 2 1

0 0 0 1 2 2 1 0 2


> Delta := Rayleigh(Bases(F9, Y), AllPairs);

> Balance(Delta):=



0 360 360 360 360 360 360 360 360

360 0 360 360 360 360 360 360 360

360 360 0 360 360 360 360 360 360

360 360 360 0 360 360 360 360 360

360 360 360 360 0 360 360 360 360

360 360 360 360 360 0 360 360 360

360 360 360 360 360 360 0 360 360

360 360 360 360 360 360 360 0 360

360 360 360 360 360 360 360 360 0


> F9pairs := {{3, 5}}

> FirstTest(Delta, F9pairs, 4, 9);

{3, 5}, 18, 0, 239

> Patch[3, 5] := .5*(y[1]*y[6]*y[8]-y[9]*y[6]*y[4]-y[1]*y[2]*y[7])2 + .5 ∗
(y[1] ∗ y[6] ∗ y[8]− y[1] ∗ y[2] ∗ y[4]− y[2] ∗ y[6] ∗ y[4])2 + .5 ∗ (y[7] ∗ y[8] ∗ y[9]−
y[1] ∗ y[7] ∗ y[4]− y[2] ∗ y[6] ∗ y[9]− y[2] ∗ y[9] ∗ y[4])2 + .5 ∗ (y[7] ∗ y[8] ∗ y[9] +
y[1] ∗ y[8] ∗ y[9] + y[1] ∗ y[2] ∗ y[9]− y[2] ∗ y[7] ∗ y[4]− y[2] ∗ y[8] ∗ y[7])2 + .5 ∗
(y[2] ∗ y[8] ∗ y[7] + y[7] ∗ y[6] ∗ y[8]− y[1] ∗ y[8] ∗ y[4]− y[9] ∗ y[8] ∗ y[4])2 + .5 ∗
(y[9] ∗ y[8] ∗ y[4]− y[7] ∗ y[6] ∗ y[4]− y[2] ∗ y[6] ∗ y[8])2 + .5 ∗ (y[1] ∗ y[8] ∗ y[9]+
y[1] ∗ y[2] ∗ y[9]− y[2] ∗ y[6] ∗ y[8])2 + .5 ∗ (y[1] ∗ y[8] ∗ y[4]− y[7] ∗ y[6] ∗ y[4])2
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> SecondTest(Delta, F9pairs);

{3, 5}, []
THEREFORE F8 IS RAYLEIGH

> G9:=


1 0 0 0 0 2 2 0 0

0 1 0 0 0 2 1 1 0

0 0 1 0 2 0 2 1 1

0 0 0 1 2 2 0 1 2


> Delta := Rayleigh(Bases(G9, Y), AllPairs);

> Balance(Delta):=



0 238 186 97 94 514 514 238 97

238 0 154 154 252 238 238 532 154

186 154 0 424 354 97 97 154 424

97 154 424 0 354 186 97 154 424

94 252 354 354 0 94 94 252 354

514 238 97 186 94 0 514 238 97

514 238 97 97 94 514 0 238 186

238 532 154 154 252 238 238 0 154

97 154 424 424 354 97 186 154 0


> G9pairs := {{2, 5}, {7, 9}, {3, 5}, {2, 4}, {5, 6}, {1, 6}, {7, 8}, {3,

9}, {1, 4}, {2, 8}}

>¿ FirstTest(Delta, G9pairs, 4, 9);
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{2, 5}, 9, 0, 135
”Negative Terms covered by deletion/contraction of”, 8

{7, 9}, 2, 0, 111
{3, 5}, 3, 0, 178

”Negative Terms covered by deletion/contraction of”, 4
”Negative Terms covered by deletion/contraction of”, 9

{2, 4}, 9, 0, 110
{5, 6}, 11, 0, 82
{1, 6}, 2, 0, 237

”Negative Terms covered by deletion/contraction of”, 5
”Negative Terms covered by deletion/contraction of”, 7

{7, 8}, 7, 0, 144
{3, 9}, 2, 0, 206

”Negative Terms covered by deletion/contraction of”, 4
”Negative Terms covered by deletion/contraction of”, 5

{1, 4}, 15, 0, 92
{2, 8}, 6, 0, 227

”Negative Terms covered by deletion/contraction of”, 5

> G9badpairs := {{2, 4}, {5, 6}, {7, 8}, {1, 4}, {7, 9}}

> Patch[7, 9] := .5*(y[1]*y[3]*y[6]-y[1]*y[2]*y[5])2 + .5∗ (y[1]∗y[6]∗y[4]−
y[5] ∗ y[6] ∗ y[8])2

> Patch[2, 4] := .5*(y[1]*y[7]*y[5]-y[7]*y[3]*y[8]-y[1]*y[3]*y[8])2 + .5 ∗
(y[7] ∗ y[3] ∗ y[6]− y[1] ∗ y[7] ∗ y[9])2 + .5 ∗ (y[7] ∗ y[3] ∗ y[6]+ y[5] ∗ y[6] ∗ y[7]−
y[9] ∗ y[6] ∗ y[8]− y[7] ∗ y[8] ∗ y[9]− y[8] ∗ y[3] ∗ y[6])2 + .5 ∗ (y[5] ∗ y[6] ∗ y[7]−
y[9] ∗ y[6] ∗ y[8]− y[7] ∗ y[8] ∗ y[9]− y[7] ∗ y[3] ∗ y[8])2

> Patch[5, 6] := .5*(y[1]*y[8]*y[4]+y[1]*y[8]*y[9]+y[7]*y[8]*y[9]-y[1]*y[2]*y[3]-
y[2]*y[3]*y[7]-y[2]*y[7]*y[4])2 + .5 ∗ (y[1] ∗ y[8] ∗ y[4]− y[7] ∗ y[3] ∗ y[8]− y[1] ∗
y[2] ∗ y[3]− y[2] ∗ y[3] ∗ y[7]− y[1] ∗ y[2] ∗ y[7]− y[1] ∗ y[2] ∗ y[9])2 + .5 ∗ (y[7] ∗
y[3]∗y[8]+y[1]∗y[2]∗y[9]+y[7]∗y[8]∗y[9]+y[1]∗y[8]∗y[9]−y[2]∗y[7]∗y[4])2
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> Patch[7, 8] := .5*(y[2]*y[3]*y[6]-y[1]*y[3]*y[9]-y[1]*y[2]*y[9])2 + .5 ∗
(y[2] ∗ y[3] ∗ y[6] + y[1] ∗ y[2] ∗ y[6]− y[1] ∗ y[3] ∗ y[4]− y[1] ∗ y[3] ∗ y[5])2 + .5 ∗
(y[1] ∗ y[2] ∗ y[6]− y[1] ∗ y[3] ∗ y[5]− y[5] ∗ y[3] ∗ y[6]− y[5] ∗ y[6] ∗ y[9])2

> Patch[1, 4] := .5*(y[7]*y[3]*y[8]+y[7]*y[3]*y[6]-y[5]*y[6]*y[8]-y[9]*y[6]*y[8]-
y[2]*y[3]*y[6]-y[2]*y[6]*y[8])2+.5∗(y[7]∗y[3]∗y[8]+y[5]∗y[8]∗y[7]+y[2]∗y[8]∗
y[7]−y[9]∗y[6]∗y[8]−y[2]∗y[6]∗y[9]−y[2]∗y[7]∗y[9]−y[6]∗y[7]∗y[9])2+.5∗(y[5]∗
y[8]∗y[7]+y[5]∗y[6]∗y[8]+y[2]∗y[5]∗y[7]−y[7]∗y[3]∗y[6]−y[6]∗y[7]∗y[9])2

> SecondTest(Delta, G9badpairs);

{7, 9}, []
{2, 4}, []
{5, 6}, []
{7, 8}, []
{1, 4}, []

THEREFORE G9 IS RAYLEIGH

> H9:=


1 0 0 0 0 2 2 0 0

0 1 0 0 0 2 1 1 1

0 0 1 0 2 0 2 1 1

0 0 0 1 2 2 0 1 0


> Delta := Rayleigh(Bases(H9, Y), AllPairs);
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> Balance(Delta):=



0 262 262 82 174 496 540 82 126

262 0 379 109 363 82 135 289 342

262 379 0 289 363 82 135 109 342

82 109 289 0 363 262 135 379 342

174 363 363 363 0 174 135 363 54

496 82 82 262 174 0 540 262 126

540 135 135 135 135 540 0 135 270

82 289 109 379 363 262 135 0 342

126 342 342 342 54 126 270 342 0


> H9pairs := {{3, 4}, {4, 8}, {6, 7}, {7, 9}, {3, 5}, {2, 4}, {5, 6}, {1,

6}, {7, 8}, {3, 9}, {1, 4}, {4, 6}, {1, 9}, {5, 9}, {5, 7}}

> FirstTest(Delta, H9pairs, 4, 9);

{3, 4}, 7, 0, 149
”Negative Terms covered by deletion/contraction of”, 5

{4, 8}, 2, 0, 182
”Negative Terms covered by deletion/contraction of”, 7
”Negative Terms covered by deletion/contraction of”, 9

{6, 7}, 1, 0, 238
”Negative Terms covered by deletion/contraction of”, 1
”Negative Terms covered by deletion/contraction of”, 5
”Negative Terms covered by deletion/contraction of”, 9

{7, 9}, 0, 0, 147
”Negative Terms covered by deletion/contraction of”, 1
”Negative Terms covered by deletion/contraction of”, 2
”Negative Terms covered by deletion/contraction of”, 3
”Negative Terms covered by deletion/contraction of”, 4
”Negative Terms covered by deletion/contraction of”, 5
”Negative Terms covered by deletion/contraction of”, 6
”Negative Terms covered by deletion/contraction of”, 8

{3, 5}, 6, 0, 170
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”Negative Terms covered by deletion/contraction of”, 4
{2, 4}, 14, 0, 99
{5, 6}, 7, 0, 113
{1, 6}, 0, 0, 219

”Negative Terms covered by deletion/contraction of”, 2
”Negative Terms covered by deletion/contraction of”, 3
”Negative Terms covered by deletion/contraction of”, 4
”Negative Terms covered by deletion/contraction of”, 5
”Negative Terms covered by deletion/contraction of”, 7
”Negative Terms covered by deletion/contraction of”, 8
”Negative Terms covered by deletion/contraction of”, 9

{7, 8}, 10, 0, 107
{3, 9}, 2, 0, 168

”Negative Terms covered by deletion/contraction of”, 2
”Negative Terms covered by deletion/contraction of”, 7

{1, 4}, 15, 0, 87
{4, 6}, 2, 0, 141

”Negative Terms covered by deletion/contraction of”, 1
”Negative Terms covered by deletion/contraction of”, 2

{1, 9}, 10, 0, 106
{5, 9}, 22, 0, 88
{5, 7}, 6, 0, 97

”Negative Terms covered by deletion/contraction of”, 9

> H9badpairs := {{2, 4}, {5, 6}, {7, 8}, {1, 4}, {1, 9}, {5, 9}}

> Patch[2, 4] := .5*(y[1]*y[3]*y[8]-y[1]*y[5]*y[9]-y[1]*y[7]*y[5])2 + .5 ∗
(y[7] ∗ y[3] ∗ y[8]− y[5] ∗ y[6] ∗ y[7]− y[1] ∗ y[7] ∗ y[5]− y[7] ∗ y[5] ∗ y[9])2 + .5 ∗
(y[7] ∗ y[5] ∗ y[9] − y[7] ∗ y[3] ∗ y[8] − y[1] ∗ y[8] ∗ y[7] − y[7] ∗ y[3] ∗ y[6])2 +
.5 ∗ (y[1] ∗ y[5] ∗ y[9]− y[1] ∗ y[8] ∗ y[7]− y[1] ∗ y[3] ∗ y[8])2 + .5 ∗ (y[8] ∗ y[3] ∗
y[6]− y[5] ∗ y[6] ∗ y[7]− y[5] ∗ y[6] ∗ y[9])2 + .5 ∗ (y[5] ∗ y[6] ∗ y[9]− y[8] ∗ y[3] ∗
y[6]− y[7] ∗ y[3] ∗ y[6])2 + 2 ∗ y[1] ∗ y[7] ∗ (y[5] ∗ y[9]− y[8] ∗ y[3])2 + 2 ∗ y[6] ∗
y[7] ∗ (y[8] ∗ y[3]− y[5] ∗ y[9])2 + 2 ∗ y[1] ∗ y[6] ∗ (y[8] ∗ y[3]− y[5] ∗ y[9])2

> Patch[5, 6] := .5*(y[2]*y[7]*y[4]-y[7]*y[3]*y[8])2 + .5∗ (y[7]∗y[3]∗y[8]+
y[1]∗y[2]∗y[3]+y[2]∗y[3]∗y[7]−y[1]∗y[8]∗y[4]−y[1]∗y[8]∗y[9])2+ .5∗(y[1]∗
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y[2]∗y[3]+y[2]∗y[3]∗y[7]+y[2]∗y[7]∗y[4]−y[1]∗y[8]∗y[4]−y[1]∗y[9]∗y[4])2

> Patch[7, 8] := .5*(y[1]*y[2]*y[4]-y[1]*y[5]*y[9])2 + .5∗ (y[1]∗y[2]∗y[6]−
y[1]∗y[3]∗y[5]−y[1]∗y[5]∗y[9])2+ .5∗(y[1]∗y[2]∗y[6]+y[9]∗y[3]∗y[6]+y[1]∗
y[6]∗y[9]+y[2]∗y[3]∗y[6]−y[1]∗y[3]∗y[5]−y[5]∗y[3]∗y[6])2+ .5∗(y[1]∗y[3]∗
y[4]−y[9]∗y[3]∗y[6]−y[2]∗y[3]∗y[6])2+.5∗(y[1]∗y[3]∗y[4]−y[1]∗y[6]∗y[9])2

> Patch[1, 4] := y[5]*y[3]*(y[6]*y[9]-y[8]*y[7])2+.5∗(y[5]∗y[8]∗y[7]+y[5]∗
y[6]∗y[8]+y[7]∗y[5]∗y[9]−y[9]∗y[3]∗y[6]−y[7]∗y[3]∗y[6]−y[2]∗y[6]∗y[9]−y[2]∗
y[6]∗y[8])2+.5∗(y[7]∗y[3]∗y[6]+y[7]∗y[3]∗y[8]+y[2]∗y[6]∗y[7]−y[2]∗y[5]∗y[7]−
y[5]∗y[6]∗y[9]−y[5]∗y[6]∗y[8]−y[7]∗y[5]∗y[9])2+.5∗(y[7]∗y[3]∗y[8]−y[2]∗y[3]∗
y[6]−y[2]∗y[6]∗y[8]−y[9]∗y[3]∗y[6])2+.5∗(y[5]∗y[8]∗y[7]−y[5]∗y[6]∗y[9])2

> Patch[1, 9] := y[6]*y[7]*(y[2]*y[8]-y[3]*y[4])2 + .5 ∗ (y[2] ∗ y[7] ∗ y[4]−
y[5] ∗ y[6] ∗ y[4])2 + .5 ∗ (y[2] ∗ y[7] ∗ y[4] + y[2] ∗ y[6] ∗ y[8]− y[7] ∗ y[3] ∗ y[8]−
y[6] ∗ y[3] ∗ y[4])2 + .5 ∗ (y[6] ∗ y[3] ∗ y[4] + y[7] ∗ y[3] ∗ y[6]− y[2] ∗ y[6] ∗ y[8]−
y[2] ∗ y[6] ∗ y[7])2 + .5 ∗ (y[2] ∗ y[6] ∗ y[7]− y[5] ∗ y[6] ∗ y[4])2 + .5 ∗ (y[5] ∗ y[6] ∗
y[8]− y[7] ∗ y[3] ∗ y[6]− y[7] ∗ y[3] ∗ y[8])2

> Patch[5,9] := 0.5*(((y[2]*y[6]*y[4]+y[2]*y[7]*y[4]+y[1]*y[7]*y[4]+y[1]*y[2]*y[4])-
(y[1]*y[3]*y[8]+y[7]*y[3]*y[8]+ y[8]*y[3]*y[6]+y[7]*y[3]*y[6]+y[1]*y[3]*y[6]+y[1]*y[2]*y[6]))2+
((y[1]∗y[7]∗y[4]+y[1]∗y[6]∗y[4]+y[1]∗y[8]∗y[7]+y[1]∗y[6]∗y[8])− (y[2]∗
y[6] ∗ y[7] + y[1] ∗ y[2] ∗ y[6] + y[7] ∗ y[3] ∗ y[6]))2 + ((y[1] ∗ y[6] ∗ y[4] + y[2] ∗
y[6] ∗ y[4]+ y[2] ∗ y[6] ∗ y[7]+ y[1] ∗ y[2] ∗ y[4]+ y[2] ∗ y[7] ∗ y[4])− (y[1] ∗ y[3] ∗
y[8]+ y[8] ∗ y[3] ∗ y[6]+ y[1] ∗ y[8] ∗ y[7]+ y[7] ∗ y[3] ∗ y[8]+ y[1] ∗ y[3] ∗ y[6]))2)

> SecondTest(Delta, H9badpairs);

{2, 4}, []
{5, 6}, []
{7, 8}, []
{1, 4}, []
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{1, 9}, []
{5, 9}, []

THEREFORE H9 IS RAYLEIGH

> I9:=


1 0 0 0 0 2 2 0 0

0 1 0 0 0 2 1 1 1

0 0 1 0 2 0 2 1 1

0 0 0 1 2 2 0 1 2


> Delta := Rayleigh(Bases(I9, Y), AllPairs);

> Balance(Delta):=



0 238 238 100 232 508 465 100 97

238 0 354 234 372 78 118 412 154

238 354 0 412 372 78 118 234 154

100 234 412 0 264 130 78 390 316

232 372 372 264 0 88 124 264 192

508 78 78 130 88 0 649 130 313

465 118 118 78 124 649 0 78 348

100 412 234 390 264 130 78 0 316

97 154 154 316 192 313 348 316 0


> I9pairs := {{3, 4}, {4, 8}, {6, 7}, {7, 9}, {3, 5}, {2, 4}, {5, 6}, {1, 5},

{1, 6}, {7, 8}, {3, 9}, {4, 9}, {1, 4}, {1, 9}, {5, 9}, {5, 7}, {4, 5}, {2, 6},
{2, 7}, {2, 3}, {6, 9}, {1, 7}, {1, 2}, {4, 6}}

> FirstTest(Delta, I9pairs, 4, 9);

{3, 4}, 4, 0, 193
”Negative Terms covered by deletion/contraction of”, 5
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{4, 8}, 2, 0, 182
”Negative Terms covered by deletion/contraction of”, 7
”Negative Terms covered by deletion/contraction of”, 9

{6, 7}, 1, 0, 268
”Negative Terms covered by deletion/contraction of”, 1
”Negative Terms covered by deletion/contraction of”, 5
”Negative Terms covered by deletion/contraction of”, 9

{7, 9}, 0, 0, 162
”Negative Terms covered by deletion/contraction of”, 1
”Negative Terms covered by deletion/contraction of”, 2
”Negative Terms covered by deletion/contraction of”, 3
”Negative Terms covered by deletion/contraction of”, 4
”Negative Terms covered by deletion/contraction of”, 5
”Negative Terms covered by deletion/contraction of”, 6
”Negative Terms covered by deletion/contraction of”, 8

{3, 5}, 7, 0, 178
”Negative Terms covered by deletion/contraction of”, 4

{2, 4}, 10, 0, 142
{5, 6}, 11, 0, 79
{1, 5}, 5, 0, 123

”Negative Terms covered by deletion/contraction of”, 9
{1, 6}, 0, 0, 218

”Negative Terms covered by deletion/contraction of”, 2
”Negative Terms covered by deletion/contraction of”, 3
”Negative Terms covered by deletion/contraction of”, 4
”Negative Terms covered by deletion/contraction of”, 5
”Negative Terms covered by deletion/contraction of”, 7
”Negative Terms covered by deletion/contraction of”, 8
”Negative Terms covered by deletion/contraction of”, 9

{7, 8}, 14, 0, 79
{3, 9}, 9, 0, 109
{4, 9}, 2, 0, 151

”Negative Terms covered by deletion/contraction of”, 7
”Negative Terms covered by deletion/contraction of”, 8

{1, 4}, 10, 0, 87
{4, 6}, 5, 0, 89

”Negative Terms covered by deletion/contraction of”, 2
{1, 9}, 16, 0, 90
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{5, 9}, 6, 0, 116
{5, 7}, 4, 0, 86
{4, 5}, 8, 0, 146

”Negative Terms covered by deletion/contraction of”, 3
{2, 6}, 13, 0, 78
{2, 7}, 7, 0, 88
{2, 3}, 2, 0, 182

”Negative Terms covered by deletion/contraction of”, 7
”Negative Terms covered by deletion/contraction of”, 9

{6, 9}, 1, 0, 154
”Negative Terms covered by deletion/contraction of”, 1
”Negative Terms covered by deletion/contraction of”, 5
”Negative Terms covered by deletion/contraction of”, 7

{1, 7}, 1, 0, 209
”Negative Terms covered by deletion/contraction of”, 5
”Negative Terms covered by deletion/contraction of”, 6
”Negative Terms covered by deletion/contraction of”, 9

{1, 2}, 2, 0, 128
”Negative Terms covered by deletion/contraction of”, 4
”Negative Terms covered by deletion/contraction of”, 6

> I9badpairs := {{2, 4}, {5, 6}, {7, 8}, {3, 9}, {1, 4}, {1, 9}, {5, 9}, {5,
7}, {2, 6}, {2, 7}}

> Patch[2, 4] := (y[7]*y[3]*y[8]-y[5]*y[6]*y[7]-y[5]*y[7]*y[9]-y[1]*y[5]*y[7]+.5*y[1]*y[3]*y[8]-
y[1]*y[5]*y[9]-y[5]*y[6]*y[9]+y[6]*y[3]*y[8])2

> Patch[5, 6] := (y[1]*y[2]*y[3]+.5*y[7]*y[3]*y[8]+y[2]*y[3]*y[7]+.5*y[2]*y[4]*y[7]-
y[1]*y[4]*y[8]-y[1]*y[3]*y[9]-y[1]*y[8]*y[9]-y[1]*y[4]*y[9]-y[1]*y[2]*y[9])2+.75∗
(y[2] ∗ y[4] ∗ y[7]− y[7] ∗ y[3] ∗ y[8])2

> Patch[7, 8] := .5*((y[1]*y[3]*y[9]+y[1]*y[3]*y[4]+y[1]*y[2]*y[9]-y[5]*y[3]*y[6]-
y[1]*y[6]*y[4]-y[2]*y[3]*y[6])2 +(y[1]∗y[3]∗y[9]+y[1]∗y[3]∗y[5]−y[1]∗y[2]∗
y[6] − y[6] ∗ y[3] ∗ y[4] − y[5] ∗ y[6] ∗ y[4] − y[2] ∗ y[3] ∗ y[6])2 + (y[5] ∗ y[3] ∗
y[6] + y[1] ∗ y[5] ∗ y[4] + y[1] ∗ y[3] ∗ y[5]− y[1] ∗ y[2] ∗ y[6]− y[1] ∗ y[2] ∗ y[9])2)
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> Patch[3, 9] := (y[1]*y[6]*y[4]+y[1]*y[2]*y[6]+.5*y[1]*y[4]*y[7]-y[2]*y[5]*y[7]-
y[5]*y[7]*y[8]-y[5]*y[6]*y[8]-y[1]*y[5]*y[8]-y[1]*y[2]*y[5]-.5*y[1]*y[7]*y[8])2

> Patch[1, 4] := (y[2]*y[6]*y[8]+y[5]*y[6]*y[8]+y[2]*y[5]*y[7]+.5*y[5]*y[7]*y[8]-
.5*y[3]*y[7]*y[8]-y[3]*y[6]*y[9]-y[3]*y[6]*y[7]-y[3]*y[7]*y[9])2+.5∗(y[2]∗y[3]∗
y[6]− y[3] ∗ y[7] ∗ y[8])2

> Patch[1, 9] := y[6]*y[7]*(y[3]*y[4]-y[2]*y[8])2 + .5 ∗ ((y[2] ∗ y[3] ∗ y[6] +
y[5]∗y[3]∗y[6]+y[6]∗y[3]∗y[4]+y[5]∗y[6]∗y[4]+y[2]∗y[5]∗y[6]−y[3]∗y[7]∗y[8]−
y[2]∗y[7]∗y[4]−y[2]∗y[8]∗y[7]−y[5]∗y[3]∗y[7])2+(y[2]∗y[3]∗y[6]+y[5]∗y[6]∗
y[8]+y[2]∗y[6]∗y[8]−y[3]∗y[7]∗y[8]−y[2]∗y[7]∗y[4]−y[7]∗y[3]∗y[4]−y[2]∗y[5]∗
y[7])2+(y[2]∗y[6]∗y[8]−y[6]∗y[3]∗y[4])2+(y[2]∗y[8]∗y[7]−y[7]∗y[3]∗y[4])2)

> Patch[5, 9] := (y[1]*y[3]*y[8]+y[3]*y[6]*y[8]+.5*y[3]*y[7]*y[8]-y[2]*y[7]*y[4]-
y[1]*y[2]*y[4]-.5*y[2]*y[4]*y[6])2

> Patch[5, 7] := .5*((y[1]*y[2]*y[9]-y[2]*y[3]*y[6])2 + (y[1] ∗ y[2] ∗ y[4] −
y[1] ∗ y[3] ∗ y[8])2 + (y[2] ∗ y[4] ∗ y[6]− y[3] ∗ y[6] ∗ y[8])2 + (y[1] ∗ y[3] ∗ y[9]−
y[2] ∗ y[3] ∗ y[6])2)

> Patch[2, 6] := .5*((y[1]*y[3]*y[9]+y[1]*y[3]*y[4]+y[1]*y[3]*y[5]-y[1]*y[8]*y[7]-
y[7]*y[3]*y[4]-y[7]*y[3]*y[8])2 +(y[5]∗y[3]∗y[7]+y[7]∗y[3]∗y[8]−y[1]∗y[8]∗
y[9] − y[1] ∗ y[3] ∗ y[9] − y[1] ∗ y[8] ∗ y[4])2 + (y[1] ∗ y[3] ∗ y[5] + y[5] ∗ y[3] ∗
y[7] + y[7] ∗ y[5] ∗ y[4]− y[1] ∗ y[8] ∗ y[7]− y[1] ∗ y[8] ∗ y[9])2)

> Patch[2, 7] := (y[1]*y[6]*y[8]+.5*y[1]*y[8]*y[9]+.5*y[1]*y[8]*y[4]+.5*y[1]*y[4]*y[9]-
y[4]*y[5]*y[6]-.5*y[1]*y[4]*y[5])2 + .5 ∗ (y[1] ∗ y[8] ∗ y[4]− y[3] ∗ y[4] ∗ y[6])2 +
.5 ∗ (y[1] ∗ y[4] ∗ y[9]− y[3] ∗ y[4] ∗ y[6])2
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> SecondTest(Delta, I9badpairs);

{2, 4}, []
{5, 6}, []
{7, 8}, []
{3, 9}, []
{1, 4}, []
{1, 9}, []
{5, 9}, []
{5, 7}, []
{2, 6}, []
{2, 7}, []

THEREFORE I9 IS RAYLEIGH

> J9:=


1 0 0 0 0 2 2 0 1

0 1 0 0 0 2 1 1 0

0 0 1 0 2 0 2 1 0

0 0 0 1 2 2 0 1 1


> Delta := Rayleigh(Bases(J9, Y), AllPairs);

> Balance(Delta):=



0 150 276 429 150 276 342 90 429

150 0 150 126 312 429 198 429 312

276 150 0 429 429 90 342 276 150

429 126 429 0 312 150 198 150 312

150 312 429 312 0 150 198 429 126

276 429 90 150 150 0 342 276 429

342 198 342 198 198 342 0 342 198

90 429 276 150 429 276 342 0 150

429 312 150 312 126 429 198 150 0


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> J9pairs := {{3, 5}, {2, 4}, {5, 6}, {1, 6}, {7, 8}, {4, 9}, {7, 9}, {1, 8}}

> FirstTest(Delta, J9pairs, 4, 9);

{7, 9}, 12, 0, 133
{3, 5}, 6, 0, 199

”Negative Terms covered by deletion/contraction of”, 4
{2, 4}, 10, 0, 95
{5, 6}, 10, 0, 111
{1, 6}, 6, 0, 156
{7, 8}, 5, 0, 184
{4, 9}, 7, 0, 158

”Negative Terms covered by deletion/contraction of”, 1
{1, 8}, 20, 0, 103

> J9badpairs := {{2, 4}, {5, 6}, {1, 6}, {7, 8}, {7, 9}, {1, 8}}

> Patch[2, 4] := .5*(y[7]*y[8]*y[9]+y[7]*y[3]*y[9]-y[1]*y[6]*y[8]-y[1]*y[6]*y[7])2+
.5 ∗ (y[5] ∗ y[6] ∗ y[7]− y[6] ∗ y[3] ∗ y[8]− y[7] ∗ y[3] ∗ y[8]− y[7] ∗ y[8] ∗ y[9])2 +
.5 ∗ (y[7] ∗ y[3] ∗ y[9]− y[1] ∗ y[3] ∗ y[6]− y[1] ∗ y[5] ∗ y[7])2 + .5 ∗ (y[1] ∗ y[5] ∗
y[7]− y[1] ∗ y[3] ∗ y[8]− y[7] ∗ y[3] ∗ y[8])2

> Patch[5, 6] := (y[1]*y[8]*y[4]+y[9]*y[8]*y[4]+y[7]*y[8]*y[9]+y[9]*y[3]*y[8]+y[1]*y[8]*y[9]-
.5*y[2]*y[7]*y[4]-.5*y[7]*y[3]*y[8]-y[1]*y[2]*y[3]-y[2]*y[3]*y[7])2 + .75 ∗ (y[2] ∗
y[7] ∗ y[4]− y[7] ∗ y[3] ∗ y[8])2

> Patch[1, 6] := (y[2]*y[3]*y[5]-.5*y[7]*y[3]*y[9])2 + (y[2] ∗ y[3] ∗ y[4] −
.5 ∗ y[7] ∗ y[3] ∗ y[9])2 + .5 ∗ (y[7] ∗ y[3] ∗ y[9]− y[2] ∗ y[7] ∗ y[4])2 + (y[2] ∗ y[8] ∗
y[4]− .5 ∗ y[7] ∗ y[8] ∗ y[9])2 + (y[5] ∗ y[8] ∗ y[4]− .5 ∗ y[7] ∗ y[8] ∗ y[9])2 + .5 ∗
(y[2] ∗ y[7] ∗ y[4]− y[7] ∗ y[8] ∗ y[9])2
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> Patch[7, 8] := .5*(y[1]*y[2]*y[6]-y[1]*y[3]*y[5]-y[5]*y[3]*y[6])2 + .5 ∗
(y[1] ∗ y[3] ∗ y[5]− y[1] ∗ y[2] ∗ y[6]− y[2] ∗ y[3] ∗ y[6])2 + .5 ∗ (y[2] ∗ y[3] ∗ y[6]−
y[1] ∗ y[3] ∗ y[4])2 + .5 ∗ (y[5] ∗ y[3] ∗ y[6]− y[1] ∗ y[6] ∗ y[9])2

> Patch[7, 9] := y[4]*y[1]*(y[3]*y[6]-y[2]*y[5])2 + .5 ∗ (y[1] ∗ y[3] ∗ y[6]−
y[1] ∗ y[2] ∗ y[5]− y[2] ∗ y[3] ∗ y[4]− y[2] ∗ y[3] ∗ y[5])2 + .5 ∗ (y[1] ∗ y[2] ∗ y[5] +
y[1] ∗ y[5] ∗ y[8] + y[1] ∗ y[6] ∗ y[8] + y[1] ∗ y[2] ∗ y[8]− y[5] ∗ y[3] ∗ y[6]− y[1] ∗
y[3] ∗ y[6]− y[5] ∗ y[6] ∗ y[4])2 + .5 ∗ (y[1] ∗ y[6] ∗ y[8]− y[5] ∗ y[8] ∗ y[4]− y[5] ∗
y[6] ∗ y[4]− y[2] ∗ y[8] ∗ y[4]− y[2] ∗ y[5] ∗ y[4])2

>Patch[1, 8] := .5*((y[5]*y[6]*y[4]-y[2]*y[9]*y[7]-y[6]*y[9]*y[7]-y[2]*y[6]*y[7]-
y[2]*y[7]*y[4]-y[7]*y[5]*y[9])2 +(y[5]∗y[6]∗y[4]+y[7]∗y[3]∗y[4]+y[5]∗y[3]∗
y[7] + y[7] ∗ y[4] ∗ y[5]− y[2] ∗ y[9] ∗ y[7]− y[6] ∗ y[9] ∗ y[7]− y[2] ∗ y[6] ∗ y[7]−
y[2] ∗ y[3] ∗ y[9])2 + (y[2] ∗ y[3] ∗ y[9] + y[6] ∗ y[3] ∗ y[4] + y[2] ∗ y[3] ∗ y[6] +
y[5] ∗ y[3] ∗ y[6] + y[9] ∗ y[3] ∗ y[6]− y[7] ∗ y[4] ∗ y[5]− y[7] ∗ y[3] ∗ y[4]− y[5] ∗
y[3] ∗ y[7]− y[2] ∗ y[7] ∗ y[4]− y[7] ∗ y[5] ∗ y[9])2)

> SecondTest(Delta, J9badpairs);

{7, 9}, []
{2, 4}, []
{5, 6}, []
{1, 6}, []
{7, 8}, []
{1, 8}, []

THEREFORE J9 IS RAYLEIGH
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Appendix D

Calculations for 10-element
candidates

> Balance(Rayleigh(Bases(A10,Y),AllPairs));

0 345 345 345 144 1377 1377 345 345 345

345 0 307 307 648 345 345 1012 307 1012

345 307 0 1012 648 345 345 307 1012 307

345 307 1012 0 648 345 345 307 1012 307

144 648 648 648 0 144 144 648 648 648

1377 345 345 345 144 0 1377 345 345 345

1377 345 345 345 144 1377 0 345 345 345

345 1012 307 307 648 345 345 0 307 1012

345 307 1012 1012 648 345 345 307 0 307

345 1012 307 307 648 345 345 1012 307 0


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> Balance(Rayleigh(Bases(C10,Y),AllPairs));

0 345 345 345 144 1377 1377 345 345 345

345 0 307 307 648 345 345 1012 307 1012

345 307 0 1012 648 345 345 307 1012 307

345 307 1012 0 648 345 345 307 1012 307

144 648 648 648 0 144 144 648 648 648

1377 345 345 345 144 0 1377 345 345 345

1377 345 345 345 144 1377 0 345 345 345

345 1012 307 307 648 345 345 0 307 1012

345 307 1012 1012 648 345 345 307 0 307

345 1012 307 307 648 345 345 1012 307 0


> Balance(Rayleigh(Bases(E10,Y),AllPairs));

0 345 345 67 259 1594 1294 67 634 195

345 0 655 655 669 67 271 516 553 757

345 655 0 516 669 67 271 655 553 757

67 655 516 0 669 345 271 655 553 757

259 669 669 669 0 259 475 669 561 360

1594 67 67 345 259 0 1294 345 634 195

1294 271 271 271 475 1294 0 271 135 546

67 516 655 655 669 345 271 0 553 757

634 553 553 553 561 634 135 553 0 234

195 757 757 757 360 195 546 757 234 0


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> Balance(Rayleigh(Bases(F10,Y),AllPairs));

0 289 289 103 316 1468 1113 103 600 121

289 0 655 892 597 73 210 759 514 277

289 655 0 759 597 73 210 892 514 277

103 892 759 0 453 165 154 739 382 535

316 597 597 453 0 124 364 453 516 660

1468 73 73 165 124 0 1393 165 424 465

1113 210 210 154 364 1393 0 154 112 700

103 759 892 739 453 165 154 0 382 535

600 514 514 382 516 424 112 382 0 472

121 277 277 535 660 465 700 535 472 0


> Balance(Rayleigh(Bases(G10,Y),AllPairs));

0 316 316 316 264 1476 736 316 856 736

316 0 640 1084 604 316 316 1084 604 316

316 640 0 1084 604 316 316 1084 604 316

316 1084 1084 0 604 316 316 640 604 316

264 604 604 604 0 264 856 604 336 856

1476 316 316 316 264 0 736 316 856 736

736 316 316 316 856 736 0 316 264 1476

316 1084 1084 640 604 316 316 0 604 316

856 604 604 604 336 856 264 604 0 264

736 316 316 316 856 736 1476 316 264 0



94



> Balance(Rayleigh(Bases(I10,Y),AllPairs));

0 544 544 136 544 1156 1224 136 204 136

544 0 1012 280 876 138 220 552 634 172

544 1012 0 552 876 138 220 280 634 172

136 280 552 0 552 304 120 808 760 712

544 876 876 552 0 274 220 552 90 444

1156 138 138 304 274 0 1594 304 105 586

1224 220 220 120 220 1594 0 120 330 540

136 552 280 808 552 304 120 0 760 712

204 634 634 760 90 105 330 760 0 666

136 172 172 712 444 586 540 712 666 0


> Balance(Rayleigh(Bases(K10,Y),AllPairs));

0 493 493 493 357 1105 918 493 510 918

493 0 1033 268 762 493 351 880 915 351

493 1033 0 880 762 493 351 268 915 351

493 268 880 0 762 493 351 1033 915 351

357 762 762 762 0 357 837 762 36 837

1105 493 493 493 357 0 918 493 510 918

918 351 351 351 837 918 0 351 378 1215

493 880 268 1033 762 493 351 0 915 351

510 915 915 915 36 510 378 915 0 378

918 351 351 351 837 918 1215 351 378 0


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> Balance(Rayleigh(Bases(M10,Y),AllPairs));

0 274 274 138 304 1249 1468 138 105 649

274 0 1012 604 552 138 112 876 226 634

274 1012 0 876 552 138 112 604 226 634

138 604 876 0 552 274 112 1012 634 226

304 552 552 552 0 304 160 552 624 624

1249 138 138 274 304 0 1468 274 649 105

1468 112 112 112 160 1468 0 112 508 508

138 876 604 1012 552 274 112 0 634 226

105 226 226 634 624 649 508 634 0 577

649 634 634 226 624 105 508 226 577 0


> Balance(Rayleigh(Bases(N10,Y),AllPairs));

0 262 1012 390 562 946 604 262 262 1204

262 0 514 480 814 262 838 814 514 838

1012 514 0 930 814 262 88 514 364 838

390 480 930 0 930 390 210 930 930 210

562 814 814 930 0 262 388 814 514 238

946 262 262 390 262 0 1204 562 1012 604

604 838 88 210 388 1204 0 238 838 1021

262 814 514 930 814 562 238 0 814 388

262 514 364 930 514 1012 838 814 0 88

1204 838 838 210 238 604 1021 388 88 0


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> Balance(Rayleigh(Bases(P10,Y),AllPairs));

0 417 417 313 316 1009 609 313 760 1201

417 0 1009 609 760 417 313 1201 316 313

417 1009 0 1201 760 417 313 609 316 313

313 609 1201 0 552 313 225 1113 700 225

316 760 760 552 0 316 700 552 336 700

1009 417 417 313 316 0 1201 313 760 609

609 313 313 225 700 1201 0 225 552 1113

313 1201 609 1113 552 313 225 0 700 225

760 316 316 700 336 760 552 700 0 552

1201 313 313 225 700 609 1113 225 552 0


> Balance(Rayleigh(Bases(R10,Y),AllPairs));

0 564 384 792 384 564 396 852 972 852

564 0 316 564 1096 508 828 1096 600 316

384 316 0 852 913 1096 621 289 411 913

792 564 852 0 852 564 396 384 972 384

384 1096 913 852 0 316 621 913 411 289

564 508 1096 564 316 0 828 316 600 1096

396 828 621 396 621 828 0 621 1071 621

852 1096 289 384 913 316 621 0 411 913

972 600 411 972 411 600 1071 411 0 411

852 316 913 384 289 1096 621 913 411 0


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> Balance(Rayleigh(Bases(T10,Y),AllPairs));

0 355 1150 355 355 864 355 405 1150 405

355 0 199 592 1039 355 1039 795 795 199

1150 199 0 795 795 405 199 418 865 418

355 592 795 0 1039 355 1039 199 199 795

355 1039 795 1039 0 355 592 795 199 199

864 355 405 355 355 0 355 1150 405 1150

355 1039 199 1039 592 355 0 199 795 795

405 795 418 199 795 1150 199 0 418 865

1150 795 865 199 199 405 795 418 0 418

405 199 418 795 199 1150 795 865 418 0


> Balance(Rayleigh(Bases(X10,Y),AllPairs));

0 864 864 864 864 864 864 864 864 864

864 0 864 864 864 864 864 864 864 864

864 864 0 864 864 864 864 864 864 864

864 864 864 0 864 864 864 864 864 864

864 864 864 864 0 864 864 864 864 864

864 864 864 864 864 0 864 864 864 864

864 864 864 864 864 864 0 864 864 864

864 864 864 864 864 864 864 0 864 864

864 864 864 864 864 864 864 864 0 864

864 864 864 864 864 864 864 864 864 0


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