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ABSTRACT

The freezing of H,SOs-H-O and HNOs-H»O particles of sub-micron diameter was
measured using FTIR extinction spectroscopy and a low-temperature flow tube.
Temperatures ranging from approximately 190 K to approximately 150 K were employed
in the HNO;-H,O experiments, and temperatures from approximately 240 K to
approximately 180 K were employed in the H,SO4-H>O experiments.

In dilute H,SO4-H>O particles (<35 wt % HaSOs), ice formed at approximately 35
K below the cormresponding solid-liquid equilibrium temperatures. The freezing
temperatures of these particles are in reasonable agreement with theoretical calculations
and other experimental data. The homogeneous nucleation rate associated with our
freezing temperatures is between 1x10° cm’sec’’ and 4x10'° cm”sec’. In contrast to
dilute H.SO4-H.O aerosols, concentrated H.SO4-H20 aerosols (>35 wt % H.SO;) did not
freeze. From the experimental results, an upper limit of 4x10'° cm”sec™! was calculated for
the nucleation rate. This result agrees with other laboratory results on this system and the
suggestion that stratospheric sulfate aerosols are liquid.

Nitric acid-water aerosols with compositions of 2:1 (moles H,O:moles HNO;) and
3:1 froze as NAD and NAT, respectively. The measured nucleation rate constants for the
2:1 particles are between (in units of cm™ s* x 10'') 0.26 + 0.05 and 16 + 9 at
temperatures between 178.8 and 175.8. The rates for 3:1 particles are between (in units of
cm” s x 10'') 0.38 £0.18 and 97+ 63 at temperatures ranging from 167.2 K to 163.5 K.
Freezing of non-stoichiometric nitric acid aerosols was also investigated. Aerosols with
compositions ranging from 1.2 to 1.4 did not crystallize at any of the temperatures
investigated. NAD formed in particles with compositions ranging from 1.4:1 to 2:1, and
both NAD and NAT formed in aerosols with compositions ranging from 2.7:1 to 3:1. The
highest freezing temperature in this composition range (1.2:1 to 3:1) corresponds to a
composition of approximately 2:1. Based on this information and the nucleation rates
determined from the 2:1 experiments, it is unlikely that concentrated nitric acid-water
particles (1.2:1 to 3:1), if formed in the polar stratosphere, will freeze.
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CHAPTER ONE
INTRODUCTION

1.1 INTRODUCTION

Prior to 1985, stratospheric ozone research focused on the gas-phase chemistry
responsible for ozone destruction. This research identified man-made halocarbons,
including several chloroflurocarbons (CFCs), as the premier threat to the ozone layer.'
Halocarbons migrate from the earth’s surface to the stratosphere where they are photolyzed
by ultraviolet light, producing chlorine and bromine radicals. The radicals then destroy
ozone by several catalytic cycles, including the following:'~

Cl1+0, »ClO+0,
ClO+0->Cl+0,

(1.1)
Net 0+0, — 20,

and

ClO+ClIO+M — (Cl10), +M
(C10), +Av - C1 + C100
CilOO+M -»Cl+0,+M
2(C1+0,) > 2(Cl0+0,)

Net 20, —» 30,

The 1985 publication of the discovery of very large depletions of stratospheric
ozone over Antarctica in the springtime’ shocked the scientific community because the
current gas phase models of ozone depletion were incapable of explaining these
observations. This indicated that gas-phase chemistry alone was inadequate to represent
stratospheric ozone destruction. An explosion of research followed the 1985 publication on
the discovery of the Antarctic ozone hole. This research concluded that heterogeneous



reactions occurring on the surfaces of polar stratospheric clouds (PSCs) play an essential
role in chlorofluorocarbon-induced polar ozone depletion. **%7

Heterogeneous reactions contribute to ozone depletion by converting unreactive
temporary reservoirs of chlorine into photolytically-active forms. Chlorine radicals
produced from the photolysis of halocarbons can react with other trace stratospheric
species to form unreactive compounds, commonly referred to as reservoir species. For
example, chlorine radicals can react with methane or nitrogen dioxide to form HCI and

CIONQO., both of which are inert to ozone.

Cl1+CH, - HCl+CH, (1.3)
CiO+NO, +M - CIONO, +M (1.4)

Ordinarily, a majority of the stratospheric inorganic chlorine is in these unreactive forms,
and liberation from these reservoir species is rather slow. In the presence of PSCs,
however, the conversion to photolytically-active chlorine is enhanced. The heterogeneous

reactions responsible for this conversion include the following:

CIONO, + HCl—£_, C], + HNO, (1.4)
CIONO, + H,0—22_, HOC] + HNO, (1.5)
HOCI + HCl —22= , C1, + H,0 (1.6)

The gas phase product of these heterogeneous reactions, molecular chlorine,
photodissociates readily to yield active chlorine which subsequently destroys ozone.

While the nature of these heterogeneous reactions is now relatively well
established, the phase and composition of polar stratospheric clouds remains an
uncertainty. The phase and composition are particularly important because heterogeneous
reactions are sensitive to these properties.® For example, recent calculations show that
liquid temary particles are 30 to 300% more reactive than nitric acid dihydrate particles for
temperatures below approximately 195 K.°



The project reported in this thesis was proposed and designed to contribute to the
understanding of the phase and composition of polar stratospheric clouds. The goal is to
provide data on the physical chemistry of PSCs and, consequently, improve predictions of

stratospheric ozone depletion.

1.2 POLAR STRATOSPHERIC CLOUDS (PSCs)

PSCs are a type of aerosol (a suspension of particles in a gas) that is unique to the
polar stratospheric regions. This uniqueness stems from the formation temperature of the
aerosol. Type II PSCs only form when stratospheric temperatures drop below
approximately 189 K, and type I PSCs exist at temperatures between 195 K and 189 K.'°
The phase of type II PSCs has been identified as crystalline ice,'® but the phase and
composition of type I PSCs is less certain.

A limited amount of information on the phase and composition of type I PSCs has
been obtained from both field and laboratory measurements. For example, field
measurements indicate that they contain large amounts of nitric acid'' and that they exist as
both solids and liquids.'*'> Laboratory measurements have also suggested that various
phases are possible, including nitric acid trihydrate (NAT)*'** nitric acid dihydrate
(NAD)"*S, nitric acid pentahydrate (NAP)'”, mixed hydrates'®, and supercooled ternary
solutions. "

At present, there are several theories on how the composition and phase of type |
PSCs change as the aerosol cools.® The wransition diagram shown in figure 1.1
summarizes these theories. In this figure, (aq) indicates that the aerosol contains an
aqueous phase, either a pure liquid or a solid-liquid mixture. NAX and SAX indicate that
the aerosol contains nitric acid and sulfuric acid hydrates, respectively, and the arrows
represent possible transitions.

The transition diagram consists of three branches. The first branch involves a
liquid-to-solid phase transition of a H,SO4-H:O particle (step 1) followed by gas phase
condensation of nitric acid and water (step 2). This branch was the first mechanism
proposed to explain observations of solid PSCs.*' If the H.SO4-H.0 particle does not
freeze, the liquid particle takes up gas phase nitric acid and water and forms a liquid temary



H,S0,(aq) SAX ce

1 » @ —2—— @@ NAX
13

Freezing Condensation SAX
HNO,(aq)

H,S0,aq)

O

Condensation

Figure 1.1 Schematic diagram representing the changes in composition and phase
which could occur as the stratospheric aerosol cools.



particle (step 3).*** The second branch in the diagram involves the freezing of this tenary
particle (steps 4, 5, 6 and 7). The first solid to precipitate out of the liquid ternary particle
can be either nitric acid trihydrate®* (step 4) or ice™ (step 6). Steps 5 and 7 involve the
freezing of the remainder of the particle. The ternary particle can also approach binary

26.2

HNOs-H-O concentrations if rapid temperature fluctuations occur (step 8)."*" The freezing
of this liquid particle reprsems the final branch in the diagram (step 9).%%*’

The steps in the transition diagram represent thermodynamically possible pathways
under polar stratospheric conditions, but thermodynamic stability is not the only
prerequisite for the transitions. The kinetic feasibility of these steps must also be
determined. This thesis addresses this issue. In particular, the work presented in this thesis
focuses on liquid-to-solid phase tramsitions of sulfuric acid-water and nitric acid-water
systems and probes the kinetics of these systems at polar stratospheric temperatures. This

work will directly determine the feasibility of steps 1 and 9 in figure 1.1.

1.3 THESIS OVERVIEW

This thesis contains 6 chapters. Chapters 1, 2, and 3 cover the introduction, theory
and methods. This includes an overall description of PSCs and their relation with ozone
hole formation (chapter 1), a brief discussion on freezing rates, homogeneous nucleation,
and crystal growth (chapter 2), and a description of the tools and methods used to carry out
the experiments and data analysis (chapter 3). Chapters 4 and 5 present the results obtained
on the nitric acid-water and sulfuric acid-water systems. This includes freezing
measurements on dilute sulfuric acid aerosols (section 4.5), freezing measurements on
concentrated sulfuric acid aerosols (section 4.6), nucleation measurements on 2:1 nitric
acid aerosols (sections 5.2), temperature cycling and freezing of 3:1 nitric acid aerosols
(sections 5.3) and freezing of non-stoichiometric nitric acid aerosols (sections 5.4).
Finally, in Chapter 6, conclusions and an overall discussion related to the phase and

composition of PSCs are presented.



CHAPTER TWO
KINETIC FEASIBILITY

2.1 INTRODUCTION

Under most polar stratospheric conditions, one or more crystalline phases are the
thermodynamically stable states for the H.SOs-H:0 and HNO:-H:O systems. However, as
mentioned in the previous chapter, if a solid is thermodynamically stable, it doesn’t
necessarily follow that a liquid-to-solid phase transition will occur. A substance can
remain in a metastable liquid state well below the freezing temperature.®®  This
metastability of the liquid state arises from the kinetics of liquid-to-solid phase transitions,
which are controlled by the rates of homogeneous nucleation (J) and crystal growth

(0)).2930

2.2 HOMOGENEOUS NUCLEATION

Continuous, transient, random structural fluctuations occur in liquids. These lead to
the formation of crystalline regions, termed “embryos”. The formation of an embryo leads
to a decrease in free energy, AG;, if the solid is thermodynamically stable and if only the
thermodynamics of the bulk material is considered. One must also take into account,
however, the contribution of the interface’s surface energy. When this energy is included,

the net change in free energy on forming the embryo, W, is a function of embryo size.*!
4_, :
W=§n'r AG, +4nr'c (2.1)

In this equation, AGy is the change in free energy/volume when only the thermodynamics
of the bulk is considered, and o is the surface energy of the interface. Figure 2.1 shows the
variation of W with embryo size. When r is less than r*, W increases with r. Therefore,

the free energy of the system will decrease if the crystalline region remelts. If a fluctuation



Figure 2.1 Change in Gibbs Free Energy (W) as a function of the embryo radius (r).
The formation of an embryo with a radius greater than r* results in a stable nucleus.



occurs which produces a crystalline region of radius greater than r*, a stable nucleus will
result. The process by which these stable nuclei form is referred to as homogenous
nucleation. Crystallization requires the existence of stable nuclei to act as centers from
which larger crystals can grow; consequently, the rate of homogeneous nucleation can
determine the kinetics of a liquid-to-solid phase transition.

Homogeneous nucleation implies the absence of any foreign material or body that
initiates crystallization. The opposite, heterogeneous nucleation. involves initiation of
crystallization on some foreign surface, such as a container wall or a dust particle. The
experiments described in this thesis were carried out on particles suspended in a gas.
Therefore, the possibility of heterogeneous nucleation from container walls was eliminated.
In addition, care was taken to ensure that all parts of the apparatus used in our freezing
measurements were free from dust. Based on this information and experimental evidence
discussed in section 4.5, homogeneous nucleation was assumed to be the dominant

nucleation process in our work.

2.3 CRYSTAL GROWTH

Crystal growth involves the addition of molecules to the stable crystal nucleus. The
rate of crystal growth depends on the rate at which atoms or molecules arrive and remain at
the surface of the stable nucleus. For a stoichiometric solution (a mixture of substances
that can freeze to give a crystal with the same stoichiometry as the orginal mixture), all the
components needed for crystal growth are always present near the stable crystal nucleus.
In this case, the molecules merely have to reorient to be integrated into the crystal lattice.
For non-stoichiometric solutions, however, long-range diffusion processes are necessary to
carry the components to the stable crystal nucleus in the required proportions.
Consequently, the rate of crystal growth depends on the stoichiometry of the solution.
Because viscosity limits the rate of reorientation in stoichiometric solutions and the rate of
diffusion in non-stoichiometric solutions, the rate of crystal growth also depends on the

viscosity of the solution.



2.4 FREEZING RATES
Both the homogeneous nucleation rate (J) and the crystal growth rate (@) can
control the freezing rate. This is clear when the two steps that control the kinetics of the

freezing process are considered:

particle(Tly —— particle(l) + stable nuclei 2.2
particle(l) + stable nuclei —=— particle(s) -

Consequently, both the nucleation rate and crystal growth rate must be larger than a certain
threshold value before the crystal can grow to a detectable size. For the purposes of this
discussion, this threshold value is defined as Ycruca. Having nucleation and crystal growth
rates above Ycrical, hOowever, is not the only prerequisite for freezing. A region of overlap
between the two rates at a particular temperature must exist. Figure 2.2 illustrates this
point. In figure 2.2b, there is no overlap between the nucleation and crystal growth rates.
In this case, for temperatures where the nucleation rate is greater than y.gica, the crystal
growth rate is smaller than Ycgeal, and at temperatures where the crystal growth rate is
greater than Yeritcal, the nucleation rate is less than Yeriseal. For A system described by this
diagram, the phase transition is kinetically inhibited. Figure 2.2a shows the case where
there is a region of overlap between the two rate curves. Stable nuclei will form and grow
in this overlap region; consequently, freezing will occur.

Freezing can also occur for systems that are described by figure 2.2b if temperature
cycling is implemented. This concept is used in section 5.3 to explain the freezing kinetics
of nitric acid trihydrate. Temperature cycling involves first lowering the temperature to a
value where the nucleation rate is larger than Ycica and then raising the temperature to a
value where the crystal growth rate is larger than yehicar. Stable nuclei form at the lower
temperature and then grow at the higher temperature, with the result that the sample
freezes.
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Figure 2.2 Overlap of the crystal growth rate and the nucleation rate for two
chemically different systems.
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CHAPTER THREE
GENERAL EXPERIMENTAL

3.1 INTRODUCTION

Previously, researchers have used thin films and bulk samples to measure phase
transition kinetics of model PSCs, 2257223243 iyt these experimental methods have two
limitations. First, the material under investigation is in contact with a surface. This
introduces the possibility for heterogeneous contributions by the container walls to the
process under investigation.  Second, the size of the samples in these experiments is
usually much larger than the aerosols found in the polar stratosphere. As a result, the
possibility of size-dependent effects exists. To overcome these two limitations, we have
measured the phase transition kinetics of model PSCs using suspended particles that have
average sizes similar to those found in the polar stratosphere. This eliminates the
possibility of heterogeneous contributions from container walls as well as size dependent
effects.

Chapters 4 and 5 present results of measurements carried out on sulfuric acid and
nitric acid aerosols. The experimental details for the two systems are different, but the
general technique is the same. The following is a description of this general technique.
Included is a description of how the freezing experiments are performed and how the
physical properties of the aerosols are determined. The details of the experiments are left

to the respective sections.

3.2 FREEZING EXPERIMENTS

Freezing experiments consisted of generating liquid aerosols, cooling them to a
well-defined temperature, holding the aerosol at this temperature for a specific exposure
time, and finally, determining the fraction of aerosol that crystallized during the exposure
time.

The method of generating liquid aerosols, the first step in our freezing experiments,
varied depending on the system under investigation. For sulfuric acid aerosols, the gas

11



phase reaction of SO; with HoO was used, and for nitric acid aerosols, gas phase
condensation of nitric acid and water vapour was used (see the respective sections for a
detailed description).

Once the liquid aerosol is generated, it is cooled to an accurately known
temperature for a specified time. This is accomplished using temperature-controlled flow
cells. The aerosol particles and carrier gas flow through the temperature-controlled cells at
a known rate, so the time the particles are exposed to a particular temperature is accurately
known. Typically, the flow rate is 1-3 standard litres per minute (SLPM), and the
residence time is 10-30 seconds. The temperature of the aerosol particles is determined
from several thermocouples that are attached to the walls of the flow cells. In a separate
experiment using similar flow conditions (see section 5.2 for details of this experiment), it
was found that the carrier gas rapidly came into equilibrium with the wall. In addition, the
time for relaxation of the temperature of the particle to that of the surrounding gas was
determined using the equation®®

t= (3.1
a

where t is the characteristic time for temperature equilibration of the particie with the
surrounding atmosphere, r is the radius of the particle, and a is the thermal diffusivity of
the particle medium. Using values typical of our experiments, a characteristic time of a
few tens of milliseconds was calculated. Because the aerosol particles come into
equilibrium with the carrier gas rapidly and the carrier gas comes into equilibrium with the
walls of the flow cell rapidly, the temperature of the aerosol particles is essentially that of
the walls. Thus, the temperature of the particles is accurately represented by the
thermocouples attached to the walls.

The final step in our freezing measurement is the determination of the fraction of
aerosol that has frozen during the exposure time. This is accomplished with IR
spectroscopy. IR extinction spectra of the flowing aerosols are recorded and the fraction of
the aerosols frozen are determined directly from these spectra (see section 4.5).

12



Experiments are carried out by first establishing a particular temperature profile in
the flow cell. Then the temperature is varied over the temperature range of interest while
extinction spectra are recorded at equal temperature intervals. The result is extinction
spectra as a function of temperature. From these spectra and the measured residence times,
the freezing kinetics are determined (see section 4.5). It is important to note here that the
total residence time of a sample of particles in the flow tube is less than one minute,
whereas the temperature scan takes several hours. The experiment thus consists of the
continuous creation, cooling and observation of new particles, rather than the observation
of the same sample of particles over a long time period. This has the advantages that the
particle size distribution is invariant with time, and the residence time for each particle is

known and constant.

3.3 IR SPECTROSCOPY

From the IR spectrum of an aerosol, three essential pieces of information are
determined. First, the phase of the aerosol particies is determined from the shape and
intensity of the IR bands. Amorphous liquids or solids exhibit broad absorption bands
because the molecules occupy a variety of different sites in the sample; in contrast, crystals
give rise to sharp absorption peaks due to the ordered arrangement of the molecules in the
crystal lattices. Second, compositional information is extracted from the aerosol IR
spectrum. Under the conditions of our experiments, the magnitude of the absorbance of a
species is proportional to the concentration of that species. If two different absorbing
species are present in the aerosol, the ratio of the individual absorption bands is
proportional to the ratio of the concentrations of the two species. Finally, the size
distribution of the aerosol particles is determined by comparing Mie scattering calculations
with the aerosol extinction spectrum. More information on this topic is given in section
3.4

The compositions of the sulfuric acid aerosols and the stoichiometric nitric acid
aerosols were determined directly from the IR extinction spectra. The compositions of
non-stoichiometric HNO;-H:O aerosols, however, were determined in a slightly different
way. The modified technique involved vaporizing the aerosol and determining the ratio of
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nitric acid to water from the gas phase IR spectrum of the resulting vapour. More details

on this technique are given in section 5.4.

3.4 AEROSOL SIZE DETERMINATION

Before kinetics can be extracted from our freezing experiments, the size of the
aerosol particles under investigation must be determined. This task is further complicated
because the aerosols generated in our experiments are not monodisperse. In other words,
our aerosol particles have a distribution of sizes. Therefore, a mathematical function that
accurately describes this distribution must be determined. A log-normal function is used in
our work for this purpose because it has been employed extensively in the literature to

successfully model artificially produced aerosols.*”*3**** This log-normal function is

Fy= 1 _(lnr-Inrx)2 (3.2)
O= e ao® ™" 2w, -

where

@©

[ frar=1 (3.3)

[}

The two unknowns in this function are the geometric radius (r;) and the geometric standard
deviation (o).

The extinction spectrum of an aerosol has contributions from absorption as well as
scattering.*' This contribution of scattering and absorption to the extinction spectrum is
described mathematically by Beer’s law which states that the irradiance of a beam of light

is exponentially attenuated from /; to /, in transversing a slab of aerosol particles a distance
I

I,v)=1I,()exp(-NC_,v)D) 3.4)
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where
Cm(v) = Cabl(v)+C:ca (V) (3"5)

CarlV), Cars(v) and Cio(v) are the frequency dependent extinction, absorption and
scattering cross sections and N is the number of particles per unit volume. For particle sizes
comparable to the wavelength, the C,..(v) of an aerosol varies in a complicated and rapid
way with radius*’; consequently, the extinction spectrum of an aerosol varies in a similar
manner. The calculated extinction spectra for .1, .5 and 1 micron ice particles shown in
figure 3.1 demonstrate this point. This size dependence of the extinction spectrum (clearly
discernible in figure 3.1) permits the determination of the particle size parameters (g, 1)
from the experimental extinction spectrum of the aerosol.

The technique of extracting the true size distribution parameters (o, rg) from the
experimental extinction spectrum involves calculating aerosol spectra for a range of og and

#2434 and comparing these calculated spectra with the experimental

rg using Mie theory,
extinction spectrum. The o, and r,; that generates the best fit to the experimental spectrum
are considered the true size distribution parameters.

In practice, this size-determining technique involves the following steps. First,
cross section spectra for a range o and ry are calculated from a modified version of a
Fortran code based on that in Bohren and Huffman.* The original code, which only
calculates an efficiency (Q..) for one wavelength and one radius, has been modified to
calculate a cross section (C) for multiple wavelengths and for a distribution of particle
sizes. The following equation is used in the modified code to relate the cross section to the

efficiency:

C. =0 xnr’ (3.6)
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Figure 3.1 Calculated extinction spectra of 0.1, 0.5, and 1.0 micron ice particles. The

maximum intensities have been normalized to 1.0.
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In addition, the cross section for the distribution of sizes is calculated using the following

equation:

Cop = > SOIC(F) 3.7)

rmin

A cross section spectrum is related to an extinction spectrum through the following

equation:

extinctionspectmm=—ln[§%]=Cm(v)xle=Cm(v)xZ (3.8)

where N is the particle density, / is the optical path length, and Z is the scaling factor.
Consequently, the second step in the size determination involves determining a scaling
factor for each calculated spectrum and, subsequently, generating scaled, calculated spectra
from equation 3.8. A scaling factor for each calculated spectrum is determined by dividing
the average intensity of the experimental extinction spectrum by the average intensity of
the calculated spectrum. After the calculated spectra are scaled to the experimental
extinction spectrum, the sum of the squares of the differences between the experimental
extinction spectrum and the scaled, calculated spectra are determined. This whole process
generates an array of values with columns of o, 1y, N, and the sum of the squares of the
differences. Each row in the array corresponds to the parameters of one calculated
spectrum.

The final step involves plotting the sum of the squares of the differences between
the experimental extinction spectrum and the scaled calculated spectra in the form of a
contour plot with o; and r, on the axes. Figure 3.2, generated from a sodium chloride
aerosol produced in our laboratory, is an example of this. The contour lines in this figure
represent the sum of the squares of the differences between the experimental sodium
chloride spectrum and the calculated sodium chloride spectra. The true o and r, associated
with the best fit to the experimental spectrum is given by the minimum in the contour plot.
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A geometric radius of 1.25 (um) and a geometric standard deviation of 1.55 are implied
from this figure. The contour plot shown in figure 3.2 was chosen to illustrate the final step
in our size-determining technique because the topography of this contour map showed a
single deep well. This result, however, is not always the case. The reason for this and the
implications for size determination are discussed in section 4.3.

Mie theory, the theory used in our size inversion technique, is only exact for
spherical particles. Thus, our inversion technique is also only exact for spherical particles.
This is a serious constraint because most of the work described in later chapters involves
solid aerosols, which are possibly nonspherical. Nevertheless, there is evidence that
suggests that scatttering from non-spherical particles differs very little from spherical
particles when a range of particle sizes, shapes, and orientations is involved. For example,
Pope et al. measured the angular dependence of scattering from solid ammonia particles
that were cubic.’ They found that the scattering could be described very well by Mie
theory. Perry and co-workers also investigated the angular dependence of scattering from
cubic salt particles and found similar results.* In addition, other researchers have found
that a range of particle sizes removes effects due to nonspherical particles.®’ This
experimental evidence suggests that Mie theory and our size inversion technique

adequately describe the aerosols studied in this work.
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CHAPTER FOUR
H,SO,-H,0 AEROSOLS

4.1 INTRODUCTION

In the stratosphere, sulfuric acid-water aerosols have a mean diameter of about 0.1
um, and a number density of about 5 particles/cm’®.*® These number densities, however, can
increase by as much as two orders of magnitude from volcanic activity.”* The
concentration of stratospheric sulfuric acid-water aerosols (SSAs) varies depending on the
temperature.*>>! Under normal mid-latitude stratospheric conditions, approximately 220 K
at an altitude of 20 km, these aerosol particles have a composition in the range of 70-75
weight percent sulfuric acid (wt % H>SQO,), whereas at polar stratospheric temperatures, the
aerosol can approach 45 wt % H,S04.2%

The first mechanism proposed to account for the presence of nitric acid in PSCs
involved the freezing of this stratospheric sulfate aerosol followed by nitric acid trihydrate
condensation on the solid surface?’ (see steps 1 and 2 in figure 1.1). The major assumption
in this mechanism, freezing of sulfuric acid-water aerosols, was based on the phase
diagram for the sulfuric acid-water system, which is displayed in figure 4.1.°> The labeling
of the hydrates in this figure has been slightly modified from the original publication to
include the hexahemihydrate, which Gable incorrectly identified as the hexahydrate.'® The
solid curves in this figure separate the regions of stability for the various phases (ice, solid
H.SO,, the liquid and the stable hydrates), and the curves themselves represent conditions
of coexistence for two different phases. Also included in the figure, represented by the
dashed curve, is the expected concentration of the stratospheric sulfate aerosol as a function
of temperature. This curve was calculated using the model of Tabazadeh et al.5' with
parameters of 5 ppmv of water vapor and 50 mbar total pressure. For polar stratospheric
conditions, the dashed curve is well below the stability region of the liquid phase. This led
rescarchers to suggest SSAs are crystalline under polar stratospheric conditions. This
postulate, however, assumes that the kinetics of liquid-to-solid phase transitions of sulfuric

acid solutions are fast under polar stratospheric conditions. Researchers have since
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Figure 4.1 The temperature-composition phase diagram of the H,SO,-H,O system.
The dashed line is the expected compositions of stratospheric sulfate aerosols
exposed to 5 ppmv of water vapor at 50 mbar altitude. The solid curves correspond
to the liquid-solid equilibrium temperatures for the stable hydrates.
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investigated the validity of this assumption by probing the freezing properties and kinetics
of the sulfuric acid-water system.

Research published on this topic prior to late-1994 included theoretical
calculations, but lack of thermodynamic information limited the accuracy of this work.
Initial calculations by Lou and co-workers on 60 wt % H.SOs solutions suggested that
freezing of a large fraction of the aerosol to sulfuric acid tetrahydrate (SAT) could occur
under certain polar stratospheric conditions (time scale of a few hours and temperatures
from 195 to 205 K),” yet recent calculations by the same group indicated insignificant
freezing under similar conditions.** In contrast, calculations by Jensen and Toon indicate
that ice will have a significant nucleation rate ( > 2x10" cm?sec’!) in dilute sulfuric acid
solutions at approximately 35 K below the ice-liquid equilibrium temperatures.”’

Prior to late 1994, several freezing experiments on bulk solutions of sulfuric acid
and water were performed. In these studies, both high’**’ and low™ freezing probabilities
under polar stratospheric conditions were observed. Because the solutions were in contact
with the container walls, the observed freezing could have been initiated by heterogeneous
nucleation.

By late-1994, we began a series of extensive studies on the freezing properties of
H>SO4-H2O aerosols because it was clear that the freezing kinetics of sulfuric acid
solutions had not been resolved at that time. This research, which has been partially
reported in the literature®, is described in this chapter. In addition, the current knowledge
of sulfuric acid freezing kinetics and their relationship to PSCs is discussed.

4.2 EXPERIMENTAL

The liquid H,SO4+-H,O aerosols are generated externally to the temperature-
controlled flow cell by reacting H>O(g) with SOs(g). H2O(g) is generated by bubbling
nitrogen through liquid water, and SOs(g) is generated by bubbling nitrogen through
fuming sulfuric acid (18-24 wt % SOs). The two separately metered flows of N>-SOs and
N2-H20 combine at the top of a one-meter-long glass column in which the reaction forming
the aerosol occurs. At the exit of the glass column, the newly formed aerosol passes
through approximately one meter of Teflon tubing before entering a vertical flow tube.



The distance from the top of the glass column to the entrance of the flow tube permits
adequate time for the H,O-SO; reaction to occur.

After the sulfuric acid-water aerosols are generated, they are studied in a
temperature-controlled flow tube, which consists of two cooling sections. A diagram of
this vertical flow tube is shown in figure 4.2. The first section, a foam insulated stainless
steel tube 4” ID by 10" long, is maintained at approximately 238 K for all of these
experiments by recirculating a refrigerant through cooling coils soldered to the tube walls.
The refrigerant is either methanol, cooled by a commercial refrigerator (Harris Mfg. Co.
Cascade Refrigeration System Model 3-RS2-W-L), or the boil-off from liquid nitrogen.
The second cooling section, shown at the bottom of the figure, is made of copper and
measures 25.6 inches long by 4 inches square. This cooling section is housed in a second
chamber, which is evacuated to provide thermal isolation. The temperature of this cooling
section is controlled by circulating chilled nitrogen through tubing attached to the walls.
Using this method of cooling, we obtained temperatures as low as 163 K in the final
section. The temperature of the flow cell is monitored with two copper-constantan
thermocouples attached to the wall of the top section and four attached to the wall of the
bottom section. As discussed in section 3.2, the temperature of the particles is accurately
determined by this method. Typically, the flow rate was 2 SLPM at a pressure of 400 torr.
This gave a residence time (the time the aerosol was exposed to the final temperature) of
approximately 1 minute.

The final cooling section is equipped with three sets of windows through which IR
spectra can be recorded. For the measurements reported in this chapter, only the bottom set
of windows was used. The mounts, which hold these windows, were designed so that the
window surfaces are a few centimetres back from the main gas flow. This ensures that the
windows are not exposed to the aerosol flowing in the central core of the flow tube, and
hence eliminates deposits on the windows. This was verified by taking background spectra
before the aerosol was introduced into the flow cell and at the end of the experiments, after
the aerosol flow was turned off. In all cases the spectra were identical and no absorption
features due to the aerosol were present.

During a freezing experiment, the temperature of the aerosol was lowered in two
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stages. In the top section of the flow cell, the aerosol temperature was lowered to
approximately 238 K, and in the bottom section, it was lowered to the final observation
temperature. This method of cooling the aerosol prevents water vapor in the carrier gas
from homogeneously condensing and forming ice particles. The H,SO4-H.O particles
produced externally to the temperature-controlled flow cell have a significant water vapor
pressure. For example, a particle with a concentration of 40 wt % H,SOs has a water vapor
pressure of approximately 10 torr at room temperature. When this aerosol is cooled rapidly
to a low temperature, the water vapor can either condense on the existing acid aerosol or
homogeneously condense and form ice particles. In our experiments, however, the aerosol
is first cooled to 238 K, a temperature too high for condensation of ice. (Verification of
this is presented in section 4.5.) Consequently, the water vapor only condenses on the
existing acid aerosol. Further cooling after the first section does not cause ice particle
formation external to the sulfuric acid-water particles because the first section has
significantly reduced the water vapor.

A freezing experiment consisted of first adjusting the SOs flow and H,O flow until
the desired aerosol concentration was produced. Once the desired composition was
achieved, the temperatures of both sections were set to 238 K. Finally, IR spectra of the
aerosol were recorded while the temperature of the final section was varied from 238 K to
approximately 160 K. The first section was maintained at 238 K throughout this

procedure.

4.3 SIZE DETERMINATION

Our size inversion technique, which is based on Mie theory, requires the optical
constants of the material under investigation in order to compute aerosol extinction spectra.
The optical constants used to simulate spectra of sulfuric acid-water aerosols were taken
from reference 59. This work reported optical constants at 6 concentrations: 95.6 wt %,
84.5 wt %, 75 wt %, 50 wt %, 38 wt %, and 25 wt % sulfuric acid. Optical constants for
concentrations between these values were generated using splines having nodes at the

measured values.



Because the optical constants of sulfuric acid-water solutions are concentration
dependent, the concentration of our acrosol particles must be known before our size
inversion technique can be used. This apparent problem is overcome by including the
concentration as a variable in the size inversion technique. In practice, this involves
making an intelligent guess, based on published spectra,'’” about the sulfuric acid
concentration in the particles. Then spectra are calculated for a range of r, and G, using the
optical constants that correspond to this guessed concentration. Next, the sum of squares of
the differences between the experimental spectrum and the calculated spectra are plotted in
the form of a contour plot (see section 3.4 for a further discussion on this). This whole
process is then repeated for a range of concentrations. The result of these calculations is
several contour plots, each associated with a different concentration. The size parameters,
rg and o, of our aerosol particles are determined from the contour plot with the lowest sum
of the squares of the differences. The concentration used to generate this contour is
assumed to be the concentration of the aerosol particles.

The solid line in figure 4.3 is an experimental spectrum of a sulfuric acid-water
aerosol. 85 wt % H.SO, optical constants gave the best fit to this experimental spectrum,
and the corresponding contour plot is shown in figure 4.4. The topography of this contour
plot is quite different from that of the contour plot shown in figure 3.2. A single minimum
is evident in figure 3.2. In contrast, no well-defined minimum appears in figure 4.4.
Instead a minimum contour runs diagonally from the upper left to the lower right. Along
the minimum of figure 4.4, the sums of the squared differences between the experimental
and calculated spectra are nearly equal. This indicates that there is a range over which an
increase in ry can be nearly compensated by a decrease in ;. For this reason, unique size
distribution parameters cannot be determined from this contour plot.

This result led to the following question: does a unique solution only occur for big
particles, such as the NaCl particles described in section 3.4? To address this question, a
series of calculations were performed. First, three spectra were calculated with the
following parameters: 6,=1.4 and r;=1.0, 0.5, and 0.25 um. Our size inversion technique
was then used to determine the size parameters of these spectra. This consisted of
importing these calculated spectra into our size inversion code and treating them as
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Figure 4.3 Spectra of 85 wt % H,SO, particles. The solid line is an experimental spectrum
of an aerosol at 250 K. The dashed line is a calculated spectrum that was generated
with the parameters rg=0.36 (um) and 6,=1.0.
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Figure 4.4 Contour plot generated for a 85 wt % H,SO,4 aerosol.
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experimental spectra with unknown size parameters. The resulting contour plots are shown
in figure 4.5, 4.6 and 4.7. Figure 4.5, the contour generated from the spectrum with a
geometric radius of 0.25 um, is very similar to the contour displayed in figure 4.4. The
minimum contour runs diagonally from the upper left to the lower right, and along the
minimum contour, the sum of the squares of the differences are nearly equal. The
topography of the contours in both figure 4.6 and 4.7, however, show a single deep
minimum. The size parameters infemred from theses deep minima are 5,=1.4 and r;=0.5
um for figure 4.6 and 6; =1.4 and r; =1.0 um for figure 4.7. These values are identical to
the parameters used to calculate the spectra initially. This suggests that our size inversion
technique will give correct results for large size parameters if accurate optical constants are
used in the Mie calculations. Conversely, figure 4.5 suggests that our size inversion
technique will not give a unique solution for small size parameters.

From figure 4.4, we cannot determine unique size distribution parameters for our
H>S04-H>0 aerosols. Despite this caveat, it is clear that the lowest contour in this figure is
wider at the lower right end of the minimum and becomes progressively narrower until it
begins to disappear around r;=0.13 um and 6 =1.7. Thus, limits of the size distribution
parameters can be inferred from the shape of the contour plot. The best fit to the
experimental spectrum occurs for parameters corresponding to this lowest contour with
upper limits of ,=0.13 um and o; =1.7 and lower limits of r;=0.36 pm and 5,=1.0. (c,=1.0
is the lower limit because it corresponds to a monodisperse aerosol.) The dashed line in
figure 4.3 is a spectrum calculated with parameters r;=0.36 um and cz=1.0. Clearly, the
calculated spectrum reproduces the experimental spectrum very well.

The results shown in figure 4.4 are typical of the results we obtained from fitting
spectra of aerosols with concentrations greater than approximately 75 wt % H.SO,. In all
~ cases, the limits on the size parameters were very similar to the values determined from
figure 4.4 (upper limits of r;=0.13 pm and o, =1.7 and lower limits of r;=0.36 um and
oy=1.0). However, when we investigated aerosol particles with concentrations less than
approximately 75 wt %, a serious problem became evident: the optical constants reported
in reference 59 are incapable of reproducing low-temperature spectra of dilute aerosols
(<75 wt %). These optical constants were recorded at room temperature, whereas the
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Figure 4.7 Contour plot generated for a calculated spectrum with parameters

1;=1.0 (um) and cg=l.4.




aerosol spectra were recorded at low temperatures. This is not a significant problem for
concentrated (> 75 wt % H.SQ,) aerosols, because the spectrum of concentrated solutions
is relatively insensitive to temperature.'”” In contrast to this, the spectra of solutions with
concentrations less than 75 wt % H>SO, are sensitive to temperature. (This will be
discussed in greater detail in the following sections.) As a result of this temperawure
dependence, we are unable to determine log-normal size parameters for concentrations less
than 75 wt %. We make the approximation that aerosols with concentrations less than 75
wt % H.SO, generated in our apparatus have similar size parameters to the concentrated
aerosols generated in our apparatus (upper limits of r;=0.13 pm and o; =1.7 and lower
limits of r;=0.36 um and &,;=1.0). These limits are used exclusively in the remainder of

this chapter to parameterize our H.SO4-HO aerosols.

4.4 CONCENTRATION DETERMINATION

The acid composition was determined directly from the aerosol extinction spectra.
This spectroscopically based method uses the relative areas of the bands associated with
water and sulfate ions, near 3300 and 1000 cm’, respectively, as a measure of the acid
concentrations. The location of these bands in the room-temperature spectrum of a 50 wt
% H,SO4 aerosol is indicated in figure 4.8. The L1 lines displayed in the figure encompass
the OH stretching band of water and the L2 lines encompass the sulfate band. A ratio of
these two bands equals the ratio of H.SOs and H,O in the aerosol multiplied by a
calibration factor. If this calibration factor is known, the acid concentration of the aerosol
can be determined directly from the extinction spectrum.

One method of obtaining this calibration factor involves recording IR spectra of
thin films of known acid concentrations, and then relating the area of the sulfate and OH
bands in the spectra to the known concentrations. Anthony et a/. employed this method
and found the ratio of the area of the OH band to the area of the sulfate band was
proportional to the weight percent of sulfuric acid though the following equation:*°

4.1)

OH area -0414
Weight percent acid =—0.133+1.076 x [_...__]

sulfate area
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Figure 4.8 Room-temperature spectrum of a 50 wt % H,SO, aerosol. The L1 lines
indicate the position of the OH band, and the L2 lines indicate the position of the

sulfate band.
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The limits used to define these bands were 3650 and 2409 cm™ for the OH band and 1470
and 820 cm™' for the sulfate band.

The major limitation associated with this method is that the IR bands and intensities
are temperature dependent. Therefore, the use of calibration data based on room-
temperature spectra of thin-films introduces some uncertainties when applied to low-
temperature aerosol spectra. The temperature dependence of the spectra stems from the
fact that the dissociation of H.SO;, varies with temperature. Figure 4.9 illustrates this point.
Shown are spectra from 1450 to 750 cm of 36 wt % H,SO4 particles at 237, 225 and 196
K. Also included in this figure are the frequencies of the HSO4 ion ( 1167, 1054, and 898
cm-1) and the frequencies of the SO;* ion (1125, 980 cm™).8! Clearly, HSO4 increases
with increasing temperature, while SO4” increases with decreasing temperature. This
change with temperature has two consequences. First, the limits over which the band
intensities are determined must be chosen carefully, to include all of the important
absorption bands, and second, the assumption must be made that the IR spectral absorption
coefficients of the different species (HSO4 and SO4*) are approximately the same. The
determination of the correct integration limits may be done by careful inspection of the
spectra, but the latter assumption cannot be quantified, so the approximation is made that
the two sulfate ions have equal absorption strengths. This approach, nevertheless, appears
to give good results: the data reported in reference 60 show that the concentrations derived
from thin-film spectra taken at room temperature and at low temperatures differ by only
3%.

Another problem associated with using the area of the bands in thin-film spectra to
determine concentrations of aerosols stems from the fact that scattering associated with
aerosols is not present in thin films. Scattering can shift and broaden absorption bands as
well as modify band intensities. Consequently, thin-film calibration curves may be
inappropriate for determining aerosol composition. This issue will be addressed in the
following paragraphs.

The second method that can be used to obtain calibration factors involves
calculating extinction spectra for various known concentrations of the acid, and relating the
concentration to the ratio of the hydroxyl and sulfate bands in these calculated spectra.
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Figure 4.9 Infrared spectra of a 36 wt % H,SO, aerosol at 237, 225, and 196 K. The
dashed lines indicate the positions of the SO42‘ bands (1125, 980 cm™!), and the dotted
line indicates the positions of the HSO,” bands (1167, 1057, and 898 cm™!). The

spectra have been offset in the vertical direction for clarity.
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This method has the advantage that it takes into account the effects of scattering, but
because only room temperature indices of refraction are available for H.SO4-H20 system,
this method still has uncertainty from the temperature dependence of the spectra (see
above).

Extinction spectra for room-temperature aerosols having various concentrations
were calculated, and from these spectra, calibration curves that relate the concentration of
the aerosol to the ratio of the areas of the hydroxyl and sulfate bands were generated. To
measure the areas of the absorption bands, it was necessary to establish limits to begin and
end the integration. Shown in figure 4.10 are the limits suggested in reference 60, as well
as a calculated aerosol spectrum (1;=0.36 pm and‘ 0;=1.0). These integration limits,
represented by the vertical lines, do a reasonable job of including all of the appropriate
bands, but close inspection reveals that the limit at 3650 cm™ does not include the entire
hydroxyl band. To include all of the bands and follow the small shifts introduced by both
scattering and temperature dependence, we have used only one fixed limit (2409 cm™') and
set the others at the ends of the respective bands. In practice, the end of the band is defined
to be the location of the minimum in the spectrum that immediately follows the last
absorption feature.

The error associated with estimating concentrations from a thin film calibration
curve can be determined with this new calibration technique. First, the calibration curve of
a thin film is approximated with the calibration curve of an aerosol having a small particle
size (r;=0.03 pm and 5,=1.0). Aerosols in this size range do not scatter light significantly;
hence, the calculated aerosol extinction spectrum is similar to the spectrum of a thin film.
Next, this calibration curve is compared to the calibration curve generated for an aerosol
having a particle size of that under investigation. Typical size parameters of our H.SOs-
H>O aerosols are rg=0.36 um and o,=1.0. Shown in figure 4.11 is the calibration curve that
was generated with these parameters, and the calibration curve that was generated for an
aerosol with r;=0.03 um. Clearly, these two calibration curves are different. In fact, the
concentration of r;=0.36 um aerosol is underestimated by about 4 % using the calibration
curve that approximates a thin-film calibration curve. Note that the parameters rz=0.36 um

and c;=1.0 are only one of the limits which describe the size of our aerosols (see section
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Figure 4.10 Room-temperature spectrum of a 50 wt % H,SO, aerosol. The size
parameters of this aerosol are rg=0.36 (um) and cg=1.0. The L1 and L2 lines indicate

the integration limits used in reference 60.
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Figure 4.11 Calibration curves used to determine the H,SO, particle concentration

from the ratio of the hydroxyl and sulfate bands. The solid curve was calculated with
the parameters rg=0.36 um and 6,=1.0, and the dashed curve was calculated with

the parameters r,=0.03 um and 6,=1.0. These curves are based on spectra

calculated from room-temperature optical constants.
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4.3). Nevertheless, calibration curves calculated for any combination of rg; and o, that lie
along the bottom contour of figure 4.4 are identical to the calibration curve calculated with
the parameters r;=0.36 um and c;=1.0.

The calibration curves shown in figure 4.11 are parameterised in the same form as
that of reference 60: [H.SO4]=a+bx’, where x is the ratio of hydroxyl band to the sulfate
band and [H>SOs] is the acid weight fraction. The values of the parameters are, for r;= 0.03
um, a= -0.173, b= 1.01, and c= -0.388 and, for ry= 0.36 um, a= -0.268, b= 1.124 and c=
-0.3164. The parameters corresponding to r;=0.36 um were used to determine the
concentration of all the low-temperature aerosols composed of sulfuric acid and water. The
error associated with this calibration technique due to the temperature dependence of the
spectra is estimated to be + 3 wt % (the temperature dependent error reported in reference
60).

4.5 DILUTE H;S0,-H,O AEROSOLS
4.5.1 Results

During initial experiments on the sulfuric acid-water system, we observed that ice
precipitates out of sulfuric acid-water aerosol particles with compositions less than 35 wt %
H>SO, (verification of this is given below). Accordingly, we performed a series of
measurements to determine the precise temperature at which ice first appears. The
concentrations investigated in these experiments (<35 wt % H.SO,) are less than the
concentrations predicted by current stratospheric models (75 to 45 wt % HaSO,);
nevertheless, these measurements are of atmospheric interest because cirrus clouds are
believed to form by the precipitation of ice in aerosols with a sulfuric acid concentration
less than 35 wt %.°*° Furthermore, in the future, dilute H,SO4 aerosols may be important
in the stratosphere if conditions such as temperature or trace gas concentrations change.

Freezing experiments on dilute (<35 wt %) sulfuric acid-water aerosols consisted of
recording spectra of the aerosols over a wide temperature range. Shown in figure 4.12 are
results from one of these experiments. Displayed are spectra of 30 wt % H.SOj particles at
temperatures ranging from 220 K to 170 K. The lowest three spectra in this figure are very
similar. In fact, as the aerosol is cooled from room temperature to 206 K, all the features in
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the IR spectrum show only very small changes, which are consistent with cooling of the
liquid aerosol. The broad maximum of the OH feature shifts slowly with temperature from
its room temperature value near 3430 cm™ to near 3360 cm, and the sulfate absorptions
change in a way which is consistent with the temperature dependence of the equilibrium
constants from H>SO, ionization. (See section 4.4 for a further discussion of this shift.)

The three higher temperature spectra in figure 4.12 also have sharp (but weak)
features in both the 3000 cm™ and 1500 cm™ regions. These features are due to water
vapor, which is in equilibrium with the aerosol. Note that these sharp features are not
caused by water vapor external to the cell. The optical path is purged from source to
detector, and the final spectrum consists of the ratio of the sample to the background. In
principle, the intensities of these water vapor absorptions could be used to provide a direct
determination of the aerosol concentration, but because the signal to noise of these peaks is
poor, such a calibration was not attempted. To produce extinction features arising from the
aerosol particles alone, we have removed the water vapor lines from all other aerosol
spectra displayed in this chapter. This was accomplished by subtracting from the aerosol
spectra a spectrum of only water vapor.

The OH stretching region in the 170 K spectrum is significantly different than the
OH stretching region in the higher temperature spectra: the OH band in the 170 K spectrum
is more intense and the maximum is sharper. The subtraction of the 170 K spectrum from
the 180 K spectrum makes these changes more apparent, as shown in figure 4.13. The
solid line is the result of subtracting the higher temperature spectrum from the lower one.
Thus, components that increase in concentration with decreasing temperature show an
absorption change that is greater than zero. The significant changes that have occurred
over the temperature range are indicated by arrows. There is an increase in the absorption
intensity at 3230 cm™', which signals the appearance of ice in the aerosol particle, and also,
there is a decrease in the absorption intensity at 3530 cm™', which signals the disappearance
of liquid water. There are smaller changes in the sulfate ion features near 1000 cm™: the
intensity of the SO4> absorption band increases and the intensity of the HSO,4 absorption

band decreases.
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Figure 4.13 Solid spectrum: subtraction of the two lowest extinction spectra in figure 4.12.

Excursions upward and downward from zero signify (respectively) increases and reductions
in the concentrations of the components. Dashed spectrum: calculated spectrum of a H,O(s)

particle with size parameters r;=0.1 pm and 6,=1.0.
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To support our contention that the feature at 3230 cm in the subtracted spectra
represents the formation of ice, we show, as the dashed curve in the figure 4.13, a
calculated spectrum of a monodisperse sample of ice particles that have radii of 0.1 pum.
The fact that the calculated curve matches the measured spectrum closely supports the
suggestion that a very small crystal of ice has appeared in the sample. A radius of 0.1 um
was chosen because it is the largest size that gives a spectrum of this shape. The spectra of
particles of this size and smaller all have essentially the same shapes.

The small differences between the calculated and measured curves in figure 4.13
are qualitatively in the directions expected from our proposed freezing mechanism. The
measured curve should be below the calculated one on the high-frequency side. due to the
disappearance of liquid water. The difference on the low-frequency side may be due to the
assumption that the ice crystal is isolated; whereas, in reality the ice crystal is enclosed by
an envelope of unfrozen sulfuric acid solution. This system would be more appropriately
represented by a coated sphere calculation.

The changes just described and modelled represent ice formation inside the HSO4
aerosol droplet, as opposed to the formation of an ice aerosol external to the H2SO4
droplets. The first cooling stage in the flow tube eliminates the latter possibility (this has
been discussed in section 4.2). We have verified that no nucleation of ice particles occurs
when pure water vapour is passed through the flow tube with the temperature profile used
in our freezing experiments. The observed nucleation of ice in these experiments,
therefore, must occur inside the aerosol droplet.

The precise temperature at which ice formed in the aerosol particles was determined
by monitoring the 3230 cm™ peak as a function of temperature. Initially, the intensity of
this peak was determined directly from the absorption spectra, but the intensity changes
were not large enough to determine the precise freezing temperature. To get a more
accurate measure of the freezing point, we subtracted each spectrum from the one
measured at the next lower temperature, as shown in figure 4.13. Then the measured
change in the intensity of the 3230 cm™ peak (determined from these subtraction spectra)
was divided by the temperature difference between the two spectra. The result is the rate of
change of the 3230 cm™ feature with temperature. Results from this procedure are shown



in figure 4.14. We interpret the intensity of the feature at 3230 cm™' in the subtracted
spectra to be proportional to the amount of ice which has precipitated as a result of the
decrease in temperature, so the amplitudes of the curves in Figure 4.14 are proportional to
the amount of material which precipitates per degree K. Each of these curves has a rapid
rise on the higher temperature side, goes through a maximum, then decreases until it a
reaches a point where the slope changes and a “tail” extends toward lower temperatures.
These curves are approximately the numerical derivative of the change in amount of ice, so
this shape indicates that, with decreasing temperature, the precipitation rate of ice increases
rapidly at first, then decreases smoothly until the break in the curve, where the amount of
ice continues to increase, but at a slower rate.

For the crystal growth rate to be important in the freezing process represented by
figure 4.14, the diffusion time of H.O molecules in the solution must be longer than the
time the aerosols are at the freezing temperature. The diffusion time can be estimated with

the following equation:
()"
p=1 4.2)
D\ 2

where (x) is the net distance travelled on average by a molecule in a time ¢ if it is diffusing

in a medium with a diffusion coefficient D. The diffusion coefficient, needed for equation
4.2, is defined as

kT

D:
6nna

(4.3)

where n is the solution viscosity, a is the effective radius of a H.O molecule, T is the
temperature, and & is the Boltzmann constant. Using these two equations, a solution
viscosity of 5.0 P at 200 K, and an effective radius of 300 pm, we calculated that an H,O
molecule would take, on average, only 0.5 seconds to diffuse 0.75 microns which is the
average diameter of our particles. Since this time is much shorter than the time the aerosol
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is at the low temperature (approximately | minute), crystal growth does not limit the
freezing process.

Because the crystal growth rate is fast on the time scale of our experiments, the
nucleation rate must determine the freezing rate. Accordingly, the finite width of the
curves in figure 4.14 must reflect the fact that an ice nucleus forms and grows to its
equilibrium size in an increasing number of the aerosol particles as the temperature
decreases. In this event, the break in slope on the low-temperature side of the curves
corresponds to the point at which an ice crystal has formed in all of the aerosol particles.
The remaining “tails” on the curves denote the additional ice that precipitates as the system
follows the solid-liquid equilibrium curve downward with decreasing temperature.

A freezing curve for dilute sulfuric acid aerosols, shown in figure 4.15, was
constructed by plotting the temperatures at which ice first appears in the IR spectrum
versus the concentration of the aerosols. The solid circular points are the results from the
freezing measurements and the line going through the points is a least squares fit to the
data. The point at zero wt % H2SO4 represents the freezing temperature of a liquid water
aerosol, which we measured by the same spectroscopic technique in an earlier experiment.
The particles used in the latter experiment were somewhat larger (r, = 1.2 pm and o; =
1.55). In view of this difference, an error bar of + 3 K is associated with this point; the
other data have a temperature uncertainty of approximately + 1.5 K. Also shown in figure
4.15 is part of the phase diagram for the sulfuric acid-water system. Our measured freezing
points are about 35 K below the freezing temperatures predicted by the phase diagram.

The rate of homogeneous nucleation associated with the freezing curve in figure
4.15 curve can be calculated from classical nucleation theory ***® The rate limiting step in

our H>SO4-H>0 experiments is homogeneous nucleation:

particle(I) ——— particle(l) + stable nuclei 4.9

where J is the rate of formation of stable nuclei per unit volume and per unit time. Since

the freezing process is not limited by the growth of the stable nuclei (proof of this was
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given above), the fraction of particles frozen [Fs(t)] reflects the homogeneous nucleation

rate (J).“"3
F.(t)=1-exp[-J(T)V{] 4.5)
where V is the volume of the particle and ¢ is the time that the particles are held at the

freezing temperature. This equation, however, only applies to monodisperse aerosols. As

discussed in section 3.4, our aerosols are described by a log-normal function:

1 (nr-Inr,)*
! ”‘Tmi)—‘*’“’[ Tn—] (@8)

When the log-normal distribution is included in equation 4.5, the result is an equation that

relates the homogeneous nucleation rate to experimental observables:

[, 7w inli-expl- @V (rye)ar
[ rnvenar

Volume F.(t) = 4.7)

In this equation, Volume_Fs (t) represents the fraction of the total aeroso! volume that has
frozen in time .

All the variables in equation 4.7, except J, are known from our experiment.
Consequently, we can use equation 4.7 to calculate the J value associated with the freezing
curve shown in figure 4.15. The time (¢) that the aerosol is exposed to the freezing
temperature is approximately 1 minute. The log-normal size distribution parameters (r; and
Gp) are known from our size inversion technique (see section 4.3). In addition, the fraction
of the total aerosol volume that has frozen [Volume_F(¢)] in time ¢ can be determined from
figure 4.14 (see below).

As discussed above, the break in the slope of the low-temperature side of the curves
in figure 4.14 corresponds to the point at which all the aerosol particles have an ice crystal,
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and also, these curves represent the derivative of the change in the amount of ice.
Consequently, the integral under one of these curves (from the high temperature side to the
point where the slope on the low-temperature side breaks) is proportional to the total
volume frozen. It follows that integrating a fraction of a freezing curve and dividing by the
total area under the curve gives the fraction of the aerosol volume that has frozen
[Volume_Fs (t)]. The fraction frozen associated with the freezing curve in figure 4.15 was
determined by integrating from the onset of the freezing curve to the temperature where ice
first appeared in the IR spectrum and by dividing this fractional area by the total area under
the curve. For each point in figure 4.15, the calculated fraction frozen was slightly
different. The average value was 5 % with an upper and lower limit of 7 % and 2 %,
respectively. These limits were included in the uncertainty of the rate constant.

Using equation 4.7 and the experimental observables discussed in the previous two
paragraphs, we determined that the homogeneous nucleation rate (J) associated with our
freezing curve (figure 4.15) is between 4x10'° cm™sec’ and 1x10° cm™sec’. The
uncertainty in J stems from the uncertainty in residence time of the aerosol, the uncertainty
in the fraction frozen, and the uncertainty in the size parameters determined from figure
44,

In the above paragraphs, it was assumed that homogeneous nucleation was the
dominant mechanism for the formation of stable nuclei. If heterogeneous nucleation had
occurred several experimental inconsistencies would have resulted. First, freezing
temperatures would have varied irreproducibly for different experiments, different gas
bottles, and so forth, due to the different amounts of contamination expected to occur as the
apparatus is disassembled for cleaning, window change, etc. Our observed freezing
temperatures, however, followed a consistent and reproducible trend, as shown in figure
4.15. Furthermore, the typical particle number density for these experiments is
approximately 1x10’ cm™ (this number was determined from Mie scattering calculations),
and if dust particles contributed substantially to the freezing, either each of the particles
would have to contain a dust particle, implying a very dirty gas supply, or some fraction of
the sample would freeze at a notably different temperature from the rest, which was never
observed.
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4.5.2 Discussion

Mackenzie er al%, Jensen et al>’, and Clapp et al*® have investigated the
temperatures at which ice precipitates out of sulfuric acid-water particles and the associated
homogeneous nucleation rates of this freezing process. The freezing curves and points
determined by these authors as well as our freezing points are displayed in figure 4.16,
which has been taken from Mackenzie et al. The solid curves, which were calculated by
MacKenzie et al. using the “Turbull correlation”, correspond to J values of, from the upper
curve, 6.9x107, 6.9x10°, 6.9x10°, 6.9x10%,and 6.9x10'* cm™sec’. The dashed curve,
which was calculated by Jensen et al. using classical nucleation theory, corresponds to a J
of 2.3x10"! cmsec’’. The triangles, which are the freezing temperatures reported by Clapp
et al., correspond to a J value of 7.4x10° cm™sec’, and finally, the rhombic points
represent the freezing points from our measurements, which as mentioned previously
correspond to a J value between 1x10° cm™sec’’ and 4x10'° cm™sec’. Our J values are in
reasonable agreement with both theory and the experimental data. At concentrations less
than 25 wt % H.SO,, our results are very similar to the calculations, whereas at higher
concentrations, our measured freezing temperatures are approximately 10 K below the
calculations. Similarly, our freezing temperatures agree with the Clapp et al. data at 25 wt
% H2SOs, but our freezing temperatures are approximately 10 K below the Clapp et al. data
at concentrations greater than 30 wt % H.SO4. The Clapp et al. experimental technique is
very similar to our technique; therefore, the difference in the final resuits is likely due to
the different methods of concentration determination. Our concentrations were determined
by a size dependent calibration curve, whereas Clapp et al. determined their concentrations
with a thin-film calibration curve.

Our work has shown that ice precipitates out of sub-micron aerosols in less than
approximately 1 minute for acid concentrations less than 35 wt % H.SO,. Recent models,
however, have suggested that the stratospheric sulfate aerosol will not become more dilute
than approximately 45 wt % H2S04.** Consequently, the formation of ice in a binary
H>S04-H>0 aerosol is not a possible mechanism for solid PSC formation. Cirrus clouds,

however, are believed to form by this mechanism.%** Prior to the publication of our
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Figure 4.16 Comparison of theoretical freezing curves with experiments. The solid
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rhombic points. (Figure taken from reference 65)
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results, no experimental data existed that could coafirm this mechanism. Qur results have
confirmed this mechanism, as well as provided rate constants, which can be used in

modelling studies of cirrus cloud formation.

4.6 CONCENTRATED H,S0,-H,0 AEROSOLS
4.6.1 Results

Freezing measurements similar to the ones described in the previous section were
performed on concentrated (>35 wt %) H.SQs-H,O aerosols. The concentrations
investigated in this work cover the entire range of importance to current stratospheric
models. The primary goal was to determine if H>SO4-H.O aerosols with these
concentrations freeze when exposed to stratospheric temperatures. The vertical lines in
figure 4.17 show the concentration and temperature ranges investigated. Each solid line
corresponds to one experiment where an aerosol of a certain composition was monitored
over a range of temperatures. Included in this figure for comparison purposes is the phase
diagram of the sulfuric acid-water system, our freezing curve which was described in the
previous section, and the temperature-concentration trend of SSAs predicted by the
Tabazadeh et al.®' model.

Figures 4.18 shows results from the freezing experiment performed on a 36 wt %
H2SO; aerosol. The only major change in the aerosol spectrum with cooling is ratio of
SOs* and HSO4". At the warmest temperature, the three peaks due to HSO4 (1167, 1054,
and 898 cm'') are predominant, while at the coldest temperature the largest SO,* peak
(1125 cm™) predominates. In addition to the change in the sulfate region, there is also a
minor narrowing and shifting of the OH band with decreasing temperature. However, there
are no distinctive features in the spectrum that indicate freezing of the particles. (If ice or a
hydrate did form in the liquid particles, the band shapes and intensities in the spectrum
would be significantly different.)'®%

Figure 4.19 shows a second series of spectra from these experiments. In this case,
spectra as function of temperature are shown for a 60 wt % H2SO4 aerosol. The only major
change with decreasing temperature is the shift in the SO4* and HSO, ratio. This is the
same trend that was observed in the 36 wt % H.SO, spectra. In fact, a similar trend was
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Figure 4.17 The vertical lines represent the concentrations and temperatures used in the
freezing measurements. Each solid line corresonds to one experiment where an aerosol
of a certain composition was monitored over a range of temperatures. The dashed line is
the expected compositions of stratospheric sulfate aerosols exposed to 5 ppmv of water
vapor at 50 mbar altitude.
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Figure 4.18 Temperature dependent spectra of a 36 wt % H,S0, aerosol.

The spectra have been offset in the vertical direction for clarity.
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Figure 4.19 Temperature dependent spectra of a 60 wt % H,SO, aerosol.
The spectra have been offset in the vertical direction for clarity.
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observed for all concentrated aerosols (>35 wt % H,SOs): no changes occurred which
could be attributed to crystallization of the aerosol. In addition to monitoring absorption
spectra as a function of temperature, we also took ratios of successive spectra to make
changes more discernable. (This technique was also used in the dilute work to detect the
precise temperature at which ice formed in the aerosol.) Even using this sensitive
technique, we did not see any changes that could be associated with freezing.

The compositions and temperatures we investigated cover the relevant stratospheric
temperatures and compositions, as illustrated by the overlap of the vertical lines and the
composition-temperature trend in figure 4.17. In these experiments, no signs of freezing
were observed. Therefore, our results show that sub-micron aerosols of sulfuric acid and
water do not freeze in less than approximately 1 minute when stratospheric temperatures
and compositions are used.

From our measurements, we can estimate an upper limit of the homogeneous
nucleation rate for concentrated HaSQO4-H>O aerosols. Since the conditions (flow rates and
particle sizes) for the concentrated experiments were approximately the same as the dilute
experiments, the upper limit is the largest J value determined in the previous section:
4x10' cm”sec’. This, of course, assumes that our sensitivity to freezing, which was
previously estimated to be 5 % of the total aerosol volume, is the same in both the dilute

and concentrated experiments.

4.6.2 Discussion

Since our original investigation of sulfuric acid-water aerosols, several researchers
have reported on the freezing properties of micron and sub-micron droplets of sulfuric acid
and water.**®*"%® In all these studies, no freezing was observed for concentrated droplets
(>35 wt % H.SOs) at stratospherically relevant temperatures (>194 K), a result which is
consistent with our findings. Upper limits for J ranging from 1x10'® to 1x10° cm™sec™
were determined in these studies.

One group of researchers, Imre et al., did observe freezing of H;SO4-H,O droplets
with concentrations greater than 35 wt %.%° These authors reported that 44 wt % H,SO,-
HO particles freeze to sulfuric acid octahydrate at 166 K. This finding is not inconsistent
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with other results because 166 K is well below the temperatures investigated by most
researchers. Researchers, including ourselves, who did investigate freezing properties at
this low temperature, did not see the octahydrate form because of the differences in
observation times. Imre et al. noted that it took approximately 4 to 5 hours for the aerosol
to completely crystallize as sulfuric acid octahydrate.

For 10 % of the stratospheric sulfate aerosol to freeze within 1 year (comparable to
the natural lifetime of the sulfate aerosol) sulfuric acid solutions must have a J value larger
than 1x10° cm”sec'. This value was determined from equation 4.5 and from the
assumption that stratospheric particles have a diameter of 0.1 microns. Carleton et al.,
however, reported for stratospheric conditions an upper limit of approximately 1x10°
cmsec” for J*' In addition, recent experiments indicate that bulk samples of sulfuric acid
and water do not freeze under stratospheric conditions.’*”® These measurements provide
an even better constraint for the homogeneous nucleation rate because of the larger sample
sizes and longer observations times used in bulk experiments. For example, Koop et al.

357! using bulk samples.”” This experimental

determined an upper limit of 1x107 cm
evidence reveals that homogenous freezing of stratospheric H.SO4-H2O aerosols is an

unimportant step in the transition diagram displayed in figure 1.1.
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CHAPTER FIVE
HNO;-H,0 AEROSOLS

5.1 INTRODUCTION

Recent equilibrium models predict that stratospheric sulfate particles take up gas
phase HNQs at temperatures below approximately 200 K.2** (This of course assumes the
sulfate aerosol remains liquid down to 200 K.) These models predict that stratospheric
particles are sulfuric acid-water solutions at temperatures greater than approximately 200
K, ternary solutions at temperatures between 200 K and 190 K, and dilute solutions of
nitric acid and water, with a small fraction of sulfuric acid (< 5 wt %) at temperatures
below approximately 190 K. This change in particle composition with decreasing
temperature is shown in figure 5.1. The curves, reproduced from reference **, were
calculated with the following parameters: 5 ppmv of H,O, 5 ppbv of HNOs, 0.036 mg/m’
of H2SO4 and a total pressure of 100 mbar. The solid line in this figure shows how the
composition of the binary sulfuric-acid aerosol would change if gas phase uptake of HNO;
did not occur.

In addition to the equilibrium models, Meilinger er /> and Tsias et al.”’ showed
that rapid temperature fluctuations in the stratosphere can cause the liquid ternary aerosols
described above to depart considerably from their equilibrium compositions due to the
diffusively hindered uptake of HNO; by large droplets. (Such rapid temperature
fluctuations can be produced from mountain waves: a sudden rise in an air mass as it passes
over a mountainous region.) These non-equilibrium models predict that the composition of
the small droplets can approach a pure binary nitric acid solution with nitric acid
concentrations ranging from 52 to 58 wt % acid and sulfuric acid concentrations less than
.01 wt % (step 8 in figure 1.1). This finding led the authors of the non-equilibrium models
to speculate that the nitric acid-water aerosols formed during rapid temperature fluctuations
would freeze as nitric acid trihydrate or nitric acid dihydrate (step 9 in figure 1.1).

The nitric acid-water system has received considerable attention in the past.

Previous work, which has included phase diagram,’"”* vapor pressure,”"'® and
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Figure 5.1 Expected composition of polar stratospheric aerosols as a function of
temperature. The curves were calculated using the following conditions: 5 ppmv
of H,0, 5 ppbv of HNO,, 0.036 mg/m* of H,SO, and a total pressure of 100 mbar.
The solid line shows how the composition of the binary sulfuric acid-water aerosol
would change with temperature if gas phase uptake of HNO, did not occur.
(Figure reproduced from reference 23)
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spectroscopic studies,”*”® has identified three stable hydrates: nitric acid monohydrate
(NAM), nitric acid dihydrate (NAD), and nitric acid trihydrate (NAT). The stability
regions of these hydrates as well as the stability regions of ice and solid nitric acid are
displayed in figure 52.7 Clearly, the solid-liquid co-existence temperature for all
compositions is well above polar stratospheric temperatures, This supports the ““Meilinger
et al. and Tsias et al. freezing mechanism,” but as mentioned repeatedly in this thesis, the
kinetics of liquid-to-solid phase transitions must also be considered.

Several researchers have investigated the freezing kinetics of bulk nitric acid
solutions with concentrations similar to those predicted by Meilinger et al. and Tsias ef al.
(52 to 58 wt % HNO;). Molina et al. observed crystallization in less than 12 minutes at
196 K for 48 % wt HNO; solutions.”® Song observed freezing within one hour at
temperatures ranging from 217 K to 205 K for concentrations ranging from 53 to 64 % wt
HNO,.* Finally, Koop ef al., using concentrations ranging from 45 to 64 wt % HNO;,
observed rapid freezing at temperatures ranging from 214 K to 226 K. The work from
these three groups suggest that solutions with concentrations ranging from 45 to 64 wt %
exhibited fast nucleation and crystallization at polar stratospheric temperatures. The
solutions probed by these researchers, however, were in contact with a surface. As a result,
the observed freezing temperatures are only upper limits to the true homogenous freezing
temperatures due to the possibility of heterogeneous nucleation. It is not clear from these
results whether the same fast rates will be observed for micron sized droplets free of
heterogeneous nucleation sites.

The uncertainties about the freezing kinetics of nitric acid-water aerosols make it
clear that direct laboratory measurements on HNO:-H,O aerosols are needed. Accordingly,
we performed a series of experiments that addressed these uncertainties. Experiments
included freezing measurements on 3:1 (moles H.O:moles HNO;) and 2:1 stoichiometric
particles and freezing measurements of non-stoichiometric particies ranging in composition
from 3:1 to 1.2:1. This research, which has been partially reported in the literature,”>" is
described in this chapter. The goal of this research was to understand the freezing of nitric
acid-water aerosols in general and to determine the feasibility of the “Meilinger et a/. and
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Tsias et al. freezing mechanism” (step 9 in the transition diagram displayed in figure 1.1) in
particular.

5.2 NITRIC ACID DIHYDRATE AEROSOLS

The first crystalline phase we observed while studying nitric acid-water aerosols
was nitric acid dihydrate (NAD). Upon further investigation, we noticed that this crystal
formed readily for a range of aerosol compositions. This finding led us to investigate in
detail the freezing properties of 2:1 aerosols. (The notation x:y, where x refers to moles of
water and y refers to moles of nitric acid, is used almost exclusively in this chapter to
define the composition). First, a technique of generating and characterizing a 2:1 liquid
aerosol was developed, and then freezing measurements were performed on this
stoichiometric aerosol. The spectroscopic techniques used in these measurements are the
same as in the sulfate experiments, but several aspects of this experiment are either

different or improved since the sulfate work.

5.2.1 Experimental

A schematic of the flow tube used in these measurements is shown in figure 5.3
The flow tube, 3.5” ID, consists of three copper sections separated and thermally isolated
by thin-walled stainless steel bellows. The first (inlet) and second sections are each 9” long
and the final (observation) section is 23" long. The temperatures of all three sections can
be varied independently from room temperature to 120 K by flowing cooled N through
copper tubing soldered to the walls of each section. The thermal isolation provided by the
thin walled stainless bellows permits temperature differences of 100 K to exist between
adjacent sections, while their individual temperatures can be stabilized to better than 1.5
K. The flow tube is mounted inside a 6” square stainless steel vacuum jacket, for thermal
insulation.

Three copper/constantan thermocouples, accurate to +1 K, are fixed to the wall of
each of the inlet and middle sections, and four are located on the wall of the observation
section. These temperatures are monitored continuously durirg each experiment and do

not vary by more than + 1.6 K - the total temperature uncertainty - during the experiment.
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To determine how rapidly the gas temperature equilibrates with the wall temperature of this
new flow tube, a long nylon rod fitted with two thermocouples was moved axially along
the tube, to measure directly the gas temperature profile along the centre axis of the flow
tube. In addition, thermocouples fixed to a small arm attached to the rod at right angles to
its axis were used to look for radial temperature gradients. Under typical experimental
conditions (flow: 2.5 SLPM; pressure: 250 torr) these measurements showed that the
temperature of the gas radially across the tube is within 1 K (the accuracy of the
thermocouples) of the wall temperature in each of the sections, and the axial gas
temperature reaches the wall temperature within the first inch after the gas enters a cooling
section. Thereafter the radial and axial temperature gradients in each of the sections are
less than the uncertainty quoted above.

The aerosol extinction spectra are recorded with a Mattson 6021 spectrometer
operating at 8 cm™ resolution over the range 4500 cm™ to 500 cm™. The observations are
made in single pass mode perpendicular to the flowing aerosol stream through ZnS
windows located near the end of the final section. In a similar manner to the sulfuric acid
experiments, background spectra are recorded immediately before the aerosol is introduced
into the tube and immediately after the freezing experiment when the aerosol flow is shut
off. In all cases the spectra were identical; as a result, the recorded extinction spectra are of
the suspended aerosol, not aerosols deposited on the windows.

Nitrogen carrier gas is first passed through a 5 SLPM Omega mass flow meter and
then split into two streams, each of which is further metered through a floating ball flow
meter, then directed through two saturators containing nitric acid and water. The two flows
are then recombined and enter the flow tube. The temperatures of both the first and second
sections of the flow tube are maintained at 188 K for all of the experiments reported here.
This causes condensation of the mixture of nitric acid and water vapors and production of
liquid nitric acid particles, but does not cause crystallization of the liquid particles. This
was verified by holding the final section at 188 K and observing the characteristic spectrum
of the liquid particles. The liquid particles produced in the first sections flow into the final
(observation) section, where the temperature is carefully controlled at a value ranging from
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188 K down to less than 160 K. IR spectra are recorded at various temperatures of the
observation section.

The required aerosol composition (2:1 HNOs:H:0) is determined directly from the
extinction spectra. This is an important aspect of the experiment, so the following detailed
procedure was developed to establish the flow rates of the separated carrier gas streams
needed to produce NAD, which is a precise 2:1 aerosol. First, the approximate flows are
determined by comparing aerosol extinction spectra (taken at low temperatures, known to
produce crystallization) with published thin film NAD spectra.” Visual comparison of the
spectra cannot give the NAD composition accurately, however, because features
characteristic of NAD appear in the experimental spectra over a wide range of vapor
compositions. Figure 5.4 will be used to illustrate the remaining steps necessary to ensure
that the H,O-HNOs composition ratio is that of NAD. Curves (a), (b), and (c) respectively,
are experimental spectra for which the H,O-HNOs ratio is less than, approximately equal to
and greater than 2. Curve (d) is a calculated NAD aerosol spectrum, generated with optical
constants derived from thin film measurements™ and a particle size distribution determined
by fitting to our measured spectra. Comparison of spectrum (d) with the others shows that
the major features of NAD are present in all three experimental spectra.

The 947 cm™' feature, which is present in thin film spectra of solid HNO; and also
liquid solutions of HNOs and H>O but absent from the spectra of the crystalline mono- di-
and tri-hydrates, indicates molecular HNO;."*”® The 3490 cm™ and 3255 cm™ peaks are
OH frequencies characteristic of H,O occupying different positions in the NAD crystal.'>’*
The 3255 cm™' feature is very close to the peak of the broad OH band in liquid H-O-HNO;
at about 3305 cm™'. The edge of liquid band also underlies part of the 3490 cm™ peak, but
its effect on the area of the 3255 cm™ peak is much greater, and consequently, the area ratio
A(3255)/A(3490) is a minimum when all of the H,O is in crystalline NAD. The
enhancement of the 3255 cm™ band in spectrum (c) indicates the presence of liquid
solution due to an excess of H,O.

To achieve a 2:1 concentration, we adjust the flows until a spectrum like (a) is
produced, which has excess HNOs, as indicated by the presence of the peak at 947 cm™.
Then the flow of the HNO; carrier gas is decreased in steps while holding the H,O carrier
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Figure 5.4 Low-temperature NAD aerosol spectra. Curves a, b, and ¢ are measured

spectra, for which the HyO/HNO; ratio is less than, approximately equal to, and greater

than 2, respectively. Curve d is a calculated spectrum. The spectra have been offset in
the vertical direction.
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gas flow constant. Spectra and flow meter readings are taken at each step untl a spectrum
like (c) is observed, where the 947 cm' peak has disappeared and the ratio
A(3255)/A(3490) has increased significantly. The area ratio A(3255)/A(3490) and the area
of the 950 cm™ peak in the spectra are measured, and plotted as a function of the HNO;
carrier gas flow.

The resulting plot is shown in figure 5.5. The solid curve, referenced to the vertical
axis on the left, is the A(3255)/A(3490) area ratio. The dashed curve, referenced to the
vertical axis to the right is the normalized area of the 947 cm™ peak. The former is small
when there is no liquid, and the latter is zero if all HNO; is in the form of NAD. Both are
small at the point where the entire sample is composed of pure NAD. Figure 5.5 shows
that there is a unique flow ratio that causes both to be small simultaneously. This flow
ratio is assumed to be that which produces pure NAD. The horizontal axis in figure 5.5
simply indicates the observation number; the HNO; carrier gas flow was decreased by
aprroximately equal amounts between observations. The uncertainty in the flow rates and
integrations contribute to an overall uncertainty in the aerosol composition of + 0.05:1
(moles H,O: moles HNOs).

A freezing measurement consists of cooling the first two sections of the flow tube
to 188 K and the final section of the flow tube to 173 K (the temperature at which 2:1
aerosols completely crystallize). Then flows that produce an aerosol composed of pure
crystalline NAD are established as described above. When the correct 2:1 stoichiometry
has been achieved, the measurement is carried out by increasing the temperature of the
final section slowly, and taking spectra at regular temperature intervals, while holding the
temperature of the first two sections at 188 K. The complete temperature profile of the
flow tube walls is recorded as each spectrum is taken. Near the expected phase transition,
spectra are recorded at temperature intervals in the final section of approximately 1 K. As
noted in section 3.2, the experiment consists of the continuous creation, cooling and
freezing of new particles, rather than the observation of the same sample of particles over a
long time period.
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5.2.2 Results

As demonstrated above, liquid particles with a composition of 2:1 completely
crystallize to nitric acid dihydrate when the temperature of the final section is held at 173
K. At temperatures above 179 K, however, the particles remain completely liquid. This
was determined by comparing the aerosol spectrum with published spectra of nitric acid-
water solutions.”””® A series of absorbance spectra that encompass the transition from
liquid to solid are shown in figure 5.6. The spectra are displaced vertically for clarity, but
are plotted on the same vertical scale. The sharp features characteristic of crystalline NAD
are evident in the top (low temperature) spectrum at frequencies of 3490, 3255 and 1030
cm’', and the broad features characteristic of liquid HNO;-H,O are evident in the bottom
spectrum.”” The intermediate spectra show features from both NAD and liquid HNOs-
H,O. The most extensive changes occur in the OH region between 3100 cm™ and 3650
cm’' during freezing, so this spectral range was chosen to determine the NAD freezing
point (the temperature where NAD first appears in the IR spectrum). Figure 5.7 is an
enlarged view of this region. It shows seven spectra which were recorded at temperatures
differing by about 1 K, and normalized at 3490 cm™ in order to eliminate the effects of
small fluctuations (less than 5%) in the number of particles in the observation region. The
extreme pairs of curves at the top and bottom each consist of two spectra which are nearly
indistinguishable at the vertical magnification of this figure. The top two are both spectra
of the liquid. Their identical shape and intensity show that the liquid spectra are not
temperature dependent near the NAD freezing point. The next lower spectrum shows the
3490 cm™ and 3255 cm™' OH features in NAD beginning to be distinguishable from the
neighbouring broad OH band. As the temperature decreases (going downwards in the
figure) the relative intensities of the OH absorption from liquid HNOs-H>0O diminish and
the NAD OH features become more prominent. In the bottom two spectra, again
indistinguishable at this magnification, the freezing process has been completed and the
spectra (now of crystailine NAD) are once again temperature independent.

Several methods were examined to find the most accurate way of quantify the NAD
freezing temperature. The shapes of the bands change substantially on freezing. The liquid
spectrum is smooth and monotonic, while the solid has sharper features. The method we
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Figure 5.6 Change in the absorbance spectrum of a 2:1 H,O:HNO; aerosol upon
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Figure 5.7 An enlarged view of seven spectra chosen for the freezing point measurement
of NAD. The spectra were recorded at temperatures differing by about 1 K, over a range
which includes the freezing of the aerosol. The top and bottom curves each show two
pairs of spectra (liquid and solid, respectively) which are nearly indistinguishable at this
magnification.
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finally chose involved determining the difference between each spectrum and a reference
spectrum. A liquid spectrum recorded within a few degrees of the freezing point was
chosen as the reference and the differences between this and the other spectra were
calculated in the frequency range shown in Figure 5.7 ( 3100 cm™ to 3650 cm™). As a
further test, the same procedure was repeated for several other spectral regions. The results
from all regions were the same, but the region from 3100 cm™ to 3650 cm™ was chosen for
the final measurement because it had the best signal to noise.

The differences between the reference spectrum and the spectra at the indicated
temperatures, normalized such that the largest difference is 1.0, are shown in Figure 5.8,
The points represent experimental measurements; the solid lines are described below. The
values between 181.8 K and 179.6 K are indistinguishable from zero at the 2 ¢ confidence
level, consistent with the fact that the liquid spectrum does not vary over this small
temperature range. The solid line through these four points is a least squares regression
line; the dashed lines above and below this show the locations of the 2o values. The
freezing point is defined as the temperature at which the difference changes from zero by a
distinguishable amount (greater than 25). This occurs between the data points at 179.6 K
and 178.8 K, so the onset of freezing is assigned the value 179.2 £ 0.4 K.

The measured differences increase between 178.8 K and 174.7 K. At the latter
temperature, the spectrum is that of crystalline NAD. Below 174.7 K, this spectrum also
remains invariant with temperature at the 2 o level down to 171 K. The changes between
the onset of freezing at 179.2 K and its completion at 174.7 K reflect the increase in the
fraction of the aerosol volume that has crystallized. If the final section of the flow tube is
cooled below the glass temperature (161 K'*), the amorphous phase is formed. As this
section is allowed to warm, the amorphous phase continues to be observed up to about 163
K, and a mixture of the amorphous phase and the crystalline phase is observed up to about
168 K. Above this temperature, the spectrum is that of crystalline NAD. The appearance
of the amorphous phase at temperature below 168 K is the result of either a small crystal
growth rate or a small nucleation rate (see section 2.4 for a further discussion on this).

The information in Figure 5.8 can be used to derive the homogeneous nucleation
rate (J) for the formation of NAD critical nuclei in 2:1 solutions. (Recall that J values
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were determined for sulfate solutions using similar results.) To obtain a nucleation rate
from this resuit, it is necessary to assume that crystallization is rapid with respect to the
residence time. At temperatures ranging from 175 K to 171 K the liquid particles
completely crystallize (see figure 5.8), so crystal growth is fast with respect to the
residence time over this temperature range. At temperatures between 175 K and 182 K the
crystal growth rate must also be fast because the crystal growth rate increases with
temperature between 171 K and 182 K*® Consequently, the assumption of rapid
crystallization is valid for the freezing temperatures we investigated. It is worth noting that
crystallization is expected to be particularly fast for this system because the liquid has
precise 2:1 stoichiometry (see section 2.3 for a further discussion on this).

As discussed in section 4.5, the equation that relates the homogeneous nucleation

rate to the fraction of the aerosol volume that has frozen is

Sr)V(r)(1-exp{-J(T)V(r) A1})

Vo

(5.1)

FV(I’,T)-‘=

where At is the residence time in the final section of the flow tube. Based on the flow rates
and pressures in this experiment, Ar is 15+ 1 seconds. The difference values plotted in
Figure 5.8 yield a direct measurement of the volume fraction of droplets frozen at each
temperature. Thus, if the size distribution function f(r) is known, the nucleation rate
constant can be obtained from equation 5.1.

The method we use to determining the size of our aerosol particles was described in
section 3.4 and discussed further in section 4.3. In the present case, NAD optical constants
from reference 78 were used in the Mie calculations. These have some slight inaccuracies
when applied to aerosols at spectral frequencies below about 1250 cm™, so this region of
the spectrum was excluded from the comparison. Spectra were calculated for a matrix of
log-normal parameters r; and o spanning the following range: rz= 0.01 to 0.41 um and
6 g= 1010 2.1, in steps of 0.01 for each parameter. Figure 5.9 shows a contour plot that
was generated from this matrix of parameters (see section 3.4 for further discussion on
this). The minimum runs diagonally from upper left to lower right in the plot, and along
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Figure 5.9 Contour plot generated by comparing a measured NAD spectrum
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indicated.
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the minimum the values are nearly equal. This trend was also observed in the sulfuric acid
experiments. A unique solution is not obtainable from a contour plot with this type of
topology (see section 4.3); nevertheless, it is possible to estimate limits from the contour
shape. From figure 5.9, we estimate upper limits of r; =0.17 um and o, =1.6 and lower
limits of r; =0.38 um and &; =1.0 (the latter corresponds to a monodisperse aerosol).
Shown in figure 5.10, is the calculated spectrum that corresponds to the lower limits of
these log-normal size parameters (r; =0.38 um and oz =1.0), as well as the experimental
spectrum that was used to generate the contour plot.

The values of the nucleation rate constant, J(7), obtained from equation 5.1, are
shown in Table 5.1 for three temperatures, and 5 combinations of ry and o, taken along the

minimum in Figure 5.9. The temperatures were obtained from the data in Figure 5.8, and

correspond to values of the volume fraction frozen, Fi(r, T), equal to 0.1, 0.5 and 0.9.

Table 5.1 Nucleation rate constant, J(T), as a function of temperature and log-

normal size distribution. All values are in units of 10*? cm™ s™*.

Temperature (K) ; Fy(r,7) |178.8;0.1 177.5; 0.5 175.8 ;0.9
<r>=0.38 um,c =1.001 0.031 0.20 0.67
<r>=0.37 um,c =1.101 0.029 0.20 0.70
<r>=0.34 um , s =1.201 0.028 0.20 0.83
<r>=0.25 um ,c =1.401 0.024 0.22 1.46
<r>=0.17 pm, o =1.601 0.021 0.26 252

5.2.3 Discussion

Our data indicate that homogeneous nucleation of NAD from liquid aerosol droplets

occurs at relatively low temperatures. We observe a flowing aerosol having an average
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radius of approximately 0.4 pum, after it has spent approximately 15 seconds at a known
temperature. On this time scale, the temperature for the onset of nucleation is between
179.6 K and 178.8 K. As we reduce the temperature of the observation section, we find
that 10% of the sample has frozen after 15 seconds at a temperature of 178.8 K, 50% has
frozen at 177.5 K and 90% at 175.8 K. These results indicate that J(T) increases with
decreasing temperature in the range between 180 K and 175 K. At lower temperatures,
especially nearing the glass temperature, the viscosity becomes high, and J(T) is expected
to decrease with decreasing temperature.

Homogeneous nucleation rates of NAD have been previously reported in the
literature. These rates, as well as our measured rates, are displayed in figure 5.11. Our
data are represented by the triangles. The horizontal error bars represent the maximum
uncertainty in the absolute temperature (= 1.6 K) from all sources, and the vertical error
bars reflect uncertainties in the residence time and the size distribution. The vertical error
bars associated with the lower two rates are smaller than the data points.

The hatched region in figure 5.11 shows results from Barton et al.”

Using a static
aerosol chamber, these authors observed rapid crystallization (<1 minute) of 2:1 droplets at
temperatures within a few degrees of 173 K. From this information and their estimated
particle size (< 1 micron), we calculated limits for J(7) that correspond to their results. The
hatched region in figure 5.11 represents these limits. Our results agree with these limits to
well within our quoted uncertainty of + 1.6 K.

The squares in figure 5.11, which are connected by line segments for clarity, show
results from Mackenzie er al%° These rates were calculated using the “Turnbull
correlation™, an approximation to classical nucleation theory. The temperature dependence
of our measured J(T) values are in excellent agreement with that predicted by the
calculations, although the absolute values of the temperatures are uniformly between three
and four Kelvin below those of the MacKenzie work, for equivalent J(T) values.

The circles in figure 5.11 show results from Disselkamp er al.®' These rates were
measured using a similar technique to that employed by Barton et al. The solid line that
connects the Disselkamp et al. data is the result of a calculation by Tisdale ef al®® The
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Figure 5.11 Comparison of the nucleation rates of NAD derived from the measurements
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calculation was based on classical nucleation theory and was constrained to the rates
reported by Disselkamp e al. Our nucleation rates do not agree with those reported by
Disselkamp et al. and Tisdale et a/. As shown in figure 5.11, Disselkamp et al. reported
nucleation rates on the order of 10° cm™ s™! at temperatures about 20 K higher than our
results would indicate. Also, the curve reported by Tisdale et al. indicate that J(7)
decreases to values below 10° cm™ s at temperatures below 180 K, yet we measured rates
above 102 cm™ s°! at these temperatures.

Meilinger et al. and Tsias et al. predicted that liquid ternary PSCs can become
essential binary nitric acid-water aerosols under certain conditions. These authors also
speculated that the binary aerosols would freeze as either NAD or NAT at polar
stratospheric temperatures. For 1 % of these small particles (r=0.2 um) to freeze in 5
minutes (typical time of a rapid temperature fluctuation), the homogeneous nucleation rate
must be 1x10° em3sec!. If our J's are extrapolated to this value, corresponding
temperatures of 182 K to 185 K are obtained. Although very low, these temperatures are
occasionally reached during the Antarctic winter. In the warmer Arctic region, however,
temperatures usually remain a few degrees above these values’* Furthermore, at
temperatures below approximately 185 K, the precipitation of ice is believed to be the

dominant freezing mechanism.

Finally, it should be emphasized that the above discussion refers to the
homogeneous nucleation of NAD from HNOs-H.O solutions having exactly 2:1
stoichiometry. It is not expected on the basis of current models that nitric acid aerosols in
the stratosphere would reach this composition. Meilinger et al. and Tsias et al. predicted
concentrations ranging from 52 wt % HNO; to 58 wt % HNQOs, whereas a 2:1 composition
corresponds to 64 wt % HNO;. Nevertheless, ideas on the stratospheric aerosol
composition are still evolving; therefore, it is desirable to have freezing data for a wide

range of compositions extending beyond those presently expected in nature.

5.3 NITRIC ACID TRIHYDRATE AEROSOLS
The second set of nitric acid-water experiments were performed on aerosols with a
stoichiometric 3:1 composition (54 wt % acid). This composition is within the range
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predicted by Meilinger et al. and Tsias er al. (52-58 wt % acid). The 3:1 freezing
experiments were very similar to the 2:1 freezing experiments, except for the temperature
profile in the flow tube. It was necessary to cycle the temperature of the 3:1 aerosol to
obtain complete crystallization to NAT (see below). Using this method, we determined

homogeneous nucleation rates for the NAT freezing process.

5.3.1 Experiment

The same cryogenic flow tube and associated apparatus used in the 2:1 aerosol
experiments were also used in the 3:1 experiments (see section 5.2.1 for a further
description of this set-up). The technique of composition determination also was very
similar in both experiments. The procedure for 3:1 determination is outlined below.

Features characteristic of NAT appear in the experimental spectra over a wide range
of vapor compositions, as illustrated in figure 5.12. The top three curves were recorded
with the temperatures of the first, middle and last sections held at 188 K, 153 K, and 178 K,
respectively. At these temperatures, all of the liquid aerosol particles that formed in the
first section, nucleate stable crystalline embryos in the middle section, and these embryos
grow rapidly in the last section before the observation area. This results in complete
crystallization of the aerosol particles. (The temperature cycling technique that gives these
results is discussed in greater detail below.) The concentrations of the aerosols that
correspond to the top three spectra in figure 5.12 are less than, approximately equal to and
greater than 3:1, respectively. The bottom curve is a Mie-theory calculation of the
spectrum of pure NAT, calculated with the optical constants reported in reference 83.
Clearly, all of the measured spectra contain substantial contributions from crystalline NAT,
and thus, it is not possible to determine by visual inspection the flows that give NAT, a
precise 3:1 aerosol.

The carrier gas flow rates that gave NAT were obtained by plotting the intensities
of relevant spectral features as a function of the ratio of the H.O and HNO; flows. In
practice, the HNOs flow is kept constant, so intensities were plotted as a function of H.O
flow. Figure 5.13 shows one of these plots. The 3430 cm™ and 3215 cm™ bands are due to
H,O in different NAT crystal sites.'*” In addition, these two bands can have contributions
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Figure 5.12 Low-temperature nitric acid trihydrate aerosol spectra. The top
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from the OH absorption of liquid HNO:-H,O, which stretches from 2600 cm’! to 3600
cm”. The ratio of the areas of the 3430 cm™ and 3215 cm™' bands gives a measure of the
NAT:liquid ratio because the 3215 cm™' band is near the maximum of the liquid absorption,
while the 3430 cm™! band is near its edge. Consequently, the area ratio A(3215)/A(3430)
will be a minimum when the aerosol particle is completely NAT. The intensity of the 1390
cm™ band corresponds to the NO3(vs) singlet band of NAT." This band is a maximum at
the same flow that the A(3215)/A(3430) is a minimum, indicating that this flow ratio yields
the 3:1 NAT composition. The uncertainty associated with the flow rates and the
integrations leads to a total uncertainty in the composition of £0.05:1 (moles H,O:moles
HNOs).

Critical nuclei are too small to be measured by FTIR extinction spectroscopy, so
nucleation is detected by ensuring that the critical nuclei grow to an observable size during
the observation time of the experiment. Complete crystallization of the aerosol particle is
preferred, because this gives the maximum signal for a nucleation event. The temperature
profile used to achieve this depends on the magnitudes and overlap of the nucleation rate
and the crystal growth rate (see section 2.4). If the crystal growth rate and nucleation rate
overlap for some temperature range and the crystal growth rate is appreciable (see figure
2.2a), then the dashed profile in Figure 5.14 will induce complete crystallization. (For the
remainder of the thesis, this profile is referred to as the two-stage temperature profile.) In
this case, the temperatures of the first two sections are held constant at a value that
produces liquid droplets, and the temperature of the final section is varied. This
temperature profile was used in the previous measurements of NAD nucleation.

Unlike NAD, however, NAT has a slow crystal growth rate near its nucleation
temperature, so to detect NAT nucleation accurately, we used the temperature profile
indicated by the solid line in Figure 5.14. (This profile is referred to as a three-stage
temperature profile for the remainder of the thesis.) In this case, the temperatures of the
first and third sections are held constant at 188 K and 178 K, respectively. The former
causes condensation of liquid aerosol droplets from the gas phase, but produces no solid
particles. The latter is too high to nucleate NAT in the liquid droplets, but causes rapid
crystal growth in droplets that have been nucleated at the (lower) temperature of the middle
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Figure 5.14 Schematic cross section of the flow tube is shown at the top of the figure.
The temperature profiles used in the NAD and NAT experiments are at the bottom.
The dashed line is the two-stage temperature profile; the solid line is the three-stage

temperature profile.
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section. (Only the spectra of the liquid aerosol droplets are seen if the temperature of the
middle section is set at either 188K or 178 K.) When the temperature of the middle section
is low enough, NAT begins to nucleate there (see below), and large crystals grow from
these nuclei when the droplets move into the third section.

To do a 3:1 freezing experiment, we first set the temperatures of the first, second,
and third section at 188, 153, and 178 K, respectively, and then flows are adjusted until the
3:1 composition is established. Finally, the temperature of the middle section is slowly

raised, while infrared spectra are continuously recorded.

5.3.2 Results

Figure 5.15 shows a selection of spectra covering the range from 169.1 K to 159.1
K. At the upper end of this range, the H,O absorption in the 3400 cm™* region is broad and
continuous, indicating that the sample is completely liquid,”>”® whereas at 159.1 K, the
characteristic sharp absorptions are clearly visible at 3430 cm™ and 3215 cm™, indicating
the presence of solid NAT crystals.'*”*® From these spectra, it is possible to quantify the
fraction of the total aerosol volume that has frozen at a given temperature. The general
procedure, which has been discussed in section 5.2, involves plotting the change in some
feature of the spectrum versus temperature. As long as the particles remain liquid or solid,
very little or no change is observed in the spectra. As the sample freezes, however, the
feature (if chosen correctly) will change monotonically with the fraction of the sample that
has crystallized.

Two spectral features were considered for this measurement: the integral over the
H,O absorptions in the NAT crystal (the frequency range from 3000 cm™' to 3600 cm™) and
the integral over the NO; (v3) band near 1400 cm™. These gave the same results, with
approximately the same signal to noise values; the latter was chosen for the final nucleation
measurements. As can be seen in Figure 5.15, this band changes from a broad doublet in
the liquid to a sharp single absorption located between about 1350 cm™ and 1450 cm™
when the sample changes from liquid droplets to NAT. The fraction of the total aerosol
volume that has frozen is the change in the integral of this band, normalized such that the
largest difference is 1.0. In Figure 5.16, this fraction is plotted against the temperature of
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Figure 5.15 Changes in the absorbance spectra of a 3:1 aerosol upon freezing.
The bottom spectrum is completely liquid; the top is completely solid. Freezing
begins near 168 K. The spectra have been offset in the vertical direction.
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Figure 5.16 Change in the nitrate band of the 3:1 spectrum as a function of
temperature. The maximum change has been normalized to 1.
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the middle section. The dashed line shows the 25 values for a linear regression to the data

points from 172.9 K to 168.3 K. The fraction frozen becomes non-zero between 167 and
168 K, and rises smoothly until 162.4 K where it again becomes constant with decreasing
temperature. Thereafter, no change in the spectra was observed down to 158 K.

Shown in figure 5.17 is the contour plot used to determine the log-normal size
parameters of the 3:1 aerosols. This contour plot was generated by comparing an
experimental spectrum of NAT with calculated spectra of NAT (see section 3.4 for a
further discussion on the technique). The optical constants used to calculate the NAT
spectra were taken from reference 83. From this contour plot, we conclude that the best fit
to the experimental spectrum occurs for r; = 0.10 um and oz = 1.8. We estimate an error
associated with rg of + 0.05 pm and o of + 0.2. This covers the entire range of the lowest
contour in figure 5.17. Shown in figure 5.18 is the experimental spectrum of NAT that was
used in these calculations, as well as the calculated spectrum that gave the best fit to the
experimental data.

In the 3:1 experiments, the crystal growth rate was large because the temperature of
the aerosol was increased to 178 K in the final section of the flow tube. As a result, the
homogeneous nucleation rate is related to the volume fraction frozen (figure 5.16) through
equation 5.1 (see section 5.2 for a further discussion). Using this equation, we calculated
the following nucleation rates: (in units of cm™ s! x 10'!) 0.38 £0.18, 7.4 £3.9 and
97 + 63 at temperatures of 167.2 K, 165.2 K and 163.5 K respectively. These values were
calculated for 7 (r, T) equal to 0.1, 0.5 and 0.9. The quoted errors represent the combined

effects of uncertainties in the size distribution and the residence time.

5.3.3 Discussion

The rate constants, J(7), we determined from our data are shown as the square
points in Figure 5.19. The error bars represent the uncertainty in the temperature (+ 1.6 K),
the residence time, and the size distribution parameters. The solid line to the right of these
points shows the rates calculated for the nucleation of NAT from liquid aerosol droplets
having a 3:1 stoichiometry.® Also shown in the Figure 5.19 (as triangular points) are the
rates, which we reported in section 5.2.3 for the homogeneous nucleation of NAD from an
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Figure 5.17 Contour plot generated by comparing a measured NAT spectrum with

calculated spectra having the log-normal size parameters indicated.
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Figure 5.18 Comparison of a measured NAT aerosol spectrum with a calculated
spectrum of NAT particles having the log-normal size parameters indicated.
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aerosol having a 2:1 composition. The line to the right of these points shows the
calculation by MacKenzie et al. for the corresponding NAD solution.** The agreement
between the relative values of the experimental and calculated rates is very good, but for
corresponding J(T) values, the calculations are consistently about 3 - 8 K higher in

temperature than the measurements. The relative values of the nucleation rates are also in
agreement with the wdrk of Worsnop et al.,'® which showed that the nucleation of NAD is
favoured over nucleation of NAT.

Two other investigations of the homogenous freezing of 3:1 aerosols have been
reported. Neither used temperature cycling; in both cases, the vapor was cooled to a low
temperature in a single step, and the IR extinction spectrum of the resulting aerosol was
monitored as a function of time. Disselkamp et al.*' found no crystallization of 3:1 nitric

1. reported freezing

acid particles at temperatures down to 190 K. In contrast, Barton er a
of 3:1 aerosols at approximately 175 K. These authors monitored crystallization of sub-
micron diameter aerosols for approximately 22 minutes, and they observed NAD
crystallization within a few minutes and NAT crystallization during the remaining
observation time. In our experiments (which had a much shorter observation time) NAD
did not form if the liquid aerosol composition was precisely 3:1, although it did form from
aerosols of non-stoichiometric compositions between 2:1 and 3:1. (This is discussed in
detail in the following section.)

These experiments have shown that at temperatures slightly above the glass

»** the crystal

transition temperature (between 161 K and 150 K for the 3:1 composition
growth rate of NAT is slow, but the homogeneous nucleation rate is high. As a
consequence, accurate laboratory measurements of NAT homogenous nucleation rates
from liquid aerosol droplets by FTIR extinction measurements require enhancement of the
crystal growth by raising the droplet temperature after nucleation.

For 1% of the small particles to freeze during a rapid temperature fluctuation, the
homogeneous nucleation rate must be 1x10° cm™sec™! (see section 5.2.3). Extrapolation of
our data to higher temperatures shows that 3:1 solutions have a rate of this magnitude at

temperatures of 170 to 175 K. These temperatures are lower than those observed in the
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polar stratosphere, so it is unlikely that freezing of 3:1 aerosol particles is a direct pathway
for the formation of solid particles in the stratosphere.

5.4 NON-STOICHIOMETRIC HNO3-H;0 AEROSOLS

The final experiments were performed on H:O-HNO; aerosols with compositions
ranging from 3:1 to 1.2:1. The range from 3:1 to 2:1 includes the compositions predicted
by Meilinger er al. and Tias et al. (see section 5.1). The range from 2:1 to 1.2:1, even
though not necessarily stratospherically relevant, is of interest because very little is known
about freezing as a function of particle composition in this range. A systematic study over
this range of compositions should increase our understanding of freezing in aqueous

solutions, particularly nitric acid solutions.

5.4.1 Experimental

The low-temperature flow tube used in the non-stoichiometric work was the same
as the one used in the stoichiometric experiments (see section 5.2.1 for a description of the
apparatus). For all concentrations between 1.4:1 and 3:1, a two-stage temperature profile
was used (see figure 5.14). Particles with concentrations between 1.4:1 and 2:1 did not
freeze with this profile (proof of this is given in the following sections), so a three-stage
temperature profile was implemented for these experiments (see figure 5.14). This profile
is designed for compositions having a slow crystal growth rate at low temperatures. (A
further discussion on the profiles used in each freezing experiment is given in the following
sections.)

The major difference between the non-stoichiometric experiments and the
stoichiometric experiments was the method for determining the composition. The
composition of the stoichiometric aerosols was determined by relating changes in spectral
bands to reagent flow. The correct flow ratio correlated with maxima in the spectral peaks
assigned to the pure crystal. This technique, however, is incapable of determining the
composition of non-stoichiometric aerosols because no corresponding maxima occur in this
case. For non-stoichiometric aerosols, the composition is determined using the following
method. First, the aerosol flow exiting the low-temperature flow tube is diverted to a glass
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cell where the aerosol temperature is increased to 293 K. As a result, the aerosol particles
completely vaporize and form nitric acid and water vapors. The partial pressures of these
resulting vapors are then determined by FTIR spectroscopy. The ratio of these partial
pressures is a direct measure of the aerosol composition, because this ratio is the same as
the ratio of H,O molecules to HNO; molecules in the aeroso! particles. This, of course,
assumes that the amount of vapor phase H»O and HNO; in the low-temperature flow tube is
much smaller than total H,O and HNOs, a reasonable assumption in these experiments.

A block diagram of the apparatus used for these measurements is shown in figure
5.20. The low-temperature flow tube is displayed in the top part of the figure, and the glass
cell used for gas phase analysis is displayed in the bottom part of the figure. The flow tube
is connected to the glass cell by a piece of Teflon tubing which is 1/2 *“ ID and 24 ** long.
This Teflon tube is heated to ensure the vapors that enter the glass cell are at 293 K. A
thermocouple (type K) situated at the inlet of the glass cell monitors this temperature. The
glass cell is 1 *“ ID and 7.5 ** long and has AgCl windows attached on both ends by Teflon
mounts. This assembly is located in the sample compartment of a Bruker FTIR
spectrometer. Spectra of the cell contents are recorded with this spectrometer at 0.5 cm™
resolution over the range of 500 cm™! to 4500 cm™'.

The IR spectrum was calibrated for nitric acid and water vapor by recording IR
spectra of known partial pressures of these gases. The source of these known partial
pressures was a saturator, a glass vessel containing various solutions of nitric acid and
water. (The vapor pressures of these solutions were calculated from an equilibrium
model.)® During the calibration experiments, the saturator was connected directly to the
glass cell shown in figure 5.20, and a slow flow of nitrogen was passed through the
saturator and then through the glass cell. At the same time, spectra of the cell contents
were recorded. Saturation of the carrier gas was verified by monitoring the spectrum of the
vapors as a function of the flow rate of the carrier gas. For a range of flow rates, the
intensities of the IR bands remain constant, but as the flow increased above a certain value,
the intensity of these bands decreased. For all flow rates less than this certain value, we
assumed the carrier gas was saturated. The flow rate used in the calibration experiments
was less than half of the flow rate needed for saturation.
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Figure 5.20 Schematic diagram of the apparatus used in the non-stoichiometric
freezing experiments.
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Using the technique described above, we recorded IR spectra for a range of nitric
acid and water partial pressures. Shown in figure 5.21 are three of these spectra. As
indicated in the figure, the sharp features at approximately 3700 and 1500 cm™ are from
water vapor, and the unresolved features at 3550, 1710, 1320 and 880 cm™, are from nitric
acid vapor. Also indicated in the bottom part of this figure are the water lines (1889, 1990
cm’™') and the nitrate band (760 cm'') we used for calibration purposes. Plotted in figures
5.22 and 5.23 are the integrated areas of these features as a function of partial pressure.
The curve in each figure is the result of a least squares fit (second order polynomial) to the
data. The parameters of each fit were used to convert absorption intensities into vapor
pressures of nitric acid and water.

The error associated with this method of compositional analysis was estimated by

preparing stoichiometric 3:1 and 2:1 aerosols in the low-temperature flow tube. (The
method for preparing and characterizing precise 3:1 and 2:1 aerosols was described in the
previous two sections.) We then determined the composition of these aerosols
independently by measuring the gas phase as described above. In all cases, the ratio
determined with our new technique agreed with the stoichiometric ratios to within + 0.2:1
(H20:HNOs). We quote this as our uncertainty in determining the composition of non-
stoichiometric particles.
To do a non-stoichiometric freezing experiment, we first set the temperatures of the cooling
sections to their appropriate values (see above for a discussion on the temperature profiles
used in these experiments). After the temperatures are established, the flows of nitric acid
and water vapor are adjusted until the desired particle composition is obtained. The
temperature of either the second or final cooling section is then increased while both
aerosol and gas phase spectra are recorded. The phase of the aerosol is determined from
the aerosol spectra, and the composition is determined from the gas phase spectra.

5.4.2 Results
1.2:1 < H,O:HNO; <1.4:1

Shown in figure 5.24 are results from an experiment performed on 1.2:1 particles.
The spectra correspond to temperatures ranging from 186 K to 156 K, yet there is virtually
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Figure 5.21 IR spectra of nitric acid and water vapors. The vapor pressures
which correspond to each spectrum are indicated in the figure.
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Figure 5.24 Temperature dependent spectra of a HNO3;-H,O aerosol with a composition

of 1.2:1. The spectra have been offset in the vertical direction.
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no differences among any of the spectra. There are subtle changes during cooling, most
noticeably in the OH region: the shape of the 3500 cm™ band changes slightly as the
aerosol is cooled. These changes, however, are consistent with cooling of a liquid
aerosol.””® We also subtracted successive spectra to make small changes more
discernible, but even with this sensitive technique, we were unable to detect crystallization.

Because of the similarity in the concentrations, we expected nitric acid
monohydrate (NAM) to crystallize in the 1.2:1 particles. A calculated spectrum of this
hydrate (curve a) is displayed in figure 5.25. The optical constants used to calculated the
spectrum were taken from reference 78. Also included in this figure, for comparison
purposes, is the top spectrum in figure 5.24. Clearly, the experimental spectrum doesn’t
resemble the calculated spectrum of NAM. Furthermore, there are no features in the
experimental spectrum that would indicate crystallization of any hydrate.”
The spectra displayed in figure 5.24 were recorded with a two-stage temperature profile;
that is, the first two sections were held at 188 K and the final section was varied. We also
carried out experiments on 1.2:1 particles with a three-stage temperature profile. (The first
and third sections were held at 188 K and 178 K respectively, while the middle section was
varied.) Nevertheless, results identical to the ones displayed in figure 5.24 were obtained.
Because the three-stage profile increases the crystal growth rate (see section 5.3), we
conclude that the homogeneous nucleation rate of 1.2:1 particles is below our detection
limit.

The results observed in the 1.2:1 experiments were typical for compositions ranging
from 1.2:1 to 1.4:1. In all cases, no features associated with crystallization were observed

in the IR spectrum over the entire temperature range investigated.

1.4:1 < H;0:HNO; < 2:1

Unlike the spectra described above, the spectra of particles with compositions
ranging from 1.4:1 to 2:1 do change noticeably between 170 K and 180 K. These changes
are shown in figure 5.26 for the case of the 1.6:1 composition. The bottom spectrum has
broad features that are characteristic of liquid HNO;-H20.”*™ In contrast, the top three
spectra clearly have sharp features at 3490, 3250, 1455, and 1030 cm™ that are
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Figure 5.25 Curve (a) is a calculated spectrum of nitric acid monohydrate (NAM).

Curve (b) is a measured spectrum of a 1.2:1 aerosol at 155.7 K. The spectra have

been offset in the vertical direction.
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Figure 5.26 Spectra of a HNO;-H,O aerosol with a composition of 1.6:1. The

temperature that corresponds to each spectrum is indicated in the figure. The

spectra have been offset in the vertical direction.

105



characteristic of NAD.”*” From this we conclude that a 1.6:1 aerosol remains liquid until
approximately 175 K, at which temperature NAD forms in the aerosol particles.

Because the spectra in figure 5.26 correspond to a 1.6:1 aerosol, it is not possible
for the entire aerosol to freeze as NAD, which has a 2:1 stoichiometry. To determine what
remains in the aerosol particles after NAD formation, we subtracted an aerosol spectrum of
pure NAD from the spéctrum recorded at 174.6 K. (The aerosol spectrum of pure NAD
was recorded during the 2:1 stoichiometric work, which is described in section 5.2.) The
resulting spectrum, displayed in figure 5.27, is very similar to the liquid spectrum of 1.6:1
particles, which is also displayed in the same figure for comparison purposes. There are,
however, slight differences between the subtracted spectrum and the liquid spectrum. First
of all, the ratio of the peak height at 950 cm™ to the peak height at 1035 cm™ is slightly
larger in the subtracted spectrum than in the original liquid spectrum. In addition, the
relative peak height at 1675 cm™ is larger in the subtracted spectrum. Both the 950 cm™
and the 1675 cm™' features are due to molecular HNO; in solution, whereas the 1035 cm™
feature is due to NOs” in solution.'*”* An increase in the HNO; features with respect to the
NO;™ feature indicates that a liquid solution remains in the particle after NAD formation
and that the liquid is slightly more concentrated than the original solution. The results

described above were observed for all aerosols with compositions between 1.4:1 and 2:1.

2.7:1 < H;0:ANO; <3:1

Spectra of 2.8:1 particles at temperatures ranging from 177.3 to 169.2 K are shown
in figure 5.28. The bottom spectrum is the characteristic spectrum of liquid HNOs-
H,0.””” This spectrum, however, changes considerably as the aerosol is cooled. In the
nitrate region, the bands at 1455, 1295, and 1030 cm™ sharpen and grow in intensity while
the shoulder at 1160 cm™ develops. These changes are consistent with crystallization of
NAD.”>” The formation of peaks at 3490 and 3250 cm™ in the OH region are also
consistent with this freezing mechanism. The only other major change in the spectrum with
temperature is the development of a small feature at 3430 cm™'. This peak indicates that
NAT, in addition to NAD, forms in the particles as they are cooled.”*®* (The peaks
assigned to NAD and NAT are indicated in the figure.)
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Figure §.27 Curve (a) is a measured spectrum of a 1.6:1 aerosol at 174.6 K. Curve (b)
is the result of subtracting a NAD spectrum from curve (a). Curve (c) is a measured
spectrum of a 1.6:1 aerosol at 177.2 K. The spectra have been offset in the vertical direction.

107



Extinction

] 173.6 K
175.4 K
.1
- 177.3K
4500 3500 2500 1500

Frequency (cm™)

Figure 5.28 Temperature dependent spectra of a HNO;-H,O aerosol with a

composition of 2.8:1. The spectra have been offset in the vertical direction.
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The freezing mechanism proposed above (NAD and NAT crystallization in 2.8:1
particles) is further supported by the results shown in figure 5.29. Spectrum a is the 171.6
K spectrum from figure 5.28, while spectrum d is the 177.5 K spectrum from the same
figure. Spectrum b is the result of subtracting an aerosol spectrum of pure NAD from
spectrum a. Clearly, there are features in this difference spectrum that cannot be assigned
to the liquid: for example, the OH region. Spectrum c is the result of adding an aerosol
spectrum of pure NAT to the liquid spectrum (d). (The aerosol spectrum of pure NAT was
recorded during the stoichiometric work, which is described in section 5.3.) The resulting
spectrum (c) is very similar to spectrum b, From this, we conclude that 2.8:1 particles at
temperatures below approximately 172 K are composed of NAD, NAT and liquid HNO;-
H>O. A similar trend was observed for all compositions ranging from 2.7:1 to 3:1. In all
cases, both NAD and NAT features appeared in the IR spectrum.

Freezing points

From the temperature dependent spectra of the non-stoichiometric aerosols, we also
determined the precise temperatures at which crystallization first occurred (freezing point).
The procedure for determining the freezing point has been discussed in detail in both
sections 5.2 and 5.3. Briefly, the method involves calculating the difference between each
spectrum and a liquid spectrum recorded within a few degrees of the freezing point. For
these experiments, we calculated the difference over the frequency range of 3100 cm™ to
3650 cm’'. This region was chosen because both NAD and NAT, the two hydrates
identified in this work, have spectral features in this range. Shown in figure 5.30 are the
differences calculated from the results of the 2.8:1 experiment. Unlike the differences
determined in the stoichiometric experiments, these differences are not normalized to 1. In
the stoichiometric experiments, the particles completely crystallized at low temperatures.
Consequently, we normalized the largest difference to 1 and assumed that the resulting
differences represent the volume fraction frozen. In these experiments, however, the
particles did not completely crystallizee The points in figure 5.30 represent the
experimental measurements. The solid line (a) that goes through the points above 176 K is
a linear regression to the data; the dashed lines above and below this show the location of
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Figure 529 Curve (a) is a spectrum of a 2.8:1 aerosol at 171.6 K. Curve (b) is

the result of subtracting an aerosol spectrum of pure NAD from curve (a). Curve (¢)
is the result of adding an aerosol spectrum of pure NAT to curve (d). Curve (d) is

a spectrum of 2 2.8:1 aerosol at 177.3 K. The spectra have been offset in the vertical

direction.
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Figure 530 Plot of the change in the OH region of the 2.8:1 spectrum as a function
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111




the 2o values of this least squares fit. The curve (b) in the figure is a least squares fit to
the points below 176 K. The freezing point is determined by extrapolating this curve and
the linear regression line (a) until the two intersect. The point at which the two intersect is
considered the freezing point.

Shown in figure 5.31 are freezing points as a function of particle composition. The
hatched region repr&seins the concentration and temperature range where no freezing was
observed. The temperature range investigated in these experiments was 188 K to 153 K,
but the hatched region has been truncated at 158 K for presentation purposes. The circles
in the figure represent freezing points of non-stoichiometric particles. The squares
represent freezing points of stoichiometric particles (these results were discussed in section
5.2 and 5.3.) The solid curve is a least squares fit (third order polynomial) to all the
freezing points.

The freezing points in figure 5.31 indicate that the maximum freezing temperature
for compositions ranging from 1.2:1 to 3:1 occurs at a composition of 2:1. The curve in
figure 5.31, however, indicates the maximum is at approximately 2.2:1; further
measurements in this range are needed to verify this categorically. The freezing point data
also indicate that the freezing temperature decreases substantially as the composition

deviates from 2:1.

5.4.3 Discussion and Conclusions

Nitric acid-water particles with average radii of approximately 0.4 microns have
been studied over the range of 188 K to 153 K. The time the aerosol was held at these
temperatures was approximately 15 seconds. From the temperature dependent spectra of
these aerosols, the following conclusions were drawn: Aerosols with compositions between
1.2:1 and 1.4:1 did not crystallize at any of the temperatures investigated. NAD formed in
particles with compositions ranging from 1.4:1 to 2:1, and NAD and NAT formed in
particles with compositions ranging from 2.7:1 to 3:1. From the temperature dependent
spectra, freezing temperatures of these particles were also determined. These results
indicate that the maximum freezing temperature for compositions ranging from 1.2:1 to 3:1

occurs at a composition of approximately 2:1.
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Figure 531 Freezing data from the stoichiometric and non-stoichiometric experiments.
The hatched region represents the the temperature and composition range where no freezing
was detected. The circles represent the freezing points from the non-stoichiometric
experiments. The squares represent the freezing points from the stoichiometric experiments.
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Barton et al.”® have also investigated the freezing of non-stoichiometric solutions of
HNO;-H>O. These authors observed NAD formation in particles with compositions
ranging from approximately 1.2:1 to 2.5:1, and NAD and NAT formation in particles with
compositions ranging from 2.5:1 to 3:1. These results are consistent with our observations,
except for compositions less than 1.4:1. Our results indicate that particles with
concentrations between 1.2:1 and 1.4:1 remain supercooled at temperatures as low as 153
K, whereas Barton et al. observed NAD formation at 185 K with similar compositions.
These apparently contradictory results are probably due to the different observation times
in the two experiments. Barton ef al. noted that it took approximately 8 minutes to form
NAD in concentrated particles. In our experiments, however, the aerosol is only held at the
final temperature for approximately 15 seconds. Barton et al. also investigated non-
stoichiometric solutions with compositions between 3:1 and 4:1. Formation of both NAD
and NAT was reported for this concentration range. We have not investigated this range;
however, we did not see NAD form in the particles with a composition of 3:1 (see section
5.3 for a further discussion).

Non-equilibrium models by Meilinger et a/.*® and Tsias et al.*’ predict that PSCs
can approach a binary nitric acid solution with concentrations ranging from 52 wt % to 58
wt %. These authors speculated that these binary particles freeze as NAT or NAT during a
rapid temperature fluctuation. In section 5.2.3, we argued that 2:1 aerosols will not freeze
under these conditions. Since the maximum freezing point temperature in figure 5.31
corresponds to the 2:1 composition, we also suggest that freezing will not occur for any of
the compositions predicted by Meilinger et al. and Tsias et al. This, of course, assumes
that the homogeneous nucleation rates of the 2:1 solution and the non-stoichiometric
solutions have similar temperature dependencies. (To predicting freezing at stratospheric
temperatures, we must extrapolate our measured rates to higher temperatures.) The
temperature dependence of the 2:1 and 3:1 freezing rates are virtually identical (see figure
5.19). Therefore, it is reasonable to assume that the nucleation rates of solutions with
compositions between 2:1 and 3:1 will also have a similar temperature dependence.
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CHAPTER SIX
CONCLUDING REMARKS

6.1 CONCLUSIONS

In the previous chapters, experiments on H.SO4-H>O and HNO:-H:0 aerosols were
described. The apparatus and techniques used in these experiments proved to be extremely
useful for determining phases and phase transition kinetics of aerosol particles. Using IR
spectroscopy, we were able to determine the phases of the aerosols and the precise
temperature at which the phase transitions occurred. We were also able to determine, using
Mie scattering calculations, the size of the particles under investigation. In most cases only
limits for the log-normal size parameters were determined, but the sensitivity to particle
size could be increased in future experiments by working with larger particles. From the
experimental results, we were also able to determine the kinetics of the phase transitions.
This information allowed us to predict the long-time behavior of stratospheric aerosols
from our short-time observations.

It is unlikely, based on the results presented in this thesis, that steps 1 and 9 in
figure 1.1 are important in PSC freezing. We observed concentrated H.SQO;-H.O aerosols
at temperatures ranging from approximately 240 K to 180 K, yet no freezing was detected.
This finding is in agreement with recent laboratory results on this system which strongly
suggest that step 1 does not occur at stratospheric conditions. Unlike concentrated H,SO,-
H»O aerosols, HNOs-H2O aerosols did freeze in our experiments. NAD crystallized in
particles with concentrations ranging from 1.4:1 to 2:1, and both NAD and NAT
crystallized in particles with concentrations ranging from 2.7:1 to 3:1. From these
experimental results, we determined that the homogeneous nucleation rate is relatively
large at temperatures below approximately 175 K. The homogeneous nucleation rates
determined by extrapolating our measured rates to stratospheric temperatures, however, are
not large enough to cause significant freezing of PSCs. Consequently, step 9 is also
unlikely.

The results from the H,SO4-H>0 and HNO;-H,O experiments suggest that another
pathway besides steps 1 and 9 are responsible for the formation of solid PSCs. One
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possibility is step 6 in figure 1.1. This step involves the precipitation of ice out of dilute
nitric acid particles that have only a small fraction of sulfuric acid (<5 wt %). We have
shown that ice precipitates out of dilute sulfuric acid particles at approximately 35 K below
the equilibrium freezing temperatures. Also, recent calculations suggest that dilute nitric
acid solutions behave in a similar manner to dilute sulfuric acid solutions.’® Consequently,
step 6 1s likely responsible for the formation of solid PSCs below the ice frost point (the
temperature below which ice is thermodynamically stable). Other possibilities for solid

formation include the freezing of ternary aerosols (step 4) and heterogeneous nucleation.

6.2 CONSIDERATIONS FOR FURTHER WORK

The obvious starting point for future work is steps 4 through 7 in the transition
diagram displayed in figure 1.1. This thesis has focused on step 1 and step 9. Studies on
steps 4 through 7 would complete this work. Steps 6 and 7 involve the freezing of a dilute
nitric acid solution with a H,SO4 concentration less than 5 wt %. Both ice and NAT have
been proposed as the freezing products.® The importance of steps 6 and 7 in PSC freezing
could be addressed by simply extending the nitric acid work described in section 5.4 to
include dilute compositions. (The binary aerosol is a reasonable approximation to this
ternary aerosol because of the low concentration of H»SOj, in the particles.) Steps 4 and 5
involve the freezing of ternary solutions (see figure 5.1 for relevant temperatures and
concentrations). The importance of these steps could also be addressed with the current
apparatus, but a2 method of determining the composition of ternary particles would have to
be developed. A method similar to those described in this thesis should be appropriate and
relatively easy to implement.

Besides PSC formation, cirrus cloud formation is another possible topic to
investigate with the current apparatus. Recent field and theoretical work has indicated that
ammoniated and nitrated aerosols play a role in cirrus cloud formation.****° Laboratory
data to support these findings, however, is sparse. Freezing studies on the following
aerosols would further our understanding of cirrus cloud formation: (NH4),SO4, NHsHSO,,
and NH4NO;. These aerosols are just a few of the much larger number of atmospherically
relevant aerosols that need to be studied.
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Although the apparatus developed during the course of this PhD work is adequate
for most of the studies proposed above, the addition of an instrument capable of
determining the composition of any aerosol (volatile at room temperature or non-volatile at
room temperature) would make a substantial improvement to the current apparatus. An
example of an essentially universal technique for compositional analysis is single particle

%031 This technique involves sampling the aerosol particles into

mass spectroscopy (SPMS).
a high vacuum chamber, vaporizing the particles with a laser or a filament, and analysing
the resulting vapor with a mass spectrometer. With the addition of this type of instrument,
a wider range of systems could be investigated.

Another possible avenue to follow in this research is atmospheric heterogeneous
chemistry. The apparatus described in this thesis would be an ideal initial stage to a second
flow tube where heterogeneous reactions could be investigated; that is, the current
apparatus would produce and supply particles to a second flow tube where a trace gas
would be introduced into the aerosol stream. With appropriate methods for trace gas
analysis, the rates and products of the heterogeneous reactions could be monitored. This
set-up would allow the unique opportunity to monitor a reaction between a gas and an
aerosol while the phase of the aerosol is varied.

Clearly, the possibilities for future work are numerous.....
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