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Abstract 

Over the past century chlorine has been a reliable disinfectant to reduce transmission of 

waterborne diseases in drinking water. Concerns about chlorination have increased since it 

was discovered in the 1970s that use of chlorine in drinking water produces trihalomethanes 

(THMs), when chlorine reacts with natural organic matter (NOM), which has been observed 

in increased levels in surface water during the past decades. THM and other disinfection by-

products (DBPs) such as some of the haloacetic acids (HAAs) and some nitrosamines are 

considered probable human carcinogens by USEPA.  

Since DBPs are still formed even when using alternative disinfectants such as chloramines, 

treatment processes by which disinfection by-product precursors are removed continue to be 

studied. Many researchers have demonstrated that the use of pre-ozonation/biological 

processes in the production of drinking water has the potential to decrease levels of 

disinfection by-products in finished water more than conventional treatment alone. 

Two of the parameters which affect the efficiency of DBP precursor removal in biofilters are 

filter media and filter flow rate. In this research, the biofiltration process was examined using 

pilot-scale filters receiving ozonated water to determine the relative effectiveness of these 

parameters for influencing the removal of natural organic matter. The research presented in 

this thesis initially focuses on determining the effects of flow rate and filter media including 

GAC (granular activated carbon) and anthracite on decreasing the levels of THM, HAA and 

nitrosamine precursors in biologically active filters. In the second part, the performances of 

full-scale and pilot-scale filters at the Mannheim Water Treatment Plant were compared. 
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THM and HAA precursor removal was found to decrease when loading rates were increased, 

likely due to associated shorter contact times in the filters. Also, higher THM and HAA 

precursor removal was always observed in the GAC filters than in the anthracite filters. 

However, removal of nitrosamines was not affected by flow rate or the type of filter media. 

In general, the pilot-scale filter performance was representative of full-scale filter 

performance, especially in regards to THM precursor and chlorine demand removal. 

Statistical evaluation and interpretation of the data for HAA and NDMA precursor removal 

was more difficult, likely due to the low concentrations of these DBPs which was near their 

method detection limits (MDLs) and also because of some operational problems with pilot 

filter #1.  Despite these limitations, the results of this study add to the literature concerning 

the use of different types of media to support biofiltration and reduce DBP precursor 

concentrations during drinking water treatment. 
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Chapter 1 Introduction 

1.1 Background 

Since the early days of chlorine disinfection, water quality control criteria and regulations for 

drinking water have been related mainly to the biological safety parameters and appearance 

properties of water such as color, taste, and odor. After a Dutch water chemist found in the 

early 1970s that chlorination of drinking water produced chloroform, numerous researchers 

followed his work and by the end of the 1970s confirmed trihalomethanes as one of the most 

important groups of disinfection by-products (DBPs) to be formed due to water chlorination 

in the presence of NOM (Minear and Amy, 1996).  

Some of these DBPs have been recognized as potentially carcinogenic substances. 

Accordingly, the maximum concentration levels (MCLs) set by the USEPA for TTHM and 

HAA5 (consisting of monochloroacetic acid, dichloroacetic acid, trichloroacetic acid, 

monobromoacetic acid, dibromoacetic acid) are 80 and 60 μg/L, respectively. As a result, a 

need to know how to produce microbially safe water with a minimum possibility of 

formation of disinfection by-products arose. 

The first attempts at decreasing DBP formation were focused on adopting an alternative 

disinfectant such as chloramines or ozone. However, since DBPs are formed by all different 

kinds of chemical disinfectants in the presence of NOM, and because there are also 

disadvantages associated with other types of disinfectants (which may include disinfection 

efficiency or cost, for example, depending on the system being considered), the most 
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efficient way to control DBPs has been the control and removal of NOM and, therefore, DBP 

precursors. 

It has been demonstrated that the NOM in natural waters, which is comprised of humic acids 

and fulvic acids (Collins and Amy, 1986), is well removed through granular activated carbon 

(GAC) filters when operated biologically. In the biofiltration process, microorganisms that 

are present in water grow and develop into a biofilm on the filter media surface by utilizing 

organic substances from the water as carbon sources. The combination of pre-ozonation and 

GAC biofilters has been demonstrated to enhance biodegradable organic matter removal 

relative to other biofilters as ozone converts NOM into smaller biodegradable compounds 

(Langlais et al., 1991). A reduction in biodegradable organic matter results in a decrease in 

the DBP load of finished water and produces a more biologically stable water (Huck et al., 

1992; Huck et al., 1994). 

1.2 Objective and Scope 

The first objective of this research was comparing the performance of the Mannheim Water 

Treatment Plant pilot-scale filters with its full-scale filters, which have similar types of media 

but not exactly same physical characteristics, to understand if they perform significantly 

differently in removing disinfection by-product formation potential. In other words, this 

research was performed to determine if the pilot filters represent the full-scale filter 

performance, and it was investigated by measuring the chlorine demand and subsequent 

disinfection by-products formed, including trihalomethanes (THMs), haloacetic acids 

(HAAs) and nitrosamines, in filters’ influents and effluents. During these experiments, the 

pilot-scale filters were operated under the same conditions as the full-scale filters, i.e., 
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running in biological mode and at similar loading rates, and backwashing with similar 

protocols. However, the range of loading rates that could be studied at full-scale and, 

therefore, in the pilot-scale filters was limited depending on the amount of water that Region 

was allowed to take from the Grand River in different weeks. In addition, different filter 

media (GAC vs. anthracite) performance was investigated as part of this research. 

The second objective was a study focused on the pilot-scale filters to assess the effects of 

flow rate on the performance of filters containing different types of media for reducing the 

disinfection by-product formation potential. The aim was to determine the importance of 

flow rate in selecting an optimal filter media for biological drinking water treatment 

processes. 

1.3 Thesis Organization 

Chapter 2 contains a comprehensive review of different studies concerning the formation of 

disinfection by-products and their precursors in the water treatment industry. Then it reviews 

the importance and efficiency of different filter media on biofiltration with respect to 

disinfection by-product removal. Chapter 3 describes the materials and analytical methods 

used for analytical measurements, and also it explains the experimental details concerning 

performing the experiments. Chapters 4 and 5 discuss the experimental results and allow us 

to make several conclusions concerning the two main objectives of this thesis in Chapter 6. 
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Chapter 2 Literature Review 

2.1 Overview 

This chapter reviews the occurrence of chlorination and chloramination by-products in 

drinking water and their health impacts. These studies, consisting of research on disinfection 

by-product precursors and how biofiltration can remove them, will be considered in this 

chapter. 

2.2 Chlorination, Chloramination By-products in Drinking Water 

For over a century, disinfection processes in water treatment have been used with the aim of 

controlling waterborn diseases by eliminating associated microorganisms. To accomplish 

disinfection, chlorine is the most common disinfectant that is added to the water at or near 

the last step of water treatment in public drinking water treatment systems. This should 

ensure that the presence of a disinfectant residual in water distribution system keeps water 

free of pathogenic microorganisms. 

To chlorinate water, chlorine in the form of chlorine gas, sodium hypochlorite, or calcium 

hypochlorite is added to water in a water treatment plant. They all hydrolyze and form 

hypochlorous acid such that HOCl and OCl- will be produced. It is the HOCl portion of the 

dissociated acid which is most active and effective as a disinfectant (Hazen and Sawyer, 

1992). In addition to inactivating pathogens, chlorine or its HOCl portion of it reacts with 

natural organic matter and forms specific by-products such as trihalomathanes, haloacetic 

acids, and nitrosamines. The type and the amount of DBPs formed depends on some factors 
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such as type and dose of disinfectant, contact time, concentration and characteristics of the 

precursors and water chemistry including pH and bromide (Trussell and Umphres, 1978). 

Chloramines are another group of disinfectant for drinking water that has been used 

increasingly recently. Chloramines are formed by a series of substituting reactions in which 

HOCl and NH3 (ammonia) react and Cl+1substitute for H+ in NH3. The chloramine species 

distribution depends on ratio of reactants; however, for disinfection purposes the reaction 

conditions are controlled to ensure that monochloramine is the dominant species (Hazen and 

Sawyer, 1992). 

Chloramines have lower disinfecting capability than chlorine since Cl+ bonds strongly in the 

structure of the chloramine molecule which makes it less reactive than when it is in HOCl 

(Hazen and Sawyer, 1992). However, interest in using monochloramine in disinfection 

process is growing because it is recognized as a more stable disinfectant than chlorine, 

allowing residuals to be maintained for longer periods in drinking water distribution systems, 

which improves bacterial inactivation (Lechevallier et al., 1996). Also it has been observed 

that chloramines are less active than HOCl in reaction with natural organic matter leading to 

disinfection by-product formation. Consequently, they generally produce lower levels of 

trihalomethanes and halogenated acetic acids (Hazen and Sawyer, 1992; Topudurti and Haas, 

1991). 
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2.2.1 Trihalomethanes (THMs) 

2.2.1.1 Occurrence 

Trihalomethanes are one of the common and well known DBPs in chlorinated and  

chloromainated water. According to Kranser et al. (1989), THM was presented as a largest 

group of DBPs in their study on 35 water treatment plants across the USA. These compounds 

are formed as a result of reaction of free chlorine or chloramines with bromide and natural 

organic matters (mainly humic materials) either in the water treatment plant or the water 

distribution network 

There are four trihalomethane comprising THMs: trichloromethane or chloroform CHCl3, 

bromodichloromethane CHBrCl2, chlorodibromethane CHClBr2, and tribormomethane or 

bromoform CHBr3. Among these species chloroform was the first DBP identified and 

studied. 

2.2.1.2  Influence of Bromide upon Trihalomethane Speciation 

Chlorine is a stronger oxidant than bromide, and when it is in a form of HOCl/OCl- has the 

ability of oxidizing bromide (Br-) to hypobromous acid/hypobromite ion (HOBr/OBr-) in a 

very fast reaction (White, 1985).HOCl acts as a more effective oxidant while HOBr acts as a 

more efficient substitution agent, so when bromide-containing waters were chlorinated, 

oxidation of Br- to HOBr/OBr- leads to formation brominated DBP compounds (Luong et al., 

1982). As a result, presence of bromide and its concentration affect brominated 

trihalomethane species formation in chlorinated water. 
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Amy et al. (1991) reported that a substantial proportion of original bromide (50%) and a low 

portion of applied chlorine (5-10%) are contributed to form THM-Br and THM-Cl 

respectively.  

Another factor which affects trihalomethane speciation is the ratio of Br-/DOC. THM 

precursors, which are measured as dissolved organic carbon (DOC), are removed in activated 

carbon biofiltration which does not change bromide concentration. Therefore, increasing the 

ratio of Br-/DOC in effluent, leads to increased brominated THM fraction in the effluent of 

the subsequent chlorination process (Amy et al., 1991). 

2.2.1.3 Health Effect 

Since chloroform is the THM found in the highest concentration, most health concerns are 

related to it and it has been studied more extensively than the other THMs. Chloroform may 

be absorbed to the body through ingestion, inhalation or through skin. It can be absorbed 

through skin during swimming in chlorinated pools or bathing. But the most significant 

source of exposure to chloroform for human is consumption of chlorinated water. The main 

health concern about chloroform is because of its carcinogenic potential. 

While studies on animals give sufficient evidences of chloroform carcinogenicity and its 

effect on reproductivity of rats and mice, researches on humans show small increase in  

Bladder cancer caused by exposure to chloroform and there is not adequate evidence 

regarding reproductive or cancer effects on humans (USEPA, 2007). 

Acute or short term exposure to higher dosages of chloroform usually causes reversible 

effects including abnormalities in kidneys or liver and damage of nervous system. Cancer can 

arise from either acute or chronic exposure (exposure over a long period to low levels of 
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contaminant; Hazen and Sawyer, 1992). Finding such health impacts for THMs, EPA 

considers total trihalomethane (TTHM) as EPA’s group B2, meaning probable human 

carcinogen (USEPA, 2007). TTHM maximum contaminant level (MCL) has been set by 

USEPA as 0.08 mg/L and individual MCL goals are 0.0 mg/L, 0.06 mg/L, and 0.0 mg/L for 

bromodichloromethane, bromochloromethane, and bromoform respectively (USEPA, 2001).  

 

2.2.2 Halogenated Acetic Acids (HAAs) 

2.2.2.1 Occurrence 

Halogenated acetic acids are another major group of DBP following THMs in chlorinated 

chloroaminated drinking water. Kranser et al. (1989) identified HAA as the second 

significant disinfection by-product fraction among 35 utilities studied across the USA.  

Similar to THMs, HAAs are the products of reaction between NOM, chlorine and bromide. 

There are nine common haloacetic acids, which are obtained by replacing hydrogen atoms of 

acetic acid with halogen atoms partially or completely. Monochloroacetic acid CH2ClCOOH, 

monobromoacetic acid CH2BrCOOH, dichloroacetic acid CHCl2COOH, bromochloroacetic 

acid CHBrClCOOH, dibromoacetic acid CHBr2COOH, trichloroacetic acid CCl3COOH, 

bromodichloroacetic acid CBrCl2COOH, Chlorodibromoacetic acid CBr2ClCOOH, and 

tribromoacetic acid CBr3COOH. 
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2.2.2.2 Health Effects 

HAAs mainly exposure way to human occurs through drinking of chlorinated or 

chloraminated water. HAAs are very stable in water and they are absorbed into the blood 

system when water containing HAAs is consumed. More information are available on certain 

HAA’s (such as dichloroacetic acid and trichloroacetic acid) than others. Studies on animals 

suggest that they can cause risk of cancer but they are not expected to produce acute health 

effects in the human body at the concentration found in drinking water. However, long term 

exposure can cause disorder in the brain, nervous system, liver and kidney. EPA classifies 

dichloro and trichloroacetic acid as likely to be carcinogen in human and group C (possible 

human carcinogen) due to inadequate data on human and limited evidence of carcinogenicity 

in animals (USEPA, 2007). As a result, regulation has been established by EPA on five of 

HAAs including monobromoacetic acid, dichloroacetic acid, trichloroacetic acid, 

monobromoacetic acid, dibromoacetic acid. MCL of total of these five HAAs in drinking 

water is 0.06 mg/L. Also individual MCL goal has been established for dichloroacetic acid 

(0.0 mg/L) and for trichloroacetic acid (0.30 mg/L) (USEPA, 2001). 

2.2.3 Nitrosamines 

2.2.3.1 Occurrence 

Nitrosamines have been found in many food products. However, most of the studies about 

nitrosamines have been conducted on the nitrosodimethyle amine (NDMA). From 1960s 

NDMA has been reported in the diet, various meat cures by nitrite, beer, and tobacco smoke 

(Mitch et al., 2003). According to Mitch et al. (2003), recently NDMA was discovered in the 
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ground water and drinking water wells adjacent to a rocket engine testing facility in 

California because of groundwater contamination with rocket fuel. It also appeared in 

locations where waste water treatment effluent was reused to recharge the aquifer since 

NDMA forms in chlorinated wastewater as well.  

Concerns about NDMA increased when researchers could detect it in drinking water as 

disinfection (chloramination) by-product due to improved analytical techniques in recent 

years. Available studies suggest two major mechanisms in NDMA formation. Mitch and 

Sedlak (2002) described that NDMA formation via nitrosation, which involves nitrosyl 

cation (formed from nitrite acidification) reaction with ammonia, is not a probable pathway 

under the conditions present in water and waste water treatment. Instead, they proposed a 

second mechanism which is NDMA formation via oxidation of unsymmetrical 

dimethylhydrazine (UDMH) as an intermediate of monochloramine and dimethylamine 

(DMA) reaction. Choi and Valentine (2001) in their experiments found that for NDMA to be 

formed monochloramine and DMA as main organic nitrogen- containing precursor must be 

present.  

Chlorination can also form NDMA to some extent when nitrogen precursors present, i.e., 

natural ammonia and nitrogen containing coagulants must be presented. This was confirmed 

by the results of surveys conducted in 1998 and 2001 in Canada and USA respectively and 

showed higher levels of NDMA in chloraminated drinking water systems than chlorinated 

ones (Mitch et al,. 2003). 

In the present research, occurrence of eight nitrosamines including N-nitrosodimethylamine 

(NDMA), N-nitrosodiethylamine (NDEA), N-nitrosodibutylamine (NDBA), N-nitrosodi-n-
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propylamine (NPRO), N-nitrosopiperidine (NPIP), N-nitrosomorpholine (NMOR), N-

nitrosopyrolidine (NPYR), and N-nitrosomethylethyl amine (NMEA ) were investigated to 

assess the ability of biological filtration to remove organic nitrogen –containing nitrosamines 

precursors (including  both NOM and amin-containing polymers), and on nitrosamines 

formation. 

2.2.3.2 Health Effects 

Nitrosamines are a chemical class recognized as probable human carcinogenic (group B2) by 

EPA (USEPA, 2007). Their cancer potencies are reported higher than those at trihalomethane 

(Mitch et al., 2003). This classification is based on animal studies which have shown 

induction of tumors in liver, kidney, and lungs in mammals exposed to it. There is inadequate 

human data to show relation between cancer in human and being exposed to nitrosamines; 

however, short-term effect such as irritated eyes, skin and respiratory tract and chronic effect 

such as liver and kidney malfunctions have been confirmed (USEPA, 2007). 

In 2002 California Department of Health Service established 10ng/L for NDMA as 

notification level, not as a maximum contaminant level. Canada as a country does not 

regulate nitrosamines in drinking water, but the Ontario Ministry of the Environment (MOE) 

set an interim maximum acceptable concentration (IMAC) for NDMA in drinking water of 

9ng/L. 

2.3 Water Disinfection and Natural Organic Matter (NOM) 

Natural waters contain a complex mixture of heterogeneous organic compounds varying in 

physical and chemical characteristics. Most of these compounds such as humic acid 
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substances, hydrophilic acids, carbohydrate, amino acids, and carboxylic acids result from 

decomposition of biological materials (Yavich et al., 2004). Humic acids and fulvic acids are 

multi component substances, historically considered major organic substances in natural 

water from a water treatment point of view because of their reaction with chlorine to form 

disinfection by-products (Collines et al., 1986).  

Understanding of reactivity of NOM with disinfectants is very important in controlling 

disinfection by-products. pH is a parameter which influences NOM and aqueous chlorine 

reaction by influencing electron distribution of NOM structure as well as chlorine species 

distribution (Harrington et al., 1996). NOM structural nature is another important factor in 

chlorination reaction of NOM since the reactivity of NOM molecules with oxidants, such as 

chlorine, depends on their aromatic rings or aromaticity which, according to several 

researchers (Peters et al., 1980; Reckhow et al., 1990) comprise 30% of NOM molecules. 

Rook (1977) and Scully et al. (1988), demonstrated in their studies that organic compounds 

with electron rich organic structure such as activated aromatic rings strongly react with 

aqueous electrophil chlorine species. For example, Leenheer et al. (2001) demonstrated that 

THM and TOX yield significantly increased during chlorination due to phenol structure in 

natural fulvic acids of their research sample water. The rate and the extent of aqueous 

chlorine species and NOM reaction depends on chlorine dose and contact time as well. 

Temperature and presence of bromide or iodide are other variables that can also affect this 

reaction (Harrington et al., 1996). 

NOM in drinking water increases chlorine demand and produces potential carcinogenic 

halogenated byproducts during disinfection process. Another disadvantage of presence of 



 

 13

NOM in drinking water is that NOM consumes chlorine and makes it unavailable to kill 

pathogenic microorganisms during disinfection process (Harrington et al., 1996). NOM also 

increases biological regrowth in distribution system because they act as nutrient for 

microorganisms to grow. Finally they can impact coagulation process and reduce adsorption 

performance of filters by blocking pores of granular activated carbon filters. The presence of 

NOM in drinking water is problematic due to the reasons mentioned and, since conventional 

water treatment processes fail to remove NOM, other technologies like biofiltration need to 

be used to remove NOM. 

2.4 Biological Drinking Water Treatment 

2.4.1 Basic Concepts of Biofiltration 

Biological drinking water treatment is a technique in water treatment using a biofiltration 

process in which living materials (bacteria on the filter) oxidize dissolved organic substances 

in the water and remove them. In the oxidation reaction which happens, bacteria in drinking 

water use ambient oxygen in the water to oxidize and utilize carbonaceous organic matter as 

a substrate and source of nutrients for cell growth and replication. As a result, this fraction of 

organic matter, which is called the biodegradable organic matter (BOM), is eliminated and 

will not be available to react with chlorine and form disinfection by-products. 

Biological processes for drinking water treatment are often of the biofilm type wherein 

bacteria cells are present and live as a biofilm community. They are retained in a filter and 

are attached to the surface of a solid media to grow. Typical carrier media for 
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microorganisms in drinking water biological treatment are gravel, sand, anthracite, and 

granular activated carbon (GAC). Sand and anthracite are considered to be nonporous and 

also inert materials because they do not interact chemically with organic matter. Granular 

activated carbon is a porous material that initially removes organic precursors through 

adsorption and then slightly more through biological activity. Once its adsorption capacity is 

exhausted and a biofilm accumulates, removal is achieved solely through substrate utilization 

(Camel and Bermond, 1998), and then the GAC will be called biologically activated carbon 

(BAC) and the process would be called biologically activated carbon filtration. 

Studies show that GAC has a higher performance than anthracite and sand (Liu et al., 2001, 

Wang et al., 1995). This means that higher biomass concentrations accumulate on GAC 

media, which can be a result of GAC’s rough surface. The rough surface and macrospores 

provide suitable sites in the GAC to protect bacteria from shear forces during filter operation 

and backwashing and, consequently, causes denser colonization of bacteria to be developed 

to provide more organic matter utilization (Urfer et al., 1997; Niquette, 1998). It has been 

also found that the most probable reason for GAC to be significantly more efficient in BOM 

removal is stronger attractive forces between GAC and bacteria than between bacteria and 

sand or anthracite, as bacteria have a higher adsorption rate constant on GAC than on sand 

(Uhl, 2000). 

Ozonation effects on biological treatment will be discussed in next section in detail. Briefly, 

biological treatment following ozonation has these advantages. Natural organic matter is 

changed to biodegradable dissolved organic carbon (BDOC) during ozonation. These 

compounds along with assimiable organic carbon (AOC), a part of organic carbon converted 
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to biomass by specific bacteria and expressed as a carbon concentration (Huck 1990), are 

responsible for microorganism growth and regrowth in distribution systems. BDOC and 

AOC are removed during biofiltration following ozonation and, as a result, potential for 

bacterial regrowth in a distribution system is decreased and biologically stable water will be 

produced (Vanderkooij et al., 1992). 

Another benefit is that ozonation by-products and a significant amount of dissolved organic 

carbon (DOC), which are precursors of disinfection by-products (such as THM and HAA) 

are well removed through biofiltration and consequently the chlorine demand of water and 

the risk of disinfection by-product formation is reduced (Huck et al., 1992). Langlais et al., 

1991 also correlated removal of the hydrophilic fraction of NOM by BAC with decreasing of 

THMFP and TOX formation potential. 

2.4.2 Role of Ozone 

Among different oxidants, ozone (O3) has been used widely in drinking water treatment due 

to its strong oxidation potential. It has been used for disinfection purposes, singly or in 

combination with UV and H2O2, as a chlorine replacement that does not produce halogenated 

by-products. It is also used in intermediate oxidation steps to modify natural organic 

substances which are disinfection (chlorination) by-product precursors through oxidization 

and transferring them to biodegradable organic matters (BOM). Furthermore, ozone 

degradation happens rapidly and it will not negatively affect the subsequent biofiltration step. 

Langlais et al., 1991 suggest in their study that the direct molecular ozone mechanism to 

attack THM precursors is more likely to happen than the radical reaction. However, water 

quality conditions determine which reaction is dominant in the typical water treatment. 
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(Trussell and Umphres, 1978) presented in their study that reduction in THM precursors is 

almost always possible by ozonation; however, the variation in THM precursor removal in 

different water types depends on the concentration and specific characteristics of the organic 

substances present, inorganic water quality, ozone contactor transfer efficiency, contact time 

after chlorination, and ozonation contact time before chlorination. 

Shukairy et al. (1992) carried out experiments on two different source waters and 

investigated the preozonation impact on disinfection by-product formation. Their results 

show that ozone selectively targets parts of organic matter that are potential sites for chlorine 

substitution, especially those that form purgable organic halides (POX), and oxidizes them. 

As a result, POX formation potential is reduced and chlorine demand is decreased because 

preozonation oxidizes organic matter before they react with chlorine in a chlorination step. 

Studies also give evidence that the biological filtration process is always enhanced and 

greater amount of organics are removed on GAC filters when they receive ozonated water. 

Anderson et al. (1986) showed that ozone breaks compounds with large molecular weight to 

smaller molecules by attacking their sensitive sites (aromatic parts or conjugated double 

bonds) and oxidizing them to lead to increased biodegradable matter. The fact is that these 

smaller molecules can pass through the bacterial cell wall readily and are more available to 

be used by microorganisms due to lower mass transfer resistance which can make them more 

accessible for enzymatic attack (Koechling et al,. 1996). In the other words, during  

ozonation natural organic matter (disinfection by-product precursors) are transformed to 

organic matters with high biodegradability which can be removed by bacteria in subsequent 

biofilters more efficiently (Gilbert, 1987; Camel and Bermond, 1998). 
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Also, Glaze et al. 1989 and Carlson et al. 1998 measured low molecular weight molecules 

including aldehydes, carboxylic acids, and ketoacids as ozonation by-products in their 

studies. Production of such low molecular weight, polar and highly oxidized molecules, 

which can be easily removed by biological activity, indicates that ozonation enhances the 

biodegradability of organic matters. However, in some studies changes in biodegradability 

depended on the origin and type of humic substances in the source water (Huck, 1990; Melin 

and Ødegaard, 2000).  

2.4.3 NOM Removal by Biofiltration  

It has been observed that granular activated carbon (GAC) filters can remove dissolved 

organic carbon (DOC) in most natural waters, even after their adsorption capacity is 

exhausted, because of biofilms developing on them. The principle of organic substances 

removal in biofiltration is the utilization of organic substances by bacteria which are attached 

to the surface of filter media. Basically, in ozonation/biofiltration processes biodegradable 

NOM, which are formed in the hydrophilic fraction of NOM with high polarity and low 

molecular size, are preferably utilized by microorganisms and removed (Koechling et al., 

1996). However, even though a biofilm works mainly through biodegradation processes, it 

should be remembered that it will still be able to slightly adsorb solutes on its surface 

(Kaplan and Newbold, 1995). 

Analysis of BDOC, which represent a biodegradable part of dissolved organic carbon, 

usually is used to define NOM removal. However, only rapidly biodegradable BDOC will be 

removed by biofiltration and there is an optimum dose of O3 that controls the formation of 

rapidly degraded BDOC. In the other words, removal of the biodegradable fraction of natural 
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organic matter in a biofilter is limited by the formation of rapidly BDOC during ozonation 

(Calson and Amy, 2001). 

Another parameter which is used for quantifying NOM removal in ozonation/biofiltration 

process is UV absorbance. UV absorbance provides information about the composition of 

NOM and is correlated with the aromaticity content of dissolved organic matter according to 

Weishaar et al., (2003). The electronic structure of a molecule is responsible for its potential 

to absorb of UV light. UV light between 200-380 nanometers is adsorbed by conjugated 

systems such as conjugated bonds in aromatic molecules (Silverstein et al., 1974). On the 

other hand, studies demonstrate that aromaticity of DOC molecules is an important indicator 

of DOC activity in biological processes such as biological filtration. For example, the 

reactivity of humic substances as a major organic constituent in natural water, with oxidants 

such as chlorine and ozone, strongly depends on their aromaticity since aromatic rings are Cl- 

reactive sites to be substituted in the molecules (Li et al., 2000; Huixian et al., 1997; Boyces 

et al., 1993). 

As a result, monitoring of UV absorbance as NOM surrogate in filter effluents during 

biofiltration processes shows changes in natural organic matter characteristics. Since the UV 

absorbance of a water sample is correlated with its NOM amount proportionally, UV 

absorbance can be correlated with the formation of disinfection by-products when water is 

chlorinated (Li et al., 2000). In addition, the specific UV absorbance (SUVA), which is UV 

absorbance of aquatic sample at 254 nanometer divided by DOC concentration (mg/L) of the 

sample (Li et al., 2000), is also a good estimate of aromaticity characteristic of aquatic humic 

substances and is used as surrogate for the NOM of a water sample.  
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 Camel and Bermond (1998) summarized that ozonation causes a rapid decrease in UV 

absorbance and, therefore, reduction in disinfection by-product formation. However, it 

should be considered that not all organic compounds which contribute to overall UV react 

with chlorine and form THM Weishaar et al. (2003). 

2.4.4 Biofiltration Process Configurations 

2.4.4.1 Slow Sand and Bank Filtration 

Historically, several forms of biofiltration processes have been used in the water treatment 

industry. Among them, slow sand biofiltration is a simple and reliable drinking water 

treatment which has been longer in use and has been applied in both big cities (such as 

European capital cities) water treatment systems and small-scale treatment plants. Slow sand 

filtration, which is run at low flow rate and high retention time, performs very well in 

removing particulates and microorganisms. In spite of the formation of a thin biological layer 

on the top of the sand bed, the filter displays a weak performance in terms of organic 

removal. However, when researchers combined a preozonation step with slow sand filtration 

they observed an improvement in organic matter removal (Cable and Jones, 1996). 

Bank filtration is another configuration for biological process. It has been widely in use in 

European countries like Germany and Switzerland from the beginning of the 20th century. 

Bank filtration is a naturally occurring influx from surface water through wells or banks dug 

next to a surface body. It is a natural process in that water is filtered by passing through the 

banks’ fine sediments and BOM, including THM precursors, are removed (Prevost et al., 

2005). 
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2.4.4.2 GAC Biofiltration 

Conventional GAC biological filtration was developed and has been in use since it was 

observed that GAC still removed organic matters after its adsorption capacity had been 

exhausted. 

The use of rapid biological filtration on activated carbon (BAC filtration) has been 

recognized from the 1970’s in European countries (Sontheimer et al., 1978; Sontheimer, 

1979). Because of increasing concerns about health effects of disinfection by-products, use of 

biological rapid filtration to remove BOM and particles simultaneously in the same filter unit 

has attracted more attention in North America. 

Bablon et al. (1988) investigated a combination of conventional rapid filter (loading rate of 

5-6 m/h) and granular activation carbon column in the form of a dual layer with the aim of 

using biological oxidation to reduce chlorination by-product precursors. Their experiments 

showed that the dual layer sand-GAC filter running at 6m/h is more effective in removing 

chlorine demand and organic pollution than a sand filter alone. 

Carlson et al. (1996) in their study on anthracite media filters found that biomass 

accumulates faster at higher filter hydraulic loading rates (up to 9.7 m/h). However, when the 

BOM loading rate is increased above that at which biomass is colonized, removal of DOC 

decreases because biomass can not utilize the additional organic matter. This means when the 

biomass concentration is at a pseudo-steady-state, the BOM concentration will not decrease 

at loading rates higher than the acclimatization loading rate. 

In another study on high rate biofiltration which was conducted by Womba et al. (1999) even 

higher flow rates were investigated. They reported a significant increase in removal of 
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ozonation by-products and HAA background in GAC biofilters running at a loading rate of 

35 m/h. However, at the present, information on high rate deep bed filtration is not adequate 

and there is a need of more research to be done to obtain reliable conclusions about the 

efficiency of high rate deep bed filtration for removing disinfection by-product precursors. 
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Chapter 3 Material and Methods 

3.1 Ultrapure Water and Chemical Reagents for THM, HAA and Nitrosamine 

Analyses 

MilliQ UV® ultraviolet treated water (often called ultrapure water) with resistivity of 18.2 

M Ω cm was used to prepare all blanks, reagents and quality control standards and to rinse 

labware. The system was purchased from Millipore (Missisauga, Ontario). 

Sodium hypochlorite solution was purchased from VWR International (Mississauga, Ontario) 

and used to make sampling bottles chlorine-demand-free before doing chlorine demand tests 

and also to use in Simulated Distribution System (SDS) tests. Ammonium chloride was also 

purchased from VWR and used in SDS tests to quench further thrihalometane and haloacetic 

acids (THM and HAA) formation. Free and total chlorine DPD reagents powder were 

purchased from Cleartech (Mississauga, Ontario), and used to measure free and total chlorine 

concentrations of samples in SDS tests. Sodium thiosulfate (Na2S2O3) and sodium sulfate 

(Na2SO4) were purchased from VWR for use in THM and HAA analytical methods. 

Concentrated sulfuric acid was also purchased from VWR and used for HAA analysis. 1,2-

dibromopropane (1,2-DBP) was used as the internal standard for both the THM and HAA 

analytical methods. 2,3-dibromopropanoic acid (2,3-DBPA) and 2,3,5,6-tetrafluorobutanoic 

acid (2,3,5,6-TFBA) were used as surrogate standard solutions for the HAA analytical 

method. Methanol (CH3OH 99.9%) for  stock standard solution preparation and syringe 

rinsing, and 99.9% methyl tertiary-butyl ether (MtBE, 99.9%) the HAA extraction solvent 
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both were purchased from VWR while GC grade pentane (99.9%), the THM extraction 

solvent was purchased from Sigma-Aldrich (Oakville, Ontario). 

The THM mixed standard (2000 μg/L) and HAA individual standards (1000 μg/L each) used 

for THM and HAA method calibration, respectively, and also diazald (N-methyl N- nitroso-

p-toluensulfonamide), which is used as diazomethane generating reagent were obtained from 

Sigma-Aldrich. 

Seven analytical grade nitrosamines, including N-nitrosodimethylamine (NDMA), N-

nitrosodiethylamine (NDEA), N-nitrosodibutylamine (NDBA), N-nitrosodi-n-propylamine 

(NPRO), N-nitrosopiperidine (NPIP), N-nitrosomorpholine (NMOR), N-nitrosopyrolidine 

(NPYR), were purchased from Sigma-Aldrich while N-nitrosomethylethyl amine (NMEA) 

was purchased from VWR. All were used to prepare standard solutions preparation for 

calibration and quality control purposes. N-nitrosodimethylamine-d6 (d6-NDMA), a surrogate 

standard in the nitrosamine analysis, was also purchased from Sigma-Aldrich. 

Ambersorb XEN-572, which is used to extract nitrosamines from water, and 99.9% 

dichloromethane, which is used to extract nitrosamines from Ambersorb XEN-572, were 

purchased from Sigma-Aldrich and VWR, respectively. 

3.2 Sample Preparation and Analytical Methods 

3.2.1 Simulated Distribution System Testing and Chlorine Demand Measurement 

Simulated Distribution System (SDS) Testing was performed to simulate the Mannheim 

Water Treatment Plant full- scale chlorination/chloramination regime to estimate the effects 

of filter media and configuration on subsequent DBP formation caused by the 
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chlorination/chloramination process followed by a 24 hour residence time in the distribution 

syatem.  

At the Mannheim Water Treatment Plant, post-filtration water is chlorinated before it goes 

into a reservoir of 7.5 ML which is typically 85-95% full (Walton, 2006). The average flow 

rate through the plant is 600-800 L/sec. Therefore, the hydraulic retention time (HRT) of the 

reservoir is calculated to be approximately 2.2 to 3.3 hours. Water is chlorinated such that it 

achieves a post-reservoir free residual chlorine of 1.5 to 2 mg/L and 1.5 to 2 mg/L 

monochloramine after the subsequent addition of ammonia. 

To carry out the SDS test on a water sample in a 650 mL bottle at room temperature, an 

appropriate amount of NaOCl (typically 35 to 40 μL) was added to the sample such that it 

would have a 1.5 to 2 mg/L free residual chlorine after 3 hours of chlorine contact time at 

room temperature and in the dark. The needed amount of NaOCl to achieve this specified 

amount of chlorine residual was detemined with a sample chlorine demand test which will be 

explained subsequently in this section. At the end of 3 hours, which is the contact time for 

THM and HAA formation, NH4Cl was added to the sample to provide ammonia to convert 

free chlorine to monochloramine. The amount of NH4Cl added was calculated to provide a 

Cl2:N mass ratio of 3:1. It was calculated that this ratio in the sample can be achieved by 

adding 1 mL of 0.0234 mol/L NH4Cl. This mass ratio converted free chlorine to 

monochloramine (1.5 to 2 mg/L as Cl2) and effectively stopped THM and HAA formation, so 

samples were taken at this stage for THM and HAA analyses. The rest of the sample was 

kept in the dark for additional 20 to 24 hours to provide chloramine contact time for 

nitrosamine formation and then sample were analyzed for nitrosamines.   
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To measure chlorine demand, water sample that was collected in a 650 mL bottle was 

brought to room temperature by leaving them out of fridge and divided to eight portions in 40 

mL vials before dosing it with chlorine. NaOCl 6% was used to prepare 4 different 

concentrations of chlorine and two replicates of each one. They were stored to stay for three 

hours in the dark for free chlorine contact time and free residual chlorine was measured at the 

end of three hours using a HACH DR/2010  colorimeter (Cleartech, Mississauga, Ontario) 

and free chlorine DPD reagent. The chlorine demand of the sample to be used in SDS tests 

was the one that was equal to the chlorine concentration which leaves free residual chlorine 

of 1.5-2 mg/L as Cl2 after three hours. 

The detection limit for the chlorine demand test was calculated according to the Method 

1030C of Standard Methods (APHA-AWWA-WEF, 1999). Seven portions of water sample 

with known chlorine demand were dosed with chlorine and their free residual chlorine 

concentrations were measured after three hours. The standard deviation of replicated results 

was calculated to be 0.296 and the MDL (or the smallest amount that can be detected above 

the noise with in 99% confidence level) in the chlorine demand method, was determined by 

multiplying the  standard deviation by 3.14 which is t value of 7-1=6 degrees of freedom and 

99% confidence level. 

3.2.2 THM Sample Preparation 

THM sample preparation method was based on liquid-liquid extraction with pentane and 

subsequent GC/ECD analysis which was performed according to Method 6232 in Standard 

Methods (APHA-AWWA-WEF, 1999). 
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100 μL of Na2S2O3 as a quenching agent and 5 grams of Na2SO4 were added to 20 mL of 

water sample and blanks. Then 4 mL of extraction solvent, which was pentane containing 

100 μg/L of 1,2 DBP as internal standard, was added to the sample and the mixture in the 

vial was shaken for 7 minutes on the shaker. Solution was left to stay for 15 minutes in room 

temperature for organic and aqueous phase separation. Organic phase was transferred to the 

to GC vial containing oven dried Na2SO4 for GC analysis. 

The gas chromatograph which has been used in this method was HP 5890 Series II with 30m 

х 025 mm х 0.25 μm film DB 1701 capillary column with retention gap and temperature 

programmable oven. Temperature of injector and detector were 220 ºC and 300 ºC, 

respectively. 

Calibration curves were constructed for each of the four trihalomethanes. 10 mL of 200 mg/L 

stock solution was prepared using a mixed solution of THMs at 2000 µg/mL which had been 

obtained from Sigma-Aldrich. Standard solutions for calibration purposes were prepared 

using three replicates of each concentration level in the range of 0.5 to 200 μg/L, and in 20 

mL of MilliQ water. Liquid –liquid extraction was carried out for standard samples same as 

described above for real samples. The extracts were injected into the GC/ECD and used to 

prepare calibration curves for the trihalomethanes. Calibration curves and R2 (correlation 

coefficient) are shown in Appendix B. 

The MDL of the THM analytical method used in these experiments was calculated according 

to section 1030C in Standard Methods (APHA-AWWA-WEF, 1999). A THM solution of 10 

μg/L concentration was prepared and THM preparation method was carried out on seven 20 

mL replicates. Subsequently, the MDLs for the four trihalomethane species we determined 
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by multiplying standard deviation of each compound by 3.14, which is t value of  7-1=6 

degrees of freedom and 99% confidence level. 

3.2.3 HAA Sample Preparation 

HAA samples, along with method (lab) and travel blanks were prepared and analyzed 

according to method 6251B in Standard Method (APHA-AWWA-WEF, 1999) after some 

minor method modification. The principle was based on liquid–liquid extraction of the HAAs 

with MtBE at an acidic pH followed by diazomethane derivatization and GC/ECD analysis. 

100 μL of Na2S2O3 as quenching agent and 6 grams of oven dried Na2SO4 were added to 20 

mL of water sample in a 40 mL vial. Concentrated sulfuric acid was added to the vial to 

maximize the extraction. 2,3-DBPA and 2,3,5,6-TFBA were added to the 40mL vial as 

surrogate additives and also 5 mL of MtBE as extraction solvent containing internal standard 

1,2-DBP was added. The vial was placed on the shaker to be shaken seven minutes and then 

allowed to stand for 15 minutes at room temperature for phase separation. At this point, the 

organic phase was transferred to a test tube carefully without mixing with aqueous phase and 

the test tube was put in freezer for seven minutes. 

Diazomethane (CH2N2) solution, which was generated as the derivatization reagent, was 

added to the cooled test tubes containing organic phase and they were left at 4ºC for 15 

minutes and then another 15 minutes at room temperature. Extracts were washed with 

saturated sodium bicarbonate (NaHCO3) and the organic phase was separated and transferred 

to a GC vial containing oven baked Na2SO4 to be analyzed by GC/ECD for HAAs. 

Diazomethane, which is toxic carcinogenic and an explosion hazard (Aldrich-Sigma, 2007), 

was used in the HAA extraction method to methylate extracted organic acids and produce 
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methyl ester derivatives that can be separated chromatographically. Diazomethane was 

generated by means of MNNG (Figure 3.1) apparatus which is setup in an ice-filled beaker 

under the fume hood. Diazald was added to the inner tube of the generator while MtBE was 

added to the outer tube.  It had to be ensured that the glass joints of the inner and outer tubes 

were sealed for maximum diazomethane generation and recovery. After the set up cooled on 

the ice bath for 10 minutes, 600 μL of 20 % NaOH was added dropwise to the inner tube 

using a gas tight syringe. Diazomethane gas was formed in 30-45 minutes, escaped from the 

inside tube hole and was collected in MtBE in the outside tube. It changed the MtBE color to 

yellow. The resulting CH2N2 in MtBE was transferred to a 4 mL vial using a flamed Pasteur 

pipette and stored in an explosion-free fridge. 

                                                              

           Figure 3.1 MNNG diazomethane generation apparatus (Sigma-Aldrich online catalogue) 
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The gas chromatograph which used was a HP 5890 Series II with 30m х 025 mm х 0.25 μm 

film DB 1701 capillary column with relation gap and temperature programmable oven. The 

injector and detector temperatures were 200 ºC and 300 ºC, respectively. 

A 20 μg/mL mixed HAAs stock solution was prepared from 1000 μg/mL individual HAA 

standards. Calibration standards were prepared using three replicates at each concentration 

level and for a concentration range of 0.5 to 90 μg/L by injecting appropriate amounts of 

stock solution directly into 20 mL of water. Extraction/esterification procedure was 

performed the same as what was carried out for real samples, and standards were analyzed 

under the same conditions as samples. Calibration curves which were obtained can be seen in 

Appendix B. 

The MDL of the HAA method was determined according to the Section 1030C in Standard 

Methods (APHA-AWWA-WEF, 1999). An HAAs solution of 10 μg/L was prepared and 

divided evenly into seven 20 mL portions in 40 mL vials. All replicates went through liquid-

liquid extraction and GC analysis, and standard deviations of the measurements were 

calculated for each of the 6 target HAA compounds (including monochloroacetic acid, 

monobromoacetic acid, dichloroacetic acid, bromochloroacetic acid, trichloroacetic acid, 

dibromoacetic acid). Other HAAs were not included in this research because they either were 

not regulated or had not been detected by this method. Subsequently, an MDL for each of the 

6 mentioned HAA compounds was calculated by multiplying the standard deviation of the 

associated compound results by 3.14, which is t value for 7-1=6 degrees of freedom at a 99% 

of confidence level (Appendix B). 
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3.2.4 Nitrosamines Sample Preparation 

Nitrosamines sample preparation method was carried out according to Taguchi et al. (1994). 

Sample was collected in 500 mL bottles and approximately 300 μg of solid ascorbic acid was 

added if a free residual was present in the samples. 20 μL of d6-NDMA was added as an 

internal standard to the sample to achieve to 25 ng/L concentration. Also, 200 mg of 

Ambersorb XEN-572 was added to the sample. The sample was filtered under vacuum 

through filter paper Whatman No.4 and nitrosamine-sorbed Ambersorb XEN-572 was 

collected on the filter paper. Filter paper was placed in an aluminum dish after one minute, 

and the Ambersorb XEN-572 was allowed to be dried in the air (under fume hood) for 30-60 

minutes until the Ambersorb beads were no longer clumped together. Then, the Ambersorb 

beads were transferred to a 400 μL flat bottom GC vial insert, and 350 μL of pure 

dichloromethane was added to the vial insert using a 1 mL syringe. The vial insert was 

placed in a GC vial to be analyzed by GC/MS for nine nitrosamines (NDMA, NDEA, 

NDBA, NPRO, NPIP, NMOR, NPYR, NMEA, and d6-NDMA). 

A Varian 4000 GC/MS with CP 8400 autosampler equipped with VF-5 mass spectrometer, 

30m х 0.25 mm х 0.25 μm DB1 710 column, temperature programmable oven, with filament 

delay of 2.5 min and elect ionization (EI) of 70ev was used for nitrosamines analysis. 

Calibration standards were prepared from a 100 µg/L mixed working solution (which had 

been made from individual 1000 mg/L stocks) at seven levels from 1 to 100 ng/L. Standard 

samples went through the same preparation procedure as real samples and were analyzed by 

means of GC/MS for use in the calibration curves which can be seen in Appendix B. 
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The MDL of the nitrosamines method was determined according to Section 1030C in 

Standard Methods (APHA-AWWA-WEF, 1999). Seven replicate samples from a 10 ng/L 

standard were processed using the above method and analyzed by GC/MS for nine 

nitrosamines. The standard deviation of each compound was calculated and multiplied by a 

factor of 3.14 (t-value of 6 degrees for freedom and 99% confidence interval) to result in the 

MDLs of the compounds which are given in Appendix B. These MDLs were accepted in this 

method because they were less than experimental results of this research and less than 

Ontario Drinking Water IMAC 9 ng/L. 

3.2.5 UV Absorbance Analytical Methods   

The UV absorption of UV-absorbing constituents in a sample, which was in proportion to 

their concentration, is measured at 254 nm. Ultraviolet absorbance measurements were 

carried out according to method 65910B in Standard Methods (APHA-AWWA-WEF, 1999).  

The sample was filtered to remove particulate interferences. Sample absorbance was 

measured with a spectrophotometer (Hach DR 2010) that was first adjusted to read zero 

absorbance with the organic-free water (blank) and 2 to 3 mL of sample was transferred to 

the 1-cm cell so that its UV absorbance could be measured at 254 nm. 

3.2.6 Quality Assurance /Quality Control Measures 

Quality Control and Quality Assurance measures were included in this research to monitor 

and maintain method performance. Samples were taken for chlorine demand and DBPs 

experiments in chlorine demand free bottles. Also samples were taken in duplicate to monitor 

analytical precision.  
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Lab and travel blanks were prepared and analyzed along with each set of samples to check 

and eliminate any contamination of analyte of interest in solvents and reagent water. 

Standards were processed with each set of samples and used for control charts (Appendix II) 

to check the consistency of the preparation method and the stability of GC performance. 

The area of the peak of the internal standard, which was added to the samples, was used to 

correct for any deviation in sample extraction efficiency and check GC performance. Also, as 

explained in the previous sections, calibration curves were generated and the MDL was 

determined for each method as another quality control element.  

3.3 Mannheim Water Treatment Plant 

The Mannheim Water Treatment Plant is located in Kitchener, Ontario and provides treated 

drinking water for the cities of Kitchener and Waterloo. Its source water is from the Grand 

River, which receives agricultural runoff and is also affected by an upstream wastewater 

treatment plant. It has a bromide (Br-) concentration of 50μg/L (Peldszus et al., 2004) and a 

relatively high organic content (TOC or DOC) (6mg/L; Emelko et al., 2006). 

3.3.1 Full Scale-Filter Configuration and Media Specification 

Raw water from the Grand River is first stored in a reservoir of about 38 million gallons 

before entering the water treatment plant. In the water treatment facility, water enters two 

identical treatment trains which consist of coagulation, flocculation and sedimentation 

processes followed by ozonation, biological conventional filtration (two filters in each train). 

Disinfection is the last process at the Mannheim Water Treatment Plant and chlorination is 
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followed by ammonia addition to enable chloramination for distribution system disinfection. 

Figure 3.2 is a schematic of the treatment processes at the Mannheim Water Treatment Plant. 

 

 

Figure 3.2 Schematic of processes at the Mannheim Water Treatment Plant 

       

Filter #1 (F1) and filter #2 (F2) were dual media filters consisting of 137 cm GAC over 30 

cm sand during this project. Filter #3 (F3) and Filter #4 (F4) used to be dual media filters of 

122 cm anthracite over 30 cm sand (Emelko et al., 2006) but they were changed to new GAC 

and anthracite media, respectively, similar to the GAC and anthracite in the pilot filters at the 

beginning of this project (on  Mar 2/07 and Apr 28/07). All biological full-scale filters ran in 

conventional mode with a loading rate of 530 to 780 L/s (7 to 10 m/h) during this project, the 

actual values depending on the demands exerted on the upstream (determined and controlled 

by plant staff). 
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3.3.2 Pilot-Scale Filter Description and Media Specification 

Pilot-scale filters (Figure 3.3) were designed to be operated at the Mannheim Water 

Treatment Plant to study optimum filter configurations by comparing new media with 

different specifications with the existing conventional filters. Figure 3.4 is a schematic 

showing the pilot filter position and that it received  post-ozonated water from the full-scale 

treatment train on side two of the plant so that there were similar water conditions for both 

the full-scale and pilot-scale filter influents. Pilot filter specifications are summarized in  

Table 3.1 (Wojcicka , 2007). 

 

 

                     

 

           Figure 3.3 Pilot-Scale Filters at the Mannheim Water Treatment Plant 

P1 P2 P3 P4
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Figure 3.4 Schematic showing the position of pilot filters at the Mannheim Water 

Treatment Plant 

           

Table 3.1 Pilot Filter Media Specifications (Wojcicka, 2007) 

Filter Media type U.C. (if available) Effective size Depth 

P1 GAC 

Sand 

N/A 0.45-0.65 mm 

0.45-0.65 mm 

1300 mm 

300 mm 

P2 GAC 

Sand 

1.4 max 

1.5 

1.3-1.5 mm 

0.67 mm 

1300 mm 

300 mm 

P3 Anthracite 

Sand 

1.6 

1.5 

1.3 mm 

0.67 mm 

1300 mm 

300 mm 

P4 Anthracite 

Sand 

1.3 

1.5 

1.3 mm 

0.67 mm 

1300 mm 

300 mm 

Raw water  

Storage 

Existing 

pretreatment  
Ozonation Full-scale filters Disinfection

Ozonated water

Pilot filters Clearwell 

Full scale treatment train 2 
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3.4 Filter Sampling Procedures and Experimental Plans 

3.4.1 General Filter Sampling Procedure from Mannheim Water Treatment Plant 

Filter sampling plans were prepared in three stages. The first sampling phase, or preliminary 

phase, included samples from two influents and the full-scale and pilot-scale filters. It was 

just used to estimate the expected DBP range in chlorinated or chloraminated filter effluents 

and as background information. It was performed from May to June 2007 during which time 

the pilot filters ran at about 7 L/m. The data that were collected during this phase are not 

included in this thesis since they did not contribute to the overall study of flow and media 

effects on DBP formation. 

The second stage of sampling was accomplished in July 2007. Samples were taken from the 

pilot filters along with their influent (ozonation effluent on side 2 of the treatment plant) 

when pilot filters had been acclimated. This was following approximately 4 months of 

operation during which time it was expected that biofilm had become established on the filter 

media. 

In the last stage of sampling in August 2007, samples were taken every week from influents 

and full-sale and pilot-scale filter effluents to compare performance of pilot-scale and full-

scale filters when they were operated at same loading rate. 

Samples for chlorine demand and DBPs measurements were taken in 650 mL chlorine 

demand free bottles and were headspace free. Bottles were made chlorine demand free by 

filling them with deionized water and adding 1 mL of NaOCl 6%, and then they were left for 
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3 hours and rinsed with deionized water. Sampling bottles also were rinsed with the sample 

water before filling with filter influent and effluent samples. 

All samples were transferred to the lab in a cooler, where they went through chlorine 

demand, trihalomathane, haloacetic acids, and nitrosamines analyses. 

3.4.2 Pilot-Scale Filter Flow Rate Experiments  

To assess impact of the flow rate in the performance of different filter media in regard to 

DBP formation, pilot filters were operated at flow rates from 1 L/m to 13 L/m randomly. 

Flow rate changes in the pilot filters are summarized in Table 3.2. 

Table 3.2 Pilot Filter Flow Rates (L/m) During Flow Rate Experiments 

      Sampling Date 

Filter 

Jul 19 Jul 13 Jul 16 Jul 3 Jul 9 Jul 23 

P1  10.2 8.6 5 1  

P2 8.5 8 7.7 5 1  

P3  11.2 9 5 1  

P4  12.8 7.5 4.3  2 

 

Monitoring of flow rate and head loss variation at the pilot filters using data collected by the 

pilot control panel helped to estimate the required frequency of filter backwashing at each 

different flow rate. Analyzing head loss data and flow rate profiles indicated that filters had 

shorter runs and head loss was built sooner when they were run at higher flow rates. The 

filters were backwashed when the head loss started to build. Their backwash frequency was 

lower when they were run at a lower flow rate. 
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Filters were backwashed according to the Collapse-Pulsing protocol which was provided by 

(Wojcicka, 2007). Samples were taken from pilot filters after at least 2 filter cycles to let the 

filters adjust to the new flow rate, and 24 hours before the next backwashing to avoid 

sampling when filters reach their terminal head loss and/or when the flow rate had been 

reduced significantly from its target value. 

3.4.3 Comparison of Full-Scale and Pilot-Scale Filter Performance 

Pilot-scale filters were operated under the same loading conditions as the  full-scale filters in 

this round of experiments, so that the performance of pilot-scale and full-scale filters would 

be more directly comparable. Pilot-scale and full-scale filters were divided into comparable 

subgroups (i.e. same influents, and same media type with similar or slightly different media 

specification). Chlorination of samples was done in the lab to simulate DBP formation. Then 

variations in water quality parameters including chlorine demand, UV absorbance, THMs, 

HAAs, and nitrosamines in the filter effluents in each group were measured and compared. 

As mentioned above, during this phase of the experiments the pilot filter loading rates were 

adjusted to meet the changes in loading rate at full-scale. The final loading rates are shown in 

the Table 3.3. Corresponding flow rates are given in Chapter 5. 

Table 3.3 Pilot-Scale and Full-Scale Filter Loading Rates During FS/PS Comparison 

Experiments 

Sampling date Aug 7 Aug 13 Aug 20 Aug 27 Sep 4 

Filters loading rate 

m/h 
10.3 8 8 7.05 7.05 
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3.4.4 Statistical Analyses 

For each set of comparison to be made, a single factor (involving filter media of filter scale) 

analysis of variance test (ANOVA table; Montgomery, 1991) was performed first to 

determine if there were gross differences within a specific set of filters. Data sets were 

checked to see if they were normally distributed prior to running ANOVA. Normal 

probability plots were used to determine if sample data followed normal distributions. If they 

did, then the data followed a straight line pattern on the normal probability plots 

(Montgomery, 1991). Following ANOVA, independent (regular) t-test and paired t-test 

(which makes comparisons within of matched pairs of data points in two sets of data) 

calculations were performed where appropriate. Finally, the Least Significant Difference 

(LSD) method (Montgomery, 1991) was used to make additional comparisons between each 

pair of filters to determine if the filters performed significantly differently. Of these statistical 

tests, the paired t-tests were considered to provide the most reliable comparisons given that 

they provide a means of evaluating that separate performance trends from changes in influent 

water quality.  
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Chapter 4 Pilot-Scale Filters Flow Rate Experiment Results 

As described in the Materials and Methods Chapter, pilot filters were operated at different 

targeted flow rates, from a low value of 1 L/m which corresponds to a (1.9 m/h loading rate) 

to high value of 13 L/m (24.1 m/h loading rate) during a period of one month to investigate 

the effect of flow rate on the ability of these filters to influence chlorine demand and DBP 

formation. Before this round of experiments, the pilot filters had been operated for three 

months to acclimatize and establish biological activity.  

4.1 Chlorine Demand Variation in Pilot-Scale Filters During Flow Rate Experiment 

Samples were taken from influent II and all filter effluents and their chlorine demands were 

measured in the lab. Table 4.1 shows the flow rate of each filter, which was recorded during 

sampling, and its corresponding chlorine demand. The results, which are plotted in Figure 

4.1, showed identical trends for chlorine demand in all types of filter media. Although 

probably not considerably, the data showed that the chlorine demand of the filter effluent 

increased very slightly by increasing the flow rate except at the lowest flow rates that were 

tested. In fact, this increase occurred regardless of the type of the filter media. It was also 

observed that the chlorine demands of the effluent samples from the anthracite filters 

(designated as P3 and P4 for filters #3 and # 4) were always similar to each other and higher 

than the GAC filter (designated as P1 and P2 for filters #1 and # 2) effluent chlorine demands 

at any flow rate. This observation was anticipated because the coarser surface of GAC 

relative to anthracite which provides a better surface area for bacteria to grow. 
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Table 4.1 Chlorine demand of chlorinated pilot plant filter effluents at different flow   
rates 

 

Influent II= influent to pilot filters from side 2 of water treatment plant. 

P1, P2, P3, P4= effluent from pilot filter columns #1, #2, #3, #4 

Influent II 

Sampling Date and 
Target Flow Rate 

Chlorine 
Demand 

mg/L as Cl2 
9-Jul-07 (1L/m) 4.5 

3-Jul-07 (5L/m) 4.5 

16-Jul-07 (9L/m) 4.5 

12-Jul-07 (13L/m) 4.5 

23-Jul-07 (1.85L/m) 4.5 

P1 P2 

Sampling Date and 
Flow Rate 

Chlorine 
Demand 

mg/L as Cl2 

Sampling Date and Flow 
Rate 

Chlorine 
Demand 

mg/L as Cl2 
9-Jul-07 (1L/m) 3.3 9-Jul-07 (1L/m) 3.2 

3-Jul-07 (5L/m) 3.2 3-Jul-07 (5L/m) 3.2 

16-Jul-07 (8.6L/m) 3.2 16-Jul-07 (7.7L/m) 3.1 

12-Jul-07 (10.2L/m) 3.4 12-Jul-07 (8L/m) 3.4 

P3 P4 

Sampling Date and 
Flow Rate 

Chlorine 
Demand 

mg/L as Cl2 

Sampling Date and Flow 
Rate 

Chlorine 
Demand 

mg/L as Cl2 
9-Jul-07 (1L/m) 3.7 23-Jul-07 (1.85L/m) 3.9 

3-Jul-07 (5L/m) 3.5 3-Jul-07 (4.3L/m) 3.7 

16-Jul-07 (9L/m) 3.6 16-Jul-07 (7.5L/m) 3.5 

12-Jul-07 (12.8L/m) 3.8 12-Jul-07 (11.2L/m) 3.8 
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Figure 4.1 Chlorine demand variation in chlorinated pilot filter influent and effluents at 

different flow rates (influent values are plotted against target flow rates) 

Considering the fact that the influent chlorine demand did not change during the flow rate 

experiments, it can be concluded that the chlorine demand removal was independent from 

flow rate in the different types of filter media that were tested. 

4.2 UV254 Absorbance in Pilot Filters During Flow Rate Experiments 

UV254 absorbance was measured (1 cm path length) as an indicator of the aromatic part of 

NOM molecules which is the active part of DOC in reactions with chlorine to form 

disinfection by-products. As mentioned in Chapter 2, not all aromatic molecules which 

contribute to UV254 absorbance may react with chlorine as THM precursors and some THM 

precursors may not contribute to the overall UV absorbance. Nevertheless, UV254 

absorbance still provides a good indication of the THMFP of the water.  
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UV254 absorbance results of chlorinated pilot filter influent and effluents during the flow 

rate experiments are shown in Table 4.2 and Figure 4.2. These results show that UV254 

absorbance increased as the flow rate increased for flow rates below approximately 8 L/m, 

which does not support the trends observed when chlorine demand was measured. This 

suggests that while the bulk of the dissolved NOM is not affected by flow rate the fraction of 

organic matter which can absorb UV254 (and therefore may contain DBP precursors) is 

affected by flow rate. In addition, UV254 absorbance showed higher values in anthracite 

filter effluents than in GAC filter effluents at any flow rate because GAC out-performs 

anthracite in removing NOM and consequently in decreasing  UV254 absorbance.  

 

0.000

0.010

0.020

0.030

0.040

0.050

0.060

0.070

0.080

0 2 4 6 8 10 12 14
Flow Rate L/m

U
V2

54
 a

bs
or

ba
nc

e P1

P2

P3

P4

In II

 

Figure 4.2 UV254 absorbance in chlorinated pilot filter influent and effluents at 

different flow rates (influent values are plotted against target flow rates) 
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Table 4.2 UV254 absorbance and %reductions of UV245 absorbance of chlorinated 
 

                pilot filter effluents at different flow rates during flow rate experiment 

Influent II 
Sampling Date and 

Target Flow Rate 

UV 

absorbance 

9-Jul-07 (1L/m) 0.066 

3-Jul-07 (5L/m) 0.069 

16-Jul-07 (9L/m) 0.051 

12-Jul-07 (13L/m) 0.042 

23-Jul07 (1.85L/m) 0.05 

P1 P2 
Sampling Date and 

Flow Rate 

UV 

absorbance 

%R of UV 

absorbance

Sampling Date  

and Flow Rate 

UV  

absorbance 

%R of UV 

absorbance 

9-Jul-07 (1L/m) 0.016 75.9 9-Jul-07 (1L/m) 0.011 82.9 

3-Jul-07 (5L/m) 0.029 58.4 3-Jul-07 (5L/m) 0.032 53.9 

16-Jul-07 (8.6L/m) 0.036 28.0 16-Jul-07 (7.7L/m) 0.038 25.8 

12-Jul07 (10.2L/m) 0.032 22.6 12-Jul-07 (8L/m) 0.035 16.5 

P3 P4 
Sampling Date and 

Flow Rate 

UV 

absorbance 

%R of UV 

absorbance

Sampling Date  

and Flow Rate 

UV  

absorbance 

%R of UV 

absorbance 

9-Jul-07 (1L/m) 0.039 40.9 23-Jul07 (1.85L/m) 0.045 21.7 

3-Jul-07 (5L/m) 0.043 38.1 3-Jul-07 (4.3L/m) 0.048 28.4 

16-Jul-07 (9L/m) 0.040 21.6 16-Jul-07 (7.5L/m) 0.049 4.6 

12-Jul07 (12.8L/m) 0.036 13.4 12-Jul07 (11.2L/m) 0.043 -3.3 

Influent II= influent to pilot filters from side 2 of water treatment plant. 

P1, P2, P3, P4= effluent from pilot filter columns #1, #2, #3, #4 
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Considering the variability in influent UV254 values, filter effluent UV254 absorbance data 

were normalized by dividing them by the corresponding influent UV254 absorbance values 

and percentage reductions were calculated. The results are illustrated in Figure 4.3. UV254 

absorbance removal occurred in all filters in the range of 4% to 80%. The maximum 

percentage reduction was seen in filter #2 (GAC) at flow rate 1 L/m (82%) and the minimum 

was -3.3% in filter #4 (anthracite) at flow rate 11.2 L/m. It is possible that at high flow rates 

organic matter is sloughed off from the filter media and contributes to the UV254 absorbance 

of filter effluent, even increasing the UV254 absorbance to higher value than in the influent 

and causing an overall percentage increase (negative percentage reduction) as happened in 

filter #4 at 11.2 L/m. 
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Figure 4.3 %Reductions of UV254 absorbance in chlorinated pilot filter effluents at                        

different flow rates 
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4.3 Trihalomethane Formation Potential (THMFP) Removal in Pilot Filters During 

Flow Rate Experiments 

As described in Chapter 3, THMPF tests were conducted on pilot filter influent and effluent 

samples. Four trihalomethane species along with total trihalomethane concentrations 

(TTHM) were measured in pilot filter effluent samples as the 4 pilot filters were operated at 

different flow rates. The concentrations of the individual THM species and TTHM values for 

pilot filter #1 are presented in Table 4.3 and Figure 4.4. Filter #1 was selected to be shown in 

this section as a typical filter among the pilot filters. THM data for the other filters are given 

in Appendix A. 

 

Table 4.3 THM species and TTHM concentrations (μg/L) in chlorinated pilot filter #1   

effluent during flow rate experiment 

Flow Rate (L/m) CHCl3 CHCl2Br CHClBr2 CHBr3 TTHM 

1 5.6 10.9 17.1 12.3 99.1 

5 7.1 15.3 29.5 16.5 68.4 

8.6 12.9 24.7 33.1 16.8 87.4 

10.2 15.0 27.7 42.1 18.2 103 

  

In Figure 4.4 a consistent trend for all species can be observed. The THM species 

concentrations, and therefore TTHM concentrations, increased as the flow rates were 

increased. Individual THM concentrations ranged from approximately 5 μg/L to 40 μg/L and 

TTHM ranged from 40 μg/L to 100 μg/L in these experiments. It should be mentioned that 

although the higher concentrations are above the current regulations, they are decreased 
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before the drinking water enters the distribution system because finished water from this 

water treatment plant is mixed with ground water before distribution.  
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Figure 4.4 THM concentrations in chlorinated pilot filter #1 effluent at different flow 

rates 

In regards to relative species concentrations, the formation of chloroform had the lowest level 

among all THM species (which is consistent with published DWSP data) and brominated 

species contributed more to the TTHM. This was because bromide concentration in Grand 

River is moderately high (50 μg/L; Peldszus et al., 2004) and it is not affected by filtration, 

unlike organic compounds. Chlorine in the form of hypochlorous acid oxidizes bromide to 

hypobromous acid (HOBr) in a very fast reaction, therefore the yield of THM species shifts 

to more brominated THMs when the parallel bromination reactions occur with THM 

precursor compounds. Experimental results showed that very similar amounts of CHBr3 were 
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formed in the influent and all filter effluents at any specific flow rate, and also that the CHBr3 

concentration increased slightly as flow rates were increased. 

In addition in the presence of ozone, which is a unit process at this water treatment plant, 

bromide is oxidized to HOBr/OBr- and then can be oxidized further to form bromate which is 

a pH dependent reaction. However, in the presence of both humic substances and bromide 

ion (similar to the Mannheim pilot filter conditions), HOBr tends to react with humic 

substances to form organic DBPs like THMs rather than forming bromate (Amy et al., 1991). 

Percentage reductions of THM species concentrations in chlorinated filter #1 effluent 

samples relative to the influent THM concentrations are given in Table 4.4. Figure 4.5 

illustrates THM percentage reduction vs. flow rate in filter #1 and shows that all THM 

species and TTHM percentage reductions decreased with increasing flow rate, which 

confirms the trend shown in Figure 4.4. It illustrates the poorer filter performance in regard 

to THMPF removal at high flow rates due to the lower contact time of the water in the filter 

and therefore less removal of organic precursors at such flow rates. 

Chloroform always showed the highest percentage removal (80% to 5%) at different flow 

rates among the THM species in filter #1, and minimum percentage reductions or even 

increases in species concentrations were associated with CHBr3 and CHClBr2 (which showed 

increases of approximately 20% at 8.6 L/m). 
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Table 4.4 THM %reductions in chlorinated pilot filter #1 effluent and related influent 

concentration during flow rate experiment 

 

THM Concentrations μg/L   (Influent II) 

Sampling Date CHCl3 CHCl2Br CHClBr2 CHBr3 TTHM 

9-Jul-07 5.6 10.9 17.1 12.3 45.9 

3-Jul-07 14.2 23.1 30.2 14.2 81.7 

16-Jul-07 22.6 27.7 26.6 13.7 90.6 

12-Jul-07 15.9 29.4 39.4 18.6 103 

% Reduction in THM Concentrations (P1)     

Sampling Date  and 

Flow Rate 
CHCl3 CHCl2Br CHClBr2 CHBr3 TTHM 

9-Jul-07 (1 L/m) 78.7 63.8 40.3 11.8 53.7 

3-Jul-07 (5 L/m) 50.0 33.8 2.3 -16.2 16.3 

16-Jul-07 (8.6 L/m) 43.1 11.0 -24.4 -22.6 3.5 

12-Jul-07 (10.2 L/m) 5.7 5.6 -6.9 2.4 0.3 

          

         Influent II= influent to pilot filters from side 2 of water treatment plant. 

         P1= effluent from pilot filter column #1 
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 Figure 4.5 THM %reductions in chlorinated pilot filter #1 at different flow rates 

TTHM concentrations and percentage reductions for all pilot filters were compared together 

as flow rates were changed in Figure 4.6 and 4.7, respectively. These figures suggest that 

flow rate increases have significant effects on TTHM levels in filter effluents and on TTHM 

percentage reductions for any of the types of filter media that were studied.  

As is presented in Figure 4.6, the overall trend is for decreases in TTHM percentage 

reductions to result from increases in flow rate. Figure 4.7 also shows that P1 and P2 (GAC 

filters) performed more efficiently in TTHMFP removal than P3 and P4 (anthracite filters). 

This can be explained by the fact that GAC acts as a better media for THM precursor 

removal than anthracite in both biological and adsorption mechanisms. 
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Figure 4.6 TTHM concentrations in chlorinated pilot filter effluents at different flow      

                    rates 
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Figure 4.7 TTHM %reductions in chlorinated pilot filter effluents at different flow     

rates 
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At high flow rates (higher than approximately 5 L/m), there was not any percentage 

reduction in TTHM in filters # 2, 3 and 4. The negative percentage reductions at high flow 

rates indicate that organic matter is sloughed off from the filter media and contributes to the 

TTHM formation in the filter effluent, causing an overall percentage increase (negative 

TTHM percentage reduction) similar what was observed for UV254 absorbance 

measurements. 

4.4 HAA Formation Potential Removal in Pilot Filters During Flow Rate Experiments 

Concentrations of six haloacetic acids (including chloroacetic acid, bromoacetic acid, 

dichloroacetic acid, trichloroacetic acid, bromochloroacetic acid, and dibromoacetic acid) 

along with HAA6 were measured in pilot filter influent and effluents at different flow rates. 

Flow rate range and HAA species concentrations in pilot filter #1 effluent are shown in Table 

4.5 and Figure 4.8. All HAA species and HAA6 concentrations increased at high flow rates 

except, for chloroacetic acid and bromoaacetic acid which were consistently non-existent in 

samples or their concentrations were lower than their method detection limits. Concentrations 

of  the four other HAAs that have been quantified were very close to each other and varied 

between 1.5 μg/L to 4.2 μg/L. Dichloacetic acid was observed at the maximum concentration 

level at all flow rates (2.5 μg/L to 4.5 μg/L), which was higher than its EPA MCL goal of 0.0 

mg/L.  

Since HAA species concentrations ranges in others filters were similar to those for filter #1, 

filter #1 was selected to be shown in this section as a typical filter among the pilot filters. 

HAA data for the other filters are given in Appendix I. 
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Table 4.5 HAA concentrations (μg/L) in chlorinated pilot filter #1 effluent during flow 

rate experiment 

Flow Rate (L/m) ClAA BrAA Cl2AA Cl3AA BrClAA Br2AA HAA6

1 0 0 2.5 1.8 1.4 1.9 7.6 

5 0 0 2.6 2 1.9 2.8 8.9 

8.6 0 0 3.7 2.1 3.3 2.8 11.9 

10.2 0 0 4.2 2.3 3.9 3.8 14.2 
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Figure 4.8 HAA concentrations in chlorinated pilot filter #1 effluent at different flow 

rates 

HAA concentrations were normalized by dividing by the influent concentration obtained for 

each sampling date to express results in the form of percentage reduction (Table 4.6 and 

Figure 4.9).  
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Table 4.6 HAA %reductions in chlorinated pilot filter # 1 effluent and related influent 

concentrations during flow rate experiment 

HAA concentration μg/L (Influent II) 

Sampling Date  ClAA BrAA Cl2AA Cl3AA BrClAA Br2AA HAA6 

9-Jul-07 0 0 9.1 8.7 7.1 3.5 28.4 

3-Jul-07 0 0 4.9 5.1 4.9 4 19 

16Jul-07 0 0 4.7 3.1 5.5 2.9 16.2 

12-Jul-07 0 0 5.8 4.2 3.7 2.7 16.4 

%Reduction in HAA concentrations (P1) 

Sampling Date 

and Flow Rate 
ClAA BrAA Cl2AA Cl3AA BrClAA Br2AA HAA6 

9-Jul-07 (1 L/m) 0 0 60.8 79.4 79.6 45.7 69.4 

3-Jul-07 (5 L/m) 0 0 55.5 60.9 60.7 30.9 53 

16-Jul-07 (8.6 L/m) 0 0 21.3 12.9 35.4 3.4 21.3 

12-Jul-07  

(10.2 L/m) 
0 0 27.6 45.9 -6.7 -40.7 13.4 

       

           Influent II= influent to pilot filters from side 2 of water treatment plant. 

           P1= effluent from pilot filter column #1 
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Figure 4.9 HAA %reductions in chlorinated pilot filter #1 effluent at different flow 

rates 

 It would appear that the percentage reduction of HAA species in chlorinated filter #1 

effluent decreased with increasing flow rate which supports the general trend in all pilot filter 

effluents for HAA concentrations. These results suggest that there is less organic precursor 

removal and therefore lower HAA percentage reduction in filters when they are operated at 

higher flow rates, which is in agreement with THMFP removal results. This result can be 

explained by the longer filter run times at low flow rates, which increases contact time of the 

water within the filters and improves organic removal by the filters. On the other hand HAA 

concentrations in the influent were higher when filters were operated at 1 L/m flow rate 

relative to other flow rates (i.e. other sampling dates), which can be another  reason for 

higher organic removal at that flow rate (Urfer et al., 1997). 

The HAA6 concentrations and percentage reductions in the four pilot filters at different flow 

rates are shown in Figures 4.10 and 4.11, respectively. The overall trend in Figure 4.10 is for 
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the HAA6 concentrations to increase with increasing flow rate in all types of filter media. 

The exception is a higher HAA6 formation in filter #2 at the lowest flow rate (1 L/m); 

however, at the flow rates above approximately 4 L/m HAA6 reduction in filter #2 follows 

the general trend. The anomaly may be due to a higher influent HAA6 concentration because 

the anomaly disappears once the data are converted to % reduction (Figure 4.11). 
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Figure 4.10 HAA6 concentrations in chlorinated pilot filter effluents at different flow 

rates 

  Figure 4.11 compares percentage reductions of HAA6 in all chlorinated pilot filters effluent 

during the flow rate experiments. Maximum percentage reduction (80%) and minimum 

percentage reduction (-13%, or a 13% increase) were observed in P1 and P4 at 1 L/m and 

11.2 L/m, respectively.  
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Figure 4.11 HAA6 %reductions in chlorinated pilot filter effluents at different flow    

rates 

As illustrated in Figure 4.11, HAA6 percentage reductions decreased as flow rates were 

increased, similar to the TTHM percentage reduction trend. Filters #1 and #2 reduced HAA6 

more efficiently (showed higher percentage reduction) relative to filter #3 and #4. This is 

likely because filters #1 and #2 are GAC filters and provide better media for organic 

precursors to be removed through either adsorption or biological processes. However, it is 

not clear why data for filter # 3 (one of the anthracite filters) showed higher percentage 

reduction than GAC filters at high flow rates.  

HAA6 production (negative percentage reduction) in pilot filter #4 effluent at high flow rates 

was in agreement with its corresponding TTHM results. It helps to support the hypothesis 

that organic matter was sloughing off from the filter media at higher flow rates and 
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increasing the HAA6 precursor level in the filter effluent to more than the concentration that 

could be present in filter influent water.  

4.5 Nitrosamines Formation Potential Removal in Pilot Filters During Flow Rate 

Experiments 

Eight nitrosamine compounds were measured in chloraminated pilot filter effluent samples 

during the flow rate experiments. N-nitrosodiethylamine (NDEA), N-nitrosodibutylamine 

(NDBA), N-nitrosodi-n-propylamine (NPRO), N-nitrosopiperidine (NPIP), and N-

nitrosopyrolidine (NPYR) were not detected in any chloraminated filter effluent samples in 

these experiments while N-nitrosodimethylamine (NDMA), N-nitrosomethylethylamine 

(NMEA), and N-nitrosomorpholine (NMOR) were observed at low concentrations, in the 

range of  0.5 to 4 ng/L in all chloraminated pilot filter effluents. Filter #1 effluent showed the 

highest levels of NDMA, NMEA, and NMOR (among pilot filters) at 3.8 ng/L, 1.4 ng/L, and 

2.7 ng/L, respectively, at the flow rate of 8.6 L/m. Also, both NDMA and NMEA showed the 

lowest level at the 5 L/m flow rate while NMOR appeared at its lowest level at the 1L/m flow 

rate in chloraminated pilot filter #1 effluent.  

The concentrations of all 8 nitrosamines detected in chloraminated filter #1 effluent are 

shown in Table 4.7. They are plotted against flow rate in Figure 4.12. Filter #1 was selected 

to be shown in this section as a typical filter among the pilot filters. Nitrosamines data for the 

other filters are given in Appendix I. 
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Table 4.7 Nitrosamine concentrations (ng/L) in chloraminated pilot filter #1 effluent 

during flow rate experiments        

Flow Rate (L/m) NDMA  NMEA  NDEA NPRO NPIP  NPYR  NDBA NMOR 

1 1.9 1.3 0 0 0 0 0 1.4 

5 0.8 0.9 0 0 0 0 0 2.7 

8.6 3.8 1.4 0 0 0 0 0 2.7 

10.2 2.0 1.3 0 0 0 0 0 1.5 

0= Less than the method detection limit (Appendix C) 
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Figure 4.12 Nitrosamine concentrations in chloraminated pilot filter #1 effluent at 

different flow rates 

Maximum and minimum levels for NDMA, NMEA, and NMOR occurred at 5 L/m and 8.6 

L/m in filter #1, respectively. However, no consistent trend was observed in the 

concentration variations of these compounds as the flow rate changed in any type of filter 

media. This lack of definite trends may be due to the low concentrations observed (all near 
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MDLs). At these low concentrations it is difficult to separate trends from background 

variations. 

Table 4.8 and Figure 4.13 show percentage reductions of nitrosamines in chloramonated 

filter #1 effluent. NDMA, NMEA, and NMOR percentage reductions in filter #1 ranged 

approximately from 60% to 80% as the flow rate changed but, similar to the nitrosamine 

concentrations themselves, the percentage reductions did not have any specific trend and they 

changed randomly with increasing flow rate. High NDMA percentage reduction 

(approximately 80%) in all filters indicates good filter performance for the removal of 

organic-nitrogen-containing precursors, especially considering that the NDMA 

concentrations in all filter effluents were less than the Ontario interim maximum acceptable 

concentration IMAC of 9 ng/L. The %100 removal of NDEA is not a very surprising 

percentage reduction since the NDEA concentration in the influent was very low (at 

approximately the detection limit). However, again, because of the very low measured 

concentrations it is difficult to make a definite judgment about the different filter media 

effects on the nitrosamine formation potential.  

Comparison of nitrosamine concentrations and nitrosamine percentage reductions for the 

different types of filter media was also inconclusive as is shown in Figures 4.14 and Figure 

4.15 for NDMA. NDMA percentage reductions for all filter media (Figure 4.15) were in the 

range of 60-95% for the range of flow rates that were tested. The experimental results do not 

show any consistent preference between GAC and anthracite filters for the removal of 

nitrosamine formation potential throughout the range of operated flow rates, unlike what was 

observed for THM and HAA removals in the filters. 
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Table 4.8 Nitrosamine %reductions in chloraminated pilot filter #1 effluent and related 

influent concentrations during flow rate experiment 

Nitrosamine Concentrations (ng/L)  Influent II 

Sampling 

Date  
NDMA NMEA NDEA NPRO NPIP NPYR NDBA NMOR

9-Jul-07 11.9 5.6 1.9 0 0 0 0 8.4 

3-Jul-07 4.7 3.0 1.4 0 0 0 0 5.7 

16-Jul-07 13.2 5.6 1.4 0 0 0 0 8.6 

12-Jul-07 12.1 7.7 1.5 0 0 0 0 9.8 

%Reductions in nitrosamine concentrations (P1) 

Sampling 

Date and 

Flow Rate 

NDMA NMEA NDEA NPRO NPIP NPYR NDBA NMOR

9-Jul-07 

(1L/m) 
84 76 100 _ _ _ _ 83 

3-Jul-07 

(5L/m) 
83 71 100 _ _ _ _ 52 

16-Jul-07 

(8.6L/m) 
71 74 100 _ _ _ _ 68 

12-Jul-07 

(10.2L/m) 
83 83 100 _ _ _ _ 84 

            Influent II= influent to pilot filters from side 2 of water treatment plant. 

            P1= effluent from pilot filter column #1 

0= Less than the method detection limit (Appendix C) 

- = %Reduction was not calculated because of zero in influent 
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Figure 4.13 Nitrosamine %reductions in chloraminated pilot filter #1 effluent at 

different flow rates 
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Figure 4.14 NDMA concentrations in chloraminated pilot filter effluents at different 

flow rate 
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Figure 4.15 NDMA % reductions in chloraminated pilot filter effluents at different flow 

rate 
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Chapter 5 Full-Scale, Pilot-Scale Comparison Experiment Results 

During this round of experiments, which took about one month, the biomass in the pilot 

filters was estimated to be approximately in steady state after having operated the pilot filters 

from February 2007 for approximately six months. The comparability of results obtained at 

pilot-scale (PS) and full-scale (FS) was investigated by means of different statistical 

procedures. Analysis of Variance (ANOVA table; Montgomery, 1991) was performed first to 

show if there was any significant difference between a specific set of filters. Then, 

independent (regular) t-test and paired t-test (which makes comparisons within matched pairs 

in two sets of data) calculations were performed where appropriate and, finally, the Least 

Significant Difference method (LSD) (Montgomery, 1991) was used to make additional 

comparisons between each pair of filters to determine if the filters performed significantly 

differently.   

The pilot filter operating flow rates were calculated to match the full-scale filter loading rates 

as closely as possible. A table summarizing the corresponding full-scale and pilot-scale flow 

rates and loading rates is included in Appendix C (Emelko, 2007). Samples from the filter 

influents full-scale filter effluents and pilot-scale filter effluents were taken every week for 

five weeks and examined for several water quality parameters including, chlorine demand, 

UV254 absorbance, thrihmalomethanes, haloacetic acids and nitrosamines. This chapter 

presents the results of these experiments. 
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5.1 Chlorine Demand Variations During the FS/PS Experiments 

Chlorine demand measurements were the first tests that were completed. Table 5.1 

summarizes the 3-hour chlorine demand results and Figure 5.1 shows these results in 

graphical format. 

          

Table 5.1 Chlorine demand concentrations during FS/PS experiments (mg/L as Cl2) 

      Sampling date 

 

 

Sample name  

 

Aug  7/07 

Loading rate 

at 10.3 m/h 

 

Aug 13/07 

Loading rate 

at 8 m/h 

 

Aug 20/07 

Loading rate 

at 8 m/h 

 

Aug 27/07 

Loading rate 

at 7.05 m/h 

 

Sep 04/07 

Loading rate 

at 7.05 m/h 

Influent 1 4.5 4.2 4.2 4.5 4.6 

Influent 2 4.5 4.2 4.2 4.5 4.6 

F.S. Filter 1 3.2 3.0 3.4 3.3 3.4 

F.S. Filter 2 3.2 3.0 3.4 3.3 3.6 

F.S. Filter 3 3.6 3.3 3.6 3.6 3.7 

F.S. Filter 4 3.6 3.5 3.6 3.6 3.7 

P.S. Filter 1 3.3 3.2 - - 3.4 

P.S. Filter 2    3.3 3.3 3.5 3.5 3.7 

P.S. Filter 3   3.6 3.6 3.7 3.8 3.9 

P.S. Filter 4    3.6 3.6 3.6 3.8 3.9 

- :  filter #1 was plugged and no sample was taken  
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               Figure 5.1 Chlorine demand variation during the FS/PS experiments 

The chlorine demand range for all full-scale and pilot-scale filter effluents was from 3 to 3.9 

mg/L as Cl2. As well, the chlorine demand of each filter effluent did not change considerably 

during these experiments, which can be related to the consistent influent chlorine demand of 

4.2 to 4.6 mg/L as Cl2 and the steady performance of the filters. 

From Figure 5.1 it is evident that chlorine demand was reduced by all full-scale and pilot-

scale filters. As expected, it was reduced more in the GAC filters than in the anthracite filters 

at both full-scale and pilot-scale, likely because of better biomass growth on the GAC media 

than on anthracite and also the possibility of some residual adsorptive capacity of the GAC. 

The chlorine demands of the pilot-scale anthracite filter effluents (P3, P4) were similar to 

those obtained from the full-scale anthracite filter effluent (F4), and the chlorine demand of 

the full-scale GAC filter effluents (F1, F2) were similar to those obtained from the pilot-scale 

GAC filter effluents (P1, P2). However, full-scale filter #3, which had fresh GAC compared 
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to the other full-scale GAC filters (F1 and F2), appeared to have consistently higher chlorine 

demand than F1 and F2. F3’s lower ability for removing chlorine demand may be because of 

the fact that it had not been acclimatized for a long period like the other GAC filters, having 

been in service for only 4 months, and so it just removed chlorine demand by adsorption and 

not by a combination of biological and adsorption mechanisms. 

5.1.1 Chlorine Demand Removal Comparisons for Pilot-Scale Filters 

In order to provide a means to compare filter performance from a common perspective, the 

data were normalized relative to filter influent values to account for variations or changes in 

water quality that was entering the filters over the series of sampling runs. Therefore, the first 

set of data comparisons was carried out between the different pilot filter chlorine demand 

percentage removals. Results from the five sampling runs are shown in Table 5.2 and Figure 

5.2. 

Table 5.2 Chlorine demand % reduction results in chlorinated pilot filter effluents 

 P1 P2 P3 P4 

 Aug 7/07 26 26 20 20 

 Aug 13/07 23 21 14 14 

 Aug 20/07 - 16 11 14 

 Aug 27/07 - 22 15 15 

 Sep 4/07 26 19 15 15 

                            - :  filter #1 was plugged and no sample was taken  
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    Figure 5.2 Chlorine demand %reduction in chlorinated pilot filter effluents 

From Figure 5.2 it would appear that the anthracite filters (P3, P4) performed more 

consistently and similarly than the GAC filters (P1, P2) during the FS/PS experiments. In 

order to confirm that the above performance differences were statistically significant, an F-

test was performed using an ANOVA table (Table 5.3; Montgomery, 1991). The normality of 

the data distribution was checked and confirmed prior to performing the ANOVA to compare 

chlorine demand removals observed in the different pilot filters. The normal probability plot 

is shown in Appendix D. 

The null hypothesis for this set of comparisons is: 

 

Ho: μP1= μP2 =μP3 =μP4      in which μ is the mean of each set of filter results. 
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Table 5.3 ANOVA table for comparison of chlorine demand removal in the pilot filters 
 

Source df SS MS Fobserved 

Filters 3 268 89.3 10.8 

Within filters 14 116 8.3   

Total 17 383     

 
F3,14,0.05 = F tabulated = 3.35   → Fobs> F tabulated  

 

Since the observed F of 10.8 is greater than the tabulated F of 3.35, we can therefore reject 

the null hypothesis and conclude that there are significant differences between the variances 

in the performances of the pilot filters in regard to chlorine demand removal at a 95 % 

confidence level. 

Then, to determine how the filters are different, the means of comparable filters were 

compared using the independent (regular) t-test, paired t-test, and the Least Significant 

Difference (LSD) methods (Montgomery, 1991). In this chapter, before performing an 

independent t-test between any pair of filters, an F-test was performed to compare the 

variances of the data sets for two filters, to determine if the variances could be assumed equal 

to allow use of the pooled variance for subsequent t-test calculations. In cases where the F-

test result showed that the compared variances were not equal, Smith-Satterthwaite’s 

approximation was used to determine an appropriate degrees of freedom and a slightly 

modified version of the t-test was used (Montgomery, 1991). For example, for the pilot GAC 

filters (P1 and P2) variances comparison, the null hypothesis is Ho: S1
2=S2

2. Since Fobserved= 

(S1/S2)2 =6.08 is less than f4, 2, 0.005 =19.25 (from F table), the null hypothesis can not be 
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rejected. This confirms that the two variances are not significantly different and as a result, 

pooled variance was used in the independent t-test calculations.  

The null hypothesis for the T-test for the comparison of P1 and P2 comparison is Ho: μP1= 

μP2 and the summary of the calculation is as follows: 

 

 P1 P2 

Ave 25.5 21.3 

STDEV 1.5 3.7 

S2 (Variance) 2.3 13.5 

 
S2p (pooled variance) = 9.8 →  Sp = 3.1 and Tobs = 1.8 

    From t-Table: 

T0.025,6 =2.45     → T obs<T0.025,6 

 

Therefore, since the observed T value is less than the tabulated value, the null hypothesis is 

accepted, which means there was no significant difference between the performance of the 

different filter media in pilot filters #1 and #2 (GAC filters) in regard to chlorine demand 

removal at a 95% confidence level. This result was supported by the paired t-test; however 

the Least Significant Difference (LSD) method showed differences between the performance 

of P1 and P2. It should be considered that the differences detected by the statistical tests in 

comparisons involving P1 might be influenced by the smaller number of samples obtained 

from P1 effluent relative to the other effluents. 

The Independent t-test was also used to compare the pair of anthracite pilot filters (P3, P4). 

Calculations are summarized as follows: 
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Ho: μP3= μP4 

 P3 P4 

Ave 15.4 15.9 

STDEV 2.9 2.4 

S2 (Variance) 8.7 5.7 

 
S2p (pooled variance) = 7.2 → Sp = 2.7 and Tobs = -0.28 

From T–table: 

 
 

 
As was observed for the pair P1 and P2, the null hypothesis for the comparison of P3 and P4 

could not be rejected. Therefore, it was concluded that the different uniformity coefficients of 

anthracite media in P3 and P4 do not affect their performance in terms of their chlorine 

demand removal at a 95% confidence level. 

In order to check if there were significant differences between the performance of the GAC 

and anthracite pilot filters for removing chlorine demand, all the GAC filter effluent chlorine 

demand data were pooled together and the anthracite filter effluent chlorine demands were 

pooled together to make following table to be used in the t-test calculations: 

 GAC Filters Anthracite Filters 

Ave 22.9 15.6 

STDEV 3.6 2.5 

S2 (Variance) 13.1 6.4 

 
S2p (pooled variance) = 9.8 → Sp = 3.1 and Tobs = 4.9 

From t-Table:  

T0.025,16 =2.12  → T obs>T0.025,16 

T0.025,8 =2.31   → T obs<T 0.025,8 
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As expected, the t-test result confirms that there was a significant difference between the 

GAC and anthracite filter performance in regard to chlorine demand removal, confirming 

what was observed in Figure 5.2 in which the GAC pilot filters appeared to remove a higher 

percentage of chlorine demand. This result was also confirmed by the paired t-test, and the 

LSD methods. 

5.1.2 Chlorine Demand Removal Comparisons for FS and PS GAC Filters 

The performance of the pilot-scale GAC filters (P1 and P2) for removing chlorine demand 

was compared with that of the full-scale GAC filter that received the same influent water 

(F3). F3 was chosen for the comparison instead of F1 and F2 because F3 receives the same 

influent water as P1 and P2. Chlorine demand percentage reductions from the five sampling 

runs are shown in Table 5.4 and Figure 5.3. Unfortunately, P1 was not operational for two of 

the sampling runs. 

Table 5.4 Chlorine demand %reduction results in chlorinated GAC filter effluents 

 P1 P2 F3 

Aug 7 26.7 26.7 20.0 

Aug 13 23.8 21.4 21.4 

Aug 20 - 16.7 14.3 

Aug 27 - 22.2 20.0 

Sep 4 26.1 19.6 19.6 

                              - :  filter #1 was plugged and no sample was taken  
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Figure 5.3 Chlorine demand %reduction in chlorinated GAC filter effluents (error bars 

are %standard deviation calculated from replicate samples) 

Figure 5.3 shows P2 and F3 chlorine demand values were very close but it must be verified 

statistically. P1 also performed similarly to P2, although there were fewer data with which to 

make comparisons. 

To confirm that above performance differences were statistically significant, ANOVA was 

first performed on the data. Performing an F-Test by means of following ANOVA Table 

(Table 5.5) demonstrated significant difference between the performance of the GAC filters 

at a 95% confidence level because the F observed value is greater than the tabulated value of F. 

Then the chlorine demand results from each pair of filters in this set were compared using the 

independent t-test, paired t-test, and LSD method. The following independent t-test for P1 

and F3 comparison shows that the Tobserved value is greater than the tabulated value of T, 

therefore, the null hypothesis is rejected and it can be considered that there was a significant 



 

 74

difference between P1 and F3 performance in regard to chlorine demand removal at a 95% 

confidence level. 

Table 5.5 ANOVA table for comparison of chlorine demand removal in GAC filters 
 
Ho: μP1= μP2 =μF3 
    

Source df SS MS Fobserved 

Filters 2.0 78.5 39.2 4.4 

Within filter 10.0 89.1 8.9   

Total 12.0 167.6     

 
F2,10,0.05 =4.10      → Fobs> F tabulated 

 

Ho: μP1= μF3 

 P1 F3 

Ave 25.5 19.1 

STDEV 1.5 2.8 

S2 (Variance) 2.3 7.6 

 
S2p = 5.83  →   Sp = 2.41 and  Tobs  = 3.66 

From t-Table: 

T0.025, 6 =2.45  → T obs>T0.025, 6  

 

The LSD test result also supported the t-test result. However, the paired t-test showed no 

difference between the performance of the different GAC media in F3 and P1 in regard to 

chlorine demand removal. As mentioned before, there were only three data points dataset for 

P1 that could be used since it was out of service for two sampling runs.  
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In contrast to the comparison of P1 and P3, independent and paired t-tests and the LSD 

results showed that there is no significant difference between the performance of P2 and F3 

in regard to chlorine demand removal at a 95% confidence level. The following table shows 

the independent T-test for the comparison between the performance of P2 and F3.  

Ho: μP2= μF3 

 

 

 

 

 

S2p = 10.57  →  Sp = 3.25 and  Tobs = 1.1 

From t-Table: 

T0.025,8 = 2.31   → T obs<T0.025,8   →  Ho is accepted 

 

The comparison of the GAC pilot-scale filters (P1and P2) with each other was described in 

Section 5.1.1 and indicated that there was no significant difference in the performance of 

these filters with respect to chlorine demand removal. 

 

5.1.3 Chlorine Demand Removal Comparisons for FS and PS Anthracite Filters 

In this set of comparisons, the chlorine demand percentage removal in the anthracite full-

scale (F4) and pilot-scale (P3 and P4) filters was evaluated. Results are given in Table 5.6 

and Figure 5.4. 

 P2 F3 

Ave 21.3 19.1 

STDEV 3.7 2.8 

S2 (Variance) 13.5 7.6 
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Table 5.6 Chlorine demand %reduction results in chlorinated anthracite filter effluents 

  P3 P4 F4 

Aug 7 20.0 20.0 20.0 

Aug 13 14.3 14.3 16.7 

Aug 20 11.9 14.3 14.3 

Aug 27 15.6 15.6 20.0 

Sep 4 15.2 15.2 19.6 
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Figure 5.4 Chlorine demand %reduction in chlorinated anthracite filter effluents (error 

bars are %standard deviation calculated from replicate samples) 

 

To confirm that above performance differences were statistically significant, ANOVA was 

first performed on the data. Unlike the results from the FS/PS GAC filters, results from the 

ANOVA Table (Table 5.7) identified no significant difference between the anthracite filter 

performances to achieve chlorine demand removal at a 95% confidence level. 



 

 77

Table 5.7 ANOVA table for comparison of chlorine demand removal in anthracite 

filters 

Ho: μP3= μP4 =μ F4 

Source df SS MS Fobserved 

filters 2.0 20.9 10.5 1.5 

Within filter 12.0 83.2 6.9   

Total 14.0 104.2     

 
F2,12,0.05 =3.89     → Fobs<F tabulated 

 

Information for the independent t-test for the pair P3 and F4 is as follows: 

Ho: μP3= μF4 

 P3 F4 

Ave 15.4 18.1 

STDEV 2.9 2.5 

S2 (Variance) 8.7 6.5 

 
S2p = 7.58   →  Sp = 2.75 and   Tobs  = -1.56 

From t-Table: 

T0.025,8 =2.31  → T obs<T0.025,8  →  Ho is accepted 

 

The null hypothesis failed to be rejected; therefore, there was no considerable difference 

between the performance of the different anthracite media in P3 and F4 in regard to chlorine 

demand removal at a 95% confidence level. However, the result from the paired t-test was 

opposite to the independent T-test result. 
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Three different statistical tests were carried out to compare P4 and F4 and all results showed 

that there was no considerable difference between their performances at a 95% confidence 

level in regard to chlorine demand removal. Following is the calculation for comparison of 

P2 and F4 using the independent T-test. 

Ho: μP4= μF4 

 P4 F4 

Ave 15.9 18.1

STDEV 2.4 2.5

S2 (Variance) 5.7 6.5

 
S2p = 6.07   →  Sp = 2.46 and  Tobs  = -1.43 

From t-Table: 

T0.025,8 =2.31  → T obs<T0.025,8 →  Ho is accepted 

 

Statistical test results for P3 comparing and P4 comparison were explained in Section 5.1.1, 

and showed that there was no significant difference in the performance of these filters with 

respect to chlorine demand removal. 

 

5.1.4 Chlorine Demand Removal Comparisons for Full-Scale GAC Filters 

Chlorine demand removal in full-scale GAC filters were also compared as the last set of 

comparisons (Table 5.8 and Figure 5.5). 
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Table 5.8 Chlorine demand %reduction results in chlorinated full-scale GAC filter 

effluents 

 F1 F2 F3 

 Aug 7 29 29 20 

 Aug 13 29 29 21 

 Aug 20 19 19 14 

 Aug 27 27 27 20 

Sep 4 26 22 20 
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Figure 5.5 Chlorine demand %reduction in chlorinated full-scale GAC filter effluents 

(error bars are % standard deviation calculated from replicate samples) 

 Figure 5.5 shows that older GAC full-scale filters (F1 and F2) performed quite similarly and 

more efficiently than the fresh GAC (F3) in regard to chlorine demand removal. To confirm 

that above performance differences were statistically significant, ANOVA was first 

performed on the data. Analysis of variance (ANOVA Table 5.9) was carried out to 
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distinguish any overall differences in their performance and, subsequently t-tests showed 

which pair of filters performed significantly differently. 

Table 5.9 ANOVA table for comparison of chlorine demand removal in full-scale GAC 

filters 

Ho: μF1= μF2 =μ F3 

Source df SS MS Fobserved 

Filters 2 134.1 67.0 4.8 

Within filter 12 166.5 13.9  

Total 14 300.6   

 
F2,12,0.05  =3.89     → Fobs>F tabulated  

 

Since the observed F is greater than the tabulated value of F, the null hypothesis can be 

rejected which confirms that there were significant differences between the performances of 

these filters in regard to chlorine demand removal at a 95% confidence level. Then each pair 

of full-scale GAC filters was compared using three different statistical tests. 

Ho: μF1= μF2 

 F1 F2 

Ave 25.8 24.9 

STDEV 3.9 4.3 

S2 (Variance) 15.4 18.6 

 
S2p = 17.01  →  Sp = 4.12  and   Tobs = 0.33 

From t-Table: 

T0.025,8  =2.31  → T obs<T0.025,8   →   Ho is accepted 
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The observed T value is less than tabulated values which means there was no significant 

difference between F1 and F2 in regard to chlorine demand removal at a 95% confidence 

level. Performing the independent t-test (using the following data) to compare the 

performance of F1 with F3 shows that  the F1 performance is significantly different from that 

of F3 in regard to chlorine demand removal at a 95% confidence level. This was also true for 

F2 and F3. 

Ho: μF1= μF3 

                                  

 

 
S2p = 11.5   →   Sp = 3.4 and  Tobs = 3.14             

From t-Table:                                                 

T0.025,8 =2.31  → T obs>T0.025,8  →   Ho is rejected 

 

Ho: μF1= μF2 

 F2 F3 

Ave 24.9 19.1 

STDEV 4.3 2.8 

S2 Variance 18.6 7.6 

 
S2p = 13.1   →  Sp = 3.6 and  Tobs= 2.57             

From t-Table:                                                      

 T0.025,8 =2.31  → T obs>T0.025,8  →   Ho is rejected 

 

 F1 F3 

 Ave 25.8 19.1 

STDEV 3.9 2.8 

S2 Variance 15.4 7.6 
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The LSD method and paired t-test were also performed. They both supported the above t-test 

results, and confirm that although the two older GAC filters were performing similarly, the 

filter with the newer GAC did not remove chlorine demand as well. While this was likely 

because of the age of the media, as described previously, it may have also been influenced by 

differences in the performances of upstream treatment unit processes (beyond the scope of 

this study). 

 

5.2 UV254 absorbance Variation During the FS/PS Experiments 

As was done for the experiments concerning flow rate effects described in Chapter 4, UV254 

absorbance was measured (1 cm path length) when comparing full-scale and pilot-scale filter 

performance as an indicator of the active parts of organic disinfection by-product (DBP) 

precursor molecules, which are correlated to the disinfection by-product formation potential. 

Unfortunately, due to problems with analytical equipment there are only two sets of UV254 

absorbance data (Table 5.10 and Figure 5.6) for FS/PS experiments. Nevertheless, the UV 

absorbance trends confirm the general trends in the DBPs that were measured (to be 

described in Sections 5.3, 5.4 and 5.5). The data showed that there was a greater UV254 

absorbance associated with the influent water samples than with samples of filter effluents. 

The data also showed that the anthracite filters (full-scale and pilot-scale) performed less 

well than full-scale and pilot-scale GAC filters in regard toUV254 absorbance removal. 
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Table 5.10 UV254 absorbance values during the FS/PS experiments 

 

           Sampling date 

 

Sample name  

 

 

Aug  7/07 

 

 

Aug 13/07 

 

Influent 1 0.030 0.028 

Influent 2 0.028 0.036 

F.S. Filter 1 0.016 0.013 

F.S. Filter 2 0.017 0.011 

F.S. Filter 3 0.014 0.010 

F.S. Filter 4 0.020 0.016 

P.S. Filter 1 0.015 0.007 

P.S. Filter 2    0.018 0.016 

P.S. Filter 3   0.025 0.018 

P.S. Filter 4    0.027 0.018 
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     Figure 5.6 UV254 absorbance variation during the FS/PS experiments 
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5.3 Trihalomethane Variations During FS/PS Experiments 

Figure 5.7 illustrates THM species variations in chlorinated pilot filter #2 effluent as a typical 

filter. THM data for the other filters are given in Appendix A. 

During this part of the research, trihalomethane species concentrations ranged from 10 to 30 

μg/L in the different full-scale and pilot-scale filter effluents (which were all above the 

trihalomethane method detection limits that are reported in Appendix C). Higher 

concentrations of CHCl2Br and CHCBr2 relative to the other species were observed due to 

the moderately high level of bromide in Grand River water and a rapid reaction between 

bromide and organic compounds in the presence of chlorine. 

Also TTHM concentration ranged from 55 to 99 μg/L in all filter effluents, which is lower 

than the current regulated limits. TTHM levels of finished water would be expected to 

decrease even more before it enters the drinking water distribution system because treatment 

plant finished water is mixed with ground water prior to distribution. 

TTHM concentrations in all full-scale and pilot-scale filter effluents and influents are 

presented in Figure 5.8. Generally, the figure suggests that there were higher concentrations 

of TTHM in the chlorinated pilot filter effluents than in the chlorinated full-scale filter 

effluents in all sampling events. However, differences between the filters in their 

performance to achieve TTHM precursor removal will be evaluated statistically in 

subsequent sections. 
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Figure 5.7 THM concentrations in chlorinated pilot filter #2 effluent during the FS/PS 

experiments 
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Figure 5.8 Comparing TTHM concentrations in chlorinated FS and PS filter effluents        
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5.3.1 TTHM Precursor Removal Comparisons for Pilot-Scale Filters 

In the first set of comparisons, the behavior of the pilot filters in reducing TTHM formation 

was compared using five sampling run results. TTHM data were normalized to eliminate 

influent variations, and Table 5.11 and Figure 5.9 summarize the TTHM percentage 

reductions in the pilot filters. The better performance for the GAC filters in regard to 

trihaomethane precursors removal (with an average of 30% reduction) compared to the 

anthracite filters (with an average of 12% reduction) is shown in Figure 5.9. However, the 

differences between the performance of the pilot filters must be evaluated statistically. 

Table 5.11 TTHM %reduction results in chlorinated pilot filter effluents 

 P1 P2 P3 P4 

Aug 7 28.6 11.2 9.8 6.5 

Aug 13 43.4 30.0 13.8 13.1 

Aug 20 -  26.8 17.8 17.7 

Aug 27 - 27.5 11.3 1.1 

Sep 4 37.9 35.1 15.4 15.4 

                      - :  filter #1 was plugged and no sample was taken  

In order to confirm that the above performance differences were statistically significant, an 

F-test was performed using the ANOVA Table. The normality of data distribution was 

checked prior to performing ANOVA to compare TTHM precursor removals observed in the 

different pilot filters, and the normal probability plot is shown in Appendix D.  

From the following ANOVA Table (Table 5.12) and the greater value of Fobs relative to 

tabulated value of F, it is concluded that there were significant differences between the 
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performances of pilot filters at a 95% confidence level in regard to TTHM precursor 

removal. 
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            Figure 5.9 TTHM % reductions in chlorinated pilot filter effluents 

   Table 5.12 ANOVA table for comparison of TTHM precursor removal in the pilot 

filters 

 Ho: μP1= μP2 =μP3 = μP4         

Source df SS MS F observed 

 Filters 3 1648.5 549.5 11.7 

 Within filter 14 660.1 47.1  

Total 17 2308.6   

 
 F3, 14,0.05 =3.35   →  Fobs>F tabulated 

Subsequently, similar to the procedures outlined in Section 5.1.1, t-tests were carried out to 

determine if the pilot filters were different in their performance to achieve TTHM removal. 
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For the P1 and P2 comparison, the observed T (1.69) was compared with the tabulated value 

(2.45). Since T obs<T tabulated, Ho: μP1= μP2 is not rejected and no significant difference was 

distinguished between the performance of P1 and P2 (pilot GAC filters) performance in 

regard to TTHM precursor removal at a 95% confidence level. The paired t-test also 

confirmed the similarity between the performances of these two filters while the LSD method 

did not. The differences detected here are likely due to the smaller number of samples 

obtained from the P1 effluent relative to the other effluents. 

The independent and paired t-tests and also the LSD method were performed and no 

significant difference was observed between the performance of P3 and P4 (pilot-scale 

anthracite filters) in regard to TTHM precursor removal at a 95% confidence level.  

Finally, as expected, two different kinds of t-tests results, obtained from the comparison 

between the GAC pilot filters and the anthracite pilot filters, showed Tobs>Ttabulated. This 

means there is a significant difference between these two different types of filter media in 

regard to TTHM precursor removal at a 95% confidence level. 

5.3.2 TTHM Precursor Removal Comparisons for FS/PS GAC Filters 

The two pilot scale filter columns that contained GAC (P1 and P2) were compared with F3 in 

regard to their ability to affect trihalomethane precursor concentrations. F3 was chosen for 

the comparison instead of F1 and F2 because F3 receives the same influent water as P1 and 

P2. Table 5.13 and Figure 5.10 represent TTHM percentage reduction results for these GAC 

filters from in five rounds of sampling, which were used in this set of comparisons. 
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Table 5.13 TTHM %reduction results in chlorinated GAC filter effluents 

 P1 P2 F3 

Aug 7 28.6 11.2 20.8 

Aug 13 43.4 30.0 27.9 

Aug 20 - 26.9 29.7 

Aug 27 - 27.5 14.6 

Sep 4 37.9 35.1 36.0 

                                - :  filter #1 was plugged and no sample was taken  
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Figure 5.10 TTHM %reductions in chlorinated GAC filter effluents (error bars are %  

standard deviation calculated from replicate samples) 

To confirm that above performance differences were statistically significant, ANOVA was 

first performed on the data. The above results were used to make an ANOVA table (Table 

5.14). 
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Table 5.14 ANOVA table for comparison of TTHM precursor removal in GAC filters 

Ho: μP1= μP2 =μF3 

Source df SS MS F observed 

 Filters 2 261.7 130.8 1.8 

Within filter 10 714.5 71.5   

Total 12 976.2     

 
F2,10,0.05 =4.10     → Fobs< F tabulated  

 

Since Fobs>F tabulated, the null hypothesis is accepted and it is concluded that there was no 

significant difference between the performance of the different GAC filters in regard to 

TTHM removal at a 95% confidence level. 

The independent t-test, paired t-test and LSD tests again were conducted to compare the 

performance of P1 with F3 and also to compare P2 and F3, and all these tests resulted in the 

acceptance of  the two null hypotheses μP1= μF3 and μP2= μF3. These results confirm that there 

were not any considerable differences between the performance of the GAC filters at a 95% 

confidence level in regard to THM precursor removal. 

5.3.3 TTHM Precursor Removal Comparisons for FS/PS Anthracite Filters 

The full-scale and pilot-scale anthracite filters were also compared. TTHM results for these 

filter effluents are given in Table 5.15 and Figure 5.11.  
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Table 5.15 TTHM %reduction in chlorinated anthracite filter effluents 

 

 P3 P4 F4 

Aug 7 9.8 6.5 15.3 

Aug 13 13.8 13.1 22.2 

Aug 20 17.8 17.7 14.0 

Aug 27 11.3 1.1 7.8 

Sep 4 15.4 15.4 20.1 
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Figure 5.11 TTHM %reduction in chlorinated anthracite filter effluents (error bars are 

% standard deviation calculated from replicate samples) 

To confirm that above performance differences were statistically significant, ANOVA was 

first performed on the data. It was concluded from the ANOVA table (Table 5.16) that no 

significant differences were evident between the anthracite filter performances in regard to 

TTHM removal at a 95% confidence level. 
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Table 5.16 ANOVA table for comparison of TTHM precursor removal in anthracite 

filters 

Ho: μp3= μP4 =μ F4 

Source df SS MS Fobserved 

Filters 2.0 65.7 32.9 1.1 

Within filter 12.0 356.3 29.7   

Total 14.0 422.0     

     
F2,12,0.05 =3.89    → Fobs< F tabulated  

 

The independent t-test, paired t-test and LSD tests were conducted for the P3 and F4 pair 

comparison and also for the P4 and F4 pair comparison and all confirmed that the anthracite 

filters performed similarly at a 95% confidence level in regard to TTHM precursor removal 

regardless of the slightly different physical characteristics of the media.   

5.3.4 TTHM Precursor Removal Comparisons for Full-Scale GAC Filters 

The performance of the full-scale GAC filters for removing TTHM precursor was also 

compared, since the GAC media in F3 was fresher relative to the GAC media in F1 and F2. 

TTHM results are given in Table 5.17 and Figure 5.12. 

To confirm that above performance differences were statistically significant, ANOVA was 

first performed on the data. The null hypothesis of μF1= μF2 =μ F3 was tested by means of an 

ANOVA table (Table 5.18). 
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Table 5.17 TTHM %reduction in chlorinated full-scale GAC filter effluents 

 F1 F2 F3 

Aug 7 25.0 34.7 20.8 

Aug 13 33.9 42.5 27.9 

Aug 20 15.1 31.3 29.7 

Aug 27 25.7 33.8 14.6 

Sep 4 41.0 37.5 36.0 
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Figure 5.12 TTHM %reduction in chlorinated full-scale GAC filter effluents (error 

bars are % standard deviation calculated from replicate samples) 
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Table 5.18 ANOVA table for comparison of TTHM precursor removal in full-scale 

GAC filters 

Ho: μF1= μF2 =μ F3 

Source df SS MS Fobserved 

Filters 2 281.4 140.7 2.3 

Within filter 12 729.8 60.8  

Total 14 1011.3   

       
F2,12,0.05 =3.89     → Fobs< F tabulated  

 

Since the observed value of F is less than the tabulated value, the ANOVA analysis does not 

show any significant difference between these filters in their performance to achieve TTHM 

removal at a 95% confidence level. Independent and paired t-tests and also the LSD test did 

not show any considerable difference neither between the performance of similar GAC media 

in F1 and F2 nor between the performance of different GAC media in F1 and F3. However, 

F2 and F3 showed different performance in regard to TTHM precursor removal when 

independent and paired t-tests were used for comparison. This difference can be seen also by 

looking at Figure 5.12, in which there are fewer overlaps of the error bars for F2 and F3. 

5.4 Haloacetic Acid Variations During the PS/FS Experiments 

Six of the nine possible haloacetic acids (HAAs) were measured (to be comparable with 

DWSP) in the chlorinated influents and the effluents of the full-scale and pilot-scale filters. 

Individual HAA species were detected at very low concentrations and (less than current 

regulated limits). They varied from 0.45 to 4.7 μg/L in the filter effluents in five rounds of 

sampling, except for chloroacetic acid and bromoacetic acid which were not detected in any 
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filter effluent sample. Figure 5.13 represents HAA species concentrations in chlorinated pilot 

filter #2 effluent, selected as a typical filter in this study. HAA data for the other filters are 

given in Appendix A. 
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Figure 5.13 HAA6 concentrations in chlorinated pilot filter #2 effluent during the FS/PS 

experiments 

HAA6 concentrations in the chlorinated influents and full-scale and pilot-scale filter effluents 

are compared in Figure 5.14. From Figure 5.14 it would appear that the pilot-scale filter 

effluents showed lower concentrations of HAA precursors than the full-scale filter effluents, 

which means they performed better in reducing HAA6 concentrations in general (same as 

their performance in regards to TTHM precursor removal). Statistical comparisons of the 

filters are studied in subsequent sections. 
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Figure 5.14 Comparing HAA6 concentrations in chlorinated FS and PS filter effluents      

5.4.1 HAA6 Precursor Removal Comparisons for Pilot-Scale Filters 

In this section, HAA6 data were normalized relative to filter influent values, and HAA6 

percentage reductions in the pilot filters were compared using the five filter run results (Table 

5.19 and Figure 5.15).  

Table 5.19 HAA6 %reduction in chlorinated pilot filter effluents 

 P1 P2 P3 P4 

Aug 7 44.1 24.4 22.5 20.0 

Aug 13 44.7 38.3 27.7 13.0 

Aug 20 - 28.6 14.1 23.7 

Aug 27 - 50.5 35.1 30.9 

Sep 4 50.0 11.2 3.1 3.6 

                             - :  filter #1 was plugged and no sample was taken  
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            Figure 5.15 HAA6 %reduction in chlorinated pilot filter effluents   

Despite the observed variations in HAA6 results due to low HAA concentrations, from the 

results it is evident that overall HAA6 precursor removal is higher in the GAC filters (with 

average of 38.4% reduction) than in the anthracite filters (with average of 19.4% reduction). 

In addition, results show that pilot filters performed better in regards to HAA precursor 

removal than THM precursor removal by an average of 31.3% for the GAC filters and 12.1% 

for the anthracite filters.  

In order to check if there were significant differences between the performance of the pilot 

filters for removing HAA6 precursors, the above results were assembled into an ANOVA 

table (Table 5.20). Normality of data distribution was checked prior to performing ANOVA 

table for HAA6 precursor removal comparison in pilot filters and normal probability plot was 

shown in Appendix D.  
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Table 5.20 ANOVA table for comparison of HAA6 precursor removal in the pilot filters 

Ho: μP1= μP2 =μP3 =μP4      
    

Source df SS MS F observed 

 Filters 3 13801.9 4600.6 33.2 

 Within filter 14 1942.8 138.8   

Total 17 15744.8     

       
   F3, 14, 0.05 =3.35   →   F obs > F tabulated    

Since Fobs>Ftabulated, there were significant differences between the pilot filters in their 

performance to achieve HAA6 removal at a 95% confidence level. In addition, the 

independent t-test, paired t-test, and LSD test were carried out to distinguish if the pilot-scale 

filters (with either the same or different types of media) performed differently in terms of 

their HAA6 removal. Comparison results obtained from above mentioned tests at a 95% 

confidence level supported each other and are summarized in Table 5.21.  

Table 5.21 Results of comparisons for HAA6 precursor %reduction in the pilot filters 

 

 P2 P4 GAC Filters 

P1 No significant difference   

P3  No significant difference  

Anthracite 

Filters   Significant difference 
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5.4.2 HAA6 Precursor Removal Comparisons for FS/PS GAC Filters 

Table 5.22 and Figure 5.16 show data related to HAA% reductions in the three GAC filters. 

To confirm that above performance differences were statistically significant, ANOVA (Table 

5.23) was first performed on the data.  

Table 5.22 HAA6 %reduction in chlorinated GAC filter effluents 

 P1 P2 F3 

Aug 7 44.1 24.4 29.8 

Aug 13 44.7 38.3 28.7 

Aug 20 - 28.6 23.7 

Aug 27 - 50.5 61.7 

Sep 4 51.5 13.9 30.4 

                         - :  filter #1 was plugged and no sample was taken  
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Figure 5.16 HAA6 %reductions in chlorinated GAC filters (error bars are % standard 

deviations calculated from replicate samples) 
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Table 5.23 ANOVA table for comparison of HAA precursor removal in GAC filters 

Ho: μP1= μP2 =μ F3  

Source df SS MS F observed 

 Filters 2 471.3 235.7 1.4 

Within filter 10 1740.2 174.0   

Total 12 2211.5     

  
F2,10,0.05 =4.10    → Fobs< F tabulated  

 

According to the ANOVA table, since Fobs<Ftabulated there were no significant differences 

between any of the GAC filter performances in regard to HAA removal. Independent t-test 

and LSD results also showed no significant differences between the performance of P1 and 

F3 while a paired t-test, using the differences between paired data to make a more accurate 

comparison, was able to identify differences between their performance in regard to HAA6 

precursor removal at a 95% confidence level. It should be noted that low HAA 

concentrations can affect the statistical test results. Regardless, these statistical tests showed 

no significant difference between the performance of P2 and F3 performance for removing 

HAA6 precursor at a 95% confidence level, and all of these results are summarized in Table 

5.24 

Table 5.24 Results of comparison for HAA6 precursor %reduction in GAC filters 

  P1 P2 

F3 Significant difference No significant difference 

P2 No significant difference   
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5.4.3 HAA6 Removal Comparisons for FS/PS Anthracite Filters 

In this set of comparison, HAA % reduction in the anthracite filters (given in Table 5.25 and 

Figure 5.17) are compared.  

Table 5.25 HAA6 %reduction in chlorinated anthracite filter effluents 

 P3 P4 F4 

Aug 7 22.5 20.0 45.4 

Aug 13 27.7 13.0 45.0 

Aug 20 14.1 23.7 17.6 

Aug 27 35.1 30.9 49.4 

Sep 4 3.1 3.6 17.0 
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Figure 5.17 HAA6 %reduction in chlorinated anthracite filter effluents (error bars are 

% standard deviation calculated from replicate samples) 
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To confirm that above performance differences were statistically significant, ANOVA was 

first performed on the data. It is observed from the following ANOVA table (Table 5.26) that 

there is no significant difference between the performance of the anthracite filters at a 95% 

confidence level in regard to HAA precursor reduction. 

Table 5.26 ANOVA table for comparison of HAA6 precursor removal in anthracite 

filters 

Ho: μP3= μP4 =μ F4  

Source df SS MS F observed 

Filters 2 813.5 406.8 2.3 

Within filter 12 2087.9 174.0   

Total 14 2901.4     

 

   F 2,12,0.05 =3.89     →      Fobs< F tabulated 

The independent t-test and the LSD test showed no significant difference between any pair of 

these anthracite filters in regard to HAA6 precursor removal at a 95% confidence level. 

However, paired t-tests did not support above comparison results. Paired t-tests showed 

differences between the performance of P3 and F4 for HAA6 removal, and since for the P4 

and F4 paired t-test the observed value of T is smaller but very close to tabulated value of T, 

there is a possibility of being differences between the performance of P4 and F4 in regard to 

HAA6 precursor removal. Table 5.27 summarizes comparison results. 
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Table 5.27 Results of comparison for HAA6 precursor %reduction in anthracite filters 

 P3 P4 

F4 Significant difference No Significant difference 

P4 No significant difference   

 

5.4.4 HAA6 Precursor Removal Comparisons for Full-Scale GAC Filters 

The performance of the full-scale GAC filters was also compared in regard to removal of 

HAA6 precursors. Table 5.28 and Figure 5.18 show the HAA6 % reduction results for this 

set of filters. 

 

 

Table 5.28 HAA6 %reduction in chlorinated full-scale GAC filter effluents 

 F1 F2 F3 

Aug 7 29.5 32.4 29.8 

Aug 13 23.7 42.1 28.7 

Aug 20 24.7 42.5 23.7 

Aug 27 60.7 61.0 61.7 

Sep 4 37.1 47.8 30.4 
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Figure 5.18 HAA6 %reduction in chlorinated full-scale GAC filter effluents (error bars 

are % standard deviation calculated from replicate samples) 

 

To confirm that above performance differences were statistically significant, ANOVA was 

first performed on the data. Although from the Figure 5.18 illustrates that some variations 

were apparent, the ANOVA table analysis (Table 5.29) determined that there was no 

significant difference (because Fobs< F tabulated) between the performance of the different 

media in the full-scale GAC filters in regard to HAA6 precursor removal at a 95% 

confidence level.  

The t-test and LSD method results confirmed that this set of filters performed similarly in 

regard to HAA6 precursor removal at a 95% confidence level. The paired t-test identified no 

difference between F1 and F3. Smaller observed and tabulated T values (but very close) in 

the paired t-tests for F1, F2 and F2, F3 comparisons showed that there might be differences 

between these full-scale GAC filters (Table 5.30). 
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Table 5.29 ANOVA table for comparison of HAA6 precursor removal in full-scale GAC 

filters 

Ho: μF1= μF2 =μ F3  

Source df SS MS Fobserved 

Filters 2 343.7 171.9 0.9 

Within filter 12 2295.7 191.3  

Total 14 2639.4   

 

   F 2,12,0.05 =3.89    →    Fobs< F tabulated 

 

Table 5.30 Results of comparison for HAA6 precursor %reduction in full-scale GAC 

filters 

 F2 F3 

F1 No Significant difference No significant difference 

F2  No Significant difference 
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5.5 Nitrosamines Variations During the PS/FS Experiments 

Nitrosamines were the last group of disinfection by-products that were measured and studied 

in the chloraminated influents and full-scale and pilot-scale filter effluents. Nitrosamine 

variations in chloraminated pilot filter #2 effluent (selected as a typical filter) are shown in 

Figure 5.19. Three nitrosamines (NDMA, NMEA, and NMOR) were consistently detected in 

samples during these experiments. NDMA had the highest concentration among the 

nitrosamines estimated from 2.5 to 3.7 ng/L and which was lower than the regulated value of 

9 ng/L. All of the nitrosamine concentrations were with in an order of magnitude of their 

detection limit, leading to increase levels of analytical error relative to the measurement of 

the other DBPs in this study and making the interpretation of subsequent statistical analyses 

less definite. 
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Figure 5.19 Nitrosamine concentrations in chloraminated pilot filter #2 effluent in 

FS/PS experiments 
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Since NDMA had the highest level among the nitrosamines and it is the only nitrosamine 

which has been regulated in Canada, the filter performances were compared statistically in 

regard to NDMA precursor removal. Figure 5.20 shows NDMA levels in the chloraminated 

influents and the full-scale and pilot-scale filter effluents. 
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Figure 5.20 Comparing NDMA concentrations in chloraminated FS and PS filter 

effluents      

 The above figure suggests that, in general, NDMA had lower concentrations in the pilot 

filter effluents than the full-scale filter effluents, and different sets of statistical comparisons 

that were carried out and will be discussed in subsequent sections, show if different filters 

performed significantly different in regard to NDMA precursor removal. Regardless, high 

levels in chlorinated influents and good NDMA precursor removal in all filters were 

observed. 
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5.5.1 NDMA Precursor Removal Comparisons for Pilot-Scale Filters 

Considering the variation in influent NDMA data, NDMA concentrations in the 

chloraminated filter effluents were normalized to account for variations in the influent water 

over the series of sampling runs. Thus, NDMA percentage reductions in the pilot filter 

effluents were compared using the analytical results given in Table 5.31 and Figure 5.21. 

Unfortunately, P1 was not operational for two of the sampling runs. In general, the NDMA 

precursor percentage reduction in all of the pilot filters appeared to be consistent throughout 

the tests at approximately 60%, which is higher than percentage reductions for HAA6 and 

TTHM precursors in pilot filters during FS/PS experiments. 

 

   

Table 5.31 NDMA %reduction in chloraminated pilot filter effluents 

 P1 P2 P3 P4 

Aug 7 65.2 64.4 58.0 61.0 

Aug 13 61.2 69.2 61.4 62.6 

Aug 20 - 63.0 54.4 52.8 

Aug 27 - 63.1 71.0 73.1 

Sep 4 65.6 70.8 57.6 66.6 

                            - :  filter #1 was plugged and no sample was taken  
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      Figure 5.21 NDMA %reduction in chloraminated pilot filter effluents 

To confirm that above performance differences were statistically significant, ANOVA was 

first performed on the above data (Table 5.32). Normality of data distribution was checked 

prior to performing ANOVA table in regard to NDMA precursor removal comparison in 

pilot filters and normal probability plot was shown in Appendix D.  

Table 5.32 ANOVA table for comparison of NDMA precursor removal in pilot filters 

Ho: μP1= μP2 =μP3 =μP4       

Source df SS MS Fobserved 

Filters 3 80.3 26.8 0.8 

Within filter 14 452.1 32.3   

Total 17 532.4     

 F3,14,0.05 =3.35   → Fobs< F tabulated  

 

The greater tabulated F value than the observed F value confirms that there was no 

significant difference between the pilot filter performances at a 95% confidence level. 
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A summary of the pilot filter comparison results obtained from the different statistical tests is 

given in Table 5.33. Unlike the other DBPs, no significant difference was observed between 

the performance of the GAC and the anthracite media in the pilot filters in regard to NDMA 

precursor removal at a 95% confidence level. This was likely at least partially due to higher 

levels of analytical error that result from making measurements near the detection limit. 

Table 5.33 Results of comparison for NDMA precursor %reduction in the pilot filters 

 P2 P4 GAC Filters 

P1 No significant difference   

P3  No significant difference  

Anthracite 

Filters   No significant difference 

 

5.5.2 NDMA Precursor Removal Comparisons for FS/PS GAC Filters 

NDMA percentage reduction data for chlorinated GAC filter effluents (Table 5.34 and Figure 

5.22) were used to compare GAC filter performance in regard to NDMA precursor removal. 

Table 5.34 NDMA % reduction in chloraminated GAC filter effluents 

 P1 P2 F3 

Aug 7 65.2 64.4 40.6 

 Aug 13 61.2 69.2 48.7 

 Aug 20 - 63.0 41.2 

 Aug 27 - 63.1 48.8 

 Sep 4 65.6 70.8 40.3 

                            -:  filter #1 was plugged and no sample was taken  
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Figure 5.22 NDMA % reduction in chloraminated GAC filter effluents (error bars are 

% standard deviation calculated from replicate samples) 

To confirm that above performance differences were statistically significant, ANOVA was 

first performed on the data. As the ANOVA table results (Table 5.35) show, there was a 

significant difference in the performance of GAC filters for removing NDMA precursor 

removal at a 95% confidence level because Fobs>Ftabulated.  

Table 5.35 ANOVA table for comparison of NDMA precursor removal in GAC filters 

Ho: μP1= μP2 =μF3  

Source df SS MS Fobserved 

Filters 2 1414.3 707.1 49.3 

Within filter 10 143.4 14.3   

Total 12 1557.7     

  
F2,10,0.05 =4.10   → Fobs> F tabulated  
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Independent t-test, paired t-test and the LSD test results (summarized in Table 5.36) 

confirmed the similar performance of the two pilot-scale GAC filters (P1 and P2) which 

performed significantly differently and more efficiently than the full-scale GAC filter (F3) 

(by an average of 65% for P1 and P2 and 44% for F3) in regard to NDMA precursor removal 

at a 95% confidence level. Again, it should be noted that the lack of data from two sampling 

runs for P1, and the very low detected NDMA concentrations in the samples throughout 

these experiments, could affect the statistical analysis comparing possible differences 

between the performance of FS/PS GAC filters in regard to NDMA precursor removal. 

Table 5.36 Results of comparison for NDMA precursor %reduction in GAC filters 

 P1 P2 

F3  Significant difference  Significant difference 

P2 No significant difference  

 

 

5.5.3 NDMA Precursor Removal Comparisons for FS/PS Anthracite Filters 

NDMA percentage reduction results for chloraminated effluent from the anthracite filters that 

are given in Table 5.37 and Figure 5.23 used to compare NDMA precursor removal in the 

anthracite filters. 
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Table 5.37 NDMA % reduction in chloraminated anthracite filter effluents 

 P3 P4 F4 

Aug 7 58.0 61.0 42.5 

Aug 13 61.4 62.6 53.3 

Aug 20 54.4 52.8 50.7 

Aug 27 71.0 73.1 62.6 

Sep 4 57.6 66.6 59.5 
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Figure 5.23 NDMA % reduction in chloraminated anthracite filter effluents (error bars 

are % standard deviation calculated from replicate samples) 

To confirm that above performance differences were statistically significant, ANOVA was 

first performed on the data. The ANOVA table results (Table 5.38) determines that there 

were no considerable differences between the performances of the anthracite filters in regard 

to NDMA precursor removal at a 95% confidence level because Fobs<Ftabulated. 
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Table 5.38 ANOVA table for comparison of NDMA removal in anthracite filters 

Ho: μP3= μP4 =μF4  

Source df SS MS Fobserved 

Filters 2 238.6 119.3 2.3 

Within filter 12 635.1 52.9   

Total 14 873.7     

 
 F2,12,0.05 =3.89   → Fobs< F tabulated  

 

The ANOVA table results were supported by further statistical tests (independent and paired 

t-tests and LSD method), except that the paired t-test showed a significant difference between 

the performance of P4 and F4 for NDMA precursor removal at a 95% confidence level. 

Table 5.39 summarizes the comparison results. 

Table 5.39 Results of comparison for NDMA precursor %reduction in anthracite filters 

 P3 P4 

F4  No significant difference  Significant difference 

P4 No significant difference  

 

5.5.4 NDMA Precursor Removal Comparisons for Full-Scale GAC Filters 

Table 5.40 and Figure 5.24 show the NDMA removal results in chloraminated full-scale 

GAC filter effluents. NDMA percentage reduction values were calculated to be between 40-

60% in these filters. 
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Table 5.40 NDMA %reduction in chloraminated full-scale GAC filter effluents 

 F1 F2 F3 

 Aug 7 50.1 58.8 40.6 

 Aug 13 51.3 58.8 48.7 

 Aug 20 45.1 59.4 41.2 

 Aug 27 56.8 50.6 48.8 

 Sep 4 48.9 50.6 40.3 
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Figure 5.24 NDMA %reduction in chlorinated full-scale GAC filter effluents (error 

bars are % standard deviation calculated from replicate samples 

 

From the above results it would appear that full-scale GAC filters with older age media (F1, 

F2) performed more efficiently than the filter with fresh GAC (F3) in regard to NDMA 

precursor removal. To confirm that above performance differences were statistically 

significant, ANOVA was first performed on the data. From the corresponding ANOVA table 

(Table 5.41) it is evident that a significant difference existed between the performance of the 
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full-scale GAC filters in regard NDMA removal at a 95% confidence level. Statistical tests 

confirmed that F1 and F2 did not significantly differently from each other, but they 

performed significantly differently from F3 in regard to NDMA precursor removal (Table 

5.42). The effect of GAC age was not too surprising. Even though the newer GAC had been 

in service for several months, it is likely that it was still not able to biologically remove 

NDMA precursors as well as F1 and F2. 

Table 5.41 ANOVA table for comparison of NDMA precursor removal in full-scale 

GAC filters 

Ho: μF1= μF2=μF3  

Source df SS MS Fobserved 

Filters 2 344.0 172.0 8.8 

Within filter 12 235.3 19.6  

Total 14 579.3   

 
F2,12,0.05 =3.89  → Fobs> F tabulated  

 

  

Table 5.42 Results of comparison for NDMA precursor %reduction in full-scale GAC    

filters 

 F2 F3 

F1 No significant difference Significant difference 

F2   Significant difference 
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Chapter 6 Conclusions and Recommendations 

6.1 Full-Scale and Pilot-Scale Comparisons 

One of the main objectives of this research was to assess if pilot-scale filters at the 

Mannheim Water Treatment Plant represent full-scale filter performance with respect to DBP 

formation when they are operated under approximately the same conditions as the full-scale 

filters (filter loading rate and backwashing regime). Experiments on the pilot-scale and full-

scale filter effluents were conducted with an effort to follow full-scale chlorination and 

ammoniation procedures to simulate DBP formation in the plant effluent and distribution 

system. Statistical analyses were carried out on the DBP concentrations obtained from these 

experiments to help identify significant differences between the performances of the different 

filters. Some conclusions resulting from this research are described as follows. 

Significant differences at the 95%confidence level were found in the performance of the pilot 

filters containing different general media types (GAC vs. anthracite) in regard to HAA6 and 

TTHM precursor and chorine demand removal. HAA6 and TTHM removal and chlorine 

demand removal by GAC surpassed that of anthracite because GAC, in addition to having 

some residual adsorptive capacity, provides better attachment sites for bacteria to grow than 

anthracite does. In contrast, NDMA precursor removal seemed to be not significantly 

affected by the type of media in the pilot filters. NDMA precursors were removed by both 

types of filter media to a high percentage (approximately 60%) and even more efficiently 

than removals observed for HAA6 precursors (with average of 36.5% and 19.4% for GAC 
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and anthracite, respectively) and TTHM precursors (with average of 30.1% and 12.2% for 

GAC and anthracite, respectively). 

In comparing the performance of different types of GAC filters, no significant difference was 

demonstrated (a) between the two pilot GAC filters P1 and P2 in terms of chlorine demand 

and DBP precursor removal, (b) between P1 and F3 (full-scale fresh GAC) in regards to 

THM precursor and chlorine demand, and (c) between P2 and F3 in regards to chlorine 

demand, THM and HAA precursor removal when evaluated with paired T-test results. 

However, the paired T-test showed significant differences between P1 and F3 in regards to 

HAA precursor removal in that P1 (which is older media with more established biomass), 

performed better than F3 for HAA precursor removal. Fewer data points were available for 

P1 due to operational problems. 

NDMA formation following the GAC filters appeared to be both affected by the age of the 

GAC media in the filters and differences in media specifications. A significant increase in 

NDMA removal by P1 and P2 (approximately 60%) over F3 (approximately 40%) was 

observed in spite of P2’s and F3’s similar physical characteristics. This suggests that the 

combination of residual adsorption capabilities and a longer established biofilm in the GAC 

filters provided additional benefit over the combination of adsorption and a newly established 

biofilm in terms of NDMA precursor removal. The same behavior for NDMA removal was 

seen when old full-scale GAC filter media (F1 and F2) was compared with new full-scale 

filter media (F3), even though F3 media had a different effective size and uniformity 

coefficient, supporting the above mentioned suggestion. However, the fact that upstream 
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treatment process trains for F1 and F2 can perform differently from that for F3 perhaps also 

should be taken in account. 

Anthracite pilot filters (P3 and P4) showed similar performance in regard to DBP and 

chlorine demand removal in spite of their subtle media specification differences. No 

significant difference was shown between full-scale anthracite filters with fresh media (F4) 

and any of anthracite pilot filters in terms of TTHM removal. These results can be justified 

by the fact that regardless of media age, anthracite is not a good biosupporter, and as a result 

the anthracite pilot filters (P3 and P4) represented F4 in regards to TTHM removal. Paired t-

tests, however, identified some differences between the performance of full-scale and pilot-

scale anthracite filters in terms of HAA6 and NDMA precursor removal and chlorine demand 

removal. These differences may be partially due to the low concentrations of HAA and 

NDMA in samples (near their detection limit) and partially because of variations in F4 

operating conditions (e.g. full-scale filter backwashing schedules), which were out of our 

control and which could cause an imperfect simulation). 

In general, however, similar performance of pilot and full-scale filters was observed 

(especially in terms of TTHM precursor removal and chlorine demand  removal) and 

confirmed that the pilot-scale filters provided a good estimate of the DBP formation potential 

removal in the full-scale filters.   
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6.2 Pilot-Scale Filters Flow Rate Experiments 

The second objective of this research was to study the impact of flow rate or loading rate on 

DBP formation following the pilot filters at the Mannheim Water Treatment Plant. The 

results were discussed in Chapter 4 and the following conclusions can be drawn. 

The chlorine demand of influent and effluent samples was measured at different flow rates as 

a rough a parameter to suggest the potential for samples to form DBPs. However, it was 

observed chlorine demand variations were almost independent of changes in flow-rate, and  

chlorine demand was less affected by flow rate than was DBP formation. This shows that the 

fraction of organic matter which contained DBP precursors was affected by flow rate. It was 

also found that the chlorine demand of the effluent from the anthracite filters was higher than 

that of the GAC filters, likely due to the coarser surface GAC provides for bacteria to grow 

and the higher residual adsorptive capacity of GAC relative to anthracite.  

UV254 absorbance was measured in all filter influent and effluent samples at different filter 

flow rate conditions, as an indicator of the THMFP of the water. Changes in the UV254 

absorbance of the filter effluents were determined to be directly influenced by flow rate. 

Absorbance values increased as flow rate increased and, therefore, the percentage reduction 

of UV absorbance decreased by increasing the flow rate. As well, the difference between the 

performance of GAC and anthracite filters for UV254 absorbance removal was greater for 

flow rates below 7L/m (loading rates below 13 m/h). This poorer performance of filters in 

regard to UV254 absorbance removal at high flow rates (which was also observed for 

chlorine demand, TTHM, and HAA6) was likely due to the of shorter contact time of water 

with filter media at higher flow rates, which does not allow enough time for organic 



 

 121

precursors to be removed from water. Similar to chlorine demand, UV254 absorbance 

removal levels were shown to be less in anthracite filters than in GAC filters, consistently 

and at all flow rates. As well, the difference between the performance of GAC and anthracite 

filters for UV254 absorbance removal was greater for flow rates below 7L/m (loading rates 

below 13 m/h). 

THM species concentrations (and TTHM) in chlorinated pilot filter effluents also showed an 

increasing trend as flow rates were increased in all  of the pilot filters. This was observed 

regardless of the type of filter media employed, which also supported the trends observed for 

chlorine demand and UV absorbance removal. Chloroform was the trihalomethane species 

with the lowest measured concentrations and the highest removal efficiencies in all of the 

effluent samples. CHCl2Br and CHClBr2 were present at the highest levels, due to a 

moderately high bromide concentration in Grand River water. TTHM concentrations that 

were formed under high flow rate conditions sometimes were measured at levels near or 

slightly higher than those allowed by current regulations, however, the full-scale treatment 

plant does not operate filters at such high flow rates and finished water from this water 

treatment planr\t is always mixed with groundwater before it enters the distribution system. 

Negative percentage removals (i.e. overall percentage increases) of UV absorbance, TTHM 

and also HAA6 that were observed at higher flow rates were likely due to sloughing off the 

organic matter from the filter media to the effluent, adding to the contribution of those DBP 

precursors that might already be present. 

GAC filters performed more efficiently than anthracite filters in terms of TTHM removal 

and, similar to the UV 254 absorbance data, media-specific differences in THM precursor 
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removals were exaggerated at flow rates less than approximately 7 L/m (loading rates below 

13 m/h). This is because at high flow rates organic matter passed through the filters too 

quickly for the different removal mechanisms to occur to an extent that enables their 

differences to be evident 

The HAA6 concentrations in the different chlorinated filter effluents varied from 

approximately 6μg/L to approximately 19μg/L and their percentage removals ranged from 

approximately     -18% (i.e. 18% increase relative to the influent) to approximately 70% 

during  the flow rate experiments. Flow rate was determined as a factor affecting HAA 

removal in the different pilot filters. HAA6 removal rates decreased as flow rates increased. 

However, HAA species and HAA6 precursor removal appeared less affected by loading rate 

than were the trihalomethanes. Overall, better HAA6 precursor removal was observed in 

GAC filters than in anthracite filters; however, an anomaly in one of the anthracite filters 

(P3) showed its removal to be higher than that in the GAC filters, likely due to the low HAA 

concentrations identified in samples, which makes it difficult for consistent trendsin HAA6 

concentrations to be observed with changes in flow rate.  

N-nitrosodimethylamine (NDMA), N-nitrosomethylethylamine (NMEA), and N-

nitrosomorpholine (NMOR) were the only nitrosamines detected in the samples and they 

were present at a maximum level in filter #1 at a flow rate of 8.6 L/m. Results also showed 

that nitrosamines, compared to other DBPs, were less affected by flow rate. No consistent 

trend was observed as flow rate increased in any type of filter media. The  changes in the 

concentrations of each of these nitrosamines as flow rate changed was also similar regardless 

of filter media type, which suggests that filter performance was independent of filter media 
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(anthracite or GAC. The lack of definite trends may have been due to the low concentrations 

observed. However, high percentage removals (from 60 to 95%) were observed in all filters 

for the range of flow rates that were tested. This confirms that good performance was 

achieved for decreasing NDMA levels in the finished water to below the Ontario interim 

maximum acceptable concentration of 9 ng/L for all types of filter media and throughout the 

range of employed flow rates in decreasing  

6.3 Recommendations 

From the obtained results it is recommended that the pilot-scale filters should be operated at 

low flow rates (less than 7 L/m or 13 m/h loading rate) for additional runs, to investigate if 

there is residual adsorption capacity in pilot filters. It will help future researchers and 

operators better understand biofiltration mechanisms and their affects on the DBP formation 

following the GAC filters. 

Samplings during spring runoff are needed to test the effect of higher organic precursor 

concentrations in influent water on filter performance in regards to DBPFP. Also, since 

nitrosamine concentrations were low, even in chloraminated influent samples, adding model 

nitrosamine precursors to the filter influent (if allowable) may help to understand the media 

effects on nitrosamine precursor removal. 

In future experiments, DOC data is recommended to be measured to allow for the calculation 

of SUVA and provide additional confirmation of the DBPFP results. 

Also, additional replicate runs for both the flow rate and full-scale/pilot-scale comparison 

experiments may assist in reducing probable errors, increasing the confidence in data 

interpretation, and obtaining more consistent results from different statistical tests. 
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Appendix A: DBPs Results 

  Table A.1 THM species and TTHM concentrations (μg/L) in chlorinated pilot filter #2 

effluent during flow rate experiment 

Flow Rate (L/m) CHCl3 CHCl2Br CHClBr2 CHBr3 TTHM 

1 9.3 18.0 23.7 13.7 64.6 

5 7.6 22.0 32.5 18.4 80.5 

7.7 19.7 33.9 39.9 15.5 109.0 

8 21.3 36.4 47.4 16.9 121.9 
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Figure A.1THM concentrations in chlorinated pilot filter #2 effluent at different flow 

rates 

 



 

 136

Table A.2 THM species and TTHM concentrations (μg/L) in chlorinated pilot filter #3 

effluent during flow rate experiment 

Flow Rate (L/m) CHCl3 CHCl2Br CHClBr2 CHBr3 TTHM 

1 14.3 23.7 24.9 12.6 75.4 

5 15.7 28.2 36.4 19.6 99.9 

9 20.8 31.3 33.7 14.5 100.2 

12.8 27.2 39.7 44.6 17.6 129.1 
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Figure A.2 THM concentrations in chlorinated pilot filter #3 effluent at different flow 

rates 

 



 

 137

  Table A.3 THM species and TTHM concentrations (μg/L) in chlorinated pilot filter #4 

effluent during flow rate experiment 

 

Flow Rate (L/m) CHCl3 CHCl2Br CHClBr2 CHBr3 TTHM 

1.85 10.8 14.8 21.4 14.0 60.9 

4.3 11.0 22.1 34.2 18.1 85.4 

7.5 26.5 38.6 40.1 16.0 121.1 

11.2 31.3 40.6 45.7 17.0 134.4 
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Figure A.3 THM concentrations in chlorinated pilot filter #4 effluent at different flow 

rates 
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Table A.4 THM %reduction in chlorinated pilot filter #2 effluent during flow rate 

experiment 

 

Flow Rate(L/m) CHCl3 CHCl2Br CHClBr2 CHBr3 TTHM 

1 65.0 40.4 17.0 1.8 34.8 

5 46.5 4.8 -7.6 -29.6 1.5 

7.7 12.8 -22.4 -50.0 -13.1 -20.3 

8 -33.6 -24.1 -20.3 9.4 -18.1 
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       Figure A.4 THM %reduction in chlorinated pilot filter #2 at different flow rate 
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Table A.5 THM %reduction in chlorinated pilot filter #3 effluent during flow rate 

experiment 

Flow Rate(L/m) CHCl3 CHCl2Br CHClBr2 CHBr3 TTHM 

1 46.1 21.3 13.0 10.0 23.9 

5 -10.6 -22.1 -20.5 -38.0 -22.3 

9 8.2 -12.8 -26.7 -5.5 -10.5 

12.8 -71.1 -35.3 -13.3 5.4 -25.1 
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     Figure A.5 THM %reduction in chlorinated pilot filter #3 at different flow rate 
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Table A.6 THM %reduction in chlorinated pilot filter #4 effluent during flow rate 

experiment 

Flow Rate (L/m) CHCl3 CHCl2Br CHClBr2 CHBr3 TTHM 

1.85 51.1 40.8 31.6 7.0 34.7 

4.3 22.5 4.3 -13.2 -27.5 -4.5 

7.5 -17.0 -39.2 -50.6 -16.8 -33.6 

11.2 -96.5 -38.2 -16.0 8.9 -30.2 
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      Figure A.6 THM %reduction in chlorinated pilot filter #4 at different flow rate 
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Table A.7 HAA concentrations (μg/L) in chlorinated pilot filter #2 effluent during flow 

rate experiment 

 

Flow Rate(L/m) ClAA BrAA Cl2AA Cl3AA BrClAA Br2AA HAA6

1 0.0 0.0 3.9 2.0 3.6 3.5 12.8 

5 0.0 0.0 2.2 1.7 3.0 3.7 10.6 

7.7 0.0 0.0 3.4 2.7 3.1 2.8 11.9 

8 0.0 0.0 4.0 1.7 3.8 3.6 13.0 
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Figure A.7 HAA concentrations in chlorinated pilot filter #2 at different flow rates 
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Table A.8 HAA concentrations (μg/L) in chlorinated pilot filter #3 effluent during flow 

rate experiment 

 

Flow Rate(L/m) ClAA BrAA Cl2AA Cl3AA BrClAA Br2AA HAA6

1 0.0 0.0 2.5 3.2 2.3 1.7 9.6 

5 0.0 0.0 2.2 2.3 3.0 2.8 10.3 

9 0.0 0.0 2.3 2.2 3.2 3.1 10.8 

12.8 0.0 0.0 4.3 2.1 3.4 3.2 12.9 

 

 

 

 

                   

0

2

4

6

8

10

12

14

1 5 9 12.8

Flow Rate L/m

μg
/L

ClAA

BrAA

Cl2AA

Cl3AA

BrClAA

Br2AA

HAA6

 
 

     Figure A.8 HAA concentrations in chlorinated pilot filter #3 at different flow rates 
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Table A.9 HAA concentrations (μg/L) in chlorinated pilot filter #4 effluent during flow 

rate experiment 

 

Flow Rate(L/m) ClAA BrAA Cl2AA Cl3AA BrClAA Br2AA HAA6

1.85 0.0 0.0 1.6 1.8 2.1 1.4 6.9 

4.3 0.0 0.0 3.2 2.0 3.1 3.5 11.8 

7.5 0.0 0.0 4.8 3.5 5.1 3.5 16.8 

11.2 0.0 0.0 6.0 4.0 4.7 4.1 18.7 

 

 

 

 

                   

0

5

10

15

20

2 4.3 7.5 11.2

Flow Rate L/m

μg
/L

ClAA

BrAA

Cl2AA

Cl3AA

BrClAA

Br2AA

HAA6

 
 

Figure A.9 HAA concentrations in chlorinated pilot filter #4 at different flow rates 
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Table A.10 HAA %reduction in chlorinated pilot filter # 2 effluent during flow rate 

experiment 

 

Flow Rate(L/m) ClAA BrAA Cl2AA Cl3AA BrClAA Br2AA HAA6

1 0.0 0.0 57.5 80.6 50.0 1.4 54.2 

5 0.0 0.0 55.6 66.7 39.4 8.6 44.4 

7.7 0.0 0.0 28.7 14.5 44.5 3.4 26.9 

8 0.0 0.0 44.0 60.0 -1.7 -25.7 28.5 
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Figure A.10 HAA %reduction in chlorinated pilot filter #2 effluent at different flow 

rates 
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Table A.11 HAA %reduction in chlorinated pilot filter # 3 effluent during flow rate 

experiment 

 

Flow Rate(L/m) ClAA BrAA Cl2AA Cl3AA BrClAA Br2AA HAA6

1 0.0 0.0 72.4 64.0 67.6 52.9 43.5 

5 0.0 0.0 56.6 54.9 39.4 30.9 42.8 

9 0.0 0.0 51.1 29.0 41.8 -6.9 33.3 

12.8 0.0 0.0 26.7 50.6 8.1 -16.7 21.6 
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Figure A.11 HAA %reduction in chlorinated pilot filter #3 effluent at different flow 

rates 
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Table A.12 HAA %reduction in chlorinated pilot filter # 4 effluent during flow rate 

experiment 

 

Flow Rate(L/m) ClAA BrAA Cl2AA Cl3AA BrClAA Br2AA HAA6

1.85 0.0 0.0 20.0 37.9 16.0 54.8 34.3 

4.3 0.0 0.0 35.4 60.8 37.4 13.6 38.1 

7.5 0.0 0.0 -1.1 -12.9 7.3 -19.0 -3.7 

11.2 0.0 0.0 -2.6 5.9 -25.7 -51.9 -13.7 
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Figure A.12 HAA %reduction in chlorinated pilot filter #4 effluent at different flow 

rates 
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Table A.13 Nitrosamine concentrations (ng/L) in chlorinated pilot filter #2 effluent 

during flow rate experiments      

   

Flow Rate(L/m) NDMA  NMEA  NDEA NPRO NPIP  NPYR  NDBA NMOR 

1 1.8 0.6 0.0 0.0 0.0 0.0 0.0 0.9 

5 1.0 0.7 0.0 0.0 0.0 0.0 0.0 1.6 

7.7 2.0 0.8 0.0 0.0 0.0 0.0 0.0 1.6 

8 1.6 0.9 0.0 0.0 0.0 0.0 0.0 1.0 
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Figure A.13 Nitrosamine concentrations in chlorinated pilot filter #2 effluent at 

different flow rates 
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Table A.14 Nitrosamine concentrations (ng/L) in chlorinated pilot filter #3 effluent 

during flow rate experiments      

   

Flow Rate(L/m) NDMA  NMEA  NDEA NPRO NPIP  NPYR  NDBA NMOR 

1 2.1 1.4 0.0 0.0 0.0 0.0 0.0 1.6 

5 1.1 1.1 0.0 0.0 0.0 0.0 0.0 2.1 

9 3.5 1.9 0.0 0.0 0.0 0.0 0.0 1.4 

12.8 1.7 1.7 0.0 0.0 0.0 0.0 0.0 1.8 
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     Figure A.14 Nitrosamine concentrations in chlorinated pilot filter #3 effluent at   

different flow rates 
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Table A.15 Nitrosamine concentrations (ng/L) in chlorinated pilot filter #4 effluent 

during flow rate experiments        

 

Flow Rate(L/m) NDMA  NMEA  NDEA NPRO NPIP  NPYR  NDBA NMOR 

1.85 2.1 1.5 0.0 0.0 0.0 0.0 0.0 1.7 

4.3 1.9 1.9 0.0 0.0 0.0 0.0 0.0 2.1 

7.5 2.7 0.5 0.0 0.0 0.0 0.0 0.0 2.1 

11.2 0.8 2.1 0.0 0.0 0.0 0.0 0.0 1.6 
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  Figure A.15 Nitrosamine concentrations in chlorinated pilot filter #4 effluent at  

different flow rates 
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 Table A.16 Nitrosamines %reduction in chlorinated pilot filter #2 effluent during flow 

rate experiment 

 

Flow Rate(L/m) NDMA  NMEA  NDEA  NPRO  NPIP  NPYR  NDBA NMOR 

1 85.0 89.5 100.0 0.0 0.0 0.0 0.0 89.2 

5 79.8 75.4 100.0 0.0 0.0 0.0 0.0 71.2 

7.7 84.6 86.4 100.0 0.0 0.0 0.0 0.0 81.2 

8 86.4 88.1 100.0 0.0 0.0 0.0 0.0 89.3 
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  Figure A.16 Nitrosamines% reduction in chlorinated pilot filter #2 effluent at different 

flow rates 
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Table A.17 Nitrosamines %reduction in chlorinated pilot filter #3 effluent during flow 

rate experiment 

 

Flow Rate(L/m) NDMA  NMEA  NDEA NPRO NPIP  NPYR  NDBA NMOR 

1 82.7 74.3 100.0 0.0 0.0 0.0 0.0 81.5 

5 76.4 63.8 100.0 0.0 0.0 0.0 0.0 63.0 

9 73.6 66.6 100.0 0.0 0.0 0.0 0.0 83.5 

12.8 86.0 78.2 100.0 0.0 0.0 0.0 0.0 81.3 
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Figure A.17 Nitrosamines% reduction in chlorinated pilot filter #3 effluent at different 

flow rates 
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Table A.18 Nitrosamines %reduction in chlorinated pilot filter #4 effluent during flow 

rate experiment 

 

Flow Rate(L/m) NDMA  NMEA  NDEA NPRO NPIP  NPYR  NDBA NMOR 

1 82.7 74.3 100.0 0.0 0.0 0.0 0.0 81.5 

5 76.4 63.8 100.0 0.0 0.0 0.0 0.0 63.0 

9 73.6 66.6 100.0 0.0 0.0 0.0 0.0 83.5 

12.8 86.0 78.2 100.0 0.0 0.0 0.0 0.0 81.3 
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Figure A.18 Nitrosamines% reduction in chlorinated pilot filter #4 effluent at different 

flow rates 
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Table A.19 THM concentrations in chlorinated pilot filter #1 effluent in FS/PS 

experiments 

 

Sampling Date CHCl3 CHCl2Br CHClBr2 CHBr3 TTHM 

Aug7 14.7 20.8 23.8 12.4 71.6 

Aug13 13.0 17.5 20.3 11.3 62.0 

Sep4 9.2 15.7 23.8 13.9 62.5 
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Figure A.19 THM concentrations in chlorinated pilot filter #1 effluent in FS/PS     

experiments 
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Table A.20 THM concentrations in chlorinated pilot filter #3 effluent in FS/PS          

experiments 

 

Sampling Date CHCl3 CHCl2Br CHClBr2 CHBr3 TTHM 

Aug7 24.3 25.8 25.5 12.5 88.1 

Aug13 26.3 29.1 27.1 12.0 94.4 

Aug20 18.3 24.4 27.2 14.8 84.6 

Aug27 24.7 23.1 20.4 11.4 79.5 

Sep 4 16.8 25.8 32.3 14.5 89.4 
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Figure A.20 THM concentrations in chlorinated pilot filter #3 effluent in FS/PS  

experiments 
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Table A.21 THM concentrations in chlorinated pilot filter #4 effluent in FS/PS 

experiments 

 

Sampling Date CHCl3 CHCl2Br CHClBr2 CHBr3 TTHM 

Aug7 29.3 30.3 27.6 11.9 99.0 

Aug13 28.7 28.7 26.2 11.6 95.1 

Aug20 19.8 25.0 26.6 13.3 84.6 

Aug27 30.3 26.1 22.1 11.6 90.0 

Sep4 18.0 26.2 34.2 9.3 87.6 
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     Figure A.21 THM concentrations in chlorinated pilot filter #4 effluent in FS/PS 

experiments 
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Table A.22 THM concentrations in chlorinated full-scale filter #1 effluent in FS/PS 

experiments 

 

Sampling Date CHCl3 CHCl2Br CHClBr2 CHBr3 TTHM 

Aug7 15.7 20.4 24.4 12.3 72.6 

Aug13 17.0 21.7 26.3 12.6 77.4 

Aug20 17.8 23.5 27.6 13.6 82.5 

Aug27 15.8 17.5 17.8 11.3 62.3 

Sep4 8.8 15.5 22.8 12.8 59.8 
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Figure A.22 THM concentrations in chlorinated full-scale filter #1 effluent in FS/PS 

experiments 
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Table A.23 THM concentrations in chlorinated full-scale filter #2 effluent in FS/PS 

experiments 

Sampling Date CHCl3 CHCl2Br CHClBr2 CHBr3 TTHM 

Aug7 14.9 17.2 20.0 11.3 63.2 

Aug13 10.4 13.6 19.6 12.1 55.7 

Aug20 12.9 18.6 23.1 12.2 66.8 

Aug27 14.6 14.2 15.3 11.5 55.5 

Sep 4 9.6 15.8 24.1 13.9 63.3 
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Figure A.23 THM concentrations in chlorinated full-scale filter #2 effluent in FS/PS 

experiment                  
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Table A.24 THM concentrations in chlorinated full-scale filter #3 effluent in FS/PS 

experiments 

 

Sampling Date CHCl3 CHCl2Br CHClBr2 CHBr3 TTHM 

Aug7 18.1 21.8 25.2 12.2 77.3 

Aug13 17.2 22.9 26.9 12.0 78.9 

Aug20 13.9 23.0 28.8 12.8 78.5 

Aug27 20.5 22.6 22.2 11.3 76.5 

Sep 4 9.9 16.5 24.8 13.2 64.3 
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 FigureA.24 THM concentrations in chlorinated full-scale filter #3 effluent in FS/PS 

experiments 
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Table A.25 THM concentrations in chlorinated full-scale filter #4 effluent in FS/PS 

experiments 

 

Sampling Date CHCl3 CHCl2Br CHClBr2 CHBr3 TTHM 

Aug7 24.0 23.4 23.1 12.3 82.8 

Aug13 23.5 25.8 25.2 10.8 85.1 

Aug20 22.0 25.1 27.7 13.8 88.5 

Aug27 25.5 24.2 21.5 11.5 82.6 

Sep 4 16.3 21.5 29.0 13.5 80.3 
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FigureA.25 THM concentrations in chlorinated full-scale filter #4 effluent in FS/PS 

experiments 
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Table A.26 THM %reduction in chlorinated full-scale filter #1 effluent in FS/PS 

experiments 

 

Sampling Date CHCl3 CHCl2Br CHClBr2 CHBr3 TTHM 

Aug7 52.3 27.7 -0.2 -6.5 25.0 

Aug13 61.7 37.2 4.4 -14.1 33.9 

Aug20 40.6 19.2 -6.2 -12.0 15.1 

Aug27 50.0 25.1 -1.7 1.7 25.7 

Sep 4 62.8 47.6 31.1 15.6 41.0 
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Figure A.26 THM %reduction in chlorinated full-scale filter #1 effluent in FS/PS 

experiments 
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Table A.27 THM %reduction in chlorinated full-scale filter #2 effluent in FS/PS 

experiments 

 

Sampling Date CHCl3 CHCl2Br CHClBr2 CHBr3 TTHM 

Aug7 54.7 39.1 17.9 2.2 34.7 

Aug13 76.5 60.5 28.6 -10.0 52.5 

Aug20 57.1 36.1 11.2 -0.8 31.3 

Aug27 53.8 39.3 12.6 0.0 33.8 

Sep 4 59.6 46.4 27.0 8.3 37.5 
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Figure A.27 THM %reduction in chlorinated full-scale filter #2 effluent in FS/PS 

experiments 
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Table A.28 THM %reduction in chlorinated full-scale filter #3 effluent in FS/PS 

experiments 

 

Sampling Date CHCl3 CHCl2Br CHClBr2 CHBr3 TTHM 

Aug7 43.1 24.4 0.6 -4.7 20.8 

Aug13 57.3 27.2 -3.7 -0.8 27.9 

Aug20 52.9 24.5 1.2 7.2 29.7 

Aug27 31.0 17.4 -3.0 -1.8 14.6 

Sep 4 61.1 42.1 22.8 9.3 36.0 
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Figure A.28 THM %reduction in chlorinated full-scale filter #3 effluent in FS/PS 

experiments 
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Table A.29 THM %reduction in chlorinated full-scale filter #4 effluent in FS/PS 

experiments 

 

Sampling Date CHCl3 CHCl2Br CHClBr2 CHBr3 TTHM 

Aug7 24.5 18.9 9.1 -5.6 15.3 

Aug13 41.6 18.1 2.9 9.7 22.2 

Aug20 25.6 17.6 5.0 0.0 14.0 

Aug27 14.1 11.5 0.2 -4.1 7.8 

Sep 4 36.0 24.7 9.5 6.9 20.1 
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Figure A.29 THM %reduction in chlorinated full-scale filter #4 effluent in FS/PS 

experiments 
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Table A.30 THM %reduction in chlorinated pilot filter #1 effluent in FS/PS 

experiments 

 

Sampling Date CHCl3 CHCl2Br CHClBr2 CHBr3 TTHM 

Aug7 53.8 34.5 6.3 -6.0 28.6 

Aug13 67.7 44.4 21.8 5.5 43.4 

Sep 4 64.0 45.1 25.9 4.1 37.9 
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Figure A.30 THM %reduction in chlorinated pilot filter #1 effluent in FS/PS 

experiments 
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Table A.31 THM %reduction in chlorinated pilot filter #3 effluent in FS/PS  

experiments 

 

Sampling Date CHCl3 CHCl2Br CHClBr2 CHBr3 TTHM 

Aug7 23.7 10.6 -0.6 -7.3 9.8 

Aug13 34.6 7.5 -4.4 -0.4 13.8 

Aug20 38.1 19.9 6.7 -6.9 17.8 

Aug27 17.0 15.4 5.3 -2.7 11.3 

Sep 4 29.3 8.2 1.2 36.2 15.4 
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Figure A.31 THM %reduction in chlorinated pilot filter #3 effluent in FS/PS 

experiments 
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Table A.32 THM %reduction in chlorinated pilot filter #3 effluent in FS/PS 

experiments 

 

Sampling Date CHCl3 CHCl2Br CHClBr2 CHBr3 TTHM 

Aug7 8.0 9.2 5.3 -1.7 6.5 

Aug13 28.5 8.7 -1.0 2.9 13.1 

Aug20 32.9 17.8 8.9 4.0 17.7 

Aug27 -1.9 9.5 -2.6 -5.0 1.1 

Sep 4 29.3 8.2 1.2 36.2 15.4 
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Figure A.32 THM %reduction in chlorinated pilot filter #3 effluent in FS/PS 

experiments 
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Table A.33 HAA concentrations in chlorinated full-scale filter #1 effluent in FS/PS 

experiments 

 

Sampling Date ClAA BrAA Cl2AA Cl3AA BrClAA Br2AA HAA6 

Aug7 0.0 0.0 2.2 2.2 2.1 2.2 8.6 

Aug13 0.0 0.0 1.8 1.8 2.0 1.8 7.4 

Aug20 0.0 0.0 2.6 2.6 2.7 2.6 10.4 

Aug27 0.0 0.0 1.8 2.0 1.8 1.8 7.3 

Sep4 0.0 0.0 1.7 2.0 2.1 2.2 7.9 
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Figure A.33 HAA concentrations in chlorinated full-scale filter #1 effluent in FS/PS 

experiments 
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Table A.34 HAA concentrations in chlorinated full-scale filter #2 effluent in FS/PS 

experiments 

 

Sampling Date ClAA BrAA Cl2AA Cl3AA BrClAA Br2AA HAA6 

Aug7 0.0 0.0 2.0 2.6 1.9 1.8 8.3 

Aug13 0.0 0.0 1.0 1.1 1.3 1.3 4.7 

Aug20 0.0 0.0 2.1 2.0 2.0 2.0 7.9 

Aug27 0.0 0.0 1.8 2.0 1.6 1.9 7.2 

Sep4 0.0 0.0 1.4 2.0 1.5 1.8 6.6 
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Figure A.34 HAA concentrations in chlorinated full-scale filter #2 effluent in FS/PS 

experiments 
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Table A.35 HAA concentrations in chlorinated full-scale filter #3 effluent in FS/PS 

experiments 

 

 

Sampling Date ClAA BrAA Cl2AA Cl3AA BrClAA Br2AA HAA6 

Aug7 0.0 0.0 2.8 3.0 3.2 2.1 11.1 

Aug13 0.0 0.0 2.9 2.4 2.7 2.8 10.7 

Aug20 0.0 0.0 2.4 2.3 2.7 2.7 10.0 

Aug27 0.0 0.0 0.5 0.9 1.9 1.8 5.0 

Sep4 0.0 0.0 1.3 1.8 1.9 1.8 6.8 
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Figure A.35 HAA concentrations in chlorinated full-scale filter #3 effluent in FS/PS 

experiments 
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Table A.36 HAA concentrations in chlorinated full-scale filter #4 effluent in FS/PS 

experiments 

 

Sampling Date ClAA BrAA Cl2AA Cl3AA BrClAA Br2AA HAA6 

Aug7 0.0 0.0 2.4 2.7 2.2 1.4 8.6 

Aug13 0.0 0.0 2.1 2.3 2.6 1.3 8.3 

Aug20 0.0 0.0 3.0 2.7 2.8 2.5 10.8 

Aug27 0.0 0.0 1.2 1.9 1.9 1.7 6.6 

Sep4 0.0 0.0 2.1 2.3 1.7 2.0 8.1 
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Figure A.36 HAA concentrations in chlorinated full-scale filter #4 effluent in FS/PS 

experiments 
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Table A.37 HAA concentrations in chlorinated pilot filter #1 effluent in FS/PS 

experiments 

 

Sampling Date ClAA BrAA Cl2AA Cl3AA BrClAA Br2AA HAA6 

Aug7 0.0 0.0 2.1 2.5 2.4 1.9 8.8 

Aug13 0.0 0.0 2.2 2.6 2.0 1.6 8.3 

Sep4 0.0 0.0 1.0 1.2 1.1 1.4 4.7 
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Figure A.37 HAA concentrations in chlorinated pilot filter #1 effluent in FS/PS 

experiments 
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Table A.38 HAA concentrations in chlorinated pilot filter #3 effluent in FS/PS 

experiments 

 

Sampling Date ClAA BrAA Cl2AA Cl3AA BrClAA Br2AA HAA6 

Aug7 0.0 0.0 4.4 3.2 2.6 2.0 12.2 

Aug13 0.0 0.0 3.2 3.4 2.2 2.2 10.9 

Aug20 0.0 0.0 3.3 2.9 2.6 2.6 11.3 

Aug27 0.0 0.0 1.1 1.5 1.9 1.7 8.4 

Sep4 0.0 0.0 2.6 2.4 2.3 2.2 9.4 
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   Figure A.38 HAA concentrations in chlorinated pilot filter #3 effluent in FS/PS  

experiments 
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Table A.39 HAA concentrations in chlorinated pilot filter #4 effluent in FS/PS  

experiments 

 

Sampling Date ClAA BrAA Cl2AA Cl3AA BrClAA Br2AA HAA6 

Aug7 0.0 0.0 4.7 3.3 2.5 2.2 12.6 

Aug13 0.0 0.0 3.9 3.7 2.8 2.7 13.1 

Aug20 0.0 0.0 3.0 2.6 2.2 2.3 10.0 

Aug27 0.0 0.0 0.9 1.8 1.9 1.9 8.9 

Sep4 0.0 0.0 2.6 2.5 2.3 2.0 9.4 
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Figure A.39 HAA concentrations in chlorinated pilot filter #4 effluent in FS/PS 

experiments 
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Table A.40 HAA %reduction in chlorinated full-scale filter #1 effluent in FS/PS   

experiments 

 

Sampling Date ClAA BrAA Cl2AA Cl3AA BrClAA Br2AA HAA6

Aug7 0.0 0.0 38.0 46.9 21.2 -10.0 29.5 

Aug13 0.0 0.0 47.8 44.6 -17.6 -38.5 23.7 

Aug20 0.0 0.0 42.0 29.2 14.3 1.9 24.7 

Aug27 0.0 0.0 71.1 66.7 60.7 14.3 60.7 

Sep4 0.0 0.0 47.7 41.8 36.9 18.5 37.1 
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Figure A.40 HAA %reduction in chlorinated full-scale filter #1 effluent in FS/PS 

experiments 
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Table A.41 HAA %reduction in chlorinated full-scale filter #2 effluent in FS/PS 

experiments 
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Figure A.41 HAA %reduction in chlorinated full-scale filter #2 effluent in FS/PS 

experiments 

 

 

Sampling Date ClAA BrAA Cl2AA Cl3AA BrClAA Br2AA HAA6 

Aug7 0.0 0.0 43.7 37.0 26.9 10.0 32.4 

Aug13 0.0 0.0 72.5 66.2 23.5 0.0 52.1 

Aug20 0.0 0.0 53.4 45.8 38.1 25.0 42.5 

Aug27 0.0 0.0 71.1 66.7 64.0 9.5 61.0 

Sep4 0.0 0.0 58.5 41.8 55.4 33.3 47.8 
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Table A.42 HAA %reduction in chlorinated full-scale filter #3 effluent in FS/PS 

experiments 

 

Sampling Date ClAA BrAA Cl2AA Cl3AA BrClAA Br2AA HAA6 

Aug7 0.0 0.0 41.7 41.2 20.3 -10.5 29.8 

Aug13 0.0 0.0 43.0 55.1 1.8 -44.7 28.7 

Aug20 0.0 0.0 39.2 29.7 12.9 7.0 23.7 

Aug27 0.0 0.0 89.2 79.8 37.3 -12.5 61.7 

Sep4 0.0 0.0 45.8 33.3 22.4 18.6 30.4 
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Figure A.42 HAA %reduction in chlorinated full-scale filter #3 effluent in FS/PS 

experiments 
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Table A.43 HAA %reduction in chlorinated full-scale filter #4 effluent in FS/PS 

experiments 

 

Sampling Date ClAA BrAA Cl2AA Cl3AA BrClAA Br2AA HAA6 

Aug7 0.0 0.0 51.0 48.0 44.3 26.3 45.4 

Aug13 0.0 0.0 59.0 57.0 5.5 31.6 45.0 

Aug20 0.0 0.0 25.3 17.2 11.3 14.0 17.6 

Aug27 0.0 0.0 72.5 56.0 37.3 -6.2 49.4 

Sep4 0.0 0.0 12.5 14.8 32.7 7.0 17.0 
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Figure A.43 HAA %reduction in chlorinated full-scale filter #4 effluent in FS/PS 

experiments 



 

 178

Table A.44 HAA %reduction in chlorinated pilot filter #1 effluent in FS/PS experiments 
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  Figure A.44 HAA %reduction in chlorinated pilot filter #1 effluent in FS/PS 

experiments 

Sampling Date ClAA BrAA Cl2AA Cl3AA BrClAA Br2AA HAA6

Aug7 0.0 0.0 57.3 52.0 39.2 0.0 44.1 

Aug13 0.0 0.0 57.0 52.3 27.3 15.8 44.7 

Aug20 0.0 0.0 58.3 55.6 55.1 34.9 51.5 
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Table A.45 HAA %reduction in chlorinated pilot filter #2 effluent in FS/PS experiments 

 

Sampling Date ClAA BrAA Cl2AA Cl3AA BrClAA Br2AA HAA6 

Aug7 0.0 0.0 12.5 48.0 34.2 -28.9 24.4 

Aug13 0.0 0.0 42.0 53.3 12.7 -36.8 30.7 

Aug20 0.0 0.0 35.4 21.9 40.3 14.0 28.6 

Aug27 0.0 0.0 82.1 67.9 20.3 -21.9 50.5 

Sep4 0.0 0.0 8.3 35.2 22.4 -16.3 13.9 
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   Figure A.45 HAA %reduction in chlorinated pilot filter #2 effluent in FS/PS 

experiments 
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Table A.46 HAA %reduction in chlorinated pilot filter #3 effluent in FS/PS experiments 

 

Sampling Date ClAA BrAA Cl2AA Cl3AA BrClAA Br2AA HAA6 

Aug7 0.0 0.0 8.3 37.3 34.2 -5.3 22.5 

Aug13 0.0 0.0 37.0 37.4 21.8 -15.8 27.7 

Aug20 0.0 0.0 16.5 10.9 17.7 10.5 14.1 

Aug27 0.0 0.0 74.9 65.5 37.3 -6.2 35.1 

Sep4 0.0 0.0 -6.3 13.0 6.1 -2.3 3.1 
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Figure A.46 HAA %reduction in chlorinated pilot filter #3 effluent in FS/PS 

experiments 
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Table A.47 HAA %reduction in chlorinated pilot filter #4 effluent in FS/PS experiments 

 

Sampling Date ClAA BrAA Cl2AA Cl3AA BrClAA Br2AA HAA6 

Aug7 0.0 0.0 2.1 36.3 36.7 -13.2 20.0 

Aug13 0.0 0.0 22.0 30.8 -1.8 -39.5 13.0 

Aug20 0.0 0.0 25.3 18.8 30.6 19.3 23.7 

Aug27 0.0 0.0 78.5 58.3 37.3 -15.6 30.9 

Sep4 0.0 0.0 -8.3 9.3 6.1 7.0 3.6 
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Figure A.47 HAA %reduction in chlorinated pilot filter #4 effluent in FS/PS 

experiments 
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Table A.48 Nitrosamine concentrations in full-scale filter #1 effluent in FS/PS 

experiments 

 

Sampling Date NDMA  NMEA  NDEA NPRO NPIP  NPYR  NDBA NMOR 

Aug7 5.7 1.5 0.0 0.0 0.0 0.0 0.0 5.2 

Aug13 5.6 1.4 0.0 0.0 0.0 0.0 0.0 6.1 

Aug20 6.0 1.3 0.0 0.0 0.0 0.0 0.0 5.9 

Aug27 4.6 1.3 0.0 0.0 0.0 0.0 0.0 3.8 

Sep 4 4.9 1.3 0.0 0.0 0.0 0.0 0.0 3.7 

 

 

 

 

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

Aug7 Aug13 Aug20 Aug27 Sep 4

ng
/L

NDMA 

NMEA  

NDEA 

NPRO 

NPIP 

NPYR 

NDBA

NMOR 

 

 

Figure A.48 Nitrosamine concentrations in full-scale filter #1 effluent in FS/PS 

experiments 
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Table A.49 Nitrosamine concentrations in chlorinated full-scale filter #2 effluent in 

FS/PS experiments 

 

 

 

 

 

            

0.0

1.0

2.0

3.0

4.0

5.0

6.0

Aug7 Aug13 Aug20 Aug27 Sep 4

ng
/L

NDMA 

NMEA  

NDEA 

NPRO 

NPIP 

NPYR 

NDBA

NMOR 

 

 

Figure A.49 Nitrosamine concentrations in chlorinated full-scale filter #2 effluent in 

FS/PS experiments 

Sampling Date NDMA  NMEA  NDEA NPRO NPIP  NPYR  NDBA NMOR 
Aug7 5.4 1.4 0.0 0.0 0.0 0.0 0.0 5.2 

Aug13 4.7 1.4 0.0 0.0 0.0 0.0 0.0 3.7 

Aug20 4.4 1.5 0.0 0.0 0.0 0.0 0.0 3.6 

Aug27 4.2 1.6 0.0 0.0 0.0 0.0 0.0 3.5 

Sep 4 4.7 1.6 0.0 0.0 0.0 0.0 0.0 3.5 
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Table A.50 Nitrosamine concentrations in chlorinated full-scale filter #3 effluent in 

FS/PS experiments 

 

Sampling Date NDMA  NMEA  NDEA NPRO NPIP  NPYR  NDBA NMOR 
Aug7 6.2 1.0 0.0 0.0 0.0 0.0 0.0 5.3 

Aug13 6.0 1.0 0.0 0.0 0.0 0.0 0.0 4.9 

Aug20 6.0 1.0 0.0 0.0 0.0 0.0 0.0 4.1 

Aug27 5.0 1.3 0.0 0.0 0.0 0.0 0.0 3.3 

Sep 4 5.1 1.1 0.0 0.0 0.0 0.0 0.0 3.2 
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Figure A.50 Nitrosamine concentrations in chlorinated full-scale filter #3 effluent in 

FS/PS experiments 
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Table A.51 Nitrosamine concentrations in chlorinated full-scale filter #4 effluent in 

FS/PS experiments 
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Figure A.51 Nitrosamine concentrations in chlorinated full-scale filter #4 effluent in 

FS/PS experiments 

Sampling Date NDMA  NMEA  NDEA  NPRO  NPIP  NPYR  NDBA NMOR 
Aug7 6.0 1.1 0.0 0.0 0.0 0.0 0.0 4.1 

Aug13 5.4 1.2 0.0 0.0 0.0 0.0 0.0 3.7 

Aug20 5.0 1.2 0.0 0.0 0.0 0.0 0.0 3.6 

Aug27 3.7 1.3 0.0 0.0 0.0 0.0 0.0 3.3 

Sep 4 3.5 1.4 0.0 0.0 0.0 0.0 0.0 3.2 
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Table A.52 Nitrosamine concentrations in chlorinated pilot filter #1 effluent in FS/PS 

experiments 
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Figure A.52 Nitrosamine concentrations in chlorinated pilot filter #1 effluent in FS/PS 

experiments 

Sampling 
Date 

NDMA  NMEA  NDEA NPRO NPIP  NPYR  NDBA NMOR 

Aug7 3.6 1.4 0.0 0.0 0.0 0.0 0.0 2.9 

Aug13 4.5 1.9 0.0 0.0 0.0 0.0 0.0 3.1 

Aug20 3.0 1.9 0.0 0.0 0.0 0.0 0.0 2.2 
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Table A.53 Nitrosamine concentrations in chlorinated pilot filter #3 effluent in FS/PS 

experiments 

 

Sampling 
Date 

NDMA  NMEA  NDEA  NPRO NPIP NPYR  NDBA NMOR 

Aug7 6.0 1.1 0.0 0.0 0.0 0.0 0.0 4.1 

Aug13 5.4 1.2 0.0 0.0 0.0 0.0 0.0 3.7 

Aug20 5.0 1.2 0.0 0.0 0.0 0.0 0.0 3.6 

Aug27 3.7 1.3 0.0 0.0 0.0 0.0 0.0 3.3 

Sep 4 3.5 1.4 0.0 0.0 0.0 0.0 0.0 3.2 
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Figure A.53 Nitrosamine concentrations in chlorinated pilot filter #3 effluent in FS/PS 

experiments 
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Table A.54 Nitrosamine concentrations in pilot filter #4 effluent in FS/PS experiments 

 

Sampling Date NDMA  NMEA  NDEA NPRO NPIP  NPYR  NDBA NMOR  
Aug7 4.1 0.9 0.0 0.0 0.0 0.0 0.0 1.3 

Aug13 4.4 1.1 0.0 0.0 0.0 0.0 0.0 1.4 

Aug20 4.8 1.5 0.0 0.0 0.0 0.0 0.0 1.4 

Aug27 2.6 1.5 0.0 0.0 0.0 0.0 0.0 1.9 

Sep 4 2.9 1.6 0.0 0.0 0.0 0.0 0.0 1.6 
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Figure A.54 Nitrosamine concentrations in chlorinated pilot filter #4 effluent in FS/PS 

experiments 
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Table A.55 Nitrosamine %reductions in full-scale in chlorinated full-scale filter #1 

effluent in FS/PS experiments 

 

Sampling Date NDMA  NMEA  NDEA NPRO NPIP  NPYR  NDBA NMOR 
Aug7 50.1 40.8 100.0 0.0 0.0 0.0 0.0 34.7 

Aug13 51.3 52.5 100.0 0.0 0.0 0.0 0.0 36.3 

Aug20 45.1 55.4 100.0 0.0 0.0 0.0 0.0 41.4 

Aug27 56.8 55.3 100.0 0.0 0.0 0.0 0.0 59.7 

Sep 4 48.9 59.0 100.0 0.0 0.0 0.0 0.0 62.8 
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Figure A.55 Nitrosamine %reduction in chlorinated full-scale #1 effluent in FS/PS 

experiments 
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Table A.56 Nitrosamine %reductions in chlorinated full-scale filter #2 effluent in FS/PS 

experiments 

 

Sampling 

Date NDMA  NMEA  NDEA NPRO NPIP  NPYR  NDBA NMOR 

Aug7 58.8 53.5 100.0 0.0 0.0 0.0 0.0 61.0 

Aug13 58.8 53.5 100.0 0.0 0.0 0.0 0.0 61.0 

Aug20 59.4 48.4 100.0 0.0 0.0 0.0 0.0 64.2 

Aug27 50.6 49.5 100.0 0.0 0.0 0.0 0.0 65.0 

Sep 4 50.6 49.5 100.0 0.0 0.0 0.0 0.0 65.0 
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Figure A.56 Nitrosamine %reduction in chlorinated full-scale #2 effluent in FS/PS 

experiments 
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Table A.57 Nitrosamine %reductions in chlorinated full-scale filter #3 effluent in FS/PS 

experiments 

 

Sampling 

Date NDMA  NMEA  NDEA NPRO NPIP  NPYR  NDBA NMOR 

Aug7 40.6 59.2 100.0 0.0 0.0 0.0 0.0 30.8 

Aug13 48.7 64.8 100.0 0.0 0.0 0.0 0.0 50.3 

Aug20 41.2 65.3 100.0 0.0 0.0 0.0 0.0 54.7 

Aug27 48.8 56.9 100.0 0.0 0.0 0.0 0.0 68.2 

Sep 4 40.3 63.3 100.0 0.0 0.0 0.0 0.0 66.2 
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Figure A.57 Nitrosamine %reduction in chlorinated full-scale #3 effluent in FS/PS 

experiments 
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Table A.58 Nitrosamine %reductions in chlorinated full-scale filter #4effluent in FS/PS 

experiments 

 

Sampling 

Date NDMA  NMEA  NDEA NPRO NPIP  NPYR  NDBA NMOR 

Aug7 42.5 55.1 100.0 0.0 0.0 0.0 0.0 47.6 

Aug13 53.3 60.9 100.0 0.0 0.0 0.0 0.0 62.5 

Aug20 50.7 56.5 100.0 0.0 0.0 0.0 0.0 59.8 

Aug27 62.6 56.7 100.0 0.0 0.0 0.0 0.0 68.3 

Sep 4 59.5 56.6 100.0 0.0 0.0 0.0 0.0 66.0 
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Figure A.58 Nitrosamine %reduction in full-scale #4 effluent in FS/PS experiments 
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Table A.59 Nitrosamine %reductions in chlorinated pilot filter #1 effluent in FS/PS 

experiments 

 

Sampling 

Date NDMA  NMEA  NDEA NPRO NPIP  NPYR  NDBA NMOR 

Aug7 42.5 55.1 100.0 0.0 0.0 0.0 0.0 47.6 

Aug13 53.3 60.9 100.0 0.0 0.0 0.0 0.0 62.5 

Aug20 50.7 56.5 100.0 0.0 0.0 0.0 0.0 59.8 
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Figure A.59 Nitrosamine %reduction in chlorinated pilot filter #1 effluent in FS/PS 

experiments 
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Table A.60 Nitrosamine %reductions in chlorinated pilot filter #2 effluent in FS/PS 

experiments 
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Figure A.60 Nitrosamine %reduction in chlorinated pilot filter #2 effluent in FS/PS 

experiments 

Sampling 

Date NDMA  NMEA  NDEA NPRO NPIP  NPYR  NDBA NMOR 

Aug7 64.4 64.3 100.0 0.0 0.0 0.0 0.0 73.3 

Aug13 69.2 58.8 100.0 0.0 0.0 0.0 0.0 80.9 

Aug20 63.0 38.3 100.0 0.0 0.0 0.0 0.0 74.7 

Aug27 63.1 51.0 100.0 0.0 0.0 0.0 0.0 77.9 

Sep 4 70.8 52.5 100.0 0.0 0.0 0.0 0.0 79.7 
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Table A.61 Nitrosamine %reductions in chlorinated pilot filter #3 effluent in FS/PS  

experiments 

 

Sampling 

Date NDMA  NMEA  NDEA NPRO NPIP  NPYR  NDBA NMOR 

Aug7 58.0 52.3 100.0 0.0 0.0 0.0 0.0 80.3 

Aug13 61.4 63.3 100.0 0.0 0.0 0.0 0.0 85.9 

Aug20 54.4 55.4 100.0 0.0 0.0 0.0 0.0 81.0 

Aug27 71.0 58.6 100.0 0.0 0.0 0.0 0.0 78.6 

Sep 4 57.6 55.4 100.0 0.0 0.0 0.0 0.0 79.7 
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Figure A.61 Nitrosamine %reduction in chlorinated pilot filter #3 effluent in FS/PS 

experiments 
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Table A.62 Nitrosamine %reductions in chlorinated pilot filter #4 effluent in FS/PS 

experiments 

 

Sampling 

Date NDMA  NMEA  NDEA NPRO NPIP  NPYR  NDBA NMOR 

Aug7 61.0 61.8 100.0 0.0 0.0 0.0 0.0 82.9 

Aug13 62.6 62.0 100.0 0.0 0.0 0.0 0.0 85.9 

Aug20 52.8 45.3 100.0 0.0 0.0 0.0 0.0 84.2 

Aug27 73.1 50.1 100.0 0.0 0.0 0.0 0.0 81.6 

Sep 4 66.6 49.5 100.0 0.0 0.0 0.0 0.0 83.4 
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Figure A.62 Nitrosamine %reduction in chlorinated pilot filter #4 effluent in FS/PS 

experiments 
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Appendix B1:THM Species, HAA Species, and Nitrosamines Calibration Curves 

 

 

CHCl3 Calibration Curve 

 

 

CHCl2Br Calibration Curve 

 

 

 

 

 

 

 

  

 

 

Slop 2.433 

Intercept  

R2 0.95292 

Slop 4.747 

Intercept  

R2 0.95208 
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CHB3 Calibration Curve 

 

 

 

 

 

 

 

 

 

 

 

 

CHClBr2 Calibration Curve 

 

 

 

 

 

 

 

 

Slop 3.9779 

Intercept  

R2 0.97079 

Slop 5.85594 

Intercept  

R2 0.96446 



 

 199

 

HAA Species Calibration Curves 

Chloroacetic acid Calibration Curve 

 

  
 

    Chlorodibromoacetic acid Calibration Curve 

 

 

 

 

Slop 7.6030 

Intercept  

R2 0.97114 

Slop 1.53428 

Intercept  

R2 0.99336 
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Dibromoacetic acid Calibration Curve 

 

 

 

 

Dichloroacetic acid Calibration Curve 

 

 
 

Slop 9.828928 

Intercept  

R2 0.98395 

Slop 10.214825 

Intercept  

R2 0.98614 
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Tribromoacetic acid Calibration Curve 

 

 
 

 

Bromoacetic acid Calibration Curve 

 

 
 

Slop 16.006878 

Intercept  

R2 0.91474 

Slop 5.30958 

Intercept  

R2 0.97838 
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Bromochloroacetic acid Calibration Curve 

 

 
 

Bromodichloroacetic acid Calibration Curve 

 

 

Slop 6.5945 

Intercept  

R2 0.98639 

Slop 2.39868 

Intercept  

R2 0.99967 
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Trichloroacetic acid Calibration Curve 

 

 

 

 

 

 

 

 

Slop 10.75163 

Intercept  

R2 0.98331 
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Appendix B2: DBPs Analytical Method Detection Limits (MDLs) 

 

 

Table B2.1  THM species method detection limits 

 

THM Species CHCl3 CHCl2Br CHClBr2 CHBr3 

MDL ( μg/L) 2.59 2.93 3.08 2.97 

 

Table B.2.2  HAA species method detection limits 

 

 

HAA Species ClAA BrAA Cl2AA Cl3AA BrClAA Br2AA 

MDL( μg/L) 1.33 2.84 1.52 2.61 2.09 1.36 

 

 

 

Table B.2.3 Nitrosamines method detection limits 

 

 

 

 

Nitrosamine 

Compound NDMA NMEA NDEA NPRO NPIP NPYR NDBA NMOR 

MDL (ng/L) 1.79 1.74 1.143 1.81 1.55 1.06 1.27 1.78 
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Appendix B3: DBPs Methods Control Charts 

 

 

Figure B.3.1 THMs variation in standard solutions of  25 μg/L 
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Figure B.3.2 HAAs variation in standard solutions of 25 μg/L 
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Figure B.3.3 Nitrosamines variation in standard solutions of  25 ng/L 
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Appendix C: Mannheim Water Treatment Plant Flow Rate and Loading 

Rate Calculations 

 

 

Table C.1 Loading rate/flow rate conversion in pilot filters 

 

PILOT-SCALE flow rate conversion conversion area conversion 

column 

diameter 

LOADING (m/h) L/min m3/1000L 1002 cm2/m2 cm2 60 min/h in 

1.9 1 0.001 10000 324.1 60 8 

3.7 2 " " " " " 

5.6 3 " " " " " 

7.4 4 " " " " " 

9.3 5 " " " " " 

11.1 6 " " " " " 

11.2 6.05 " " " " " 

12.0 6.5 " " " " " 

13.0 7 " " " " " 

14.8 8 " " " " " 

15.0 8.1 " " " " " 

16.7 9 " " " " " 

18.5 10 " " " " " 

20.4 11 " " " " " 

22.2 12 " " " " " 

24.1 13 " " " " " 

 

 

 

 

 



 

 208

 

 

Table C.2 Loading rate/flow rate conversion in full-scale filters 

 

      Imperial  

FULL-SCALE 

flow 

rate(filter) conversion conversion area conversion MGD (Plant) L/s (Plant) 

LOADING 

(m/h) L/s m3/1000L 

3.28082 

ft2/m2 ft2 3600 s/h   

5.9 110 0.001 10.76 726 3600 8.4 440 

6.4 120 " " " " 9.1 480 

6.9 130 " " " " 9.9 520 

7.5 140 " " " " 10.6 560 

8.0 150 " " " " 11.4 600 

8.5 160 " " " " 12.2 640 

9.1 170 " " " " 12.9 680 

9.6 180 " " " " 13.7 720 

10.1 190 " " " " 14.4 760 

10.7 200 " " " " 15.2 800 

11.2 210 " " " " 16.0 840  

11.7 220 " " " " 16.7 880 

12.0 225 " " " " 17.1 900 

12.3 230 " " " " 17.5 920 

 

Note: Calculations provided by M.B. Emelko. 
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Appendix D: Normal Probability Plots 

Zi= Expected normal value from standard Normal Distribution Table 

Xi= Observed value (percent reduction of DBP precursor in the filter) 
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Figure D.1 Normal probability plot of TTHM percent removal data from pilot filters 
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Figure D.2 Normal probability plot for HAA6 percent removal data from pilot filters 
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Figure D.3 Normal probability plot of chlorine demand percent removal data from pilot 

filters 

                  

-2.5
-2

-1.5
-1

-0.5
0

0.5
1

1.5

2
2.5

0 10 20 30 40 50 60 70 80

Xi

Zi

 
    

Figure D.4 Normal probability plot of NDMA percent removal data from pilot filters 

 

 


